ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012048 doi:10.1088/1742-6596/1525/1/012048

Speeding HEP Analysis with ROOT Bulk I/0

B Bockelman', Z Zhang? and O Shadura?
! Morgridge Institute for Research, Madison, WI 53715, USA
2 Holland Computer Center, University Nebraska — Lincoln, Lincoln, NE 68588, USA

E-mail: bbockelman@morgridge.org

Abstract. Distinct HEP workflows have distinct I/O needs; while ROOT I/O excels at
serializing complex C++ objects common to reconstruction, analysis workflows typically have
simpler objects and can sustain higher event rates. To meet these workflows, we have developed
a “bulk I/O” interface, allowing multiple events’ data to be returned per library call. This
reduces ROOT-related overheads and increases event rates — orders-of-magnitude improvements
are shown in microbenchmarks.

Unfortunately, this bulk interface is difficult to use as it requires users to identify when
it is applicable and they still “think” in terms of events, not arrays of data. We have
integrated the bulk I/O interface into the new RDataFrame analysis framework inside ROOT.
As RDataFrame’s interface can provide improved type information, the framework itself can
determine what data is readable via the bulk IO and automatically switch between interfaces.
We demonstrate how this can improve event rates when reading analysis data formats, such as
CMS’s NanoAOD.

1. Introduction
LHC experiment event data models are very complex and slow to read. The problem is that
experiments do not care because input I/O time is minimal compared to the reconstruction
process. Another critical factor is that experiments care about volume because they have lots
of expensive disks.

For analysis case, the situation is different, since the data model is often more straightforward.
The same case is about data volume used during the analysis phase, and there will be generated
smaller a data volume and often used from SSD (NVMe). It causes minimal CPU costs and
allows to iterate over events many times quickly.

ROOT 10 is an incredibly flexible format. It can easily store the complex objects that
correspond to the experiment’s data. In the same time, ROOT has high overheads for the
serialization of simple objects.

2. Bulk IO

The typical mechanism for iterating through data in a TTree is a handwritten for-loop. ROOT
uses a API shown in Listing |2| to read objects from a branch (TTree is a structure that contains
one or multiple TBranches). This function runs in two steps. First, it searches the underlying
storage medium for the basket where the event is located and then read the basket into a
memory buffer. The TBasket is the data structure that represents the in-memory buffer. ROOT
decompresses the buffer and put the uncompressed buffer in so-called “kernel” space. In the

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012048 doi:10.1088/1742-6596/1525/1/012048

second step, once the basket appears in memory, GetEntry deserializes the requested event from
the kernel-space buffer and copy it to user-space buffer.

Int_t TBranch::GetEntry(Long64_t entry)

Listing 1: GetEntry in TBranch

When user application is computationally expensive, the cost of library calls, frequently
deserializing objects and copying data between memory buffers are amortized to effectively
nothing. To overcome such overheads, we introduce a new interface for ROOT to copy all
events in an on-disk TBasket directly to a user-provided memory buffer. For the simplest cases
- primitives and C-style arrays of primitives, the serialization can be done without a separate
buffer or “fixing up” pointer contents. The user can request the serialized data or deserialized
data to be delivered to the user buffer. By requesting the serialized data directly and deserializing
directly in the event loop, the user can avoid an expensive scan from main memory.
Pragmatically, the user will not implement code for deserializing data themselves: rather, we
have provided a header-only C++ facade around the data, allowing the user to work with a
proxy object. This allows the compiler to inline the deserialization code in the correct place.

3. Implementation

Bulk IO interface is a set of APIs that are built in the existing ROOT IO framework. The user
can choose between regular APIs and Bulk IO APIs. We implement Bulk TO in three common
use cases: TBranch, TTreeReader and RDataFrame. We discuss about our interface design and
integration in this section.

3.1. Bulk IO in TBranch

Listing shows Bulk IO API in TBranch in which two input arguments need to be parsed
into the function: entry and user_buf. the entry defines an event index number indicating which
event the function is going to read. The user_buf parses an user-space TBuffer structure as
a reference into the function. In the end of the function call, the user_buf should contain the
whole basket of data that contains the inquiry event.

Int_t TBranch::GetBulkEntries (Long64_t entry, TBuffer &user_buf)

Listing 2: Bulk API in TBranch
It is worthwhile to mention that GetBulkEntries deserializes events on-the-fly when the data
read into the user_buf. Thus no further manipulation is required for user applications. An user
can later on access an event in the basket using the code snippet shown in Listing [2| where T is
the object type and idz is the event index in the user_buf.

*reinterpret_cast <Tx>(user_buf.GetCurrent ()) [idx]

Listing 3: Loop over user_buf

3.2. Bulk 10 in TTreeReader

TTreeReader is an interface for an user to access simple object (primitives, arrays, etc.) in a
ROQT file. TTreeReaderValue is the interface to access primitives and TTreeReaderArray is the
interface to access arrays (each event is either an fixed-size or varialbe-size array). Listing
shows a code sample that uses T'TreeReader Value to read events (floats) from a file. TTreeReader
internally relies on GetFEntry to access events.

We design a Bulk API - GetEntriesSerialized in TBranch shown in Listing We introduce
a new interface - T'TreeReaderFast that uses GetEntriesSerialized to function as TTreeReader.
Unlike GetBulkEntries, GetEntriesSerialized does not deserialize events while reading basket

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012048 doi:10.1088/1742-6596/1525/1/012048

into user_buf. Instead, it waits until the user calls *myF. Dereference operator invokes the
appropriate deserialization code.

TTreeReader myReader ("T", hfile);
TTreeReaderValue<float> myF (myReader, "myFloat");
Long64_t idx = O;
Float_t sum = 1;
while (myReader.Next()) A{

sum += *myF;

}

Listing 4: Access to Events using TTreeReader

Int_t TBranch::GetEntriesSerialized(Long64_t entry, TBuffer &user_buf)

Listing 5: Bulk API in TTreeReaderFast

3.8. Bulk 10 in RDataFrame

During our work, Bulk IO is also integrated into RDataFrame [2] which is a python Pandas
[4] like data analysis framework for ROOT users. RDataFrame provides a proxy interface -
RDataSource (RDS). It allows RDF to read arbitrary data formats such as TTree, CSV, etc..

Int_t TBranch::GetEntriesSerialized (Long64_t entry,
TBuffer &user_buf, TBuffer *count_buf)

Listing 6: Bulk API in RDataFrame
We define a new Bulk API GetEntriesSerialized shown in Listing The only difference from
Listing (] is that there is one more argument count_buf. Listing [4] actually calls Listing and
set the count_buf as nullptr. count_buf is used to store array length information when events
in RDataFrame are arrays. Variable-size arrays need such information to deserialize the butter
into multiple individual arrays.

4. Evaluation

4.1. Experiments

All tests are conducted on a desktop Intel i5 4-Core @ 3.2GHz. A TTree with 100 million
float values is read with different APIs. We tested three different use cases: GetBulkEntries,
TTreeReaderFast and RDataSource.

4.2. Results

Figure [I] shows the time spent on iterating all events in the T7Tree with GetEntry and
GetBulkEntries. Figure [2] shows the read time between TTreeReader and TTreeReaderFast.
As shown in the figures, Bulk 10 spends 10+ times less than GetEntry and T7TreeReader. Bulk
IO in both use cases spends similar time on reading events. TTreeReader interface spends
more than 3 times reading events than GetEntry due to the overheads of TTreeReader itself
(TTreeReader internally calls GetEntry).

Figure |3 shows the results of Bulk IO in RDataFrame. In the figure, the standard RDF shows
the performance by using regular RDataFrame function calls. Bulk RDF and Bulk RDS show
the result of Bulk APIs. The difference is that, Bulk RDS test detaches RDataSource from
RDataFrame stack and run the test directly through RDS function calls. As shown in Figure
Bulk RDS outperforms standard RDF by more than 2 times. In addition, RDataFrame
has extra overheads compared to RDataSource (RDataFrame internally relies RDataSource),
therefore Bulk RDF runs slower than Bulk RDS, but still outperforms standard RDF.

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012048 doi:10.1088/1742-6596/1525/1/012048

Bulk I/O Performance on TBranch

3.0
EEE Bulk 10
EEE TBranch GetEntry 2.37
w
< 207
£
|_
®
o 1.0
o
0.16
0 7
Bulk 10 TBranch GetEntry

Figure 1: Performance between GetEntry and GetBulkEntries.

Bulk I/O Performance on TTreeReader

mEm Bulk IO 8.11

8.0 HEN TIlreeReader
)
T 6.0
£
|_
< 4.0
[{v]
(D)
o

2.0

0 0.19
Bulk 10 TTreeReader

Figure 2: Performance between TTreeReader and TTreeReaderFast.

Bulk I/O Performance on RDataFrame

10.07 EEE Standard RDF
7.22 ¢ Bulk RDF
= 8.01 EEE Bulk RDS
£ 6.0 5-\13:
= .
T 40 N\
E 4.0 § 2.76
2.0 §
N

Ostandard RDF Bulk RDF Bulk RDS

Figure 3: Performance improvements on RDatakFrame with Bulk 10O.

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012048 doi:10.1088/1742-6596/1525/1/012048

Acknowledgments

This work was supported by the National Science Foundation under Grant ACI-1450323. This
research was done using resources provided by the Holland Computing Center of the University
of Nebraska.

References

[1] Brun R and Rademakers F “ROOT - An object oriented data analysis framework”, Nucl. Instr. Meth. Phys.
Res. 389 (1997) 81-86

[2] Guiraud E, Naumann A and Piparo D “RDataFrame: functional chains for ROOT data analyses”, (2017)
doi: 10.5281/zenodo.260230. url: https://doi.org/10.5281/zenodo.260230.

[3] Bockelman B, Zhang z and Pivarski J “Optimizing ROOT IO For Analysis”, J. Phys.: Conf. Ser., 1085
(2018) 032012

[4] Mckinney W “pandas: a Foundational Python Library for Data Analysis and Statistics”, PyHPC 2011 :
Python for High Performance and Scientific Computing, (2011)

