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The transitions b → s(d)γ and b → s(d)ℓ+ℓ− receive sizable contributions from loops involving the top
quark (Fig. 6.9). Their dependence on Vts and Vtd may be used to test unitarity of the CKM matrix and
to overconstrain the Wolfenstein parameters ρ̄ and η̄. The considered transitions manifest themselves
in exclusive B-meson decays like B → K⋆γ, B → K∗ℓ+ℓ−, B → ργ and B → ρℓ+ℓ−. The
corresponding inclusive decays B → Xs(d)γ and B → Xs(d)ℓ

+ℓ− are experimentally more challenging,
but the theoretical predictions are significantly more accurate, thanks to the use of OPE and HQET.
The exclusive processes remain interesting due to possible new physics effects in observables other than
just the total branching ratios (photon polarization, isospin- and CP-asymmetries), as well as due to
information they provide on non-perturbative form-factors. This information is particularly required in
analyzing exclusive modes generated by the b → dγ transition, in which case there is little hope for an
inclusive measurement.

γ γ

u, c, t u, c, t W± W±

b W± s(d) b u, c, t s(d)

Fig. 6.9: Leading-order Feynman diagrams for b → s(d)γ in the SM.

In this section we discuss briefly the generic features of the CKM phenomenology in the consid-
ered rare B-decays. The transitions b → sγ and b → sℓ+ℓ− involve the CKM matrix elements from
the second and third column of this matrix, with the unitarity constraint taking the form

∑
u,c,t λi = 0,

with λi = VibV ∗
is. This equation yields a unitarity triangle which is highly squashed, as one of the sides

of this triangle λu = VubV ∗
us ≃ Aλ4(ρ̄ − iη̄) is doubly Cabibbo suppressed, compared to the other two

sides λc ≃ −λt = Aλ2 + .... Hence, the transitions b → sγ and b → sℓ+ℓ− are not expected to yield
useful information on the parameters ρ̄ and η̄, which define the apex of the unitarity triangle of current
interest (see Chapt. 1). The test of unitarity for the b → s transitions in rare B-decays lies in checking
the relation λt ≃ −λc, which holds up to corrections of order λ2.

The impact of the decays b → dγ and b → dℓ+ℓ− on the CKM phenomenology is, however,
quite different. These transitions involve the CKM matrix elements in the first and third column, with
the unitarity constraints taking the form

∑
u,c,t ξi = 0, with ξi = VibV ∗

id. Now, all three matrix elements
are of order λ3, with ξu ≃ Aλ3(ρ̄ − iη̄), ξc ≃ −Aλ3, and ξt ≃ Aλ3(1 − ρ̄ − iη̄). This equation leads
to the same unitarity triangle as studied through the constraints Vub/Vcb, ∆MBd (or ∆MBd/∆MBs).
Hence, the transitions b → dγ and b → dℓ+ℓ− lead to complementary constraints on the CKM pa-
rameters ρ̄ and η̄, as illustrated in the following. Thus, the role of rare B-decays is that they provide
complementary constraints on the CKM matrix elements, hence test the CKM unitarity, but they also
constrain extensions of the Standard Model, and by that token can act as harbinger of new physics.

A theoretical framework for analyzing the b → sγ transition is set by the effective interaction
Hamiltonian

Heff = −4GF√
2

V ∗
tsVtb

8∑

i=1

Ci(µ)Qi. (24)
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The generic structure of the operators Qi is as follows:

Qi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(s̄Γic)(c̄Γ′
ib), i = 1, 2,

(s̄Γib)
∑

q(q̄Γ′
iq), i = 3, 4, 5, 6, (q = u, d, s, c, b)

emb
16π2 s̄LσµνbRFµν , i = 7,
gsmb
16π2 s̄LσµνT abRGa

µν , i = 8.

(25)

Here, Γi and Γ′
i denote various combinations of the colour and Dirac matrices. Everything that is not

important for b → sγ at the leading order in αem, mb/mW , ms/mb and Vub/Vcb has been neglected
in Eq. (24).

Perturbative calculations (see Ref. [28] and refs. therein) are used to find the Wilson coefficients
in the MS scheme, at the renormalization scale µb ∼ mb

Ci(µb) = C(0)
i (µb) +

αs(µb)
4π

C(1)
i (µb) +

(
αs(µb)

4π

)2

C(2)
i (µb) + . . . . (26)

Here, C(n)
i (µb) depend on αs only via the ratio η ≡ αs(µ0)/αs(µb), where µ0 ∼ mW . In the Leading

Order (LO) calculations, everything but C(0)
i (µb) is neglected in Eq. (26). At the Next-to-Leading Order

(NLO), one takes C(1)
i (µb) into account. The Wilson coefficients contain information on the short-

distance QCD effects due to hard gluon exchanges between the quark lines of the leading one-loop
electroweak diagrams (Fig. 6.9). Such effects enhance the perturbative branching ratio B(b → sγ) by
roughly a factor of three [29].

The same formalism applies to b → dγ, too. The corresponding operators Qi are obtained by
replacing s̄ → d̄ in Eq. (25), and by including the u-quark analogues of Q1,2. The latter operators are
no longer CKM-suppressed. The matching conditions Ci(µ0) and the solutions of the RG equations,
yielding Ci(µb), coincide with those needed for the process b → sγ.

2.1. Inclusive B → Xs(d)γ decay
The inclusive branching ratio B(B → Xsγ) was measured for the first time by CLEO in 1995 [30]. The
present world averages

B(B → Xsγ (Eγ > 1.6 GeV)) =
(
3.28 +0.41

−0.36

)
× 10−4, (27)

B(B → Xsγ (Eγ > 1
20mb )) =

(
3.40 +0.42

−0.37

)
× 10−4 (28)

are found from the following four measurements

B(B → Xsγ (Eγ > 1
20mb)) =

[
3.88 ± 0.36stat ± 0.37sys

(
+0.43
−0.23

)

theory

]
× 10−4, (BABAR [31]),

B(B → Xsγ (Eγ > 1
20mb)) =

[
3.21 ± 0.43stat ± 0.27sys

(
+0.18
−0.10

)

theory

]
× 10−4, (CLEO [32]),

B(B → Xsγ (Eγ > 1
20mb)) =

[
3.36 ± 0.53stat ± 0.42sys

(
+0.50
−0.54

)

theory

]
× 10−4, (BELLE [33]),

B(b → sγ) = (3.11 ± 0.80stat ± 0.72sys) × 10−4, (ALEPH [34]),

in which full correlation of the “theory” errors has been assumed. The averages (27) and (28) are per-
fectly consistent with the SM predictions [35,36]

B(B → Xsγ (Eγ > 1.6 GeV))SM = (3.57 ± 0.30) × 10−4, (29)
B(B → Xsγ (Eγ > 1

20mb ))SM = 3.70 × 10−4. (30)
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By convention, contributions to B → Xsγ from the intermediate real ψ and ψ′ are treated as background,
while all the continuum cc̄ states are included assuming quark-hadron duality. Non-continuum states
other than ψ and ψ′ have negligible effect.

When the theoretical result (29) is reevaluated without use of the CKM unitarity in the domi-
nant contributions (i.e. everywhere except for three small (< 2.5%) corrections), comparison with the
experiment (27) leads to the following constraint on the CKM matrix elements

| 1.69 λu + 1.60 λc + 0.60 λt | = ( 0.94 ± 0.07 ) |Vcb|. (31)

After using the numerical values of λc ≃ |Vcb| = (41.0 ± 2.1) × 10−3 and λu from the PDG [37], this
equation yields λt ≃ −47 × 10−3 with an error of around 17%. This is consistent with the unitarity
relation λc ≃ −λt. This relation, however, holds in the SM with much better accuracy than what has just
been derived from Eq. (31). On the other hand, if the SM with 3 generations is not valid, Eq. (31) is not
valid either.

Contrary to B(B → Xsγ), the branching ratio B(B → Xdγ), if measured, would provide us
with useful constraints on the Wolfenstein parameters ρ̄ and η̄. After using the CKM unitarity, it can be
written as

B(B → Xdγ) =
|ξt|2
|Vcb|2

Dt +
|ξu|2
|Vcb|2

Du +
Re(ξ∗t ξu)
|Vcb|2

Dr +
Im(ξ∗t ξu)
|Vcb|2

Di . (32)

The factors ξi have been defined earlier. The quantitiesDa (a = t, u, r, i), which depend on various input
parameters such as mt, mb, mc, µb and αs, are given in Ref. [38]. Typical values of these quantities (in
units of λ4) are: Dt = 0.154,Du = 0.012,Dr = −0.028, and Di = 0.042, corresponding to the scale
µ = 5 GeV, and the pole quark mass ratio mc/mb = 0.29. The charge-conjugate averaged branching
ratio ⟨B(B → Xdγ)⟩ is obtained by discarding the last term on the right hand side of Eq. (32).

It is convenient to consider the ratio
⟨B(B → Xdγ)⟩
⟨B(B → Xsγ)⟩

=
|ξt|2
|λt|2

+
Du

Dt

|ξu|2
|λt|2

+
Dr

Dt

Re(ξ∗t ξu)
|λt|2

= λ2
[
(1 − ρ̄)2 + η̄2 +

Du

Dt
(ρ̄2 + η̄2) +

Dr

Dt
(ρ̄(1 − ρ̄) − η̄2)

]
+ O(λ4)

≃ 0.036 [for (ρ̄, η̄) = (0.22, 0.35)] . (33)

The above result together with Eq. (30) implies ⟨B(B → Xdγ)⟩ ≃ 1.3 × 10−5 in the SM. Thus, with
O(108) BB events already collected at the B factories, O(103) b → dγ decays are already produced.
However, extracting them from the background remains a non-trivial issue.

Apart from the total branching ratios, the inclusive decays B → Xs(d)γ provide us with other
observables that might be useful for the CKM phenomenology. First, as discussed in Chapt. 3, the
B → Xsγ photon spectrum is used to extract the HQET parameters that are crucial for the determination
of Vub and |Vcb|. Second, CP-asymmetries contain information on the CKM phase. These asymmetries
can be either direct (i.e. occur in the decay amplitudes) or induced by the BB mixing.

The mixing-induced CP-asymmetries in B → Xs(d)γ are very small (O(ms(d)/mb)) in the SM, so
long as the photon polarizations are summed over. It follows from the particular structure of the dominant
operator Q7 in Eq. (25), which implies that photons produced in the decays of B and B have opposite
circular polarizations. Thus, in the absence of new physics, observation of the mixing-induced CP-
violation would require selecting particular linear photon polarization with the help of matter-induced
photon conversion into e+e− pairs [39].

The SM predictions for the direct CP-asymmetries read

ACP(B → Xsγ) ≡
Γ(B → Xsγ) − Γ(B → Xs γ)
Γ(B → Xsγ) + Γ(B → Xs γ)

≃ Im(λ∗tλu)Di

|λt|2 Dt
≃ 0.27λ2η̄ ∼ 0.5%, (34)
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ACP(B → Xdγ) ≡
Γ(B → Xdγ) − Γ(B → Xd γ)
Γ(B → Xdγ) + Γ(B → Xd γ)

≃ Im(ξ∗t ξu)Di

|ξt|2 Dt
≃ −0.27 η̄

(1−ρ̄)2 + η̄2
∼ −13%, (35)

where ρ̄ = 0.22 and η̄ = 0.35 have been used in the numerical estimates. As stressed in Ref. [38],
there is considerable scale uncertainty in the above predictions, which would require a NLO calculation
of Di to be brought under theoretical control. The smallness of ACP(B → Xsγ) is caused by three
suppression factors: λu/λt, αs/π and m2

c/m
2
b . This SM prediction is consistent with the CLEO bound

−0.27 < ACP(B → Xsγ) < +0.10 at 95% C.L. [40].
No experimental limit has been announced so far on either the branching ratio B(B → Xdγ) or

the CP asymmetry ACP(B → Xdγ). While experimentally challenging, the measurement of these quan-
tities might ultimately be feasible at the B-factories which would provide valuable and complementary
constraints on the CKM parameters.

2.2. Exclusive radiative B decays
The effective Hamiltonian sandwiched between the B-meson and a single meson state (say, K∗ or ρ
in the transitions B → (K⋆, ρ)γ) can be expressed in terms of matrix elements of bilinear quark cur-
rents inducing heavy-light transitions. These matrix elements are dominated by strong interactions at
small momentum transfer and cannot be calculated perturbatively. They have to be obtained from a
non-perturbative method, such as the lattice-QCD and the QCD sum rule approach. As the inclusive
branching ratio B(B → Xsγ) in the SM is in striking agreement with data, the role of the branch-
ing ratio B(B → K∗γ) is that it will determine the form factor governing the electromagnetic penguin
transition, TK∗

1 (0).
To get a firmer theoretical prediction on the decay rate, one has to include the perturbative QCD

radiative corrections arising from the vertex renormalization and the hard spectator interactions. To
incorporate both types of QCD corrections, it is helpful to use a factorization Ansatz for the heavy-light
transitions at large recoil and at leading order in the inverse heavy meson mass, introduced in Ref. [41].
Exemplified here by the B → V γ∗ transition, a typical amplitude fk(q2) can be written in the form

fk(q2) = C⊥kξ⊥(q2) + C∥kξ∥(q2) + ΦB ⊗ Tk(q2) ⊗ ΦV , (36)

where ξ⊥(q2) and ξ∥(q2) are the two independent form factors in these decays remaining in the heavy
quark and large energy limit; Tk(q2) is a hard-scattering kernel calculated to O(αs); ΦB and ΦV are
the light-cone distribution amplitudes of the B- and vector-meson, respectively, the symbol ⊗ denotes
convolution with Tk, and Ck = 1 + O(αs) are the hard vertex renormalization coefficients. In a number
of papers [42–44], the factorization Ansatz of Eq. (36) is shown to hold in O(αs), leading to the explicit
O(αs) corrections to the amplitudes B → V γ and B → V ℓ+ℓ−.

Experiment Bexp(B0(B0) → K∗0(K∗0) + γ) Bexp(B± → K∗± + γ)

CLEO [45] (4.55+0.72
−0.68 ± 0.34) × 10−5 (3.76+0.89

−0.83 ± 0.28) × 10−5

BELLE [46] (3.91 ± 0.23 ± 0.25) × 10−5 (4.21 ± 0.35 ± 0.31) × 10−5

BABAR [47] (4.23 ± 0.40 ± 0.22) × 10−5 (3.83 ± 0.62 ± 0.22) × 10−5

Table 6.2: Experimental branching ratios for the decays B0(B
0
) → K∗0(K

∗0
)γ and B± → K∗±γ.

We first discuss the exclusive decay B → K∗γ, for which data from the CLEO, BABAR, and
BELLEmeasurements are available and given in Table 6.2 for the charge conjugated averaged branching
ratios. We note that the BELLE data alone has reached a statistical accuracy of better than 10%.
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Adding the statistical and systematic errors in quadrature, we get the following world averages for
the branching ratios:

B(B0 → K∗0γ) = (4.08 ± 0.26) × 10−5 ,

B(B± → K±γ) = (4.05 ± 0.35) × 10−5 . (37)

The two branching ratios are completely consistent with each other, ruling out any significant isospin
breaking in the respective decay widths, which is not expected in the SM [48] but anticipated in some
beyond-the-SM scenarios. Likewise, the CP asymmetry in B → K∗γ decays, which in the SM is ex-
pected to be of the same order of magnitude as for the inclusive decay, namely ACP(B → K∗γ) ≤ 1%,
is completely consistent with the present experimental bounds, the most stringent of which is posted by
the BELLE collaboration [46]: ACP(B → K∗γ) = −0.022 ± 0.048 ± 0.017. In view of this, we shall
concentrate in the following on the branching ratios in B → K∗γ decays to determine the form factors.

Ignoring the isospin differences in the decay widths of B → K∗γ decays, the branching ratios for
B± → K∗±γ and B0(B0) → K∗0(K∗0)γ can be expressed as:

Bth(B → K∗γ) = τB Γth(B → K∗γ) (38)

= τB
G2

Fα|VtbV ∗
ts|2

32π4
m2

b,pole M3
[
ξ(K

∗)
⊥

]2
(

1 − M2
K∗

M2

)3 ∣∣∣C(0)eff
7 + A(1)(µ)

∣∣∣
2
,

where GF is the Fermi coupling constant, α = α(0) = 1/137 is the fine-structure constant, mb,pole is
the pole b-quark mass,M andMK∗ are the B- andK∗-meson masses, and τB is the lifetime of the B0- or
B+-meson. The quantity ξK∗

⊥ is the soft part of the form factor TK∗
1 (q2 = 0) in the B → K∗γ transition,

to which the symmetries in the large energy limit apply. The two form factors ξK∗
⊥ and TK∗

1 (q2 = 0)
are related by perturbative (O(αs)) and power (O(ΛQCD/mb)) corrections [50]. Thus, one could have
equivalently expressed the O(αs)-corrected branching ratio for B → K∗γ in terms of the QCD form
factor TK∗

1 (q2 = 0), and a commensurately modified expression for the explicit O(αs) correction in
the above equation [43]. In any case, the form factor TK∗

1 (q2 = 0) or ξK∗
⊥ has to be determined by a

non-perturbative method.
The function A(1) in Eq. (38) can be decomposed into the following three components:

A(1)(µ) = A(1)
C7

(µ) + A(1)
ver(µ) + A(1)K∗

sp (µsp) . (39)

Here, A(1)
C7
and A(1)

ver are the O(αs) (i.e. NLO) corrections due to the Wilson coefficient Ceff
7 and in

the b → sγ vertex, respectively, and A(1)K∗
sp is the O(αs) hard-spectator correction to the B → K∗γ

amplitude computed in [42–44]. This formalism leads to the following branching ratio for B → K∗γ
decays:

Bth(B → K∗γ) ≃ (7.2 ± 1.1) × 10−5
(

τB
1.6 ps

)(
mb,pole

4.65 GeV

)2
(
ξ(K

∗)
⊥
0.35

)2

, (40)

where the default values of the three input parameters are made explicit, with the rest of the theoretical
uncertainties indicated numerically; the default value for the form factor ξ(K

∗)
⊥ (0) is based on the light-

cone QCD sum rule estimates [49].
The non-perturbative parameter ξ(K

∗)
⊥ (0) can now be extracted from the data on the branching

ratios for B → K∗γ decays, given in Eq. (37), leading to the current world average ⟨B(B → K∗γ)⟩ =
(4.06 ± 0.21) × 10−5, which then yields

ξ̄(K
∗)

⊥ (0) = 0.25 ± 0.04,
[
T̄ (K∗)

1 (0, m̄b) = 0.27 ± 0.04
]

, (41)
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where we have used the O(αs) relation between the effective theory form factor ξ(K
∗)

⊥ (0) and the full
QCD form factor T (K∗)

1 (0, m̄b), worked out in [50]. This estimate is significantly smaller than the
corresponding predictions from the QCD sum rules analysis T(K∗)

1 (0) = 0.38±0.06 [51,49] and from the
lattice simulations T(K∗)

1 (0) = 0.32+0.04
−0.02 [52]. Clearly, more work is needed to calculate the B → K∗γ

decay form factors precisely.
As already discussed, inclusive b → dγ transitions are not yet available experimentally. This lends

great importance to the exclusive decays, such as B → ργ,ωγ, to whose discussion we now turn. These
decays differ from their B → K∗γ counterparts, in that the annihilation contributions are not Cabibbo-
suppressed. In particular, the isospin-violating ratios and CP-asymmetries in the decay rates involving
the decays B± → ρ±γ and B0(B0) → ρ0γ are sensitive to the penguin and annihilation interference in
the amplitudes.

We recall that ignoring the perturbative QCD corrections to the penguin amplitudes the ratio of
the branching ratios for the charged and neutral B-meson decays in B → ργ can be written as [53,54]

B(B− → ρ−γ)
2B(B0 → ρ0γ)

≃
∣∣∣∣∣1 + ϵAeiφA

VubV ∗
ud

VtbV ∗
td

∣∣∣∣∣

2

, (42)

where ϵAeiφA includes the dominant W -annihilation and possible sub-dominant long-distance contribu-
tions. We shall use the value ϵA ≃ +0.30 ± 0.07 for the decays B± → ρ±γ [55,56], obtained assuming
factorization of the annihilation amplitude. The corresponding quantity for the decays B0 → ρ0γ is
suppressed due to the electric charge of the spectator quark in B0 as well as by the unfavourable colour
factors. Typical estimates for ϵA in B0 → ρ0γ put it at around 5% [55,56]. The strong interaction
phase φA vanishes in O(αs) in the chiral limit and to leading twist [54], giving theoretical credibility to
the factorization-based estimates. Thus, in the QCD factorization approach the phase φA is expected to
be small and one usually sets φA = 0. Of course, O(αs) vertex and hard spectator corrections gener-
ate non-zero strong phases, as discussed later. The isospin-violating correction depends on the unitarity
triangle phase α due to the relation:

VubV ∗
ud

VtbV ∗
td

= −
∣∣∣∣∣
VubV ∗

ud

VtbV ∗
td

∣∣∣∣∣ e
iα . (43)

The NLO corrections to the branching ratios of the exclusive decays B± → ρ±γ and B0 → ρ0γ are
derived very much along the same lines as outlined for the decays B → K∗γ. Including the annihilation
contribution, the B → ργ branching ratios, isospin- and CP-violating asymmetries are given in [43,44].

Concentrating on the decays B± → ρ±γ, the expression for the ratio R(ργ/K∗γ) ≡ B(B± →
ρ±γ)/B(B± → K∗±γ) (where an average over the charge-conjugated modes is implied) can be written
as [44]

R(ργ/K∗γ) = Sρ

∣∣∣∣
Vtd

Vts

∣∣∣∣
2 (M2

B − M2
ρ )3

(M2
B − M2

K∗)3
ζ2(1 + ∆R) , (44)

where Sρ = 1 for the ρ± meson, and ζ = ξρ⊥(0)/ξK∗
⊥ (0), with ξρ⊥(0)(ξK∗

⊥ (0)) being the form factors (at
q2 = 0) in the effective heavy quark theory for the decays B → ργ(B → K∗γ). The quantity (1 + ∆R)
entails the explicit O(αs) corrections, encoded through the functions A(1)K∗

R , A(1)t
R and Au

R, and the
long-distance contribution Lu

R. For the decays B± → ρ±γ and B± → K∗±γ, this can be written after
charge conjugated averaging as

1 + ∆R± =

∣∣∣∣∣
Cd

7 + λuLu
R

Cs
7

∣∣∣∣∣

2 (
1 − 2A(1)K∗

R

ℜCs
7

|Cs
7 |2
)

+
2

|Cs
7 |2

ℜ
[
(Cd

7 + λuLu
R)(A(1)t

R + λ∗uAu
R)
]

. (45)
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ζ = 0.76 ± 0.10 Lu
R = −0.095 ± 0.022

A(1)K∗ = −0.113 − i0.043 A(1)t = −0.114 − i0.045

Au = −0.0181 + i0.0211

ηtt = 0.57 ηcc = 1.38 ± 0.53

ηtc = 0.47 ± 0.04 B̂K = 0.86 ± 0.15

ηB = 0.55 FBd

√
B̂Bd = 235 ± 33+0

−24 MeV
ξs = 1.18 ± 0.04+0.12

−0

λ = 0.221 ± 0.002 |Vub/Vcb| = 0.097 ± 0.010

ϵK = (2.271 ± 0.017) 10−3 ∆MBd = 0.503 ± 0.006 ps−1

aψKs = 0.734 ± 0.054 ∆MBs ≥ 14.4 ps−1 (95% C.L.)

Table 6.3: Theoretical parameters and measurements used in B → ργ observables and in the CKM unitarity fits. For details

and references, see [57,17]

In the SM, Cd
7 = C7, as in the b → sγ decays; however, in beyond-the-SM scenarios, this may not

hold making the decays B → ργ interesting for beyond-the-SM searches [57]. The definitions of the
quantities A(1)K∗ , A(1)t, Au and Lu

R = ϵA C(0)eff
7 can be seen in [44]. Their default values together with

that of ζ are summarized in Table 6.3, where we have also specified the theoretical errors in the more
sensitive parameters ζ and Lu

R.
What concerns the quantity called ζ , we note that there are several model-dependent estimates of

the same in the literature. Some representative values are: ζ = 0.76 ± 0.06 from the light-cone QCD
sum rules [55]; a theoretically improved estimate in the same approach yields [49]: ζ = 0.75 ± 0.07;
ζ = 0.88 ± 0.02(!) using hybrid QCD sum rules [58], and ζ = 0.69 ± 10% in the quark model [59].
Except for the hybrid QCD sum rules, all other approaches yield a significant SU(3)-breaking in the
magnetic moment form factors. In the light-cone QCD sum rule approach, this is anticipated due to the
appreciable differences in the wave functions of the K∗ and ρ-mesons. To reflect the current dispersion
in the theoretical estimates of ζ , we take its value as ζ = 0.76 ± 0.10. A lattice-QCD based estimate of
the same is highly desirable.

The isospin breaking ratio

∆(ργ) ≡ (∆+0 + ∆−0)
2

, ∆±0 =
Γ(B± → ρ±γ)

2Γ(B0(B0) → ρ0γ)
− 1 (46)

is given by

∆(ργ) =

∣∣∣∣∣
Cd

7 + λuLu
R

Cd
7

∣∣∣∣∣

2 (

1 − 2ℜCd
7 (A(1)t

R + λ∗uAu
R)

|Cd
7 |2

)

+
2

|Cd
7 |2

ℜ
[
(Cd

7 + λuLu
R)(A(1)t

R + λ∗uAu
R)
]
− 1 , (47)

and the CP asymmetry A±
CP (ργ) = (B(B− → ρ−γ) − B(B+ → ρ+γ))/(B(B− → ρ−γ) + B(B+ →

ρ+γ)) is

A±
CP (ργ) = −

2ℑ
[
(Cd

7 + λuLu
R)(A(1)t

I + λ∗uAu
I )
]

|Cd
7 + λuLu

R|2
. (48)

The observables R0(ργ/K∗γ) ≡ B̄(B0 → ρ0γ)/B(B0 → K∗0γ) (where B̄ is the average of the B0 and
B0 modes) and A0

CP (ργ) = (B(B0 → ρ0γ) − B(B0 → ρ0γ))/(B(B0 → ρ−γ) + B(B0 → ρ0γ)) are
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Fig. 6.10: Unitary triangle fit in the SM and the resulting 95% C.L. contour in the ρ̄ - η̄ plane. The impact of the

R(ργ/K∗γ) < 0.047 constraint is also shown (from Ref. [57]).

obtained from Eqs. (44, 45, 48) in the limit Lu
R = 0 and Sρ = 1/2. The numerical estimates for the

various observables depend, apart from the hadronic parameters specific to the B → V γ (V = K∗, ρ)
decays, also on the CKM parameters, in particular ρ̄ and η̄. A typical analysis of the constraints in the
(ρ̄, η̄) plane from the unitarity of the CKM matrix [57], including the measurements of the CP asymmetry
aψKs in the decays B0/B0 → J/ψKs (and related modes) [60] is shown in Fig. 6.10. Note that for the
hadronic parameters FBd

√
B̂Bd and ξs, the recent lattice estimates [61] have been adopted that take

into account uncertainties induced by the so-called chiral logarithms [62]. These errors are extremely
asymmetric and, once taken into account, reduce sizeably the impact of the ∆MBs/∆MBd lower bound
on the unitarity triangle analysis, as shown in Fig. 6.10. The 95% CL contour is drawn taking into account
chiral logarithms uncertainties. The fitted values for the Wolfenstein parameters are ρ̄ = 0.22 ± 0.07
and η̄ = 0.35 ± 0.04. This yields ∆R± = 0.055 ± 0.130 and ∆R0 = 0.015 ± 0.110 [44,57]. The
impact of the current upper limit R(ργ/K∗γ) ≤ 0.047 [63] is also shown. While not yet competitive
to the existing constraints on the unitarity triangle, this surely is bound to change with the anticipated
O(1 (ab)−1)) Υ(4S) → BB data over the next three years at the B-factories.

Taking into account these errors and the uncertainties on the theoretical parameters presented in
Table 6.3, leads to the following SM expectations for the B → (K∗, ρ)γ decays [57]:

R±(ργ/K∗γ) = 0.023 ± 0.012 , (49)
R0(ργ/K∗γ) = 0.011 ± 0.006 , (50)

∆(ργ) = 0.04+0.14
−0.07 , (51)

A±
CP (ργ) = 0.10+0.03

−0.02 , (52)
A0

CP (ργ) = 0.06 ± 0.02 . (53)

The above estimates of R±(ργ/K∗γ) and R0(ργ/K∗γ) can be combined with the measured branching
ratios for B → K∗γ decays given earlier to yield:

B(B± → ρ±γ) = (0.93 ± 0.49) × 10−6 , B(B0 → ρ0γ) = (0.45 ± 0.24) × 10−6 . (54)

The errors include the uncertainties on the hadronic parameters and the CKM parameters ρ̄, η̄, as well
as the current experimental error on B(B → K∗γ). While there is as yet no experimental bounds
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Fig. 6.11: Extremal values of R(ργ/K∗γ) t hat are compatible with the SM unitarity triangle analysis (from Ref. [57]).

on the isospin- and CP-violating quantities, ∆(ργ), A±
CP (ργ) and A0

CP (ργ), the upper limits on the
branching ratios R±(ργ/K∗γ) and R0(ργ/K∗γ) have been significantly improved by the BABAR [63]
and BELLE [46] collaborations recently. Averaged over the charge conjugated modes, the current best
upper limits are [63]: B(B0 → ρ0γ) < 1.4 × 10−6, B(B± → ρ±γ) < 2.3 × 10−6 and B(B0 → ωγ) <
1.2 × 10−6 (at 90% C.L.). They have been combined, using isospin weights for B → ργ decays and
assuming B(B0 → ωγ) = B(B0 → ρ0γ), to yield the improved upper limit B(B → ργ) < 1.9 × 10−6.
The current measurements of the branching ratios for B → K∗γ decays by BABAR [47], B(B0 →
K∗0γ) = (4.23±0.40±0.22)×10−5 and B(B+ → K∗+γ) = (3.83±0.62±0.22)×10−5 , are then used to
set an upper limit on the ratio of the branching ratios R(ργ/K∗γ) ≡ B(B → ργ)/B(B → K∗γ) < 0.047
(at 90% C.L.) [63]. This bound is typically a factor 2 away from the SM estimates given above [44,57].
However, in beyond-the-SM scenarios, this bound provides highly significant constraints on the relative
strengths of the b → dγ and b → sγ transitions [57].

The extremal values of R(ργ/K∗γ) compatible with the SM UT-analysis are shown in Fig. 6.11
where the bands correspond to the values 0.037 ± 0.007 and 0.013 ± 0.003 (the errors are essen-
tially driven by the uncertainty on ζ). The meaning of this figure is as follows: any measurement of
R(ργ/K∗γ), whose central value lies in the range (0.013, 0.037) would be compatible with the SM,
irrespective of the size of the experimental error. The error induced by the imprecise determination of
the isospin breaking parameter ζ limits currently the possibility of having a very sharp impact from
R(ργ/K∗γ) on the UT analysis. This aspect needs further theoretical work.

3. Weak phases from hadronic B decays
M. Beneke, G. Buchalla (coordinator), M. Ciuchini, R. Fleischer, E. Franco, Y.-Y. Keum, G. Martinelli,
M. Pierini, J.L. Rosner and L. Silvestrini

The next five contributions discuss the problem of extracting weak phases from hadronic B decays.
The emphasis is on determining the CKM parameters γ and α, or equivalent constraints on ρ̄ and η̄, from
exclusive modes with two light mesons in the final state, such as B → πK and B → ππ. This problem
is difficult since the underlying weak interaction processes are dressed by QCD dynamics, which is
prominent in purely hadronic decays. Despite the general difficulty, there are several circumstances that
help us to control strong interaction effects and to isolate the weak couplings:
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