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Abstract

The technique of phase-space tomography applies the principles of tomographic re-
construction to the diagnostics of particle accelerator beams. It is one of the few
methods capable of mapping phase-space in detail, using instrumentation commonly
available on research accelerator beam-lines, that is, beam profile imaging and variable

focussing magnets.

This thesis studies the effects of space-charge in the particle bunch on the measure-
ment of transverse phase-space, in the horizontal and vertical dimensions, by the beam
tomography method. It applies a novel ‘comparative’ method of using quadrupole to-
mography scanning to look for these effects, over the length of the diagnostic section
of the injection line which transfers the electron beam from the ALICE accelerator to
the Electron Model for Many Applications (EMMA) ring at the Daresbury Laboratory.
Simulations of the full tomographic process, from beam profile imaging to reconstruc-
tion, are developed in the particle tracking code GPT. These are used to investigate

space-charge effects, in support of the experimental studies.

The concept of ‘normalised phase-space’ is described, in the context of tomography
with a very limited number of views, presenting its advantages as applied to a specific
type of reconstruction algorithm, the Maximum Entropy Technique. Recommendations
for future work in this field are suggested, with possible application both for new

machines at the Daresbury Laboratory, and at other accelerator facilities.
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Chapter 1

Introduction

1.1 Overall Objectives of the Project

The principal goal of the project was to develop the technique of phase-space tomog-
raphy applied to the EMMA injection line of the ALICE accelerator at the Daresbury
Laboratory; to understand the requirements, capabilities and limitations of the tech-
nique; and to use it as a tool to investigate the effect of space-charge on the injected
electron beam, both by computer simulation and by experimental measurements.

The detailed objectives arising from this goal may be categorised under two headings

as follows:

Practical and Experimental Work

e to study the hardware requirements for tomography data acquisition, including

the evaluation and test of improved screen imaging camera systems;

e to check that beam-line conditions and camera settings were optimised for to-

mography data collection;

e to plan, organise and carry out appropriate tomography experiments to collect
screen image datasets, during scheduled ALICE/EMMA shift sessions;

Computer Development and Simulation

e to develop computer codes for
(a) generating input data settings for running tomography scans;
(b) processing experimental output data and reconstructing transverse phase-
space distributions;

(c) extracting parameters of interest by analysis of phase-space reconstructions;

e to compare the different reconstruction algorithms used in beam tomography;



e to benchmark the simulation codes used, in particular the functions they pro-
vide for incorporating space-charge effects, against analytical codes in simple

predictable cases;

e to build detailed models of the diagnostics section of the ALICE beam-line using

particle tracking codes;

e to model the full tomography measurement process, from the generation of realis-
tic input particle distributions to the simulation of output screen images suitable

for tomographic reconstruction;

e to use the models as a tool for exploring the influence of space-charge on tomo-

graphic measurements of phase-space, and for supporting experimental results.

1.1.1 Statement of Contribution to Accelerator Science

The work described in this thesis makes a contribution, which as far as is known is new
and original, to the field of phase-space tomography, specifically in the application of
this technique for the first time to the ALICE accelerator at the Daresbury Laboratory,
UK. ALICE is a research machine which was designed for the development of the
principle of energy recovery from the accelerated electrons, and is described further in
Section [.3l

Particular aspects of the work which should be highlighted include:-

Space-Charge Effects Space-charge is a term for the repulsive interaction between
the similarly-charged particles in a bunch, and is stronger when they are in close prox-
imity. A novel method of investigating space-charge effects in an accelerator beam-line
is introduced, by making tomography measurements at separate locations in the line
and then comparing the two sets of results to look for differences, as in Section [5.1.2
If other influences can be discounted, these changes may be ascribed to space-charge

acting over the section of line between the two locations.

Normalised Phase-Space ‘Phase-space’ refers to the function of position x and
momentum p, which describes the dynamics of one or more particles moving in space,
generally through the electromagnetic fields - or field-free regions - of a particle accel-
erator. In this work, the concept is extended by developing the idea of ‘normalised
phase-space’ in the tomography of particle beams, where ‘normalisation’ is defined by
a special transformation which depends on particular parameters of the beam. It turns
out that working in normalised phase-space can have definite advantages over ‘real’
phase-space, in the quality of information in the distribution obtained by tomography.

A fuller explanation is given in Chapter [6]



Correction Techniques Although they are the product of other work more fully
described in [I], the new techniques of projection thresholding and background sup-
pression by truncation of projections are referenced here, in Sect[3.1.4] Both of these
methods reduce noise and artifacts and so improve quality in tomographic reconstruc-

tions, therefore impacting positively on the ALICE and EMMA projects.

Benchmarking of Codes Space-charge in ALICE has been previously studied in
particle tracking code simulations such as those described in [2]. This is extended
in the current project, which corroborates the evidence for measurable space-charge
effects predicted by the code, by benchmarking against analytical calculations, under

simplified conditions which are nevertheless relevant to the ALICE situation.

1.2 Modern Particle Accelerators

Particle accelerators have developed enormously both in size and power, from the
earliest machines of Cockcroft and Walton in 1932 to the scale of the Large Hadron
Collider (LHC), started up in 2008. At the same time, the range of application for
accelerators has also grown from their origins in nuclear physics research, to include

such fields as medicine, industry, and energy, as well as fundamental particle physics.

In all modern machines, the prediction of performance, in particular the properties of
the accelerated particle beam, which usually takes the form of discrete bunches rather
than a continuous uniform stream, is of great importance for successful operation. For
this purpose, beam diagnostic instrumentation is provided to give the operator and the
designer information on key parameters, to confirm that the machine is functioning to

specification.

One of the basic parameters of the beam is the position of its centroid with respect
to the middle of the vacuum pipe through which it travels. The transverse coordi-
nates, conventionally denoted x (horizontal) and y (vertical), may be deduced from the
electronic signal pulse induced instantaneously in the 2 pairs of electrodes of a Beam
Position Monitor (BPM) embedded in the vessel walls, when a particle bunch, with its
concentration of charge, passes that location. Time of flight may also be calculated
for the transit of a bunch between BPMs. This is an example of a non-destructive
diagnostic technique; however, to observe in detail how the particles within a bunch

are behaving, other methods are required.

Wire scanners operate by stepping a thin stretched wire horizontally or vertically
through the beam, while recording the current collected from the section of the beam

incident on the wire. This offers a moderately non-interceptive means of profiling



with limited resolution. Other examples of profiling devices include the Residual Gas
Tonisation Profile Monitor [3, p. 33], which makes use of fluorescence due to interactions

between the beam particles and the few remaining gas molecules in the vacuum vessel.

The preferred method for obtaining a high-resolution z-y beam profile is to intercept
the beam with a fluorescent screen, which may consist either of powdered scintillator
on a substrate, or a thin single crystal. With crystal screens, care must be taken
not to exceed the safe beam current to avoid damaging or destroying them by heat
load. Such an event risks incapacitating at least the affected section of the machine by
contamination of the vacuum vessel with screen fragments.

An alternative offering better resistance to beam damage, but lower sensitivity, is the
application of optical transition radiation (OTR) [3| p. 14], in which the imaging screen
is made from thin metal foil such as 10 um aluminium. Light is generated when a
charged particle of any kind crosses a boundary between media of different dielectric
constant €. For a relativistic beam of energy E, the radiation is particularly useful
in the case of electrons because it is concentrated conveniently into narrow cones of
opening angle m.c?/E, where m, is the electron mass and c is the velocity of light in
vacuum.

Screens of both types are mounted on supports which may be driven mechanically into
the beam when required. Some of the emitted light is collected by a charge-coupled
device (CCD) camera mounted at right angles to the beam direction, as shown in Fig.
[[.I}] With the screen inclined at 45° the image is a true, undistorted profile of the beam,
integrated over the length of the bunch, or train of bunches. Cross hairs, which may be
etched onto the screen, assist with beam location and facilitate the calibration of the
optical system, from screen to camera sensor. Cameras often operate in relatively high
radiation environments which degrade the CCD device as well as causing darkening
of glass lenses. Either they are protected by lead shielding, viewing the screen via an
indirect optical path of mirrors and lenses, or they are made as simple cheap devices,

designed to be easily replaceable.
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Figure 1.1: A plan view shows the typical configuration of a CCD camera viewing an
imaging screen, as installed on ALICE. The screen is inside the vacuum chamber, the
camera outside looking through a transparent window. Screen movement into/out of
the beam is most commonly vertical, but horizontal at a few stations.

Although the light yield is usually very linear with beam intensity, accuracy will be
reduced if there are even small areas of excessive brightness in the image, caused by

saturation of particular CCD pixels, which have a limited storage capacity.

Another key measurement is the current of electrically-charged particles comprising
the beam. This may be simply and conveniently determined by absorbing the beam in a
block of conductive material, in a Faraday cup device. The shape is designed to avoid
escape of any secondary emissions caused by collisions of the energetic primary particles.
By integrating the current pulses detected, which may be fed to an oscilloscope for
display, the charge represented by individual bunches of particles may be resolved, if

the readout electronics are sufficiently fast.

1.3 The EMMA Concept

EMMA (Electron Machine with Many Applications), the world’s first non-scaling
Fixed-Field Alternating Gradient (ns-FFAG) accelerator, has been under commission-
ing at the Daresbury Laboratory of STFC since June 2010. EMMA is a 5.3 m diameter
ring which contains 84 magnets, with 19 radio-frequency (RF) cavities to provide ac-
celeration (Fig. [4]. The magnets are special quadrupoles, aligned off-centre to
provide a dipole field component for steering the electrons around the ring, as well
as their primary role of focussing the beam. Successful acceleration was announced
officially in January 2012 [5]. The ns-FFAG is a class of accelerator whose bending
and focussing fields are kept fixed during acceleration, in contrast to the synchrotron
design in which the fields must be progressively ramped up as the beam energy in-

creases. In EMMA, even though the RF frequency is also fixed, its phase with respect



Figure 1.2: The layout of the complete EMMA complex is shown, including the link
with the injector (ALICE), the EMMA ring itself, and the injection and extraction
(here labelled ‘diagnostics’) lines.

to the beam is maintained as the time of flight remains almost constant with increasing
energy. At the same time the machine has a large dynamic aperture, the orbit radius
showing only modest growth while the momentum increases by a factor of 2 or more.

EMMA demonstrates several novel features and has the potential for rapid accelera-
tion in a small machine, although there are still many challenges. Devices using the
same FFAG concept are anticipated to have applications in a variety of fields such as
muon acceleration; used with protons, for more effective radiotherapy for cancer; and
in nuclear power, as a driver for the Accelerator-Driven Subcritical Reactor (ADSR)
design [6]. The injector for EMMA is the ALICE (Accelerators and Lasers in Combined
Experiments) machine which can operate up to an energy of 35 MeV, but for EMMA
provides an electron beam at a suitable injection energy of about 12MeV [7]. The
ALICE Project is an experimental test facility. Electrons from its 350 keV laser-driven
photoinjector pass through an 8.35MeV superconducting booster linear accelerator
(LINAC) and into the main LINAC. After use in the experimental sections, most of
the energy may be recovered as the electrons recirculate through the main LINAC

again, and this energy becomes available for new electrons in the next cycle.



1.4 ALICE Diagnostics

The injection line to EMMA has been designed to extract the beam from ALICE
through a dipole magnet, which when energised bends the beam out of the first ALICE
straight, ST1. Shown in plan view in Fig. it consists of an initial ‘dog-leg’ section,
preceding a matching section which modifies the beam lattice parameters to suit the
tomography section immediately following it [8]. This acts as a beam diagnostic which

can measure the properties of the beam in some detail, prior to injection into EMMA.

tomography
section

Faraday
cup

Figure 1.3: The EMMA Injection Line comprises dipole magnets (blue), quadrupoles
(red) and screens (green). The matching and tomography sections are indicated, as
well as the Faraday cup, to use which the 3rd dipole is de-energised.

The tomography section consists of two cells, each comprising a horizontally-focussing
quadrupole magnet, a drift space (without fields), a defocusing magnet, and a further
drift space, a configuration commonly described as a ‘FODQ’ cell. Both cells have flu-
orescent yttrium aluminium garnet (YAG) crystal screens at each end (in Fig. the
quadrupoles are in red and the screen viewport is visible behind the plastic cover where
the camera is normally mounted). Just before the tomography section, the matching
section of four quadrupole magnets is located. A Faraday cup is also installed at the
end of the straight, beyond the tomography section; to use it, the last dipole magnet of
the straight is switched off, so that the beam continues into the cup instead of taking
the bend towards EMMA. Through an amplifier, an oscilloscope is used to measure the

pulse height from the cup, which is proportional to the charge within each bunch.



Figure 1.4: Part of the ALICE to EMMA Injection beam-line showing two quadrupole
magnets (in red) and a screen station (between the magnets), with its camera removed
and the viewport protected by a plastic cover. Above the screen station is the actuator
and bellows for remotely raising the screen or inserting it into the beam.

1.5 Beam Diagnostics Methods
1.5.1 Principles of Transverse Linear Beam Dynamics

It is useful to first establish the theoretical basis for describing the motion of particles
within the magnetic fields of an accelerator. For convenience we define a rotating
curvilinear Cartesian coordinate system (z, y, s) where z, y are the transverse horizontal
and vertical directions and s is the displacement measured longitudinally along the path
of the beam as it traverses the beam-line. The analysis is simplified if we consider only
those elements with ‘linear’ effects on the beam, to good approximation. This includes
dipole magnets, with essentially constant field B, between their poles, bending the
beam in the z-direction; and quadrupoles, with field gradient k£ = % focussing in the

x-direction (or dzx if focussing in the y-direction). Normal quadrupoles which focus

horizontally always defocus vertically, and vice-versa.
The mathematical formulation of this motion, which incorporates the concept of a
restoring force which can vary with displacement s, gives Hill’s Equation:
2
ZT;E—FK(S)LU(S) =0 (1.1)
If K were constant, this would just describe Simple Harmonic Motion; in practice, it
defines the ‘betatron oscillations’ of particles in the horizontal plane. There is a similar

equation in ‘y’ for the vertical plane.

Solving Hill’s Equation A solution to Eq. which introduces the parameter 5(s)

as the amplitude modulation, and ¢(s) as the phase advance, with constants € and ¢y



dependent on initial conditions, may be postulated:

x = \/eB(s) cos((s) + do) (1.2)

By differentiating and substituting in Eq. we find that the expressions for z and

__ dx
x = /€B(s)cos ¢ and x :—a‘/%cosgb—‘/%sinqﬁ (1.3)

/ .
xr = ds are:
ﬁ/

where a = —%5-. « and § are known as the Courant-Snyder (or ‘T'wiss’) parameters.
We find that for some defined o and  values (at a given s), if x is plotted against
z' as ¢ goes from 0 to 27, the result is elliptical, known as the ‘phase-space ellipse’.
At other locations on the beam-line, the ellipse will change in shape and orientation
with 3, but it is found that the area (7€) remains constant. € is called the ‘transverse
emittance and is a fundamental property of the initial beam as it is created. Its units
are metre—radians, but it is more often quoted in mm-mrad.

Usually we are dealing with a large population of particles in a bunch, and the emittance
is then defined as the area of that ellipse which contains a prescribed percentage of all
the particles, as illustrated in Fig. [I.5]

Particle
at (x,x’)

Figure 1.5: This is an illustration of a phase-space (x, ') plot for a bunch of particles at
some beam-line position, showing the coordinates of one sample particle. The phase-
space ellipse corresponding to the root-mean-square (RMS) emittance is overlaid on
the plot (in red).

Matrix Formalism We can represent the transverse phase-space coordinates of a

particle in matrix form [ ;C, } . The effect of each beam-line element 7 on the particle can

then be expressed by defining a transport matrix M;, for example Mpig = [ (1) f }



1

‘thin’ implies that focal length f = % > effective length L).

0
for a drift space and MrqQuad = { 1 ] for a ‘thin’ focussing quadrupole (where

To calculate the new phase-space matrix at beam-line position s given its known value
at s1, we have only to apply the full matrix M describing the combined effect of all the

intervening elements between s; and sa:

i) o I
AR )
The combined transport matrix M can be expressed simply as a product of the indi-

vidual M; matrices:

N
M = MyMy_y..M; = [[ M; (1.5)
=1

1.5.2 Practical Diagnostic Techniques

A number of standard methods are in common use by accelerator scientists to measure
the Twiss parameters for the transverse phase-space of particles in a bunch. On ALICE,

the techniques which have been regularly used include:-

Quadrupole-scanning As the current setting in a suitable quadrupole magnet is
varied over a range, the changing beam shape recorded on a downstream screen is
fitted to a Gaussian profile [3| p. 199]. The relationship between the Gaussian beam-
width and the quadrupole magnet strength is analysed to extract the beam parameters
of interest. This method is described in more detail later, in Section [3.2.1]

Slit scanning In the single-slit method [9], a series of beamlets are selected by mov-
ing a slit in steps across the beam. From the RMS size <xn(rms)> measured at a

screen at distance L downstream, the local divergence at slit position n is given by

<l‘g(rms)> x M The whole-beam divergence ('), obtained from the weighted
sum for all n beamlets, provides an approximation to the RMS normalised emittance
by €xrms) = Byy/ (22) . (2 )2, However, the method relies on assuming a well-behaved
elliptical phase-space distribution, and on the beam image being a reasonable fit to a
Gaussian function. Values in the range 5 - 10 mm-mrad have been obtained.

The 2-slit technique is a variant of this method, used on ALICE [10]. Vertical slits ‘A’
and ‘B’ are separated along the beam-line by length L. The beam is first centralised on
the 2 slits. Slit ‘A’ is scanned across the beam, measuring currents I; in a Faraday cup,
at a set of 10 positions x;. A further scan of ‘A’ over x; is made, this time also scanning
the slit ‘B’ over a set of positions x;; for j ~ 10 at each 7, recording currents I;;. From
the x;; and I;; datasets, the beam centroids, the divergence, and ultimately the RMS

horizontal emittance may be calculated, using Equation Problems of the method

10



include the time taken by the multiple slit-scans, and the measurement of small beam

currents after attenuation by passing through the 2 slits.

‘Pepperpot’ measurement A metal plate perforated by a regular grid of fine holes

intercepts the beam, generating a series of beamlets which propagate in field-free space,

to create a pattern of profiles on a downstream screen [I1), p. 249]. For a given screen

distance L and estimated emittance e, the hole spacing must be sufficient to avoid

overlap of the beamlets, while still adequately sampling the beam area. In the sim-

plified method as used on ALICE [10], a rapid estimate of the transverse emittance is
Ay

calculated from ¢, = %047%’ where Az, Au are the full widths of the beam and beamlet

images respectively, and the coefficient « relates the full visible width Az to the RMS
Az

width o, by a = T

Phase-Space Tomography The tomographic method covered in this thesis has the
advantage that it can reconstruct phase-space without assuming its shape in advance;
tomography is particularly useful for direct validation against the phase-space distribu-
tions predicted by simulation using particle tracking codes. Nevertheless, the standard
tomography theory described in Section does rely on some assumptions, notably
that:- (a) particle dynamics in the accelerator lattice are linear, with no coupling be-
tween transverse horizontal and vertical motions; (b) space-charge effects between in-
dividual particles are insignificant, which is only strictly valid in low beam-current
regimes.

Correction methods for these effects are available, however, and for accurate results
must be applied if the assumptions do not hold. The theoretical background to space-
charge is introduced in Section and is considered in detail in Chapter

Tomography has been implemented at a number of accelerators worldwide, including

PITZ [12], UMER [13], SNS [14], PSI [I5], Duke [16], BNL [17], KU-FEL [Ig].

1.6 Review of Reconstruction Techniques for Phase-Space
Tomography

1.6.1 Computed Tomography

Tomography, which literally means ‘writing a slice’ (from the Greek Topos + ypagnv),
may be loosely defined as the process of reconstructing a sectional image through an
object, given a set of projections of the object, each recorded at a different angle 6.
Mathematically, a projection is the result of taking a series of line integrals of the den-
sity function through the object, perpendicular to a line making an angle # with the
x-axis (see Fig. [19]). It is also referred to as the ‘Radon transform’ [20], after

the mathematician who defined it. A set of projection data, built into a matrix in

11



order of increasing 6 is called a sinogram because of the superimposed wavelike pat-
terns (see Fig. [21], where the inset shows an example source object). Tomographic

reconstruction is the process of recovering the original density function of an object by

computation, from a set of its projections. It is equivalent to performing the inverse of

the Radon transform.

Figure 1.6: In parallel beam geometry, each projection is made up of the set of line
integrals through the object, the data being collected as a series of parallel rays at
positions r, across a projection at angle 6 [19].

Spiton (dereis)

sals of Pias
o i

w 12

SingigEam ol Fhardam

[=°n]

1ALl

B0

£ ] ]
Projectson Displacamend

Figure 1.7: An example of a sinogram, formed from the Radon transform of the ‘indi-
cator function’ of two squares (shown in the top R corner), taken at 50 equal angles
spanning 0 to 180 degrees. Lighter regions indicate larger function values, black is zero

21].
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One of its best-known applications is in X-ray Computed Tomography (CT), used
in medicine (Fig. [22]) to visualise slices through the human body. Specialised CT
scanners operate by rotating a gantry, containing the X-ray source and diametrically-
opposed detector arrays, around the subject, collecting 2-D projection data continu-
ously during the scan. Dedicated computer hardware then simultaneously reconstructs
multiple slices (Fig. [23]), which become available for display almost immediately
after acquisition. Slices may be viewed individually, or as a stack representing a 3-D

volume.

Direction of Rotation

CT Scan Machine

Rotating X-Ray Source

Motorized Platform

Monitor

Figure 1.8: During a CT scan a patient is moved slowly through the machine, which
has a rotating X-ray tube and opposed detectors in a curved array, simultaneously
collecting data representing up to 256 slices through the body [22].

CONTRAST

Figure 1.9: An example of a CT slice, this is a pulmonary angiogram, demonstrating a
‘saddle embolus’ (dark horizontal line) occluding both left and right pulmonary arteries
(bright white triangle) [23].
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1.6.2 Reconstruction Algorithms

In principle, tomographic reconstruction requires the calculation of the Inverse Radon
Transform; in practice, however, this is not usually attempted directly, because the

process is unstable when noise is present or data is imperfect.

Standard Method

The most commonly-used algorithm is known as Filtered Back Projection (FBP) [24].
This may be understood intuitively as the building-up of a reconstructed image by
‘smearing out’ (or backprojecting) each of the projections, taken at a different angle,
across the plane so that they superimpose to create an approximation to the original.
This is a simplification because the filtration step, carried out in the spatial Fourier
domain, is key to obtaining an accurate result. FBP has been intensively developed for
medical CT scanning and can be made to run very efficiently, especially on dedicated
computer systems; indeed, processing may be started even before all projections in a
scan have been completed.

Further details of the mathematical basis of the FBP algorithm are given in Section

L7

Alternative Methods

As well as FBP, there are other reconstruction techniques, the most important of which
may be classified under the heading of ‘iterative’ algorithms. These work in an entirely

different way from FBP. A typical iterative algorithm [25] follows steps such as:
1. Start with an initial estimate of the source distribution (e.g. uniform);

2. Forward-project this estimate along measured projections to work out what would

have been measured if the estimate was correct;
3. Compare this to what was actually measured;
4. Update the estimate based on the comparison;
5. Continue iterating until some convergence criterion is met.

This class of method includes Maximum Likelihood Estimation Maximisation (MLEM)
125 26], and Maximum Entropy Tomography (MENT) [27].

Basic Principles of MENT The Maximum Entropy Tomography (MENT) algo-
rithm was developed at Los Alamos and was applied there to beam tomography [28].
It is based on the premise that from all possible solutions which can give rise to the

observed projections, the most likely distribution is that with the highest entropy, that
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is, the least information content. MENT has the advantage of providing a better qual-
ity of result than methods such as FBP, where only a limited dataset is available as
in the case of tomography with just 3 or 4 views. However, as it belongs to the class
of ‘iterative’ techniques MENT can be computationally intensive and therefore slower,
especially for larger numbers of views, unless it is efficiently coded. It is also suscepti-
ble to noise in the input data, which should be filtered before sending it to the MENT
routine. Further details of the MENT algorithm will be found in Section

1.7 Theory of the Filtered Back Projection Algorithm

The most popular tomographic reconstruction algorithm, which exploits its relationship
with the Fourier Transform, is known as Filtered Back Projection (FBP) [24]. In brief,
FBP takes the set of projections of the object and applies high-pass filtering in the
spatial frequency domain, before ‘backprojecting’ the values of each projection (in polar
or (r,0) space) across the image space (z,y). This last step implies an interpolation
due to the change in coordinate system from polar to Cartesian. The filtering stage
is required to suppress the blurring which would otherwise degrade the reconstructed
image, and it turns out to be computationally preferable to perform this filtering in
1-D before backprojection, rather than in the alternative order which would be to filter
afterwards in 2-D space. Theory predicts that the ideal filter shape is a ‘ramp’ (Fig.
[24) p. 72], but in practice others are preferred where data is noisy, as it is in all
real images. The algorithm for FBP has been summarised as follows [24, p. 62]:-

For each of the K projection angles 6, between 0° and 180°:

1. Measure the projection, Py(t) where t is the displacement along the direction r
at angle 6 (see also Fig. [1.6)

2. Fourier transform it to find Sp(w) at frequency w
3. Multiply it by the weighting function 27 |w|/K, in the frequency domain

4. Sum, over the image plane, the inverse Fourier transforms of the filtered projec-

tions (the backprojection process)

The theory behind these steps is illustrated below:-

1. The starting point is a set of projections in 1-D space of the (unknown) 2-D
density distribution f(z,y). Measuring a projection is equivalent to taking the line
integrals at a series of discrete positions along a line making angle 6 with the z-axis.
Figures and [I.11] show, as an example, one projection of a simple circle, taken to
have uniform density for this illustration.

Mathematically, the parallel projection process can be expressed as
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Figure 1.10: The parallel projection (R) of a simple circle with uniform density (L),
which is a convenient test object, is shown at a particular angle 6.

.
)
ﬁ Y W [ Y— T—

Figure 1.11: The projection of a circle has the same profile at any arbitrary angle,
assuming that the axis of rotation is coincidence with the centre. Position r is plotted
horizontally and intensity is vertical.

Py(r) = /OO /oo f(z,y)0(xcos@ + ysinb — r)dzdy (1.6)

where ¢ is the delta function.
For computation, it is convenient to assemble the projections into a matrix (a ‘sino-
gram’, see Fig. over all angles taken, each projection being sampled at the same
discrete set of positions (i.e. displacements or values of r in Fig. along the line at
angle 6.

The unknown function f(z,y) may be written in terms of its Inverse Fourier trans-

form:

oo o
flx,y) = / / F(u, v)e??™ vy gy dy (1.7)

where F'(u,v) is the 2-D Fourier transform. Under a change of coordinate system

from (u,v) to polar (w,f), we can rewrite as:

f(z,y) = / / F(w, 0)|w|e’*™ P dwd (1.8)
0 —o0
2. The Fourier transform of the projection Py(r) is taken:
Sy(w) = / Py(r)e72mr dy (1.9)
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3. This allows the ‘Fourier Slice Theorem’ to be applied, which states that a 1-D
Fourier transform of a parallel projection is equal to a slice of the 2-D Fourier transform
of the object: Sy(w, ) = F(w,H). So in Eq. we can write

f(z,y) = /07r /_00 So(w, 0)|w|e?* P dwd (1.10)

This represents a filter in the Fourier (frequency) domain, applied as a function of

the form |w| for |w| < o= or 0 otherwise.

uH(-H;-j
1.1
2T
-1 1
2T 2T

Frequency (W) —

Figure 1.12: The transfer function of a filter in the frequency domain, with which the
projections must be processed. It is given by H(w) = |w|, band-limited to 1/27, above
which frequency there is negligible energy in the transformed projections.

An Inverse Fourier transform is applied to return to the spatial domain:
oo .
Qolr) = / Sy (w) [w] 727" du (1.11)
—00

Qp(w) is called a ‘filtered projection’, |w| giving the frequency response of the filter.

The filtered 1-D projection is spread out uniformly (’backprojected’) across the
2-D region of image space which is the reconstruction plane. At every point (zx,y)
along a line of constant p, such as LM in Fig. the projection makes the same
contribution to the result, where p = xz cosf + ysinf. The process of transform-filter-
inverse-backproject is repeated for all projections in the set, that is for each 6 value.

4. The sum of all backprojections @) is taken in image space, and interpolated onto

a Cartesian grid (x,y). This constitutes the reconstructed image, represented by:

f(z,y) = /07r Qo(x cos b + ysin 0)do (1.12)

It is clear from this example (Fig. [1.14) that to provide acceptable reconstructed
image quality, a sufficient number of projections in the range 0° < 6 < 180° should be

acquired.
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Figure 1.13: A filtered projection is smeared out over the (z,y) plane, along lines
parallel to LM for the specific value of # shown. At points on LM, this projection
makes the same contribution. LM is perpendicular to the direction p.

2 3 180

Figure 1.14: Reconstructions of the ‘circle’ test image (Fig. [1.10) show how increasing
the number of projections taken (in this example 2, 8, and 180) very clearly improves
the accuracy of the reconstruction and reduces extraneous artifacts.

Example of Reconstruction from a Test Phantom

FBP is capable of fast, accurate reconstructions, provided that a suitable input projec-
tion dataset is available, as the example below illustrates.

The Shepp-Logan phantom [29] was developed for the medical CT field as a
simplified model of the human head, being entirely built of superimposed elliptical
shapes having a range of densities and sizes (Fig. [1.15)). It was intended to demonstrate
the sensitivity of CT for detecting small low-contrast lesions. The choice of geometry
allows for the analytical calculation, using simple codes, of the predicted projections at

different angles, given the parameters of the constituent ellipses.
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Figure 1.15: The Shepp-Logan phantom [29] is entirely composed of a superposition of
simple uniform ellipses, which are specified by their centre coordinates, principal axis
lengths, rotation angles and densities.

When assembled into a sinogram as in Fig. [I.I6] this projection set may then be

used as input for testing reconstruction algorithms.

Figure 1.16: The sinogram shows a set of parallel projections of the Shepp-Logan
phantom taken at 1° intervals (180 projections). The vertical axis of the sinogram
represents Angle, while the horizontal is Position.

An example of a typical result using the FBP method is shown in Fig. a),
which may be compared with the original in Fig. [1.15|. It is clear that although the
outlines of the reconstruction are a faithful representation of the phantom, there is a

noticeable loss of brightness, especially in the interior structures.
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(a) (b)

Figure 1.17: (a) Filtered Back Projection reconstruction of the Shepp-Logan phantom,
based on the sinogram of Fig. [1.16] (b) Convolution Back Projection reconstruction of
the same phantom, for comparison.

From this study [29], it was concluded that an improved algorithm, which is a
variant of FBP called the ‘Convolution Back Projection’ method, could give more

accurate results in terms of the reproduction of contrast levels, as can be seen in Fig.

LI,

1.8 Review of Previous Work in Beam Tomography Re-
search

Tomography has been utilised to investigate the phase-space of beams for over 30 years
by a number of groups worldwide, and has therefore become a well-established and

developed technique. Some representative examples in the field are reviewed here.

e A program based on the Maximum Entropy reconstruction method (MENT) was
developed at Los Alamos [28], and was applied to non-interceptive beam diagnos-

tics for prototype accelerators, using small numbers of projections [27].

e Phase-space tomography has also been developed, using the Filtered Back Projec-
tion (FBP) algorithm for reconstruction, at Duke University [16] with phosphor
screens and the quadrupole tomography scanning method; both non-Gaussian

and non-elliptical distributions have been considered.

e Similar studies with FBP on the Brookhaven Accelerator Test Facility [30] used
9 quadrupoles with a 1 mm beam-size, and included phantom studies to estimate

experimental errors.

e Further work with the MENT algorithm has progressed in Germany at Deutsches
Elektronen-Synchrotron (DESY), for the TeV Energy Superconducting Linear Ac-
celerator (TESLA) Test Facility. It is described in a full mathematical treatment,

together with code design, phase-space transformation theory and its application
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to both transverse and longitudinal dimensions, including extensions for non-

linearities [31].

e At the Paul Scherrer Institute (PSI) [15], an in-house code to implement MENT
has been applied to proton beam-lines from 780 keV to 590 MeV, based on varying
the optics at a single location, and adding noise reduction by FFT filtering on

the measured beam profiles.

e The University of Maryland has relied on FBP to reconstruct 170-180 projection
quadrupole tomography scans on intense beams at its Electron Ring (UMER) line,
and includes space-charge correction as well as the comparison of experiment with

simulation [13].

e More recently, work on the Cornell Energy Recovery Linac (ERL) electron gun
[32] has been based on solenoids to give 18 rotation angles, using the Maximum
Likelihood Expectation Maximisation (MLEM) reconstruction algorithm. Mea-
sured emittances have compared well with ASTRA [33] code simulations and with

the alternative slit-screen method.

1.9 Basic Theory of Space-Charge in Particle Beams

A understanding of the theory of space-charge in simple geometries is necessary when
considering its effect on measurable beam parameters, and an elementary treatment is

therefore presented here.

Figure 1.18: In a parallel circular beam, particles at density p are assumed to travel in
a drift-space region without external fields, along non-intersecting paths at a constant
distance from the axis. The cross-section is uniform and of radius a. Space-charge
fields are calculated by considering a coaxial cylinder of radius 7.

The simplest space-charge model, which is useful in developing the basic theory, is
that for a parallel circular-section uniform beam of radius a, of particles with equal
energy, coasting in a drift space without external fields (Fig. . Any effect of the
vacuum tube containing the beam is ignored in this analysis, by assuming either that it
has infinite conductivity, or that its aperture is large compared with the beam diameter.
Gauss’ theorem [ ﬁﬁ) dA=3", g—é may be applied to determine the flux of the electric
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field £ due to the charges ¢; enclosed, valid at points either inside or external to the
beam, where €q is the permittivity of free space.
If N is the number of particles per unit length, each with electronic charge ¢, enclosed

by a cylindrical surface of radius r coaxial with a beam of charge density p, then

= Ng (1.13)

Applying Gauss’ Theorem, we have the radial electric field

Ngr
= q2forr§aorE,,«:
2mega TeEQT

E, forr>a (1.14)

From the electric field we can deduce the force on a single electron of rest mass my,
which when included in the general equation of transverse motion, in the horizontal (or

x) direction, gives Hill’s equation with space-charge (which may be compared with Eq.
T1):
Ezq

/!
k(s)r = ——=22
'+ k(s)x 3B

(1.15)

where k(s) is the focussing strength, dependent on position s along the beam direction,
B and ~ are the relativistic factors, and ¢ the speed of light. Substituting for £, from
Eq. and rearranging, gives

7 q2N
k(s) — =0 1.16
"+ (k(s) 2megamociay3 32 ) ( )
which may be simplified to
K 21
" + <k(s) — a2> x =0 where K = T3 is the ‘perveance’ (1.17)

In the definition of K, I = NgfBc is the beam current, and Iy = % is the
characteristic (or 'Alfvén’) current ~ 17 x 103 A.
The negative sign of the second term —a% in Eq. indicates that space-charge

always adds a defocussing element to the transverse dynamics.

The very strong dependence of the K term in Eq. on the relativistic factors
B, implies that for highly relativistic, energetic beams, space charge has a rapidly
diminishing effect as v = E/mqgc?. The effect on the electric field shape, seen by other
particles in the bunch, is a flattening into the plane perpendicular to the longitudinal

direction of motion, while the magnetic force tends to cancel that due to the electric
field (Fig. [1.19).
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Figure 1.19: Whereas a stationary particle has an isotropic field, at highly-relativistic

energies the electric field of a particle, as experienced by neighbouring particles,
becomes flattened perpendicular to the velocity .

Corresponding to Eq. but applying more generally to bunches of particles,
there is an ‘envelope’ equation to describe the development of the overall beam size a,

which includes a term for the emittance:-

2 K
a’ + k(s)a — 6—3 — — =0 where € is the emittance (1.18)
a a

When €2 > Ka? the beam is said to be emittance dominated; if €2 < Ka? it is space-

charge dominated.

A study of the implications of operating the EMMA Injection Line at 35 MeV, instead
of at a typical EMMA injection energy of up to 20 MeV [§], concluded that there would
be no space-charge problems at a bunch-charge of 80 pC. This is however significantly
higher than the energy of 12.5 MeV planned for beam tomography studies.

Using typical EMMA injection beam parameters of Energy = 12.5MeV; Bunch
Charge = 80 pC; Bunch Length = 2mm; Bunch Radius = 1.2 mm, it is found that the

condition for space-charge effects becomes

€2

Ka? = 5.8, which is > 1 but not > 1 (1.19)
a

This indicates that the beam is expected to be ’emittance-dominated’ but that space-

charge effects cannot be excluded.

1.10 Overview of Contents of Chapters

The remaining chapters are briefly previewed here:-

Chapter 2 opens by relating reconstruction theory in real space to the tomography of
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phase-space in accelerator physics. The experimental programme for ALICE tomogra-
phy is then introduced, broken down into phases. The first phase includes screen camera
requirements definition and optimisation checks, the generation of input data for to-
mography scans, the development of a protocol and software processing steps for both
multi-screen and quadrupole tomography scan methods. Initial results for horizontal
phase-space are presented, with illustrations of the benefits of filtration. The second
phase introduces the extension to vertical phase-space tomography, also explaining the
significance of dispersion and its measurement, before presenting the results of an early
variable bunch-charge experiment. It concludes by reviewing the possible implications
of the work for the EMMA project.

Chapter 3 considers the derivation of beam parameters €, v, 8 based on 2"* moments
analysis of the phase-space distribution, and the benefits of image data rebinning. The
fitting of ideal Gaussian distributions to measured data is described, and raw results
compared with fitted. Further corrections to improve reconstructions, thresholding and
projection truncation, are explained. Comparison is made with another standard anal-
ysis method, ‘quadrupole-scan beam-size fitting’, giving an elementary treatment of its
theory. The chapter ends by comparing tomographic results for the beam parameters
with those from previous measurements using other methods, and with simulations
from earlier work.

Chapter 4 introduces the modelling of the tomography beam-line using the particle-
tracking code GPT. Essential theory underlying the code and its implementation of
space-charge effects is given, and a simple demonstration of space-charge induced beam
divergence is shown. A benchmark, set by calculating beam radius space-charge growth
analytically, is compared directly with equivalent results from GPT modelling. The
GPT user and file interfaces are explained in the context of data exchange with ex-
ternal programs. A detailed GPT model of the tomography beam-line is described,
with its use for a systematic study of the dependence of differential beam-size (between
high and low bunch-charge) on quadrupole current and screen position, and results
are discussed. A convergence check is made to give the minimum particle number per
bunch for reliable GPT outputs. A complete model of the tomographic measurement
process is then built around GPT, with a discussion of methods of specifying initial
particle distributions, based on experimental data. Inputs to GPT are validated against
outputs, comparing beam parameters from internal GPT functions with values from
independent external analysis.

Chapter 5 continues the description of tomography experiments at the third phase,
with a solution to the issue of camera CCD saturation using optical filters. The ‘compar-
ative’ method of tomography scans is devised, to attempt to demonstrate dependence
of horizontal phase-space on bunch-charge over a section of beam-line. After explaining

input preparation, results are shown for each quadrupole scanned, over the same range
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of charges, giving both the raw and the Gaussian-fitted distributions. The fourth phase
is based on a new proposal for ALICE experiments, similar to Phase 3 but this time
including vertical phase-space and hence new quadrupole tomography scans. Remote
filter-changing is added to tomography camera systems. All results for both axes ()
and (y) are displayed. From Phase 3 data, an analysis of the dependence of horizontal
emittance on charge is plotted, first for each quadrupole separately and then as a com-
bined plot. Twiss parameters are also plotted and conclusions are drawn. A similar
analysis is made of the Phase 4 results, which are directly compared with tomography
from simulated GPT datasets. The MENT algorithm is applied to an investigation of
anomalies discovered in the ‘comparative’ measurements of vertical phase-space.
Chapter 6 opens with an introduction to the concept of ‘normalised phase-space’ and
its links to phase advance between fixed screens, relating this to ALICE tomography.
Ways of predicting the Twiss «, § values to construct the normalisation transforma-
tion matrix are described. Examples comparing ‘real’ and ‘normalised’ phase-space are
shown and some limitations discussed.
Chapter 7 introduces the Maximum Entropy (MENT) algorithm by outlining its
mathematical principles. For the reconstruction of ‘3-screen’ tomography data, com-
parisons are made between FBP and MENT results. Some possible problems with the
reliability of MENT are raised.
Chapter 8 is the conclusion, opening with a general summary before detailing each
chapter. Overall conclusions on the success of the project are made. It finishes with
a discussion of further possible work and wider applications, under the three headings
of:-

- objectives not met;

- extensions to other situations;

- new ideas.
The Appendices cover additional material referred to in the main chapters and likely
to be of some interest, but not essential for a general understanding. It includes further
notes on an example of a model of camera suitable for tomography; a procedure for
camera focus setting, with depth-of-field calculation and results; lists of the experimen-
tal and simulated data runs; details of the computer processing steps from raw images
to phase-space reconstructions; and a description of a freely-available implementation
of the MENT code, with test outputs.
A Bibliography is the final part, with references to all cited papers, proceedings,

manuals and other publications.

1.11 Summary

This chapter has introduced the project by setting out its main objectives, both for the

experimental and for the simulation aspects of the work. Particular contributions made
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to the field of accelerator science are highlighted, specifically in space-charge effects;
normalised phase-space; reconstruction correction; and tracking code benchmarking.
Modern particle accelerators and their important diagnostic techniques are reviewed
and the local ALICE and EMMA projects are introduced, with reference to the specific
beam diagnostics on ALICE, especially in phase-space tomography. The principles
of computed tomography are briefly described, with the two principal classes of re-
construction algorithm: i) Filtered Back Projection (FBP) and ii) Iterative methods,
using MENT as an example.The mathematical theory of FBP is treated in a simplified
manner, and basic space-charge theory in particle beams is outlined. Finally a full

chapter-by-chapter overview of the remainder of the work is presented.
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Chapter 2

Phase Space Measurements at
ALICE

Introduction

Phase-space tomography has a theoretical basis which is similar to other applications
of tomography. In this chapter, the relationship between tomography in real two-
dimensional space and in the transverse phase-space of a particle beam is established.
The experimental methods developed to prepare and carry out tomographic measure-
ments on ALICE are then detailed, followed by results of the initial investigations using

these methods.

2.1 Relationship between Real-Space and Phase-Space To-
mography

In accelerator physics, we are interested in the properties of a population of particles
in the beam as characterised by its distribution in phase-space, that is, the relationship
between transverse horizontal displacement x and its gradient (or divergence) z’ =
dx/ds, as a particle moves in the direction s down the beam-line. It turns out that
there is a direct analogy between ‘normal’ tomography in real-space, where the density
function f(z,y) for a slice through an object may be recovered from measurements of
its projections at a range of angles 6, and the equivalent distribution in phase-space,
f(z,2"). The latter is recoverable from a set of projections onto the z-axis of transverse
beam profiles, with respect to effective ‘rotation’ angles. We can apply exactly the same
reconstruction techniques, as described in Section once some simple relationships

have been established.

Deriving the Parameters relating Phase-Space to Real-Space Distributions
The basic theory necessary to understand and implement tomography in phase-space

is presented here, in three parts. Further details will be found in [16].
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(a) Rotation of Projections

In phase space, the effect of beam-line elements such as quadrupole magnets (focussing
and defocussing), and drift spaces, may be treated as simple linear transformations on

the f(x,2’) distribution, usually represented in matrix notation as already described

in Section [[L5.11
zy | 71 | Ri1 Rz
(2] e 2] s [ B0 o

(Note that in Eq. matrix multiplication with M is implied, and M is required to
be non-singular.) As a simple example, a drift space of length L is represented by the

matrix

01
The effect on the distribution is a shear in the +x direction. This may be illustrated

Mpyir, = [ L L } (2.2)

for a hypothetical rectangular distribution of size [1,1] based at (0,0):-
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.tl-b Direction ' E
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Figure 2.1: Considering the transformation of the line L; due to matrix M, the rotation
angle 6 may be derived geometrically from the equation of L; before the transform (in
the Left-hand figure).

The matrix multiplication in Eq. gives the equation of line L1 in Fig. as

Rz + ngxll = 19, of the form z + % =1
a
Ry

with gradient given by b = R (2.3)
a 12

Therefore the effective tomographic rotation, 8 due to the transformation is obtained

from the reciprocal of the gradient, so that

tanf = — (2.4)



The result in Eq. [2.4] can be shown to apply to the general non-singular transfer
matrix M, representing the combined effect of beam-line components as calculated by
Eq. [13]. The matrix elements Rj1, R12 then become functions of parameters such
as magnetic length [ and field gradient g for quadrupole magnets, and length L for drift

spaces, depending on the arrangement of these components in the beam-line.

(b) Scaling of Projections

The second required relation is the scale factor s, which relates the projection of phase-
space after transformation to the original projection of the distribution. This factor
maps the effect on the grid spacing, which is the basis for the positions at which
discrete measurements of the projection are taken, when the transformed phase space
distribution fa(x, ') is related to the original distribution f1(z,z").

Referring again to the line L1 on the Left-hand side of Fig. the value of s may

be derived from trigonometric considerations as shown in Fig. [2.2}-
F Y

Z2
Es

Figure 2.2: The scaling factor s describing how a projection is stretched by the trans-
formation, is derived geometrically, by relating a position zs back to its corresponding
value p in the projection before it is transformed by matrix M.

The equivalent displacement p, in the original distribution, of x5 in the transformed

distribution is given by
Z2

= ——sinf 2.5
"= R (2.5)
or p = %2 where s is defined as
Ryo
s= 02 (R, 4 RY,) (2.6)

using the relation for tan 0 in Eq.
As shown in Fig. integration over the distributions must give the same result

for the total number of particles:

diL‘Q

/f(p,@)d,o:/A(xQ)de:/A(az2)dpdp (2.7)
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Figure 2.3: The phase-space distribution before transformation is integrated along the
p direction, and compared with the integral afterwards, along zo. From this mapping,
the scaling factor s arises.

Using the definition s = = from Eq. [ f(p,0)dp = [ sA(x2)dp
Therefore the projection of phase-space is

f(p,0) = sA(x2) (2.8)

where A(z9) is the projection after transformation.

(c) Equivalence of Real and Phase-Space Projections

The projection onto the z-axis of the beam profile in real (z,y) space is ffﬂsx [ f(z,y)dzdy,
which may be equated with f;”ém [ f'(x,2")da’dz the equivalent projection in (z,z’)
space, as they are just 2 alternative views of the same population of particles in the
small spatial interval [z, z 4+ dz], illustrated in Fig. This implies that we need only

Phase $pace

Figure 2.4: Consideration of the z-projections of a small interval dz in real-space and
in phase-space shows that the projections can be equated. They represent alternative
views of the same population of particles.

measure the projection in (x,y) space to have the projection in (x,z’) space, which

would not otherwise be directly measurable.
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In practice, beam intensity (x,y) profiles are obtained from installed fluorescent
phosphor screens or metallic Optical Transition Radiation (OTR) foils, appropriately
positioned around the accelerator ring, which are driven into the beam path as required.
As described earlier in Section screen images at each location are acquired on
suitable installed CCD cameras.

From these images, projections onto the x-axis (or y-axis) may be derived, and
associated with values of § and s calculated as above from the known transport matrix
M.

Together, this information is sufficient to construct a sinogram from the projection
set, and therefore to run a reconstruction algorithm to recover the (z,z’) (or (y,v'))
distribution; both FBP and iterative (e.g. Maximum Entropy) methods have been
successfully used by a number of different accelerator research groups, and are reported
in [13], 15 16, [30L 32} 34].

2.2 Experimental Methods for Beam Tomography

Experiment Planning As part of the programme for ‘Accelerator Physics’ within
the ALICE beam-time schedule, a number of experiments were planned and carried
out on allocated shifts. Tomographic studies require, in general, exclusive access to the
machine, because of the specific magnet settings demanded and also the destructive
nature of ‘interceptive’ imaging where fluorescent screens are used, which prevents the
use of the beam downstream. These experiments have provided invaluable information
for the development of the technique, but have also yielded useful beam parameter
data complementary to other diagnostic methods in routine use on ALICE. As the
diagnostic beam-line used for tomography is also designed for injection into EMMA, as
shown in Fig. it was also convenient to perform tomography experiments during
the time blocks allocated to EMMA, in between EMMA experimental shifts. This had
the beneficial side-effect of maintaining the machine in continuous operational status

during times when it would otherwise be idle, thus promoting better stability.

The planning of all experiments was carried out by the author, in consultation with
the ALICE operations manager and the Accelerator Physics group leader. Dr K Hock
provided guidance in the general direction of the studies, and suggested methods for
the detailed space-charge investigations. Although the vast majority of the tomography
data was taken on dedicated shifts summarised in Table some images usable for ‘3-
screen’ tomography processing (detailed in Chapter [7]) were also acquired incidentally,
from data collected during other experiments. Besides the author, the team always
included a "key commissioner’ to lead the shift, ensuring correct set-up of the accelerator

and taking essential safety responsibility.
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Total No. of Dedicated Shifts used 15

Shifts on which data was taken 12
Shifts producing referenced datasets 9
Total Hours spent on tomography scanning 35.5

Table 2.1: Of the total shifts used, not all yielded useful data because of equipment
breakdowns or software issues. Datasets referenced herein (see Table have been
selected from all the data taken. The duration of each tomography scan (typically ~160
images) was about 20 minutes.

Figure 2.5: For EMMA, the beam is diverted from ALICE into the injection line by a
dipole magnet (in blue, at Top Right). The tomography section has 3 screens for beam
imaging, with quadrupole pairs between; a pair QUAD-08 and QUAD-09 is identified.

The experimental tomography which has been undertaken may be conveniently bro-

ken down into several logical phases:

1. Proof of Concept Experiments.
Early ‘proof of concept’ work, including the development and testing of methods
and processing software, and an initial study of desirable requirements for imaging

hardware.

2. Quantitative Measurements.
Experiments to demonstrate the usefulness of tomography in beam tuning by
obtaining quantitative results, also extending the method to vertical phase-space

and multiple bunch-charges.

3. Detailed Space-Charge Experiments.
More detailed investigations to look for space-charge effects and their dependence

on bunch-charge and beam energy.
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4. Further Space-Charge Studies.
Follow-on space-charge studies with quadrupole tomography scans, in both hor-
izontal and vertical phase-space, supported by concurrent simulation work using

particle-tracking codes.

In this chapter, the experimental methods used are described, under the headings of
the first two of the phases defined above. Initial results are presented, but a detailed
treatment is postponed until after Chapter [3] which describes the analysis techniques
in more detail. The latter two phases, which deal particularly with space-charge inves-

tigations, are covered later in Chapter

2.3 Proof of Concept Experiments (Phase 1)

At Phase 1, preferred imaging camera hardware requirements were established, with
reference to existing installed screen cameras; performance testing procedures were
developed for cameras, to use in the laboratory and with beam; computer software
methods were formulated for generating phase-space tomography input data and pro-
cessing the output; protocols were written for set-up of the beam before experiments;

and first outputs were used to improve post-processing and display of results.

2.3.1 Camera Requirements for Tomographic Imaging

Camera performance is a key factor influencing the quality of the beam images, and
hence the reconstruction; the essential and desirable features specified in Table
have been derived by reference to other projects [35], and from experience with the
original screen cameras as used on ALICE, which are illustrated in Fig. [A.1](a). Further

information will be found in [36H39].

To meet these requirements, three options for providing cameras to acquire beam

profiles for tomography were developed:

1. Modify/Enhance Existing Cameras.
The basic ‘ALICE’ type in use has few customisable features; in particular there
is no manual gain control, although Automatic Gain Control (AGC) has an
ON/OFF selector. Interchangeable optical filters could be fitted in front of the

lens, to control saturation in images.

2. Replace selected cameras by a compatible type with more suitable specification.
No major modifications to camera housings and cabling are required, especially
if from the same manufacturer; it may be possible to retain existing acquisition

software, with few changes.
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Feature

Reason

Notes

Selectable Gain Control

Interchangeable Lenses
Optical Zoom

Variable Aperture
CCD Bit Depth

Exposure Triggering

Optimise use of dynamic range
while avoiding saturation

To provide magnification steps
Maximise filling of screen pixels
with image of beam (diam ~3mm
Q 60)

Using Iris control, for intensity ad-
justment

Related to the required Signal to
Noise Ratio (SNR)

Accuracy /reproducibility of expo-
sure for image quality

Control in software

e.g. C-mount

To f1.8
> 10-bit preferred

Use ALICE laser

pulses

Desireable:
Remote Focussing
Radiation Hardness

To facilitate setup procedure
Low Background, maintain quality

Shielding required?

Other Considerations:
Spatial Resolution
(Nyquist Criterion)

Numberof Projections,nproj ~ T
Numbero f Positions,npos 2

Ref. [24] ch5 p186

Table 2.2: Essential and desirable features of an ideal beam imaging camera for phase-
space tomography are listed, as a guide to the selection of options for upgrade or
replacement of existing cameras.

3. Fit high-specification camera(s) selected for optimum performance.

Significant redesign of mountings may be required; acquisition systems may need

substantial modification; further spares are needed, and it may be prudent to

retain fittings and wiring for the current cameras, in case replacement at short

notice is required; however, the cost penalty makes their use at all screen locations

unlikely.

Considering all requirements, the third option was preferred for the ALICE to-

mography section; but for initial commissioning, existing ALICE-type board cameras

already fitted to the tomography section screens were to be used, while planning the

phased introduction of higher-specification cameras. This would allow for the adapta-

tions necessary to replace ‘standard by ‘high-specification cameras, including:

e a new camera mounting tube to allow a direct fit to the screen viewport;

e a fine focus adjuster adapted from current ALICE practice;

e revisions to the LED board, which illuminates the screen in the absence of a

beam.

Additional networking to control ‘high-specification tomography cameras was also

planned. Software running over the network would allow exposure to compensate for
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changes in beam intensity, as this varies with both photoinjector laser parameters and
magnet settings around the ALICE ring. New cameras could also be triggered on the
laser pulse so that exposures were synchronised to the beam repetition rate; whereas
the existing cameras acquired asynchronously, relying on multiple exposures to ensure

capturing a beam image.

Camera Performance Testing Procedure

The output data of a test is useful in several ways: in comparing individual cameras
and lenses; as a benchmark for studies of CCD ageing due e.g. to radiation damage;

and in setting camera controls for optimum resolution.

Standard Procedure for Camera Performance Testing The method used is
based on a photographic quality optical test card to the ISO 12233 standard [40].
Images of the card taken with the prototype ‘high-specification camera assembly are
analysed for Spatial Frequency Response (SFR) with the 3rd party MATLAB software
‘sfrmat2’ [41].

VAL H Hix INES PER BCTURE HE ST

/ 5FR Edge fnalysis
©a
DA

T T ']

Figure 2.6: Optical performance of cameras may be assessed with a standard test
card (conforming to ISO 12233). From an image a suitable slant edge is selected, and
analysed by software to produce a plot of the Spatial Frequency Response.
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The procedure followed is to focus a selected portion of the test card so that a
straight edge with good contrast appears in the camera frame, slanted at an angle of
a few degrees to the horizontal (or vertical). After capture, the ‘sfrmat2’ software is
run, allowing a suitable region of the edge to be selected from the picture file; the SFR
analysis of this region is presented as a chart (see Fig. . This is a measure of how

well details in the object are reproduced by the optical system as a whole.

Camera Optimisation before Experiments

Screen Camera Focus Checking For optimum image quality, the screen cameras
in the Tomography section are checked for focussing accuracy. This work does not
require any ALICE or EMMA systems to be live, and can be carried out whenever
there is human access to the machine. Although easier with two operators, one to
make adjustments while the other observes the sharpness of the real-time images, it
can be carried out alone if a local view is set up on a monitor connected directly to the
camera output, the installed coaxial cable at the camera housing having been removed.

A more detailed description of the procedure is given in Appendix

Camera Focus Testing with Beam Calculations indicated that with Depth-of-
Field = 26.7mm for the camera lenses in use, a large fraction of the screen (inclined
at 45°) was expected to be in focus (see Table . This prediction was tested with
a horizontally well-focussed beam. If there were appreciable defocussing across the
screen, an increase in apparent beam width should be seen in the same beam observed

at the edges, compared with the centre.

In the experiment, the beam was scanned across the screen using magnets which can
bend horizontally. There are correctors located conveniently before the screen, but un-
fortunately these were found to be lacking in range, deflecting by only a small fraction
of the screen width even at their limits. As an alternative, the nearest preceding dipole
was used, at such a distance that full deflection was readily obtained with only a minor
current variation. Dipoles have a weak horizontal defocussing effect - and, depending
on pole-shape, may have some edge-focussing - but these are usually small and have

been neglected here.

Both beam size and centroid position were obtained from the screen images using
software written by ALICE staff and available on-line in the ALICE Control Room.
The plot in Fig. shows no systematic size increase away from the centre, and the
trend for a smaller beam-size near the edges of the screen is almost certainly due to

losses from beam clipping in the pipe, at larger deflecting angles.
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Figure 2.7: Horizontal beam size is plotted against beam centroid, as the beam is made
to move across the screen by a bending magnet. Representative screen images are
shown, at the centre and at the extremities of the range scanned.

2.3.2 Phase-Space Measurement by Standard Techniques
Preparation of Tomography Scan Input Data

The following steps must be taken when preparing for beam tomography by the
‘quadrupole tomography scanning’ technique, as illustrated in Fig.

1. Make initial selection of the quadrupole(s) for scanning of magnet current (Hori-
zontally and/or Vertically-focussing as required), having a suitable imaging screen
downstream of the quadrupole, and taking account of the desired ‘reference’ po-

sition for reconstruction of phase-space.

2. Obtain parameters for all other beam-line elements, from reconstruction position

to imaging screen, including the quadrupole to be scanned.

3. Calculate transport matrices as described below, and by interpolation find the

quadrupole currents, which give equally-spaced tomography projection angles 6.
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4. Review the quadrupole selection made at Step 1, in view of the range of projection

angles available.

5. Repeat Steps 1-4 for alternative beam energies, if required, scaling magnet strength

with particle momentum where feasible.

e - quadrupole before screen scanned

#

¥

Position [Mtrans] Screen iles] I q
YAG-03 * multple images co ecte
L /m 7
Beam / v /
Direction

QUAD-08 \ YAG-03

scanned
quadrupole

Key to quadrupole magnets:
Focussing H Defocussing J

Figure 2.8: For horizontal phase-space tomography, a focussing quadrupole magnet is
usually chosen for the scan, though other quadrupoles between reference position and
screen will contribute to the full transport matrix My,q.ns. An image is taken at each
setting, giving equal projection angle intervals 6.

For tomography, a set of projections are required at specific angles, #. At any par-
ticular 6, the elements of the transport matrix

Ri1 Ria }

2.9
Ro1 Raa (2.9)

|

must therefore be determined, by solving the equation tanf = Ri2/R11 (see Equation
above), to obtain the appropriate values of the variables which parameterise Ry
and Ris.

Solutions have been calculated for three cases of interest: (a) is of purely theoretical
interest, (b) is a practical and specific case, and (c) is general. The range of angles

where solutions exist has also been investigated.

(a) Drift Space In this, the simplest (but theoretical) case, the matrix is Mpyip, =

[ [1) f } giving § = arctan(Ry3/R11) = arctan(L/1) where L = drift length, considered
here to be a variable; in practical beam-lines, it has of course a fixed value. Therefore,
solving for parameter L,

L =tanf (2.10)

As seen in Fig. [2.9] there is a continuous solution on the interval [-90° < § < +90°],
asymptotic at +90°.
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Calculation of Drift Space for Beam Phase-Space Rotation
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Figure 2.9: Varying the length of a drift space L = tan 8 between reference point and
imaging screen gives a simple - if impractical - way of providing a range of projection
angles 6 close to 180, except near the asymptotes where tan  — oc.

(b) Focussing Quadrupole with Drift Space For this practical case, the com-

bined matrix is
MrqQuad+Dritt = MprittMrQuad (2.11)

which leads to
Riz = sin(VKs)/VK + Lcos(VKs) and Ry = cos(VKs) — LVK sin(VKs) (2.12)

With fixed values of drift length L and quadrupole magnetic length s, the value of

focussing strength K is found as a solution of the following equation, for a given 6:
tan(VKs)/VK + L + tan 0(LVK tan(vVKs) — 1) = 0 (2.13)

Numerical methods are used for solving this equation in K.

There is a continuous solution for K only over (6 < § < 180°) where § > 0°. The
value of the lower cut-off § depends on both L and s, and the Fig. plot shows
examples for 2 different quadrupole-drift locations in the EMMA Injection Line, where
drift space length L in Eq. refers to either QUAD-08 — Screen 2 or QUAD-09 —
Screen 2, identified in Fig. [2.5

Using a MATLAB function, the Equations are solved for each angle 6
in the sequence, the parameter thus determined being then applied in the transport

matrix to propagate the phase-space distribution to the measurement screen.

(c) General Case If the beam-line section of interest for tomography, from recon-

struction position through scanning quadrupole to screen, is more complex than Case
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Figure 2.10: Changing the focussing strength K by adjusting the current in the
quadrupole gives access to a range of projection angles 6, subject to power supply
limitations. Plots of required K for a given 6 for quadrupoles QUAD-08 and QUAD-09
show the effect of their different drift spaces to the screen.

(b), it is not possible to write down a general analytical solution to find the required
values of K; a method of linear interpolation has therefore been developed in MATLAB
[Hock K, 2010], according to the following scheme:-

Firstly, an array of values for theta at equal K (or quadrupole current) intervals is

generated using the full transport matrix.

0 = arctan (?) = f(K) (2.14)

11

Secondly, the values of current for an equally-spaced array of theta values having a
range of 180° is interpolated on the first array, thereby solving K = f~1(6), to provide

the required quadrupole tomography scan input dataset.

Experimental Protocol

The procedure for tomography experiments was developed at the same time as the
image data processing software, and was later refined in the light of operational shift

experience. For the simplest scan sequences it follows this scheme:

1. Background images (i.e. with no beam) are acquired from the Tomography
Section screens. These are necessary to correct beam images for background

levels from any essentially ‘fixed’ sources, including faulty CCD pixels and the
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steady low-level radiation generated during normal machine operation, present
even without beam. An example is shown in Fig.

. A stable beam into the EMMA Injection Line (EMI) at the required energy is
obtained. This can usually be achieved by fine tuning after restoring appropriate

established settings from backup files.

. The beam is centred on the axis of the selected EMI quadrupole magnet to be
scanned, adjusting magnetic correctors as necessary. Centring is achieved when
the beam screen image centroid remains stationary at all quadrupole magnet cur-
rent settings. It should be noted that because of variations in camera alignments,
the image may not necessarily appear central in the image, even when the beam

is correctly centred through the quadrupole.

. Beam position and size is confirmed on the screen over the full range of magnet
scan currents to be used. It is important, especially at large currents when it
becomes rather diffuse, that as much of the beam image remains in view as

possible.

. Tomography scans are performed using prepared magnet current data files as
input to the control program. The software automatically sets the current value
and acquires, names and saves the image file, before advancing to the next setting.
In Fig. are shown low, medium and high-current beam images taken from a

typical horizontally-focussing scan.

. Images collected are checked for correctness and quality, repeating scans as nec-

essary if there has been a loss of beam or other malfunction.

Figure 2.11: Typical features in a non-beam background screen image are scattered
bright spots, due either to permanently damaged pixels (in fixed positions) or to cos-
mic/terrestrial radiation interactions with the camera CCD (randomly distributed). In
this example they are enhanced for greater clarity.

Processing of Screen Image Data for Tomography

Computer codes have been written in MATLAB to automate, as far as is possible, the

sequence of reading in and processing the raw camera images, before the prepared data
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Horizontal-Focussing Quadrupole

Quadrupole Low Medium High
Current:

Figure 2.12: Samples taken from a set of screen images recorded at low, medium
and high quadrupole currents show changes as the beam is more strongly focussed
horizontally and defocussed vertically. The beam centroid would ideally stay the same.

is passed on to the reconstruction algorithm and the resulting phase-space distribution
saved. Control is provided through a combination of (a) simple graphical user interface
tools, and (b) parameter files, holding variables such as filenames and flags, which are

set up beforehand and automatically read in at run-time.

Preparation Screen images are stored in a standard location, from which they may
be individually selected by the User at run-time; alternatively, if processing a set from
a full quadrupole tomography scan, all images found in the designated directory are
automatically selected for loading. In Fig. three representatives have been chosen

from a typical scan set of about 150 images.

Backgrounds For each screen camera, background images are stored; the baseline
background level across each image has been found to be fairly uniform spatially, apart
from isolated ‘bad’ pixels caused by damage or defects in the CCD, but it does vary
slowly with time. It is therefore advisable to collect fresh backgrounds at each to-
mography session; Fig. shows an example. Several alternative user-selectable

background subtraction schemes exist.

Generation of Reconstructions from Raw Images

The computer processing code implements the theory described in Sections and
A more detailed description of the various stages in the processing is given in Appendix
however, the principal steps, including images of some of the key screens displayed,
are summarised here to aid understanding.

Note: Any step marked as an ‘option’ is run at the user’s discretion.

e Data and Parameter Loading

Transfer matrix array (one matrix per projection)
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Image set (if quadrupole tomography scan) or individual screen images

1855 EMEZ S0ns.png 1855 EMI-3 S0ns.png 1855 EMI-4 100ns. png

100 100 100
200 200 200
300 300 300
400 400 400

500 500
200 400 &OO 200 400 E00 200 400 E00

500

Figure 2.13: This example shows images of an 3-screen tomography dataset as displayed
after loading from files. Headings are actual filenames and axes scales are in pixels.

Background image(s) (one per screen)
Calibration data (one set per screen)

Control flags (for switching of later processing)

e Image Correction
Subtract background(s) from beam images
Renormalise for intensity
Apply screen calibration(s)

Set a window around the beam region (option)

Sekot nage wiekw wkhmowe L

| 23 300 330 40 0 S0 200 Jo0 . 500 SO0 (000 1200 a0

100 200 300 400 500 GO0 700

Figure 2.14: The full beam image set is displayed in overlay, with composite H and V
projections below and R. The user selects a beam window, to include the peak.

Select and reject any images of low integrated-intensity
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e Projection Processing
Project onto z (horizontal) or y (vertical) axis
Correct baseline, by peak-fit method or constant level (option)
Scale projections

Determine centroid of each projection

Prmjections (10% sample)

09-

08r

07t

06+

0.5+

04r

031

02+

0.1+

Figure 2.15: A superimposed sample of projections is displayed, in colours, confirming
that the baseline is about zero, and only the main ‘beam’ peak is present.

Calculate weighting for irregular angle intervals (option)

e Reconstruction from Sinogram
Set limits of reconstruction region in phase-space
Run tomography algorithm (the standard is FBP)

Save reconstructed phase-space results, i.e. image files and array datafile (option)

Reconstruction (horiz) - Contour (filled)

Figure 2.16: Reconstructed phase-space is displayed in contour plot form. Axis units
are mm (x horizontal) and mrad (z’ vertical).
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Results of Phase-Space Reconstructions - Horizontal

The example shown in Fig. is the phase-space distribution reconstructed from
a quadrupole tomography scan based on 153 projections at 1° angle intervals. The
scanned quadrupole is QUAD-08 and the reference location for the reconstruction is
the entrance of the same magnet. It has undergone all of the above processing stages

but no further post-processing treatment.

ReconFile_150910_0120_153proj

X {mrad)

X (mm)

Figure 2.17: This reconstruction of horizontal phase-space from a quadrupole tomog-
raphy scan of 153 projections in 1° steps is typical with its roughly elliptical central
region. The surrounding linear features are mainly reconstruction artifacts.

Delineation of the central distribution is reasonably clear, but the surrounding back-

ground region also has significant high-frequency noise which can confuse the picture.

Benefits of Filtering on Reconstructions The raw output of the Reconstruction
algorithm shows the effects of input noise, as well as minor artifacts resulting from a
limited dataset, which very often does not have all the projections for the ideal range
of angles (0° to 180°). A moderate level of smoothing, e.g. with an n x n median
filter which replaces each pixel with the median of its n x n neighbours, often helps to
reduce high-frequency features and to emphasise the overall trends in the distribution.
It is important, however, to avoid excessive smoothing, which tends to remove smaller

details of possible interest.

Fig. show the effect of increased levels of filtration, more obviously seen in
contour plots. At 2 x 2, much of the high-frequency noise has been removed. At 8

x 8 what remains, outside the much better-defined outline of the central distribution,
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is a residual low-frequency element. Any significant residual noise which could cause

a problem may be treated by other methods, one of which will be described later in

Section B.1.41

Unfiltered

3x8

Figure 2.18: Applying an ‘n x n’ Median Filter at progressive levels to a reconstruction
contour plot shows how higher-frequency noise is reduced by the smoothing effect, with
much better definition of the central region of the distribution.

2.4 Quantitative Measurements (Phase 2)

For Phase 2, the screen camera pixel calibration was checked using established proce-
dures; beam-line conditions, particularly the dispersion at the measurement position,
were confirmed; and tomography experiments in both the horizontal and vertical planes
were performed. An initial study of the effect of varying bunch charge on reconstructed

phase-space was performed.

2.4.1 Screen Camera Calibration

If any camera lens corrections have been made to optimise screen focussing, maximum
reconstruction accuracy will be maintained only if screen cameras in the Tomography
section are recalibrated for Horizontal and Vertical magnification (in mm/pixel for
the beam). This can be carried out using non-beam images, collected with the LED
illuminators turned on so that the screen holder edges are visible, as in Fig.
Software written in the ‘Mathematica’ code [42] is available for the calculation, which

is based on the known dimensions of the screen. New calibration values are recorded in
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an EXCEL sheet, stored in a standard location so that they are available to all users.

2.4.2 Horizontal and Vertical Tomography Experiments

Tomography in the Vertical plane is exactly analogous to the Horizontal case. When
the capability to reconstruct both Vertical and Horizontal phase-space was added, the
potential then existed for processing existing image datasets in both planes. However,
quadrupole tomography scan magnet current settings for the projection angle range se-
lected for horizontal scanning (using a horizontally-focussing quadrupole) give a range
of angles for vertical reconstruction which are far from optimal, as illustrated in Fig.
The clear difference between horizontal and vertical phase-space reconstructions
is a result of the very restricted, irregular angular range of projections in the vertical,
the quadrupole tomography scan settings having been chosen for a uniform, almost
complete coverage (153 x 1°) in the horizontal. On the other hand, the vertical range
is non-uniform and only 23° for this example. Specific vertical tomography experi-
ments were therefore planned, using a suitable defocussing (i.e. vertically-focussing)

quadrupole, with current settings calculated appropriately for the magnet.

Vertical Data Processing The dimensions of the tomography transfer matrix set,
which is prepared along with the experimental input data, need only be [2 x 2 x n]
where n = number of projections, if just horizontal processing is carried out, but
must be [4 x 4 x n| if the vertical elements Rssy,, Rsan, Ra3n, Ra4n are included as well.
The first stages of processing, where complete (z,y) images are handled, are common
to both horizontal and vertical cases. It is at the stage when the data is projected,
either onto the ‘z’ axis (horizontal phase-space) or the ‘y’ (vertical phase-space), that
processing differs, through to the generation of sinograms and their associated ‘position’

and ‘angle’ arrays.
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Figure 2.19: Using data from a scan optimised for Horizontal phase-space reconstruc-
tion, results are compared with the same data set processed for Vertical phase-space.
Quality is poorer, as the Vertical projection angle range is much smaller & non-uniform.

2.4.3 Dispersion

In general the particles of a bunch do not all have exactly the same energy but are
distributed about a mean. In a magnetic dipole field, the horizontal trajectory will vary
with the energy; this is an example of ‘dispersion’. In the presence of dispersion 7,, an
energy spread os in a beam of emittance €, with beta function £, adds a contribution

to the horizontal RMS beam size o, described by

Oz = 1/ /Bxem + 77;%0(% (215)

and this would be reflected in the reconstructed phase space. Dispersion has been
designed to be &~ 0 in the tomography section, as there are two preceding dipoles whose
effect is arranged to cancel out. The 2"¢ term in Eq. may then be ignored; this

condition has been checked by measurement.

Dispersion Measurement Based on a known dispersion at position AR1-1 on AL-

ICE, its value has been estimated at screen EMI-3 in the tomography section, as shown
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in Fig. 2.20] The procedure is to measure the deflection of the beam centroid when the
energy is changed, in the region of known dispersion AR1-1; this gives a measure of the
actual energy change. The energy difference dE can then be correlated with the linac
settings used. With this data, together with the deflections dx observed for known
energy changes, we can calculate the dispersion 7 at the position of interest EMI-3,

using:-
Ey x dx
n=

dE

where Fjy is the reference energy, in this case ~ 12 MeV.

(2.16)

Energy is adjusted by setting the accelerating gradients in the cavities LC1 and LC2
of the main linac, which is located upstream of the start of the EMMA injection line,
indicated on Fig. Using the value n = 0.82m (at AR1-1) established in previous
ALICE calibrations, we obtain n = —0.06 m (at EMI-3).

This result was close enough to zero to indicate that no adjustment to the three

quadrupole magnets indicated in Fig. [2.20] was necessary.

Measurement Screen EMI-3

EMMA INJECTION BEAMLINE 7 i
PR SLRRE SRR S
6"I

from _, °:l‘ | K
LINAC = - ‘ Adjustment Quadrupoles

\ to AR1-1

Figure 2.20: The dispersion n, known from previous measurements at AR1-1 in the
ALICE ring, is used to calibrate the LINAC energy change, which in turn allows the
dispersion at the position of interest (the EMI-3 screen) to be deduced.

2.4.4 Variable Bunch-Charge Experiments

After initial tomography work at an average charge per bunch of 40 pC, a series of
experiments was planned specifically to investigate the effects of higher charges, as
measured by the Faraday cup (see Section . Bunch charge is controlled by adjust-
ing the attenuation of the photoinjector laser beam which initiates emission from the
caesium-activated photocathode. The starting point would be the minimum charge
which could be reliably imaged on the screen, given the fixed exposure of the installed
ALICE cameras. At the other end of the scale, the maximum charge is that obtainable
with zero laser attenuation, the governing factor being the quantum efficiency (QE) of
the cathode. There is a gradual deterioration in QE with current drawn and intensity
of use, and consequently the upper bunch-charge limit varies, typically between 80 pC

when ‘fresh’ down to 55-60 pC near the end of its usable life. The achievable charge
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therefore depends upon the point in the re-caesiation cycle when the tomography ex-

periment is scheduled.

Results of Experiments

Preliminary measurements using the quadrupole tomography scan technique, with
QUAD-08 capturing images on screen EMI-YAG-03, were made to reconstruct hori-

zontal phase-space.

40pC 50pC

5

X' {mrad)
X" {mrad)

X" {mrad)
X' {mrad)

0
® (mim) X (mmy

Figure 2.21: A series of quadrupole tomography scans, with QUAD-08 on screen EMI-
03, has been made at a number of bunch charges up to the maximum obtainable.
Reconstructed horizontal phase-space shows a gradual evolution with increasing charge.

An evolution of the phase-space distribution with increasing bunch-charge from
40pC to 70pC, is evident in Fig. It is clear that in all cases the general shape
and orientation is very similar. However, it is difficult to make any conclusions purely by
inspection of the raw plots, which show significant noise in the regions surrounding the
central core of the distributions. Methods of analysis which extract useful quantitative

information are described later, in Section [3.1.1
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2.5 Beam Tomography: Applications for EMMA

Successful acceleration in the EMMA ring has been reported [5]. Characterisation of
the transverse phase-space distribution at the injection line would assist in the quan-
tification of the effects of decoherence on the electron bunch structure as it makes turns
in the ring; to do this, equivalent beam tomography measurements may be made in
the EMMA extraction line, which has been designed with a diagnostics section similar
to the injection line. Unfortunately the commissioning of the extraction line came too
late for any tomography experiments within the scope of this project. Such measure-
ments would be complementary to the longitudinal phase-space information deduced
from BPM and time-of-flight data, which is routinely taken.

Within the EMMA ring itself, the only instruments available for possible tomog-
raphy are the YAG screens installed at two locations; these are used primarily for
injection setup. However, with modification to the power supplies to appropriate ring
quadrupoles to allow independent scanning of the current-strengths, these screens could
potentially be used for tomography; but being destructive, data could be taken only

on the first turn of the beam in the ring.

2.6 Summary

Initially, this chapter has treated the theoretical basis of the FBP algorithm, giving
examples. This ‘real-space’ tomography is then related to phase-space using a geo-
metrical approach. The experimental programme is introduced, broken down into four
phases. For the first phase, the ideal imaging camera requirements are laid down, with
practical optimisation measures. The preparatory steps for calculating input data to
run a quadrupole tomography scan are given, in simple and general cases. The experi-
mental protocol is listed, with notes on screen image and background data collection.
The principal data processing steps are summarised, with notes and example displays
and plots. After showing typical reconstruction results, the beneficial effects of me-
dian filtering are presented. In the second phase of experiments, vertical phase space
is covered, with screen camera recalibration and dispersion measurements. Results
of varying bunch-charge on reconstructed phase-space are shown. In conclusion, some

possible future applications of beam tomography for the EMMA project are mentioned.
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Chapter 3

Detailed Analysis and Parameter
Extraction from Phase-Space
Reconstructions

Introduction

To obtain useful information from distributions in phase-space reconstructed by tomog-
raphy measurements, we can perform quantitative analysis by calculating parameters of
interest. In this chapter these parameters are defined, and the theoretical basis for their
estimation is presented, with some practical considerations and correction techniques

to improve measurement precision with non-ideal, noisy data.

3.1 Principles of Analysis Techniques based on Linear Beam
Dynamics

3.1.1 Parameters derived from 2nd Order Moments

For the case of an uncoupled distribution of particles, it is possible to define the hori-

zontal emittance ¢, by:

e = \/{22) (92) — (a2 (3.1)
where (x) denotes the expectation value of the quantity x. €, is conserved along a beam-
line under the condition that transport is linear, symplectic and uncoupled [43]. Having
obtained, by tomography, an estimate of the distribution f(x,p,) we can therefore
calculate e directly, from the 2nd order moments. The 1st order moment of position
(x) is just the beam centroid.

In addition, the three Twiss parameters, 8, a and -, interpreted as representative

of the local size of the bunch, are related to these quantities by:

<.CC2> = Bz€s
<xpx> = —Qg€yg
<py2c> = Vz€z (32)
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A MATLAB code has been written to perform the analysis. Using the Twiss param-
eters B, a,~ and the emittance €, calculated in this way from the 2nd moments of the

distribution, the equation relating these quantities
€ = vz + 20xa’ + Ba’ (3.3)

which describes the RMS phase-space ellipse according to the principles established in
Section may be plotted on the (z,2’) axes. The software displays this ellipse as

an overlay on the distribution.

As an example, the parameters have been calculated for a typical reconstructed
phase-space distribution, after applying various kinds of preliminary processing; the

effects of ‘filtering’ have already been shown in Figure 2.1§]

Filtered Zoomed FilteredZoomed

Figure 3.1: An example of the effect of image processing is shown. Filtered: A 5x5 filter
has been applied onto a raw reconstruction. Zoomed: The original has been zoomed
by 8 x 8 into a region of interest. Filtered/Zoomed: Both processes are combined.

In Fig. the RMS ellipse described by Eq. is overlaid (in white) onto the

processed reconstruction.

Processing € I3 o
Original(not shown) 187.2155 0.66407 -0.16294
Filtered 5x5 0+115.1274i | 0-1.5174i 0+0.25739i
Zoomed 8x8 2.9667 0.45304 -0.72093
Filtered/Zoomed 8x8 1.9408 0.45855 -1.1604

Table 3.1: Emittance and Twiss parameters are calculated from 2nd order moments
of a reconstructed phase-space distribution. Various kinds and levels of preprocessing
(filtering/zooming in) have first been applied to the raw data. (Note: ‘i’ denotes the
complex part of a value.)

Comparing the results in Table it is clear that the estimation of all parameters,
but especially emittance, is a very strong function of the distribution in the region

included around the central core, as well as the size of that region.
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In the second case, it may be seen that the calculation has effectively failed because
the result, which is complex, indicates that the value under the square-root of Equation
has become negative. This is forbidden by the Cauchy-Schwarz inequality:

() (%) = (2y)* (3.4)

This condition arises because the region surrounding the core of the beam distribution
is dominated by prominent reconstruction artifacts, producing negative values. In the

fourth case, these are significantly reduced by filtering.

Parameter Stability To study the stability of the parameters €, 5, and « as a
function of the post-processing applied, reconstructed phase-space data from a similar
dataset to that shown in Table was subjected to increasing levels of n x n pixel
filtering, before running 2nd moments analysis. In Figure [3.2] all three parameters are
plotted against n. There is a clear fall in both € and «, with a slight rise in 8, up
to 8 x 8; a plateau region then persists until about 16 x 16, beyond which a steady
rise continues through 64 x 64. Although this study is very limited, it indicates that
the optimum for the filter level lies between 5 x 5 and 10 x 10 pixels, supporting the
hypothesis that initially there is a smoothing out of higher-frequency reconstruction
artifact and camera noise components. Excessive filtering will begin to degrade the
central distribution, smearing it out across phase-space and increasing the measured ¢

value.

For a more comprehensive treatment, the study could be repeated using particle
tracking simulation (as described in Chapter 4] to simulate image noise and artifacts.
Such an approach would ensure that €, 8, and o« had well-defined values, for ease of

comparison with the parameters as extracted after processing.
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Effect of Filtering on Parameters
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Figure 3.2: Horizontal emittance €,, and Twiss parameters 8 and «, calculated from
2nd moments of a distribution which has been processed by an n x n median filter, are
plotted against n. The clear and consistent trends indicate an optimum of 5 <n < 10
in this case.

3.1.2 Rebinning of Image Data before Reconstruction

Confidence in analysis results may be improved if reconstruction artifacts, due to de-
ficiencies or incompleteness in input data, can be eliminated or suppressed. Theory
indicates that ’aliasing’ artifacts from the Filtered Back Projection (FBP) reconstruc-

tion method may be reduced when the Nyquist criterion [24, p. 186] is satisfied:

Nyroj ~ 5 Npos (3.5)

For a fixed number of projections Np.;, the number of positions Ny, can be adjusted
by ‘binning’, combining adjoining pixel values, to meet this requirement.

As a test, a screen image set from a quadrupole tomography scan was pre-processed

through the graphics program ‘ImageJ’ to rebin it (by aggregating every 4 pixels into

1). Standard tomographic processing was then carried out, making due allowance for

the effective reduction in screen resolution (in pixels/mm).
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Figure 3.3: The screen images used at ‘Full’ resolution to reconstruct the upper phase-
space distributions were rebinned by aggregating adjoining 2 x 2 pixels into one. Re-
construction was then repeated using this ‘binned’ data, to produce the lower results.

In Fig. the upper plots are horizontal and vertical phase-space at the original
‘full’ resolution; the plots below are the same distributions after rebinning. Some
reduction in the extent of the central distributions is evident, but the general shapes are
preserved. Clearly some artifacts persist, however, though at a lower spatial frequency;

it is not obvious that there has been any very significant improvement overall.

3.1.3 Fitting of Idealised Distributions

For many charged particle sources, and specifically the photoinjector type used in
ALICE, a reasonable approximation to the beam distribution in phase-space is a 2-
dimensional Gaussian function. Under this assumption, a function parameterised in
the form

F(z,2') = Aellal@=20)*+b(@—z0) (@' ~af)+e(a’~a()*) (3.6)

may be fitted to the reconstructed distribution f(z,z’) by the method of ‘least-squares’,

for some values of A, a,b,c, and xg, x{,.

This functional fitting has been implemented as a MATLAB code. The algorithm
works by first calculating estimated starting values for the 6 fitting parameters, based
on assuming initially that the centre is at (0,0), and finding the position of the maximum
value in the distribution. From this, the full-width at half-maximum (FWHM) in both
z and y is derived, and hence an estimate for the angle of the principal axis obtained.

These initial values are passed to a standard least-squares functional fitting routine,
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which returns a new set of ‘best-fit’ parameters as well as a new (fitted) distribution;

this may be used for display and further analysis.

Having obtained the fit, it is instructive to apply the ‘2nd order moments’ analysis
described in Section to both the fitted function and to the original distribution,
and to compare the results. In the example (Fig. [3.4) the data was derived from a

quadrupole tomography scan of 153 projections at 1° intervals.

It will be seen from the analysis results in Table that the ‘fitted’ emittance is
much smaller than the ‘raw’, whereas the horizontal beta function is comparable in the
two distributions. This appears to be due primarily to the effect of the artifacts in the
region outside the main distribution, arising from the reconstruction algorithm. For
distributions which are far from Gaussian, parameters calculated after fitting could be

significantly different from the original 2nd order moments values. The code used is

Eaw

Fitted

10

W' [(mrad)

-10

30 20 10 0 10 20
® (mm)

30 30 20 10 0 10 20 30
x (mm)

Figure 3.4: The ‘raw’ reconstruction data in the left-hand plot has had a Gaussian
surface in 2-D fitted to it by a least-squares method. The ‘fitted’ result is shown on
the right as a contour plot.

Horizontal | Emittance | Beta Alpha
(mm-mrad) | (m)

Raw 45.6925 1.7822 -0.19867

Fitted 3.6129 1.6878 -3.2654

Table 3.2: The calculation of emittance €, and Twiss parameters 5, « is made by 2nd
moments analysis, for a raw reconstruction and for the same distribution after Gaussian
fitting. The two sets of results are compared.

linked to that described in Section above.

3.1.4 Additional Corrections in Tomography Data Processing

Further techniques have been applied to raw image data during processing, to correct
for some instrumental effects which have been shown to introduce systematic errors

into estimates of parameters - such as emittance - from tomography data [I].
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Applying Threshold Levels in Projections Raw projections from screen images
typically show a relatively sharp peak, due to the beam itself, superimposed onto a
‘pedestal’ or noise floor which is relatively uniform across the pixels of each projection.
Selecting a level to use as a threshold, defined as a fraction of the peak projection
value, the same chosen threshold is subtracted from all projections. As an additional
correction, any value in a particular projection which falls below the threshold is set to
zero. Although it appears somewhat arbitrary, this step effectively suppresses random
noise and camera pixel defects which would otherwise perturb the image, and hence

confuse the reconstruction algorithm.

The effect of thresholding on the emittance e derived from this corrected data is shown
when € is plotted against threshold, as seen in Fig. an appropriate threshold to
choose is a value slightly beyond the foot of the initial steep down-slope, where there

is a sharp easing of the gradient as € then falls only slowly with the chosen threshold.
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(a) {b)

Figure 3.5: (a) A set of superimposed projections shows the noise floor, with the
red horizontal line as an suitable threshold. (b) As the threshold subtracted from
projections as a background correction is increased, the calculated emittance first drops
steeply before levelling off. The plot is repeated at different bunch charges.

Suppressing Background after Reconstruction It has already been noted that
the region around the main distribution is very often noisy due to reconstruction back-
ground, which contributes significantly to the uncertainty in the calculation of param-
eters by the 2nd moments analysis of Section It would be possible to remove this
background by arbitrarily applying a single threshold across the whole distribution.
Instead, it is preferable to use the individual ‘projection’ thresholds, as already defined
above, at each angle. This truncates the projections, setting the background to zero at
variable distances out from the centre, depending on the angle of each projection, as
shown in Fig. It is possible that in the process, minor structural details close to the
noise level, such as beam halos, could be lost; comparing the reconstructed phase-space

with and without this background suppression is therefore a useful precaution.
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Figure 3.6: Truncation is applied by setting each projection to zero when it falls below
the threshold. Applied to all projections, this effectively removes background noise in
reconstructed phase-space, in this example a QUAD-07 scan at 80 pC bunch charge.

3.2 Alternatives to Tomography: Other Beam Diagnostic
Methods

It is clearly of great benefit to have available, for comparing with tomography, an
independent method of extracting beam parameters, especially if a common set of

screen images can be shared as the raw input dataset.

3.2.1 Quadrupole-Scan Beam-Size Fitting Analysis

In this method, the strength of a suitable quadrupole is scanned using a range of current
values, capturing corresponding beam images on a downstream screen [3, p. 199]. The
RMS beam-size o is calculated for each image, and its square o2 is plotted against the

quadrupole focussing strength k. The plot is then fitted to a parabola described by
02 =AB-kl)*+C (3.7)

where [ is the effective (magnetic) length of the quadrupole.
Using the fitting parameters A, B and C, with the known transport matrix S between
the scanning quadrupole and the screen, the geometrical (non-normalised) emittance e

and Twiss parameters «, 5 may be derived from the equations:

VAC

€ =

St
B S11
a=—8(8 - 21 (33)

It should be noted that for a good parabolic fit, o2 should go through a well-defined

minimum, using at least 20 points; sufficient of these should be plotted on each side
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of the minimum. Also, the analysis assumes that the ‘thin-lens’ approximation is valid

for the scanned quadrupole; this may not be strictly true for all ALICE magnets.

|,'-r =113 m, o = 244, e, = 5558 ym

35F. '

14

Fitted rvf {me}

EMI-QUAD-06 k,L (m™')

Figure 3.7: While the current in quadrupole EMI-QUAD-06 is scanned in regular steps,
vertical RMS beam-size o, is measured from screen images. 02 is plotted against kL,
where k is the focussing strength; from the parabolic fit, 8,, a,, and 7e, are calculated.

An example of the application of this method for a vertically-focussing quadrupole
(using simulated data from methods described in Chapter [4]) is shown in Fig. which
plots Eq. with K1 on the z-axis and o2 on the y-axis.

3.3 Application of Analysis Techniques to Experimental
ALICE Data

Using a full record of the tomography datasets taken during experiments, maintained
in MS-EXCEL format, the following sequence of analysis of the reconstructed phase-
space distributions is carried out. Thus a cross-reference is maintained between the
various files and input parameters used and the results extracted by the processing

software.

1. Zooming and Filtering. Applying an arbitrary zoom-in factor (to the z and/or y
axes), the new distribution may be viewed and saved, with the display recentred
on (0,0) if necessary; as a separate process, a median n X n filter may be applied,
as previously shown in Fig. Zooming is not required if the appropriate
region of interest in phase-space has already been established by the limits set

during reconstruction.

2. Gaussian Fitting - a 2-D Gaussian best-fit to the distribution (by a least-squares
method, described in Section [3.1.3) is made and plotted.

3. Calculation of Parameters. The Twiss parameters and emittance (geometrical)

are calculated by 2nd moments analysis of the distribution, as in Section [3.1.1
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4. Display Ellipse as Overlay. The parameterised RMS phase ellipse is plotted as an

overlay onto its underlying distribution (raw, filtered or fitted).

3.3.1 Comparison of Experimental Beam Parameter Results

Results from repeat measurements of horizontal phase-space made on different ALICE
shifts, using scans of the same quadrupole QUAD-08 and screen YAG-03, under nom-
inally similar beam conditions with an energy of 12 MeV and bunch-charge of 40 pC,
are compared in Table [44].

€x B Ay
Date | (mm-mrad) | (m
16.02.11 1.51 1.31 | -0.20
27.02.11 0.71 0.40 | -0.96
09.03.11 0.67 0.38 | -0.94

Table 3.3: A series of tomography experiments were made on several ALICE shifts.
The horizontal emittance €, and Twiss parameters 3, « listed have been extracted by
analysis from the reconstructed phase-space distributions.

Method € €y

Single Slit 0.86 | n/a
Slit Scan 0.72 | n/a
Quad Scan 1.19 ] 0.31
Measurement Average 0.92 | 0.31
GPT Simulation (Elliptical)t | 0.75 | 0.15
GPT Simulation (Real Spot)f | 1.39 | 0.30

Table 3.4: ALICE emittance measurements made prior to the start of tomography
work, using other methods and simulations, are listed for comparison with Table (3.3
The first 3 experimental results are averaged, as all are considered of equal merit.

T Note: In the General Particle Tracer (GPT) simulations, the laser spot on the cathode,
which has a significant bearing on the electron source emittance, is assumed to be either
elliptical or derived from a real measurement. It should also be noted that these GPT
simulations were carried out earlier [45], and are not directly related to the modelling
within this project as described in Section (All values quoted are in mm-mrad.)

It is notable that for the latter two tomography datasets in Table all 3 parameters
are in good agreement. For the first one, it was observed in the distribution that phase-
space seemed to be split into two distinct regions or sub-beams, each with different
properties. In such a case, it is obviously inappropriate to attempt to fit a single

Gaussian function, and so the emittance is likely to be overestimated.

Further comparisons with different measures of transverse emittance, made earlier
and based on the alternative methods mentioned in Section |1.5|and on simulations, are

shown in Table There is remarkably good agreement in the horizontal emittance
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€z, especially with the latter two tomography results in Table [3.3] given the proba-
ble difference in prevailing measurement conditions. While these few results do not
have great statistical significance, they do offer some confidence that the tomography

technique can give reproducible and meaningful results.

3.4 Summary

This chapter has opened by stating the results of linear beam dynamics theory relat-
ing the transverse emittance € and the Twiss parameters 3, a,y to the various second
moments of the beam distribution in phase-space. Their relationship to the RMS
phase-space ellipse is quoted, and an example used to show how different types of
post-processing can strongly affect the derived parameters. The effect of ‘rebinning’ in
matching projections to positions, and so reducing aliasing artifacts in reconstruction,
is demonstrated. A two-dimensional Gaussian fitting procedure for raw reconstruc-
tions is described, with an illustrated example. Correction techniques in tomography
processing are explained, one based on applying a user-selected threshold assessed as
a fraction of the projection peak value, the other based on truncation of each projec-
tion to flatten the otherwise noisy background region around the central distribution.
Quadrupole-scan beam-size fitting is introduced as an alternative means of extracting
beam parameters, using a common beam image dataset to compare with tomography.
Finally, experimentally-determined beam parameters from horizontal phase-space to-
mography are tabulated and compared with earlier emittance measurements from other

methods, indicating good agreement.
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Chapter 4

Space-Charge Simulation Studies

Introduction

Simulation is now a fundamental tool in accelerator research and development, enabling
most of the structures and the effects of interest to be modelled in detail and reducing
the need for experimental beam-time, which is usually strictly limited. The predictions
from a model are useful indicators of the type and magnitude of the effects to be
expected in the results of experiments. This chapter describes the use of the advanced
particle tracking code GPT, with its built-in support for space-charge effects in the
particle bunch. After initial studies including a simple quantitative validation exercise,
a complete model of the full beam tomography process on ALICE, incorporating GPT,

is presented with an analysis of the results.

4.1 Modelling with Space-Charge using Particle Tracking
Codes

4.1.1 Particle Tracking Simulations using GPT

General Particle Tracer (GPT) is a mature software code for tracking charged particle
motion in 3-D through arbitrary electromagnetic fields; it is primarily a tool for ac-
celerator beam-line design. All the commonly-used beam-line elements are included in

the standard product, and user-defined elements may also be incorporated.

The GPT capability for switching on space-charge interactions has specific relevance
for investigating the particular conditions of the ALICE tomography experiments which
are described later in Section By simulating the experiment in GPT, it would
be possible to predict experimental findings, particularly the magnitude of expected

effects, or to suggest further experiments which might be required.
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4.1.2 Fundamental Principles of the GPT Code

For the user, GPT resembles the older tracking code PARMELA, but improves on it
in several ways, especially in the choice of step-size. Initial particle distributions in 6
dimensions are represented by ‘macro-particles’ (typically a few thousand) which are
grouped so as to have the same mass/charge ratio, and therefore equations of motion,
as elementary particles such as electrons. Coordinate sets may be user-specified from

a file outside GPT, or may be adapted by built-in GPT routines in any combination.

The relativistic equations of motion for position and normalised momentum

dyBi  q(E; +v; X By)

dt me
dx; vBic

=v; = fic=
dt VB +1

where the position x and the normalized momentum 3 = p/mc are used as the co-

(4.1)

ordinates of a particle, are solved at time-steps which adapt themselves automatically
to the prevailing field gradients, to maintain accuracy. The integrator in GPT is a 5"
order Runge-Kutta solver. The primary output mode gives all particle coordinates at a
specified time; however it is often more useful to obtain output at an interpolated po-
sition, where particles cross a 3-D plane which users may define as a ‘non-destructive

screen’.

4.1.3 Application of Space-Charge Theory in Particle Tracking Codes

The physical theory outlined in Section[I.9]is implemented in the code GPT in a number

of different ways, which may be selected as appropriate to match the problem in hand.

3-D Point-to-Point Full particle-particle interactions are modelled by relativistic
calculation of electromagnetic fields. We calculate the fields E due to a particle j of
charge @, at particle i’s position r}i in j’s rest frame, where there is only an electric
field: ,

B — Qrji

J—

— (4.2)
dmeolrl;[3

where (,~ are the relativistic factors and ¢y is the permittivity of free space. By

summing over all particles and converting back to the laboratory frame, we find the
total fields:

N
v
E; = Z%’ |:E;Hz - Til(ﬂjﬂé'm)ﬁj

J#
N /

B; = Z %ﬁjcw (4.3)
J#
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The main disadvantage of this model is the long processing time, of order N2 for N

particles, which in practice restricts problems to a few thousand particles.

2-D Point-to-Circle Where there is cylindrical symmetry in the beam, particles
may be modelled as uniform charged circles interacting with other ‘point’ particles.
The fields acting on particle ¢ due to the circle of charge for particle j are calculated
from the electrostatic potential. The gradient is then taken, to calculate the electric
field using £/ = —VV’, and converted to cylindrical coordinates. Relativity can be
neglected in the transverse if we assume that the circle only moves longitudinally. We

then transform back to the laboratory frame, adding all particle contributions:

N
E, = Z ’Ynglv,j

i
N

B, = Z —iBz5E, ;/c
J#i

(4.4)

2-D Point-to-Line For continuous beams or very long bunches, particles may be

treated as complete moving lines of charge.

Both of the 2-D methods improve performance by removing one dimension from the

problem, which therefore requires far fewer particles for good statistics.

3-D Mesh It is stated in [46] that by dividing the beam into discrete volumes
(Zny Yn, 2n), processor time is scaled down to order N, allowing a standard PC to
track up to N = 10% particles. Particle fields are interpolated and simulation noise
is smoothed out in the meshes. The method fails when bunch particle velocities have

significant spread.

Selection of Space-Charge Model to be used

In applying space-charge in GPT to ALICE tomography modelling, the full 3-D routine
has been used throughout, for accuracy. It was found that with 10,000 particles, for
the most complex beam-line model having six quadrupoles, run-times increased from
10 minutes to 3% hours when space-charge was switched ‘ON’. This was accepted as the

practical limit, and has been confirmed by the convergence checks illustrated in Figure

43

4.1.4 Initial Demonstration of Space-Charge in GPT

The study of the effects of space-charge interactions using the GPT software code was

begun with a very simple drift-space model, particles being initiated in the z direction
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(i.e. along the beam-line) with no transverse momentum.

Input Parameters to GPT Drift-Space model:

e Energy of particles = 12 MeV

Number of Particles = 1,000

Bunches: Radius = 0.6 mm (Gaussian), Length = 1 mm

e Divergence = 0 (parallel to ‘z’ direction)

Drift Length = 1.5m

In the absence of interactions, all particles follow independent parallel tracks, and the
transverse (z-y) beam profile does not change with z position. When space-charge is
switched on, however, divergence is observed in the beam, increasing with the size of

the charge.

oo 000 omz omz om0 ooz

Figure 4.1: A circular section 200 pC beam of Gaussian profile, initially parallel with
the beam-line axis, propagates down a 1.5m drift space. Spreading of the transverse
(z-y) profiles from start (L) to end (R) shows the divergence due to space-charge.

Transverse profiles in (x,y) show a perceptible increase in beam spread from the
start to the end of the drift space, as seen in Fig. The RMS beam-width in both
x and y increases from (0.58 £ 0.02) mm to (0.65 £ 0.02) mm.

4.1.5 Benchmarking the Magnitude of Space-Charge Effects in GPT

To increase confidence in the GPT output results obtained, the simple drift-space model
used for the initial demonstration test was benchmarked for a range of bunch parame-
ters, enabling a direct quantitative comparison to be made with results from ‘analytical’
codes in terms of RMS beam-sizes (o4, ay).

Bunch Parameters (including all combinations of values where applicable):

e Energy of particles = 12MeV (kinetic)

66



e Number of Particles = 10,000

e Bunch properties:
Distribution = Gaussian / Uniform (cylindrical)
Radius = 0.3 / 0.6 / 1.2mm
Length = 0.5 / 1.0 / 2.0 mm
Charge =0/ 20 / 80pC

e Divergence = 0 (initially parallel to z-axis)

e Drift Length = 1.5m

Analytical Space-Charge Codes

For simple beams, basic space-charge theory may be used to predict beam-size evolu-
tion by solving the equations of particle motion, as described in Section [1.9] without
recourse to particle tracking codes. In principle, such codes can provide an independent
benchmark for GPT results, in the case of uniform or Gaussian beams. Codes in both
MATLAB (by K Hock) and Mathematica (by A Wolski) have been used in testing.

For a simple drift-space model where there is no focussing, we set k = 0 in Eq.

The differential equations then become

K
4z

j’?

= 0 [Gaussian beam] and 7 — <= 0 [Uniform beam] (4.5)

where K is the ‘perveance’ as defined in Eq. These equations are solved for
a range of values of distance z down the beam-line between 0 and 1.5m, the length
of the tomography section. Results as summarised in Fig. confirm the prediction
that as particles are closer to each other on average, space-charge forces are greater.
The proportional effect on the RMS radius is increased for shorter, smaller and higher-
charge bunches. The behaviour of beams with both uniform and Gaussian distributions

has been investigated in this way, using scripts written in MATLAB.
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Figure 4.2: Using analytical codes with space-charge, bunch radius is calculated at
100 positions down a simple drift beam-line, for Gaussian (top) and uniform (bottom)
transverse bunch distributions. Results for all 27 combinations of 3 different initial
bunch radii, lengths and charges are plotted, with colours/styles listed in the key cor-
responding between the plots.

Within each of the two graphs, the 3 groups of plots represent different initial bunch
radii. In each group are 9 plots, comprising the 3 bunch lengths x 3 bunch charges
listed above. Each of the 27 plots has a unique colour/marker, and these correspond
between the ‘Gaussian’ and the ‘Uniform’ graphs for the same parameter combinations
as listed in the key.

The plots emphasise the much stronger effect of space-charge in uniform beams,
where the mean inter-particle distance is smaller compared with the Gaussian case.
For similar reasons, space-charge is also more effective in shorter and in smaller-radius
bunches, for the same total bunch charge. Also evident is the onset of the major
influence of bunch-charge above 20 pC, and the typical length of drift - about 40 cm -

before a significant increase in bunch radius is seen.
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GPT Space-Charge Model

The GPT space-charge routine solves Poisson’s equation in 3-D for all particles of
the bunch, taking proper account of relativity, as described in Section In the
GPT case, data is collected at 100 points uniformly distributed between the s = 0
and s = 1.5m positions along the drift space. As for the analytical codes, all 27
combinations of the selected bunch parameters were run in the GPT model and the
results for RMS bunch radius collated for display in Fig.
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Figure 4.3: As for the analytical codes, the drift-space model is run in GPT, with the
same combinations of bunch radius, length and charge, again for Gaussian (top) and
uniform (bottom) distributions. RMS bunch radii at 100 positions down the line are
extracted using built-in GPT functions.

Analytical and GPT Space-Charge Models compared

Comparing the analytical code results in Fig. with the GPT model in Fig. very
good agreement is seen in the shape of all corresponding plots having the same values
for the parameters bunch radius, length and charge. This is observed both in the

Gaussian (top) and in the uniform (bottom) cases. Because the analytical results are
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based on well-established theory, we have increased confidence that GPT simulations
with space-charge would provide accurate results in more complex situations, such as

a detailed model of the ALICE tomography section.

4.1.6 Description of GPT Processing and Interface Features

The GPT engine or ‘kernel’ is accessed via a Windows interface called ‘GPTWin’,
which is used firstly to build input files defining the characteristics of the problem in
a structured language, and secondly to compose simple command scripts to run the
problem. GPTWin also controls the post-processing analysis programs, ‘GDFA’ and

its accessories.

The following file types, indicated as ‘Inputs’ in Fig. [£.4] are necessary to define and
run a GPT model:-
‘inputfile’.in - definition of the particle bunch and beam-line configuration;
‘scanparametersfile’.mr - multi-run parameter values (i.e. scanned variables such
as quadrupole currents), which refer to identifiers in the ‘.in’ file, but are not needed if
parameters take only single values;
‘batchfile’.bat - batch file of commands for runtime control, which calls the GPT

engine and if required the analysis programs, also specifying any intermediate filenames.

Inputs

GPTWin BATRIe | L=MRfile
- INTile
GPT Kernel >
| GoFA |
/A epr2a |
GDF Database |/ r 4 O“““"“
(binary format) | | GDF2DXF GDF.t).(t file
MATLAB
Screen .BMP gdf2png()
Image file ‘

| PNG Ima“ge fileset |

Figure 4.4: The Windows interface for GPT provides access to the kernel, and to
analysis functions such as GDFA. A script editor for input .BAT, .IN & .MR files is
built in. GPTWin also visualises output from binary GDF output files, and external
programs can use data exported in text form e.g. for image file creation.

The output of a run is generated in a single GPT Data Format (GDF) database
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file which has a binary format, and may be interpreted through the GPTWin interface
for viewing results graphically. Individual screens corresponding to selected parameter
values may be viewed in scatter-plot or density-map displays (which may be saved as

image files such as *.bmp’ bitmaps).

To process the screen (z,y) data for preparing a tomography simulation, e.g. a
complete quadrupole tomography scan set, the GDF native file is first converted to
ASCII text format by a built-in GDF utility ‘GDF2A’. Now outside GPTWin, the text
file is readable by a custom-made MATLAB function ‘gdf2png’, which automatically
generates a full set of screen image files (in PNG format). These images are available
for detailed viewing and comparison, if required, and especially for processing and

reconstruction by existing MATLAB tomography codes (see Fig. [4.4)).

4.1.7 Detailed Space-Charge Modelling in GPT

The ALICE tomography section, with its three screens and four quadrupoles, was mod-
elled in detail using GPT, with the addition of quadrupole QUAD-07 which is at the
end of the preceding ‘matching section’. QUAD-07 forms part of the configuration
proposed for experiments on space-charge, to be used for horizontal phase-space to-
mography scans in conjunction with screen YAG-02. As a further development, the
defocussing quadrupole QUAD-06 was added to model tomography-scan experiments

for vertical phase-space, which would also use YAG-02. The arrangement is shown in

Fig. [4.5]

i Screen Screen
Qo7 U "% q.08 Q-10 YAG-04
Beam _ o
Direction “—~
Q-06 \ Q-09 Q-11 |

Y
Tomography Section

Figure 4.5: A schematic of the ALICE tomography section shows quadrupole magnets
and 3 screens, identified by shorter versions of their ALICE project names. Conven-
tional symbols distinguish focussing quadrupoles (e.g. Q-07) from defocussing (e.g.

Q-09).

Space-Charge Effect: Beam-Size Difference Analysis

The horizontal RMS beam-size o, (and o, vertically) was selected as a suitable metric
for observing space-charge effects, as it was anticipated that beam-size would be suit-
able as a parameter for the sensitivity of tomography reconstructions to space-charge.

‘Screens’; which in GPT are defined as virtual planes for tallying particles when they
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cross, and can optionally correspond to physical devices such as YAGs, are specified ap-
propriately along the beam-line. It is at screens that particle positions (and momenta)
are computed by GPT; from these, the beam-size may be readily derived either within
GPT, or by calculation.

A bunch-length of 4 ps in time - equivalent to 1.2 mm at light-speed - was taken as
representative, based on typical measurements made after the LINAC. Preliminary data
taken with a 9mm bunch - a typical value at the ALICE gun - predictably gave effects
two to ten times smaller; however, it is quite realistic to expect significant compression
of bunches both in the buncher cavity and in the LINAC itself, which follow the gun.

Input parameters were specified in a separate ‘.mr’ file (see Fig. ; this method
supports nested loops for scanning multiple parameters, such as ‘quad current’ and
‘bunch charge’. Quadrupole currents used corresponded to the same range of values as
in the original tomography experiments to produce appropriate projection angles.

After running the GPT simulation itself, the analysis program GDFA was used to
extract o, and o, from the raw (z,y). data in the GDF output file. This data could
be plotted within GPT, and also exported in text format. As effects on beam-size
were small in absolute terms, the o, and o, data was processed outside GPT in ‘text’
form, to determine the fractional differences Ao, /o, between the 0pC case with no
space-charge, and 80 pC which was the maximum charge obtainable experimentally.

Combining realistic initial phase-space parameters, as measured by tomography
experiments, with the established GPT model, a series of runs was made at both 0 pC
and 80 pC bunch charge, with quadrupole currents for QUAD-07 and QUAD-10 scanned

over the range of tomography settings as before.
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Figure 4.6: As the current in quadrupole QUAD-07 and then in QUAD-10 is scanned,
the fractional horizontal beam-size difference, related to space-charge effects, is plotted
at three screen positions, recorded in m., in the line.

Beam sizes were extracted to find the percentage differences between 0 and 80 pC,
Ao, /o, which are plotted against current for each screen position in Fig. At the
first screen position after the scanned quadrupole (i.e. at YAG-02 after QUAD-07, or at
YAG-04 after QUAD-10), Ao, /o, was found to be a strong function of magnet current,
and a significant but less marked trend was seen at the screen further downstream. A
very small but positive effect was even observed at a position almost immediately after
the bunch was started, i.e. just before QUAD-07 or QUAD-10.

The peaked structure of the beam-size difference plots, seen at YAG-02 for a QUAD-
07 scan, and at YAG-04 for a QUAD-10 scan, has been correlated with the absolute
beam-size o,, which in Fig. is plotted in red for the ‘zero charge’ (0pC) case
and in broken green for the ‘high charge’ (80pC) case. As the absolute difference
Ao, between 0pC and 80pC is small, the red and green plots almost coincide. In
the same figure, there is a rapid change of sign in the fractional beam-size difference
Ao, /oy, plotted in blue, which occurs exactly at the point where the strength of the
quadrupole focussing causes a minimum in o,. It is here that the largest effect from
space-charge would be expected in the plane of focus, which in this case is horizontal,
due to the closer proximity of the particles in the bunch. It has been postulated [I]

that the rapid beamwidth increase over a small range of quadrupole strength occurs
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when the focussing is such that the horizontal beam waist coincides with a vertical
waist, suddenly forcing the electrons much closer together. Confirmation of the exact

mechanism would however require further work.
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QUAD-07 Scan, observed at YAG-02

o, Beam-Size Space-Charge Difference vs. Beam-Size, at YAG-02
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Figure 4.7: Details of the simulated effect of quadrupole current on horizontal beam-
size difference due to space-charge, for QUAD-07 observed at the YAG-02 position and
for QUAD-10 at YAG-04. Absolute beam-size at 0 pC and at 80 pC is plotted on the
primary axes (red/green), with fractional beam-size difference on the secondary (blue).
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Convergence Check of Beam-Size against Number of Particles Simulated

When a macroscopic parameter is calculated from the results of a simulation code such
as GPT, there is a possibility of statistical effects due to the finite sample of particles
modelled. For the ‘beam-size-difference with bunch-charge’ metric, its dependence on
Number of Particles (nps) in the bunch was estimated by making a series of GPT runs
with ‘nps’ as an additional multi-valued parameter.
Selected setting for the check (shown at left of Fig. taken from Fig. was:-
QUAD-07 current = 1.149 A
o, calculated at screen YAG-02, at Position = 0.342m

AG, for 0-80pC Bunch-Charge:

Quadrupole QUAD-07 Dependence on No. of Particles
100.00000% : . .

Screen YAG-02 l £000 10000 15000

10.00000%

1.00000%

g

Position =0.342 0.10000%
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3.5?6( 0.00100% S Ka T L
] BAE+00
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Figure 4.8: Choosing appropriate quadrupole current/screen position settings, the de-
pendence of fractional beam-size difference on number of particles simulated nps is
plotted, to confirm convergence and establish a working minimum for nps (arrowed).

These representative results indicate that the minimum number of macro-particles
for convergence is about 1000. To provide a suitable margin, an appropriate choice is

therefore 2000, unless time constraints indicate running a reduced number.

4.2 GPT Modelling for Tomography Studies

4.2.1 Investigating Observed Differences in Reconstructed Phase-Space

A detailed GPT model of the ALICE tomography section as shown in Fig. (4.5 was
used to predict the results of experiments to reconstruct horizontal phase-space from

quadrupole tomography scan data, looking for any differences which might be seen
between results from QUAD-07 — YAG-02 scans and from QUAD-10 — YAGO04 scans.
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Actual experimental results are tabulated later, in Fig. [5.5]

The process was planned as follows:-

1. Start with a particle set based on measured phase-space at QUAD-07 entrance,

using existing experimental data as available.
2. Use a GPT model to transport the beam to YAG-04.

3. Run GPT scans of QUAD-10 (horizontal) and QUAD-11 (vertical), and collect
the simulated YAG-04 screen data.

4. Based on this data, reconstruct phase-space at QUAD-07 entrance.
5. Repeat GPT runs with (a) space-charge OFF, and (b) space-charge ON.
6. Compare simulated phase-space with experimental results.

7. Vary beam-line parameters, e.g. magnet strengths, to investigate the sensitivity

of the measurements to errors in these parameters.

8. Repeat the procedure for vertical phase-space, using measurements from QUAD-

06 and QUAD-11 scans (when available from later experiments).

This approach would allow a detailed investigation of how perturbations in the beam-
line elements between QUAD-07 and QUAD-10 might account for any discrepancy ob-
served in phase-space distributions, calculated with QUAD-07 entrance as the common
reference point, using QUAD-07 data as compared with QUAD-10 data; there was

some evidence from existing experimental results.

The data flows through the model are illustrated in Fig. [4.9
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Figure 4.9: Data flows for the integration of the GPT tomography section model into an
overall simulation of the tomographic measurement process are illustrated, indicating
where comparisons with experimental results from ALICE may be made, particularly
between QUAD-06/07 and QUAD-10/11 scans.

4.2.2 Generating Input Particle Specifications for GPT

To use GPT for investigating tomography results from measurements taken at different
points along the ALICE to EMMA Injection Line, it was decided to feed back existing
experimental data by converting it into realistic input for the GPT model of the line.
In this way, the outputs generated by GPT, in particular the simulated screen profiles,
could be used in their turn as inputs for full tomography measurement simulations,
enabling studies to be made of the sensitivity of the method to various beam-line

parameters, as shown in Fig. [£.9]

Input Data Earlier tomography experiments had provided measurements of both
horizontal and vertical phase-space distributions (z,z') and (y,y’) under similar beam
conditions. Beam profiles had also been taken from screen YAG-02, which is reason-
ably close to the chosen reconstruction location for phase-space, and could therefore
be used to approximate the (x,y) distribution matching the (z,z’) and (y,3’). Sev-
eral processing schemes were considered, based on using some or all of the available
experimental data; however, it was found difficult to reconcile the measured (z,y) and

the (z,2), (y,y’) distributions simultaneously into a single consistent (x,y, z, 2,1/, 2’)
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assembly (where the longitudinal coordinates z and 2z’ are not correlated with z or y).

Processing Stages A MATLAB code (based on original work by K Hock) was devel-

oped to read in phase-space distributions and beam profiles, in their original formats,

and produce output of particle specifications, as a text file. This text data could then

be suitably formatted for a GPT utility program to convert into internal representation,

making it available for import by a GPT simulation script. The principal steps in the

code are as follows:-

10.

11.

. Read in and prepare files for the (z-y) beam image, and the x and y phase-space

distributions

. User selects a window, to include the beam image region only

. Apply filter and threshold, to smooth and suppress background

. Find common z and y ranges in (z,y) and (z,2’), (y,y’) distributions

. Calculate Cumulative Distribution Function (CDF) for z in (x,y) distribution

. Derive the CDF for y in (z,y), as a function of x

Similarly, determine the CDF(x) from (z,z'), and CDF(2’) for =, and correspond-
ingly CDF(y) and CDF(y/)

. Choose a random value from the z distribution, then choose a random z’ corre-

sponding to the chosen x

. Repeat the above 2 steps for random y and 7/

Display a scatter plot of (x,2) and (y,y’) for random particles, as a check (see
Fig. [I.10)

Adjust units if needed, and output [z,y, 2,2/, v/, 2] for each particle, as a text file
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Figure 4.10: (x,2’) and (y,y’) phase-space distributions from separate experiment are
combined to generate particle specifications suitable for input to GPT. As a check, the
resulting particle set is visualised as two scatter plots.

A GPT batch file then converts the text representation of the particle set (Table
into internal (GDF) format. Here, columns z,y, z are coordinates for individual parti-
cles uniquely identified by ‘ID’, and GBx, GBy, GBz are the corresponding momenta
conventionally known as z/,v/,2’. In this form, particles can be read in by the GPT
script which describes the beam-line, and the resulting GPT output plotted at a po-
sition near the start of the line. This is to check that the phase-space distributions are

as expected, given the known input of specified particles.

# GPT Particle File: E:\...\GPT\GPT2mat\ImageFileDir\0403 EMI-2 12ns.PNG
ID X y z GBx GBy GBz

1 -1.242e-03 -5.015e-05 0.000e4+-00 -2.601e-04 1.068e-03  0.000e4-00

2 -5.354e-04 -1.034e-04 0.000e+00  9.444e-04 -1.455e-04 0.000e+-00

99999 -5.445e-05  1.726e-04 0.000e+00  1.561e-03 -1.341e-03  0.000e-+00
100000 -1.014e-03 -9.200e-04 0.000e+00 -7.407e-05  3.410e-04  0.000e+-00

Table 4.1: In GPT, a particle set for input may be specified in a standard text format,
giving values for (z,y,2,2',y,2’). In this example, the header and the start and end
of a 100,000 particle set are shown.

Limitations in the Method The conversion of phase-space measurements into par-
ticle descriptions for GPT is subject to a number of uncertainties, which would reduce
confidence in the results of GPT simulations based on them.

i) Quality of Measurements. Reconstruction resolution should be as high as

possible, given the number of projections and the image pixels available.

ii) Positional Discrepancies in Data. (x,y) profiles are of necessity measured
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at a screen position, whereas (x, 2’) and (y, y’) phase-spaces are typically reconstructed
at a quadrupole entrance, such as QUAD-07. In this situation, profiles and phase-
spaces cannot be reconciled directly, and a specification based purely on phase-space
distributions might be preferable.

The availability of further ALICE experimental tomography datasets would enable

some of these effects to be estimated, and provide options for their reduction.

iii) Correlating (z,y) and (z,2'), (y,y’) Distributions. It is found from the
GPT output, derived from the generated particles, that the resulting (z,y) profile does

not correspond to the original experimental (x,y) profile. This effect is shown in Fig.

411l
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Figure 4.11: Using the output of GPT, a direct comparison is made between the (z,y)
profile, measured experimentally, and (x,y) for the particle set as derived from the
(x,2"), (y,') distributions. They are distinctly different.

Possible Solution The issue of the unknown correlation between (z,z’) and (y,y’)
could be addressed if the results of a full 4-dimensional tomography measurement were
available, yielding the (z,2’,y,y’) distribution directly. The theory of such measure-
ments has already been investigated, and future experiments based on it are planned
[47.

GPT Particle Input: the Approach Selected

In view of the problems encountered in specifying input particle sets, it was decided
that as a simplification, Gaussian distributions would be assumed for both (z,z") and
(y,y') phase-space, which are supported as standard by GPT. The transverse distri-
butions would thus be fully characterised by the Twiss parameters (§;, ag, 8y, o, and
the emittances €, ¢,. Realistic estimates of the parameters were already available from

analysis of experimental tomography data using the methods described in Section
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4.2.3 Validation of Method of Input of Particles to GPT

A number of tests were carried out to verify that the specification of particles input to
the GPT model were as expected. This was to increase confidence in the tomography
model as a whole, illustrated in Fig. of which GPT was a key component. These

test methods included:-

1. Comparison of GPT inputs with measured outputs from GPT utility programs
(known as GDFA modules) which calculate emittance ¢ and Courant-Snyder

(Twiss) parameters 3, a directly

2. Empirical analysis of GPT particle data (exported in text format), extracting

emittance and Twiss parameters by applying the equations of Section

3. Analysis of tomographic reconstructions of phase-space, from screen image sets
generated by GPT quadrupole tomography scanning, using the Section
method

4. Independent beam-size quadrupole-scan analysis (fitting a parabolic function)
using the method described in Section

Table shows the results of testing GPT Output against Input, using Method 1;
values in the ‘GPT Input’ column should match corresponding values in the first ‘GPT
Output’ column (at the Start):

GPT Input: GPT Output (from GDFA):
Position Start Start QUAD-07 YAG-02
(m) at 0.006 at 0.006 at 0.295 at 0.631
Parameter
o 0.1139 0.0678 -2.46 -2.66
By (m) 0.1295 0.128 0.851 2.32
vy -2.2797 -2.31 -1.62 -6.55
By (m) 1.109 1.14 1.99 5.28
€z (m-rad) | 4.33x1077 | 451 x 1077  4.51x 1077 4.51 x 1077
€y (m-rad) | 9.03x 1078 | 9.40x107®  9.41x 1078 9.42 x 1078

Table 4.2: Set values for parameters [, ag, B8y, oy, and €., ¢€,, are input to GPT at
the Start position. The function GDFA is used to calculate the parameters at other
positions; specifically, €;, €, are expected to be conserved.

Table contains the results of testing with Method 4. It should be noted that in
this case, only the vertical (y) data is meaningful, as the quadrupole scanned (QUAD-
06) is vertically-focussing; also, to reduce uncertainty the input emittances have been
increased by a significant factor from the realistic values in Table[d.2l Good agreement is
seen in all 3 parameters, within the limits of precision of the fitting technique used in the
quadrupole-scan method, and its assumption of a ‘thin-lens’ model for the quadrupole,

probably not fully justified in this case.
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GPT Input: | Quadrupole-Scan Beam-Size Analysis
Position Start
(m) at 0.006
Parameter
Qg 0.1139
Bz (m) 0.1295
Qy -2.2797 -2.44
By (m) 1.109 1.13
€z (m-rad) | 1.084 x 1075
€y (m-rad) | 2.256 x 107°
ve, (m-rad) | 55.19 x 1076 55.56 x 1076

Table 4.3: For a given set of input parameter values, GPT is used to scan a vertically-
focussing quadrupole (QUAD-06). Beam profiles from extracted (z,y) GPT particle
data are used in the ‘quadrupole-scan beam-size analysis’ method to derive 3, o, and
€y, to provide independent validation by comparison with the known inputs.

Because GPT keeps track of all particles as they move along the beam-line, it provides

for output, at any selected position, in terms of particle coordinates in phase-space. In

this way, a visual check may be made to ensure that the developing beam is as expected,

according to the beam input parameters. For the ALICE tomography line, a reference

position at the entrance to the quadrupole QUAD-07 was chosen, for all four types
of quadrupole tomography scan modelled. Plots are shown in Fig. where ‘H’

in the Scan column refers to Horizontal phase-space (z,z’) and ‘V’ to Vertical (y,y’).

Quadrupole magnets are identified in Fig.
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Figure 4.12: GPT supports the visualisation of phase-space at any selected ‘screen’
position, here chosen as the QUAD-07 entrance. Checks are made that distributions
related to different quadrupole scans are similar, both in the horizontal and the vertical.
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It will be seen from Fig. [£.12] that as expected, the shape of the horizontal phase-
space is the same in case of both QUAD-07 and QUAD-10 scans, as is the shape of
the vertical for QUAD-06 and QUAD-11 scans. The size of the distribution appears
reduced for the two quadrupoles further down the line (QUAD-10 and QUAD-11).

4.3 Summary

In this chapter, the particle tracking code GPT has been introduced and its fundamental
principles briefly described, with the various built-in models for incorporating space-
charge effects. After a first simple demonstration of space-charge causing an initially
parallel beam to diverge along a drift-space, a more rigorous benchmarking exercise
based on bunch radius is reported. This directly compares the results of an analytical
calculation with the equivalent GPT results, for a uniform and for a Gaussian bunch.
The required inputs and outputs for running GPT models, and the user interface,
are outlined. A systematic investigation of space-charge, using the RMS beam-size as
a metric, applied to a full ALICE tomography section model in GPT, is presented.
Plots of high/low charge beam-size difference against quadrupole current and screen
position are shown, highlighting regions of rapid change. A check is also made to see
the expected convergence of beam-size difference with number of particles simulated,

setting a lower limit for accurate modelling.

GPT is then incorporated into a comprehensive model of the phase-space tomography
process, starting with the generation of initial particle specifications based on previous
experimental results. Detailed steps in the creation of GPT input particle files are
given, and some limitations of the process discussed. The methods used to verify
that inputs are actually as specified, by matching to outputs, are summarised with
tabulated examples. GPT plots of phase-space made from its internal data are included.
Discussion of simulated reconstructed output is postponed until Chapter [5] where it is

compared with the corresponding experimental data.
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Chapter 5

Space-Charge Experiments and
Data Analysis

Introduction

To carry out experimental investigations of the effects of space-charge in ALICE, which
had already been predicted in simulation, preparations were made for a systematic
study. The phase-space tomography experiments were to use some or all of the facilities
of the diagnostic section of the ALICE to EMMA injection line. To support these
experiments and to improve the quality of results, a number of modifications were also
proposed to the camera systems used for screen image capture. This chapter describes
the preparation and experiments, and discusses the findings, including investigatory
work into an important anomaly discovered between results from sets of scans expected

to be consistent.

5.1 Detailed Space-Charge Experiments (Phase 3)

In Phase 3, screen imaging cameras were prepared by fitting optical filtration for inten-
sity control. Tomography experiments were planned and performed to measure hori-
zontal phase-space in detail for a study of space-charge effects, using analysis results

for calculating emittance and Twiss parameters.

5.1.1 Camera Filter Installation

Saturation Problem Increased bunch charge gives rise to higher peak image inten-
sity on the cameras viewing YAG screens. Limited storage capacity of individual pixels
(with 8 bits = a maximum of 256) can lead to ‘saturation’ if the maximum is exceeded.
The resulting distortion of image projections due to this peak truncation, shown in Fig.
will invalidate tomographic reconstructions derived from these images; saturation
is therefore to be avoided. Unfortunately this is not easily achieved on the very simple
ALICE cameras due to their fixed aperture and exposure settings, and optical filtration

is therefore required if the beam intensity itself cannot be reduced.

85



Grey Value
o oo
z o B
2 2 B

w
2

b h
0 o " e m

0 20 40 60 80 100 120 140
Distance (pixels)

Mormal Irmage & Profile

) !
S_aturated _ s |
pixels (white) = {
ERE !
] |
Z 10 ! ,
o II
3 50 \
{J ™,
o
0 20 40 60 80 100 120 140
Saturated Image & Profile Distance:{pixelz)

Figure 5.1: In the upper beam image, the plot of the profile through the intensity
maximum has a well-shaped peak. The lower image, however, shows a distinctive
white central region which appears in the profile as a flattened (truncated) peak. This
is a characteristic sign of pixel saturation.

Beam Image Intensity Installation of fixed filters with 1% transmission, attached
directly to the camera lens mountings, was tried but this reduced the signal/noise ratio
in images excessively, as shown in Fig. The intensity could be recovered only by
operating with increased bunch train length (multi-bunch mode), whereas single-bunch
was the preferred mode. One reason is that in a train the first bunches are typically of
lower intensity than later ones; this effect causes a problem in estimating the ‘effective’

bunch charge.

filtered

Figure 5.2: For the upper left image the camera has no optical filtration. In the lower
right there is a filter over the lens, through which the transmission of visible light at
546 nm is only 1%.

5.1.2 Measurement Design and Setup

Comparative Scan (Bunch-Charge Dependence) Experiments: Theory

A ‘comparative’ method of using quadrupole tomography scans was devised, to demon-

strate that space-charge could have observable effects within the Tomography Section
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itself. At the same time, space-charge effects in the earlier sections of ALICE, which
were to be expected in any case, would be compensated for.

The principle is as follows:

e Scan at 2 different quadrupole/screen combinations within the section, designated

‘A’ and ‘B’, having a significant separation down the beam-line.

e Repeat the A and B measurements at a range of bunch charges (from Lowest to
Highest attainable).

e Reconstruct phase-space from A and B data at the same reference location, and

compare the A and B results (see Fig. |5.3
The expected outcome is:

e A and B should produce similar phase-space distributions at low charge.

e Increasing differences between A and B at high charge should be observed, due

to effects such as space-charge in the region between the 2 measurement screens.

Configuration of Beam-Line The reference position for reconstruction of phase-
space, which must be the same for both scans, is chosen in conjunction with the two
quadrupole-screen combinations. Of course, the scanned quadrupoles must have the

same polarity, e.g. both ‘focussing’ for horizontal phase-space measurements.

Case A Screen
YAG-02 ) .
Qo7 Reconstruction position - same for both Cases
Beam L.
Directi Low charge - similar result expected
High charge - space charge differences ?
Reference{
Position |
I
Case B !
Ref#rence Serasi
Position YAG-04
Q-10
Beam
Directi Final

( J
Y ~ Tomography Section

Figure 5.3: In the comparative scan experiment, the quadrupole chosen to be scanned
for Case A is at the start of the tomography section (QUAD-07). For Case B, a
quadrupole of similar orientation, but later in the line, is selected (QUAD-10). In both
cases, the reconstruction reference position is the same.

Selection of Optimum Quadrupoles for Scans The best two combinations found
for quadrupole, screen, and reference position, at the standard beam energy of 12 MeV
(kinetic), are listed in Table

87



Case | Quadrupole ID | Screen ID | Reference Position
A QUAD-07 YAG-02 entrance of QUAD-07
B QUAD-10 YAG-04 entrance of QUAD-07

Table 5.1: The best combination of scanning quadrupole and imaging screen has been
selected for the two experimental cases: ‘A’ = short beam path; ‘B’ = long beam path.
The reference position for reconstructing phase-space is the same for both.

Input Data Preparation As part of the selection process for suitable quadrupoles/screens,
calculations were also made to determine the quadrupole currents required to provide

sets of regularly-spaced tomographic projection angles, using the methods of Section

For the best reconstruction quality, these projections attempt to cover, as nearly

as possible, a full 180° range. Angle and current plots for the quadrupole selections in
Table appear in Fig. and actual ranges achieved are shown in Table

Case A scan QUAD-OT, image YAG-02 Cage B acan QUAD-10, image YA3-04, all quads on
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Figure 5.4: For each of the quadrupole/screen combinations (Cases A and B), tomo-
graphic projection angle 6 is plotted against scanned quadrupole current. General curve
characteristics are similar, although the actual angular ranges achieved (Af < 180°)
are somewhat different.

Scan QUAD-07/YAG-02 | QUAD-10/YAG-04
Angles | 18.55% — 178.91° 170.83° — 348.04°
Range | 160.36° 177.21°

Table 5.2: Minimum and maximum projection angles, and angular ranges, have been
calculated for the two quadrupole tomography scans (Cases ‘A’ and ‘B’) corresponding
to the plots in Figure 5.4

Results of Reconstruction

For all quadrupole tomography scan dataset reconstructions, the FBP algorithm has
been used exclusively. Results are tabulated, by scanned quadrupole and by bunch-
charge, in Fig. In the columns for the ‘fitted’ distributions, which are derived from
the ‘raw’ phase-space using the method of Section their RMS phase ellipses as
described by Eq. are overlaid in white.
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Figure 5.5: Reconstructed phase-space distributions from experiments are tabulated
by quadrupole scanned (columns) and by bunch-charge (rows). Raw data on the L has
the Gaussian-fitted result on its immediate R, overlaid with a white RMS ellipse.

5.1.3 Analysis of Space-Charge - Part 1: First Evidence from Tomog-
raphy Experiments

The initial series of experiments within Phase 3, designed to detect space-charge effects
through tomography have been described in Section the phase-space reconstruc-
tions are tabulated in Fig. in which the bunch-charge increases from top to bottom.

For all reconstructions, the emittance € and Twiss parameters 8 and « were extracted
from the distributions by fitting 2-D Gaussian functions to the data, using the method
of Section These plotted fits are shown in separate columns of Fig. headed
‘Fitted’.
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5.1.4 Results of Analysis of Bunch-Charge Study Experiment
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Figure 5.6: Horizontal emittance, derived from fitted distributions, is plotted against
bunch-charge to compare results of QUAD-07 tomography scans with QUAD-10 scans.
Straight-line fits have been added for trend indication only; R? indicates goodness of
fit, with R? = 1 being perfect.

A systematic rise in emittance, measured at QUAD-07, is observed in both the QUAD-
07/EMI-02 and the QUAD-10/EMI-04 screen data, as bunch-charge at the ALICE
injector is increased. The trend in the data points of Fig. suggests that straight-
line fits are appropriate, although this has no specific theoretical justification.

For both of the quadrupole measurement datasets (QUAD-07 and QUAD-10) the
horizontal emittance as determined by tomography demonstrates a rising trend with
increasing bunch charge, as illustrated when they are plotted together in Fig.

However, the difference between the two cases has no statistical significance, the plots
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appearing to converge above 70 pC charge. For lower charge, image intensity is reduced

and noise has a greater contribution to measurement uncertainty.
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Figure 5.7: Horizontal emittance €, from analysis of tomography using QUAD-07 is
compared directly with €, from QUAD-10 tomography scans, plotted on the same
axes against bunch charge. The trends are clearly similar and there is an apparent
convergence at higher charge.
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Figure 5.8: The Twiss parameters § (L) and o (R) from tomography data analysis
are compared for QUAD-07 and QUAD-10 results, plotted against bunch charge. For
QUAD-07 the trend is more obvious than for QUAD-10.

In Fig. the Twiss parameter data for QUAD-07 in both « and § has a slow and
consistent rising trend with bunch charge; however the QUAD-10 values show much
more scatter. One possible explanation could be the accumulation of uncertainties -
in the case of QUAD-10 - in the various quadrupole current values which combine
in evaluating the transfer matrix between the position of reconstruction (QUAD-07
entrance) and the imaging screen (YAG-04). It is not possible to conclude that there
is a systematic difference in the o and 8 values (evaluated at the same reference point)
for the two quadrupole tomography scans.

From this tomography study there is no detectable evidence for the dependence

of emittance on space-charge effects in the tomography section itself, which would be
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supported by a significant difference in the two plots in Fig. [5.6] It was concluded
that further more sensitive experiments would be required to detect any subtle effects

of space-charge on the phase-space distribution.

Incidentally, these results did suggest that it could also be useful to carry out further
investigations into the relationship between bunch-charge and emittance growth at the
ALICE electron gun and in the beam-line just beyond. It would be of interest, moreover,
to define the best procedure for optimisation of emittance with respect to bunch-charge
in the ALICE injector optics, particular for key parameters such as solenoid SOL-01
current and buncher gradient settings. Such work was considered, however, to be

outside the immediate remit of the current tomographic study.

5.2 Further Space-Charge Studies (Phase 4)

At Phase 4, camera image acquisition was improved by fitting remote filter-changers.
The study of the effects of space-charge using the same method as Phase 3 was extended
to include vertical phase-space tomography, experiments being designed to complement

simulation work being performed in parallel, in the particle tracking code GPT.

5.2.1 Experimental Proposal

Further tomography experiments were planned as part of ALICE operations within the
Accelerator Physics beam-time allocation. The principal objectives were:-

i) to verify the results of earlier tomography work and demonstrate reproducibility
and consistency;

ii) to investigate the effects of space-charge in detail, in both horizontal and vertical
phase-space;

iii) to improve measurements with ‘3-screen’ tomography (as illustrated in Fig. |6.1
and described in Chapter (7} and so allow a fair comparison with other methods (e.g.
quadrupole tomography scanning).

The same approach of ‘comparative scans’, as in the previous experimental Phase and

described in Section [5.1.2] was to be adopted.

Data Preparation To meet Objective ii), new input data to support quadrupole
tomography scans was prepared, by adapting existing codes to generate new magnet
current settings for different quadrupoles, imaging screens, and tomographic recon-
struction positions, as summarised in Table This allowed measurements to be
made of phase space in both the horizontal (H) and the vertical (V), based as in earlier

experiments on scans at the start and the end of the ALICE tomography section.
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160
167
177

Phase Space | Quadrupole | Imaging Screen | Reconstruction Position | Angles
H QUAD-07 YAG-02 QUAD-07 Entrance
\Y QUAD-06 YAG-02 e
H QUAD-10 YAG-04 e
\% QUAD-11 YAG-04 e

179

Table 5.3: Extending Table the selections of quadrupole and screen for both hor-
izontal (H) and vertical (V) phase-space tomography scans are listed, including the
number of 1° projection angle intervals accessible.

5.2.2 Camera Filter-Changer

Filter Changer A 3-position mechanism for remotely changing glass neutral-density
filters between screen and camera lens was fitted to the ALICE cameras in the tomog-
raphy section. The set of filters selected for the tomography section cameras had 10%
- 3% - 1% transmissions, based on a study of average image intensities. It should be
noted that to provide a 100% (straight-through) option would have occupied one of the
three filter positions, limiting the effective choice to 2 filters only.

The ability to select filters allows improved optimisation of the signal/noise ratio in
images for the most commonly-used screens, provided that the transmission values of

the filters are appropriately chosen.

5.2.3 Results of Phase-Space Reconstructions

The experimental tomography scan data for both horizontal and vertical phase-space
was reconstructed, with the reference position for all distributions being at the QUAD-

07 entrance.

In the horizontal, QUAD-07 and QUAD-10 scans were compared, for bunch-charges
of 5, 10, 20, 40, and 52.6 pC, the latter being the maximum achievable charge at full
laser power (i.e. with minimum laser attenuation). The two sets of reconstructions are

shown side-by-side in Fig. reading in column order by increasing charge.
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QUAD-07 QUAD-10

x (mm) x (mm)

QUAD-07 QUAD-10

5-10 —20 —40 —-52.6pC
{Mainbunches)

5—10—20 —40 —52.6pC
(Mainbunches)

Total Energy=12.5 MeV

Total Energy = 12.5 MeV

Figure 5.9: Reconstructed horizontal phase-space distributions are arranged, labelled
in order of increasing bunch charge from 5 to 52.6 pC at 12.5 MeV (total energy), to
compare QUAD-07 results (L) with QUAD-10 (R).

In Fig. the reduced quality of the reconstructions in the QUAD-10 case, com-
pared with QUAD-07, may be ascribed at least partly to a combination of increased

camera noise and lower image intensity, as a different screen/camera system is used.

In the vertical, QUAD-06 and QUAD-11 scans were compared, for the same range

of bunch-charges as the horizontal. These are shown in Fig. [5.10
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y (mmy)

y (mm)
QUAD-08 QuUAD-11
5-10—20 —40 —52.6pC
(Main bunches)

5—10—20 —40 —52.6pC
{Main bunches)

Total Energy= 12.5 MeV Total Energy= 12.5 MeV

y" (mrad)

Figure 5.10: Reconstructed phase-space distributions in the vertical are arranged in
bunch charge order from 5 to 52.6 pC at 12.5 MeV (total energy). Although results
for QUAD-06 and for QUAD-11 are separately consistent, there is a clear discrepancy
when comparing one with the other, at all charges.

5.3 Analysis of Space-Charge - Part2: Evidence from Fur-
ther Experiments and Comparison with Simulation

The second series of ‘comparative space-charge’ experiments, denoted Phase 4 and
described in Section [5.2.1] have their reconstructions shown in Fig. [5.9] for horizontal
phase-space and in Fig. for the vertical. These results are now considered in more
detail.

Horizontal There is a general trend of increasing emittance, as shown by a growth in
the central distribution with bunch-charge. A close similarity in shape is seen between
corresponding phase-spaces measured with QUAD-07 and with QUAD-10, at the same
bunch-charge. This is clear even though the QUAD-10 results are considerably noisier
than for QUAD-07, especially at lower charges; this is evident in the Fig. [5.11] plots,
which show a more consistent trend with bunch-charge for QUAD-07.
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Horizontal Emittance (QUAD-07 vs QUAD-10)
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Figure 5.11: Horizontal emittance growth with bunch charge is plotted to compare
QUAD-07 with QUAD-10 data. The less consistent trend for QUAD-10 may be a

consequence of higher levels of reconstruction noise.

Vertical The trend of emittance growth with bunch-charge, shown in horizontal
phase-space, is also seen in the vertical, plotted in Fig. [5.12 This occurs both in
the QUAD-06 and in the QUAD-11 reconstructions. However, the most obvious dif-
ference is the clear dissimilarity between QUAD-06 and QUAD-11 distributions, in all

beam parameters. Both shape and orientation are distinctly different.

Vertical Emittance (QUAD-06vs QUAD-11)
1.4
=45
o
E 1-
E
E 08
T —o—QUAD-11
Y05
= —— QUAD-06
204 -
E
"oz -
.'—-—-l"'.'—-'-_--_-_-'. .
CI T T T T T
a 10 20 30 40 50 60
Bunch Charge (pC)

Figure 5.12: Vertical emittance also grows with bunch charge as seen in results from
QUAD-06 and QUAD-11. The difference in the trend of the two datasets is very
marked, reflecting the clear distinction in their phase-space distributions.
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5.3.1 Vertical Phase-Space: Investigations into Discrepancies

The apparent anomalies in the vertical phase-space results from experiment clearly re-
quired further investigation if any meaningful conclusions about consistent space-charge
effects were to be made. The corresponding results from GPT simulation, already pre-
sented in Section strongly suggested that the anomaly was genuine and associated
with the vertical data only. One obvious common factor in the generation of both ex-
perimental and simulated results was use of the same MATLAB-based processing and

tomographic reconstruction software, and this was therefore subjected to scrutiny.

In Fig. a direct comparison is made between experiment and GPT simulation at
an energy of 12.5 MeV, simplifying matters by taking the case of minimum bunch-charge

(5pC) so that any space-charge effects can be neglected.

Charge 5pC | Scan | QUAD-06 QUAD-07 QUAD-10 QUAD-11

Expt Vv 5

y'o
5
5 0 5 3
Expt H y %10
GPT v
5
Y \MI'I-3
GPT H

5 0 3 3

Fl
LeLy

Figure 5.13: Collation of reconstructed phase-space distributions enables a comparison
of experimental results with corresponding GPT simulations, both in the horizontal
(QUAD-07 & QUAD-10) and the vertical (QUAD-06 & QUAD-11). Selected data is
for 5pC charge, to minimise any space-charge effects which could make comparisons
less valid.

It should be noted that results could be influenced by possible differences in initial
conditions between model and simulation, in particular the assumption - in the case of
the GPT model - that the starting bunch has a Gaussian distribution. Nevertheless,

good agreement is observed between experiment and GPT in the orientation and general
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shape of the reconstructed distributions, particularly for the QUAD-06, QUAD-07 and
QUAD-11 results; for QUAD-10 comparison is more difficult, as experimental data is
affected by noise. This agreement can be taken as evidence of freedom from gross
inaccuracy in the model, and could be further improved by incorporating more detail
into the initial bunch distribution; in the simulation, initial particles are specified purely

by their aggregate properties, emittance and Twiss parameters, not in detail.

Proposed Explanations

Several possible sources for the observed discrepancy in vertical phase-space have been

considered, including;:

Errors in the Lattice The dimensions of drift spaces or strengths of quadrupoles
between the measurement screen and reconstruction location which contribute to the
transport matrix, and therefore to reconstructed phase-space, could be incorrect.

This was considered unlikely, as the relevant differences would apply only to the sec-
tion between QUAD-10 and QUAD-11, and QUAD-10 scans apparently gave ‘correct’

results. The values were checked in any case and no errors found.

Reconstruction Process Parameters The phase-space input at the start of the
tomography section could be shown to be as expected, at least in simulation; but the
reconstruction did not agree. Among the parameters affecting imaging, projection, and
therefore the results of tomography, are the number of projections/images, and the

number of positions/projection samples.

Reconstruction Algorithm The standard tomographic reconstruction method used
for these studies is ‘Filtered Back Projection’ (FBP); however, some alternatives have
already been mentioned in Section [1.6.2] specifically the ‘MENT’ technique which is
described in more detail in Section A short investigation has therefore been made
to determine whether the anomalies in the phase-space distributions from QUAD-06
and QUAD-11 scans for the same reconstruction reference point, which are expected
to be identical but are distinctly different, could be reconstruction-method-specific.

A typical experimental dataset for vertical phase-space was selected, consisting of to-
mography scans with QUAD-06 and QUAD-11, at 40 pC bunch-charge in order to
provide good-quality clear beam images as raw input data. Of the 159/179 images
available, a sample of 5, uniform in projection angle, was taken to avoid possible con-
vergence problems in MENT with large datasets. It was decided that to facilitate direct
comparison, the same sample would also be processed using FBP. The established pre-
processing steps as in were carried out, with the addition of ‘threshold correction’,

as explained in Section [3.1.4] without which MENT can sometimes prove unstable. A
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threshold of 0.1 x peak projection height was found by experiment to be satisfactory.
The results in Figure show phase-space reconstructed using MENT, compared
with that using FBP. It is clear that in spite of the strong artifacts in the FBP re-
constructions, which tend to obscure the outlines and which are largely absent from
MENT, there is an obvious similarity in both shape and orientation. These results
should also be viewed alongside the corresponding cases in Figure[5.10] which show the

FBP reconstructions of the full datasets.

QUAD-06 QUAD-11
MENT MENT 4DpC
0.002 001
0.001 0005
y 0 Ty o 1
0.8 08
06
-0.001 -0.005 06
: 0.4 0.4
0.2 0.2
-0.002 0 -0.01 0
-0.002 -0.001 0 0.001 0.00z -0.01 -0.005 0.005 0.01
£BP y FBP y 40
Ll =t pC
x10° 5 : 0.01 -
| i
1.5 Wi\
|
1 o 0.005
05 A
; '—1 f’ Y
e
0.5+ A
1 ey 0.005
i a"
1.5 ﬂfff [A
2 W L
2 -1 0 1 2 0. E)01 01 0.01
y x 107

Figure 5.14: Vertical phase-space reconstructions using the MENT method, using re-
duced experimental datasets sampled by only 5 projections, are compared directly with
the same data using FBP. No significant difference may be observed either in the case
of QUAD-06 or of QUAD-11, and the ‘anomaly’ between the two quads remains.

It may be concluded even from this very simplified study that there is no evi-
dence that the reconstruction algorithm alone is a significant factor in the observed
discrepancy in vertical phase-space calculated from QUAD-06 and QUAD-11 tomog-
raphy scans. However, as we expect phase-space measured at the same point from

both quadrupole tomography scans to be identical, we may deduce that the difference
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is due either to a deficiency in the input data or pre-processing which is common to
both algorithms, or to a shared lack of robustness under certain conditions; and that

it appears to be specific to the vertical phase-space.

Evidence for Solution

Using an independent computer simulation code for generating projection sets (due to
Dr K Hock), it was found that the resolution of the projections, that is the number
of positions at which they are sampled, which is determined ultimately by the raw
image pixel size, could have a major effect on the resulting reconstruction, particularly
its orientation. This effect was checked in GPT simulation by increasing the image
resolution by 25 times in both x and y dimensions, but the results were not conclusive;

further investigation will be required.

Unfortunately, experimental confirmation of the influence of resolution has not been
directly possible at the time of writing, because it is strictly limited by the number of

pixels available on the installed cameras, which is currently fixed (572 x 768).

5.4 Summary

This chapter has dealt with the planning, preparation, results and analysis of tomogra-
phy experiments designed specifically to investigate space-charge effects in the ALICE
diagnostic section. The use of optical filters to overcome camera saturation in beam im-
ages is considered, with examples. The principle of ‘comparative’ quadrupole tomogra-
phy scans for the detection of local space-charge effects is explained and the experimen-
tal configurations described, with the preparation of input data. For the first phase of
these experiments, the reconstructions of phase-space are presented, both in raw form
and as Gaussian fits, organised by bunch-charge for each scanned quadrupole. The
results of analysis in terms of horizontal emittance and Twiss parameters are plotted
against charge, and the conclusion is drawn that although positive effects are unproven,

the evidence is not conclusive.

Proposals are listed for a further experimental phase, extended to include vertical
phase-space, with details of a more advanced remote triple filter-changer for the screen
cameras. Experiment results for the horizontal QUAD-07 and QUAD-11 scans are
presented for comparison, then the vertical QUAD-06 and QUAD-10 scans are com-
pared. In the analysis and discussion of trends, these experimental results are brought
together with the corresponding simulations previously described in Chapter @ An
obvious discrepancy between the vertical phase-space from QUAD-11 and QUAD-06

scans is highlighted and explanations proposed; results of an investigation using the
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alternative MENT reconstruction method are described; and finally, evidence for a

possible solution is given.
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Chapter 6

Normalised Phase Space

Introduction

Beam tomography measurements are usually carried out in terms of ‘real’ phase-space
(x,2'). However, if a specially-chosen normalising transformation is applied, the re-
sulting ‘normalised’ phase-space is found to possess some useful properties. These can
be related to the design of multi-screen tomography beam-lines, and confer advantages
over working in ‘real’ phase-space in certain situations. The practicalities of making

such measurements are discussed, and example results are given.

6.1 Normalised Phase-Space Technique

Normalisation of Phase Space It can be shown that there exists a transformation
of the ‘real’ phase-space (x,z’) - considering just the horizontal for the present - with
the property that between two different positions on a beam-line, the betatron phase
advance becomes equal to the angle of rotation of the transformed phase-space. This
has become known as ‘normalised’ phase-space (zy,’y) and the transformation is

defined by the matrix equation:

%112 % ][2]

where 3, « are the Twiss parameters at the relevant position.

Firstly, ‘normalisation’ for beam tomography implies that if several fixed screens
(i.e. 3 or more) are used to generate different projections of the beam, from which the
underlying phase-space distribution may be reconstructed, then arranging for equal
betatron phase advances between screens will ensure that projection angle intervals are
also equal. This is shown in Fig. for the design settings of the ALICE to EMMA
injection line [§]. An advantage of this is the avoidance of a type of reconstruction
artifact which occurs when angle steps are unequal, particularly for the FBP algorithm.
The same equal intervals can also be arranged when using the alternative ‘quadrupole

tomography scan’ technique, by setting the magnet currents appropriately.
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Figure 6.1: The tomography section of the EMMA Injection Line was designed so that
when appropriately set up, the beta functions 3, and 8, would be periodic, having
equal values at each of the screens numbered 1, 2, 3 (arrowed on the plot of S vs.
distance s).

Secondly, when working in normalised phase-space, the expected distribution is -
under ideal conditions - a circular shape rather than the usual ellipse. This does not
change, except for a rigid rotation, if observed at other locations as the beam propagates

down the line; in a sense, it is a ‘global’” representation of the beam properties.

In practice, to work in normalised phase-space, the standard ‘real space’ transfer
matrix R, which is denoted as M in Section between the reference/reconstruction
position and the measurement point (i.e. screen), is modified by applying the ‘normal-
isation matrix’ N, derived by inverting Eq.

VB 0
N = [ Yo 1 (6.2)
VB VB
As N is a function only of the lattice functions a and S at the reference point, it can
be calculated given assumptions about the particle source and the known state of the

beam-line elements up to this point, using a computer code such as MAD (see Fig. [6.2

(1)). This code facilitates the propagation of lattice parameters through arbitrary linear
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beam-line elements. A comprehensive discussion of normalised phase-space tomography
will be found in [4§].
It is the derived matrix R, = RN which is then used in calculating the tomographic

projection angles 6, where
Ry12

R

However, as the magnet settings actually used during an experiment are usually op-

tanf = (6.3)

timised to give the best beam imaging conditions, they are unlikely to coincide with
the standard (or ‘design’) values of o and [ used in the original calculation of ma-
trix N; in addition, the actual beam source may have a different distribution to that
assumed. Under these circumstances, normalisation will not be exact and will not

generally produce a reconstructed distribution of the expected circular shape.

I | MaD Model > | o, B (predicted)

#=—Gun to Tomography Section

| Imege Analysis > o, B (measured)

Reconstruction

Figure 6.2: The values of o and 8 required to calculate the normalisation matrix may
be obtained either by prediction from a MAD model of the full ALICE beam-line (top),
or by measurement from an earlier tomography experiment (bottom).

A more realistic estimate of o and 8 can be obtained if a previous phase-space
tomography reconstruction is available (see Fig. (ii)). Ideally, the two sets of values

(a, B ) would be expected to agree, within the limits of experimental uncertainty.

A practical normalised tomography procedure could follow this sequence:-

e The actual values of o and 3 are estimated, using the methods of Section [3.2.1} or
by the analysis in Section using data from real (un-normalised) phase-space
tomography at the reconstruction point. It should be noted that prior knowledge
of matrix N is not required at this stage (see Fig. 6.2 (ii)).

e These Twiss parameters («, () are applied to build the normalisation matrix N,
which is then used to derive the magnet settings which would give uniform steps

in phase advance, from measurement point to screen(s).
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e A repeat tomography experiment, this time in normalised phase-space, is carried

out using these settings.

e We may expect a normalised phase-space reconstruction with an approximately

circular distribution, as predicted by theory.

Prediction of Beam Twiss Parameters As an exercise, a composite model of
the ALICE beam-line, from the booster exit up to the end of the EMMA Injection
Line, was assembled from two existing MAD-8 codes (see Fig. (i)). Experimental
values for ALICE magnet settings were applied as input data to the MAD model, using
magnet tables to calculate focussing strengths k at the given beam energy; and with
reasonable values assumed for Twiss parameters «, § at the starting point (i.e. after
the booster), the model was run to predict «, § at the measurement position in the
tomography section. Knowledge of o, 8 would allow working in normalised phase-space,
by applying the ‘normalisation matrix’ N in Eq. Unfortunately, the experimental
conditions were sufficiently different from the design settings (which had been assumed
for the development of the original models) that the calculated «, [ values were at best

unrealistic, at worst beyond the acceptance limits of the MAD code.

Validation of Beam-Line Models It therefore became apparent that the value of
such a model, based on the real lattice, may be found instead in predicting properties of
the beam-line in the reverse sense. By working backwards, given the measured phase-
space distribution and «, g parameters at the tomography location and applying a
known lattice, the real (x,y) space distributions (i.e. beam profiles) may be predicted
at any desired upstream position, then compared with experimental measurements
made with YAG screens. As screen images at strategic points down the beam-line are
collected and snapshots are taken of the lattice settings as part of routine operations,

this data is available for analysis such as that described above, whenever required.

6.2 Measurements in Normalised Phase-Space

At several accelerators, including ALICE but also at the Photo-Injector Test Facil-
ity Zeuthen (PITZ), FLASH and others, tomography sections have been designed for
equal phase advance between screens, a condition which would lend itself to working in
normalised phase-space. Although not fully implemented as such, some of the effects

discussed have been demonstrated in experiments at ALICE.

Example 1. In Fig. an example distribution is plotted both in ‘real’ and in
‘normalised’ phase-space. The difference in scales should be noted when making com-

parisons. From the general appearance, obvious points are the ideal circular shape
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shown by the normalised plot, rather than the strong elongation of the real-space plot;
and the much more detailed structure visible in the normalised scan (Note. Data anal-

ysis is taken from [49]).

Real Phase-Space Normalised Phase-Space

x’ (mrad)

-20 0 20
X (mm)

Figure 6.3: Example 1. The real phase-space distribution (L) is compared with its
equivalent calculated in normalised phase-space (R), whose shape is close to the ideal
circle (analysis taken from [49]). Axis units are changed accordingly.

Example 2. In contrast to Example 1, in Fig little difference is seen between the
results of the two types of tomography. This suggests that the assumed values of «a, 3
used in the normalisation matrix N were not appropriate. Better results would have
been obtained by applying the ‘practical procedure’ suggested above, starting with the

‘real phase-space’ reconstruction.
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Real Phase-Space Normalised Phase-Space
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Figure 6.4: Example 2. In this example, the normalised phase-space (R) is only a little
different when compared with the real phase-space (L). The predicted «, 8 values used
were clearly not the appropriate ones.

6.3 Summary

In this chapter the concept of ‘normalised phase-space’ is introduced, as a linear trans-
formation of the ‘real’ phase-space. It is placed in the context of the design of the
EMMA injection line tomography section, which has three screens, and the phase ad-
vances between these screens. A practical process for working in the normalised phase-
space is proposed. Methods of determining the normalisation matrix are discussed,
either by beam-line modelling, or by calculating the Twiss parameters «, 5 using other
techniques. The chapter ends by comparing two examples of real and the equivalent

normalised phase-spaces, illustrating some of the possible benefits.
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Chapter 7

Three-Screen Data:
Reconstruction Approaches

Introduction

In general, the quality of phase-space reconstruction from the Filtered Back Projection
(FBP) algorithm is much better if as many projections as possible can be acquired.
With the quadrupole tomography scanning technique, it is usual to employ intervals
no larger than 1°, giving up to 180 projections. However, there are circumstances
when the number of projections is strictly limited, as in the case of the so-called ‘three-
screen’ tomography. The ALICE to EMMA diagnostic section illustrated in Fig.
was designed for this technique. Under these conditions, other algorithms can offer
significantly improved reconstructions, and one which has been extensively applied to

beam tomography is described in this chapter in more detail.

7.1 Outline of the MENT Algorithm

As previously stated in Section the Maximum Entropy (MENT) technique
belongs to the class of ‘iterative’ reconstruction algorithms. These work by converging
to a solution via a series of successively better approximations, starting from some
sensible initial estimate.

We start by considering projections of the unknown distribution in phase-space

f(z,2"). Each of these N projections may be written as

pn(s):/f(a:A,x/A)dt (7.1)

Referring to Fig. the mapping between (s,¢) and (x, ') is represented as

]3]

where A,, is the arbitrary linear transport matrix for the n‘* tomography screen, relative

to the plane of reconstruction.
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Figure 7.1: The measured data consists of a set of parallel projections of an unknown
distribution f(,z’), such as p,(s) which is the n'" projection and is onto the s axis.

The maximum entropy principle states that the most likely, i.e. ‘reasonable’, distri-
bution is that which is produced naturally in the greatest number of ways. The term
‘entropy’ is used by analogy with statistical mechanics, from the resemblance to the
Boltzmann distribution of particle energies. From a definition of the entropy H of the
distribution f(x, ")

H(f)= —//f(m,x')ln[f(x,x/)]dxda:’ (7.3)

This formula may be derived by counting the different ways of distributing N particles

over the M cells which make up the solution grid in phase space.

N particles

||II

M cells

Figure 7.2: A proposed solution can be considered as a distribution of N particles over
a rectangular grid of M cells, constrained by the observed set of projections onto s.
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Without constraints, maximising entropy would naturally tend to a uniform dis-
tribution across the grid. The maximisation may be carried out using the method
of ‘Lagrange multipliers’ A, (s). Defining the unknown ‘Lagrange factors’ by h,(s) =
exp(JpAn(s) — 1/N), where J, is the Jacobian of the transport matrix A, (normally
Jn, = 1 in situations of constant emittance), we obtain a simple product for the maxi-

mum entropy distribution:

N
f(xa,ay) = [T hnlsn(za,ay)) (7.4)

n=1

Applying the constraints, which are defined by the projections in Eq. to Equl7.4]
by substituting for f(x4,2’,), and factoring out h,(s), we obtain a set of N equations

in the functions hy,(s):

N
() = hn(s) / TT he(se(a, ala))dt (7.5)

k#n.
These equations may be rapidly solved for h,(s) by Gauss-Seidel iteration. This works
by progressively refining h,(s) by repeatedly solving Eq. Projections p,(s) cal-
culated with this h,(s) from Eq. are compared with the measured p,(s) at each
iteration step. When the desired tolerance is achieved, the result is the required distri-

bution f(za,a’,).

7.2 Comparison of MENT with FBP

It can be seen that with very limited numbers of projections, FBP reconstructions will
by their nature always be dominated by strong artifacts. On the other hand, MENT
is capable of producing clear distributions using just the same projection data. This
is very obvious in Fig. where the MENT reconstruction is taken from [49], using
codes to be found in [29].
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Figure 7.3: With image data from just 3 screens, the horizontal phase-space recon-
struction using the FBP algorithm (L) is compared with the results of reconstructing
the same data using MENT (R). The clarity and lack of artifacts is evident.

7.2.1 Problems with MENT

Although its reconstructions are apparently superior to other techniques, care must be
taken as MENT can under some conditions introduce serious distortion, which might
go undetected. This has been clearly demonstrated in simulation, where the original

distribution is of course a priori well known [50].

Importance of Choice of Angles MENT can show a sensitivity to the projection
angles selected. This is partly a consequence of the small number of projections: it is
unavoidable that large intervals of angle are not sampled. In phase-space, distributions
which are long and narrow should have their projection directions, also described as
‘rays’, concentrated along the principal axis. This is readily demonstrated by consid-
ering the simulated example of a simple Gaussian distribution in phase-space. When
projections are taken at the three equally-spaced angles indicated by the ‘rays’ in Fig-
ure [7.4f(a), the MENT reconstruction (b) based on the three projections is seen to be

in very good agreement with the original.
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Figure 7.4: (a) Projections of a simple Gaussian phase-space example are taken along 3
rays at equally-spaced angles. (b) The MENT reconstruction from these 3 projections
is shown to agree very well.

If however the chosen angles are rotated, as in Figure (a), it is now clear from the
reconstruction (b) that it is significantly distorted. The cause is that the very limited
set of projections fails to sample the distribution adequately, especially along its ‘long’

axis.

®' (rad)

Figure 7.5: (a) The ray directions for projection are now rotated, while remaining equi-
angular. (b) The reconstruction with MENT still appears clean, but shows significant
distortion compared with the original.

The solution is to choose angles which produce equal projection angle intervals in
normalised phase-space, which is equivalent to arranging for equal phase advances
between measurement screens, as explained in Chapter [6] This works even when, as in

real life, we do not know the shape of the distribution beforehand.

In practice, setting screen-to-screen phase advances to be equal is rarely straight-
forward and requires a knowledge of the Twiss parameters «, 5. Instead, the basic

technique of quadrupole tomography scanning previously described in Section
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may be used, to obtain a reasonable projection angle range, which though less than the
ideal 180° will still usually be adequate. A FBP reconstruction may then be made, and
the Twiss parameters estimated. A small number of angles (e.g. 3 or 4) having intervals
giving equal phase advance may then be selected from the angular range covered by
the scan. For these angles, the corresponding projections are taken, and reconstructed
using MENT. The results shows advantages over using FBP alone, in terms of freedom

from artifacts and cleanliness of the background region of the distribution.

7.3 Limitations and Optimisation of MENT

MENT is not always guaranteed to converge to the ‘correct’ result, especially in the
presence of excessive noise, or when projection values do not fall properly to zero within
the limits of s,,. Methods such as the ‘thresholding’ techniques described in Section
B.1.4) may be beneficial in this case.

MENT is an iterative algorithm, and may sometimes fail to converge at all; that is,
after a certain number of iterations the difference between successive calculated pro-
jections and the measured ones ceases to decrease. Even though the specified tolerance
level has yet to be reached, no further improvement will be made regardless of how
many iterations are run. For Gaussian distributions this problem has been found to
occur when the number of projections exceeds about 10; however, any noise tends to
decrease the limit, and for very noisy data there may be no convergence whatever limit
is set.

In practice the problem is not serious, as MENT is generally applied only to very small

projection sets, and measures already described may be used to reduce noise.

7.3.1 Implementations of MENT

For the work described here, an implementation of the MENT algorithm has been
created in the ‘C’ language, supported by ‘Scilab’ scripts [29]. This version is very
much a development tool, and does not therefore have an advanced user interface; on

the other hand, it is very flexible.

A study of a publicly-available version of MENT, tested using real ALICE exper-
imental data, is included in Appendix @] [15]. As this code did not prove to have
any particular advantages over the version developed in-house, no further use has been

made of it to date.

113



7.4 Multiple-Screen Tomography

For ALICE tomography, the design method is to use just the three screens of the
tomography section in the EMMA Injection Line. There is however no theoretical limit
to the number of screens if more are available, although in practice on ALICE this
is reached when the three screens in the remainder of the Line are included as well,
making a total of six. The processing software has been designed to handle an arbitrary
number of projections n, for FBP reconstruction these being at equal angular intervals,
provided that the appropriate input data in the form of transport matrices [Mj...M,]
has been prepared. A comparison has been made to determine whether the use of

further screens confers any measurable advantage.

Type Screens/ Ref Reconsiriction
Projections  Point Units: % nmm %’ inmrad
Multi- 3 EMI-G2
Sereen TAG
Screens
EMI-2
EMI-3
EMI-<4
=)
s
=
]
Multi- & EMI-01
Sereen TAG
Screens
EMI-1
EMI-2
EMI-3
EMI-4 £l
EMIS o
EMI6 E
=
X (mm)

Figure 7.6: Tomography with 3 screens as shown (Top) may be extended by including
additional screens available before and after the tomography section itself; the effect of
6 screens on reconstructed phase-space is seen (Bottom). In general, screen locations
will not be ideal with respect to equality of projection angle intervals.

In Fig. the reconstructions, both from the FBP algorithm, appear quite different
in character as well as shape. For the ‘3 screens’ case in the upper plot, the very limited
projections produce prominent linear artifacts emanating from the centre. For the ‘6
screens’ below, the background noise has a higher spatial frequency, but there is no
obvious improvement in definition, mainly due to the unfavourable range of projection

angles covered (< 180°). Also, the line has not been designed or set up specifically
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for six-screen tomography, and the angle intervals, which are functions of the beam-
line transport matrices, will not be equal and therefore less than optimal for the FBP

algorithm.

Moreover, in the example of Fig. distributions are not expected to be identical

because:-
e reference positions for reconstruction are different for the two measurements;

e beam-line magnet settings are not standardised and depend on machine state,

energy etc. at the time of the experiment.

Other accelerators making use of phase-space tomography and referred to in Section
have been designed with multiple screens: PITZ (x 4 screens) [12]; PSI (x 3 to x
5) [15]; SNS (x 5) [14]; TRIUMF (x 3). MENT is used as the algorithm of choice at

these sites.

7.5 Summary

This chapter has considered the Maximum Entropy Tomography (MENT) algorithm
as an alternative approach to reconstruction when there are as few as three screen
projections available. The mathematical theory of MENT is outlined, and a comparison
is made between example data reconstructed using MENT and the standard method,
Filtered Back Projection (FBP); the clear advantages are shown. Some of the practical
problems and limitations of MENT are also mentioned. In conclusion, the extension
of tomography to multiple screens is briefly discussed, with results of a six-screen trial
example from ALICE.
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Chapter 8

Conclusion

8.1 General Summary

The technique of transverse phase-space tomography has been developed as a diag-
nostic tool on a section of the beam-line of the ALICE research accelerator at the
Daresbury Laboratory of STFC. Requirements for screen image acquisition hardware,
including cameras and associated optics, have been specified and quality tests defined;
some improvements in user-selectable optical filtration have been implemented on the
beam-line. A programme of tomography experiments has been planned and carried
out, within the overall shift work schedule for ALICE, specifically to use the method
for investigating the effects of space-charge. Experimentation has been supported by
extensive particle tracking simulations. Results in terms of phase-space reconstruc-
tions and derived beam parameters have been analysed and conclusions drawn, giving

recommendations for future work.

8.1.1 Detailed Summary by Chapter

The material covered in each chapter is summarised, and conclusions are drawn from
the results obtained; references are made to the particular experimental (and simulated)
datasets upon which findings are based, and which are illustrated in the chapters them-

selves.

1. The requirements for beam diagnostics in current particle accelerators are consid-
ered. The two machines ALICE and EMMA, based at the Daresbury Laboratory, are
briefly described. The basic theory of transverse beam dynamics is covered, as back-
ground material to a brief account of some of the standard diagnostic methods used on
ALICE and EMMA.

The general principles of computed tomography are outlined, with the two main classes
of reconstruction algorithm, and the mathematical theory of the most popular algo-
rithm ‘Filtered Back Projection’ (FBP) is also presented. Basic space-charge theory

in particle beams, as applied to simple beam geometries, is developed to establish the
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context for later work.

2. The theory underlying phase-space tomography measurement is described, relating
real-space tomography mathematically to its counterpart in phase-space by a simple
geometrical treatment. The plan for experimental tomography on ALICE is broken
down into four phases for convenience. Each of these phases is described in terms of
hardware improvements and adjustments; experimental procedures and protocols; in-
put data preparation; specific settings of the beam-line; and the presentation of results
in raw form. The first two phases are introduced:-

‘Proof of Concept’ (Phase 1) includes an analysis of requirements for an ideal tomogra-
phy screen camera, and the optimisation of focussing carried out on installed cameras,
as their early replacement by higher-specification types was not anticipated; the method
of calculating current settings for quadrupole tomography scans; the stages in computer
processing of results from screen images into reconstructed distributions, for example
[Table Ref. 4, 47]; and the benefits of digital filtration after reconstruction to re-
duce noise, as applied to dataset [Table Ref. 5].

'Quantitative Measurements’ (Phase 2) covers the procedure for camera recalibration;
the implications of extending measurements from horizontal to vertical phase-space,
illustrating that non-optimal vertical data gives inferior results [Table Ref. 4]; the
significance of dispersion, with an ALICE measurement to show that it has an accept-
able value; and experimental results from the initial studies with variable bunch-charge,
in dataset [Table[B.1]Ref. 7-10]. The possible implications of tomography for the future
of the EMMA project are also discussed.

3. The linear beam dynamics theory underlying the analysis techniques used to de-
rive Twiss parameters by calculation of 2" moments of phase-space is stated, with an
example [Table Ref. 4] showing the effects of ‘zoom’ and ‘filter’ preprocessing on
analysed reconstructions. The results of image data rebinning is demonstrated, and
the fitting of an idealised 2-D Gaussian distribution, as applied to [Table Ref. 6],
shows its effect on derived parameters. Two other useful correction methods for reduc-
ing noise, both pre- and post-reconstruction, are introduced: ‘thresholding’, illustrated
on datasets [TableRef. 20-24], and ‘projection truncation’ for background removal.
An alternative and well-established analysis method, based on quadratic fitting to RMS
beam-size from quadrupole-scanning, is outlined. Analysis is placed within the con-
text of the overall tomography processing sequence. Comparisons are made between
parameter values, principally horizontal emittance, from selected tomography experi-
ments [Table Ref. 7-9] and those from earlier ALICE emittance measurements and

simulations, showing good agreement under comparable beam conditions.
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4. The physical principles underlying the particle tracking computer code GPT are
described, and the various models available for applying space-charge effects in GPT are
introduced, justifying the choice of a ’3-D Point-to-Point’ model in this work. Demon-
strations of space-charge in the simplest beam-line geometry, a drift space, are illus-
trated [TableRef. GPTO01] by showing divergence in the beam. ‘RMS bunch radius’
is used to benchmark GPT [Table GPT02,03] against an analytical code based on
established theory [Table Ana01,02], over a range of bunch dimensions and charges,
both for Gaussian and for uniform section beams. The GPT user interface, and the
input and output file structure, is presented. Initial results of modelling the ALICE
tomography section in detail are plotted and deductions made, in terms of the ‘frac-
tional horizontal beam-size difference due to space-charge’ metric [Table GPT05,06]
which shows a distinctive peaked sign-change structure at the beam-size minimum. A
convergence check is made for this metric, against number of particles modelled in the
bunch, indicating > 2000 particles to be suitable [Table GPTO04].

A scheme for using the GPT model of the tomography section in an end-to-end simula-
tion of the full phase-space tomography process is prepared, showing all data flows and
functions. A method devised for generation of GPT input particle specification files
is described, showing the processing steps and the text format of a GPT particle file.
Giving results [Table GPTO07] and explaining problems found, it is concluded that
the assumption of simple Gaussian phase-space distributions and experimental values
for input Twiss parameters is the best available approach. Various ways of validating
the input specification against observed GPT outputs [Table GPTO08] and against
an independent analysis method [Table GPTO09] are considered, and results com-
pared for emittance and Twiss parameters, showing good agreement. This is supported
by GPT-generated phase-space plots [Table GPT10].

5. ‘Detailed Space-Charge Experiments’ (Phase 3) begins with a consideration of the
problem of camera CCD saturation in beam images at high bunch-charge, and its
solution using optical filtration. Experiments specifically designed to detect space-
charge induced effects in tomographic reconstructions by measurements at separated
points in the beam-line are described, with their associated input data preparation.
Both the raw reconstructed output, and the corresponding Gaussian-fitted phase-space
distributions, when shown in tabular form, illustrate a clear gradation in size and shape
with increasing charge [Table Ref. 17-26]. Plots of horizontal emittance against
bunch-charge, derived from the two sets of quadrupole tomography scanning results for
QUAD-07 and QUAD-11, have very obvious upward trends, converging at higher charge
and showing no definite evidence of a positive space-charge effect, up to 80 pC. Twiss
parameter «, 8 plots also indicate similar trends but these are rather less consistent.

In ‘Further Space-Charge Studies’ (Phase 4), the experiments are extended to include
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vertical phase-space, and camera imaging is further improved by deploying remote-
control filter-changers. The maximum bunch-charge range available is from 5pC to
52.6 pC. Again, reconstructions are compared side-by-side: QUAD-07 and QUAD-10
data in the horizontal show good agreement in shape though not in size, from datasets
[Table Ref. 32-36, 37-41]. Emittance shows a rising trend with charge for both
quadrupoles, although there is a x 2 difference except at low charge.

In contrast, the QUAD-06 and QUAD-11 datasets [Table Ref. 27-31, 42-46] in the
vertical are distinctly different both in shape and in orientation, and the emittances,
though both on an upward trend, differ by up to x 10. The equivalent simulated
data from GPT [Table GPT11-12] confirm this QUAD-06/QUAD-11 difference.
Considering possible sources for the discrepancy, lattice errors could be discounted; a
study using MENT as the reconstruction method in comparison with FBP on datasets
[Table Ref. 30, 45] does not provide an explanation. However, there is evidence
[from simulations by K Hock| that the resolution of projections, directly related to
camera image pixel size, can affect reconstructions in the way observed, if it is too low.
Experimental confirmation, although not possible within this body of work, would be

an interesting topic for further study, using more advanced camera systems.

6. The ‘normalised phase-space’ transformation is defined, and its relationship with
the design of the EMMA Injection Line tomography section, in terms of phase-advance,
is explained. Methods for estimating the Twiss parameters o and 3, as required for
normalisation, are suggested. Two example results from experiment are given, com-
paring real with normalised phase-space distributions: one is an ideal case showing the
additional detail obtainable, and a second from [Table Ref. 4,5] which fails to show
appreciable advantages in the result because of inappropriate selections of o and 3 for

normalisation.

7. The reconstruction of tomographic data using the Maximum Entropy (MENT) al-
gorithm is described, with an outline of the main principles of its mathematical theory.
It is demonstrated in examples of 3-screen experimental data [Table Ref. 2] that
MENT has clear advantages over the FBP algorithm in its relative freedom from re-
construction artifacts, when just a few projections are available. However, it is further
shown by simulation that significant distortion in reconstructions can occur, and that
care must be taken in the choice of projection angles, if the validity of MENT results is
to be ensured. It is concluded that in this respect, working in normalised phase-space
is an effective solution.

An example of multiple-screen tomography with FBP is compared, using data from
[Table Ref. 2,3], but shows no advantage over the standard 3-screens method in

this limited case.
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Appendix A. In the first part of the Appendix, a standard method for evaluating
screen imaging cameras, using an ISO test card and analysis software, is proposed. De-
sireable attributes for an advanced high-specification camera are listed. The procedure
for optimising the focus setting of existing ALICE screen cameras is described, and a
calculation is presented for the theoretical depth of field. Results (without beam) of an
experimental check of camera focus at a screen are also shown, before and after focus

setting.

Appendix B. The experimental and simulated datasets referenced in this document

are listed with their most important attributes, allocating each a unique ID.

Appendix C. The detailed steps of the computer processing system developed for
phase-space tomography data are described, showing example graphics output at key

stages in the sequence.

Appendix D. Finally, a study of the MENT code (originating at Los Alamos) ref-
erenced in Chapter [7]is described, giving an example of its adaptation for use with a
particular set of experimental ALICE three-screen data [Table Ref. 26a]. Although
demonstrated to work successfully, due to its inflexibility it is considered unsuitable for

further development of ALICE beam tomography.

8.2 Overall Conclusions

The success on ALICE of the quadrupole tomography scanning technique, with recon-
struction of phase-space using the FBP algorithm, strongly recommends it as having the
potential for producing good-quality results from beam tomography on general beam-
lines, although the reconstruction anomalies of the type discussed in Section will
need to be resolved. Where sufficient imaging diagnostics, such as YAG screens, are
already provided, it will normally be possible to identify a suitable quadrupole-screen
combination, related to the desired reconstruction reference position, to give an ad-
equate projection-angle range (close to 180°) for quality results free from excessive
artifacts. At the same time, the evidence of the anomalous results observed in vertical
phase-space indicates that care should always be taken to check reconstructions, wher-
ever possible, against alternative measurements, however well-defined and conclusive
they appear to be.

Phase-space tomography has demonstrated its potential in the study of perturbing
effects, using space-charge as an example which is relevant for low-energy, high bunch-
charge regimes. It has also been shown that using particle-tracking codes to simulate
the process of generating phase-space distributions by tomography can be a useful aid

for investigating these effects, and potentially for understanding them better.
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8.3 Further Work

Under this heading are

e objectives not achieved or only partially met, due to time or resource constraints,

but which are still considered feasible and desirable;
e possible extensions to other situations, applications or locations;

e new ideas, generated during the project itself, but which there was insufficient

time to investigate further.

Application to Other Facilities It is at present uncertain that any further ALICE
operations will continue beyond December 2012. However, concepts already trialled on
ALICE, including ‘normalised phase-space’, may find applications at other research ac-
celerator facilities, for example PITZ at DESY [12]. PITZ in particular has a dedicated
tomography section with up to 4 beam imaging screens available, supported by ad-
vanced cameras and optics as illustrated in Fig. and there is significant experience

within the PITZ group in applying the various tomography techniques.

Figure 8.1: In the tomography section of the PITZ beam-line, advanced CCD cameras,
well shielded from stray radiation, are used with high-quality remotely-adjustable optics
to provide optimum screen images.

Processing of ALICE Data It would be useful to process more of the data, includ-
ing ‘3-screen’ image sets, which has already been taken but not yet examined in detail
due to other priorities. Other data which has been processed once may benefit from
a revisit, using more advanced tools and methods, such as background suppression or

the systematic application of the MENT algorithm.
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New Local Facilities The Versatile Electron Linear Accelerator (VELA), formerly
known as the Electron Beam Test Facility (EBTF), is entering its commissioning phase
at the Daresbury Laboratory [51]. It will be important to characterise the beam in
this machine as fully as possible; beam tomography will be a very useful tool to help
achieve this. Key VELA parameters will be:

Energy range < 5MeV;

Normalised horizontal emittance = 1 to 4 mm-mrad,;

Bunch-charge = 10 to 250 pC
A continuation of the study of space-charge effects using tomography, both by simula-
tion and by experiment, would be very relevant, as under the VELA regime much more
significant effects might be expected than on ALICE, with lower beam energy and far

higher maximum bunch charge.

Extensions to EMMA The future of the EMMA project is still undecided, due
partly to its dependence on ALICE for injection. However, if work continues, beam
tomography in the extraction line, which as stated in Section is already suitably

equipped, would provide further useful data on the effects of acceleration in FFAGs.

Advances in Equipment Improvements in hardware which would lead to better-
quality results from tomographic reconstructions and which are considered in Section
and Appendix [A] should be installed, including high-specification screen imaging

cameras and associated networking and control systems.

Multi-Dimensional Phase-Space Tomography Tomography in four dimensional
(4-D) phase-space (z,2,y,y’) is a logical extension of the technique in 2-D, i.e. (z,z’)
or (y,y’), which has been described in this work. The supporting 4-D theory has already
been developed and tested in simulation [47]; it is based on multiple scans using a pair
of quadrupole magnets, one defocussing and the other focussing, and a single screen.
It is planned to run 4-D tomography experiments on the new VELA facility within the

next 3 years.
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Appendix A

Camera Performance and
Specifications

A.1 Camera Specification for Improved Performance

An advanced camera system (not specifically for the scientific market) has been evalu-

ated in demonstration against suitability criteria for screen imaging [52].

(a) (b)

Figure A.1: (a) A CCD ‘board’ camera with fixed lens, of the type currently used
throughout ALICE. (b) An example of a high-specification camera with remote control,
evaluated as an option for specialised applications on ALICE.

Optics Built-in zoom allows focus and image magnification adjustment to optimise
use of available pixels to image the beam, and iris control gives exposure variation as
well as some adjustment of depth of field. The option of a ‘periscope’ mount viewing
the screen at 90°, to keep the camera well away from the beam-line axis and reduce

the risk of CCD damage from radiation, can be investigated.

Communications A standard and reliable Ethernet link facilitates networking with-

out requiring further dedicated cabling.

Resolution The region of interest around the beam itself is covered by more pixels.

A 12-bit depth per pixel improves the signal to noise ratio and therefore the final quality
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of reconstructions.

Software Control Exposure which is remotely controllable allows the maximum

dynamic range to be used while avoiding the saturation of pixels.

Maintainability ALICE experience shows that in some locations, over months of
service there is a visible degradation of image quality, due to permanent radiation
damage to CCD pixels. Although suitable shielding can reduce this, the ability to
replace affected CCD chips quickly and economically is useful in extending system

lifetimes.

Conclusion A single camera should be procured and a mounting fabricated for view-
port deployment by directly replacing an existing board camera. The most appropriate

initial location is proposed as screen EMI-YAG-03.

A.2 Focus Setting Procedure

Coarse Focus The brass fine-focussing ring is first set to the middle of its travel
(noting its approximate original position). The camera, mounted on its base-plate, is
then removed from the housing, after first taking off the rear cover with its 4 retaining
screws. The lens assembly is mounted on a threaded fitting, permitting adjustment of
the lens-to-CCD distance (‘v” in Fig. . With the camera pointed towards a test
object at approximately the correct distance as when assembled, a good focus is set by
slight rotation of the lens holder. Care should be taken not to disturb the filter over
the lens (if fitted).

Fine Focus Adjustment uses the central knurled ring at the rear of the camera
housing, which alters the camera distance to the screen (‘v’ in Fig|A.2)). It has been
found that fine adjustment has little effect on focus; this is confirmed by theory, which
predicts that the depth-of-field will include the whole screen (edge to edge) in spite of
its being viewed at a 45° angle.

Typical results of refocussing are illustrated in Fig.
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Figure A.2: The dimensioned schematic (units = mm) shows the mounting arrange-
ment for current ALICE screen cameras, including controls provided for focussing ad-
justment. The whole assembly is bolted onto the imaging viewport for the screen.

Table calculates Depth-of-Field (Dpgr - Dpneqar) for typical dimensions of the

screen camera shown above. YAG screens are circular (60 mm diam) but are inclined

at 45° to the camera and the beam.

Depth of Field: Calculation

Focal Length = 16 mm
DNear = SfQ/(f2—|—NC(8—f))

DFar :SfQ/(f2_NC(S_f)) (Al)
Object Stop f-num | Circle of Dpnear | Drar | Depth of | Screen
distance | diam Confusion field width at 45°
s d N c
186.7 3 5.33 0.02 174.30 | 201.0 | 26.69 42.43

Table A.1: Equations are used to calculate near and far points Dyegr & Dpgr, and
hence depth-of-field, for comparison with effective screen width. f-number N is derived
from focal length f and aperture d by N = f/d (all units in mm).
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Figure A.3: Camera images taken of YAG screen ‘EMI-3’; using LEDs for illumination,
show the results of the focus setting procedure, before adjustment (L) and afterwards
(R). The inset (Top R) shows the screen diameter (in mm.) with its 45° orientation.
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Appendix B

List of Datasets Used

B.1 Experimental Data

Data has been taken during experimental shifts which have been spread over much of
the duration of the project. Individual datasets are identified uniquely by the date of
the shift and the time-stamp of the image or image-sequence collected, where the time
is automatically attached to all data file names by the acquisition software. Within
the main chapters, a particular dataset is referenced by the combination of Date and
Time, in the format 'DDMMYY TTTT’. The most important parameters and machine

settings are also recorded here for convenience.

B.2 Simulated Data

Simulations involving particle tracking have been run between experimental cam-
paigns and to fit the time around scheduled shifts. In the same way as the experiments,

datasets are given references by Date and Time.
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Ref Date Time Type Quad | Screen | Chargel Energy| Notes
ddmmyy | hhmm (YAG)| (pC) | (MeV)
1 030810 1855 3-Screen 40 15.51
2 150810 1911 3-Screen 40 15.51
3 210810 1329 6-Screen 12 15.51
4 150910 0103 Scan Q-08 | 03 40 12.51
5 150910 0130 Scan Q-08 | 03 40 12.51 | Normalised
6 211010 0217 Scan Q-08 | 03 40 12.51
7 160211 0620 Scan Q-08 | 03 40 12.51
8 270211 0646 Scan Q-08 | 03 40 12.51
9 090311 0342 Scan Q-08 | 03 40 12.51
10 090311 0413 Scan Q-08 | 03 50 12.51
11 090311 0508 Scan Q-08 | 03 60 12.51
12 090311 0541 Scan Q-08 | 03 70 12.51
13 090311 0354 Scan Q-09 | 03 40 12.51
14 090311 0425 Scan Q-09 | 03 50 12.51
15 090311 0519 Scan Q-09 | 03 60 12.51
16 090311 0552 Scan Q-09 | 03 70 12.51
17 190411 0202 Scan Q-07 | 02 20 12.51
18 190411 0233 Scan Q-07 | 02 40 12.51
19 190411 0255 Scan Q-07 | 02 60 12.51
20 190411 0359 Scan Q-07 | 02 70 12.51
21 190411 0324 Scan Q-07 | 02 80 12.51
22 190411 0216 Scan Q-10 |04 20 12.51
23 190411 0244 Scan Q-10 | 04 40 12.51
24 190411 0307 Scan Q-10 |04 60 12.51
25 190411 0410 Scan Q-10 | 04 70 12.51
26 190411 0347 Scan Q-10 | 04 80 12.51
26a 190411 0046 3-Screen 40 12.51
27 060812 2022 Scan Q-06 | 02 5 12.51
28 060812 2123 Scan Q-06 | 02 10 12.51
29 060812 2209 Scan Q-06 | 02 20 12.51
30 060812 2258 Scan Q-06 | 02 40 12.51
31 060812 1836 Scan Q-06 | 02 52.6 12.51
32 060812 2042 Scan Q-07 | 02 5 12.51
33 060812 2133 Scan Q-07 | 02 10 12.51
34 060812 2220 Scan Q-07 | 02 20 12.51
35 060812 2311 Scan Q-07 | 02 40 12.51
36 060812 1900 Scan Q-07 | 02 52.6 12.51 | 3.2% filter
37 060812 2056 Scan Q-10 |04 5 12.51
38 060812 2144 Scan Q-10 |04 10 12.51
39 060812 2232 Scan Q-10 | 04 20 12.51
40 060812 2322 Scan Q-10 | 04 40 12.51
41 060812 1915 Scan Q-10 |04 52.6 12.51
42 060812 2106 Scan Q-11 | 04 ) 12.51
43 060812 2157 Scan Q-11 |04 10 12.51
44 060812 2245 Scan Q-11 |04 20 12.51
45 060812 2334 Scan Q-11 |04 40 12.51
46 060812 1955 Scan Q-11 |04 52.6 12.51 | 3.2% filter
47 151112 1429 Scan Q-07 | 02 69.0 12.51

Table B.1: Experimental data referenced 128he text is listed by date. ‘Ref’ is a unique
identifier; the ‘Time’ stamp denotes the start of a scan; ‘Type’ refers to either a multi-
screen tomography or a quadrupole tomography scan measurement; ‘Quad’ (for scans)
is the quadrupole ID; ‘Screen’ (for scans) is the ID of the YAG screen for imaging;
‘Charge’ is that measured for one bunch; ‘Energy’ is the Total particle energy, including
rest-mass.
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Ref Date Input Quads Screens | Charge | Energy | Bunch Params | nps | Notes
ddmmyy Model (YAG) | (pC) (MeV) | (mm)

GPTO1 Drift at 1.bm | 0,80,200 | 12 Gaussian 1000 | Divergence demo

GPT02 | 170712 | Drift at 5,20,80 | 12.511 | Gaussian 10k | GPT: Benchmarking vs.
0.015- r=0.3,0.6,1.2 Analytical code
1.50m 1=0.5,1.0,2.0

GPTO03 | 170712 | Drift (as 5,20,80 | 12.511 | Uniform (with | 10k | (as above)
above) r,] as above)

Ana0Ol | 200412 | Drift 5,20,80 | 12.511 | Gaussian Analytical code: Bench-
r=0.3,0.6,1.2 marking vs. GPT
1=0.5,1.0,2.0

Ana02 | 200412 | Drift 9,20,80 12.511 | Uniform (with (as above)

r,] as above)
GPTO04 | 051211 | EMI Q-07 to | 02,04 | 0,80 12 100- | Check for convergence with
Q-11 10k | NPS
GPTO5 | 231111 | EMI Q-07 02 0,80 12 1000 | Space-Charge Beam-Size
Difference, YAG-02
GPTO06 | 251111 | EMI Q-10 04 0,80 12 1000 | Space-Charge Beam-Size
Difference, YAG-04
GPTO07 | 110712 | EMI Q-07 to | 02,04 | O 12 Gaussian 10k | Generation of Input Parti-
Q-11 (x,2"), (y,v) cle Specifications
read from file

GPTO08 | 161012 | EMI Q-07 02 0 12.511 | B,a,e = exptl; | 10k | GPT Input vs Output val-
1=1.2 idation

GPTO09 | 091012 | EMI Q-06 02 0 12,511 | B, = exptl; | 10k | GPT and ‘Quad-Scan
€ = exptl x 10 Analysis’ comparison

GPT10 | 111212 | EMI Q-06..11 | at Q-07 | O 12.511 | B,a,e = exptl | 10k | GPT Phase-Space plots

GPT11 | 241012 | EMI Q-06 & | 02 0,5,10, 12.511 | B,a,e = exptl | 10k | GPT Tomography Scans to

Q-07 20,40,52.4 compare with Experiment

GPT12 | 011112 | EMI Q-10,11 | 04 0,5,52.6 | 12.511 | B,a,e = exptl | 10k | (as above)

Table B.2: Simulated data which appears in the text is listed by order of appearance. ‘Ref’ identifies the run sequentially as a GPT model
(GPTnn) or Analytical code (Anann); ‘Input Model’ is typically a simple Drift, or EMI for EMMA Injection Line; ‘Quad’ is the ID of
quadrupole(s) modelled; ‘Screen’ is the ID (or position in m. from the start) of the imaging YAG screen; ‘Charge’ is for one bunch; ‘Energy’
is Total particle energy; ‘Bunch Params’ denotes distribution and radii/lengths; ‘nps’ is the number of particles simulated (1k=1000).



Appendix C

Phase-Space Tomography
Computer Processing

C.1 Sequence of Steps in Processing Raw Images into Re-
constructed Phase-Space

In general, it is assumed in this code that the input data, particularly the transfer
matrices, have been correctly formatted and that all other essential files are available
in the locations specified in the parameters files. However, a degree of error-trapping
is provided for foreseeable cases of missing or invalid files.

The sequence followed is [with functions marked ‘*’ dependent on preset parameters

(selected as control file variables)]:-
1. Determine whether data relates to horizontal (H) or vertical (V) phase-space.

2. Read in transfer matrices.
This is the array of matrices [M;... Myproj] where the M; are defined as in Eq.

and nproj is the number of projections.

3. Calculate angles 6 and scale factors s from the matrices M.

Eq. and Eq. are applied, respectively, for 6 and s.

4. Get and process image data, and create a sinogram, by following these steps:-

e Load options from file.
User options may be predefined before run-time, in a parameters file. These
control some processing options, and supply the directories where image and

other files are to be found.

e Select and read in images.
User chooses files from list OR all files in directory (from a scan) are read

automatically. Display screen images (as a check) only if there are less than

6 files, as in Fig.
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1855 EME2 50ns . png 1855 EMI-3 50ns.png 1855 EMI-4 100ns. png
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Figure C.1: This example shows images of an 3-screen tomography dataset as they are
displayed after being loaded from files. Headings are the actual filenames and the axes
scales are in pixels.

e Parse image filenames to determine screen IDs/train lengths.
Extract the screen identifier and the electron bunch train-length, encoded in
the image filename (e.g. ‘1836 EMI-2 30ns EMI-QUAD-06=0.044.png’) by

the camera software when the image is created.

e Get screen backgrounds from storage.
The most recent background images (for each separate screen used; there
may be only one) are read from a standard location; see Fig.

e Subtract backgrounds from images.
Available options are: (a) subtract pixel-by-pixel; (b) subtract a single level
(average of whole background image); (c¢) subtract a user-defined single level,

which allows user estimation by viewing a profile, or otherwise.

e *Correct for baseline level in images.
As the beam is nearly always just a small peak in a flat continuum in the
screen image, a very approximate baseline correction may be optionally ap-

plied by subtracting the average of each image from that same image.

e Normalise images for different train-lengths, if necessary.
Image intensity depends on the number of bunches per train; if this is
changed during the experiment, the effect is compensated for using the train-

lengths read previously.

e Check overall intensities, by plotting for all images.
Display integrated image intensity values ) Zy izy on the same plot for
comparison; ideally intensity is uniform.

e Read in screen calibration data.
Screen ID is used to find matching data in an EXCEL calibration file and
retrieve calibration factors (in mm per pixel)

e Apply calibration; interpolate (onto new grid).

Image pixels are converted to positions (in mm.)
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e Display overlaid images (with H, V projections), and select window.
User interactively sets a window around the beam, to reject extraneous fea-
tures, as illustrated in Fig. Possible choices are: (a) use selected win-
dow; (b) use full screen area; or (c) use keyboard-entered window extents

(useful for replicating a previous run).

SeBotinEk whikw wkhmonge

40 600 B0 000

1200 1400

100 200 3000 400 500 G600 700

Figure C.2: The full beam image set is displayed, superimposed as a single overlay,
with the composite horizontal and vertical projections shown underneath and to the
R. The user can interactively select a rectangular window around the beam, guided by
the peak extents; the image display zooms in to this selection.

e Select reduced image set
User may reject any particularly high (or low) intensity images at start/end
of the sequence which would add to reconstruction noise. An example of

choosing an upper value is shown in Fig.

e Renormalise new image set.

Image intensities are adjusted to normalise them to the maximum image.
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Figure C.3: Integrated intensities are plotted for all images in the set, as a guide for
the user to select upper and lower bounds. If chosen, because they appear significantly
below the average value, images outside the bounds will be rejected.

e Project (onto = or y axis) to create a sinogram.

The sinogram is assembled as an array of projections.

e *Calculate baseline correction around peaks in projections.
User may select to apply correction by: (i) fitting Gaussian to the peak to
find its extent; then (ii) calculating a ‘base level’ from regions to each side

of the peak; and (iii) subtracting baseline; repeated for each projection.

e Scale projections.

Apply scale factors s to all projections in the sinogram.

e Find centre (*centroid, or peak value) for each projection.
Normally the centroid is the appropriate measure of the ‘centre’. A sample
of the projections is plotted, as in Fig. [C.4] for comparison and to confirm

corrected baseline level.
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Figure C.4: A sample of 10% of all projections is displayed, superimposed and in distin-
guishing colours. The user can confirm that the baseline is now at least approximately
zero, and that only the main ‘beam’ peak is present.

e *Calculate weightings for projections, for irregular angle intervals.
Angle weighting is applied only exceptionally; normally, intervals will be

regularly-spaced, as the reconstruction algorithm requires.

e Re-sort projections in sinogram by angle order, if necessary.
Usually the ‘angle’ array is already in monotonically increasing order; if not,

it is re-sorted.

e Display sinogram and save, along with positions and other projection data.
A sample plot is shown in Fig. where the z-axis represents ‘position’

and the y-axis is ‘angle’.

Sinogram (H)

Angle, (deg)

Figure C.5: The sinogram, built from the assembled and ordered projections, is dis-
played with position (in mm.) on the z-axis and projection angle (in degrees) on the
y-axis.

5. Reconstruct from sinogram; display result as a contour plot, e.g. Fig. [C.6]

After viewing the initial reconstruction, a user may enter new phase-space limits
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and repeat the reconstruction step (or exit). There is an option to save, both as
image files and a MATLAB array datafile.

Reconstruction (hariz) - Contour (lled)

Figure C.6: The result of reconstruction of phase-space with FBP is displayed in contour
plot form, for user acceptance. Axis units are mm (z horizontal) and mrad (2’ vertical).
The user may then repeat the reconstruction having optionally selected new, reduced
phase-space limits.
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Appendix D

An Implementation of the
MENT Tomographic
Reconstruction Code

A FORTRAN code implementing MENT which was originally developed at Los Alamos,
USA, in 1979 has been adopted at the Paul Scherrer Institute (PSI) and is still in use
[15]. This code has been installed and successfully tested at the Daresbury Laboratory,
although new interfaces have been necessary to handle the details of suitably converting

the ALICE tomography camera image data for input to MENT(PSI).

D.1 Data Preparation and Execution Environment

The Maximum Entropy Tomography (MENT) code produced at PSI requires a very
specific input file format. Code has therefore been developed to pre-process the tomo-
graphic projections together with their corresponding control parameters and transfer
matrices, as shown in Figure In addition, the user graphics runs in an X-Windows
environment, and output is generated as Postscript files which would require conversion

before further analysis by other programs.
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Figure D.1: The MENT implementation by PSI has very specific input and output

format requirements for its MENTIN.DAT filee. MATLAB interface functions have
been written to convert ALICE tomography data to suit.

Although the code is mature and therefore efficient and reliable, it is also rather
inflexible, which created problems with interfacing to ALICE experimental data, and
with modifying parameters to more appropriate values for ALICE, e.g. to make use of

the full image resolution available.

D.2 Applying the MENT Code

Data Conversion to MENT(PSI) Format For the conversion of existing ALICE
tomography data to the fixed format of the ‘MENTIN.DAT’ input file, as shown in Fig.
[D-2] MATLAB code has been written to:

e perform background subtraction;
e correct for any differences in calibration between the 3 screens;

e interpolate to reduce the projection positions down to the limited number ac-

cepted (= 51), far fewer than the pixels available in an image;

e allow windowing, to select the essential central beam data only.
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Screen Images: 0046 EMI-Z 24ns.png 0046 EMI-3 300ns.png 0046 EMI-4 24ns.png
0.000 S5.000 0.000 0.005 3
+1.00000 +0.00000 +0.00000 +1.00000

54.2 25.86 37.0 111.5 271.% 62.6 -412.0 53.6 -44.1 2854.4
-123.5 -287.4 -154.9 237.1 -254.1 140.6 45.2 461.4 399.6 850.8
843.5 3992.7 9999.9 390.7 -7.8 12.5 -131.8 -223.6 -147.2 -214.3
-131.0 179.6 -91.6 41.4 -129.2 -272.0 -339.2 -189.7 -264.0 -436.0
-257.0 -451.0 -423.3 -344.7 -309.9 90.9 -505.3 -521.6 -387.6 -342.7
-95.9
-0.60209 +0.66012 -2.95172 +1.57533
0.0 0.0 0.0 55.1 21.2 142.1 -58.1 -43.9 700.9 68.4
-95.5 30.2 -18.0 140.4 19.0 121.7 32.5 172.0 36.9 171i.1
414.9 495.7 734.9 2601.0 3617.9 1916.1 739.7 172.7 159.9 171.8
96.6 118.3 147.1 55.2 93.3 -32.9 23.0 23.8 29.5 -34.6
300.7 19.7 -24.5 -36.7 73.3 212.0 -11.9 -3.4 0.0 0.0
0.0
-1.58163 +0.64005 -2.85193 +0.52186
0.0 0.0 0.0 -105.4 15.6 651.5 -129.8 -50.8 11.2 S0.5
96.3 17.7 270.0 35.8 8.3 =-23.1 -75.0 -44.4 -42.7 9.6
145.5 213.5 501.9 1443.0 3444.2 3206.6 2284.5 1396.3 517.7 £4.9
11.4 48.8 103.4 -16.4 -46.5 -164.8 -73.1 -119.8 -0.7 109.4
42.3 -65.1 -99.4 -142.0 -113.0 -265.1 -66.0 -14.1 0.0 0.0
0.0
2 29 0.001 0.001 1.000 0.012 0.009 0.000

Figure D.2: An example of a MENTIN.DAT input file is shown, with 51-position
projection data from 3 screen images (background-subtracted). Other fields contain
projection angles and MENT control parameters.

The MENT Output Window provides alternative display options to show:

fitted and experimental projections (as overlays)

phase-space distribution (as a 2-D contour plot)

emittance probability (on lin-log axes)

3-D plot of phase-space (corresponding to the contour plot)

This example in Fig. [D.3] shows real ALICE data, where the parameters have been
optimised for fit of experimental to calculated projections. In the emittance plot of the
function log (1 — f) versus ¢, where f = fraction of beam inside emittance €,, beams
with Gaussian profile shapes produce straight lines. Deviations from Gaussian can
therefore be seen very easily. In this instance, the approximate straight line indicates

that the phase-space distribution is close to Gaussian.
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TOMOGRAPHY
Enter number 1.8, P for Hardcopy or RET to terminate

Figure D.3: The MENT output window combines plots of the experimental-input and
MENT-fitted projections (overlaid); a 2-D contour plot of reconstructed phase-space;
an emittance-probability plot (lin-log); a 3-D phase-space plot of the reconstruction.

Although the processing of 3-screen data by MENT was successfully demonstrated,
using an ALICE input dataset, it was concluded that significantly improved results
would only be obtained when the planned camera modifications had been made, giving
better image quality. In addition, modifications to the core MENT code would be

necessary to make the output more accessible for further analysis.
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