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ABSTRACT

Single-color centers in thin polycrystalline diamond membranes allow the platform to be used in integrated quantum photonics, hybrid
quantum systems, and other complex functional materials. While single-crystal diamond membranes are still technologically challenging to
fabricate as they cannot be grown on a non-diamond substrate, free-standing polycrystalline diamond membranes can be conveniently fabri-
cated at large-scale from nanocrystalline diamond seeds on a substrate that can be selectively etched. However, their practical application for
quantum photonics is so far limited by crystallographic defects, impurities, graphitic grain boundaries, small grain sizes, scattering loss, and
strain. In this paper, we report on a single-photon source based on silicon-vacancy color centers in a polycrystalline diamond membrane. We
discuss the spectroscopic approach and quantify the photon statistics, obtaining a g2(0)� 0.04. Our findings hold promise for introducing
polycrystalline diamond to quantum photonics and hybrid quantum systems.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0191665

Color centers in diamonds are developed into quantum devices
as reliable single-photon sources,1 for quantum computers and net-
works2,3 and as quantum sensors.4 Particularly, the negatively charged
silicon-vacancy (SiV�) color center has been identified as a promising
single-photon source as it exhibits strong emission in the zero-phonon
line (ZPL) of around 738nm, with an excited-state lifetime of about
1 ns (Refs. 5 and 6) and operation both at room and higher tempera-
tures.7 Single-photon rates in the range of megahertz and the nature of
its polarized emission8 also indicate potential application for instance
in quantum cryptography9 and quantum frequency conversion.10 For
robust heterostructure devices, integrated quantum photonics, hybrid
quantum systems,11 and other complex functional materials, the color
centers should be in thin free-standing membranes of thickness from a

few micrometers to a hundred nanometers. It is straightforward to
think of using the highest-quality single-crystal diamond. However,
the fabrication of single-crystal diamond membranes is technologically
challenging as they cannot be grown on a non-diamond substrate,
their physical and chemical properties also make the micro/nano-
structuring far behind advanced material platforms like silicon tech-
nology.11–15 On the other hand, free-standing polycrystalline diamond
membranes can be easily obtained from nanocrystalline diamond
seeds supported by a substrate that can be selectively (wet-)etched.16,17

However, their practical application for quantum optics or integrated
quantum photonics is so far limited due to crystallographic defects
mainly of the non-diamond carbon phases of the host matrix.17–19

Particularly, the sp2 carbon hybridized part of grain center and
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boundaries deteriorates the quantum efficiency of the emitter,5,11,19

and the background photoluminescence prevents addressing single-
color centers in polycrystalline membranes.20

In this paper, we report on the observation of a single-photon
source based on a SiV color center in a polycrystalline diamond mem-
brane. We discuss the spectroscopic approach and quantify the photon
statistics.

At first, different diamond films with thicknesses of 55 nm,
100nm, 170nm, 370 nm, 3 lm, and 5lm are fabricated using the
microwave plasma chemical vapor deposition (MPCVD) technique on
a silicon wafer using a CH4/H2 gas mixture, at a substrate temperature
of 800 �C, with pressure of 150 mbar and a flow rate of 300 sccm. The
concentration of CH4 is 1%.

After growth, the diamond film is polished, and the 2mm diame-
ter of the substrate is etched using deep reactive-ion etching, leading to
a self-standing membrane on a silicon substrate. In addition, a circular
groove of nearly 5mm in diameter is made around the self-standing
membrane. Laser cutting along this groove results in a 5mm sample
with a 2mm self-standing diamond membrane supported by a silicon
frame.

In the fabricated sample, silicon impurities are already present
due to diffusion of the atoms from the silicon substrate and/or from
the silica reactor windows.20 We observe that the color centers created
using this method form SiV clustering near and at the grain boundary
(see the supplementary material, Fig. S1). To create single-color centers
in the grain center, rich in sp3 hybridized carbon phase, we used ion
implantation. The Si-ion implantation uses a 3MV Tandetron acceler-
ator equipped with a HVEE860 negative sputter ion source to acceler-
ate ion species (Siþ, Si2þ, Si3þ).21 We implant Si3þ ions accelerated at
9MeV with a fluence of 108 cm�2. This fluence is chosen as it allows
us to find single emitters in the optical diffraction limit region.

Moreover, the implantation depth was controlled by degrading the ion
energy further down to a few tens of kilo electron volts using double
2.3lm thick aluminum foils.

Thermal annealing at 1150 �C for 1 h, with a heating ramp of
20 �C/min, in high vacuum conditions leads to active SiV color centers
in the diamond membranes. Annealing allows the implanted impurity
atoms to be placed at the lattice positions, makes vacancies mobile,
and brings them to the Si atoms. In addition, it reduces the crystal
damage, hence minimizing non-radiative recombination caused by the
ion implantation, and restores the crystal lattice.6 After fabrication, the
samples are cleaned in a UV-ozone cleaner for 2 h and ultrasonicated
with 50% acetone/50% isopropyl alcohol for 2 h and further dried with
clean-dry air.

As shown in Fig. 1 schematically and using scanning transmis-
sion electron microscopy (STEM) images of a 5lm thick diamond
membrane, the first few hundreds of nanometers are mainly domi-
nated by seed and intermediate layers. These are known to contain
high concentrations of sp2 graphitic carbon and other impurities.22

The STEM images were acquired using a Thermo Fisher FEI Talos
F200X operating at 200 kV. The TEM lamella was prepared by an FEI
Helios G4 CX focused ion beam following a standard lift-out proce-
dure and thinned down to about 100 nm with parameters provided in
the supplementary material. It is evident that large grains are already
observed after a few hundreds of nanometers from the formation of an
initial nucleation layer. Bright-field and dark-field STEM images (see
also Fig. S2) show that grain sizes larger than the optical diffraction
limit can be obtained after a growth of a few micrometers (roughly
above 2–3lm).

Raman and photoluminescence spectroscopy using a confocal
l-photoluminescence optical setup also verifies that the optical proper-
ties of the diamond needed for single-photon emission can be obtained

FIG. 1. (a) Schematics and STEM images
showing the different layers of a 5 lm
thick polycrystalline diamond membrane.
(b) Raman and photoluminescence spec-
trum of a 100 nm thick, 3 lm thick, and
bulk-polycrystalline diamond.
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for a micrometer-scale thick polycrystalline membrane. Figure 1(b)
shows the spectrum of 100 nm thick, 3lm thick, and bulk polycrystal-
line diamond excited by 647nm laser (Coherent, Innova 70, Ar/Kr ion
hybrid). The first spectral peak around 708.7 nm of the 100nm thick
diamond corresponds to the 1346 cm�1 D band of graphite, partly
coinciding with the diamond Raman peak at 708nm (1332 cm�1) and
the one at 720 nm corresponds to the G peak of graphite (1575 cm�1).
The peak at 742 nm is attributed to SiV color centers. The strain in the
diamond thin film, due to growth on a substrate with a different ther-
mal expansion coefficient,23 is responsible for the shift in the ZPL of
the color centers in the membranes as compared to the typical ZPL at
738nm of SiV color centers in bulk diamond.24 The GR1 (single
vacancy) color center has also the ZPL at 742nm, but these defect cen-
ters are usually removed when the sample is annealed above 600 �C.25

As evident from the spectral signatures, the nanodiamond membranes
are mainly dominated by the graphitic phase. The photoluminescence
spectra of 55, 170, and 370nm thick diamond membranes show simi-
lar optical properties [see the supplementary material, Fig. S3(a)]. The
excited-state lifetime measurements of ensembles of color centers in
these membranes exhibit a lifetime between 0.5 and 0.8 ns, suggesting
an increase in non-radiative decay processes. This is expected as high
concentrations of grain boundaries are within the confocal volume.
For a diamond membrane thicker than 3lm, the typical diamond
Raman peak appears at 708nm (1332 cm�1) as shown in Fig. 1(c)
(red). Their grain size can also reach a size above a micrometer.20

Hence, we focus our attention on a 5lm thick diamond membrane to
interrogate single SiV color centers in the grain center.

Optical spectroscopy study of single SiV color centers in the
implanted diamond membranes was also performed using the same
home-built confocal microscopy along with widefield imaging tech-
nique.26 For effectively suppressing the background due to nitrogen
vacancy and other complexes, we used a 690nm laser [see the supple-
mentary material and Fig. S3(b)].

Figure 2 (blue circle) shows a SiV in the grain center in the spec-
tral region defined by a bandpass filter centered at 740 nm with 13 nm
bandwidth (see also Fig. S4). The spectrum of the color center in this
grain center exhibits a Lorentzian-like emission profile with the central
peak of around 741nm and a linewidth of 11 nm. The color centers in
and near the grain boundaries have a background contribution, and a
background corrected Lorentzian fit reveals a linewidth of around
13nm [see Fig. 2(b)]; a wider spectral window is chosen using a band-
pass filter centered at 747 nm with 33 nm bandwidth to observe the

spectral trend in more detail. The broadening of the ZPL emission of
the color centers in the diamond membrane as compared to bulk is
mainly attributed to stress and crystal imperfections. The phonon den-
sity of states of an imperfect crystal determines the extent to which the
electronic transition interacts with different lattice modes.27 Stress is
also a known source of spectral broadening and shifting of the ZPL of
the SiV color center in the diamond membrane.2,28

The broad background signal observed in and near the grain
boundaries is mainly attributed to sp2 hybridized and bonded disor-
dered carbon, as it introduces electronic states into the bandgap29 and
to the typical luminescence of the grain boundaries in the polycrystal-
line diamond.30

Time resolved spectroscopy shows the color center in the grain
center exhibits a deconvoluted excited-state lifetime of 1.1 ns, as
depicted in Fig. 3(a). This value is similar to the lifetime as SiV color
centers in the bulk diamond.

Using the Hanbury Brown–Twiss (HBT) intensity interferome-
try, the second order correlation measurements reveal photon anti-
bunching with g2(0)� 0.04 under continuous-wave excitation,
verifying the detection of single SiV in the grain center [Fig. 3(b)]. For
a pump power below saturation, the color center shows a two-level-
type photodynamics as discussed in the supplementary material (see
Figs. S5 and S6). However, above saturation, a photon bunching
behavior is apparent at a longer delay times, and a three-level scheme
is considered to include a shelving state to determine the transition
rates (see the discussion in the supplementary material and Fig. S7).
Taking into account the linear dependence of the transition rate from
the ground state to the excited state c12, with the excitation power P,
and the dependence of the bunching parameters on the excitation
power, the excited state decay rate amounts to c21 � 909MHz, and
the transition from the excited state to shelving state becomes
c23 � 0:714MHz, and the de-shelving rate is approximated by
c31 � 0:7MHz (see the supplementary material for detail). Similar
values have been reported for single SiV color centers in diamond
nanocrystals.5 The single-photon emission purity of SiV color centers
away from the grain center is deteriorated due to the unwanted back-
ground and lower crystal quality due to high concentration of sp2

phases [see Fig. 2(b) black curve and Fig. S8].
One of the important figures of merit for a single-photon source

is the photon count rate at saturation and the quantum efficiency of
the emitter. Figure 3(c) shows the saturation curve for a single SiV
color center. The count rate I has been fitted using the function

FIG. 2. (a) Widefield image of SiV color
centers in a polycrystalline diamond mem-
brane of 5lm thickness. The green lines
show the grain boundaries. The blue and
black circles depict SiV color centers
inside and on the grain boundaries,
respectively. (b) The color center inside
the grain boundary [blue circle in (a)]
shows a Lorentzian-type emission spec-
trum (blue curve), while the color centers
around the grain boundary [black circle in
(a)] have a background contribution (black
curve).
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I ¼ I1
1þPsat

P

þ CbgP; where Psat is the excitation power at saturation, and

I1 is the maximum photon count rate (in units of photon counts per
second, cps). The background is measured in the nearby region, where
no SiV is detected. Using this equation, we found a maximum photon
count rate of I1¼ 5.2� 103 cps (at Psat¼ 333lW), which corresponds
to about �6� 105 cps, taking into account light trapping in the dia-
mond and the overall detection efficiency of our setup.

The experimental determination of the intrinsic quantum effi-
ciency g requires information about radiative and total decay rates.
Under low pump power, fluorescence lifetime measurements can be
best approximated as the inverse of total decay rates. The determination
of radiative decay rates should be carefully considered as transitions
from the excited state to the shelving state and back to the ground state
take a few hundreds of nanoseconds. In experimental terms, we define
the intrinsic quantum efficiency g as the ratio of the number of emitted
photons to the number of successful excitations. To determine these
two parameters, we saturate a single SiV color center using 1MHz laser,
<90 ps pulse width at FWHM (PicoQuant, PDL 800-D, LDH-D-C-
660). The 1 ls pulse separation ensures that each incident laser pulse
leads to an excitation, as each of the pulses finds the color center in the
ground state after the previous excitation (as shown schematically in
Fig. S9). In other words, the number of excitations per second is exactly
the same as the repetition rate of the excitation laser. Taking into
account the system detection efficiency and light outcoupling efficiency
from the host medium, we determine that the total emitted photons per
second corresponds to 2.8� 104 cps. Hence, the intrinsic quantum effi-
ciency is around 2.8%, similar to the quantum efficiency of single SiV
color centers in diamond nanocrystals.5 The radiative- and non-
radiative decay rates then will approximately be 26 and 883MHz,
respectively (see the supplementary material for detail).

Another important aspect of the single-photon emission from
SiV color centers in diamonds is its ability to emit polarized photons.

Many applications, such as quantum cryptography (BB84 protocol),
require a well-defined state of polarization.9 In addition, it allows us to
maximize the signal-to-noise ratio as the dipole preferentially absorbs
a certain polarization. To measure the polarization contrast visibility, a
half-wave plate is used to rotate the angle of polarization of the excita-
tion laser light. Figure 3(d) displays the observed emission of SiV color
center for a given polarization angle. The power of the excitation laser
is the same for all degrees of polarizations. Polarization contrast visibil-
ity of more than 0.85 (85%) is obtained according to V ¼ ðImax�IminÞ

ImaxþImin
.

The deviation from unity (100%) is attributed to an off-plane angular
misalignment of the transition dipole moment, depolarization due to
the used dichroic mirror, and the multiple- and large angle refraction
of the high numerical aperture (NA) objective (NA¼ 0.95, 50�).

In conclusion, we have reported the single-photon emission from
SiV color centers in polycrystalline diamond membranes and discuss the
spectroscopic approach to quantify the single-photon emission dynamics.
The platform can also be back-etched and/or nanostructured for inte-
grated quantum photonics.11 In addition, the film thickness allows us to
control and manipulate the photophysics using resonant structures, for
example, by using planar antennas to achieve large collection efficiency
and directionality.31,32 Furthermore, the proposed approach is general,
and it can also be used for other types of color centers, for example, NV
and group IV defect centers (such as GeV�, SnV�, and PbV�).

See the supplementary material for further details on the photo-
physics of SiV color centers in polycrystalline diamond membranes.
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as a function of excitation power. (d).
Polarization-dependent count rates. The
excitation power is kept constant, but the
polarization state is changed. The spectra
are measured from the 5lm thick dia-
mond membrane.
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