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Zusammenfassung

Gegenstand dieser Arbeit ist eine systematische phänomenologische Analyse der als SM4
bezeichneten Standardmodell-Erweiterung durch eine vierte Generation von Quarks und
Leptonen. In diesem Rahmen behandeln wir neben direkten Messungen der beteiligten
Parameter vor allem elektroschwache Präzisionstests sowie Flavor- und CP-verletzende Ob-
servablen im Quark- wie im Lepton-Sektor.
Unsere Analyse elektroschwacher Präzisionstests widerlegt die weit verbreitete Annahme,

eine vierte Generation würde durch solche Messungen bereits ausgeschlossen. Allerdings
wird der verfügbare Parameterraum dadurch stark eingeschränkt, insbesondere die Misch-
ung zwischen Quarks der dritten und vierten Familie sowie die möglichen Massendifferenzen
innerhalb der neuen Quark- und Lepton-Duplets.
Im Weiteren berechnen wir mehr als 30 Prozesse im Quark- und Lepton-Sektor, in de-

nen flavor-ändernde neutrale Ströme und/oder Verletzungen der CP-Symmetrie auftreten.
Es wird gezeigt, wie im SM4 die bestehenden Anomalien im Unitaritätsdreieck sowie in
den CP Asymmetrien Sψφ und SφKS

gleichzeitig behoben werden können. Eine globale nu-
merische Untersuchung aller behandelter Observablen schränkt den Parameterraum weiter
ein und offenbart charakteristische Korrelationsmuster zwischen bestimmten Messgrößen.
Die hierdurch erhaltenen phänomenologischen Signaturen erlauben es, das SM4 eindeutig
von anderen Modellen neuer Physik zu unterscheiden.

Abstract

The subject of this thesis is a systematic phenomenological analysis of the SM4, the stan-
dard model of particle physics extended by a fourth generation of quarks and leptons. In
this framework we study the impact of direct measurements of the involved parameters,
electroweak precision tests, as well as flavor and CP violation observables in the quark and
lepton sector.
The analysis of electroweak precision tests disproves the commonly held assumption that

a fourth generation would be excluded by these constraints. Yet, they impose severe bounds
on the involved parameter space, particularly the quark mixing between the third and fourth
family and the possible mass differences within the new quark and lepton doublets.
Subsequently, we calculate more than 30 flavor changing neutral current and CP-violating

processes in the quark and lepton sector. It is shown how the existing anomalies in the
unitarity triangle fits as well as in the CP asymmetries Sψφ and SφKS

can be explained
simultaneously in the SM4. A global numerical analysis of all calculated observables further
constrains the parameter space and reveals characteristic patterns of correlation between
certain measurable quantities. The phenomenological signatures obtained in this way allow
to clearly distinguish the SM4 from other new physics scenarios.
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1. Introduction

The world around us is composed of only three types of basic elementary particles: Up- and
down-quarks are the principal components of all atomic nuclei, and electrons constitute the
atomic shells. In addition, there is the electron neutrino first postulated by Pauli in 1931 [1]
and discovered in 1956 [2], which is too volatile to act as a constituent of matter. These four
fermions – two quarks and two leptons – comprise what we call today the first generation.
The first indication that this is not the end of the story came from the discovery of the

muon in 1937 [3,4], which is approximately 200 times heavier than the electron but identical
in all other properties. The surprise which this particle caused in the physical community is
probably best captured by I.I. Rabi’s famous question: “Who ordered that?” [5]. Throughout
the following decades, the muon neutrino was established as an individual particle (1962, [6])
and also further quarks were discovered: The strange quark occurring in strange particles
(1944, [7,8]) and the charmed quark, predicted in 1970 [9] and verified in 1974 [10–13]. These
four particles form the second generation and are basically similar to their first generation
counterparts, differing only by their masses.
Very soon, it turned out that two generations cannot be the final truth either, when the

tau lepton was discovered in 1975 [14], followed by the bottom quark in 1977 [15, 16]. The
third generation was finally established by the detection of the unusually heavy top quark in
1995 [17, 18], and the identification of the tau neutrino in 2001 [19].
Today, these three generations of fermions form the basic building blocks of the most

comprehensive and successful physical theory that has ever been conceived: the standard
model of particle physics (SM). It describes three fundamental forces – the strong, weak and
electromagnetic force – as so-called gauge interactions in a unified quantum field theory. In
this intriguing theory, interactions arise from local (gauged) symmetries and are mediated
by corresponding gauge bosons.
Among the successes of the SM are the predictions of several particles before they were ob-

served – such as theW and Z boson, the gluon, the top and charm quark. Several properties
of these particles have been predicted with good accuracy, and many other high precision
measurements can be accommodated in the SM. In fact, today there is no experimental
result directly contradicting the SM.
Nonetheless, the SM is far from being perfect since it suffers from several shortcomings of

theoretical and experimental nature:

• First of all, it is not a complete theory as it does not contain gravity, the fourth
fundamental force. This interaction is conclusively described by Einstein’s theory of
general relativity, which still cannot be cast into a quantum field theoretical framework.

• The SM cannot accommodate the large amount of dark matter (DM) in the universe
that is required by astronomic observations. Furthermore, the predicted cosmological
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constant which is assumed to be responsible for dark energy is more than 100 orders
of magnitudes too large. Also the observed baryon asymmetry of the universe (BAU)
requires an amount of CP violation which cannot be accounted for in the framework
of the SM.

• Measurements of neutrino oscillations imply that these particles have tiny masses,
which is not explained satisfactorily within the SM.

• One of the most important open issues of the SM is the Higgs mechanism which
provides mass to the particles via the Higgs boson. The existence of this particle is
of vital importance for the SM, but has not been proven yet and the current lower
bounds on the Higgs mass create a strong tension on the SM parameter fits. Intensive
efforts are being made to discover this particle in the coming years at the LHC.

• Although being theoretically self-consistent, the SM has several unnatural properties
evoking riddles such as the hierarchy problem and the strong CP problem.

• Also the large number of 19 unrelated and arbitrary parameters (or even 28 when
incorporating neutrino masses) in the SM is very unsatisfactory from a theoretical
point of view. Most of these parameters occur in the flavor sector, i.e. they are related
to the duplication of fermions in generations. Especially the masses and mixings of
the quarks exhibit pronounced hierarchies which are not explained in the SM.

• Over the last years, certain tensions have been observed in the SM unitarity triangle
fits and particularly in the CP asymmetries Sψφ and SφKS

. These so-called flavor
anomalies could be a hint for new physics (NP) beyond the SM, and will be treated
thoroughly in the further course of this work.

Many of the problems of the SM are related with flavor physics, i.e. with the different types
(flavors) of fermions, their arrangement in generations and their masses and mixings. But
above all these open issues, the central question of flavor physics reads:

Why are there three generations of fermions?

Throughout the last decades, several attempts have been made to answer this question1, but
none has been satisfactory. In this work, we want to take another approach. We will not try
to find an answer, but rather reply with a counter-question:

What if not?

Or in more detail:

What would be the consequences of adding another, fourth generation (4G) and
what properties would it need to have?

1For example, the so-called 331 models [20–23] use an extended gauge group and the requirement of anomaly
cancellation to predict the number of generations to be a multiple of 3.
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The idea of a standard model extended by such a fourth generation (SM4) is probably
as old as the SM itself, and has experienced a rather turbulent history since then. The
most severe setback for the SM4 came in 1989 from the measurements of the Z boson width
at SLAC [24, 25] and CERN [26–28]. These experiments determined the number of light
neutrinos, into which the Z boson could decay, to be unambiguously equal to three. It
is often claimed that this result would constrain the number of generations, but in fact
it is rather a statement about the possible mass of new neutrinos which has to be above
MZ

2
≈ 45 GeV. Of course, in times when the three SM neutrinos were assumed to be

massless, such a heavy fourth neutrino appeared very unnatural. Therefore, the fourth
generation was declared dead until the turn of the century that marked another turning
point in this story: The detection of neutrino oscillations [29–32] proved that these particles
are massive. Given the fact that the SM offers no convincing theory for the tiny neutrino
masses, it became clear that the exclusion of the fourth generation due to its unnaturally
heavy neutrino could have been slightly premature. However, another serious threat for the
idea of four generations came from electroweak precision measurements at SLAC, LEP and
Tevatron, which put very stringent bounds on any model of particle physics. Particularly
the so-called oblique parameters extracted from this data were the basis for several papers
by Erler and Langacker who claimed that under certain assumptions the SM4 would be
excluded with up to 6 σ [33–35]. On the other hand, a certain resurrection of the fourth
generation was initiated by Maltoni et al. in 1999 [36], followed by a number of works [36–41]
objecting Erler and Langacker and pointing out that the SM4 is in good agreement with
electroweak precision data when some assumptions are relaxed. In the last few years, this
has led to a considerable revival of the fourth generation with more than 50 papers on this
subject published over the last three years2. Among the most important topics studied
were the impact of a 4G on Higgs physics [39], electroweak precision tests [38–41] and flavor
physics [44–50]. In this context, Lenz et al. [49,51] have studied the constraint on the mixing
between the fourth and third generation by using flavor changing neutral current (FCNC)
processes and electroweak precision data, deriving interesting bounds on this mixing which
we will also address in the course of our work.
The keen interest in the fourth generation might come as a surprise taking into account

that the SM4 does not tackle any of the known hierarchy and naturalness problems mentioned
above3. But apart from being the most simple extension of the SM (hereafter also referred
to as SM3), the inclusion of a fourth generation has a number of profound implications that
make it interesting to consider:

1. A fourth generation can remove the tension between the SM3 fit and the lower bound
on the Higgs mass from LEP II. Indeed, as pointed out in [37, 39, 52], a heavy Higgs
boson does not contradict EWPT as soon as the 4G exists.

2. SU(5) gauge coupling unification could in principle be achieved without supersym-
metry [53], although the present lower bound on the masses of 4G quarks and the
appearance of Landau poles in Yukawa couplings well below the GUT scales practi-

2A good overview is given in [42, 43], for instance.
3This holds at least in the setup with perturbative Yukawa couplings which we will assume throughout this
work.
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cally excludes this possibility if one wants to stay within a perturbative framework at
short-distance scales.

3. The inclusion of a fourth generation can enhance the amount of CP violation by a
factor of up to 1013 as compared to the SM3. This effect could enable electroweak
baryogenesis and explain the large baryon asymmetry of the universe which cannot be
accommodated in the SM [54–56].

4. Dynamical breaking of electroweak symmetry might be triggered by the presence of
4G quarks [57–63]. However, since it is in the very nature of non-perturbative Yukawa
couplings to defy direct calculations, there is no explicit model for this scenario up to
now.

5. The neutrino of the fourth generation is a possible dark matter candidate [39, 64,
65]. However, the required stability and existing direct search limits would necessitate
unnaturally small mixing and a very high mass of the fourth neutrino. This problem
could be solved by introducing a new B − 4L4 gauge symmetry, as recently shown
in [64].

6. The structure of the lepton sector in the SM4 can be interesting as shown in [66]: a
heavy (mostly Dirac) 4G neutrino in addition to very light (mostly Majorana) neutri-
nos can be obtained in a setup with electroweak symmetry breaking in warped extra
dimensions.

7. Most importantly, from the point of view of the present work, certain anomalies present
in flavor-changing processes could in principle be resolved [45–47, 67].

In this thesis, we will present a detailed analysis of the SM4 including direct measurements
and electroweak precision tests as well as flavor and CP violation in the quark and lepton
sector. It is based on our publications about fourth generation effects on flavor violation [67],
the charm system [68] and lepton flavor violation [69] and extends these works. Our work
is comprehensive in the sense that we cover all active constraints on the SM4 and treat all
relevant flavor and CP violation observables known today.4 In particular:

• We will analyze the latest data from direct searches for fourth generation fermions and
tree-level CKM measurements in order to derive constraints on the involved parame-
ters.

• From the study of electroweak precision tests (oblique and non-oblique corrections) we
will infer important bounds on the parameters of the SM4. Especially the analysis of
possible mass splittings and their dependence on the 3-4 mixing s34 goes beyond the
results that can be found in the literature.

4As we have seen above, there are many possible fields of application in the vicinity of a fourth generation
which we do not discuss. Most of these possible virtues of the SM4 – for instance gauge coupling
unification, electroweak baryogenesis, dynamical electroweak symmetry breaking and a 4G dark matter
candidate – are only hypothetical and need further assumptions in order to constrain the SM4.
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• We will present a straightforward way to generalize the known SM3 expressions and
give the detailed SM4 formulae for a large number of flavor and CP observables in the
quark and lepton sector.

• We will establish a number of correlations between various observables that should
allow us to distinguish this NP scenario from the Littlest Higgs model with T-parity
(LHT), the Randall-Sundrum model with custodial protection (RSc) and supersym-
metric flavor models that have been analyzed in [70–75] recently. We will also carefully
study how these correlations depend on the size of the 4G mixing angles and phases.

• For the most interesting observables, we will investigate the departures from models
with (constrained) minimal flavor violation ((C)MFV), taking into account all existing
constraints.

• We will demonstrate transparently how certain anomalies observed in the unitarity
triangle fits and in the CP asymmetries Sψφ and SφKS

can be resolved simultaneously
and how these solutions affect other observables.

• We will address the question how the additional five parameters of the 4 × 4 quark
mixing matrix, θ14, θ24, θ34, δ14 and δ24, could — in principle — be determined by
means of the mixing-induced CP asymmetries Sψφ and SψKS

, the B0
d,s − B̄d,s mixing

mass differences ∆Md,s, ǫK and the branching ratios for the rare decays K+ → π+νν̄,
KL → π0νν̄, Bs,d → µ+µ−, B → Xsνν̄.

• We will study the implications of bounds from lepton flavor violation (LFV) on the
corresponding parameters in the lepton sector.

• On the theoretical side, we will introduce certain consistency conditions between the
SM3 and SM4 mixing angles which can be used to eliminate “fine-tuned” values in
parameter space. The remaining cases can be classified according to the scaling of
the 4G mixing angles with the Cabibbo angle, and for each individual case an SM4
generalization of the Wolfenstein parametrization can be constructed.

Our work is organized as follows: In Section 2, we will introduce the SM4 with its new
particles and parameters and discuss the impact of direct measurements on the correspond-
ing masses and mixing matrix elements. Section 3 is dedicated to the analysis of electroweak
precision observables in the presence of four generations. This will allow us to derive fur-
ther important constraints on the involved parameters. In Section 4, we will calculate a
large number of flavor and CP observables both in the quark and the lepton sector. These
observables will be analyzed numerically in Section 5, under particular consideration of cor-
relations between various quantities. There we will also estimate approximate upper bounds
on several observables, study the anatomy of flavor effects in the SM4 and outline an effi-
cient procedure to constrain the new mixing angles. Finally, in Section 6 we summarize our
main findings. The effective one-loop vertices and functions used throughout this work are
collected in the appendix.





2. The SM4

2.1. Particles and Properties

2.1.1. Extending the SM

The standard model of particle physics (SM) has been very successful in predicting and
explaining measurements at high precision while on the theoretical side, it is of captivating
conceptual simplicity. Nevertheless, as discussed in the introduction, it has its shortcomings
and therefore physicists are eager to go beyond and extend the SM to a more general new
physics (NP) model. Many of these extensions have been conceived and studied throughout
the last decades, most of them requiring the inclusion of additional fermions from gen-
eral principles, for instance supersymmetry (SuSy), extra dimensions (ED) or grand unified
theories (GUTs). Instead of this top-down perspective, one can also follow the bottom-
up approach and study the possibilities to add extra fermions, i.e. spin-1

2
-particles to the

SM [42]. These can be characterized by their behaviour under the electroweak gauge group
SU(2)L × U(1): Chiral fermions have left- and right-handed components transforming dif-
ferently under SU(2)L × U(1). All fermions present in the SM are of this type, with the
left-handed components transforming as doublets, while the right-handed parts are singlets
under SU(2)L. In some models one also adds mirror chiral doublets, where the right handed
components transform as doublets while the left-handed are invariant under SU(2)L. Chi-
ral fermions are strictly massless before the electroweak symmetry breaking. On the other
hand, non-chiral (also known as vector-like) fermions have left- and right- handed compo-
nents transforming similarly under the electroweak gauge group. So far only chiral fermions
have been observed, and therefore it appears most natural to take this type when including
new fermions.

When treating chiral doublets or singlets, one is in constant danger of evoking chiral
anomalies. In the SM these are cancelled spectacularly within each generation of quarks and
leptons, and in this work we will make use of this mechanism by introducing a full, sequential
generation1. The particles included in this fourth generation (4G) will be denoted as

b′ , t′ , ℓ4 , ν4 , (2.1)

where the up- and down-like quarks (t′, b′) and leptons (ν4, ℓ4) have the same quantum
numbers as their standard model partners.

1It is worth mentioning that there are several models treating the problems of chiral anomalies in a more
creative way. For example, the so-called 331 models [20–23] use an extended gauge group and the
requirement of anomaly cancellation to predict the number of generations to be 3.
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In the further course of this section we will study the most basic properties of these
particles, such as their masses and mixings, and give the experimental bounds on these
parameters.

2.1.2. Direct Searches and Mass Limits

2.1.2.1. Mass Limits for Fourth Generation Quarks

The most straightforward way to look for fourth generation quarks is the analysis of collider
data with respect to distinctive signatures arising from these intermediate particles. Numer-
ous of such studies have been performed with data from LEP and CDF, and even the first
LHC results obtained from the CMS experiment have been analyzed in this sense [76]. Since
the amount of data collected at CDF is still larger than that from CMS, we will restrict our
discussion to the former.
There are basically three CDF data samples from

√
s = 1.96 TeV pp̄ collisions that are

taken as possible signatures for new heavy quarks [77]:

The ℓ+ 4j sample, requiring a single lepton and at least four jets in the detector, tracks
the decay t′ →W{q = d, s, b}, which occurs in the process

pp̄→ t′t̄′ → (W → ℓν)q(W → qq′)q . (2.2)

Analyzing 4.6 fb−1 of data, CDF found mt′ > 335 GeV [78] under the assumption that
Br(t′ →W{q = d, s, b}) = 100%.

The ℓ+ 5j sample is generated by the decay b′ → Wt, occurring in

pp̄→ b′b̄′ → WtWt̄→WWbWWb̄→ (ℓ±ν)(qq′)b(qq′)(qq′)b̄ , (2.3)

which is identified by the detection of one or more leptons, at least five jets (one with
a b tag) and missing transverse energy of more than 20 GeV. Analyzing 4.8 fb−1 of
data, CDF found mb′ > 385 GeV [79], assuming Br(b′ →Wt) = 100%.

The ℓ±ℓ±jb /ET sample is defined by two same-charge leptons, at least two jets (at least one
with a b tag) and missing transverse energy of at least 20 GeV, generated by

pp̄→ b′b̄′ →WtWt̄→ WWbWWb̄→ (ℓ±ν)(qq′)b(qq′)(ℓ±ν)b̄ . (2.4)

Searching in 2.7 fb−1 of data and assuming Br(b′ → Wt) = 100%, CDF [80] found
mb′ > 338 GeV.

Obviously, none of these studies has found evidence for new heavy quarks, but the stated
lower mass bounds are important inputs for our study of the fourth generation. However,
these numbers have to be handled with care since it is often assumed that new quarks
decay exclusively via certain channels, which does not hold in general. In order to obtain
reliable bounds on mb′ and mt′ , we will therefore follow the recent study of Flacco et al. [77].
Combining data from the three samples introduced above, one is able to derive lower bounds
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Figure 2.1.: Lower limits on mb′ (in GeV) depending on the mixing matrix elements |Vtb′ | and |Vt′b′ |,
for a mass splitting of mt′ − mb′ ≈ 50 GeV. The gray regions are excluded by unitarity in
combination with 0 ≤ |Vub′ |2+ |Vcb′ |2 (upper bound) and |Vub′ |2+ |Vcb′ |2 <∼ 0.222 (lower bound,
s. (2.30)).

on the new quark masses in dependence on the mixing matrix elements Vtb′ and Vt′b′ . We
reproduced these results as shown in Fig. 2.1.
The picture shows that mb′

>∼ 300 GeV for a mass splitting of mt′ −mb′ ≈ 50 GeV, which
is preferred by electroweak precision data (s. Section 3.2.3). It has been demonstrated in [77]
that for different mass splittings the parameter dependence of the minimal b′ mass does vary,
but the lower bound of 300 GeV essentially remains unchanged. So for our further analysis
we choose

mb′ , mt′ ≥ 300 GeV . (2.5)

2.1.2.2. Mass Limits for Fourth Generation Leptons

The matter of fourth generation lepton masses is one of the most severe shortfalls of the
SM4: Measurements of the Z boson width at LEP [81] allow for only three light neutrinos
into which the Z can decay. This forces the mass of a potential fourth neutrino to be
above MZ/2 ≈ 45 GeV, in strong contrast to the first three neutrinos with mνi

<∼ 1 eV.
The smallness of these three masses can be explained by the so-called seesaw mechanism
in which the existence of heavy Majorana neutrinos leads to a mass suppression of the
observed neutrinos. While the usual Dirac masses could be of the order of the electroweak
scale, the Majorana masses are assumed to be generated by effects at higher energies, for
instance at the GUT scale. This is obviously beyond the scope of the SM, so the seesaw
mechanism crucially depends on the assumption of new physics. The existence of a very
massive fourth neutrino would certainly require major changes in the mechanism of neutrino
mass generation. Although this would complicate the quest for a unified model, it would
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surely be premature to exclude the fourth generation solely due to this fact.
The strongest bounds on 4G lepton masses are obtained from direct searches performed

at the L3 detector at LEP [82]. The data obtained from e+e− collisions at
√
s ≈ 200 GeV

has been searched through for signatures from these particles due to the processes

e+e− → ν4ν̄4 → ℓ+ℓ−(W+ → ℓ+νℓ/qq̄
′)(W− → ℓ−ν̄ℓ/qq̄

′) , (2.6a)

e+e− → ℓ+4 ℓ
−
4 → νℓν̄ℓ(W

+ → ℓ+νℓ/qq̄
′)(W− → ℓ−ν̄ℓ/qq̄

′) . (2.6b)

As in the hadronic case, LEP has not found evidence for new heavy particles, leading to
lower limits on the hypothetic masses of

mℓ4 > 110.8 GeV , mν4 >

{
90.3 GeV for Dirac ν
80.5 GeV for Majorana ν .

(2.7)

The fact that the mass bound is weaker in the case of a Majorana type neutrino is due to a
different mass dependence of the cross section compared to the Dirac case.

2.1.2.3. Upper Mass Bounds from Perturbativity

We have seen above that stringent lower bounds on fourth generation fermion masses can
be derived from direct measurements. On the other hand, no experimental result constrains
these masses from above. Nevertheless, there is a theoretical argument providing such a
bound: As argued in [83], the bound from partial wave unitarity is reached at some high
fermion mass scale, which is around 500 GeV for quarks and 1 TeV for leptons. For such
ultraheavy fermions, the weak interactions of the SU(2)L×U(1) gauge theory would become
strong and the perturbation expansion would fail. This does not mean that such high masses
are excluded in principle, but the theory would not be predictive any more. For the further
course of this work we will therefore set the upper bound on quarks and leptons to

mb′ , mt′ , mℓ4, mν4 ≤ 600 GeV . (2.8)

2.2. Fermion Mixing

The concept of fermion mixing, first introduced by Cabibbo in 1963 [84] and extended to three
generations by Kobayashi and Maskawa [85], is a central element in our theory of elementary
particles. Not only does it help to preserve the universality of the weak interactions in the
SM, but it also offers a successful explanation for the origin of CP violation. In the SM and
many of its extensions the fermion mixing matrices for quarks and leptons, VCKM and UPMNS

respectively, are responsible for most of the free parameters and therefore are an essential
ingredient for any calculation of observables. This is of course also the case in the SM4,
where the number of mixing parameters is increased considerably compared to the case of
three generations.
In the following, we will elaborate on the properties of the mixing matrices, i.e. their

parametrization, measurements and several theoretical considerations which will be useful
in the further course of our work.
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2.2.1. The 4 × 4 Quark Mixing Matrix VSM4

2.2.1.1. Parametrization and Unitarity

Parametrization

Considering a SM-like model with N quark generations, the mixing matrix is basically a
N × N unitary matrix V (N) ∈ U(N). As we know from group theory, the number of

parameters determining V (N) is N2, consisting of N(N−1)
2

rotation angles and N(N+1)
2

complex
phases. In the physical context, 2N − 1 of these phases are relative phases which can be
rotated away, so there remains a total number of

(N − 1)2 CKM parameters =
N(N − 1)

2
angles +

(N − 1)(N − 2)

2
phases . (2.9)

Applying this to the four generation case, one obtains for the 4 × 4 quark mixing matrix
VSM4 a total number of

9 CKM parameters = 6 angles + 3 phases , (2.10)

as compared to the SM3 case with

4 CKM parameters = 3 angles + 1 phase . (2.11)

There are several ways to parametrize VSM4, which are all valid but differ in their usability
for phenomenological applications. We will use the standard parametrization of the SM4
mixing matrix introduced in [86,87], in which VSM4 is given by six rotations in the i-j plane
Vij ∈ SU(2), parametrized by the angles θij (i < j) and phases δij (i < j − 1). The 4 × 4
CKM matrix then reads

VSM4 = V34V24V14
︸ ︷︷ ︸

V
(new)
SM4

×V23V13V12
︸ ︷︷ ︸

V
(4)
SM3

=







c14 0 0 e−iδ14s14
−ei(δ14−δ24)s14s24 c24 0 e−iδ24c14s24
−eiδ14c24s14s34 −eiδ24s24s34 c34 c14c24s34
−eiδ14c24c34s14 −eiδ24c34s24 −s34 c14c24c34







×







c12c13 c13s12 e−iδ13s13 0
−c23s12 − eiδ13c12s13s23 c12c23 − eiδ13s12s13s23 c13s23 0
s12s23 − eiδ13c12c23s13 −eiδ13c23s12s13 − c12s23 c13c23 0

0 0 0 1







(2.12a)
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=



























c12c13c14 c13c14s12 c14s13e
−iδ13 s14e

−iδ14

−c23c24s12 − c12c24s13s23e
iδ13 c12c23c24 − c24s12s13s23e

iδ13 c13c24s23 c14s24e
−iδ24

−c12c13s14s24e
i(δ14−δ24) −c13s12s14s24e

i(δ14−δ24) −s13s14s24e
−i(δ13+δ24−δ14)

−c12c23c34s13e
iδ13 + c34s12s23 −c12c34s23 − c23c34s12s13e

iδ13 c13c23c34 c14c24s34
−c12c13c24s14s34e

iδ14 −c12c23s24s34e
iδ24 −c13s23s24s34e

iδ24

+c23s12s24s34e
iδ24 −c13c24s12s14s34e

iδ14 −c24s13s14s34e
i(δ14−δ13)

+c12s13s23s24s34e
i(δ13+δ24) +s12s13s23s24s34e

i(δ13+δ24)

−c12c13c24c34s14e
iδ14 −c12c23c34s24e

iδ24 + c12s23s34 −c13c23s34 c14c24c34
+c12c23s13s34e

iδ13 −c13c24c34s12s14e
iδ14 −c13c34s23s24e

iδ24

+c23c34s12s24e
iδ24 − s12s23s34 +c23s12s13s34e

iδ13 −c24c34s13s14e
i(δ14−δ13)

+c12c34s13s23s24e
i(δ13+δ24) +c34s12s13s23s24e

i(δ13+δ24)



























,

(2.12b)
where we defined

sij = sin θij , cij = cos θij . (2.13)

In the limiting case of vanishing mixing with the 4G quarks (θi4 = δj4 = 0), the standard
parametrization of the 3× 3 CKM matrix is recovered (second line in (2.12a)).
Note that in (2.12), just as in the SM3 case, all angles θij can be chosen to lie in the

interval [0, π/2]. This fact, which is sometimes forgotten (e.g. in [51]) can be shown in
the following way [88]: In the above parametrization, VSM4 is a product of six matrices
Vij ∈ SU(2) , i, j = 1, ..., 4, consecutively mixing the different quark generations. The phases
of each of these matrices can be factored out via

Vij = Ii(α)V̄ijIi(β)Ij(γ) = Ij(α
′)V̄ijIi(β

′)Ij(γ
′)

= Ii(α
′′)Ij(β

′′)V̄ijIi(γ
′′) = Ii(α

′′′)Ij(β
′′′)V̄ijIj(γ

′′′) , (2.14)

where
[Ii(α)]jk = δj,ke

iαδi,j (2.15)

are phase operators and V̄ij are SO(2) rotation matrices with angles θij in the interval
[0, π/2]. Each of the four sets of angles in (2.14) obeys one relation α + β + γ = 0 etc.,
such that each Vij has three parameters. Clearly, with 6 × 3 parameters VSM4 must have 9
redundant phases. However, these unphysical phases will either cancel or be rotated away
by quark field redefinitions. To see this, write VSM4 as

VSM4 = V34V24V14V23V13V12 , (2.16)

factor out the phases as done in (2.14), and rearrange the phase operators in that expression,
repeatedly using [Ii(α), Ij(β)] = 0 and (2.14). In doing so, all but three of those operators
can be moved to the extreme left or right of VSM4, where they can be absorbed into phase
redefinitions of the quark fields and one ends up with the standard parametrization

VSM4 = V̄34I4(δ24)V̄24I4(−δ24)I4(δ14)V̄14I4(−δ14)V̄23I3(δ13)V̄13I3(−δ13)V̄12 , (2.17)

with all angles θij in [0, π/2] and phases δij in [0, 2π].
A thorough analysis of VCKM4 in the framework of minimal flavor violation (MFV) can be

found in our work [67].
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CKM Factors and Unitarity

In writing the formulae for the observables of interest, it is useful to use the unitarity of the
matrix VSM4. To this end, we define the generalized CKM factors

λ(dadb)ui
≡ VuidaV

∗
uidb

, λ
(uaub)
di

≡ VubdiV
∗
uadi

, (2.18)

obeying the unitarity relations

4∑

i=1

λ(dadb)ui
= δab ,

4∑

i=1

λ
(uaub)
di

= δab . (2.19)

In our analysis of FCNC observables, we will especially be interested in mixing within the
K,B and D system, so it is useful to define the corresponding special CKM factors

λ
(K)
i ≡ λ

(ds)
i = V ∗

isVid , λ
(Bd)
i = λ

(db)
i = V ∗

ibVid , λ
(Bs)
i = λ

(ds)
i = V ∗

ibVis , (2.20a)

λ
(D)
j ≡ λ

(cu)
j = V ∗

cjVuj , (2.20b)

with i ∈ {u, c, t, t′} and j ∈ {d, s, b, b′}.
The unitarity relations are then written as

λ(A)u + λ(A)c + λ
(A)
t + λ

(A)
t′ = 0 , (2.21a)

λ
(D)
d + λ(D)

s + λ
(D)
b + λ

(D)
b′ = 0 , (2.21b)

with A ∈ {K,Bd, Bs}. These relations allow to eliminate λ
(A)
u , respectively λ

(D)
d , in any given

observable, so that only λ
(A)
c , λ

(A)
t and λ

(A)
t′ , respectively λ

(D)
s , λ

(D)
b and λ

(D)
b′ , enter the final

expressions.

2.2.1.2. Tree Level CKM Constraints

Direct Measurements of CKM Matrix Elements

Depending on the model being studied, flavor and CP violation observables usually involve
a number of different parameters simultaneously. The measurements of such observables
provide rather complex bounds on the involved parameter space, which will be treated in
later sections. But there are also several processes which are dominated by one single CKM
element since they can proceed at tree level in the SM. The bounds arising from this type
of observables, called tree level constraints, are presented in Table 2.1.
Most of the CKM elements shown in the table are independent from the considered model.

However, for two quantities the situation is not so simple, which we will discuss in the
following.
The first of these observables is |Vtb|, which is obtained from single top-quark production

[99, 100] and extracted from the ratio

R =
B(t→Wb)

B(t→ Wq)
. (2.22)
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Element value relative error source

|Vud| 0.97425± 0.00022 0.022% Superallowed 0+→0+ nuclear β decays [89]
|Vus| 0.2252± 0.0009 0.40% Semileptonic K-decays [90]
|Vub| (3.89± 0.44)× 10−3 11% Semileptonic B-decays [91]
|Vcd| 0.230± 0.011 4.8% Semileptonic D-decays [92]
|Vcs| 1.023± 0.036 3.5% (Semi-)Leptonic D-decays [93–98]
|Vcb| (40.6± 1.3)× 10−3 3.2% Semileptonic B to charm decays [91]
|Vtb|SM3 (0.88± 0.07) 8.0% Single top-quark production [99, 100]
γ (71+21

−25 ± 2)◦ 38% CKM fitter [101],
+ 2◦ error from 4th generation [102]

Table 2.1.: Direct Measurements of the CKM matrix elements [103]

In the SM3, this ratio is simply given by R = |Vtb|2, and one obtains from the measurements

|Vtb|(exp)SM3 =
√
R(exp) = (0.88± 0.07) . (2.23)

Including a fourth generation, the ratio is changed to

R =
|Vtb|2

∑

q=b,s,d |Vtq|2
=

|Vtb|2
1− |Vtb′|2

, (2.24)

so the resulting matrix element is diminished by a factor of
√

1− |Vtb′ |2,

|Vtb| = |Vtb|SM3 ·
√

1− |Vtb′ |2 . (2.25)

This subtlety has been missed in previous analyses, such as [49, 104].
In the SM3, the CKM phase

γ ≡ Arg

(

−VudV
∗
ub

VcdV
∗
cb

)

, (2.26)

is simply equal to the CKM phase δ13. Its value has been determined by CKM fitter [101],

γ = (71+21
−25)

◦ . (2.27)

Introducing a fourth generation, the simple parameter dependence is lost. However, as shown
in [102], the fitted value in (2.27) is only disturbed by an additional error of ±2◦.

Parameter Ranges

Taking the tree level constraints from Table 2.1 and using the unitarity of the 4 × 4 CKM
matrix, one is able to constrain the unmeasured mixing matrix elements. Without any further
constraints, it turns out that s34 can become as large as 0.8, which has been discussed in [49].
It will be shown in Section 3.2.2 that electroweak precision tests provide a strong bound on
this mixing angle (3.31),

s34 ≤ 0.24 , (2.28)
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which we will consequently include in our analysis. Similar to [49], we allowed each of the
7 measured magnitudes of Table 2.1 to vary within 2 σ and a total χ2 of 14, correspond-
ing to 95% confidence level. We generated 105 randomly distributed points fulfilling these
constraints and derived the following bounds on the CKM angles:

s12 = 0.2252± 0.0018 , s13 = 0.00389± 0.00088 , s23 = 0.041± 0.003 (2.29a)

s14 ≤ 0.042 , s24 ≤ 0.22 , s34 ≤ 0.24 . (2.29b)

This constrains the elements of VSM4 to the following magnitudes at 95% C.L.

|VSM4| =







0.97425 ± 0.04% 0.2252 ± 0.8% 3.89× 10−3 ± 23% ≤ 0.042
0.22 ± 4% ≥ 0.95 40.6× 10−3 ± 6% ≤ 0.22

≤ 0.04 ≤ 0.09 ≥ 0.97 ≤ 0.24
≤ 0.08 ≤ 0.21 ≤ 0.25 ≥ 0.94







(2.30)

2.2.1.3. Simplifications, Wolfenstein Expansion and Scaling Scenarios

Simplifications of VSM4

The entries in VSM4 can get rather complicated when displayed at full length as in (2.12b).
Therefore, we want to discuss simplifications for these expressions in order to better under-
stand the basic parametric dependencies.
The most natural simplification of the CKM matrix is obtained by setting all cij = 1. This

is justified by the smallness of the mixing angles given in (2.29). In this limit the six mixing
angles are directly determined by the moduli of the off-diagonal elements in the upper right
corner of VSM4:

s12 ≃ |Vus| , s13 ≃ |Vub| , s23 ≃ |Vcb| ,

s14 ≃ |Vub′| , s24 ≃ |Vcb′| , s34 ≃ |Vtb′ | . (2.31)

Another simplification comes from considering the difference with respect to the SM3
CKM matrix. As we have seen in the previous sections, the fourth generation mixings are
rather small and therefore the 4G contributions to VSM3 can be expected to be only minor.
In order to quantify this effect, we introduce the 3× 3 matrix ∆V4G by

(VSM4)ij = (VSM3)ij · (∆V4G)ij (no summation over i, j = 1, 2, 3) . (2.32)

Inserting the points which we generated in the analysis of the previous section, we find the
following fourth generation contributions

∆V4G =





1 1 1
(0.95− 1.01) e±i2

◦

(0.97− 1) ei±0.1◦ (0.97− 1) ei±0.04◦

(0− 4) ei±180◦ (0− 2) ei±180◦ (0.97− 1) ei±0.1◦



 . (2.33)

These numbers show clearly that in the tree level constrained CKM entries (Vu(d,s,b), Vc(d,s,b), Vtb)
the contributions from the fourth family amount to not more than 5%. This means that for
most applications, one can just use the SM3 expressions for these elements. In contrast, the
not yet measured CKM entries (Vtd, Vts) can differ considerably from the SM3 expressions,
not to mention the elements involving the fourth generation which are of course vanishing
in the case of three generations.
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Generalized Wolfenstein Expansion

In the SM3, the hierarchical structure of the CKM matrix is neatly described by the Wolfen-
stein expansion [105, 106]. It is an approximate parametrization in which each element is
expanded as a power series in the parameter

λ = |Vus| = 0.2252 . (2.34)

As we have seen in the previous paragraph, the measured CKM elements are almost un-
affected by the fourth generation, so the Wolfenstein parametrization of these entries will
basically remain unchanged and we have

λ ≡ |Vus| ≈ s12 , Aλ2 ≡ |Vcb| ≈ s23 , Aλ3(ρ+ iη) ≡ Aλ3 zρ ≡ Vub ≈ s13e
iδ13 ,(2.35)

where the approximations are valid in the limit of cij ≈ 1. The 4G mixings V(u,c,t)b′ can then
be parametrized by

λn1zτ ≡ Vub′ = s14e
iδ14 , λn2zσ ≡ Vcb′ ≈ s24e

iδ24 , λn3B ≡ Vtb′ ≈ s34 , (2.36)

where A, B, zi, z
∗
i are coefficients of order one, and the exponents ni are constrained due to

the upper bounds (2.29b):

n1 ≥ 2 , n2 ≥ 1 , n3 ≥ 1 . (2.37)

Froggatt-Nielsen Approach and Scaling Scenarios

A particular way to realize a hierarchical CKM matrix is to consider a simple Froggatt-
Nielsen (FN) setup [107], where the scaling of the mixing angles is controlled by different
U(1) charge factors bi for the left-handed doublets of different generations, leading to

θij ∼ λ|bi−bj | . (2.38)

Here λ is given by the VEV of some U(1)-breaking scalar field divided by a large UV-scale.
The triangle inequalities for |bi− bk|+ |bk− bj | then guarantee that the consistency relations
discussed in [108] always hold:

θikθjk . θij (i, j, k = 1 . . . 4) . (2.39)

Since (2.38) only involves charge differences, we may set b4 ≡ 0, while the charges b1−3

and the related 4G mixing angles are not completely fixed. However, we can identify cer-
tain benchmark cases which may later be compared with the phenomenological constraints
from EWPT, tree-level decays and rare decays of SM3 quarks: Scenarios with some 4G mix-
ing angles being of order O(1) are already ruled out by tree-level quark decays (2.29) and
EWPT (Section 3). Among the interesting scenarios with sufficiently small mixing angles,
we identify:

(a) b3 = 1, b2 = 3, b1 = 4: VSM4 ∼







1 λ λ3 λ4

λ 1 λ2 λ3

λ3 λ2 1 λ
λ4 λ3 λ 1






, with (n1, n2, n3) = (4, 3, 1) ,

(2.40a)
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which yields a very symmetric scaling pattern for the 4G mixing matrix, and shares the
feature of the SM3 CKM matrix that more off-diagonal elements get smaller. Notice that of
the 9 inequalities in (2.39) involving the 4G mixing angles, 3 are saturated, namely

(a) θ12θ24 ∼ θ13θ34 ∼ θ14 , θ24 ∼ θ23θ34 . (2.40b)

Scenarios with even smaller mixing angles (θi4 → λnθi4) can simply be obtained from (2.40)
by increasing b1−3 → b1−3 + n. An FN example for a scenario with (relatively) large 4G
mixing angles is given by

(b) b3 = 1, b2 = −1, b1 = −2: VSM4 ∼







1 λ λ3 λ2

λ 1 λ2 λ
λ3 λ2 1 λ
λ2 λ λ 1






, with (n1, n2, n3) = (2, 1, 1) ,

(2.41a)

which meets the lower bounds on ni given in (2.37). In this case, the saturated inequalities
are

(b) θ14θ34 ∼ θ13 , θ24θ34 ∼ θ23 , θ12θ24 ∼ θ14 . (2.41b)

For later use, we further identify two interesting non-FN scenarios. The first one is given
by

(c) VSM4 ∼







1 λ λ3 λ2

λ 1 λ2 λ3

λ3 λ2 1 λ
λ2 λ3 λ 1






, with (n1, n2, n3) = (2, 3, 1) , (2.42a)

saturating θ14θ34 ∼ θ13 , θ12θ14 ∼ θ23θ34 ∼ θ24 (2.42b)

In this case, the SM4 mixing matrix takes a very symmetric form, where the mixing angle
θ14 between the fourth and first generation is larger than θ24. Finally, for

(d) VSM4 ∼







1 λ λ3 λ3

λ 1 λ2 λ2

λ3 λ2 1 λ
λ3 λ2 λ 1






, (n1, n2, n3) = (3, 2, 1) , (2.43a)

saturating θ12θ24 ∼ θ14 , (2.43b)

we encounter the situation that the mixing of the fourth and third generation with the first
and second one is similar in size, θ13 ∼ θ14, θ23 ∼ θ24.

2.2.1.4. CP-Violating Invariants

Throughout the last decade, B-factories have ultimately confirmed the Kobayashi-Maskawa
model [85] as an explanation of CP violation in the SM3. However, this model does not
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meet the Sakharov conditions necessary for generating the observed baryon asymmetry of
the universe (BAU). For this discussion a quantity summarizing the amount of CP violation
in the quark Yukawa sector is needed. In the SM3, this quantity is the well-known Jarlskog
determinant which has been obtained from studying appropriate basis-independent invari-
ants built from the Yukawa matrices [109, 110]. Its generalization to the SM4 case has, for
instance, been discussed in [54, 111]. In the limit m2

u,d,s,c ≪ m2
b ≪ m2

t,b′,t′, the invariants
reduce to one new CP-violating quantity,

I1 = Im tr
[

(YUY
†
U)

2(YDY
†
D)(YUY

†
U)(YDY

†
D)

2
]

≃ −m2
bm

2
tm

4
b′m

2
t′(m

2
t′ −m2

t ) (F2323 + F1313 + F2313 + F1323)

≃ m2
bm

2
tm

4
b′m

2
t′(m

2
t′ −m2

t )

{
− s23s24s34 sin δ24 ,
s34 (s13s14 sin(δ13 − δ14)− s23s24 sin δ24) ,

(2.44)

which can be related to the area of a quadrangle in the complex plane, described by the
functions

Fijkl = Im
(
VikV

∗
jkV

∗
ilVjl

)
.

The first line in (2.44) refers to scenarios with s24 & s14, like (2.40,2.41,2.43). The second
line is valid for s24 ∼ λ s14, like in case of (2.42). It has been stressed in [54] that the
quark mass-dependent prefactor in (2.44) can lead to an enhancement of several orders of
magnitude compared to the SM3 analogue.
The overall scaling with the Wolfenstein parameter λ is given by I1 ∼ λ2+n2+n3, which can

be as large as λ4 for scenario (2.41). For the benchmark scenario (2.43) one obtains I1 ∼ λ5,
whereas (2.40,2.42) would lead to I1 ∼ λ6. As we will illustrate in the numerical section
below, the dependence of I1 on the SM4 mixing parameters is directly correlated with the
size of Sψφ. Even though I1 is enhanced by many orders of magnitude over the corresponding
SM3 expression, it is not yet clear whether this can explain the observed baryon asymmetry
of the universe.

2.2.2. The 4 × 4 Lepton Mixing Matrix USM4

Parametrization

The most general leptonic mixing matrix in the presence of four generations is determined
by 12 parameters: 6 mixing angles, 3 Dirac phases and 3 Majorana phases. A standard
parametrization is obtained by treating the mixing angles and Dirac phases in analogy to
the quark sector with the Majorana phases contained in an additional diagonal matrix,

USM4 = U34 I4(δ
ℓ
24)U24 I4(−δℓ24) I4(δℓ14)U14 I4(−δℓ14)U23 I3(δ

ℓ
13)U13 I3(−δℓ13)U12 IMaj. , (2.45)

where the matrices Uij are rotations in the i-j plane analogous to the Vij in (2.12). They
are parametrized by corresponding mixing angles θℓij while

[Ii(α)]jk = δjk e
iα δij , IMaj. = diag[eiα1 , eiα2 , eiα3 , 1] , (2.46)
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contain the Dirac and Majorana phases, respectively. The observables we will consider in
the course of this work are insensitive to the Majorana phases αi, which will therefore be
dropped in the following.

PMNS Factors and Unitarity

In all observables studied throughout this work, the PMNS matrix elements only occur in
the following combinations

λ(ℓaℓb)νi
≡ UℓbνiU

∗
ℓaνi

, λ
(νaνb)
ℓi

≡ UℓiνaU
∗
ℓiνb

. (2.47)

As in the quark case (2.19), the PMNS matrix is unitary and therefore the following unitarity
relations hold

4∑

i=1

λ(ℓaℓb)νi
= δab ,

4∑

i=1

λ
(νaνb)
ℓi

= δab . (2.48)

Tri-Bi-Maximal Mixing

Concerning the mixing angles and Dirac phases, it is well known that the SM3 lepton sector
behaves very differently as compared to the SM3 quark sector. In particular, the PMNS
matrix for SM3 leptons is known to follow an approximate “tri-bi-maximal” mixing pattern
[112], reading

USM3 ≃ Umax
SM3 =

ν1 ν2 ν3

e
µ
τ






√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2






, (2.49)

which is obtained by setting the 3G mixing angles to s23 = 1/
√
2, s12 = 1/

√
3, s13 = 0.

A priori, it is not clear whether such a pattern could or should be extended to an SM4
lepton-mixing matrix, leading to potentially large mixing angles between the new lepton
generation and the SM3 ones. However, as we will see in more detail below, the current
experimental situation already excludes large new mixing angles θℓi4 with the 4G leptons,
and therefore we should rather consider

USM4 ≈ Umax
SM4 =








√
2
3

1√
3

0 0

− 1√
6

1√
3

1√
2
0

1√
6

− 1√
3

1√
2
0

0 0 0 1








(2.50)

as a starting point.2 The deviations from this mixing pattern can then be conveniently
described in terms of an almost diagonal mixing matrix,

USM4 = V residual
SM4 · Umax

SM4 · IMaj. , (2.51)

2This ansatz reflects the special role of the fourth-generation neutrino, which requires some particular
theoretical framework to be realized (see e.g. [66]).
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where V residual is parametrized in terms of small mixing angles ∆ij and 3 Dirac phases, and
can be treated in an analogous way as the 4G quark mixing matrix.
While the deviations from tri-bi-maximal mixing ∆ij – with the present experimental

bounds – can still be of order 10−20%, the radiative LFV decays (see Section 4.3) constrain
the products

∆14∆24
<∼ 3.5× 10−4 ,

∆14∆34
<∼ 1.8× 10−2 ,

∆24∆34
<∼ 1.8× 10−2 . (2.52)



3. Electroweak Precision Tests

Electroweak Precision Tests (EWPT) provide some of the most stringent bounds on the
fourth generation currently available. In the past, it has even been stated that they would
completely rule out the SM4 [33–35, 113], but since then numerous analyses have objected
this finding [36–41] and given rise to a veritable revival of the fourth generation throughout
the last years.
In this section we want to introduce the electroweak observables (EWPO) which are

putting the most severe constraints on the SM4, and analyze their impact on the given
parameter space. We will find important bounds, especially for the mass splitting of the
new fermion doublets and for the magnitude of the CKM matrix element Vtb′ , which will
be of great importance for our further analysis. Our results do not contradict but rather
generalize and extend those found in previous works [39, 40, 49].

3.1. Electroweak Precision Observables

In the early 90’s of the last century, experiments at the colliders LEP (at CERN) and
SLC (at SLAC) collected large amounts of data from e+e− collisions, featuring extremely
precise measurements of Z boson properties such as its mass, width, branching ratios and
several asymmetries. LEP 2, running from 1995-2000, contributed further precision data
on properties of the W boson and a lower bound on the Higgs mass, among others. The
still running Tevatron program at Fermilab provided further measurements, such as the top
quark and W boson mass. An overview of all these high precision experiments and their
outcome is given in [113].
Altogether, a set of up to 35 independent precision observables can be used to constrain

and test a given model of particle physics. Analyses of the SM showed that it does very
well in meeting the requirements from EWPO. On the one hand this is fortunate because it
suggests that particle physics is somehow “on the right way”. On the other hand, from the
perspective of any new physics (NP) model, it is a tough challenge since any new contribution
to EWPO has to be very tiny, which constrains or even rules out many of these models.
Of course one could calculate all available precision observables (or a certain subset, chosen

by criteria such as precision, involved scale etc.) and perform a corresponding fit for every
new model being studied. Evidently this would be a very tedious procedure which fortunately
is not always necessary. This is because a great deal of all electroweak precision effects in NP
models arises from contributions to gauge boson self-energies only. These so-called oblique
corrections can effectively be parametrized by a set of only 3 parameters [114], which will
be studied in Section 3.1.1. However, there are also contributions that do not originate in
self-energy corrections. These include the partial widths of the Z boson decaying into various
fermions, which will be the subject of Section 3.1.2.
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3.1.1. Oblique Parameters

3.1.1.1. General Introduction

The effects of oblique corrections are expressed in terms of gauge boson vacuum polarizations

Πµν
ab (q) ≡ Πab(q

2)gµν + (. . . qµqν) . (3.1)

For a, b, one can either choose the set of mass and charge eigenstate gauge bosons a, b ∈
{W,Z, γ}, or the weak eigenstates a, b ∈ {1, 3, Q} corresponding to W µ

1 ,W
µ
3 , A

µ. The two
bases are related by [115]

Πγγ = e2ΠQQ , (3.2a)

ΠZγ =
e2

sW cW
(Π3Q − s2WΠQQ) , (3.2b)

ΠZZ =
e2

s2W c
2
W

(Π33 − 2s2WΠ3Q + s4WΠQQ) , (3.2c)

ΠWW =
e2

s2W
Π11 . (3.2d)

Since the set {1, 3, Q} yields simpler expressions, we will use it although their physical
meaning might not be as intuitive as for {W,Z, γ}.
It has been argued in [116] that there are in principle six independent combinations of Π’s,

but if the new particles are considerably heavier than the electroweak scale, i.e. mNP ≫MZ ,
only three of them remain. These three oblique parameters denoted by S, T and U were first
defined by Peskin and Takeuchi [114, 115] in the following way:

αS = 4e2
[
Π′

33(0)− Π′
3Q(0)

]
, (3.3a)

αT =
e2

s2W c
2
WM

2
Z

[Π11(0)− Π33(0)] , (3.3b)

αU = 4e2 [Π′
11(0)−Π′

33(0)] . (3.3c)

T is related to the well-known ρ parameter [83, 117] by

ρ ≡ M2
W

c2WM
2
Z

= 1 + αT , (3.4)

and therefore determined by the difference between the W and Z self energies at q2 = 0.
Likewise, S is connected to the difference between the Z self energies at q2 =M2

Z and q2 = 0
and S + U describes the difference between the W self energy at q2 =M2

W and q2 = 0.
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3.1.1.2. Oblique Parameters in the SM4

4G Contribution

In the SM4, the fermionic contributions to the oblique parameters in (3.3) are given by
[37, 40, 51]

SSM4 =
Nc

6π

4∑

i=1

[

1− 1

3
log

m2
ui

m2
di

]

+
1

6π

4∑

i=1

[

1 + log
m2
νi

m2
ℓi

]

, (3.5a)

T SM4 =
Nc

16πs2W c
2
WM

2
Z

[
4∑

i=1

(m2
ui
+m2

di
)−

4∑

i,j=1

∣
∣Vuidj

∣
∣
2
FT (m

2
ui
, m2

dj
)

]

+
1

16πs2W c
2
WM

2
Z

[
4∑

i=1

(m2
νi
+m2

ℓi
)−

4∑

i,j=1

∣
∣Uℓjνi

∣
∣2 FT (m

2
νi
, m2

ℓj
)

]

, (3.5b)

USM4 =
Nc

3π

[
4∑

i,j=1

∣
∣Vuidj

∣
∣2 FU(m

2
ui
, m2

dj
)− 5

6

4∑

i=1

1

]

+
1

3π

[
4∑

i,j=1

∣
∣Uℓjνi

∣
∣
2
FU (m

2
νi
, m2

ℓj
)− 5

6

4∑

i=1

1

]

, (3.5c)

where the auxiliary functions FT and FU are defined as

FT (m
2
1, m

2
2) ≡ 2

m2
1m

2
2

m2
1 −m2

2

log
m2

1

m2
2

, (3.6a)

FU(m
2
1, m

2
2) ≡ 2

m2
1m

2
2

(m2
1 −m2

2)
2
+

(
m2

1 +m2
2

2(m2
1 −m2

2)
− m2

1m
2
2(m

2
1 +m2

2)

(m2
1 −m2

2)
3

)

log
m2

1

m2
2

. (3.6b)

Since the parameter U is close to zero, all the neutral current and low energy observables
depend only on S and T [115]. Subtracting the SM3 values of these parameters, we are left
with the contributions due to the fourth generation

S4 ≡ SSM4 − SSM3 =
1

3π

[

2− log
mt′mℓ4

mb′mν4

]

, (3.7a)

T 4 ≡ T SM4 − T SM3

=
3

16πs2W c
2
WM

2
Z

[
m2
t′ +m2

b′ − |Vt′b′ |2 FT (m2
t′ , m

2
b′)− |Vtb′ |2 FT (m2

t , m
2
b′)
]

+
1

16πs2W c
2
WM

2
Z

[
m2
ν4
+m2

ℓ4
− |Uℓ4ν4|2 FT (m2

ν4
, m2

ℓ4
)
]

>∼
3

16πs2W c
2
W

[

δmt′b′ + |Vtb′ |2
FT (m

2
t′ , m

2
b′)− FT (m

2
t , m

2
b′)

M2
Z

+
1

3
δmν4ℓ4

]

, (3.7b)
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where all negligible contributions to T 4 have been dropped1, and in the last step we
have left out small positive contributions proportional to |Vub′ |2 , |Vcb′|2 and (1 − |Uℓ4ν4|2).
Furthermore, we introduced the function

δmij ≡
1

M2
Z

(
m2
i +m2

j − FT (m
2
i , m

2
j)
)
, (3.8)

which is minimized for mi = mj :
δmii = 0 . (3.9)

Higgs Contribution

Additionally, one has to take into account the impact of a heavier Higgs on the oblique
parameters [114, 115], which are finally given by

S = S4 + SH , T = T 4 + TH . (3.10)

A first approximation for the Higgs correction terms has been given in [114]:

SH ≈ 1

12π
log

m2
H

(117GeV)2
, TH ≈ − 3

16πc2W
log

m2
H

(117GeV)2
. (3.11)

The full SM4 result calculated in [118] reads

SH = − 1

12π

[
2m4

H + 8M4
Z

(m2
H −M2

Z)
2 +

m6
H − 3m4

HM
2
Z + 12m2

HM
4
Z

(m2
H −M2

Z)
3 log

M2
Z

m2
H

− 2m4
R + 8M4

Z

(m2
R −M2

Z)
2 − m6

R − 3m4
RM

2
Z + 12m2

RM
4
Z

(m2
R −M2

Z)
3 log

M2
Z

m2
R

]

, (3.12a)

TH =
3

16πs2WM
2
W

[
m4
H (M2

W −M2
Z)

(m2
H −M2

W ) (m2
H −M2

Z)
log

m2
H

m2
R

+
(
m2
H −m2

R

)
(

M4
W

(m2
H −M2

W ) (m2
R −M2

W )
log

M2
W

m2
R

− M4
Z

(m2
H −M2

Z) (m
2
R −M2

Z)
log

M2
Z

m2
R

)]

, (3.12b)

where the Higgs reference mass mR is set to 117 GeV and the correction to U is negligible.

3.1.2. Non-Oblique Effects: Zbb̄ Vertex

There have been several analyses of Zbb̄ vertex corrections from a fourth family in the
literature (e.g. [38, 104, 119]). Chanowitz stated in [40] that the constraints from Z → bb̄

1A numerical analysis involving the ranges of involved masses shows that the contribution from FT (m
2
t′ ,m

2
b)

is below 5 × 10−3. The terms involving lighter quarks, such as FT (m
2
t ,m

2
b) are of course even smaller.

Compared to the standard deviation of T from the SM3 fit (3.26), these contributions can safely be
neglected.
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were only minor compared to those from oblique corrections. However, performing a full
analysis of both types of parameters, we found that this statement is not true in general.
For example the bound on s34 obtained from Zbb̄ can be stronger than the one from S and
T , as we will see in the next section.
Following [120], the decay width of Z → qq̄ can be written as

Γ(Z → qq̄) =
α̂

16ŝ2W ĉ
2
W

mZ(|a2q|+ |vq|2)(1 + δ(0)q )(1 + δqQED)(1 + δqQCD)(1 + δqµ)

× (1 + δqtQCD)(1 + δq) , (3.13)

where α̂ is the electromagnetic fine structure constant, ŝW and ĉW the sine and cosine of the
Weinberg angle, aq = 2Iq3 and vq = 2Iq3 − 4Qqŝ

2
W the axial and vector coupling constants of

quark q, and the δ terms corrections due to various higher order loops. Quantities given in
the MS scheme at the scale µ =MZ are denoted by a hat. Most of the δ corrections cancel
by taking appropriate branching ratios. The most convenient ratio for our purpose is

Rh ≡
Γ(Z → bb̄)

Γ(Z → hadrons)
, (3.14)

in which all the δ’s in the first line of (3.13) cancel, leaving only two relevant corrections:

• δqtQCD is an O(α2
s) correction to the axial-vector current induced rate, arising due to

large mass splitting [121, 122]

δqtQCD = − aq
v2q + a2q

(αs
π

)2

[atf(µt) + at′f(µt′) + ab′f(µ
′
b)] , (3.15)

where µ2
q ≡ 4m2

q/M
2
Z and the t′ and b′ contribution have been added to the correspond-

ing formula of [120]. The function

f(µ) ≈ log
4

µ2
− 3.083 +

0.346

µ2
+

0.211

µ4
, (3.16)

approximates the full function given in (3.5) of [122] with an accuracy better than
0.02% for 160 GeV ≤ mq ≤ 600 GeV.

• The correction δq is only nonzero for q = b. In this case, δb contains the interesting
effects of the t and t′ quark masses,

δb ≈ 10−2

[(

−1

2

m2
t

M2
Z

+ 0.2

)

|Vtb|2 +
(

−1

2

m2
t′

M2
Z

+ 0.2

)

|Vt′b|2
]

. (3.17)

δb is the origin for the mt′ dependence of the Z → bb̄ vertex. Increasing mt′ decreases
δb and therefore also decreases the ratio Rh.

When calculating Rh, one has to be aware of the high precision of the involved quantities
and take extra care when handling the errors. The calculation of the central value yields

Rh =

(

1 +
2

Rs

+
1

Rc

+
1

Ru

)−1

, (3.18)
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with the ratios Rq ≡ Γ(Z → bb̄)/Γ(Z → qq̄),

Rs = 0.99089 g(mt′, Vt′b) , (3.19a)

Rc = 1.27940
1 + δbtQCD

1 + δctQCD

g(mt′, Vt′b) , (3.19b)

Ru = 1.27799
1 + δbtQCD

1 + δutQCD

g(mt′, Vt′b) . (3.19c)

where we introduced the function

g(mt′ , Vt′b) = 1 +
1

100

(
1

5
− 6.0131× 10−5 m2

t′

)

|Vt′b|2 − 0.0137866 (1− |Vt′b|2) . (3.20)

and used unitarity together with the smallness of |Vcb| and |Vub| (2.30),

|Vtb|2 = 1− |Vt′b|2 − |Vcb|2 − |Vub|2 ≈ 1− |Vt′b|2 . (3.21)

The corrections δbtQCD and δctQCD = δutQCD in Rc and Ru bear an additional mb′ dependence
which cannot be neglected. The most conservative bounds arise from ∆m = mt′ −mb′ = 0.
In this case we can further simplify the result to

R
(∆m=0)
h =

0.38089 g(mt′ , Vt′b)

1.37007 + 0.38089 g(mt′ , Vt′b)
± 0.00015 , (3.22)

where the theoretical error on Rh includes all uncertainties from the involved parameters.
On the experimental side, the measured values [103]

Br(Z → bb̄) = (15.12± 0.05)× 10−2 , Br(Z → hadrons) = (69.91± 0.06)× 10−2 , (3.23)

allow us to calculate

Rh =
Br(Z → bb̄)

Br(Z → hadrons)
= 0.21627± 0.00074 . (3.24)

In the next section we will combine (3.22) and (3.24) in order to derive an upper bound on
s34 ≈ Vt′b, depending on mt′ .

3.2. Numerical Analysis of Electroweak Precision Tests in

the SM4

3.2.1. Outline

For our analysis of the effects of oblique electroweak precision observables in the framework of
a fourth generation, we will proceed as follows: We will take the χ2 value for the observables
S and T from (3.10), which is given by [123]

χ2
ST =

(
S − S0

T − T0

)T (
σ2
S σSσTρ

σSσTρ σ2
T

)(
S − S0

T − T0

)

, (3.25)
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where S0, T0 are the best fit values, σS, σT the standard deviations and ρ gives the statistic
correlation of S and T . For these parameters we take the following values from the SM
fit [124]

S0 = 0.03 , T0 = 0.07 , σS = 0.09 , σT = 0.08 , ρ = 0.867 . (3.26)

In the frequentist approach [123], χ2 is related to the confidence level C by

Fχ2(χ2
max, n) = C , (3.27)

where the χ2 cumulative distribution for n = 2 degrees of freedom is given as

Fχ2(χ2, n = 2) = 1− e−χ
2/2 . (3.28)

So the χ2 values corresponding to the 68%, 95% and 99% confidence levels for 2 degrees of
freedom read

χ2
max = 2.3 (68% C.L.) , χ2

max = 6.0 (95% C.L.) , χ2
max = 9.2 (99% C.L.) . (3.29)

For the numerical analysis we scan through the possible parameter ranges of

mt′ ∈ [300, 600] GeV , mℓ4 ∈ [110, 600] GeV , mH ∈ [117, 1000] GeV , Vtb′ ∈ [0., 0.8] , (3.30)

and for each point minimize χ2
ST given in (3.25) with respect to mb′ and mν4 , under the

constraint that mb′ > 300 GeV and mν4 > 90 GeV. In this way we create a set of more than
105 points distributed uniformly over the scanned parameter region, which we will analyze
with respect to different questions in the following subsection.

3.2.2. Bound on s34

It has been stated by Chanowitz [40] that the constraints from oblique parameters effectively
constrain the SM4 and exclude large mixing scenarios which have been advocated in [49].
Table 3 of [40] shows a particularly interesting correlation between the maximum value for
|Vtb′ | ≈ s34 and the t′ mass.
For our numerical analysis of oblique parameters, we minimized the values of χ2

ST for each
pair of (mt′ , s34) and plotted the curves of constant χ2 for the 95% confidence levels given
in (3.29). The resulting upper bound on s34 (shown as blue line in Figure 3.1) is in good
agreement with the results of Chanowitz’ analysis (red line).
Simultaneously, we calculated the bounds arising from corrections to the Zbb̄ vertex, which

were discussed in the previous section. As one can see in Figure 3.1, the most conservative
constraint at 95% C.L. (green line) is considerably stronger than the one from oblique pa-
rameters. For large ∆m ≡ mt′ − mb′ = 100 GeV, this bound is even more severe (dashed
green line). The overall maximum reads

s34 ≤ 0.24 , (3.31)

which we already used to bound the CKM matrix elements in Sec. 2.2.1.
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Figure 3.1.: Upper limits onmt′ depending on s34 ≈ |Vtb′ | obtained from our study of oblique parameters, at
95% C.L. Our bound from S and T (blue line) agrees very well with the one from Chanowitz [40]
(red line), implying an upper limit on s34 of about 0.35. The constraint obtained from the
nonoblique Z → bb̄ (green line) is stronger than the oblique one, implying s34 ≤ 0.24. The
dashed green line shows the Z → bb̄ bound for a mass splitting of ∆m = 100, which is even
more severe.

3.2.3. Mass Splitting

The mass splittings of the fourth generation quark and lepton doublets are important pa-
rameters of the SM4 that are strongly constrained by EWPT.
In their heavily cited analysis of EWPT effects on the fourth family, Kribs et al. [39] gave

a very neat formula for the mass splittings ∆mq ≡ mt′ −mb′ and ∆mℓ ≡ mℓ4 −mν4 under
the assumption of Vtb = 1:

∆mq ≈
(

1 +
1

5
log

mH

117 GeV

)

× 50 GeV , ∆mℓ ≈ 30− 60 GeV . (3.32)

Our analysis shows that this assertion is basically right, but rather oversimplified.
In principle, ∆mq and ∆mℓ are subject to competing forces due to S and T , as can be

inferred from the expressions given in (3.7) together with the best fit values T ≈ S ≈ 0 in
(3.26):

• The S parameter obtains a positive contribution of S4 = 0.21 in the case of degenerate
masses. Hence, from a sole analysis of the S parameter a mass ratio of

mt′

mb′

mℓ4

mν4
≈ 6

would be favored.

• The T parameter has quite the opposite effect: Assuming vanishing fourth generation
mixing, T 4 is proportional to δmt′b′ +

1
3
δmν4ℓ4 and minimized by degenerate isospin

doublets due to (3.9).
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In the case of fourth generation quark mixing, i.e. Vtb′ > 0, it is useful to rewrite the
quark component of T 4 in (3.7b) by factoring out m2

t′ :

T 4
q ∝ m2

t′ fT (rb′, rt, |Vt′b|) , (3.33)

where we introduced the auxiliary function fT depending on the quark mass ratios

rb′ ≡
m2

b′

m2
t′
, rt ≡ m2

t

m2
t′
and the fourth generation mixing Vtb′ ≈ s34. In comparison with

rb′ , the dependence on rt is rather weak and so we can neglect it for the following
qualitative discussion. The minimum of fT is increasing with s34 and therefore the
minimal T 4 is no longer zero but proportional to the square of the involved mass scale,
m2
t′ .

From this qualitative analysis of S and T , positive mass splittings ∆mq,ℓ are to be expected.
For increasing s34, the preferred ∆mq is supposed to decrease due to the rising influence
of T , which prefers small positive mass splittings. This effect should even be enhanced by
increasing mt′ . In addition, the overall χ2 is supposed to increase due to the departure of
T from its preferred value close to zero. These expectations are confirmed by the results of
our combined numerical analysis:
The diagrams in Fig. 3.2 show that for most scenarios, χ2

ST exhibits a Mexican-hat-like
shape in the mb′ −mν4 plane, with an ellipse of minimal χ2

ST around the point (mb′ , mν4) =
(mt′ , ml4). This ellipse is tilted such that positive mass splittings ∆mq,∆mℓ > 0 are pre-
ferred. The overall best fit points are given in red, while the best fits including the mass
limits (2.5) and (2.7) are shown as green dots. From the first row in Fig. 3.2 (s34 = 0), one
can see that these best fit points are basically in agreement with the ranges given by Kribs
et al. (yellow bands), and also their positive correlation with the Higgs mass is reproduced.
However, the diagrams show very clearly that there are several scenarios featuring rather
extended 95% C.L. regions, so taking only the mass splitting corresponding to the best fit
point as done in [39] is quite an oversimplification.
A point which has been mentioned for the first time in [51]2 and was completely neglected

in previous analyses is the influence of nonzero 3-4 mixing s34. As one can see in the second
and third rows of Fig. 3.2, increasing s34 will decrease the maximum in the middle of the
ellipse and therefore also decrease |∆mq,ℓ|. This means that s34 has basically the opposite
effect on the shape of the allowed mass region as mH . For s34 and mt′ large enough, the
Mexican hat will be deformed into a simple potential well, allowing even zero mass splittings
at the 95% confidence level (see the diagrams with s34 = 0.1, 0.2 and mH = 117 GeV in
Fig. 3.2)! The fact that in the last row (s34 = 0.2) there are no more allowed regions for
large top masses confirms our results for the correlation of s34 and mt′ found in Sec. 3.2.2.

2While the authors of that paper come to the same conclusion that s34 > 0 allows for degenerate masses,
they chose to display the points in the S-T-plane where the mass dependence shown in Fig. 3.2 is invisible.
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Figure 3.2.: Allowed regions of the massesmb′ and mν4 , for different 3-4 mixing s34 and Higgs massmH . In
each plot, the results are shown for four different combinations of mt′ ∈ {350 GeV, 550 GeV}
and mℓ4 ∈ {150 GeV, 550 GeV} (depicted by dashed lines). The three confidence levels 68%,
95% and 99% are given by the red, purple an dark blue areas, respectively, while higher χ2

value are depicted by lighter shades of blue. The gray bands give the mass regions excluded
by direct searches and perturbativity. While the red dot shows the overall χ2 minimum, the
minimum within the allowed mass region is displayed by the green dot. The light yellow bands
in the first row indicate the mass splittings given by Kribs et al. [39].
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4.1. Preliminaries: Effective Hamiltonians and Loop

Functions

4.1.1. Introduction to Effective Field Theories

Effective field theories (EFT) are the method of choice for any serious phenomenology of
weak decays. In this framework it is possible to describe physics at a given scale µ by a
certain set of parameters, without knowledge of the processes at arbitrarily small distances.
Due to the Operator Product Expansion (OPE) [125] the Hamiltonian of an effective theory
has the following general structure

Heff = Hlight +
GF

2

∑

i

V i
CKMCi(µ)Qi , (4.1)

where Qi are the relevant local operators of the considered decay. The effective Hamiltonian
Heff in (4.1) can also be considered as a sum of effective vertices multiplied by effective
coupling constants Ci(µ) and the Cabibbo-Kobayashi-Maskawa factors V i

CKM. The part
Hlight = HQED×QCD contains the interactions of the light particles whereas the heavy parti-
cles, such as W and Z bosons as well as the top quark and heavy new particles have been
integrated out.
Eventually, after the determination of the effective Hamiltonian Heff the decay amplitudes

can be calculated. The transition amplitude for a decay of an initial state i, e.g. a K or B
meson, into a final state f , e.g. ℓ+ℓ− or ππ, can then be specified by

A(i→ f) = 〈f |Heff |i〉 =
GF

2

∑

i

V i
CKM Ci(µ) 〈f |Qi(µ)|i〉 , (4.2)

where 〈f |Qi(µ)|i〉 denote the hadronic matrix elements and Ci(µ) are the corresponding
Wilson coefficients. Here two very important properties of the Operator Product Expansion
are emphasized:

• The Wilson coefficients Ci (µ) contain all information of the contributions from scales
higher than µ. Due to the asymptotic freedom of QCD they can be calculated within
perturbation theory. The effect of these heavy particles such as Z, W -bosons and
top quark are fully contained in the Wilson coefficients Ci (µ). Consequently Ci (µ)
is a function of mt, MW , and also of the masses of new particles, if extensions of the
Standard Model are considered.
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• The hadronic matrix elements 〈f |Qi (µ) |i〉 summarize the contributions of the ampli-
tude A (i→ f) from scales lower than µ. Since the full amplitude of the decay may
not depend on the scale µ, the µ-dependence of the couplings Ci (µ) must cancel the
µ-dependence of the hadronic matrix elements 〈f |Qi (µ) |i〉. However, in most cases it
is not easy to calculate these matrix elements reliably and non-perturbative methods
such as lattice calculations are required.

As we have seen, the OPE allows to separate the problem of calculating the amplitude
A (i→ f) into two distinct parts: the short- distance (SD, perturbative) calculation of the
couplings Ci (µ) and the long-distance (LD, generally non-perturbative) calculation of the
hadronic matrix elements 〈f |Oi (µ) |i〉, both separated by the scale µ which can be chosen
arbitrarily. For the evaluation of the matrix elements it is necessary to choose µ to be of the
order of the mass of the decaying hadron. This is O (mb) and O (mc) for B decays and D
decays respectively. In the case of K decays the typical choice is µ = O (1− 2GeV ) instead
of O (mK), which is much too low for any perturbative calculation of the couplings Ci (µ).

Thus in an effective theory a process is properly described by shrinking the propagator of
heavy particles and replacing it by an effective vertex. So formula (4.1) can be regarded as
a generalization of the Fermi Theory. But in contrast to the Fermi theory, all known quarks
and leptons as well as their strong and electroweak interactions coming from the SM are
taken into account.

For non-leptonic B meson decays this generalization yields a list of relevant operators
that can be found in [126]. Furthermore the formulation of weak decays in terms of effective
Hamiltonians is well suited for the inclusion of new physics and is therefore very useful for
testing extensions of the SM like the SM4.

In order to determine the Wilson coefficients one has to calculate the considered amplitude
in the full theory and in the effective theory. Subsequently the full theory has to be matched
to the effective theory, i.e. the following condition has to be imposed

Afull = Aeff . (4.3)

After the calculation of the diagrams in the full theory which contribute to the considered
operators and using the matching condition (4.3), one can extract the corresponding Wilson-
coefficients by comparison. In the next section we will perform this task for several generic
processes, identifying loop functions that occur repeatedly in all kinds of processes we will
study subsequently.

4.1.2. Gauge Independent Loop and Master Functions in the SM4

In this section we present a generalized treatment of flavor changing neutral current processes
in the SM4. In Section 4.1.2.1 we will first identify a set of gauge independent loop functions
which correspond to the SM functions introduced in [127]. In Section 4.1.2.2 we will then
introduce SM4 master functions that make it very easy to generalize the SM3 results for the
studied flavor observables.
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4.1.2.1. Gauge Independent Loop Functions

In Appendix A.1, we have computed all box and penguin diagrams needed for the observables
in the following work. However, when calculating physical processes, it turns out that most of
the diagrams do not occur alone but always in combination with other diagrams. Therefore
it is not surprising that the loop functions corresponding to isolated diagrams – B0, C0, D0

and H0 – do not fulfill the requirements we impose on physical quantities. As shown in [127],
these functions are in general dependent on the applied gauge scheme, wherefore a set of
better suited gauge invariant functions X0, Y0 and Z0 has been derived there.

In the SM4 these functions are modified due to SM simplifications which do not longer
hold in the presence of a fourth generation. In Appendix A.2 we calculate the corresponding
functions in a different way than in [127], where the gauge dependence has been calculated
and cancelled explicitly. By contrast, we use the fact that the Wilson coefficients for the
relevant vertices must be gauge invariant and we simply take these to identify the appropriate
loop functions.

The results of the detailed calculation that can be found in Appendix A.2, are as follows:
The basic loop functions which are already gauge invariant read

S0(xi, xj) , E0(xi) , D′
0(xi) , E ′

0(xi) , H ′
0(xi) . (4.4a)

In contrast, the loop functions B0, C0, D0 and H0 are not gauge invariant and have to be
replaced by

X̄f(xi) = X0(xi) +

4∑

j=2

λ
(ff)
j F (−)(xi, xj) , (4.4b)

Ȳ f(xi) = Y0(xi)−
4∑

j=2

λ
(ff)
j F (+)(xi, xj) , (4.4c)

Z̄(i)(xi) = C0(xi) +
1

4
D(i)(xi) , (4.4d)

where the functions on the right hand side can be found in Appendix B and (A.14), and the

generalized CKM factors λ
(ff)
j are defined in (2.18, 2.47). While S0 is relevant for ∆F = 2

observables, the function X̄f (Ȳ f) occurs in ∆F = 1 processes with outgoing fermions f f̄
and weak isospin +1

2
(−1

2
). Z̄(i) is a charge-dependent contribution to ∆F = 1 processes

with loop fermions i.

4.1.2.2. Master Functions

In the following work, we will study a large number of flavor observables that have already
been calculated in the SM3. Of course, recalculating all these processes including a fourth
generation would be a rather tedious procedure. In this section we will therefore intro-
duce a rather simple generalization which makes it very easy to adapt the well-known SM3
expressions for our purposes.
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∆F = 1 observables: Beginning with ∆F = 1 observables, in the SM3 they usually
are of the form

OSM3
∆F=1 ∝

3∑

i=2

λ(A)ui
f(xui) = λ(A)c f(xc) + λ

(A)
t f(xt) , (4.5)

where A ∈ {K,Bd, Bs}1 denotes the considered meson system and f ∈ {X0, Y0, Z0, D
′
0, E

(′)
0 , H

′
0}

is an arbitrary, real and universal Inami-Lim function. The charm contribution on the right
hand side can usually be neglected in the Bs,d systems but not in the K system. In the SM4,
O∆F=1 obtains an additional contribution from the new t′ quark in the loop, leading to

OSM4
∆F=1 ∝

4∑

i=2

λ(A)ui
f̄(xui) = λ(A)c f̄(xc) + λ

(A)
t f̄(xt) + λ

(A)
t′ f̄(xt′) , (4.6)

where the modified f̄ ∈ {X̄f , Ȳ f , Z̄(i), D′
0, E

(′)
0 , H

′
0} is one of the gauge independent SM4

functions in (4.4). As in the case of the LHT model [71], we can now introduce so-called
master functions :

fA ≡ f̄(xt) +
λ
(A)
t′

λ
(A)
t

f̄(xt′) , (4.7)

which are basically generalized Inami-Lim functions. In contrast to the latter, the fA are
complex and non-universal, that means dependent on the considered process. By introducing
them, we recover the SM3 form of (4.5):

OSM4
∆F=1 ∝ λ(A)c f̄(xc) + λ

(A)
t fA . (4.8)

∆F = 2 observables: In the case of ∆F = 2 processes, the situation is a little more
complex. Here, the SM3 observable can be written as

OSM3
∆F=2 ∝

3∑

i=2

3∑

j=2

λ(A)ui
λ(A)uj

η(A)uiuj
S0(xui , xuj )

=
(
λ(A)c

)2
η(A)cc S0(xc) + 2λ(A)c λ

(A)
t η

(A)
ct S0(xc, xt) +

(

λ
(A)
t

)2

η
(A)
tt S0(xt) . (4.9)

As in the ∆F = 1 case, we can define a master function

SA ≡ S0(xt)+
η
(A)
t′t′

η
(A)
tt

(

λ
(A)
t′

λ
(A)
t

)2

S0(xt′)+2
η
(A)
tt′

η
(A)
tt

λ
(A)
t′

λ
(A)
t

S0(xt, x
′
t)+2

η
(A)
ct

η
(A)
tt

λ
(A)
c λ

(A)
t′

λ
(A)2
t

S0(xc, x
′
t) , (4.10)

such that we simply recover the SM3 form (4.9) in the SM4:

OSM4
∆F=2 =

(
λ(A)c

)2
η(A)cc S0(xc) + 2λ(A)c λ

(A)
t η

(A)
ct S0(xc, xt) +

(

λ
(A)
t

)2

η
(A)
tt SA . (4.11)

1In this section we will only cover the K and B systems in order to keep the discussion as simple as possible.
Of course the procedure can easily be applied to the D system as well, with only minor modifications.
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Assuming the following approximate relations for the 4G QCD corrections2,

η
(i)
tt ≈ η

(i)
tt′ ≈ η

(i)
t′t′ , η

(i)
ct ≈ η

(i)
ct′ , (4.12)

the master function simplifies to

SA ≡ S0(xt) +

(

λ
(A)
t′

λ
(A)
t

)2

S0(xt′) + 2
λ
(A)
t′

λ
(A)
t

S0(xt, x
′
t) + 2

η
(A)
ct

η
(A)
tt

λ
(A)
c λ

(A)
t′

λ
(A)2
t

S0(xc, x
′
t) . (4.13)

Altogether, we have the following eight rules for replacing SM3 expressions by master
functions in the SM4:

S0(xt) → SA ≡ |SA|eiθ
A
S , X0(xt) → Xf

A ≡ |Xf
A|eiθ

f,A
X , (4.14a)

Y0(xt) → Y f
A ≡ |Y f

A |eiθ
f,A
Y , Z0(xt) → Z

(i)
A ≡ |Z(i)

A |eiθi,AZ , (4.14b)

E0(xt) → EA ≡ |EA|eiθ
A
E , D′

0(xt) → D′
A ≡ |D′

A|eiθ
A
D′ , (4.14c)

E ′
0(xt) → E ′

A ≡ |E ′
A|eiθ

A
E′ , H ′

0(xt) → H ′
A ≡ |H ′

A|eiθ
A
H′ , (4.14d)

where the functions SA and fA ∈ {Xf
A, Y

f
A , Z

(i)
A , EA, D

′
A, E

′
A, H

′
A} are given in (4.13) and

(4.7), respectively.

4.2. Quark Flavor and CP Violation

In the following, we will introduce all the flavor and CP violation observables which will be
used in our study of the fourth generation. Their experimental values and theoretical input
parameters which are not given here can be found in Table 5.1.

4.2.1. Particle-Antiparticle Mixing (∆F = 2) and Indirect CP

Violation

4.2.1.1. K0
− K̄0 Mixing (∆S = 2)

Effective Hamiltonian: The effective Hamiltonian for ∆S = 2 transitions in the full
theory (µhigh ≈ mt′) can be obtained from the elementary box vertex (A.6) given in Ap-
pendix A:

H∆S=2
eff (µhigh) = i

s

d

d

s

+ i

s

d

d

s

=
G2
FM

2
W

16π2

4∑

i,j=2

λ(K)
ui
λ(K)
uj
S0(xui , xuj )(s̄d)V−A(s̄d)V−A + h.c. , (4.15)

2This approximation is justified as mt′ is only by a factor of 2–3 larger than mt, the anomalous dimension
of the involved (V −A)⊗ (V −A) operator is small, and the QCD corrections only very weakly depend
on the actual value of mt′ (where the t′–mass is defined as mt′(mt′)).
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with u2,3,4 = c, t, t′, λ
(K)
ui = V ∗

uis
Vuid defined in (2.20), xui =

m2
ui

M2
W

and the loop function S0

given in (B.1a).
For calculating observables, we need the effective Hamiltonian at the low scale µ ≈ 1 GeV:

H∆S=2
eff =

G2
FM

2
W

16π2

4∑

i,j=2

λ(K)
ui
λ(K)
uj
η(K)
uiuj

S0(xui , xuj)

×
(
α(3)
s (µ)

)− 2
9

[

1 +
α
(3)
s (µ)

4π
J3

]

(s̄d)V−A(s̄d)V−A (4.16)

where the QCD corrections obtained by renormalization group running from µhigh to µ have

been absorbed in the functions η
(K)
uiuj and explicit factors of αs.

Absorbing the contributions of the 4G quarks into a redefinition of the loop function S0(xt)
as discussed in Sec. 4.1.2.2, we can bring this Hamiltonian into the form known from the
SM3,

H∆S=2
eff =

G2
FM

2
W

16π2

[
(
λ(K)
c

)2
η(K)
cc S0(xc) +

(

λ
(K)
t

)2

η
(K)
tt SK + 2λ

(K)
t λ(K)

c η
(K)
ct S0(xt, xc)

]

×

× (αs(µ))
−2/9

[

1 +
αs(µ)

4π
J3

]

(s̄d)V−A(s̄d)V−A , (4.17)

with the master function (4.13)

SK = S0(xt) +

(

λ
(K)
t′

λ
(K)
t

)2

S0(xt′) + 2
λ
(K)
t′

λ
(K)
t

S0(xt, xt′) + 2
η
(K)
ct

η
(K)
tt

λ
(K)
c λ

(K)
t′

λ
(K)2
t

S0(xc, xt′) . (4.18)

In writing this we have assumed the approximate relations (4.12) for the QCD corrections.

∆MK and εK: The off-diagonal element in the dispersive part of the amplitude for
K0 − K̄0 mixing is given by

2mK

(
MK

12

)∗
=
〈
K̄0|H∆S=2

eff |K0
〉
. (4.19)

The usual procedure [128] then gives

MK
12 =

G2
F

12π2
F 2
KB̂KmKM

2
WM

K

12 , (4.20)

where

M
K

12 =
(
λ(K)∗
c

)2
ηccS0(xc) +

(

λ
(K)∗
t

)2

η
(K)
tt S∗

K + 2η
(K)
ct λ

(K)∗
t λ(K)∗

c S0(xt, xc), (4.21)

and we have introduced the renormalization group invariant parameter

B̂K ≡ BK(µ) (αs(µ))
−2/9

[

1 +
αs(µ)

4π
J3

]

, (4.22)
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with
〈
K̄0|(s̄d)V−A(s̄d)V−A|K0

〉
≡ 8

3
BK(µ)F

2
Km

2
K . (4.23)

Then

∆MK = 2Re
(
MK

12

)
, (4.24)

εK =
κεe

iϕε

√
2(∆MK)exp

Im
(
MK

12

)
, (4.25)

where the parameters ϕε = (43.51± 0.05)◦ and κε = 0.92± 0.02 [129] take into account that
ϕε 6= π/4 and include an additional effect from Im(A0), the imaginary part of the isospin-0
amplitude in K → ππ. The result for κε has recently been confirmed in [130]3. The phase
2ϕK of the leading S∗

K term in (4.21) is given by

2ϕK = 2β̄ − 2β̄s − θKS , (4.26)

with θKS defined in (4.14) and the two phases β and βs are given by

β ≡ −Arg(V ∗
tbVtd) ≈ −Arg(Vtd) , βs ≡ −Arg(Vts) . (4.27)

Finally, we have to mention that concerning ∆MK , the theory side cannot keep up with the
very precise experimental measurements (s. Table 5.1). This is due to potentially large LD
contributions to ∆MK that – in spite of many efforts – are not well understood at present.
Several analyses indicate that these contributions are positive and in the ballpark of 30%
of the measured value [132–134]. This is supported by the fact that, in the SM3, the value
of the SD box-diagram contributions ∆MSD

K to ∆MK amounts to only (70 ± 10)% of the
measured value.

4.2.1.2. B0
q
− B̄0

q
Mixing (∆B = 2)

Effective Hamiltonian: In principle, (4.15) can be directly generalized to the Bd

and Bs systems. In practice, the terms involving the charm quark mass are negligible and
consequently (q = d, s)

H(Bq)
eff = i

b

q

q

b

+ i

b

q

q

b

(4.28)

Again, we can retain the SM3 form by absorbing the t′ contributions into a generalized
Inami-Lim function Sq (4.13):

H(Bq)
eff =

G2
FM

2
W

16π2
ηB

(

λ
(q)
t

)2

Sq
[
α(5)
s

]− 6
23

[

1 +
α
(5)
s

4π
J5

]

(b̄q)V−A(b̄q)V−A , (4.29)

3The recent inclusion of additional long distance contributions modifies κε to 0.94± 0.02 [131] without any
visible impact on our numerical results.
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Sq = S0(xt) +
η
(q)
t′t′

η
(q)
tt

(

λ
(q)
t′

λ
(q)
t

)2

S0(xt′) + 2
η
(q)
tt′

η
(q)
tt

(

λ
(q)
t′

λ
(q)
t

)

S0(xt, xt′)

+ 2
η
(q)
ct′

η
(q)
tt

(

λ
(q)
c λ

(q)
t′

λ
(q)2
t

)

S0(xt′ , xc) , (4.30)

where the relations (4.12) for QCD corrections have again been assumed. In contrast to the
last term in (4.18), that can be relevant for certain values of the parameters involved, the
last term in (4.30) turns out to be negligibly small.

∆B = 2 Observables: As in the K system (4.19), Bq − B̄q mixing is described by the
off-diagonal matrix element M q

12 (q = d, s) given by

M q
12 =

G2
F

12π2
F 2
Bq
B̂Bq

mBq
M2

WM
q

12 , (4.31)

where

M
q

12 =
(

λ
(q)∗
t

)2

ηBS
∗
q . (4.32)

The contributions involving charm can be neglected. For the mass differences in the B0
d,s −

B̄0
d,s systems we have

∆Mq = 2 |M q
12| . (4.33)

Indirect CP violation in the Bq system is determined by the phase ϕtot
Bq
, defined by

M q
12 = |M q

12| e
2iϕtot

Bq . (4.34)

In contrast to the K system, the different CP eigenstates B0
q and B̄0

q do not decay in a
distinctive manner, so the measurement of indirect CP violation is not that easy. However,
in the SM3 it is a well-known fact [126] that the time-dependent CP asymmetries in the
decays B0

d → ψKS and B0
s → ψφ are strongly dominated by the respective mixing phase.

As we will argue in Section 4.2.5.3, this purity is somewhat weakened in the SM4, but
nevertheless we still expect mixing to be the dominant source of CP violation. In this
approximation, we can write the time-dependent CP asymmetries SψKS

and Sψφ by

SψKS
= sin 2ϕtot

Bd
, Sψφ = − sin 2ϕtot

Bs
. (4.35)

A detailed discussion of the involved observables and phases can be found in Section 4.2.5.3.
Finally, we want to emphasize that in the SM4 the ratio ∆Md/∆Ms does not determine

directly the side Rt in the UT, since the UT does not close any more and there are non-MFV
contributions. Therefore, the determination of the ratio |Vtd|/|Vts| by means of

∆Md

∆Ms
=
mBd

mBs

B̂Bd
F 2
Bd

B̂Bs
F 2
Bs

∣
∣
∣
∣

Vtd
Vts

∣
∣
∣
∣

2 |Sd|
|Ss|

, (4.36)

will clearly be affected since the last ratio is now generally different from unity.
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4.2.1.3. D0
− D̄0 Mixing (∆C = 2)

Effective Hamiltonian: The effective Hamiltonian for ∆C = 2 transitions in the full
theory can be obtained from the elementary box vertex (A.6)

H∆C=2
eff (µhigh) = i

u

c

c

u

+ i

u

c

c

u

=
G2
FM

2
W

16π2

4∑

i,j=2

λ
(D)
di
λ
(D)
dj
S(xdi , xdj )(ūc)V−A(ūc)V−A , (4.37)

with the CKM factor defined in (2.20)

λ
(D)
di

= V ∗
cdi
Vudi . (4.38)

Taking into account QCD corrections arising from RG running down to the scale µ, one
obtains

H∆C=2
eff =

G2
FM

2
W

16π2

4∑

i,j=2

η
(D)
didj

λ
(D)
di
λ
(D)
dj
S(xdi , xdj )

[
α(4)
s (µ)

]− 6
25

[

1 +
α
(4)
s (µ)

4π
J4

]

(c̄u)V−A(c̄u)V−A

(4.39)

It should be remarked that with mb′ defined as mb′(mb′) the QCD factors depend only
weakly on mb′ . Moreover, the µ-dependent QCD corrections in (4.39) are absorbed in the
renormalization group invariant parameter B̂D defined by

B̂D = BD(µ)
[
α(4)
s (µ)

]−6/25

[

1 +
α
(4)
s (µ)

4π
J4

]

. (4.40)

Lattice calculations [135–137] yield BD(µ = 2GeV) = 0.845 ± 0.024+0.024
−0.006, so together with

J4 = 6719/3750 [138] and αs(MZ) = 0.1184± 0.0007 [139], we find

B̂D = 1.18+0.07
−0.05 , (4.41)

which will be used in our numerical calculations.

∆C = 2 Observables: The short distance (SD) contributions to the matrix element
of the effective Hamiltonian (4.39) can be written as

〈D̄0|H∆C=2
eff |D0〉SD ≡

∣
∣MD

12

∣
∣ e2iφD =

(
MD

12

)∗
, (4.42)

where

MD
12 =

G2
F

12π2
F 2
DB̂DmDM

2
WM

D

12 , (4.43)
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and

M
D

12 =
(
λ(D)∗
s

)2
η(K)
cc S0(xs) +

(

λ
(D)∗
b

)2

η(K)
cc S0(xb) +

(

λ
(D)∗
b′

)2

η
(K)
tt S0(xb′)

+ 2λ
(D)
b

∗
λ(D)
s

∗
η(K)
cc S0(xb, xs) + 2λ

(D)
b′

∗
λ(D)
s

∗
η
(K)
ct S0(xb′ , xs) + 2λ

(D)
b′

∗
λ
(D)
b

∗
η
(K)
ct S0(xb′ , xb) .

(4.44)

In contrast to [51] where the 4G mixing terms in M
D

12 were neglected, we found that these
terms can give important contributions and therefore such a simplification is not appropriate.
For the QCD corrections we used the approximate relations

η
(D)
b′b′ ≈ η

(K)
tt , η

(D)
b′b ≈ η

(D)
b′s ≈ η

(K)
ct , η(D)

ss ≈ η
(D)
bb ≈ η

(D)
bs ≈ η(K)

cc , (4.45)

which are found by comparing the size of QCD corrections in the D0 − D̄0 and K0 − K̄0

systems.
The full matrix elements are then given by

〈D̄0|H∆C=2
eff |D0〉 =

(
MD

12 +MLD
12

)∗ − i

2
ΓLD
12

∗
, (4.46)

〈D0|H∆C=2
eff |D̄0〉 =

(
MD

12 +MLD
12

)
− i

2
ΓLD
12 . (4.47)

Here ΓLD
12 and MLD

12 stand for long distance (LD) contributions with the former arising ex-
clusively from SM3 dynamics. These contributions are very difficult to estimate and will be
included in our phenomenological analysis using the strategy of [140, 141].

4.2.2. Leptonic Decays: KL → µ+µ− and Bs,d → µ+µ−

4.2.2.1. KL → µ+µ−

Effective Hamiltonian: Using (A.25) and the definitions thereafter, one finds for the
effective Hamiltonian

HKL→µ+µ−

eff =i

s

d

µ

µ

+ i Z

s

d

µ

µ

=− GF√
2

α

2πs2W

4∑

i=2

λ(K)
ui

Ȳ µ(xui) (s̄d)V−A(µ̄µ)V−A , (4.48)

with the SM4 gauge independent loop function Ȳ µ defined in (4.4c),

Ȳ µ(xui) = Y0(xui)− λ(µµ)ν4
F (+)(xui , xν4) , (4.49)

where λ
(µµ)
ν4 = |Uµν4 |2 (2.47) and the functions Y0 and F (+) are given in Appendix B. Note

that the charm contribution (i = 2) can be significant and therefore it cannot be neglected
here. Again, we can rewrite this Hamiltonian in the form known from the SM3,

HKL→µ+µ−

eff = −GF√
2

α

2πs2W

[

λ(K)
c Ȳ µ(xc) + λ

(K)
t Y µ

K

]

, (4.50)
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by introducing the master function (4.7)

Y µ
K ≡ Ȳ µ(xt) +

λ
(K)
t′

λ
(K)
t

Ȳ µ(xt′) . (4.51)

Within the SM3, QCD corrections have been found to be tiny in the top quark part
[142,143], so we will also neglect them for the t and t′ contributions in the SM4. However, for
the charm contributions QCD corrections are significant and have to be included [142,144].

However, it will be shown in Section 5.4 that λ
(µµ)
ν4 ≤ 0.025 (s. Fig. 5.24). So the charm

contribution will remain intact, which allows us to take the SM3 QCD corrections.

Branching Ratio and Experimental Status: In analogy to the SM3 case [144], the
short distance contribution to the branching ratio is given in the SM4 by

Br(KL → µ+µ−)SD = 2.08 · 10−9

(

Reλ
(K)
c

|Vus|
Pc(YK) +

Re(λ
(K)
t YK)

|Vus|5

)2

, (4.52)

where Pc (YK) = 0.113± 0.017 [144].
Unlike Bs,d → µ+µ− which is discussed below, the SD part calculated here is only one part

of a dispersive contribution to KL → µ+µ− that is by far dominated by the absorptive part
with two internal photon exchanges. Consequently, the SD contribution constitutes only a
small fraction of the branching ratio. Moreover, because of long-distance (LD) contributions
to the dispersive part of KL → µ+µ−, the extraction of the SD part from the data is subject
to considerable uncertainties. The most recent estimate gives [145]

Br(KL → µ+µ−)SD ≤ 2.5 · 10−9 , (4.53)

to be compared with (0.8± 0.1) · 10−9 in the SM3 [144].

4.2.2.2. Bs,d → µ+µ−

Effective Hamiltonian: In analogy to (4.48), the effective Hamiltonian forBq → µ+µ−

(q = s, d) reads

HBq→µ+µ−

eff (µhigh) = −GF√
2

α

2πs2W

4∑

i=3

λ(Bq)
ui

Ȳ µ(xui) (b̄q)V−A(µ̄µ)V−A , (4.54)

where the negligible charm contributions have been dropped. This can again be rewritten
into the SM3 form

HBq→µ+µ−

eff = −GF√
2

α

2πs2W
λ
(Bq)
t YBq

(b̄q)V−A(µ̄µ)V−A , (4.55)

with the master functions (4.7)

Y µ
Bq

≡ Ȳ µ(xt) +
λ
(Bq)
t′

λ
(Bq)
t

Ȳ µ(xt′) (4.56)
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Branching Ratio and Experimental Status: The two decays Bs,d → µ+µ− are he-
licity suppressed in the SM3 and CMFV models. Their branching ratios are proportional
to the squares of the corresponding weak decay constants that still suffer from sizable un-
certainties. However, using simultaneously the SM3 expressions for the very well measured
mass differences ∆Ms,d, these errors can be eliminated [146], leaving the hadronic parameters

B̂Bs
and B̂Bd

as the only sources of theoretical uncertainty in Br(Bs,d → µ+µ−). These pa-
rameters enter the branching ratios linearly and are already known from lattice calculations
with 5− 10% precision, as seen in Table 5.1.
Translating this idea to the SM4, one finds with the help of the effective Hamiltonian

(4.55),

Br(Bq → µ+µ−) = C
τ(Bq)

B̂Bq

|Yq|2
|Sq|

∆Mq , (q = s, d) , (4.57)

where ∆Mq is supposed to be taken from experiment and the prefactor C is defined as

C = 6π
η2Y
ηB

(
α

4π sin2 θW

)2 m2
µ

M2
W

= 4.39 · 10−10 . (4.58)

Consequently, the golden relation between Br(Bd,s → µ+µ−) and ∆Md/∆Ms, valid in CMFV
models [146], is modified as follows:

Br(Bs → µ+µ−)

Br(Bd → µ+µ−)
=
B̂Bd

B̂Bs

τ(Bs)

τ(Bd)

∆Ms

∆Md
r , r =

∣
∣
∣
∣

Ys
Yd

∣
∣
∣
∣

2 |Sd|
|Ss|

, (4.59)

where r = 1 can now differ from unity.
The analogous SM3 expressions yield the rather precise predictions

Br(Bs → µ+µ−) = (3.2± 0.2) · 10−9 , Br(Bd → µ+µ−) = (1.0± 0.1) · 10−10 , (4.60)

where the updated value of Br(Bs → µ+µ−) has already been reported in [147]. These
values should be compared to the 95% C.L. upper limits from CDF [148] and D0 [149] (in
parentheses)4

Br(Bs → µ+µ−) ≤ 3.3 (5.3) · 10−8 , Br(Bd → µ+µ−) ≤ 1 · 10−8 . (4.61)

The comparison of (4.60) and (4.61) reveals that a lot of space is still left for NP contributions
in these channels. This gap could be closed soon as Br(Bs → µ+µ−) is the subject of intensive
research at LHCb. To show the power of this experiment, we also state the predicted
exclusion limit [151] of

Br(Bs → µ+µ−)excl ≈ 7 · 10−9 (at 90% C.L.) , (4.62)

for an integrated luminosity of 1 fb−1, which is expected by the end of 2011. With luck, even
the more suppressed decay Bd → µ+µ− could soon be detected as well.

4The numbers given are updates presented at the EPS-HEP09 conference. More information is given by
Punzi [150].
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4.2.3. Semi-Leptonic Decays: K → πνν̄ and B → Xd,sνν̄

4.2.3.1. K+
→ π+νν̄ and KL → π0νν̄

Effective Hamiltonian: Using the result for the general ∆F = 1 effective Hamiltonian
(A.25), we find for the decay of a K = (KL, K

+) into a corresponding π = (π0, π+) meson
and a pair of light neutrino mass eigenstates νlν̄l (l = 1, 2, 3)

HK→πνlν̄l
eff =i

s

d

νl

νl

+ i Z

s

d

νl

νl

=
GF√
2

α

2πs2W

4∑

i=2

λ(K)
ui

X̄νl(xui) (s̄d)V−A(ν̄lνl)V−A , (4.63)

where the generalized SM4 gauge independent loop function X̄ i is defined in (4.4b),

X̄νl(xui) = X0(xui) +
4∑

j=3

λ
(νlνl)
ℓj

F (−)(xui, xℓj ) , (4.64)

with X0 and F (−) given in Appendix B.
Heff can again be brought into the SM3 form [152]

HK→πνlν̄l
eff =

GF√
2

α

2π sin2 θW

[

λ(K)
c X0(xc) + λ

(K)
t Xνl

K

]

(s̄d)V−A(ν̄lνl)V−A , (4.65)

with (4.7)

Xνl
K ≡ X̄νl(xt) +

λ
(K)
t′

λ
(K)
t

X̄νl(xt′) . (4.66)

Branching Ratios and Experimental Status: The SM4 generalization of the SM3
expressions for the branching ratios yields

Br(K+ → π+νlν̄l) =
κ+
3





(

Im(λ
(K)
t Xνl

K )

|Vus|5

)2

+

(

Reλ
(K)
c

|Vus|
P νl
c (X) +

Re(λ
(K)
t Xνl

K)

|Vus|5

)2


 , (4.67a)

Br(KL → π0νlν̄l) =
κL
3

(

Im(λ
(K)
t Xνl

K )

|Vus|5

)2

, (4.67b)

where the relevant hadronic matrix elements have been determined from tree-level leading
K decays for λ = 0.226 [153]:

κ+ = (5.36± 0.026) · 10−11 , κL = (2.31± 0.01) · 10−10 . (4.68)

By summing over three light neutrinos νl in the final state, we then simply obtain

Br(K+ → π+νν̄) =
∑

l=1,2,3

Br(K+ → π+νlν̄l) , (4.69a)
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Br(KL → π0νν̄) =
∑

l=1,2,3

Br(KL → π0νlν̄l). (4.69b)

In the case of small mixing of light neutrinos and heavy leptons, the l-dependence vanishes
and the factors of 1

3
in (4.67) simply drop out.

On the other hand, if the mixing with the 4G leptons is substantial, also the charm
contribution will be affected. Taking this effect into account, one would also have to study
the QCD corrections and electroweak corrections in the charm sector. Yet we do not think
that this effort is worthwhile before the discovery of the fourth generation and we simply set

P l
c(X) = Pc(X) = 0.42± 0.03 , (4.70)

where Pc(X) including the NNLO QCD corrections [154], electroweak corrections [155] and
LD contributions [156] has been calculated in the SM3.
The most recent SM3 predictions read [154, 155]

Br(K+ → π+νν̄)SM = (8.5±0.7)·10−11 , Br(KL → π0νν̄)SM = (2.8±0.6)·10−11 , (4.71)

where the errors are dominated by parametrical uncertainties, in particular by the CKM
parameters. This is to be compared to the experimental values given by [157, 158]

Br(K+ → π+νν̄) = (17.3+11.5
−10.5) · 10−11 , Br(KL → π0νν̄) ≤ 6.7 · 10−8 . (4.72)

The experimental upper bound on Br(KL → π0νν̄) still surpasses the SM3 value by more
than three orders of magnitude, but significant improvements are to be expected in the
coming decade from E391a at KEK. In Section 5.1 we will see that the SM4 can accommodate
spectacular enhancements of both branching ratios over their SM3 expectations.

4.2.3.2. B → Xd,sνν̄

Effective Hamiltonian: In analogy with (4.63), we find

HB→Xqνlν̄l
eff =i

b

q

νl

νl

+ i Z

b

q

νl

νl

=
GF√
2

α

2πs2W

4∑

i=3

λ(Bq)
ui

X̄νl(xui) (b̄q)V−A(ν̄lνl)V−A , (4.73)

where the negligible charm contribution has again been dropped. This can be brought into
the SM3 form [152]

HB→Xqνlν̄l
eff =

GF√
2

α

2π sin2 θW
λ
(Bq)
t Xνl

Bq
(b̄q)V−A(ν̄lνl)V−A , (4.74)

with the master function (4.7)

Xνl
Bq

≡ X̄νl(xt) +
λ
(Bq)
t′

λ
(Bq)
t

X̄νl(xt′) . (4.75)
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Branching Ratios and Experimental Status: For our analysis of the theoretically
clean decays B → Xs,dνν̄, the most convenient quantities are the three ratios

Br(B → Xsνν̄)

Br(B → Xsνν̄)SM3

=
1

3

∑

l=1,2,3 |X
νl
Bs
|2

|X0(xt)|2
rs , rs =

|Vts|2
|Vts|2SM3

, (4.76a)

Br(B → Xdνν̄)

Br(B → Xdνν̄)SM3
=

1

3

∑

l=1,2,3 |X
νl
Bd
|2

|X0(xt)|2
rd , rd =

|Vtd|2
|Vtd|2SM3

, (4.76b)

Br(B → Xdνν̄)

Br(B → Xsνν̄)
=

∑

l=1,2,3 |X
νl
Bd
|2

∑

l=1,2,3 |X
νl
Bs
|2
∣
∣
∣
∣

Vtd
Vts

∣
∣
∣
∣

2

. (4.76c)

It can be seen explicitly that the branching ratios are defined to include all three light
neutrinos in the final state. The index SM3 reminds us that the extracted |Vtd| and |Vts| in
the presence of 4G quarks can differ from those in the SM. Furthermore, we note that for
Xνl
Bd

6= Xνl
Bs

the relation of the last ratio to |Vtd/Vts| is modified with respect to MFV models.
Recent analyses of these decays within the SM3 and several NP scenarios can be found

in [159, 160]. The recently improved SM3 prediction for B → Xsνν̄ reads [159]

Br(B → Xsνν̄)SM3 = (2.7± 0.2) · 10−5 . (4.77)

On the experimental side, the measurements of B → Xs,dνν̄ are even harder than those of
the rare K decays discussed above. The experimental prospects for these decays at future
Super-B machines are summarized in [161].
The formulae in (4.76) also apply to B → K∗νν̄, B → Kνν̄ and various distributions

discussed in [159, 162].

4.2.4. Radiative Decays: B → Xsγ, B → Xsℓ
+ℓ− and KL → π0ℓ+ℓ−

4.2.4.1. B → Xsγ

The decay B → Xsγ is one of the most popular decays used to constrain NP contributions,
for which the measured branching ratio [163]

Br(B → Xsγ)exp = (3.52± 0.30) · 10−4 (4.78)

agrees well with the NNLO prediction in the SM3 [164],

Br(B → Xsγ)SM = (3.15± 0.23) · 10−4 . (4.79)

Effective Hamiltonian and QCD Corrections: The effective Hamiltonian relevant
for the decay B → Xsγ within the SM3 is given as follows,

HSM
eff (b̄→ s̄γ) = −GF√

2
λ
(s)
t

[
6∑

i=1

Ci(µb)Qi + C7γ(µb)Q7γ + C8G(µb)Q8G

]

, (4.80)

where Qi are four-quark operators, Q7γ is the magnetic photon penguin operator and Q8G

the magnetic gluon penguin operator, contributing to b̄→ s̄γ transitions.
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In the LO approximation, the Wilson coefficients C7γ and C8G at the renormalization scale
µW = O(MW ) are given by

C
(0)
7γ (µW ) = −1

2
D′
s , C

(0)
8G(µW ) = −1

2
E ′
s , (4.81)

with the master functions (i = K, s, d)

D′
i = D′

0(xt) +
λ
(i)
t′

λ
(i)
t

D′
0(xt′) , (4.82a)

E ′
i = E ′

0(xt) +
λ
(i)
t′

λ
(i)
t

E ′
0(xt′) . (4.82b)

In view of the importance of QCD corrections in this decay, we will make sure that in the
limit of neglecting 4G contributions the NNLO result in the SM3 (4.79) is reproduced. For
this purpose, we will evaluate the known LO expressions for the relevant Wilson coefficients
at an appropriately chosen renormalization scale, µeff , which turns out to equal 3.22GeV. The
fact that this scale is somewhat lower than the bottom-quark mass, expresses the important
role of QCD corrections, leading to an enhancement of the branching ratio. The 4G effects
will then be included through the modification of the SM3 Wilson coefficients at µ = MW

without the inclusion of additional QCD corrections. Since the dominant QCD corrections
to Br(B → Xsγ) stem from the renormalization group evolution from MW down to µeff ,
leading to dominant matrix elements of the operators Q2 and Q7γ at µeff , these dominant
corrections are common to the SM3 and the SM4. While not exact, this treatment of QCD
corrections in the SM4 should be sufficient for our purposes.
Thus, in this approximate treatment the SM4 formulae for the relevant Wilson coefficients

C7γ and C8G are obtained by replacing D′
0(xt) → D′

s and E
′
0(xt) → E ′

s in the corresponding
SM3 expressions evaluated at µeff = 3.22 GeV, yielding

C7γ(µeff) = −(0.208 + 0.305D′
s + 0.052E ′

s) , C8G(µeff) = −(0.095 + 0.325E ′
s) . (4.83)

Branching Ratio: The explicit expression for the branching ratio Br(B → Xsγ) result-
ing from (4.80), is very complicated and shall not be presented here (see [164] and references
therein).
However, the ratio of SM4 to SM3 branching ratios can be expressed easily using the

approximate C7γ from (4.83):

Br(B → Xsγ)

Br(B → Xsγ)SM
= r2bsγ

∣
∣
∣
∣

0.208 + 0.305D′
s + 0.052E ′

s

0.208 + 0.305D′
0(xt) + 0.052E ′

0(xt)

∣
∣
∣
∣

2

, (4.84)

where rbsγ , defined as

rbsγ =

( |V ∗
tsVtb|
|Vcb|

)/( |V ∗
tsVtb|
|Vcb|

)

SM

, (4.85)

takes into account possible deviations of VSM4 from VSM3.
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4.2.4.2. B → Xsℓ
+ℓ−

Theoretical Treatment: The decay B → Xsℓ
+ℓ− proceeds very similar to B → Xsγ

discussed in the previous section. Since the 4G effects in B → Xsℓ
+ℓ− are not significant,

we will only make sure that our numerical analysis is in accordance with the existing data.
The theoretical expressions for the branching ratios and the forward-backward asymmetry
in b → sµ+µ− [165–168] in the framework of the SM4 can again be obtained by taking the
corresponding SM3 expressions and replacing the occurring master functions Ys, Zs, Es, E

′

and D′ by the SM4 master functions of Section 4.1.2.2. This replacement is demonstrated
explicitly in Section 5.5 of [168]. Alternatively, all the formulae can be found in [169], so we
chose not to repeat them here. The NNLO treatment can for instance be found in [170–173].

Experimental Status: Due to the presence of resonances there is no rigorous theoret-
ical prediction for the whole q2 range. Instead, theory and experiment are compared for a
high q2 cut, q2 > 14.4GeV2, and a low q2 range, 1GeV2 < q2 < 6GeV2. The BaBar [174]
and Belle [175] collaboration published the following results for both ranges:

Br(B → Xsℓ
+ℓ−)low =







(
1.493 ± 0.504+0.411

−0.321

)
· 10−6 Belle

(1.8 ± 0.7 ± 0.5) · 10−6 BaBar
(1.6 ± 0.5) · 10−6 Average

(4.86a)

Br(B → Xsℓ
+ℓ−)q2>14.4GeV2 =







(
0.418 ± 0.117+0.061

−0.068

)
· 10−6 Belle

(
0.5 ± 0.25+0.08

−0.07

)
· 10−6 BaBar

(0.44 ± 0.12) · 10−6 Average
(4.86b)

For our numerical analysis we will use the averaged measurement. The NNLO prediction
for the zero ŝ0 of the forward-backward asymmetry AFB in the SM3 is [171]

ŝ0 = 0.162± 0.008 . (4.87)

Note that according to [171], the NNLO contributions to B → Xsℓ
+ℓ− are sizable and

negative. To accommodate the NNLO effects, we matched our NLO result to the NNLO
result given in [171] for the low and high q2 ranges independently.

4.2.4.3. KL → π0ℓ+ℓ−

Theoretical Status: Among the rare K meson decays, KL → π0e+e− and KL →
π0µ+µ− belong to the theoretically cleanest, although they cannot compete with K → πνν̄.
They are dominated by CP-violating contributions: In the SM3, the main contribution
comes from the indirect (mixing-induced) CP violation and its interference with the direct
CP-violating contribution [176–179]. The direct CP-violating contribution to the branching
ratio is in the ballpark of 4 · 10−12, while the CP-conserving contribution is at most 3 · 10−12.
Since the dominant indirect CP-violating contributions are practically determined by the
measured decays KS → π0ℓ+ℓ− and the parameter εK , new physics contributions can only
play a role in the subleading direct CP violation. Therefore the decays KL → π0ℓ+ℓ− are
in general not as sensitive to new physics as KL → π0νν̄. However, it has been pointed
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out in [168] that in the presence of large new CP-violating phases, the direct CP-violating
contribution can become dominant and enhance the branching ratios for KL → π0ℓ+ℓ−

significantly, with a stronger effect in the case of KL → π0µ+µ− [178, 179]. Most recent
discussions can be found in [180, 181].

Branching Ratios and Experimental Status: Adapting the formulae of [177–180]
with the help of [168] to the SM4, we find

Br(KL → π0ℓ+ℓ−) =
(
Cℓ

dir ± Cℓ
int |as|+ Cℓ

mix |as|2 + Cℓ
CPC

)
· 10−12 , (4.88)

where

Ce
dir = (4.62± 0.24)(ω2

7V + ω2
7A) , Cµ

dir = (1.09± 0.05)(ω2
7V + 2.32ω2

7A) , (4.89a)

Ce
int = (11.3± 0.3)ω7V , Cµ

int = (2.63± 0.06)ω7V , (4.89b)

Ce
mix = 14.5± 0.05 , Cµ

mix = 3.36± 0.20 , (4.89c)

Ce
CPC ≃ 0 , Cµ

CPC = 5.2± 1.6 , (4.89d)

|as| = 1.2± 0.2 (4.89e)

with

ω7V =
1

2π

[

P0 +
|Y ℓ
K |

sin2 θW

sin βKY
sin(β − βs)

− 4|Z(u)
K | sin βKZ

sin(β − βs)

][

Imλ
(K)
t

1.4 · 10−4

]

, (4.90a)

ω7A = − 1

2π

|Y ℓ
K |

sin2 θW

sin βKY
sin(β − βs)

[

Im λ
(K)
t

1.4 · 10−4

]

. (4.90b)

Here P0 = 2.88 ± 0.06 [182] includes NLO QCD corrections, Y ℓ
K and Z

(u)
K can be found in

(4.7) and the corresponding phases are given as

βℓ,KY = β − βs − θℓ,KY , βu,KZ = β − βs − θu,KZ , (4.91)

where θℓ,KY and θu,KZ can be found in (4.14), and the phases β and βs are defined in (4.27).
The new physics effects are mainly realized in ω7A, since the corresponding contributions

in ω7V cancel each other to a large extent. The present experimental bounds [183, 184],

Br(KL → π0e+e−) < 28 · 10−11 , Br(KL → π0µ+µ−) < 38 · 10−11 , (4.92)

are still by one order of magnitude larger than the SM3 predictions, [180]

Br(KL → π0e+e−)SM = 3.54+0.98
−0.85

(
1.56+0.62

−0.49

)
· 10−11 , (4.93a)

Br(KL → π0µ+µ−)SM = 1.41+0.28
−0.26

(
0.95+0.22

−0.21

)
· 10−11 , (4.93b)

where the values in parentheses correspond to the “−” sign in (4.88).
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4.2.5. CP Violation in K and B Decays

4.2.5.1. Preliminaries

The observation of neutral K and B meson decays provides valuable information about
CP violation (CPV), which occurs via two different mechanisms: Indirect CPV comes from
mixing in the particular meson system and reflects the fact that mass eigenstates are not
identical to CP eigenstates. In contrast to this, direct CPV occurs when the respective
meson CP eigenstates decay into final states of different CP parity.
Since in the SM3 most CP asymmetries are predicted to be tiny and NP models could

have rather large effects, these observables can provide a useful tool to test these models.
In this section we will examine the effects of a fourth generation on CP violation in several

decays of B0 and K0 mesons.

4.2.5.2. Direct CP Violation in the K system: ε′/ε

The ratio ε′/ε measures the size of direct CP violation in KL → ππ relative to the indirect
CP violation which is described by εK (4.25).

Experimental Status: Experimentally, ε′/ε can be measured via the relation

1− 6 Re(ε′/ε) ≈
∣
∣
∣
∣

η00
η+−

∣
∣
∣
∣

2

, (4.94)

where η00 = A(KL→π0π0)
A(KS→π0π0)

and η+− = A(KL→π+π−)
A(KS→π+π−)

. The average from measurements at NA48

[185] and KTeV [186, 187] yields

ε′/ε = (16.8± 1.4) · 10−4 , (4.95)

making this channel the first experimental evidence for direct CP violation.

Theoretical Status and SM4 Evaluation: Unfortunately, the theoretical side can-
not keep up with the experimental data. Above all, the calculation suffers from large uncer-
tainties in the relevant hadronic parameters B6 and B8 (see below).
In the SM3, ε′ is governed by QCD penguins but receives also an important destructively

interfering contribution from electroweak penguins that is generally much more sensitive to
NP than the QCD penguin contribution. Since electroweak penguin and box diagrams also
enter rare K decays like Br(KL → π0νν̄) and Br(K+ → π+νν̄), strong correlations between
ε′/ε and these decays can be expected, as shown for several models in [188–190]
In order to obtain ε′/ε in the SM4, we will adapt the formulae given in [190], which are

based on [191] and yield

ε′/ε = Imλ(K)
c P0 + Imλ

(K)
t Fε′(xt) + Imλ

(K)
t′ Fε′(xt′) , (4.96)

with
Fε′(x) = P0 + PXX0(x) + PY Y0(x) + PZZ0(x) + PEE0(x) . (4.97)
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While the loop functions X0, Y0, Z0 and E0 given in Appendix B arise from short distance
physics, the coefficients Pi describe physics at scales µ ≤ O(mt,MW ). They are given as

Pi = r
(0)
i + r

(6)
i R6 + r

(8)
i R8 . (4.98)

The coefficients r
(j)
i come from Wilson coefficients of the ∆S = 1 weak effective Hamiltonian

at NLO [152], their numerical values for different values of ΛQCD can be found in [191].
From (4.96) and (4.98) one can see that ε′/ε depends crucially on the hadronic parameters

R6 and R8, which are related to the matrix elements B
(1/2)
6 (B

(3/2)
8 ) of the dominant QCD

(EW) penguin operator Q6 (Q8) by

R6 ≡ B
(1/2)
6

[
121MeV

ms(mc) +md(mc)

]2

, R8 ≡ B
(3/2)
8

[
121MeV

ms(mc) +md(mc)

]2

. (4.99)

In the strict large-NC limit, B
(1/2)
6 = B

(3/2)
8 = 1, being compatible with lattice calculations

which are however subject to large systematic uncertainties (s. [190] for further details and
references). Altogether, we expect R6 and R8 to be in the ballpark of

R8 ≈ 1± 0.5 , R6 ≈ 1± 0.5 . (4.100)

Hopefully, lattice calculations will provide better values [192] in the near future. Meanwhile,
it appears to be the best strategy to be to study a set of different scenarios for R6 and R8,
which we will do in our numerical analysis in Section 5.

4.2.5.3. CP-Violating B Decays into CP Eigenstates

Preliminaries

One special class of Bq decays is very auspicious with respect to the extraction of CP phases:
transitions into CP eigenstates |f〉, satisfying

CP|f〉 = ηf |f〉 , (4.101)

with ηf = ±1 being the CP eigenvalue of f . The time-dependent CP asymmetries in these
decays can be written as

Af(t) = Sf sin(∆Mqt)− Cf cos(∆Mqt) . (4.102)

The CP asymmetries Sf and Cf are calculated as follows. One defines a complex quantity
ξf ,

ξf = e
−2iϕtot

Bq

Āqf
Aqf

, (4.103)

where ϕtot
Bq

is the phase of the Bq-mixing amplitude M
Bq

12 and thus describes the “indirect”
contribution to CP violation. Direct CP violation is characterized by the decay amplitudes
Aqf (Āqf ) for Bq(Bq) → f , which can be calculated from the effective Hamiltonian relevant
for ∆B = 1 decays [152] in the following way

Aqf = 〈f |Heff |Bq〉 , Āqf = 〈f |Heff |Bq〉 , (4.104)
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where the Wilson coefficients of the effective Hamiltonian depend on the electroweak theory
while the matrix elements 〈f |Oi|Bq(Bq)〉 can be estimated, for instance, by means of QCD
factorization [193]. We then find

Sf =
2Im(ξf)

1 + |ξf |2
, Cf =

1− |ξf |2
1 + |ξf |2

. (4.105)

Following [193], the SM3 contribution to the decay amplitudes of b̄ → q̄′q′r̄ (r = d, s)
transitions can be written as a sum of two terms, ASM

f = Acf + Auf , with Acf ∝ V ∗
cbVcr and

Auf ∝ V ∗
ubVur. Defining the ratio auf ≡ e−iγ(Auf/A

c
f), we have

ASM
f = Acf

(
1 + aufe

iγ
)
, (4.106)

where the parameters auf have been evaluated in the QCD factorization approach 5 [193,195,
196].
In the SM4, for simplicity, we follow the analysis in [193] which only takes into account

the leading-order terms in αs and neglects Λ/mb corrections (except for so-called chirally
enhanced terms). The modification of Af in (4.106) due to 4G contributions can then be
written as

Af = Acf

[

1 + aufe
iγ +

∑

i

(
bcfi + bufie

iγ
)
CNP
i (MW )

]

, (4.107)

where CNP
i (MW ) are the NP contributions to the Wilson coefficients evaluated at the scale

MW . Defining the NP contributions to the master functions Fi given in Section 4.1.2.2 by

Fi = F SM
0 +∆Fi , (4.108)

the non-vanishing CNP
i (MW ) relevant for b̄→ s̄ transitions are given as follows:

CNP
3 (MW ) =

α

6π

1

sin2 θW
(2∆YBr

−∆XBr
) , (4.109a)

CNP
7 (MW ) =

α

6π
4∆ZBr

, (4.109b)

CNP
9 (MW ) =

α

6π

[

4∆ZBr
− 2

sin2 θW
(∆XBr

+∆YBr
)

]

, (4.109c)

CNP
7γ (MW ) = −1

2
∆D′

Br
, (4.109d)

CNP
8G (MW ) = −1

2
∆E ′

Br
. (4.109e)

Here α = α(MW ) = 1/127.9 is the QED coupling constant and sin2 θW = 0.231. Having
these formulae at hand, we can now study the most interesting CP-violating B decays in
more detail.

5A critical discussion of the importance of power corrections and the potential size of long-distance final-
state interactions in (4.106) can be found in [194]. As long as a model-independent prediction for these
effects is lacking, we have to assign an irreducible theoretical error to the predictions for the auf .
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CP Asymmetries in the decays Bd → xKs (x = J/ψ, φ, η′)

The decays Bd → J/ψKs, Bd → φKs and Bd → η′Ks proceed at the quark level as b̄→ q̄′q′s̄

(q′ = c, s, d, u). Therefore, the coefficient auf ∝ V ∗

ub
Vus

V ∗

cb
Vcs

in (4.107) is Cabibbo-suppressed by

O(λ2).
Within the SM, it is predicted with good accuracy that the |Sf | and Cf parameters are

universal for all the transitions b̄ → q̄′q′s̄. It turns out that SφKS
≃ Sη′KS

≃ SψKS
≃ sin 2β,

with precise predictions given in Tables 1 and 6 of [75]. In particular, the SM3 predicts that
−ηfSf ≃ sin 2β and Cf ≃ 0. NP effects can contribute to6

(i) the Bd mixing amplitude [197],

(ii) the decay amplitudes b̄→ q̄qs̄ (q = s, d, u) [197–199].

In case (i), the NP contribution shifts all Sf asymmetries away from sin 2β in a universal
way, while the Cf asymmetries will still vanish. In case (ii), the various Sf and also the Cf
asymmetries are, in general, different from their values in the SM3.

Bd → J/ψKS: In the SM3, the cleanest CP-violating Bd decay is Bd → J/ψKs, where
auf in (4.107) is negligible within a very good approximation, so

ξSM3
ψKS

= e−2iβ , (4.110)

with β = −Arg(Vtd) (4.27) and therefore

SSM3
ψKS

= sin 2β . (4.111)

In the SM4, there are two possible sources of deviation from this relation:

• The Bd mixing phase defined in (4.34),

2ϕtot
Bd

= Arg(Md
12) = 2Arg(V ∗

td)−Arg(Sd) = 2β − θSd
, (4.112)

is not longer determined by the single CKM matrix element Vtd, but rather a combi-
nation of different matrix elements. It should also be emphasized that in the SM4, β
differs from the SM3 value βSM3 ≈ 21◦ obtained from unitarity triangle (UT) analy-
ses. As we will see, ϕtot

Bd
will only slightly differ from β because of the experimental

constraint on SψKS
.

• In principle, sizable deviations can occur in SψKS
due to t′ penguin pollution, especially

for the case of large fourth-family mixing. We have evaluated these effects and found
that possible corrections can be as large as 10%, dominated by hadronic uncertainties.
So for our numerical analysis we are forced to take the formula of (4.35),

SψKS
= sin 2ϕtot

Bd
, (4.113)

and soften the experimental bounds on SψKS
appropriately.

6We assume that the asymmetry in the tree-level transition b̄ → c̄cs̄ is not significantly affected by NP.
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f φKs η′Ks

bcf3 −46 −26

bcf7 22 3.8

bcf9 23 3.5

bcf8G 1.4 0.86

Table 4.1.: Hadronic parameters at µ = mb taken from [193]. The parameters bufi can be obtained via
bufi = (|VubV ∗

us|/|VcbV ∗

cs|)bcfi.

Bd → φ(η′)KS: The theoretically rather clean asymmetries SφKS
and Sη′KS

are mea-
sured to be

SφKS
= 0.44± 0.17, Sη′KS

= 0.59± 0.07 . (4.114)

While SφKS
is found to be significantly smaller than the expected value of approximately

0.70 [196,200,201], Sη′KS
is fully consistent with the expectations although on the low side.

The parameters bufi and b
c
fi calculated in [193] are collected for the φKS and η′KS channels

in Table 4.1. As the effects in B → Xsγ are small, we follow [193] and neglect C7γ .
We note that within a very good approximation

Af ≈ Acf

[

1 +
∑

i

bcfiC
NP
i (MW )

]

= Acf

[

1 + rf
λ
(s)
t′

λ
(s)
t

]

, (4.115)

where

rφKS
= −0.248 Y0(xt′) + 0.004 X0(xt′) + 0.075 Z0(xt′)− 0.7 E ′

0(xt′) , (4.116)

rη′KS
= −0.106 Y0(xt′) + 0.034 X0(xt′) + 0.012 Z0(xt′)− 0.43 E ′

0(xt′) . (4.117)

Thus, the departure of SφKS
and Sη′KS

from SψKS
is governed by the common phase of

λ
(s)
t′ /λ

(s)
t with the effect being larger in the case of SφKS

. Denoting the final phase of Af by
ϕf , we find

Sf = −ηf sin(2(ϕtot
Bd

+ ϕf)), (4.118)

where the CP parity of the final state ηf = −1 for both channels considered here. For ϕf 6= 0
the departure from SψKS

in (4.35) can be obtained.
It is known that going beyond leading order in the calculations of the bf parameters,

one would introduce a potentially sizable strong phase. We will comment on this issue in
Section 5.1.5.

CP Asymmetries in Bs → J/ψφ

In the SM3, the decay Bs → J/ψφ is a theoretically very clean way to extract the angle
βs ≡ −Arg(Vts) defined in (4.27), via the relation

SSM3
ψφ = − sin 2βs . (4.119)

Including the fourth generation, the involved Bs mixing phase changes to

2ϕtot
Bs

= Arg(Ms
12) = 2Arg(Vts)− Arg(Ss) ≡ 2βs − θsS , (4.120)
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where θsS is defined in (4.14) and the CP asymmetry Sψφ reads

Sψφ = − sin 2ϕtot
Bs
, (4.121)

which has already been anticipated in (4.35).

Again, βs differs from its SM3 value βSM3
s ≈ −1◦ obtained from UT analyses. The full

angle ϕtot
Bs

is expected to be very different from βSM3
s , in order to reproduce the data on Sψφ

from CDF [202] and D0 [203], which are combined by HFAG [163] to

ϕtot
Bs

= −(0.39+0.18
−0.14)

[
−(1.18+0.14

−0.18)
]
. (4.122)

As we will see in Section 5.3, a big Sψφ will strongly correlate δ14 and δ24 as well as s14 and
s24.

4.2.5.4. ACP(b → sγ) in the SM4

The direct CP asymmetry in B → Xsγ decays ACP(b→ sγ) [204–206] is predicted to be tiny
in the SM3 but could be much larger in some of its extensions. Therefore ACP(b → sγ) is
an attractive quantity to study, which has been analyzed recently in detail in the context of
the flavor-blind MSSM (FBMSSM) [207] and supersymmetric flavor models [75]. As pointed
out in [75, 207], it is interesting to consider the direct CP asymmetry in question together
with the asymmetry SφKS

treated above.

If NP effects dominate over the SM3 contribution ASM
CP(b → sγ) ≃ −0.5%, the following

expression holds [205, 206],

ACP(b→ sγ) ≡ Γ(B → Xs̄γ)− Γ(B → Xsγ)

Γ(B → Xs̄γ) + Γ(B → Xsγ)

≃ −1.23 Im[C2C7γ]− 9.52 Im[C∗
8GC7γ] + 0.10 Im[C2C8G]

|C7γ|2
− 0.5 (in %) , (4.123)

where we assumed a cut for the photon energy at Eγ ≃ 1.8GeV (see [205, 206] for details).
In (4.123), the Wilson coefficients Ci are evaluated at the scale µeff as given in (4.83). The
Wilson coefficient C2 is to a very good approximation independent of the 4G parameters and
given by C2(µeff) ≈ 1.14. This treatment of QCD corrections is certainly an approximation
and a full NNLO analysis would be much more involved. Yet, at present a NNLO analysis
would clearly be premature.
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4.3. Lepton Flavor Violation

4.3.1. Preliminaries

The lepton sector is in many ways different from the quark sector. Until the beginning of
this century one could safely assume that neutrinos were massless and therefore transitions
between fermion families were forbidden in the SM. But since the discovery of neutrino
oscillations [30–32], we know that neutrinos do have masses and therefore lepton family
number is not longer a conserved quantum number. However, the SM predicts only tiny
branching ratios for lepton flavor violating (LFV) decays due to the small masses of the three
known neutrinos (less than 1 eV). This is in good agreement with the experimental side,
where no direct measurement of any lepton flavor violating process – except for neutrino
oscillations – has been made so far. Nonetheless, the upper bounds obtained from these
experiments provide valuable constraints on new physics such as the fourth generation,
where especially the heavy fourth neutrino could increase LFV processes considerably. In
this section we present the LFV observables which will be analyzed numerically in Section 5.4.
The measured upper bounds on these processes will also be given there in Table 5.11.

4.3.2. Dipole Transitions (ℓa → ℓbγ)

Effective Hamiltonian: The effective Hamiltonian relevant for the decays ℓa → ℓbγ
can be obtained from the elementary vertex (A.17)

Hℓa→ℓbγ
eff =i

γ′

la lb

=− GF√
2

e

8π2
λ(ℓaℓb)ν4

H ′
0(xν4) ℓ̄b [iσ

µνqνmℓa(1 + γ5)] ℓa , (4.124)

Branching Ratios: Having the effective Hamiltonian (4.124) at hand, it is a straight-
forward exercise to generalize the SM3 formulae [208] for the branching ratios

Br(µ→ eγ) =
3α

2π

∣
∣λ(µe)ν4

∣
∣
2
H ′

0(xν4)
2 , (4.125a)

Br(τ → eγ) =
3α

2π
Br(τ− → ντe

−ν̄e)
∣
∣λ(τe)ν4

∣
∣
2
H ′

0(xν4)
2 , (4.125b)

Br(τ → µγ) =
3α

2π
Br(τ− → ντµ

−ν̄µ)
∣
∣λ(τµ)ν4

∣
∣
2
H ′

0(xν4)
2 . (4.125c)

where the loop function H ′
0(x) is given in (B.4g) and the involved branching ratios of leptonic

τ decays are [197]

Br(τ− → ντe
−ν̄e) = (17.84± 0.05)% , (4.126a)

Br(τ− → ντµ
−ν̄µ) = (17.36± 0.05)% . (4.126b)
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In writing (4.125), we have neglected electroweak (EW) corrections and non-unitarity
corrections in the PMNS matrix that affect the leptonic decays and have been recently
discussed by Lacker and Menzel [209]. Similarly, we have neglected corrections ∼ O(m2

µ/m
2
τ ),

∼ O(m2
e/m

2
τ ) and ∼ O(m2

e/m
2
µ). These corrections amount to at most a few percent and

would only be necessary in the presence of very accurate experimental branching ratios.
The important virtue of formulae (4.125) is that they allow for a direct determination of

the ratios of the elements |Ue4|, |Uµ4| and |Uτ4|, independently of the massmν4 . In particular,
we have

Br(τ → µγ)

Br(µ→ eγ)
=

∣
∣
∣
∣

Uτ4
Ue4

∣
∣
∣
∣

2

Br(τ− → ντµ
−ν̄µ) , (4.127)

Br(τ → µγ)

Br(τ → eγ)
=

∣
∣
∣
∣

Uµ4
Ue4

∣
∣
∣
∣

2
Br(τ− → ντµ

−ν̄µ)

Br(τ− → ντe−ν̄e)
≈
∣
∣
∣
∣

Uµ4
Ue4

∣
∣
∣
∣

2

, (4.128)

Br(τ → eγ)

Br(µ→ eγ)
=

∣
∣
∣
∣

Uτ4
Uµ4

∣
∣
∣
∣

2

Br(τ− → ντe
−ν̄e) . (4.129)

This would provide very important information about the involved PMNS matrix elements
in the SM4 framework, once these processes have been measured.

4.3.3. Four-Lepton Transitions

4.3.3.1. The Decays τ−
→ ℓ−b ℓ

+
c
ℓ−b (τ−

→ e−µ+e− and τ−
→ µ−e+µ−)

The two decays τ− → e−µ+e− and τ− → µ−e+µ− are of ∆L = 2 type and strongly suppressed
in the SM.

Effective Hamiltonian: The effective Hamiltonians for the two decays are analogous
to those of ∆F = 2 processes. Taking the ∆F = 2 vertex (A.6), one obtains

Hτ→ℓbℓ̄cℓb
eff = i

ℓb

τ

ℓc

ℓb

=
G2
F

4π2
λ(τℓb)ν4

λ(ℓbℓc)ν4
S0(xν4) (ℓ̄bτ)V−A(ℓ̄bℓc)V−A , (4.130)

with the loop function S0(x) given in (B.1b).

Branching Ratios: The relevant branching ratios for the decays τ− → ℓ−b ℓ
+
c ℓ

−
b can be

obtained by comparing (4.130) to the effective Hamiltonian of the tree level decay τ− →
ντe

−ν̄e,

Hτ−→ντ e−ν̄e
eff =

GF√
2
(ν̄ττ)V−A(ēνe)V−A , (4.131)

that yields the decay rate

Γ(τ− → ντe
−ν̄e) =

G2
Fm

2
τ

192π3
. (4.132)
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So we find for τ → ℓbℓ̄cℓb

Br(τ → ℓbℓ̄cℓb) =
m5
τττ

192π3

(
G2
FM

2
W

4π2

)2
∣
∣λ(τℓb)ν4

λ(ℓbℓc)ν4

∣
∣
2
S0(xν4) , (4.133)

where ℓb 6= ℓc ∈ {µ, e}, and we have included a factor 1/2 to take into account the presence
of two identical fermions in the final state.

4.3.3.2. The Decays τ−
→ ℓ−b ℓ

+
c ℓ

−

c (τ−
→ µ−e+e− and τ−

→ e−µ+µ−)

The ∆L = 1 decays τ− → µ−e+e− and τ− → e−µ+µ− proceed basically in analogy to the
decay B → Xsℓ

+ℓ−, only an additional box contribution has to be taken into account (last
diagram in (4.134).

Effective Hamiltonian: In the absence of QCD corrections, the effective Hamiltonian
can be written as

Hτ→ℓbℓ̄cℓc
eff = i

ℓb

τ

ℓc

ℓc

+ i
Z, γ

ℓb

τ

ℓc

ℓc

+ i

τ ℓb

γ′

+ i

ℓb

τ

ℓc

ℓc

=− GF√
2
λ(τℓb)ν4

[

C
(τℓb)
7 Q(τℓb)

7 + C
(τℓb)
9 Q(τℓb)

9 + C
(τℓb)
10 Q(τℓb)

10

]

, (4.134)

with the three operators

Q(τℓb)
7 =

e

8π2
mτ ℓ̄bσ

αβ(1 + γ5)τ Fαβ , (4.135a)

Q(τℓb)
9 = (ℓ̄bτ)V−A(ℓ̄cℓc)V , (4.135b)

Q(τℓb)
10 = (ℓ̄bτ)V−A(ℓ̄cℓc)A . (4.135c)

By virtue of the general formulae for the Wilson coefficients in (A.25), one then obtains

C
(τℓb)
7 = −1

2
H ′

0(xν4) , (4.136a)

C̃
(τℓb)
9 = (

α

2π
)−1C9 =

1

s2W

(

Ȳ ℓc(xν4)−
λ
(ℓcℓc)
ν4

4
S0(xν4)

)

− 4Z̄(ν)(xν4) , (4.136b)

C̃
(τℓb)
10 = (

α

2π
)−1C10 = − 1

s2W

(

Ȳ ℓc(xν4)−
λ
(ℓcℓc)
ν4

4
S0(xν4)

)

. (4.136c)

where the generalized gauge-independent loop functions defined in (4.4) have been adapted
to the special case of ℓc in the fermion line and a neutrino in the loop:

Ȳ ℓc(xν4) = Y0(xν4) + λ(ℓcℓc)ν4
F νν̄(xν4 , xν4) , (4.137)

Z̄(ν)(xν4) = C0(xν4) +
1

4
H0(xν4) (4.138)

Here we neglected RGE running of α as well as operator mixing.
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Branching ratios: In the following, we will consider the decay τ− → µ−e+e−, but of
course the formulae for τ− → e−µ+µ− are easily obtained by just replacing e with µ and
vice versa. Introducing

ŝ =
(pℓ+c + pℓ−c )

2

m2
τ

, Rτµ(ŝ) =
d
dŝ
Γ(τ− → µ−ℓ+c ℓ

−
c )

Γ(τ− → µ−ν̄bντ )
, (4.139)

and neglecting mℓc compared to mτ , one finds for the differential decay rate Rττ (ŝ) [210]

Rτµ(ŝ) =
α2

4π2
(1− ŝ)2

[

(1 + 2ŝ)
(

|C̃τµ
9 |2 + |C̃τµ

10 |2
)

+4

(

1 +
2

ŝ

)

|Cτµ
7 |2 + 12Re(Cτµ

7 C̃τµ∗
9 )

]

. (4.140)

The branching ratio is then obtained by integrating over ŝ:

Br(τ− → µ−ℓ+c ℓ
−
c ) = Br(τ− → µ−ν̄µντ )

∫ 1

4m2
e/m

2
τ

Rτµ(ŝ) dŝ , (4.141)

We can perform the integral in (4.141) analytically, and finally arrive at

Br(τ− → µ−e+e−)

Br(τ− → µ−ν̄µντ )
=

α2

24π2

[

3
(

|C̃τµ
10 |2 + |C̃τµ

9 |2
)

(1− z)3(1 + z)

−8 |Cτµ
7 |2 (1− z)

(
8− z − z2

)
(4.142)

+24Re(Cτµ
7 C̃τµ∗

9 ) (1− z)3 − 48 |Cτµ
7 |2 log (z)

]

,

with z ≡ 4m2
e

m2
τ
.

4.3.3.3. The Decays ℓa → ℓ−b ℓ
+

b ℓ
−

b (µ−
→e−e+e−, τ−

→µ−µ+µ−, τ−
→e−e+e−)

The third distinctive type of four-lepton transitions is represented by the three decays µ− →
e−e+e−, τ− → µ−µ+µ− and τ− → e−e+e−, in which the three outgoing leptons are of equal
flavor.

Effective Hamiltonian:

Hℓa→ℓbℓ̄bℓb
eff = i

ℓb

ℓa

ℓb

ℓb

+ i
Z, γ

ℓb

ℓa

ℓb

ℓb

+ i
γ′

ℓb

ℓa

ℓb

ℓb

=− GF√
2
λ(ℓaℓb)ν4

[

C
(ℓaℓb)
7 Q(ℓaℓb)

7 + C
(ℓaℓb)
9 Q(ℓaℓb)

9 + C
(ℓaℓb)
10 Q(ℓaℓb)

10

]

, (4.143)
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with the three operators Q(ℓaℓb)
7 ,Q(ℓaℓb)

9 ,Q(ℓaℓb)
10 given in (4.135), one obtains

C
(ℓaℓb)
7 = −H ′

0(xν4) , (4.144a)

C̃
(ℓaℓb)
9 = (

α

2π
)−1C9 =

2

s2W
Ȳ ℓc(xν4)− 8Z̄(ν)(xν4) , (4.144b)

C̃
(ℓaℓb)
10 = (

α

2π
)−1C10 = − 2

s2W
Ȳ ℓc(xν4) . (4.144c)

The functions H ′
0, Ȳ

ℓc and Z̄(ν) are defined in (B.4g) and (4.4).

Branching Ratios: Inserting these loop functions into the formulae of [211] which have
been corrected in [212, 213], one finds for the branching ratio

Br(ℓ−a → ℓ−b ℓ
+
b ℓ

−
b ) =

Γ(ℓ−a → ℓ−b ℓ
+
b ℓ

−
b )

Γ(ℓ−a → ℓ−b ν̄ℓbνℓa)

=
α2

π2

∣
∣λ(ℓaℓb)ν4

∣
∣
2
Br(ℓ−a → ℓ−b ν̄ℓbνℓa) (4.145)

×
[

3Z̄(ν)(xν4)
2 + 3 Z̄(ν)(xν4)H

′
0(xν4) +H ′

0(xν4)
2

(

log
mℓa

mℓb

− 11

8

)

+
1

2s4W
Ȳ ℓb(xν4)

2 − 2

s2W
Z̄(ν)(xν4)Ȳ

ℓb(xν4)−
1

s2W
H ′

0(xν4)Ȳ
ℓb(xν4)

]

.

4.3.4. Semi-Leptonic τ Decays

Effective Hamiltonian for τ−
→ µ−π0:

Hτ−→µ−π0

eff = i

µ

τ

d

d

+ i

µ

τ

u

u

+ i Z, γ

µ

τ

d, u

d, u

=
GF√
2

α

2πs2W
λτµν4

(
X̄u(xν4)(ūu)V−A − Ȳ d(xν4)(d̄d)V−A

)
⊗ (µ̄τ)V−A , (4.146)

with the functions defined in (4.4)

X̄d(xν4) = X0(xν4) +
∑

j=t,t′

λ
(dd)
j F (−)(xν4 , xj) , (4.147)

Ȳ u(xν4) = Y0(xν4)− λ
(uu)
b′ F (+)(xν4 , xb′) . (4.148)
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Branching Ratios: With the loop functions defined above and the pion decay constant
Fπ ≃ 131MeV defined through

〈0|(ūu)V−A|π0〉 = −〈0|(d̄d)V−A|π0〉 = Fπp
µ
π√
2
, (4.149)

and neglecting suppressed pion and muon mass contributions of O(m2
π/m

2
τ ) and O(m2

µ/m
2
τ ),

we find

Br(τ → µπ) =
G2
Fα

2F 2
πm

3
τ ττ

128π3s4W

∣
∣λ(τµ)ν4

∣
∣
2 (
X̄u(xν4) + Ȳ d(xν4)

)2
, (4.150)

with ττ and mτ being the lifetime and mass of the decaying τ .
The generalization of (4.150) to the decays τ → µη and τ → µη′ is in principle quite

straightforward, although slightly obfuscated by mixing in the η − η′ system [210].
Due to the formulation of a new mixing scheme [214, 215], the understanding of η − η′

mixing has improved in the last decade. It provides two angles to relate the physical states
(η, η′) to the octet and singlet states (η8, η0), as

|η〉 = cos θ8|η8〉 − sin θ0|η0〉 , |η′〉 = sin θ8|η8〉+ cos θ0|η0〉 , (4.151)

with

|η8〉 =
1√
6
(|ūu〉+ |d̄d〉 − 2|s̄s〉) , |η0〉 =

1√
3
(|ūu〉+ |d̄d〉+ |s̄s〉) . (4.152)

In this mixing scheme, four independent decay constants are involved. Each of the two
physical mesons (P = η, η′), in fact, has both octet (a = 8) and singlet (a = 0) components,
defined by

〈0|(q̄λ
a

2
q)V−A|P (p)〉 =

F a
Ppµ√
2
, (4.153)

where the SU(3) generators λa satisfy the normalization convention Tr[λaλb] = 2δab. They
are conveniently parameterized [214] in terms of the two mixing angles (θ8, θ0) and two basic
decay constants (F8, F0), as

(
F 8
η F 0

η

F 8
η′ F

0
η′

)

=

(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)

. (4.154)

Working in this mixing scheme and generalizing the expression for the τ → µπ branching
ratio in (4.150), one obtains

Br(τ → µη) =
G2
Fα

2F 2
πm

3
τ ττ

128π3 sin4 θW

∣
∣
∣λ

(τµ)
4

∣
∣
∣

2
(

cos θ8√
3

F8

Fπ
(X̄u + Ȳ d)−

√

2

3
sin θ0

F0

Fπ
(X̄u − 2 Ȳ d)

)2

,

(4.155a)

Br(τ → µη′) =
G2
Fα

2F 2
πm

3
τττ

128π3 sin4 θW

∣
∣
∣λ

(τµ)
4

∣
∣
∣

2
(

sin θ8√
3

F8

Fπ
(X̄u + Ȳ d) +

√

2

3
cos θ0

F0

Fπ
(X̄u − 2 Ȳ d)

)2

,

(4.155b)

where the mixing is described in terms of octet and singlet decay constants F8, F0 and two
mixing angles θ8, θ0 [214, 216–218]. Numerical input values are collected in Table 5.1.
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4.3.5. Lepton-Flavor Violating B and K Decays

4.3.5.1. KL,S → µe and KL,S → π0µe

The rare decay KL → µe has been the object of intensive investigation due to its large effects
in the Pati-Salam model [219]. In the SM3 it can proceed through box diagrams, but due to
nearly degenerate neutrino masses, its calculated branching ratio is too tiny to be measured.

Effective Hamiltonian: Also in the SM4, KL,S → µe proceeds through box diagrams,
yielding the following effective Hamiltonian:

HKL,S→µe
eff = i

s

d

µ

e

+ i

s

d

e

µ

=
G2
FM

2
W

8π2

∑

i=c,t,t′

λ
(K)
i S0(xi, xν4)

×
[
λ(µe)ν4 (s̄d)V−A(ēµ)V−A + λ(µe)∗ν4 (s̄d)V−A(µ̄e)V−A

]
+ h.c. , (4.156)

where the loop function S0 is given in Appendix B.

Branching Ratios: Having the effective Hamiltonian (4.156) at hand, the branching
ratio can be calculated with the help of formulae (XI.44) and (XXV.1) of [152]:

Br(KL → µe) = Br(KL → µ+e−) + Br(KL → µ−e+)

=
G2
FM

4
W

8π4
Br(K+→µ+ν)

τ(KL)

τ(K+)

1

|Vus|2
∣
∣λ(µe)ν4

∣
∣
2

×
(
∑

i=c,t,t′

Re(λ
(K)
i )S0(xi, xν4)

)2

, (4.157)

where the relevant measured quantities are given by [197, 220, 221]

Br(K+→µ+ν) = (63.44± 0.14)% ,
τ(KL)

τ(K+)
= 4.117± 0.019 , |Vus| = 0.225± 0.001 . (4.158)

Note that in general the determination of |Vus| from a SM3 fit of semileptonic K decays
is not longer valid in the SM4. However, since a reanalysis of this fit in the context of the
SM4 is clearly beyond the scope of the work, we use the above value for simplicity.
The branching ratio Br(KS → µe) can be obtained from (4.157) by replacing [197]

τ(KL)

τ(K+)
→ τ(KS)

τ(K+)
= (7.229± 0.014) · 10−3 , Re(λ

(K)
i ) → Im(λ

(K)
i ) . (4.159)

Due to the much shorter lifetime τ(KS) ≪ τ(KL), we expect the branching ratio Br(KS →
µe) to be two orders of magnitude smaller than Br(KL → µe), unless Im(λ

(K)
i ) ≫ Re(λ

(K)
i ).
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The decay KL → π0µe is again governed by the effective Hamiltonian in (4.156). However,
the calculation of the branching ratio is done analogous to KL → π0νν̄ [128]. Removing the
overall factor 3 in Br(KL → π0νν̄), one finds

Br(KL → π0µe) ≡ Br(KL → π0µ+e−) + Br(KL → π0µ−e+)

=
G2
FM

4
W

8π4
Br(K+→π0µ+ν)

τ(KL)

τ(K+)

1

|Vus|2
∣
∣λ(µe)ν4

∣
∣
2

×
(
∑

i=c,t,t′

Im(λ
(K)
i )S0(xi, xν4)

)2

, (4.160)

where the semi-leptonic branching ratio of K+ → π0µ+ν is given by [197]

Br(K+ → π0µ+ν) = (3.32± 0.06)% . (4.161)

Note that this time Im(λ
(K)
i ) instead of Re(λ

(K)
i ) enters, due to the sign difference between

〈π0|(d̄s)V−A|K̄0〉 = −〈π0|(s̄d)V−A|K0〉 (4.162a)

and
〈0|(d̄s)V−A|K̄0〉 = +〈0|(s̄d)V−A|K0〉 . (4.162b)

The branching ratio for KS → π0µe can be obtained from (4.160) by replacing

τ(KL)

τ(K+)
→ τ(KS)

τ(K+)
, Im(λ

(K)
i ) → Re(λ

(K)
i ) . (4.163)

4.3.5.2. Bq → ℓcℓd

The decays of neutral B mesons into two different charged leptons proceed basically in
analogy to the KL,S decays discussed above.

Effective Hamiltonian: The effective Hamiltonian relevant for the decay Bq → ℓcℓd,
where q = d, s and (ℓc, ℓd) = (µ, e), (τ, µ), (τ, e) is similar to (4.156)

HBq→ℓcℓd
eff =i

b

s

ℓc

ℓd

+ i

b

s

ℓd

ℓc

(4.164a)

=
G2
FM

2
W

8π2

∑

i=c,t,t′

λ
(Bq)
i S0(xi, xν4)

×
[
λ(ℓcℓd)ν4

(b̄q)V−A(ℓ̄dℓc)V−A + λ(ℓcℓd)∗ν4
(b̄q)V−A(ℓ̄cℓd)V−A

]
. (4.164b)

In contrast to the above section where the decaying mesons KL,S were mixtures of flavor
eigenstates, now the decaying Bq = b̄q mesons are flavor eigenstates. The effective Hamilto-
nian for the respective anti-particles B̄q = q̄b is thus given by taking the hermitian conjugate,

HB̄q→ℓcℓd
eff =

(

HBq→ℓcℓd
eff

)∗
. (4.164c)
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Branching Ratios: The branching ratios of Bq mesons to two different charged leptons
are calculated analogously to the corresponding KL,S decays in the previous section. Taking
into account that now the decaying mesons are flavor eigenstates, the branching ratios obtain
a slightly different form:

Br(Bd → ℓcℓd) = Br(Bd → ℓcℓd) = Br(Bd → ℓ−c ℓ
+
d ) + Br(Bd → ℓ+c ℓ

−
d ) =

=
G2
FM

4
W

16π4|Vub|2
τ(Bd)

τ(B+)
Br(B+ → ℓ+c νℓc)

∣
∣λ(ℓcℓd)ν4

∣
∣
2

×
∣
∣
∣
∣
∣

∑

i=c,t,t′

λ
(d)
i S0(xi, xν4)

∣
∣
∣
∣
∣

2

(4.165a)

Br(Bs → ℓcℓd) =
G2
FM

4
W

16π4|Vub|2
τ(Bs)

τ(B+)

MBs

MBd

F 2
Bs

F 2
Bd

Br(B+ → ℓ+c νℓc)
∣
∣λ(ℓcℓd)ν4

∣
∣
2

×
∣
∣
∣
∣
∣

∑

i=c,t,t′

λ
(s)
i S0(xi, xν4)

∣
∣
∣
∣
∣

2

, (4.165b)

where ℓc and ℓd denote the two leptons in the final state with mℓc > mℓd. Along the lines
of Br(KL → µe), we have normalized the branching ratios of Bd,s by the corresponding
branching ratios of B+ leptonic decays, which are not very well measured yet [163,222–224]

Br(B+ → τ+ντ ) = (1.67± 0.39) · 10−4 , (4.166a)

Br(B+ → µ+νµ) < 6.6 · 10−6 (90% C.L.) . (4.166b)

As soon as these measurements improve, this normalization will become very helpful. For the
time being, we shall use the SM predictions for Br(B+ → µ+νµ) and Br(B+ → τ+ντ ) [75,225]
for our numerical analysis

Br(B+ → τ+ντ ) = (0.8± 0.12) · 10−4 , (4.167a)

Br(B+ → µ+νµ) = (3.8± 1.1) · 10−7 . (4.167b)

The first value is on the lower side of experimental result, but still consistent within errors.

4.3.6. µ− e Conversion in Nuclei

Besides the decays µ→ eγ and µ− → e−e+e−, the rate of µ− e conversion in nuclei provides
the strongest bounds on mixing in the lepton sector. In particular, the experimental upper
bound on µ− e conversion in 48

22Ti is given by [226]

R(µTi → eTi) < 4.3 · 10−12 . (4.168)

In the near future, the J-PARC experiment PRISM/PRIME should reach a sensitivity of
O(10−18) [227].
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Conversion Rate: In analogy to [210], we use the general formula (58) of [211] to find
the approximate conversion rate

Γ(µX → eX) =
G2
F

8π4
α5Z

4
eff

Z
|F (q2)|2m5

µ

∣
∣λ(µe)ν4

∣
∣
2

(4.169)

×
[

Z
(
4Z̄(ν)(xν4) +H ′

0(xν4)
)
− (2Z +N)

X̄u(xν4)

s2W
+ (Z + 2N)

Ȳ d(xν4)

s2W

]2

,

where X̄u and Ȳ d are defined in (4.4), and H ′
0 and Z̄(ν) are given in (B.4g) and (4.4d).

Z and N denote the proton and neutron number of the nucleus, Zeff has been determined
in [228–231] and F (q2) is the nucleon form factor. In the case of X = 48

22Ti, one finds
Zeff = 17.6 and F (q2 ≃ −m2

µ) ≃ 0.54 [232]. The µ − e conversion rate R(µX → eX) is then
given by

R(µX → eX) =
Γ(µX → eX)

ΓX
capture

, (4.170)

with ΓX
capture being the µ capture rate of the element X. For titanium the experimental value

is given by [233]

ΓTi
capture = (2.590± 0.012) · 106 s−1 . (4.171)

In this work, we will restrict our analysis to µ− e conversion in 48
22Ti, for which the most

stringent experimental upper bound exists and where the approximations entering (4.169)
work very well. Further details can be found in [211, 232, 234].

4.3.7. Anomalous Magnetic Moment of the Muon

The anomalous magnetic moment of the muon aµ = (g − 2)µ/2 is an excellent device for
testing physics beyond the standard model. On the experimental side, it has been measured
very precisely by the E821 experiment [235]

aexpµ = (11659208.0± 6.3) · 10−10 . (4.172)

This is to be compared to the SM prediction [236]

aSM3
µ = aQED

µ + aewµ + ahadµ = (11659180.4± 5.1) · 10−10 , (4.173)

which is 3.4σ below the experimental value. While the QED and electroweak contributions
to aSM3

µ can be calculated with high accuracy [237–239], the theoretical uncertainty mainly
arises from the hadronic part, which has been calculated in [236, 240–242].

Although (g − 2)µ is not a lepton flavor violation observable in the strict sense, it shares
some important properties with those. Especially its high sensitivity to intermediate new
heavy particles makes it a very good test for new physics. Therefore studies of (g − 2)µ
have been performed in all major NP scenarios, for instance in the MSSM [243,244] or Little
Higgs [210].
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ν4

W± W±

γ

µ µ

Figure 4.1.: Diagram contributing to (g − 2)µ in the SM4.

Calculation of aµ: Starting from the muon-photon vertex function Γν(p′, p)

µ̄(p′)Γν(p′, p)µ(p) = µ̄(p′)
[
γνFV (q

2) + (p+ p′)νFM(q2)
]
µ(p) , (4.174)

the anomalous magnetic moment of the muon aµ can be extracted as

aµ = −2mFM(0) . (4.175)

For the study of new physics contributions, we split it into a standard model (SM3) and
NP (SM4) part,

aµ = aSM3
µ + aSM4

µ . (4.176)

The new contribution aSM4
µ is determined by the diagram shown in Figure 4.1. Following

[210], the calculation of aSM4
µ yields

(aµ)SM4 = −
√
2GF

8π2
m2
µ λ

µµ
ν4
L̃2(xν4) , (4.177)

where the function L̃2(x) is given in Appendix B.
Two comments are in order at this point:

1. Since L̃2(xν4) > 0, the SM4 contribution tends to decrease aµ, and therefore pushes it
away from the experimental value.

2. After imposing the constraints from lepton universality and radiative decays, it will
turn out that the SM4 contribution to aµ is negligible compared to the theoretical
uncertainties, and therefore the abovementioned negative effect does not play a role
for our phenomenological analysis.





5. Numerical Analysis

5.1. Numerical Analysis of the Quark Sector

5.1.1. Preliminaries

For our numerical analysis, we construct a large number of random points in parameter space
that are evenly distributed in all the mixing angles and phases. We keep only those points
that satisfy all tree level CKM constraints at 2σ (it is not possible to bring |Vcs| = 1.02±0.04
within 1σ of its central value) and the experimental constraints on the ∆F = 2 observables,

εK , ∆MK , ∆Mq , ∆Md/∆Ms , (5.1)

as well as the CP asymmetry SψKs
within 1σ and cosϕtot

Bd
> 0.

In order to compare our results to the experimental values, we calculate the propagated
error from the corresponding hadronic parameters using Gaussian error propagation. We ac-
cept a point if it is at 1σ within its theoretical uncertainty compatible with the experimental
value and its respective uncertainty.
One exception is the mass difference ∆MK , which is very precisely measured but subject

to LD contributions that are not well understood at present. Due to these uncertainties
discussed at the end of Section 4.2.1.1, we can only demand 0.7 ≤ ∆MSD

K /∆M exp
K ≤ 1.3.

Note that the contributions from the 4G quarks to the SD part of ∆MK can exceed +30%.
In this context we remark that the SM3 value of |εK | also appears to be lower than the
data [129]. However, in this case, LD contributions are estimated to be small [129,131], and
the cure of this anomaly can only come either from NP, or from significant changes in the
input parameters like |Vcb| and |Vub|.
In addition to the ∆F = 2 observables, we impose the following constraints from ∆F = 1

observables:

Br(B → Xsℓ
+ℓ−)low.−int. , Br(B → Xsγ) , Br(K+ → π+νν̄) , (5.2)

each at 4σ, not taking into account the theoretical errors. We note that a constraint comes
also from the upper bound on Br(KL → µ+µ−)SD in (4.53).
Since ∆MK poses no stringent bound on SK , and SK is correlated with XK , YK etc., we

chose to impose the experimental exclusion limits on various Kaon decays. For consistency
reasons, as well as to eliminate highly tuned points, we also constrain Bs,d → µ+µ−.
Obviously, the chance of a point to fulfil all constraints is much larger for small mixing

angles than for larger ones. We therefore have not plotted all of the roughly 10 million
points that we found for small mixing angles, but tried to distribute them as uniform as
possible. For this reason, we thinned out densely populated parameter regions and finally
took 2 million out of the valid points.
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parameter value parameter value

sin2 θW 0.23122(15) [103] GF 1.16637(1) · 10−5GeV−2 [103]
α 1/137.035999084(51)[103] MW 80.425(38) GeV [103]

B̂K 0.725± 0.026 [130] me 0.5110 MeV [103]
FBd

(192.8± 9.9) MeV [130] mµ 105.66 MeV [103]
FBs

(238.8± 9.5) MeV [130] mτ 1.77684(17) GeV [103]
FK (155.8± 1.7) MeV [130] ττ 290.6(1.0) · 10−3 ps [103]
Fπ 130± 5 MeV [103] mc(mc) (1.268± 0.009) GeV [130, 245]

B̂Bd
1.26± 0.11 [130] mt(mt) (163.5± 1.7) GeV [246]

B̂Bs
1.33± 0.06 [130] MBd

5.2794(5) GeV [103]
√

B̂Bd
FBd

(216± 15) MeV [130] MBs
5.3675(18) GeV [103]

√

B̂Bs
FBs

(275± 13) MeV [130] ∆Md (0.507± 0.005) ps−1 [201]

ξ 1.243± 0.028 [130] ∆Ms (17.77± 0.12) ps−1 [201]
ηcc 1.51± 0.24 [247] τ(Bd) (1.525± 0.009)ps [103]
ηtt 0.5765± 0.0065 [138] τ(Bs) (1.425± 0.041)ps [103]
ηct 0.47± 0.04 [248] τ(B+) 1.638(11) ps [103]
ηB 0.551± 0.007 [138, 249] ∆MK (5.292± 0.009) · 10−3ps−1 [103]
F8/Fπ 1.28 (ChPT) κε 0.92± 0.02 [129]
F0/Fπ 1.18(4) |εK| (2.228± 0.011) · 10−3 [103]
θ8 −22.2(1.8)◦ SψKS

0.672± 0.024 [103]
θ0 −8.7(2.1)◦ [250]

Table 5.1.: Values of the input parameters used in our analysis. The tree level measurements of VCKM can
be found in Table 2.1

We would like to stress that (even without this procedure) the point density in our plots
must not be understood as a probability density. The main information of the various corre-
lation plots is contained in the enveloping curve for these points [251], without any preference
for different points within this region. In order to obtain such enveloping curves, we have
developed an algorithm which identifies the outermost corners of a given set of points.1 By
connecting the corners with a smooth curve, we are able to display correlations between the
observables more clearly. We have performed this procedure for the most important corre-
lations which are shown in Figs. 5.4, 5.9 and 5.10, as well as for the corresponding diagrams
in Sec. 5.1.8.
In presenting the results of the global analysis, it will be useful to use a special color

coding, in order to emphasize some aspects of the anatomy presented in the next section
and to stress certain points that we found in the process of our numerical analysis:

• The large black point represents the SM3.

• Light blue and dark blue points stand for the results of our global analysis of the SM4

1This is highly nontrivial due to the large number of points and the possibility of concave enveloping
polygons.
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BS1 (yellow) BS2 (green) BS3 (red)

Sψφ 0.04± 0.01 0.04± 0.01 ≥ 0.4
Br(Bs → µ+µ−) (2± 0.2) · 10−9 (3.2± 0.2) · 10−9 ≥ 6 · 10−9

Table 5.2.: Three scenarios for Sψφ and Br(Bs → µ+µ−).

Figure 5.1.: The arguments θiS of the functions Si plotted against the absolute values |Si| for i = K (left
panel), i = d (center panel) and i = s (right panel).

with the following distinction: light blue stands for Br(KL → π0νν̄) > 2 · 10−10 and
dark blue for Br(KL → π0νν̄) ≤ 2 · 10−10. Note that the regions with light and dark
blue points are not always exclusive but that the dark blue points are plotted above
the light blue ones.

• The yellow, green and red colors represent the three scenarios for Sψφ and Br(Bs →
µ+µ−) that are shown in Table 5.2 and related to Step 2 of the anatomy.

5.1.2. Violation of Universality

Imposing the existing constraints from tree level determinations of the CKM matrix, elec-
troweak precision observables and the existing data on the FCNC and CP violation observ-
ables, it is possible to significantly constrain the allowed ranges for the magnitudes and the
phases of the master functions Fi introduced in Section 4.1.2.2. We recall that in the SM3,
the master functions are real and independent of the meson system considered.
In Fig. 5.1 we show the allowed ranges in the planes (θiS, |Si|) for i = K, d, s. The flavor-

universal SM3 value of |Si| = S0(xt) is indicated by a black dot. In Fig. 5.2, a similar
analysis is done for the functions Xi. We observe that the flavor universality in question is
significantly violated in a hierarchical manner:

• Concerning |Si|, the largest effects are found for |SK |, followed by |Sd|, and with the
smallest effects found for |Ss|. This hierarchy is familiar from the LHT model and

reflects the factor 1/λ
(i)
t in the definition of Si with |λ(K)

t | ≪ |λ(d)t | 6 |λ(s)t |, as well as
the fact that SK is not as directly constrained through εK as Sd is through SψKs

and
∆Md. In addition, as mentioned before, ∆MK only poses a mild constraint.

• The departures of θiS from zero are again largest in theK system. The strong preference
for θKS < 0 is related — as seen through (4.26) — to the εK-anomaly in the SM3 [129],
whose solution favors ϕK > β̄ − β̄s.
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Figure 5.2.: The arguments θiX of the functions Xi plotted against the absolute values |Xi| for i = K (left
panel), i = d (center panel) and i = s (right panel).

• The phase θdS is already rather constrained through SψKS
, but a preference for θdS > 0 is

clearly visible. This reflects the fact that for central values of |Vub|, that are dominated
by inclusive decays, the phase ϕtot

Bd
is required to be smaller than β̄, in order to fit SψKS

(see (4.112)).

• θsS is much less constrained than θdS, as the CP violation in the Bs system is experi-
mentally basically unknown. The Sψφ anomaly at Tevatron, corresponding to the red
points in Fig. 5.1, requires θsS > 0, as explicitly seen in (4.120) and (4.35) [129, 252].

• Even for no effects in Sψφ and Br(Bs → µ+µ−) (green points) the SM4 still allows for
large effects in the kaon system.

Similar hierarchies in the violation of universality are observed in the case of the functions
Xi, with the effects in Xs being smallest, not only in the magnitude, but also in its phase.

5.1.3. Correlations within the K System

KL → µ+µ−

We begin our analysis of rare K decays with the SD contribution to KL → µ+µ−, on which
the bound is given in (4.53). It turns out that in the SM4 this bound can be strongly
violated, and imposing it has an impact on the size of possible enhancements in other rare
K decays. In order to see this transparently, let us define

TY ≡ Br(KL → µ+µ−)SD = 2.08 · 10−9

(

Reλ
(K)
c

|Vus|
Pc(YK) +

Re(λ
(K)
t YK)

|Vus|5

)2

, (5.3a)

TX ≡ Br(K+→π+νν̄)− κ+

κL
Br(KL→π0νν̄) = κ+

(

Reλ
(K)
c

|Vus|
Pc(X) +

Re(λ
(K)
t XK)

|Vus|5

)2

,

(5.3b)

with TX entering the branching ratio Br(K+ → π+νν̄) in (4.67a). In Fig. 5.3, we show TX
as a function of TY and find a strong correlation between these two quantities which could
be anticipated on the basis of the analytic expressions for TX and TY . As TY is constrained
directly from above through (4.53), we obtain also an upper limit on TX . Throughout our
numerical analysis, we impose this bound.
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Figure 5.3.: TX as a function of TY , as defined in (5.3). The vertical dashed red line represents the bound
(4.53).

K+
→ π+νν̄ and KL → π0νν̄

In Fig. 5.4, we show Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄). The black point shows
the central SM3 values of the branching ratios in question, and the shaded region corresponds
to the experimental 1σ range for Br(K+ → π+νν̄), with its central value indicated by the
light vertical dashed line. Unless indicated otherwise, the meaning of dashed lines and shaded
areas will be the same as described here throughout our analysis.
We observe that both branching ratios can be enhanced relative to the SM3 values in a

spectacular manner. This is especially the case for Br(KL → π0νν̄), which can reach values
as high as 10−9, that is by a factor of 40 larger than found in the SM3. Br(K+ → π+νν̄) can
be by a factor of 4 larger than in the SM3. We note that the Grossman-Nir (GN) [253] bound
on Br(KL → π0νν̄) can be saturated for all values of Br(K+ → π+νν̄) shown in the plot. We
also observe that large enhancements of Br(KL → π0νν̄) imply necessarily enhancements of
Br(K+ → π+νν̄). The converse is obviously not true, but for Br(K+ → π+νν̄) > 1.7 · 10−10

the Br(KL → π0νν̄) is either below 10−10 or close to the GN bound and larger than 6 ·10−10.
For an earlier analysis of K → πνν̄, where large effects of 4G quarks can be found, see [45].
The pattern seen in Fig. 5.4 can be understood as follows. We distinguish two different

branches in which enhancements of Br(K+ → π+νν̄) are possible: The lower branch, on
which Br(KL → π0νν̄) does not depart by much from the SM3 values but Br(K+ → π+νν̄)
can be strongly enhanced, corresponds to the range of parameters for which the term TX in
(4.67a) dominates Br(K+ → π+νν̄). But as we have seen above, TX is efficiently constrained
by the bound on Br(KL → µ+µ−)SD, and consequently a stringent upper bound is put on
Br(K+ → π+νν̄) on this branch 2. The upper branch, on which both K → πνν̄ branching
ratios can be strongly enhanced, corresponds to the region of parameters for which TX is

2The fact that the bound on Br(KL → µ+µ−)SD can have sizable impact on Br(K+ → π+νν̄) has already
been pointed out in [188]. See also [189].
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Figure 5.4.: Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄). The dotted line corresponds to the
model-independent GN bound.

subdominant and the first term in (4.67a) dominates Br(K+ → π+νν̄). Comparing (4.67a)
and (4.67b), we observe in this case a very strong correlation between Br(KL → π0νν̄)SD
and Br(K+ → π+νν̄): their ratio is simply given by κL/κ+ ≈ 4.3 which is precisely the GN
bound.
It is evident from this discussion that the upper branch, in contrast to the lower branch, is

not affected by the bound on Br(KL → µ+µ−). In order to see how the latter bound affects
other observables, we divide the points in Fig. 5.4 in two groups, with the ones corresponding
to Br(KL → π0νν̄) > 2 · 10−10 represented by light blue points.
In spite of the interesting pattern of deviations from the SM3 seen in Fig. 5.4, we conclude

that on the basis of the present constraints the predictive power of the SM4 is limited, except
that spectacular deviations from the SM3 are definitely possible, but suppressions cannot be
excluded. We also note that even for large values of Sψφ and Br(Bs → µ+µ−), represented
by red points, large NP effects in both branching ratios are possible. In Fig. 5.5, we look
closer at the latter feature. A large enhancement of both branching ratios is clearly possible
as already seen in Fig. 5.4. Moreover, these plots look very different from those found in the
LHT and RSc models [70–74].
In [254] the impact of εK on the correlation of Br(KL → π0νν̄) and Br(K+ → π+νν̄)

was studied. It was argued that in the case of correlated phases in the NP contributions
to ∆F = 2 and ∆F = 1 processes one naturally gets the observed two branched structure
of the correlation. However even if this assumption is relaxed, the presence of additive NP
contributions to εK implies

θXK 6= β̄ − β̄s ±
π

2
, (5.4)

and consequently the upper branch never reaches the GN bound. In the SM4 also Imλ
(K)
c is
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Figure 5.5.: Br(K+ → π+νν̄) (left panel) and Br(KL → π0νν̄) (right panel) as functions of the CP
asymmetry Sψφ.

Figure 5.6.: The SD contribution to Br(KL → µ+µ−) as a function of Br(K+ → π+νν̄).

affected and |Imλ(K)
c | ≫

(

|Imλ(K)
c |
)

SM
can compensate for large effects introduced through

changes in λ
(K)
t and through λ

(K)
t′ . Effectively the SM4 is able to maximally violate the

assumption of correlated new phases in εK and K → πνν̄ and the GN bound can be reached.

The effects of |Imλ(K)
c | ≫

(

|Imλ(K)
c |
)

SM
on Br(KL → π0νν̄) can be neglected, which is

evident from the structure of (4.67a) and (4.67b).

KL → µ+µ− and K+
→ π+νν̄

In order to understand still better the structure of NP effects in Fig. 5.4, we show in Fig. 5.6
the correlation between Br(KL → µ+µ−)SD and Br(K+ → π+νν̄). We observe that most
points cluster around two branches corresponding to the two branches in Fig. 5.4. On one
of them Br(KL → µ+µ−)SD is suppressed relative to the SM3 value while Br(K+ → π+νν̄)
can be large. On the second branch Br(KL → µ+µ−)SD can reach the upper limit at which
point Br(K+ → π+νν̄) is most likely in the ballpark of the central experimental value. Still,
as seen in Fig. 5.6, other combinations of the values of both branching ratios cannot be
excluded at present.
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Figure 5.7.: Br(KL → π0e+e−) as a function of Br(KL → π0µ+µ−).

Figure 5.8.: Br(KL → π0e+e−)+ as functions of Br(KL → π0νν̄) (left panel), Br(KL → π0µ+µ−)+ as
functions of Br(KL → π0νν̄) (right panel).

KL → π0e+e− vs. KL → π0µ+µ−

In Fig. 5.7, we show the correlation between Br(KL → π0e+e−) and Br(KL → π0µ+µ−), also
familiar from the LHT model [71]. We show only the “+” solution with the SM3 values given
in (4.93a) and (4.93b). As expected, the allowed enhancements are not as pronounced as in
the case of KL → π0νν̄. However, they are still much larger than in the LHT model: one
order of magnitude for both branching ratios with slightly larger effects for KL → π0µ+µ−.

KL → π0ℓ+ℓ− vs. KL → π0νν̄

In Fig. 5.8, we show a correlation between Br(KL → π0ℓ+ℓ−) and Br(KL → π0νν̄) that has
also been found in the LHT and RSc models [70–74]. The enhancement of one of the branch-
ing ratios implies automatically the enhancement of the other. We show only the results for
Br(KL → π0νν̄) 6 2 · 10−10, as the extrapolation to higher values is straightforward. The
main message from this plot is that the enhancement of Br(KL → π0νν̄) can be much larger
than the one of Br(KL → π0ℓ+ℓ−), as already anticipated on the basis of analytic formulae.
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Figure 5.9.: Br(Bd → µ+µ−) as a function of Br(Bs → µ+µ−). The straight line depicts the “Golden
Relation” of CMFV models as given in (4.59) with r = 1.

5.1.4. Correlations Involving the B System

Bs,d → µ+µ−

In Fig. 5.9, we show Br(Bd → µ+µ−) as a function of Br(Bs → µ+µ−). The straight line
in this plot represents the “Golden Relation” of CMFV models given in (4.59) with r = 1.
We observe very strong departures from CMFV. We also observe that Br(Bd → µ+µ−) can
be as large as 8 · 10−10 and Br(Bs → µ+µ−) as large as 1 · 10−8. The striking message from
Fig. 5.9, reflecting the non-CMFV character of NP contributions, is that large enhancement
of Br(Bs → µ+µ−) implies SM3-like values of Br(Bd → µ+µ−) and vice-versa.

In Fig. 5.10, we show Br(Bd → µ+µ−) and Br(Bs → µ+µ−) as functions of Sψφ. The
disparity between these plots shows the non-CMFV character of the NP contributions in the
SM4. We observe a definite correlation between Br(Bs → µ+µ−) and Sψφ, thus, for a given
value of Sψφ, only a certain range for Br(Bs → µ+µ−) is predicted. Moreover, with increasing
Sψφ also Br(Bs → µ+µ−) generally increases. In particular, for Sψφ > 0.4, an enhancement
of Br(Bs → µ+µ−) is found. For Sψφ ≈ 0.4, we find that Br(Bs → µ+µ−) can reach values
as high as 7 · 10−9. For larger values of Sψφ, even higher values of Br(Bs → µ+µ−) are
possible. Interestingly, for SM3-like values of Sψφ, the branching ratio Br(Bs → µ+µ−) is
more likely to be suppressed than enhanced.We conclude that a future measurement of Sψφ
above 0.4 accompanied by Br(Bs → µ+µ−) close to or below its SM3 value would put the
SM4 into difficulties. From the right panel in Fig. 5.10 we can infer the following soft bounds
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Figure 5.10.: Br(Bd → µ+µ−) (left panel) and Br(Bs → µ+µ−) (right panel) each as a function of Sψφ.

Figure 5.11.: Br(Bs → µ+µ−) as a function of Br(B → Xsνν̄).

on Br(Bs → µ+µ−) as a function of Sψφ

Br(Bs → µ+µ−) ≤
(

6 +
(
4 · (Sψφ − (Sψφ)SM)

)4
)

· 10−9 , (5.5)

Br(Bs → µ+µ−) ≥
{
(−0.08 + Sψφ) · 10−8 for Sψφ > 0
(−0.04− Sψφ) · 10−8 for Sψφ < 0

. (5.6)

In addition we find the global soft upper bound

Br(Bs → µ+µ−) ≤ 1.3 · 10−8 . (5.7)

B → Xsνν̄ and Bs → µ+µ−

Fig. 5.11 shows that Br(B → Xsνν̄) is significantly correlated with Br(Bs → µ+µ−). In
particular, both branching ratios are most likely either simultaneously enhanced or simulta-
neously suppressed with respect to their SM3 values.

B → Xsγ and B → Xsℓ
+ℓ−

In Fig. 5.12 we show Br(B → Xsγ) versus Br(B → Xsℓ
+ℓ−)q2>14.4GeV2 . This plot is self-

explanatory and shows that enhancements of Sψφ and Br(Bs → µ+µ−) (red points) are fully
consistent with the experimental data for the two branching ratios shown in the plot. On
the other hand the reduction of the experimental error on Br(B → Xsℓ

+ℓ−) could have a
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Figure 5.12.: Br(B → Xsγ) as a function of Br(B → Xsℓ
+ℓ−)q2>14.4GeV2 .

Figure 5.13.: Br(K+ → π+νν̄) as a function of Br(Bs → µ+µ−).

significant impact on the red points. We confirmed that the zero s0 of the forward-backward
asymmetry remains SM3-like. Variations up to 10% are possible, but since this is comparable
with the theoretical errors (NLO calculation) we do not further discuss this issue here. See
Section 4.2.4.2 for details.

Bs → µ+µ− vs. K+
→ π+νν̄

In Fig. 5.13, we show Br(K+ → π+νν̄) as a function of Br(Bs → µ+µ−). The striking feature
in this plot is the disparity of possible enhancements of both branching ratios relative to the
SM3 values. While Br(K+ → π+νν̄) can be strongly enhanced, as already seen in Figs. 5.4
and 5.5, the possible enhancement of Br(Bs → µ+µ−) is more modest. We also conclude that
there is no strong correlation between both branching ratios, so that they can be enhanced
significantly at the same time, but this is not necessarily the case.

5.1.5. The CP Asymmetries Sψφ, SφKS
and Absγ

CP

As pointed out in [47], there is a strong correlation between the CP asymmetries Sψφ and
SφKS

within the SM4. We show this correlation in the upper-left panel of Fig. 5.14. First of
all, we observe that Sψφ can be as large as 0.8 although even larger values are possible. For
Sψφ ≈ 0.4, the asymmetry SφKS

is strongly suppressed relative to SψKS
and in the ballpark

of 0.4, close to its experimental central value represented by the horizontal dashed line. The
analogous plot for Sη′KS

is shown in the upper-right panel of Fig. 5.14. The suppression is
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Figure 5.14.: The CP asymmetries SφKS
(upper-left panel), Sη′KS

(upper-right panel), AbsγCP (lower-left
panel), AsSL (lower-right panel) shown as functions of Sψφ.

now significantly weaker, and for Sψφ ≈ 0.4 one finds Sη′KS
≈ 0.55, in accordance with the

data. The big black points represent the SM3 values of the asymmetries in question that are
slightly above SψKS

[196, 200, 201].
Interestingly, for Sψφ ≥ 0.6 the values of SφKs

and Sη′Ks
predicted by the SM4 are below

their central values indicated by data.
The correlation seen in the upper panels in Fig. 5.14 can easily be understood by noting

that the ratio λ
(s)
t′ /λ

(s)
t and, in particular, its phase is responsible for departures of both,

Sψφ and SφKS
, from the SM3 predictions. A positive complex phase of this ratio implies the

desired enhancement of Sψφ and, through (4.115) and (4.116), a negative phase ϕφKS
of the

decay amplitude AφKS
. In turn, as seen in (4.118), SφKS

is suppressed relative to SψKS
.

At this point some comments are in order

• The theoretical errors on (the real part of) the bf parameters in (4.107) are of minor
importance. We checked numerically that varying the bf parameters by 10% yields
only small effects on the studied correlations.

• On the other hand, sizable strong phases from non-factorizable final-state interactions
may alter the slope for the predicted correlation between SφKS

and Sψφ. This effect
explains the difference between our result and the analysis by Soni et al. [47, 104],
where the non-perturbative parameters are taken from [255], which is based on a
phenomenological optimization of theory input in the context of the SM3.



5.1 Numerical Analysis of the Quark Sector 81

The weaker suppression of Sη′KS
originates in smaller values of non-perturbative parame-

ters bi as seen in Table 4.1. On the other hand, as pointed out in [75,207] in the supersym-
metric flavor models with exclusively left-handed currents and in the FBMSSM, the desire
to explain the SφKS

anomaly implies automatically that AbsγCP is much larger in magnitude
than its SM3 value and has opposite sign. A qualitatively similar behavior is found in the
SM4, but as SφKS

is strongly correlated with Sψφ and the latter asymmetry is theoretically

cleaner, we prefer to show the correlation between AbsγCP and Sψφ. As seen in the lower-left

panel of Fig. 5.14, for Sψφ ≈ 0.5 the asymmetry AbsγCP reverses the sign but its magnitude
is SM3-like. Larger effects are found for larger |Sψφ|, in particular negative values of Sψφ,

which are however disfavored by Tevatron data. We conclude that AbsγCP remains small also
in the SM4, but the sign flip for large positive Sψφ could help to distinguish the SM4 from
the SM3.
Finally, in the lower right panel of Fig. 5.14, we show the familiar correlation between AsSL

and Sψφ [256]. The size of AsSL can be by an order of magnitude larger in the SM4 than in
the SM3.

5.1.6. The Ratio ε′/ε

In Fig. 5.15, we show ε′/ε as a function of Sψφ for four different scenarios of the non-
perturbative parameters R6 and R8: (R6, R8) = (1.0, 1.0) (upper left panel), (1.5, 0.8) (upper
right panel), (2.0, 1.0) (lower left panel) and (1.5, 0.5) (lower right panel). Each set of points
has the SM3 value indicated by a black dot. ΛMS has been set to 340 MeV. The non-
perturbative parameters R6 and R8 are defined as

R6 ≡ B
(1/2)
6

[
121 MeV

ms(mc) +md(mc)

]2

, R8 ≡ B
(3/2)
8

[
121 MeV

ms(mc) +md(mc)

]2

. (5.8)

As a general feature the SM4 can fit ε′/ε for all sets of non-perturbative parameters
considered by us. However, the striking feature of these plots is the difficulty in reproducing
the experimental data for ε′/ε within the SM4 when Sψφ is large and positive (red points) as
suggested by the Tevatron data. Thus if the latter data will be confirmed ε′/ε can put the
SM4 under pressure, unless R6 is significantly larger than unity andR8 sufficiently suppressed
below one. This discussion demonstrates again that in order to use ε′/ε to constrain NP
the knowledge of the parameters R6 and R8 has to be improved significantly. An analysis
of ε′/ε in the 4G model has been presented in [45], where the hadronic uncertainties known
from previous studies have been reemphasized. However, the direct impact of large Sψφ on
ε′/ε has not been studied there.
It is then of interest to investigate what impact ε′/ε would have on our analysis when R6

and R8 were precisely known. To this end we introduce yet another coding in Table 5.3,
this time for different values of R6 and R8. In Fig. 5.16 we show then the most interesting
correlations, this time including also the ε′/ε-constraint. These are SφKS

vs. Sψφ, Br(Bs →
µ+µ−) vs. Sψφ, Br(KL → π0νν̄) vs. Br(K+ → π+νν̄) and Br(KL → π0νν̄) vs. Sψφ. These
plots should be compared to the plots in Figs. 5.14, 5.10, 5.4 and 5.5 respectively, where the
ε′/ε constraint has not been taken into account.
We observe the following striking features already anticipated on the basis of Fig. 5.15:
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Figure 5.15.: ε′/ε as a function of the CP asymmetry Sψφ for four different scenarios of the non-perturbative
parameters. (R6, R8) = (1.0, 1.0) (upper left panel), (1.5, 0.8) (upper right panel), (2.0, 1.0)
(lower left panel) and (1.5, 0.5) (lower right panel).

R6 R8

1.0 1.0 dark blue
1.5 0.8 purple
2.0 1.0 green
1.5 0.5 orange

Table 5.3.: Four scenarios for the parameters R6 and R8
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Figure 5.16.: Correlations including the ε′/ε-constraint (color coding according to Table 5.3) .

• Sψφ can be at most 0.4 and this upper bound is only reached for the green and orange
points where the ratio R6/R8 ≥ 2

• For the large N case R6 = R8 = 1 represented by dark blue points, we identify the
following rough absolute bounds

Sψφ . 0.25 , Br(KL → π0νν̄) . 4 · 10−10 ,

Br(K+ → π+νν̄) . 2 · 10−10 , Br(Bs → µ+µ−) . 4.9 · 10−9 ,

where in the last case Sψφ > 0 has been assumed in accordance with CDF and D0
data.

• Weaker bounds are found for purple and in particular green and orange points where
the role of electroweak penguins relative to QCD penguins in ε′/ε is suppressed and
it is easier to have larger 4G effects in rare K and B decays, while still satisfying the
ε′/ε constraint.

Finally we would like to remark that the enhancements of rare K decay branching ratios
found here are larger than the bounds in [188] would suggest. This is related to the fact that
in the SM4 the NP effects in neutral meson mixing can be significantly larger than assumed
in [188], implying that the range for Imλt in the SM4 can be significantly larger than used
in [188].
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5.1.7. Violation of CKM Unitarity

From our discussion of unitarity of the matrix VSM4 in Section 2.2.1, we know that the 3× 3
sub-matrix describing the 3G mixing is for non-vanishing mixing angles θi4 necessarily non-
unitary. A similar effect was observed also in the RS model with custodial protection [257].
In order to quantitatively describe the deviation from unitarity, we define

Ku ≡ VCKM3V
†
CKM3 , Kd ≡ V †

CKM3VCKM3 (5.9)

which are generally different from the 3× 3 unit matrix. In particular, we find

|Ku − 1|ij = |Vib′V ∗
jb′| , |Kd − 1|ij = |Vt′iV ∗

t′j | . (5.10)

In Table 5.4, we collect the entries of Ku,d and give the deviations from 3G unitarity in
terms of the scaling of the mixing angles θi4 for the benchmark scenarios introduced in
Section 2.2.1. We see that, for several unitarity relations, the violation in the SM3 can be
of the same size as the largest individual contribution from 3G mixing angles.

|1−K|ij (a) 431 (b) 211 (c) 231 (d) 321

|Vud|2 + |Vcd|2 + |Vtd|2 = Kd
11 |Vt′d|2∼λ2n1 λ8 λ4 λ4 λ6

1 λ2 λ6

|Vus|2 + |Vcs|2 + |Vts|2 = Kd
22 |Vt′s|2∼λ2n2 λ6 λ2 λ6 λ4

λ2 1 λ4

|Vub|2 + |Vcb|2 + |Vtb|2 = Kd
33 |Vt′b|2∼λ2n3 λ2 λ2 λ2 λ2

λ6 λ4 1
|Vud|2 + |Vus|2 + |Vub|2 = Ku

11 |Vub′ |2∼λ2n1 λ8 λ4 λ4 λ6

1 λ2 λ6

|Vcd|2 + |Vcs|2 + |Vcb|2 = Ku
22 |Vcb′ |2∼λ2n2 λ6 λ2 λ6 λ4

λ2 1 λ4

|Vtd|2 + |Vts|2 + |Vtb|2 = Ku
33 |Vtb′ |2∼λ2n3 λ2 λ2 λ2 λ2

λ6 λ4 1

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = Kd

12 |Vt′dV ∗
t′s|∼λn1+n2 λ7 λ3 λ5 λ5

λ λ λ5

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = Kd

13 |Vt′dV ∗
t′b|∼λn1+n3 λ5 λ3 λ3 λ4

λ3 λ3 λ3

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = Kd

23 |Vt′sV ∗
t′b|∼λn2+n3 λ4 λ2 λ4 λ3

λ4 λ2 λ2

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = Ku

12 |Vub′V ∗
cb′ |∼λn1+n2 λ7 λ3 λ5 λ5

λ λ λ5

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = Ku

13 |Vub′V ∗
tb′ |∼λn1+n3 λ5 λ3 λ3 λ4

λ3 λ3 λ3

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = Ku

23 |Vcb′V ∗
tb′ |∼λn2+n3 λ4 λ2 λ4 λ3

λ4 λ2 λ2

Table 5.4.: CKM unitarity relations and the amount by which they are broken in the SM4 in the four
scaling scenarios introduced in Section 2.2.1. For comparison, in the first column we also give
the scaling for the three individual terms on the l.h.s. of the relation.
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Figure 5.17.: Correlations between Br(K+ → π+νν̄) and Br(KL → π0νν̄) in several NP models. The
effects of SUSY flavor models is very weak in the K-system and is therefore not plotted. The
dotted line corresponds to the model-independent GN bound.

5.1.8. Patterns of Correlation and Comparison with other Models

In the course of this section, we have shown a number of correlations between various observ-
ables. This combined information can be very valuable since it provides a higher predictivity
than the treatment of single quantities. It will allow us to exclude certain models once sev-
eral of the involved observables are (better) measured, which should be the case for e.g.
Br(Bs,d → µ+µ−) and Sψφ already in the coming years.

In this section, we want to compare several predictions made by the SM4 with those from
different NP models such as the Little Higgs model with T-parity (LHT) [70–72], the Randall-
Sundrum model with custodial protection (RSc) [73,74] and supersymmetric (SUSY) flavor
models [75].It turns out that correlations characteristic for (C)MFV scenarios can be strongly
violated in all of these scenarios.

Probably the most striking signature of the SM4, especially when compared to the LHT
and SUSY flavor models, is the possibility of having simultaneously sizable NP effects in the
K, Bd and Bs systems. We have already shown in Fig. 5.4 that the impact of a fourth gen-
eration can be truly spectacular in the K sector. Fig. 5.17 demonstrates that this statement
holds also in the RSc model. In contrast, effects from the LHT model are still present but
much smaller, while those from MSSM flavor models are strongly suppressed.

In the B system, represented by Figs. 5.18 and 5.19, the situation is totally different. In
Fig. 5.18 we recognize that SUSY flavor models can generate simultaneously large positive
effects in both Br(Bs → µ+µ−) and Br(Bd → µ+µ−). Conversely, in the SM4 and RSc
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Figure 5.18.: Correlations between Br(Bs → µ+µ−) and Br(Bd → µ+µ−) in several NP models. The
straight line depicts the “Golden Relation” of CMFV models as given in (4.59) with r = 1.
The gray area is excluded by CDF measurements at 95% C.L. as stated in (4.61), while
the vertical dotted line shows the predicted LHCb exlusion limit for 1 fb−1 of integrated
luminosity as given in (4.62).

Figure 5.19.: Correlations between Sψφ and Br(Bd → µ+µ−) (left panel), respectively Sψφ and
Br(Bs → µ+µ−) (right panel), for several NP scenarios.
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large deviations from the SM (enhancements as well as suppressions) are permitted but
mutually exclusive, while the LHT predicts only tiny effects. The differences between the
two diagrams in Fig. 5.19 demonstrate the non-CMFV nature of the various NP models,
which is particularly pronounced in the SM4.

The difference of SM4 flavor effects as compared to the other NP models can partially be
traced back to the fact that the mass scales involved in the SM4 are generally significantly
lower than in the LHT and in particular in the RSc. Another important source of deviations
is the fact that in the SM4 the undetermined CKM matrix elements Vtd and Vts are not
constrained by 3× 3 unitarity and can obtain large enhancements as seen in (2.33). Finally,
the non-decoupling of the new heavy fermions t′ and b′ plays a role – an effect which does
not occur in the LHT, RSc and SUSY models.

5.2. Anatomy of the Quark Sector

5.2.1. Step 1: Parameter Scenarios

We begin the anatomy of the SM4 by analyzing the three scenarios for |Vub| and δ13 defined
in Table 5.5. The three scenarios in question correspond to ones discussed in [75] and can
be characterized as follows:

S1: (ǫK)SM is lower than the data, while SΨKS
and ∆Md/∆Ms are compatible with experi-

ment. The orange points in Fig. 5.20-5.22 correspond to the removal of this anomaly
within the SM4.

S2: (SψKS
)SM is above the data, while ǫK and ∆Md/∆Ms are compatible with experiment.

The purple points in Fig. 5.20-5.22 correspond to the removal of this anomaly within
the SM4.

S3: (∆Md/∆Ms)SM is much higher than the data, while ǫK and SΨKS
are compatible with

experiment. The green points in Fig. 5.20-5.22 correspond to the removal of this
anomaly within the SM4.

The clear lessons from this analysis are the following:

• Due to the 4G contributions to εK and SψKS
in all scenarios simultaneous agreement

with the data for these two observables can be achieved taking all existing constraints
into account.

• However, only in scenario S1 values of Sψφ can be significantly enhanced and conse-
quently SφKS

and Sη′KS
significantly suppressed. As an example, we show in Fig. 5.21

(right panel) this situation by plotting SφKS
as a function of Sψφ.

• As shown in Fig. 5.22, in all three scenarios significant enhancements of Br(K+ →
π+νν̄), Br(KL → π0νν̄) and Br(KL → µ+µ−) are possible.
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S1 (orange) S2 (purple) S3 (green)

|Vub| 0.0034± 0.00015 0.0043± 0.0001 0.0037± 0.0001
δ13 (66± 2)◦ (66± 2)◦ (84± 2)◦

Table 5.5.: Three scenarios for the parameters s13 and δ13

Figure 5.20.: We show the color coding of the tension scenarios (left panel) and Br(B → Xsγ) vs. Br(B →
Xsℓ

+ℓ−)q2>14.4GeV2 (right panel) for the tension scenarios defined in Tab. 5.5.

Figure 5.21.: We show Br(Bs → µ+µ−) vs. Sψφ (left panel) and SφKs
vs. Sψφ (right panel) for the tension

scenarios defined in Tab. 5.5. The color coding is defined in this table and can be read from
the left panel of Fig. 5.20.

• On the other hand, as shown in the lower panel of Fig. 5.21 (right panel), the departure
of Br(Bs → µ+µ−) can be up to a factor of 4 for all three scenarios. However we found
no points with large positive Sψφ for S2 and S3 which in turn puts a loose upper limit
on Br(Bs → µ+µ−) in these scenarios provided Sψφ > 0.

5.2.2. Step 2: Anticipating LHCb Results

In the next three years, LHCb should be able to provide good data on Sψφ and Br(Bs →
µ+µ−). As we have seen in Fig. 5.10, a measurement of Sψφ above 0.5 accompanied by
Br(Bs → µ+µ−)exp ≤ Br(Bs → µ+µ−)SM would put the SM4 under pressure. Similarly for
SM3-like values of Sψφ, Br(Bs → µ+µ−) can only be slightly enhanced over its SM3 value,
and in fact a suppression of the latter branching ratio is more likely in this case.
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Figure 5.22.: We show Br(KL → π0νν̄) vs. Br(K+ → π+νν̄) (left panel) and Br(KL → µ+µ−)SD vs.
Br(K+ → π+νν̄) (right panel) for the tension scenarios defined in Tab. 5.5. The color coding
is defined in the table and can be read of Fig. 5.20 left panel.

In view of this pattern, we considered three scenarios shown in Table 5.2 and asked what
they would imply for other decays. The result of this exercise is shown in all plots of Sec-
tion 5.1 where the three scenarios of Table 5.2 are exhibited in three different colors indicated
in this table. Alternatively, the color coding can be conveniently inferred from Fig. 5.10.
This results are self-explanatory and have been briefly discussed already in Section 5.1. Let
us therefore only summarize our observations:

• As seen in Fig. 5.14, the SφKS
and SψKS

anomalies can only be explained in scenario
BS3.

• Fig. 5.9 shows that in the BS1 and BS3 scenarios the branching ratio Br(Bd → µ+µ−)
remains SM3-like, while in scenario BS2 it can be enhanced by a factor of two.

• As seen in Figs. 5.4 and 5.6 in all three scenarios large NP effects in Br(K+ → π+νν̄),
Br(KL → π0νν̄) and Br(KL → µ+µ−) are possible. Moreover in scenario BS3 they are
particularly strongly correlated with each other.

• For large positive values of Sψφ the predicted value of ε′/ε is significantly below the
data, unless the hadronic matrix elements of the electroweak penguins are sufficiently
suppressed with respect to the large N result and the ones of QCD penguins enhanced.

This analysis shows that we will learn a lot about the SM4 when Sψφ, Br(Bs → µ+µ−),
Br(K+ → π+νν̄) and Br(KL → π0νν̄) will be precisely known.

5.3. Determining the Matrix VSM4

5.3.1. Preliminaries

As discussed in previous sections, the mixing between the third and fourth generation is
bounded by the electroweak precision data and cannot be significantly larger than s12. Sim-
ilarly, s14 and s24 are bounded by (2.29b). As a consequence, as can be explicitly seen by
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the generalized Wolfenstein expansion for our benchmark scenarios (2.40–2.43), the relation
between CKM parameters and the matrix elements Vus, Vcd, Vub, Vcb,

s12 = λ ≃ |Vus| ≃ |Vcd| , s23 = Aλ2 ≃ |Vcb| ,

s13 = Aλ3|zρ| ≃ |Vub| , δ13 = −arg(zρ) ≃ −arg(Vub) , (5.11)

are to a very good approximation unaffected by 4G contributions. Therefore the SM3 CKM
parameters can be determined from the corresponding tree-level decays, practically without
any NP pollution, with δ13 determined from B → DK. In particular such a determination
does not require the 3 × 3 CKM matrix to be unitary.3 In the present Section we will
further use (2.31) for the 4G mixing angles, in order to indicate how the VSM4 matrix can,
in principle, be determined from future data.
A further comment on the determination of δ13 ≈ γ is in order.
In the approximation of neglecting the phase of Vcs and Vcb, being real in the CKM

convention, the Bs → DsK complex in the SM3 measures directly a linear combination
of the phase γ and the phase of Bs-mixing, where the latter can be extracted from Sψφ.
Analogous comments apply to Bd → Dπ decays. In the presence of 4G quarks, the phases
in Bs and Bd mixing may change, but again they can be determined from the Sψφ and SψKS

asymmetries, respectively. The new feature, as seen in (2.12), are new phases of Vcb and
Vcs induced by the presence of the 4G quarks. However, the imposition of tree-level and
electroweak precision constraints implies that this NP pollution amounts to significantly less
than 1◦ in the determination of δ13 and can be safely neglected. Analogous comments apply
to other tree-level methods for the determination of δ13.
The determination of the new parameters in the VSM4 matrix,

s14 , s24 , s34 , δ14 , δ24 , (5.12)

is probably beyond the scope of flavor violating high-energy processes explored at the LHC
and will have to be made through FCNC processes that, as in the SM3, appear first at the
one-loop level due to the GIM mechanism at work. The accuracy of this determination will
depend on

i) the precision of the relevant experimental data,

ii) the theoretical cleanliness of the observables involved (i.e. observables with small
hadronic uncertainties should be favored),

iii) the potential size of NP contributions to the considered observable.

Clearly, the room for NP contributions to observables that are known already precisely will
depend on the values of the CKM parameters in (5.11). In this context, let us recall the
existing tension between the experimental values of εK and SψKS

within the SM3 that has
been extensively discussed in [129, 252, 258, 259]. Whether the SM3 has a problem with εK ,

3Needless to say, |Vus|, |Vub|, |Vcb| and δ13 can be determined from tree-level decays even in the absence of
this approximation, but the relation to the fundamental parameters is less transparent and involves the
4G parameters.



5.3 Determining the Matrix VSM4 91

SψKS
or both observables depends on the values in (5.11). In turn, this will have an impact

on the determination of the new parameters in (5.12). In what follows, we will first make
a list of observables that could help us in the future to determine the parameters (5.12),
subsequently illustrating such determinations on a few examples. A more extensive general
numerical analysis appears to us to be premature at present. On the other hand, as we will
see in Section 5.3.3, new insight can be gained by examining the anatomy of different scaling
scenarios for the mixing angles and their implications for various flavor observables.

5.3.2. Basic Observables

Among the FCNC observables that have already been measured, the values for

εK , ∆Md/∆Ms , SψKS
, Br (B → Xsγ) (5.13)

have presently the dominant impact on the allowed structure of the VSM4 matrix. Indeed,
SψKS

is theoretically very clean (as discussed in Section 4.2.5), and the hadronic uncertainties
in εK and ∆Md/∆Ms are below 5% already now and are expected to be decreased further in
the coming years through improved lattice calculations. Of particular interest in this decade
will be the measurements of the branching ratios for

Bs,d → µ+µ− , K+ → π+νν̄ , KL → π0νν̄ , B → Xsνν̄ , (5.14)

and, very importantly, of the CP-violating observables

Sψφ , SφKS
, ACP(b→ sγ) . (5.15)

In particular, various correlations between all these observables will significantly constrain
the allowed range of the SM4 parameters and even have the power to exclude this NP
scenario. Assuming that the SM4 will survive these new tests and having at hand all these
measurements, it will be possible to determine the matrix VSM4. Indeed, let us note on the
basis of the formulae of Section 4.1.2.2 that all these observables depend on six complex
variables involving new parameters (see (2.20)),

λ
(K)
t′ , λ

(s)
t′ , λ

(d)
t′ , λ

(K)
t , λ

(s)
t , λ

(d)
t , (5.16)

that are not fully independent as, with (5.11) being fixed, they depend on the five parameters

in (5.12). It is instructive to write down the expressions for λ
(i)

t(′)
setting cij = 1 and neglecting
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higher-order terms in the Wolfenstein expansion, leading to

λ
(d)
t = V ∗

tbVtd ≈ −s13eiδ13 − s14s34e
iδ14 + s12

(
s23 + s24s34e

iδ24
)

≈ −s13eiδ13 + s12s23 − λ
(d)
t′ , (5.17a)

λ
(s)
t = V ∗

tbVts ≈ −s23 − s24s34e
iδ24

≈ −s23 − λ
(s)
t′ , (5.17b)

λ
(K)
t = V ∗

tsVtd ≈
(
s23 + s24s34e

−iδ24)

×
(
s13e

iδ13 + s14s34e
iδ14 − s12

(
s23 + s24s34e

iδ24
))

≈ λ
(s)∗
t λ

(d)
t , (5.17c)

λ
(d)
t′ = V ∗

t′bVt′d ≈
(
s34 + s13s14e

i(δ13−δ14) + s23s24e
−iδ24)

× (eiδ14s14 − eiδ24s12s24 − eiδ13s13s34 + s12s23s34)

≈ −eiδ13s13s234 + s34
(
s14e

iδ14 − s12s24e
iδ24
)

+ s14s23s24e
i(δ1,4−δ24) − s12s23

(
s224 − s234

)
, (5.17d)

λ
(s)
t′ = V ∗

t′bVt′s ≈
(
s34 + s13s14e

i(δ13−δ14) + s23s24e
−iδ24)

× (eiδ24s24 + eiδ14s12s14 − s23s34)

≈ s12s14s34e
iδ14 + s24s34e

iδ24 + s23
(
s224 − s234

)
, (5.17e)

λ
(K)
t′ = V ∗

t′sVt′d ≈ (e−iδ24s24 + e−iδ14s12s14 − s23s34)

× (eiδ14s14 − eiδ24s12s24 − eiδ13s13s34 + s12s23s34)

≈ s24
(
−s12s24 + s14e

i(δ14−δ24))− s24s34e
−iδ24 (−s12s23 + s13e

iδ13
)

+
(
s12s24e

iδ24 − s14e
iδ14
) (
s23s34 − s12s14e

−iδ14)

≈ λ
(s)∗
t′ λ

(d)
t′

|Vt′b|2
. (5.17f)

We observe that, in general, the variables λ
(K,s,d)

t(′)
involve all 5 mixing parameters associated

with the 4G in a rather complicated way. Some simplification arises if we assume a cer-
tain scaling of the mixing angles θi4, for instance with one of our benchmark scenarios of
Section 2.2.1. Let us, as an example, study the case (2.41), for which the above equations
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simplify as follows:

λ
(s)
t′ ≈ eiδ24s24s34 ≡ σ23 ,

λ
(d)
t′ ≈ s34

(
s14e

iδ14 − s12s24e
iδ24
)
≡ σ13 − s12σ23

λ
(K)
t′ ≈ s24

(
−s12s24 + s14e

i(δ14−δ24)) =
1

s234
σ∗
23 (σ13 − s12σ23) [=

1

s234
λ
(s)∗
t′ λ

(d)
t′ ] ,

λ
(s)
t ≈ −s23 − s24s34e

iδ24 = −s23 − λ
(s)
t′ ,

λ
(d)
t ≈ −s13eiδ13 − s14s34e

iδ14 + s12
(
s23 + s24s34e

iδ24
)
= −s13eiδ13 + s12s23 − λ

(d)
t′ ,

λ
(K)
t ≈

(
s23 + s24s34e

−iδ24) (s13e
iδ13 + s14s34e

iδ14 − s12
(
s23 + s24s34e

iδ24
))

=
(

s23 + λ
(s)∗
t′

)(

s13e
iδ13 − s12s23 + λ

(d)
t′

)

, (5.18)

where the following two combinations of new parameters (5.12) have been introduced:

σ13 ≡ s14s34e
iδ14 , σ23 ≡ s24s34e

iδ24 . (5.19)

For this particular case, we observe that

i) λ
(K)
t and λ

(K)
t′ depend on σ13, σ23 and s34.

ii) λ
(d)
t and λ

(d)
t′ depend on σ13 and σ23.

iii) λ
(s)
t and λ

(s)
t′ are sensitive to σ23 only. The determination of ∆Ms, Br(Bs → µ+µ−)

and Sψφ will thus play an important role in constraining these parameters. Moreover
for s24 & s23s34 and δ24 not too small, Sψφ should be much larger than its SM3 value
(Sψφ)SM ≈ 0.04 as we have seen in Section 5.1.

In view of the many possibilities for theoretical parameters and phenomenological observ-
ables, we will in the following develop a general procedure that allows us to analyze future
experimental data in a systematic manner. Let us first consider the plots in Fig. 5.23, which
show correlations between various parameters of the SM4, on the basis of the three scenarios
of Table 5.2. In particular,

• in the case of the scenario BS3 of Table 5.2, there is a strong correlation between s24
and s14 with s24 ∼ 4s14 and s24 in the range

0.046 ≤ s24 ≤ 0.17 . (5.20)

• δ14 and δ24 are also very strongly correlated in the BS3 scenario with δ14 ≈ δ24 ≈
270◦ ± 20◦.

• in the lower left panel of Fig. 5.23 one can see the strong correlation of s34 and mt′

derived in Section 3.2.2.

In the following Section, we will analyze these correlations within specific scaling scenarios
for the 4G mixing angles.
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Figure 5.23.: Correlations between the new parameters for the parameter points used in our global analysis.
The mixing angle s24 as a function of s14 (upper left panel), s34 as a function of s24 (upper
right panel), mt′ as a function of s34 (lower left panel) and δ24 as a function of δ14 (lower
right panel). The color coding corresponds to scenarios of Table 5.2.
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5.3.3. Anatomy of 4G Mixing Angles and CP Phases

As explained in Section 2.2.1, the 4G mixing matrix allows for different scalings of the 4G
mixing angles θ14, θ24 and θ34 with the Wolfenstein parameter λ ≪ 1. Among the set of
parameters that fulfil the present constraints on flavor observables, we may thus classify
different subsets by calculating the exponents

(n1, n2, n3) = round (logλ [θ14, θ24, θ34]) , (5.21)

in (2.36) for λ = s12 ≪ 1. Furthermore (see also Fig. 5.23), for a given set (n1, n2, n3), the
allowed values for the new CP phases δ14 and δ24 also exhibit a more or less strong correlation,
which we will exploit to further distinguish different regions in the 4G parameter space. This
enables us to identify a set of equivalence classes which – as we will illustrate – share certain
characteristic features for the corresponding predictions for various flavor observables.
According to our discussion above, values (n1, n2, n3) that do not fulfil the inequalities

(2.39), from the theoretical point of view, should be considered as fine-tuned and will not
be included in the subsequent discussion. (We convinced ourselves that we do not miss
any of the observed phenomenological features by doing so.) For the remaining cases, we
first identify – for a given scaling (n1, n2, n3) – the allowed correlations between δ14 and δ24,
and then determine the assignment to one or the other equivalence class. Our procedure is
summarised for the most prominent and representative examples in Table 5.6:

• Evidently, for small values of the ni (i.e. large values of 4G mixing angles), one expects
the largest deviations from the SM3 predictions. In fact, the most extreme case is
characterized by example (2.41) from Section 2.2.1, with values (n1, n2, n3) = (2, 1, 1).
As we already discussed, in this scenario the new 4G phases contribute at leading
order to CP-violating observables, and therefore δ14 and δ24 are highly correlated and
constrained. Separating the different relative and absolute signs of δi4 enables us to
classify the subsets 1a, 1b, 2a, 2b which show characteristic features in the selected set of
observables shown in Tables 5.7 and 5.8. Similar correlations are found for the (2, 2, 1)
scenario.

• Decreasing the values of (some of) the mixing angles (i.e. increasing n1, n2, n3), we
observe that the correlations between the 4G phases become broader. Still, the values
populate restricted areas in the δ24–δ14 plane, which again allows to identify sub-classes
with definite properties. A typical example is the case (3, 2, 1) from our benchmark
scenario (2.43). This scenario divides into two well-separated regions. Among one of
them, we may (or may not) identify a subset of points as belonging to class 1a. This
kind of arbitrariness is unavoidable (and expected), since the separation of points from
scenario (2, 2, 1) and (3, 2, 1) is not clear-cut.

• For even smaller values of mixing angles, we observe for the cases (3, 3, 1) and (3, 3, 2)
a separation into three sub-classes, where two classes (3a and 3b) can be considered as
a continuation of those from the (3, 2, 1) scenario, and class 4 is new.

• Considering (4, 3, 1) (the benchmark scenario (2.40) discussed in Section 2.2.1) and
(4, 3, 2), the former classes 3b and 4 merge into one class 5 which already covers around
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(n1, n2, n3) Correlation δ24 vs. δ14 Assignment

(2, 1, 1)
(2, 2, 1)

→







class 1a: δ14 < δ24 < δ14 +
π
8 , δ24 < 0.

class 1b: δ14 − π
8 < δ24 < δ14, δ24 < 0.

class 2a: δ14 < δ24 < δ14 +
π
8 , δ24 > 0.

class 2b: δ14 − π
8 < δ24 < δ14, δ24 > 0.

(3, 2, 1) →







class 1a: δ14 < δ24 < δ14 +
π
8 , δ24 < 0.

class 2a/3a: δ14 < δ24 < δ14 +
3π
8 , δ24 > 0.

class 3b: δ14 − 3π
8 < δ24 < δ14.

(3, 3, 1)
(3, 3, 2)

→







class 3a: δ14 +
π
8 < δ24 < δ14 +

π
2 .

class 3b: δ14 − 3π
4 < δ24 < δ14.

class 4: δ14 − 9π
8 < δ24 < δ14 − 3π

4 .

(4, 3, 1)
(4, 3, 2)

→
{
class 5: δ14 − 3π

2 < δ24 < δ14 +
π
4

(2, 3, 1) →
{
class 6: δ14 +

π
8 < δ24 < δ14 +

3π
4 .

class 7: δ14 − 9π
8 < δ24 < δ14 − π

4 .

Table 5.6.: Correlations between 4G phases for different scalings of 4G mixing angles (some selected
examples). The constraints on the phases, of course, are understood to be periodic in units of
2π.
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half of the δ24-δ14 plane. Finally, for the scenario (2.42) with the scaling (2, 3, 1), the
former class 3a continues into class 6, while 3b and 4 merge into class 7, where the
parameter space in the δ24-δ14 plane is again somewhat more constrained.

Having identified the different sub-classes, we investigate the characteristic features for
certain phenomenological observables in Tables 5.7-5.10. We see that each class can be
distinguished from the others by at least one of the shown correlations: Br(Bs → µ+µ−) vs.
Sψφ, SφKS

vs. Sψφ, Br(b → sγ) vs. Br(B → Xsℓℓ), Br(KL → µ+µ−)SD vs. Br(K+ → π+νν̄)
(The color coding is as defined in Table 5.2).
Turning the argument around, the observation of a combination of particular correlations

in rare flavor processes can be translated into one or the other favored scenario for 4G
mixing angles and CP phases. Only after a particular scaling scenario has been identified,
the formulae for λ

(K,d,s)
t′ in (5.17f–5.17b) can be simplified, and we may (more or less) un-

ambiguously determine the 4G mixing parameters from the future experimental data. We
emphasize that, quite generally, such a procedure should be applied to the analysis of flavor
parameters in NP models without MFV. In particular, without a specific theory of flavor at
hand, the fact that certain scaling scenarios – like (2.40) – are represented by only a small
number of points in the overall scan of parameter space, should not be taken as a signal for
a small probability to observe the associated correlations in flavor observables.
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Class 108 ·Br(Bs→µ+µ−) vs. Sψφ SφKS
vs. Sψφ

1a: · · ·

1b: · · ·

2a: · · ·

2b: · · ·

3a: · · ·

. . . . . .

Table 5.7.: Selected correlations for classes identified in Table 5.6 (part 1 of 4). (The color coding is as
defined in Table 5.2).
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104 ·Br(b→sγ)
vs. 106 ·Br(B→Xsℓℓ)q2>14.4GeV2

109 ·Br(KL→µ+µ−)SD
vs. 1010 ·Br(K+→π+νν̄)

Class

· · · 1a

· · · 1b

· · · 2a

· · · 2b

· · · 3a

. . . . . .

Table 5.8.: Selected correlations for classes identified in Table 5.6 (part 2 of 4).
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Class 108 ·Br(Bs→µ+µ−) vs. Sψφ SφKS
vs. Sψφ

. . . . . .

3b: · · ·

4: · · ·

5: · · ·

6: · · ·

7:

Table 5.9.: Selected correlations for classes identified in Table 5.6 (part 3 of 4).
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104 ·Br(b→sγ)
vs. 106 ·Br(B→Xsℓℓ)q2>14.4GeV2

109 ·Br(KL→µ+µ−)SD
vs. 1010 ·Br(K+→π+νν̄)

Class

. . . . . .

· · · 3b

· · · 4

· · · 5

· · · 6

· · · 7

Table 5.10.: Selected correlations for classes identified in Table 5.6 (part 4 of 4).
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5.4. Numerical Analysis of the Lepton Sector

5.4.1. Preliminaries

The analysis of LFV within the SM4 is rather simple due to the small number of free
parameters as compared to other NP scenarios such as the general MSSM, the LHT and RS
models. This also holds in comparison with the quark sector since the contributions of SM3
leptons in loops can be neglected, except when they are relevant in the context of the GIM
mechanism.

Specifically, the processes ℓi → ℓjγ and the decays to three leptons are fully governed by
the quantities

λ(µe)ν4
, λ(τe)ν4

, λ(τµ)ν4
, λ(ee)ν4

= |Ueν4|2 , λ(µµ)ν4
= |Uµν4 |2 , (5.22)

and calculable functions of the neutrino mass mν4 which is bounded by direct measurements
to mν4 ≥ 90.3 GeV (2.7). Therefore, strong correlations between the ℓi → ℓjγ and ℓi → 3ℓk
decays are to be expected. While this expectation will be confirmed in the course of our
numerical analysis, we will see that the possible ranges for various observables entering these
correlations will still be rather large.

Semi-leptonic decays and µ − e conversion in nuclei involve also parameters in the quark
sector that enter through box diagram contributions to the functions X̄f and Ȳ f in (4.4).
For the numerical analysis of these processes we used the points of our analysis in the quark
sector (Sec. 5.1).

Our parameter points were generated using uniform random numbers, and we explicitly
do not assign any statistical meaning to the point densities. We included the effect of a
modified Fermi constant GF due to the breaking of three-generation lepton-universality [209]
and included the decays τ → µνµντ and τ → eνeντ to constrain the parameters. Contrary
to [209] we do not find a significant effect of the K3ℓ decays, but this is due to our much
more conservative error treatment.

5.4.2. µ−
→ e−γ, µ−

→ e−e+e− and µ− e Conversion

As pointed out by [209], the combination of results from leptonic τ decays and radiative µ
decays efficiently constrains the involved PMNS parameters |Ue4| and |Uµ4|. We show these
bounds in Fig. 5.24, adding the constraint from µ− e conversion which turns out to be the
most stringent one.

In Fig. 5.25 we show the correlation between µ→ eγ and µ− → e−e+e− together with the
experimental bounds on these decays. We observe:

• Both branching ratios can easily reach the present experimental bounds in a correlated
manner.

• However, for a fixed value of either branching ratio, the respective other can still vary
over one order of magnitude.
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Figure 5.24.: Constraints on the allowed range of |Ue4| and |Uµ4| resulting from lepton universality (1σ/
2σ/3σ: purple/blue/light blue area, respectively) and the current experimental bounds on
µ → eee, µ → eγ, and µ − e conversion (thick black lines). The contour lines indicate the
ratio GSM4

F /GSM3
F , where GSM4

F is the value of the Fermi constant extracted from muon
lifetime measurement assuming 4 generations, and GSM3

F is the usual SM3 Fermi constant
(s. [209]).

Next, in Fig. 5.26 we show the correlation between the µ − e conversion rate in 48
22Ti and

Br(µ → eγ), after imposing the existing constraints on Br(µ→ eγ) and Br(µ− → e−e+e−).
We observe that this correlation is weaker than the one in Fig. 5.25 as now also quark
parameters enter the game. Still, for a given Br(µ→ eγ) a sharp upper bound on the µ → e
conversion rate is identified. Furthermore, we find that the µ− e conversion rate in titanium
is generally larger than the current experimental bound, but the bounds on both branching
ratios can be simultaneously satisfied. Yet it is evident from this plot that lowering the
upper bounds on both observables in the future will significantly reduce the allowed regions
of the leptonic parameter space in the SM4.
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Figure 5.25.: Correlation between Br(µ → eγ) and Br(µ− → e−e+e−). Points that agree with the currently
measured µ − e conversion rate in 48

22Ti (4.171) are shown in blue, while gray points violate
this bound. The shaded area indicates the projected experimental bound on Br(µ → eγ)
from the MEG experiment at PSI.

Figure 5.26.: Correlation between Br(µ → eγ) and R(µTi → eTi). The shaded areas indicate the expected
future experimental bounds on both observables.
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Figure 5.27.: Correlation between Br(τ → µγ) and Br(τ → eγ).

5.4.3. The Decays τ → µγ and τ → eγ

In Fig. 5.27 we show the correlation between Br(τ → µγ) and Br(τ → eγ), imposing the
experimental bounds on µ → eγ and µ− → e−e+e−. We observe that they both can be
individually as high as few times 10−8 and thus in the ball park of present experimental
upper bounds. The maximal values however cannot be reached simultaneously, due to the
µ → eγ constraint. Thus finding both branching ratios at the 10−8−10−9 level will basically
eliminate the SM4 scenario.

5.4.4. The Semi-Leptonic τ Decays τ → (µπ, µη, µη′) and τ → µγ

In Fig. 5.28 we show Br(τ → µπ) a function of Br(τ → µγ), imposing the constraints from
µ → eγ and µ− → e−e+e−. We find that Br(τ → µπ) can reach values as high as the present
experimental bounds from Belle and BaBar, which is in the ball park of 10−8. It is evident
from (4.150) and (4.155) that Br(τ → µη′) and Br(τ → µη) are strongly correlated with
Br(τ → µπ), so we choose not to show the respective plots for these processes.

Completely analogous correlations can be found also for the corresponding decays τ →
eπ, eη, eη′ and τ → eγ. Indeed, this symmetry between the τ → µ and τ → e systems turns
out to be a general feature of the SM4, that can be found in all decays considered in the
present work. We will return to this issue in Section 5.4.7.

An immediate consequence of these correlations is that the observation of a large τ → µγ
rate will immediately imply a large τ → µπ rate and vice versa. Still, for a fixed value of
either branching ratio the second one can vary by almost an order of magnitude. Analogous
statements apply to τ → µ(e)η and τ → µ(e)η′.
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Figure 5.28.: Br(τ → µπ) as a function of Br(τ → µγ)

5.4.5. KL → µe and KL → π0µe

In Figs. 5.29 and 5.30 we show the results for Br(KL → µe) and Br(KL → π0µe) as functions
of Br(µ → eγ). Again strong correlations between these branching ratios are observed but
the maximal values for Br(KL → µe) and Br(KL → π0µe) are by several orders of magnitude
below the present experimental bounds.

Figure 5.29.: Br(KL → µe) as a function of Br(µ → eγ). Colour coding defined in Fig. 5.25.
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Figure 5.30.: Br(KL → π0µe) as a function of Br(µ → eγ). Colour coding defined in Fig. 5.25.

5.4.6. Upper Bounds

In Table 5.11 we show the maximal values obtainable in the SM4 for all branching ratios
considered in the present work, together with the corresponding experimental bounds. We
observe:

• The branching ratios for eleven of decays in this table can still come close to the
respective experimental bounds and as we have seen in the previous plots they are
correlated with each other.

• The remaining branching ratios are by several orders of magnitude below the present
experimental bounds and if the SM4 is the whole story, these decays will not be seen
in the foreseeable future.

• Comparing to the results obtained in the LHT model for a NP scale f = 1TeV [72,210],
the SM4 allows for much larger branching ratios but the difference is much smaller for
f = 500GeV.

We have also investigated the effect of additionally imposing R(µTi → eTi) < 5 · 10−12 as a
constraint, which we have chosen slightly above the experimental value 4.3 ·10−12 in order to
account for the involved theoretical uncertainties. We find that all maximal values collected
in Table 5.11 depend only weakly on that constraint.
This finding justifies that we did not take into account this bound in our numerical analysis

so far, as it has only a minor impact on the discussed observables. We would like to stress
that the maximal values in Table 5.11 should only be considered as rough upper bounds.
They have been obtained from scattering over the allowed parameter space of the model.
In particular, no confidence level can be assigned to them. The same applies to the ranges
given in Table 5.12 for the SM4 and the LHT model.
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decay maximal value exp. upper bound

µ → eγ 1.2 · 10−11 (6.8 · 10−12) 1.2 · 10−11 [260]
µ− → e−e+e− 1.0 · 10−12 (1 · 10−12) 1.0 · 10−12 [261]
R(µTi → eTi) 6.6 · 10−11 (5 · 10−12) 4.3 · 10−12 [226]

τ → eγ 3.9 · 10−8 (3.9 · 10−8) 3.3 · 10−8 [262]
τ → µγ 3.9 · 10−8 (3.9 · 10−8) 4.4 · 10−8 [262]

τ− → e−e+e− 7.5 · 10−8 (7.5 · 10−8) 2.7 · 10−8 [263]
τ− → µ−µ+µ− 7.4 · 10−8 (7.1 · 10−8) 2.1 · 10−8 [263]
τ− → e−µ+µ− 5 · 10−8 (5 · 10−8) 2.7 · 10−8 [263]
τ− → µ−e+e− 5 · 10−8 (5 · 10−8) 1.8 · 10−8 [263]
τ− → µ−e+µ− 4.7 · 10−17 (4.7 · 10−17) 1.7 · 10−8 [263]
τ− → e−µ+e− 4.9 · 10−17 (4.9 · 10−17) 1.5 · 10−8 [263]

τ → µπ 1.4 · 10−7 (1.4 · 10−7) 5.8 · 10−8 [264]
τ → µη 2.5 · 10−8 (2.5 · 10−8) 5.1 · 10−8 [264]
τ → µη′ 2.9 · 10−10 (2.9 · 10−8) 5.3 · 10−8 [264]
KL → µe 7.7 · 10−17 (3.3 · 10−17) 4.7 · 10−12 [265]
KL → π0µe 3.5 · 10−18 (2.1 · 10−18) 6.2 · 10−9 [266]
Bd → µe 2.4 · 10−18 (1.3 · 10−18) 9.2 · 10−8 [197]
Bs → µe 7.2 · 10−17 (4.0 · 10−17) 6.1 · 10−6 [267]
Bd → τe 1.4 · 10−11 (1.4 · 10−11) 2.8 · 10−5 [197]
Bs → τe 5.4 · 10−10 (5.4 · 10−10) —
Bd → τµ 1.4 · 10−11 (1.4 · 10−11) 2.2 · 10−5 [197]
Bs → τµ 5.4 · 10−10 (5.4 · 10−10) —

Table 5.11.: Maximal values for LFV decay branching ratios in the SM4, after imposing the constraints
on Br(µ → eγ) and Br(µ− → e−e+e−). The numbers given in brackets are obtained after
imposing the additional constraint R(µTi → eTi) < 5 · 10−12. The current experimental upper
bounds are also given.

5.4.7. Patterns of Correlation and Comparison with other Models

In [72, 210] a number of correlations have been identified that allow to distinguish the LHT
model from the MSSM. These results are recalled in Table 5.12. In the last column of this
table we also show the results obtained in the SM4. We observe:

• For most of the ratios considered here the values found in the SM4 are significantly
larger than in the LHT and by one to two orders of magnitude larger than in the
MSSM.

• In the case of µ → e conversion the predictions of the SM4 and the LHT model are
very uncertain but finding said ratio to be of order one would favor the SM4 and the
LHT model over the MSSM.

• Similarly, in the case of several ratios considered in this table, finding them to be of
order one will choose the SM4 as a clear winner in this competition.
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ratio LHT MSSM (dipole) MSSM (Higgs) SM4

Br(µ−→e−e+e−)
Br(µ→eγ)

0.02. . . 1 ∼ 6 · 10−3 ∼ 6 · 10−3 0.06 . . . 2.2

Br(τ−→e−e+e−)
Br(τ→eγ)

0.04. . . 0.4 ∼ 1 · 10−2 ∼ 1 · 10−2 0.07 . . . 2.2

Br(τ−→µ−µ+µ−)
Br(τ→µγ)

0.04. . . 0.4 ∼ 2 · 10−3 0.06 . . . 0.1 0.06 . . . 2.2

Br(τ−→e−µ+µ−)
Br(τ→eγ)

0.04. . . 0.3 ∼ 2 · 10−3 0.02 . . . 0.04 0.03 . . . 1.3

Br(τ−→µ−e+e−)
Br(τ→µγ)

0.04. . . 0.3 ∼ 1 · 10−2 ∼ 1 · 10−2 0.04 . . . 1.4

Br(τ−→e−e+e−)
Br(τ−→e−µ+µ−)

0.8. . . 2 ∼ 5 0.3. . . 0.5 1.5 . . . 2.3

Br(τ−→µ−µ+µ−)
Br(τ−→µ−e+e−)

0.7. . . 1.6 ∼ 0.2 5. . . 10 1.4 . . . 1.7

R(µTi→eTi)
Br(µ→eγ)

10−3 . . . 102 ∼ 5 · 10−3 0.08 . . . 0.15 10−12 . . . 26

Table 5.12.: Comparison of various ratios of branching ratios in the LHT model [72], the MSSM without
[212, 268] and with significant Higgs contributions [269, 270] and the SM4 calculated here.





6. Summary and Conclusions

In the present work we have performed a detailed analysis of the SM4, including the effects
of direct measurements, electroweak precision tests and CP violation as well as quark and
lepton flavor violation.
Concerning electroweak precision tests, the importance of non-oblique effects has been

shown, leading to a upper bound on the mixing angle s34 ≤ 0.24 (mt′ = 300 GeV) which is
even stronger for larger t′ masses. It has also been shown that the ranges for the possible mass
splittings allowed by oblique parameters are much larger than stated before [39]. Particularly
interesting is the case of nonvanishing s34, for which degenerate masses are within the realms
of possibility.
In the quark sector, we have studied a large number of FCNC and CP violation observables

within the SM4. The most interesting results of this analysis are the following:

• All existing tensions in the UT fits can be removed within the SM4.

• As seen in Fig. 5.14, the attempt to explain the Sψφ anomaly implies the suppression
of the CP asymmetries SφKS

and Sη′KS
in agreement with the data.

• The same anomaly implies a sizable enhancement of Br(Bs → µ+µ−) over the SM3 pre-
diction although this effect is much more modest than in SUSY models. Yet, branching
ratios as high as 8 ·10−9 are certainly possible in the SM4, which is beyond the possible
values obtained by the LHT model and the RSc model.

• Possible enhancements of Br(K+ → π+νν̄) and Br(KL → π0νν̄) over the SM3 values
are much larger than in any other of the above mentioned NP models. Both branching
ratios can reach as high as several 10−10 in the SM4. Moreover, the two branching
ratios are strongly correlated and close to the GN bound, as seen in Fig. 5.4.

• In contrast to the LHT and RSc models, a high value of Sψφ does not preclude a sizable
enhancements of Br(K+ → π+νν̄), and Br(KL → π0νν̄).

• NP effects in KL → π0ℓ+ℓ− and KL → µ+µ− can be visibly larger than in the LHT
and RSc models. In particular Br(KL → µ+µ−)SD can easily violate the existing
bound of 2.5 · 10−9. Imposition of this bound on top of other constraints results in a
characteristic shape of the correlation between Br(K+ → π+νν̄) and Br(KL → π0νν̄)
shown in Fig. 5.4.

• The magnitude of the CP asymmetry AbsγCP remains small, but the desire to explain
large values of Sψφ reverses its sign.

• Even in the presence of SM-like values for Sψφ and Br(Bs → µ+µ−), large effects in
the K-system are possible as illustrated by green points in numerous plots.
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• For large positive values of Sψφ the predicted value of ε′/ε is significantly below the
data, unless the hadronic matrix elements of the electroweak penguins are sufficiently
suppressed with respect to the large N result and the ones of QCD penguins enhanced.

• We have also reemphasized [188,189] the important role ε′/ε will play in bounding rare
K decay branching ratios once the relevant hadronic matrix elements in ε′/ε will be
precisely known (see Sec. 5.1.6 for more details).

Other 4G effects in various observables and correlations between them can be found in
numerous plots in Section 5.1. In particular, in Section 5.3 we have addressed the question of
determining the SM4 parameters with the help of future measurements, employing various
scenarios for the scalings of the 4G mixing matrix angles θ14, θ24 and θ34.
In the lepton sector, we have calculated branching ratios for a large number of lepton flavor

violating decays within the SM4, taking into account all presently available constraints. Our
main messages from this analysis are the following:

• The branching ratios for ℓi → ℓjγ, τ → ℓπ, τ → ℓη(′), µ− → e−e+e−, τ− → e−e+e−,
τ− → µ−µ+µ−, τ− → e−µ+µ− and τ− → µ−e+e− can all still be as large as the present
experimental upper bounds, but not necessarily simultaneously.

• The correlations between various branching ratios should allow to test this model. This
is in contrast to the SM3, where all these branching ratios are unmeasurable.

• The rate for µ− e conversion in nuclei can also reach the corresponding upper bound.

• The pattern of the LFV branching ratios in the SM4 differs significantly from the one
encountered in the MSSM and LHT, allowing to distinguish these two models with the
help of LFV processes in a transparent manner, as can be seen from Table 5.12.

• The branching ratios for KL → µe, KL → π0µe, Bd,s → µe, Bd,s → τe and Bd,s → τµ
turn out to be by several orders of magnitude smaller than the present experimental
bounds.

In summary, the SM4 offers very rich patterns of (lepton) flavor violation which can be
tested already in the coming years – particularly through precise measurements of Sψφ,
Br(Bq → µ+µ−), Br(K+ → π+νν̄) and, later, SφKs

, Sη′Ks
and Br(KL → π0νν̄). Further-

more, precise measurements of the phase γ ≈ δ13 will be important for this investigation.
We close our detailed analysis with the following important question: Can the SM4 be ex-
cluded by precise measurements of FCNC processes? The answer is positive, provided large
departures from the SM3 are observed with a different pattern of deviation from the SM3
predictions than found in our analysis. Let us just list three examples:

• Large values of Sψφ > 0.6 accompanied with SM-like values of Br(Bs → µ+µ−) will
clearly disfavor the SM4 as the explanation of the Sψφ anomaly.

• Similarly, such large values accompanied by the observation of SφKs
≈ Sη′Ks

≈ SψKs

would also put the SM4 into difficulties.
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• Finally, Sψφ > 0.3 accompanied by the ε′/ε relevant R6 ≈ R8 ≈ 1 from future lattice
calculations will disfavor SM4 by means of the measured ε′/ε.

It is evident from our analysis that apart from direct measurements and electroweak
precision tests, FCNC processes will contribute in a profound manner to the search for the
4G quarks and leptons and, in the case of direct discovery, to the exploration of the structure
of their weak mixings. We hope that our work will serve as a guideline to the analysis of
future data from LHC and high-intensity experiments, and finally help to firmly establish or
exclude the presence of a fourth sequential generation in nature.





A. Effective FCNC Vertices

In this section, we will give the formulae for generic effective FCNC vertices in the full theory.
Once these are known, it is a rather simple exercise to calculate the effective Hamiltonians
necessary for the calculation of flavor observables in Section 4.2.

The vertices are all calculated in t’Hooft-Feynman gauge (ξ = 1) and with Feynman rules
obtained from “iL”, so they have to be multiplied by i in order to obtain their contribution
to the effective Hamiltonian. For reasons of clarity we do not show the diagrams involving
fictitious Higgs H̃± exchanges, but of course these have to be taken into account wherever a
W± boson occurs.

In order to keep the expressions as general as possible, we will denote incoming and
outgoing fermions (quarks or leptons) by a, b and c, d respectively. Where it is necessary
to further specify the type of fermions, we will denote up- and down-type quarks by ui ∈
{u, c, t, t′} and di ∈ {d, s, b, b′}, charged leptons and neutrinos by ℓi ∈ {e, µ, τ, τ ′} and νi ∈
{ν1, ν2, ν3, ν4}) respectively. For any of these fermions f , the squared fermion to W mass

ratio will be denoted by xf =
m2

f

M2
W

.

Furthermore, we use the generalized CKM and PMNS factors defined in (2.18,2.47):

λ(dadb)ui
≡ VuidaV

∗
uidb

, (A.1a) λ
(uaub)
di

≡ VubdiV
∗
uadi

, (A.1b)

λ(ℓaℓb)νi
≡ UℓbνiU

∗
ℓaνi

, (A.1c) λ
(νaνb)
ℓi

≡ UℓiνaU
∗
ℓiνb

. (A.1d)

obeying the unitarity relation
4∑

i=1

λ
(ab)
i = δab . (A.2)

Finally, the sine and cosine of the Weinberg angle are denoted by sW ≡ sin θW and cW ≡
cos θW .

A.1. Generic Effective Vertices

A.1.1. Generic Box Vertex

Basic Vertex:

Box diagrams occur in both ∆F = 2 and ∆F = 1 FCNC processes. Basically, there are two
different types of such diagrams, depending on the relative sign σ of the weak isospins T3 of
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the two fermion lines. For equal T3, i.e. σ = +1, the vertex is

ji

b

a

c

d

≡

W±

j

W±

i

b

a

c

d

= −iGF√
2

α

2πs2W
S λ

(ab)
i λ

(cd)
j B(+)(xi, xj)

(
b̄a
)

V−A

(
d̄c
)

V−A
, (A.3)

while for different T3, i.e. σ = −1

ji

b

a

d

c

≡

W±

W±

ji

b

a

d

c

= −iGF√
2

α

2πs2W
Sλ(ab)i λ

(cd)
j B(−)(xi, xj)

(
b̄a
)

V−A

(
d̄c
)

V−A
, (A.4)

where we introduced generalized box functions B(σ) defined by

B(+)(xi, xj) =
1

4

[

U(xi, xj) +
xixj
4
U(xi, xj)− 2xixjŨ(xi, xj)

]

= Bµµ̄(xi, xj) , (A.5a)

B(−)(xi, xj) = −
[

U(xi, xj) +
xixj
16

U(xi, xj) +
xixj
2
Ũ(xi, xj)

]

= −4Bνν̄(xi, xj) ,(A.5b)

with U and Ũ given in (B.3). For reasons of clarity, we have also shown the relations of B(σ)

to the commonly used box functions Bµµ̄ and Bνν̄ given in (B.1).

Summed Up Vertex in the SM4:

By summing over all loop fermions i, j, one obtains

b

a

d

c

=
4∑

i,j=1

ji

b

a

d

c

= −i
4∑

i,j=1

GF√
2

α

2πs2W
S λ

(ab)
i λ

(cd)
j B(σ)(xi, xj)

(
b̄a
)

V−A

(
d̄c
)

V−A

GIM
= −iGF√

2

α

2πs2W
S

4∑

i=2

λ
(ab)
i

(

δcdB
(σ)
0 (xi) +

4∑

j=2

λ
(cd)
j F (σ)(xi, xj)

)

×

(
b̄a
)

V−A

(
d̄c
)

V−A
(A.6)
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In the last step we have performed the GIM mechanism: Utilizing the unitarity of the
4×4 CKM/PMNS matrix (2.19), one can drop the i = 1 contribution (mu, md, me, mν1 ≈ 0)

in the two sums and obtains the two loop functions B
(σ)
0 (x) and F (σ)(xi, xj)

B
(σ)
0 (xi) = B(σ)(xi, 0)−B(σ)(0, 0) (A.7a)

F (σ)(xi, xj) = B(σ)(xi, xj)− B(σ)(xi, 0)−B(σ)(0, xj) +B(σ)(0, 0) (A.7b)

which are related to the loop functions B0(xi), F
µµ̄(xi, xj), F

νν̄(xi, xj) and S0(xi, xj) used
for example in [67–69]

B
(+)
0 (xi) = −1

4
B

(−)
0 (xi) = B0(xi) (A.8a)

F (+)(xi, xj) = −F µµ̄(xi, xj) =
1

4
S0(xi, xj) (A.8b)

F (−)(xi, xj) = 4F νν̄(xi, xj) (A.8c)

A.1.2. Generic Z0 Penguin Vertex

Basic Vertex:

Z

a b

i
=

W±

i i

Z

a b

+

i

W± W±

Z

a b

= +i
GF√
2

e

2π2
M2

Z

cW
sW

λ
(ab)
i 2C0(xi)

(
b̄γµ(1− γ5)a

)
, (A.9)

with the loop function

C0(x) =
x

8

[
x− 6

x− 1
+

3x+ 2

(x− 1)2
log x

]

, (A.10)

where we have dropped an (infinite) constant c = −1
ǭ
(MS scheme), which cancels due to

the GIM mechanism.
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Four-Fermion Vertex involving the Z0-Penguin:

From (A.9) and the Feynman rules for Z0-fermion-coupling follows

Z

b

a

f

f

i =− i
GF√
2

α

2πs2W
λ
(ab)
i C0(xi) ×

(
b̄a
)

V−A
⊗
[(
f̄ f
)

V−A
(T f3 −Qfs

2
W )−

(
f̄ f
)

V+A
Qfs

2
W

]

, (A.11)

(A.12)

where Qf and T f3 are the charge and weak isospin of the coupled fermion f , respectively.

A.1.3. Generic Photon Penguin Vertex

A.1.3.1. Off-Shell γ Penguin

Basic Vertex:

γ

a b

i
=

W±

i i

γ

a b

+

i

W± W±

γ

a b

+
i

W±

b

γ

a b

+
a

γ

i

W±
a b

= −iGF√
2

e

8π2
λ
(ab)
i D(i)(xi) b̄(q

2γµ − qµ/q)(1− γ5)a , (A.13)

with the general off-shell γ penguin function

D(i)(x) = Qi

(
x (x2 + 11x− 18)

12(x− 1)3
− (9x2 − 16x+ 4) log x

6(x− 1)4

)

+
(−7x2 + x+ 12)x

12(x− 1)3
− (x2 − 10x+ 12)x2 log x

6(x− 1)4
. (A.14)

For the different possible types fermions running in the loop, the function D(i)(x) becomes

D(i)(x) = D0(x) for up-type quarks: i ∈ {u, c, t, t′} , (A.15a)

D(i)(x) = H0(x) for neutrinos: i ∈ {ν1, ν2, ν3, ν4} , (A.15b)

where the SM functions on the right hand side are given in (B.4).
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Four-Fermion Vertex Involving the Off-Shell γ-Penguin:

γ

b

a

f

f

i =+ i
GF√
2

α

2π
λ
(ab)
i D(i)(xi) Qf

(
b̄a
)

V−A

(
f̄ f
)

V
, (A.16)

A.1.3.2. On-Shell γ Penguin

Basic Vertex:

a b

γ′

i

=

W±

i i

a b

γ′

+

i

W± W±

a b

γ′

+

i

W±

b

a b

γ′

+
a i

W±
a b

γ′

= +i
GF√
2

e

8π2
λ
(ab)
i D′(i)(xi) b̄(iσµλq

λma(1 + γ5))a , (A.17)

with the general on-shell γ penguin function

D′(i)(x) = Qi

(
(x2 − 5x− 2) x

4(x− 1)3
+

3x2 log x

2(x− 1)4

)

+
(2x2 + 5x− 1) x

4(x− 1)3
− 3x3 log x

2(x− 1)4
. (A.18)

For the different possible types of loop fermions i, the function D′(i) becomes

D′(i)(x) = D′
0(x) for up-type quarks: i ∈ {u, c, t, t′} ,

D′(i)(x) = H ′
0(x) for neutrinos: i ∈ {ν1, ν2, ν3, ν4} ,

where the SM functions on the right hand side are given in (B.4).

Four-Fermion Vertex Involving the On-Shell γ-Penguin:

γ′

b

a

f

f

i =− i
GF√
2

α

2π
λ
(ab)
i D′(i)(xi) Qf

1

q2
(
b̄ iσµλq

λma(1 + γ5) a
)(
f̄f
)

V
, (A.19)

(A.20)
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A.1.4. Generic Gluon Penguin Vertex

Basic Vertex:

g

a b

i
=

W±

i i

g

a b

+
i

W±

b

g

a b

+
a

g

i

W±
a b

= −iGF√
2

e

8π2
λ
(ab)
i E0(xi) b̄(q

2γµ − qµ/q)(1− γ5)a , (A.21)

with the off-shell gluon penguin function E0(x) given in (B.4).

A.2. Wilson Coefficients and Gauge-Independent Loop

Functions

In the following, we will give the Wilson coefficients for selected operators in the SM4. By
comparison with the SM3 results, we are able to identify the corresponding gauge indepen-
dent loop functions. The results of these calculations are used in Section 4.1.2.1.

A.2.1. Wilson Coefficients for ∆F = 2 Four Fermion Operators

The general ∆F = 2 1 process ab̄ → āb is governed by the effective Hamiltonian

H∆F=2
eff = i

b

a

a

b

+ i

b

a

a

b

=
GF√
2

α

2πs2W
C(∆F=2)Q(∆F=2) , (A.22)

with

Q(∆F=2) = (b̄a)V−A(b̄a)V−A . (A.23)

The Wilson coefficient can easily be calculated from the value of the box diagram given in
(A.6),

C(∆F=2) =
1

2

4∑

i,j=2

λ
(ab)
i λ

(ab)
j F (+)(xi, xj) , (A.24)

with the loop function F (+) given in (B.1c).

1here F can denote both quark- and lepton flavor
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A.2.2. Wilson Coefficients for ∆F = 1 Four Fermion Operators

For the general ∆F = 1 process ab̄ → f f̄ (f 6= a, b), the relevant effective Hamiltonian reads

H∆F=1
eff = i

b

a

f

f

+ i
Z, γ

b

a

f

f

=
GF√
2

α

2πs2W

[

C
(ab̄→ff̄)
9 Q(ab̄→ff̄)

9 + C
(ab̄→ff̄)
10 Q(ab̄→ff̄)

10

]

, (A.25)

with
Q(ab̄→ff̄)

9 = (b̄a)V−A(f̄ f)V , Q(ab̄→ff̄)
10 = (b̄a)V−A(f̄ f)A . (A.26)

The Wilson coefficients can then be calculated from (A.6,A.11,A.16):

C
(ab̄→ff̄)
9 =

4∑

i=2

λ
(ab)
i

(

X
(σ)
f (xi)− 4Qfs

2
W Z̄

(i)(xi)
)

, (A.27)

C
(ab̄→ff̄)
10 = −

4∑

i=2

λ
(ab)
i X

(σ)
f (xi) , (A.28)

where the generalized gauge independent loop functions

X
(σ)
f (xi) = 2T f3 C0(xi) +B

(σ)
0 (xi) +

4∑

j=2

λ
(ff)
j F (σ)(xi, xj) , (A.29)

Z̄(i)(xi) = C0(xi) +
1

4
D(i)(xi) , (A.30)

have been introduced. In order to see the connection of X(σ) to the SM loop functions X0

and Y0 more clearly, we shall define yet another set of gauge independent loop functions

X̄f(xi) ≡ X
(−)
f (xi) = X0(xi) +

4∑

j=2

λ
(ff)
j F (−)(xi, xj) , (A.31)

Ȳ f(xi) ≡ −X(+)
f (xi) = Y0(xi)−

4∑

j=2

λ
(ff)
j F (+)(xi, xj) . (A.32)

In the case of vanishing mixing to the fourth generation, X̄f and Ȳ f reduce to X0 ≡ C0−4B0

and Y0 ≡ C0 − B0, respectively, and therefore reproduce the SM results.





B. Reference: Loop Functions

For reasons of clarity, we shall summarize all loop functions used throughout this work:

Box Functions

S0(x, y) = xy

(
(4− 8y + y2) log y

4(y − 1)2(y − x)
+ (x ↔ y)− 3

4(x− 1)(y − 1)

)

, (B.1a)

S0(x) ≡ lim
y→x

S0(x, y) =
x

4

−4 + 15x− (12− 6 log x)x2 + x3

(x− 1)3
, (B.1b)

F (+)(x, y) ≡ B(+)(x, y)− B(+)(0, y)−B(+)(x, 0) +B(+)(0, 0) =
1

4
S0(x, y) , (B.1c)

F (−)(x, y) ≡ B(−)(x, y)− B(−)(0, y)−B(−)(x, 0) +B(−)(0, 0) , (B.1d)

B
(+)
0 (x) ≡ B(+)(x, 0)− B(+)(0, 0) = −1

4
B

(−)
0 (x) = B0(x) , (B.1e)

with

B(+)(x, y) =
1

4

[

U(x, y) +
xy

4
U(x, y)− 2xyŨ(x, y)

]

= Bµµ̄(x, y) , (B.2a)

B(−)(x, y) = −
[

U(x, y) +
xy

16
U(x, y) +

xy

2
Ũ(x, y)

]

= −4B(νν̄)(x, y) , (B.2b)

and

U(x1, x2) =
x21 log x1

(x1 − x2)(1− x1)2
+

x22 log x2
(x2 − x1)(1− x2)2

+
1

(1− x1)(1− x2)
, (B.3a)

Ũ(x1, x2) =
x1 log x1

(x1 − x2)(1− x1)2
+

x2 log x2
(x2 − x1)(1− x2)2

+
1

(1− x1)(1− x2)
. (B.3b)
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Penguin Functions

C0(x) =
x

8

[
x− 6

x− 1
+

3x+ 2

(x− 1)2
log x

]

, (B.4a)

D0(x) = −4

9
log x+

−19x3 + 25x2

36(x− 1)3
+
x2(5x2 − 2x− 6)

18(x− 1)4
log x , (B.4b)

E0(x) = −2

3
log x+

x2(15− 16x+ 4x2)

6(x− 1)4
log x+

x(18− 11x− x2)

12(1− x)3
, (B.4c)

H0(x) =
x (−7x2 + x+ 12)

12(x− 1)3
− x2 (x2 − 10x+ 12) log x

6(x− 1)4
, (B.4d)

D′
0(x) =

(8x3 + 5x2 − 7x)

12(x− 1)3
− (3x3 − 2x2)

2(x− 1)4
log x , (B.4e)

E ′
0(x) =

3x2

2(x− 1)4
log x+

(x3 − 5x2 − 2x)

4(x− 1)3
, (B.4f)

H ′
0(x) =

x (2x2 + 5x− 1)

4(x− 1)3
− 3x3 log x

2(x− 1)4
, (B.4g)

L̃2(x) = −x 2x2 − 21x− 1

2(x− 1)3
− 3x3

(x− 1)4
log x . (B.4h)

Gauge Invariant Loop Functions

X0(x) =
x

8

[
x+ 2

x− 1
+

3x− 6

(x− 1)2
log x

]

, (B.5a)

Y0(x) =
x

8

[
x− 4

x− 1
+

3x

(x− 1)2
log x

]

, (B.5b)

Z0(x) = −1

9
log x+

18x4 − 163x3 + 259x2 − 108x

144(x− 1)3

+
32x4 − 38x3 − 15x2 + 18x

72(x− 1)4
log x , (B.5c)
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möchte ich Wolfi, Björn, Moni und Stefan für ihre Hilfsbereitschaft bei der Bereitstel-
lung der Vergleichsdaten danken.

• Meinen Eltern für ihre unerschütterliche Liebe und unermüdliche Unterstützung, nicht
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Ihr habt es mir ermöglicht, dass ich mich heute in dieser privilegierten Lage befinde. Dafür
gebührt Euch allen mein tief empfundener Dank.


