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Abstract
This article reviews some results of the SAGEX programme that have devel-
oped in the understanding of the interplay of supersymmetry and modular
covariance of scattering amplitudes in type IIB superstring theory and its holo-
graphic image in N = 4 supersymmetric Yang–Mills theory (SYM). The first
section includes the determination of exact expressions for BPS interactions
in the low-energy expansion of type IIB superstring amplitudes. The second
section concerns properties of a certain class of integrated correlators in N = 4
SYM with arbitrary classical gauge group that are exactly determined by super-
symmetric localisation. Not only do these reproduce known features of pertur-
bative and non-perturbative N = 4 SYM for any classical gauge group, but
they have large-N expansions that are in accord with expectations based on the
holographic correspondence with superstring theory. The final section focusses
on modular graph functions. These are modular functions that are closely
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associated with coefficients in the low-energy expansion of superstring per-
turbation theory and have recently received quite a lot of interest in both the
physics and mathematics literature.

Keywords: superstring theory, conformal field theory, scattering amplitudes,
duality, AdS/CFT correspondence
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1. Introduction

This article reviews recent developments concerning properties of superstring scattering
amplitudes and their relation to correlation functions of gauge-invariant composite opera-
tors in N = 4 supersymmetric Yang–Mills theory (SYM). These are areas in which there
has been a large amount of recent work, but we will concentrate on rather restricted fea-
tures that are close to our own research interests and hopefully illustrate more general
principles.
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Section 2 is concerned with aspects of the low-energy expansion of type IIB superstring
amplitudes which are highly constrained by maximal supersymmetry and SL(2,Z) S-duality.
Successive terms in this expansion are higher-dimension interactions with coefficients that are
modular forms that transform with specific holomorphic and anti-holomorphic weights under
SL(2,Z) transformation of the complex scalar field τ = τ 1 + iτ 2 that parameterises the coset
space SL(2,R)/U(1).

The interactions that contribute to the four-graviton amplitude up to mass dimension 14 are
fractional BPS terms and are proportional to d2nR4, where n � 3 and R4 is a particular contrac-
tion of four Riemann tensors that is fixed by supersymmetry. These terms have coefficients that
are modular functions of τ that are fully determined by supersymmetry and S-duality supple-
mented by a boundary condition in the large-τ2 limit, i.e. in the weak string coupling limit. The
coefficients of the R4 and d4R4 interactions will be seen to satisfy Laplace eigenvalue equations
in the upper-half τ plane. The solutions of these equations are known to be non-holomorphic
Eisenstein series.

The coefficient of the d6R4 interaction satisfies an inhomogeneous Laplace eigenvalue
equation with a source term that is quadratic in non-holomorphic Eisenstein series. This has
a solution that is a ‘generalised’ non-holomorphic Eisenstein series. We will see that there
are many other BPS higher-derivative interactions that have mass dimensions �14 that are
related to the four-point amplitude. In general n-point amplitudes with n > 4 may violate
the conservation of the U(1) R-symmetry of type IIB supergravity, due to stringy correc-
tions. Their coefficients transform as modular forms with holomorphic and anti-holomorphic
weights (w,−w). Here we will consider the special amplitudes that violate U(1) R-symmetry
maximally, which are known as maximal U(1)-violating (MUV) amplitudes and for which
w = n − 4. The expressions for these modular forms are determined by soft-dilaton rela-
tions combined with supersymmetry. A summary of some mathematical properties of mod-
ular forms, non-holomorphic Eisenstein series and generalised Eisenstein series is given in
appendix A.

In section 3 we will consider exact properties of integrated correlators of BPS operators in
the stress tensor supermultiplet of N = 4 supersymmetric Yang–Mills (SYM) theory with any
classical gauge group, GN = SU(N), SO(2N), SO(2N + 1), USp(2N). These integrated correla-
tors are determined by the partition function of the N = 2∗ SYM theory, which can be viewed
as a mass deformation of the N = 4 theory. Most of our discussion will be concerned with an
integrated correlator that is proportional to Δτ ∂

2
m log ZGN (m, τ , τ̄ )|m=0, where theN = 2∗ par-

tition function, Z(m, τ , τ̄ ), is determined by supersymmetric localisation on S4, the parameter
m is the hypermultiplet mass and Δτ = 4τ 2

2 ∂τ∂τ̄ is the hyperbolic Laplacian on the upper-half
τ plane.

We will see that this correlator can be expressed as a two-dimensional lattice sum for any of
the gauge groups. This is a well-defined expression valid for all values of N and τ . It can also
be written as a formal infinite sum of non-holomorphic Eisenstein series of integer index with
rational coefficients. The integrated correlator with GN gauge group satisfies a rather remark-
able ‘Laplace-difference’ equation that has an iterative solution relating it to the integrated
correlator with SU(2) gauge group. The perturbative and non-perturbative instanton contribu-
tions to this integrated correlator are easy to extract for any finite value of N and display a
number of intriguing features.

For example, the planar contributions to the perturbative expansion in powers of a suitable ’t
Hooft coupling aGN are the same for all gauge groups and non-planar terms first enter at order
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a4
GN

. The large-N expansion shows similarly interesting regularities. Furthermore it has a struc-
ture that makes manifest the holographic relationship to the low-energy expansion of type IIB
superstring theory in AdS5 × S5 in the SU(N) case and AdS5 × S5/Z2 for other classical gauge
groups. Some of the large-N properties of a second integrated correlator that is proportional to
∂4

m log ZGN (m, τ , τ̄ )|m=0 are determined in section 3, where the generalisation to n-point MUV
integrated correlators is also presented. The large-N expansion of these integrated correlators
will be used to determine the low-energy expansion of superstring amplitudes in AdS5 × S5.
In the flat-space limit, these reproduce the exact results obtained in section 2 using different
methods.

Section 4 focusses on properties of modular graph functions. These modular functions are
closely associated with the low-energy expansions of the perturbative contributions to type
IIB superstring amplitudes. The contribution to the amplitude at order g2g−2

s (where gs is the
string coupling constant) is defined by a functional integral over genus-g world-sheets. The
low-energy expansion of the tree amplitudes (the g = 0 case) has been extensively studied
and generates infinite series of powers of Mandelstam invariants with coefficients that are
rational multiples of single-valued multiple zeta values. These are special values of single-
valued multiple polylogarithms, which have close connections with mathematical aspects of
Feynman diagrams. Much less is known about the general structure of n-point amplitudes at
genus g � 1.

In general, the integration over the positions of the punctures, i.e. the vertex operators inser-
tion points, cannot be done exactly but can be performed order by order in the low-energy,
α′ → 0, expansion. The result of integrating over the positions of the punctures are functions of
the world-sheet moduli. In such cases the low-energy expansion is a series of terms with coef-
ficients that are integrals of genus-g ‘modular graph functions’. In section 4 we will review
the structure and properties of genus-one, g = 1, modular graph functions. These are func-
tions of a single complex modulus which is the complex structure of the toroidal genus-one
world-sheet.

These functions are elliptic generalisations of single-valued multiple zeta values that may
be described in terms of Feynman diagrams for free scalar fields propagating on a two dimen-
sional torus. Consequently the loop momenta are integers and the diagrams are expressed as
multiple lattice sums. The modular graph functions that are generated by the low-energy expan-
sion of the four-point genus-one amplitude form a special subset of general genus-one modular
graph functions. We will further see that a systematic analysis of their properties requires the
consideration of modular graph forms that transform with non-trivial holomorphic and anti-
holomorphic modular weights. The genus-one modular graph functions described by two-loop
Feynman diagrams are closely related to generalised Eisenstein series defined in appendix
A. In the final part of section 4 we will briefly describe some features of genus-two modu-
lar graph functions, which are functions of the three complex moduli of genus-two Riemann
surfaces.

We end with some brief comments in section 5.
Due to space constraints, the description of these topics is necessarily superficial. However,

our discussion points towards the relevant references for those who are keen on understanding
these results at a deeper level.
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2. Supersymmetry and modular constraints on low-energy expansion

2.1. Low-energy expansion of type IIB superstring theory

In this section we will review some exact results concerning the low-energy expansion of
massless scattering amplitudes in type IIB superstring theory. The results may be conveniently
expressed in terms of an effective Lagrangian that has the form (in the string frame)

Leff = (α′)−4g−2
s R + E

(
3
2

; τ , τ̄

)
(α′)−1g

− 1
2

s R4 + E

(
5
2

; τ , τ̄

)
α′g

1
2
s d4R4

+ E
(

3
2

,
3
2

; 3; τ , τ̄

)
(α′)2gs d6R4 + · · · . (1)

In this expressionα′ = �2
s is the square of the string length scale. The leading term proportional

to R is the Einstein–Hilbert term (where R is the Ricci scalar), which has mass dimension
2. Together with its supersymmetric completion that involves more bosonic and fermionic
fields, it describes type IIB supergravity in ten dimensions. The scalar field τ parameterises
the coset space SL(2,R)/U(1) in the classical theory, which is invariant under SL(2,R). How-
ever this symmetry is broken by quantum corrections that generate an anomaly in the U(1)
R-symmetry that is consistent with the breaking of SL(2,R) to SL(2,Z) [1], which is the
duality symmetry of type IIB superstring theory. The low-energy expansion (1) is therefore
invariant under SL(2,Z), and τ parameterises a fundamental domain that may be chosen to be
Fτ = {|τ1| � 1

2 , |τ | � 1}.
The second term in (1) is proportional to R4 [2, 3], which is a specific contraction of four

Riemann tensors that has mass dimension 8 and is 1/2-BPS, which means it preserves 16
of the 32 supersymmetries associated with ten-dimensional maximal supersymmetry. Simi-
larly, the higher-derivative term d4R4 has mass dimension 12 and is 1/4-BPS while d6R4 has
mass dimension 14 and is 1/8-BPS. Maximal supersymmetry determines the Lorentz con-
tractions of the tensor indices. It also forbids the presence of R2 and R3 interactions. The
ellipsis in (1) represents the suppressed supersymmetric completion, as well as higher-order
terms and terms that contribute to n-point amplitudes with n > 4, which we will come back
to later.

The four BPS terms displayed in (1) are those that contribute to the four-point amplitude
and are protected by supersymmetry. As we will see, their coefficients are modular func-
tions that are solutions to specific Laplace equations that are determined by supersymmetry
combined with SL(2,Z) invariance. Some properties of the modular functions of relevance
to this article are given in appendix A. The function E(s; τ , τ̄ ) is a non-holomorphic Eisen-
stein series, which satisfies the Laplace eigenvalue equation (A.10). In its zero Fourier mode
for τ 1, this function has two terms that are power-behaved in τ 2 = 1/gs which are inter-
preted as perturbative contributions. The two perturbative contributions to the coefficient of

the R4 interaction, g
− 1

2
s E( 3

2 ; τ , τ̄ ) [4–6], correspond to tree-level and genus-1 (τ 2
2 and τ 0

2 )
contributions.

Similarly the coefficient of d4R4 is g
1
2
s E( 5

2 ; τ , τ̄ ) [7], which has perturbative terms corre-
sponding to tree-level and genus-2 (τ 2

2 and τ−2
2 ), but no genus-1 contribution. The absence

of higher order perturbative terms implies that R4 gets no contribution beyond genus 1
and d4R4 gets no contribution beyond genus 2 in string perturbation theory. The coeffi-
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cient of d6R4 is the generalised non-holomorphic Eisenstein series gs E( 3
2 , 3

2 ; 3; τ , τ̄ ) [8],
which satisfies the inhomogeneous Laplace eigenvalue equation, (A.17). In this case its
zero Fourier mode has four power-behaved terms that correspond to contributions from
genus-0 up to genus-3 in superstring perturbation theory, and no higher-order perturbative
terms.

There are many other fractional BPS terms in the effective action that have not been explic-
itly displayed in (1). Many of these can be obtained by considering the low-energy expansion
of n-point amplitudes with n � 5. In order to describe such amplitudes it is important to recall
that the fluctuations of the massless fields of type IIB supergravity around their background
values carry specific U(1) charges [9, 10]. The field τ has a non-zero background value, τ = τ 0,
which defines the string coupling constant. However, its fluctuation Z, defined by the Cayley
transformation

Z =
τ − τ 0

τ − τ̄ 0
, (2)

carries U(1) charge −2, while its conjugate Z̄ has U(1) charge +2 [11]. A scattering amplitude
is defined with a specified value of the string coupling Im(τ0) = 1/gs and a U(1) transformation
is identified with a SL(2,Z) transformation that leaves the background value τ 0 unchanged.
The 256 physical states in the type IIB supergravity supermultiplet have U(1) charges ranging
from −2 to +2 in our conventions. The total U(1) charge violation of a n-point amplitude with
massless external states is generally non-zero and satisfies the inequality |qU(1)| � 2(n − 4).
It follows that the U(1) charge is conserved in all four-point functions but may be violated
when n > 4.

One particular example of a well-studied amplitude that violates U(1) is the sixteen-
dilatino interaction. The dilatino, Λ, carries U(1) charge qU(1) = −3/2 so this interaction
violates the U(1) charge by qU(1) = −24. Using a M-theory duality argument the lead-

ing term in the low-energy limit was found [12] to be proportional to g
− 1

2
s E12( 3

2 ; τ , τ̄ )Λ16

where Ew(s; τ , τ̄ ) is a modular form with weight (w,−w) that is defined in (A.14) by
acting on E(s; τ , τ̄ ) with w modular covariant derivatives4. This expression was also
produced by an argument based directly on the supersymmetry transformations of the
fields in type IIB supergravity [6]. We will shortly demonstrate that this argument can
be simplified and generalised by the use of a ten-dimensional spinor-helicity superspace
formalism.

The Λ16 amplitude is one example of a maximally U(1)-violating (MUV) amplitude [13],
which violates U(1) by precisely −2(n − 4) units5. For all such amplitudes the terms up to
mass dimension 14 in the low-energy expansion are BPS terms and their coefficients are mod-
ular forms that were determined by supersymmetry in [11] using superamplitude methods that
we will now describe. The procedure uses the fact BPS coefficients arising in the low-energy
expansion of any MUV n-point amplitude are related by supersymmetry to the coefficients
in the low-energy expansion of the amplitude for four gravitons, denoted by h, and (n − 4)
complex scalars Z, 〈h h h h Z . . . Z〉︸ ︷︷ ︸

n−4

.

4 Some relevant properties of modular forms are briefly described in appendix A. They have holomorphic and anti-
holomorphic modular weights (w,−w).
5 Note that a ‘minimally U(1)-violating amplitude’ violates the U(1) charge by qU(1) = 2(n − 4) units. This
sign convention ensures that the coefficient function multiplying a maximally/minimally U(1)-violating amplitude
has maximal/minimal holomorphic weight w = ±(n − 4).
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These amplitudes give rise to BPS interactions that have the symbolic form

(α′)−1R4Zn−4, α′d4R4Zn−4, (α′)2d6R4Zn−4. (3)

Maximal supersymmetry ensures that there is a unique Lorentz scalar for R4Zn−4 and d4R4Zn−4,
respectively. However, as we will explain later making use of superamplitude methods, there
are two and only two independent Lorentz scalars that contribute tor d6R4Zn−4 when n � 6.

In the next subsection we will show that the coefficient of (α′)−1R4Zn−4 is propor-
tional to En−4( 3

2 ; τ , τ̄ ), and the coefficient of α′d4R4Zn−4 is proportional to En−4( 5
2 ; τ , τ̄ ).

In the case of d6R4Zn−4 there are two invariant tensor structures when n � 6. The coef-
ficient associated with one of these is simply En−4( 3

2 , 3
2 ; 3; τ , τ̄ ) defined in (A.19), but the

coefficient of the other structure is a new modular form, which will be described in the
following.

2.2. Superamplitudes and low-energy expansion

The methods we will use for studying these higher-derivative terms were first introduced in
[14], which applied modern amplitude techniques to rederive the results of [4–8] for the four-
point interactions that are explicitly displayed in (1). We will follow closely the discussion
given in [11], which treats n-point MUV interactions uniformly, with the four-point interac-
tions as a special case by setting n = 4. It proves very useful to introduce a ten-dimensional
spinor-helicity formalism [15], which is the analogue of the more familiar four-dimensional
formalism. This expresses the momentum kμ of any massless state in ten dimensions in terms
of chiral bosonic spinors λA

a ,

kBA := (γμ)BA kμ = λBaλA
a , (4)

where A = 1, . . . , 16 labels the components of a SO(9, 1) chiral spinor, a = 1, . . . , 8 labels
the components of a SO(8) spinor of the little group of massless states, and (γμ)B

A are ten-
dimensional gamma matrices. The Grassmann variables ηa encode type IIB supersymmetry,
where the supercharges are expressed as [15]

qA
i = λA

i,a η
a
i , q̄B

i = λB,a
i

∂

∂ηa
i

, (5)

satisfying the on-shell super-algebra

{q̄B
i , qA

i } = λBa
i λA

i,a = pBA
i , (6)

and the index i = 1, 2, . . . , n labels the n particles scattered.
The massless physical states are packaged into a superfield that has the following expansion

in powers of ηi

Φ(ηi) = Z + ηa
i Λa +

1
2!
ηa

i η
b
i φab + · · ·+ 1

8!
(ηi)

8Z̄. (7)

The superfield Φ(ηi) is assigned a U(1) charge qΦ = −2, and η is assigned U(1) charge
qη = −1/2. Therefore a component field with m SO(8) spinor indices has a charge
qm = −2 + m/2. For instance, the scalar field Z has charge −2, and the graviton h, has
U(1) charge 0.

7
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A n-point superamplitude then is a function of λi, ηi, with i = 1, 2, . . . , n, and supersymme-
try implies that the superamplitude should take the form,

An(λi, ηi) = δ10

(
n∑

i=1

ki

)
δ16(Qn) Ân(λi, ηi), with Q̄B

n Ân = 0, (8)

where QB
n =

∑n
i=1 qB

i and Q̄B
n =

∑n
i=1 q̄B

i (with B = 1, 2, . . . , 16) are the total supercharges.
The formula (8) ensures that the superamplitude An is annihilated by the thirty-two
supersymmetries.

Apart from the three-particle on-shell amplitude, which has degenerate kinematics, these
conditions imply that scattering amplitudes vanish unless the total number of η’s from external
states is at least 16. Amplitudes in which there are exactly sixteen η variables are those for
which qU = −2(n − 4)—they are MUV amplitudes. In this case the quantity Ân contains no
factors of η. Therefore it is a function of the Mandelstam variables, si j = −α′/4 (ki + k j)2,
that encodes the α′-dependence characteristic of string theory, as well as the dependence on
the complex coupling constant, τ .

In considering the low-energy expansion of amplitudes it is important to take into account
non-analytic features that come from the effects of higher genus contributions and non-
perturbative effects. Although this is very complicated in general, the first three terms in the
low-energy expansion of the ten-dimensional amplitude, which are protected by supersymme-
try, are analytic in the Mandelstam invariants. These terms correspond to the first three terms
of the α′ expansion of Ân, which are symmetric polynomials of degree p = 0, p = 2 and p = 3
in the Mandelstam invariants, since maximal U(1)-violating amplitudes cannot have poles in
momenta and the case p = 1 vanishes identically

∑
i< j si j = 0.

This consideration leads to BPS terms in the low-energy limits of n-particle superstring
amplitudes in the form6,

A(p)
n (λi, ηi) = F(p)

n−4(τ , τ̄ ) δ16(Qn) Â(p)
n (si j), (9)

where the subscript (n − 4) indicates the U(1) weight, w = n − 4. In this expression, which
includes amplitudes of the form (8), the factor Â(p)

n (si j) is simply a symmetric homogeneous
degree-p polynomial of Mandelstam invariants. The case p = 0,

Â(0)
n (si j) = 1, (10)

is identified with R4Zn−4 and its supersymmetric completion in the effective Lagrangian. Note
that δ16(Qn) has power counting as δ16(Qn) ∼ (λ)16 ∼ k8, which indeed has 8 derivatives, just
as R4Zn−4. A(2)

n is identified with d4R4Zn−4 and its supersymmetric completion, with

Â(2)
n (si j) ≡ O(2)

n (si j) =
1
2

∑
i< j

s2
i j. (11)

Finally, A(3)
n is identified with d6R4Zn−4 and its supersymmetric completion. As anticipated

earlier, there are two independent structures at the order d6R4Zn−4 when n � 6, which the
superamplitude description makes very explicit. This follows from the fact that there are two

6 The amplitude is defined in a given background τ = τ 0. Here and in what follows, to simplify the notation we will
drop the superscript 0 of the background field (or equivalently the coupling) τ 0 and denote it by τ .

8
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independent degree-3 symmetric polynomials,

Â(3)
n,1(si j) =

∑
i< j

s3
i j, or Â(3)

n,2(si j) =
∑

i< j<k

s3
i jk, (12)

with si jk = −α′/4 (ki + k j + kk)2, each of which is associated with a coupling-dependent
coefficient F(3)

n−4,r(τ , τ̄ ) for r = 1, 2. Note that for n = 4 we have Â(3)
4,2(si j) = 0, while for

n = 5 Â(3)
5,2(si j) = Â(3)

5,1(si j), so that Â(3)
n,2(si j) only plays a rôle from n = 6 onwards.

The coefficient functions F(p)
n−4(τ , τ̄ ) with p = 0, 2, 3 contain the full non-perturbativedepen-

dence on the complex type IIB coupling constant. When n = 4, these are the modular functions
reviewed in the previous section, so that F(0)

0 (τ , τ̄ ) ∝ E( 3
2 ; τ , τ̄ ), F(2)

0 (τ , τ̄ ) ∝ E( 5
2 ; τ , τ̄ ), and

F(3)
0 (τ , τ̄ ) ∝ E( 3

2 , 3
2 ; 3; τ , τ̄ ).

Terms of higher order in the low-energy expansion—i.e. of mass dimension �16 (or p �
4)—are D-terms and they can be written in terms of a function f (λ, η) multiplied by all 32
supercharges. For example if Â(4)

n (si j) is a symmetric polynomial in Mandelstam invariants of
degree 4 it can be expressed in the schematic form

Â(4)
n (si j) ∼

∑
permutations

(Q̄)16η8
i η

8
j . (13)

This is simply a consequence of power counting since (Q̄)16 is of order s4
i j. By construction, Â(4)

n

given above is annihilated by all 16 Q̄’s. As we will see later such terms are, unsurprisingly,
unconstrained and do not appear to be protected by supersymmetry.

2.3. Soft-dilaton constraints

The behaviour of amplitudes in limits in which one or more of the momenta of the scatter-
ing particles is zero (soft limits) is intimately related to symmetry properties of the theory. A
prototype is the Adler zero [16], which refers to the vanishing of amplitudes for scattering of
Goldstone bosons in the chiral non-linear sigma model as one of the momenta is taken to be
soft. Similarly, taking the soft limit of a dilaton Z, with momentum pn, in type IIB supergravity
gives

ASG
n (X, Z(kn))

∣∣∣∣
kn→0

= 0, (14)

where SG indicates a supergravity amplitude and X denotes the remaining (n − 1) scattered
fields. This soft behaviour reflects the coset structure SL(2,R)/U(1) of type IIB supergrav-
ity. However, stringy effects break the U(1) symmetry and the soft-dilaton limit of string
amplitudes no longer vanishes7. The result is [11],

An(X, Z(kn))

∣∣∣∣
kn→0

= 2DwAn−1(X),

An(X, Z̄(kn))

∣∣∣∣
kn→0

= 2D̄−wAn−1(X),

(15)

7 Since Z is a combination of axion and dilation, we are really considering both the axion and the dilation to be soft,
even though we are calling this a soft-dilaton condition.

9
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where w is the U(1) weight of the lower-point amplitude An−1(X). In supergravity, all the
amplitudes have zero U(1) weights, therefore the above soft dilaton relations reduce to (14).
Furthermore, one may consider the sum of the two soft dilaton relations in (15), which projects
out the Ramond–Ramond pseudoscalar (i.e. the axion field) and leads to a soft relation for the
real dilaton [17–19],

An(X, Z(kn) + Z̄(kn))

∣∣∣∣
kn→0

= 2
(
Dw + D̄−w

)
An−1(X). (16)

Applying the relations (15) to the low-energy expansion of MUV amplitudes given in (9),
we find

F(p)
n−4(τ , τ̄ ) δ16(Qn) Â(p)

n (si j)

∣∣∣∣
kn→0

= 2Dn−5F(p)
n−5(τ , τ̄ ) δ16(Qn−1) Â(p)

n−1(si j), (17)

where we have used the fact w in (15) is n − 5 for the MUV amplitudes. Since Z is the top
component of the on-shell superfield (7) without any η factors, we see that δ16(Qn) reduces to
δ16(Qn−1) directly in the soft-dilaton limit, therefore,

F(p)
n−4(τ , τ̄ ) Â(p)

n (si j)

∣∣∣∣
kn→0

= 2Dn−5F(p)
n−5(τ , τ̄ ) Â(p)

n−1(si j). (18)

We will discuss this relation for values of p � 3. In the case p = 0, Â(0)
n (si j) = 1, so the soft

limit is trivial and we obtain

F(0)
n−4(τ , τ̄ ) = 2Dn−5F(0)

n−5(τ , τ̄ ). (19)

In the case of p = 2, it is easy to see Â(2)
n (si j)

∣∣
kn→0

= Â(2)
n−1(si j), we again obtain

F(2)
n−4(τ , τ̄ ) = 2Dn−5F(2)

n−5(τ , τ̄ ). (20)

Therefore, recalling that F(0)
0 (τ , τ̄ ) = E( 3

2 ; τ , τ̄ ) and F(2)
0 (τ , τ̄ ) = E( 5

2 ; τ , τ̄ ), the above relations
uniquely determine F(0)

n−4(τ , τ̄ ) and F(2)
n−4(τ , τ̄ ) for any n.

As shown in (12), the story becomes more interesting for p = 3, in which case there are
two independent polynomials when n � 6. As was argued in [11], it is important to choose
particular linear combinations of Â(3)

n,1(si j) and Â(3)
n,2(si j) to form the basis for the amplitude A(3)

n .
In particular, we choose,

O(3)
n,1 =

1
32

[
(28 − 3n)Â(3)

n,1(si j) + 3Â(3)
n,2(si j)

]
,

O(3)
n,2 = (n − 4)Â(3)

n,1(si j) − Â(3)
n,2(si j),

(21)

so the amplitude is given by

A(3)
n = δ16(Qn)

[
F(3)

n−4,1(τ , τ̄ )O(3)
n,1(si j) + F(3)

n−4,2(τ , τ̄ )O(3)
n,2(si j)

]
. (22)

With this particular linear combination, when n = 6 the term involving

O(3)
6,1 =

1
32

⎛
⎝10

∑
1�i< j�6

s3
i j + 3

∑
1�i< j<k�6

s3
i jk

⎞
⎠, (23)

10
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is identified with the term of mass dimension 14 in the low-energy expansion of the six-point
MUV tree-level amplitude from explicit computation as given in (27). Hence the coefficient
F(3)

2,2(τ , τ̄ ) of the second linear combination O(3)
6,2 does not receive any tree-level contribution

but only contains terms originating from higher-genus string amplitudes. Furthermore, O(3)
n,2

vanishes for n = 4 and n = 5, while for n = 6,O(3)
6,2 ∼

∑
perms12s34s56 vanishes in the soft limit,

which has important consequences as we will discuss later.
The preceding argument leads to expressions for O(3)

n,1 and O(3)
n,2 for all values of n. They are

determined uniquely by the following soft limits,

O(3)
n,1(si j)

∣∣∣∣
kn→0

= O(3)
n−1,1(si j), O(3)

n,2(si j)

∣∣∣∣
kn→0

= O(3)
n−1,2(si j), (24)

which give

O(3)
n,1(si j) =

1
32

⎡
⎣(28 − 3n)

∑
i< j

s3
i j + 3

∑
i< j<k

s3
i jk

⎤
⎦,

O(3)
n,2(si j) = (n − 4)

∑
i< j

s3
i j −

∑
i< j<k

s3
i jk.

(25)

These properties and the soft-dilaton conditions imply that the coefficients F(3)
n−4,1(τ , τ̄ ), and

F(3)
n−4,2(τ , τ̄ ) obey the following relations,

F(3)
n−4,1(τ , τ̄ ) = 2Dn−5F(3)

n−5,1(τ , τ̄ ), F(3)
n−4,2(τ , τ̄ ) = 2Dn−5F(3)

n−5,2(τ , τ̄ ). (26)

Importantly, the second equation only applies to the cases with n > 6. Therefore, F(3)
n−4,1(τ , τ̄ )

is determined recursively by F(3)
0,1(τ , τ̄ ), which is the coefficient of d6R4 that is given by the gen-

eralised non-holomorphic Eisenstein series E( 3
2 , 3

2 ; 3; τ , τ̄ ). The other coefficient F(3)
n−4,2(τ , τ̄ )

is new, and will be determined separately.
It is instructive to have explicit results of the low-energy expansion of the relevant string

amplitudes. At tree-level, these are relatively easy to determine. For example, the coefficients
of the low-energy expansion of, tree-level MUV amplitudes with up to six particles and up to
14 derivatives are given by [11]

Â4(si j) = 2τ
3
2

2 ζ(3) + τ
5
2

2 ζ(5)O(2)
4 (si j) +

2
3
τ 3

2 ζ(3)2O(3)
4,1(si j),

Â5(si j) = 3τ
3
2

2 ζ(3) +
5
2
τ

5
2

2 ζ(5)O(2)
5 (si j) + 2τ 3

2 ζ(3)2O(3)
5,1(si j),

Â6(si j) =
15
2
τ

3
2

2 ζ(3) +
35
4
τ

5
2

2 ζ(5)O(2)
6 (si j) + 8τ 3

2 ζ(3)2O(3)
6,1(si j).

(27)

These tree-level results provide useful data for determining parameters in the differential
equations arising from supersymmetry constraints that will be discussed in the next section.

2.4. Superamplitude constraints and differential equations

We have seen that the soft-dilaton constraints relate coefficients in the low-energy expansion
of MUV amplitudes since F(p)

w+1(τ , τ̄ ) ∼ DwF(p)
w (τ , τ̄ ). Following [11], we will now show that

conjugate first order differential equations involving D̄ are determined by supersymmetry con-
straints generalising the procedure of [14, 20–23]. The key ingredient in this procedure, which

11
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has been checked in many examples, is that supersymmetric contact terms of mass dimen-
sion �14 are not allowed for non-maximal U(1)-violating processes8. This fact implies that
the low-energy expansion of a sueramplitude up to mass dimension 14 is uniquely determined
by lower-point amplitudes via factorisation using tree-level unitarity. In this section we will
simply denote by D and D̄ the action of the holomorphic and anti-holomorphic covariant
derivatives Dw, D̄−w (given in (A.3)) on a modular function with weight (w,−w) as to avoid
cluttering the notation. Given the fact that all of the coefficients F(p)

n−4 have modular weights
(w,−w), withw = n − 4 it should be clear which specific covariant derivativesD, D̄ are acting
on them.

Cases p = 0 and p = 2. We will illustrate the idea by considering a six-point amplitude with
four gravitons, together with a Z and a Z̄, which is a U(1)-conserving amplitude. The diagrams
that contribute to this amplitude are sketched in figure 1, which contains three factorisation
diagrams and one contact diagram. As emphasised earlier, the contact term alone is inconsistent
with supersymmetry, therefore it must be linearly related to the factorisation diagrams. In other
words, the absence of a non-MUV supersymmetric contact term implies a linear relation among
all these terms, and consequently a linear relation of the corresponding coefficients,

D̄F(p)
1 (τ , τ̄ ) + a1 F(p)

0 (τ , τ̄ ) + a2 F(p−1)
R5 (τ , τ̄ ) = 0, (28)

where the coefficients a1 and a2 are in principle computable by explicit evaluation of the con-
tributions in figure 1. However, that is very complicated and so in the following the coefficients
will be fixed by comparison with string perturbation theory.

Note, if p = 0 (i.e. at order R4), the contribution of the R5 vertex in figure 1(d) vanishes. If
p = 2, one can further relate the R5 coefficient, F(p−1)

R5 (τ , τ̄ ), to F(p)
0 (τ , τ̄ ) by considering the

five-graviton amplitude, which is a non maximal U(1)-violating process. It receives contri-
butions from d2p−2R5 (with coefficient F(p−1)

R5 (τ , τ̄ )) and pole terms arising from attaching a

three-graviton vertex to d2pR4 (with coefficient F(p)
0 (τ , τ̄ )). By the same argument, this leads to

a linear relation between their coefficients

F(p−1)
R5 (τ , τ̄ ) + a3 F(p)

0 (τ , τ̄ ) = 0, (29)

that is in agreement with [24]. By combining (28) and (29), we arrive at

D̄F(p)
1 (τ , τ̄ ) + a4 F(p)

0 (τ , τ̄ ) = 0, (30)

which, together with (19) or (20), leads to the Laplace equation

ΔτF(p)
0 (τ , τ̄ ) + 2a4 F(p)

0 (τ , τ̄ ) = 0. (31)

Although the constant a4 is computable, in principle, this is not straightforward. As we com-
mented earlier, however, it can also be determined from knowledge of the tree-level behaviour

of the string amplitudes, which implies F(0)
0 (τ , τ̄ ) ∼ τ

3
2

2 and F(2)
0 (τ , τ̄ ) ∼ τ

5
2

2 . Therefore,(
Δ− 3

4

)
F(0)

0 (τ , τ̄ ) = 0,

(
Δ− 15

4

)
F(2)

0 (τ , τ̄ ) = 0, (32)

reproducing the Laplace equations for non-holomorphic Eisenstein series. We therefore find
F(0)

0 (τ , τ̄ ) = E( 3
2 ; τ , τ̄ ) and F(2)

0 (τ , τ̄ ) = 1
2 E( 5

2 ; τ , τ̄ ). Once F(p)
0 (τ , τ̄ ) is determined, (19) and

8 If there are more than 14 derivatives, one can then construct supersymmetric contact terms. One of such examples is
given in (13).

12
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Figure 1. The diagrams that contribute to the six-point amplitude A6(h, h, h, h, Z, Z̄) at
order R4 or d4R4, with h being the graviton (represented by the straight lines) and Z, Z̄
the axion-dilaton field and its conjugate (represented by the wavy lines). In (a) F(p)

1 (τ , τ̄ )
is the coefficient of the interaction d2pR4Z. In (b) F(p)

0 (τ , τ̄ ) is the coefficient of the inter-
action d2pR4 (and its supersymmetric relative in (c)). In (d) F(p−1)

R5 (τ , τ̄ ) is the coefficient
of the interaction d2p−2R5.

Figure 2. The diagrams that contribute to the seven-point amplitude A7(h, h, h, h, Z, Z, Z̄)
at order d6R4.

13



J. Phys. A: Math. Theor. 55 (2022) 443011 Topical Review

(20) fix all the F(p)
n−4(τ , τ̄ ) for any n. These results have been confirmed by explicit perturbative

string theory calculations at genus-one and genus-two as described in the next section, as well
as by a leading order D-instanton calculation in the case of R4 term [25, 26].

Case p = 3. In the p = 3 case additional diagrams contribute to the amplitude, see shown
in figure 2. In addition to diagrams that are similar to those in figure 1, a new type of diagram
arises consisting of two p = 0 higher-derivative vertices connected with a propagator shown
in figure 2(d). The supersymmetry constraint that implies the absence of contact terms leads
to the relation

D̄F(3)
1 (τ , τ̄ ) + a F(3)

0 (τ , τ̄ ) + b (F(0)
0 (τ , τ̄ ))2 = 0, (33)

where for n < 6 F(3)
n−4(τ , τ̄ ) ≡ F(3)

n−4,1(τ , τ̄ ) since, as discussed below (22), the coefficient

F(3)
n−4,2(τ , τ̄ ) makes its first appearance at n = 6. Combining this equation with the first equation

in (26) (since we are considering the case n = 4 only the first equation in (26) applies) leads
to the Laplace equation for a generalised non-homomorphic Eisenstein series, after fixing the
constants a, b using perturbative superstring amplitude,

(Δ− 12)F(3)
0 (τ , τ̄ ) = −(F(0)

0 (τ , τ̄ ))2. (34)

Using the fact that F(0)
0 (τ , τ̄ ) = E( 3

2 ; τ , τ̄ ), we see that F(3)
0 (τ , τ̄ ) = E( 3

2 , 3
2 ; 3; τ , τ̄ ). We can then

use the first equation in (26) to determine all the coefficients F(3)
n−4,1(τ , τ̄ ) with n > 4 associated

with the higher-derivative terms O(3)
n−4,1(si j).

The constraints on the coefficient F(3)
n−4,2(τ , τ̄ ), which is associated with the higher-derivative

term O(3)
n−4,2(si j), have to be determined separately. These follow from the structure of the non-

MUV seven-point amplitude with four gravitons, two Z’s and one Z̄. The contributions to the
amplitude are shown in figure 2. The absence of supersymmetric contact terms implies that the
coefficient of each contact vertex (namely, D̄F(3)

2,1(τ , τ̄ ) and D̄F(3)
2,2(τ , τ̄ )) is linearly related to

the coefficients of the factorising terms. Therefore we have the following differential equations

D̄F(3)
2,1(τ , τ̄ ) + a1 F(3)

1 (τ , τ̄ ) + a2 F(0)
0 (τ , τ̄ )F(0)

1 (τ , τ̄ ) = 0, (35)

and

D̄F(3)
2,2(τ , τ̄ ) + b1 F(3)

1 (τ , τ̄ ) + b2 F(0)
0 (τ , τ̄ )F(0)

1 (τ , τ̄ ) = 0. (36)

Equation (35) involving F(3)
2,1(τ , τ̄ ) does not give new information, and is consistent with the

result obtained earlier. Equation (36) determines the new modular function F(3)
2,2(τ , τ̄ ) that

we anticipated earlier. Note that, by applying D to (35) and using (26), we can obtain an
inhomogeneous Laplace eigenvalue equation for F(3)

2,1(τ , τ̄ )

(Δ(−) − 10)F(3)
2,1(τ , τ̄ ) = −15

2

(
E0(

3
2

; τ , τ̄ )E2(
3
2

, τ , τ̄ ) +
3
5

E1(
3
2

, τ , τ̄ )2

)
, (37)

with Δ(−) the suitable Laplace operator (A.6), and where the specific values of the constants
a1 = −5, a2 = 1 were fixed in [11].

From the construction of the higher-derivative terms, O(3)
n,1 and O(3)

n,2, we know that F(3)
2,2(τ , τ̄ )

should vanish at tree-level, which allows us to fix the relative ratio between b1 and b2,
leading to

14
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D̄F(3)
2,2(τ , τ̄ ) + b1

[
F(3)

1 (τ , τ̄ ) − 1
3

F(0)
0 (τ , τ̄ )F(0)

1 (τ , τ̄ )

]
= 0, (38)

where we have used the expressions of the perturbative part of F(0)
0 (τ , τ̄ ), F(0)

1 (τ , τ̄ ) and
F(3)

1 (τ , τ̄ ). This leaves one undetermined constant, b1, which can be fixed by a one-loop calcu-
lation of the six-point MUV amplitude to the same order as d6R49.

Furthermore using (35) together with F(0)
0 (τ , τ̄ )F(0)

1 (τ , τ̄ ) = 3D̄
[
(E1( 3

2 ; τ , τ̄ ))2
]

we arrive at

F(3)
2,2(τ , τ̄ ) =

b1

5

[
F(3)

2,1(τ , τ̄ ) − 2E1(
3
2

; τ , τ̄ )2

]
, (39)

which, thanks to (37), leads to an inhomogeneous Laplace eigenvalue equation for F(3)
2,2(τ , τ̄ )

(Δ(−) − 10)F(3)
2,2(τ , τ̄ ) = −5b1

2

(
E0

(
3
2

; τ , τ̄

)
E2

(
3
2

; τ , τ̄

)
− E1

(
3
2

; τ , τ̄

)
E1

(
3
2

; τ , τ̄

))
.

(40)

The perturbative part of F(3)
2,2(τ , τ̄ ) takes the following form

F(3)
2,2(τ , τ̄ ) =

8b1

3

[
ζ(2)ζ(3)τ2 −

4
15

ζ(2)2τ−1
2 +

1
15

ζ(6)τ−3
2

]
+ O(e−2πτ2). (41)

The result predicts the precise ratios of the perturbative contribution to the higher-derivative
term O(3)

6,2(si j) at genus one, two and three. Once F(3)
2,2(τ , τ̄ ) is determined, all higher-point

coefficients F(3)
n−4,2(τ , τ̄ ) with n > 6 are then also fixed by (26).

3. Exact results for integrated correlators in N = 4 SYM

This section will review some recent exact results concerning correlation functions in N = 4
SYM [28] and their connections with superstring amplitudes. The most studied example of
gauge/gravity duality is the holographic relationship between N = 4 SYM with SU(N) gauge
group and type IIB superstring theory in AdS5 × S5. According to this duality, correlation func-
tions in N = 4 SYM are the images of scattering amplitudes of type IIB superstring theory.
In particular, the large-N expansions of N = 4 correlators should reproduce the low-energy
expansion of superstring amplitudes. However, we will determine exact results that are valid
for any finite value of N, as well as in the large-N limit. We will also study correlators ofN = 4
SYM with general classical gauge groups, and correlators of more than four operators that are
dual to the MUV amplitudes that we met in the last section.

Our emphasis will be on integrated correlators of operators in the stress tensor supermul-
tiplet. That is, correlators of 1/2-BPS operators that are integrated over the positions of the
operators with particular measures that are chosen to preserve some of the supersymmetry.
We will see that such integrated correlators, introduced in [29], can be explicitly determined
by supersymmetric localisation. Not only do the large-N expansions of these correlators make
contact with the dual type IIB superstring amplitudes, but their properties at finite N reproduce
and generalise features determined directly from Yang–Mills perturbation theory.

9 The constant b1 has recently been determined to be 9/32 by computing the one D-instanton contribution to the
amplitude [27].

15



J. Phys. A: Math. Theor. 55 (2022) 443011 Topical Review

3.1. Integrated correlators in N = 4 SYM

We are interested in the correlation function of four superconformal primaries in the stress
energy tensor supermultiplet, as well as ‘maximal U(1)-violating correlators’ of more than
four operators. Explicitly, the four-point correlator in N = 4 SYM with arbitrary gauge group
is given as

〈O2(x1, Y1) . . .O2(x4, Y4)〉 = 1
x4

12x4
34

[Tfree(U, V; Yi) + I4(U, V; Yi)T (U, V)], (42)

where the conformal invariant cross ratios U, V are defined as

U =
x2

12x2
34

x2
13x2

24

, V =
x2

14x2
23

x2
13x2

24

, (43)

and O2(xi, Yi) is the superconformal primary operator in the stress tensor supermultiplet of
N = 4 SYM, which is defined as

O2(xi, Yi) = tr(φI(xi)φJ(xi))YI
i YJ

i , (44)

where φI is a scalar field in N = 4 SYM, and O2 has conformal dimension Δ = 2. Here I, J =
1, 2, . . . , 6 are the R-symmetry SO(6) indices and Yi is a null polarization vector Yi · Yi = 0.
In writing down (42), we have used the partial non-renormalisation theorem of the correlator
[30, 31]. This theorem implies that after separating out the free-theory contribution Tfree, the
remaining part can be further factorised into a universal factor I4(U, V; Yi), which is fixed by
the symmetries, and corresponds to the supercharge δ16(Q) in the superstring amplitude. All
the non-trivial dynamics of the correlator is contained in T (U, V).

Many properties of T (U, V) have been studied. In perturbation theory, it was evaluated at
one and two loops in [32–36], and at three loops in [37]. The planar loop integrands have been
constructed up to ten loops [38, 39], and non-planar contributions first appear at four loops. The
non-planar four-loop integrand was determined in [40]. These very high order results for the
integrands were made possible by the discovery of a hidden permutation symmetry [41, 42].
In the strong coupling limit, the tree-level Witten diagrams for this correlator were computed
in early days of AdS/CFT duality [43–49], and the one-loop contribution in the supergravity
limit was studied more recently [50–53]10.

However, we are interested in the correlator at finite complex Yang–Mills coupling τ =
θ/(2π) + 4πi/g2

YM, which is important for making manifest SL(2,Z) self-duality of the the-
ory and for the understanding its relation to the exact results of superstring amplitudes
that were discussed in the previous section. Although evaluating a non-trivial correlation
function at finite coupling is generally challenging, powerful methods have recently been
developed for determining integrated correlators based on supersymmetric localisation. This
utilises the fact that N = 4 SYM can be expressed as the m → 0 limit of N = 2∗ SYM,
a massive deformation of the N = 4 theory where the hypermultiplet is given a mass m.
Using this fact the integral of the N = 4 SYM four-point correlator (42) over the positions
of the operators, xi, with a particular measure can be expressed in terms of properties of
the partition function of N = 2∗ SYM on S4, which was evaluated some time ago using

10 See [54] (chapter 8 of this SAGEX review) for more details of related topics.
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supersymmetric localisation [55]. More explicitly, the following are two examples of inte-
grated correlators that are determined by the m → 0 limit of derivatives of the N = 2∗ partition
function Z(τ , τ̄ , m) [29, 56].

1
4
Δτ∂

2
m log Z(τ , τ̄ , m)

∣∣∣∣
m=0

= − 8
π

∫ ∞

0
dr
∫ π

0
dθ

r3 sin2(θ)
U2

T (U, V), (45)

and

∂4
m log Z(τ , τ̄ , m)

∣∣∣∣
m=0

= −32
π

∫ ∞

0
dr
∫ π

0
dθ

r3 sin2(θ)
U2

(1 + U + V)D̄1111

× (U, V)T (U, V) + 48ζ(3)c, (46)

where r2 = V, 1 − 2r cos(θ) + r2 = U, D̄1111 is the so-called D-function appearing in the com-
putation of contact Witten diagrams (see e.g. the appendix D of [57]), and c denotes the
central charge of the theory. Roughly speaking, the four derivatives bring down four integrated
operators, and setting m = 0 at the end is necessary for reducingN = 2∗ back to N = 4 SYM.

The localisation expression for Z(τ , τ̄ , m) is given by a N-dimensional matrix model inte-
gral where the integrand consists of the matrix model measure multiplying the product of two
factors. One factor is simply the one-loop determinant of the N = 2∗ theory, which leads to
the perturbative sector of the integrated correlators. The other factor is the Nekrasov partition
function that leads to the instanton contributions.

The k-instanton contribution can be expressed as a k-dimensional contour integral [58, 59].
Determining the explicit properties of Z(τ , τ̄ , m) is generally very complicated, especially at
finite τ and for general values of N. However, the expressions for the integrated N = 4 SYM
correlators (45) and (46) depend only on the coefficients of the terms of order m2 and order
m4 in the expansion of Z(τ , τ̄ , m) in powers of m. This considerably simplifies some aspects
of the analysis, but it is still very difficult to obtain the explicit results that display both the τ
dependence and the N dependence of the integrated correlators. However, there are a number
of results that address the large-N expansion, both with fixed ’t Hooft coupling and with fixed
gYM [29, 56, 60, 61]. In the large-N ’t Hooft limit the instantons are exponentially suppressed,
which obscures the SL(2,Z) symmetry, but the large-N expansion with fixed gYM accounts for
Yang–Mills instantons and makes SL(2,Z) explicit.

Here we will review the arguments in [62, 63], in which the first integrated correlator (45) is
expressed as a two-dimensional lattice sum, which is an explicitly modular invariant function
of function of τ for all values of N. We will also review the generalisation to N = 4 SYM with
an arbitrary classical gauge group [64] (which made use of the analysis of the perturbative
sector in [65]).

We will also review results for the second integrated correlator (46) which are less com-
plete since they only account for several low-lying terms in the large-N expansion that were
determined in [61].

The study of integrated correlators in N = 4 SYM has been further extended to maximal
U(1)Y-violating (MUV) integrated correlators [66, 67], which are holographic duals of MUV
amplitudes in type IIB superstring theory in an AdS5 × S5 background that were discussed in
the last section. Here U(1)Y is the bonus U(1) [68], of the gauge theory, which is a true sym-
metry of the free theory but more generally is broken to a Z4 automorphism of the supergroup
PSU(2, 2|4) and is dual to the (broken) U(1) R-symmetry of the type IIB superstring.
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An example of an unintegrated MUV correlator is

〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xn)〉, (47)

where Oτ is the chiral Lagrangian of N = 4 SYM. Other types of MUV correlators are related
to this one by supersymmetry and superconformal symmetry. This transforms with weight
(n − 4, 4 − n)11. The chiral Lagrangian Oτ is dual to the dilaton, and the holographic version
of the soft-dilaton condition (15) takes the form of

Dn−5〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xn−1)〉

=
1
2

∫
d4xn〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xn−1)Oτ (xn)〉. (48)

When considering the perturbative contributions of the correlators this relation leads to a very
efficient method for constructing loop integrands for the four-point correlator [67], which was
utilised in [38–42] for calculating the four-point correlator at high orders.

3.2. Exact results for integrated correlators

We will now discuss the exact structure of the integrated correlator (45) that is proportional to
Δτ ∂

2
m log ZGN (τ , τ̄ , m)|m=0. We have introduced the subscript GN to the partition function to

indicate that we are considering the gauge group to be any classical Lie group, so GN = SU(N)
(as in [62, 63]) or SO(2N), SO(2N + 1), USp(2N) (as in [64]).

Montonen–Olive duality12 [70–72] implies that when the gauge group is simply-laced
(SU(N) or SO(2N)) correlators must be invariant under SL(2,Z). This is generated by the
transformations S : τ →−1/τ and T : τ → τ + 1. For the non simply-laced gauge groups,
SO(2N + 1) and USp(2N), duality is generated by the transformations Ŝ : τ →−1/(2τ ) and
T : τ + 1. The action of Ŝ transforms SO(2N + 1) into USp(2N) and vice versa, so it is not a self-
duality. The transformations Ŝ T Ŝ and T generate the congruence subgroup Γ0(2) ⊂ SL(2,Z).

An element γ =
(

a b
c d

)
∈SL(2,Z) belongs to Γ0(2) if c = 0 mod 2. SoΓ0(2) is the self-duality

group when the gauge groups are non simply-laced classical groups.
In [64], it was found that the integrated correlators for any classical Lie group can be

expressed in the compact and unified form,

CGN (τ , τ̄ ) ≡ 1
4
Δτ∂

2
m log ZGN (τ , τ̄ , m)

∣∣∣∣
m=0

=
∑

(m,n)∈Z2

∫ ∞

0
dt

(
B1

GN
(t)e−tπ |m+nτ |2

τ2 + B2
GN

(t)e−tπ |m+2nτ |2
2τ2

)
, (49)

where B1
GN

(t) and B2
GN

(t) are rational functions of t. In the simply-laced cases B2
GN

(t) = 0, and
hence CGN (τ , τ̄ ) is SL(2,Z) invariant. The rational function BSU(N )(t) was constructed in [62,

11 Note that the modular weights of MUV correlators have the opposite signs to the modular weights of the holographic
dual MUV amplitudes.
12 The term ‘Montonen–Olive’ duality is often used interchangeably with ‘Goddard–Nuyts–Olive’ (GNO) duality
[69]. GNO demonstrated that in a Yang–Mills theory that has magnetic monopoles and gauge group G, the magnetic
charges are associated with points on the weight lattice of the dual group LG. The superscript L indicates that the dual
group is the Langlands group. Since here we consider only correlators of local operators, these depend only from the
Lie algebra gN and its dual, LgN , and so global features of this duality are not relevant in this article.
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63] and it is explicitly given by

BSU(N)(t) =
QSU(N)(t)

(t + 1)2N+1
, (50)

and QSU(N)(t) is a polynomial of degree (2N − 1) that takes the form

QSU(N)(t) = −1
4

N(N − 1)(1 − t)N−1(1 + t)N+1

{
(3 + (8N + 3t − 6) t)P(1,−2)

N

(
1 + t2

1 − t2

)

+
1

1 + t

(
3t2 − 8Nt − 3

)
P(1,−1)

N

(
1 + t2

1 − t2

)}
, (51)

with P(α,β)
N (z) being a Jacobi polynomial. The function BSU(N )(t) satisfies several interesting

relations

BSU(N)(t) = t−1 BSU(N)(t
−1), (52)∫ ∞

0
BSU(N)(t)dt =

N(N − 1)
8

,
∫ ∞

0

1√
t
BSU(N)(t)dt = 0. (53)

The first of these equations is an inversion relation that follows automatically from the lattice
sum definition of the integrated correlator (49), as was pointed out in [73] (where the lattice
sum was re-expressed in terms of a modular invariant spectral representation).

For the non simply-laced cases, GNO duality interchanges the SO(2N + 1) theory with the
USp(2N) theory. This is a property of the expression (49) by virtue of the fact that for these
groups the coefficient functions satisfy the relations

B1
SO(2N+1)(t) = B2

USp(2N)(t), B2
SO(2N+1)(t) = B1

USp(2N)(t), (54)

which ensure that the action of Ŝ interchanges the two terms, and therefore relates
CSO(2N+1)(τ , τ̄ ) with CUSp(2N)(τ , τ̄ ).

It is also notable that BSU(−N)(t) = BSU(N )(−t) which is directly connected to the relation
CSU(N)(τ , τ̄ ) = CSU(−N)(−τ ,−τ̄). Exact expressions for all B1

GN
(t), B2

GN
(t) can be found in [64],

however, as we will shortly argue, CSO(n) and CUSp(2N) can be expressible in terms of rational
linear combinations of CSU(m). Furthermore, we will also see that CSU(m) can be expressed in
terms of CSU(2).

Using the definition of the non-holomorphic Eisenstein series (A.14) the integrated corre-
lator can be written as the formal expansion

CGN (τ , τ̄ ) = −bGN (0) +
∞∑

s=2

[
b1

GN
(s) E(s; τ , τ̄ ) + b2

GN
(s) E(s; 2τ , 2τ̄)

]
, (55)

where the coefficients b1
GN

(s) and b2
GN

(s) are rational numbers that are determined by the power
series expansion of Bi

GN
(t) in the form

Bi
GN

(t) =
∞∑

s=2

bi
GN

(s)

Γ(s)
ts−1, i = 1, 2, (56)

and we defined bGN (0) = b1
GN

(0) + b2
GN

(0).
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Again for the simply-laced cases b2
GN

(s) = 0, and for the non simply-laced cases

b1
SO(2N+1)(s) = b2

USp(2N)(s), b2
SO(2N+1)(s) = b1

USp(2N)(s), (57)

which manifest GNO duality. In [73] the formal expansion (55) was expressed in terms of a
spectral decomposition for CSU(N), and a similar expression was given for general CGN in [64].

Remarkably, the integrated correlators satisfy Laplace-difference equations that relate cor-
relators of different gauge groups. In the case of SU(N), this takes the form

ΔτCSU(N)(τ , τ̄ ) − 4cSU(N)

[
CSU(N+1)(τ , τ̄ ) − 2CSU(N)(τ , τ̄ ) + CSU(N−1)

× (τ , τ̄ )
]
− (N + 1)CSU(N−1)(τ , τ̄ ) + (N − 1)CSU(N+1)(τ , τ̄ ) = 0, (58)

where cSU(N ) = (N2 − 1)/4 is the central charge. This is a powerful equation that determines
CSU(N)(τ , τ̄ ) for general values of N in terms of CSU(2)(τ , τ̄ ), once the boundary condition
CSU(1)(τ , τ̄ ) = 0 is imposed.

The equations for other gauge groups take similar forms. Thus, the Laplace-difference
equation for the SO(n) correlator (where n = 2N or 2N + 1) is given by

ΔτCSO(n)(τ , τ̄ ) − 2cSO(n)
[
CSO(n+2)(τ , τ̄ ) − 2CSO(n)(τ , τ̄ ) + CSO(n−2)

× (τ , τ̄ )
]
− n CSU(n−1)(τ , τ̄ ) + (n − 1)CSU(n)(τ , τ̄ ) = 0, (59)

where cSO(n) = n(n − 1)/8 is the central charge for SO(n). This equation relates SO(n) and
SU(n) correlators. The SO(3) case is an exception since the Dynkin index of SO(n) is discon-
tinuous as n = 3, hence in that case the integrated correlator is actually given by CSO(3)( τ2 , τ̄

2 )
(rather than CSO(3)(τ , τ̄ )), which agrees with the result of supersymmetric localisation [65]. For
USp(n) correlators (where n = 2N), we have

ΔτCUSp(n)(τ , τ̄ ) − 2cUSp(n)

[
CUSp(n−2)(τ , τ̄ ) − 2CUSp(n)(τ , τ̄ ) + CUSp(n+2)

× (τ , τ̄ )
]
+ n CSU(n+1)(2τ , 2τ̄) − (n + 1)CSU(n)(2τ , 2τ̄ ) = 0, (60)

where cUSp(n) = n(n + 1)/8 is the central charge for USp(n). This equation relates USp(n) and
SU(n) correlators. The localisation expression for the correlator can be used to show that

CSO(3)

(τ
2

,
τ̄

2

)
= CUSp(2)(τ , τ̄ ) = CSU(2)(τ , τ̄ ), (61)

which is consistent with the isomorphism of the corresponding Lie algebras. Combining this
initial condition with the fact that CSU(N)(τ , τ̄ ) is determined by (58), it is then straightforward
to show that the Laplace-difference equations (59) and (60) determine CSO(n) and CUSp(n) in
terms of finite rational linear combinations of CSU(m) correlators. For example,

CSO(4)(τ , τ̄ ) = 2 CSU(2)(τ , τ̄ ), CSO(6)(τ , τ̄ ) = CSU(4)(τ , τ̄ ),

CSO(8)(τ , τ̄ ) = −2 CSU(2)(τ , τ̄ ) +
8
3
CSU(3)(τ , τ̄ )

− 2 CSU(4)(τ , τ̄ ) +
4
5
CSU(5)(τ , τ̄ ) +

2
3
CSU(6)(τ , τ̄ ). (62)

Since CSU(m)(τ , τ̄ ) is invariant under SL(2,Z) for all m ∈ N, it follows that CSO(2N)(τ , τ̄ ) is also
invariant under SL(2,Z), as expected from GNO duality for SO(2N).
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Similarly,

CSO(5)(τ , τ̄ ) =

[
−2 CSU(2)(τ , τ̄ ) +

4
3
CSU(3)(τ , τ̄ )

]
+

[
−2 CSU(2)(2τ , 2τ̄ ) +

4
3
CSU(3)(2τ , 2τ̄ )

]
, (63)

with an identical result for CUSp(4)(τ , τ̄ ), reflecting the fact that USp(4) ∼= SO(5). It is instructive
to compare CSO(7) and CUSp(6), in order to get some insight into the way in which GNO duality
that relates CSO(2N+1) and CUSp(2N) is realised. From (59) we find

CSO(7)(τ , τ̄ ) =

[
8
5
CSU(2)(τ , τ̄ ) − 12

5
CSU(3)(τ , τ̄ )+

3
5
CSU(4)(τ , τ̄ ) +

4
5
CSU(5)(τ , τ̄ )

]

+

[
3
5
CSU(2)(2τ , 2τ̄) − 12

5
CSU(3)(2τ , 2τ̄) +

8
5
CSU(4)(2τ , 2τ̄ )

]
, (64)

and from (60),

CUSp(6)(τ , τ̄ ) =

[
8
5
CSU(2)(2τ , 2τ̄) − 12

5
CSU(3)(2τ , 2τ̄) +

3
5
CSU(4)(2τ , 2τ̄ )+

4
5
CSU(5)(2τ , 2τ̄)

]

+

[
3
5
CSU(2)(τ , τ̄ ) − 12

5
CSU(3)(τ , τ̄ ) +

8
5
CSU(4)(τ , τ̄ )

]
. (65)

Since CSU(N)(τ , τ̄ ) = CSU(N)(− 1
τ ,− 1

τ̄ ) and CSU(N)(2τ , 2τ̄ ) = CSU(N)(− 1
2τ ,− 1

2τ̄ ), it follows from
(64) and (65) that under the transformation Ŝ : τ →−1/(2τ ), CSO(7)(τ , τ̄ ) transforms into
CUSp(6)(τ , τ̄ ). More generally, by induction, using the Laplace-difference equations (59) and
(60), one can prove

CSO(2N+1)(τ , τ̄ ) = CUSp(2N)

(
− 1

2τ
,− 1

2τ̄

)
, (66)

which is the statement of GNO duality, recalling our previous comment that for N = 1 the
localised correlator equals CSO(3)( τ2 , τ̄

2 ), which also coincides with the integrated correlators
CSU(2)(τ , τ̄ ) = CUSp(2)(τ , τ̄ ).

3.3. SYM perturbation theory

Starting from our basic expression (49) for CGN (τ , τ̄ ) it is straightforward to evaluate the
perturbation expansion Cpert

GN
(τ2) in the region τ2 = 4π/g2

YM →∞, which agrees with the local-
isation result originally derived in [65]. This perturbative expansion can be organised in a
striking manner by defining suitable expansion parameters, aGN , for each gauge group. These
generalisations of the ’t Hooft coupling are given by

aSU(N) =
Ng2

YM

4π2
, aSO(n) =

(n − 2)g2
YM

4π2
, aUSp(n) =

(n + 2)g2
YM

8π2
, (67)

where n = 2N or 2N + 1 for SO(n), and n = 2N for USp(n). The SU(N) coupling is the standard
’t Hooft parameter (rescaled by 4π2), while aSO(n) and aUSp(n) are the generalisations for SO(n)
and USp(n) theory (see also [74]). Note the parameters aG defined in (67) can be rewritten in

a unified form aG =
h∨Gg2

YM
4π2 , with h∨

G the dual Coxeter number for the group G. The appearance
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of the dual Coxeter number is natural since in N = 4 SYM all fields belong to the adjoint
representation13.

In terms of these parameters we find that the perturbative expansion of all the integrated
correlators can be expressed in the following form,

Cpert
GN

(τ2) = −4cGN

[
3 ζ(3)aGN

2
−

75 ζ(5)a2
GN

8
+

735 ζ(7)a3
GN

16
−

6615 ζ(9)
(
1 + PGN ,1

)
a4

GN

32

+
114 345 ζ(11)

(
1 + PGN ,2

)
a5

GN

128
+ O(a6

GN
)

]
. (68)

A striking feature is that the first three perturbative contributions are universal and their depen-
dence on N is contained entirely within the central charge cGN and aGN . Explicit ‘non-planar’
factors, PGN ,i, where i = �− 3 and � is the loop number, first enter at four loops and the first
few examples are listed below:

PSU(N),1 =
2

7N2
, PSU(N),2 =

1
N2

,

PSO(n),1 = −n2 − 14n + 32
14(n − 2)3

, PSO(n),2 = −n2 − 14n + 32
8(n − 2)3

,

PUSp(n),1 =
n2 + 14n + 32

14(n + 2)3
, PUSp(n),2 =

n2 + 14n + 32
8(n + 2)3

, (69)

and further details and higher-order terms are given in [64].
From (69) we see that for SU(N) (69) is the well-known genus-expansion in powers of 1/N2

and aSU(N ) [75]. However there seems to be no systematic analysis of the analogous expansions
for SO(n) and USp(n) (see [74] for some limited results). Given the expressions in (69), as well
as higher orders presented in [64], we see that the large-N expansions for SO(n) (with n = 2N
or n = 2N + 1) and USp(n) (with n = 2N) are expressed purely in powers of 1/(n − 2) and
1/(n + 2), respectively.

From (68) we see that the planar contribution is the same for all gauge groups, while the
non-planar contributions only enter at � � 4 loops. This property is consistent with the con-
struction of perturbative loop integrands using the methods in [41, 42], and provides important
information concerning large-N expansions.

We note that the precise coefficients of the perturbative expansion (68) can be verified using
standard Feynman diagram computations. In particular the first two loops were computed in
[63] while the planar terms up to order O(a4

GN
) were derived in [76] by understanding that

the Feynman integrals associated with the integrated correlator are simply periods of certain
conformal Feynman graphs, for which special calculational techniques are available. These
results make use of the perturbative loop integrands constructed in [38, 39, 41, 42] and the
precise expression for the integrated correlator (45).

The perturbative expansion (68) and the non-planar expressions (69) are consistent with
certain symmetries. In particular, for SU(N) we have

cSU(N) = cSU(−N), aSU(N) = aSU(−N), PSU(N),i = PSU(−N),i, (70)

13 As already mentioned the case of SO(3) is special and one needs to rescale gYM →
√

2 gYM and define aSO(3) =
g2

YM/(2π2) so that aSO(3) = aSU(2) = aUSp(2). We furthermore have aSU(4) = aSO(6) and aUSp(4) = aSO(5), consistent with
the isomorphic relations among the corresponding algebras.
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hence

Cpert
SU(N)(g

2
YM) = Cpert

SU(−N)(−g2
YM). (71)

Similarly for SO(2N) and USp(2N) we notice

cSO(2N) = cUSp(−2N),

aSO(2N) = 2aUSp(−2N),

PSO(2N),i = PUSp(−2N),i,

(72)

which lead to

Cpert
SO(2N)(g

2
YM) = Cpert

USp(−2N)(−2g2
YM). (73)

These relations have been further checked at higher orders and are furthermore consistent with
the Laplace-difference equations (58)–(60).

The relations (71) and (73) also hold for the perturbative expansion of the other localised
integrated correlator that was defined in (46) and is proportional to ∂4

m log ZGN (m, τ , τ̄ )
∣∣
m=0

.
And the perturbative terms of this integrated correlator have also been verified to match the
explicit Feynman diagram calculations [76].

3.4. Maximal U(1)Y-violating correlators

Given the exact results for the integrated four-point correlators (49), the n-point maximal
U(1)Y-violating correlators defined in (47) can be obtained for any classical gauge group by
acting on CGN (τ , τ̄ ) with modular covariant derivatives defined in (A.3).

An integrated version of the MUV correlators, can be obtained starting from the inte-
grated correlator (45) CGN (τ , τ̄ ) ≡ C(0)

GN
(τ , τ̄ ) and inserting multiple factors of the integrated

chiral Lagrangian,
∫

dx Oτ (x). Such insertions are obtained by applying multiple covariant
derivatives Dw to CGN (τ , τ̄ ). The resulting expression is a (w,−w) modular form given by

C(w)
GN

(τ , τ̄ ) = 2w Dw−1Dw−2 . . .D0 C(0)
GN

(τ , τ̄ ). (74)

Given that the Laplacian operators Δ(∓)w, defined in (A.6) are Casimir operators on the
vector space of modular forms Mw,−w, they commute with the covariant derivatives Dw. Fur-
thermore, since these Laplacians reduce to the standard one Δ0 = Δτ , on the space of modular
invariant functions M0,0 we can use (58) to derive a system of Laplace-difference equations sat-
isfied by maximally U(1)Y-violating integrated correlators. With the help of the explicit forms
of Δ(∓)w in (A.6), we obtain the two equivalent Laplace-difference equations. To illustrate the
idea, we will focus on the SU(N) case in the following discussion. In particular, we find the
SU(N) MUV integrated correlators obey the following Laplace-difference equations,(

4Dw−1D̄−w + w(w − 1)
)
C(w)

SU(N) − 4cSU(N)

(
C(w)

SU(N+1) − 2C(w)
SU(N)

+ C(w)
SU(N−1)

)
− (N + 1)C(w)

SU(N−1) + (N − 1)C(w)
SU(N+1) = 0, (75)

and (
4D̄−w−1Dw + w(w + 1)

)
C(w)

SU(N) − 4cSU(N)

(
C(w)

SU(N+1) − 2C(w)
SU(N)

+ C(w)
SU(N−1)

)
− (N + 1)C(w)

SU(N−1) + (N − 1)C(w)
SU(N+1) = 0. (76)
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The structure of the instanton and anti-instanton contributions is of particular interest [67].
Starting from the exact expression (49) for C(0)

SU(N) it is fairly straightforward to obtain the

k-instanton and k-anti-instanton sectors of C(w)
SU(N). Since for w > 0 we know that C(w)

SU(N) has
modular weight (w,−w), it follows that the k-instanton and k-anti-instanton contributions do
not coincide (whereas they do in the w = 0 case).

The precise results obtained for various values of N in [67] are in accord with expectations
from the analysis of semi-classical instanton contributions to MUV correlators in special cases
treated in, for example, [12, 77, 78]. These references are all restricted to leading orders in the
1/N expansion of N = 4 SYM correlators or to the holographically related terms in the low-
energy expansion of superstring amplitudes. However, the present results go far beyond the
semi-classical approximation and apply to any value of N � 2, but nevertheless some general
features are explained by the leading order calculations.

For example, the fact that the leading power of g2
YM ∼ τ−1

2 in the instanton background
is of order τw2 is a direct reflection of the presence of 16 superconformal zero modes.
The counting of powers of τ 2 to leading order in 1/τ 2 is as follows. The instanton pro-
file of each operator insertion involves the product of (2Δ− 4w) fermionic zero modes
(where Δ is the dimension of the operator), each contributing a power τ

−1/4
2 , in addition

to the power of τ 2 in the normalisation of each operator. The leading order instanton con-
tribution to the n-point correlator necessarily absorbs all 16 superconformal fermion zero
modes and is therefore of order τ

n−16×1/4
2 = τw2 as τ 2 →∞. More explicitly, the instan-

ton profile of the operator O2(x) (Δ = 2, w = 0) has four fermionic zero modes, while
Oτ (x) (Δ = 4, w = 2) has no fermionic zero modes, and so the k-instanton sector for C(w)

SU(N)
behaves as

〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xw+4)〉 ∼ e2πikτ τw2 . (77)

A similar, albeit slightly more involved argument, allows us to deduce that instead the k-
anti-instanton sector for C(w)

SU(N) behaves as

〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xw+4)〉 ∼ e−2πikτ̄ τ−w
2 . (78)

Thanks to our exact formula (49) specialised to (74), both of these statements can be verified
for general values of N.

3.5. N = 4 SYM correlators at large-N and superstring amplitudes

The large-N expansion of N = 4 SU(N) SYM correlators makes contact with type IIB super-
string theory in an AdS5 × S5 background. From the string theory perspective this background
is identified with the near-horizon limit of N coincident D3-branes in the large-N limit. The
Yang–Mills parameters are identified with the type IIB superstring parameters by the relations

gs =
g2

YM

4π
,

(α′)2

L4
=

1
g2

YMN
. (79)

For N = 4 SYM with GN gauge group, where GN is SO(2N), SO(2N + 1) or USp(2N)
the large-N theory is holographically dual to type IIB superstring theory in AdS5 × RP5. This
background is the near-horizon geometry of an orientifold of N coincident D3-branes in the
large-N limit that are also coincident with an O3-plane. In this background string world-
sheets are non-orientable. There are various types of O3-plane that carry different amounts
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of Neveu–Schwarz Neveu–Schwarz and Ramond–Ramond flux. Depending on the choice of
O3-brane the dual gauge theory has gauge group SO(2N), SO(2N + 1) or USp(2N). The RR
five-form flux associated with the various backgrounds is

ÑSU(N) :=N, ÑSO(n) :=
n
2
− 1

4
, ÑUSp(n) :=

n
2
+

1
4

, (80)

where n = 2N or 2N + 1 for SO(n) and n = 2N for USp(n).
Two versions of the large-N limit are of interest:
(a) The ’t Hooft limit in which λGn = g2

YM ÑGN is fixed. In this limit Yang–Mills instantons
are suppressed exponentially in N. The 1/N expansion generalises the conventional ’t Hooft
genus expansion and corresponds to the string perturbation expansion in the holographically
dual string theory. This expansion is presented in detail in [64], and can be used to obtain
non-perturbative string corrections similar to [79–81], but we will not review it here.

(b) The large-N fixed-τ expansion in which Yang–Mills instantons are not suppressed and
play a crucial role in making S-duality manifest. In this case the expansion in powers of 1/N
correspond to the low-energy expansion in the dual type IIB string theory. In other words,
the leading term, which is of order N2 is the dual of the supergravity term, the next term is
of order N

1
2 and is the dual of the R4 term and so on. We will now consider the holographic

interpretation of this expansion of the integrated correlators in more detail.
Integrated correlators carry much less detailed information than unintegrated correlators

since they have no space-time dependence. However, the constraints of maximal supersymme-
try are so strong that one can reconstruct some aspects of the large-N expansion of an uninte-
grated correlator (with its spacetime dependence) from knowledge of the large-N expansions
of integrated correlators. As a result, it is possible to check the holographic correspondence
with the low-energy expansion of type IIB superstring amplitudes for the first few orders in the
large-N expansion as will now be explained.

Focussing for brevity just on large-N expansion of the SU(N) theory, the unintegrated
four-point correlator has the following simple analytic structure in Mellin space. The Mellin
amplitude M(s, t) is defined as [82, 83],

T (U, V) =
∫ i∞

−i∞

ds dt
(4πi)2

U
s
2 V

u
2−2Γ

[
2 − s

2

]2
Γ
[
2 − t

2

]2
Γ
[
2 − u

2

]2
M(s, t), (81)

where u = 4 − s − t14. The large-N expansion or large-central charge expansion of the Mellin
amplitude takes the following simple form15,

M(s, t) = N2 f̃ 0

(s − 2)(t − 2)(u − 2)
+ N

1
2 f 1 +MSG(s, t) + N− 1

2 ×
[

f 2,1(s2 + t2 + u2) + f 2,2
]

+ N−1
[

f 3,1stu + f 3,2(s2 + t2 + u2) + f 3,3
]
+ O(N− 3

2 ). (82)

The leading term is proportional to N2 (or alternatively c the central charge) and corre-
sponds to the tree-level supergravity contribution in AdS5 × S5, and MSG(s, t) is the one-loop

14 The Mellin variables s, t, u should not be confused with the Mandelstam variables in the previous section. In the
flat-space limit [83], in which s, t, u →∞, they do become the Mandelstam variables of scattering amplitudes after a
suitable rescaling.
15 Here we have simply written down the most general expression with permutation symmetry at each order according
to its power counting from its holographic dual. For instance, the N− 1

2 term is dual to d4R4 in AdS5 × S5, which
has four derivatives (note we have removed R4 part by factoring out I4(U, V; Yi) in (42)). The corresponding Mellin
amplitude is then given by linear combination of s2 + t2 + u2 and a constant [83].
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supergravity. These terms are independent of τ . We are interested in terms proportional to
N

1
2 , N− 1

2 and N−1 that are stringy higher-derivative corrections proportional to R4, d4R4

and d6R4, respectively. The coefficients of these string corrections f1, f2,i and f3,i are non-
trivial (non-holomorphic) functions of the coupling τ , and, as we will show later, these
may be fixed using the large-N expansion of the integrated correlators will discussed in the
following.

The large-N expansion of CSU(N) at fixed τ . The first few terms in the large-N expansion of
the first integrated correlator (45) with fixed τ was first studied for the SU(N) case in [60] and
then to any prescribed order in 1/N by making use of the exact expression or by solving the
Laplace-difference equation (58) [63], giving

CSU(N)(τ , τ̄) ∼ N2

4
− 3N

1
2

24
E

(
3
2

; τ , τ̄

)
+

45N− 1
2

28
E

(
5
2

; τ , τ̄

)

+ N− 3
2

[
4725
215

E

(
7
2

; τ , τ̄

)
− 39

213
E

(
3
2

; τ , τ̄

)]
+ N− 5

2

[
99 225

218
E

(
9
2

; τ , τ̄

)
− 1125

216
E

(
5
2

; τ , τ̄

)]

+ N− 7
2

[
245 581 875

227
E

(
11
2

; τ , τ̄

)
− 2811 375

225
E

(
7
2

; τ , τ̄

)
+

4599
222

E

(
3
2

; τ , τ̄

)]

+ N− 9
2

[
29 499 294 825

231
E

(
13
2

; τ , τ̄

)
− 39 590 775

226
E

(
9
2

; τ , τ̄

)
+

1548 855
227

E

(
5
2

; τ , τ̄

)]

+ N− 11
2

[
40 266 537 436 125

238
E

(
15
2

; τ , τ̄
)
− 397 105 891 875

236
E

(
11
2

; τ , τ̄
)
+

2029 052 025
234

E

(
7
2

; τ , τ̄
)

− 3611 751
232

E

(
3
2

; τ , τ̄

)]
+ O

(
N− 13

2

)
. (83)

The corresponding expansions for general classical gauge groups based on the large-N expan-
sion of (49) were presented in [64], and will not be reproduced here.

The first few terms in the large-N expansion of the second integrated correlator (46) was
presented in [61] and the result is

∂4
m log ZSU(N)|m=0 ∼ 6N2 + 6N

1
2 E(

3
2

; τ , τ̄) + C0 −
9

2N
1
2

E(
5
2

; τ , τ̄ ) − 27
23N

E(
3
2

,
3
2

; 3; τ , τ̄)

+
9

N
3
2

[
13
28

E(
3
2

; τ , τ̄)− 375
210

E(
7
2

; τ , τ̄ )

]
+

405
704N2

[
C1 + 35E(

5
2

,
3
2

; 6; τ , τ̄)− 24E(
5
2

,
3
2

; 4; τ , τ̄)

]

+
675

N
5
2

[
1

210
E(

5
2

; τ , τ̄ )− 49
212

E(
9
2

; τ , τ̄)

]
+

1
N3

⎡
⎣α3 E(

3
2

,
3
2

; 3; τ , τ̄) +
∑

r=5,7,9

×
[
αr E(

3
2

,
3
2

; r; τ , τ̄ ) + βrE(
5
2

,
5
2

; r; τ , τ̄)+ γrE(
7
2

,
3
2

; r; τ , τ̄)

]⎤⎦+ O
(

N− 7
2

)
,

where the rational numbers αr, βr and γr can be found in [61]. The expansion in this case
involves both half-integer and integer powers of 1/N (whereas only half-integer powers
appeared in (83)). Strikingly, the coefficients of the integer powers of 1/N involve sums of non-
holomorphic generalised Eisenstein series. The corresponding expansion for other classical
gauge groups has not been determined.

The preceding two expressions provide two constraints on the unknown coefficients in the
ansatz (82) for the unintegrated correlator at each order of the large-N expansion. Explicitly,
these constraints lead to the values
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f̃ 0 = 2, f 1 =
15E( 3

2 ; τ , τ̄ )
8

, f 2,1 = −1
3

f 2,2 =
315E( 5

2 ; τ , τ̄ )
128

. (85)

Rather strikingly we see that terms in the low-energy expansion of type IIB superstring theory
in an AdS5 × S5 background up to order d4R4 have been determined in this manner.

Furthermore, the ten-dimensional flat Minkowski-space limit can be obtained, according to
[83], by taking the limit s, t, u →∞. In this limit (82) reproduces precisely the same coefficients
for the R4 and d4R4 terms in the low-energy expansion of type IIB superstring amplitudes as
described in section 2.1.

However, two constraints from the integrated correlators (45) and (46) are not enough to
fix the three functions f3,1, f3,2, f3,3 appearing at order of N−1. But if we include the flat-space
result for the d6R4 coefficient given in (1) as an input, together with the two constraints from
the large-N expansions (83) and (84) the unknown constants in the Mellin amplitude at this
order are determined, and we find,

f 3,1 = −4 f 3,2 = −1
4

f 3,3 =
945E( 3

2 , 3
2 ; 3; τ )

32
. (86)

Although this argument inputs the flat-space string theory d6R4 coefficient, it is non-trivial that
all three coefficients at order N−1 in (82) have been determined. This adds further information
concerning terms in the low-energy expansion of the type IIB superstring action in AdS5 × S5.

Once the four-point correlator is determined, we can use equation (48), which is valid for
all values of N and τ , to obtain information on MUV correlators. We may now construct
higher-point MUV correlators recursively using the expression for the Mellin amplitude of
the four-point correlator (82) and solving the recursion relation order by order in the large-N
expansion. This leads to the large-N expansion of n-point MUV correlator with finite cou-
pling τ [66]. In the flat-space limit, the results at order N

1
2 and N− 1

2 again match with the
superstring low-energy expansion (9) when p = 0, 2. As with the four-point correlator, at
order N−1 there are insufficient constraints from integrated correlators to determine all the
unknown coefficients in the low-energy expansion on AdS5 × S5. Inputting the p = 3 flat-
space result from (22) once again determines all the coefficients in the Mellin amplitude at
this order.

4. Modular graph forms and superstring perturbation theory

In this section we will review another context in which modularity plays an important rôle.
The subject originated in the study of the low-energy expansion of superstring perturbation
theory, but it has broader connections to areas of algebraic geometry and number theory. Much
of the literature focuses on genus-one modular graph forms [84–87], which are closely related
to elliptic generalisations of multiple zeta-values, but there are obvious possible extensions to
higher genus, which we have no space to cover in this article.

This is a subject in which there have been many recent developments both in the theoretical
physics literature [84–114] and the mathematics literature [115–123]. See also the reviews
[124, 125], which cover much more of the literature than we can in this article, [126] for a
Mathematica implementation and [127–135] for generalisations to higher genus.
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4.1. Superstring perturbation theory

In the previous sections we have discussed SL(2,Z) S-duality of type IIB superstring theory
and its connection with Montonen–Olive duality in N = 4 SYM. However, a different man-
ifestation of modularity arises in string perturbation theory. The perturbation expansion of a
string theory amplitude is a power series in g2

s in which a term of order g2g−2
s is associated with

a functional integral over a genus-g world-sheet. For example, the perturbative expansion of a
n-point massless scattering amplitude in ten-dimensional type IIB superstring theories has the
form

A(n)(εi, ki; gs) =
∞∑

g=0

g2g−2
s A(n)

g (εi, ki), (87)

where (εi, ki) denotes the polarisations and momenta of the scattered massless particles
(with i = 1, 2, . . . , n). The Mandelstam variables are defined by si j = −α′(ki + k j)2/4 as in
section 2.2. In the case of the four-point function that is the main focus of this section the
standard convention is to define s := s12 = s34, t := s13 = s24, u := s14 = s23, which satisfy the
condition s + t + u = 0. Note that the perturbative part of the string amplitude (87) only
depends on Im τ = 1/gs, whereas the full amplitude has non-perturbative contributions, such
as the contributions of D-instantons, that depend on τ = τ 1 + iτ 2.

The g-loop contribution, A(n)
g (εi, ki), is, in principle, given by a functional integral over all

genus-g (super) Riemann surfaces with n punctures that represent the scattering particles. This
includes integration over the fermionic supermoduli and summing over fermionic spin struc-
tures. However, there are technical obstacles in integrating over the fermionic moduli, which
have so far prevented the explicit evaluation of the four-graviton amplitude with g � 316. Nev-
ertheless, analysis of the degeneration limits of arbitrary genus super-Riemann surfaces has
demonstrated the ultra-violet finiteness of these amplitudes. For our purposes it will be suffi-
cient to restrict considerations to g � 2, in which cases the resulting expressions are expressed
as integrals over the world-sheet moduli, as well as over the positions of punctures on the
world-sheet, that carry the information about the momenta and polarisations of the scattering
particles.

For concreteness, let us focus our attention to the well-studied case of the 10-dimensional
four-graviton scattering amplitude in type IIB superstring theory. A general consequence of
type IIB supersymmetry is that the four-graviton amplitude has a prefactor of R4, which denotes
the particular scalar contraction of four linearised Riemann curvature tensors, which we met
in (1). This means that the genus-g term in (87) has the form

A(4)
g (εi, ki) = κ2

10 R4 Tg(s, t, u), (88)

whereκ2
10 is the ten-dimensional Newton constant, and R4 (and its supersymmetric completion)

may be expressed as δ16(Q4) using the spinor-helicity formalism given in section 2.2. The
function Tg(s, t, u) is a scalar function of the Mandelstam invariants that contains all of the
non-trivial dynamical structure of the amplitude.

The main emphasis in the following is the g = 1 case, but we will first very briefly review
the structure of the four-graviton tree (g = 0) amplitude, which is determined by a functional

16 The pure spinor formalism has no world-sheet spinors, but has other technical obstacles when g � 3.
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integral over world-sheets of spherical topology and has the form

A(4)
g=0(ε, ki) =

κ2
10R4

stu
Γ(1 − s)Γ(1 − t)Γ(1 − u)
Γ(1 + s)Γ(1 + t)Γ(1 + u)

,

=
κ2

10R4

stu
exp

[ ∞∑
n=1

2ζ(2n + 1)
2n + 1

(s2n+1 + t2n+1 + u2n+1)

]
. (89)

The expression on the second line makes it obvious that the amplitude can be expanded as an
infinite series of powers of s, t and u with coefficients that are rational multiples of products of
odd Riemann zeta-values. It is also obvious that although products of zeta-values arise in this
series there are no multiple zeta-values.

However, it has proved possible to analyse the expansion of tree-level n-point functions for
all n ∈ N and to all orders in the low-energy expansion, see e.g. [136]. In the case of open
superstrings this is an expansion in monomials of Mandelstam invariants with rational coeffi-
cients multiplying multiple zeta-values, while in the case of closed superstring amplitudes the
coefficients are proportional to single-valued multiple zeta-values. These multiple zeta-values
and single-valued multiple zeta-values appear when n > 4, and the single-valued multiple zeta-
values are defined as values of single-valued multiple polylogarithms when its arguments are
set equal to 1 [137–139].

4.2. The genus-one amplitude

We will now focus on properties of the (g = 1) four-point amplitude although our considera-
tions should generalise to an arbitrary amplitude for scattering of massless states at arbitrary
order in the genus expansion. A genus-one world-sheet, Στ , has the topology of a torus,
which is diffeomorphic to R2/Λ, where the lattice Λ = τZ+ Z defines the shape of the torus.
This is parameterised by the complex structure, τ = τ 1 + iτ 2

17, which takes values in the
upper-half complex plane τ 2 > 0, modulo discrete identifications that are associated with large
diffeomorphisms associated with the modular group, SL(2,Z).

After performing the functional integral described above, the amplitude A(4)
g=1(εi, ki) is

expressed as an integral over the positions of the four punctures18 and an integral over τ in
a single fundamental domain of SL(2,Z). This is often chosen, for convenience, to be the
domain F = {|τ 1| � 1

2 , |τ | � 1}. After further integrating over the positions of the punctures
the resulting g = 1 amplitude takes the form19

A(4)
g=1(εi, ki) = 2πκ2

10R4
∫
F

d2τ

τ 2
2

I4(si j; τ ), (90)

where I4(si j; τ ) is a modular function that results from the integral

I4(si j; τ ) =
∫
Στ

(
4∏

i=2

d2zi

τ 2

)
exp

⎛
⎝ 4∑

1�i< j

si jG(zi − z j|τ )

⎞
⎠. (91)

17 In this section we are using a bold-faced symbol τ for the complex structure of the g = 1 world-sheet in order not
to confuse it with the complex scalar, τ , of ten-dimensional type IIB superstring.
18 Translation invariance means that there are only three integrals over the relative positions.
19 In writing (90) we have assumed that the integration over the positions of the punctures can be performed before
the τ integral. However, this ignores the presence of branch cuts in s, t, u that arise from the region τ 2 →∞. For most
of this section we are only interested in properties of the integrand I4(si j; τ ). Where necessary we will cut off the τ
integral at large τ 2 in a consistent manner [84].
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Here G(z|τ ) denotes the scalar Green function on the torus Στ , which is defined to satisfy

ΔzG(z|τ ) = −4πδ(2)(z) +
4π
τ 2

,
∫
Στ

d2z G(z|τ ) = 0, (92)

where Δz = 4∂z̄∂z, which has the solution

G(z|τ ) = − log

∣∣∣∣ϑ1(z|τ )
ϑ′

1(0|τ )

∣∣∣∣2 − π

2τ 2
(z − z̄)2, (93)

and ϑ1(z|τ ) is a Jacobi function. After changing from z to Cartesian coordinates on Στ , defined
by z = u + vτ , the Green function can be written as the Fourier series

G(z|τ ) =
∑

(m,n)�=(0,0)

τ 2

π|nτ + m|2 e2πi(nu−mv), (94)

where (m, n) are integer-valued momentum components conjugate to (v, u).
The genus-one four-point amplitude is a complicated non-analytic function of si j. This non-

analyticity is indicated in integration over τ in (90), which generates branch cuts associated
with unitarity in a well-understood fashion. However, its low-energy expansion can be treated
by a systematic diagrammatic expansion [84–87, 91]. In particular, the integrand I4(si j; τ )
can be expanded as a power series in s, t, u by expanding the exponential term in (91) (the
Koba–Nielsen factor), giving

I4(si j; τ ) =
∞∑

w=0

1
w!

∫
Στ

(
4∏

i=2

d2zi

τ 2

)⎛⎝ ∑
1�i< j�4

si jG(zi − z j|τ )

⎞
⎠w

. (95)

This expression is a contribution of order (α′)w to the low-energy expansion. This means it is a
contribution to the type IIB effective action of order d2wR4 where the pattern of contractions of
the derivatives is specified by the powers of s, t and u. More precisely, given that I4(s, t, u; τ )
in (95) is a symmetric function of s, t, u, subject to s + t + u = 0. This means that, in the α′

expansion, I4(s, t, u; τ ) can be expressed

I4(s, t, u; τ ) =
∑
p,q�0

Fp,q(τ )(s2 + t2 + u2)p(s3 + t3 + u3)q, (96)

where 2p+ 3q = w and the coefficients Fp,q(τ ) are sums of modular objects called modular
graph functions for reasons that will shortly be clear.

Each coefficient Fp,q(τ ) is the sum of terms in which w Green functions join pairs of points
labelled by the zi. This can be represented by a sum of Feynman diagrams on the two-torus.
Each diagram consists of the product of Green functions joining pairs of points at positions zi

and z j, which are integrated over Στ . It is convenient to represent the diagram in momentum
space, where the momentum-space propagator is given by τ 2/(π|p|2), with p = nτ + m ∈
Λ\{0}, as follows from the expression for the Green function in (94).

A general diagram has �i j propagators joining any pair of vertices labelled i and j, where
i, j ∈ {1, 2, 3, 4}. There are therefore six (i, j) pairs so a general diagram has �1, . . . , �6 propa-
gators. This notation is summarized by the following diagram:
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where the label � on the link indicates the product of � propagators joining the
corresponding pair of vertices. This diagram is a tetrahedron that is symmetric in all edges and
vertices and its weight, w, is given by the number of propagators, so that w =

∑6
r=1 �r, where

0 � �r
20. When �r = 0 for particular values of r, the diagram degenerates to a simpler diagram.

In such cases, we shall omit the index that vanishes21.
The integral over the positions of the vertices, zi can be easily performed thanks to the

Fourier series representation (94), leading to the general momentum-space expression for a
modular graph function:

IΓ(τ , τ̄ ) =
′∑

p1,...,pw∈Λ

w∏
α=1

τ 2

π|pα|2
N∏

i=1

δ

(
w∑

α=1

Ciαpα

)
, (97)

where Γ denotes the connectivity of the graph and we have generalised the rules to include
N vertices (where N is an arbitrary integer) even though only four vertices are involved in the
expansion of the four-particle amplitude. In this expression pα = nατ + mα ∈ Λ labels the
momentum in the link labelled α and the prime above the summation symbol indicates that
the sums over pα exclude the value 0. The Kronecker δ symbol enforces momentum conser-
vation at each vertex—it takes the value 1 when its argument vanishes and zero otherwise; the
coefficients Ciα are given as follows

Ciα =

⎧⎨
⎩
±1 if edge α ends on vertex i

0 otherwise
(98)

the sign being determined by the orientation of the momenta.
We stress that the expression (97) is a multiple sum that generalises the non-holomorphic

Eisenstein series and is manifestly invariant under SL(2,Z) transformations acting on τ .
Although the analysis of the properties of general modular graph functions is presently

rather rudimentary we turn now to consider a special class of such functions about which a
great deal is known. These are modular graph functions that are defined by graphs that have
one or two loops and any number of vertices.

One-loop modular graph functions
Since the zero mode of the Green function vanishes (92), it is obvious that a graph has

to consist of closed loops of propagators. The simplest class of such functions is there-
fore represented by one-loop graphs. A one-loop modular graph function with a vertices is
represented by

20 This weight should not be confused with the modular weight, which vanishes for the modular-graph functions.
21 For example D�1,�2,�3,�4;0,0 = D�1,�2,�3,�4 , while D�,0,0,0,;0,0 = D�, etc.
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and is simply a non-holomorphic Eisenstein series.

4.3. Two-loop modular graph functions

The two-loop modular graph functions are much less familiar so we will discuss their properties
in some detail. They are represented by graphs with three chains and are denoted Ca,b,c(τ , τ̄ ).
They are represented pictorially by

The integers a, b, c are the number of propagators that are joined end to end along each
chain.

It follows from the preceding graphical rules that the expression for the function represented
by the above graph is

Ca,b,c(τ , τ̄ ) =
(τ 2

π

)a+b+c ′∑
p1,p2,p3∈Λ

δ(p1 + p2 + p3)
|p1|2a|p2|2b|p3|2c

, (99)

with a, b, c ∈ N. In [86] it was shown that the Ca,b,c satisfy a closed system of inhomogeneous
Laplace equations. The simplest example, C1,1,1(τ , τ̄ ) has weight w = 3 and contributes to the
d6R4 term in low-energy expansion of the genus-one amplitude [84]. It satisfies the equation

ΔτC1,1,1(τ , τ̄ ) = 6E(3; τ , τ̄ ), (100)

which has solution C1,1,1(τ , τ̄ ) = E(3; τ , τ̄ ) + ζ(3) where the constant ζ(3) is determined by a
boundary condition that is obtained by computing the asymptotic behaviour of the lattice sum
(99) at the cusp τ 2 →∞ (as in [86]). It can also be calculated directly from the lattice sum
[140].

Although our primary interest in this section is in modular properties of the integrand
I4(si j; τ ) at this point we will comment on the evaluation of its τ integral in (90). From (95),
one can easily see that the complete contribution at this order is

1
3!

∫
Στ

(
4∏

i=2

d2zi

τ 2

)⎛⎝ ∑
1�i< j�4

si jG(zi − z j|τ )

⎞
⎠3

=
s3 + t3 + u3

3!

[
8E(3; τ , τ̄ ) + 2C1,1,1(τ , τ̄ )

]
.

(101)
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Making use of C1,1,1(τ , τ̄ ) = E(3; τ , τ̄ ) + ζ(3), and after integrating over the fundamental
domain F [84]22, the value of the genus-one contribution at order d6R4 is found to be

4
3
ζ(2)ζ(3) (s3 + t3 + u3). (102)

This is the precise value contained in the zero mode of the non-perturbative d6R4 coefficient
function gs E( 3

2 , 3
2 ; 3; τ , τ̄ ) that was derived in [8] (and is displayed in (A.18)).

Another simple example is

ΔτC2,2,1(τ , τ̄ ) = 8E(5; τ , τ̄ ), (103)

with solution C2,2,1(τ , τ̄ ) = 2E(5; τ , τ̄ )/5 + ζ(5)/30.
More complicated examples have source terms that are quadratic in non-holomorphicEisen-

stein series. For example,

(Δτ − 2)C2,1,1(τ , τ̄ ) = 9E(4; τ , τ̄ ) − E(2; τ , τ̄ )2, (104)

(Δτ − 6)C3,1,1(τ , τ̄ ) =
86
5

E(5; τ , τ̄ ) − 4E(2; τ , τ̄ )E(3; τ , τ̄ ) +
ζ(5)
10

. (105)

Both of these examples arise in the low-energy expansion of the four-point amplitude, at order
d8R4 and d10R4, respectively.

More generally, in [108, 110] a generating series was introduced, to produce all integrals
over world-sheet tori which appear in closed-string one-loop amplitudes. Using these results,
in [142, 143] it was proved that all depth-two23 Ca,b,c can be obtained from the generalised
Eisenstein series

(Δτ − r(r + 1))E(m, k; r; τ , τ̄ ) = −E(m; τ , τ̄ )E(k; τ , τ̄ ), (106)

with m, k ∈ N and m, k � 2, and spectrum r ∈ {|k − m|+ 1, |k − m|+ 3, . . . , k + m − 5, k +
m − 3}, where the generalised Eisenstein E(m, k; r; τ , τ̄ ) corresponds to −F+ (r−1)

m,k in those
references. In particular, it was shown that any Ca,b,c with weight w = a + b + c, is given
by rational linear combinations of finitely many E(m, k; r; τ , τ̄ ) with w = k + m, modulo the
addition of a rational multiple of a non-holomorphic Eisenstein E(w; τ , τ̄ ) and, in the case of
odd weight w, a rational multiple of ζ(w).

For example we have

C2,1,1(τ , τ̄ ) = E(2, 2; 1; τ , τ̄ ) +
9

10
E(4; τ , τ̄ ), (107)

C3,1,1(τ , τ̄ ) = 4 E(2, 3; 2; τ , τ̄ ) +
43
35

E(5; τ , τ̄ ) − ζ(5)
60

, (108)

which can be shown to be consistent with the Laplace equations (104) and (105).
We should stress that, generically, the space of generalised Eisenstein series, E(m, k; r; τ , τ̄ ),

defined above is larger that the space of Ca,b,c (modulo single Eisenstein series and con-
stant terms). We now compare the dimensions of the vector space of generalised Eisenstein

22 More precisely, since the integral diverges a cut-off is introduced at τ 2 = L � 1 and the integral is restricted to
the cut-off fundamental domain, FL. The dependence on L cancels after careful analysis of the non-analytic threshold
contributions, so we have effectively

∫
F d2τ/τ 2

2 E(s; τ , τ̄ ) ∼ 0 (which is in accord with the mathematical observations
in [141]).
23 Here the depth of a modular graph function is defined to be the maximum depth of the multiple zeta values that arise
as coefficients of powers of τ 2 in its Laurent polynomial.
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series (106) with the dimension of the vector space of Ca,b,c (modulo single Eisenstein series
and constants). Denoting the dimensions of these spaces by dim VE (w, r) and dim VC(w, r),
respectively, where the weights are fixed to be w = k + m = a + b + c and the eigenvalues are
r(r + 1), we have [142]

dim VE (w, r) − dim VC(w, r) = dim S2(r+1)

=

{
� 2(r+1)

12 �−1 : 2(r + 1) ≡ 2 mod 12,⌊
2(r+1)

12

⌋
: otherwise

(109)

where S2(r+1) denotes the vector space of holomorphic cusp forms with modular weight
2(r + 1).

This appearance of holomorphic cusp forms is not a mere coincidence. In [143] it was
shown that special completed L-values of holomorphic cusp forms appear in the non-zero
modes of the Fourier series decomposition of E(m, k; r; τ , τ̄ ) with respect to τ 1 precisely when
dim VE (w, r) > dim VC(w, r). They arise as a consequence of modularity.

This mixing with holomorphic cusp forms becomes more manifest once we choose to
represent the generalised Eisenstein series as particular combinations of iterated integrals of
holomorphic Eisenstein series [98, 142–145]. The Eichler–Shimura theorem [146, 147] and
the work of Brown [115, 117, 118, 148] on iterated integrals of general holomorphic modular
forms makes it very plausible that holomorphic cusp forms make an appearance.

However, the generating series [108, 110] for modular forms arising in closed-string one-
loop amplitudes contains conjectural matrix representations of Tsunogai’s derivation algebra
[149]. Relations in this algebra are known to be related to holomorphic cusp forms [150], and,
precisely due to these special selection rules governed by Tsunogai’s derivation algebra, only
the combinations of generalised Eisensteins series for which the cusp forms drop out are the
ones appearing in the generating series for all the building blocks of one-loop type II superstring
amplitudes.

Furthermore, knowing how to decompose modular graph functions into a basis of modu-
lar objects satisfying inhomogeneous Laplace equations, such as (106), is useful for specific
calculations, such as the evaluation of the integral (90) over the modular parameter τ on the
fundamental domain F .

General results for the Laurent polynomials of Ca,b,c, i.e. the perturbative expansion at the
cusp in the zero-Fourier mode sector, where obtained in [119] starting from the lattice sum rep-
resentation (99). Similarly, in [99, 102, 103] a Poincaré series approach was used to obtain con-
sistent expressions. The complete asymptotic behaviour of E(m, k; r; τ , τ̄ ) with m, k ∈ N and
m, k � 2, and r ∈ {|k − m|+ 1, |k − m|+ 3, . . . , k + m − 5, k + m − 3} was derived in [142],
making use of the Poincaré series. In general both Ca,b,c(τ , τ̄ ) and E(m, k; r; τ , τ̄ ) have a Lau-
rent polynomial consistent with uniform trascendentality, meaning that if we assign trascen-
dentality 1 to y = πτ 2 and trascendentality k to ζ(k), then each monomial in the Laurent poly-
nomials of both Ca,b,c(τ , τ̄ ) and E(m, k; r; τ , τ̄ ) has trascendentality w = a + b + c = k + m.
For example,

C2,1,1(τ , τ̄ ) =
2y4

14 175
+

ζ(3)y
45

+
5ζ(5)
12y

− ζ(3)2

4y2
+

9ζ(7)
16y3

+ O(q, q̄), (110)

C3,1,1(τ , τ̄ ) =
2y5

155 925
+

2ζ(3)y2

945
− ζ(5)

180
+

7ζ(7)
16y2

− ζ(3)ζ(5)
2y3

+
43ζ(9)
64y4

+ O(q, q̄), (111)
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where q = e2πi τ , q̄ = e−2πi τ̄ . Therefore O(q, q̄) represents exponentially decaying terms.

4.4. Some further comments concerning genus-one modular graph functions

We here note some further general points that we have no space to elaborate on.

• Modular graph functions satisfy a host of very impressive identities [86, 89]. These are
analogous to identities that relate multiple zeta-values of a given weight. Among the many
such relationships that have been discovered are several that have proved important for
evaluating the coefficients in the low-energy expansion of the genus-one four-point ampli-
tude. These coefficients involve integration of a combination of modular graph functions
over τ .

Here we will simply mention two of these identities. The following weight-4 identity
is important for evaluating the coefficient at order d8R4:

D4(τ , τ̄ ) = 24C2,1,1(τ , τ̄ ) − 18E(4; τ , τ̄ ) + 3E(2; τ , τ̄ )2, (112)

where, following the footnote preceding (97), the modular graph function D4 ≡ D4,0,0,0;0,0.
Expressing D4 in terms of C2,1,1 and Eisenstein series in this way is the key to integrating
over τ that is necessary for evaluating the coefficients in the low-energy expansion at order
d8R4.

The evaluation of the coefficient of order d10R4 makes use of several highly non-trivial
weight-5 identities. One of these is

D5(τ , τ̄ ) = 60 C3,1,1(τ , τ̄ ) + 10 E(2; τ , τ̄ ) C1,1,1(τ , τ̄ ) − 48 E(5; τ , τ̄ ) + 16ζ(5). (113)

This relation between D5 and C3,1,1, together with other identities that relate D3,1,1 and
D2,2,1 to C3,1,1 and Eisenstein series again provide the basis for evaluating the integral
over τ .

• The Laurent polynomial of a modular graph function of weight w (the zero Fourier mode)
is a series of terms with integer powers of y = πτ 2 ranging from yw to y1−w. The coef-
ficients of the terms in this series were argued in [87, 116] to be rational multiples of
single-valued multiple zeta-values. The first example of an irreducible multiple zeta value
arising as a coefficient in a Laurent series was found in [116] where the coefficient of the
y−4 term in the Laurent polynomial of D5,1,1 was found to be the weight-11 single-valued
multiple zeta-value,

ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5) − 10ζ(3)2ζ(5), (114)

and ζ(i, j) and ζ(i, j, k) are non single-valued multiple zeta-values.
• Modular graph functions are related to elliptical generalisations of single-valued multiple

polylogarithms in much the same way as single-valued multiple zeta-values are related to
single-valued multiple polylogarithms [87].

• The expression (97) does not describe the most general modular graph functions that
contribute to the low-energy expansion of the n-point amplitude when n > 4. The more
general contributions that first enter at n = 5 [88] are modular functions in which there
are ‘holomorphic’ propagators of the form τ 2/p and anti-holomorphic propagators of the
form τ 2/ p̄. In order for the total modular weight to vanish there must be equal numbers
of holomorphic and anti-holomorphic propagators in any graph.
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• More generally still, in considering relationships between modular graph functions it is
important to include modular graph forms, which transform with non-zero total mod-
ular weight. These have unequal numbers of holomorphic and anti-holomorphic prop-
agators and are related to each other by multiple applications of the Cauchy–Riemann
operator [91, 95].

4.5. Genus-two modular graph functions

Much less is known about higher-genus modular graph functions. The genus-two
four-point amplitude in type II superstring theory was evaluated explicitly in the
Ramond–Neveu–Schwarz formalism in [151, 152] and later in the pure spinor formulation
in [153, 154]. It is given by an integral over the moduli space M2 ≈ H2/Sp(4,Z) of genus-
two Riemann surfaces Σ, where H2 is the Siegel upper half space, which is parameterised
by the 2 × 2 period matrix, Ω. As at genus-one the integrand is an integral over four points
on Σ, corresponding to the four gravitons. The low-energy expansion of the integral over the
points, without integrating over M2, now gives rise to Sp(4,Z)-invariant functions, which are
genus-two modular graph functions [130].

It is interesting to consider the behaviour of these functions in the limit that a handle on the
genus-two world-sheet degenerates. The non-separating degeneration can be parameterised by
a suitably chosen real variable t. In the limit t →∞ the surface reduces to a genus-one surface
with two marked points separated by a distance v in suitable coordinates (in addition to the
four that correspond to the external particles). In the degeneration limit, a genus-two modular
graph function has the form of a Laurent polynomial in t with exponentially small corrections

Zi(Ω) =
w∑

n=−w

(πt)n z
(n)
i (v|τ ) +O(e−2πt), (115)

where τ is the complex structure of the residual torus. The coefficients z
(n)
i (v|τ ) are non-

holomorphic Jacobi forms, which are elliptic functions closely related to genus-one modular
graph functions. This is reminiscent of the pattern of coefficients of powers of (πτ 2) in the
Laurent expansion of genus-one modular graph functions, which are multiple zeta-values.

The low-energy expansion of the two-loop amplitude starts with the effective interaction
d4R4 with a constant coefficient that is proportional to the volume of genus-two moduli space.
The value of this constant matches the predictions of S-duality in type IIB string theory [155]
which comes from the genus-two term in the zero mode of E( 5

2 ; τ , τ̄ ) in (1). The next term in
the low-energy expansion is d6R4, which is obtained by bringing down a single Green func-
tion inside the genus-two integrand. Its coefficient is a non-trivial Sp(4,Z)-invariant function
[127], known as the Kawazumi–Zhang invariant, which satisfies a Laplace eigenvalue equation
on H2 [128], and which has an elegant representation as a generalised theta-lift [129]. Its
integral over M2 was computed using the Laplace equation and also matches a prediction
of S-duality, which is given by the coefficient of the genus-two term in the zero mode of
E( 3

2 , 3
2 ; 3; τ , τ̄ ) in (1).

The next order in the low-energy expansion involves integrating the product of two Green
functions and contributes the genus-two coefficient of the d8R4 interaction. Detailed properties
of this modular graph function may be found in [131]. However, its integral over genus-two
moduli space has not been carried out yet.

There are no explicit expressions for type II superstring loop amplitudes of genus higher than
two although an impressive calculation [156] determined the leading low-energy behaviour
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of the genus-three four-point amplitude, which is of order d6R4. Its value again agrees with
the S-duality prediction, which is the coefficient of the genus-three component of the zero
Fourier mode of E( 3

2 , 3
2 ; 3; τ , τ̄ ) in (1). Further analysis of the genus-three amplitude is given

in [157].

5. Coda

This article has surveyed recent developments in three interrelated areas of string theory
and quantum field theory that have several themes in common. These topics all involve the
strong constraints of maximal supersymmetry—ten-dimensional type IIB in the context of
the superstring discussions in sections 2 and 4, and four-dimensional N = 4 supersymmetry
and superconformal symmetry in the context of integrated correlators in section 3. Another
common theme is that of the strong constraints imposed by duality, which is target-space
SL(2,Z) invariance of type IIB superstring, Montonen–Olive duality in the case of N = 4
SYM, and world-sheet duality in the case of genus-one or genus-two string perturbation
theory.

These constraints are so strong that they lead to remarkably detailed expressions in each of
these areas. These results not only shed light on areas of direct interest in theoretical physics,
but they have led to interesting avenues of significant mathematical interest. However, we have
focussed on particular special examples and it would be interesting to extend the ideas and
methods covered in this article to more general physical observables as well as more general
systems.
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Appendix A. Some properties of non-holomorphic modular forms

In this appendix we will briefly review the mathematics of non-holomorphic modular forms.
Recall that SL(2,Z) acts on the scalar field τ = τ 1 + iτ 2 (or equivalently on the worldsheet
torus complex structure τ in section 4) as

τ → γ · τ =
aτ + b
cτ + d

, (A.1)

with γ =

(
a b

c d

)
∈ SL(2,Z) so that a, b, c, d ∈ Z and det γ = ad − bc = 1.
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An element f (w,ŵ)(τ , τ̄ ) of the vector space Mw,ŵ of non-holomorphic modular forms with
holomorphic and anti-holomorphic modular weights (w, ŵ), transforms under SL(2,Z) as

f (w,ŵ)(γ · τ , γ · τ̄ ) = (cτ + d)w (cτ̄ + d)ŵ f (w,ŵ)(τ , τ̄ ). (A.2)

Modular covariant derivatives are defined by

Dw = i

(
τ2

∂

∂τ
− i

w

2

)
, D̄ŵ = −i

(
τ2

∂

∂τ̄
+ i

ŵ

2

)
, (A.3)

where Dw transforms a modular form with weights (w, ŵ) to a new modular form with (w + 1,
ŵ − 1) and D̄ŵ changes weights by (w, ŵ) → (w − 1, ŵ + 1), i.e. Dw : Mw,ŵ �→ Mw+1,ŵ−1 and
similarly D̄ŵ : Mw,ŵ �→ Mw−1,ŵ+1. In other words,

Dw f (w,ŵ)(τ , τ̄ ) := f (w+1,ŵ−1)(τ , τ̄ ),

D̄ŵ f (w,ŵ)(τ , τ̄ ) := f (w−1,ŵ+1)(τ , τ̄ ).
(A.4)

Non-holomorphic forms for which ŵ = −w, are particularly relevant to our discussion and
transform by a phase characterised by a U(1) charge, q = 2w, as is evident from (A.2). It is
useful to note that the action of Dw on a power of Im τ = τ 2 = 1/gs is given by

Dwτ
α
2 =

1
2

(
τ2

∂

∂τ2
+ w

)
τα2 =

1
2

(
−gs

∂

∂gs
+ w

)
g−α

s . (A.5)

The operators Dw, D̄ŵ, together with the Cartan operator Hw,ŵ = (w − ŵ)/2 : Mw,ŵ �→
Mw,ŵ, form a representation of the sl(2) algebra on Mw,ŵ. The Casimir operator for this repre-
sentation yields Laplace-like differential operators which map Mw,ŵ into itself. In particular,
restricting to the case ŵ = −w, we have the Laplacians

Δ(−)w := 4Dw−1D̄−w, (A.6)

Δ(+)w := 4D̄−w−1Dw. (A.7)

Note that in the modular invariant case M0,0 these reduce to the standard Laplacian Δ(−)0 =
Δ(+)0 :=Δτ = 4τ 2

2 ∂τ∂τ̄ .
Homogeneous (and inhomogenous) Laplace eigenvalue equations on the space Mw,−w arise

at various stages in this review. These have the equivalent forms

Δ(−)w f (w,−w)
s (τ , τ̄ ) = (s(s − 1) − w(w − 1)) f (w,−w)

s (τ , τ̄ ),

Δ(+)w f (w,−w)
s (τ , τ̄ ) = (s(s − 1) − w(w + 1)) f (w,−w)

s (τ , τ̄ ),
(A.8)

where s ∈ C. These equations have a unique solution in Mw,ŵ, for functions satisfying the
physically required boundary condition of moderate growth (power behaviour) in the large-τ2

limit (the weak-coupling limit).
A basic ingredient in our discussion is the modular invariant non-holomorphic Eisenstein

series, which is defined by

E(s; τ , τ̄ ) =
1
πs

∑
(m,n)�=(0,0)

τ s
2

|m + nτ |2s
, E(s; τ , τ̄ ) ∈ M0,0, (A.9)
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and satisfies the homogeneous Laplace eigenvalue equation

[Δτ − s(s − 1)]E(s; τ , τ̄ ) = 0. (A.10)

It has a well-known Fourier mode decomposition,

E(s; τ , τ̄ ) =
∑
k∈Z

Fk(s; τ2)e2πikτ1 , (A.11)

where zero mode (or equivalently the perturbative term) is given by

F0(s; τ2) =
2ζ(2s)
πs

τ s
2 +

2
√
πΓ(s − 1

2 )ζ(2s − 1)
πsΓ(s)

τ 1−s
2 , (A.12)

and the non-zero modes are given by

Fk(s; τ2) =
4

Γ(s)
|k|s− 1

2 σ1−2s(|k|)
√
τ2Ks− 1

2
(2π|k|τ2), k �= 0, (A.13)

where the divisor sum is defined by σν(k) =
∑

d|k dν . The non-zero mode Fk represents the
k-instanton contribution.

Our discussion also involves non-holomorphic (w,−w)-forms, Ew(s; τ , τ̄ ) ∈ Mw,−w, that
are defined by

Ew(s; τ , τ̄ ) =
2wΓ(s)
Γ(s + w)

Dw−1 . . .D0E(s; τ , τ̄ ),

=
1
πs

∑
(m,n)�=(0,0)

(
m + nτ̄
m + nτ

)w
τ s

2

|m + nτ |2s
, (A.14)

(where E0(s; τ , τ̄ ) = E(s; τ , τ̄ )) which satisfy the recursion relations,

DwEw(s; τ , τ̄ ) =
s + w

2
Ew+1(s; τ , τ̄ ), (A.15)

D̄−wEw(s; τ , τ̄ ) =
s − w

2
Ew−1(s; τ , τ̄ ). (A.16)

Another type of modular function that plays an important rôle in this article is the gener-
alised non-holomorphic Eisenstein series, which satisfies the inhomogenous Laplace eigen-
value equation,

[Δτ − r(r + 1)]E(s1, s2; r; τ , τ̄ ) = −E(s1; τ , τ̄ )E(s2; τ , τ̄ ). (A.17)

This equation again has a unique SL(2,Z)-invariant solution given appropriate boundary condi-
tions. The prototype of this equation arises in considering the coefficient of d6R4 in the effective
type IIB action (1) where s1 = s2 = 3/2 and r = 3 [8, 158]. The complete solutions of this
equation for generic s1, s2, r ∈ C are not known, although a spectral decomposition has been
studied [159].

However, more is known about the solutions to (A.17) when s1, s2 are integers or when
they are half-integers. Both of these cases are of special relevance to this article. The complete
perturbative and non-perturbative expansions were obtained in [142, 143] when s1, s2 ∈ N,
which plays a rôle in the study of the low-energy expansion of genus-one type II superstring
amplitudes, here discussed in section 4. Similarly, cases with s1, s2 ∈ N+ 1/2 (which includes
the special case, E( 3

2 , 3
2 ; 3; τ )) were discussed in [158, 160].
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For illustrative purposes, as well as because of its relevance to (1), we will sketch the form
of E( 3

2 , 3
2 ; 3; τ , τ̄ ), which differs significantly from that of a non-holomorphic Eisenstein series.

Its zero Fourier mode is given by

E(
3
2

,
3
2

; 3; τ , τ̄ )|zero mode =
2
3
ζ(3)2τ 3

2 +
4
3
ζ(2)ζ(3)τ2 +

8
5
ζ(2)2τ−1

2

+
4
27

ζ(6)τ−3
2 + O(e−4πτ2), (A.18)

where O(e−4πτ2) indicates the presence of an infinite series of powers of (qq̄), where q = e2πiτ

(and recalling that τ 2 = 1/gs, where gs is the string coupling constant). These terms are
interpreted as contributions of instanton anti-instanton pairs. The power-behaved terms are
interpreted as coefficients of perturbative contributions in the d6R4 term in the low-energy
expansion of four-point amplitude in the superstring theory.

Finally, we note that, starting from E(s1, s2; r; τ , τ̄ ) one can construct weight-(w,−w) mod-
ular forms, which also play a rôle in this article, by acting with covariant derivatives

Ew(s1, s2; r; τ , τ̄ ) ≡ 1
2w

Dw−1 . . .D1D0 E(s1, s2; r; τ , τ̄ ), (A.19)

similar to (A.14).
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