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Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia

E-mail: eivanov@theor.jinr.ru

Abstract. We give an overview of recent results on the classical and quantum superfield
invariants of N = (1, 1), 6D supersymmetric Yang-Mills theory in the off-shell N = (1, 0) and
on-shell N = (1, 1) , 6D harmonic superspaces.

1. Introduction
For the last few years, maximally extended supersymmetric gauge theories (with 16
supersymmetries) are under intensive study. These can be represented by the following chain

N = 4, 4D =⇒ N = (1, 1), 6D =⇒ N = (1, 0), 10D .

Among them, the N = 4, 4D SYM (Super Yang-Mills) theory is most known. It is UV finite
and perhaps completely integrable at the quantum level [1]. On the other hand, N = (1, 1), 6D
SYM is not renormalizable by formal counting (the coupling constant is dimensionful) but is
also expected to possess various unique properties. In particular, it respects the so-called “dual
conformal symmetry” like its 4D counterpart [2]. It provides the effective theory descriptions
of some particular low energy sectors of string theory, such as D5-brane dynamics. The full
effective action of D5-brane is expected to be of non-abelian Born-Infeld type, generalizing the
microscopic N = (1, 1) SYM action [3]. N = (1, 1) SYM is anomaly free [4], as distinct from
N = (1, 0) SYM. The N = (1, 1) and N = (1, 0) SYM theories are analogs of N = 8 supergravity
which is also formally non-renormalizable, so their study in the quantum domain can shed more
light on the quantum properties of the latter theory.

Recent perturbative explicit calculations in N = (1, 1) SYM (treated as a low-energy limit
of type II superstrings) show a lot of cancelations of the UV divergencies which cannot be
expected in advance. The theory is UV-finite up to 2 loops, while at 3 loops only a single-trace
counterterm of canonical dim 10 is required. The allowed double-trace counterterms do not
appear [5] - [7]. To explain this, one needs new non-renormalization theorems. As usual, the
maximally supersymmetric off-shell formulations are needed to clarify these issues.

However, maximum that one can achieve in 6D is off-shell N = (1, 0) supersymmetry 1. The
most natural off-shell formulation of N = (1, 0) SYM is achieved in harmonic N = (1, 0), 6D
superspace (HSS) [9, 10] as a generalization of N = 2, 4D HSS [11, 12]. In HSS, the N = (1, 1)
1 The maximal off-shell supersymmetry with 16 supercharges is claimed to be attainable in the “pure spinor”
superfield formalism [8], but here we limit our attention to the standard superspaces.

http://creativecommons.org/licenses/by/3.0
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SYM theory action can be schematically presented as a sum [ N = (1, 1) SYM ] = [ N = (1, 0)
SYM + 6D hypermultiplet ], with the second hidden on-shell N = (0, 1) supersymmetry.

In order to know the putative structure of the effective action and candidate counterterms
for N = (1, 1) SYM theory, one needs to learn how to construct higher-dimension N = (1, 1)
invariants in terms of N = (1, 0) superfields. In the “brute-force” method one starts with the
appropriate N = (1, 0) SYM invariant and then completes it to N = (1, 1) invariant by adding
the proper hypermultiplet terms. In practice, it is very cumbersome technically, though the
situation is somewhat simplified by the fact that for finding all admissible superfield counterterms
it is enough to stay on shell2.

In [13] there was developed a new approach to constructing higher-dimension N = (1, 1)
invariants, based on the concept of on-shell N = (1, 1) harmonic superspace [14].

The hidden supersymmetry tells us nothing about the precise coefficients before the N =
(1, 1) invariants constructed in one or another way. To determine them, one should reproduce
them from the superfield perturbation theory. The first steps towards this goal were recently
undertaken in [15] - [17].

In the talk I will briefly address all these issues.

2. 6D superspaces and superfields
2.1. Basic superspaces

• Standard N = (1, 0), 6D superspace [18] is defined as the following set of coordinates:

z = (xM , θa
i ) , M = 0, . . . , 5 , a = 1, . . . , 4 , i = 1, 2 , (1)

with Grassmann pseudoreal θa
i .

• Harmonic N = (1, 0), 6D superspace [9, 10] is obtained by adding SU(2) harmonics to (1):

Z := (z, u) = (xM , θa
i , u±i) , u−

i = (u+
i )

∗, u+iu−
i = 1 , u±i ∈ SU(2)R/U(1) . (2)

• Analytic N = (1, 0), 6D superspace has half the number of Grassmann coordinates as
compared to (2):

ζ := (xM
(an), θ+a, u±i) ⊂ Z , xM

(an) = xM +
i

2
θa

kγM
ab θb

l u+ku−l, θ±a = θa
i u±i . (3)

Basic differential operators in the analytic basis of 6D HSS are defined as :

D+
a = ∂−a , D−

a = −∂+a − 2iθ−b∂ab ,

D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θ+a∂+a − θ−a∂−a

D++ = ∂++ + iθ+aθ+b∂ab + θ+a∂−a , D−− = ∂−− + iθ−aθ−b∂ab + θ−a∂+a , (4)

where ∂±aθ±b = δb
a and ∂++ = u+i ∂

∂u−i , ∂−− = u−i ∂
∂u+i .

2.2. Basic superfields
• The basic geometric object of N = (1, 0) SYM theory is the analytic gauge connection V ++:

∇++ = D++ + V ++ , δV ++ = −∇++Λ , Λ = Λ(ζ) .

2 To avoid a possible confusion, by this we merely mean that the on-shell vanishing counterterms can be absorbed
into the microscopic action by a field redefinition. No equations of motion are actually assumed for the involved
(super)fields.
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• The second harmonic (non-analytic) connection V −− covariantizes the second harmonic
derivative:

∇−− = D−− + V −− , δV −− = −∇−−Λ .

It s related to V ++ by the harmonic flatness condition

[∇++, ∇−−] = D0 ⇒ D++V −− − D−−V ++ + [V ++, V −−] = 0
⇒ V −− = V −−(V ++, u±) .

One can make use of the analytic gauge freedom to choose the Wess-Zumino gauge:

V ++ = θ+aθ+bAab + 2(θ+)3aλ−a − 3(θ+)4D−− .

Here Aab is the gauge field, λ−a = λaiu−
i is the gaugino and D−− = Diku−

i u−
k , where

Dik = Dki, are the auxiliary fields. This is just the irreducible contents of the N = (1, 0)
vector (gauge) multiplet.

• Having V −−, it is straightforward to define the covariant spinor and vector derivatives

∇−
a = [∇−−, D+

a ] = D−
a + A−

a , ∇ab =
1
2i
[D+

a , ∇−
b ] = ∂ab + Aab ,

A−
a (V ) = −D+

a V −−, Aab(V ) =
i

2
D+

a D+
b V −−,

[∇++, ∇−
a ] = D+

a , [∇++, D+
a ] = [∇−−, ∇−

a ] = [∇±±, ∇ab] = 0 ,

and, next, the covariant superfield strengths

[D+
a , ∇bc] =

i

2
εabcdW+d , [∇−

a , ∇bc] =
i

2
εabcdW −d ,

W+a = −1
6

εabcdD+
b D+

c D+
d V −− , W −a := ∇−−W+a ,

∇++W+a = ∇−−W −a = 0 , ∇++W −a = W+a ,

D+
b W+a = δa

b F++ , F++ =
1
4

D+
a W+a = (D+)4V −− ,

∇++F++ = 0 , D+
a F++ = 0 .

• The hypermultiplet superfield has off shell an infinite number of auxiliary fields coming
from its expansion over harmonic variables

q+A(ζ) = qiA(x)u+
i − θ+aψA

a (x) + An infinite tail of auxiliary fields , A = 1, 2 .

2.3. N = (1, 0) superfield actions
The N = (1, 0) SYM action in 6D HSS was invented by Zupnik [10]:

SSY M =
1
f2

∞∑
n=2

(−1)n+1

n
Tr

∫
d6x d8θ du1 . . . dun

V ++(z, u1) . . . V ++(z, un)
(u+

1 u+
2 ) . . . (u+

n u+
1 )

,

δSSY M = 0 ⇒ F++ = 0 ,

where 1/(u+
1 u+

2 ), . . . are the harmonic distributions defined in [11, 12].
The hypermultiplet action (with q+A in the adjoint representation of gauge group) reads

Sq = − 1
2f2Tr

∫
dζ(−4)q+A∇++q+A , ∇++q+A = D++q+A + [V ++, q+A ] ,

δSq = 0 ⇒ ∇++q+A = 0 .
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The N = (1, 0) superfield form of the N = (1, 1) SYM action is just a sum of the two actions
defined above:

S(V +q) = SSY M + Sq =
1
f2

(∫
dZLSYM − 1

2
Tr

∫
dζ(−4)q+A∇++q+A

)
,

δS(V +q) = 0 ⇒ F++ +
1
2
[q+A, q+A ] = 0 , ∇++q+A = 0 .

It respects invariance under the second hidden N = (0, 1) supersymmetry:

δV ++ = ε+Aq+A , δq+A = −(D+)4(ε−
AV −−) , ε±

A = εaAθ±a .

3. N = (1, 0) and N = (1, 1) invariants of higher dimension
The problem was how to construct higher-dimension N = (1, 1) invariants from the N = (1, 0)
gauge superfield strength W+a and the hypermultiplet superfield q+A. Firstly, it was solved by
direct calculations.

• d = 6: In the pure SYM case the invariant of this dimension is uniquely constructed as [19]

S
(6)
SY M =

1
2g2

Tr
∫

dζ(−4)du
(
F++

)2 ∼ Tr
∫

d6x[(∇M FML)2 + . . .]

Does its off-shell completion to an off-shell N = (1, 1) invariant exist? The answer is NO,
only an expression whose N = (0, 1) variation vanishes on-shell can be found. It is unique
up to two real parameters

Ld=6 =
c0
2g2

Tr
∫

dudζ(−4)
(

F++ +
1
2
[q+A, q+A ]

) (
F++ + 2β[q+A, q+A ]

)

But it vanishes on-shell by itself! Thus the non-vanishing on-shell counterterms of canonical
dimension 6 are absent, and this proves the one-loop finiteness of N = (1, 1) SYM.
Recently, d = 6 counterterms were found by the explicit quantum calculations in N = (1, 0)
superspace [15] - [17]. It was shown that they vanish off-shell, without any use of the
equations of motion, just due to vanishing of the corresponding numerical coefficients!

• d = 8: All N = (1, 0) superfield terms of such dimension in the pure N = (1, 0) SYM theory
prove to vanish on the gauge fields mass shell, in accord with the old statement of ref. [21].
Could adding the hypermultiplet terms somehow change this?
Our analysis showed that there exist NO N = (1, 0) supersymmetric off-shell invariants of
the dimension 8 which would respect the on-shell N = (1, 1) invariance.
This means that N = (1, 1) SYM theory is at least on-shell finite at two loops. It is still
an open question whether it is off- shell finite, i.e. whether the coefficients of the candidate
counterterms are vanishing, like at one loop (now under examination).

Surprisingly, the d = 8 superfield expression which is non-vanishing on shell and respects an
on-shell N = (1, 1) supersymmetry can be constructed by giving up the requirement of off-shell
N = (1, 0) supersymmetry.

An example of such an invariant in N = (1, 0) SYM is very simple

S̃
(8)
1 ∼ Tr

∫
dζ(−4) εabcdW+aW+bW+cW+d .
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Since D+
a W+b = δb

aF++, this derivative vanishes on shell, i.e. when F++ = 0 . Thus, W+a

is an analytic superfield, when disregarding the terms proportional to the equations of motion,
and the above action respects N = (1, 0) supersymmetry on shell. Also, a double-trace on-shell
invariant exists. Both such on-shell invariants admit N = (1, 1) completions.

Though the nontrivial on-shell d = 8 invariants exist, they cannot appear as counterterms
for the N = (1, 1) SYM theory. The reason is that they do not possess the off-shell N = (1, 0)
supersymmetry which the physically relevant counterterms should obey within the manifestly
N = (1, 0) invariant supergraph technique. The non-existence of such counterterms agrees with
the old component consideration of ref. [22].

Apart from the fact that such d = 8 terms cannot appear as counterterms in N = (1, 1) SYM
theory, they can appear, e.g., as finite quantum corrections to the effective Wilsonian action.
For the pure N = (1, 0) SYM theory this was observed in [23, 24].

It was desirable to work out some simple and systematic way of constructing higher-order on-
shell N = (1, 1) supersymmetric invariants. This becomes possible within the on-shell harmonic
N = (1, 1) superspace.

4. N = (1, 1) on-shell harmonic superspace
The first step in constructing such a superspace is to extend N = (1, 0) superspace to N = (1, 1)
one,

z = (xab, θa
i ) ⇒ ẑ = (xab, θa

i , θ̂A
a ).

The double set of covariant spinor derivatives appears,

∇i
a =

∂

∂θa
i

− iθbi∂ab + Ai
a , ∇̂aA =

∂

∂θ̂Aa

− iθ̂A
b ∂ab + ÂaA .

The defining constraints of N = (1, 1) SYM in this extended superspace read [18, 21]:

{∇(i
a , ∇j)

b } = {∇̂a(A, ∇̂bB)} = 0 , {∇i
a, ∇̂bA} = δb

aφiA

⇒ ∇(i
a φj)A = ∇̂a(AφB)i = 0 (By Bianchis) .

Next, we are led to define N = (1, 1) HSS with the double set of SU(2) harmonics [14]:

Z = (xab, θa
i , u±

k ) ⇒ Ẑ = (xab, θa
i , θ̂A

b , u±
k , u±̂

A)

Then we pass to the analytic basis and choose the “hatted” spinor derivatives short, ∇+̂a =
D+̂a = ∂

∂θ−̂
a

. The N = (1, 1) SYM constraints are rewritten in N = (1, 1) HSS as

{∇+
a , ∇+

b } = 0 , {D+̂a, D+̂b} = 0 , {∇+
a , D+̂b} = δb

aφ++̂ ,

[∇+̂+̂, ∇+
a ] = 0 , [∇̃++, ∇+

a ] = 0 , [∇+̂+̂, Da+̂] = 0 , [∇̃++, Da+̂] = 0 ,

[∇̃++, ∇+̂+̂] = 0 .

Here

∇+
a = D+

a + A+
a (Ẑ) , ∇̃++ = D++ + Ṽ ++(ζ̂) , ∇+̂+̂ = D+̂+̂ + V +̂+̂(ζ̂) ,

ζ̂ = (xab
an, θ±a, θ+̂c , u±

i , u±̂
A) .
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The starting point of solving these constraints is to fix, using the Λ(ζ̂) gauge freedom, the
WZ gauge for the second harmonic connection V +̂+̂(ζ̂)

V +̂+̂ = iθ+̂a θ+̂b Âab + εabcdθ+̂a θ+̂b θ+̂c ϕA
d u−̂

A + εabcdθ+̂a θ+̂b θ+̂c θ+̂d DABu−̂
Au−̂

B ,

with Âab, ϕA
d and D(AB) being some N = (1, 0) harmonic superfields.

Then the above constraints are reduced to some harmonic equations which can be explicitly
solved. The crucial point is the requirement that the vector 6D connections in the sectors of
hatted and unhatted variables are identical to each other.

As the final result, we have obtained that the first harmonic connection V ++ coincides
precisely with the standard N = (1, 0) one, V ++ = V ++(ζ), while the dependence of all other
geometric N = (1, 1) objects on the variables with “hat” proves to be strictly fixed

V +̂+̂ = iθ+̂a θ+̂b Aab − 1
3

εabcdθ+̂a θ+̂b θ+̂c D+
d q−−̂ +

1
8

εabcdθ+̂a θ+̂b θ+̂c θ+̂d [q
+−̂, q−−̂]

φ++̂ = q++̂ − θ+̂a W+a − iθ+̂a θ+̂b ∇abq+−̂ +
1
6

εabcdθ+̂a θ+̂b θ+̂c [D
+
d q−−̂, q+−̂]

+
1
24

εabcdθ+̂a θ+̂b θ+̂c θ+̂d [q
+−̂, [q+−̂, q−−̂]] .

Here, q+±̂ = q+A(ζ)u±̂
A , q−±̂ = q−A(ζ)u±̂

A and W+a, q±A are just the N = (1, 0) superfields used
previously. In the process of solving the constraints, there appeared the analyticity conditions
for q+A, as well as the full set of the superfield equations of motion

∇++q+A = 0 , F++ =
1
4

D+
a W+a = −1

2
[q+A, q+A ] .

The basic advantage of using the constrained N = (1, 1) strengths φ±+̂ for constructing
various invariants is their extremely simple transformation rules under the hidden N = (0, 1)
supersymmetry

δφ±+̂ = −ε+̂a
∂

∂θ+̂a
φ±+̂ − 2iε−̂

a θ+̂b ∂abφ±+̂ − [Λ(comp), φ±+̂] ,

where Λ(comp) is some common composite gauge parameter which does not contribute under Tr.

5. Invariants in N = (1, 1) superspace
The previous single-trace on-shell d = 8 invariant admits a simple rewriting in N = (1, 1)
superspace

S(1,1) =
∫

dudζ(−4)L+4
(1,1) , L+4

(1,1) = −Tr 1
4

∫
dζ̂(−4)dû (φ++̂)4, dζ̂(−4) ∼ (D−̂)4

δL+4
(1,1) = −2i∂abTr

∫
dζ̂(−4)dû

[
ε−̂
a θ+̂b

1
4
(φ++̂)4

]
.

The double-trace d = 8 invariant can also be easily constructed.
Now it is easy to construct the single- and double-trace d = 10 invariants possibly responsible

for the 3-loop counterterms

S
(10)
1 = Tr

∫
dZdζ̂(−4)dû (φ++̂)2(φ−+̂)2, φ−+̂ = ∇−−φ++̂ ,

S
(10)
2 = −

∫
dZdζ̂(−4)dûTr

(
φ++̂φ−+̂

)
Tr

(
φ++̂φ−+̂

)
.
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These are N = (1, 1) extensions of the N = (1, 0) SYM invariants ∼
εabcdTr

(
W+aW −bW+cW −d

)
, ∼ εabcd Tr (W+aW −b) Tr (W+cW −d).

It is notable that the single-trace d = 10 invariant admits a representation as an integral over
the full N = (1, 1) superspace

S
(10)
1 ∼ Tr

∫
dZdẐ φ++̂φ−−̂ , φ−−̂ = ∇−̂−̂φ−+̂ .

On the other hand, the double-trace d = 10 invariant cannot be written as the full integral
and so it looks as being UV protected.

This could partly explain why in the perturbative calculations of the amplitudes in the
N = (1, 1) SYM single-trace 3-loop divergence is seen, while no double-trace structures at the
same order were observed [6, 7]

However, this does not seem to be like the standard non-renormalization theorems because
the quantum calculation of N = (1, 0) supergraphs should generate invariants in the off-shell
N = (1, 0) superspace, not in the on-shell N = (1, 1) superspace. So some additional piece of
reasoning is needed to explain the absence of the double-trace divergences.

6. Quantum N = (1, 0) and N = (1, 1) SYM
For calculating various N = (1, 0) and N = (1, 1) invariants, including counterterms, there
was an urgent need to formulate self-consistent N = (1, 0) superfield perturbation techniques:
superpropagators, background field method, etc. All that was recently given in a few papers by
Buchbinder, Ivanov, Merzlikin and Stepanyantz, [15] - [17]. These methods were used to prove
the one-loop off-shell finiteness of N = (1, 1) SYM theory formulated in terms of N = (1, 0)
superfields.

The basic idea of the background field method is to split the relevant superfields into the sum
of the “background” superfields V ++, Q+ and the “quantum” ones v++, q+ ,

V ++ → V ++ + fv++, q+ → Q+ + q+ , (5)

and then to expand the action in a power series in quantum fields.
By skipping details, the N = (1, 0) , 6D SYM theory in the background field approach is

described by the three quantum superfield ghosts: two fermionic Faddeev-Popov ghosts b and
c together with the single bosonic Nielsen-Kallosh ghost ϕ, in addition to the quantum v++

and q+ superfields. We started with the model in which hypermultiplet belongs to an arbitrary
representation R of gauge group, not just to adjoint.

After integrating, in the functional integral, over quantum superfields, the following
representation for the one-loop quantum correction to the classical action is obtained

Γ(1)[V ++, Q] =
i

2
Tr ln

{ �
�

AB −2f2Q̃+m(
T AG(1,1)T

B)
m

nQ+
n

}
− i

2
Tr ln

�
�

−iTr ln(∇++)2Adj +
i

2
Tr ln(∇++)2Adj + iTr ln∇++

R ,

where subscripts Adj and R mean that the corresponding operators are taken in the adjoint
representation and that of the hypermultiplet and

�
�=

1
2
(D+)4(∇−−)2

is the covariant Box operator.
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The complete one-loop divergent part of the effective action reads

Γ(1)div[V
++, Q+] =

C2 − dR
dG

C2(R)
3(4π)3ε

tr
∫

dζ(−4)du (F++)2

− 2if2

(4π)3ε

∫
dζ(−4)du Q̃+(C2 − C2(R))F++Q+.

The coefficients of the (F++)2 and Q̃+F++Q+ terms in the divergent part of one-loop effective
action are proportional to the differences between the second order Casimir operator C2 for
adjoint representation of gauge group and the operators T (R) = dR

dG
C2(R) and C2(R) for the

hypermultiplet representation R, respectively.
Since N = (1, 1) , 6D supersymmetric Yang-Mills theory involves the hypermultiplet in

adjoint representation of gauge group, with dR = dG, C2(R) = C2, the divergent part vanishes
for this case. Hence, the N = (1, 1) SYM theory is one-loop finite, and there is no need to use
the equations of motion to prove this property.

For any other choice of the hypermultiplet irrep, it does not vanish even on shell, so in general
the theory is divergent already at one loop. The pure N = (1, 0) SYM corresponds to C2(R) = 0
and the one-loop divergency is vanishing on the equation of motion F++ = 0, in accord with
the old result by Howe and Stelle [21].

7. Summary and outlook
• Off-shell N = (1, 0) and on-shell harmonic N = (1, 1) , 6D superspaces can be efficiently
used to construct higher-dimensional invariants in the N = (1, 0) and N = (1, 1) SYM
theories.

• N = (1, 1) SYM constraints were solved in terms of harmonic N = (1, 0) superfields. This
allowed to explicitly construct the full set of the superfield dimension d = 8 and d = 10
invariants with N = (1, 1) on-shell supersymmetry.

• All d = 6 N = (1, 1) invariants are at least on-shell vanishing, proving the UV finiteness of
N = (1, 1) SYM at one loop.

• The off-shell d = 8 N = (1, 1) invariants are absent. Assuming that the N = (1, 0)
supergraphs yield integrals over the full N = (1, 0) harmonic superspace, this means the
absence of two-loop counterterms.

• Two d = 10 invariants were explicitly constructed as integrals over the whole N = (1, 0)
harmonic superspace. The single-trace invariant can be rewritten as an integral over
N = (1, 1) superspace, while the double-trace one cannot. This property combined with an
additional reasoning could explain why the double-trace invariant is UV protected.

• The quantum techniques for N = (1, 0) SYM theory was worked out and used to show that
N = (1, 1) SYM theory is one-loop finite off shell, without need in eqs. of motion.

7.1. Further lines of study
In conclusion, we outline some further possible lines of study:

(a) To construct the next d ≥ 12 invariants in the N = (1, 1) SYM theory with the help of
the on-shell N = (1, 1) harmonic superspace techniques (Buyukli & Ivanov, in preparation);

(b) To reproduce higher-dimensional invariants from the quantum superfield perturbation
theory, to examine whether N = (1, 1) SYM theory is two-loop finite off shell (Buchbinder et
al, in preparation);
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(c) To work out the quantum superfield perturbation theory directly in N = (1, 1) double-
harmonized superspace;

(d) To apply the same methods for constructing the Born-Infeld action with manifest off-shell
N = (1, 0) and hidden on-shell N = (0, 1) supersymmetries. To check the hypothesis that such
an action could be identified with the full quantum effective action of the N = (1, 1) SYM;

(e) Applications in supergravity?
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