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Abstract: We study an interesting superization problem of integrable nonlinear dynamical

systems on functional manifolds. As an example, we considered a quantum many-particle

Schrödinger–Davydov model on the axis, whose quasi-classical reduction proved to be a

completely integrable Hamiltonian system on a smooth functional manifold. We checked

that the so-called “naive” approach, based on the superization of the related phase space

variables via extending the corresponding Poisson brackets upon the related functional

supermanifold, fails to retain the dynamical system super-integrability. Moreover, we

demonstrated that there exists a wide class of classical Lax-type integrable nonlinear dy-

namical systems on axes in relation to which a superization scheme consists in a reasonable

superization of the related Lax-type representation by means of passing from the basic

algebra of pseudo-differential operators on the axis to the corresponding superalgebra of

super-pseudodifferential operators on the superaxis.

Keywords: supersymmetry; super-differentiation; Lie superalgebra; algebra of pseudo-

differential operators; coadjoint action; lax integrability; Lie-algebraic approach; gradient-

holonomic scheme; casimir invariants; super-Poisson structure

MSC: 17B68; 17B80; 35Q53; 35G25; 35N10; 37K35; 58J70; 58J72; 34A34; 37K05; 37K10

1. Introduction

Main modern field theoretic string theories of fundamental interactions are essen-

tially based [1–7] on supersymmetric generalizations both of the space–time variables and

canonical field variables, making possible to construct governing evolution systems free

of singularities and nonphysical peculiarities. As often from the very beginning field

equations are considered on the usual classical phase spaces, an important problem of

constructing their corresponding supersymmetric extensions [3,8–10] arises and which,

during past decades, has been treated by means of various [11–21] mathematical tools and

approaches. In particular, within the two-dimensional completely integrable field theories,

like Sin–Gordon, Thirring, Nonlinear Schödinger, Born–Infeld, and others, their super-

symmetric integrable extensions were constructed by means of natural supersymmetric

generalizations either of physically motivated reasonings [1,12,13,22–33] about the system

evolution regarding the energy interaction’s Hamiltonian structure or the related hidden

supersymmetry’s Lie-algebraic structure [11,20,29,34–43], which are responsible for their

complete integrability. Being interested in more detailed analysis of these superization
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schemes, we considered a physically motivated [44–48] spatially one-dimensional quantum

interacting many-particle model, described by the Hamiltonian operator

HN = − ∑
j=1,N

∂2

∂x2
j

+ 2 ∑
j =1,N

n(xj), (1)

of N ∈ N charged Bose-particles, specified by the position dependent intensities n(xj) ∈ R

at points xj ∈ R, j = 1, N, and acting on the Hilbert space L2(R
N ;C) of the corresponding

quantum states. In case of a medium with an infinite number of particles, the Hamiltonian

operator should be naturally considered [44,45,49] within the secondary quantized Fock

space representation

Ĥ =
∫

R

dx[ψ+
x (x)ψx(x) + 2n(x)ψ+(x)ψ(x)], (2)

acting already on the tensor product Fock space Φ ⊗ Θ, generated by a vacuum state |0) ∈

Φ ⊗ Θ and, in part, creation–annihilation operators ψ+(x), ψ(x) : Φ → Φ, respectively,

satisfying the following canonical operator commutation brackets:

[ψ(x), ψ+(y)] = δ(x − y), (3)

[ψ(x), ψ(y)] = 0 = [ψ+(x), ψ+(y)]

being supplemented with the operator commutation brackets

[ψ(x), n(y)] = 0 = [n(x), ψ+(y)], (4)

[n(x), n(y)] = ∂δ(x − y)/∂x

at arbitrary points x, y ∈ R for the intensity operator n(x) : Θ → Θ, describing the simplest

self-interacting quantum medium, whose quantum states are modeled by the related Fock

space Θ. The corresponding Heisenberg evolution in time t ∈ R equations [44,45,49] for

the dynamical operator variables ψ(x), ψ+(s), and n(x) : Φ ⊗ Θ → Φ ⊗ Θ read as

∂ψ/∂t =
1

i
[Ĥ, ψ] = iψxx − 2nψ, (5)

∂n/∂t =
1

i
[Ĥ, n] = −2n(ψ ψ+)x,

∂ψ+/∂t =
1

i
[Ĥ, ψ+] = −iψ+

xx + 2nψ+,

and were before intensively studied in [46,48] as a dynamical model for describing the mech-

anism of muscle contraction in living tissue. The obtained system of operator Schrödinger–

Davydov-type Equation (5) allows the following quasi-classical Hamiltonian form

∂ψ/∂t = {H, ψ}P = iψxx − 2nψ, (6)

∂n/∂t = {H, n}P = −2n(ψ ψ∗)x,

∂ψ+/∂t = {H, ψ+}P = −iψ∗
xx + 2nψ∗

endowed with the following quasi-classical Poisson brackets:

{ψ(x), ψ∗(y)}P = δ(x − y), {ψ(x), n(y)}P = 0 = {n(x), ψ∗(y)}P, (7)

{ψ(x), ψ(y)}P = 0 = {ψ∗(x), ψ∗(y)}P , {n(x), n(y)}P = ∂δ(x − y)/∂x
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at any points x, y ∈ R on a smooth functional manifold M ⊂ {(ψ, n, ψ∗) ∈ C2(R;C×

R×C)}, easily following from (3) and (4) within the classical Dirac’s correspondence [49]

principle.

As was stated in [47,50,51], the derived hydrodynamic and Boltzmann–Vlasov-type

kinetic equations there are related to System (7) and proved to be completely integrable

Hamiltonian systems. Moreover, as will be demonstrated below, the above-derived non-

linear quasi-classical Schrödinger–Davydov system (6) proves to also be a completely

integrable bi-Hamiltonian flow [52] on the functional manifold M and whose possible

superization schemes are analyzed in detail in our work below.

2. Quasi-Classical Integrability and a Simple Superization Scheme

Let us begin with analyzing the integrability of the above-derived quasi-classical

Schrödinger–Davydov-type nonlinear dynamical system

∂ψ/∂t = iψxx − 2nψ,

∂n/∂t = −2n(ψ ψ∗)x

∂ψ∗/∂t = −iψ∗
xx + 2nψ∗











:= K[ψ, n, ψ∗], (8)

with respect to the evolution parameter t ∈ R, considered as a smooth vector field K : M →

T(M) on the functional manifold M, via making use of the gradient-holonomic scheme,

devised in [51,53,54]. As a first step, we need to demonstrate the existence of an infinite

hierarchy of conservation laws and to state their commuting to each other with respect the

Poisson bracket (7), presented above. Namely, for any smooth functionals γ, µ ∈ D(M),

their Poisson bracket is calculated via the expression

{γ, µ}P = (gradγ|Pgradµ), (9)

where grad : D(M) → T∗(M) denotes the Gateau derivative with respect to the usual

bilinear form (·|·) : T∗(M)× T(M) → C and the Poisson operator P : T∗(M) → T(M) is

skew-symmetric, satisfying the following weak functional relationship:

{(ψ(x), n(x), ψ∗(x))⊺, (ψ(y), n(y), ψ∗(y))}P = Pδ(x − y) (10)

for any x, y ∈ R, δ(x − y)—the classical generalized Dirac delta-function, acting on an

arbitrary continuous function f ∈ C(R;C) via the symbolic integral operation f (x) :=
∫

R
δ(x − y) f (y)dy, is satisfied for all x ∈ R. To calculate the infinite hierarchy of conserva-

tion laws for the vector field (8), it is enough to study special solutions to the governing

linear Noether–Lax equation:

ϕt + K′,∗ϕ = 0, (11)

where K′,∗ : T∗(M) → T∗(M) denotes the adjoint to the Frechet derivative operator

K′ : T(M) → T(M) of the vector field (8) and a covector ϕ ∈ T∗(M) can be chosen as

ϕ = (1, a, b)⊺ exp(−iλ2t + ∂−1σ(x; λ)), ∂/∂x · ∂−1 = 1, (12)

and the expressions

σ(x; λ) ∼ ∑
j∈Z+∪{−2,−1}

σj[ψ, n, ψ∗]λ−j, a(x; λ) ∼ ∑
j∈Z+

aj[ψ, n, ψ∗]λ−j, (13)

b(x; λ) ∼ ∑
j∈Z+

bj[ψ, n, ψ∗]λ−j,
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are considered asymptotic with respect to an arbitrary complex parameter C ∋ λ → ∞.

Taking into account that

K′,∗ =







i∂2 − 2in 2ψ∗∂ 2in

−2iψ 0 2iψ∗

0 2ψ 2in − i∂2






, (14)

one easily obtains a system of recurrent differential–algebraic relationships, giving rise to

the following functional expressions:

σ−2 = −i, σ−1 = 1, σ0 =
1

2
n, σ1 = ψ∗ψ, σ2 =

1

2
[n2 − i(ψ∗ψx − ψψ∗

x)], σ3 = ψ∗
xψx + 2nψ∗ψ, (15)

σ4 =
1

2
n2 − 6(ψ∗ψ)2 −

1

2
n2

x + 6in(ψ∗ψx − ψψ∗
x)− 2i(ψ∗ψ3x − ψψ∗

3x), . . . ,

and so on. Since, owing to Representation (12), the quantity γ(λ) :=
∫

R
dxσ(x; λ) is

conservative with respect to the evolution parameter t ∈ R for all λ ∈ C, we find that

all functionals

H0 =
1

2

∫

R

ndx, H1 =
∫

R

ψ∗ψdx, H2 = 1/2
∫

R

[n2 − i(ψ∗ψx − ψψ∗
x)]dx, H3 =

∫

R

(ψ∗
xψx + 2nψ∗ψ)dx, (16)

H4 =
1

2

∫

R

[n2 − 12(ψ∗ψ)2 − n2
x + 12in(ψ∗ψx − ψψ∗

x)− 4i(ψ∗ψ3x − ψψ∗
3x)]dx, . . .

are also conservative. To confirm now that the vector field (8) on the functional manifold

M is Hamiltonian, it is enough within the gradient-holonomic scheme [53] to show that the

respectively constructed conservation law

Hp = (ξp|(ψx, nx, ψ∗
x)

⊺) (17)

for some suitably chosen p ∈ N generates the Poisson operator P : T∗(M) → T(M) for the

flow (8) as

P =
(

ξ ′,∗p − ξ ′p

)−1
. (18)

For the case p = 2 one obtains that

H2 = 1/2
∫

R
[n2 − i(ψ∗ψx − ψψ∗

x)]dx = ((−iψ∗,−∂−1n, iψ)⊺|(ψx, nx, ψ∗
x)

⊺) =

= (ξ2|(ψx, nx, ψ∗
x)

⊺), ξ2 := (−iψ∗,−∂−1n, iψ)⊺,
(19)

giving rise to the following Poisson operator:

P =
(

ξ ′,∗2 − ξ ′2
)−1

=







0 0 i

0 ∂ 0

−i 0 0






. (20)

In a similar way, as above, for the case p = 4, one derives the second Poisson operator:

Q =
(

ξ ′,∗4 − ξ ′4
)−1

=







−12ψ∂−1ψ 4∂ψ + 2ψ∂ 12ψ∂−1ψ∗ − 4i∂2 + 8in

4ψ∂ + 2∂ψ −∂3 + 4n∂ + 4∂n 4ψ∗∂ + 2∂ψ∗

−i 4∂ψ∗ + 2ψ∗∂ −12ψ∗∂ψ






, (21)

where, by definition, H4 = (ξ4|(ψx, nx, ψ∗
x)

⊺). Moreover, one can check that the recurrent

relationships

QgradHj = 2PgradHj+2 (22)
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hold for all j ∈ Z+, meaning that the Poisson operators (20) and (21) are compatible—that

is, the affine sum λP + Q : T∗(M) → T(M) is also a Poisson operator for all λ ∈ C. The

latter makes it possible to state that the infinite hierarchy of conservation laws (16) is such

that they are commuting to each other with respect to both Poisson brackets

{Hj, Hk}P = 0 = {Hj, Hk}Q (23)

for all j, k ∈ Z+. Since our dynamical system (8) allows the Hamiltonian representation

(ψt, nt, ψ∗
t )

⊺ = {H3, (ψ, n, ψ∗)⊺)}P = −Pgrad H1[ψ, n, ψ∗], (24)

coinciding with (6), we can formulate our first proposition.

Proposition 1. The nonlinear Schrödinger–Davydov dynamical system (8) possesses an infinite

hierarchy of conservation laws (16) commuting to each other and is an integrable bi-Hamiltonian

flow on the functional manifold M.

Remark 1. Since the representation (ψt, nt, ψ∗
t )

⊺ = −Qgrad H1[ψ, n, ψ∗] holds, one states that

the dynamical system (8) is bi-Hamiltonian with respect to both Poisson structures (20) and (21) on

the functional manifold M.

Recall now the Poisson brackets (7) on the functional manifold M

{ψ(x), ψ∗(y)}P = iδ(x − y), {ψ(x), n(y)}P = 0 = {n(x), ψ∗(y)}P, (25)

{ψ(x), ψ(y)}P = 0 = {ψ∗(x), ψ∗(y)}P, {n(x), n(y)}P = ∂δ(x − y)/∂x

at all points x, y ∈ R and observe that they are canonically ultra-local [45,55] except the

field variable n ∈ M, depending on the delta-function derivative.

The latter, in particular, means that this field variable cannot be secondly quantized

on some suitably chosen Fock space Θ. Nonetheless, this quantization can be performed,

if carried out to superize the functional manifold M by means of the following scheme:

(ψ, n, ψ∗) ∋ M → (ψ̃, ñ, ψ̃∗) ≃ (ψ̃, ũ, ψ̃∗) ∈ M̃ ∈ C2(R1|1; Λ0 × Λ1 × Λ∗
0), where R1|1 :=

(x, θ) ∈ R× Λ1, Λ0 ⊕ Λ1 := Λ(1|1) is the classical one-dimensional Grassmann algebra over

the complex field C. To specify in more detail the superanalysis concepts used further, as

well as the related superization scheme, we proceed below with some brief superanalysis

preliminaries on functional supermanifolds.

3. Superanalysis Preliminaries on Superaxis R1|1

Consider the usual one-dimensional axis R1 and its supermanifold [8,9] extension

R1|1 by means of coordinate variables (x, θ) ∈ R1|1 ≃ R1 × Λ1, specified by the Z2-graded

Grassmann algebra Λ(1|1) = Λ0 ⊕ Λ1 over the field C with parities p|
Λ
(1)
s

= s, s ∈ {0, 1},

where x ∈ R1, θ ∈ Λ
(1)
1 and θ2 = 0, respectively. An arbitrary smooth uniform function

f ∈ C∞(R1|1; Λ(1|1)) ≃ C∞(R1; Λ(1|1))× Λ(1), p( f ) ∈ {0, 1} is at point (x, θ) ∈ R1 × Λ1,

representable as

f (x, θ) = f0(x) + θ f1(x), (26)

where the coefficients f0, f1 ∈ C∞(R1; Λ
(1|1)
k mod 2) and their parities p( fk) = p( f ) + kmod2.

The linear space of functions (26) over the Z2-graded Grassmann algebra Λ(1) generates

the Z2-graded algebra C∞(R1|1; Λ(1|1)), and the linear subspace of functions (26) with

component f0(x) = 0, x ∈ R1, generates its nilpotent ideal J(R1|1; Λ(1)) ⊂ C∞(R1|1; Λ(1|1)).
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We also remark that the factor space C∞(R1|1; Λ(1|1))/J(R1|1; Λ(1)) ≃ C∞(R1; Λ(1|1)) is

equivalent to the space of coefficients of the algebra C∞(R1|1; Λ(1)).

Consider now a diffeomorphism of the superaxis R1|1, which is, by definition, a parity

preserving the algebra automorphism of C∞(R1|1; Λ(1|1)), inducing a related homomor-

phism of C∞(R1; Λ(1)).

Definition 1. The corresponding linear space G(1, 1) := Vect(R1|1; Λ(1)) of vector fields on

the superaxis R1|1 is, by definition, the Lie superalgebra of all derivations of the superalgebra

C∞(R1|1; Λ1,1): that is, for any uniform vector field a ∈ G(1|1) with parity p(a) ∈ {0, 1}, the con-

dition a( f g) = a( f )g + (−1)p(a)p( f ) f a(g) holds for any uniform function f ∈ C∞(R1|1; Λ(1)),

p( f ) ∈ {0, 1}, and g ∈ C∞(R1|1; Λ(1)).

The Lie superalgebra G(1|1)-graded commutators of any uniform elements a, b ∈

G(1|1) can be recalculated as

[a, b]( f ) = a(b( f ))− (−1)p(a)p(b)b(a( f )), (27)

where f ∈ C∞(R1|1; Λ(1)). The above-constructed Lie superalgebra G(1|1) satisfies the

Leibnitz super-commutator relationships

[a, b] = −(−1)p(a)p(b)[b, a],

[a, [b, c]] = [[a, b], c] + (−1)p(a)p(b)[b, [a, c]]

for arbitrary a, b, and c ∈ G(1|1), and is generated by sections Γ(R1|1) of the tangent bundle
(

T(R1|1), π,R1|1
)

over the superaxis R1|1, being equivalent to the free left C∞(R1|1; Λ(1))-

module with basis (∂/∂x; ∂/∂θ) and parities p(∂/∂x) = 0, p(∂/∂θ) = 1, respectively.

Consider now an infinite-dimensional functional supermanifoldMn|1 ⊂ C∞(R1|1; Λ(1)n),

n ∈ N, and a smooth vector field K : Mn|1 → T(Mn|1), where T(Mn|1) denotes the cor-

responding tangent space to Mn|1, and let du/dτ ∈ T(Mn|1), τ ∈ Λ(1|1), be the related

one-parametric superflow on Mn|1, satisfying at each point u ∈ Mn|1 the relationship

du/dτ = K[u], (28)

called a dynamical supersystem on the supermanifold Mn|1.

Definition 2. The above-introduced vector superfield d/dτ : Mn|1 → T(Mn|1) with respect to the

evolution superparameter τ ∈ Λ(1) is called supersymmetric if it allows the following representation:

d/dτ = ∂/∂θ + θ∂/∂t, where t ∈ R is a real evolution parameter.

As we are interested in describing infinite-dimensional dynamical superflows (28),

which are super-integrable Hamiltonian flows on the supermanifold Mn|1, n ∈ N, that is

possessing infinite hierarchies of commuting to each other conservation laws with respect

to the corresponding Poisson structures on Mn|1, we need to provide at least sufficient

conditions imposed on a superflow under regard allowing to state that it is superintegrable.

The latter, in particular, means that this superflow is invariant with respect to some hidden

supergroup symmetry, whose coadjoint orbits [53,55,56] prove to be equivalent to the

superflow under regard. Within the gradient-holonomic approach, devised in [53,57], the

existence of conservation laws to a given dynamical superflow (28) is ensured by solutions

to the following Noether-Lax differential-functional equation

∂ϕ/∂τ + K′,∗[u]ϕ = 0, (29)
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on the element ϕ := grad γ ∈ T∗(Mn|1), where K′,∗[u] : T∗(Mn|1) → T∗(Mn|1) denotes the

usual adjoint Frechet derivative of the mapping K : Mn|1 → T(Mn|1) at a point u ∈ Mn|1

and γ ∈ D(Mn|1) is a smooth functional on the supermanifold Mn|1 a priori invariant with

respect to the superflow (28). To describe in more detail the supersymmetry properties of

the superflow (28), we will consider the supersymmetric vector field Dθ := ∂/∂θ + θ∂/∂x

on the supermanifold Mn|1, which satisfies the following important for further properties:

D2
θ = ∂/∂x, iDθ

α(1) = 0 (30)

for all (x, θ) ∈ R1|1, where α(1) := dx + θdθ ∈ T∗(R1|1) denotes the canonical contact

form [18,29,58,59] on the superaxis R1|1. In particular, the linear space K(1|1) over Λ(1) of

all conformal vector fields K f : R1|1 → T(R1|1) for f ∈ C∞(R1|1; Λ(1)) ≃ M
1|1
c , leaving the

contact form invariant, compile a conformal Lie superalgebra, whose coadjoint action on

the naturally related adjoint space K(1|1)∗ regarding the canonical bilinear form

(l|K f ) :=
∫

R1
dx

∫

dθ f (x, θ)l(x, θ) (31)

for (l, K f ) ∈ K(1|1)∗ ×K(1|1), generates [29,53,55,59] the corresponding dynamical super-

systems on the supermanifold M
1|1
c . Here, the super-integration

∫

dx
∫

dθ(·) “measure”

is defined [8] on the superaxis R1|1 via the following rules:

∫

θdθ = 1,
∫

dθ = 0. (32)

Moreover, taking into account that the adjoint space K(1|1)∗ is Poissonian, carrying the

canonical Lie-Poisson structure [55], this algebraic scheme makes it possible to construct

on the supermanifold M
1|1
c a special subset of so called super-Hamiltonian vector fields,

which prove to be completely integrable within the classical Liouville-Arnold integrability

type definition.

Returning now to our Hamiltonian system (24) on the functional supermanifold

M̃ ⊂ C∞(R1|1;×Λ
(1)
1 × Λ

(1)∗
0 ), let us analyze the two most natural ways of its superization:

The first one consists in constructing on the supermanifold M̃ a superflow

K̃ : M̃ → T(M̃), (33)

related with a suitably chosen super-connection [11,14,15,41] on the two-dimensional space-

time R2 with the vanishing curvature, and whose structure supergroup leaves invariant

the corresponding Casimir invariants and generates, respectively, an infinite hierarchy

of conservation laws, reducing to a priori given quasi-classical conservation laws of the

dynamical system (8) under regard. In particular, the supermanifold M̃ is equipped with the

corresponding super-variables (ψ̃, ũ, ψ̃∗) ∈ M̃, which admit the following superalgebraic

expansions:

ψ̃(x, θ) = ψ0(x) + θψ1(x) ∈ Λ0, ψ̃∗(x, θ) = ψ∗
0 (x) + θψ∗

1 (x) ∈ Λ∗
0 , (34)

ũ(x, θ) = u1(x) + θu0(x) ∈ Λ0,

entering in the corresponding Hamiltonian function

H̃ =
∫

R

dx
∫

dθ[ψ̃∗
θθ(x, θ)ψ̃θθ(x, θ) + 2ñ(x, θ)ψ̃∗(x, θ)ψ̃(x, θ)], (35)

This superization scheme is mainly based on the super-analysis techniques, first described

in [7–9] and developed later, regarding integrable super-symmetric dynamical systems,
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in [4,11,14–18,20,28,59]. In particular, in [11], as well as in [14], there were proposed

superization schemes, generalizing the classical associated zero curvature condition for

the components of the corresponding super connection on the two-dimensional space-time

R2, rigged with the Lie supergroup SL(2|1), that allowed them to construct integrable

supersymmetric Korteweg-deVries and Nonlinear Schrödinger type dynamical systems on

supermanifolds.

The second one consists in the natural superization of a given quasi-classical Poisson

structure to that on the corresponding functional supermanifold M̃ and was originally

proposed in [1,13,60], which regarding to our quasi-classical Poisson brackets (25), leads

to introducing the superfield ñ := ũθ = Dθ ũ and next transforming the quasi-classical

Poisson brackets (25) into the following ultra-canonical super-Poisson brackets

{ψ̃(x, θ), ψ̃∗(y, η)}P̃ = iδ(x, θ|y, η), {ψ̃(x, θ), ũ(y, η)}P̃ = 0 = {ũ(x, θ), ψ̃∗(y, η)}P̃, (36)

{ψ̃(x, θ), ψ̃(y, η)}P̃ = 0 = {ψ̃∗(x, θ), ψ̃∗(y, η)}P̃, {ũ(x, θ), ũ(y, η)}P̃ = δ(x, θ|y, η)

at all super-points (x, θ), (y, η) ∈ R1|1, where

δ(x, θ|y, η) = δ(x − y − θη)(θ − η) (37)

denotes the supersymmetric Dirac delta-function, satisfying for any continuous super-

function f̃ ∈ C0(R1|1; Λ) the determining relationship

f̃ (x, θ) :=
∫

R

dy
∫

dηδ(x, θ|y, η) f̃ (y, η) (38)

for all (x, θ) ∈ R1|1 jointly with the mentioned above (32) Berezin integrals [8–10], assumed

to be fulfilled, and which is appropriately applied to the super-generalized quasi-classical

Hamiltonian function (35). Since the super-Poisson operator P̃ : T∗(M̃) → T∗(M), corre-

sponding to the Poisson superbrackets (36), acts on the cotangent superspace T∗(M̃), adjoint

to the supersymmetric tangent space T(M̃), the latter can be endowed with the following

super-bilinear form (·|·) : T∗(M̃)× T(M̃) → Λ0, where for any f̃ ∈ T∗(M̃), g̃ ∈ T(M̃) :

( f̃ |g̃) :=
∫

R

dx
∫

dθ⟨ f̃ (x, θ)|g̃(x, θ)⟩E3 . (39)

Having now applied the super-Poisson operator P̃ : T∗(M̃) → T(M̃) brackets (36) to

the superized Hamiltonian function H ∈ D(M) in the form

H̃ =
∫

R

dx
∫

dθ[ψ̃∗
θθ(x, θ)ψ̃θθ(x, θ) + 2ũθ(x, θ)ψ̃∗(x, θ)ψ̃(x, θ)], (40)

one derives the super-Hamiltonian system

ψ̃t = {H̃, ψ̃}P̃ = iψ̃4θ − 2ũθψ̃, ũt = −2(ψ̃∗ψ̃)θ , (41)

ψ̃∗
t = {H̃, ψ̃∗}P̃ = −iψ̃∗

4θ + 2ũθψ̃∗,

with respect to the real temporal parameter t ∈ R, in relation to which one poses the

following natural question:

Problem 1. Does it inherit the classical integrability property of the Schrödinger–Davydov dy-

namical system (8) as considered on the functional supermanifold M̃? This will be analyzed in the

section to follow.
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The question posed above is deeply motivated by the fact that the obtained superized

Schrödinger–Davydov dynamical system (41) both reduces to its classical version (8) on

the functional supermanifold M and simultaneously describes the related evolution of two

anticommuting fermionic fields, nontrivially interacting with basic bosonic fields, defined

by means of the expansions (34). The latter can be in part interpreted as the existence of

an additional yet hidden inter-particle vacuum-based interaction, not taken into account a

priori within the quantum Hamiltonian operator (2).

Remark 2. The superization scheme that we applied to the quasi-classical Schrödinger–Davydov

dynamical system (8) is strictly based on the superization of the classical field supermanifold M via

the superization of the related non-ultralocal Poisson structure (25). The corresponding Hamiltonian

equations (41), determining the evolution on the constructed functional supermanifold M̃, are those

which presumably can describe additional hidden interparticle vacuum-based interaction of the

quasi-classical fields under consideration, which are interesting for applications both in solid-state

physics and modeling the muscle contraction mechanism in living tissue, as mentioned before.

4. Superintegrability Analysis

Since we are interested in studying the superintegrability of the infinite-dimensional

dynamical superflow (41) as a Hamiltonian flow on the supermanifold M̃, which possesses

an infinite hierarchy of conservation laws commuting to each other with respect to the

corresponding Poisson structures on M̃, we need to provide at least sufficient conditions

imposed on a given superflow allowing us to state that it really passes them. The latter, in

particular, means that this superflow is invariant with respect to some hidden supergroup

symmetry, whose structure can be revealed within the effective gradient-holonomic ap-

proach, devised before in [51,53,54,57] and applied to diverse nonlinear dynamical systems.

Concerning the super-integrability problem regarding the super-Hamiltonian system (41),

we will rewrite it as the vector superfield

∂ψ̃/∂t = iψ̃4θ − 2ũθψ̃,

∂ũ/∂t = −2(ψ̃∗ψ̃)θ

∂ψ̃∗/∂t = −iψ̃∗
4θ + 2ũθψ̃∗











:= K̃[ψ̃, ũ, ψ̃∗], (42)

on the superized functional supermanifold M̃, and look within the gradient-holonomic

approach [53,57] for special solutions to the corresponding Noether–Lax equation

ϕ̃t + K̃
′,∗

ϕ̃ = 0 (43)

in the following asymptotic ax C ∋ λ → ∞ form:

ϕ̃ = (1, ã, b̃)⊺ exp[−iλ2t + D−1
θ σ̃(x, θ)], (44)

where

σ̃(x, θ; λ) ∼ ∑
j∈Z+∪{−2,−1}

σ̃j[ψ̃, ũ, ψ̃∗]λ−j, ã(x, θ; λ) ∼ ∑
j∈Z+

ãj[ψ̃, ũ, ψ̃∗]λ−j, (45)

b̃(x, θ; λ) ∼ ∑
j∈Z+

b̃j[ψ̃, ũ, ψ̃∗]λ−j,
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at arbitrary point (x, θ) ∈ R1|1. Taking into account that the adjoint operator K̃
′,∗

: T∗(M̃) →

T∗(M̃) is given by the expression

K̃
′,∗

=







iD4
θ − 2iũθ −2ψ̃∗Dθ 0

2iDθψ̃ 0 −2iDθψ̃∗

0 −2ψ̃Dθ− 2iũθ − iD4
θ






, (46)

one obtains easily the following infinite recurrent system:

−iδj,−2 + D−1
θ σ̃j−k,θ σ̃k,θ + iσ̃j,xθ − 2iũθδj,0 − 2ψ̃∗ ãj,θ + 2ψ̃ãj−k ãk = 0,

ãj,θ − iãj+2 + ãj−k,θ D−1
θ σ̃k,t + 2iψ̃θδj,0 + 2iψ̃σ̃j − 2iψ̃∗

θ b̃j − 2iψ̃∗ b̃j,θ − 2iψ̃∗ b̃j−k σ̃k = 0,

b̃j,θ − ib̃j+2 + b̃j−k,θ D−1
θ σ̃k,t − 2ψ̃ãj,θ + 2ψ̃ãj−k,σ̃k + 2iũθ b̃j−

−i(b̃j,xx + 2b̃j−kσ̃k,θ + b̃j−kσ̃k,θx + b̃j−kσ̃k−s,θ σ̃s,θ) = 0

(47)

for all j ∈ Z+ ∪ {−2,−1}. Trying to dissolve recurrently the above system (47), we obtain

that first its coefficients are equal to

σ̃−1 = θ, σ̃0 = 0, σ̃1 = ũ, ã0 = 0, ã1 = 2ψ̃θ, (48)

ã2 = 2ψ̃θ , b̃0 = 0, b̃1 = 0, b2 = 0,

but the second coefficient σ̃2 satisfies the locally unsolvable differential–algebraic relation-

ship

σ̃2,θ = −
1

2
ũxθ + 3ψ̃∗ψ̃, (49)

saying us that the recurrent system (47) fails to be infinitely continued. As an inference

from this failure, we need to state that our naively constructed super-Hamiltonian sys-

tem (41) does not possess an infinite hierarchy of conservation laws and is suitably not

super-integrable on the superized functional supermanifold M̃. This negative result is also

instructive, per se, informing us that a simple naive a priori superization of a classical

integrable nonlinear dynamical system generally loses its integrability, or, in other words,

“Der Irrtum ist eine ebenso wichtige Lebensbedingung wie die Wahrheit”, i.e., “Error is as important

a condition for the progress of life as truth” (by C.G. Jung: [61]).

In order to construct a more feasible and in some sense natural superization of the

nonlinear dynamical Schrödinger-Davydov system (8), we first proceed to present its

classical Lax-type operator representation, and then its suitably superized generalization,

which will generate a priori integrable super-Hamiltonian flows, which we are interested

in finding.

5. The Lax-Type Representation Scheme

We will start from the infinite hierarchy of gradient relationships (22) and observe

that it can be rewritten as

Qgrad γ(λ) = 2λ2Pgrad γ(λ), (50)

where, by definition,

γ(λ) :=
∫

R

dxσ(x; λ) ∼ ∑
j∈Z+

λ−j
∫

R

Hj[ψ, n, ψ∗]dx (51)
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is a generating as C ∋ λ → ∞ function of conservation laws for the dynamical system (8),

which can be identified [51,53,55] with the trace-functional of the monodromy matrix

S(x; λ) ∈ End Em, x ∈ R, naturally assigned to a matrix Lax-type “spectral” problem:

∂ f /∂x = l[ψ, n, ψ∗; λ] f , (52)

where l[ψ, n, ψ∗; λ] ∈ End Em for some finite m ∈ N is considered—for brevity, 2π-periodic

in x ∈ R and f ∈ L∞(R;Em). Namely, given

γ(λ) := tr S(x; λ), (53)

where by definition, S(x; λ) := F(x + 2ππ, x; λ) and F(x, y; λ) ∈ End Em, F(x, x; λ) = I,

x ∈ R, denotes the fundamental matrix for the linear problem (52), depending on a point

(ψ, n, ψ∗) ∈ M. Taking into account that the gradient element ϕ(x; λ) := gradγ(λ) ∈ T∗(M)

for all (x; λ) ∈ R×C satisfies the gradient relationship (50) and can be simultaneously

represented as

ϕ(x; λ) = tr(l[ψ, n, ψ∗; λ]
′,∗

S(x; λ))), (54)

where the monodromy matrix S(x; λ) ∈ End Em solves [62] on the axis R the linear Novikov

equation

∂S/∂x = [l, S], (55)

one can suitably construct within the gradient-holonomic scheme [51,53] a finite set of

differential algebraic matrix relationships on a searched mapping l[ψ, n, ψ∗; λ] ∈ End Em, tr

l[ψ, n, ψ∗; λ] = 0, whose solution gives rise via simple enough but cumbersome calculations

to the following result: m = dim l[ψ, n, ψ∗; λ] = 3 and

l[ψ, n, ψ∗; λ] =







2iλ − in
2λ ψ∗ − in

2λ
ψ
2λ 0

ψ
2λ

in
2λ ψ∗ in

2λ − 2iλ






. (56)

It is now easy to observe that the linear Lax-type spectral problem (52) reduces to the

following pseudo-differential form:

−∂2 f /∂x2 + 2n f − 2iψ∗∂−1ψ f = 4λ2 f , (57)

where f ∈ W ⊂ L∞(R;C) is a scalar function and λ ∈ C serves as a true spectral parameter.

Remark 3. If one denotes the pseudo-differential expression from (57) as

L := −∂2/∂x2 + 2n − 2iψ∗∂−1ψ, (58)

then one can construct [53,54,56,63] the same infinite hierarchy of conservation laws as (16) by

means of the operator traces

Hj = Tr
(

L1/2Lj
)

, (59)

where L, Lj/2 ∈ ΨOP, j ∈ Z+, and Tr :ΨOP → C is the trace operation on the algebra ΨOP

of pseudo-differential operators on the axis, coinciding with the integral over R of the functional

coefficient at the inverse differentiation ∂−1.
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The spectral problem (57) looks very interesting and represents [4,64,65] the Backlund-

type operator transformation

DOP ∋ L0 → L0 + αψ∗∂−1ψ ∈ ΨOP (60)

from the algebra DOP of differential operators to that of pseudo-differential operators,

ΨOP, where, by definition, ψ and ψ∗ ∈ W serve, respectively, as the eigenfunctions of the

spectral problem

L0ψ = µψ (61)

for some µ ∈ C and its adjoint:

L∗
0ψ∗ = ν∗ ψ∗ (62)

for some ν∗ ∈ C.

Remark 4. More details of this Backlund-type operator transformation (60) can be found in [64].

We should also mention here that the compatible pair of Poisson operators (20) (21) we found follows

from the canonical Poisson bracket on the space ΨOP × W × W∗ via the operator mapping (60).

Since the above-obtained pseudo-differential operator (60) is a shifted classical Sturm–

Liouville operator on the axis R of the second order, whose natural superization was first

studied in [59], we can logically proceed to generalizing this result on the subject of the

corresponding superization of the completely integrable Schrödinger–Davydov dynamical

system under consideration.

6. Spectral Operator Problem and Related Superization Scheme

Let us consider the classical Sturm–Liouville operator expression

L0 := −∂2/∂x2 + 2n(x) (63)

on the real axis with a real potential n(x) ∈ R for all x ∈ R on the functional space W and

its super-differential analog

L̃0 := −D3
θ + 2ñ(x, θ) (64)

on the super-axis, constructed in [59], where ñ(x, θ) ∈ Λ
(1)
1 for all (x, θ) ∈ R1|1. The

super-differential spectral problem related to (64)

L̃0ψ̃ = (−D3
θ + 2ñ)ψ̃ = µψ̃, (65)

where µ ∈ Λ1 and ψ̃ ∈ W̃ ⊂ L∞(R1|1; Λ0), and its adjoint problem

L̃∗
0ψ̃∗ = (D3

θ + 2ñ)ψ̃ = ν∗ψ̃, (66)

where ν∗ ∈ Λ∗
1 and ψ̃∗ ∈ W̃∗ ⊂ L∞(R1|1; Λ∗

0) make it possible to superize the super-

differential operator (64) as

L̃0 → L̃ := −D3
θ + 2ñ − 2iψ̃∗D−1

θ ψ̃ (67)

by shifting on the Backlund transformed term −2iψ̃∗D−1
θ ψ̃ ∈ sΨOP from the algebra

sΨOP of super-pseudo-differential operators. Based on the super pseudo-differential

expression (67), one can calculate [20,26,27,31,32,36–39] the corresponding conserved super-

laws as the following Casimir invariant functionals:

H̃j = sTr
(

L̃2j/3
)

, (68)
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for j ∈ Z+ regarding the related Lie superalgebra Lie(sΨOP), where the super-trace

operation sTr : sΨOP → Λ is defined as the super-integral over the super-axis R1|1 of the

coefficient at the inverse super-differentiation D−1
θ . In particular, taking into account that

L̃1/3 ∼ −Dθ + w̃1
0 + (w̃1

1 + w̃0
1Dθ)∂

−1 + (w̃1
2 + w̃0

2Dθ)∂
−2+ (69)

+ (w̃1
3 + w̃0

3Dθ)∂
−3 + (w̃1

4 + w̃0
4Dθ)∂

−4) + . . . ,

with the coefficients

w̃1
1 = 2u, w̃1

2 = 2/3(iΨθΨ − 2iΨΨθ − 2ux), w̃0
3 = 2/3(2iΨΨx + ux,θ − iΨθΨθ), (70)

w̃0
2 = −2/3(iΨΨ + uθ),

w̃1
3 = 2/3(−iΨx,θΨ − 2iΨθΨx + 3iΨΨx,θ + iΨxΨθ + uxx − 4iuΨΨ + 2uuθ), . . .

and so on, we can easily calculate the super-conservation laws:

H̃1/2 = 0, H̃1 = 0, H̃3/2 = −2i
∫

dx
∫

dθΨΨ,

H̃2 = 4/3
∫

dx
∫

dθ[i(ΨΨ)θ + ux],

H̃5/2 = 2/3i
∫

dx
∫

dθ(2ΨΨx − 2ΨxΨ − ΨθΨθ),

H̃3 = 2i
∫

dx
∫

dθ(Ψx,θΨ − ΨΨx,θ), . . . , (71)

H̃9/2 =
∫

dx
∫

dθ(6iΨxxxΨ + 8iΨxxΨx − 8ΨxΨΨ
2
+ 8Ψ2ΨxΨ−

− 2iΨΨxxx − 4iu
(1)
θ ΨxΨ + 4iu

(1)
θ ΨΨx − 2iΨθ,xxΨθ−

− 2iΨθ,xΨθ,x − 4ΨθΨθΨΨ − 4iu
(1)
x ΨθΨ + 4iu

(1)
x ΨθΨ+

++4iu(1)Ψθ,xΨ − 4iu(1)Ψθ,xΨ)

H̃5 =
∫

dx
∫

dθ(ψ̃∗
θ ψ̃θθ − ψ̃∗

θθψ̃θ + 2ψ̃∗ψ̃ñ − ψ̃∗
θ ψ̃∗ ψ̃θψ̃), . . .

and so on, which are invariant with respect to the super-evolution flow on M̃, which is

equivalently represented [53,55,56] via the Lax-type dynamical super-operator flow

∂L̃/∂τ = [L̃,
(

L̃10/3
)

+
] (72)

with respect to a super-temporal odd evolution parameter τ ∈ Λ1, where the sign “+”

denotes the strictly nonnegative super-differential part of an expression in the brackets.

Remark 5. Here, one must mention that the flow (72) is naturally interpreted [53–56,63] from

the Lie-algebraic point of view as the coadjoint action of the operator Lie susperalgebra element
(

L̃10/3
)

+
∈ Lie(sΨOP+) on the element L̃ ∈ Lie(sΨOP)∗, where Lie(sΨOP+) denotes the

nonnegative part of the natural direct sum splitting Lie(sΨOP) = Lie(sΨOP+)⊕ Lie(sΨOP−).

Having recalculated the flow (72) regarding the superized variables (ψ̃, ñ, ψ̃∗) ∈ M̃,

one obtains the following Schrödinger–Davydov evolution flow:

∂ψ̃/∂τ = iψ̃θθθ − 2iñψ̃∗ψ̃ + iψ̃∗ψ̃ψ̃θ

∂ñ/∂τ = −2ψ̃∗ψ̃w̃1
0 − 2(ψ̃∗

θ ψ̃ − ψ̃∗ψ̃θ)ñθ

∂ψ̃∗/∂τ = −iψ̃∗
θθθ + 2iñψ̃∗ψ̃ − iψ̃∗ψ̃ψ̃θ











:= K̃[ψ̃, ñ, ψ̃∗], (73)
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which is a super-Hamiltonian system with respect to the super-Poisson structure

{ψ̃(x, θ), ψ̃∗(y, η)}P̃ = iδ(x, θ|y, η), {ψ̃(x, θ), ñ(y, η)}P̃ = ψ̃∗(x, θ)δ(x, θ|y, η), (74)

{ñ(x, θ), ψ̃∗(y, η)}P̃ = ψ̃(x, θ)δ(x, θ|y, η), {ñ(x, θ), ñ(y, η)}P̃ = Dθδ(x, θ|y, η),

{ψ̃(x, θ), ψ̃(y, η)}P̃ = 0 = {ψ̃∗(x, θ), ψ̃∗(y, η)}P̃, {ũ(x, θ), ũ(y, η)}P̃ = δ(x, θ|y, η)

on the functional supermanifold M̃—that is, (ψ̃τ , ñτ , ψ̃∗
τ)

⊺ = {H̃10, (ψ̃, ñ, ψ̃∗)⊺}P̃—coinciding

with that of (73), where the evolution parameter τ ∈ Λ1, as mentioned above, is considered

odd. The derived superflow (73) presents a searched superization regarding the quasi-

classical integrable Schrödinger–Davydov dynamical system defined on the functional field

manifold M. It is worth noting here that in some cases, one can anticipate that the corre-

sponding super-evolution vector field K̃ : M̃ → T(M̃) on the functional superfield manifold

M̃ is represented as the supersymmetric super-differentiation d/dτ = ∂/∂θ + θ∂/∂t with

respect to the super-variable θ ∈ Λ1 and the real evolution parameter t ∈ R. The latter

suitably makes it possible to construct real-time evolution equations with respect to this

temporal parameter t ∈ R, thus representing the corresponding quasi-classical Schrödinger–

Davydov dynamical system on the functional superfield manifold M̃, possessing interesting

physical properties from application point of view. This dynamical supersystem provides

an extraordinary example of a nonlinear integrable dynamical superflow with respect to a

real evolution parameter, subject to which the Hamiltonian representation of the reduced

vector field d/dt : M̃ → T(M̃) on the functional superfield manifold M̃ is still not clear and

can be investigated in the future.

7. Conclusions

We have studied two interesting examples of the superization scheme regarding the

classical Schrödinger–Davydov integrable nonlinear dynamical system on a functional

manifold. In particular, we checked that the so-called “naive” approach, based on the

superization of the phase space variables and extending the corresponding Poisson brackets

upon the related functional supermanifold, fails to retain the dynamical system’s super-

integrability. Nonetheless, for a wide class of classical Lax-type integrable nonlinear

dynamical systems on functional manifolds, a possible superization scheme consists in a

reasonable superization of the related Lax-type representation by means of a transition

from the basic algebra of pseudo-differential operators on the real axis to the corresponding

superalgebra of super-pseudo-differential operators on the superaxis.
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