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Figure 1 – Intrusion de la théorie des cordes dans la culture populaire.
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Résumé

Cette thèse est consacrée à l’étude d’applications de la théorie des cordes dans deux domaines
de la physique fondamentale : la physique des particules et la cosmologie. Le principe unificateur
de nos deux travaux est l’utilisation en théorie des cordes du mécanisme, initialement introduit
en théorie des champs, de brisure spontanée de (super)symétrie.
Nous commençons par une présentation générale de la théorie des cordes, principalement focalisée
sur les concepts que nous manierons.
Nous introduisons ensuite notre premier travail, dans lequel nous exhibons une dualité de
l’espace des vides des théories de supercordes hétérotiques N = 1, qui relie les représentations
spinorielles et vectorielles du groupe de grande unification.
Dans un second travail, nous nous intéressons cette fois à la modélisation par la théorie des
supercordes d’une évolution cosmologique à température non nulle et en présence d’une échelle
de brisure de supersymétrie. Nous donnons également des arguments pour une stabilisation des
divers modules de compactification.

Summary

This thesis is devoted to the study of some applications of superstring theory in cosmology and in
particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry
breaking mechanism.
Our manuscript starts with a general overview of string theory, where the emphasis is put on
the aspects that will be important throughout our work.
We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1
heterotic string theory, exchanging the vectorial and spinorial representations of the grand
unified gauge group.
In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in
the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of
the compactification moduli.

Mots-clés : Théorie des cordes, Grande unification, Dualités, Supergravité, Cosmologie.
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Chapitre 1

Introduction

1.1 Pourquoi la théorie des cordes ?
La physique théorique du 20ème siècle a vu le développement des deux théories majeures utilisées
à l’heure actuelle pour expliquer le monde qui nous entoure. La première est la mécanique
quantique, née dans les années 1920 sous l’influence de nombre de physiciens majeurs, qui
évolua plus tard en théorie quantique des champs. A l’aide de cette théorie, on décrit avec une
très grande précision l’électromagnetisme (électrodynamique quantique), l’interaction faible
(dans le modèle de Glashow-Salam-Weinberg, cette dernière interaction est unifiée à l’électro-
magnétisme ; toutefois à basse énergie cette unification est brisée), et enfin l’interaction forte
(chromodynamique quantique). L’ensemble de ces trois édifices constitue le modèle standard,
théorie présentant une symétrie de jauge SU(3)C × SU(2)L × U(1)Y .
La deuxième théorie majeure décrit la quatrième interaction, la gravitation. Il s’agit de la
relativité générale d’Einstein, développée en 1915, une théorie essentiellement géométrique dans
laquelle l’espace-temps est courbé par la matière, et la chute libre n’est rien de plus que la
propagation suivant les géodésiques de la géométrie de l’univers. Ces deux théories ont été
vérifiées à de très grandes précisions par diverses observations, allant de la physique des particules
à la cosmologie ; leurs applications pratiques sont extrêmement nombreuses.
Toutefois, cet état des choses n’est pas entièrement satisfaisant. En effet, il s’avère que ces
deux théories ne sont pas compatibles : si on essaie de modéliser l’interaction gravitationnelle
dans le cadre de la théorie quantique des champs, en quantifiant l’action d’Einstein-Hilbert, on
obtient une théorie non renormalisable du fait de la localité de l’interaction gravitationnelle. La
théorie quantique des champs associée présente alors des quantités divergentes dans le régime
ultra-violet, et est de ce fait mal définie et non prédictive.

Or, l’unification de ces deux théories est souhaitable pour plusieurs raisons. Premièrement, même
si la relativité générale est assez précise pour décrire la majorité des interactions gravitationnelles
régissant notre univers, il existe des phénomènes, qui, de par les échelles d’énergie auxquelles ils
ont lieu, requièrent un traitement à la fois relativiste et quantique. On peut notamment citer les
trous noirs, qui sont devenus au fil du temps une des applications les plus prisées en théorie des
cordes. Dans ce dernier champ, la théorie des cordes a enregistré un de ses grands succès en
reproduisant l’entropie de Bekenstein-Hawking des trous noirs par le comptage d’une certaine
classe d’états BPS [SV96] (le lecteur pourra trouver un panorama général du traitement des
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trous noirs en supergravité dans [Mic08]). Les cordes pourraient également permettre de poser
un nouveau regard sur le paradoxe de l’information, un autre symptôme de l’incompatibilité
entre mécanique quantique et relativité générale.
Un second exemple est la cosmologie au voisinage du Big Bang, et plus généralement aux
premiers stages de la vie de l’Univers ; en effet, à cette époque, les phénomènes quantiques
deviennent prépondérants, et la compréhension des grandes structures de l’univers actuel passe
par une compréhension des fluctuations quantiques primordiales.

Deuxièmement, le modèle standard présente une certaine quantité d’arbitraire, allant du choix
du groupe de jauge à la vingtaine de paramètres libres additionnels qu’il faut se donner pour
fonder une théorie s’accordant aux données expérimentales. Un premier pas dans la réduction de
ce nombre de paramètres est fourni par les théories de grande unification. Ces théories supposent,
en se basant sur la concourance des trajectoires des constantes de couplage sous le groupe de
renormalisation dans le cadre du modèle standard supersymétrique minimal, que le groupe de
jauge à basse énergie SU(3)C ×SU(2)L×U(1)Y est issu de la brisure d’un groupe de jauge plus
grand par mécanisme de Higgs (de même que SU(2)L × U(1)Y est brisé en U(1)em par le boson
de Higgs). Des candidats naturels pour ces groupes unifiés sont SU(5), SO(10) et E6.
On peut alors se demander quelles raisons physiques peuvent être à l’origine du choix de ce
groupe de jauge, et d’autres caractéristiques comme le nombre de générations. La théorie des
champs ne prétend pas fournir de réponses à ces questions : elle modélise les interactions en les
supposant connues. La théorie des cordes, au contraire, est formulée dans un cadre extrêmement
restrictif, ce qui lui fournit un très fort pouvoir prédictif. Ainsi, dans les modèles de cordes
hétérotiques à dix dimensions présentés dans la section 3.4, il n’existe que deux groupes de
jauge rendant la théorie à dix dimensions consistante. Il se trouve alors que l’une de ces deux
possibilités conduit naturellement, après réduction de la théorie à quatre dimensions, aux groupes
de grande unification sus-cités. D’autres caractéristiques comme le nombre de générations sont
contrôlés par la géométrie de l’espace interne, qui obéit ici encore à des restrictions fortes.

Enfin, la théorie des cordes est formulée dans le cadre de la supersymétrie (parfois amicalement
dénommée SUSY dans la suite de ce mémoire). Cette symétrie suppose que les fermions et les
bosons s’arrangent en paires ; autrement dit, tout fermion admet un partenaire bosonique (et
inversement). Cette hypothèse semble assez hardie à première vue puisqu’on n’a jamais observé
de partenaires supersymétriques de particules connues ; elle est pourtant attrayante à plusieurs
niveaux. Elle permet d’abord de rendre compte de l’existence de la hiérarchie observée entre
l’échelle de brisure électro-faible donnée par la masse du Higgs et l’échelle de grande unification.
Dans le cadre des théories supersymétriques, cette hiérarchie doit toujours être introduite à
la main ; elle est cependant préservée sous le processus de renormalisation, dans le cadre d’un
mécanisme qui ne repose plus sur des hypothèses de réglages fins parfois peu physiques. Elle
rend ensuite très précise la convergence des trajectoires des constantes de couplage, qui n’était
qu’approximative dans le cadre de théories non supersymétriques. Enfin, elle fournit un candidat
naturel de constituant de la matière noire en la personne du neutralino.

La théorie des cordes qui a vu le jour a la fin des années 1960 sous le nom de modèles duaux avait
pour but de modéliser les interactions fortes, avant que la chromodynamique quantique (QCD),
théorie de jauge non-abélienne basée sur le groupe SU(3), n’apparaisse comme le modèle correct.
Toutefois, en 1974, Scherk et Schwarz [SS74] remarquèrent que cette théorie quantique modélisait
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correctement une particule de spin 2 obéissant aux équations du mouvement dérivées de l’action
d’Einstein. On tenait ainsi un candidat de graviton, et une possible théorie de gravité quantique.
Cette théorie n’est toutefois valable qu’au niveau perturbatif. Au cours des années, plusieurs
incursions majeures dans le domaine non-perturbatif de la théorie ont été réalisées, en exploitant
l’existence de dualités reliant les différentes théories consistantes. Ce réseau de dualités a donné
naissance au concept de M-théorie, théorie fondamentale définie à onze dimensions, et dont les
cinq théories des cordes à dix dimensions ne seraient que les manifestations en divers points de
l’espace des modules.
Nous donnons dans la section suivante les principes de base de la théorie des cordes ; nous ne
poursuivrons pas d’étude non-perturbative au cours de cette thèse.

1.2 Principe et enjeux
Le postulat de départ de la théorie des cordes est de remplacer les particules de la théorie
quantique des champs, qui sont des points matériels sans extension, par des cordes, c’est-à-dire
des objets possédant une extension spatiale dans une direction. Ces cordes peuvent être ouvertes
ou fermées ; les excitations élémentaires, donnant naissance aux états massifs de la théorie,
seront données par des oscillations de la corde, quantifiées de manière similaire à l’oscillateur
harmonique standard en mécanique quantique.
Le traitement perturbatif qui se fait en théorie des champs en sommant sur les diagrammes de
Feynman va ici se faire en sommant sur les diagrammes de diffusion entre états de cordes, qui
vont maintenant se représenter comme des surfaces (voir figure 1.1). Ces surfaces peuvent être à
bord (cas des cordes ouvertes) ou sans bord (cas des cordes fermées) ; nous verrons plus tard que
cette caractéristique de la théorie nous permet de la considérer comme une théorie des champs
en deux dimensions, où “l’espace-temps” associé n’est autre que cette surface de propagation des
états de cordes, que l’on appelle feuille d’univers. La notion de boucle en théorie des champs est
ici remplacée par la notion de genre des surfaces sur lesquelles on va sommer. Nous verrons que
le développement perturbatif s’organise naturellement selon le nombre de boucles des surfaces
considérées.

g

Aµ

e−

e−

Figure 1.1 – Exemple d’interaction à 3 points en théorie des champs ; interaction à 3 points en
théorie des cordes fermées.

D’un point de vue heuristique, notons que l’interaction entre des états de cordes n’a plus lieu
en un point, comme c’était le cas en théorie des champs. Ce formalisme va donc “délocaliser”
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l’interaction, en introduisant une longueur minimale dans la modélisation des interactions, qui
est la longueur de la corde ; on prend cette longueur de l’ordre de la longueur de Planck

lP =
√

~G
c3 ∼ 10−35 m, (1.1)

échelle à laquelle on attend que les corrections quantiques à la gravitation deviennent pré-
pondérantes. Cette longueur minimale joue un rôle de cut-off ultra-violet, régularisant ainsi
naturellement les divergences qui rendaient la gravité quantique inutilisable.

1.3 Plan de la thèse
Cette thèse a pour but, dans un premier temps, de présenter la théorie des cordes au lecteur
étranger à cette discipline. Le lecteur devra toutefois être muni d’un bagage conséquent en
physique théorique, faute de quoi le manuscrit atteindrait une taille indécente. Il est toutefois
hors de question d’englober tous les aspects de la théorie des cordes actuelles ; nous choisissons
donc naturellement de présenter les prérequis à la bonne compréhension des travaux effectués
au cours de mes quatre années.

Nous commençons donc par quelques prérequis. Le premier concerne les théories de jauge,
ingrédient fondamental de la physique théorique qui repose sur le formalisme des algèbres de
Lie et les nombreux théorèmes régissant leur structure et leur classification. Nous détaillons
ensuite quelques aspects des théories de supergravité. Ces théories, basées sur le jaugeage de
la supersymétrie, ont été construites au cours de la seconde moitié des années 1970 ; elles
apparaissent en théorie des cordes comme des limites de basse énergie. Là encore, les hypothèses
de consistance fourniront quelques contraintes fortes sur la physique émergeant de ces théories.

Nous construisons ensuite la première quantification de la corde bosonique, puis de la supercorde.
Deux contraintes vont fortement réduire le nombre de théories des cordes consistantes : l’inva-
riance conforme de la théorie formulée sur la feuille d’univers, et l’invariance modulaire de la
fonction à une boucle. Nous verrons que la dimension de l’espace-temps, de manière spectaculaire,
est fixée par la construction, et que l’invariance modulaire implique qu’il n’existe que cinq
théories consistantes. Nous verrons encore comment apparaît naturellement la régularisation
ultra-violette, dont l’absence condamnait les premières tentatives de gravité quantique.

Nous nous pencherons ensuite sur la définition d’une théorie des cordes à quatre dimensions.
Deux pistes sont possibles, dont nous discuterons finalement les similitudes : compactifier six
dimensions d’espace sur une variété interne de type Calabi-Yau ou de type orbifold, ou combler
l’anomalie conforme existant dans une théorie à quatre dimensions par des degrés de liberté
internes. Une des propriétés fondamentales inhérente à toute compactification est la possibilité
de générer des brisures de symétrie. Scherk et Schwarz furent parmi les pionniers de l’application
de ce mécanisme à la supersymétrie dans les fondateurs [SS79a, SS79b] ; leurs idées se prolongent
naturellement en théorie des cordes sous la forme d’orbifolds et de lignes de Wilson, dont nous
vanterons les mérites.
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Nous nous étendrons particulièrement sur les mécanismes de brisure spontanée d’une symétrie,
qu’elle soit une supersymétrie ou une symétrie de jauge, au moyen d’orbifolds à action libre ;
ce mécanisme sera au cœur des deux facettes de nos travaux. Munis d’un arsenal théorique
conséquent, nous aborderons ensuite les travaux originaux effectués pendant cette thèse.

Le premier travail porte sur des aspects phénoménologiques des modèles de supercordes hété-
rotiques. On attend de modèles réalistes qu’ils possèdent une supersymétrie N = 1 à quatre
dimensions. Cette supersymétrie s’obtient naturellement en compactifiant la théorie hétérotique
sur une variété vérifiant certaines contraintes d’holonomie ; cette procédure a aussi pour effet
de briser le groupe de jauge existant à dix dimensions, et nous dirige naturellement vers des
groupes de jauge réalistes en vue de la construction de théories grand-unifiées.
Pour l’étude du spectre de matière, il est équivalent de se placer en des points particuliers
de l’espace des modules, là où la géométrie de la variété dégénère et admet des singularités.
Paradoxalement, la théorie des cordes correspondante est toujours définie en de tels points, et
beaucoup plus facile à étudier.
Nous construirons alors nos modèles grâce au formalisme de la construction fermionique. Ce
formalisme, par son aspect systématique, ouvre la voie à une classification de modèles réalistes
selon plusieurs aspects de leur spectre (anomalies, nombre de familles, . . .). Cette classification
fut effectuée dans une série d’articles précédents [FKNR04, FKR07a, FKR07b, FKR08]. Dans les
deux derniers articles de cette série, une dualité fut exposée, reliant le nombre de représentations
vectorielles et le nombre de représentations spinorielles de SO(10), le groupe de jauge émergeant
naturellement de cette classe de modèles ; une preuve formelle en fut donnée.
Nous reprenons ce mécanisme et en donnons une nouvelle preuve, basée sur l’étude de la brisure
spontanée de symétrie de jauge E6 → SO(10). Nous interprétons les ingrédients de la classe de
modèles de fermions libres comme des orbifolds à action libre ; l’étude des coefficients définissant
un modèle, dits coefficients de projection GSO généralisée, nous permet de déterminer lesquels
de ces orbifolds brisent la symétrie de jauge étendue. Il est alors aisé de construire les coefficients
définissant un modèle dual. Nous nous intéressons par la suite à quelques propriétés intéressantes
de cette classe de construction. Il est notamment possible de construire des modèles auto-duaux ;
cette classe contient des éléments dans lesquels toutes les composantes U(1) du groupe de jauge
sont dépourvues d’anomalies.

Dans la deuxième partie de cette thèse, nous étudions des solutions cosmologiques issues de la
théorie des cordes. À l’aide d’une compactification de Scherk-Schwarz du temps euclidien, nous
nous intéressons à des théories des cordes à température finie, dans lesquelles la supersymétrie
est de plus spontanément brisée par un mécanisme de Scherk-Schwarz sur une dimension interne
dont on note le rayon R5. Le schéma précis de cette brisure est décrit par une R-charge a+Q,
dont l’effet est de pondérer d’un signe ± la contribution des différentes paires boson/fermion
dans le potentiel effectif.
La théorie de supergravité correspondant à la limite à basse énergie de cette théorie des cordes
est alors corrigée à l’ordre d’une boucle par des effets thermiques et quantiques. Nous calculons
explicitement ces effets, sous certaines approximations que nous motiverons. Notamment, la
structure “sans-échelle” partagée par toutes les réductions dimensionnelles de théories des cordes
est brisée par la prise en compte de ces effets.
Nous cherchons alors à faire correspondre à cette supergravité déformée une évolution cosmo-
logique. Pour cela, nous identifions les équations de la supergravité aux équations d’Einstein
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donnant l’évolution d’un univers de Friedmann-Robertson-Walker. Ceci passe notamment par
l’identification du module sans échelle au dilaton. Alors que l’évolution de la température au
cours du temps est donnée par la condition adiabatique, nous postulons, mus par des considé-
rations dimensionnelles et des travaux antérieurs, que le rapport de la température et de la
masse du gravitino est constant. Cette contrainte est non-triviale ; elle restreint le choix de la
R-charge définissant la brisure selon la dimension R5. Le calcul du potentiel dans un cas simple
donne des termes de rétroaction ayant la forme de termes de radiation ; nous nous intéressons
ensuite à la génération possible de termes ayant la forme d’une courbure, puis d’une constante
cosmologique. Le potentiel ne dépend dans un premier temps que du module sans échelle, qui
n’est donc plus plat : nous présentons enfin la forme des évolutions cosmologiques associées à
de tels scénarios. Les termes du potentiel effectif qui dépendent des modules spectateurs sont
par contre exponentiellement petits : ces modules restent plats. Toutefois l’apparition, dans le
contexte de la supergravité, de termes de brisure douce, stabilise ces modules spectateurs. Le
module sans échelle sera lui aussi stabilisé à la transition électro-faible, au-delà de laquelle le
système sort du cadre de nos approximations.
Nous considérons enfin la généralisation de ce modèle à la présence de deux rayons brisant la
supersymétrie, notés R4 et R5. Ce modèle est défini sous des contraintes assez similaires au
cas à un seul rayon. Il se pose alors un nouveau problème : le module de structure complexe
R5/R4 participe à la brisure de supersymétrie, et le potentiel effectif à une boucle lui confère
une dynamique non-triviale. Nous donnons des modèles explicites dans lesquels ce module est
stabilisé, ce qui empêche ce nouveau modèle d’évoluer dynamiquement vers le cas à un seul
rayon étudié précédemment.
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Chapitre 2

Quelques prérequis

2.1 Algèbres de Lie et théories de jauge
La notion de symétrie d’un système est l’un des piliers de la physique moderne. En effet,
connaître les transformations par lesquelles un système est laissé invariant permet de déduire des
propriétés non triviales dudit système. De même, imposer une symétrie lors de la modélisation
d’interactions permet de fortement contraindre la forme de la théorie obtenue : ainsi, la forme
des interactions doit être invariante, et le contenu en champs de la théorie doit s’arranger en
représentations du groupe de symétrie considéré.
La majorité des groupes de symétrie que nous allons rencontrer sont des groupes de Lie. Cette
structure spécifique ouvre la voie à de nombreux résultats extrêmement intéressants.

Groupes et algèbres de Lie

On ne donnera ici qu’une brève introduction à la théorie des groupes et algèbres de Lie, en se
restreignant aux propriétés qui nous seront utiles par la suite. On pourra notamment consulter
[DFMS97] ou [FSS00] pour de plus amples détails.
Un groupe de Lie est défini comme une variété munie d’une structure de groupe, tel que les
deux opérations associés à cette structure de groupe

(g1, g2) 7→ g1g2,

g 7→ g−1,

soient différentiables. Notamment, les groupes de rotation SO(n), et plus généralement les
groupes SO(n,m) préservant la métrique de signature (n,m) sont des groupes de Lie.
Si G est un groupe de Lie, on peut définir en tout point g de G l’espace vectoriel tangent à G
en g, que l’on notera Tg. On définit alors l’algèbre de Lie associée au groupe G, notée g comme
l’espace tangent à G en l’identité :

g = Te. (2.1)

Ainsi, l’algèbre de Lie est formée par les transformations infinitésimales de G, ce qui veut encore
dire que g décrit G au voisinage de l’identité. Par exemple, si G est le groupe de Lie des matrices
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orthogonales n× n réelles de déterminant 1

G = SO(n), (2.2)

alors l’algèbre de Lie associée est l’ensemble des matrices n× n réelles antisymétriques

so(n) = {M ∈Mn(R) | tM = −M}. (2.3)

À partir de la donnée d’une algèbre de Lie g, il est possible de remonter à la structure du groupe
G lorsque celui-ci est simplement connexe (dans le cas contraire, on n’arrive à reconstituer que
la composante connexe de G contenant l’élément neutre). Dans le cas simplement connexe, on
montre que

G = exp(g). (2.4)

Par exemple, on note que O(n) et SO(n) ont mêmes algèbres de Lie ; par contre l’exponentiation
de so(n) ne reconstitue que SO(n), qui est la composante connexe de O(n) contenant l’identité.

À partir de la définition comme espace tangent, on peut montrer qu’il existe sur g une application
bilinéaire antisymétrique, appelée crochet de Lie ou commutateur :

[ , ] : g× g −→ g (2.5)
(X, Y ) 7→ [X, Y ]

qui vérifie l’identité de Jacobi :

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0. (2.6)

Si on note (Ja)1≤a≤n des générateurs formant une base de g, on a les relations de commutation
suivantes

[Ja, J b] =
∑
c

ifab c J
c. (2.7)

Les constantes fab c sont appelées constantes de structure de l’algèbre g. Elles caractérisent de
manière unique la structure de l’algèbre.
Une des bases de g parmi les plus utiles à considérer est la base de Cartan-Weyl. On commence
par définir la sous-algèbre de Cartan de g : c’est la sous-algèbre commutative maximale de
g. On note (Hi)1≤i≤r une base de générateurs de cette sous-algèbre ; r est la dimension de la
sous-algèbre de Cartan et est appelé rang de g. Ces générateurs étant hermitiens et commutant
deux à deux, on en déduit par l’identité de Jacobi que les endomorphismes de g Adhi : g 7→ [h, g]
commutent aussi deux à deux. Ils sont donc sont simultanément diagonalisables : ceci nous
permet de compléter la famille (hi) en base de g par des éléments (Eα), appelés opérateurs
d’échelle, qui sont des vecteurs propres simultanés des applications Adhi . Ainsi, on a :

[H i, Eα] = αiEα. (2.8)

Les vecteurs à r composantes (αi)1≤i≤r ainsi définis, que l’on notera de manière condensée α,
sont appelés racines de l’algèbre. L’algèbre de Lie est en fait entièrement spécifiée par l’ensemble

16



de ses racines. Ainsi, pour classifier les algèbres de Lie simples 1, il suffit de classifier les systèmes
de racines. On trouve 4 familles infinies d’algèbres (on a noté dans la seconde colonne le groupe
de Lie associé G) :

g G

An SU(n+ 1)
Bn SO(2n+ 1)
Cn Sp(2n)
Dn SO(2n)

Table 2.1 – Familles infinies d’algèbres de Lie simples.

ainsi que cinq algèbres exceptionnelles : E6, E7, E8, F4, G2.

Représentations des algèbres de Lie et théories de jauge

Une algèbre de Lie est a priori un ensemble abstrait, caractérisé par ses constantes de structure.
Une représentation d’une algèbre de Lie est en quelque sorte une “incarnation” de cette algèbre
par son action sur un espace vectoriel. Plus précisément, si E est un espace vectoriel, on appelle
représentation linéaire d’un groupe G un morphisme de groupes continu de G dans GL(E) :

T : G −→ GL(E) (2.9)
g 7→ T (g).

En d’autres termes, on représente chaque élément de G par un isomorphisme d’un espace
vectoriel V . On appelle alors dimension de la représentation la dimension de l’espace vectoriel E.
Ainsi, le groupe de Lie SO(n) admet une représentation de dimension n : T (g) est simplement
donné par l’écriture matricielle de g. Cet exemple trivial ne doit cependant pas faire oublier
qu’un groupe admet plusieurs représentations, même si sa définition même lui associe souvent
naturellement une de ses représentations. Ainsi, le groupe SU(2) des matrices complexes unitaires
de déterminant 1 admet des représentations de dimension 2j + 1 quelque soit l’entier j ≥ 0.
La classification de ces représentations est essentielle en ce qu’elle permet de prévoir le contenu
d’une théorie : si une théorie admet une symétrie sous la forme d’un groupe de Lie G, son spectre
doit s’arranger en représentations de G. Ce point permet notamment d’aiguiller le théoricien
dans sa recherche de groupes de jauge unifiés ; nous reviendrons sur ce point dans le chapitre 5.

Pour définir la notion de représentation sur une algèbre de Lie, on note que si g ∈ g, alors le
groupe unidimensionnel {exp(gt)|t ∈ R} est un sous-groupe de G. Ceci nous permet d’étendre
la définition de T à g, par

T (g) = dT (egt)
dt

∣∣∣∣∣
t=0

. (2.10)

1. Une algèbre de Lie est dite simple si elle ne contient pas d’idéaux (au sens du crochet de Lie) non triviaux.
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L’application T est maintenant une application linéaire de g dans L(V ). Ce prolongement
préserve de plus le commutateur : on a T ([g, h]) = T (g)T (h)− T (h)T (g).
Il est évident qu’un groupe de Lie G et son algèbre g admettent les mêmes représentations.

Une représentation va nous intéresser en particulier : il s’agit de la représentation adjointe, dans
laquelle l’algèbre de Lie va agir sur elle-même.
D’après les propriétés du commutateur, l’application

Ad : g −→ L(g) (2.11)
g 7→ Adg

où Adg(h) = [g, h] définit une représentation linéaire de g : l’espace vectoriel associé est dans ce
cas g lui-même, et la dimension de cette représentation est la dimension de l’algèbre.

L’intérêt primordial des groupes et algèbres de Lie en physique théorique vient de la considération
des théories de jauge. Nous n’allons pas exposer les détails du jaugeage d’une symétrie globale
d’une théorie des champs. Nous rappelons néanmoins que cette procédure consiste à rendre
locale cette symétrie globale : autrement dit,le paramètre de la transformation dépend lui aussi
de l’espace-temps. Pour que la théorie reste invariante sous cette opération, il est alors nécessaire
de modifier la dérivée usuelle ∂µ en dérivée covariante ∂µ− iAaµ T aR. Aaµ est un nouveau champ de
la théorie, médiateur de la transformation de jauge, et est nommé boson de jauge ; les matrices
T aR forment une base du groupe des transformations dans la représentation R. L’indice a est ici
l’indice adjoint : les bosons de jauge sont toujours dans la représentation adjointe du groupe de
jauge. La modification de la dérivée partielle en dérivée covariante implique alors la présence
d’un terme cinétique pour les champs de jauge, qui prend la forme suivante

Lcin. = −1
4F

a
µνF

µν,a (2.12)

où le tenseur de courbure Fµν est défini comme

Fµν = ∂µA
a
ν − ∂νAaµ + g fabcA

b
µA

c
ν (2.13)

g est ici la constante de couplage.
En pratique, il est important de noter que les bosons de jauge sont dans la représentation
adjointe du groupe de jauge : ceci nous permettra de déterminer explicitement les groupes de
jauge associés aux différentes théories des cordes que nous allons construire dans cette thèse. Il
suffira pour cela d’identifier les systèmes de racines donnés par les vertex des états que nous
construirons. À ces bosons s’ajouteront des états de matière qui s’arrangeront dans diverses
représentations du groupe.
Notons enfin qu’en théorie des cordes, il n’existe pas de symétrie continue globale [BD88] : une
telle symétrie est en effet automatiquement jaugée à cause de la présence sur la feuille d’univers
des états de vertex donnant naissance aux bosons de jauge.

Le formalisme des théories de jauge est très puissant ; il est en effet possible de voir la relativité
générale comme un jaugeage de l’invariance par difféomorphismes d’une théorie physique. Le
terme cinétique du champ de jauge correspondant est alors le scalaire de Ricci R, la dérivée
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covariante est celle usuellement construite à partir des symboles de Christoffel, et le boson de
jauge est donné par la métrique gµν (qui se transformera en graviton dans une théorie de gravité
quantique). Cette procédure est aussi à l’origine de l’introduction de la connection de spin,que
nous rencontrerons dans la section 5.2. De même, la supergravité sera construite par jaugeage
de la supersymétrie.

2.2 Algèbres de supersymétrie et théories de supergra-
vité quadri-dimensionnelles

2.2.1 Algèbres de supersymétrie
L’importance des symétries dans la définition d’une théorie quantique peut nous pousser à
introduire de nouvelles symétries, qui engendreront de nouvelles contraintes. Jusqu’à présent, le
groupe de symétrie le plus général que nous avons rencontré s’écrit sous la forme P × G, où
P est le groupe de Poincaré, et G un groupe de jauge ayant la forme d’une algèbre de Lie. Le
théorème de Coleman-Mandula, démontré dans le cadre d’hypothèses physiques naturelles, force
ce produit à être direct : les symétries internes doivent commuter avec le groupe de Poincaré.
Il existe toutefois un moyen de contourner ce théorème, qui est de considérer une extension
de la symétrie faisant intervenir des superalgèbres de Lie, c’est-à-dire des symétries ayant un
paramètre fermionique, et dont la structure est caractérisée par des relations d’anticommutation
(on pourra trouver des informations plus complètes sur les superalgèbres de Lie dans [FSS00]).
Une introduction très complète à la supersymétrie est donnée dans [Bil01]. Pour construire
l’algèbre de supersymétrie, on complète l’algèbre de Poincaré, donnée par les générateurs des
translations Pµ et des rotations/boosts Mµν , en introduisant des supercharges, prenant la forme
de spineurs de Majorana d’espace temps, vérifiant

[Pµ, QI
α] = 0, [Mµν , Q

I
α] = i(σµν) β

α Q
I
β,

{QI
α, Q̄

J
β̇
} = 2σµ

αβ̇
Pµδ

IJ , {QI
α, Q

J
β} = εαβZ

IJ .

(2.14)

I, J = 1 . . .N donne le nombre de supersymétries. Si N ≥ 2, on parle de supersymétrie étendue.
Le comportement des charges Q sous les rotations confirme que ces charges sont des spineurs.
Leur action sur les états physiques de la théorie permet d’organiser le spectre en supermultiplets,
qui comportent le même nombre de degrés de liberté fermioniques et bosoniques. De plus,
tous les états physiques d’un supermultiplet ont la même masse. Les supermultiplets sans
masse compotent 2N états ; pour les multiplets massifs, on trouve génériquement dans un
supermultiplet contenant 22N états. Des supermultiplets réduits existent en présence des termes
de charge centrale ZIJ ; la masse de ces multiplets est reliée aux valeurs propres de la matrice
ZIJ . Lorsque k supercharges s’annulent sur la représentation, on obtient des supermultiplets
BPS, de dimensions 22(N−k).

Parmi les motivations de l’introduction de la supersymétrie, on note que sa structure permet
l’obtention de certains théorèmes de non-renormalisation. Ces résultats permettent d’apporter
une solution partielle au problème de la hiérarchie. Le problème de la hiérarchie de jauge, qui

19



intervient en théorie quantique des champs, consiste à expliquer la différence de magnitude
extrêmement importante existant entre l’échelle de brisure électro-faible du modèle standard
(qui est de l’ordre de la masse du Higgs, soit de l’ordre de 100 GeV), et les échelles de grande
unification (MGUT ∼ 1016 GeV) ou de Planck (MP ∼ 1018 GeV). L’introduction à la main de ce
rapport dans la théorie quantique (sous la forme de l’introduction de la masse du Higgs) est
évidemment possible au niveau des arbres, mais dans une théorie bosonique, la forme générique
des corrections quantiques à cette quantité issues de la renormalisation sont trop importantes pour
préserver le rapport des échelles. Il semblerait possible d’annuler les contributions déstabilisant
la hiérarchie par fine tuning ; toutefois la relation imposée à cet effet au niveau des arbres
n’est pas invariante par le groupe de renormalisation, et la hiérarchie est détruite aux ordres
supérieurs. Par contre, dans une théorie supersymétrique, ces corrections sont beaucoup mieux
contrôlées, et, sous certaines conditions (qui définissent les Large Hierarchy Compatible models
[FKZ94]), les corrections au potentiel sont logarithmiques dans l’échelle de cut-off, ce qui écrase
les corrections ; la hiérarchie introduite est alors préservée. Nous donnerons de plus amples
précisions sur la structure de ces corrections dans la section 6.5.

2.2.2 Supergravités à quatre dimensions
Les théories de supergravité sont définies comme la promotion de la supersymétrie globale
en une symétrie locale, de manière analogue à la construction des théories de jauge telles
que l’électromagnétisme. Une telle construction est indissociable de la gravitation. En effet,
les transformations de supersymétrie, comme on l’a vu dans la section précédente, sont les
“racines carrées” des transformations du groupe de Poincaré. Ainsi une théorie exhibant une
supersymétrie locale devra forcément exhiber une invariance de Poincaré locale : en d’autres
termes, cette théorie inclura la gravitation.
Le champ médiateur des transformations locales de supersymétrie est le partenaire supersymé-
trique du champ médiateur de la gravitation, c’est-à-dire le graviton de spin 2. Il correspond
ainsi à une particule de spin 3/2, nommé gravitino. Outre ces deux champs, les théories de
supergravité incorporent ensuite des degrés de liberté de matière (champs de jauge, etc.), qui
s’arrangent en multiplets de supersymétrie.

L’étude des dimensions dans lesquelles il est possible de définir une théorie de supergravité a
été effectuée à la fin des années 1970, principalement dans [Nah78, CJS78, CJ79]. Le fait que
l’on ne puisse pas considérer de particules ayant un spin > 2 à quatre dimensions implique que
le nombre maximal de supercharges d’une théorie de supergravité est de 32 ; ainsi la dimension
maximale est D = 11. La supergravité D = 11 de [CJS78] est le candidat naturel de limite à
basse énergie d’une théorie quantique fondamentale définie à onze dimensions, et dénommée
M-théorie. La compactification de la supergravité à onze dimensions sur un cercle ou un orbifold
fournit plusieurs théories à dix dimensions, à 32 ou 16 supercharges, qui peuvent s’identifier
aux limites à basse énergie de théories des supercordes connues. Nous ne rentrerons pas dans
ces détails, éloignés du travail mené dans cette thèse. Ces considérations ont été très riches en
conséquences physiques, notamment en reliant par des opérations de dualité non-perturbative
les différentes théories des cordes à dix dimensions.

Nous allons ici nous intéresser aux propriétés des théories de supergravité en 4 dimensions
d’espace-temps. Le nombre maximal de 32 supercharges nous apprend que la supersymétrie
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étendue maximale est N = 8 ; ell est unique, en ce sens que le seul multiplet de la théorie est le
multiplet gravitationnel. Plus généralement, les théories de supergravité étendues N ≥ 5 sont
uniques ; à N = 4, on voit apparaître le multiplet vectoriel, puis l’hypermultiplet à N = 2, et
enfin le multiplet chiral à N = 1. On note au passage qu’une théorie chirale a obligatoirement
N ≤ 1.
La présence de supersymétrie N = 1 (et a fortiori, éventuellement de supersymétries étendues
2 ≤ N ≤ 8) contraint fortement la forme du lagrangien, dont les termes cinétiques et les
couplages se déduiront de deux fonctions définissant la théorie. les observations montrent de
manière évidente que la supersymétrie ne peut être une symétrie exacte du monde qui nous
entoure. Il convient alors de la briser à basse énergie, de manière analogue à la brisure électro-
faible par le mécanisme de Higgs. Cette brisure de la supergravité est dite spontanée : elle
introduit un décalage entre les masses de partenaires supersymétriques, dont l’amplitude est
donnée par la masse du gravitino M3/2. Cette masse provient de l’absorption du champ du
goldstino par le gravitino : c’est le mécanisme de super-Higgs.
Lors de la brisure spontanée de supersymétrie, la valeur du potentiel dans le vide de la théorie
peut devenir non-nulle. Cette valeur n’étant rien d’autre que la constante cosmologique, il
est essentiel de réaliser des modèles de supergravité spontanément brisée garantissant une
constante cosmologique nulle. En fait cette contrainte peut s’imposer sur n’importe quel modèle
de supergravité, en imposant un réglage fin des paramètres de la théorie (masse des particules,
etc...). Cette solution est assez artificielle ; nous verrons qu’il existe une classe particulière de
modèles, dits sans échelle, pour lesquels la constante cosmologique reste nulle en présence
d’une brisure spontanée de supersymétrie. Cette dénomination provient du fait que la masse
du gravitino est dans le cadre de cette théorie indéterminée, car correspondant à une direction
plate du potentiel.
En plus de de ces propriétés hautement intéressantes sur la plan phénoménologique, nous verrons
que ces modèles ont le bon goût de s’identifier aux limites à basse énergie des théories des cordes
que nous définirons plus tard.

Supergravité N = 1 à quatre dimensions et sa brisure spontanée

La meilleure manière d’écrire une action invariante sous les transformations de supersymétrie
locale N = 1 est d’utiliser le formalisme des superchamps 2, dans lequel on remplace les champs
usuels φ(xµ) par des superchamps Φ(xµ,Θα, Θ̄α̇). Θ, Θ̄ sont ici des coordonnées ayant la forme
de spineurs de Majorana ; ce sont des variables de Grassmann (anti-commutantes). En quatre
dimensions, Θ et Θ̄ ont chacun deux composantes indépendantes.
Ce formalisme a pour effet de rassembler en un même champ les degrés de liberté bosonique
et fermionique d’un doublet de supersymétrie. Il permet aussi une expression simple des
transformations de supersymétrie.
Un multiplet chiral comprenant un scalaire z et un fermion de Weyl ψ se représente alors par
un superchamp :

2. On trouvera par exemple dans [Bil01] une présentation détaillée de ce formalisme, et son application à la
construction de lagrangiens supersymétriques.
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Φ(x,Θ, Θ̄) = z(x)+
√

2Θψ(x)+iΘσµΘ̄∂µz(x)−ΘΘf(x)− i√
2

ΘΘ∂µψ(x)σµΘ̄− 1
4ΘΘΘΘ∂2z(x) .

(2.15)
On voit notamment que cette expression introduit un troisième champ f , dit auxiliaire. Ce
champ n’aura pas de terme cinétique dans l’action, et pourra être remplacé par sa valeur on-shell.
Il donnera cependant lieu à un terme de potentiel, dit F -terme.
Dans le même esprit, on montre que la représentation d’un multiplet vectoriel (vµ, λ) en terme
d’un superchamp V (x,Θ, Θ̄) fait intervenir un champ auxiliaire D(x) ; sa substitution fera
apparaître des D-termes dans le potentiel scalaire.

On s’intéresse maintenant à la construction d’une théorie de supergravité. Pour cela, il nous
faut définir le spectre en matière de la théorie. Ce spectre se compose de multiplets chiraux ΦI

et de multiplets vectoriels de jauge 3 V a (a est donc ici un indice adjoint).
La théorie est alors caractérisée par une fonction de Kähler

G(z, z̄) = K(z, z̄) + log |w(z)|2 (2.16)
dont les dérivées

GI = ∂G

∂zI
, GJ̄ = ∂G

∂z̄J̄
GIJ̄ = ∂G

∂zI ∂z̄J̄
. (2.17)

définissent la métrique de Kähler GIJ̄ = KIJ̄ . Cette métrique et son inverse GIJ̄ = (GIJ̄)−1

servent à monter et baisser les indices I, J̄ .
Cette métrique définit les termes cinétiques des multiplets chiraux. On se donne ensuite la
fonction cinétique de jauge fab(z). Cette fonction donne les constantes de couplage de jauge et
les constantes de couplage axionique

Re fab = 1
g2
ab

, Im fab = θab ; (2.18)

tels qu’apparaissant dans le lagrangien bosonique

Lgauge =
∫
− 1

4g2
ab

F a
µνF

µν,b + θabF
a
µνF̃

µν,b (2.19)

Le potentiel scalaire de cette théorie provient alors des F -termes et des D-termes : on a

V = VF + VD = eG
(
GIG

I − 3
)

+ [(Ref)−1]ab
2

(
GI(Ta)IJ̄ z̄

J̄
) (
zK(Tb) L̄

K GL̄

)
(2.20)

De manière générique, le D-terme est défini positif, alors que le F -terme est de signe arbitraire.
Il convient alors, pour définir le vide de cette théorie, de minimiser ce potentiel relativement aux
différents champs ; la constante cosmologique sera donnée par la valeur du potentiel dans ce vide

Λ = VF

∣∣∣∣
z=zmin.

+ VD

∣∣∣∣
z=zmin.

. (2.21)

3. Les multiplets chiraux s’ordonnent bien entendu en représentations sous le groupe de jauge : l’indice I est
donc celui d’une représentation, dans laquelle la symétrie de jauge sera implémentée par les matrices (T a)I

J̄
.
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Brisure spontanée de la supergravité

L’algèbre de supersymétrie est brisée lorsque l’un des deux champs auxiliaires (F i est le champ
auxiliaire d’un superchamp chiral, et Da celui d’un multiplet vectoriel) de la théorie reçoit une
valeur moyenne dans le vide non-nulle. Ceci est résumé par la condition

〈GI〉 6= 0. (2.22)

Dans ce cas, par le mécanisme de super-Higgs [C+78], le gravitino absorbe le goldstino et acquiert
une masse M3/2 = eG/2.
On peut alors identifier les champs participant à la brisure comme les scalaires zI tels que
GI 6= 0, ou encore GIG

I 6= 0 (non sommé). En effet, ces champs ont une composante selon la
direction du goldstino.
La brisure spontanée de la supergravité entraîne aussi l’apparition d’un cortège de termes
donnant une masse aux divers champs de la théorie. Ces termes sont appelés termes de brisure
douce ; leur expression dépend des détails de la fonction de Kähler du coset formé par les scalaires.
On pourra se rapporter à [FKZ94, Pav95] pour des détails plus poussés. L’intérêt de l’existence
de tels termes, dont l’ordre de grandeur est celui de la masse de brisure de supersymétrie, est de
participer à la stabilisation de certains modules, lorsque les énergies mises en jeu sont de l’ordre
de m3/2. Nous donnons des précisions sur ce mécanisme dans [CJKPT09].

Au minimum du potentiel scalaire (2.20), on remarque que la constante cosmologique peut
être nulle même en présence d’une brisure spontanée de la supergravité (c’est-à-dire, avec une
masse du gravitino non-nulle). Un réglage ad hoc des différents paramètres de la théorie permet
l’annulation de cette constante. Ces contraintes de fine tuning sont le plus souvent peu naturelles ;
il conviendrait de trouver un modèle plus satisfaisant.

Les modèles de supergravité sans échelle

Dans cette sous-section, on va montrer, en utilisant l’expression du potentiel scalaire (2.20) ci-
dessus, comment la théorie de supergravité sans échelle introduite dans [CFKN83] et développée
dans [EKN84a, EKN84b, ELNT84] permet d’obtenir, après brisure spontanée de la supersymétrie,
une constante cosmologique nulle et une masse du gravitino indéterminée au niveau classique.
On suppose pour cela qu’il existe un module T , tel que la fonction de Kähler se décompose
comme

Gtot. = G(T, T̄ ) + G(zI , z̄Ī) (2.23)

On note :

GT = ∂G

∂T
, GT̄ = ∂G

∂T̄
, GT T̄ = ∂2G

∂T∂T̄
, GI = ∂G

∂zI
, GJ̄ = ∂G

∂z̄J̄
,GIJ̄ = ∂2G

∂zI∂z̄J̄
; (2.24)

GT T̄ , GIJ̄ définit alors une métrique qui permet de remonter les indices.

Si on choisit alors

G(T, T̄ ) = −3 log(T + T̄ ) + log |c|2 (2.25)
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où c est une constante, on a, de manière identique, eGT
(
(GT )I(GT )I − 3

)
= 0. Maintenant, si

on rajoute les autres degrés de liberté z, z̄ dans la théorie, le potentiel prend la forme

V = VF + VD = eGtot. (Gz)I(Gz)I + VD (2.26)

Sous l’hypothèse de couplage minimal des autres champs z, z̄, le potentiel est positif, et on
montre qu’il admet un minimum à V = 0. Ceci annule la constante cosmologique de la théorie
de supergravité.

Dans le mécanisme de brisure spontanée de supersymétrie, la masse du gravitino est donnée par

M3/2 = e
Gtot.

2 . (2.27)

Dans les modèles que nous considérons, le module T est le seul à contribuer à la masse du
gravitino : on a

M3/2 = |c|2

(T + T̄ )3
. (2.28)

L’indétermination au niveau classique de la masse du gravitino est assurée par la platitude du
potentiel, qui ne dépend pas de T . Le terme cinétique généré par la fonction de Kähler pour le
module T , dont l’expression est

√
−ggµν 3 ∂µT∂νT̄

(T + T̄ )2
(2.29)

possède une symétrie non-compacte SU(1, 1).

Nous verrons cependant plus tard que les corrections quantiques à ce potentiel permettent de
lever cette indétermination, en générant un potentiel non trivial pour M3/2. Il faut pour cela
avoir à disposition une théorie quantique dont la limite de basse énergie peut être décrite par une
théorie de supergravité : la théorie des cordes. Dans notre modèle, ces corrections s’obtiendront
en considérant des théories des supercordes, hétérotiques ou de Type II, à supersymétrie étendue.

Comme reconnu dans [Wit85] dans le cas de compactifications sur des variétés d’holonomie
SU(3), et dans [FKP86] dans le cas de compactification sur des orbifolds, nous verrons que les
supergravités à quatre dimensions correspondant à la limite de basse énergie des compactifications
des différentes théories des supercordes correspondent à des modèles sans échelle. En particulier,
dans le cas de compactification sur un tore T 2 × T 2 × T 2 ou des orbifolds Z2 × Z2, l’espace
des modules de la théorie est donné par 7 champs : le dilaton/axion S, les trois modules de
Kähler T I et les trois modules de structure complexe U I . Le potentiel de Kähler effectif est
alors donné par

K = − log(S + S̄)−
3∑
I=1

log(T I + T̄ I)−
3∑
I=1

log(U I + Ū I). (2.30)

Nous reviendrons plus en détail dans la section 4.4 sur la structure de ce s supergravités et
l’interprétation des différents modules.
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Il est alors possible, en gelant certains degrés de liberté du système, de définir des combinaisons
de ces modules vérifiant la propriété sans échelle. Nous utiliserons cette méthode dans les travaux
présentés au chapitre 6.
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Chapitre 3

Théories des supercordes en 10
dimensions

Nous allons commencer par présenter la théorie des cordes à dix dimensions, d’abord dans le
cas bosonique, puis dans le cas de la supercorde. Nous nous inspirons principalement de [Kir97]
et [Pol98a].

3.1 Action et quantification de la corde bosonique
Le point de départ le plus naturel pour écrire la théorie quantique d’une corde est de postuler
une action qui généralise celle de la particule libre. L’action de cette dernière s’écrit, pour une
particule de masse m,

S = −m
∫
ds = −m

∫
dτ
√
−ẋµẋµ (3.1)

et n’est autre que la longueur propre de sa ligne d’univers (τ est le temps propre de la particule).
De la même façon, on peut donc définir l’action de la corde comme l’intégrale de l’élément de sa
surface d’univers : c’est l’action de Nambu-Goto

SNG = −T
∫
M
dσdτ

√
− det(∂aXµ∂bXµ). (3.2)

Ici, M est appelée feuille d’univers de la corde, et est paramétrée par les coordonnées σ et τ ,
respectivement longueur propre et temps propre de la corde, comme représenté sur la figure 3.1.
T est la tension de la corde, donnée en fonction de la pente de Regge α′ par T = 1/2πα′.
Toutefois, cette action est difficile à utiliser en vue d’une quantification. On lui préfère l’action
de Polyakov, qui lui est équivalente :

S = −T2

∫
M
dσdτ

√
−γ γab ηµν ∂aXµ∂bX

ν . (3.3)

Cette action fait apparaître la théorie comme une théorie à deux dimensions, dans laquelle
les Xµ sont des champs scalaires (au sens des difféomorphismes de la feuille d’univers). Ces
scalaires vivent sur la feuille d’univers, et prennent leurs valeurs dans l’espace cible, qui est ici
l’espace-temps habituel ; la symétrie de Poincaré propre à l’espace-temps, dans ce formalisme,
devient une symétrie interne de notre théorie bi-dimensionnelle.
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Figure 3.1 – Paramétrisation de la feuille d’univers de la corde ouverte et de la corde fermée.

Cette reformulation de la théorie a plusieurs conséquences : une des plus importantes est
l’apparition, en plus des symétries de Poincaré

γab → γab ; Xµ → aµ + LµνX
ν , (3.4)

et de reparamétrisation de la feuille d’univers

(σ, τ)→ (σ′(σ, τ), τ ′(σ, τ)) γab → γcd
(
∂σ′c

∂σa

)−1 (
∂σ′d

∂σb

)−1

(3.5)

de la symétrie conforme

γab → exp (2φ(σ, τ)) γab; Xµ → Xµ. (3.6)

Cette invariance, dite de Weyl, est valide au niveau classique. Notons que ce résultat est spécifique
aux théories des champs à deux dimensions : ce n’est qu’à cette condition que la quantité

√
−γ γab (3.7)

est invariante sous la transformation de Weyl (3.6). L’annulation de l’anomalie quantique associée
à la symétrie conforme, qui équivaut à l’annulation de la trace du tenseur énergie-impulsion de la
théorie, va fortement contraindre les conditions dans lesquelles nous pourrons définir une théorie
des cordes consistante. Les conséquences de l’invariance conforme du modèle-sigma feront l’objet
de la section suivante ; pour l’instant nous allons donner la procédure de quantification de la
corde bosonique.

Les invariances de reparamétrisation et de Weyl nous permettent de nous placer dans la jauge
conforme, γab = ηab, dans laquelle l’action (3.3) induit les équations du mouvement correspondant
à une propagation d’ondes :

∂aX∂
aX = 0 . (3.8)

En théorie des cordes fermées la solution générale se sépare en secteur gauche et secteur
droit : X(τ, σ) = XL(τ − σ) + XR(τ + σ). Prenant en compte la condition de périodicité
X(τ, σ + 2π) = X(τ, σ), la solution générale s’écrit comme
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XL(τ + σ) = 1
2x

µ
0 + α′

2 p
µ(τ + σ) + i

√
α′

2
∑
k∈Z∗

αk
k
e−ik(τ+σ) , (3.9)

XR(τ − σ) = 1
2x

µ
0 + α′

2 p
µ(τ − σ) + i

√
α′

2
∑
k∈Z∗

ᾱk
k
e−ik(τ−σ) . (3.10)

pµ est ici l’impulsion (ou mode zéro) de l’état de corde, donnant le mouvement du centre de
masse. La réalité de Xµ impose les relations α−k = (αk)† et ᾱ−k = (ᾱk)†. Par extension, on pose
par définition αµ0 = ᾱµ0 =

√
α′/2 pµ.

Il est ici pratique de passer en temps euclidien τ = it ; en effet, les développements précédents
s’expriment alors comme des fonctions holomorphe et anti-holomorphe de la variable complexe
w = σ + iτ : XL(τ + σ) = XL(w), XR(τ − σ) = XR(w̄).

La quantification de cette théorie se fait comme dans le cas d’école de l’oscillateur harmonique :
les relations de commutation à imposer sur les opérateurs de la théorie sont

[αµm, ανn] = [ᾱµm, ᾱνn] = mηµν δm+n,0 ; [αµm, ᾱνn] = 0 ; [xµ0 , pν ] = i ηµν . (3.11)

L’espace des états du système est alors un espace de Fock qui se construit à partir d’un vide |p〉
d’impulsion pµ annihilé par tous les opérateurs d’annihilation {αµn, ᾱµn | n > 0}. La tour des
états physiques s’obtient par application successive des opérateurs de création {αµn, ᾱµn | n < 0}.

Contraintes de Virasoro

L’espace des solutions que nous avons obtenu jusqu’ici n’est pas physique. Il faut en effet
imposer des contraintes supplémentaires, dites contraintes de Virasoro, qui correspondent à
l’annulation classique du tenseur énergie-impulsion (ce qui correspond à satisfaire les équations
du mouvement de la métrique sur la feuille d’univers ; bien que la métrique soit entièrement
fixée par le choix de jauge, ces contraintes sont non-triviales et doivent être imposées ; elles
découlent du fait que l’amplitude d’un processus physique doit être indépendante de la jauge
dans laquelle on exprime la métrique). Ces contraintes prennent, dans la jauge conforme, la
forme (on définit ∂± comme les dérivées par rapport aux variables gauche et droite σ± = τ ± σ,
τ étant ici à nouveau le temps “lorentzien”) :

T−− = 1
2∂−X

µ ∂−Xµ = 0 ; T++ = ∂+X
µ ∂+Xµ = 0 . (3.12)

Si on note Lm (resp. L̄m) les modes de Fourier de T++ = T (w) (resp. T−− = T̄ (w̄)), les contraintes
choisies 1 consistent à imposer les équations d’opérateurs suivantes sur les états physiques :

Lm≥0|phys〉 = 0 . (3.13)

L’expression des opérateurs de Virasoro en fonction des oscillateurs est la suivante :

1. La forme de l’algèbre de Virasoro, que nous rencontrerons plus tard, rend impossible le fait d’imposer
toutes les contraintes Lm|phys〉 = 0 quel que soit l’entier m.
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Lm6=0 = 1
2
∑
k∈Z

αµkαm−k,µ ; L0 = α′

4 p2 +
∞∑
k=1

αµ−kαk,µ − a ; (3.14)

L̄m6=0 = 1
2
∑
k∈Z

ᾱµk ᾱm−k,µ ; L̄0 = α′

4 p2 +
∞∑
k=1

ᾱµ−kᾱk,µ − ā ;

où a, ā sont des constantes issues de la procédure de réordonnement (vers l’ordre dit normal)
des opérateurs α dans L0, faisant apparaître les commutateurs [α−k, αk] = k. On montre que,
en dimension critique de la corde bosonique D = 26, a = ā = 1. Il existe plusieurs façons
d’arriver à ce résultat ; celles que nous allons évoquer nous resservira par la suite dans le cas de
la supercorde.
La prescription d’ordre normal dans l’opérateur L0 = α′

4 p
2 + 1

2
∑
k∈Z∗ α

µ
−kαk,µ consiste à écrire

l’opérateur d’annihilation à droite de celui de création, de façon à ce que cet opérateur compte
le nombre d’excitations de l’état quantique sur lequel il agit. Cette formule donne :

1
2
∑
k∈Z∗

αµ−kαk,µ =
∞∑
k=1

αµ−kαk,µ + 1
2

∞∑
k=1

k . (3.15)

Le dernier terme est divergent ; c’est une sommation sur les énergies du vide des divers oscillateurs
de la théorie. Une telle divergence n’est pas problématique : elle apparaît déjà en théorie des
champs dans le calcul de la force de Casimir, vérifiée expérimentalement. Il existe une manière
de la régulariser (voir par exemple [Haw77] pour des idées similaires) : la fonction de Riemann

ζ(s) =
∞∑
n=1

n−s , (3.16)

définie pour Re(s) > 1, se prolonge analytiquement en s = −1 ; on trouve ζ(−1) = −1/12.
Ainsi, pour D dimensions, la version régularisée de L0 prend la forme

L0 = α′

4 p2 +
∞∑
k=1

αµ−kαk,µ −
D − 2

24 ; (3.17)

(la présence de D − 2 en lieu et place de D vient du fait qu’on ne prend en compte que les
dimensions transverses) ; et donc a = 1 pour D = 26 (et, de même, ā = 1) 2.

Comme dans la quantification de l’électromagnétisme à la Gupta-Bleuler, les conditions (3.13)
sont imposées a posteriori sur le spectre de la théorie pour obtenir les états physiques.
L’annulation simultanée de L0 et L̄0 donne l’expression des masses des états de la théorie et
une condition dite de level-matching :

M2 = −p2 = 4
α′

(NL − 1) = 4
α′

(NR − 1) = 2
α′

(NL +NR − 2) ; (3.18)

NL = NR .

2. En fait, le fait que la théorie des cordes bosoniques ne se définit naturellement qu’en D = 26 peut se déduire
de ce calcul. En effet, les premiers états excités αµ−1ᾱ

ν
−1|p〉, où µ et ν sont des degrés de liberté transverses, ne

peuvent pas se transformer dans les représentations massives du sous-groupe SO(D− 2, 1) du groupe de Lorentz
SO(D − 1, 1) ; ces états doivent donc être sans masse. Donc a = 1, et D = 26.
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Nous remarquons donc qu’en l’absence d’excitation par les oscillateurs, on obtient un état de
masse carrée négative : cet état instable est appelé tachyon ; sa présence compromet fortement
la pertinence de la théorie des cordes bosoniques. Nous verrons heureusement que ce problème
sera éliminé en théorie des supercordes.

Intégrale de chemin de Polyakov, et généralisation du modèle sigma en présence
de champs de fond

À partir de l’action (3.3), il est naturel de définir une intégrale de chemin. L’intégration
fonctionnelle portera alors sur les champs de la théorie, qui ne sont autres que les coordonnées
d’espace-temps Xµ, ainsi que sur les métriques g définies sur les feuilles d’univers. Bien sûr,
ce domaine d’intégration est bien trop vaste : il faut en fait se restreindre aux configurations
non-équivalentes sous des transformations de type difféomorphisme ou Weyl. En divisant par le
volume de ce groupe, on a donc, en temps euclidien

Z ≡
∫ [DX][Dg]
VDiff×Weyl

e−S[X,g] (3.19)

Pour évaluer cette quantité, la prescription à adopter est d’introduire les fantômes de Faddeev-
Popov. Par des arguments que nous ne détaillerons pas, ce mécanisme permet de fixer la jauge
en posant gab = ηab, et en introduisant dans l’action de nouveaux degrés de liberté : le système
de fantômes de reparamétrisation anticommutants (b, c), de poids respectifs 2 et −1, et d’action

Sgh = 1
2π

∫
d2σ

(
b++∂−c

+ + b−−∂+c
−
)

(3.20)

De sorte que notre intégrale de chemin prend la forme

Z ≡
∫

[DX] e−S[X,η]−Sgh . (3.21)

On peut anticiper qu’après introduction de degrés de liberté fermioniques, le jaugeage des
super-reparamétrisations (ou transformations de supersymétrie), se fera en introduisant le
système de fantômes superconformes commutants β, γ, de poids 3/2 et −1/2.

Nous allons maintenant généraliser le modèle sigma donnant l’action des cordes sur la feuille
d’univers, Le spectre d’états de cordes donné dans la section précédente comporte des états
de masse nulle, à savoir les états ayant NL = NR = 1. Ces états, correspondant aux états
quantiques αµ−1α

ν
−1|p〉, se décomposent en

• une partie symétrique de trace nulle, donnant le graviton Gµν ;
• un tenseur antisymétrique donnant le tenseur antisymétrique (dit de Kalb-Ramond) Bµν ;
• la trace du tenseur, donnant le dilaton Φ.

Il est alors possible de généraliser l’action sur la feuille d’univers (3.3) en incluant les champs de
fond correspondant aux états sans masse de la théorie. On obtient

S = 1
4πα′

∫
M
dσdτ

√
−γ

[
γabGµν(X) ∂aXµ∂bX

ν + εabBµν(X)∂aXµ∂bX
ν + α′RΦ(X)

]
. (3.22)
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Cette généralisation du modèle sigma fait apparaître le terme topologique de Gauss-Bonnet
1

4π

∫
d2σ
√
−γ R = χ = 2− 2g , (3.23)

R étant le scalaire de courbure de la métrique γ de la feuille d’univers. Ici, χ est la caractéristique
d’Euler, et g le genre de la surface de feuille d’univers, qu’on peut voir heuristiquement comme
le nombre de “poignées” 3de la surface : ainsi une sphère a g = 0, un tore g = 1, etc. (voir la
figure 3.2)
Lors d’un calcul d’amplitude, le formalisme de l’intégrale de chemin nous fait sommer sur les
différentes feuilles d’univers rendant compte de la diffusion, de la même façon qu’on va sommer
sur tous les diagrammes de Feynman en théorie quantique des champs. Le résultat précédent
mous apprend donc que ces sommes vont être pondérées par le genre de la feuille d’univers :
la contribution d’une surface de genre g sera proportionnelle à e−2(1−g)Φ (voir figure 3.2). La
constante de couplage de la théorie est alors contrôlée par la valeur moyenne dans le vide du
dilaton : l’ajout d’une poignée sur la feuille d’univers revenant à l’émission puis l’absorption
d’une corde fermée, on en déduit que la constante de couplage de la théorie des cordes est
donnée par

gs = eΦ . (3.24)
Ce résultat est très différent de ce qu’on obtient en formalisme de théorie des champs : ici, la
constante de couplage de notre théorie n’est plus un paramètre libre, mais bien la valeur moyenne
dans le vide d’un champs de la théorie. D’un point de vue théorique (voire épistémologique) la
suppression de paramètres libres dans une théorie est extrêmement satisfaisante.

L’investigation de la contrainte d’invariance conforme du modèle sigma (3.22) a été effectuée
dans [CFMP85]. Les conditions sont des équations du mouvement sur les champs de fond G,B,Φ
qui dérivent de l’action effective d’espace-temps

Seff ∝
∫
dDX

√
−G(X) e−2Φ

[
−2(D − 26)

3α′ +R− 1
12HµνρH

µνρ + 4(∂µΦ)(∂µΦ) +O(α′)
]
.

(3.25)
R est le scalaire de Ricci associé à la métrique G ; H = dB est le tenseur de courbure de la
2-forme B. On voit ainsi que cette contrainte redonne pour action effective l’action d’Einstein-
Hilbert, généralisée en présence d’autres excitations. Cette action fait aussi apparaître de manière
provocante la quantité D− 26. Le terme constant en 26 vient de la contribution à l’anomalie de
Weyl des fantômes b et c.
On a là un nouveau moyen de déterminer la dimension critique. L’équation du mouvement du
dilaton issue de cette action s’écrit en effet

D − 26
6 − α′

2 ∂
2Φ = 0 . (3.26)

Pour un espace-temps de faible courbure (Rc >>
√
α′) et un dilaton d’échelle typique de

variation Rc, il faut donc D = 26. Toutefois, d’autres solutions sont possibles ; un exemple
3. Une définition plus rigoureuse de cette propriété topologique est donnée en termes de groupes d’homotopie.

Nous ne nous y attarderons pas.
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〈V1V2V3V4〉 = e−2Φ +

+ e2Φ + e4Φ + . . .

Figure 3.2 – Développement perturbatif d’une fonction à quatre points. Les quatre surfaces
représentées ont respectivement g = 0, 1, 2, 3.

est la théorie de dilaton linéaire, où Φ = VµX
µ et VµV µ = 26−D

6α′ . Ces théories des cordes sont
consistantes en D 6= 26, tant que la condition VµV

µ = 26−D
6α′ est vérifiée. On parle de cordes

non-critiques. Nous ne rencontrerons pas de telles configurations dans ce mémoire.

3.2 Théorie des cordes et invariance conforme
Le résultat d’invariance conforme de la formulation de la théorie des cordes sur la feuille d’univers
permet d’utiliser l’arsenal entier des théories conformes bi- dimensionnelles, dont l’exploration
des nombreuses conséquences a été initiée par l’article fondateur [BPZ84].
Premièrement, comme nous l’avons déjà annoncé, l’exigence de la conservation de cette invariance
après quantification est une contrainte très forte sur les caractéristiques du background dans
lequel nous pouvons définir la théorie : la dimension de l’espace-temps n’est pas un paramètre
libre de la théorie ; les éventuels champs de fond doivent obéir à des équations généralisant
l’équation d’Einstein. Ensuite, cette propriété nous permet de simplifier considérablement le
calcul d’amplitudes de diffusion : par invariance conforme, on peut reparamétriser la feuille
d’univers modélisant l’interaction de manière à obtenir une surface très simple, qui ne dépendra
en fait que du genre de la feuille d’univers (qui s’identifie au nombre de boucles du processus
considéré). Ainsi, dans une théorie de cordes fermées, toute interaction à l’ordre des arbres se
ramènera à un calcul sur la sphère, le calcul à l’ordre d’une boucle se fera sur le tore, etc. Les
différentes branches externes du processus seront alors représentées par l’insertion sur cette
surface d’opérateurs de vertex.
Enfin, ces amplitudes auront de plus une forme extrêmement contrainte : lorsqu’on s’intéresse
aux champs dits primaires (ce qui sera le cas de la plupart des champs que nous rencontrerons),
on montre que les amplitudes à deux et trois points sont entièrement déterminées à une constante
multiplicative près, et que les fonctions à quatre points ne dépendent que d’une constante et du
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cross-ratio (z1−z2)(z3−z4)
(z1−z3)(z2−z4) .

3.2.1 Éléments de théorie conforme bidimensionnelle
Nous présentons ici rapidement quelques points cruciaux reliés à la propriété d’invariance
conforme ; beaucoup de détails supplémentaires sont disponibles dans [Gin88, DFMS97, Pol98a],
entre autres.
Pour un espace à d dimensions muni d’une métrique gµν(x), on appelle transformation conforme
toute transformation de coordonnées x→ x′ laissant la métrique invariante à un facteur d’échelle
près :

gµν(x)→ g′µν(x′) = Ω2(x)gµν(x). (3.27)

Ces transformations sont exactement celles qui préservent les angles. Il est possible de caractériser
complètement ce groupe en dimension > 2 : il est composé des translations xµ → xµ + aµ,
des rotations xµ → Λµ

νx
ν , des dilatations xµ → λxµ et des transformations dites “spéciales

conformes”

xµ → xµ + x2.bµ

1 + 2bµxµ + b2x2 . (3.28)

En deux dimensions, cette structure est considérablement étendue : si on part de la métrique
gµν = δµν , alors l’élément de longueur s’écrit

ds2 = dx2 + dy2 = dzdz̄ , (3.29)

où on a posé z = x+ iy. On voit alors que toute transformation analytique z → z′ = f(z) est
conforme :

ds2 = dzdz̄ → ds′2 =
∣∣∣∣∣∂f∂z

∣∣∣∣∣
2

dzdz̄ . (3.30)

Le groupe conforme est alors de dimension infinie. On peut s’intéresser à ses générateurs
infinitésimaux, qui sont des translations infinitésimales z → z + εn(z), où εn(z) = zn+1. Cet
opérateur agit alors sur les fonctions de z comme Ln = zn+1∂z. On voit donc que

[Lm, Ln] = (m− n)Lm+n. (3.31)

De même, on définit les opérateurs L̄n, agissant sur le côté antiholomorphe. Ils satisfont des
relations de commutation identiques, et les deux algèbres sont indépendantes.
L’algèbre définie par les relations ci-dessus engendre toutes les reparamétrisations holomorphes
d’une théorie de champs bi-dimensionnelle ; on la retrouvera donc plus tard comme caractérisant
les modes du tenseur énergie-impulsion de la théorie. Toutefois, une correction quantique
apparaîtra dans (3.31) : nous verrons un terme de charge centrale, qui représentera une brisure
au niveau quantique de la symétrie classique (on parle d’anomalie).

Les propriétés de certains champs, dits primaires, sous l’action des transformations conformes
sont aussi cruciales. Elles sont de la forme
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φ(z, z̄)→
(
df

dz

)h (
df̄

dz̄

)h̄
φ
(
f(z), f̄(z̄)

)
. (3.32)

En particulier, sous une transformation infinitésimale z 7→ z + ε(z), la variation du champ est

δφ = ((h∂ε+ ε∂) + (h̄∂̄ε̄+ ε̄∂̄))φ(z, z̄). (3.33)

Pour une théorie bidimensionnelle, on montre que l’invariance conforme (ie sous rescaling local
de la métrique) équivaut à l’annulation de la trace du tenseur énergie-impulsion T µ

µ . Dans les
coordonnées z, z̄, cette trace est égale à Tzz̄. La loi de conservation ∂µT µν implique alors que
Tzz = T (z) est holomorphe, et T z̄z̄ = T̄ (z̄) est antiholomorphe. Ainsi, nous avons toute une
famille de courants conservés

Jε = ε(z)T (z) , (3.34)

qui génèrent les translations d’espace-temps

[Qε, φ(z, z̄)] = δφ , (3.35)

où δφ est donnée par (3.33).

Nous nous intéressons maintenant à la représentation de cette transformation infinitésimale sur
les coordonnées sous forme de l’action d’une charge sur un état quantique. Pour développer ce
formalisme, il est nécessaire d’introduire la notion de compactification radiale.
La feuille d’univers correspondant à la propagation d’une corde fermée de τ = −∞ à τ = +∞
est un cylindre infini. Si on passe en temps euclidien comme précédemment, on définit la variable
complexe w comme w = σ + iτ . On peut alors définir un mapping conforme w 7→ z = e−iw : il
est aisé de voir qu’alors le cylindre est mappé sur le plan complexe privé de l’origine ; les lignes
de temps constant sont des cercles centrés sur l’origine. Cette nouvelle représentation de la
feuille d’univers est particulièrement utile. En effet, dans le calcul des amplitudes de diffusion, la
surface définissant un processus peut être déformée, via des transformations conformes, jusqu’à
obtenir une surface simple : une sphère pour les processus à l’ordre des arbres, un tore pour les
interactions à une boucle, etc. Les états asymptotiques sont alors représentés par des opérateurs
insérés sur la feuille d’univers, selon le mécanisme de state-operator correspondance.
Ceci nous permet aussi d’utiliser efficacement des outils extrêmement puissants d’analyse
complexe. En effet, la construction de la charge de Nœther associée à un courant de divergence
nulle en deux dimensions :

Q =
∫
espace

dx j0(x) (3.36)

devient ici l’intégrale de contour

Q = 1
2iπ

∮
dz j(z) (3.37)

les surfaces de temps égal étant les cercles centrés sur l’origine du plan complexe.
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La formule (3.37) nous permet également d’exprimer les opérateurs Ln introduits précédemment
en termes du tenseur énergie-impulsion : si on note

T (z) =
∑
n∈Z

Ln
zn+2 (3.38)

l’expansion en série de Laurent de T (z), on trouve que

Ln = 1
2iπ

∮
dz zn+1T (z) (3.39)

est bien la charge associée à la reparamétrisation z 7→ z + zn+1.
L’action d’une charge sur un champ conforme est alors aussi donnée par une intégrale de contour :
la procédure d’ordre temporel en théorie des champs habituelle devient ici une procédure d’ordre
radial, et a pour conséquence que l’action de la charge associée au courant j se met sous la
forme

[Qj, φ](w, w̄) = 1
2iπ

[∮
Cw
dz j(z)φ(w, w̄) +

∮
Cw̄
dz̄ j̄(z̄)φ(w, w̄)

]
(3.40)

où Cw et Cw̄ sont des lacets fermés entourant respectivement w et w̄.
Cette même procédure d’ordre radial implique aussi que le commutateur de deux charges
s’exprime comme une intégrale de contour : si on a les deux charges

Q1 = 1
2iπ

∮
dzj1(z) (3.41)

Q2 = 1
2iπ

∮
dzj2(z) (3.42)

alors le commutateur [Q1, Q2] est donné par

[Q1, Q2] = 1
2iπ

∮
dz

1
2iπ

∮
dw j1(z)j2(w) . (3.43)

Dans le cas où j(z) = ε(z)T (z) génère une transformation infinitésimale de coordonnées
z 7→ z + ε(z), l’accord entre les formules (3.35) et (3.40) implique les développements suivants
pour un champ de poids conformes h, h̄ :

T (z)φ(w, w̄) = hφ(w, w̄)
(z − w)2 + ∂φ(w, w̄)

z − w
+ reg. (3.44)

T̄ (z̄)φ(w, w̄) = h̄φ(w, w̄)
(z̄ − w̄)2 + ∂̄φ(w, w̄)

z̄ − w̄
+ reg. (3.45)

où les derniers termes des deux sommes désignent des contributions régulières lorsque z → w.
On touche ici à un des points qui nous intéressera le plus : celui d’expansion en produits d’opé-
rateurs (OPE). On la définit sur les champs primaires comme le développement correspondant
au comportement du produits de deux opérateurs lorsque leur distance tend vers zéro. Ce
développement est relié à l’expression du propagateur du champ considéré. La forme générale
est, pour une famille de champs conformes φi et dans la limite z1 → z2 :
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φi(z1, z̄1)φ2(z2, z̄2) ∼
∑
k

C k
ij (z1 − z2)hk−hi−hj(z̄1 − z̄2)h̄k−h̄i−h̄jφk(z2, z̄2) + reg. (3.46)

En particulier, les développements (3.44) et (3.45) doivent avoir lieu pour tout champ primaire
φ dans toute théorie où l’invariance conforme est respectée au niveau quantique. On montre que
l’opérateur T (z) est de poids conforme (2, 0) : si l’invariance conforme est respecté au niveau
quantique, on doit avoir l’OPE

T (z)T (w) = 2T (w)
(z − w)2 + ∂T (w)

z − w
+ reg. (3.47)

Nous verrons en théorie des cordes ce résultat est en général mis en défaut : un terme de charge
centrale apparaîtra dans ce développement, et l’algèbre définie par ces commutateurs est alors
appelée algèbre de Virasoro :

T (z)T (w) = c

2(z − w)4 + 2T (w)
(z − w)2 + ∂T (w)

z − w
+ reg. (3.48)

les centrale

Enfin, les OPE nous seront d’une grande utilité pour une autre raison. En effet, on remarque
que l’équation (3.43) relie le commutateur de deux charges à l’OPE des deux courants associés.
Le plus souvent, nous travaillerons avec les courants plutôt qu’avec les charges ; la forme des
OPE associées nous permettra de déterminer les symétries de jauge présentes dans une théorie
en s’intéressant aux structures d’algèbre de Lie induites par les différents courants présents dans
le spectre de la théorie. On pourra aussi déterminer les charges des différents états sous l’action
de ces courants, et les arranger en représentations.

3.2.2 Applications à la théorie des cordes
Théorie conforme du boson libre

En théorie des cordes, on montre que l’action d’un boson libre s’écrit

S = 1
2πα′

∫
∂Xµ∂̄Xµ . (3.49)

De l’équation du mouvement
∂∂̄Xµ = 0 , (3.50)

on déduit que le produit d’opérateurs X(z, z̄)X(w, w̄) se développe comme 4

Xµ(z, z̄)Xν(w, w̄) ∼ −α
′

2 ηµν ln
(
|z − w|2

)
. (3.51)

Notons que cette OPE implique que le champ X n’est pas un champ primaire de la théorie.
Nous allons par contre déterminer quelques opérateurs primaires, qui seront les opérateurs de
vertex créant les états bosoniques de la théorie des cordes.

4. On omettra de mentionner les termes réguliers “+ reg”, leur intérêt étant souvent nul dans les applications.
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Le tenseur énergie-impulsion, déterminé comme en théorie des champs en introduisant une
métrique bidimensionnelle dans l’action et en dérivant par rapport à cette métrique, s’écrit
(dans les coordonnées complexes)

T (z) = − 1
α′
∂X(z)∂X(z) T̄ (z̄) = − 1

α′
∂̄X(z̄)∂̄X(z̄) . (3.52)

On en déduit notamment, d’après (3.51), les champs primaires suivants (indiqués avec leurs
poids (h, h̄)

(∂X)(z) (1, 0)
(∂̄X)(z̄) (0, 1) (3.53)

eikX(z)
(
α′k2

4 , 0
)

Les opérateurs de vertex eikX sont importants à plusieurs titres. En particulier, ils sont res-
ponsables de l’extension de groupes de jauge U(1)n (branche de Coulomb) à des groupes non
abéliens.
Nous rencontrerons souvent par la suite des réalisations de groupes de jauge sous la forme
d’algèbres de courants. Dans ces constructions, les opérateurs de Cartan seront donnés par les
courants conformes, correspondant dans tous les cas à des états sans masse de la théorie, i∂XI(z)
(qui commutent en vertu de l’OPE ∂X∂X ∼ (z − w)−2). L’extension de l’algèbre correspondra
à l’apparition de nouveaux états sans masse, générés par des courants de la forme eiP ·X(z). De
l’OPE suivante

i ∂XI(z) eiP ·X(w) ∼ α′

2
P I

(z − w)e
iP ·X(w) + reg. (3.54)

on tire que, si on note (de manière assez évocatrice) HI et EP les opérateurs correspondant
respectivement à i ∂XI(z) et eiP ·X(w), l’OPE précédente se traduit, lorsque α′ = 2, par le
commutateur

[HI , EP ] = P I EP (3.55)

On voit ainsi que dans le cas d’un groupe de jauge non-abélien, les eiP ·X(z) correspondent aux
opérateurs d’échelle. Les racines de l’algèbre de Lie sont alors les vecteurs (P I), et la condition
de masse nulle (la mettre) montre alors que les algèbres obtenues sont les algèbres simplement
lacées des familles An, Dn, E6,7,8 (voir tableau 2.1). En langage de théorie de jauge, l’OPE (3.54)
montre également que la charge de EP sous l’opérateur de Cartan i∂XI n’est autre que P I .

Théorie conforme du fermion libre

En vue de développer une théorie supersymétrique sur le world-sheet, on va également s’intéresser
à un modèle de fermions libres sur le world-sheet, donnée par l’action

S = − 1
8π

∫
d2z (ψ∂̄ψ + ψ̄∂ψ̄) . (3.56)

38



Cette action conduit à l’OPE suivante (la partie anti-holomorphe n’étant qu’une copie de la
théorie holomorphe, et les deux théories n’interagissant pas, on ne développe ici que la théorie
holomorphe) :

ψ(z)ψ(w) = 1
z − w

(3.57)

Le tenseur énergie-impulsion s’écrivant

T (z) = −1
2ψ∂ψ , (3.58)

on conclut facilement que le champ ψ est de poids conforme (1/2, 0) et que cette théorie a une
charge centrale c = 1/2.

Théorie conforme des (super-)fantômes, et conséquences

Nous ne démontrerons pas les propriétés de cette CFT, nous contenant de les citer. On trouve
que le système de fantômes bc, a une charge centrale −26, tandis que celui des fantômes
super-conformes βγ a une charge centrale 11.
L’annulation de l’anomalie de Weyl pour une théorie de cordes bosoniques comprenant D bosons
XI et des fantômes bc donne alors la dimension critique D = 26 ; de même, pour une théorie de
supercordes comprenant D fermions XI et D fermions ψI , ainsi que des fantômes bc et βγ, on
trouve que l’anomalie de Weyl est nulle pour D = 10. On retrouve ainsi les dimensions critiques
des cordes et des supercordes.

Bosonisation

Nous allons maintenant introduire une équivalence utile, qui semble étrange a priori. En analysant
les OPE dérivées précédemment, on voit que la théorie conforme décrite par un boson holomorphe
est équivalente à celle décrite par deux fermions réels gauches (ou, de manière équivalente, un
fermion complexe gauche). Nous préciserons cette équivalence plus tard, dans la section 4.1.1 :
les vertex de la théorie bosonique décrite sont en fait ceux d’un boson compact.
Soit, donc, un boson H(z) et deux fermions réels ψ1(z), ψ2(z). Du côté bosonique, les 3 courants
J0(z) = i ∂H(z), J±(z) = eiH(z) vérifient les OPE

J0(z)J0(w) ∼ 1
(z − w)2 , (3.59)

J0(z)J±(w) ∼ ± 1
z − w

; (3.60)

Le tenseur énergie-impulsion associé est T (z) = −1
2∂X∂X, et les poids conformes des opérateurs

sont h(J0) = 1, h(J±) = 1
2 .

On vérifie alors que si on définit le fermion complexe

ψ = ψ1 + iψ2
√

2
, ψ̄ = ψ1 − iψ2

√
2

, (3.61)

les mêmes OPE et les mêmes poids conformes sont reproduits par les courants suivants :
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J0(z) = ψ(z)ψ̄(z), J+(z) = ψ(z), J−(z) = ψ̄(z), T (z) = −1
2(ψ1(z)∂ψ1(z)− ψ2(z)∂ψ2(z))

(3.62)
De plus, cette équivalence, comme on le reverra plus tard, est aussi valide au niveau des fonctions
de partition : la fonction de partition d’un boson compactifié sur un cercle de rayon

√
α′/2 est

identique à celle de deux fermions réels holomorphes + deux fermions réels anti-holomorphes.
Ce résultat important s’étend aussi à plusieurs dimensions : ainsi, 2n fermions réels holomorphes
+ 2n fermions réels anti-holomorphes sont équivalents à n bosons compacts. La géométrie du
tore correspondant à ces n bosons compacts est entièrement déterminée par cette équivalence et
est nommée point fermionique.
Comme nous le verrons avec les supercordes, cette équivalence est étendue par la présence des
champs de spin [FMS86], qui permettent d’écrire des vertex explicites pour les vides de Ramond
de la théorie. Nous reviendrons sur ce point dans la section 3.4.

Cette procédure admet un inverse, habilement nommé fermionisation : des dimensions compac-
tifiées en un tore au point fermionique peuvent être paramétrées par un ensemble de fermions
libres. Cette propriété permet de relier les constructions en termes de fermions libres que
nous exposerons dans la section 4.5 à des compactifications géométriques, et de considérer des
compactifications non-géométriques.

3.3 Action des supercordes
On a obtenu jusqu’à présent une théorie des cordes bosonique : les différents états du spectre
se transforment dans des représentations vectorielles du groupe de Lorentz. D’un point de vue
phénoménologique, cela ne saurait nous satisfaire : les particules constituant la matière, quark et
leptons, sont des fermions : leur spin est demi-entier, ils se transforment dans des représentations
spinorielles du groupe de Lorentz et obéissent à la statistique quantique de Fermi-Dirac (ce qui
implique que leur quantification fera intervenir des anticommutateurs). De la même manière que
l’on a écrit une action pour les champs bosoniques de la feuille d’univers Xµ(σ, τ), il est possible
d’introduire des fermions ψµ sur la feuille d’univers, qui seront des variables de Grassmann
possédant un indice vectoriel. On note que ce ne sont donc pas directement ces états qui
formeront des représentations spinorielles du groupe de Lorentz (les ψµ sont des spineurs sur la
feuille d’univers ; leur transformation sous le groupe de Lorentz, qui est une symétrie interne de
la théorie des champs bi-dimensionnelle, peut être choisie de manière arbitraire). Nous allons
voir plus tard que les spineurs d’espace-temps seront construits comme des vides issus de la
quantification de cette théorie.
L’équivalent supersymétrique de l’action de Polyakov s’écrit, en jauge super-conforme 5 :

S = − 1
2π

∫
d2σ

(
∂aX

µ∂aXµ − iψ̄µρa∂aψµ
)

(3.63)

5. L’action générale a une forme plus complexe, faisant intervenir comme dans le cas conforme une métrique
sur la feuille d’univers et un gravitino ; toutefois, les transformations complètes par difféomorphismes, Weyl et
supersymétrie permettent d’aboutir à la forme réduite suivante.
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Ici, les matrices ρa sont les matrices de Dirac à deux dimensions. Le conjugué de Dirac du
fermion ψµ est défini par ψ̄µ = ψµ†ρ0. En termes des variables complexes introduites comme
dans le cas bosonique, les équations du mouvement pour les fermions s’écrivent

∂̄ψ+ = 0 ∂ψ− = 0 (3.64)

où ψ± sont les deux composantes du spineur ψ. dans le cas des cordes fermées, on trouve ainsi
des fermions dans les secteurs holomorphe et anti-holomorphe.
Cette symétrie va se révéler très utile, en imposant de nouvelles contraintes sur le spectre,
nécessaires car comme dans le cas bosonique, la quantification des fermions de la feuille d’univers
introduit dans le spectre des états non-physiques, dont il faut se débarrasser. Dans la théorie
des cordes bosonique, ces états non-physiques sont éliminés en imposant des contraintes issues
de l’algèbre de Virasoro. Ici, la quantification se fait en introduisant les anticommutateurs

{ψµ(σ, τ), ψν(σ′, τ)} = πηµνδ(σ − σ′) ; (3.65)

on voit donc de même que les composantes temporelles ψ0 vont induire des états de norme
négative. Ces états seront éliminés par un nouvel ensemble de contraintes issues des transforma-
tions de supersymétrie, qui forment l’algèbre de super-Virasoro. L’algèbre de super-Virasoro
est une généralisation de l’algèbre de Virasoro : en plus du tenseur énergie impulsion T (z)
(qui comprend les contributions des bosons Xµ et des fermions ψµ), on introduit le courant de
supersymétrie sur la feuille d’univers TF ≡ ψµ∂Xµ ; les modes positif de ce courant devront
aussi annuler les états physiques. Nous renvoyons le lecteur à [Pol98b] pour la forme explicite
de l’algèbre superconforme et pour une discussion détaillée.

3.4 Théories de supercordes à dix dimensions
Fermions sur la feuille d’univers

De la même manière que l’on a introduit les bosons comme des champs sur la feuille d’univers,
on peut considérer l’introduction de champs conformes fermioniques dont l’action est donnée
par (3.56) (ou, de manière équivalente, par la partie fermionique de (3.63)).
Les équations du mouvement dérivant de cette action montrent que le champ ψµ est holomorphe,
et que le champ ψ̄µ est antiholomorphe. La théorie se sépare donc naturellement en côté gauche
et côté droit, conduisant à deux théories conformes de fermions libres indépendantes.

Le fait de considérer des coordonnées fermioniques nous permet maintenant d’envisager deux
conditions aux limites lors du transport du degré du champ le long du cercle défini par
l’identification σ ∼ σ + 2π : on définit le secteur de Ramond comme les solutions vérifiant
ψµ(σ + 2π, τ) = ψµ(σ, τ) et le secteur de Neveu-Schwarz comme les solutions vérifiant ψµ(σ +
2π, τ) = −ψµ(σ, τ).
Les solutions se développent en modes, comme dans le cas bosonique : pour le secteur de
Ramond, on trouve (en fonction des variables complexes w, w̄) :

ψµ(w) =
∑

k∈Z+ 1−a
2

ψµk e
ikw ; (3.66)
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ψ̄µ(w̄) =
∑

k∈Z+ 1−ā
2

ψ̄µk e
ikw̄ . (3.67)

Dans les expressions précédentes (a, ā) indiquent le secteur dans lequel on se place : a = 1
correspond au secteur de Ramond (R) dans lequel les modes du développement sont entiers, et
a = 0 au secteur de Neveu-Schwarz (NS), dans lequel ces modes sont demi-entiers.
La quantification s’effectue cette fois en considérant des anticommutateurs : on pose les relations
(m ou n étant entiers ou demi-entiers selon le secteur considéré) :

{ψµm, ψνn} = ηµνδm+n,0 . (3.68)

Les composantes holomorphe et anti-holomorphe du tenseur énergie-impulsion T (z) = −1
2ψµ∂ψ

µ

et T̄ (z) = −1
2 ψ̄µ∂̄ψ̄

µ donnent les opérateurs de l’algèbre de Virasoro suivants :

Lm = 1
2

∑
k∈Z+ 1−ā

2

ψµm−kψµ,k . (3.69)

Le réordonnement de cet opérateur, de même que dans l’équation (3.15), fait apparaître une
énergie du vide, rendue finie après régularisation de la fonction ζ. On trouve que l’énergie du
vide d’un fermion réel dans le secteur de Neveu-Schwarz est de − 1

48 et celle dans le secteur de
Ramond de 1

24 . Ainsi, la différence d’énergie du vide entre un vide NS et un vide R est de 1/16
par fermion réel.

L’espace de Fock des états physiques s’obtient comme précédemment par l’action des opérateurs
de création sur un vide annihilé par tous les opérateurs d’annihilation. Dans le secteur de
Neveu-Schwarz, il n’y a pas de mode zéro donc ceci se fait de manière non-ambiguë.
Dans le secteur de Ramond, la situation est plus complexe : les modes zéro vérifient l’algèbre de
Clifford

{ψµ0 , ψν0} = ηµν . (3.70)

Le vide n’est alors pas défini de manière unique, car l’action d’un mode zéro sur un état annihilé
par tous les modes strictement positifs fournit encore un état annihilé par tous les modes
strictement positifs. Les vides de la théorie forment une représentation de l’algèbre de Clifford
associée aux opérateurs ψµ0 , c’est-à-dire une représentation spinorielle du groupe de Lorentz
SO(d− 1, 1). Les fermions d’espace-temps vont donc être donnés par les états du secteur de
Ramond de la théorie. Les opérateurs de création agissent ensuite sur ce vide spinoriel de
manière habituelle.
Un vide de Ramond sera noté |s〉, où s =

(
±1

2 ,±
1
2 , . . . ,±

1
2

)
donne les hélicités sous les

générateurs de Lorentz.
La procédure de bosonisation décrite dans la section 3.2.2 peut s’étendre au vide de Ramond
de la théorie. Si les 2d fermions ψi sont bosonisés en d bosons Hi, alors le vide de Ramond est
représenté par les 2d vertex suivants :

Sα = e
i
2 (±H1±H2±···±Hd) . (3.71)
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Sous l’hypothèse α′ = 2, on voit que le poids conforme d’un tel vertex est bien h = d/8 =
2d × (1/16), de sorte qu’on passe bien d’un vide de Neveu-Schwarz à un vide de Ramond.
L’hélicité de ce vide s’identifie au produit des signes ± apparaissant dans l’exponentielle.

Théories de Type II

On s’intéresse à la construction de théories des cordes présentant une supersymétrie d’espace-
temps non-nulle ; il faut donc que l’on réalise une supersymétrie sur la feuille d’univers sur au
moins un des deux secteurs (gauche ou droit) de la théorie. Pour un secteur supersymétrique,
la CFT à ajouter pour annuler la charge centrale des fantômes et superfantômes doit être de
15. Ceci nous définit la dimension de l’espace-temps dans lequel on peut définir une théorie de
supercordes. Un boson libre ayant une charge centrale 1 et un fermion libre une charge centrale
1/2, la condition 3D/2 = 15 montre que l’on doit se placer en 10 dimensions d’espace-temps.
On remarque donc immédiatement qu’a priori, il n’est pas cohérent de définir une théorie de
supercordes en 4 dimensions d’espace-temps. On reviendra dans les paragraphes suivants sur la
manière de remédier à ce problème conceptuel ; on va pour l’instant développer les théories des
cordes à 10 dimensions.
Dans les théories de cordes fermées de Type II, la supersymétrie sur la feuille d’univers est
réalisée à gauche et à droite. On est alors en dix dimensions d’espace-temps, et la théorie contient
dix bosons libres Xµ, µ = 0 . . . 9, 10 fermions gauches libres ψµ, µ = 0 . . . 9 et 10 fermions
droits ψ̄µ, µ = 0 . . . 9. L’invariance de Lorentz de cette théorie implique que les conditions aux
limites soient les mêmes pour tous les fermions : ainsi, dans le spectre de la théorie, les fermions
seront tous dans le secteur NS ou tous dans le secteur R.
Dans le secteur NS, l’énergie de vide de la théorie est maintenant égale à −8/24− 8/48 = −1/2.
On voit donc que le vide du secteur NS-NS est encore tachyonique, de masse carrée −1/2.
Il existe cependant une manière consistante de tronquer ce spectre, qui va de plus assurer la
présence d’une supersymétrie d’espace-temps. Cette opération de projection GSO va imposer
une valeur pour les nombres fermioniques gauche et droit des états physiques. Dans le secteur
Neveu-Schwarz, le vide a un nombre fermionique égal à −1 (ceci est dû à la prise en compte d’une
excitation du fantôme c ; nous ne rentrerons pas dans les détails) ; la projection conservera alors
les états comportant un nombre impair d’oscillateurs gauches et un nombre impair d’oscillateurs
droits. Dans le secteur de Ramond, la projection GSO prend également en compte la chiralité
du vide de Ramond considéré ; on obtiendra la théorie de Type IIA si les signes de la projection
GSO sont opposés dans les secteurs Ramond gauche et Ramond droit, et la théorie de Type IIB
si ces signes sont identiques.
La projection GSO élimine donc le tachyon. Dans le secteur NS-NS, le premier état de la théorie
est alors sans masse : en termes d’opérateurs, il s’écrit ψµ−1/2ψ̄

ν
−1/2|pµ〉NS, et donne comme dans

le cas bosonique, des degrés de liberté correspondant respectivement au graviton, au tenseur
antisymétrique, et au dilaton, selon la décomposition en représentations de SO(8) × SO(8)
suivante :

8v × 8v = 35g + 28B + 1Φ . (3.72)

Si maintenant on considère des conditions au bord de Ramond, l’énergie du vide de la théorie
s’annule. Parmi les états sans masse de la théorie, on trouve alors
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• dans le secteur Ramond-Neveu-Schwarz (R-NS), on a les états ψ̄µ|s, p〉. Ces états forment
une représentation de SO(8)L × SO(8)R s’écrivant comme 8s × 8v. La décomposition

8s × 8v = 8c + 56c (3.73)

sépare ces états en, respectivement, un fermion de chiralité opposée (qui s’écrit comme la
“γ-trace” γµψ̄µ|s, p〉) et un gravitino de spin 3/2.
• dans le secteur Neveu-Schwarz-Ramond (NS-R), on a de même un fermion et un gravitino.
• enfin, le secteur de Ramond-Ramond RR est sans masse en l’absence d’excitations supplé-
mentaires. Le choix des projections GSO va alors déterminer le spectre. Dans la théorie de
Type IIB, les projections GSO sont identiques à gauche et à droite : (−)FL = (−)FR = 1 ; les
états du spectre sont issus du produit de représentations de SO(8)

8s × 8s = 1 + 28 + 35 (3.74)

sont respectivement un scalaire, une 2-forme, et une 4-forme dont le tenseur de courbure est
self-dual.
Dans la théorie de Type IIA, les projections GSO s’écrivent (−)FL = 1, (−)FR = (−)a (a = 1
dans le secteur de Ramond, a = 0 dans le secteur de Neveu-Schwarz). Les états sont cette fois
issus de la décomposition

8s × 8c = 8v + 56v , (3.75)

et on obtient une 1-forme et une 3-forme.

Théories hétérotiques

Dans les théories des cordes hétérotiques [GHMR85, GHMR86] , la supersymétrie sur la feuille
d’univers n’est réalisée que du côté gauche de la théorie. Les degrés de libertés sont alors
les bosons gauches et droits ∂Xµ, ∂̄Xµ et les fermions gauches ψµ. Pour garantir l’absence
d’anomalie conforme de cette théorie, on doit ajouter une théorie conforme de charge c̃ = 16 du
côté droit. On introduit pour cela 32 fermions libres, qui seront des scalaires d’espace-temps,
qu’on note λ1(w̄), . . . , λ32(w̄).
L’ajout de ces fermions introduit une difficulté supplémentaire : ici, les 32 fermions ne sont
pas contraints à avoir les mêmes conditions au bord. La consistance de la théorie obtenue va
toutefois limiter les possibilités.

L’exigence d’invariance modulaire restreint de manière drastique les possibilités : il n’existe en
fait que deux 6 théories hétérotiques.
Dans la théorie SO(32), on contraint les 32 fermions droits à avoir les mêmes conditions aux
limites. Ainsi, lorsque les 32 fermions droits sont en conditions de Ramond, le vide obtenu est
massif. L’implémentation de la projection GSO se fait alors en imposant (−)FL = 1, et (−)FR = 1
du côté droit, où FR est le nombre fermionique associé aux 32 fermions λ1, . . . , λ32.
Le spectre se sépare comme précédemment en secteur NS et secteur R :

6. Nous verrons cependant dans la section 4.1.1 qu’on peut en fait passer continûment de l’une à l’autre.
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• dans le secteur Neveu-Schwarz, on trouve d’une part les états ψµ∂̄Xν |p〉NS qui se séparent,
toujours selon (3.72), en un graviton, un tenseur antisymétrique et un dilaton ; on a ensuite
les états ψµλ[i

−1/2λ
j]
−1/2|p〉NS (l’antisymétrisation des indices vient de l’anticommutation des

fermions λ) : les vertex associés à ces états forment une algèbre de Kac-Moody SO(32) de
niveau 1, de sorte que ces états sont en fait des bosons de jauge de SO(32) ;
• dans le secteur de Ramond, les états sans masse sont d’une part ∂̄Xµ|s, p〉, qui se sépare comme
précédemment en un gravitino et un fermion anti-chiral, et d’autre part les λ[i

−1/2λ
j]
−1/2|s, p〉

qui sont les partenaires supersymétriques des bosons de jauge issus du secteur NS.

Dans la théorie E8 × E8, on sépare les 32 fermions droits en deux sous-ensembles λ1, . . . , λ16 et
λ17, . . . , λ32.
On impose alors que tous les fermions du premier groupe et tous ceux du second groupe aient
les mêmes conditions au bord. Ceci va rendre les états |s1〉 (dans lequel les fermions du 1er

groupe sont en conditions de Ramond et ceux du second en conditions de Neveu-Schwarz) et
|s2〉 (inversement) sans masse.
La condition GSO va consister à demander (−)F1 = (−)F2 = 1, où F1 est le nombre fermionique
associé aux 16 fermions λ1, . . . , λ16, et F2 celui associé aux fermions λ17, . . . , λ32.
La partie du spectre de cette théorie ne faisant pas intervenir d’excitations en λ est identique à
celui de la théorie précédente. Pour la partie de jauge, on trouve les bosons de jauge suivants
si les fermions d’espace-temps sont pris en NS (la partie R du spectre donnera les gauginos
correspondants) :

• les états ψµλ[i
−1/2λ

j]
−1/2|p〉NS sont maintenant limités à i, j ∈ {1 . . . 16} ou i, j ∈ {17 . . . 32},

ce qui nous donne des bosons de jauge de SO(16)× SO(16) dans la représentation adjointe
(120,1) + (1,120).
• les états ψµ|s1, p〉 et ψµ|s2, p〉 complètent l’algèbre de Kac-Moody de SO(16) × SO(16) en

celle de E8 × E8. Cette complétion est en fait issue de la décomposition de l’adjoint de E8 en
représentations de SO(16) :

248 = 120adj + 128s. (3.76)

Il est possible de décrire plus en détail l’extension de SO(16) en E8 en introduisant les champs
de spin correspondant aux vides de Ramond. On bosonise donc les 16 fermions λ1...16 en 8 bosons
compacts H1...8, pris au point fermionique.
Le vide de Ramond |s〉, où s = 1

2(ε1, . . . , ε8) est alors reproduit par le vertex suivant

V (s, z) = e
i
2 (ε1H1+···+ε8H8) (3.77)

La condition GSO (−)F1 = 1 fixe le produit ∏8
i=1 εi = 1. Le groupe de jauge formé par les

fermions est alors composé :

• des 8 vertex λ2i−1λ2i, i = 1 . . . 8, qui, d’après la procédure de bosonisation détaillée dans la
section 3.2.2, sont équivalents aux vertex i∂̄H i, i = 1 . . . 8 ;
• des 112 vertex λ[iλj] ne faisant pas partie de la catégorie précédente, qui se représentent par
les opérateurs bosoniques eεiHi+εjHj , i 6= j ∈ {1 . . . 8}, εi = ±1, εj = ±1 ; cet ensemble de
vertex forme avec les Cartans de l’item précédent l’algèbre de SO(16) ;
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0 1

τ
τ + 1

Figure 3.3 – Réseau du plan complexe défini par le module τ . Les réseaux définis par τ et
τ + 1 sont identiques

• des 128 champs de spin exp
(
i
2(ε1H1 + · · ·+ ε8H8)

)
vérifiant la condition GSO ∏8

i=1 εi = 1.

D’après l’équation 3.55 et les commentaires qui l’entourent, on voit que le système de racines de
l’algèbre correspond à celui d’E8 (cf. par exemple le tableau 3.5 de [FSS00]).

Les théories des cordes hétérotiques ont un énorme intérêt phénoménologique : elles présentent à
dix dimensions un groupe de jauge non trivial, au contraire des théories de Type II. Ces groupes
de jauge sont de plus très intéressants en vue de la construction de modèles réalistes. Nous
reviendrons en grand détail sur ce point, qui est au cœur d’une partie de notre travail de thèse,
dans le chapitre 5.

Fonctions de partition à une boucle

Une quantité définissant en grande partie un modèle de théorie des cordes est la fonction de
partition à une boucle. Cette fonction de partition correspond à l’amplitude “vide-vide” de la
propagation d’une corde fermée sur un tore.
Dans le plan complexe défini par les coordonnées de la feuille d’univers σ, t (on note ici t le
temps propre de la corde pour éviter la confusion avec le paramètre de Teichmüller du tore, τ),
le tore se représente comme un réseau correspondant aux identifications

w = σ + it ∼ w + 2π ∼ w + 2πτ . (3.78)

La propagation de la corde fermée sur ce tore correspond alors à une corde fermée se propageant
pendant un temps euclidien 2πτ2, et le long de l’extension de la corde sur une longueur 2πτ1. Le
générateur des translations temporelles (resp. spatiales) étant le hamiltonien L0+L̄0−c/24−c̄/24
(resp. l’impulsion L0 − L̄0), l’amplitude est donnée par la trace suivante

Z(τ) = Tr
(
e2iπτ1 (L0−L̄0) e−2πτ2(L0+L̄0−c/24−c̄/24)

)
= Tr

(
qL0−c/24 q̄L̄0−c̄/24

)
, (3.79)

où q = e2iπτ , et où la trace est prise sur les états physiques de la théorie.
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Pour avoir la fonction de partition de la théorie, il suffit maintenant d’intégrer cette quantité
sur les valeurs inéquivalentes du paramètre τ . Le réseau défini par τ dans le plan complexe est
invariant sous les transformations

T : τ 7→ τ + 1 ; S : τ 7→ −1
τ
. (3.80)

Ces deux transformations génèrent le groupe modulaire PSL(2,Z) = SL(2,Z)/Z2, dont une
transformation générique est donnée par

τ 7→ aτ + b

cτ + d
, (a, b, c, d) ∈ Z4 | ad− bc = 1 ; (3.81)

le quotientage par Z2 venant du fait que (a, b, c, d) et (−a,−b,−c,−d) génèrent la même
transformation.
On montre alors (une preuve se trouve par exemple dans [Ser94]) que le domaine d’intégration
à considérer, dit domaine fondamental, est donné par

F =

τ ∈ C

∣∣∣∣∣∣ |Re τ | ≤ 1
2 , |τ | ≥ 1

 . (3.82)

F est représenté sur la figure 3.4.

1−1 −1
2

1
2

Re τ

Im τ

Figure 3.4 – Le domaine fondamental du groupe modulaire PSL(2,Z) est ici représenté en grisé.

Ici se manifeste un énorme avantage de la théorie des cordes : dans cette intégration, l’intégration
sur τ1 impose le level-matching entre les états gauche et droit de la théorie ; l’intégration sur τ2
est l’équivalent cordiste de l’intégration sur le paramètre de Schwinger t en théorie des champs.
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τ2 étant borné par une quantité strictement positive, la divergence ultra-violette due à la limite
t→ 0 qui existait en théorie des champs a ici disparu.
La mesure d’intégration 7 est la quantité invariante modulaire d2τ/τ 2

2 . Dans cette partie toutefois,
nous n’effectuerons pas les intégrations, nous contentant de calculer Z(τ).
Nous allons maintenant donner quelques blocs élémentaire pour construire une fonction de
partition. Pour un boson libre, les modes zéro p sont des réels arbitraires ; leur intégration
fournit la contribution suivante à Z (en se limitant aux degrés de liberté transverses) :∫

dD−2p e−2πτ2 p2 ∼ (τ2)−(D−2)/2 . (3.83)

La seconde partie à traiter est celle correspondant aux oscillateurs bosoniques αµ−n : il est facile
de voir que la trace sur toutes les configurations donne le résultat suivant (qui intègre aussi les
charges centrales c/24, c̄/24)

Zosc.(τ) = 1
|η(τ)|2(D−2) (3.84)

où
η(τ) = q1/24

∞∏
n=1

(1− qn) (3.85)

est la fonction de Dedekind.
Les blocs de fonction de partition correspondant aux fermions d’espace-temps vont s’exprimer
en fonction des fonctions theta de Jacobi. La fonction ϑ [ab ] est associée à la structure de spin
(a, b), dans laquelle les fermions considérés ont des conditions aux limites caractérisées par a et
b le long des deux cycles non-contractables du tore, comme représenté sur la figure 3.5 . a, b = 0
correspond à une condition au bord antipériodique, et a, b = 1 à une condition antipériodique. a
étant la condition au bord de “fermeture” de la corde fermée, sa valeur indique si on se trouve
dans le secteur de Ramond (a = 1) ou Neveu-Schwarz (a = 0). b dénote quant à lui la condition
de périodicité le long du cycle “temporel” de propagation de la corde fermée : sa valeur reflète
l’insertion dans la trace de l’opérateur de comptage de fermions (−)F . Pour b = 0, cet opérateur
est présent ; pour b = 1, il est absent. Ces règles sont très utiles pour “lire” les différents degrés
de liberté de la théorie par simple examen de sa fonction de partition à une boucle.

De manière explicite, on a, pour n fermions chiraux libres :

TrNS
(
qL0−c/24q̄L̄0−c̄/24

)
=
(
ϑ [01]
η

)n
=
(
ϑ4

η

)n
;

TrNS
(
(−)F qL0−c/24q̄L̄0−c̄/24

)
=
(
ϑ [00]
η

)n
=
(
ϑ3

η

)n
; (3.86)

TrR
(
qL0−c/24q̄L̄0−c̄/24

)
=
(
ϑ [11]
η

)n
=
(
ϑ1

η

)n
;

7. Cette mesure peut se dériver en remarquant que l’intégration sur le tore doit être effectuée après quotientage
par le groupe de Killing conforme, ce qui fournit un facteur τ2 au dénominateur. Le second τ2 est donné par
la contribution des modes zéro des deux bosons du cône de lumière, dont on ne tient la plupart du temps pas
compte dans le calcul de Z(τ)
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TrR
(
(−)F qL0−c/24q̄L̄0−c̄/24

)
=
(
ϑ [10]
η

)n
=
(
ϑ2

η

)n
.

En regroupant toutes ces contributions, on obtient les fonctions de partition suivantes :

• pour les théories de Type II,

ZII = 1
τ 4

2 η
8η̄8 ×

1
2

1∑
a,b=0

(−)a+b+ab
(
ϑ [ab ]
η

)4
×

1
2

1∑
ā,b̄=0

(−)ā+b̄+ε āb̄

 ϑ̄
[
ā
b̄

]
η̄

4 , (3.87)

où ε = 0 pour la théorie IIA et ε = 1 pour la théorie IIB.

• pour les théories hétérotiques,

ZSO(32) = 1
τ 4

2 η
8η̄8 ×

1
2

1∑
a,b=0

(−)a+b+ab
(
ϑ [ab ]
η

)4
×

1
2

1∑
γ,δ=0

(
ϑ̄ [γδ ]
η̄

)16 , (3.88)

ZE8×E8 = 1
τ 4

2 η
8η̄8 ×

1
2

1∑
a,b=0

(−)a+b+ab
(
ϑ [ab ]
η

)4
×

1
2

1∑
γ,δ=0

(
ϑ̄ [γδ ]
η̄

)82

. (3.89)

1 τa

b

⇔

0 1

τ

a

b

Figure 3.5 – Structure de spin (a, b) sur le tore de module τ .

Supersymétrie d’espace-temps

Dans les fonctions de partition (3.87), (3.88), (3.89), la projection GSO implémentée sur les
bosons et fermions d’espace-temps a permis de faire apparaître les combinaisons suivantes de
fonction ϑ :

1∑
a,b=0

(−)a+b+ε abϑ [ab ]
4 . (3.90)
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En fait, la fameuse aequatio identica satis abstrusa, formulée en 1829 par Jacobi, montre que
ce terme est identiquement nul. On trouvera cette identité, ainsi qu’un recueil des formules
faisant intervenir les fonctions ϑ qui nous seront utiles, dans l’appendice A. Les fonctions de
partition précédentes sont donc nulles, ce qui implique la présence à chaque niveau de masse de la
théorie d’autant de degrés de liberté bosoniques que fermioniques (le facteur de spin-statistique
étant automatiquement incorporé dans l’expression de la fonction de partition, toujours par la
construction GSO). Ceci suggère fortement la présence d’une (ou plusieurs) supersymétrie(s)
d’espace-temps.
Il est en fait possible de construire explicitement les charges de supersymétrie. La bosonisation
de tous les fermions de la théorie permet de représenter tous les vides de Ramond sous la forme
de champs de spin, et de construire les vertex des courants de supersymétrie. En effectuant les
OPE des divers vertex des éléments du spectre, on reconstitue les multiplets de supersymétrie.
Nous renvoyons à l’appendice B de [GKR99], où cette procédure est effectuée dans le cadre des
théories de Type II compactifiées sur des orbifolds.

L’annulation de ces fonctions de partition peut aussi être comprise à l’aide de la propriété de
trialité de SO(8), qui relie la représentation vectorielle v aux deux représentations spinorielles s
et c. Les caractères associés aux représentations de SO(8) sont donnés en fonction des fonctions
ϑ comme

χO = ϑ4
3 + ϑ4

4
2η4 , χV = ϑ4

3 − ϑ4
4

2η4 , χS = ϑ4
2 + ϑ4

1
2η4 , χC = ϑ4

2 − ϑ4
1

2η4 (3.91)

On vérifie donc que l’identité de Jacobi (A.15) est équivalente à l’égalité χV = χS = χC . Comme
on a

1
2η4

1∑
a,b=0

(−)a+b+abϑ [ab ]
4 = χV − χS; 1

2η4

1∑
a,b=0

(−)a+bϑ [ab ]
4 = χV − χC (3.92)

on retrouve que les fonctions de partitions de partition des théories de Type II et hétérotiques
sont nulles. L’absence dans les expressions du caractère χO confirme de plus que ces théories
sont non-tachyoniques.
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Chapitre 4

Théories des supercordes en 4
dimensions

Les théories des supercordes que nous avons développées jusqu’à présent ont un inconvénient
assez fâcheux. Elles sont en effet définies pour un espace-temps à dix dimensions, alors qu’il est
notoire que l’espace-temps dans lequel nous vivons comporte quatre dimensions. La première
solution venant à l’esprit pour remédier à ce problème est une idée remontant au début du
20ème siècle et aux travaux de Kaluza et Klein. Ces derniers remarquèrent que si l’on s’intéresse
à un espace-temps à cinq dimensions, et que l’on compactifie une dimension sur un cercle, on
obtient, d’un point de vue quadri-dimensionnel une théorie comprenant une métrique à quatre
dimensions, un vecteur et un scalaire ; de plus, l’action d’Einstein-Hilbert en cinq dimensions se
réduit en quatre dimensions à une action décrivant la métrique quadri-dimensionnelle, un vecteur
de jauge U(1) et un scalaire libre. Cette théorie unifiait alors classiquement la gravitation et
l’électromagnétisme en postulant que l’espace-temps comportait une dimension supplémentaire,
repliée sur elle-même sur un rayon très faible, ce qui la rend invisible aux énergies habituelles.
En suivant cette logique, on peut donc envisager de factoriser l’espace-temps à 10 dimensions
dans lequel nous définissons la théorie des supercordes sous la forme

M3,1 ×K (4.1)

où K est une variété compacte qui devra vérifier de bonnes propriétés. L’échelle de taille de
cette variété est alors naturellement choisie comme la taille typique à laquelle les effets cordistes
deviennent prépondérants, à savoir la longueur de Planck lP .
Cette solution paraît la plus naturelle ; il est toutefois possible d’en envisager une autre. En
effet, la contrainte de dimensionnalité de l’espace-temps nous est apparue comme contrainte
nécessaire pour annuler l’anomalie conforme. Une autre solution serait donc d’ajouter à la
théorie des supercordes en 4 dimensions de nouveaux degrés de liberté sur la feuille d’univers
formant une théorie de champs conformes et dont la charge centrale compense l’anomalie ;
autrement dit nous cherchons des théories de charges conformes (c, c̃) = (9, 9) dans le cas des
théories de Type II, et (c, c̃) = (9, 22) dans le cas des théories hétérotiques. Ce mécanisme
est déjà partiellement mis en œuvre dans la construction même des cordes hétérotiques, où
l’ajout de 32 fermions libres droits permet de compenser la charge centrale issue des fantômes
bc et des 10 bosons d’espace-temps. On verra dans la dernière section de ce chapitre que ce
mécanisme se généralise naturellement à la construction de théories quadridimensionnelles. Ces
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deux approches se révèlent en fait complémentaires : l’ajout de théories conformes bien choisies
permet de reproduire des compactifications géométriques en certains points de leur espace
de modules ; elles permettent aussi de généraliser ces constructions géométriques de manière
intéressante.

4.1 Compactifications usuelles
On cherche à écrire une théorie des cordes sur un espace-temps à dix dimensions se factorisant
comme produit de l’espace-temps de Minkowski et d’une variété K à six dimensions représentant
l’espace interne. Une telle variété K doit satisfaire certaines contraintes. Notamment, le vide de
la théorie doit être une solution des équations du mouvement, ce qui implique, en demandant
l’invariance conforme du modèle-sigma sur la feuille d’univers, que le tenseur de Ricci de la variété
doit s’annuler. De plus, pour des raisons phénoménologiques, on va chercher à compactifier sur
une surface qui conserve au moins une supersymétrie N = 1 dans la théorie à quatre dimensions.
On montre que cette condition est satisfaite s’il existe un spineur covariamment constant sur la
variété, ce qui est encore équivalent à demander que l’holonomie de la variété (c’est-à-dire, le
groupe de transformations que peut subir un spineur par transport parallèle le long de la variété)
soit inclus 1 dans SU(3). On montre en fait qu’une variété de Kähler complexe, compacte, de
dimension (complexe) 3 et d’holonomie SU(3) est automatiquement Ricci-plate. De tels espaces
sont appelés espaces de Calabi-Yau, et constituent la géométrie naturelle de compactification de
la théorie des supercordes [CHSW85].

Nous allons énoncer quelques aspects géométriques qui nous seront utiles par la suite, en
nous inspirant fortement de [Gre96]. Nous commençons par détailler la structure de l’espace
des modules d’une variété de Calabi-Yau, puis nous examinerons l’apparition d’une symétrie
échangeant deux espaces de Calabi-Yau, nommée symétrie miroir. Nous rencontrerons à nouveau
cette symétrie au chapitre 5, où l’existence d’une autre symétrie du même genre sera obtenue.

Espace des modules et symétrie miroir

Par définition, il existe sur une variété de Calabi-Yau une métrique Ricci-plate. Toutefois,
celle-ci est loin d’être unique ; l’espace des modules se définit alors comme l’espace sur lequel on
peut déformer une métrique Ricci-plate en une autre métrique Ricci-plate. On distingue alors
deux classes de déformations. Premièrement, les déformations de type Kähler δgij̄, s’écrivant
avec un indice holomorphe et un indice anti-holomorphe. Une telle déformation ne modifie
pas la structure complexe de la variété (c’est-à-dire, intuitivement, la manière dont les six
coordonnées réelles sont groupées en trois dimensions complexes), mais agissent sur la taille de
la variété. Deuxièmement, les déformations de structure complexe de la forme δgij, avec deux
indices holomorphes. Cette fois, ces déformations modifient la structure complexe. En effet,
on veut définir sur la variété une métrique où toutes les composantes purement holomorphes
ou purement anti-holomorphes sont nulles (dite métrique hermitienne). Pour intégrer une

1. Si ce groupe est inclus dans SU(3) mais pas dans SU(2), la supersymétrie sera N = 1 dans le cas de la
compactification d’une théorie hétérotique et N = 2 dans le cas d’une théorie de Type II ; si ce groupe est inclus
dans SU(2), les supersymétries conservées seront respectivement N = 2 et N = 4.
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déformation purement holomorphe dans ce contexte, il faut alors redéfinir les coordonnées
complexes, de sorte que la métrique déformée reste hermitienne.
Des considérations de géométrie différentielle que nous n’évoquerons pas ici montrent que l’espace
des déformations de Kähler s’identifie à la cohomologie de Dolbeault 2 H1,1, tandis que celui des
déformations de structure complexe s’identifie à H2,1.

Dans le cas d’une compactification sur un espace de Calabi-Yau, l’holonomie SU(3) implique
la présence sur la feuille d’univers de deux algèbres superconformes N = 2, l’une du côté
holomorphe de la théorie et l’autre du côté anti-holomorphe. Dans le cas des théories de Type
II, ces deux algèbres donnent naissance à deux supersymétries d’espace-temps ; par contre dans
le cas de la compactification d’une théorie hétérotique, seule la partie holomorphe impliquera
une supersymétrie d’espace-temps. L’algèbre superconforme antiholomorphe a toutefois un rôle
crucial dans la détermination du groupe de jauge : nous détaillerons ce point dans le chapitre 5.
Les propriétés de l’algèbre superconforme détaillées dans l’appendice B permettent de définir,
pour une algèbre (2, 2), l’anneau chiral composé de quatre catégories de champs notés (c, c),
(a, c), (c, a), (a, a). On montre alors que les champs de type (c, c) sont en bijection avec les
éléments de H2,1, alors que ceux de type (c, a) sont en bijection avec les éléments de H1,1.
Cette propriété semble étonnante : deux familles de champs dont les propriétés ne diffèrent
que par le signe d’une charge, fixée de manière a priori conventionnelle, déforment la théorie
de manière drastiquement différente. Ceci tend à faire penser que la théorie conforme donnée
par un Calabi-Yau peut aussi être donnée par un autre Calabi-Yau, miroir du premier, dans
lequel on a échangé les cohomologies H1,1 et H2,1. Du point de vue de la théorie conforme,
on voit qu’une telle opération va avoir pour effet de renverser le signe de la charge U(1) des
champs anti-holomorphes. Or, l’expression de J donnée dans l’appendice B dans le cadre de la
réalisation de l’algèbre superconforme montre bien que cette charge U(1) est reliée à l’hélicité
des états fermioniques. L’effet de la symétrie miroir va donc, dans ce cas, correspondre au
renversement de l’hélicité des fermions. Bien sûr, dans le cas d’une théorie hétérotique, le côté
droit de la théorie ne comporte pas de fermions à proprement parler ; la chiralité renversée sera
donc celle de représentations du groupe de jauge (nous verrons que les groupes de jauge obtenus
admettent bien des représentations chirales). Par contre, dans le cas des théories de Type II,
la mise en œuvre d’une symétrie miroir a bien pour effet de renverser l’hélicité des fermions
anti-holomorphes. Ceci est confirmé par l’analyse de [SYZ96] : si l’on se donne une théorie de
Type IIA compactifiée sur un espace de Calabi-Yau, sa théorie T-duale 3 est obtenue comme la
compactification de cette même théorie sur le Calabi-Yau miroir. Ou, de manière équivalente :
la compactification de la théorie IIA sur un Calabi-Yau est équivalente à la compactification de
la théorie IIB sur le Calabi-Yau miroir.

Un inconvénient de la procédure générale de compactification de Calabi-Yau est qu’il est
difficile d’obtenir des informations concrètes sur le spectre de la théorie, ou la structure des
supersymétries présentes à quatre dimensions. L’exemple de Calabi-Yau le plus simple, le tore
T 6, permet d’expliciter le spectre de la théorie compactifiée. Le tore est d’holonomie triviale, de
sorte que toutes les charges de supersymétrie sont préservées par la compactification.

2. La cohomologie de Dolbeault Hp,q est le quotientage de l’espace des (p, q)-formes fermées ω vérifiant ∂̄ω = 0
par celui des (p, q)-formes exactes ω vérifiant ω = ∂̄ρ, où ρ est une (p, q − 1)-forme.

3. La T-dualité est introduite dans la section suivante.
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Nous allons détailler cette procédure de compactification toroïdale, et en donner le spectre. Nous
utiliserons abondamment cette compactification dans les sections suivantes ; elle nous servira en
outre à construire les compactifications d’orbifold, présentées dans ce chapitre, qui permettent
une étude explicite du spectre et des propriétés de théories à supersymétrie réduite.

4.1.1 Compactifications toroïdales et réseaux
Nous allons commencer par traiter la compactification d’un boson X sur un cercle S1 de rayon
R.

Dans un formalisme de théorie des champs, l’impulsion est quantifiée par la condition de
périodicité imposée sur le degré de liberté bosonique. L’opérateur de translation le long de la
dimension compacte e2iπRp devant être égal à l’identité, on obtient la condition habituelle

p = m

R
, m ∈ Z . (4.2)

En théorie des cordes, cette impulsion est celle qui se rapporte au temps propre de la corde :
avec nos notations, elle correspond à α0 + α̃0.
Les cordes fermées font apparaître une nouvelle caractéristique de la compactification : ces
cordes peuvent s’enrouler autour de la dimension compacte avant de se refermer [dessin]. Ainsi,
l’équation

X(σ + 2π, τ) = 2πnR +X(σ, τ) (4.3)

caractérise un état de corde ayant un nombre d’enroulement n autour de S1. Cette contrainte
implique alors sur les modes zéro

α0 − α̃0 = nR . (4.4)

De sorte que finalement, les modes zéro de la corde fermée le long de la dimension compacte
dépendent de deux entiers (m,n) appelés nombre d’impulsion et nombre d’enroulement. Pour
l’état |m,n〉, on a les modes zéro gauche et droit suivants :

PL = m

R
+ nR

α′
; PR = m

R
− nR

α′
. (4.5)

Pour que ces états soient physiques, ils doivent satisfaire la condition de level-matching(
P 2
L

2 +NL

)
−
(
P 2
R

2 +NR

)
= 0 . (4.6)

En particulier, P 2
L − P 2

R doit être pair. Ceci est trivialement vérifié dans notre cas ; nous verrons
que l’extension de cette propriété à des réseaux de dimension élevée contraint fortement la
théorie.
On remarque que le spectre est invariant sous la transformation R → α′/R. Cette symétrie,
dite T-dualité, échange le nombre d’enroulement et le nombre d’impulsion ; dans le cas d’une
théorie de Type II, la T-dualité échange le boson compact antiholomorphe X(z̄) en −X(z̄). Par
symétrie superconforme, le fermion antiholomorphe partenaire change aussi de signe, et donc la
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chiralité des spineurs droits de la théorie est modifiée. On est ainsi passés d’une théorie de Type
II à l’autre. La T-dualité se généralisera à plusieurs dimensions dans les paragraphes suivants.

La fonction de partition du boson compact diffère de celle du boson rencontrée précédemment.
La contribution des oscillateurs est identique, et est donnée en fonction de la fonction η de
Dedekind : Zosc. = |η|−2. La contribution des modes zéro est modifiée : on a

Γ1,1(R) =
∑

qα
′ P 2
L/4q̄α

′ P 2
R/4 =

∑
m,n∈Z

exp
[
iπτ

α′

2

(
m

R
+ nR

α′

)2
− iπτ̄ α

′

2

(
m

R
− nR

α′

)2]
. (4.7)

La notation Γ1,1(R) que nous avons introduite donne le bloc de la fonction de partition issus des
modes zéros d’un boson gauche et un boson droit compactifiés sur un cercle de rayon R, dans la
représentation dite hamiltonienne. Cette notation s’étend au cas de plusieurs dimensions ; dans
la suite, on notera Γp,q(G,B, Y ) le réseau des modes zéro de p bosons gauches et q bosons droits
compactifiés sur un (p, q)-tore. Nous reviendrons d’ici peu sur cette expression, en précisant
notamment la signification physique des pq paramètres que l’on a notés G,B, Y .

Intéressons-nous encore un peu au cas simple du cercle. Il est possible d’obtenir une autre
représentation de la somme de réseau (4.7), en utilisant la formule de resommation de Poisson 4 :
la représentation lagrangienne. On trouve alors

Γ1,1(R) = R√
α′τ2

∑
m̃,n∈Z

exp
[
−πR

2

α′τ2
|m̃+ nτ |2

]
. (4.8)

Enfin, nous allons donner une conséquence de l’équivalence de bosonisation : au point fermionique
R =

√
α′/2, on a l’égalité entre les fonctions de partition d’un boson compact d’une part, et de

deux fermions gauches et deux fermions droits d’autre part :

1
|η|2

Γ1,1

√α′
2

 = 1
|η|2

1√
2τ2

∑
m̃,n∈Z

exp
[
− π

2τ2
|m̃+ nτ |2

]
= 1

2

1∑
a,b=0

∣∣∣∣∣ϑ [ab ]
η

∣∣∣∣∣
2

. (4.9)

Cette formule sera généralisée dans la section 4.2.2.

Nous allons maintenant considérer le cas général de compactification de p dimensions, ce qui
correspond à considérer des réseaux (p, p). En vue de décrire les compactifications de la théorie
hétérotique, nous nous intéresserons également au cas des réseaux (p, p+ 16).
Nous considérons de p bosons gauches et q bosons droits compacts, en suivant [Nar86, NSW87].
Les impulsions internes sont données par deux vecteurs PL, PR, respectivement à p et q
composantes, et vérifiant les conditions de level-matching (4.6) :

P 2
L − P 2

R = 2(NR −NL) (4.10)

Si on définit sur notre réseau une norme lorentzienne de signature (p, q), on a la propriété
suivante : le réseau doit être auto-dual et pair. L’espace de déformation d’un réseau lorentzien
vérifiant ces propriétés est O(p, q) ; ce groupe est appelé groupe de T-dualité. On peut vérifier

4. On trouvera une version très générale de cette formule dans l’appendice A de [Kir97].
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que la T-dualité R→ 1/R du cercle se généralise ici en une opération d’inversion d’une matrice
fonction des modules de compactification (voir par exemple [GPR94]) toutefois, on voit que
le spectre de masse de la théorie obtenue après compactification est invariant sous les deux
groupes O(p)L (préservant P 2

L) et O(q)R (préservant P 2
R). Ainsi, l’espace des théories des cordes

inéquivalentes obtenues par cette compactification est O(p, q)/O(p)×O(q).
Un élément de l’espace O(p, q)/O(p) × O(q) est paramétrisé par pq paramètres. Dans le cas
d’une compactification de p dimensions, et donc d’un réseau (p, p), ces p2 modules sont donnés
par la métrique Gij et la 2-forme antisymétrique Bij vivant sur le p-tore et intervenant dans
l’action du modèle-sigma pour les dimensions compactes

S =
∫
d2σ

(
Gij∂aX

i∂aXj + εabBij∂aX
i∂bX

j
)
. (4.11)

Ces modules correspondent à des directions plates du potentiel dans la théorie effective. Ils
définissent la géométrie de la variété de compactification.
Dans ce cas-là, la représentation lagrangienne de la somme de réseau se généralise en

Γp,p =

√
detGij

α′p/2τ
p/2
2

∑
(m̃i),(ni)

exp
[
− π

α′τ2
(Gij +Bij)(m̃i + niτ)(m̃j + nj τ̄)

]
, (4.12)

et la resommation de Poisson montre que 5 les impulsions valent

P i
L = Gij

√
2

(
mj + (Bjk +Gjk)

nk

α′

)
; P i

R = Gij

√
2

(
mj + (Bjk −Gjk)

nk

α′

)
. (4.13)

Dans le cas hétérotique, nous devons maintenant compactifier sur un réseau pair, self-dual de
dimension (p, p + 16). Ces conditions sont en fait extrêmement restrictives : ces réseaux sont de
la forme

Γp,p+16 = Γp,p ⊕ Γ(SO(32)) ou Γp,p+16 = Γp,p ⊕ Γ(E8)⊕ Γ(E8) , (4.14)

ce qui redonne les deux groupes de jauge possibles pour la théorie hétérotique. 16 p nouveaux
modules apparaissent ici. Il s’agit de lignes de Wilson, qui représentent la valeur moyenne
dans le vide des éléments de la sous-algèbre de Cartan de rang 16 de la théorie hétérotique
(SO(32) ou E8 × E8). Dans une théorie de jauge non-abélienne, ces degrés de liberté restent
non-dynamiques : leur terme dans le lagrangien étant donné par Tr((F I)2) + [AI , AJ ], il reste
nul dès que les AI commutent. Les lignes de Wilson vont modifier les conditions aux limites
des états chargés sous le groupe de jauge : si mi et ni sont les nombres quantiques (dans la
représentation hamiltonienne) d’un état de corde de charges (ea) sous la ligne de Wilson Ai,a (a
parcourt ici la sous-algèbre de Cartan) alors la présence de cette ligne induit la modification

mi → mi + eaAi,a ; ni → ni . (4.15)

5. La forme de ces impulsions se dérive aussi en étudiant l’action du modèle-sigma (4.11).
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Le changement se fait en fait sur l’expression des impulsions : on a maintenant [KK97]

P i
L = Gij√

2

(
mj + Aaj e

a(Bjk +Gjk)n
k

α′
+ 1

2A
a
jA

a
k
nk

α′

)
,

P i
R = Gij√

2

(
mj + Aaj e

a(Bjk −Gjk)n
k

α′
+ 1

2A
a
jA

a
k
nk

α′

)
.

(4.16)

Ce shift se répercute évidemment sur le spectre de masse. Les états de corde correspondant
aux opérateurs de Cartan étant neutres sous le groupe de jauge et de nombre d’enroulement
nul, leur masse n’est pas modifiée ; par contre, la partie non-abélienne du groupe peut acquérir
une masse. Dans ce cas, le groupe de jauge est brisé ; une configuration générique de lignes de
Wilson brisera ainsi le groupe de jauge de rang 16 de la théorie hétérotique en sa sous-algèbre
de Cartan U(1)16.
Le groupe O(p, p+ 16)/O(p)×O(p+ 16) apparaît ici encore comme groupe de T-dualité de la
théorie.

Supersymétries et groupes de jauge

Comme dans le mécanisme original de Kaluza et Klein, la compactification a pour effet de faire
apparaître des degrés de liberté de jauge dans la théorie. Les bosons de jauge sont représentés,
en théorie bosonique 6 par les opérateurs de vertex (a est ici la dimension compactifiée)

Gµa ↔ (∂Xµ∂̄Xa + ∂Xa∂̄Xµ)eikX (4.17)

Bµa ↔ (∂Xµ∂̄Xa − ∂Xa∂̄Xµ)eikX (4.18)

Ces états, scindés en leur partie gauche ∂Xµ∂̄Xa et leur partie droite ∂Xa∂̄Xµ, génèrent un
groupe de jauge U(1)L × U(1)R. Ce groupe de jauge est présent quelque soit le rayon de
compactification.

Toutefois, en une valeur particulière du rayon, de nouveaux états sans masse apparaissent. Ces
états vont étendre le groupe de jauge, et celui-ci va devenir non-abélien 7.
La masse d’un état de mode zéro |m,n〉 et de nombres d’oscillateurs N, Ñ est donnée, une fois
prise en compte la condition de level-matching, par

M2 = α′

4

(
m

R
+ nR

α′

)2
+N − 1 = α′

4

(
m

R
− nR

α′

)2
+ Ñ − 1 (4.19)

Si R =
√
α′, en plus des états ci-dessus, on remarque que les états

∂̄Xµ(z̄) | ± 1,±1, k〉 = e±i(2/
√
α′)X(z)∂̄Xµ(z̄) eikX (4.20)

6. L’extension à la corde supersymétrique est immédiate : l’excitation de poids 1 correspondant au vertex
∂Xµ doit être remplacée par celle de poids 1/2 correspondant au vertex ψµ.

7. Dans le cadre de compactifications toroïdales, le rang du groupe de jauge issu de la compactification reste
toutefois constant ; si on compactifie sur un (p, q)-tore, ce rang est égal à p+ q.
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sont sans masse. En effectuant les OPE de ces vertex avec le boson de jauge U(1) ∂Xa∂̄Xµ, on
remarque que les trois courants réalisent une algèbre affine SU(2). On a donc étendu U(1)L à
SU(2)L. De même, on voit facilement que les états

∂Xµ(z) | ± 1,∓1, k〉 = ∂Xµ(z) e±i(2/
√
α′)X̄(z̄) eikX (4.21)

étendent U(1)R en SU(2)R. Cette extension de jauge est un phénomène purement cordiste,
faisant intervenir des états d’enroulement non-nul.

On peut généraliser cette extension au cas de la compactification de p dimensions. Il est facile de
voir qu’en l’absence d’hypothèse supplémentaires, le groupe de jauge obtenu est ici U(1)pL×U(1)pR.
Ce groupe peut en fait s’étendre [Gin87], au maximum en SO(2p)L × SO(2p)R. Pour cela, on
doit se placer en un point de l’espace des modules tel que des vertex supplémentaires de la forme
eiPL·XL ∂̄XR et ∂XL eiPR·XR deviennent sans masse, et que la structure du groupe résultant soit
celle de SO(2n). Cette structure sera donnée par les OPE (3.55). Nous renvoyons à [Gin87]
pour plus de précisions ; il y est noté entre autres que les deux théories hétérotiques SO(32)
et E8 × E8 sont continûment reliées par déformation du réseau Γp,p+16. Notons enfin que, sous
extension ou sous brisure par des lignes de Wilson, le rang des groupes de jauge obtenus est
inchangé.
Nous reviendrons amplement par la suite au point d’extension de la jauge en SO(2p)L×SO(2p)R,
qui n’est autre que le point fermionique.

La réduction dimensionnelle change les propriétés de supersymétrie. La manière la plus simple
d’appréhender ce mécanisme est de raisonner en termes de supercharges. Le nombre de super-
charges maximal d’une théorie physique, comme montré dans la section 2.2 est de 32.
Les théories de cordes de Type II présentent une supersymétrie N = 2 en dix dimensions, soit
32 supercharges (la dimension minimale d’une représentation spinorielle de SO(10) étant de
16, pour des fermions de Majorana ou de Weyl). En dimension 4, cette dimension est de 4 ;
si toutes les supercharges survivent, on a donc une supersymétrie N = 8. Des supercharges
formant une représentation 16 de SO(9, 1) se décomposent sous SO(9, 1)→ SO(3, 1)× SU(4)
comme 16 = (2,4) ⊕ (2,4). En décomposant de la même manière la 16 dans le cas d’une
théorie de Type IIA, on reconstitue bien les 8 générateurs de supersymétrie en 4D, en utilisant
la décomposition du spineur de Dirac à quatre dimensions 4→ (2,2).
En termes d’opérateurs de vertex, il est possible de se faire une image claire de la situation.
En effet, dans une théorie de Type II par exemple, si on fermionise les 10 fermions gauches
d’espace-temps en 5 bosons H0, H1, H2, H3, H4 (et de même pour les droits) en comparant les
vertex du graviton

eiH0eiH̄0

et du gravitino gauche

e
i
2 (H0±H1±H2±H3±H4)eiH̄0

on voit que les 16 supercharges sont associées aux courants

e−
i
2 (H0±H1) e

i
2 (±H2±H3±H4)
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Dans l’hypothèse où toutes les charges survivent à la procédure de compactification, on voit
que sous décomposition du groupe de Poincaré à dix dimensions, le facteur correspondant aux
directions compactifiées donne le groupe de R-symétrie, en produit direct avec le groupe de
Poincaré à quatre dimensions. Ainsi, la présence de N = 1 en dimension 10 implique N = 2 en
dimension 6 et N = 4 en dimension quatre. De même, N = 2 en 10D donne N = 4 en 6D et
N = 8 en 4D.

Les exemples précédents décrivent des compactifications sur des géométries régulières. Nous allons
cependant voir que les possibilités de compactification sont beaucoup plus vastes. Elles incluent
notamment les orbifolds, qui sont des espaces quotients pouvant admettre des singularités.
Les orbifolds les plus simples ont une interprétation géométrique claire ; on peut toutefois
envisager des compactifications sur des orbifolds non-géométriques, qui débouchent sur des
théories conformes parfaitement définies. Entre autres propriété, la compactification sur des
orbifolds va éliminer des supercharges, et donc réduire la supersymétrie à quatre dimensions
(comme le faisait déjà la compactification sur un Calabi-Yau par des propriétés d’holonomie).

4.2 Orbifolds
Lorsqu’une variété possède un groupe de symétrie, il est possible de considérer la variété quotient,
dans laquelle on identifie un point de la variété avec son orbite sous le groupe de symétrie. La
géométrie de la variété en est alors fortement affectée : notamment, dans le cas où le groupe
de transformations admet un ou plusieurs points fixes (on parle d’orbifold à action non-libre),
l’espace-quotient admet des singularités en ces points. Nous allons néanmoins voir que l’on
peut définir sans problème une théorie des cordes compactifiée sur ce type d’espaces, dont la
construction consistera dans un premier temps à garder les états de cordes invariants sous le
groupe de transformation considéré. On verra ensuite que la consistance de la théorie impose
d’introduire de nouveaux secteurs, dits twistés.
Les constructions d’orbifold ont été introduites dans [DHVW85, DHVW86]. Les raisons motivant
cette introduction sont multiples.
Premièrement, après les compactifications toroïdales, les compactifications sur des orbifolds sont
les plus faciles à décrire. En effet, les surfaces de Calabi-Yau que l’on considère généralement ne
permettent pas beaucoup de calculs explicites ; les calculs se font souvent aux points de l’espace
des modules où la variété de Calabi-Yau considérée développe une singularité de type orbifold.
Ainsi, la variété K3 dégénère en l’orbifold T 4/Z2 en un point particulier.
Deuxièmement, la construction d’orbifold, en projetant certains états de cordes hors du spectre
physique, permet de réduire les symétries de la théorie. Ceci a plusieurs utilités en vue de décrire
des modèles réalistes, dans lequel on attend une supersymétrie N = 1 brisée à l’échelle du TeV et
un groupe de jauge de type SU(5) ou SO(10). À titre de comparaison, la compactification d’une
théorie hétérotique sur le tore T 6 fournit une théorie à 4 dimensions ayant une supersymétrie
N = 4, et un groupe de jauge de rang 28. Les caractéristiques topologiques de l’orbifold
et l’apparition de secteurs twistés permettent aussi de contrôler plusieurs caractéristiques
intéressantes de la théorie, comme par exemple le nombre de générations.
Enfin, la construction d’orbifold permet de construire des théories conformes qui n’ont pas
d’interprétation géométrique simple, comme des orbifolds asymétriques, dans lesquels le groupe
de symétrie n’agit pas de la même manière sur les degrés de liberté gauches et sur les droits.
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π 0
−→

π 0
−→ π 0

Figure 4.1 – L’orbifold S1/Z2 “aplatit” le cercle en segment par identification des points reliés en pointillés ;
0 et π sont points fixes du groupe de symétrie considéré.

Ces constructions présentent néanmoins un grand intérêt, d’un point de vue phénoménologique,
que ce soit dans la création de modèles à supersymétrie étendue ou dans l’étude de dualités.

4.2.1 Orbifolds à action non-libre
L’exemple le plus simple d’orbifold est aussi celui que nous rencontrerons le plus souvent. Il s’agit
de la compactification d’une dimension d’espace sur l’espace quotient S1/Z2, schématiquement
représenté sur la figure 4.1. Cet orbifold est à action non-libre : l’identification X ∼ −X a deux
points fixes sur le cercle, qui sont X = 0 et X = π. Le calcul de la fonction de partition à une
boucle de ce modèle va illustrer l’apparition des secteurs twistés de la théorie.
Pour retenir les états invariants sous le groupe Z2, il faut introduire dans la trace le projecteur

p = 1 + g

2 , (4.22)

où g est la transformation X 7→ −X. L’effet de cette projection sur les opérateurs de la théorie
se déduit de la solution classique des équations du mouvement

X = X0 + pL(τ − σ) + pR(τ + σ) +
∑
n 6=0

αn
n
e−in(τ−σ) +

∑
n6=0

ᾱn
n
e−in(τ+σ) (4.23)

on voit que les transformations sont

X0 7→ X0 , |pL, pR〉 7→ | − pL,−pR〉 , (αn, ᾱn) 7→ (−αn,−ᾱn) (4.24)

de sorte que la fonction de partition est

Zunt. = Tr
(1 + g

2 qL0−c/24q̄L̄0−c̄/24
)

= 1
2Z(R) +

∣∣∣∣ ηθ2

∣∣∣∣ . (4.25)

Cette quantité n’est toutefois pas invariante modulaire. Pour la compléter, on peut ici raisonner
en termes géométriques. L’introduction du projecteur dans la trace force les états invariant à
obéir à la condition aux limites

X(σ, τ + 2π) = −X(σ, τ) . (4.26)
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Toutefois, la transformation modulaire τ 7→ −1/τ nous force à considérer une condition au bord
antipériodique sur le second cycle du tore :

X(σ + 2π, τ) = −X(σ, τ) . (4.27)
Ces états sont dits twistés : la corde fermée se referme en fait à une transformation du groupe de
symétrie près. Le second terme de la fonction de partition est alors la trace sur les états twistés :

Ztw. = Trtw.
(1 + g

2 qL0−c/24q̄L̄0−c̄/24
)
. (4.28)

Pour effectuer le calcul, on note que cette fois les modes d’oscillation sont demi-entiers. On
trouve cette fois

Ztw. = Tr
(1 + g

2 qL0−c/24q̄L̄0−c̄/24
)

=
∣∣∣∣ ηθ4

∣∣∣∣+ ∣∣∣∣ ηθ3

∣∣∣∣ . (4.29)

La somme Zunt. + Ztw. est maintenant invariante modulaire.
Elle se note de façon condensée comme

Z = 1
2

1∑
h,g=0

Z[hg ] , (4.30)

où

Z[00] = Z(R) ; Z[hg ] =

∣∣∣∣∣∣ 2η
ϑ
[

1−h
1−g

]
∣∣∣∣∣∣ , (h, g) 6= (0, 0) . (4.31)

Le facteur 2 du numérateur s’explique par la présence de deux vides twistés, correspondant aux
2 points fixes de l’orbifold.
De façon générale, on construit souvent les fonctions de partition d’orbifold en appliquant le
groupe modulaire à la partie correspondant au secteur non-twisté, qui est facile à construire ; en
effet une interprétation géométrique des secteurs twistés est souvent impossible.

Plusieurs choses sont importantes à noter :

• l’énergie du vide a changé. Ceci est dû au fait que les états twistés sont créés à partir du vide
conforme par des opérateurs de poids non nuls. Nous verrons plus tard que ces états peuvent
être identifiés à des vides de Ramond.
• La partie twistée de la fonction de partition (ie (h, g) 6= (0, 0)) ne dépend pas du rayon de

compactification. Ceci est caractéristique des orbifolds à action non libre : les états twistés de
la théorie sont localisés aux points fixes de la transformation (rappelons que (pL, pR) = (0, 0))
et ne “voient” donc pas la géométrie de l’espace interne. Ainsi, il sera possible de calculer la
contribution de secteurs twistés en se plaçant en un point particulier de l’espace des modules
de la variété de compactification ; la déformation de ce modèle vers une valeur arbitraire des
modules internes n’affectera pas la forme de cette contribution.

La plupart des orbifolds que nous rencontrerons seront une généralisation du cas S1/Z2 à
plusieurs dimensions d’espace, à savoir le quotient T d/Z2. La fonction de partition se calcule
selon le même principe : si on note Gij et Bij les modules du tore, on a
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ZT d/Z2 = 1
2

1∑
h,g=0

Z[hg ] , (4.32)

où

Z[00] = Z(Gij, Bij) ; Z[hg ] = 2d|η|d∣∣∣ϑ [1−h1−g

]∣∣∣d , (h, g) 6= (0, 0) . (4.33)

Ici, Z(Gij, Bij) est la fonction de partition sur le tore vue [avant].
On emploiera souvent une notation séparant les modes d’oscillation du réseau des modes zéro :
ainsi, on réécrit la fonction de partition précédente comme

Z = 1
2

1∑
h,g=0

Γd,d[hg ]
|η|2d

, (4.34)

où

Γd,d[00] = Γd,d(Gij, Bij) ; Γd,d[hg ] = 2d|η|3d∣∣∣ϑ [1−h1−g

]∣∣∣d , (h, g) 6= (0, 0) . (4.35)

Il nous reste à traiter le cas des fermions, qui, pour des raisons de supersymétrie sur la feuille
d’univers, doivent subir les mêmes transformations que leurs partenaires bosoniques. Le résultat
est intuitif au niveau de la fonction de partition : on a vu que dans la fonction de partition de
deux fermions gauches réels donnée par

Zf = 1
2

1∑
a,b=0

ϑ [ab ]
η
, (4.36)

la structure de spin (a, b) correspond aux conditions au bord des fermions le long des directions
1 et τ du tore. La présence d’une projection dans la trace, contrôlée par la valeur de g, change la
condition au bord b ; la valeur de h, dénotant l’appartenance au secteur twisté, contrôle quant à
elle la valeur de a. Pour un twist (h, g), le bloc fermionique ϑ [ab ] va donc être changé en ϑ

[
a+h
b+g

]
.

Cet exemple d’orbifold est géométrique : il correspond au quotientage du tore. On peut toutefois
imaginer des orbifolds non géométriques, qui vont agir formellement sur la théorie conforme
interne. Un exemple est donné par les orbifolds asymétriques [NSV87]. Ces orbifolds a entre
autres pour effet de twister les bosons gauches ∂X et de conserver les bosons droits ∂̄X. Cette
démarche est parfaitement valable dans le cadre de la théorie conforme, où les deux côtés sont
indépendants. Elle est d’une grande utilité, notamment pour la construction de théories de
cordes à supersymétrie étendue [FK89, DJK08], de paires S-duales de théories de cordes [KK97],
ou encore pour la réalisation de diverses brisures des groupes de jauge [CHL95, CP95]
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4.2.2 Orbifolds à action libre et compactification de Scherk-Schwarz
Un orbifold à action libre correspond, à l’opposé, au quotientage de la variété par un groupe
n’ayant pas de point fixe. Nous allons voir que cette différence est cruciale du point de vue de la
théorie obtenue. En particulier, pour des raisons que l’on explicitera plus bas, les orbifolds à
action libre sont beaucoup plus intéressants d’un point de vue phénoménologique, notamment
dans les mécanismes de brisure de supersymétrie : les gravitinos, au lieu d’être purement et
simplement éliminés du spectre comme c’est le cas dans les orbifolds à action non-libre, vont
cette fois subsister mais devenir massifs. On peut ainsi construire des théories dans lesquelles
la supersymétrie est spontanément brisée à une échelle dépendant de la taille des dimensions
compactes ; dans une limite de décompactification, on peut recouvrer la supersymétrie initiale.

Un exemple simple d’orbifold à action libre

Nous allons commencer par développer l’exemple le plus simple d’orbifold à action libre, qui
se base, pour un boson compactifié sur un cercle de rayon R, sur la symétrie Z2 (trivialement
libre) de translation X → X + πR.
L’action de cette transformation sur les vertex des modes zéro de la théorie

|m,n〉 ≡ ei(
m
R

+nR
α′ )XL(z)ei(

m
R
−nR
α′ )XR(z̄) (4.37)

est la suivante
|m,n〉 → (−)m|m,n〉; (4.38)

elle laisse de plus invariants les oscillateurs αn, ᾱn.
La partie de la fonction de partition correspondant au secteur twisté de la théorie est alors
construite comme

Zuntw. = 1
ηη̄

∑
m,n∈Z

1
2(1 + (−1)m) exp

(
iπτ

α′

2

(
m

R
+ nR

α′

)2
− iπτ̄ α

′

2

(
m

R
− nR

α′

)2)
(4.39)

Nous avons vu qu’il est suffisant, pour construire la contribution twistée à la fonction de partition,
d’appliquer la transformation modulaire τ → −1/τ à la contribution non-twistée. En effectuant
ce calcul et en sommant les deux contributions, on obtient la fonction de partition finale (après
une transformation de Poisson pour passer en formalisme hamiltonien)

Z = 1
ηη̄

1
2

1∑
h,g=0

∑
m̃,n∈Z

exp
−πR2

α′τ2

∣∣∣∣∣
(
m+ g

2

)
+
(
n+ h

2

)
τ

∣∣∣∣∣
2
 (4.40)

Réseaux twistés et shiftés

Il est possible de généraliser ces expressions et de mêler les effets des orbifolds à action non-libre
(twist) et libre (shift) pour obtenir des formules générales. Nous allons donner ces formules sans
démonstration ; le lecteur peut se rapporte à [GKR99, FKNR04, Noo04] pour plus de détails.
Pour cela, nous allons commencer par étendre l’équivalence fermion-boson formulée en section
3.2.2 au cas d’un boson twisté. Cette formule est un avant-goût du formalisme que nous
développerons en section 4.5, nous ne la démontrons pas.
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Au point fermionique R =
√
α′/2, la généralisation de (4.9) donne l’équivalence

Zorb. = 1
2

1∑
h,g=0

Γ1,1[hg ]
ηη̄

= 1
ηη̄

1
2

1∑
h,g=0

∣∣∣ϑ [a+h
b+g

]
ϑ [ab ]

∣∣∣ , (4.41)

où Γ1,1[hg ] a été défini en (4.35).

Une telle équivalence existe aussi dans le cas du boson shifté :

1
ηη̄

1
2

1∑
p,q=0

∑
m̃,n∈Z

exp
[
− π

2τ2

∣∣∣∣(m+ q

2

)
+
(
n+ p

2

)
τ

∣∣∣∣2
]

= 1
2

1∑
p,q=0

1
2

1∑
a,b=0

∣∣∣∣∣∣
ϑ
[
a+p
b+q

]
η

∣∣∣∣∣∣
2

(4.42)

Pour des raisons phénoménologiques, nous nous intéressons à l’orbifold d’un tore T 6, dont les
coordonnées peuvent être twistés et/ou shiftées. Dans tous les cas de figures intéressants, les
twists seront caractérisés par les paramètres (h1, g1) pour les deux premières dimensions, (h2, g2)
pour les deux suivantes, et (−h1 − h2,−g1 − g2) pour les deux dernières 8 et les shifts par les
paramètres (pi, qi)i=1...6.
La quantité importante dans ce cas-là est le réseau (2, 2) twisté/shifté, qui est donné au point
fermionique par [FKNR04] :

Γ2,2
[
h
g

∣∣∣ p1 p2
q1 q2

]
= 1

4
∑

a1,b1,a2,b2

(−)a1q1+b1p1+p1q1(−)a2q2+b2p2+p2q2
∣∣∣ϑ [a1

b1

]
ϑ
[
a1+h
b1+g

]
ϑ
[
a2
b2

]
ϑ
[
a2+h
b1+g

]∣∣∣ ;
(4.43)

et le réseau (6, 6) le plus général s’écrit comme combinaison de ces blocs. Nous ferons usage de
ces constructions dans la section 5.

Origines en théorie des champs : compactification de Scherk-Schwarz

Nous allons maintenant présenter une procédure de compactification issue de la théorie des
champs, introduite à la fin des années 1970 par Scherk et Schwarz [SS79a, SS79b]. Nous reprenons
ici en grande partie la présentation qui en est faite dans [KR90], ce qui nous permettra de
l’étendre aux cordes de manière naturelle, comme effectué dans [Roh84, KP88, KR90]. Nous
verrons enfin que tout ceci se reformule agréablement sous forme d’orbifolds à action libre, et nous
verrons comment construire facilement les blocs correspondants dans la fonction de partition à
une boucle. Dans la section suivante, nous donnerons la manière d’utiliser ce formalisme pour
briser spontanément la supersymétrie, procédure qui est au cœur de ce travail de thèse.

Dans une compactification usuelle (toroïdale par exemple), l’identification XI ∼ XI + 2πRI

faite sur les coordonnés spatiales internes doit se répercuter sur les champs physiques de la
théorie, qui doivent être univalués : on doit avoir

Φ(Xµ, XI + 2πRI) = Φ(Xµ, XI) (4.44)

8. L’existence de la relation h1 + h2 + h3 = g1 + g2 + g3 = 0 garantit la présence d’une supersymétrie N = 1
à quatre dimensions.
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Si l’on considère maintenant des symétries internes associées aux directions compactes XI ,
données par des opérateurs QI , on peut s’intéresser aux configurations de champs suivantes :

Φ̂(Xµ, XI) = exp
(
i eI QI X

I
)

Φ(Xµ, XI) (4.45)

On voit alors que lorsque les dimensions internes sont compactifiées sur des rayons RI , ces
nouveaux champs ont des conditions au bord modifiées :

Φ̂(Xµ, XI + 2πRI) = exp
(
i eI QI R

I
)

Φ̂(Xµ, XI) . (4.46)

Ainsi, la dépendance des champs en les dimensions internes n’est plus périodique : si on transporte
le champ le long d’une dimension compactifiée du système, la valeur à l’arrivée sera reliée à
celle du départ par une symétrie interne du système. D’un point de vue mathématique, ceci
peut s’interpréter en considérant que le champ multivalué prend ses valeurs sur un fibré, dont la
fibre est la groupe de symétrie interne considéré.
Cette transformation modifie les modes des impulsions internes comme

mI

R
−→ mI

R
+ eI qI (4.47)

où qI est la charge du champ sous l’opérateur QI . Ceci a un effet sur le spectre de masse des
états de la théorie : des champs de charge différente prendront des masses différentes dans le
processus de compactification de Scherk-Schwarz, levant ainsi des dégénérescences aux différents
niveaux de masse de la théorie.

L’extension à la théorie des cordes se fait de manière naturelle en partant de la propriété de
modification des conditions au bord pour les états chargés de la théorie. Si l’on s’intéresse à
la compactification d’une dimension sur un cercle de rayon R, les états de corde de la théorie
compactifiée sont caractérisés par le nombre d’impulsion m̃ et le nombre d’enroulement n (m
est ici l’entier apparaissant dans la version lagrangienne de la fonction de partition du réseau
(1, 1)). L’état de corde défini par les deux nombres (m̃, n) obéit aux conditions suivantes par
transport sur les 2 cycles non-contractables du tore :

X(σ, τ + 2π) = X(σ, τ) + 2πm̃R ; X(σ + 2π, τ) = X(σ, τ) + 2πnR . (4.48)

Ainsi, pour l’opérateur de vertex V (σ, τ) de charge q sous la symétrie considérée, les conditions
au bord 9 sont modifiées de la manière suivante :

V (σ + 2π, τ) = e−ieqnR V (σ, τ) ; (4.49)

V (σ, τ + 2π) = e−ieqm̃R V (σ, τ) . (4.50)

On note que la seconde condition n’est autre que la formule usuelle de théorie des champs. La
première condition est son extension cordiste, que l’on va interpréter comme caractérisant le
secteur twisté d’un orbifold.

9. Ceci peut s’étendre dans le cas où on se place à l’ordre de plusieurs boucles : il suffit de considérer autant
de conditions aux limites modifiées qu’il y a de cycles indépendants non-contractables sur la surface d’univers
que l’on considère. Dans cette thèse, nous travaillons uniquement à l’ordre d’une boucle.
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Ce mécanisme est en fait analogue à l’introduction de lignes de Wilson, évoquée en (4.15). On a
toutefois ici accès à plus de courants, notamment à des courants qui briseront la supersymétrie.

Parmi les multiples façons d’implémenter ces compactifications dans l’expression d’une fonction
de partition que nous allons détailler, nous en présentons une première, basée sur le couplage
d’un rayon interne R5 au courant d’hélicité d’espace-temps ψ2ψ3 (les deux fermions du cône de
lumière). La théorie est ici hétérotique, mais l’extension aux théories de Type II est immédiate.
Si Zm̃,n dénote la contribution du mode m̃, n au réseau Γ1,1(R5)

Zm̃,n(R5) = R5√
α′τ2

exp
[
−πR

2

α′τ2
|m̃+ nτ |2

]
, (4.51)

alors les conditions au bord des états de structure de spin (a, b) chargés sous ce courant sont
modifiées comme [KR90] :

a→ a+ 2ne , b→ b+ 2m̃e ; (4.52)

où dans ce cas e, la charge de l’état sous le courant d’hélicité vaut 1.
Le bloc de la fonction de partition encodant les structures de spin se modifie alors comme

Z = . . .
∑
m̃5,n5

Zm̃5,n5

1
2
∑
a,b

C(a, b) ϑ [ab ]
4 . . . (4.53)

→ . . .
∑
m̃5,n5

Zm̃5,n5

1
2
∑
a,b

C ′(a, b) ϑ
[
a+2n5
b+2m̃5

]
ϑ [ab ]

3 . . . (4.54)

Ici, seule la première fonction ϑ, encodant la contribution des deux fermions du cône de lumière
à quatre dimensions, est modifiée.
La modification des coefficients C(a, b) est dictée par l’invariance modulaire ; on trouve C ′(a, b) =
eiπ(bn5+m̃5n5)C(a, b).
On remarque en fait, d’après les propriétés des fonctions ϑ, que l’implémentation de cette
compactification se fait en fait en insérant un cocycle (−)am̃5+bn5+m5n5 dans la fonction de
partition. En isolant les blocs fermionique et de la dimension interne de Z, la projection
s’implémente de la manière suivante :

1
2

∑
a,b

(−)a+b+abϑ [ab ]
4 × exp

[
−πR

2

α′τ2
|m̃+ nτ |2

]
(4.55)

→ 1
2
∑
a,b

(−)a+b+ab(−)am̃+bn+m̃n ϑ [ab ]
4 × exp

[
−πR

2

α′τ2
|m̃+ nτ |2

]

Reformulation de la compactification de Scherk-Schwarz par orbifold à action libre

Nous allons maintenant formaliser le rapport exact entre compactification de Scherk-Schwarz
et orbifold à action libre, et utilisant l’exemple simple élaboré ci-dessus ; sa généralisation sera
ensuite aisée.
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La symétrie Z2 d’orbifold correspondant à cette brisure a pour expression g = (−)F δ5, où
(−)F est l’opérateur de comptage de fermions (gauches dans le cas hétérotique correspondant à
l’exemple ci-dessus), et δ5 : X5 7→ X5 + πR5 la translation selon la direction considérée pour
effectuer la compactification de Scherk-Schwarz.
Schématiquement, en réécrivant le bloc de la fonction de partition correspondant aux degrés de
liberté fermioniques et au réseau de la dimension compactifiée

1
2
∑
a,b

(−)a+b+abϑ [ab ]
4

η4 ×
∑
m,n

exp
(
iπτ

(
m

R
+ nR

α′

)2
− iπτ̄

(
m

R
− nR

α′

)2)
, (4.56)

de manière à faire apparaître les caractères de SO(8) introduits en (3.91) :

∑
m,n

[V8 − S8]×
∑
m,n

exp
(
iπτ

(
m

R
+ nR

α′

)2
− iπτ̄

(
m

R
− nR

α′

)2)
(4.57)

l’insertion de l’opérateur de projection (1 + g)/2 dans la trace nous donne la partie non twistée
de la fonction de partition

1
2

1∑
g=0

[V8 − (−1)gS8]
∑
m,n

(−1)gm exp
(
iπτ

(
m

R
+ nR

α′

)2
− iπτ̄

(
m

R
− nR

α′

)2)
, (4.58)

tandis que le secteur twisté, dans lequel les nombres d’enroulement sont demi-entiers et la
projection GSO inversée, s’écrit

1
2

1∑
g=0

(−)g[O8−(−1)gC8]
∑
m,n

(−1)gm exp
iπτ (m

R
+ (n+ 1/2)R

α′

)2

− iπτ̄
(
m

R
− (n+ 1/2)R

α′

)2
 ,

(4.59)
Il est alors facile de montrer que la fonction de partition de l’orbifold vaut finalement, en
repassant à l’écriture en termes de fonctions theta :

1
2

1∑
h,g=0

1
2
∑
a,b

(−)a+b+ab(−)ag+bh+ghϑ [ab ]
4

η4 × (4.60)

∑
m,n

(−1)gm exp
iπτ (m

R
+ (n+ h/2)R

α

′)2

− iπτ̄
(
m

R
− (n+ h/2)R

α

′)2
Une resommation de Poisson faisant repasser en formalisme hamiltonien donne alors l’expression

1
2

1∑
h,g=0

1
2
∑
a,b

(−)a+b+ab(−)ag+bh+ghϑ [ab ]
4

η4
R√
α′τ2

∑
m̃,n

exp
−πR2

α′τ2

∣∣∣∣∣
(
m̃+ g

2

)
+
(
n+ h

2

)
τ

∣∣∣∣∣
2
 ,
(4.61)

En posant R′ = R/2, on voit que dans cette expression, h et g ne sont autres que les parités des
nombres d’enroulement de l’état de corde sur le cercle de rayon R′ ; (−)ag+bh+gh s’identifie alors
au cocycle inséré dans l’équation (4.55), et on retrouve bien le bloc de fonction de partition
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1
2
∑
m̃,n

1
2
∑
a,b

(−)a+b+ab(−)am̃+bn+m̃nϑ [ab ]
4

η4
R′√
α′τ2

exp
(
−π(R′)2

α′τ2
|m̃+ nτ |2

)
(4.62)

4.3 Brisure de supersymétrie et de jauge dans les construc-
tions d’orbifold

Les compactifications d’orbifold ont la capacité de réduire les groupes de symétrie présents dans
une théorie. Deux types de brisure de symétrie existent : dans le cas d’une brisure explicite, les
états médiateurs de la symétrie (bosons de jauge ou gravitino) sont éliminées du spectre par
projection ; alors que dans le cas d’une brisure spontanée, ces états sont toujours présents dans
le spectre, mais sont devenus massifs. Nous voyons alors que dans le cas de la supersymétrie, un
modèle réaliste exige la présence d’une brisure spontanée vers N = 0, de manière à introduire
un décalage de masse entre super-partenaires compatible avec les observations actuelles. Nous
remarquons aussi qu’une brisure spontanée du groupe de jauge, en levant la masse de certains
bosons de jauge, s’apparente à un mécanisme de Higgs ; de même, une brisure spontanée de
supersymétrie peut se voir comme un mécanisme de super-Higgs [C+78], dans lequel le gravitino
acquiert une masse.

Nous commençons par discuter le cas de brisures explicites. Nous développerons ici les résultats
correspondant aux constructions “canoniques”, qui s’avéreront les plus utiles pour décrire notre
travail. Ce cas est donné par l’action d’orbifolds à action non-libres, qui réduisent partiellement
la supersymétrie, et la symétrie de jauge dans le cas des théories hétérotiques. Le lien avec les
compactifications de Calabi-Yau sera ici assez clair. On considère pour commencer le cas de
l’orbifold T 4/Z2, sous l’action duquel les 4 bosons X7,8,9,10, les 4 fermions gauches ψ7,8,9,10 et les
4 fermions droits ψ̄7,8,9,10 (dans le cas des théories de Type II) ou λ̄1,2,3,4 (dans le cas des théories
hétérotiques) sont envoyés sur leurs opposés. Dans le cas des théories de Type II, l’action de
l’orbifold sur les fermions gauches et droits est dictée par la supersymétrie sur la feuille d’univers ;
dans le cas des théories hétérotiques, l’action sur les fermions droits est dictée par l’invariance
modulaire 10. La brisure de supersymétrie est alors induite par le fait que la transformation
d’orbifold agit aussi sur la chiralité des vides de Ramond de la théorie ; ainsi, parmi les états
ψµ|sR, p〉, ψ̄µ|sL, p〉 de la théorie de Type II donnant naissance aux gravitini et goldstinos, la
projection orbifold élimine la moitié des polarisations, de sorte que la supersymétrie est réduite
de moitié. Si l’on considère un Z2 supplémentaire agissant sur les coordonnées X5,6,9,10 et les
fermions correspondants, on obtient un orbifold T 6/Z2 × Z2, dans lequel il ne reste plus qu’un
quart de la supersymétrie initiale, soit N = 2 en Type II et N = 2 en hétérotique. Dans le cas
de la théorie hétérotique, l’orbifold agit sur les bosons de jauge. On montre qu’un orbifold T 4/Z2
réduit le groupe de jauge E8×E8 en E7× SU(2)×E8, tandis qu’un orbifold T 6/Z2×Z2 donne
une jauge E6 × SU(3)×E8. Ces résultats sont identiques à ceux donnés par la compactification
de la théorie hétérotique sur, respectivement, K3× T 2 et sur un Calabi-Yau d’holonomie SU(3).

Nous nous intéressons maintenant au cas des brisures spontanées de symétrie, dans lesquelles
la masse de certains états devient non nulle. Notre point de départ est la version cordiste du
10. Cette action est en fait une traduction du plongement de la connection de spin dans la connection de

jauge ; nous détaillerons ce point dans la section 5.2.
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mécanisme de Scherk-Schwarz, dont on a vu qu’il se caractérisait par l’introduction d’un cocycle
de la forme (−)am̃+bn+m̃n. La valeur de a dépendant du caractère fermionique ou bosonique de
l’état considéré, a est un exemple de R-charge. Nous allons maintenant étendre ce concept à des
R-charges de la forme a + Q, où eiπQ est un opérateur de parité du système (c’est-à-dire, un
opérateur ayant des valeurs propres ±1). a+Q est également une R-charge ; il est donc possible
de considérer le cocycle plus général suivant

(−)(a+Q)m̃+(b+Q̃)n+εm̃n (4.63)

où Q̃ s’obtient à partir de Q par une transformation modulaire τ → −1/τ . la valeur de ε = 0, 1
dépend des propriétés de transformation modulaire de Q : on doit avoir, sous τ → τ + 1 :

a+Q→ a+ b+ Q̃− ε. (4.64)

La supersymétrie est bien brisée, un décalage de masse étant introduit entre partenaires
supersymétriques. L’ajout de la charge Q introduit toutefois une différence dans le schéma de la
brisure : une resommation de Poisson montre que les états devenant massifs après introduction
de ce cocycle sont ceux pour lesquels a+Q ≡ 1 mod. 2. Ainsi, dans les paires supersymétriques
vérifiant Q = 0, les fermions deviennent massifs, comme précédemment ; par contre dans le
cas Q = 1, ce sont les bosons qui acquièrent une masse. Les charges Q, Q̃ peuvent être soit les
paramètres de twist d’un orbifold (h, g), soit encore une hélicité associée à des représentations
d’un groupe de jauge, dans le cas d’une théorie comprenant des représentations spinorielles du
groupe de jauge. Notons que ceci revient à considérer des lignes de Wilson discrètes. Le choix
de la R-charge revient donc à choisir quels états on veut rendre massifs, et quels états on veut
préserver dans le spectre sans masse. Nous rencontrerons ces brisures généralisées tout au long
de notre travail. Dans le chapitre 5, les orbifolds à action libre ne brisent pas la supersymétrie,
mais discriminent les différentes représentations du groupe de jauge SO(10) par l’introduction
de l’opérateur de parité (−)ε, où ε est l’hélicité SO(10). Dans le chapitre 6, nous utilisons
ce formalisme pour briser la supersymétrie ; l’ajout d’une charge supplémentaire permet de
pondérer par un signe ± les contributions des différents états du spectre au potentiel effectif à
une boucle.

Il est facile d’étendre ces considérations aux théories de Type II. Ces théories comportent
deux hélicités d’espace-temps correspondant aux côtés gauche et droit. Nous avons vu dans
la construction des théories à dix dimensions que les états bosoniques viennent des secteurs
a = ā = 0 (secteur de Neveu-Schwarz–Neveu-Schwarz) et a = ā = 1 (secteur de Ramond–
Ramond). L’implémentation d’une température dans les théories de Type II se fait donc par la
compactification de Scherk-Schwarz du temps euclidien, à l’aide du cocycle

(−)(a+ā)m̃+(b+b̄)n. (4.65)

Comme précédemment, la brisure de supersymétrie peut aussi s’effectuer en effectuant la
compactification de Scherk-Schwarz d’une (ou plusieurs) dimensions internes. Il est dans un
premier temps possible de généraliser la R-charge de la température en lui ajoutant une charge
de parité interne Q, ce qui conduit à l’introduction du cocycle

(−)(a+ā+Q)m̃+(b+b̄+Q̃)n+εm̃n. (4.66)
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On a maintenant aussi accès à des compactifications de Scherk-Schwarz asymétriques. En effet,
il est consistant de considérer l’introduction de cocycles

(−)(a+Q)m̃+(b+Q̃)n+εm̃n, (−)(ā+Q)m̃+(b̄+Q̃)n+εm̃n, (4.67)

correspondant respectivement, dans les notations de la section précédente, aux orbifolds par
(−)FLδ et (−)FRδ, où FL et FR sont les nombres fermioniques gauche et droit.
Ces cocycles brisent bien la supersymétrie, en brisant spontanément une des deux algèbres
superconformes (gauche ou droite) de la feuille d’univers : dans le premier cas, les états issus des
secteurs NS−NS et NS−R restent sans masse, tandis que leurs partenaires supersymétriques
provenant, respectivement, des secteurs R−NS et R−R, deviennent massifs.
Remrquons pour finir qu’une compactification de Scherk-Schwarz peut aussi être effectuée sans
brisure de supersymétrie, en introduisant un cocycle de la forme

(−)Qm̃+Q̃n+εm̃n. (4.68)

Dans les deux cas typiques que nous rencontrerons, Q est soit un paramètre de twist d’un
Z2-orbifold, soit une charge sous un groupe de jauge de la théorie. Dans ce dernier cas, le
mécanisme de Scherk-Schwarz s’identifie en fait à l’allumage de lignes de Wilson discrètes.

4.4 Supergravités effectives des réductions dimension-
nelles de théories de supercordes, et schémas de bri-
sure

Nous avons annoncé à la fin de la section 2.2.2 que les théories obtenues par réduction dimension-
nelle de la théorie des cordes sont des supergravités sans échelle. Nous allons donner ici plus de
précisions sur ce mécanisme, en développant les cas de compactification qui nous intéresseront en
particulier. Beaucoup de références donnent des détails sur ces supergravités ; le lecteur pourra
se rapporter, entre autres, à [Wit85, FKP86, CLO88, FP89, FKZ94, FKPZ89, FKPZ87].

Dans les réductions dimensionnelles des théories des supercordes, les degrés de liberté compactifiés
s’identifient à des modules, dont le potentiel est plat. Ces modules s’arrangent génériquement
en des cosets : la structure de la variété sur laquelle ils vivent obéit à certaines symétries,
basées principalement sur la T-dualité. La forme de ces cosets est contrainte par la quantité de
supersymétries présentes à quatre dimensions. Nous allons cataloguer les cosets accessibles par
des compactifications toroïdales ou d’orbifolds ; beaucoup de ces cosets ont été explicitement
réalisés dans [FK89], en utilisant le formalisme de construction fermionique que nous présenterons
dans le paragraphe suivant. Nous mettrons principalement l’accent sur les possibilités d’obtention
de modèles N = 1, dont nous ferons un usage abondant.

• Supergravité N = 8 : cette théorie est unique ; les 70 scalaires proviennent du multiplet
gravitationnel. Le coset obtenu est E7(7)/SU(8) [CJ79] ; SU(8) est ici le groupe de R-symétrie.
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• Supergravité N = 4 : les scalaires de cette théorie sont de deux types : on trouve deux scalaires
dans le multiplet gravitationnel, et 6NV scalaires correspondant aux NV multiplets vectoriels
que comporte la théorie. Il se trouve en fait que l’espace des modules ne prend en compte que
les scalaires commutant entre eux, donc associés à la sous-algèbre de Cartan de la jauge. On
obtient donc 6(6 + r) scalaires, où r est le rang du groupe de jauge ; le coset obtenu est alors

SU(1, 1)
U(1) × SO(6, 6 + r)

SO(6)× SO(6 + r) . (4.69)

Cette structure s’identifie bien entendu à celle rencontrée au cours de l’étude des réseaux de Na-
rain, dans la section 4.1.1. SO(6) ∼ SU(4) est le groupe de R-symétrie N = 4 ; SU(1, 1)/U(1)
donne la contribution du doublet dilaton/axion. Selon les détails de la construction du modèle,
ces scalaires peuvent provenir du multiplet gravitationnel ou de multiplets vectoriels. On note
que le doublet dilaton/axion appartient au multiplet gravitationnel dans le cas des théories
hétérotiques, alors qu’il appartient à un multiplet vectoriel dans le cas des théories de Type
II. Les supergravités N = 2 et N = 1 qui nous intéresseront seront construites 11 à partir
de troncations de ce coset ; ces troncations seront effectuées soit au moyen de projections
orbifold, soit au moyen de compactification sur des variétés d’holonomie non-triviale (de type
Calabi-Yau).

• Supergravité N = 2 : il existe trois types de multiplets : les multiplets vectoriels, les hyper-
multiplets, et le multiplet gravitationnel. On montre que la variété des scalaires se factorise
en trois parties, la première donnant la contribution du scalaire complexe dilaton/axion, et
les deux autres donnant les contributions respectives des scalaires des multiplets vectoriels et
de ceux des hyper-multiplets. Les résultats concernant ces géométries, dites spéciales, sont
très nombreux. Nous ne rentrerons pas dans les détails, qui ne sont pas nécessaires dans le
cadre de nos travaux.

• Supergravité N = 1 : cette fois, les trois types de multiplets à considérer sont le multiplet
gravitationnel, les multiplets vectoriels qui définissent le groupe de jauge de la théorie, et les
multiplets chiraux qui incluent les champs scalaires de la théorie.
Parmi les multiplets chiraux, on trouve le couple dilaton/axion S, ainsi que les modules
de compactification, se répartissant en modules de Kähler T i et en modules de structure
complexe U i. On montre qu’au voisinage du point où tous les champs chargés sous la jauge
s’annulent, le potentiel de Kähler prend la forme

K = − log(S + S̄)−
∑
i

ki log(T i + T̄ i)−
∑
i

pi log(U i + Ū i) (4.70)

où ∑i ki = 3 (les modules T i paramétrisant le volume de la variété).
La prise en compte des champs chargés sous le groupe de jauge sous la jauge modifie ce
potentiel de Kähler . Ces scalaires ne sont en fait autres que les lignes de Wilson, qui font
partie du réseau de Narain des modules dans le cas des théories hétérotiques. Nous allons
donner quelques exemples de variétés sur lesquelles vivent les scalaires dans des constructions
explicites en théorie des cordes hétérotiques.

11. Dans le cas de constructions d’orbifold, la troncation donnera la contribution du secteur non-twisté ; les
secteurs twistés donneront des contributions additionnelles.
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Dans le cadre d’orbifolds Z2 × Z2 de modèles N = 4, on peut obtenir des potentiels de
Kähler de la forme

K = − log(S + S̄)−
3∑

A=1
log((TA + T̄A)(UA + ŪA)− (yiA + ȳiA)2) (4.71)

avec iA = 1 . . . nA, A = 1, 2, 3, paramétrisant le coset

SU(1, 1)
U(1) ×

3∏
A=1

[
SO(2, 2 + nA)

SO(2)× SO(2 + nA)

]
, (4.72)

dans lequel les parties (2, 2) représentent les modules géométriques des trois 2-tores, et les nA
donnent des multiplets chiraux supplémentaires. Cet espace ne rend toutefois compte que
du secteur non-twisté de l’orbifold (d’où la présence des modules géométriques) ; les secteurs
twistés donnent génériquement des scalaires ayant pour potentiel

Ktw. = −2 log(1− CC†) (4.73)

et vivant dans un coset de type SU(1,n)
U(1)×SU(n) [FGKP87a, FGKP87b].

Un autre exemple [FKP86] est donné par l’orbifold Z3 de la théorie N = 4 hétérotique E8×E8,
dont le coset est (4.69). Les scalaires du secteur non-twisté de la théorie s’organisent lors dans
un coset

SU(1, 1)
U(1) × SU(3, 3 + n)

SU(3)× SU(3 + n)× U(1) , (4.74)

de potentiel de Kähler

K = − log(S + S̄)− log det(Tij̄ + T †
ij̄
− 2CiC̄j̄). (4.75)

Bien que les détails de la compactification conduisent à des formes différentes pour la théorie
effective, il est possible de dériver des propriétés communes, dans le but de caractériser des
mécanismes de brisure de supersymétrie.
Pour effectuer une brisure de supersymétrie en préservant la nullité de l’énergie du vide, en se
plaçant dans le cadre de l’approximation (4.70), il faut introduire une dépendance en S, T i, U i

dans le superpotentiel (dans le cas contraire, on aurait GIG
I = 4 +∑

i pi > 3 (I sommé sur S,
T i, U i), ce qui garantirait Vmin. > 0 en vertu de la formule (2.20)). Cette modification témoigne
du mécanisme de brisure, qui peut prendre la forme d’une compactification orbifold, ou d’une
condensation de gauginos.
Dans une vaste catégorie de modèles orbifold, on montre que les termes cinétiques des modules
sont préservés lors de la brisure de supersymétrie, modulo une redéfinition analytique des
champs ; ainsi la brisure est uniquement gouvernée par une modification du superpotentiel . On
montre ensuite que, lorsque les modules C sont nuls, on peut factoriser l’espace des modules T i,
U j en un produit d’espaces, dont le premier est donné par deux modules T 0, U0, de potentiel
de Kähler

K0 = − log(T 0 + T̄ 0)− log(U0 + Ū0) (4.76)
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et un second espace regroupant les autres modules géométriques. La modification de superpo-
tentiel ne dépend alors pas de S, T 0, U0, de sorte que GIGI = 3 lorsque I est sommé sur ces
3 modules. On a donc un module sans échelle, en la personne d’une combinaison linéaire de
S, T 0, U0, qui définira la direction plate du potentiel et la masse indéterminée du gravitino.
On montre pour finir que, pour les modules autres que S, T 0, U0, la condition GJGJ = 0 est
vérifiée aux minima du potentiel scalaire, ce qui garantit la nullité de la constante cosmologique.
La masse du gravitino prend alors la forme

M2
3/2 ∝

k2

(S + S̄)(T 0 + T̄ 0)(U0 + Ū0)
(4.77)

Nous rencontrerons effectivement cette forme dans la section 6 ; (T 0 + T̄ 0)1/2(U0 + Ū0)1/2

s’identifie naturellement à un rayon de compactification.

Nous allons également considérer la possibilité de brisure de supersymétrie par allumage de
lignes de Wilson. On peut considérer au départ un modèle N = 4. Intuitivement, la structure
N = 4 disparaît lorsque le coset correspondant est brisé. Ceci peut être réalisé lorsqu’on donne
une valeur dans le vide non-nulle à certains des 6r scalaires du coset (4.69) correspondant à des
lignes de Wilson. Ces scalaires se notent Y I

k , où I représente la dimension interne et l’indice k
prend ses valeurs dans la sous-algèbre de Cartan du groupe de jauge. Un choix arbitraire de
lignes de Wilson brise la symétrie SO(6) ' SU(4) présente dans la forme (4.69) au moins en
SU(4)→ SU(2)× SU(2)′ × U(1). Or, ce SU(4) n’est autre que la R-symétrie de N = 4 ; on a
donc partiellement brisé la supersymétrie à N = 2.
La brisure par lignes de Wilson est aussi visible dans l’expression du superpotentiel. Rappelons
que pour des cosets de la forme SO(2, 2 + n), la fonction de Kähler prend la forme

G = − log
[
(T + T̄ )(U + Ū)− (yi + ȳi)2

]
(4.78)

devient dans la limite de petites lignes de Wilson

G = − log
[
(T + T̄ )(U + Ū)

]
+ (yi + ȳi)2

(T + T̄ )(U + Ū)
(4.79)

= − log
[
(T + T̄ )(U + Ū)

]
+ 2 (yiȳi)2

(T + T̄ )(U + Ū)
+ (yi)2 + (ȳi)2

(T + T̄ )(U + Ū)
Les termes ainsi apparus sont proportionnels à la masse du gravitino, et font partie de la
catégorie des termes de brisure douce. Le terme en yȳ fournit un terme cinétique minimal pour
les lignes de Wilson y, tandis que les parties purement analytique et purement anti-analytique
donnent des contributions au superpotentiel de l’ordre de la masse de brisure de supersymétrie.

4.5 Construction fermionique

4.5.1 Introduction
Dans cette section, on va présenter un mécanisme de construction de théories de supercordes
dans un espace-temps à quatre dimensions, développé dans [ABK87, ABKW86], ainsi que dans
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[KLT87]. Les modèles obtenus généralisent en quelque sorte les théories hétérotiques, en ce
qu’ils utilisent comme degrés de liberté supplémentaires des fermions libres ; toutefois, cette
construction donne accès à une bien plus grande variété de modèles, donnant entre autres accès
à une grande variété de groupes de jauge. Ceci est particulièrement intéressant, par exemple
en vue de la construction de théories grand-unifiées à partir de modèles de cordes ; en effet,
les groupes habituellement considérés dans les modèles de grande unification, tels SO(10) ou
SU(5), peuvent ici être réalisés par une construction naturelle.
On verra aussi que ces mécanismes reproduisent des compactifications usuelles pour des valeurs
particulières des modules internes : on retrouve ainsi la compactification toroïdale au point
fermionique, ainsi que les compactifications sur des orbifolds. Mais ce mécanisme permet de
réaliser aussi des “compactifications non-géométriques”, tels les orbifolds asymétriques. Ces
orbifolds asymétriques sont particulièrement utiles en vue de la construction de supergravités
avec un nombre arbitraire de supersymétries : on peut ainsi explicitement réaliser des théories
avec N = 6, 5, 3, qui sont difficiles à obtenir par les compactifications et orbifolds usuels.

On sait qu’un boson libre a une charge centrale 1, et un fermion libre une charge centrale 1/2.
Une théorie de cordes bosoniques en quatre dimensions a donc cb = 4, ce qui nécessite, pour
annuler la charge centrale due aux fantômes de Faddeev-Popov, l’ajout dans la théorie de degrés
de liberté supplémentaires formant une théorie conforme de charge 22.
De même, pour une théorie supersymétrique, l’annulation de l’anomalie conforme des fantômes
et superfantômes nécessite l’ajout de degrés de liberté internes vérifiant cint = 9.
Dans les modèles usuels de Type II, où la supersymétrie est présente à gauche et à droite au
niveau de la feuille d’univers, le système de charges

c = c̃ = 9

est réalisé par 6 bosons et fermions correspondant aux dimensions qui seront compactifiées.
Dans les modèles hétérotiques, où la supersymétrie n’a lieu que du côté gauche, on ajoute un
système de charges

c = 9, c̃ = 22 = 6 + 16

sous la forme de 6 bosons (compacts) et 6 fermions côté gauche, et 6 bosons (compacts) et
32 fermions internes côté droit. Le choix des conditions au bord pour ces fermions détermine
ensuite le groupe de jauge associé, SO(32) ou E8 × E8.
Dans les constructions de fermions libres, on comble le déficit de charge centrale uniquement
par l’ajout de fermions libres. Ainsi, une théorie supersymétrique sera composée des bosons
et fermions d’espace-temps auxquels on ajoute 18 fermions internes ; et une théorie bosonique
comprendra les bosons d’espace-temps, auxquels s’ajouteront 44 fermions internes. Tout comme
dans le cas de la théorie hétérotique, le contenu de la théorie ainsi construite va être donné par
l’ensemble des conditions au bord considérées pour les fermions.
On expose le principe de la construction pour des théories hétérotiques ; il est immédiat de
l’étendre aux théories de Type II.

La fonction de partition à une boucle et le spectre de la théorie vont résulter d’une description
des différentes structures de spin admissibles pour tous les fermions introduits En suivant les
notations standard, l’ensemble de ces fermions, noté F , est égal à :
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F = {ψµ, χI , yI , ωI | ȳI , ω̄I , φ̄a}. (4.80)

Ici, ψµ, µ = 2, 3 représentent les deux fermions du cône de lumière dans l’espace-temps à
quatre dimensions ; dans le cadre dans lequel nous nous plaçons, la contribution à la fonction de
partition des deux autres fermions d’espace-temps est compensée par celle des super-fantômes
(de même, la contribution de deux bosons d’espace-temps sera compensé par celle des fantômes).
Les autres notations mettent en évidence le fait que la construction fermionique peut se voir
comme une fermionisation des directions internes de la théorie à dix dimensions : les bosons
internes ∂XI , ∂̄XI sont alors modélisés sous la forme de deux fermions gauches yI , ωI et deux
fermions droits ȳI , ω̄I . Il est important de noter que cette équivalence entre compactification de
la théorie 10D et construction fermionique n’a lieu qu’au point fermionique. Par exemple, pour
une dimension compactifiée sur un cercle, l’égalité entre les fonctions de partition à une boucle
d’un boson compact

Zb =
∫
F

d2τ

τ 2
2

R√
α′τ2

∑
m̃,n

exp
(
−πR

2

α′τ2
|m̃+ nτ |2

)
(4.81)

et celle d’un fermion complexe gauche + 1 fermion complexe droit (ou, de manière équivalente,
de deux fermions réels gauches + 2 droits)

Zf =
∫
F

d2τ

τ 2
2

1
2
∑
a,b

∣∣∣∣∣ϑ [ab ] (τ)
η(τ)

∣∣∣∣∣
2

(4.82)

est valable pour R =
√
α′/2, qui est le point fermionique de S1. Toutefois il est important de

noter le point suivant : dans des constructions d’orbifold à action non-libre, les secteurs twistés
“vivent” au point fixes, et donc ne “voient” pas la géométrie de l’espace de compactification.
Ainsi, quels que soient les modules de compactification orbifold d’une théorie, les secteurs twistés
seront exactement décrits par le formalisme de construction fermionique.
La fonction de partition à une boucle de la théorie va s’écrire comme une combinaison linéaire
(on omettra à partir de maintenant l’intégration sur le module du tore τ) :

Z = 1
τ2

1
|η|4

∑
(α,β)∈Ξ

C(α|β)Z[αβ ] (4.83)

où Ξ, baptisé groupe de parités est un ensemble de conditions aux limites pour les fermions de
F . Pour deux éléments α, β de Ξ, la fonction de partition Z[αβ ] correspondante est obtenue en
rendant les fermions de α périodiques sur le cycle “1” du tore (ce qui détermine la structure
Ramond ou Neveu-Schwarz) et les fermions de β périodiques sur le cycle “τ” du tore (voir la
figure 3.5)
L’expression de Z[αβ ] est la suivante :

Z[αβ ] =
∏
φ∈FL

ϑ
[
a(φ)
b(φ)

]
η

1/2

×
∏
φ∈FR

 ϑ̄
[
a(φ)
b(φ)

]
η̄

1/2

. (4.84)

On a séparé les contributions des fermions gauches et droits ; comme on l’a remarqué précédemmenta(φ)
vaut 1 si φ ∈ α et 0 sinon ; de même b(φ) vaut 1 si φ ∈ β et 0 sinon.
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Il reste donc à fixer des conditions à la fois sur l’ensemble Ξ de toutes les conditions aux limites
acceptables dans le cadre de notre modèle, et les coefficients C(α|β). Pour cela, on demande
premièrement la préservation des propriétés de factorisation de l’amplitude à plusieurs boucles
lorsque l’on considère uniquement la propagation du vide dans la feuille d’univers (ce qui
correspond à faire tendre la distance entre les différentes boucles vers l’infini). Il faut aussi
imposer l’invariance modulaire des fonctions de partition à n’importe quel ordre en perturbation
(en fait, les propriétés de factorisation d’amplitudes font que l’on n’a qu’à explorer le tore (genre
1) et le double tore (genre 2)).

Les contraintes résultant de ces exigences sont alors les suivantes :

• Les éléments de Ξ doivent respecter l’invariance de Lorentz : aucun ensemble ne peut contenir
qu’un seul des deux ψµ.
De plus, les éléments de Ξ doivent être définis de manière à ce que les conditions au bord du
courant de supersymétrie

TF = ψµ∂Xµ +
∑
I

χIyIωI (4.85)

soient bien définies. Pour formaliser cette contrainte, on définit, pour un ensemble α ∈ Ξ le
signe δα comme suit 12 : si ψµ ∈ α, alors δα = −1 ; sinon δα = 1. Relativement aux fermions
d’espace-temps, δα est donc le facteur spin-statistique associé à α (rappelons que si ψµ ∈ α,
les états correspondants sont construits sur le vide de Ramond des fermions ψµ : on obtient
donc des états se transformant dans les représentations spinorielles du groupe de Lorentz
SO(3, 1)).
On vérifie alors que la condition évoquée se traduit en

∀ α ∈ Ξ, (−)αTF = δαTF (−)α. (4.86)
Dans l’expression précédente, on a noté (−)α l’opérateur de comptage des fermions de
l’ensemble α (c’est-à-dire, l’opérateur anticommutant avec les fermions de α et commutant
avec les autres).
Ainsi, par exemple, si un ensemble α contient les ψµ, δα = −1 et cet ensemble devra contenir,
pour tout I, 1 ou 3 fermions parmi (χI , yI , ωI).

• ∀ α, β ∈ Ξ, (C(α|β))2 = 1.

• On munit P(F), l’ensemble des parties de F , d’une loi de groupe, notée additivement,
correspondant à la différence symétrique 13 :

α + β = α ∪ β − α ∩ β (4.87)
On obtient une théorie consistante si et seulement si Ξ est un sous-groupe de P(F) pour cette
loi, qui contient F . De plus, si on note des générateurs (F, b1, . . . , bn) les générateurs de Ξ,
alors les conditions suivantes doivent être remplies :

12. Pour les théories de Type II, δα vaudra 1 si (ψµ ∈ α ∧ ψ̄µ ∈ α) ou (ψµ /∈ α ∧ ψ̄µ /∈ α), et −1 sinon.
13. On note qu’avec cette loi, l’ensemble vide est l’élément neutre, chaque élément b vérifie b.b = ∅, et que F.b

est le complémentaire de b.
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n(bi) = 0 [8] (4.88)

n(bi ∩ bj) = 0 [4] (4.89)

n(bi ∩ bj ∩ bk ∩ bl) = 0 [2]. (4.90)

où n(b) = nL(b)− nR(b) est la différence entre le nombre de fermions gauches et le nombre de
fermions droits de l’ensemble b.

• L’ensemble des coefficients C(α|β) est entièrement déterminé par les coefficients C(F |F ), C(F |bi)

et C(bi|bj) pour i > j. On a donc, pour Ξ engendré par (F, b1, . . . , bn), 2
N(N+1)

2 +1 modèles de
cordes consistants.
Les coefficients restants se déduisent par les règles suivantes :

C(∅|∅) = 1 (4.91)

∀ α ∈ Ξ, C(α|∅) = δα. (4.92)

∀ (α, β, γ) ∈ Ξ3, C(α|β+γ) = δαC(α|β)C(α|γ) (4.93)

∀ (α, β) ∈ Ξ2, C(α|β) = e
iπ
4 n(α∩β)C(β|α) (4.94)

La résolution de ces contraintes fournit le modèle le plus général de supercordes à quatre
dimensions basées sur des fermions libres. Munis de ces coefficients, nous construisons maintenant
la fonction de partition du modèle et le spectre associé.

4.5.2 Construction du spectre et projections GGSO
Étant donné un groupe de parités Ξ, on montre que la fonction de partition s’écrit

Z =
∑
α∈Ξ

δα
n∏
i=0

1
2
(
1 + δαC(α|bi)(−)bi

)
RαNSFα. (4.95)

Cette expression se comprend comme suit : pour chaque α, on calcule le bloc de la fonction de
partition en effectuant la trace habituelle, sur les états où les fermions de α sont en conditions
de Ramond et les autres en conditions de Neveu-Schwarz ; on insère ensuite dans la trace les
facteurs 1

2

(
1 + δαC(α|bi)(−)bi

)
.

Dans la plupart des cas, on s’intéresse aux états sans masse de la théorie. On va donc s’intéresser
aux secteurs RαNSFα pouvant donner des états sans masse ; ces secteurs peuvent avoir une
énergie de vide nulle, ou bien contenir des états excités de masse nulle. Dans la cadre d’une
théorie hétérotique, les énergies du vide du secteur RαNSFα s’écrivent

M2
L = −1

2 + nL(α)
16 ; M2

R = −1 + nR(α)
16 . (4.96)
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On va voir que l’expression des coefficients C(α|β) conduit à une généralisation naturelle de la
projection GSO. On parle de projection GSO généralisée (GGSO).
On voit donc que chaque générateur bi de Ξ génère une projection de type GSO : dans le secteur
RαNSFα, seuls subsisteront les états pour lesquels

∀ bi, (−)bi = δαC(α|bi). (4.97)

La projection relative à S (resp., en type II, les deux projections relatives à S et S̄) n’est autre
que la projection GSO habituelle (−)F (resp. (−)FL et (−)FR). On peut par exemple vérifier son
effet sur le secteur purement Neveu-Schwarz : dans ce cas α = ∅ (qui appartient toujours à Ξ
car F ∈ Ξ), et on a alors C(∅|S) = δS = −1. Notre projection s’écrit alors

(−)S = −1. (4.98)

On note de plus que les états fondamentaux graviton/tenseur antisymétrique/dilaton survivent
toujours aux projections : dans le cas hétérotique, ces états sont issus du secteur R∅NSF , que
l’on note |∅〉 :

G, B, Φ : ψµ∂̄Xν |∅〉. (4.99)

En utilisant (4.92), on voit qu’avec α = ∅, la condition de survie (4.97) est remplie par les états
ci-dessus quelque soit bi.

4.5.3 Reproduction de constructions précédentes
Nous allons développer un premier exemple pour illustrer de manière simple comment se
reproduit la compactification de la théorie hétérotique E8×E8 de manière intuitive. Notamment,
la séparation des 32 fermions internes en deux blocs de 16, et la séparation des contraintes GSO
associées se fait naturellement. Dans la section suivante, en lieu et place de la compactification
sur T 6, nous envisagerons une compactification sur T 4/Z2 × T 2. Enfin, nous examinerons la
construction d’un orbifold à action non-libre, et nous verrons comment les propriétés intéressantes
(notamment celle de brisure spontanée de supersymétrie) apparaissent dans ce modèle.

Théorie hétérotique E8 × E8 compactifiée sur T 6 au point fermionique

La construction se fait en deux étapes. Il faut d’abord choisir une base du groupe de parités Ξ
qui va définir les différents secteurs α de la théorie ; ensuite il nous faudra spécifier les règles de
projection GGSO en donnant les coefficients C(α|β).

Dans une théorie supersymétrique, le groupe de parité, doit contenir ∅ et S, où S est un
ensemble de 8 fermions gauches contenant les deux fermions du cône de lumière ψµ. En effet,
la théorie doit comporter un secteur de pur Neveu-Schwarz, qui sera, dans les notations de la
section précédente, donné par R∅NSF ; on a également besoin de l’état donnant le gravitino,
dont on a vu dans la section 3.4 qu’il se construisait à partir d’un vide où les 8 fermions du cône
de lumière à dix dimensions sont en conditions de Ramond. En toute généralité, on peut choisir

S = {ψµ, χ1...6} (4.100)
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Le tore T 6 pris au point fermionique correspond, par fermionisation, à 12 fermions gauches et
12 fermions droits. L’ensemble décrivant ce tore est donc

t = {y1...6, ω1...6|ȳ1...6, ω̄1...6} (4.101)

Il nous faut enfin décrire les 32 fermions λ de la théorie hétérotique. On a vu que la construction
de la théorie E8 ×E8 sépare ces 32 fermions en deux groupes de 16 qui doivent avoir les mêmes
conditions aux limites, et demande deux projections “GSO”. Il est donc naturel d’ajouter à Ξ
les ensembles

e1 = {λ̄1...16} , e2 = {λ̄17...32} . (4.102)

On vérifie alors que la base obtenue {F, S, t, e1, e2} vérifie les conditions de consistance (4.86),
(4.88), (4.89) et (4.90).

On construit maintenant le spectre sans masse de la théorie. Il faut pour cela décrire tous les
ensembles α ∈ Ξ dont le secteur correspondant RαNSFα peut contenir des états sans masse.
En examinant la formule (4.96), on voit que les ensembles en question doivent contenir 0 ou 8
fermions gauches et/ou 0,8 ou 16 fermions droits.
On trouve les secteurs définis par les ensembles suivants :

∅; S; e1; S + e1; e2; Se2. (4.103)

Comme on l’a vu, les degrés de liberté bosoniques sont construits sur les secteurs {RαNSFα | ψµ /∈
α}, et les fermions sur les secteurs {RαNSFα | ψµ ∈ α}. Il est en fait aisé de voir que le partenaire
supersymétriques d’un état du secteur α est à chercher dans le secteur Sα. Pour cette raison,
nous ne décrirons que le spectre bosonique de la théorie, donné par les ensembles ∅, e1, e2.

Le secteur RαNSFα est composé d’états représentés par des opérateurs de vertex agissant sur
un état de vide où les fermions de α sont en conditions de Ramond et les autres en conditions
de Neveu-Schwarz. On notera un tel vide |α〉 ; l’état |∅〉 est donc le vide de pur Neveu-Schwarz.
En imposant les projections GGSO suivantes 14

(−)F = (−)S = −1; (−)t = (−)e1 = (−)e2 = 1 , (4.104)

le spectre de la théorie est le suivant : en partant du vide de pur Neveu-Schwarz |∅〉, on trouve
le multiplet graviton/2-forme/dilaton commun à toutes les théories, ainsi que les bosons de jauge
de SO(16)1 ⊂ (E8)1 et SO(16)2 ⊂ (E8)2. À partir des vides |e1〉 et |e2〉, on génère les bosons de
jauge de Spin(SO(16)1) et Spin(SO(16)2), qui complètent le groupe de jauge en (E8)1 × (E8)2.
Les secteurs supersymétriques |S〉, |Se1〉 et |Se2〉 donnent quant à eux les gauginos associés, ainsi
que les états fermioniques du multiplet gravitationnel. Enfin, un groupe de jauge additionnel
SO(12) apparaît, construit à partir des vertex des six dimensions internes fermionisées en yI , ωI ;
ceci réalise l’extension non-abélienne de la jauge U(1)6 qui existe au point fermionique.

14. Ces projections ont une forme simplifiée : en toute généralité, la condition de survie d’un état (4.97) dépend
de l’ensemble créant la projection (bi dans (4.97)) et du secteur dans lequel se trouve l’état (α dans (4.97)). Ici,
on adopte des conditions indépendantes de α ; ce choix est toutefois consistant.

80



Orbifold à action non-libre T 4/Z2

Cet orbifold est le quotientage de la transformation Z2 agissant sur 4 coordonnées X6,7,8,9 et
leurs partenaires fermioniques ψ6,7,8,9 par X 7→ −X, ψ 7→ −ψ. Traduits en termes de fermions
libres, ces degrés de liberté correspondent aux fermions suivants

yi, ωi, ȳi, ω̄i, i = 3, 4, 5, 6; χi, i = 3, 4, 5, 6. (4.105)
Nous introduisons alors l’ensemble suivant :

b = {χ3,4,5,6, y3,4,5,6 | ȳ3,4,5,6, λ̄1,2,3,4} (4.106)
Notons que seuls des fermions de type y, ȳ sont éléments de b : en effet, l’inclusion des deux
fermions y, ω dans l’ensemble ferait que yω ≡ i∂X est invariant sous la transformation que l’on
cherche à réaliser ; au contraire, en prenant uniquement les y, ∂X → −∂X comme désiré.
On note également la présence de fermions λ̄ réalisant le groupe de jauge SO(32) ou E8 × E8.
Cette inclusion est nécessaire pour préserver l’invariance modulaire de la fonction de partition,
exigence qui se traduit dans notre cadre par le respect des règles de la construction fermionique
sur les cardinaux des ensembles considérés ; comme nous l’avons signalé, ce mécanisme est celui
de l’inclusion de la connection de spin dans la connection de jauge. De manière générale, la
compactification des théories hétérotiques sur des orbifolds brise le groupe de jauge.
Nous n’allons pas détailler tout le spectre sans masse du modèle issu du groupe des parités généré
par F, S, b, e1, e2. Nous retrouvons juste les caractéristiques usuelles de la compactification
d’orbifold, reformulée dans le langage de la construction fermionique.

• La supersymétrie du modèle est explicitement brisée de N = 4 vers N = 2 : en effet, la
projection (−)b élimine la moitié des 8 hélicités du secteur ∂Xµ|S〉 qui subsistaient après les
projections (−)S et (−)F ;

• Le groupe de jauge E8 × E8 est brisé en E7 × SU(2)× E8. En effet, parmi les 248 bosons de
jauge du groupe E8 généré par les fermions λ̄1...16 ≡ e1, qui s’écrivent soit comme éléments
de Adj(SO(16)), soit comme éléments de Spin(SO(16)), certains sont éliminés par (−)b. On
montre que les bosons de jauge restants forment effectivement E7 × SU(2). Le second facteur
E8 est quant à lui intact.

• Les états twistés apparaissent comme des champs de spin. L’adjonction de b dans la base
de l’ensemble des parités introduit le nouveau secteur |b〉, qui donne lieu à des états sans
masse. b induit aussi une nouvelle projection GSO généralisée. Parmi les 28 hélicités du
secteur |b〉, seules 25 survivent aux projections (−)S, (−)b, (−)e1 . En particulier, les états du
secteur |b〉 s’organisent en 16 secteurs, donnés par les 16 hélicités possibles du champ de spin
|χ3,4,5,6, y3,4,5,6〉 ⊗ |ȳ3,4,5,6〉. On a donc réécrit les vides twistés de T 4/Z2 comme des vides de
Ramond.

Orbifold à action libre S1/Z2

Si l’on fermionise un boson X en deux fermions réels y, ω, la transformation à action libre
X → X + π se traduit par y → −y, ω → −ω. L’ensemble à introduire dans une base de parités
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pour modéliser l’orbifold X i → X i + π est donc

ei = {yi, ωi|ȳi, ω̄i}. (4.107)

Le secteur twisté de cet orbifold est alors caractérisé par l’adoption de conditions de Ramond
pour les fermions appartenant à ei. Ceci rend génériquement le vide massif 15. Là encore, le vide
twisté est donné, au point fermionique, par un vide de Ramond.

15. La réalité est en fait plus complexe ; les détails de la construction exposée dans le chapitre 5 et dans
[CJFKR08] apporteront beaucoup de précisions sur les différentes possibilités envisageables.
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Chapitre 5

Dualité spineur–vecteur dans une
classe de modèles réalistes hétérotiques
N = 1

Dans le chapitre précédent, nous avons donné plusieurs méthodes pour construire des théories
des cordes à quatre dimensions. Nous avons entre autres développé le formalisme des fermions
libres, qui permettent de reproduire de manière systématique des orbifolds de type Z2 ou Z2×Z2.
Dans ce chapitre, qui présente les travaux effectués dans la publication [CJFKR08], nous al-
lons nous intéresser aux propriétés d’une classe de modèles quadri-dimensionnels basés sur
la théorie des cordes hétérotiques. Nous mettrons l’accent sur l’intérêt phénoménologique de
telles constructions ; en effet, de nombreuses théories parmi les plus réalistes obtenues à l’heure
actuelle ont été obtenues par cette construction (les exemples sont nombreux : voir par exemple
[AEHN89, ALR90, FNY90, Far92, Far94, FMT07])

L’intérêt de ces modèles réside dans les propriétés suivantes :

• Premièrement, une compactification de type Calabi-Yau ou Z2×Z2 fournit une supersymétrie
N = 1 à quatre dimensions, ce qui est l’hypothèse privilégiée pour la phénoménologie.
• Deuxièmement, au contraire des théories de Type II, les théories hétérotiques sont natu-
rellement équipées d’un groupe de jauge non-abélien. Les contraintes très restrictives de
consistance de la théorie des cordes n’autorisent que deux groupes de jauge à dix dimensions
(comme nous l’avons signalé, ces deux groupes de jauge sont en fait reliés par déformation
continue du réseau de Narain). Ceci donne un fort pouvoir prédictif à la théorie des cordes ;
il est très agréable de constater la présence dans les candidats du groupe E8 × E8, qui est
particulièrement intéressant. La procédure “canonique” de compactification le brise en effet
en E6, groupe qui a des bonnes propriétés en perspective de la construction d’une théorie de
grande unification (entre autres, E6 admet des représentations chirales). Il est en fait facile
de construire des théories SO(10) en partant de théories E6 ; c’est la procédure que nous
adapterons dans notre travail.
• Troisièmement, ces constructions fournissent une classe privilégiée de modèles réalistes.
Notamment, il a été montré statistiquement dans [FKR07a] que parmi les ' 1016 modèles
que nous considérons, environ 15% ont la propriété d’avoir trois familles chirales. Il a par
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contre été impossible jusqu’à présent de dériver des modèles à 3 familles par compactification
sur des espaces de Calabi-Yau ou sur des orbifolds symétriques de type Z2 × Z2. Les espaces
de Calabi-Yau posent de plus d’autres problèmes phénoménologiques, comme le fait qu’il est
impossible de générer un terme de brisure douce de supersymétrie donnant une masse au
Higgs.
• Enfin, le schéma de compactification sur des orbifolds Z2 × Z2 donne naturellement naissance
à de la matière chirale N = 1, contenue dans les trois secteurs twistés de l’orbifold. Le fait
que cette classe d’orbifolds admette trois “plans” de secteurs twistés permet de développer
des modèles à 3 familles de manière extrêmement naturelle (notamment en conservant une
famille par plan).

Malgré le cadre apparemment très restrictif des modèles de fermions libres, ces constructions ont
en fait une grande portée : en effet, nous avons souligné dans le chapitre précédent que la forme
et le contenu des secteurs twistés d’un orbifold ne dépend pas de la géométrie de l’espace de
compactification. Les caractéristiques des secteurs twistés que nous décrirons au point fermionique
seront donc valables en un point arbitraire de l’espace des modules de compactification. Il se
trouve justement que ces secteurs twistés vont nous donner les représentations correspondant à
la matière chirale indispensable à un modèle réaliste.

Nous réalisons en termes de fermions libres une classe générale d’orbifolds Z2×Z2. Ces orbifolds
peuvent être vus comme des limites singulières d’espaces géométriques. Dans certains cas de
figure, le groupe de jauge E6 n’est pas brisé : les espaces correspondants seront des Calabi-Yau.
Toutefois, dans la majorité des modèles que nous rencontrerons, E6 se brise en SO(10)× U(1).
La géométrie correspondante n’est alors plus de type Calabi-Yau ; une algèbre superconforme
est brisée par la compactification.

Nos constructions font naturellement apparaître le groupe de grande unification SO(10). Les
secteurs twistés d’un modèle SO(10) fournissent de la matière, sous la forme de représentations
vectorielles de SO(10), notées 10 ; et de représentations spinorielles (anti-spinorielles) de SO(10),
notées 16 (16). Dans le cas d’une théorie E6, le fait que la matière s’arrange en représentations
de E6 implique que le modèle comporte autant que vecteurs que de spineurs (on sous-entend
ici : spineurs + anti-spineurs). Quand la symétrie E6 est brisée, cette propriété peut subsister,
avec des conséquences intéressantes ; toutefois, elle est en général perdue.
On obtient donc un ensembles de modèles où, en général N(S+S̄) 6= NV . On a alors un résultat
de dualité sur l’ensemble de ces modèles : s’il existe un modèle avec V vecteurs et S spineurs,
alors il existe aussi un modèle avec S vecteurs et V spineurs. Le travail effectué dans [CJFKR08]
consiste alors à prouver cette dualité, en utilisant le fait que les ensembles introduits dans la
base des parités des constructions fermioniques permettent de générer des orbifolds à action
libre donnant des compactifications à la Scherk-Schwarz. Les orbifolds à action libre agissent
sur les différents secteurs twistés de la théorie, et leur action détermine quelle(s) représentations
de SO(10) vont subsister dans chaque secteur twisté. L’opération de dualité consistera alors à
changer l’effet de ces projections, de manière à changer le spectre de la théorie en son dual. On
notera que cette opération n’est pas unique : il existe plusieurs duaux à un modèle donné.

Le plan de ce chapitre sera le suivant. Dans un premier temps, nous donnerons quelques rappels
sur les théories de grande unification ; nous nous pencherons particulièrement sur les théories
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basées sur SO(10), qui sont celles que nous manierons plus tard. Nous aborderons également le
problèmes des anomalies, chirale et gravitationnelle. Dans un second temps, nous rappellerons le
mécanisme d’apparition de la jauge E6, résultant de l’inclusion de la connection de spin dans la
connection de jauge et des propriétés des espaces de Calabi-Yau. En particulier, nous insisterons
sur la présence d’une algèbre superconforme N = (2, 2) dans la théorie lorsque la jauge est E6.
Nous détaillerons ensuite le processus de la construction fermionique, en donnant les expressions
et le rôle des différents éléments de la base des parités. Un point central de notre raisonnement
sera d’identifier la présence de l’algèbre superconforme à une correspondance entre secteurs de
la théorie, dénommée “x-map ”. Cette x-map pourra être brisée par les projections orbifold
contenues dans la théorie, ce qui conduira à la brisure de la jauge E6 et à l’apparition de modèles
ne comprenant pas le même nombre de spineurs et de vecteurs de SO(10). L’identification des
projections brisant la x-map nous amènera à formuler les règles de dualité.

Deux aspects intéressants de ce travail seront enfin mis en relief. On tissera premièrement un
parallèle entre cette dualité et la dualité miroir que l’on a évoquée dans la section 4.1, et on
discutera de l’intérêt d’une telle structure sur l’ensemble des vides de la théorie des cordes. Nous
nous intéresserons enfin à l’existence de modèles auto-duaux, mais néanmoins dépourvus de
symétrie E6 ; parmi ces modèles, on notera l’existence de modèles dépourvus d’anomalie.

5.1 Grande unification et groupe SO(10)
La recherche de théories grand-unifiées est motivée par le fait que, sous l’effet de la procédure de
renormalisation, les trajectoires des trois constantes de couplage du groupe de jauge du modèle
standard non supersymétrique SU(3)C × SU(2)L × U(1)Y sont presque concourantes à une
échelle d’énergie élevée (E ∼ 1014 GeV). De plus, lorsqu’on ajoute l’hypothèse de supersymétrie
pour considérer le modèle standard supersymétrique minimal, la coïncidence des trois constantes
de couplage est bien plus précise que dans le cas non-supersymétrique, et a lieu cette fois à
l’échelle de grande unification MGUT ∼ 1016 GeV. Ceci suggère qu’à cette échelle, le groupe de
jauge est unifié, et que le groupe de jauge observé à basse énergie est le résultat de brisures
spontanées de la jauge. La propriété de concourance des trajectoires de couplage est d’ailleurs
une autre motivation forte pour l’introduction de la supersymétrie.
Si le groupe de jauge visible est un sous-groupe du groupe de jauge unifié GGUT , les différentes
particules observées doivent s’arranger en des représentations de GGUT . Il existe effectivement des
groupes tels que cet arrangement existe. Nous présentons (très !) rapidement ci-dessous le modèle
standard et son contenu de matière, que nous réarrangerons par la suite en représentations du
groupe SO(10).

Le modèle standard de la physique des particules modélisant les interactions faible, forte, et
électro-magnétique est une théorie de jauge basée sur le groupe

GSM = SU(3)C × SU(2)L × U(1)Y (5.1)

La symétrie de jauge électro-faible SU(2)L × U(1)Y est spontanément brisée à basse énergie
par le mécanisme de Higgs, dans lequel un champ scalaire, dit boson de Higgs, vivant dans une
certaine représentation du groupe de jauge, acquiert une valeur dans le vide non-nulle, et génère
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de ce fait des termes de masse pour les générateurs du groupe de jauge qui ne laissent pas ce
vide invariant. Ainsi, sur les 4 bosons de jauge W 1,2,3

µ , Bµ du groupe SU(2)L × U(1)Y , trois
deviennent massifs, et la seule partie visible à basse énergie est l’électromagnétisme U(1)em,
dont le boson de jauge sans masse est le photon Aµ, obtenu comme combinaison linéaire de
W 3
µ et Bµ. Le mécanisme de Higgs donne également une masse aux quarks et aux leptons de la

théorie.
Le spectre de matière du modèle standard se sépare en trois générations, notées e, µ, τ . Le
contenu d’une génération est le suivant (on note entre parenthèses les représentations de SU(3)
et SU(2)L correspondantes, et en indice l’hypercharge 1 sous U(1)Y ) :

• quarks gauches (uL, dL) ≡ (3,2)1/6 ;
• quarks droits uR ≡ (3,1)−2/3 et dR ≡ (3,1)1/3 ;
• électron/neutrino gauche (eL, νe) ≡ (1,2)−1/2 ;
• électron droit eR ≡ (1,1)1.

À cela, il faut ajouter le doublet de Higgs et son conjugué, qui fournissent les représentations
(1,2)±1/2.
Les dernières observations indiquant la non-nullité de la masse du neutrino, il convient d’en
rendre compte dans le modèle standard en introduisant un neutrino droit 2 sous la forme d’un
singlet (1,1)0.

Les deux candidats principaux de groupe de grande unification sont SU(5) et SO(10). En effet, il
est possible de regrouper les représentations du modèle standard contenues dans une génération
en deux représentations de SU(5) décomposées sous SU(5)→ GSM :

10 = (3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1, (5.2)
5 = (3,1)1/3 ⊕ (1,2)−1/2.

De plus, après introduction dans la théorie du neutrino droit, on peut en fait arranger toute
une génération dans une représentation spinorielle de SO(10). En effet, sous SO(10)→ SU(5),
on a 16 = 10⊕ 5⊕ 1, ce qui donne finalement sous SO(10)→ GSM

16 = (3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1 ⊕ (3,1)1/3 ⊕ (1,2)−1/2 ⊕ (1,1)0. (5.3)
Ce réarrangement est un signe supplémentaire très fort de la pertinence d’une telle unification
de la jauge. Le doublet de Higgs trouve aussi sa place dans le cadre de l’unification SO(10), de
par la décomposition du multiplet vectoriel 10 sous SO(10)→ GSM :

10 = (1,2)1/2 ⊕ (1,2)−1/2 ⊕ (3,1)−1/3 ⊕ (3,1)1/3. (5.4)
On remarque toutefois que l’apparition de bosons de Higgs dans le cadre d’une théorie unifiée
SO(10) fait apparaître des triplets de couleur. Ceci pose un problème : si le doublet de Higgs
se manifeste à basse énergie par la brisure de jauge électro-faible, il n’existe pas de triplets de
couleur ayant la même échelle de masse (ceci impliquerait une amplitude de désintégration du

1. définie de sorte que Qem = Tz + Y
2. Un fermion chiral ne peut pas être massif : il n’est en effet pas possible de générer un terme de masse

invariant de jauge. Le mécanisme de Higgs permet toutefois de remédier à ce problème.
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proton incompatible avec les observations). Il faut donc introduire un décalage de masse entre
le doublet de Higgs et le triplet de Higgs. Ceci peut être réalisé par l’inclusion dans la théorie
de lignes de Wilson discrètes.
Une théorie de grande unification basée sur le groupe SO(10) devra donc, pour être réaliste,
être chirale 3. Chaque représentation spinorielle fournira une génération, et les bosons de Higgs
proviendront de multiplets vectoriels.

Nous allons obtenir des théories ayant pour groupe de jauge SO(10) en passant par des
théories E6. Nous détaillerons dans le paragraphe suivant l’apparition naturelle de E6 dans la
compactification des cordes hétérotiques. Certaines propriétés de E6 font en fait de lui un groupe
de grande unification viable : il possède en effet des représentations spinorielles complexes qui
rendent possible l’écriture d’une théorie chirale. De plus, E6 se brise naturellement en les autres
candidats à la grande unification comme

E6 → SO(10)× U(1)→ SU(5)× U(1)2 (5.5)

Enfin, les théories de grande unification basées sur E6 sont exemptes d’anomalies, gravitationnelle
ou chirale.

Anomalies de jauge, et conditions de leur absence

Les anomalies de jauge sont une brisure quantique de l’invariance de jauge classique ; elles ré-
sultent de la non-invariance de la mesure d’intégration dans l’intégrale de chemin. Ce phénomène
signe l’arrêt de mort d’une théorie quantique : en effet, en présence d’anomalies, des conditions
de consistance fortes comme l’unitarité ou l’élimination des états de norme négative peuvent
être perdues. Il convient donc d’annuler ces anomalies.

Les anomalies qui nous intéresseront se classent en deux espèces, l’anomalie chirale et l’anomalie
gravitationnelle (nous renvoyons par exemple au chapitre 19 de [PS95] pour une dérivation com-
plète de ces anomalies). Nous détaillons premièrement les conditions d’apparition de l’anomalie
chirale.

L’apparition de l’anomalie chirale dans les théories de jauge résulte de la non-conservation du
courant de jauge

jµ,a = ψ̄γν
(

1± γ5

2

)
taψ. (5.6)

Ici, ψ est un fermion de Dirac, et le couplage est chiral en ce sens qu’il sélectionne une chiralité via
l’insertion du projecteur. ta parcourt les générateurs du groupe de jauge dans une représentation
chirale. Des calculs assez fastidieux montrent que la valeur moyenne de la divergence de ce
courant fait intervenir la trace suivante, prise sur la représentation chirale considérée, notée R :

Aabc = trR
[
ta{tb, tc}

]
(5.7)

3. Ceci est possible, car SO(10) admet bien des représentations chirales.
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La présence de l’anomalie chirale résulte de la non-nullité de cette dernière expression. En
particulier, on montre que si le groupe de jauge n’admet que des représentations réelles (ie telles
que les générateurs taR de la représentation soient égaux à une transformation unitaire près aux
représentations de la représentation conjuguée ta

R̄
= −t(taR). Cette conclusion reste vraie dans

le cas de représentations pseudo-réelles 4. La présence d’anomalies a donc seulement lieu pour
des groupes de jauge admettant des représentations complexes. On trouve les groupes de Lie
suivants :

U(1); SU(n); SO(4n+ 2); E6. (5.8)

Il se trouve en fait que pour les groupes SO(4n + 2) et E6, les anomalies chirale sont nulles.
Nous nous intéresserons souvent aux conditions d’annulation de l’anomalie chirale U(1) : on
voit que dans ce cas, celle-ci est nulle pour ∑R q

3
i = 0.

L’anomalie gravitationnelle [AGW84] intervient, quant à elle, lors du couplage d’une théorie
de jauge à la gravitation et rend inconsistante ce couplage (l’une des deux hypothèses de
conservation de l’invariance de jauge et de l’invariance sous les difféomorphismes est mise en
défaut). Cette anomalie s’annule dès que les traces des générateurs trR[ta] sont nulles. Ceci est
le cas dès que la jauge est non-abélienne ; l’anomalie gravitationnelle ne concerne donc que des
facteurs U(1) du groupe de jauge, et la condition d’annulation est donc ∑R qi = 0.

La brisure d’une symétrie de jauge non-porteuse d’anomalies vers des groupes contenant des
facteurs potentiellement porteurs d’anomalie est intéressante car elle peut annuler automati-
quement cette anomalie, si les représentations présentes après brisure peuvent s’arranger en
représentations du groupe “parent”. Ce n’est toutefois pas une règle générale, et nous exami-
nerons les occurrences et les conditions d’une telle annulation des anomalies U(1) dans nos
modèles.

Nous devons encore souligner un point important [DSW87] : en théorie des supercordes, il se
trouve en fait qu’un groupe U(1) porteur d’anomalie génère, à l’ordre d’une boucle, un terme
de Fayet-Iliopoulos dans l’action effective à basse énergie. Le vide de la théorie peut alors être
déstabilisé par la présence de tachyons ; de plus, le groupe porteur d’anomalie est spontanément
brisé, car la correction de l’action effective, prenant la forme d’un terme (∑i qi)B ∧ F , où B est
le tenseur antisymétrique et F la courbure du champ de jauge U(1), donne une masse au boson
de jauge correspondant.

5.2 Méthode de construction et propriétés générales
L’apparition d’une jauge E6 dans les compactifications de la théorie E8 × E8 sur des espaces de
Calabi-Yau est un processus bien connu. Nous en reproduisons toutefois ici les détails ; nous
tisserons le parallèle entre cette construction et les compactification sur des orbifolds Z2 × Z2.
Ceci nous permettra d’une part de comprendre l’apparition de l’algèbre superconforme (2, 2) lors
de la compactification, et son rôle dans la structure de la jauge. Nous en déduirons la marche à

4. La nuance entre représentations réelles et pseudo-réelles ne nous concernera pas dans le cadre de notre
travail.

89



suivre pour briser E6 en SO(10) ; tout cela sera facilement traduit en termes de construction
fermionique.

La compactification sur des espaces de Calabi-Yau des théories de Type II, comme on l’a
vu, préserve une supersymétrie N = 2 à quatre dimensions. Une de ces deux supersymétries
vient du côté gauche de la théorie, et l’autre du côté droit. Cette propriété résulte du fait que
l’holonomie SU(3) permet l’existence d’un spineur covariant ; ces supersymétries impliquent
[Gre96] la présence d’une structure d’algèbre superconforme (2L, 2R) sur la feuille d’univers.

Dans le cas de la théorie hétérotique, la partie droite ne donne plus lieu à une supersymétrie
d’espace-temps ; elle fournit par contre le groupe de jauge de la théorie. La brisure de la
supersymétrie en Type II va alors se traduire comme une brisure du groupe de jauge en
hétérotique. Ce mécanisme est connu sous le nom de plongement de la connection de spin dans
la connection de jauge. Une des conséquences de cette similitude est que la structure d’algèbre
superconforme sera, elle, toujours présente dans la cas hétérotique.

Connection de spin et connection de jauge, et correspondance de Gepner

La connection de spin est définie dans le but d’écrire une théorie de relativité générale in-
cluant les spineurs. L’exigence d’invariance sous les difféomorphismes de la théorie est difficile
à maîtriser en présence de degrés de liberté spinoriels, car il n’existe pas de représentations
spinorielles de GL(n,R). La solution consiste à définir en chaque point de la variété une té-
trade emµ , vérifiant gµν = emµ ηmne

n
ν , où gµν est la métrique sur la variété considérée. Cette

tétrade permet d’introduire localement des coordonnées plates, pour lesquelles la métrique
associée est la métrique de Minkowski ηmn. Les changements de coordonnées sont maintenant des
transformations du groupe de Lorentz SO(1, n−1), qui agissent sur les indices plats de la tétrade.

Le groupe de Lorentz, quant à lui, admet des représentations spinorielles construites à partir
des matrices gamma de l’algèbre de Clifford : sous une transformation infinitésimale Θmn, ψ se
transforme comme

ψ → ψ − 1
4ΘmnΓmnψ, (5.9)

où Γmn = 1
2 [Γm,Γn].

Pour écrire une action rendant locale cette symétrie, il est alors nécessaire d’introduire un champ
de jauge et une dérivée covariante associée
On introduit alors la connection de spin ωmnµ par la procédure habituelle de jaugeage. Elle se
transforme comme

ωmnµ → ωmnµ + ∂µΘmn + [ωµ,Θ]mn (5.10)

et la dérivée covariante à considérer est

Dµψ = ∂µψ + 1
4ω

mn
µ Γmn ψ . (5.11)
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Cette formulation fait apparaître ωmnµ comme un boson de jauge dans la représentation adjointe
du groupe de Lorentz. Il est à noter que, dans le cas de la relativité générale 5 cette procédure
n’introduit pas de nouveau degré de liberté dans la théorie ; la connection est déterminée de
manière unique si l’on demande que la tétrade soit covariamment constante. En particulier, le
tenseur de Riemann Rµνρσ s’exprime uniquement en fonction de la connection de spin.

Nous voyons donc que l’introduction de la connection de spin n’est rien d’autre qu’un jaugeage
du groupe de Lorentz, tel qu’agissant sur les spineurs de la théorie. En particulier, si on
considère une théorie des cordes compactifiée sur une variété à six dimensions, d’un point de
vue quadri-dimensionnel, la composante interne de la connection de spin correspond à une
symétrie interne du système. Le groupe de Lorentz SO(9, 1) est brisé lors de la compactification
en SO(3, 1)× SO(6), et les bosons de jauge du SO(6) interne sont les ωmnµ .

La contrainte de préservation d’une supersymétrie lors d’une compactification sur un Calabi-Yau
sans torsion impose une relation non-triviale entre la connection de spin et la connection de
jauge. Plus précisément, il s’agit d’isoler un certain sous-groupe du groupe de jauge de la théorie
E8 × E8, et de l’identifier à la connection de spin. Les transformations associées à la connection
de spin ne sont autres que les transformations que peut subir un spineur lors de son transport le
long de la variété, c’est-à-dire l’holonomie de la variété. Sans aucune hypothèse, cette holonomie
est SO(6) et l’identification des connections brise E8 en SO(10) × SO(6) ; dans le cas d’un
Calabi-Yau, sur lequel il existe un spineur partout non nul, ce groupe d’holonomie est réduit à
SU(3), et on montre alors que le groupe de jauge résultant est E6 × SU(3). On voit donc que
l’holonomie a brisé le groupe de jauge du côté bosonique de la théorie hétérotique, alors qu’elle
brisait la R-symétrie en Type II.

Ce plongement de la connection de spin dans la connection de jauge est reproduit dans la
correspondance de Gepner, introduite par D. Gepner dans [Gep88]. Cette correspondance,
aussi développée dans [LLS87], permet un passage d’une théorie de Type II compactifiée à 4
dimensions à une théorie hétérotique, en remplaçant, au niveau de la fonction de partition, les
caractères issus des 8 fermions droits d’espace-temps présents du côté de la théorie de Type II
par des caractères qui vont rendre compte des 16 bosons droits que l’on droit introduire dans le
secteur bosonique de la théorie hétérotique pour annuler la charge centrale. Ce remplacement se
fait au niveau des théories conformes associées aux divers facteurs de la fonction de partition
et est dicté par des propriétés de conservation de l’invariance modulaire. Dans le cas que nous
utiliserons, les caractères de SO(8) seront remplacés par des caractères de E8×E8 ou de SO(32).
On note immédiatement que cette correspondance reproduit naturellement les deux théories
hétérotiques consistantes à dix dimensions. La contrainte d’invariance modulaire demande aussi
que l’on change les signes devant ces caractères : l’effet est d’ôter les signes rendant compte
de la spin-statistique dans la fonction de Type II, ce qui est cohérent avec le fait que le côté
droit de sa partenaire hétérotique est purement bosonique du point de vue de l’espace-temps
quadri-dimensionnel.
Si l’on prend par exemple une théorie de Type IIB que l’on veut mapper sur une théorie E8×E8,
le changement à opérer est

5. En l’absence d’exigences de réalisme de la théorie, on peut tout à fait considérer la connection de spin
comme un nouveau champ de la théorie écrite.
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1
2

1∑
ā,b̄=0

(−)ā+b̄+āb̄ϑ̄
[
ā
b̄

]4
−→

1
2

1∑
γ̄,δ̄=0

ϑ̄
[
γ̄

δ̄

]82

(5.12)

La jauge E8 × E8 de la théorie à 10 dimensions est conservée à quatre dimensions dans le cas
d’une compactification sur T 6. Du côté Type II, on a une supersymétrie N = 4 pour le côté
droit de la théorie. Si maintenant on compactifie sur une variété qui brise la supersymétrie,
l’holonomie devient non-triviale, et le mécanisme de plongement de la connection de spin dans
la connection de jauge va briser E8 × E8. Le cas particulier de l’orbifold T 6/Z2 × Z2, obtenu en
une limite singulière de l’espace des modules d’une variété de Calabi-Yau brise N = 4→ N = 1
sur le côté droit de la théorie de Type II. La correspondance de Gepner se fait maintenant par
la substitution

1
22

1∑
h1,g1=0

1∑
h2,g2=0

1
2

1∑
ā,b̄=0

(−)ā+b̄+āb̄ϑ̄
[
ā
b̄

]
ϑ̄
[
ā+h1
b̄+g1

]
ϑ̄
[
ā+h2
b̄+g2

]
ϑ̄
[
ā−h1−h2
b̄−g1−g2

]
(5.13)
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δ̄
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1

2

1∑
γ̄′,δ̄′=0

ϑ̄
[
γ̄′

δ̄′

]8
et on vérifiera explicitement, via la construction fermionique, que la fonction de partition obtenue
à la fin donne bien un facteur E6 dans le groupe de jauge.

Même si, au contraire de la théorie de Type II, le côté droit de la théorie hétérotique ne
présente pas de supersymétrie d’espace-temps, (à cause des changements du signe des caractères
fermioniques lors de la correspondance), la structure d’algèbre superconforme N = 2 est préservée
par la transformation de Gepner. Cette algèbre superconforme va impliquer l’extension du groupe
de jauge SO(10)×U(1)3 à E6×U(1)2, par inclusion du U(1) diagonal à SO(10). Cette extension
est une conséquence de la structure d’anneau chiral des théories (2, 2) superconformes, qui
implique que même en l’absence de supersymétrie, il existe toujours des “spineurs” droits, qui,
par bosonisation, vont s’exprimer comme des champs de spin ayant des hélicités demi-entières.
Ces hélicités ne sont autres que les charges de ces états sous les générateurs du sous-groupe
de Cartan de SO(10)× U(1). Ce sont précisément ces spineurs qui vont fournir les bosons de
jauge supplémentaires nécessaires à l’extension SO(10) × U(1) → E6. La traduction de ces
constructions en termes de construction fermionique va éclairer ce phénomène : les bosons de
jauge nécessaires à l’extension vont émerger d’un secteur spécifique de la théorie, ce qui va faire
apparaître l’expression en termes de champs de spin.

Traduction en termes de fermions libres

Munis des exemples de construction fermionique que nous avons détaillés dans la section
précédente, il est assez facile de se convaincre qu’un orbifold T 6/Z2 × Z2, agissant sur les six
coordonnées internes notées X1...6 et leurs partenaires fermioniques χ1...6 comme

g1 :

 X3,4,5,6

χ3,4,5,6
7→

 −X
3,4,5,6

−χ3,4,5,6
; g2 :

 X1,2,5,6

χ1,2,5,6
7→

 −X
1,2,5,6

−χ1,2,5,6
, (5.14)
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va être implémenté en considérant un groupe de parités comprenant les deux vecteurs

b1 = {χ3...6, y3...6 | ȳ3...6, [φ̄]}; (5.15)

b2 = {χ1,2,5,6, y1,2,5,6 | ȳ1,2,5,6, [φ̄]′}. (5.16)
Les fermions supplémentaires [φ] et [φ]′ sont à choisir dans les 32 fermions droits supplémentaires ;
leur forme apparaîtra lors de l’explicitation de la classe de modèles que nous allons considérer.

Dans le cadre de l’élaboration de modèles réalistes de cordes hétérotiques, il est pratique de
noter les 62 fermions libres réels sous la forme

F = {ψµ, χ1...6, y1...6, ω1...6 | ȳ1...6, ω̄1...6, ψ̄1...5, η̄1...3, φ̄1...8} (5.17)
Les fermions ψ̄, η̄, φ̄ sont ici des fermions complexes (et comptent donc comme deux fermions
réels).
La dénomination de ces fermions fait apparaître SO(10) comme l’algèbre de Lie affine associée
aux 5 fermions complexes droits ψ̄1...5. Cette notation est motivée par la transformation de
Gepner (5.13) : les fermions ψ̄ correspondent au bloc ϑ̄

[
γ̄

δ̄

]5
, et les trois fermions η̄ aux blocs

ϑ̄
[
γ̄+hi
δ̄+gi

]
. Les fermions complexes φ̄, quant à eux, donnent le bloc additionnel E8 introduit dans

(5.13). On voit donc que la forme des ensembles b1 et b2 doit en fait être

b1 = {χ3...6, y3...6 | ȳ3...6, ψ̄1...5, η̄1}; (5.18)

b2 = {χ1,2,5,6, y1,2,5,6 | ȳ1,2,5,6, ψ̄1...5, η̄2}. (5.19)
et que nos modèles seront obtenus en considérant les ensembles additionnels

t = {y1...6, ω1...6 | ȳ1...6, ω̄1...6}; z = {φ̄1...8} (5.20)
représentant respectivement le tore T 6 des dimensions internes et le bloc E8 additionnel.

On peut maintenant facilement voir le mécanisme d’extension de la jauge SO(10)ψ̄ × U(1)3
η̄1,2,3

à E6 × U(1)2 grâce à la construction fermionique. Les bosons de jauge de E6 sont construits
sur deux secteurs de la théorie : le secteur de pur Neveu-Schwarz |∅〉 et le secteur |ψ̄1...6, η̄1,2,3〉
(obtenu par x = F +S+ t+ z). On remarque qu’en fait, les bosons de jauge de E6 ne seront rien
d’autre qu’un sous-ensemble des bosons de jauge de E8, qui survivent aux projections induites
par la présence de nouveaux éléments dans l’ensemble des parités. En particulier de la même
manière que SO(16) était étendu à E8 par les états de Spin(SO(16)), SO(10) va être étendu à
E6 par les états construits sur |ψ̄1...6, η̄1,2,3〉. Si ce secteur est éliminé (notamment en acquérant
une masse), l’extension à E6 est perdue. La présence de l’algèbre superconforme est alors la
manifestation de la présence au niveau sans masse d’états du secteur |ψ̄1...6, η̄1,2,3〉. On peut
explicitement écrire les vertex des états survivant aux projections.
Les bosons de jauge résultant de cette construction sont les suivants :

• à partir de |∅〉, on construit les bosons de jauge de SO(10), ψµψ̄(†) [iψ̄(†) j]|∅〉 ainsi que les 3
bosons de jauge de U(1)3 ψµη̄i(η̄i)†|∅〉 ;

93



• à partir de |ψ̄1...6, η̄1,2,3〉, on construit les fermions qui permettent l’extension. On bosonise les
16 fermions droits en 8 bosons H̄1...8, de sorte que

|ψ̄1...6, η̄1,2,3〉 ≡ exp
(
i

2

8∑
i=1

εi H̄i

)
(5.21)

On vérifie alors que les restrictions sur les hélicités εi données par les projections (−)F , (−)b1 ,
(−)b2 reproduisent bien le second groupe de racines de E6 (voir l’expression des racines dans
[FSS00]).

L’algèbre superconforme se traduit de façon assez intuitive d’un point de vue de construction
fermionique, en utilisant un parallèle avec l’algèbre superconforme donnant la supersymétrie
d’espace-temps. Le point crucial est la présence d’un mapping des états fermioniques vers les
états bosoniques. Du point de vue de la construction fermionique, dans le cas de la transformation
de supersymétrie N = 1 engendrée par le côté droit de la théorie sur la feuille d’univers, ce
mapping agit sur les différents secteurs comme |α〉 → |α+ S〉. On a vu que la correspondance
de Gepner a échangé les fermions d’espace-temps droits {ψ̄µ, χ̄1...6} en {ψ̄1...5, η̄1,2,3}. Cette fois,
le mapping se fera donc entre les secteurs |α〉 et |α + x〉, où

x = {ψ̄1...5, η̄1,2,3}. (5.22)

Nous appellerons cette transformation “x-map ”. On conçoit déjà que, de la même façon qu’une
brisure (spontanée ou explicite) de la supersymétrie revient à briser une “S-map”, la brisure
de l’algèbre superconforme N = 2 droite va revenir à briser la x-map . Les bosons de jauge
permettant l’extension à E6 sont dans l’image du secteur de pur Neveu-Schwarz par l’opération
de x-map : la brisure de cette dernière va donc bien détruire la structure de jauge E6.

Terminons cette section par la définition la plus générale des modèles que nous allons considérer.
On montre que le respect des règles de construction fermionique nous permet d’introduire deux
nouveaux ensembles, qui vont briser le groupe de jauge caché E8, et qui s’écrivent

z1 = {φ̄1,2,3,4}, z2 = {φ̄5,6,7,8}. (5.23)

De plus il est aussi possible de factoriser le tore T 6 des dimensions internes, donné par les
fermions yi, ωi, ȳi, ω̄i en six cercles pris au rayon d’extension de symétrie de jauge. On introduit
pour cela les ensembles

ei = {yi, ωi | ȳi, ω̄i}, i = 1 . . . 6. (5.24)

Finalement, la base de l’ensemble des parités est donnée par

F, S, (ei)i=1...6, b1, b2, z1, z2. (5.25)

En suivant la procédure de construction de modèles de fermions libres, nous devons maintenant
choisir les coefficients C(α|β), qui vont implémenter diverses projections sur le spectre. Nous
noterons ces coefficients [α|β] ∈ {−1, 1}, et nous définissons aussi (α|β) ∈ {0, 1} par [α|β] =
eiπ(α|β).
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Présence des orbifolds à action libre

Dans la section 4.3, on a vu comment le couplage de shifts de réseaux internes à diverses charges
(ou opérateurs de parité) permet de briser spontanément une (super)symétrie de manière
analogue au mécanisme de Scherk-Schwarz. Ce couplage est naturellement présent dans le
formalisme de la construction fermionique. Le quotientage de la théorie par l’action libre de
translation sur la coordonnée interne X i → X i + πRi devient, au point de fermionisation,
modélisée par l’introduction de l’ensemble ei. Le couplage de cette action libre à une charge se
fait par la spécification des coefficients de projection GSO généralisée.
Dans tous les cas que nous allons considérer, la charge Q introduite dans l’équation (4.68) peut
être vue comme une condition au bord de l’état de corde, et est donc reliée à un vecteur de
l’ensemble des parités. Nous allons en donner deux exemples.

Le premier exemple est le cas le plus simple de brisure spontanée de supersymétrie par mécanisme
de Scherk-Schwarz décrit par le bloc (4.61) de la fonction de partition. Dans ce bloc, h et g
sont les paramètres de shift de la coordonnée interne X i, et sont donc naturellement associés
au vecteur ei, tandis que a et b sont les éléments de la structure de spin d’espace-temps et
sont associés au vecteur S. On voit donc qu’un tel couplage va être contrôlé au niveau de la
construction fermionique par la valeur du coefficient GGSO [ei|S].
Vérifions alors que ce couplage introduit bien une différence de masse entre les bosons et les
fermions. Pour simplifier, on se place dans un vide bosonique |α〉 sans masse, ne contenant
aucun fermion de l’ensemble ei, et tel que |α+ S〉 soit également sans masse 6. On suppose que
le vecteur ei ne détruit pas ce vide, soit (−)ei = [ei|α]. Alors le vide fermionique superpartenaire
est |α+S〉, et l’équation de “survie” s’écrit cette fois (−)ei = [ei|α+S] = −[ei|α]. Le partenaire
supersymétrique est donc éliminé. Toutefois, dans ce cas, le nouveau partenaire supersymétrique
à considérer va provenir du secteur massif |α + S + ei〉. Des états provenant de ce secteur sont
conservés quel que soit l’effet de la projection ei, son effet étant ici de couper la moitié des
hélicités. Le partenaire fermionique est donc bien devenu massif. On note, comme remarqué
dans la section 4.3, que les états fermioniques correspondent à des vides contenant le vecteur ei,
c’est-à-dire à des états de cordes ayant des modes demi-entiers dans la direction X i (h = 1 dans
l’équation (4.61)).
Notons ici que ce mécanisme semble différent d’une brisure spontanée de symétrie telle qu’on
l’avait introduite dans la présentation des orbifolds à action libre. En effet, dans le mécanisme
usuel, les états qui deviennent massifs sous l’effet de la brisure ont une masse dépendante des
modules de compactification de l’espace interne (le plus souvent, de rayons internes). Ici, on
trouve par contre que la masse acquise par les secteurs “éliminés” est fixée ; dans l’exemple
précédent, d’après les formules (4.96), la variation de masse ∆M2 = 1

8 est fixe. Ceci vient
justement du fait que les modules de compactification sont fixés au point fermionique. Si l’on
déformait ce modèle pour sortir du point fermionique, la masse des états projetés dépendrait du
rayon. Nous donnerons plus tard des pistes pour exploiter ce mécanisme en vue de la construction
de modèles réalistes.

Le deuxième exemple est très similaire, et explicite en termes de construction fermionique un

6. Ces hypothèses très restrictives ont pour but de rendre l’exemple simple et rapide ; le rapport entre
coefficient GGSO et orbifold à action libre fonctionne en fait en toute généralité.

95



des couplages que l’on réalisera dans [CJKPT08b] : il s’agit de coupler une dimension ei aux
paramètres h, g d’un orbifold. Dans le cas qui nous occupe dans ce chapitre, l’orbifold sera celui
implémenté par les ensembles b1,2 et les paramètres seront (h1, g1) ou (h2, g2). Dans le cas décrit
dans le chapitre suivant et [CJKPT08b], (h, g) sont les paramètres de l’orbifold T 4/Z2, qui peut
être obtenu par la construction fermionique. De même, on conclut que ce couplage sera contrôlé
par la valeur du coefficient [ei|b], où le vecteur b génère l’orbifold correspondant.

Il nous reste à considérer le rôle des deux ensembles z1 et z2. Leur présence brise génériquement
le facteur E8 en SO(8)×SO(8). Cette brisure n’est toutefois pas inéluctable ; les groupes SO(16)
et E8 peuvent être retrouvés de la manière suivante. Rappelons que l’adjoint de SO(16) se
décompose sous SO(16)→ SO(8)× SO(8) comme

120 = (28,1)⊕ (8v,8v)⊕ (1,28) (5.26)

La complétion de (Adj (SO(8)))2 en Adj (SO(16)) se fait donc en rétablissant la “bi-vectorielle”
(8,8). Mais d’après la propriété de trialité de SO(8), ces états peuvent s’obtenir par exemple
à partir d’états dans (8v,8s,c), donnés par les bosons de jauge ψµ φ̄1...4|z2〉. S’ils survivent aux
projections, ces états étendent SO(8)2 en SO(16). Une fois SO(16) obtenu, une extension à E8
est encore possible en cas de survie des spineurs de SO(16) construits sur |z1 + z2〉.
Nous verrons cependant dans [CJFKR08] que notre preuve de la dualité impose l’existence de
i ∈ {1 . . . 6} et de j ∈ {1 . . . 6} tels que

[ei|z1] = −1 et [ej|z2] = −1. (5.27)

Sous ces hypothèses, les éventuels états de type (8v,8s,c) ou (8s,c,8v) sont éliminés par une
projection (−)ei et l’extension du groupe de jauge vers SO(16) ou E8 n’a pas lieu. D’autres
extensions sont cependant possibles, impliquant des fermions y ou ω. Elles n’apparaissent
toutefois qu’au point fermionique et sont donc éliminées par déformation du modèle ; de plus,
elles ne modifient pas le rang du groupe de jauge.

Deux familles d’orbifolds à action libre vont nous intéresser : les orbifolds engendrés par les
éléments ei et ceux engendrés par les éléments zi. Nous verrons que leurs rôles sont sensiblement
différents.
Pour cela, nous commençons par détailler quelques aspects du spectre de la théorie. De même
qu’un orbifold Z2 implique la présence d’un secteur twisté h = 1, un orbifold Z2 × Z2 implique
la présence de trois secteurs twistés (h1, h2) = (1, 0), (0, 1), (1, 1). Ces secteurs correspondent,
sans surprise, respectivement à des vides (fermioniques, par exemple) de la forme

b1 = |ψµ, χ1,2, y3,4,5,6 | ȳ3,4,5,6, ψ̄1...5, η̄1〉 (5.28)

b2 = |ψµ, χ3,4, y1,2,5,6 | ȳ1,2,5,6, ψ̄1...5, η̄2〉 (5.29)

b3 = |ψµ, χ5,6, y1,2,3,4 | ȳ1,2,3,4, ψ̄1...5, η̄3〉 (5.30)

En fait, chacun de ces 3 vides donne naissance à un plan twisté : en effet, ajouter un ensemble
ei, pour i tel que (yȳ)i ∈ b, à l’un des trois vides b ci-dessus, envoie sur un autre état sans
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masse. L’opération consiste alors à remplacer un couple (yȳ)i par (ωω̄)i. Un plan twisté est
donc constitué de 16 secteurs twistés ; on trouve au total 48 secteurs twistés. Notons que la
présence de trois plans twistés constitue un bon augure en vue de la réalisation de modèles à
trois générations, comme requis par le modèle standard.
Le mécanisme exposé précédemment par lequel une projection ei “rend massif” un secteur |α〉
en l’éliminant et en considérant à sa place le secteur |α + ei〉 suppose que ei ∩ α = ∅. On voit
donc que, sur un plan donné, seuls deux vecteurs ei peuvent avoir cet effet : par exemple, seuls
e1 et e2 peuvent éliminer des états du spectre contenu dans le plan associé à b1. Les projections
engendrées par les ensembles z1 et z2 peuvent par contre agir sur les trois plans twistés de nos
modèles.

5.3 Mise en œuvre de la dualité
Comme nous commençons par le remarquer, la théorie est auto-duale sous l’échange représen-
tations spinorielles ↔ représentations vectorielles de SO(10) dès que le groupe de jauge est
étendu à E6. En effet, dans ce cas, les champs de matière s’arrangent dans les représentations
fondamentales 27 et 27 de E6, qui se décomposent sous E6 → SO(10)× U(1) comme

27 = 10⊕ 16⊕ 1. (5.31)

27 = 10⊕ 16⊕ 1. (5.32)

On a donc n10 = n16 + n16.
Les bosons de jauge de E6 qui n’appartiennent pas à la sous-algèbre SO(10) × U(1) sont
construits sur le vide |x〉 ; leur survie aux projections ei et zi indique que, dans les modèles
E6, [ei|x] = [zi|x] = 1. Ceci garantit que l’algèbre superconforme N = 2 droite est préservée,
propriété confirmée par le fait que dans un secteur twisté parmi les 48 de la théorie, si les
spineurs sont construits sur un vide |α〉 sont présents dans le spectre, alors les vecteurs, leurs
partenaires superconformes obtenus par “x-map ”, construits sur le vide |α + x〉, seront aussi
présents, en vertu de la règle

[α + x|ei] = [α|ei][x|ei], [α + x|zi] = [α|zi][x|zi] (5.33)

valable lorsque α est un des 48 secteurs twistés. Dans chacun de ces secteurs, on trouve alors
soit une représentation vectorielle et une représentation spinorielle (ou anti-spinorielle), soit
aucune représentation du tout.

Si on considère un modèle qui n’est pas dual, il existe donc un ei et/ou un zj vérifiant [ei|x] = −1,
[zj|x] = −1. Un tel ensemble engendre une projection qui brise spontanément la x-map . Soit ei
un ensemble brisant la x-map . Intéressons-nous alors à un plan twisté dans lequel la projection
associée à ei peut éliminer des états du spectre. Pour un secteur α de notre plan twisté, on
obtient que seul l’un des deux vides |α〉 et |α+ x〉 donne naissance à des états physiques ; les
états de l’autre vide sont éliminés par la projection associée à ei. Pour des raisons de clarté,
on dira que |α〉 contient des représentations spinorielles (resp. vectorielles) si l’un des deux
secteurs |α〉, |α + x〉 contient des représentations spinorielles (resp. vectorielles). L’opération
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de dualité va donc consister à échanger, secteur par secteur, la représentation survivante. Ceci
est contrôlé par le coefficient [α|ei], soit, en fait, par le coefficient [b|ei], où b est l’un des trois
vecteurs b1, b2, b3 définissant le plan twisté auquel on s’intéresse. Le raisonnement étant analogue
dans le cas des ensembles zi, l’opération de dualité à l’intérieur d’un plan twisté donné par |b〉
va donc consister à renverser les coefficients

• [b|zi] pour zi brisant la x-map ;
• [b|ei] pour les ei susceptibles d’éliminer des représentations dans le plan |b〉, et brisant la
x-map .

Ceci est montré en détail dans [CJFKR08]. Il apparaît la subtilité suivante : si on effectue la
dualité dans plusieurs plans twistés, on est confrontés au fait que les coefficients [b1|zi], [b2|zi],
[b3|zi] ne sont pas indépendants (cette subtilité ne concerne pas les ensembles ei, qui ne peuvent
pas agir dans les trois plans). Le moyen d’éviter cet écueil est, sous les hypothèses (5.27), de ne
plus effectuer une dualité secteur par secteur, mais seulement “plan par plan”.
L’opération de dualité effectuée jusque-là est en effet la suivante :

Si un secteur |α〉 comporte uniquement une représentation spinorielle (resp. vectorielle), le
modèle dual sera tel que |α〉 comporte uniquement une vectorielle (resp. spinorielle).

On peut néanmoins envisager une transformation de dualité plus générique, comme suit :

Si un secteur |α〉 comporte uniquement une représentation spinorielle (resp. vectorielle), le modèle
dual sera tel qu’on ait un secteur |α′〉 qui comporte uniquement une vectorielle (resp. spinorielle).

Dans ce cas, la correspondance α 7→ α′ doit bien entendu être une bijection. Ceci est schématisé
plus clairement dans la figure 5.1.

Figure 5.1 – Procédure de dualité secteur par secteur (à gauche) et plan par plan (à droite). la
ligne verticale représente un plan twisté, et les points noirs ses différents secteurs.

Comme détaillé dans [CJFKR08], cette modification est indispensable pour pouvoir effectuer
une dualité simultanément dans les trois plans twistés ; tout ceci souligne toutefois que le choix
de dualité secteur par secteur que nous effectuons dans les deux premiers plans n’est pas unique.
En fait, la prescription la plus générale (mais plus abstraite) est celle formulée dans [FKR07b] :
nous la reprenons formellement dans le cas d’une dualité dans le plan b1.
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Si on définit la matrice et les vecteurs suivants :

∆ =


(e1|e3) (e1|e4) (e1|e5) (e1|e6)
(e2|e3) (e2|e4) (e2|e5) (e2|e6)
(z1|e3) (z1|e4) (z1|e5) (z1|e6)
(z2|e3) (z2|e4) (z2|e5) (z2|e6)

 ; Y16 =


(e1|b1)
(e2|b1)
(z1|b1)
(z2|b1)

 ; Y10 =


(e1|b1 + x)
(e2|b1 + x)
(z1|b1 + x)
(z2|b1 + x)

 ;

(5.34)
on montre que le nombre de représentations spinorielles dans le plan b1 est égal à 24−rang(∆) si Y16
est combinaison linéaire des colonnes de ∆, et 0 sinon ; de même, le nombre de représentations
vectorielles dans le plan b1 est égal à 24−rang(∆) si Y10 est combinaison linéaire des colonnes de ∆,
et 0 sinon. On voit alors qu’une façon simple de construire un modèle dual consiste à intervertir
les vecteurs Y16 et Y10, ce qui équivaut à la procédure que nous avons détaillée. Toutefois, ce
n’est pas une condition nécessaire : il suffit d’intervertir les rangs des matrices augmentées
[∆, Y16] et [∆, Y10], ce qui implique qu’il suffit d’intervertir Y16 et Y10 à une combinaison linéaire
des colonnes de ∆ près. Cette généralisation permet de considérer des dualités qui ne se font
plus secteur par secteur (au sens de la figure 5.1), mais plan par plan.

Nous ne rentrerons pas plus dans les détails de la démonstration de la dualité, ce qui paraphra-
serait inutilement [CJFKR08]. Nous allons par contre effectuer quelques remarques.

5.4 Remarque additionnelle
Nous souhaitons ici faire une remarque complémentaire en vue de la création de modèles réalistes.
Nous venons de voir, à la fin de la section précédente, que le nombre de secteurs sans masse
dans un plan donné est toujours une puissance de 2 inférieure ou égale à 16. D’un point de
vue phénoménologique, nous cherchons évidemment à construire des modèles à 3 familles. On
voit qu’il n’existe que 2 possibilités : 1 famille dans chacun des 3 plans, ou 2 familles dans un
premier plan, 1 famille dans un second plan, et 0 famille dans le troisième plan. Le choix entre
ces deux catégories de modèles peut être effectué en considérant les masses des quarks issus de
chaque génération : en particulier, la hiérarchie existant entre la masse du top et les masses
typiques des leptons des deux autres générations pourrait favoriser des modèles (2, 1, 0) (ce
comptage concerne les représentations spinorielles de SO(10) qui donnent naissance à la matière
chirale ; on est ensuite libre de considérer des modèles self-duaux ou non). Rappelons qu’une
fois le nombre de familles fixé par l’implémentation des divers orbifolds à action libre, il est
possible de lever la masse d’un plan twisté entier en couplant un rayon au paramètre de twist
correspondant au plan twisté concerné ; la déformation de ce modèle permet de nous écarter du
point fermionique et d’ajuster les masses des différents plans sans modifier les caractéristiques
du spectre.

5.5 Conclusions et perspectives
Nous avons donc exhibé une nouvelle symétrie présente sur une classe de vides des modèles
hétérotiques quadri-dimensionnels basés sur des constructions de fermions libres. Ce résultat est
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intéressant à plusieurs points de vue.
Premièrement, il est intéressant de dériver des résultats nous renseignant sur la structure des
vides de la théorie des supercordes. Un des grands problèmes de la théorie des cordes à l’heure
actuelle est la quantité gigantesque de vides dans lesquels on peut former une théorie consistante.
Ces vides ont des caractéristiques plus ou moins prometteuses en vue de faire le lien avec la
physique à basse énergie que nous observons au quotidien : on s’intéresse notamment au rang
du groupe de jauge, au nombre de générations de matière, ou à l’absence d’anomalies abéliennes.
Beaucoup de recherches ont en fait été faites dans le but de rechercher un éventuel processus
de sélection du vide de la théorie. Plusieurs stratégies ont été avancées. Une bonne direction
serait de chercher une densité de probabilité sur l’espace des vides (nommé “landscape” dans
la littérature). La construction d’une telle mesure est facilitée par la présence de symétries
non-triviales, telle que la symétrie spineur-vecteur. Une symétrie du même ordre est la symétrie
miroir, découverte au début des années 1990 [GP90]. Cette symétrie relie deux espaces de
Calabi-Yau de topologie différente : les dimensions des cohomologies de Dolbeault H1,1 et H2,1

ont été échangés dans la transformation miroir. Il a été montré dans [SYZ96] que la théorie IIA
compactifiée sur un Calabi-Yau est équivalente à la théorie IIB compactifiée sur le Calabi-Yau
miroir. Les Calabi-Yau s’organisent alors en paires miroir ; ce résultat mathématique facilite
grandement la classification des vides correspondants. Nous avons toutefois signalé que dans
le cadre des Calabi-Yau, il n’existe pas de modèles à trois familles ; il faut considérer des
déformations, sous la forme de classes de torsion non-nulles ou d’orbifolds asymétriques.

La dualité présentée dans notre travail est comparable. À la différence de la symétrie miroir
qui relie deux théories présentant une algèbre superconforme (2, 2) après compactification, la
symétrie spineur-vecteur relie deux théories présentant une algèbre superconforme (2, 0) ; les
théories (2, 2) superconformes peuvent être considérées comme des points fixes de la symétrie
spineur-vecteur. Ces théories (2, 0) peuvent être interprétées comme des compactification sur
des espaces de Calabi-Yau généralisés, comportant une torsion non-nulle. Cette torsion est à
l’origine de la brisure spontanée de l’algèbre superconforme du côté droit de la théorie.
Cette nouvelle dualité impose donc des contraintes sur les résultats éventuels de mécanisme de
sélection du vide. On pourrait en outre envisager, par exemple, que les configurations auto-duales
ou présentant presque autant de spineurs que de vecteurs soient préférées à des configurations
plus dissymétriques.

Enfin, l’existence de modèles auto-duaux malgré la brisure spontanée de E6 est intéressante
en ce qui concerne les éventuelles anomalies de la théorie. Dans certains de ces modèles, les
trois U(1) issus de la brisure E8 → SO(10) × U(1)3 sont dépourvus d’anomalies ; ceci va à
l’encontre de l’idée généralement formulée selon laquelle tout groupe U(1) issu de la brisure du
E8 originel et ne faisant pas partie du facteur donnant le modèle standard est porteur d’anomalie.
Nous rappelons toutefois que la présence d’une telle anomalie est souhaitable, car elle brise
spontanément le facteur U(1) en question [DSW87].

Plusieurs pistes d’approfondissement peuvent être explorées. Il est d’abord obligatoire, pour
rendre viable de tels modèles, de briser spontanément la supersymétrie de N = 1 à N = 0 ;
ceci peut être réalisé en couplant une dimension interne à l’hélicité des fermions d’espace-temps
(a, b).
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On peut aussi se poser la question du traitement des états chargés sous le groupe de jauge caché
inclus dans E8 ; il est souhaitable que les interactions induites par cette jauge soient invisibles à
basse énergie.
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Chapitre 6

Théories hétérotiques à température
non-nulle, brisures spontanées de
supersymétrie et évolutions
cosmologiques associées

6.1 Introduction et enjeux
La cosmologie est un des terrains favoris d’application de la théorie des cordes. En effet, on
attend d’une théorie quantique de la gravitation qu’elle nous éclaire sur les problèmes rencontrés
par la cosmologie à l’heure actuelle, notamment en ce qui concerne les premiers stages de la vie
de l’univers. Parmi ces problèmes figurent la description de l’Univers à ses premiers instants,
quand sa taille atteint l’échelle de Planck ; la prépondérance des effets quantiques à ces échelles
d’énergie rend indispensable l’utilisation d’une théorie de gravitation quantique. On peut aussi
citer le problème de l’inflation, dont une description précise manque toujours. La théorie des
cordes se caractérisant par un fort pouvoir prédictif venant des conditions très restrictives dans
lesquelles on peut la définir, son utilisation implique qu’au contraire du théoricien des champs,
le théoricien des cordes n’est pas libre de décider du spectre de la théorie qu’il étudie. Ainsi, la
modélisation de l’inflation, qui nécessite un champ scalaire évoluant dans un potentiel possédant
de bonnes propriétés, passe par l’identification en théorie des cordes ce ce champ et de son
potentiel associé ; on n’a plus la liberté de postuler l’existence d’un champ ayant les bonnes
propriétés.

Un deuxième problème théorique important concerne la constante cosmologique. Les observations
récentes [P+99, R+98] font état d’une constante cosmologique non nulle et très petite (Λ ∼ 10−120

en unités de Planck). Là encore, la théorie des cordes se doit d’expliquer l’apparition d’une telle
valeur, qui apparaît comme un terme constant dans l’action d’Einstein-Hilbert

1
16π

∫
d4x
√
−g(R− 2Λ) (6.1)

La constante cosmologique apparaît dans les théories de supergravité à quatre dimensions
comme l’énergie dans un vide de la théorie. Ce vide est obtenu en minimisant le potentiel par
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rapport aux champs scalaires de la théorie. L’étude de ces conditions a révélé que dans les
théories de supergravité sans échelle introduites dans la section 2.2.2, la constante cosmologique
est automatiquement nulle. Nous allons toutefois voir qu’en général, les théories des cordes
favorisent des constantes cosmologiques négatives.

Compactifications avec flux et stabilisation des modules

Les compactifications de la théorie des cordes sont caractérisées par la valeur des modules, qui
détaillent la géométrie de l’espace interne. Le potentiel effectif de la théorie à basse énergie, dans
le cas d’une compactification simple, ne dépend pas de ces modules, et leur valeur n’est donc
pas fixée au niveau classique de la théorie. La présence de scalaires sans masse dans une théorie
est gênante à deux niveaux. Premièrement, on perd dans un tel cas de figure le pouvoir prédictif
de la théorie des cordes concernant les valeurs des différents couplages effectifs (constantes de
couplage, couplages de Yukawa...) ; ces couplages dépendent en effet de la valeur dans le vide des
modules. Deuxièmement, des scalaires sans masse propagent des interactions de longue portée ;
en leur présence, différents types de matière coupleraient alors différemment à cette nouvelle
force , ce qui violerait les bornes expérimentales sur le principe d’équivalence.

Il est possible de générer un potentiel non-trivial pour les modules en effectuant une compacti-
fication avec flux (voir la revue [Gra06]). Dans ce schéma de compactification, on donne des
valeurs dans le vide non-nulles aux composantes internes des champs de la théorie ; il en résulte
l’apparition d’un potentiel effectif, fonction des modules de compactification.
Une première exigence lors de la compactification avec flux est la préservation d’au moins
une supersymétrie. En l’absence de flux, on a vu que cette condition impliquait que la variété
de compactification devait être de type Calabi-Yau. Cette condition est modifiée en présence
de flux : si la structure de la variété doit toujours être incluse dans SU(3), l’holonomie est
modifiée par des classes de torsion non-nulle. Nous ne rentrerons guère plus en détail sur ces
considérations techniques assez poussées de géométrie différentielle ; par contre, on note que la
condition de présence de la supersymétrie donne des relations entre les classes de torsion de la
variété et les flux allumés.
La présence de flux contraint aussi la forme de la métrique d’espace temps. En toute généralité,
on considère une métrique à dix dimensions de la forme

ds2
10 = e2A(y)gµνdx

µdxν + e−2A(y)g̃mn(y)dymdyn. (6.2)

Ici, x représente les coordonnées de l’espace temps quadri-dimensionnel, y les coordonnées
internes. Dans cette métrique, la présence du facteur de warp A(y) rend le produit espace-temps
× espace interne non-trivial. La procédure de compactification avec flux sur des espaces ayant
cette forme impose également des relations entre les flux allumés et le facteur de warp. Nous ne
donnerons pas les formes de ces relations, que l’on peut trouver dans [Gra06, BBS07]. Le résultat
est le suivant [dWSHD87, MN01] : il n’existe pas de compactifications avec flux conduisant à un
espace de de Sitter à quatre dimensions ; le seul cas donnant lieu à une compactification sur un
espace de Minkowski (gµν = ηµν) est caractérisé par l’annulation de toutes les valeurs moyennes
dans le vide des flux, et la constance du facteur de warp. Intuitivement, les termes effectifs induits
par les flux contribuent négativement à la constante cosmologique quadri-dimensionnelle. Ce
théorème de no-go est valable en l’absence de corrections de supergravité aux dérivées supérieures
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et en l’absence d’effets non-perturbatifs. Son existence est évidemment problématique en vue
d’applications phénoménologiques : la procédure de stabilisation des modules condamne le
cordiste à considérer des univers de type Anti de Sitter, qui ne correspondent pas à la réalité
physique.
Heureusement, l’horizon n’est pas si noir : il existe des moyens de contourner ce résultat. Une
première approche, développée dans [KKLT03], consiste à, dans un premier temps, stabiliser
tous les modules de compactification en incluant des flux et des contributions non-perturbatives
(qui permettent briser la structure sans échelle de la supergravité et de fixer le 1 module de
Kähler ), puis à lever l’énergie du vide obtenue après stabilisation par inclusion dans la théorie
de nouveaux degrés de liberté sous la forme de D3-branes. On obtient ainsi un vide métastable
pour l’espace des modules, en un point où la constante cosmologique est positive et peut être
ajustée.
Plusieurs reproches peuvent néanmoins être faits à ce mécanisme. Premièrement, ce travail ne
considère pas d’effets thermiques dans l’évolution de l’univers. Deuxièmement, la procédure de
stabilisation des modules (et en particulier du module de Kähler ) fait appel à une contribution
non-perturbative au superpotentiel, qui est donc supposée être du même ordre que le superpo-
tentiel à l’ordre des arbres. La procédure de stabilisation de T uniquement après stabilisation des
autres modules peut aussi être discutée. Nous noterons d’ailleurs que la forme de la modification
du superpotentiel, qui est en e−aT est retrouvée dans notre modèle, mais au niveau perturbatif.
Enfin, la procédure de levée du potentiel du vide vers des valeurs positives à l’aide de D3-branes
pose problème. En effet, l’amplitude des corrections apportées au potentiel par ces nouveaux
degrés de liberté rend nécessaire une étude de la rétroaction qui en résulte. Notamment, il est
raisonnable de penser que les modifications apportées ne seront pas simplement linéaires. Un tel
calcul est de plus difficile : en effet, l’ajout des D3-branes rend invalide l’usage du formalisme
de la supergravité N = 1, car toutes les supersymétries sont brisées.

Plan d’attaque

Nous développons ici une autre approche, dans laquelle nous ne tentons pas de stabiliser tous
les modules, mais plutôt de considérer une dynamique cosmologique pour certains d’entre eux.
Autrement dit, nous minimisons l’action effective de la théorie, et non le potentiel.
Nous considérons des théories des cordes, le plus souvent hétérotiques, à température non-nulle,
dans lesquelles la supersymétrie est spontanément brisée par une ou plusieurs directions com-
pactifiées selon le mécanisme de Scherk-Schwarz développé dans la section 4.3. La température
traitant différemment les bosons et les fermions, le temps euclidien est l’une de ces dimensions ;
nous commençons par supposer que la brisure s’effectue également sur une seconde dimension
interne, notée R5. La forme explicite du potentiel à une boucle permet d’isoler le module sans
échelle de cette théorie. L’indétermination à l’ordre des arbres de ce module est levée à l’ordre
d’une boucle par la prise en compte des termes thermiques et des termes de brisure spontanée
de supersymétrie. Ces corrections sont décrites par un potentiel effectif, que nous calculons via
le calcule de l’énergie libre du système. Dans le formalisme de la supergravité, un tel potentiel
reflète en fait la renormalisation à une boucle du potentiel de Kähler . Un changement de
variables sur les champs rétablit alors le potentiel de Kähler vers sa forme originelle, mais fait

1. Les auteurs de [KKLT03] se placent dans le cas où il existe un unique module de Kähler .
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apparaître une correction au potentiel scalaire. Le superpotentiel, quant à lui, est protégé par
les théorèmes de non-renormalisation.
Sous certaines hypothèses, les termes du potentiel effectif impliquant les autres modules de
compactification seront exponentiellement petits, de sorte que ces modules pourront être pris
constants. Le rayon typique correspondant à ces dimensions étant de l’ordre de la taille de
la corde, l’échelle d’énergie à laquelle interviennent ces degrés de liberté sera de l’ordre de la
température d’Hagedorn ; nous ne considérerons pas ce régime dans notre travail.

Dans un premier temps, le module sans échelle sera, avec la température, le seul paramètre
dynamique de notre construction. Le calcul de l’amplitude du vide à une boucle de la théorie
des cordes considérée permet de définir le contenu en radiation de l’univers sous la forme d’une
pression et d’une densité d’énergie, par des relations usuelles de thermodynamique que nous
rappelons dans la section 6.2. Ce contenu en énergie va modifier l’évolution de l’univers en
introduisant un terme de rétroaction dans l’équation de Hubble. Nous détaillerons la forme la
plus générale que peut prendre une telle correction quantique en utilisant les propriétés des
théories de supergravité, puis indiquerons comment réaliser les différents termes envisageables.
Enfin, nous présenterons les évolutions cosmologiques associées : pour cela, nous nous placerons
dans le cadre d’un univers de Friedmann-Robertson-Walker, dont l’évolution est régie par le
facteur d’échelle. Nous définirons un ansatz pour l’évolution, qui nous permettra d’interpréter
physiquement les différents termes du potentiel obtenu ; cet ansatz est toutefois valide sous
certaines contraintes, que nous expliciterons.

Dans un second temps, nous tenterons de généraliser ce mécanisme à un schéma de brisure
par deux rayons internes, notés R4, R5. De la même manière que précédemment, les seules
contributions à considérer dans le potentiel effectif sont celles faisant intervenir ces dimensions,
qui participent à la brisure. Les autres quantités peuvent être gelées de manière consistante :
leurs termes dans le potentiel effectif seront négligés car ils ne se manifestent qu’à des échelles
d’énergies de l’ordre de la température d’Hagedorn ; de plus, la supergravité effective fait
apparaître des termes de brisure douce de supersymétrie prenant la forme de termes de masse,
de l’ordre de la masse du gravitino M3/2. Il existe par contre dans ce modèle un nouveau module
présentant une dynamique non-triviale : le module de “structure complexe” R5/R4. La structure
des corrections quantiques sera assez similaire à celle détaillée dans le cas d’un rayon ; un point
d’intérêt sera alors de savoir s’il est possible de stabiliser ce nouveau module, ou s’il sera attiré
vers l’une des deux limites où l’on “perd” une brisure de supersymétrie. Un cas de stabilisation
pourrait donner accès à de nouvelles cosmologies.

6.2 Quelques rappels de thermodynamique
Dans cette section, nous redérivons des formules de thermodynamique reliant les quantités
que nous rencontrerons par la suite. Nous supposons que nous sommes en présence d’un gaz
de cordes en équilibre à une température T ≡ 1/β. Nous pouvons alors définir sa fonction de
partition

Z = Tr e−βH

106



Un résultat de théorie des champs stipule que la fonction de partition Z s’exprime en fonction
de la fonctionnelle génératrice des diagrammes connexes W comme

W = lnZ (6.3)
Dans un cadre perturbatif, on considère la constante de couplage des cordes faible, de sorte que
dans le développement de l’expression cordiste de la fonctionnelle génératrice des diagrammes
connexes

Wstr. = 1
g2
s

Z0−loop + Z1−boucle + g2
sZ2−loop + . . . (6.4)

on ne considérera que les amplitudes dans le vide à une boucle et à l’ordre des arbres. Cette
dernière étant nulle (voir par exemple [GSW87a, GSW87b, DP88]), Wstr. est approximée par la
fonction de partition à une boucle de la théorie des cordes ; on suppose donc

Z1−boucle = lnZ . (6.5)
D’après les propriétés élémentaires de l’ensemble canonique, l’énergie interne, qui est la valeur
moyenne de l’énergie du système, s’exprime comme

U = 1
Z

∫
dE E e−βE = − ∂

∂β
lnZ = − ∂

∂β
Z1−boucle (6.6)

Ceci nous donne la densité d’énergie du système considéré, de volume spatial fini V3 :

ρ = U

V3
= − 1

V3

∂

∂β
Z1−boucle (6.7)

L’énergie libre du système est définie comme F = U − TS ; on montre (ref.) que

F = − 1
β

lnZ = −Z1−boucle

β
(6.8)

L’identité thermodynamique s’écrivant dF = −PdV − SdT , on a

P = − ∂F
∂V3

= − F
V3
. (6.9)

La deuxième égalité est obtenue par la propriété d’extensivité ; dans nos calculs, le volume de
l’espace tri-dimensionnel apparaît bien comme un facteur global.
Il vient donc que

P = Z1−boucle

V4
, (6.10)

où cette fois V4 = βV3 est le volume de l’espace-temps euclidien.
On tire de (6.7) et (6.10)

ρ+ P = −β∂P
∂β

= T
∂P

∂T
. (6.11)

Par ailleurs, on a, pour un gaz relativiste à 3 dimensions d’espace, ρ = 3P .
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On en déduit que (ρ, P ) ∝ T 4, ce qui est bien une propriété de l’énergie radiative.
Nous établissons maintenant une propriété caractérisant une évolution isentropique, hypothèse
que que nous supposerons dans le cadre de notre travail. L’entropie peut s’exprimer comme

S = Z1−boucle + βU = V4(ρ+ P ) (6.12)

ρ et P étant proportionnels à T 4, il vient que l’on doit avoir, au cours d’une évolution homogène
isotrope caractérisée par le facteur d’échelle a(t), a3(t)T 3(t) = cste. L’évolution isentropique
implique donc

T (t) ∝ 1
a(t) . (6.13)

Ceci correspond bien à une dilatation du temps euclidien proportionnelle au facteur d’échelle.

Pour la suite de notre travail, nous avons également besoin d’explorer le cas où ρ et P ne
dépendent pas uniquement de la température. On suppose qu’il existe dans le système des autres
degrés de liberté d’énergie typique Mi(t) dans le système, représentant des degrés de liberté en
équilibre thermal. Des arguments dimensionnels nous convainquent alors que pour un système
quadri-dimensionnel, l’hypothèse (ρ, P ) ∝ T 4 se généralise en(∑

i

Mi
∂

∂Mi

+ T
∂

∂T

)
(ρ, P ) = 4 (ρ, P ) . (6.14)

Ceci nous permettra, en considérant des masses typiques constantes pour des degrés de liberté
additionnels, d’envisager des termes issus d’un calcul thermodynamique, mais se comportant
en a(t)−2 ou constants dans le temps. On peut montrer alors que (6.13) est toujours vérifiée,
en utilisant le fait que P et ρ restent des quantités de dimension 4 en les échelles d’énergie du
système (voir la relation (6.14)).

Nous allons maintenant appliquer nous intéresser au problème de la modélisation d’une tempé-
rature finie en théorie des cordes. Munis de ce formalisme, nous serons en mesure de dériver la
fonction de partition thermale Z1−boucle(β), et pourrons utiliser le formalisme thermodynamique
développé ci-dessus pour modéliser le contenu de l’univers correspondant à notre modèle.

6.3 Aspects de la théorie des cordes à température finie
Les modèles construits dans nos travaux font intervenir une température non-nulle ; l’introduction
de la température en théorie des cordes (ainsi qu’en relativité générale) n’est pas une démarche
triviale. Nous commençons par en discuter la validité, pour ensuite donner la prescription, issue
de la théorie des champs, que nous utiliserons. Nous verrons en particulier que la théorie des
cordes fait apparaître une valeur critique de la température, dite température de Hagedorn.

La température, telle qu’introduite en thermodynamique, est une notion définie pour un système
en équilibre avec un réservoir de température T (on notera la température inverse 1/T = β).
Ainsi placés dans l’ensemble canonique, la fonction de partition du système est donnée par une
somme sur les états pondérée par le facteur de Boltzmann :
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Zthermal = Tr e−βH . (6.15)

H est ici le hamiltonien du système.

Un résultat classique de théorie de l’intégrale de chemin est que la fonction de partition d’un
ensemble thermal à température 1/β se calcule en effectuant une rotation de Wick sur le temps
et en compactifiant le temps euclidien ainsi obtenu sur un cycle de longueur β.
En effet, on voit alors que l’intégrale de chemin, qui consiste à faire évoluer le système dans
le temps au moyen de l’opérateur d’évolution e−iHt, redonne bien la fonction de partition de
l’ensemble canonique dans le cas d’un temps imaginaire compact.

Ceci pose alors quelques problèmes d’application dans le cas d’espaces courbes, détaillés dans
[AW88] : notamment, il est ambigu de vouloir fixer le rayon de la dimension de temps euclidien,
qui est en toute rigueur une variable dynamique dans le contexte d’une évolution gravitationnelle ;
l’hypothèse d’équilibre du système avec un réservoir de température empêche même de considérer
une éventuelle valeur asymptotique dans le vide pour ce rayon. Par ailleurs, la définition même
du hamiltonien du système, et donc de l’énergie, pose problème dans le cas de l’ensemble thermal,
car on ne peut pas considérer comme isolé ce système.
Faute de pouvoir considérer l’ensemble dans son intégralité (celui-ci étant infini), une approxi-
mation valide de la température se fait en considérant un volume contenant un grand nombre
de degrés de liberté, pour que les notions de mécanique statistique s’appliquent de manière
satisfaisante. Une limite supérieure sur la taille du système est toutefois imposée par la propriété
d’instabilité de tout système gravitant, qui a tendance à s’effondrer sur lui-même : il nous
faut alors considérer un système échappant à cette instabilité de Jeans. On renvoie à [AW88]
pour des informations complémentaires. Dans le cadre de notre travail, nous nous placerons
systématiquement au voisinage de l’espace plat, que nous perturberons par divers termes de
potentiel effectif.

Un deuxième aspect de cette définition de la température comme intégrale de chemin concerne
l’incorporation de la spin-statistique. Le résultat est le même qu’en théorie des champs : lorsque
la corde fermionique est transportée le long du temps compactifié, les conditions au bord doivent
être antipériodiques. Ainsi, nous devons en fait calculer la quantité

Zthermal = Tr (−)F e−βH ; (6.16)

où (−)F est l’opérateur de comptage de fermions.
Ainsi, la compactification de la dimension temporelle n’est en fait pas une compactification
toroïdale triviale : selon leur hélicité d’espace-temps, les conditions au bord des états de
cordes qui contribuent à la fonction de partition sont différentes. Ceci rappelle fortement les
compactifications sur des orbifolds à action libre de type Scherk-Schwarz décrits dans la section
4.2.2. C’est en effet le bon formalisme à adopter [KR90]. Nous calculons la fonction de partition à
l’ordre d’une boucle, correspondant à la propagation sur le tore. Sous transport le long des deux
cycles du tore, la phase prise par les états de corde est donc fonction de leur hélicité d’espace-
temps. La compactification de Scherk-Schwarz s’effectue alors exactement par la modification
(4.55) de la fonction de partition. Dans un contexte de théorie des champs, la phase non-triviale
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à introduire serait (−)am̃, correspondant au transport m̃ fois le long du cycle “temporel” du
tore et à l’insertion dans la trace d’autant d’opérateurs renversant les conditions au bord. En
théorie des cordes, on doit compléter la phase par un facteur (−)bn+m̃n. Ce facteur rend compte
de la modification des conditions au bord de l’état de cordes sur le second cycle du tore (le
cycle “spatial”) ; il se comprend aisément dans le formalisme d’orbifold à action libre, où le
cocycle devient (−)ag+bh+gh, h et g étant les parités des nombres d’enroulement de l’état de
corde autour des deux cycles du tore. La partie (−)ag correspond à l’effet présent en théorie
des champs ; l’apparition de la phase (−)bh correspond au secteur twisté de l’orbifold, où les
conditions au bord le long de l’autre cycle sont modifiées.

L’introduction de la température en théorie des cordes révèle un phénomène inédit en théorie
des champs : l’existence d’une température critique, dite température de Hagedorn. Un résultat
classique de la théorie des cordes est que la croissance de la densité d’états par niveau d’énergie
est exponentielle : on a n(E) ∼ exp(bE), où b est une constante. Il existe alors une valeur critique
TH = b−1 au-delà de laquelle la fonction de partition à température 1/β (6.15) ne converge plus.
Plusieurs aspects sont présents dans l’existence de cette température critique. Premièrement,
cette température correspond précisément à l’apparition d’un état tachyonique dans le spectre
[Sat87, Kog87]. Ceci est consistant avec le fait que la fonction de partition sur le tore (3.79)
diverge en présence d’un état vérifiant M2 < 0.
Il est bon d’analyser les détails de l’apparition de cet état tachyonique. La formulation de la
température en terme d’orbifold libre développée dans la section 4.2.2 montre que dans le secteur
h = 1 (soit un nombre d’enroulement impair autour du temps euclidien) , la projection GSO est
renversée par le facteur (−)bh, ce qui ouvre la voie à l’apparition d’un tachyon dans des théories
précédemment non-tachyoniques. Ensuite, une resommation de Poisson de l’expression (4.55)
montre que les nombres d’enroulement selon la dimension de temps euclidien sont modifiés par
le couplage comme :  m

n

→
 m+ a

2 −
n
2

n

 (6.17)

Un calcul simple montre alors l’apparition d’un état bosonique tachyonique (rappelons que
l’introduction de la température a introduit un mass gap entre bosons et fermions), pour n = 1
et a = 0 (voir par exemple [ADK99]).

Nous nous posons maintenant la question de la pertinence du rôle des termes de température
dans une évolution cosmologique d’inspiration cordiste. Ce rôle a été mis en évidence dans
plusieurs travaux, dans le cas de l’étude d’univers jeunes.
Notre approche consiste à corriger les équations d’Einstein par inclusion des corrections ther-
miques. Ces corrections thermiques sont importantes dans le cas d’un univers de de Sitter
(c’est-à-dire, à constante cosmologique positive) ; en effet, une des propriétés des univers de de
Sitter est la présence d’un horizon, et donc [GH77] d’une température de Hawking. Cette tempé-
rature de Hawking, comme dans le cas des trous noirs, existe en l’absence de sources de matière,
et résulte donc des fluctuations de la métrique. Il a été montré explicitement dans [ST05], par
développement en fonctions harmoniques des fluctuations de la métrique, qu’en sommant sur ces
fluctuations, l’équation d’évolution pour l’univers de Friedmann-Robertson-Walker est modifié
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par un terme proportionnel à a(t)−4, ce qui correspond bien à une contribution thermique.
Le résultat reste de plus valide lorsque l’on inclut aussi des scalaires sans masse. Ainsi, toute
solution de de Sitter est déformée de manière intrinsèque. Ceci joue un rôle par exemple dans
certains scénarios de sélection de la constante cosmologique. Il semble donc obligatoire, pour
des applications cosmologiques de la théorie des cordes, d’introduire dans nos modèles une
température non nulle.
Notre démarche consiste à introduire à la main cette température dans le modèle, de manière
à générer la rétroaction sur les équations d’évolution de l’univers par calcul de la fonction de
partition à une boucle (cette fonction de partition n’est donc maintenant rien d’autre que la
fonction de partition du système à température T pris dans le formalisme canonique). Cette
démarche permet de calculer explicitement la déformation thermique de la cosmologie pour
tout modèle de théorie des cordes. L’hypothèse adiabatique, ou, de manière équivalente, la
conservation de l’entropie, implique que cette température doit varier comme l’inverse du facteur
d’échelle : T (t) ∝ a−1(t).
On suppose de plus que l’on se trouve loin de la température de Hagedorn TH , c’est-à-dire
que le rayon de compactification du temps euclidien R0 est grand devant l’échelle typique des
cordes. Ceci a plusieurs effets : d’une part, l’absence de tachyon préserve le système d’une
instabilité infra-rouge ; d’autre part, cela rendra exponentiellement petites les contributions au
potentiel effectif des dimensions compactifiées qui ne participent pas à la brisure de supersymétrie
(nous renvoyons à [CJKPT08b] pour une dérivation explicite de ces propriétés). La pertinence
du formalisme de l’ensemble canonique (et donc de l’implémentation de la température par
compactification du temps euclidien) peut également être remise en cause au voisinage de
la température de Hagedorn [BV89, MT87]. Par exemple, il est suggéré dans [BV89] que la
température de Hagedorn soit une température limite d’un gaz de cordes ; en s’approchant de
cette température, l’énergie se stocke dans les états d’enroulement non-nul au lieu d’être dans
les états de moment non-nul (ou inversement) ; la théorie est alors identique à sa T-duale, et
on obtient encore une température effective inférieure à la température de Hagedorn. Notons
que des travaux récents proposent une méthode de résolution de cette singularité à l’aide de
compactifications de Scherk-Schwarz effectuées sur des backgrounds d’orientifold de théories de
Type II [AKPT08].

Nous avons donc accès à un formalisme dépourvu de divergences ultra-violettes (car supprimées
dans le cadre de la théorie des supercordes), de divergences infra-rouges (en absence de tachyon).
Nous allons maintenant utiliser ce formalisme pour générer des évolutions cosmologiques régies
par les effets thermiques et de brisure de supersymétrie que nous considérons. Pour cela, nous
considérons un modèle très simple d’évolution de l’univers : le modèle de Friedmann-Robertson-
Walker. Nous examinerons, par des arguments généraux de supergravité, la structure des différents
termes pouvant intervenir dans les corrections à une boucle, et les effects correspondants de
la rétroaction sur les équations du mouvement. Nous esquisserons les contours du calcul du
potentiel et les manières de générer les différents termes.
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6.4 Cosmologie de Friedmann-Robertson-Walker
Notre but va être d’établir un contact entre les équations de supergravité corrigées à une boucle
issues de nos modèles de cordes et des évolutions cosmologiques. Pour cela, nous allons considérer
une des formes les plus simples de cosmologie : l’univers de Friedmann-Robertson-Walker. Notre
présentation s’inspire de [KP08b].

Sous des hypothèses d’homogénéité et d’isotropie de l’univers, on montre que la métrique la
plus générale décrivant une évolution cosmologique a la forme suivante :

ds2 = dt2 − a2(t)
(

dr2

1− kr2 + r2dΩ2
2

)
(6.18)

Dans cette expression, k est un paramètre donnant la courbure de l’univers ainsi construit, le
facteur d’échelle a(t) paramétrise la taille de l’univers, et dΩ2

2 est l’élément de surface de la
sphère S2.
Ce modèle d’univers fait intervenir un seul paramètre dynamique qui est le facteur d’échelle ; il est
donc possible d’obtenir, à partir de l’équation d’Einstein en présence de sources modélisées par
un tenseur énergie-impulsion T µν , une action effective pour a(t), dite action du mini-super-espace,
et des équations du mouvement.
Si l’on applique les mêmes hypothèses d’homogénéité et d’isotropie aux sources de matière
considérées comme des fluides parfaits, on montre que le tenseur d’énergie-impulsion se met
sous la forme

T µν = diag (ρ(t),−p(t),−p(t),−p(t)) (6.19)
où ρ est la densité d’énergie et p la pression du fluide. Si l’on définit la constante de Hubble
H = ȧ/a, les équations d’Einstein donnent l’équation de Hubble

3H2 = −3k
a2 + ρ (6.20)

ainsi que l’équation

2Ḣ + 3H2 = − k

a2 − P . (6.21)

L’action effective se dérive en introduisant un nouveau degré de liberté N(t) (factice, car
absorbable par une redéfinition du temps), et en considérant la métrique

ds2 = N(t)2 dt2 − a2(t)
(

dr2

1− kr2 + r2dΩ2
2

)
(6.22)

L’action [HH83]

SMSS = −1
6

∫
dt a3

(
3
N
H2 − 3kN

a2 −
1

2N (ρ+ P ) + N

2 (ρ− P )
)

(6.23)

redonne alors, par variation respective des degrés de liberté N et a, les équations (6.20) et
(6.21). Le degré de liberté N étant non-physique, ce système est en fait dégénéré, et il suffira de
considérer une combinaison linéaire de ces deux équations ; on fixera également N(t) = 1.
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Si on souhaite ajouter de nouveaux degrés de liberté à cette action, la prescription est la suivante :
les termes cinétiques sont divisés par N , et les termes de potentiel sont multipliés par N . Dans
le cas qui nous occupe, l’incorporation du dilaton se fait par le terme

− 1
6

∫
dtN a3

(
− 1

2N Φ̇2 +NV
)

(6.24)

Tel qu’on l’a introduit, le terme cinétique du dilaton est sous la forme
∫ √
−g(∂Φ)2. Nous verrons

que le calcul cordiste ne renvoie pas automatiquement cette forme pour l’action effective : il
faudra rescaler la métrique obtenue apparaissant canoniquement dans la théorie des cordes pour
pouvoir procéder à une identification des actions effectives.

Lorsqu’on introduit dans l’action effective le terme (6.24), on obtient premièrement l’équation
du mouvement pour le module Φ :

Φ̈ + 3H Φ̇ = −∂V
∂Φ . (6.25)

De plus, les équations (6.20) et (6.21) sont modifiées ; par contre la redondance que nous avons
signalée fait que nous n’avons qu’à considérer une combinaison linéaire de ces deux équations
pour décrire la dynamique du système. La sommation de (6.20) et (6.21) fournit alors

Ḣ + 3H2 = −2k
a2 + 1

2(ρ− P ), (6.26)

équation qui reste toujours valable en présence du dilaton Φ et d’une large classe d’autres
modules, caractérisés par des termes cinétiques en (1/2)ϕ̇2 ou en (1/2)e2αΦϕ̇2. Ces modules
participent bien au contenu en énergie de l’univers (nous verrons que le terme d’énergie cinétique
du dilaton permet de retrouver l’équation d’état usuelle pour la radiation), mais la considération
de cette équation fait qu’ils ne modifient pas l’évolution du facteur d’échelle.
Nous allons maintenant procéder à la définition de notre modèle du côté de la supergravité. La
forme du potentiel effectif et celle de l’action nous guideront pour établir le contact entre les
deux approches, et modéliser correctement la rétroaction donnée par les effets thermiques et
quantiques à une boucle sur la cosmologie FRW.

6.5 Forme des corrections thermiques et quantiques
Structure des corrections quantiques à la supergravité sans échelle

La structure du potentiel à une boucle dans une théorie où la supersymétrie est spontanément
brisée s’écrit sous la forme générale suivante (voir par exemple [FKZ94] et les références associées)

V1−boucle = V0 + 1
64π2StrM

0 Λ4 log Λ2

µ2 + 1
32π2StrM

2 Λ2 + 1
64π2Str

(
M4 logM

2

µ2

)
+ . . . (6.27)

Dans cette expression Str désigne la supertrace StrM2n = ∑
i(−)2Ji(2Ji + 1)m2n

i , obtenue en
pondérant la trace classique par un facteur dépendant de l’hélicité de l’état. Λ est un cut-off
ultra-violet, et µ l’échelle de renormalisation, soit l’échelle d’énergie à laquelle on se place pour
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mesurer la valeur de notre potentiel. Dans le cadre de notre travail, il semble naturel de prendre
µ ∼ T . “+ . . . ” représente quant à lui la contribution de termes indépendants de l’échelle de
cut-off Λ. Nous allons analyser ces différents termes, avant de les réaliser explicitement par le
calcul du potentiel.

Évidemment, dans une théorie supersymétrique, le terme StrM0 est nul. Dans un modèle sans
échelle, le terme constant V0 est également nul. On montre aussi que le terme en StrM2 Λ2,
dans le cas de N = 2 spontanément brisée, est proportionnel à la masse du gravitino :

StrM2 = QM2
3/2, (6.28)

et qu’il s’annule identiquement dans le cas de N = 4 spontanément brisée.
Il nous reste donc à considérer les contributions au potentiel effectif provenant du terme

Str
(
M4 logM

T

)
. (6.29)

En toute généralité, ce terme peut donner naissance à des contributions en M4
3/2, M2

3/2, ou des
termes constants, “habillés” par des termes en log(M3/2/T ). On montre cependant que dans le
cas où on considère la brisure spontanée d’une théorie à supersymétrie étendue N = 4, la seule
contribution est proportionnelle à M4

3/2, où M3/2 est la masse du gravitino (c’est-à-dire, l’échelle
typique de brisure de supersymétrie).

Forme du potentiel effectif

Nous n’effectuerons pas le calcul explicite, qui est détaillé dans [CJKPT08b]. Nous allons par
contre détailler et justifier les hypothèses physiques adoptées.

Nous supposons en premier lieu que la variété de compactification se décompose en S1 × T 5, où
le cercle S1 est de rayon R5. Initialement, tous les données géométriques de la compactification
sont des modules, c’est-à-dire des directions plates du potentiel. La correction à une boucle va
générer un potentiel effectif levant la dégénérescence sur une combinaison de ces modules, que
l’on va rendre cosmologique, et générant des contributions exponentiellement petites pour les
autres modules. On est naturellement amenés à considérer que les modules non cosmologiques
sont de taille comparable à l’échelle des cordes. Dans ce cas-là, la dépendance du potentiel en
ces modules est exponentiellement petite, et ils peuvent être considérés comme constants.

On a vu que l’énergie des états de nombre d’enroulement non nul autour d’une dimension de
rayon R comporte un terme proportionnel à R. Dans notre cas, pour un rayon R grand devant
les autres énergies mises en jeu, on va donc négliger les contributions des nombres d’enroulement
impairs. Il se trouve que les nombres d’enroulement pairs peuvent être pris en compte de la
manière suivante. Notre point de départ est de décomposer la forme lagrangienne 2 du réseau
Γ1,1 selon la parité des nombres quantiques m̃, n :

Γ1,1 =
1∑

h,g=0
Γ1,1[hg ] =

1∑
h,g=0

R
√
τ2

∑
m̃,n∈Z

exp
[
−πR

2

τ2
|(2m̃+ g) + (2n+ h)τ |2

]
. (6.30)

2. Pour suivre les notations de [CJKPT08b], nous prenons ici α′ = 1.

114



Alors, en négligeant les nombres d’enroulement impairs, il vient

Γ1,1 = Γ1,1[00] + Γ1,1[01] (6.31)

Comme Γ1,1[00] = (1/2)Γ1,1(2R), on a exprimé Γ1,1[01] en termes de quantités invariantes modu-
laires. Ceci va nous permettre d’effectuer l’intégration de la fonction de partition sur le domaine
fondamental de PSL(2,Z) noté F , par la méthode suivante [DKL91].

On souhaite intégrer une quantité invariante modulaire de la forme∑m1,n1,m2,n2∈Z4 f(m1, n1,m2, n2)
sur le domaine fondamental F de PSL(2,Z). L’ensemble des images de (m1, n1,m2, n2) par les
transformations du groupe modulaire définit une orbite O, dont on peut choisir un représentant
(m1, n1,m2, n2)O
On peut maintenant écrire

∫
F

∑
(m1,n1,m2,n2)∈Z4

f((m1, n1,m2, n2)) =
∫
F

∑
O orbit

∑
(m1,n1,m2,n2)∈O

f((m1, n1,m2, n2))(6.32)

=
∫

ΣF

∑
O
f((m1, n1,m2, n2)O), (6.33)

où ΣF est l’union de toutes les images de F par le groupe modulaire. Dans le cas d’un réseau
bidimensionnel, la forme des transformations :

τ → τ + 1 ⇒ (m1, n1,m2, n2) → (m1 + n1, n1,m2 + n2, n2)
τ → −1/τ ⇒ (m1, n1,m2, n2) → (−n1,m1,−n2,m2)

(6.34)

donne trois classes d’orbites : l’orbite {(0, 0, 0, 0)}, les orbites dégénérées Om1,m2 , (m1,m2) ∈
(Z2)∗, dont un représentant est (m1, 0,m2, 0) ; et enfin les orbites non dégénérées Õ, dont les
éléments vérifient m1n1 +m2n2 6= 0.
On a ΣF = 2×H, la double couverture de H, le demi-plan Im τ > 0. En fait, on peut ramener
l’intégration sur Re τ ∈ R à Re τ ∈ [−1/2, 1/2].
Si on note || la bande {τ | |Re τ | < 1/2, Im τ > 0}, on a alors (∑Õ balaie les orbites non-
dégénérées) :

∫
F

d2τ

τ2

∑
m1,n1,m2,n2∈Z

f((m1, n1,m2, n2)) = 2
∫
||

d2τ

τ2

 ∑
m1,m2∈Z2

f(m1, 0,m2, 0) +
∑
Õ

f((m1, n1,m2, n2)Õ)


(6.35)
Pour le modèle que nous considérons, les termes correspondant à une orbite non-dégénérée
impliquent, par level-matching, que l’état de corde associé comporte au moins une excitation
d’oscillateur. Sa masse est donc de l’ordre de l’échelle de cordes, et nous pouvons négliger cet
état. On ne va donc sommer que sur les orbites dégénérées. On trouve ainsi que dans l’intégrale
donnant le potentiel à une boucle, on peut remplacer le réseau

Γ1,1[0g0 ](R0) Γ1,1[0g5 ](R5)
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par

2 R0R5

τ2

∑
m̃0,m̃5

exp
[
− π
√
τ2

((2m̃0 + g0)2R2
0 + (2m̃5 + g5)2R2

5)
]
.

Dans le cadre de nos approximations l’égalité Γ1,1[01] = Γ1,1(R)− (1/2)Γ1,1(2R) montre que la
contribution m̃ = n = 0 s’annule donc identiquement, et l’orbite {(0, 0, 0, 0)} est donc absente
de la fonction de partition. Ceci annule la divergence infra-rouge qui découle normalement de la
contribution de cette orbite (voir [DKL91]) ; la raison physique sous-jacente est que ce secteur
est supersymétrique.

Nous traitons ensuite la partie fermionique de la fonction de partition. La brisure spontanée
s’effectue, en suivant la section 4.3, en couplant les dimensions R0 et R5 à des R-charges a,
a+Q5. L’utilisation de la formule de sommation de Jacobi 3 nous conduit alors à l’expression
suivante :

Z = − V5

(2π)5

∫
F

d2τ

τ
7/2
2

1∑
h0,g0,h5,g5=0

(−)h0+h5+g0+g5 Γ1,1[h0
g0 ](R0) Γ1,1[h5

g5 ](R5)
ϑ
[

1+h0+h5
1+g0+g5

]4
η12η̄24 × Γ4,20.

(6.36)
Cette forme implique alors que, si les compactifications de Scherk-Schwarz selon R0 et R5
brisent spontanément la supersymétrie, on ne doit garder que les composantes de la somme pour
lesquelles g0 + g5 = 1 (toujours dans l’approximation des nombres d’enroulement pairs). Sous ces
hypothèses, la présence du terme en ϑ4

2 du côté gauche de la fonction de partition implique que
celui-ci ne contient que des états de masse carrée positive. Les tachyons potentiels sont en effet
détruits par la projection GSO, qui n’est pas altérée dans le cas de nombres d’enroulement pairs.
Par level-matching, le spectre sera donc non-tachyonique 4. Un développement en Im τ →∞
permet alors d’isoler la contribution des états de masse petite devant l’échelle de corde.

La sommation sur g0 + g5 = 1 comprend deux termes : (g0, g5) = (1, 0) et (0, 1). Lorsque g = 0,
le bloc correspondant de la fonction de partition ne prend en compte que les enroulements et
les moments pairs, de sorte que le cocycle introduit dans le but de briser la supersymétrie est
en fait trivial. On en déduit que, dans les différentes contributions au potentiel effectif, seules
les dimensions sur lesquelles g = 1 participent à la brisure ; les autres sont “spectatrices”. Dans
le cas de deux dimensions, les deux termes correspondent à la brisure par chacune des deux
dimensions, tandis que l’autre reste spectatrice. Si Q5 = 0, on a donc une dualité T ↔M3/2 au
niveau de la fonction de partition. Cette dualité pousse à considérer l’ansatz suivant pour la
cosmologie : M3/2(t) ∼ 1/a(t), ou encore M3/2/T = cste. Il est en fait montré dans [AK87] que
cette trajectoire est un attracteur. Une partie du travail effectué dans [CJKPT08b] consistera à
déterminer sous quelles hypothèses un tel ansatz est valide.
La dualité T ↔ M est brisée quand Q5 6= 0 : les contributions des différents états sont
alors pondérées par (−)Q5 . On sait que les états acquérant une masse sont ceux pour lesquels
a + Q5 = 1 : pour Q5 = 1, les bosons deviennent massifs, alors que les fermions restent sans

3. Voir l’appendice A, équation (A.17).
4. Au voisinage de la température d’Hagedorn, il n’est plus consistant de négliger les nombres d’enroulement

impairs, et des tachyons apparaissent dans le spectre.
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masse. Les calculs explicites montrent alors que le potentiel effectif se décompose comme la
somme de ses contributions venant des différents états du spectre, pondérée par le facteur (−)Q5 .
Il est en fait possible d’aller plus loin. Si on note nT = ∑

s 1 le nombre de paires boson-fermion
de la théorie, et

nV =
∑
s

(−)Q5 , (6.37)

le potentiel effectif se décompose en deux termes ; le premier est proportionnel à nT et correspond
à la brisure par la température (la R-charge associée à la température est forcément a), tandis
que le second est proportionnel à nV , et correspond à la brisure par la dimension X5. Toute la
dépendance en Q5 est alors concentrée dans nV (voir l’équation (3.9) de [CJKPT08b]), de sorte
que la condition de validité de l’ansatz, que nous traiterons plus bas, va en fait se traduire par
une condition sur le paramètre

n ≡ nV
nT
∈ [−1, 1] . (6.38)

Rescaling du potentiel et définition du paramètre sans échelle ; identification avec
le dilaton

Le potentiel à une boucle calculé grâce à la fonction de partition de la théorie des cordes corrige
l’action effective donnée, dans le repère de cordes, par

S =
∫
d4x
√
−g

[
e−2φ

(1
2R + 2 ∂µφ∂µφ+ . . .

)
− Vstring

]
(6.39)

On remarque le terme e−2φ, qui vient du développement perturbatif en nombre de boucles. Une
telle forme de l’action signale que nous nous sommes placés dans le repère de cordes, dans lequel
les champs sont ceux apparaissant dans le modèle-sigma de la théorie des cordes, ou encore
correspondant aux vertex. Le potentiel effectif Vstring apparaissant à l’ordre d’une boucle, il ne
comporte donc pas de préfacteur fonction du dilaton (voir la figure 3.2).
Pour comparer cette action à celle du mini-superespace que nous avons détaillée dans la section
précédente, il faut passer dans le repère d’Einstein, dans lequel le terme cinétique de la métrique
est découplé du dilaton. On applique donc une transformation conforme sur la métrique en
posant g̃µν = e−2φgµν , ce qui élimine le préfacteur e−2φ. On trouve alors que la normalisation du
potentiel est changée :

VEinstein = 1
s2Vstring (6.40)

où s = e−2φ. Ce facteur supplémentaire sera crucial car il fera apparaître de manière naturelle le
module sans échelle dans l’expression du potentiel.
Dans ce repère, l’action de supergravité se met sous la forme

S =
∫
d4x
√
−g

(1
2R + gµνKij̄ ∂µΦI∂νΦ̄j̄ − VEinstein

)
(6.41)

La brisure de supersymétrie que nous avons mise en place est générée par un 2-tore correspondant
aux coordonnées R0 et R5. Ceci définit deux modules complexes, T et U , tels que t ≡ ReT =
R0R5 et u ≡ ReU = R0/R5. De plus, on inclut le doublet dilaton-axion S, dont la partie réelle
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s ≡ ReS apparaît explicitement dans le potentiel dans le repère d’Einstein. Le potentiel de
Kähler associé à ces modules s’écrit comme

K = − log(S + S̄)− log(T + T̄ )− log(U + Ū). (6.42)

Nos modèles supposent que u = cste. Dans ce cas, on remarque que le potentiel à une boucle
dans le repère d’Einstein ne dépend que de la combinaison stu, et que la masse du gravitino
dans le repère d’Einstein est donnée par M2

3/2 = (stu)−1. Cette masse réalise l’expression de
la masse du gravitino introduite en (4.76). Il est donc consistant de considérer que s, t et u
évoluent proportionnellement, les autres directions restant plates à une boucle. On pose donc
(ReZ)3 ≡ z3 = stu comme étant le seul paramètre ayant une dynamique non-triviale. Le
potentiel de Kähler devient

K = −3 log(Z + Z̄) (6.43)

et a la forme sans échelle voulue. La masse du gravitino, qui vaut M3/2 = |W | e
〈G〉
2 , où le

superpotentiel W est ici constant (les autre modules de compactification étant fixés), est
proportionnelle à (Re z)−3. Lorsqu’on pose

M3/2 = eαΦ, (6.44)

le terme cinétique du module sans échelle est bien en proportionnel à (∂Φ)2. Pour faire contact
entre la théorie effective de supergravité et les évolutions cosmologiques présentées, on identifie
alors le module sans échelle au dilaton. Cette identification est guidée par le fait que ces deux
champs couplent à la trace du tenseur énergie-impulsion. Dans le cas de la brisure par la
température et par une dimension interne, le coefficient α vaut

√
3/2. Nous verrons que cette

égalité est modifiée lorsque l’on considère la brisure par un second rayon interne.

Génération de termes de courbure et de constante cosmologique

Nous avons vu précédemment que dans le cadre de N = 4 spontanément brisée, le seul terme
susceptible d’apparaître à une boucle varie comme M4

3/2, soit en 1/a4. Sa rétroaction sur les
équations de FRW prend donc la forme d’un terme de radiation. Vu la structure des corrections
à une boucle donnée en (6.27), il est théoriquement possible de générer des termes en 1/a2, et
des termes constants. Nous allons commencer par donner la marche à suivre pour générer les
termes de courbure.

Dans [CJKPT08b], nous commençons par explicitement briser cette supersymétrie en compac-
tifiant sur l’orbifold T 4/Z2 × T 2. On peut ensuite considérer de petites déformations dans le
spectre de masse de la théorie par l’addition de lignes de Wilson, telles qu’on les a introduites
dans la section 4.1.1. Les différents états de la théorie sont chargés sous les lignes de Wilson
considérées, et leur spectre de masse va être modifié. Dans la formulation hamiltonienne, les
nombres quantiques mI , où I = 5 . . . 10, vont être modifiés en mI +Qay

a
I , où Qa est la charge

de l’état considéré sous la ligne de Wilson yaI . Souvenons-nous que, pour qu’il soit consistant de
considérer les lignes de Wilson constantes, l’indice a est restreint à la sous-algèbre de Cartan
du groupe de jauge de la théorie. Il faut maintenant prendre en compte le shift des masses
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de l’états d’enroulement (mI , nI) = (0, 0) sur les RI , I = 6, . . . 10, qui donne une contribution
exponentielle

Γ5,5(RI) ' e−πτ2
∑

I
(QayaI )2/R2

I . (6.45)

Les termes du réseau tels que (mI , nI) 6= (0, 0) sont quant à eux exponentiellement petits. Le
développement de cette exponentielle à un ou deux ordres en M2

Y = ∑
I(Qay

a
I )2/R2

I va générer
des termes en M2

3/2M
2
Y , M4

Y .

Nous avons décidé dans [CJKPT08b] de générer des termes spécifiques N = 2 en brisant d’abord
explicitement la supersymétrie en N = 2 au moyen d’une compactification sur un orbifold T 4/Z2.
Une telle démarche est légitime et pose clairement l’hypothèse N = 2 ; elle n’est par contre
pas indispensable. En effet, comme on l’a vu dans la section 4.4, la considération de valeurs
moyennes dans le vide non-nulles pour les lignes de Wilson brise en fait la supersymétrie, car
elle brise spontanément l’algèbre de R-symétrie SO(6) ∼ SU(4) donnée par les 6 coordonnées
internes XI , I = 5 . . . 10.
Les deux contributions au potentiel effectif correspondant respectivement à la brisure par la
température et par la dimension X5 vont avoir, au premier ordre en les lignes de Wilson, des
termes respectifs en T 2M2

Y et M2
3/2M

2
Y . Comme dans le cas des termes en 1/a4, ces termes sont

en fait respectivement de la forme T 2M2
T et M2

3/2M
(2)
V , où la charge Q5 pondère la somme dans

le cas de la brisure par la dimension spatiale :

M2
T (y) =

10∑
I=6

1
4πR2

I

∑
s

(yaIQs
a)2 (6.46)

M
(2)
V (y) =

10∑
I=6

1
4πR2

I

∑
s

(−)Q5(yaIQs
a)2 (6.47)

L’ajustement de la charge Q5 permettra ici aussi de générer des rétroactions ayant la forme d’un
terme de courbure positif ou négatif.

La possible génération d’un terme de constante cosmologique ne peut se faire que dans le cas
d’une structure N = 1 spontanément brisée. Cette fois, il n’est plus possible de commencer
par briser explicitement la supersymétrie N = 4 −→ N = 1 préalablement à l’introduction de
lignes de Wilson : en effet, une telle démarche suppose une compactification sur T 6/Z2 × Z2, ce
qui fait disparaître, dans le secteur twisté, la dépendance en les rayons internes, et donc en la
masse du gravitino. Ceci ne permet donc pas de réaliser les termes spécifiques N = 1 issus de la
quantité Str (M4 log(M/T )). Il faut donc adopter une autre approche.
L’étude des théories de supergravité nous indique que la structure N = 1 est atteinte dès que le
coset N = 2, qui fait apparaître la R-symétrie SU(2) (voir la section 4.4), est brisé en un coset
N = 1. Dans une configuration de lignes de Wilson où cette brisure est effectivement réalisée, la
constante cosmologique se calculera en poussant le développement de l’exponentielle (6.45) à
l’ordre y4, puis en effectuant l’intégration sur ||.

119



6.6 Consistance de l’ansatz M3/2 ∝ T

Même s’il est dicté par des considérations dimensionnelles, et par le résultat de [AK87] qui
montre que cette trajectoire est un attracteur, l’ansatz M3/2 = uT , où u est une constante,
n’est pas toujours vérifié. C’est pourtant sous cette hypothèse que le potentiel que nous avons
calculé prend, en l’absence de lignes de Wilson, une forme de radiation en 1/a(t)4. L’hypothèse
M3/2 ∝ 1/a(t), couplée à la relation (6.44), implique que H et Φ̇ sont proportionnelles. Ceci
implique que l’équation d’évolution cosmologique (6.26) et l’équation d’évolution du dilaton
(6.25) doivent être proportionnelles. En identifiant les termes quartiques, on trouve que l’équation
d’état du contenu effectif en radiation de notre univers (soit les termes de la pression et de la
densité d’énergie qui se comportent en 1/a4) doit vérifier l’équation d’état

ρ4 = 6α2 − 1
2α2 − 1 p4. (6.48)

En injectant α =
√

3/2 on trouve ρ4 = 4 p4. On trouve donc que notre contenu purement radiatif
vérifie bien l’équation d’état de la radiation, mais à cinq dimensions. Ceci est dû au fait que les
états de moment non nuls suivant la direction X5 sont pris en compte dans le calcul du potentiel.
L’étude de [CJKPT08b] donne alors une condition sur les schémas de brisure de supersymétrie
pour qu’il existe une constante u vérifiant cette propriété.

Une telle forme semble problématique dans notre modélisation : un contenu en radiation classique
dans un univers à quatre dimensions doit vérifier l’équation d’état usuelle ρ = 3 p. C’est en fait
le cas, une fois que l’on prend en compte la contribution à ces deux quantités du terme cinétique
du dilaton. Cette incorporation du dilaton en tant que terme de radiation est légitime : il se
comporte en effet, dans le contexte de validité de notre modèle, en T 4.

La discussion de l’existence d’une solution à l’équation d’état ρ = 4 p est effectuée numériquement
dans [CJKPT08b]. On trouve la condition −0.0666 . nV /nT < 0. Dans cet intervalle, la
constante uc = M3/2/T est fonction de n (défini en (6.38)). Il est en fait possible de ré-absorber
la dépendance en nT et en nV dans une redéfinition de la température T et de la masse de
brisure de supersymétrie M3/2. La condition (6.48) peut en effet se réécrire sous la forme

nT T
4f(u) + nV M

4
3/2f̃(u) = 0 (6.49)

Les équations régissant l’évolution étant logarithmiques en T et M3/2, elles sont invariantes sous
la redéfinition

nT T
4 ≡ T̂ 4,

|nV |
nc

M4
3/2 ≡ M̂4

3/2 (6.50)

L’équation devient

T̂ 4f(û) + signe(n)nc M̂4
3/2f̃(û) = 0 (6.51)

On montre alors premièrement que cette équation admet des solutions si signe(n) < 0, et, comme
signalé, pour nc . 0.0666.
On réduit alors en
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T̂ 4f(û)− nc M̂4
3/2f̃(û) = 0 (6.52)

Si on trouve une solution û = û0, comme

û0 = M̂3/2

T̂
=
(
|nV |
nT

) 1
4 1
n

1/4
c

M3/2

T
(6.53)

on a la relation |n|1/4 ·u = cste ce qui implique bien que n se comporte en u−4. Ce comportement
est bien reproduit numériquement, dans le domaine d’existence de solutions (voir la forme de la
Figure 1 de [CJKPT08b]).

En présence de termes de courbure et de constante cosmologique, l’identification des équations
(6.26) et (6.25) implique l’identification de tous les monômes du second terme. L’identification
des termes quadratiques (en a(t)−2) ne pose pas de nouvelle condition sur le système et redéfinit
la courbure effective de l’espace. L’ajout de termes indépendants de a(t) pose par contre problème
dans le cadre de l’article [CJKPT08b]. En effet, à la condition

ρ4 = 6α2 − 1
2α2 − 1 p4 (6.54)

qui fixe u, on doit maintenant ajouter la condition sur les termes constants

ρ0 = 1 + 2α2

1− 2α2 p0 . (6.55)

Remarque sur le régime de validité du modèle

Nous avons construit une évolution cosmologique dans laquelle la température et la masse
typique de brisure symétrique, qui se comporte comme l’inverse de la taille typique d’une
dimension interne de l’espace, sont proportionnels. En particulier, si ce modèle était valide pour
un univers assez vieux, la dimension qui participe à la brisure devrait décompactifier, et la
masse supersymétrique tendre vers zéro. Un tel comportement serait loin d’être réaliste. Nous
allons cependant voir que ce n’est pas le cas.
Pour cela, l’exemple le plus simple est de considérer la brisure de symétrie électro-faible SU(2)L×
U(1)Y → U(1)em, effectuée par le boson de Higgs. Nous allons voir que cette brisure est générée
par des corrections radiatives venant des partenaires supersymétriques [KLNQ82, KLNQ84] . À
haute énergie, le groupe de jauge électro-faible est préservé : la masse effective du Higgs (ie la
dérivée seconde à l’origine) est strictement positive, de sorte que 〈H〉 = 0 est une configuration
stable. Toutefois, cette masse est modifiée par les équations du groupe de renormalisation. Les
contributions des termes de brisure douce de la supergravité attirent la masse carrée du Higgs
vers des valeurs négatives : à l’échelle de transmutation, la solution 〈H〉 = 0 est déstabilisée, et
le Higgs acquiert une valeur dans le vide non-triviale, ce qui brise la jauge. La contribution des
termes de brisure douce est prépondérante : si la masse du Higgs reste nulle lorsqu’on passe
en dessous de MSUSY , la brisure n’aura pas lieu. Ainsi, on voit que l’échelle de brisure de la
symétrie électro-faible est de l’ordre de la masse du Higgs.
Dans le cas qui nous occupe, ceci implique que lorsqu’on descend en dessous de la masse
électro-faible, l’excitation du Higgs est à prendre en compte, ce qui rend invalide l’hypothèse
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selon laquelle P et ρ ne dépendent que de T et des échelles Mi. On montre alors que l’apparition
de cette nouvelle échelle stabilise en fait la masse du gravitino à l’échelle de brisure électro-faible ;
le module sans échelle est donc finalement stabilisé.

D’autre part, nous avons systématiquement gelé les dimensions ne brisant pas la supersymétrie
à une valeur de l’ordre de l’échelle de corde. Cette hypothèse de stabilisation de modules de la
théorie mérite quelques précisions. Deux cas sont à analyser : selon l’expression de la R-charge
que l’on utilise pour briser spontanément la supersymétrie, nous avons signalé que la brisure
donne une masse soit aux bosons, soit aux fermions. Par exemple, si la R-charge considérée est
a+H, où H est le paramètre de twist d’un orbifold Z2, les fermions du secteur non-twisté et
les bosons du secteur twisté acquerront une masse.
Le cas des modules twistés est réglé par le potentiel effectif généré à une boucle en théorie des
cordes : en effet, les termes correspondants sont positifs, ce qui induit au voisinage de zéro une
masse positive pour les modules ne participant pas à la brisure de supersymétrie. Dans le cas
des modules du secteur non-twisté, qui comprend les modules géométriques, la stabilisation des
modules de structure complexe est assurée par la présence de termes de brisure douce (refs.) ;
le module de Kähler reste quant à lui plat au niveau de la supergravité, et reçoit un potentiel
de type runaway à une boucle en théorie des cordes toujours sous l’hypothèse sans échelle. Sa
stabilisation radiative intervient à l’échelle de brisure électro-faible, comme détaillé ci-dessus.

Un traitement assez complet des termes de brisure douce peut être trouvé dans [FKZ94, Pav95],
et des rappels sont effectués dans [CJKPT09]. Il y est entre autres montré que pour les modules ne
participant pas à la brisure de supersymétrie, le terme de masse généré est positif et proportionnel
à M3/2, tandis que les modules de type sans échelle restent plats.

6.7 Forme des cosmologies effectives obtenues
Nous résumons ici très succinctement les résultats obtenus dans [CJKPT08b], ainsi que dans
[KP08a, KP08b], concernant les formes de cosmologie accessibles par les modèles que nous
avons détaillés. Le cas d’un terme de radiation négatif, théoriquement possible, n’ayant pas
été explicitement réalisé dans nos travaux, nous renvoyons aux références ci-dessus pour ses
conséquences cosmologiques. Nous nous intéressons aux univers, plats ou de type de Sitter,
déformés par une rétroaction comprenant des termes de radiation positifs, ainsi qu’un terme de
courbure de signe arbitraire, et une contribution en 1/a6 venant de la considération de modules
sur la couche de masse. On rappelle que tous les résultats exposés dans les section précédentes
restent valables en présence de tels modules.
On trouve ainsi, selon le signe de la courbure effective fournie par l’allumage de lignes de Wilson,
un univers en éternelle expansion dans le cas d’une courbure négative, avec une croissance du
facteur d’échelle linéaire dans le temps pour un univers assez vieux ; et un univers se terminant
dans un big crunch dans le cas d’une courbure positive. Le cas limite de courbure nulle fournit
un univers en expansion infinie, avec, pour un univers assez vieux, a(t) ∝

√
t. N’oublions pas

toutefois que le champ d’application de notre théorie ne concerne ni l’univers très jeune, ni
les univers trop vieux (auquel cas l’hypothèse sans échelle est mise en défaut et la masse du
gravitino est stabilisée). Dans le premier cas, on se rapproche en effet de la température de
Hagedorn, à laquelle il convient de prendre en compte les états d’enroulement non-nul. La
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physique au voisinage de cet espace est mal connue : une transition de phase peut avoir lieu
(ref.) ; de plus, au voisinage du point fixe de la T-dualité selon la direction temporelle β ↔ 1/β,
la notion même d’espace-temps est remise en cause, et il n’est plus question de parler d’effets
thermiques tels qu’on les envisage normalement. Cette singularité pourrait toutefois être évitée
dans une classe de modèles construits récemment, par l’allumage de flux géométriques (qui ne
sont autres que des compactifications de Scherk-Schwarz) [AKPT08].
Enfin, pour un univers vieux, la masse supersymétrique se stabilise à la valeur du Higgs ; de plus
la matière découple de la radiation, et on passe vers la phase d’expansion actuelle de l’univers,
dominée par la matière.

6.8 Extension à deux directions de brisure, et stabilisa-
tion du module de structure complexe

Dans cette section, nous allons présenter la généralisation de ce modèle développée dans
[CJKPT09]. Dans ce travail, nous considérons la brisure de supersymétrie selon deux directions
internes, de rayons respectifs R4 et R5. Mus par une analogie avec le cas d’un seul rayon, nous
définissons les modules T et U sous la forme

u = R0√
R4R5

, ReT1 ≡ T =
√
R4R5, ReU1 ≡ U = R5

R4
. (6.56)

Le module u sera fixé, comme précédemment, par la consistance de notre modèle ; le module T
aura une évolution cosmologique similaire à celle qu’avait R5 dans la section précédente. La
nouveauté réside donc dans l’apparition du module U . Nous allons voir qu’il ne participe pas à
la définition du module sans échelle et à l’évolution de l’échelle de brisure de supersymétrie ; par
contre, au contraire des modules spectateurs de la théorie, il apparaît dans le potentiel à une
boucle dans des termes qui ne sont pas, comme précédemment, exponentiellement petits.
Sa dynamique est donc déterminée par le potentiel à une boucle ; notre but sera de donner des
conditions sur les modèles construits permettant la stabilisation de U . En effet, s’il n’existe
pas d’état (méta-)stable pour U , on obtient un comportement de type runaway, dans lequel
U est attiré soit vers 0, soit vers +∞. Dans ces cas-là, un des deux rayons se replie à une
échelle de l’ordre de l’échelle de cordes, et on est ramenés au mécanisme développé dans la
section précédente : la hiérarchie entre le rayon participant à la brisure et les dimensions
repliées à l’échelle de cordes font que les états de Kaluza-Klein sur ces dernières dimensions sont
exponentiellement supprimés ; la brisure de supersymétrie est donc perdue et un des deux rayons
devient spectateur. La pertinence de cette généralisation nécessite donc la stabilisation de U .

Plus généralement, cette extension pose la problématique de la prise en compte de modules
supplémentaires dans le mécanisme de Super-Higgs. Nous avons vu précédemment que la
supersymétrie fait apparaître pour les modules ne rentrant pas en compte dans l’expression de
la masse du gravitino des termes de masse (positifs) de l’ordre de M3/2. Ces modules sont donc
automatiquement stabilisés. Toutefois, la situation se complique pour les modules participant à
la brisure : en effet, dans ce cas-là, le poids conforme λ est non-nul, et les termes de brisure
douce ne prennent pas nécessairement la forme d’un terme de masse. Par exemple, dans le cas
des trois modules S, T, U du mécanisme à un seul rayon, λ = −1 et le terme de brisure douce
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est identiquement nul. Il nous faut donc aller chercher des corrections issues de la théorie des
cordes pour procéder à une éventuelle stabilisation de ces modules supplémentaires.
Beaucoup d’aspects du modèle à deux rayons sont similaires au cas comportant une brisure selon
un seul rayon ; nous allons passer en revue les principales différences entre les deux mécanismes
mis en œuvre.

Un premier point vient de la structure de la supergravité sous-jacente. Le calcul du potentiel
effectif dans le repère d’Einstein montre que le potentiel effectif est de la forme

VEinstein(u, S, T ,U) = 1
(ReS)2T 2f(u,U) (6.57)

ce qui implique, à u et U fixés, qu’en notant s = ReS, la dégénérescence issue de la structure
sans échelle est levée pour la direction (sT ).
La fonction de Kähler pour les trois modules S, T , U conduit au lagrangien suivant :

L = 1
2R−

1
4

(
∂s

s

)2

− 1
4

(
∂T
T

)2

− 1
4

(
∂U
U

)2

− VEinstein(sT , u,U) (6.58)

En définissant
√

2φs,T ,U = log(s, T ,U), le terme cinétique devient, par rotation orthonormale
sur les φ

− 1
2(∂Φ)2 − 1

2(∂Φ′)2 − 1
2(∂φU) (6.59)

où

Φ = − 1√
2

(φs + φT ), Φ′ = 1√
2

(φs − φT ) (6.60)

La forme du potentiel effectif montre qu’il est consistant de geler Φ′, et φU sous réserve
de l’existence d’un extremum en U . La normalisation du terme cinétique de Φ l’identifie
naturellement au dilaton physique. On a e2Φ = 1/sT ∝M2

3/2, de sorte que, dans les notations
de la section précédente α = 1. La contrainte de consistance (6.48) entre les équations de
supergravité et les équations d’Einstein donne dans ce cas l’équation d’état ρ4 = 5 p4, qui
correspond sans surprise à un contenu radiatif dans un espace-temps à six dimensions. Là
encore, cette équation d’état, qui ne correspond pas à un contenu radiatif dans un univers
quadri-dimensionnel, sera “rectifiée” par la prise en compte du terme cinétique du dilaton.

Ce schéma étant fixé, nous construisons plusieurs modèles de supercordes, hétérotiques ou de
Type II, dans lesquels la supersymétrie est spontanément brisée par la température et les deux
rayons R4 et R5. Une subtilité nouvelle apparaît lorsque l’on considère la brisure de théories
de Type II : en effet,dans ce cas-là, la brisure peut être effectuée de manière asymétrique,
comme introduit dans la section 4.3. Bien sûr, la brisure par le temps euclidien reste une brisure
symétrique, et la considération de cette nouveauté ne concerne que les brisures selon les deux
rayons internes.
Les conditions de validité du modèle prennent la même forme que dans le cas à un rayon :
l’identification des équations d’Einstein et d’évolution du paramètre sans échelle impose, par
identification des termes quartiques, l’équation d’état ρ4(u,U) = 5 p4(u,U). De plus, on veut
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maintenant minimiser le potentiel selon la direction U : on cherche donc à imposer, simultanément
à l’équation d’état ci-dessus, les conditions ∂UV (u,U) = 0 et ∂2

UV (u,U) ≥ 0.

Théories hétérotiques

Commençons par le cas qui est l’extension directe de nos précédents travaux, c’est-à-dire le
cas d’une théorie hétérotique. Le choix du schéma de compactification de Scherk-Schwarz du
temps euclidien et de deux rayons internes R4 et R5 se réduit en fait au choix des deux charges
Q4, Q5 qui interviennent dans les R-charges a +Q4 et a +Q5 que l’on utilise pour la brisure de
supersymétrie. La définition de nV introduite en (6.37) se généralise aisément, et on considère
maintenant les sommes suivantes

n10 =
∑
s

(−)Q4 , n01 =
∑
s

(−)Q5 , n11 =
∑
s

(−)Q4+Q5 , (6.61)

qui pondèrent les contributions au potentiel correspondant aux termes où la supersymétrie est
brisée respectivement par la direction R4, la direction R5, et les deux directions simultanément.
Le coefficient g̃0 = 0, 1, qui indique si la température participe aussi à la brisure de supersymétrie,
se déduit de la condition g̃0 + g̃4 + g̃5 ≡ 1 mod. 2. Il est possible de mener en toute généralité
une étude des solutions cosmologiques pour des valeurs arbitraires de n10/nT , n01/nT , n11/nT ;
la prise en compte du fait que ces trois paramètres ne sont pas indépendants s’effectue en
paramétrisant l’espace des paramètres par trois réels positifs ξ1, ξ2, ξ3 appartenant au tétraèdre
ξ1 + ξ2 + ξ3 ≤ 1.
Il est assez ardu de mener une exploration méthodique de tout le tétraèdre. Un cas cependant
offre des solutions stables : celui où Q4 = Q5, ce qui équivaut à n10 = n01 et n11 = nT , ou encore
à ξ2 = ξ3 = 0. De nombreux détails sur la structure des solutions aux équations de consistance
et d’existence d’un minimum se trouvent dans [CJKPT09] ; nous citons juste dans ce manuscrit
qu’une solution cosmologique existe, stabilisant U au point self-dual U = 1, lorsque

− 0.215 . n01

nT
= n10

nT
< 0. (6.62)

Cette configuration est de plus réalisable en adoptant des R-charges utilisées dans [CJKPT08b] :
en choisissant la R-charge associée aux rayons R4 et R5 comme a + γ + γ′, où γ et γ′ sont
les hélicités des états associées aux représentations du groupe de jauge E8 × E ′8, on obtient
n01/nT = −1/63 ; en choisissant la R-charge a+H, où H est le paramètre de twist d’un orbifold
T 4/Z2, on obtient n01/nT = −1/127 ; ces deux quantités vérifient bien (6.62).

Théories de Type II

L’extension du mécanisme de Scherk-Schwarz aux théories de Type II permet de considérer
des brisures asymétriques. Une telle possibilité ne concerne évidemment pas la direction du
temps euclidien, le cocycle étant donné par l’expression (4.65). Par contre on peut considérer les
configurations symétrique/symétrique, symétrique/asymétrique, asymétrique/asymétrique pour
les deux rayons, le dernier cas se séparant encore en deux sous-cas selon que la brisure a lieu
du même côté pour les deux rayons, ou que le premier rayon brise selon le nombre fermionique
gauche et le second selon le nombre fermionique droit.
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R4 R5

Sym/Sym (−)(a+ā+Q4)m̃+(b+b̄+Q̃4)n+εm̃n (−)(a+ā+Q5)m̃+(b+b̄+Q̃5)n+εm̃n

Sym/Asym (−)(a+ā+Q4)m̃+(b+b̄+Q̃4)n+εm̃n (−)(a+Q5)m̃+(b+Q̃5)n+εm̃n

Asym/Asym (−)(a+Q4)m̃+(b+Q̃4)n+εm̃n (−)(a+Q5)m̃+(b+Q̃5)n+εm̃n

(−)(a+Q4)m̃+(b+Q̃4)n+εm̃n (−)(ā+Q5)m̃+(b̄+Q̃5)n+εm̃n

L’exploration des modèles de Type II est ensuite assez limitée : en effet, du fait de l’absence de
jauge non-triviale 5, les R-charges disponibles sont assez peu nombreuses. La seule configuration
dans laquelle il est possible de définir une R-charge différente des trois usuelles a, ā et a+ ā est
en fait d’effectuer un orbifold T 4/Z2 sur les quatre dimensions supplémentaires spectatrices, et
de coupler aux R-charges a+H, ā+H ou a+ ā+H. Nous cataloguons dans [CJKPT09] les
différents cas possibles ; nous trouvons en fait que, même dans le cas de l’existence d’une solution
critique aux équations de consistance et d’existence d’un extremum, la position d’équilibre
obtenue pour U est instable. Les solutions de Type II semblent donc inintéressantes d’un point
de vue cosmologique, en vue de la modélisation d’une phase thermique de l’univers ; par contre
elles sont prometteuses en vue de l’exploration de la physique au voisinage de la température de
Hagedorn, en utilisant des constructions d’orientifold.

5. En fait, l’inclusion de D-branes dans la théorie permettrait de faire apparaître une jauge non-abélienne ;
une telle possibilité serait intéressante à explorer dans des travaux futurs.
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Chapitre 7

Conclusion

Au cours de ce travail de thèse, nous nous sommes intéressés à deux champs d’application de la
théorie des cordes.

Le premier touche à la physique des particules et à la reproduction de propriétés caractéristiques
des théories de grande unification et du modèle standard. À l’aube du démarrage des expériences
du LHC au CERN, dont toute la communauté cordiste espère qu’elle validera les hypothèses
actuelles que sont le mécanisme de Higgs et la supersymétrie, il est plus que jamais nécessaire
d’explorer les possibilités offertes par la théorie des supercordes pour décrire la physique des
particules. En particulier, le processus de sélection du vide, c’est-à-dire des caractéristiques de
l’espace interne, est un problème ouvert. Une manière de progresser dans le compréhension de ce
mécanisme passe par une exploration méthodique de l’espace des vides dans lesquels la théorie
est définie sans ambiguïté. Nous avons mis en évidence le fait qu’il existe deux approches à
cette exploration, qui donnent en fait des résultats complémentaires. La première approche est
purement géométrique, et passe par la considération de familles d’espaces de Calabi-Yau ; dans
ce cas, les propriétés phénoménologiques correspondantes découlent de propriétés topologiques
et différentielles des surfaces de compactification. Les travaux en ce sens ont toutefois conclu
qu’il était nécessaire de sortir du cadre rigide des géométries Calabi-Yau, et de considérer des
compactifications avec torsion, ou encore des compactification asymétriques.
La deuxième approche, qui est celle que nous avons poursuivie, consiste à explorer une classe
de modèles basés sur des fermions libres. Il est montré que ces constructions reproduisent,
entre autres, des orbifolds de type Z2 ou Z2 × Z2 ; la résolution de ces orbifolds fournit en
fait des espaces de Calabi-Yau. La plupart des propriétés intéressantes d’un point de vue
phénoménologique proviennent de la forme des secteurs twistés de la théorie, de sorte qu’elles
sont invariantes sous le processus de régularisation des singularités : la construction fermionique
reproduit ainsi les aspects de compactification de type Calabi-Yau, et donne de plus accès
à des schémas de “compactifications non-géométriques”. Il est de plus en plus clair que les
compactifications de type orbifold sont les configurations privilégiées en vue de reproduire les
caractéristiques du modèle standard (voir par exemple [NRSRV08] pour une revue récente). Le
mécanisme de Scherk-Schwarz se traduit ici en termes de flux géométriques, et donne accès à
des modèles plus généraux que les Calabi-Yau.
Au sein de cette classe de vides de la théorie, nous avons montré l’existence d’une symétrie,
analogue à la symétrie miroir, qui échange le nombre de représentations vectorielles et le nombre
de représentations spinorielles du groupe de grande unification SO(10) présentes dans le spectre.
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Nous avons de plus explicité la transformation à effectuer sur un modèle donné pour obtenir
un modèle dual. Contrairement à la symétrie miroir, qui relie des compactifications (2, 2), la
symétrie spineur-vecteur s’étend aux compactifications (2, 0) ; les modèles (2, 2) sont auto-duaux.
En plus de faciliter la classification, la mise en évidence d’une telle structure de l’espace des vides
nous permet de suggérer des pistes de réflexion pour une hypothétique loi de sélection des vides :
des configurations auto-duales pourraient par exemple se voir privilégiées par rapport à d’autres
vides dissymétriques. De manière générale, il apparaît clair que toute étude du landscape sera
facilitée par l’exploitation des symétries de celui-ci, de la même manière que l’exploitation des
symétries est et a été au cœur de tous les progrès de la physique théorique du 20ème siècle.

Dans la seconde thématique de notre travail, nous avons cette fois appliqué le mécanisme de
brisure spontanée de supersymétrie à la Scherk-Schwarz à l’étude de solutions cosmologiques
en présence d’une température non-nulle et d’une échelle de brisure de supersymétrie. Dans
un régime protégé à la fois de singularités de type Hagedorn et de l’apparition dans la théorie
d’échelles privilégiées telles que l’échelle de brisure électro-faible, nous avons montré que
l’évolution cosmologique était régie par une théorie de supergravité sans échelle. Sous certaines
conditions, le rapport entre la température et la masse de brisure de supersymétrie est fixée, et
obtient un univers dominé par la radiation, avec des corrections possibles prenant la forme d’une
courbure ou d’une constante cosmologique effective. Le module sans échelle est cosmologique
et se stabilise finalement à l’échelle électro-faible ; les autres modules sont spectateurs, et sont
automatiquement stabilisés par des termes de brisure douce. Étendant ce scénario au cas où
plusieurs modules participant à la brisure de supersymétrie, nous avons de plus montré qu’il est
possible de stabiliser dynamiquement certains modules de structure complexe non spectateurs.
Notre travail n’a par contre pas pris en compte les premiers instants de l’univers, où la notion
de température n’a de toute façon plus cours ; dans ce régime, des travaux récents mettent à
profit le mécanisme de brisure de supersymétrie à la Scherk-Schwarz dans le cadre d’orientifolds
de théories de Type II pour proposer une résolution de la singularité de Hagedorn.
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Annexe A

Quelques identités utiles sur les
fonctions ϑ

En théorie des supercordes, les fonctions ϑ font partie des blocs élémentaires de construction
des fonctions de partition. Elles interviennent dans la plupart des caractères des algèbres de Lie
qui sous-tendent les différentes théories.
On définit

ϑ [ab ] (v|τ) =
∑
n∈Z

eiπτ(n−a/2)2
eiπ(2v−b)(n−a/2). (A.1)

Quand les variables ne sont pas explicitement notées dans les formules, on considère v = 0. On
note q = e2iπτ .
Les transformations modulaires agissent sur les fonctions ϑ et sur la fonction de Dedekind η
comme

ϑ [ab ] (v|τ + 1) = exp
(
−iπ4 a(a− 2)

)
ϑ
[

a
a+b−1

]
(v|τ) (A.2)

ϑ [ab ] (v| − 1/τ) =
√
−iτ exp

(
iπ

2 ab+ iπτv2
)
ϑ
[
b
−a

]
(v|τ) (A.3)

η(τ + 1) = η(τ); η(−1/τ) =
√
−iτ η(τ) (A.4)

Suivant les conventions usuelles, on note

ϑ1 = ϑ
[

1
1

]
; ϑ2 = ϑ

[
1
0

]
; ϑ3 = ϑ

[
0
0

]
; ϑ4 = ϑ

[
0
1

]
. (A.5)

et on a les propriétés de péridicité suivantes sur les indices (a, b)

ϑ
[
a+2n
b+2m

]
(v|τ) = eiπam ϑ [ab ] (v|τ) (A.6)

ϑ
[
−a
−b

]
(v|τ) = ϑ [ab ] (−v|τ) (A.7)

Nous commençons par quelques identités utiles. Les représentations des fonctions ϑ sous forme
de produit sont donnée par :
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ϑ1(v|τ) = 2 q 1
8 sin(πv)

∞∏
n=1

(1− qn)(1− qn e2πiv)(1− qn e−2πiv) (A.8)

ϑ2(v|τ) = 2 q 1
8 cos(πv)

∞∏
n=1

(1− qn)(1 + qn e2πiv)(1 + qn e−2πiv) (A.9)

ϑ3(v|τ) =
∞∏
n=1

(1− qn)(1 + qn−1/2 e2πiv)(1 + qn−1/2 e−2πiv) (A.10)

ϑ4(v|τ) =
∞∏
n=1

(1− qn)(1− qn−1/2 e2πiv)(1− qn−1/2 e−2πiv) (A.11)

Elles impliquent notamment, pour v = 0, les développements suivants à q petit, utilisés dans
[CJKPT08b] :

ϑ2 ∼ 2 q1/8(1 + q), ϑ3 ∼ 1 + 2 q1/2, ϑ4 ∼ 1− 2 q1/2 (A.12)

On note que l’énergie du vide dans la fonction ϑ2 correspond bien à deux fermions réels pris en
conditions au bord de Ramond, h = 1/8.
On a également

ϑ2ϑ3ϑ4 = 2 η3. (A.13)

ce qui se traduit dans l’approximation sans masse par

ϑ2 ∼ 2η3. (A.14)

Les fonctions ϑ satisfont un grand nombre d’identités remarquables. La fameuse identité de
Jacobi, que nous avons déjà évoquée, est donnée par

ϑ4
3 − ϑ4

4 − ϑ4
2 = 0. (A.15)

Elle se généralise en présence d’un paramètre affine comme

ϑ4
3(v|τ)− ϑ4

4(v|τ) = ϑ4
2(v|τ)− ϑ4

1(v|τ). (A.16)

et reflète la propriété de trialité de SO(8). Après projection GSO, c’est également cette égalité
qui assure la présence d’autant d’états bosoniques que d’états fermioniques à chaque niveau de
masse des théories hétérotiques ou de Type II. Cette égalité admet deux généralisations, une de
Type IIB, dont nous faisons un usage abondant tout au long de la section 6 :

1
2

1∑
a,b=0

(−)a+b+ab
4∏
i=1

ϑ
[
a+hi
b+gi

]
(vi|τ) = −

4∏
i=1

ϑ
[

1−hi
1−gi

]
(v′i|τ) (A.17)

et une de Type IIA

1
2

1∑
a,b=0

(−)a+b
4∏
i=1

ϑ
[
a+hi
b+gi

]
(vi|τ) = −

4∏
i=1

ϑ
[

1−hi
1−gi

]
(v′i|τ) +

4∏
i=1

ϑ
[

1+hi
1+gi

]
(vi|τ). (A.18)
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Dans ces deux dernières formules, on suppose que ∑i hi = ∑
i gi = 0 et on a

v′1 = 1
2(−v1 + v2 + v3 + v4); v′2 = 1

2(+v1 − v2 + v3 + v4) (A.19)

v′3 = 1
2(v1 + v2 − v3 + v4); v′4 = 1

2(+v1 + v2 + v3 − v4) (A.20)
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Annexe B

Algèbre superconforme N = 2 et flot
spectral

La réalisation de la supersymétrie sur la feuille d’univers d’une théorie des cordes est donnée
par la structure de l’algèbre superconforme N = 1 (algèbre de super-Virasoro). Toutefois, pour
des raisons phénoménologiques évidentes, on cherche maintenant à réaliser des supersymétries
d’espace-temps. En fait, ceci implique la présence d’une algèbre superconforme N = 2. Nous
allons dans un premier temps d’écrire la structure de l’algèbre superconforme N = 2, puis dans
un second temps la réaliser explicitement dans une théorie comprenant des degrés de liberté
bosoniques et fermioniques.
La présence de N = 1 SUSY d’espace temps implique la présence de N = 2 superconforme sur
la feuille d’univers. La considération deans le chapitre 5 de l’algèbre superconforme présente
du côté non-supersymétrique des théories hétérotiques montre toutefois que la réciproque est
fausse ; il est néanmoins possible de traduire les champs chiraux de l’algèbre superconforme en
termes de champs de spin.
On commence par définir la théorie conforme qui contient le tenseur énergie-impulsion T (z).
Son OPE est de la forme

T (z)T (w) = c

2(z − w)4 + 2T (w)
(z − w)2 + ∂T (w)

z − w
+ reg. (B.1)

La théorie conforme est alors complétée par la donnée des champs primaires φ, de poids conforme
hφ, tels que

T (z)φ(w) = hφ(w)
(z − w)2 + ∂φ(w)

z − w
+ reg. (B.2)

et des modules de Verma correspondants.
Le passage à la théorie superconforme N = 2 se fait en introduisant deux super-partenaires
G±(z) et un courant U(1) J(z) tels que les OPE suivantes soient réalisées :

T (z)G±(w) = 3/2
(z − w)2G

±(w) + ∂G±(w)
z − w

+ reg. (B.3)

T (z)J(w) = J(w)
(z − w)2 + ∂J(w)

z − w
+ reg. (B.4)
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G+(z)G−(w) = 2c/3
(z − w)3 + 2 J(w)

(z − w)2 + 2T (w) + ∂J(w)
z − w

+ reg. (B.5)

J(z)G±(w) = ±G
±(w)
z − w

+ reg. (B.6)

J(z)J(w) = c/3
(z − w)2 + reg. (B.7)

Avant de voir les implications d’une telle structure sur la théorie, nous allons la réaliser
effectivement en terme d’un boson complexe libre X(z, z̄), d’un fermion complexe holomorphe
ψ et d’un fermion complexe antiholomorphe λ. On note alors † l’opération de conjugaison
complexe : si ψ(z) = 1√

2(ψ1(z) + iψ2(z)) alors ψ† = 1√
2(ψ1(z)− iψ2(z)). Cette construction est

tirée de [Pol98b].
Nous considérons alors l’action usuelle :

S =
∫
d2z (∂X∂̄X† + ψ†∂̄ψ + ψ∂̄ψ† + λ†∂̄λ+ λ∂̄λ†) (B.8)

Alors, les courants

T (z) = −∂X∂X† − 1
2ψ
†∂ψ − 1

2ψ∂ψ
† (B.9)

G+(z) = i
√

2ψ∂X† , G−(z) = i
√

2ψ†∂X (B.10)

J(z) = −ψ†ψ (B.11)
forment une théorie superconforme N = 2 du côté holomorphe ; de même la partie anti-
holomorphe est obtenue en effectuant ∂ → ∂̄, ψ → λ.

Flot spectral

Les courants de l’algèbre superconforme admettent les développements en modes suivants :

T (z) =
∑
n

Ln
zn+2 (B.12)

J(z) =
∑
n

Jn
zn+1 (B.13)

G±(z) =
∑
n

G±n±a
zn+3/2±a (B.14)

Les conditions au bord des supercourants G± dépendent d’un paramètre a ∈ [0, 1[. Il existe
alors pour chaque a une algèbre différente. Mathématiquement, on montre en fait que toutes
les algèbres sont isomorphes. Il existe donc une bijection unitaire Uη envoyant un vecteur |fη〉
membre d’une représentation de l’algèbre superconforme prise en a = η sur un vecteur |f〉
correspondant à a = 0. Cet opérateur est dit de flot spectral. En pratique, deux valeurs de a nous
intéressent : a = 0, qui donne le secteur de Neveu-Schwarz ; et a = 1/2, qui donne le secteur de
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Ramond de la théorie. On voit alors que l’opérateur de flot spectral U1/2 est un bon candidat de
générateur de supersymétrie d’espace-temps. Pour mieux s’en convaincre, nous allons examiner
le cas de la théorie à charge centrale c = 3, donnée par les opérateurs (B.9), (B.10), (B.11). Il
est possible de bosoniser le courant J de (B.11) en J(z) ≡ i ∂φ ; alors on a U1/2 ≡ e−iφ/2. Mais
d’après la définition de φ, on voit que ce dernier n’est autre que la version bosonisée du fermion
complexe ψ ; de sorte que U1/2 s’identifie à un champ de spin, et relie bien les vides de Ramond
du fermion ψ et les vides de Neveu-Schwarz.

Toutefois, le flot spectral n’engendre pas toujours la supersymétrie : en effet, si les fermions
pris en conditions de Ramond ne sont pas d’espace-temps, les secteurs a = 0 et a = 1/2 sont
tous deux bosoniques. Nous allons voir quelles sont dans ce cas les conséquences de la structure
superconforme.

N = 2 superconforme en théorie hétérotique

Nous allons ici construire la théorie superconforme N = 2 présente du côté bosonique de la
théorie des cordes hétérotiques. Les degrés de liberté physiques de cette théorie ont une charge
centrale totale c = 24. Afin de faire le lien avec le chapitre 5, nous notons les degrés de liberté
de la manière suivante :

• 4 bosons complexes X 1...4. Dans le cadre de la construction fermionique, les bosons X 1,2,3 sont
équivalents aux fermions libres (ȳω̄)1...6 ; X 4 est le boson complexe transverse d’espace temps.
• 4 bosons complexes H1...4. Dans le cadre de la construction fermionique, ces bosons sont

équivalents aux fermions libres φ̄1...8.
• 8 fermions complexes, notés sans surprise ψ̄1...5, η̄1,2,3.

L’algèbre superconforme est réalisée par les courants :

T (z) = −
4∑
i=1

∂X∂X † −
4∑
i=1

∂H∂H† − 1
2

[ 5∑
i=1

[
(ψi)†∂ψi + ψi∂(ψi)†

]
+

3∑
i=1

[
(ηi)†∂ηi + ηi∂(ηi)†

]]
;

(B.15)

G+(z) = i
√

2
[ 3∑
i=1

ηi∂(X i)† + ψ5∂(X 1)† +
4∑
i=1

ψi∂(Hi)†
]

; (B.16)

G−(z) = i
√

2
[ 3∑
i=1

(ηi)†∂X i + (ψ5)†∂X 1 +
4∑
i=1

(ψi)†∂Hi

]
; (B.17)

J(z) = −
5∑
i=1

(ψi)†ψi −
3∑
i=1

(ηi)†ηi. (B.18)

On voit notamment dans la dernière équation que le courant J n’est autre que le courant
d’hélicité associé aux fermions ψ̄1...5, η̄1,2,3.
On voit qu’il est possible de se ramener au cas c = 3 en découpant cette algèbre superconforme
en huit parties c = 3 indépendantes (les OPE entre des éléments de deux parties distinctes
étant régulières). De manière similaire, les états physiques vont prendre la forme de produits

137



tensoriels, et ainsi l’opérateur de flot spectral Ua1...a8 , pour a1 = · · · = a8 = 1/2, va prendre
la forme d’un champ de spin pour lequel les fermions ψ1...5, η1...3 sont pris en conditions de
Ramond. Cet opérateur est analogue à un opérateur de supersymétrie ; les fermions ψ, η n’étant
pas d’espace-temps, on ne construit toutefois pas une supersymétrie d’espace-temps. Par contre,
on relie bien des états de Ramond à des états de Neveu-Schwarz.

Pour faire le lien avec le chapitre 5, nous allons voir dans ce contexte comment apparaît la
brisure de cette algèbre superconforme. On suppose donc qu’il existe un boson interne X i qui
couple à la structure de spin des fermions ψ, η. Alors, si l’on considère le vertex de charge
superconforme qui réalise le flot spectral, on voit que les conditions de Ramond des fermions
ψ, η implique que le nombre d’enroulement du mode zéro de X i est demi-entier, et donc que le
vertex médiateur du flot spectral est massif. Ainsi, cette symétrie est spontanément brisée.
Les vertex de E6 qui ne faisant pas partie de sa sous-algèbre SO(10)×U(1) s’expriment comme
des champs de spin ; ils sont les partenaires superconformes des vertex de SO(10)× U(1). Leur
masse est donc levée par la brisure superconforme, et le groupe de jauge est brisé.

138



Annexe C

Publication no 1 :
Thermal/quantum effects and induced
superstring cosmologies

139



ar
X

iv
:0

71
0.

38
95

v3
  [

he
p-

th
] 

 2
5 

Ja
n 

20
08

LPTENS–07/50, CPHT–RR085.0707, October 2007

Thermal/quantum effects and

induced superstring cosmologies∗

Tristan Catelin-Jullien1, Costas Kounnas1
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1 Introduction

It is important to develop a string theoretic framework for studying cosmology. The ultimate

goal of this task is to determine whether string theory can describe basic features of our

Universe. Despite considerable effort towards this direction over the last few years (see for

example [1] – [10]), still very little is known about the dynamics of string theory in time-

dependent, cosmological settings. The purpose of this work is to provide a new class of

non-trivial string theory cosmological solutions, where some of the difficult issues can be

explored and analyzed concretely.

At the classical string level, it seems difficult to obtain exact cosmological solutions [8].

Indeed, after extensive studies in the framework of superstring compactifications (with or

without fluxes), the obtained results appear to be unsuitable for cosmology. In most cases,

the classical ground states correspond to static Anti-de Sitter or flat backgrounds but not to

cosmological ones. The same situation appears to be true in the effective supergravity theo-

ries. Naively, the results obtained in this direction lead to the conclusion that cosmological

ground states are unlikely to be found in superstring theory.

From our viewpoint this conclusion cannot be correct for two reasons:

• The first follows from the fact that already exact (to all orders in α′) cosmological

solutions exist, which are described by a two dimensional worldsheet conformal field theory

based on a gauged Wess-Zumino-Witten model at negative level −|k|: SL(2,R)−|k|
U(1)

×M , [2–4].

• The second is that quantum and thermal corrections are neglected in the classical

string/supergravity regime.

The first class of stringy cosmological models was studied recently in [5], where it was shown

how to define a normalizable wave-function for this class of backgrounds, realizing the Hartle-

Hawking no-boundary proposal [11] in string theory. Explicit calculable examples were given

for small values of the level |k|. As it was shown in [5], these models are intrinsically thermal

with a temperature below but still close to the Hagedorn temperature. The disadvantage

of small level |k|, however, is the absence of a semi-classical limit with |k| arbitrarily large,

which prevents us from obtaining a clean geometrical picture and studying issues such as

back-reaction and particle production in a straightforward way.

Another direction consists of studying the “quantum and thermal cosmological solutions,”
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which are generated dynamically at the quantum level of string theory [6,12]. Although this

study looks to be hopeless and out of any systematic control, it turns out that in certain

cases the quantum and thermal corrections are under control thanks to the special structure

of the underlying effective supergravity theory in its spontaneously broken supersymmetric

phase. An effective field theory study has already been initiated in [6,12]. (See also [13,14].)

In order to see how cosmological solutions arise naturally in this context, consider the case

of a supersymmetric flat string background. At finite temperature the thermal fluctuations

produce a non-zero energy density that is calculable perturbatively at the full string level.

The back-reaction on the space-time metric and on certain of the moduli fields gives rise to

a specific cosmological evolution. For temperatures below the Hagedorn temperature, the

evolution of the universe is known to be radiation dominated. (See for instance [15, 16] for

some earlier work in this case and [16] for a review on string gas cosmology.)

More interesting cases are those where space-time supersymmetry is spontaneously broken

at the string level either by geometrical [17] or non-geometrical fluxes . In the case where the

geometrical fluxes are generated via freely acting orbifolds [18] – [23], the stringy quantum

corrections are under control in a very similar way as the thermal ones. The back-reaction

of the quantum and thermal corrections on the space-time metric and the moduli fields

results in deferent kinds of cosmologies depending on the initial amount of supersymmetry

(N = 4, N = 2, N = 1).

In this work we restrict attention to four-dimensional backgrounds with initial N = 4 or

N = 2 space-time supersymmetry, obtained by toroidal compactification of the heterotic

superstring on T 6 and T 6/Z2-orbifolds. The spontaneous breaking of supersymmetry is im-

plemented via freely acting orbifolds (as in [18] – [23]). The quantum and thermal corrections

are determined simultaneously by considering the Euclidean version of the model where all

coordinates are compactified: S1
T × T 3 (for the four-dimensional space-time part) ×M6 (for

the internal manifold). Apart from being interesting in their own right, these examples may

give us useful hinds on how to handle the phenomenologically more relevant N = 1 cases.

The N = 1 cases will be studied elsewhere [31].

The thermal corrections are implemented by introducing a coupling of the space-time fermion

number QF to the string momentum and winding numbers associated to the Euclidean time

cycle S1
T . The breaking of supersymmetry is generated by a similar coupling of an internal
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R-symmetry charge QR to the momentum and winding numbers associated to an internal

spatial cycle S1
M , e.g. the X5 coordinate cycle.

We stress here, that the thermal and supersymmetry breaking couplings correspond to string

theoretic generalizations of Scherk-Schwarz compactifications. Two very special mass scales

appear both associated with the breaking of supersymmetry. These are the temperature

scale T ∼ 1/(2πR0) and the supersymmetry breaking scale M ∼ 1/(2πR5), with R0 and R5

the radii of the Euclidean time cycle, S1
T , and of the internal spatial cycle, S1

M , respectively.

The initially degenerate mass levels of bosons and fermions split by an amount proportional

to T or M , according to the charges QF and QR. This mass splitting is the signal of su-

persymmetry breaking and gives rise to a non-trivial free energy density, which incorporates

simultaneously the thermal corrections and quantum corrections due to the supersymmetry

breaking boundary conditions along the spatial cycle S1
M .

At weak coupling, the free energy density can be obtained from the one-loop Euclidean

string partition function [20] – [22]. The perturbative string amplitudes are free of the usual

ultraviolet ambiguities that plague a field theoretic approach towards quantum gravity and

cosmology. For large enough R0, R5, the Euclidean system is also free of tachyons – the

presence of tachyons would correspond to infrared instabilities, driving the system towards

a phase transition [21] – [23]. Therefore, the corresponding energy density and pressure can

be determined unambiguously, and we can use them as sources in Einstein’s equations to

obtain non-trivial cosmological solutions. This perturbative approach breaks down near the

initial space-like singularity. We speculate whether this breakdown of perturbation theory

can be associated with an early universe phase transition.

The paper is organized as follows. Section 2 is mainly a review, where we also fix most of our

notations and conventions. We first consider the four-dimensional heterotic string models at

finite temperature. We obtain the one-loop thermal partition function at the full string level,

and then we discuss the effective field theory limit at large radius R0. We also review the

analogous computation of the one loop string partition function at zero temperature and in

the case where Susy-breaking boundary conditions are placed along the internal spatial cycle

S1
M , [18] – [23]. In the large radius limit, the Einstein frame effective potential is proportional

to the fourth power of the gravitino mass scale, and it can be positive or negative depending

on the choice of the Susy-breaking operator QR.
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In section 3, we consider the case where thermal and quantum corrections due to the su-

persymmetry breaking are present simultaneously. For the simplest choice QR = QF , the

corresponding one-loop string partition function is invariant under the T ↔ M exchange,

manifesting the underlying temperature/gravitino mass scale duality of the models. This

duality is broken by the other allowable choices for the Susy-breaking operator QR, which

we classify for both the N = 4 and the N = 2 orbifold cases.

In the large radii R0, R5 limit, the pressure consists of two pieces: the purely thermal part

which scales as n∗
TT 4, with the coefficient n∗

T being the number of all massless boson/fermion

pairs in the initially supersymmetric theory, and another potential-like piece which scales

as n∗
V M4 and with the coefficient n∗

V being positive or negative depending on the choice of

the operator QR. In both pieces, the rest of the dependence on the scales T and M can be

expressed neatly in terms of non-holomorphic Eisenstein series of order 5/2 whose variable

is the complex structure-like ratio M/T . In addition, we incorporate the effects of small,

continuous Wilson line deformations in our computation. Wilson lines along any of the

internal spatial cycles, other than S1
M , introduce new mass scales, and pieces proportional

to ∼ T 2 and ∼ M2 arise in the effective thermodynamic quantities.

In section 4 we present our ansatz for the induced cosmological solutions. These are homo-

geneous and isotropic cosmologies for which the Susy-breaking scales T and M as well as the

inverse of the scale factor 1/a evolve the same way in time, and so the ratio of any two of

these quantities is constant. The form of this ansatz is dictated by the scaling properties of

the effective energy density and pressure. The compatibility of the gravitational field equa-

tions with the equation of motion of the scalar modulus controlling the size of the gravitino

mass scale fixes the ratio M/T . By solving the compatibility equations numerically, we find

that in the absence of Wilson lines along S1
M , non-trivial four dimensional solutions exist

when n∗
V is negative and the ratio |n∗

V |/n∗T is small enough. These conditions are satisfied

by various models we describe explicitly in the paper. When we include Wilson lines along

S1
M , the value of the ratio M/T for some of the solutions can be large or small, and so we

can have models with a hierarchy for the scales M and T .

Having solved the compatibility equations, the time-dependence of the system is governed

solely by the familiar Friedmann-Hubble equation. There is a radiation term, cr/a
4, whose

coefficient cr is positive in our examples. An effective curvature term, −k̂/a2, can be gen-
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erated by turning on Wilson line deformations. The sign of k̂ can be positive or negative

depending on the model. When we turn on the kinetic terms of some of the extra flat moduli,

we generate an additional term that scales as cm/a6 (with cm positive).

In section 5, we solve the Friedmann-Hubble equation for the various possible cases, and we

elaborate on the properties of the cosmological solutions:

•When cr > 0, we have standard hot big bang cosmologies with an intermediate radiation

dominated era. The late time behavior is governed by the spatial curvature of the models.

• We also consider a priori possible exotic models characterized by cr < 0. A big bang

occurs when cm > 0. The cosmological evolution always ends with a big crunch when k̂ ≥ 0.

The case k̂ < 0 however is more interesting. It involves either a first or second order phase

transition between the big bang cosmology and a linearly expanding universe. The first case

corresponds to a tunneling effect involving a gravitational instanton, while the transition is

smooth in the second case. If the first order transition does not occur, the universe ends in

a big crunch.

We finish with our conclusions and directions for future research.

2 Thermal and quantum corrections in heterotic back-

grounds

Our starting point is the class of four dimensional string backgrounds obtained by toroidal

compactification of the heterotic string on T 6 and T 6/Z2 orbifolds. Initially the amount

of space-time supersymmetry is N4 = 4 for the case of compactification on the T 6 torus

and N4 = 2 for the orbifold compactifications, and the four dimensional space-time metric

is flat. Space-time supersymmetry is then spontaneously broken by introducing Scherk-

Schwarz boundary conditions on an internal spatial cycle and/or by thermal corrections.

Due to the supersymmetry breaking, the one-loop string partition function is non-vanishing,

giving rise to an effective potential. Our aim is to determine the back-reaction to the initially

flat metric and moduli fields.

At the one-loop level, the four dimensional string frame effective action is given by

S =

∫
d4x
√
− det g

(
e−2φ(

1

2
R + 2∂µφ∂µφ + · · ·)− VString

)
, (2.1)

where φ is the 4d dilaton field and the ellipses stand for the kinetic terms of other moduli
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fields (to be specified later). At zero temperature, the effective potential VString can be

obtained from the one-loop Euclidean string partition function as follows:

Z

V4

= −VString , (2.2)

with V4 the 4d Euclidean volume. The absence of a dilaton factor multiplying the potential

term in the action is due to the fact that this arises at the one loop level.

At finite temperature, the one-loop Euclidean partition function determines the free energy

density and pressure to this order

Z

V4

= −FString = PString. (2.3)

The subscript indicates that these densities are defined with respect to the string frame met-

ric. The relevant Euclidean amplitude incorporates simultaneously the thermal corrections

and quantum corrections which arise from the spontaneous breaking of supersymmetry and

which are present even at zero temperature.

In order to determine the back-reaction of the (thermal and/or) quantum corrections, it is

convenient to work in the Einstein frame where there is no mixing between the metric and

the dilaton kinetic terms. We define as usual the complex field S,

S = e−2φ + iχ, (2.4)

where χ is the axion field. Then after the Einstein rescaling of the metric, the one loop

effective action becomes:

S =

∫
d4x
√
− det g

[
1

2
R − gµν KIJ̄ ∂µΦI∂νΦ̄J̄ −

1

s2
VString(ΦI , Φ̄Ī)

]
, (2.5)

where Ki̄ is the metric on the scalar field manifold {ΦI}, which is parameterized by various

compactification moduli including the field S. This manifold includes also the main moduli

fields TI , UI , I = 1, 2, 3, which are the volume and complex structure moduli of the three

internal 2-cycles respectively. We notice that in the Einstein frame the effective potential,

VString, is rescaled by a factor 1/s2, where s = Re(S) = e−2φ. Taking this rescaling into

account, we have

VEin =
1

s2
VString. (2.6)

This relation will be crucial for our work later on. (We will always work in gravitational

mass units, with MG = 1√
8πGN

= 2.4× 1018 GeV).
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Keeping only the main moduli fields {S, TI , UI}, their kinetic terms are determined in terms

of the Kälher potential K [24, 25]:

K = − log (S + S̄)−
∑

I

log (TI + T̄I)−
∑

I

log (UI + ŪI) (2.7)

with KIJ̄ = ∂I∂J̄K. The classical superpotential depends on the way supersymmetry is

broken. Generically string backgrounds with spontaneously broken supersymmetry are flat

at the classical level due to the no-scale structure of the effective supergravity theory [25].

Once the thermal and/or quantum corrections are taken into account, we obtain in some

cases interesting cosmological solutions.

2.1 Heterotic supersymmetric backgrounds at finite temperature

In order to fix our notations and conventions, we first consider the case of an exact supersym-

metric background at finite temperature [21] – [23]. For definiteness we choose the heterotic

string with maximal space-time supersymmetry (N4 = 4). All nine spatial directions as well

as the Euclidean time are compactified on a ten dimensional torus. At zero temperature,

the Euclidean string partition function is zero due to space-time supersymmetry. At finite

temperature however the result is a well defined finite quantity. Indeed, at genus one the

string partition function is given by:

Z =

∮

F

dτdτ̄

4Imτ

1

2

∑

a,b

(−)a+b+ab θ [ab ]
4 Γ(10,26) [ab ]

η(τ)12 η̄(τ̄ )24
, (2.8)

where Γ(10,26) [ab ] is a shifted Narain lattice (which we specify more precisely below). The

non-vanishing of the partition function is due to the non-trivial coupling of the lattice to

the spin structures (a, b). Here, the argument a is zero for space-time bosons and one for

space-time fermions. The spin/statistics connection and modular invariance require that the

unshifted Γ(1,1) sub-lattice of the Euclidean time cycle

Γ(1,1) ≡
∑

m,n

R0(Imτ)−
1
2 e−πR

2
0
|m+nτ |2

Imτ (2.9)

be replaced as follows:

Γ(1,1) −→
∑

m,n

R0(Imτ)−
1
2 e−πR

2
0
|m+nτ |2

Imτ eiπ(ma+nb+mn) . (2.10)
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Redefining

m → 2m + g, n → 2n + h, (2.11)

where g, h are integers defined modulo 2, and introducing the notation Γ(1,1)

[
h
g

]
for a shifted

lattice,

Γ(1,1)

[
h
g

]
=
∑

m,n

R0(Imτ)−
1
2 e−πR

2
0
|2m+g+(2n+h)τ |2

Imτ , (2.12)

the thermal partition function takes the form:

Z =

∮

F

dτdτ̄

4Imτ

1

2

∑

(a,b),(h,g)

(−)ga+hb+hg (−)a+b+ab θ [ab ]
4 Γ(9,25)Γ(1,1)

[
h
g

]

η(τ)12 η̄(τ̄ )24
. (2.13)

Defining â = a− h and b̂ = b− g and using the Jacobi identity

1

2

∑

(â,b̂)

(−)â+b̂+âb̂ θ
[
â+h

b̂+g

]4
= −θ

[
1+h
1+g

]4
, (2.14)

we obtain

Z =

∮

F

dτdτ̄

4Imτ

∑

(h,g)

− (−)g+h θ
[
1+h
1+g

]4
Γ(1,1)

[
h
g

] Γ(9,25)

η(τ)12 η̄(τ̄)24
. (2.15)

The temperature in string frame is given by TString = 1/(2πR0).

Since our aim is the study of induced cosmological solutions in 3+1 dimensions, we consider

the case for which the radii of three spatial directions are very large: Rx = Ry = Rz ≡ R ≫ 1.

In this case the three dimensional spatial volume factorizes

Γ(3,3)
∼= R3 (Imτ )−

3
2 =

V3

(2π)3
(Imτ )−

3
2 . (2.16)

Using the expression for the Γ(1,1)

[
h
g

]
shifted lattice we obtain:

Z = − (2πR0)V3 FString = V4 PString

= − V4

(2π)4

∮

F

dτdτ̄

4Imτ 3

∑

(n,m),(h,g)

(−)g+h e−πR
2
0
|2m+g+(2n+h)τ |2

Imτ θ
[
1+h
1+g

]4 Γ(6,22)

η(τ)12 η̄(τ̄)24
, (2.17)

where V4 = (2πR0)V3 is the four dimensional space-time volume, FString the free energy

density and PString the pressure in string frame.

Before we proceed further, we make some comments:

• The sector (h, g) = (0, 0) gives zero contribution. This is due to the fact that we started

with a supersymmetric background.
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• In the odd winding sector, h = 1, the partition function diverges when R0 is between

the Hagedorn radius RH = (
√

2 + 1)/2 and its dual 1/RH : 1
RH

< R0 < RH . The divergence

is due to a winding state that is tachyonic when R0 takes values in this range, and it signals

a phase transition around the Hagedorn temperature [21] – [23]. In this paper we study

the regime R0 > RH , where there is no tachyon and the winding sector is exponentially

suppressed. The high temperature regime and the cosmological consequences of the phase

transition will be examined in future work [32].

• When R0 ≫ 1, the contributions of the oscillator states are also exponentially sup-

pressed, provided that the moduli parameterizing the internal Γ(6,22) lattice are of order

unity.

2.2 The effective field theory in the large R0 limit

As we already mentioned, the h = 1 sector of the theory gives exponentially suppressed con-

tributions of order O(e−R
2
0). Also, the (h, g) = (0, 0) sector vanishes due to supersymmetry.

Thus for large R0, only the sector (h, g) = (0, 1) contributes significantly. Using the identity:

Γ(1,1)(R0) = Γ(1,1)

[
0
0

]
+ Γ(1,1)

[
0
1

]
+ Γ(1,1)

[
1
0

]
+ Γ(1,1)

[
1
1

]
(2.18)

and neglecting the h = 1 sectors, we may replace

Γ(1,1)

[
0
1

]
→ Γ(1,1)(R0)− Γ(1,1)

[
0
0

]
= Γ(1,1)(R0)−

1

2
Γ(1,1)(2R0) (2.19)

in the integral expression for Z. For each lattice term we decompose the contribution in

modular orbits: (m, n) = (0, 0) and (m, n) 6= (0, 0). For (m, n) 6= (0, 0), the integration over

the fundamental domain is equivalent with the integration over the whole strip but with

n = 0. The (0, 0) contribution is integrated over the fundamental domain. Now the (0, 0)

contribution of Γ(1,1)(R0) cancels the one of 1
2
Γ(1,1)(R0), and we are left with the integration

over the whole strip:

Z =
V4

(2π)4

∫

||

dτdτ̄

4Imτ 3

∑

m

e−πR
2
0

(2m+1)2

Imτ θ
[
1
0

]4 Γ(6,22)

η(τ)12 η̄(τ̄)24
. (2.20)

The integral over τ1 imposes the left-right level matching condition. The left-moving part

contains the ratio
θ [10]

4

η12
= 24 +O(e−πτ2), (2.21)
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which implies that the lowest contribution is at the massless level. Thus after the integration

over τ1 (τ2 ≡ t), the partition function takes the form

Z =
V4

(2π)4

∫ ∞

0

dt

2t3

∑

m

e−πR
2
0

(2m+1)2

t

(
24 D0 +

∑
D(µ) e−πtµ

2
)

, (2.22)

where D(µ) denotes the multiplicity of the mass level µ and 24 D0 is the multiplicity of the

massless level. Changing the integration variable by setting t = πR2
0(2m + 1)2 x, we have:

Z =
V4

π2(2πR0)4

∑

m

1

(2m + 1)4

∫ ∞

0

dx

2x3
e−

1
x

(
24 D0 +

∑
D(µ) e−xπ

2(2m+1)2µ2R2
0

)
. (2.23)

Now the second term in the parenthesis is exponentially suppressed when the masses µ are

of order (or close) to the string oscillator mass scale. This will be the case when all of the

internal radii and the Wilson-line moduli of the Γ(6,22) lattice are of order unity. For this

specific case, the partition function simplifies to

Z = 23 D0
V4

π2(2πR0)4

∑

m

1

(2m + 1)4
=

23 D0 π2

48

V4

(2πR0)4
=

1

3

n∗π2

16
V4 T 4

String, (2.24)

where n∗ = 23D0 is the number of the massless boson/fermion pairs in the theory. The free

energy density and pressure in string frame are given by

PString = −FString =
1

3

n∗π2 T 4
String

16
. (2.25)

In the Einstein frame, energy densities are rescaled by a factor 1/s2 as in equation (2.6).

Thus the pressure and free energy density in this frame are given by

PEin = −FEin =
1

3

n∗π2 T 4
String

16 s2
=

1

3

n∗π2 T 4

16
, (2.26)

where T = TString/
√

s is the proper temperature in the Einstein frame. This result is expected

from the effective field theory point of view. When only massless states are thermally excited,

the field theory expression for the pressure is given by

P =
1

3

(
nB +

7

8
nF

)
π2 T 4

30
, (2.27)

where nB and nF are the numbers of massless bosonic and fermionic degrees of freedom

respectively. When nB = nF = n∗, as in a supersymmetric theory, we recover equation

(2.26).
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2.3 Spontaneous breaking of supersymmetry at zero temperature

In this case we consider the same class of heterotic models, but now the breaking of super-

symmetry arises due to the coupling of the space-time fermion number to the momentum

and winding quantum numbers of an internal spatial cycle [18] – [23]. Since the temperature

is taken to be zero, the spin structures (a, b) do not couple to the quantum numbers of the

Euclidean time cycle which will be taken to be very large. We also consider the case where

three additional spatial directions are large. Following similar steps to the purely thermal

case, the partition function is given by

Z = − V5

(2π)5

∮

F

dτdτ̄

4Imτ
7
2

∑

(n,m),(h,g)

(−)g+h e−πR
2
5
|2m+g+(2n+h)τ |2

Imτ θ
[
1+h
1+g

]4 Γ(5,21)

η(τ)12 η̄(τ̄ )24
, (2.28)

where now V5 = V4(2πR5) is a five dimensional volume and the Γ(5,21) lattice parameterizes

the internal space. Here also, the h = 1 sectors give exponentially suppressed contributions

O(e−R
2
5), and the (h, g) = (0, 0) sector vanishes due to supersymmetry. The rest of the steps

can be repeated as in the derivation above to find

Z =
V5

(2π)5

∫ ∞

0

dt

2t
7
2

∑

m

e−πR
2
5

(2m+1)2

t

(
24 D0 +

∑
D(µ) e−πtµ

2
)

, (2.29)

which after the change of variables t = πR2
5(2m + 1)2 x gives

Z =
V5

π
5
2 (2πR5)5

∑

m

1

|2m + 1|5
∫ ∞

0

dx

2x
7
2

e−
1
x

(
24 D0 +

∑
D(µ) e−xπ

2(2m+1)2µ2R2
5

)
.

(2.30)

For µ of order unity, this simplifies to

Z = 2
(
1− 2−5

) ζ(5)Γ
(

5
2

)

π
5
2

n∗ V4

(2πR5)4
(2.31)

with n∗ = 23D0.

This result was expected from the effective field theory point of view. Indeed in a theory with

spontaneously broken N = 4 supersymmetry, the one loop effective potential receives a non-

zero contribution proportional to the mass super-trace StrM4, which in turn is proportional

to the fourth power of the gravitino mass. The super-traces StrMn vanish for n < N = 4.

In the example of supersymmetry breaking we examined above, the masses of the states are

shifted according to their spin. For initially massless states, the mass after supersymmetry
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breaking becomes :

M2
Q →

Q2
F

R2
5

. (2.32)

This shows that the string frame gravitino mass is of order MString ∼ 1/R5 and thus StrM4 ∼
c/R4

5. Including the contributions from all Kaluza-Klein states, one obtains the result given

in formula (2.31). We obtain for the string frame effective potential:

VString = − Z

V4

= −2
(
1− 2−5

) ζ(5)Γ
(

5
2

)

π
5
2

n∗ 1

(2πR5)4
. (2.33)

In the Einstein frame, we have VEin = 1
s2
VString – see equation (2.6) – so that

VEin = −2
(
1− 2−5

) ζ(5)Γ(5
2
)

π
5
2

n∗ 1

s2(2πR5)4
= −CV

1

(s t1u1)2
= −CV M4, (2.34)

where t1 = Re(T1), u1 = Re(U1), and M = 1/(st1u1)
1/2 is the gravitino mass scale in the

Einstein frame.

We stress here that the one loop effective potential depends only on the gravitino mass scale,

which in turn depends only on the product of the s, t1 and u1 moduli. This suggests to freeze

all moduli and keep only the diagonal combination

3 log z = log s + log t1 + log u1 . (2.35)

The Kälher potential of the diagonal modulus Z, (with z = Re(Z)), takes the well known

SU(1, 1) structure [25]

K = −3 log(Z + Z̄) . (2.36)

This gives rise to the kinetic term and gravitino mass scale,

− gµν 3
∂µZ∂νZ̄

(Z + Z̄)2
, M2 = 8eK =

8

(Z + Z̄)3
. (2.37)

Freezing ImZ and defining the field Φ by

e2αΦ = M2 =
8

(Z + Z̄)3
, (2.38)

one finds the kinetic term

− gµν 3
∂µZ∂νZ̄

(Z + Z̄)2
= −gµν

α2

3
∂µΦ∂νΦ . (2.39)
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The choice α2 = 3/2 normalizes canonically the kinetic term of the modulus Φ. The potential

for this particular model is:

VEin(Φ) = −CV M4 = −CV e4αΦ, α =

√
3

2
. (2.40)

Observe that in this simple model the sign of the potential is negative. As we now explain,

we can construct models with a positive potential, but with the rest of the dependence on

the modulus Φ being the same. All we have to do is to couple the momentum and winding

numbers of the Scherk-Schwarz cycle not only to the space-time fermion number but also

to another internal charge. For example consider the E8 × E ′
8 heterotic string on T 6 and

instead of coupling just to QF , we couple to QF +QE8 +Q′
E8

, where QE8 denotes the charge

of an E8 representation decomposed in terms of SO(16) ones, and similarly for Q′
E8

. These

charges take half integer values for the spinorial representations and integer values for the

others. The initial Susy-breaking co-cycle gets modified as follows

(−)ag+bh+hg −→ (−)(a+γ̄+γ̄′)g+(b+δ̄+δ̄′)h+hg, (2.41)

where as before the argument a is one for space-time fermions and zero for space-time

bosons, and (γ̄, γ̄′) = (1, 1) for the spinorial representations of SO(16)× SO(16)′ and (0, 0)

for the adjoint representations. This operation breaks explicitly the E8×E ′
8 gauge group to

S0(16)× SO(16)′. Proceeding in similar way as in the previous example, one finds:

Z = 2
(
1− 2−5

) ζ(5)Γ
(

5
2

)

π
5
2

ñ∗ V4

(2πR5)4
, (2.42)

where

ñ∗ = 23
[

[2]X2,3 + [6]T 6 + [120− 128]E8 + [120− 128]E′
8

]
= − 23 × 8 = − 64. (2.43)

In the previous example only positive signs appear in the above formula since there is no

coupling of the Scherk-Schwarz lattice quantum numbers to the E8×E ′
8 charges, giving the

value n∗ = 23×504. The reversing of sign for some representations indicates that it is for the

bosons that the masses are shifted and not for the fermions in the corresponding multiplet.

We note that in the N = 4 case, we cannot change the left-multiplicity since all of the

left-moving R-charges are equivalent as required by symmetry. This however is not true

for the N = 2 and N = 1 cases. Consider for instance the class of N = 2 supersymmetric

13



backgrounds obtained by compactifying the heterotic string on a T 4/Z2 orbifold (e.g. the Z2-

orbifold limit of the K3 CY-compactification). In this class of models (see for instance [26])

four internal supercoordinates are twisted and the corresponding four internal R-charges are

half-shifted. The Euclidean partition function is given by

Z =

∮

F

dτdτ̄

4Imτ

1

4

∑

(a,b),(H,G)

(−)a+b+ab
θ [ab ]

2 θ
[
a+H
b+G

]2

η(τ)4

× Γ(1,1)(R0) Γ(3,3)(space)

η(τ)2 η̄(τ̄)2
Z(2,2+n0)

[
0
0

]
Z(4,4+nt)

[
H
G

]
. (2.44)

Here Z(2,2+n0) is the contribution of two internal coordinates1 (X5, X6) and n0-right moving

world-sheet bosons φi. Before supersymmetry breaking, the corresponding (2, 2+n0)-lattice

is unshifted. Z(4,4+nt) stands for the contribution of four internal coordinates (X7, X8, X9, X10)

all of which are Z2-twisted by (H, G), and nt-right moving world-sheet bosons φI which can

be Z2-twisted breaking part of the initial gauge group. The θ-function terms come from

the contribution of the left-moving world-sheet fermions. Four of them are Z2-twisted by

(H, G). The contribution associated to the space-time bosons is when a = 0, while the one

associated to the space-time fermions is when a = 1.

From the above supersymmetric N = 2 partition function, the thermal partition function

is obtained in a way similar to the N = 4 example, by the following replacement of the

Euclidean time sub-lattice:

Γ(1,1)(R0) −→ Γ(1,1)

[
h1
g1

]
(R0) (−)g1a+h1b+h1g1. (2.45)

In the case of Scherk-Schwarz spontaneous supersymmetry breaking, the partition function

can be obtained by a similar replacement of the internal X5 coordinate lattice, either by

utilizing the same operator QF

Γ(1,1)(R5) −→ Γ(1,1)

[
h2
g2

]
(R5) (−)g2a+h2b+h2g2 (2.46)

or by utilizing an R-symmetry operator associated to one of the twisted complex planes

Γ(1,1)(R5) −→ Γ(1,1)

[
h2
g2

]
(R5) (−)g2(a+H)+h2(b+G)+h2g2. (2.47)

These are in fact the only two possibilities involving left-moving R charges since all others

are equivalent choices. However, many other choices exist by utilizing parity-like operators

1In our notations, the space-time coordinates are X0,...,3, while the internal ones are X5,...,10.
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involving the right moving gauge charges
∑

γ̄i, as in the explicit example of SO(16)×SO(16)′

spinorial representations we gave above:

Γ(1,1)(R5) −→ Γ(1,1)

[
h2
g2

]
(R5) (−)g2(a+H+

P

γ̄i)+h2(b+G+
P

δ̄i)+h2g2. (2.48)

In the next section we examine representative examples in the case where thermal and

spontaneous Susy breaking operations are present simultaneously.

3 Thermal and spontaneous breaking of Susy

The most interesting situation for cosmological applications is the case where spontaneous

supersymmetry breaking and thermal corrections are taken into account simultaneously.

3.1 Untwisted sector

The untwisted sector of the N = 2 case, (H, G) = (0, 0) in equation (2.44),2 has an N = 4

structure and thus all choices for the left R-symmetry operators are equivalent. The quantum

numbers of the Euclidean time cycle and the internal X5-cycle are coupled to the spin

structures (a, b) in the same way. After performing the Jacobi theta-function identity the

partition function becomes:

Zuntwist = − 1

2

V5

(2π)5

∮

F

dτdτ̄

4Imτ
7
2

∑

(n1,m1),(h1,g1)

∑

(n2,m2),(h2,g2)

(−)g1+g2+h1+h2

e−πR
2
0
|2m1+g1+(2n1+h1)τ |2

Imτ e−πR
2
5
|2m2+g2+(2n2+h2)τ |2

Imτ θ
[
1+h1+h2
1+g1+g2

]4 Γ(5,21)

η(τ)12 η̄(τ̄)24
. (3.1)

The factor of 1/2 is due to the Z2 orbifolding of the N = 4 theory.

Proceeding as in the simpler examples before and neglecting the h1 = 1 and h2 = 1 sectors

for large R0, R5, the non-zero contributions to the partition function occur when g1 +g2 = 1.

Assuming also that all other moduli are of order unity, the only non-exponentially suppressed

contributions come from the zero mass left- and right-levels. We obtain

Zuntwist = 23D0
V5

(2π)5

∑

g1,g2

(1− (−)g1+g2)

2

∫ ∞

0

dt

2t
7
2

∑

m1,m2

e−πR
2
0

(2m1+g1)2

t
−πR2

5
(2m2+g2)2

t , (3.2)

2For h1 = h2 = 0 (even windings), the sector (H, G) = (0, 1) gives zero net contribution due to the
identity 1

2

∑
a,b(−)a+b+ab(−)ag1(−)ag2θ [ab ]2 θ

[
a
b+1

]
θ
[
a
b−1

]
= 0.

15



which after the change of variables t = π (R2
0(2m1 + g1)

2 + R2
5(2m2 + g2)

2) x gives

Zuntwist =
4D0 Γ

(
5
2

)

π
5
2

V5

(2π)5

∑

m1,m2

1

(R2
0(2m1 + 1)2 + R2

5(2m2)2)
5
2

+
4D0 Γ

(
5
2

)

π
5
2

V5

(2π)5

∑

m1,m2

1

(R2
0(2m1)2 + R2

5(2m2 + 1)2)
5
2

. (3.3)

This expression is symmetric under the R0 ↔ R5 exchange. This is suggestive of a temper-

ature/gravitino mass, T/M , duality. This duality will be broken when the supersymmetry

breaking arises due to the coupling to a different QR charge than QF .

To obtain the effective four dimensional pressure, we must factorize out the space-time

volume V4. To this extent it is convenient to define the complex structure-like ratio

u =
R0

R5
=

M

T
, (3.4)

and re-write the partition function in the following way

Zuntwist =
4D0 Γ

(
5
2

)

π
5
2

V4

(2πR0)4

∑

m1,m2

u4

|(2m1 + 1)iu + 2m2|5

+
4D0 Γ

(
5
2

)

π
5
2

V4

(2πR5)4

∑

m1,m2

1

|2m1iu + (2m2 + 1)|5 . (3.5)

Define the function

f(u) ≡
∑

m1,m2

u4

|(2m1 + 1)iu + 2m2|5
, (3.6)

which we can express in terms of Eisenstein functions of order 5/2:

f(u) = u
3
2

(
1

2
5
2

E5/2

(
iu

2

)
− 1

25
E5/2(iu)

)
, (3.7)

where

Ek(U) =
∑

(m,n)6=(0,0)

(
Im U

|m + nU |2
)k

. (3.8)

Then the pressure in the Einstein frame can be written as

Puntwist = Cunt
T T 4 f(u) + Cunt

V M4 f(1/u)

u
, (3.9)

where

Cunt
T = Cunt

V = n∗
unt

Γ
(

5
2

)

π
5
2

. (3.10)
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Here n∗
unt = 4D0 is the number of massless boson/fermion pairs in the untwisted sector. It

is smaller by a factor of 1/2 from the corresponding number in the N = 4 case due to the

Z2-orbifolding. In this particular model the coefficients Cunt
T and Cunt

V are equal due to the

underlying gravitino mass/temperature duality. For fixed u the first term stands for the

thermal contribution to the pressure while the second term stands for minus the effective

potential.

We note that the coefficient Cunt
T is fixed and positive as it is determined by the number of all

massless boson/fermion pairs in the untwisted sector of the initially supersymmetric theory:

n∗
unt = 4D0. In general, the coefficient Cunt

V will depend on the precise way supersymmetry

is broken. As we have demonstrated in the previous section, it can take both negative and

positive values, depending on how the Susy-breaking operator couples to the right movers:

Cunt
V ∼ ñ∗

unt. Thus in general the temperature/gravitino mass scale duality will be broken.

Let us discuss the large u limit, which can be obtained by taking R5 to be small (but still

parametrically larger as compared to the string scale), while taking R0 to be much larger. In

this limit we expect to find a four dimensional system at finite temperature, for which only

massless bosonic degrees of freedom are thermally excited. All fermions attain a mass from

the Scherk-Schwarz boundary conditions along the X5 cycle, and this mass is much bigger

than the temperature for large u. Therefore they can be integrated out giving a temperature

independent contribution to the pressure of order 1/R4
5. Setting ũ = 1/u, we have in the

limit ũ → 0 (u →∞):

f(u) = f(1/ũ) →
∑

m1

∫ ∞

−∞

dx

((2m1 + 1)2 + 4x2)
5
2

=
2

3

∑

m1

1

(2m1 + 1)4
=

1

3
× π4

24
, (3.11)

and
f(1/u)

u
→
∑

m1

1

|2m1 + 1|5 +
1

25 u4

∑

m2 6=0

∫ ∞

−∞

dx

(m2
2 + x2)

5
2

= 2
(
1− 2−5

)
ζ(5) +

1

24 u4

∑

m2 6=0

1

m4
2

= 2
(
1− 2−5

)
ζ(5) +

1

12 u4
× π4

90
. (3.12)

Using these results, we find

Puntwist =
1

3

23D0

2

π2T 4

30
+ 2

(
1− 2−5

) ζ(5)Γ
(

5
2

)

π
5
2

(4D0) M4 (3.13)
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for the first two leading terms for small ũ = 1/u. We have used the relation Γ(5
2
) = 3

√
π/4.

The first contribution arises from the thermally excited massless bosons. As compared to

equation (2.27) with nB = 23D0 and nF = 0, it is off by a factor of 1/2 due to the Z2-

orbifolding. Similarly, the second term is off by a factor of 1/2 as compared to equation

(2.31) due to the orbifolding. For large u, the potential term is dominant. For generic values

of u both fermions and bosons contribute to the thermal piece as in equation (3.9), with the

contribution depending on the number of massless states at zero temperature and before the

breaking of supersymmetry. Finally for small u, the system is essentially a five dimensional

purely thermal system.

3.2 Twisted sector, H = 1

The contributions of the twisted sectors in the large R0, R5 limit depend on the number of

the massless twisted states before the supersymmetry breaking, and can be determined in

similar way as before. However, there is a class of models where the Z2-orbifolding acts

freely, without any fixed points, and therefore there are no massless states in the twisted

sectors. For this class of models, the whole contribution to the one-loop partition function,

in the large R0, R5 limit, is that of the massless untwisted sector states we have already

determined. One example with this property is when the Z2-twists (H, G) are accompanied

with a shift of the Γ(1,1)(R6) sub-lattice. This operation leads to the modification of Z(2,10)

in equation (2.44), where we also set (n0, nt) = (8, 8), as follows:

Z(2,10)

[
0
0

]
−→ Z(2,10)

[
H
G

]
=

Γ(1,1)(R5) Γ(1,1)(R6)
[
H
G

]

η(τ)2 η̄(τ̄ )2

1

2

∑

γ,δ

θ̄ [γδ ]
8

η̄(τ̄ )8
. (3.14)

If R6 is sufficiently large, the coupling of the (H, G)-shift of the lattice to the twisted partition

function Z(4,12)

[
H
G

]
ensures the absence of massless states in the twisted sector.

In other situations, there are massless states in the twisted sector. Before the supersymmetry

breaking, the number of massless bosons is equal to the number of massless fermions with

a multiplicity n∗
twist. Proceeding as in the untwisted sector, and neglecting the h1, h2 = 1

sectors, one finds that there is only a non zero contribution when g1 + g2 = 1. The relative

sign of the thermal part ∼ T 4 and the supersymmetry breaking part ∼ M4 depends on the

choice of the operators QF and QR. When there is no coupling to the right-moving gauge
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charges we obtain:

Ptwist = Ctwist
T T 4 f(u) + Ctwist

V M4 f(1/u)

u
, (3.15)

where

Ctwist
T = n∗

twist

Γ
(

5
2

)

π
5
2

Ctwist
V = ǫ n∗

twist

Γ
(

5
2

)

π
5
2

ǫ = (−)(QR−QF ). (3.16)

Here, we have for the coefficient ǫ:

• ǫ = 1 when QR = QF .

• ǫ = −1 when QR 6= QF .

In the later case, (−)(QR−QF ) = (−)H = −1, see equation (2.47), and H = 1 in the twisted

sector. The change of sign indicates that it is the bosons that are becoming massive because

of the supersymmetry breaking. This is related to a mechanism for moduli stabilization

induced by geometrical fluxes [17].

Adding the contributions of the untwisted and twisted sectors together we obtain for the

pressure

P = CT T 4 f(u) + CV M4 f(1/u)

u
, (3.17)

where CT = Cunt
T +Ctwist

T and likewise for CV . The sign of the thermal contribution is always

positive,

CT =
n∗
T Γ

(
5
2

)

π
5
2

, (3.18)

n∗
T = n∗

unt + n∗
twist. The coefficient multiplying the supersymmetry breaking part is given by

CV =
n∗
V Γ

(
5
2

)

π
5
2

(3.19)

with n∗
V = n∗

unt + ǫ n∗
twist. In general n∗

V can be positive or negative depending on the model.

3.3 An explicit example

As an example we consider the E8×E8 heterotic string on a T 4/Z2 orbifold, whose initially

supersymmetric partition function is obtained by setting

Z(2,10) =
Γ(1,1)(R5) Γ(1,1)(R6)

η(τ)2 η̄(τ̄)2

1

2

∑

γ,δ

θ̄ [γδ ]
8

η̄(τ̄ )8
, (3.20)
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and

Z(4,12)

[
H
G

]
=

Γ(4,4)

[
H
G

]

η(τ)4 η̄(τ̄)4

1

2

∑

γ′,δ′

θ̄
[
γ′

δ′

]6
θ̄
[
γ′+H
δ′+G

]
θ̄
[
γ′−H
δ′−G

]

η̄(τ̄)8
(3.21)

in equation (2.44). We shall use an R-symmetry operator associated to one of the twisted

complex planes for breaking the supersymmetry, replacing the Γ(1,1)(R5) lattice as in equation

(2.47). In the twisted sectors, (H, G) 6= (0, 0), the internal Γ(4,4) shifted lattice is given by

Γ(4,4)

[
H
G

]
=

24η(τ)6 η̄(τ̄)6

θ
[
1+H
1+G

]2
θ̄
[
1+H
1+G

]2 . (3.22)

The orbifolding breaks the E8×E8 gauge group to E8×E7×SU(2). Under E8 → E7×SU(2),

the 248-dimensional adjoint representation of E8 decomposes as

(1, 3)⊕ (56, 2)⊕ (133, 1). (3.23)

The untwisted sector contains 23 × 504 massless states giving the value n∗
unt = 4 × 504

for the total number of boson/fermion pairs. These numbers arise as follows. In terms of

world-sheet left/right movers the number of bosonic degrees of freedom is given by

n∗
unt = 4× 504 = [4]ψ2,3,5,6 ×

(
[4]X2,3,5,6 + [248]E8 + [133]E7 + [3]SU(2)

)
+

[4]ψ7,8,9,10 ×
(
[4]X7,8,9,10 + [2]SU(2) × [56]E7

)
. (3.24)

The first line gives the bosonic content of a d = 6 supergravity multiplet, a tensor multiplet

and a vector multiplet in the adjoint of the E8 × E7 × SU(2) gauge group. The second line

gives the bosonic content of four uncharged and one charged hyper-multiplets. The number

of fermionic degrees of freedom follows by supersymmetry. At finite temperature and when

Susy is broken, the contribution of the massless untwisted states is determined as before (see

equation (3.5)).

Next we analyze the contribution of states in the twisted sectors, H = 1. For large R0, R5,

we may neglect the h1 = 1 and h2 = 1 sectors. Also for R6 of order unity we may set

Γ(1,1)(R6) ∼= 1. Setting H = 1, the partition function becomes in this limit

Ztwisted =
V5

(2π)5

∫

||

dτdτ̄

4Imτ
7
2

1

η(τ)6η̄(τ̄)18

∑

(m1,g1),(m2,g2)

e−πR
2
0

(2m1+g1)2

Imτ e−πR
2
5

(2m2+g2)2

Imτ

× 1

4

∑

(a,b,G)

(−)a+b+ab (−)ag1 (−)(a+1)g2 θ [ab ]
2 θ
[
a+1
b+G

]2
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× 24

θ
[
0
1+G

]2
θ̄
[
0
1+G

]2
1

2

∑

γ,δ

θ̄ [γδ ]
8 1

2

∑

γ′,δ′

θ̄
[
γ′

δ′

]6
θ̄
[
γ′+1
δ′+G

]
θ̄
[
γ′−1
δ′−G

]
. (3.25)

The non-vanishing contributions arise when g1 + g2 = 1. Non-exponentially suppressed

contributions arise only at the zero mass level. To obtain them, we expand the integrand in

powers of q = e2πiτ .

When g1 + g2 = 1, we have for the left movers

1

η(τ)6 θ
[
0
1+G

]2
1

2

∑

(a,b)

(−)a+b+ab (−)ag1 (−)(a+1)g2 θ [ab ]
2 θ
[
a+1
b+G

]2

=
1

η(τ)6 θ
[
0
1+G

]2
1

2

∑

(a,b)

(−)g2(−)b+ab θ [ab ]
2 θ
[
a+1
b+G

]2

=
(−)g2θ2

2θ
2
3

η6 θ2
4

for G = 0 or
(−)g2θ2

2θ
2
4

η6 θ2
3

for G = 1

= 4(−)g2(1 +O(q1/2)) . (3.26)

For the right movers we have

1

η̄(τ̄ )18 θ̄
[
0
1+G

]2
1

2

∑

γ,δ

θ̄ [γδ ]
8 1

2

∑

γ′,δ′

θ̄
[
γ′

δ′

]6
θ̄
[
γ′+1
δ′+G

]
θ̄
[
γ′−1
δ′−G

]

=
1

q̄3/4

(
1 + (−)G 4 q̄1/2 + . . .

)
(1 + 240 q̄ + . . .)

[
q̄1/4

(
(−)G 2 + 56 q̄1/2 + . . .

)]

=
1

q̄1/2

[
(−)G 2 + 8 q̄1/2 + 56 q̄1/2 +O(q̄)

]
. (3.27)

When we add the contributions of the (H, G) = (1, 0) and (H, G) = (1, 1) twisted sectors

together, we find that the lowest right-mass level is at zero mass as it is the case for the

lowest left-mass level.

Using these results we obtain the contribution to the partition function of the massless

twisted states:

Ztwist = 26(56 + 8)
V5

(2π)5

∑

g1,g2

(−)g2 − (−)g1

2

∫ ∞

0

dt

2t
7
2

∑

(m1,m2)

e−πR
2
0

(2m1+g1)2

Imτ e−πR
2
5

(2m2+g2)2

Imτ

=
25(56 + 8) Γ

(
5
2

)

π
5
2

(
V4

(2πR0)4
f(u)− V4

(2πR5)4

f(1/u)

u

)
. (3.28)

The contribution to the pressure is as in equations (3.15), (3.16) with n∗
twist = 25(56 + 8),

the number of massless boson/fermion pairs in the twisted sector, and ǫ = −1. The massless
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bosonic content consists of 32 scalars in the (56, 1) representation of E7 × SU(2) and 128

scalars in the representation (1, 2). The number of massless fermionic degrees of freedom

follows by supersymmetry.

Adding the contributions of the untwisted and twisted sectors together, we obtain

n∗
T = 4× 504 + 16× 128 = 4064

n∗
V = 4× 504− 16× 128 = −32. (3.29)

In addition, we have the choice with ǫ = 1 in equation (3.16), giving n∗
T = n∗

V = 4064. We

can also change n∗
V by considering Susy-breaking operators involving the right-moving gauge

charges as in equation (2.48).

3.4 Small mass scales from Wilson line deformations

A generic supersymmetric heterotic background may contain in its spectrum massive super-

multiplets whose mass is obtained by switching on non-trivial continuous Wilson-lines [26]

– [28]. This is a stringy realization of the Higgs mechanism, breaking the initial gauge group

G to a smaller one spontaneously. This statement is not absolutely correct for discrete

Wilson lines corresponding to extended symmetry points where the gauge symmetry may

enhance or even get modified.

For our purposes, we restrict to arbitrary and small Wilson line deformations starting from

a given supersymmetric background where RI , I = 6, 7, . . . , 10 are of the order the string

scale. This restriction ensures that the contributions to the thermal partition function of

the momentum and winding states in these five internal directions will be exponentially

suppressed in the limit where R0 and R5 are large.

A systematic study of the effects of Wilson lines can be found in [26] – [28]. In the zero

winding sector, a Wilson line just modifies the Kaluza-Klein momenta, and the corresponding

Kaluza-Klein mass becomes

m2
I

R2
I

−→ (mI + yaI Qa)
2

R2
I

, (3.30)

where Qa is the charge operator associated to the Wilson-line yaI . We distinguish two different

situations according to the direction I:
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i) I = 5 where R5 is large,

ii) I = 6, . . . , 10 where the RI are of order the string scale.

In the first case, I = 5, after a Poisson re-summation, the net modification to the partition

function is obtained by the following replacement in equation (3.5):
∫ ∞

0

dt

t
7
2

∑

m1,m2

e−πR
2
0

(2m1+g1)2

t
−πR2

5
(2m2+g2)2

t −→

∫ ∞

0

dt

t
7
2

∑

m1,m2

e−πR
2
0

(2m1+g1)2

t
−πR2

5
(2m2+g2)2

t

[
e2iπ(2m2+g2) ya

5Qa
]
. (3.31)

The term in the brackets can be replaced with

cos (2π(2m2 + g2) ya5Qa) = 1− 2 sin2 (π(2m2 + g2) ya5Qa) . (3.32)

In the second case, I = 6, 7, . . . , 10, we can set the momentum and winding numbers to zero,

mI = nI = 0, so that the extra modification in the partition function is the insertion of the

term: [
e
−πtP

I

„

ya
I Qa
RI

«2]
≃
[
1 −πt

∑

I

(
yaIQa

RI

)2
]

. (3.33)

Incorporating the effects of the Wilson lines up to quadratic order, we get for the overall

pressure:

P = T 4 Γ
(

5
2

)

π
5
2

∑

m1,m2

u4
(

n∗
T − 2

∑
s sin2(2πm2y

a
5Q

s
a)
)

|(2m1 + 1)iu + 2m2|5

− T 2 Γ
(

3
2

)

π
3
2

∑

m1,m2

u2
(

M2
T − 2

∑
s M2

s sin2(2πm2y
a
5Q

s
a)
)

|(2m1 + 1)iu + 2m2|3

+ M4 Γ
(

5
2

)

π
5
2

∑

m1,m2

n∗
V − 2

∑
s sign(s) sin2 ((2m2 + 1)πya5Q

s
a)

|2m1iu + (2m2 + 1)|5

− M2 Γ
(

3
2

)

π
3
2

∑

m1,m2

M
(2)
V − 2

∑
s sign(s)M2

s sin2 ((2m2 + 1)πya5Q
s
a)

|2m1iu + (2m2 + 1)|3 . (3.34)

In this expression, we have defined

M2
s =

1

4π

10∑

I=6

(yaIQ
s
a)

2

R2
I

(3.35)

for the pair of boson/fermion states s and also introduced

M2
T =

∑

s

M2
s , M

(2)
V =

∑

s

sign(s)M2
s , (3.36)
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where sign(s) indicates whether the state s contributes positively or negatively to n∗
V and

M
(2)
V , both being possibly negative.

The following comments are in order:

• In the above expression, ya5Q
s
a is an effective number summarizing the contribution of

the R5-Wilson line in the term corresponding to the pair of boson/fermion states s. It does

not introduce a new scale.

• The Ms’s introduce new mass scales in the theory, qualitatively different than T and

M . The masses Ms are supersymmetric mass scales rather than Susy-breaking scales like T

and M .

• The first two terms (which arise from the (g1, g2) = (1, 0) sector) can be identified in

the effective field theory as the thermal contribution to the pressure, Pthermal. Again the

number n∗
T is always positive being the number of the massless boson/fermion pairs in the

initially supersymmetric background. This purely thermal piece is always positive.

• The two last terms can be identified as minus the effective potential −Veff . This is

naturally regularized in the infrared by the temperature scale T . This infrared regularization

differs from that considered in [29], and used in [6], which is valid at zero temperature.

• The number n∗
V can be either positive or negative depending of the way supersymmetry

is broken. This shows that the sign of the one loop effective potential depends on the way

supersymmetry is broken, as it can be seen in supergravity by utilizing the super-trace

arguments [30].

3.5 Scaling properties of the thermal effective potential

The final expression for P contains various mass scales: the two supersymmetry breaking

scales which are the temperature T and the gravitino mass scale M , as well as the super-

symmetric masses Ms which are generated by the Wilson-lines in the directions 6, 7, 8, 9, 10.

The first identity follows immediately from the definition of P :

(
T

∂

∂T
+ M

∂

∂M
+
∑

s

Ms
∂

∂Ms

)
P = 4P (3.37)

which can be best seen by writing P as

P ≡ T 4 p4(u) + T 2 p2(u), u =
M

T
, (3.38)
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where

p4 =
Γ
(

5
2

)

π
5
2

(
F (u, ya5) + F̃ (u, ya5)

)
, p2 = −Γ

(
3
2

)

π
3
2

(
G(u, ya5) + G̃(u, ya5)

)
, (3.39)

and using the definitions

F (u, ya5) =
∑

m1,m2,s

u4 cos(4πm2y
a
5Q

s
a)

[(2m1 + 1)2u2 + 4m2
2]

5/2
,

F̃ (u, ya5) =
∑

m1,m2,s

u4sign(s) cos(2π(2m2 + 1)ya5Q
s
a)

[4m2
1u

2 + (2m2 + 1)2]5/2
; (3.40)

G(u, ya5) =
∑

m1,m2,s

u2M2
s cos(4πm2y

a
5Q

s
a)

[(2m1 + 1)2u2 + 4m2
2]

3/2
,

G̃(u, ya5) =
∑

m1,m2,s

u2sign(s)M2
s cos(2π(2m2 + 1)ya5Q

s
a)

[4m2
1u

2 + (2m2 + 1)2]3/2
. (3.41)

Using standard thermodynamic identities, we can obtain the energy density ρ:

ρ ≡ T
∂P

∂T
− P = T 4 r4(u) + T 2 r2(u) (3.42)

where

r4 = 3p4 − up′4 , r2 = p2 − up′2 (3.43)

and the primes stand for derivatives with respect to u. In the sequel, we allow the Susy-

breaking scales T and M to vary with time while fixing the supersymmetric masses Ms, and

investigate the back-reaction to the initially flat metric and moduli fields.

4 Gravitational equations and critical solution

We assume that the back-reacted space-time metric is homogeneous and isotropic,

ds2 = −dt2 + a(t)2 dΩ2
k, H =

(
ȧ

a

)
, (4.1)

where Ωk denotes the three dimensional space with constant curvature k and H is the Hubble

parameter.

From the fact that −P plays the role of the effective potential and the relation between the

gravitino mass scale M and the no-scale modulus Φ,

M = eαΦ, α =

√
3

2
,
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we obtain the field equation for Φ:

Φ̈ + 3HΦ̇ =
∂P

∂Φ
= αu

(
∂P

∂u

)

T

= −α
(
T 4(r4 − 3p4) + T 2(r2 − p2)

)
. (4.2)

We have made use of equation (3.43).

For other flat moduli ϕi, with Φ independent kinetic terms, the equation of motion is straight-

forward to solve,

ϕ̈i + 3Hϕ̇i = 0 =⇒ 1

2
ϕ2
i =

c2
i

a6
, (4.3)

where the ci’s are integration constants.

Knowing the thermal effective potential −P , the energy density ρ as well as the field equation

for the modulus Φ, we can derive the (one-loop) corrected space-time metric by solving the

gravitational field equations. These are the Friedmann-Hubble equation,

3H2 =
1

2
Φ̇2 +

1

2

∑

i

ϕ̇2
i + ρ− 3k

a2
, (4.4)

and the equation that follows from varying with respect to the spatial components of the

metric:

2Ḣ + 3H2 = − k

a2
− P − 1

2
Φ̇2 − 1

2

∑

i

ϕ̇2
i . (4.5)

For our purposes, it will be useful to replace equation (4.5) by the linear sum of equations

(4.4) and (4.5), so that the kinetic terms of Φ and ϕi drop out:

Ḣ + 3H2 = −2k

a2
+

1

2
(ρ− P ) . (4.6)

4.1 Critical solution

The fundamental ingredients in our analysis are the scaling properties of the thermal effective

potential −P = −T 4p4−T 2p2. These scaling properties suggest to search for a solution where

all varying mass scales of the system, M(Φ), T and 1/a, remain proportional during time

evolution:

eαΦ ≡ M(Φ) =
1

γa
=⇒ H = −αΦ̇, M(Φ) = u T , (4.7)

with γ and u fixed in time. Our aim is thus to determine the constants γ and u.
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On the trajectory (4.7), the Φ-equation is given by

Ḣ + 3H2 = α2

(
(r4 − 3p4)

M4

u4
+ (r2 − p2)

M2

u2

)
(4.8)

and the gravity equation (4.6) by

Ḣ + 3H2 = −2kγ2M2 +
1

2
(r4 − p4)

M4

u4
+

1

2
(r2 − p2)

M2

u2
. (4.9)

The compatibility of these two equations requires an identification of the coefficients of the

monomials in M . The quartic terms give an equation for u, while the quadratic terms

determine the sign of the parameter k and the magnitude of |kγ2|,

r4 =
6α2 − 1

2α2 − 1
p4,

(
r4 = 4p4 for α2 =

3

2

)
, (4.10)

− 2kγ2 =
2α2 − 1

2
(r2 − p2)

1

u2
,

(
−2kγ2 =

(r2 − p2)

u2
for α2 =

3

2

)
. (4.11)

Equation (4.10) reminds us of the equation of state for thermal radiation in five dimensions.

In the absence of Wilson lines, where r2 = p2 = 0, we have that ρ = 4P , which is indeed the

5d state equation for thermal radiation.

Next let us consider the Friedmann-Hubble equation (4.4) along the critical trajectory (4.7)

where we may set Φ̇2 = H2/α2. It becomes

(
6α2 − 1

6α2

)
3H2 = −3k

a2
+ ρ +

1

2

∑

i

ϕ2
i = −3k

a2
+ T 4r4 + T 2r2 +

∑

i

c2
i

a6
. (4.12)

Then by using the compatibility conditions (4.10) and (4.11), it is easy to check that equation

(4.9) follows. Our ansatz (4.7) allows to reduce the differential system of equations for the

modulus Φ and the gravitational field to the compatibility equations for the constants γ, u

and k and the Friedman-Hubble equation (4.12).

The dilatation factor in front of 3H2 can be absorbed in the definition of k̂, cr and cm, once

we take into account equations (4.14) and (4.15) below:

3H2 = −3k̂

a2
+

cr
a4

+
cm
a6

, (4.13)

where

3k̂ = − 1

γ2

6α2

6α2 − 1

1

u2

(
3(2α2 − 1)

4
(r2 − p2) + r2

)
, (4.14)
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cr =
1

γ4

6α2

6α2 − 1

r4

u4
=

1

γ4

6α2

2α2 − 1

p4

u4
, (4.15)

and

cm =
6α2

6α2 − 1

∑

i

c2
i . (4.16)

Recalling that α2 = 3/2 and the relation (3.43), equation (4.10) for u becomes

p4 + u p′4 = 0 , (4.17)

whose solution determines

cm =
9

8

∑

i

c2
i , cr =

9

2γ4

p4

u4
, k̂ = − 3

16γ2

2p2 − 5up′2
u2

. (4.18)

Clearly, a necessary condition for the curvature k̂ not to vanish is to have non trivial Wilson

lines in any of the directions 6, 7, 8, 9, 10.

We note that equation (4.13) also controls the dynamics of a FRW universe, where space

has constant curvature k̂ and is formally filled with a thermal bath of radiation (since the

sign of cr can a priori be positive as well as negative). There can be an extra contribution,

arising from the kinetic terms of some extra flat moduli, that scales as 1/a6.

Finally let us address a seeming puzzle. We said that along the critical trajectory and in

the absence of Wilson lines, our thermodynamic quantities satisfy ρ = 4P . How can this

situation correspond to a 4d universe filled with thermal radiation? The answer is that we

must take into account the kinetic energy density of the modulus field Φ. When there are

no Wilson lines and the kinetic terms of the other moduli are switched off, the Friedmann-

Hubble equation gives Φ̇2 = (r4T
4)/4 along the critical trajectory, and so the total energy

density and pressure satisfy

ρtot = r4T
4 +

1

2
Φ̇2 =

9r4

8
T 4

Ptot = p4T
4 +

1

2
Φ̇2 =

3r4

8
T 4. (4.19)

Thus ρtot = 3Ptot which is the 4d equation of state for thermal radiation.
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4.2 Numerical study

4.2.1 Without Wilson lines ya5

Let us consider the case where the Wilson lines along the X5-direction are switched off. From

equation (3.40), we obtain

p4(u) =
Γ(5

2
)

π
5
2

(
n∗
Tf(u) + n∗

V f̃(u)
)

, f̃(u) = u3f(1/u) , (4.20)

thanks to the identities n∗
T f(u) ≡ F (u, ya5 = 0) and n∗

V f̃(u) ≡ F̃ (u, ya5 = 0). Since f + uf ′

and f̃ + uf̃ ′ vanish at the origin, equation (4.17) admits a universal solution u = 0 for

arbitrary n∗
V in the range −n∗

T ≤ n∗
V ≤ n∗

T . This solution corresponds to M(t) ≡ 0 at some

finite T , and is associated to a 5-dimensional purely thermal system (R5 = ∞). The 4d

effective description we have considered is not valid in this case.

We are thus looking for non trivial solutions u > 0 of equation (4.17), which we write in the

form
n∗
V

n∗
T

= −f + uf ′

f̃ + uf̃ ′
. (4.21)

A numerical study shows that such non-trivial solutions (and consequently, non-trivial cos-

mological evolutions) exist only for models satisfying

− 0.0666... <
n∗
V

n∗
T

< 0 . (4.22)

The non vanishing root of equation (4.21) is an increasing function of the ratio n∗
V /n∗T

satisfying u → +∞ when n∗
V /n∗T → 0− and u → 0 when n∗

V /n∗T → −0.0666.... (See Fig. 1.)

The corresponding value of cr in equation (4.18) is finite and always positive. This can

be seen by noting that the quantity n∗
Tf + n∗

V f̃ appearing in the expression for cr equals

−u(n∗
Tf ′+n∗

V f̃ ′) > 0. The positivity follows since f ′ and f̃ ′ are always negative and positive

respectively.

When Wilson lines in the directions 6, 7, 8, 9, 10 are switched on, we need to determine the

value of k̂. Defining G(u, ya5 = 0) ≡ M2
T g(u) and G̃(u, ya5 = 0) ≡ M

(2)
V g̃(u), eq. (3.39) gives

p2(u) = −Γ(3
2
)

π
3
2

(
M2

Tg(u) + M
(2)
V g̃(u)

)
, g̃(u) = ug(1/u) , (4.23)

so that the condition for the sign of k̂ – see equation (4.18) – can be expressed as

k̂ ≥ 0 ⇐⇒ −1 ≤ M
(2)
V

M2
T

≤ −2g − 5ug′

2g̃ − 5ug̃′
. (4.24)
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Figure 1: The non trivial root u of eq. (4.17) as a function of the ratio n∗V /n∗T .

The function of u appearing in the RHS of the inequality is monotonically decreasing from

+∞ (at u = 0) to 0 (at u = ∞). It takes the value 1, which is the maximum allowed value of

the ratio M
(2)
V /M2

T , for u ≃ 0.940.... Thus a non trivial solution of equation (4.17) satisfying

u ≤ 0.940... always implies k̂ ≥ 0. If instead u > 0.940..., one has

k̂ < 0 ⇐⇒ −2g − 5ug′

2g̃ − 5ug̃′
<

M
(2)
V

M2
T

< 1 . (4.25)

For the critical value u = 0.940..., equation (4.21) requires that n∗
V /n∗T ≃ −0.0348.... Figure

2 represents the two-parameter phase diagram
(
n∗
V /n∗T , M

(2)
V /M2

T

)
of the models. It is

divided in two regions characterized by opposite signs for k̂ : negative above the critical

curve and positive elsewhere. Let us detail the models we considered in the previous sections

by computing the quantities n∗
V , n∗

T , M2
T and M

(2)
V to determine where they are located on

this phase diagram.

Model 1:

We consider an N = 4 heterotic string model, for example the E8 × E8 theory on T 6, at

finite temperature and when supersymmetry is spontaneously broken by choosing QR = QF .
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Figure 2: Phase diagram
(
n∗V /n∗T , M

(2)
V /M2

T

)
of possible models with vanishing Wilson lines in the direction

5 and arbitrary ones in the directions 6, 7, 8, 9, 10. The quantity cr is everywhere positive, while the curvature
k̂ is negative above the critical curve and positive elsewhere. There is no critical point u > 0 outside the
rectangular domain.

For this model

n∗
T = n∗

V = 23 × 504 . (4.26)

Since n∗
V > 0, there is no critical solution u > 0.

Model 2:

In the same E8 ×E8 heterotic string model, the R-symmetry operator used to break super-

symmetry is chosen to be QF + QE8 + Q′
E8

in order to have n∗
V < 0 (see equation (2.43) for

the T = 0 case):

n∗
T = 23 × 504 ; n∗

V = 23 × (−8) . (4.27)

Then n∗
V /n∗T = −1/63 ≃ −0.0159, and so the model admits a critical solution u > 0. One

finds numerically that u ≃ 1.46 and γ4cr ≃ 441.

Let us consider Wilson lines yaI in the directions I = 6, 7, 8, 9, 10 and define

(Y a)2 =
1

4π

∑

I

(
yaI
RI

)2

, a = 1, ..., 16 , (4.28)
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where a = 1, ..., 8 stand for the Cartan generators of the first E8 factor and a = 9, ..., 16

for the second. The derivation of the charges Qa of the initially massless states (see the

Appendix) gives:

M2
T = 23 × 60

(
(Y 1)2 + · · ·+ (Y 16)2

)
, (4.29)

and

M
(2)
V = 23 × (−4)

(
(Y 1)2 + · · ·+ (Y 16)2

)
. (4.30)

Their ratio is Wilson line independent, M
(2)
V /M2

T = −1/15, which is negative, and so the

effective curvature is positive. Numerically, one finds γ2k̂ ≃ 67.2 ((Y 1)2 + · · ·+ (Y 16)2).

Model 3:

In the N = 2 orbifold model (see section 3.3 for details), we set QR = QF + QH + QE7 with

QE7 being 1 for the spinorial representations of E7, decomposed in terms of SO(12) ones,

and 0 for the vectorial ones. We find the following :

n∗
T = 4064 ; n∗

V = 992 . (4.31)

Since n∗
V /n∗T is positive, this model doesn’t admit a critical point u > 0 at this stage.

Model 4:

This is the N = 2 orbifold model constructed in Sect. 3.3, with

n∗
T = 4064 , n∗

V = −32 . (4.32)

Since n∗
V /n∗T = −1/127 ≃ −7.87 · 10−3, there is again a non trivial critical solution u > 0.

Numerically, we find u ≃ 1.90 and γ4cr ≃ 130.

Before switching on Wilson lines in the directions I = 6, 7, 8, 9, 10, the gauge group is

E7 × SU(2) × E8. Let us consider arbitrary Wilson lines, Y a, a = 1, ..., 16: Y 1,...,Y 6 for

the Cartan generators of the SO(12) subalgebra of E7, Y 7 for the Cartan generator of the

SU(2) subalgebra of E7, Y 8 for the SU(2) factor and Y 9,...,Y 16 for the E8. The mass square

scales, computed in the Appendix, are:

M2
T = 624

6∑

a=1

(Y a)2 + 1248 (Y 7)2 + 736 (Y 8)2 + 240

16∑

a=9

(Y a)2 (4.33)

and

M
(2)
V = −144

6∑

a=1

(Y a)2 − 288 (Y 7)2 + 224 (Y 8)2 + 240
16∑

a=9

(Y a)2 . (4.34)
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Since M
(2)
V has both definite positive and definite negative monomials, we can choose config-

urations of Wilson lines giving rise to either positive or negative effective curvature k̂, due

to the fact that −0.0348... < n∗V /n∗T < 0. For instance, if any Y a, a = 1, ..., 7 is non trivial

(while Y a = 0, a = 8, ..., 16), one has M2
V /M2

T = −3/13, and so k̂ is positive. Numerically,

one finds γ2k̂ ≃ 101 ((Y 1)2 + · · ·+ (Y 6)2 + 2(Y 7)2). On the contrary, if any Y a, a = 9, ..., 16

is non trivial (while Y a = 0, a = 1, ..., 8), one has M
(2)
V /M2

T = 1 and so the representa-

tive point in the phase diagram of Fig. 2 sits above the critical curve, i.e. k̂ is negative.

Numerically, one has γ2k̂ ≃ −274 ((Y 9)2 + · · ·+ (Y 16)2).

4.2.2 With Wilson Lines ya5

Any model originally characterized by the quantities n∗
T , n∗

V , M2
T and M

(2)
V can be deformed

by switching on the Wilson lines ya5 , a = 1, . . . , 16. We are looking for solutions of equation

(4.17) written in terms of the functions defined in (3.40):

F (u, ya5) + uF ′(u, ya5) + F̃ (u, ya5) + uF̃ ′(u, ya5) = 0 . (4.35)

We observe that the thermal contribution described by F (u, ya5) + uF ′(u, ya5) vanishes at

u = 0 and asymptotically at infinity. In all of the following examples, it is also positive.

On the contrary, the “effective potential” corrections F̃ (u, ya5) + uF̃ ′(u, ya5) vanish at u = 0

and diverge to +∞ or −∞ at infinity. Thus, in presence of arbitrary Wilson lines ya5 , the

universal solution u = 0 remains and we are looking for non trivial ones u > 0. These can

only arise when F̃ (u, ya5) + uF̃ ′(u, ya5) takes negative values.

Model 1:

Among the Wilson lines ya5 , (a = 1, ..., 8 for the first E8 factor and a = 9, ..., 16 for the

second), we choose to switch on either

i) y1
5 (with y2

5 = · · · = y16
5 = 0) or

ii) y1
5 = · · · = y8

5 (with y9
5 = · · · = y16

5 = 0).

In these cases and at fixed Wilson lines, F̃ (u, ya5) + uF̃ ′(u, ya5) increases from 0 to +∞, and

so there is still no solution u > 0.

Model 2:

For the Wilson lines defined in case ii) above, one finds that the critical solution u > 0

present before deformation is slightly shifted. However, in case i), the root u > 0 is sent to
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+∞ when y1
5 approaches the numerical value 0.227... from below. For y1

5 above this critical

bound, there is no non trivial solution anymore.

Model 3:

As said before, this model does not admit a critical solution u > 0 when all Wilson lines in

the fifth dimension are switched off. We consider four patterns of deformations, by switching

on a Wilson line for a single Cartan generator:

i) y1
5 (Cartan generator of SO(12) ⊂ E7)

ii) y7
5 (Cartan generator of SU(2) ⊂ E7)

iii) y8
5 (Cartan generator of SU(2))

iv) y9
5 (Cartan generator of E8)

In cases i) and iv), a large enough Wilson line deformation generates a non-trivial solution.

We find the critical bound y1
5 = 0.895... for case i), and y9

5 = 0.772... for case iv). In all

these cases, the phase transition occurs when the limit at u →∞ of the “effective potential”

contribution F̃ (u, ya5) + uF̃ ′(u, ya5) is switched from +∞ to −∞. In some sense, a solution

u = +∞ appears at the transition, and then decreases for a larger Wilson line, and finally

reaches a non-zero minimal value. In cases ii) and iii), since F̃ (u, ya5)+uF̃ ′(u, ya5) is positive

for any value of the Wilson line, the deformation does not create a non-trivial solution.

Model 4:

We consider the same four patterns of Wilson lines. This time, the critical solution u > 0

exists before deforming the model. We find that in the above cases, switching on a large

enough Wilson line makes this solution disappear. However, two distinct behaviors are

found:

In cases i) and ii), we find again that the phase transition corresponds to a change in the

behavior of the “effective potential” contribution at ∞. In a similar way as before, the

solution u > 0 existing before deformation will increase when switching on the Wilson line,

then go to +∞ at the transition point, and disappear for a larger Wilson line. We find the

critical bound y1
5 = 0.105... for case i), and y7

5 = 0.074... for case ii).

For iii) and iv), switching on the Wilson line makes the critical solution u > 0 decrease

towards zero, so that we are left only with the universal solution when the Wilson line is

above some bound. In case iii), this maximal value is y8
5 = 0.205..., while it is y9

5 = 0.207...

for case iv).
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Some remarks are in order

• In all cases presented above, when a critical solution u > 0 exists, the effective radiation

term cr given by equation (4.18) is strictly positive.

• In some models, incorporating the Wilson lines in the fifth direction allows the critical

solution u > 0 to be close to 0 or large. In other words, a hierarchy between the scales M

and T can be found by tuning the moduli ya5 .

5 Cosmological evolutions

When a non degenerate solution u > 0 exists, the model admits a well defined low energy

description in four dimensions. The dynamics in this regime is controlled by the Friedmann-

Hubble equation, whose behavior depends drastically on the signs of cr and k̂. In all models

we considered here, with initial N = 4 or N = 2 supersymmetry, cr turns out to be positive.

However, this situation may not be generic in more complex stringy examples with initial

N = 1 supersymmetry. For completeness, we briefly describe all possible cosmologies arising

for any positive or negative value of cr. In addition, we allow non trivial time dependent

profiles for the moduli φi, giving cm > 0.

5.1 Solutions for cr > 0

• For k̂ = 0, cr > 0, cm ≥ 0

When Wilson lines in the directions 6, 7, . . . , 10 are absent, the curvature k̂ vanishes. In real

time, the Friedmann-Hubble equation (4.13),

3H2 =
cr
a4

+
cm
a6

, (5.1)

can be used to express the time variable t as an integral function of the scale factor a,

t(a) =

√
3

cr

∫ a

0

v2dv√
v2 + a2

0

, (a ≥ 0), a0 =

√
cm
cr

. (5.2)

In this form, it is straightforward to draw a(t) (see Fig. 3). The explicit solution is

t(a) = t0

(
a

a0

√
1 +

a2

a2
0

− arcsinh

(
a

a0

))
, t0 =

√
3

2

cm

c
3/2
r

, (5.3)
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describing an expanding universe that starts with a big bang. As can be seen from equation

(5.1), the slope ȧ is infinite when a vanishes. At large t, the scale factor behaves as in the

cm = 0 particular case:

a(t) =
(cr

3

)1/4√
2t , (t ≥ 0) . (5.4)

t

a

Figure 3: Cosmological evolution for the case k̂ = 0, cr > 0, cm ≥ 0.

Since the transformation t → −t is a symmetry of the Friedmann-Hubble equation, the

previous expanding solutions have contracting counterparts and thus ending at t = 0 with

a big crunch. Finally, since the RHS of equation (5.1) is positive, there is no solution in

Euclidean time.

The effective field theory description always breaks down before the occurrence of a space-like

singularity, when the temperature (in string frame) is of order the Hagedorn temperature.

At this temperature scale, new stringy dynamics must be taken into consideration which can

result into a phase transition, realizing the scenario of [16].

• For k̂ > 0, cr > 0, cm ≥ 0

When we switch on Wilson lines, k̂ > 0. Rewriting the Friedmann-Hubble eq. (4.13) in the

form

(a2ȧ)2 = k̂(a2 + a2
−)(a2

+ − a2), a± =

√√√√
√

c2
r + 12k̂cm ± cr

6k̂
, (5.5)
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one expects a cosmological evolution satisfying 0 ≤ a ≤ a+ should exist, while a solution

with a scale factor greater than a+ should make sense in imaginary time only. In real time,

one can actually express t as a function of a as follows

t(a) = ±
(

ti +
1√
k̂

∫ a

0

v2dv√
(v2 + a2

−)(a2
+ − v2)

)
, (0 ≤ a ≤ a+) , (5.6)

where

ti = − 1√
k̂

∫ a+

0

v2dv√
(v2 + a2

−)(a2
+ − v2)

. (5.7)

From these expressions, one can see that the cosmological evolution starts with a big bang

at t = ti. It expands until t = 0 where the maximum size of the universe a+ is reached, and

then it contracts until a big crunch occurs at t = −ti.

To find a Euclidean solution, one needs to consider a scale factor greater than a+. It is

then possible to find it by proceeding as before, or use the fact that such a solution can be

obtained by analytic continuation of the expression (5.6) at t = 0, where a = a+. One can

write

t = ±
(

ti +
1√
k̂

∫ a+

0

v2dv√
(v2 + a2

−)(a2
+ − v2)

+
1√
k̂

∫ aE

a+

v2dv√
−(v2 + a2

−)(v2 − a2
+)

)
≡ −iτ ,

(5.8)

from which we derive

τ(aE) = ± 1√
k̂

∫ aE

a+

v2dv√
(v2 + a2

−)(v2 − a2
+)

, (aE ≥ a+) . (5.9)

Fig. 4 represents the solutions a(t) and aE(τ).

In the particular case where cm = 0, the solutions (5.6) and (5.9) are taking the explicit

forms

a(t) = a+

√
1−

(
t

ti

)2

, (ti ≤ t ≤ −ti), a+ =

√
cr

3k̂
, ti = −1

k̂

√
cr
3

, (5.10)

and

aE(τ) = a+

√
1 +

(
τ

ti

)2

, (5.11)

whose shapes are similar to the generic case with cm > 0.

• For k̂ < 0, cr > 0, cm ≥ 0
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a

t
a( )t

it

a+

τ

)τ(E

Figure 4: Cosmological evolution for the case k̂ > 0, cr > 0, cm ≥ 0 (in bold line). A big bang and a big
crunch are occurring at t = ti and t = −ti respectively. This solution is connected to a Euclidean one at
t = −iτ = 0 that is asymptotically linear.

This case is easier to deal with. Eq. (4.13) can be rewritten as

(a2ȧ)2 = |k̂|(a2 + a2
−)(a2 + a2

+) , a± =

√√√√cr ±
√

c2
r − 12|k̂|cm
6|k̂|

, (5.12)

and admits the expanding solution

t(a) =
1√
k̂

∫ a

0

v2dv√
(v2 + a2

−)(v2 + a2
+)

. (5.13)

(See Fig. 5.) After a big bang, the scale factor is growing linearly in time.

The result for the particular case cm = 0 can be written more explicitly. The solution takes

the form

a(t) = a+

√(
t + t0

t0

)2

− 1 , (t ≥ 0), a+ =

√
cr

3|k̂|
, t0 =

1

|k̂|

√
cr
3

. (5.14)

These cosmological solutions do not admit a sensible Euclidean continuation.
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a

t
Figure 5: Cosmological evolution for the case k̂ < 0, cr > 0, cm ≥ 0.

5.2 Exotic cosmologies with cr < 0

Although in all explicit models we presented before cr is positive, it is interesting to analyze

the exotic situation with negative cr, which is not a priori forbidden in more general cases

with N = 1 initial supersymmetry.

• For k̂ = 0, cr < 0, cm ≥ 0

A cosmological evolution in real time only exists if cm is switched on. The scale factor

satisfies 0 ≤ a ≤ a0 where

a0 =

√
cm
|cr|

. (5.15)

Between a big bang at ti < 0 and a big crunch at −ti > 0, a reaches a maximum a0 at t = 0.

At this time, an analytic continuation is allowed: A Euclidean solution satisfies aE ≥ a0 and

goes to infinity for large positive or negative Euclidean time (see Fig. 6).

• For k̂ > 0, cr ≤ 0, cm ≥ 0

Most of the considerations of this case are identical to the one derived for k̂ > 0, cr > 0,

cm ≥ 0. In particular, the Friedmann-Hubble equation is still given by equation (5.5) and

both the cosmological solution (5.6) and the Euclidean one (5.9) are valid. They are shown

in Fig. 7. As long as cm > 0, the only qualitative difference with the case cr > 0 is that

the Euclidean solution has two symmetric inflexion points. However, when cm vanishes, the
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0

t

aE(τ)

a( )t

τ

it

a

Figure 6: Cosmological evolution for the case k̂ = 0, cr < 0, cm ≥ 0 (in bold line). A big bang and a big
crunch are occurring at t = ti and t = −ti respectively. This solution is connected to a Euclidean one at
t = −iτ = 0.

evolution in real time ceases to exist.

+

E(τ)

t
a(t

it

τ

)
a

a

Figure 7: Cosmological evolution for the case k̂ > 0, cr ≤ 0, cm > 0 (in bold line). A big bang and a big
crunch are occurring at t = ti and t = −ti respectively. This solution is connected to a Euclidean one at
t = −iτ = 0 that is asymptotically linear and has two symmetric inflexion points.
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• For k̂ < 0, cr < 0, cm ≥ 0

This case presents the most interesting features and involves either a first or second order

phase transition in the early universe. The former case is the only one considered in this

paper, where a Euclidean solution has a finite action and thus can be interpreted as an

instanton involved in a tunneling effect. These behaviors are qualitatively similar to the

inflationary case studied in [6, 12]. To be more specific we consider the Friedmann-Hubble

equation in the form

3(a2ȧ) = 3|k̂|a4 − |cr|a2 + cm , (5.16)

and discuss various regimes, depending on the value of the discriminant of the RHS

δ ≡ c2
r − 12|k̂|cm . (5.17)

i) When δ > 0, there are two critical values for the scale factor

a± =

√√√√ |cr| ±
√

c2
r − 12|k̂|cm

6|k̂|
. (5.18)

Equation (5.16) then admits two distinct cosmological evolutions. The first one satisfies

0 ≤ a ≤ a− and corresponds to the usual dynamics between a big bang at ti < 0 and a big

crunch at −ti. The scale factor reaches a maximum a− at t = 0. The second one describes

an asymptotically linear contracting solution followed by an asymptotically linear expanding

one. The two branches are smoothly connected at t = 0, where the scale factor reaches a

minimum value a+. Therefore, this solution is non-singular. (See Fig. 8.)

The two cosmological evolutions are also related to one another by a double analytic con-

tinuation: t = −iτ and then τ = τf + it. Between τ = 0 and τ = τf , a Euclidean solution

whose action can be shown to be finite is allowed. It is thus an instanton between the two

branches in real time and contributes to a first order phase transition. We note that when

cm = 0, the big bang / big crunch solution disappears since a− vanishes.

ii) Let us turn now to the second case where the discriminant (5.17) satisfies δ < 0. Equation

(5.16) does not admit any critical point and the scale factor is never stationary. There is a

single cosmological evolution (and no Euclidean solution). It increases from a big bang at

t = 0, while for large t, its time dependence becomes linear. Thus, close to the big bang, the

evolution is similar to the first solution occurring when δ > 0, while for large t its behavior
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)t(a

)t(a
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−a

aE( )

τ f

+

τ

Figure 8: There are two cosmological evolutions (in bold lines) for the case k̂ < 0, cr ≤ 0, cm ≥ 0, when
δ > 0. The first one starts with a big bang at t = ti and ends with a big crunch at t = −ti. The second one
has a contracting phase followed by an expanding one. These two branches are connected to each other by a
first order phase transition via an instanton.

is similar to the second expanding solution. Since there is an inflexion point at t = tinf when

a =
√

2cm/|cr|, the cosmological evolution for δ < 0 can be interpreted as a second order

phase transition between the same initial and final states encountered in the first order phase

transition for δ > 0. (See Fig. 9.)

iii) In the critical case δ = 0, equation (5.16) admits two expanding cosmological evolutions

which are asymptotic to a static one, a ≡ a0, where

a0 ≡ a± =

√
|cr|
6|k̂|

= ainf =

√
2cm
|cr|

, (5.19)

together with two contracting ones obtained by time reversal. The first expanding solution

starts with a big bang, while the second one is linear for large positive time. (See Fig. 10.)
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a

tinft

Figure 9: Cosmological evolution for the case k̂ < 0, cr ≤ 0, cm ≥ 0, when δ < 0. It describes a second
order phase transition occurring at tinf, between a phase that starts with a big bang to another phase that
expands linearly in time.

0

t

a

a

Figure 10: There are two expanding (contracting) cosmological evolutions for the case k̂ < 0, cr ≤ 0,
cm ≥ 0, when δ = 0. All are asymptotic to the static solution a ≡ a0.
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6 Conclusions

We have obtained several cosmological solutions in a large class of four dimensional heterotic

string compactifications with spontaneously broken N = 4 or N = 2 space-time supersymme-

try. The cosmological evolution is induced once radiative quantum and thermal corrections

are taken into consideration. These corrections are calculated at the perturbative string

level and shown to possess universal scaling properties. The reason is an underlying duality

between the temperature and the supersymmetry breaking scale.

Our solutions correspond to homogeneous and isotropic Friedmann-Robertson-Walker uni-

verses. They are characterized by the ratio of the supersymmetry breaking scale to the tem-

perature, and this ratio remains constant during time evolution. Even though Kaluza-Klein

states associated to the supersymmetry breaking cycle are thermally excited, the equation

of state governing cosmological evolution is identical to that of massless thermal radiation

in four dimensions. This is due to the special relation between the no-scale modulus field

associated to the supersymmetry breaking scale and the Hubble parameter: Φ̇2 = 2H2/3.

Universes with spherical, toroidal or hyperbolic spatial sections can be found once we incor-

porate Wilson line deformations.

In this paper we focused on the low temperature phase of the models. When the temperature

is close to the Hagedorn temperature our effective field theory analysis breaks down and new

stringy dynamics must be taken into consideration. It would be interesting to investigate

if phase transitions can occur in these models as the temperature approaches the Hagedorn

temperature, and whether such phase transitions result in non-singular time-dependent ge-

ometries. To this extent it could prove useful to incorporate in our work the proposal of [23],

where such a phase transition is shown to occur in N = 4 heterotic string models, and study

the cosmological implications.

It would be interesting to extend our analysis to the N = 1 heterotic orbifold models,

and for the cases where supersymmetry is broken spontaneously. In this class of models, one

expects to find inflationary phases, once radiative and thermal corrections are properly taken

into account. The analysis of [6,12] reveals interesting transitions between such inflationary

phases and radiation dominated phases with similar properties to those found in this work. In

our examples, the coefficient of the 1/a4 term in the Friedmann-Hubble equation is positive.
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Perhaps among the N = 1 examples it is possible to find models characterized by negative

values of this coefficient. Then non trivial cosmological phenomena would occur, including

first or second order phase transitions that allow for the possibility to realize the proposal

for the creation of a universe from “nothing” [11] in string theory [6, 12].

The relation between the supersymmetry breaking scale with the temperature is a key prop-

erty of our solutions. Suppose that such a scaling property persisted in an early universe

epoch, and that initially supersymmetry was broken around the string scale. During such

epoch, the Susy-breaking scale gets lower and lower as the universe expands and cools. At

lower temperatures new dynamics may become relevant that can stabilize this scale. Such

a scenario can give us a new perspective on how to handle the hierarchy and naturalness

problems.
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Appendix A

In this Appendix, we provide details on the derivation of the charges associated to the

Cartan generators of the gauge groups of the heterotic string models we considered. We

also derive the contributions to M2
T and M

(2)
V (see equation (3.34)) associated to Wilson

lines in the internal direction 6 only. Since the result is linear in the (yi6)
2’s, the result for

arbitrary Wilson lines in the directions 6, 7, 8, 9, 10 is obtained under the replacement

(yi6)
2/(4πR2

6) → (Y i)2, where (Y i)2 is defined in (4.28).

Consider the N = 4 heterotic model with gauge group E8 × E8. When built out from 32

worldsheet fermions as in the standard procedure, the vertex operators for the gauge fields

associated to the Cartan generators of the first E8 factor are given by

λ2i−1λ2i, i = 1, . . . , 8, (A.1)

whereas those associated to the Cartan generators of the second E8 are given by

λ2i−1λ2i, i = 9, . . . , 16. (A.2)

In terms of representations of SO(16), the adjoint representation of E8 decomposes as

248 = 120⊕ 128, (A.3)

where the 120 is the adjoint representation of SO(16) and the 128 is the spinorial represen-

tation with positive chirality. The corresponding vertex operators can be written explicitly

by bosonizing the 32 fermions into 16 free bosons Hi, i = 1, . . . , 16. This formalism has the

advantage to make the roots of the Lie algebra appear in a clear way. For the 120 we obtain

120 :
(
ei(±Hj±Hk), (j 6= k)

)
⊕ i∂Hj , j, k ∈ {1, . . . , 8}. (A.4)

The 8 latter vertex operators correspond to the Cartan generators. For the 128 we have

128 : e
i
2
(ǫ1H1+ǫ2H2+···+ǫ8H8), (A.5)

with the GSO constraint
∏8

i=1 ǫi = 1. Our goal here is to compute the quantity

M2
T (ya6) =

1

4πR2
6

∑

s∈248

(Qs
ay

a
6)

2, (A.6)
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where we denote by Qs
a the charges of a state s with respect to the Cartan generators.

We are going to consider the case of one E8 gauge group; the generalization to E8 × E8 is

straightforward.

To begin with, we recall that the Cartan states are neutral. Then we are interested in the

112 remaining states of the 120 adjoint representation. It is not hard to see that

∑

s∈120

(Qs
ay

a
6)

2 =
∑

i6=j∈{1,...,8}

∑

ǫ1,ǫ2=±1

(ǫ1y
i
6 + ǫ2y

j
6)

2. (A.7)

Therefore we get a quadratic polynomial in the yi6’s. Noticing that this polynomial is invari-

ant under the transformations yi6 ↔ −yi6 and yi6 ↔ yj6, we obtain

∑

s∈120

(Qs
ay

a
6)

2 = α
8∑

i=1

(yi6)
2. (A.8)

Computing the (y1
6)

2 term, we get α = 28.

For the 128, we see that

∑

s∈128

(Qs
ay

a
6)

2 =
∑

ǫ1,...,ǫ7=±1

1

4

(
ǫ1y

1
6 + ǫ2y

2
6 + · · ·+ (

7∏

i=1

ǫi)y
8
6

)2

. (A.9)

If we set y8
6 = 0, the symmetries yi6 ↔ −yi6 and yi6 ↔ yj6, valid for i, j = 1, . . . , 7, guarantee

that this polynomial will be of the form

β

7∑

i=1

(yi6)
2. (A.10)

Restoring y8
6 6= 0 gives a (y8

6)
2 term and crossed terms yi6y

8
6. However, y8

6 has been artificially

isolated in the treatment of the GSO constraint: by isolating other yi6’s and using the same

arguments, we can show that our polynomial is of the from

∑

s∈128

(Qs
ay

a
6)

2 = β
8∑

i=1

(yi6)
2. (A.11)

We obtain β = 32.

It is then straightforward to evaluate the sums encountered before. We obtain

M2
T =

23

4πR2
6

(
60

16∑

i=1

(yi6)
2

)
, (A.12)
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and when coupling the Scherk-Schwarz cycle to the helicity of the E8 representation

M
(2)
V =

23

4πR2
6

(
−4

16∑

i=1

(yi6)
2

)
. (A.13)

In the N = 2 models, the orbifolding breaks E8 → E7 × SU(2), under which the adjoint

representation decomposes as

248→ (133, 1)⊕ (56, 2)⊕ (1, 3). (A.14)

The Cartan generators of E8 give the Cartan generators of E7 × SU(2):

(i∂H1, . . . , i∂H6, i(∂H7 − ∂H8)) ; i(∂H7 + ∂H8). (A.15)

Switching on arbitrary y1
6, . . . , y

7
6, y

8
6, we compute the charges of the various states step by

step.

In the 133, we have 7 neutral Cartan operators, 60 ladder operators in the Adj(SO(12))

subalgebra

ei(±Hj±Hk), j 6= k ∈ {1, . . . , 6}, (A.16)

2 ladders in the Adj(SU(2))

e±i(H7−H8), (A.17)

and 64 ladders in a spinorial representation

e
i
2
(±H1±···±H6±(H7−H8)) (A.18)

obeying a GSO condition. We see that y7
6 has a particular role here. The latter states have

charges ±1
2

under the first six Cartan generators, and charges ±1 under the seventh. Using

the same arguments as before, we see that the sum for the spinorial states is of the form

α

(
6∑

i=1

(yi6)
2 + (2y7

6)
2

)
. (A.19)

The polynomial we are looking for is therefore

∑

s∈133

(Qs
ay

a
6)

2 = 20
6∑

i=1

(yi6)
2 + 2(2y7

6)
2 + 16

(
6∑

i=1

(yi6)
2 + (2y7

6)
2

)
= 36

6∑

i=1

(yi6)
2 + 72(y7

6)
2.

(A.20)
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Note that if we want to couple the Scherk-Schwarz cycle to the helicity of the E7, we have to

compute also
∑

s sign(s)(Qay
a
6)

2, where states in the spinorial representations of the SO(12)

subgroup contribute with a minus sign. To get this sum we have to put a minus sign in front

of the 64 part, so that

∑

s∈133

sign(s)(Qs
ay

a
6)

2 = 20
6∑

i=1

(yi6)
2 + 2(2y7

6)
2 − 16

(
6∑

i=1

(yi6)
2 + (2y7

6)
2

)

= 4
6∑

i=1

(yi6)
2 − 56(y7

6)
2. (A.21)

For the (56,2) representation, we begin with the states with vertex operators

e±Hi±H7 , e±Hi±H8. (A.22)

The corresponding Qs
ay

a
6 are respectively

± yi6 ± (y7
6 + y8

6), ± yi6 ± (y7
6 − y8

6). (A.23)

Therefore the sum for these states equals

∑

s

(Qs
ay

a
6)

2 = 4

6∑

i=1

(yi6)
2 + 24 (y7

6 + y8
6)

2 + 4

6∑

i=1

(yi6)
2 + 24 (y7

6 − y8
6)

2

= 8

6∑

i=1

(yi6)
2 + 48 ((y7

6)
2 + (y8

6)
2). (A.24)

The remaining states to be considered have vertex operators

e
i
2
(±H1±···±H6±(H7+H8)). (A.25)

For these, we get

16

(
6∑

i=1

(yi6)
2 + (2y8

6)
2

)
. (A.26)

Adding everything, we get the final result for the representation:

∑

s∈(56,2)

(Qs
ay

a
6)

2 = 24

6∑

i=1

(yi6)
2 + 48 (y7

6)
2 + 112 (y8

6)
2. (A.27)
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If we couple to the E7 helicity, we also have

∑

s∈(56,2)

sign(s)(Qs
ay

a
6)

2 = −8
6∑

i=1

(yi6)
2 + 48 (y7

6)
2 − 16 (y8

6)
2. (A.28)

For the 3 of SU(2) the two states

e±i(H7+H8) (A.29)

have charges ±2. So we get ∑

s∈(1,3)

(Qs
ay

a
6)

2 = 8 (y8
6)

2. (A.30)

In the twisted sector, we encounter the representation (56,1), whose sum is obtained by

switching off y8
6 in the result obtained for the (56,2) representation and by dividing the

result by 2. One then obtains,

∑

s∈(56,1)

(Qs
ay

a
6)

2 = 12
6∑

i=1

(yi6)
2 + 24 (y7

6)
2, (A.31)

∑

s∈(56,1)

sign(s)(Qs
ay

a
6)

2 = −4

6∑

i=1

(yi6)
2 + 24 (y7

6)
2. (A.32)

We also encounter the (1,2) representation, where the sum equals 2(y8
6)

2.

Application to Models 3 and 4

For model 4, we set QR = QF + QH . If we consider Wilson lines corresponding to the 16

Cartan generators of E8 ×E7 × SU(2), the result is

M
2,(2)
T,V =

4

4πR2
6

[
60

16∑

i=9

(yi6)
2 + 36

6∑

i=1

(yi6)
2 + 72(y7

6)
2 + 24

6∑

i=1

(yi6)
2 + 48 (y7

6)
2 + 112 (y8

6)
2 + 8(y8

6)
2

]

± 1

4πR2
6

[
32

(
12

6∑

i=1

(yi6)
2 + 24 (y7

6)
2

)
+ 128

(
2(y8

6)
2
)
]

.

So we get

M2
T =

1

4πR2
6

(
240

16∑

i=9

(yi6)
2 + 624

6∑

i=1

(yi6)
2 + 1248 (y7

6)
2 + 736 (y8

6)
2

)

M
(2)
V =

1

4πR2
6

(
240

16∑

i=9

(yi6)
2 − 144

6∑

i=1

(yi6)
2 − 288 (y7

6)
2 + 224 (y8

6)
2

)
. (A.33)
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For model 3, we set QR = Qa + QH + QE7 . We get the same expression for M2
T , while

M
(2)
V =

4

4πR2
6

[
4

6∑

i=1

(yi6)
2 − 56(y7

6)
2 − 8

6∑

i=1

(yi6)
2 + 48 (y7

6)
2 − 16 (y8

6)
2 + 8(y8

6)
2 + 60

16∑

i=9

(yi6)
2

]

− 1

4πR2
6

[
32

(
−4

6∑

i=1

(yi6)
2 + 24 (y7

6)
2

)
+ 128

(
2(y8

6)
2
)
]

=
1

4πR2
6

(
112

6∑

i=1

(yi6)
2 − 800 (y7

6)
2 − 288 (y8

6)
2 + 240

16∑

i=9

(yi6)
2

)
. (A.34)

References

[1] I. Antoniadis, C. Bachas, J. R. Ellis and D. V. Nanopoulos, “An expanding universe in

string theory,” Nucl. Phys. B 328 (1989) 117.

[2] C. Kounnas and D. Lust, “Cosmological string backgrounds from gauged WZW mod-

els,” Phys. Lett. B 289 (1992) 56 [arXiv:hep-th/9205046].

[3] C. R. Nappi and E. Witten, “A closed, expanding universe in string theory,” Phys. Lett.

B 293 (1992) 309 [arXiv:hep-th/9206078].

[4] S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, “From big bang to big crunch and

beyond,” JHEP 0206 (2002) 017 [arXiv:hep-th/0204189].

[5] C. Kounnas, N. Toumbas and J. Troost, “A wave-function for stringy universes,” JHEP

0708 (2007) 018 [arXiv:0704.1996 [hep-th]].

[6] C. Kounnas and H. Partouche, “Inflationary de Sitter solutions from superstrings,”

arXiv:0706.0728 [hep-th].

[7] H. Liu, G. W. Moore and N. Seiberg, “The challenging cosmic singularity,”

arXiv:gr-qc/0301001.

[8] J. M. Maldacena and C. Nunez, “Supergravity description of field theories on

curved manifolds and a no go theorem,” Int. J. Mod. Phys. A 16 (2001) 822

[arXiv:hep-th/0007018].

51



[9] P. K. Townsend, “Quintessence from M-theory,” JHEP 0111 (2001) 042

[arXiv:hep-th/0110072]; J. Sonner and P. K. Townsend, “Recurrent acceleration in

dilaton-axion cosmology,” Phys. Rev. D 74 (2006) 103508 [arXiv:hep-th/0608068];

J. Sonner and P. K. Townsend, “Dilaton domain walls and dynamical systems,” Class.

Quant. Grav. 23 (2006) 441 [arXiv:hep-th/0510115].

[10] K. Skenderis, P. K. Townsend and A. Van Proeyen, “Domain-wall/cosmology corre-

spondence in adS/dS supergravity,” JHEP 0708 (2007) 036 [arXiv:0704.3918 [hep-th]].

[11] A. Vilenkin, “Creation of universes from nothing,” Phys. Lett. B 117 (1982) 25;

J. B. Hartle and S. W. Hawking, “Wave function of the universe,” Phys. Rev. D 28

(1983) 2960; A. Vilenkin, “Quantum creation of universes,” Phys. Rev. D 30 (1984)

509; R. Brustein and S. P. de Alwis, “The landscape of string theory and the wave

function of the universe,” Phys. Rev. D 73 (2006) 046009 [arXiv:hep-th/0511093].

[12] C. Kounnas and H. Partouche, “Instanton transition in thermal and moduli deformed

de Sitter cosmology,” arXiv:0705.3206 [hep-th].

[13] N. Ohta, “Accelerating cosmologies and inflation from M / superstring theories,” Int. J.

Mod. Phys. A 20 (2005) 1 [arXiv:hep-th/0411230]; K. i. Maeda and N. Ohta, “Inflation

from superstring / M theory compactification with higher order corrections. I,” Phys.

Rev. D 71 (2005) 063520 [arXiv:hep-th/0411093].

[14] M. Bouhmadi-Lopez and P. Vargas Moniz, “Quantisation of parameters and the string

landscape problem,” JCAP 0705 (2007) 005 [arXiv:hep-th/0612149].

[15] N. Matsuo, “Superstring thermodynamics and its application to cosmology,” Z. Phys.

C 36 (1987) 289.

[16] R. H. Brandenberger and C. Vafa, “Superstrings in the early universe,” Nucl. Phys. B

316 (1989) 391; R. H. Brandenberger, “String gas cosmology and structure formation:

A brief review,” arXiv:hep-th/0702001.

[17] M. Grana, T. W. Grimm, H. Jockers and J. Louis, “Soft supersymmetry breaking

in Calabi-Yau orientifolds with D-branes and fluxes,” Nucl. Phys. B 690 (2004) 21

[arXiv:hep-th/0312232]; D. Lust, S. Reffert and S. Stieberger, “Flux-induced soft su-

persymmetry breaking in chiral type IIb orientifolds with D3/D7-branes,” Nucl. Phys. B

52



706 (2005) 3 [arXiv:hep-th/0406092]; J. P. Derendinger, C. Kounnas, P. M. Petropou-

los and F. Zwirner, “Superpotentials in IIA compactifications with general fluxes,”

Nucl. Phys. B 715 (2005) 211 [arXiv:hep-th/0411276]; L. Andrianopoli, M. A. Lledo

and M. Trigiante, “The Scherk-Schwarz mechanism as a flux compactification with

internal torsion,” JHEP 0505 (2005) 051 [arXiv:hep-th/0502083]; G. Dall’Agata and

N. Prezas, “Scherk-Schwarz reduction of M-theory on G2-manifolds with fluxes,” JHEP

0510 (2005) 103 [arXiv:hep-th/0509052].

[18] J. Scherk and J. H. Schwarz, “Spontaneous breaking of supersymmetry through dimen-

sional reduction,” Phys. Lett. B 82 (1979) 60.

[19] R. Rohm, “Spontaneous supersymmetry breaking in supersymmetric string theories,”

Nucl. Phys. B 237 (1984) 553.

[20] C. Kounnas and M. Porrati, “Spontaneous supersymmetry breaking in string theory,”

Nucl. Phys. B 310 (1988) 355; S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner,

“Superstrings with spontaneously broken supersymmetry and their effective theories,”

Nucl. Phys. B 318 (1989) 75.

[21] J. J. Atick and E. Witten, “The Hagedorn transition and the number of degrees of

freedom of string theory,” Nucl. Phys. B 310 (1988) 291.

[22] C. Kounnas and B. Rostand, “Coordinate dependent compactifications and discrete

symmetries,” Nucl. Phys. B 341 (1990) 641.

[23] I. Antoniadis and C. Kounnas, “Superstring phase transition at high temperature,”

Phys. Lett. B 261 (1991) 369; I. Antoniadis, J. P. Derendinger and C. Kounnas, “Non-

perturbative temperature instabilities in N = 4 strings,” Nucl. Phys. B 551 (1999) 41

[arXiv:hep-th/9902032].

[24] E. Witten, “Dimensional reduction of superstring models,” Phys. Lett. B 155 (1985)

151; S. Ferrara, C. Kounnas and M. Porrati, “General dimensional reduction of ten-

dimensional supergravity and superstring,” Phys. Lett. B 181 (1986) 263; M. Cvetic,

J. Louis and B. A. Ovrut, “A string calculation of the Kähler potentials for moduli of

ZN orbifolds,” Phys. Lett. B 206 (1988) 227; L. J. Dixon, V. Kaplunovsky and J. Louis,

“On effective field theories describing (2, 2) vacua of the heterotic string,” Nucl. Phys.

53



B 329 (1990) 27; M. Cvetic, J. Molera and B. A. Ovrut, “Kähler potentials for matter

scalars and moduli of ZN orbifolds,” Phys. Rev. D 40 (1989) 1140.

[25] E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, “Naturally vanishing cos-

mological constant in N = 1 supergravity,” Phys. Lett. B 133 (1983) 61; J. R. Ellis,

C. Kounnas and D. V. Nanopoulos, “Phenomenological SU(1,1) supergravity,” Nucl.

Phys. B 241 (1984) 406.

[26] E. Kiritsis and C. Kounnas, “Perturbative and non-perturbative partial supersym-

metry breaking: N = 4 → N = 2 → N = 1,” Nucl. Phys. B 503 (1997) 117

[arXiv:hep-th/9703059].

[27] K. S. Narain, “New heterotic string theories in uncompactified dimensions < 10,” Phys.

Lett. B 169 (1986) 41; K. S. Narain, M. H. Sarmadi and E. Witten, “A note on toroidal

compactification of heterotic string theory,” Nucl. Phys. B 279 (1987) 369.

[28] E. Kiritsis, “String theory in a nutshell,” Princeton, USA: Univ. Pr. (2007) 588 p.

[29] E. Kiritsis and C. Kounnas, “Curved four-dimensional space-times as infrared regulator

in superstring theories,” Nucl. Phys. Proc. Suppl. 41 (1995) 331 [arXiv:hep-th/9410212];

E. Kiritsis and C. Kounnas, “Infrared regularization of superstring theory and

the one loop calculation of coupling constants,” Nucl. Phys. B 442 (1995) 472

[arXiv:hep-th/9501020].

[30] S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, “Effective superhiggs and Str M2

from four-dimensional strings,” Phys. Lett. B 194 (1987) 366.

[31] T. Catelin-Jullien, C. Kounnas, H. Partouche and N. Toumbas, In preparation.

[32] C. Kounnas, H. Partouche, N. Toumbas and J. Troost, In preparation.

54



Annexe D

Publication no 2 :
Thermal and quantum superstring
cosmologies

195



ar
X

iv
:0

80
3.

26
74

v1
  [

he
p-

th
] 

 1
8 

M
ar

 2
00

8

LPTENS–08/21, CPHT–RR008.0308, March 2008

Thermal and Quantum
Superstring Cosmologies∗

Tristan Catelin-Jullien1, Costas Kounnas1
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⋄ Unité mixte du CNRS et de l’Ecole Polytechnique, UMR 7644.



1 Introduction

A fundamental challenge for string theory is to explain the cosmology of our Universe. How

can the theory describe, or even better predict, basic features of our Universe? Despite

considerable effort over the last few years (see [1] – [9] for a partial list of references), still a

concrete string theoretic framework for studying cosmology is lacking. The purpose of this

article is to report some progress toward this direction by exhibiting new, physically relevant

cosmological solutions of superstring theory. These solutions were obtained and analyzed

recently in [10], after taking into account thermal and quantum corrections in superstring

models for which supersymmetry is spontaneously broken.

At the level of classical string compactifications (with or without fluxes), it seems difficult to

obtain realistic, tractable cosmological solutions. In most cases, the classical ground states

correspond to static Anti-de Sitter or flat backgrounds and not to cosmological ones. But

this classical analysis neglects the thermal and quantum corrections, which inevitably must

play an important role in any attempt to identify non-trivial cosmological states.

It is precisely this direction that we wish to explore in this article. It involves studying

cosmologies that are generated dynamically at the quantum level of string theory [6–8, 10].

For certain cases the quantum and thermal corrections are under control due to the very

special structure of the underlying effective supergravity theory in its spontaneously broken

supersymmetric phase.

In order to see how cosmological solutions emerge naturally in this context, consider the

case of an initially supersymmetric flat string background at finite temperature. The ther-

mal fluctuations produce a calculable energy density whose back-reaction on the space-time

metric and on certain moduli fields gives rise to a cosmological evolution. For temperatures

below the Hagedorn temperature, the evolution of the universe is known to be radiation

dominated [11, 12].

More interesting cases are those where space-time supersymmetry is spontaneously broken

at the string level via freely acting orbifolds [13]– [18]. In these cases, the thermal and

supersymmetry breaking couplings correspond to a generalization of Scherk-Schwarz com-

pactification in superstrings. are The thermal corrections are implemented by introducing a

coupling of the space-time fermion number QF to the string momentum and winding num-
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bers associated to the Euclidean time cycle S1
T . The breaking of supersymmetry is generated

by a similar coupling of an internal R-symmetry charge QR to the momentum and winding

numbers associated to an internal spatial cycle S1
M , e.g. the X5 coordinate cycle.

Two special mass scales appear both associated with the breaking of supersymmetry: the

temperature scale T ∼ 1/(2πR0) and the supersymmetry breaking scale M ∼ 1/(2πR5),

where R0 and R5 are the radii of the Euclidean time cycle, S1
T , and of the internal spatial

cycle, S1
M , respectively. The initially degenerate mass levels of bosons and fermions split

by an amount proportional to T or M , according to the charges QF and QR. This mass

splitting gives rise to a non-trivial free energy density, which incorporates simultaneously the

thermal corrections and quantum corrections due to the supersymmetry breaking boundary

conditions along the spatial cycle S1
M . The back-reaction on the initially flat space-time

metric results in deferent kinds of cosmological evolutions, depending on the initial amount

of supersymmetry (N = 4, N = 2, N = 1).

In [10] we concentrated on four dimensional heterotic models with initial N = 4 and N = 2

amount of supersymmetry, leaving the phenomenologically more interesting N = 1 cases for

future work. Below we summarize some of our main results.

2 Thermal and quantum corrections in heterotic back-

grounds

We study the class of four dimensional string backgrounds obtained by toroidal compactifi-

cation of the heterotic string on T 6 and T 6/Z2 orbifolds. The initial amount of space-time

supersymmetry is N4 = 4 for the T 6 models and N4 = 2 for the orbifold models. Space-

time supersymmetry is then spontaneously broken by introducing Scherk-Schwarz boundary

conditions on an internal spatial cycle and by thermal corrections.

The four dimensional one-loop effective action in string frame is given by

S =

∫
d4x

√
− det g

(
e−2φ(

1

2
R + 2∂µφ∂µφ + . . .)− VString

)
, (2.1)

where φ is the 4d dilaton field. The ellipses stand for the kinetic terms of other moduli

fields. At zero temperature, the effective potential VString is given in terms of the one-loop

2



Euclidean string partition function as follows:

Z

V4
= −VString (2.2)

with V4 the 4d Euclidean volume. At finite temperature, the one-loop Euclidean partition

function determines the free energy density and pressure:

Z

V4

= −FString = PString. (2.3)

In order to determine the back-reaction on the metric and on certain moduli fields, it is

convenient to work in the Einstein frame. For this purpose, we define the complex field S,

S = e−2φ + iχ, where χ is the axion field. Then after the Einstein rescaling of the metric,

the one loop effective action becomes:

S =

∫
d4x

√
− det g

[
1

2
R− gµν KIJ̄ ∂µΦI∂νΦ̄J̄ − 1

s2
VString(ΦI , Φ̄Ī)

]
. (2.4)

Here Ki̄ is the metric on the scalar field manifold {ΦI}, parameterized by various com-

pactification moduli and the field S. This manifold includes also the main moduli fields

TI , UI , I = 1, 2, 3, which are the volume and complex structure moduli of the three internal

2-cycles respectively.

In the Einstein frame the effective potential is rescaled by a factor 1/s2, where s = ReS =

e−2φ. We have VEin = VString/s
2. We always work in gravitational mass units, with MG =

1√
8πGN

= 2.4× 1018 GeV.

What will be crucial in our analysis are some fundamental scaling properties of VEin in the

limit of large R0, R5 ≫ 1. In this limit, only the temperature scale T ∼ 1/
√

sR0 and three of

the main moduli fields, {S, T1, U1} appear in VEin. All other moduli appear in exponentially

suppressed contributions:

VEin ≃
F

(
sR2

0

sR2
5
, . . .

)

(st1u1)2
+ O(e−c0R0−c5R5), (2.5)

where the function F will be determined later on. Freezing all other moduli, the classical

Kälher potential takes a no-scale structure [19], as was expected from the effective field

theory approach:

K = − log (S + S̄)− log (T1 + T̄1)− log (U1 + Ū1) ≡ −3 log (Z + Z̄), (2.6)
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with z = Re Z and z3 = st1u1.

The classical superpotential is constant, and so the gravitino mass scale is given by

M2 = 8eK =
1

st1u1
=

1

z3
. (2.7)

Freezing further ImZ and defining the field Φ by

e2αΦ = M2 =
8

(Z + Z̄)3
, (2.8)

we obtain the following kinetic term

− gµν 3
∂µZ∂νZ̄

(Z + Z̄)2
= −gµν

α2

3
∂µΦ∂νΦ (2.9)

from the Kähler potential. The choice α2 = 3/2 normalizes canonically the kinetic term of

the no-scale modulus Φ.

In all, the effective potential in Einstein frame acquires the following structure:

VEin ≃ M4 F

(
sR2

0

sR2
5

, . . .

)
≃ M4 F

(
M2

T 2
,
m2

Y

T 2

)
. (2.10)

The possible dependence on other Susy mass scales M2
Y will become clear latter on, when

we consider explicit examples.

3 Thermal and spontaneous breaking of supersymme-

try

We first consider the case of a heterotic string background with maximal space-time super-

symmetry (N4 = 4). All nine spatial directions as well as the Euclidean time are compactified

on a ten dimensional torus. At zero temperature and in the absence of Susy breaking cou-

plings, the Euclidean string partition function is zero due to space-time supersymmetry.

At finite temperature and in the presence of a Scherk-Schwarz Susy breaking coupling, the

result is a well defined finite quantity [16]- [18]. At genus one the string partition function

is given by:

Z =

∫

F

dτdτ̄

4Imτ

1

2

∑

a,b

(−)a+b+ab θ [ab ]
4

η(τ)12 η̄(τ̄)24
Γ(5,21)(RI) Γ(3,3)(R)

×
∑

h0,g0

Γ
[
h0
g0

]
(R0) (−)g0a+h0b+g0h0

∑

h5,g5

Γ
[
h5
g5

]
(R5) (−)g5a+h5b+g5h5 . (3.1)
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The non-vanishing of the partition function is due to the non-trivial coupling of the Γ(R0)

and the Γ(R5) shifted lattices to the spin structures (a, b). Here, the argument a is zero

for space-time bosons and one for space-time fermions. The shifted lattices are given by

Γ(1,1)

[
h
g

]
(R) =

∑
m,n R(Imτ)−

1
2 e−πR2 |2m+g+(2n+h)τ |2

Imτ . We are interested in the case for which

the radii of three spatial directions are very large, Rx = Ry = Rz ≡ R ≫ 1, so that the three

dimensional spatial volume factorizes Γ(3,3)
∼= R3 Imτ−

3
2 = (V3/(2π)3) Imτ−

3
2 .

Before we proceed, the following comments are in order:

• The sector (h0, g0) = (h5, g5) = (0, 0) gives zero contribution due to the fact that we

started with a supersymmetric background.

• In the odd winding sectors, h0 = 1 and/or h5 = 1, the partition function diverges when

R0 and/or R5 are between the Hagedorn radius RH = (
√

2 + 1)/2 and its dual 1/RH :

1
RH

< R0,5 < RH . The divergence is due to winding states that become tachyonic.

Their condensation drives the system towards a phase transition [16]- [18].

• In the regime R0, R5 ≫ 1, there are no tachyons. As we will see, the odd winding

sectors as well as the string oscillator states give exponentially suppressed contributions

to the partition function. The contributions of the internal Γ(5,21)(RI) lattice states

are also exponentially suppressed, provided that the moduli RI are of order unity.

Thus for large R0, R5, only sectors for which h0 = h5 = 0 contribute significantly. By

utilizing Jacobi identities involving the theta functions, we can see that when h0 = h5 = 0,

we get a non-zero contribution only if g0 + g5 = 1.

Next, using the relation Γ(R) = Γ [00] + Γ [01] + Γ [10] + Γ [11] and neglecting the odd winding

sectors, we may replace

Γ
[
0
1

]
→ Γ(R)− Γ

[
0
0

]
= Γ(R)− 1

2
Γ(2R) (3.2)

in the integral expression for Z. For each lattice term we decompose the contribution in

modular orbits: (mi, ni) = (0, 0) and (mi, ni) 6= (0, 0). For (mi, ni) 6= (0, 0), the integration

over the fundamental domain is equivalent with the integration over the whole strip but with

ni = 0. Notice also that the (0, 0) contribution of Γ(R) cancels the one of 1
2
Γ(2R). We are
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left with the following integration over the whole strip:

Z =
V5

(2π)5

∑

g0+g5=1

∫

||

dτdτ̄

4Imτ
7
2

θ [10]
4
Γ(5,21)(RI)

η(τ)12 η̄(τ̄)24

∑

m0,m5

e−πR2
0

(2m0+g0)2

Imτ e−πR2
5

(2m5+g5)2

Imτ . (3.3)

The integral over τ1 imposes the left-right level matching condition. The left-moving part

contains the ratio θ [10]
4
/η12 = 24 + O(e−πτ2), which implies that the lowest contribution is

at the massless level. Thus after the integration over τ1 (τ2 ≡ t), the partition function takes

the form

Z = 24D0
V5

(2π)5

∑

g1,g2

(1− (−)g1+g2)

2

∫ ∞

0

dt

2t
7
2

∑

m1,m2

e−πR2
0

(2m1+g1)2

t
−πR2

5
(2m2+g2)2

t , (3.4)

up to exponentially suppressed contributions that we drop. The factor 24 D0 is the multi-

plicity of the massless level.

Changing the integration variable by setting t = π(R2
0(2m1 + g1)

2 + R2
5(2m2 + g2)

2) x, the

integral over x can be expressed neatly in terms of Eisenstein functions of order k = 5/2:

Ek(U) =
∑

(m,n)6=(0,0)

(
Im U

|m + nU |2
)k

. (3.5)

The pressure in the Einstein frame can be written as

P =
Z

V4
= CT T 4 f5/2(u) + CV M4 f5/2(1/u)

u
, (3.6)

where u = R0/R5 = M/T , and 2

fk(u) = uk−1

(
1

2k
Ek

(
iu

2

)
− 1

22k
Ek(iu)

)
. (3.7)

Here CT = CV ∼ n∗, where n∗ = 8D0 is the number of massless fermion/boson pairs. In

this particular model the coefficients CT and CV are equal due to the underlying gravitino

mass/temperature duality. For fixed u the first term stands for the thermal contribution to

the pressure while the second term stands for minus the effective potential.

We conclude this section with some further comments.

• The coefficient CT is fixed and positive as it is determined by the number of all massless

boson/fermion pairs in the initially supersymmetric theory.
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• The coefficient CV will depend on the way the Susy-breaking operator QR couples to

the left and right movers. In general, QF 6= QR and the temperature / gravitino mass

duality will be broken. Then CV can be either positive or negative.

• For the T6/Z2 orbifold models with N = 2 initial supersymmetry, and with QR acting

only on the left-movers such that QR 6= QF , the net contribution of the twisted sectors

to CV is negative [10]. The change of sign indicates that in the twisted sectors, the

states that become massive are the bosons rather than the fermions.

3.1 Small mass scales from Wilson line deformations

A generic supersymmetric heterotic background may contain in its spectrum massive super-

multiplets whose mass is obtained by switching on non-trivial continuous Wilson-lines [20].

This is a stringy realization of the Higgs mechanism, breaking spontaneously the initial gauge

group to smaller subgroups.

We restrict to arbitrary and small Wilson line deformations starting from a given supersym-

metric background where RI , I = 6, 7, . . . , 10 are of the order the string scale. In the zero

winding sector, a Wilson line just modifies the Kaluza-Klein momenta, and the corresponding

Kaluza-Klein mass becomes

m2
I

R2
I

−→ (mI + ya
I Qa)

2

R2
I

, (3.8)

where Qa is the charge operator associated to the Wilson-line ya
I . We can distinguish two

different cases: I = 5 where R5 is large, and I = 6, . . . , 10 where the RI are of order the

string scale.

Here we shall consider the second case I = 6, 7, . . . , 10. In this case, we can set the momentum

and winding numbers to zero, mI = nI = 0, so that the relevant modification in the partition

function is the insertion of the term:

e
−πt

„

ya
I Qa
RI

«2

≃ 1 −πt

(
ya

IQa

RI

)2

. (3.9)

Then incorporating the effects of the Wilson lines up to quadratic order, we get for the

overall pressure:

P = CTT 4 f 5
2
(u) − DT T 2 M2

Y f 3
2
(u) + CV M4

f 5
2
(1/u)

u
− DV M2 M2

Y

f 3
2
(1/u)

u
. (3.10)
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Here, MY ∼ ya
I Qa/RI introduces a new mass scale in the theory, which is qualitatively

different than T and M . MY is a supersymmetric mass scale rather than a Susy-breaking

scale like T and M .

3.2 Scaling properties of the thermal effective potential

The final expression for P contains three mass scales: M , T and MY . The first identity it

satisfies follows from its definition:
(

T
∂

∂T
+ M

∂

∂M
+ MY

∂

∂MY

)
P = 4P, (3.11)

which can be best seen by writing P as

P ≡ T 4 p4(u) + T 2 M2
Y p2(u) = P4 + P2, u =

M

T
. (3.12)

Using standard thermodynamic identities, we can obtain the energy density ρ = ρ4 + ρ2:

ρ ≡ T
∂

∂T
P − P = ρ4 + ρ2 (3.13)

with

ρ4 =

(
3P4 − u

∂

∂u
P4

)
ρ2 =

(
P2 − u

∂

∂u
P2

)
. (3.14)

In the sequel, we allow the Susy-breaking scales T and M to vary with time while fixing the

supersymmetric mass scale MY and also u, and investigate the back-reaction to the initially

flat metric and moduli fields.

4 Gravitational equations and critical solution

We assume that the back-reacted space-time metric is homogeneous and isotropic

ds2 = −dt2 + a(t)2 dΩ2
k, H =

(
ȧ

a

)
, (4.1)

where Ωk denotes the three dimensional space with constant curvature k and H is the Hubble

parameter.

From the fact that −P plays the role of the effective potential and the relation between the

gravitino mass scale M and the no scale modulus Φ, M = eαΦ, we obtain the field equation:

Φ̈ + 3HΦ̇ =
∂P

∂Φ
= αu

(
∂P

∂u

)

T

= −α (ρ4 − 3P4 + ρ2 − P2) . (4.2)
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The remaining equations are the gravitational field equations. These are the Friedmann-

Hubble equation,

3H2 =
1

2
Φ̇2 + ρ− 3k

a2
, (4.3)

and the equation that follows from varying with respect to the spatial components of the

metric:

2Ḣ + 3H2 = − k

a2
− P − 1

2
Φ̇2 . (4.4)

This last equation can be replaced by the linear sum of the two gravitational field equations,

so that the kinetic term of Φ drops out:

Ḣ + 3H2 = −2k

a2
+

1

2
(ρ− P ) . (4.5)

4.1 Critical solution

The scaling properties of the thermal effective potential suggest to search for a solution

where all varying mass scales of the system, M(Φ), T and 1/a, remain proportional during

time evolution:

eαΦ ≡ M(Φ) =
1

γa
=⇒ H = −αΦ̇, M(Φ) = u T (4.6)

with γ and u fixed in time. Our aim is thus to determine the constants γ and u.

Along the critical trajectory, the compatibility of the Φ-equation of motion with the gravi-

tational field equations requires that

r4 =
6α2 − 1

2α2 − 1
p4,

(
r4 = 4p4 for α2 =

3

2

)
, (4.7)

− 2kγ2 =
2α2 − 1

2

r2 − p2

u2
M2

Y ,

(
−2kγ2 =

(r2 − p2)

u2
M2

Y for α2 =
3

2

)
, (4.8)

where r4 = ρ4/T
4 and r2 = ρ2/(T 2 M2

Y ). The first equation is an algebraic equation for the

complex structure-like ratio u. The second equation determines the spatial curvature of the

solution.

Having solved for the compatibility equations, the dynamics for the scale factor a is governed

by an effective Friedmann-Hubble equation as follows:

3H2 = −3k̂

a2
+

cr

a4
, (4.9)
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where

3k̂ = − 1

γ2

6α2

6α2 − 1

1

u2

(
3(2α2 − 1)

4
(r2 − p2) + r2

)
M2

Y , (4.10)

cr =
1

γ4

6α2

6α2 − 1

r4

u4
=

1

γ4

6α2

2α2 − 1

p4

u4
. (4.11)

The following comments are in order:

• Clearly, a necessary condition for the curvature k̂ not to vanish is to have non trivial

Wilson lines in any of the directions 6, 7, 8, 9, 10. Models with both positive and

negative k̂ can be constructed [10].

• The value of the ratio u = M/T was obtained by solving the compatibility equations

numerically. It can be large or small depending on the model. In other words there

are models with a hierarchy for the Susy-breaking scales M and T . In all models

considered in [10], the value for the effective coefficient cr was positive.

5 Concluding remark

The purpose of this talk is to emphasize the plausible existence of cosmological superstring

solutions, inflationary or not, which are generated dynamically at the quantum sting level.

Such cosmologies arise naturally from an initially flat spacetime, once supersymmetry is

spontaneously broken by thermal and quantum effects. They are examples of no-scale,

radiatively induced cosmologies. We believe that this new set-up will result in a coherent

and fruitful framework in order to understand superstring cosmology.
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1 Introdu
tionHeteroti
 string theory [1℄ is a preferred 
andidate to build realisti
 string theories. Indeed, itsstru
ture allows a large variety of gauge groups, derived from the breaking of the original SO(32)or E8 × E8 10-dimensional gauge group upon 
ompa
ti�
ation [2℄. These groups in
lude usualgrand uni�
ation groups su
h as SO(10) or SU(5), usually arising from the breaking of the E6gauge group present in a N = (2, 2) Calabi-Yau 
ompa
ti�
ation of heteroti
 string theories.One expe
ts a realisti
 theory to have N = 1 (whi
h is further spontaneously broken) four-dimensional supersymmetry. In our framework, this is a
hieved by 
ompa
tifying the six internaldimensions on a T 6/Z2×Z2 orbifold. This pro
edure initially breaks supersymmetry from N = 4toN = 1. The last breakingN = 1 → N = 0 is assumed to be realized either by non-perturbativephenomena or by (geometri
 or non-geometri
) �uxes [3℄. The T 6/Z2 × Z2 orbifold frameworkalso has the advantage to have three N = 2 twisted se
tors, whi
h 
an lead naturally to arealization of models with three generations [4℄ � [8℄.The models we are going to be interested in are built using the so-
alled fermioni
 
onstru
-tion [5℄, where the Weyl anomaly is 
an
elled by in
lusion of free fermioni
 degrees of freedomon the world-sheet. Over the years, several string-derived realisti
 models have been 
onstru
tedusing this formalism [6℄. It is known [7, 8℄ that su
h models reprodu
e a wide variety of 
om-pa
ti�
ations, toroidal or more generally Calabi-Yau, at spe
ial points of their moduli spa
e. Aparti
ular model is spe
i�ed by a basis of sets of fermions, or more pre
isely by summation overa set of spin stru
tures authorized for the fermions. In this pro
edure, standard Z2 freely-a
tingand non-freely a
ting orbifolds are en
oded in a very natural way, whi
h arises from the prop-erties of fermionization when the internal manifold is at the extended symmetry point, referredto as the fermioni
 point. Pla
ing ourselves at this spe
i�
 point of the moduli spa
e of thetheory is not very restri
tive : indeed, if one 
hooses to deform these models in order to moveaway from this point, the form of the twisted se
tors, and therefore the 
hiral matter 
ontent ofthe model, is un
hanged as these se
tors are insensitive to the geometry of the 
ompa
ti�
ationmanifold [4, 8, 9℄. The T 6/Z2×Z2 orbifold breaking the supersymmetry to N = 1 is realized bymeans of the introdu
tion of two sets of fermions, that we will 
all b1 and b2. We �nally haveto spe
ify the value of various dis
rete torsion 
oe�
ients, de�ning the a
tion of the generalizedGSO proje
tions present in the 
onstru
tion; this spe
i�
ation, among other things, en
odes thepre
ise e�e
t of all the orbifoldings that have been introdu
ed.In this paper, we will fo
us on a duality that has been pointed out in a re
ent work [4℄,where several properties of all possible heteroti
 Z2 × Z2 models have been detailed, by meansof a 
omputerized statisti
al study of their massless spe
tra. This study has been restri
ted to asub
lass of models 
losely resembling the usual three generation realisti
 string models, where thegauge group yielded by the free fermions in
lude a fa
tor SO(10). This duality ex
hanges, withinthe three twisted se
tors of the orbifold, the number of ve
torial representations of SO(10) withthe number of spinorial plus anti-spinorial representations of SO(10). Starting from obviouslyself-dual 
ases, namely the 
ases where the SO(10) gauge is extended to E6, whi
h 
an be linkedto the usual N = (2, 2) 
ompa
ti�
ations on Calabi-Yau surfa
es, we will be able to proje
tout some of the representations of SO(10) by suitable freely-a
ting orbifolds, therefore expli
itly
reating dual pairs of models in a straightforward way. We will be able to 
onstru
t the dualmodel of some generi
 model, whi
h will prove the duality. As noted in previous work, this1



duality is realized internally in ea
h twisted se
tor. Consequentially, the duality has been shownto hold in N = 2 theories as well (as N = 2 supersymmetry is 
onserved in ea
h of the twistedse
tors). The me
hanism of the proof 
an be adapted in a straightforward way to this 
ase.The main ingredient of the 
onstru
tion will be to 
onsider the e�e
t of freely-a
ting orbifolds.These orbifolds, when 
arried out in the simplest way, 
orrespond to the modding out of a half-shift symmetry X → X + πR on an internal boson X. In this 
ase, the generated twistedse
tors are massive; without further hypotheses, the mass shift does not depend on the variousrepresentations to whi
h the states belong. However, in a parti
ular framework, the freely-a
tingorbifold 
an break a symmetry by lifting the mass degenera
y between the symmetry partners.This happens if, in addition to the translation, we 
onsider modding out a parity operator,dis
riminating states having di�erent 
harges under a symmetry group. As a result, stateswith di�erent 
harges will undergo di�erent mass shifts, leading to a spontaneous breaking ofsymmetry. This me
hanism is the stringy generalization [3℄ of the �eld-theoreti
 S
herk-S
hwarz
ompa
ti�
ation [10℄ ; it 
an be used to spontaneously break supersymmetry, when the parityoperator is 
hosen to be the spa
e-time heli
ity of the string state [3℄. More generally, variouspatterns of spontaneous SUSY breaking are obtained by 
hoosing an arbitrary R-symmetry
harge (see for example [11℄ for a re
ent 
osmologi
al appli
ation of these 
onstru
tions).This enables us also to break an internal super
onformal algebra, relating ve
torial andspinorial representations of some gauge group of the theory. The 
urrent transforming the spino-rial representation into the ve
torial one and vi
e-versa is part of the right hand side of the
N = (2, 2) super
onformal algebra present in the model in the 
ase of an unbroken E6. By doinga S
herk-S
hwarz 
ompa
ti�
ation of an internal dire
tion 
oupled to the heli
ity asso
iated tothe di�erent representations of the gauge group, one is then able to break this super
onformalsymmetry, dis
riminating ve
torial and spinorial representations by 
reating a mass gap.In the �rst part of this paper, we will review the free fermioni
 setup used to 
onstru
tthe 
lass of models we will be interested in. Then we will detail how one 
an implement freely-a
ting orbifolds with the sets we introdu
ed, how these freely-a
ting orbifolds 
an be used for thespontaneously breaking of some symmetry, and how it 
an, in our 
ase, lift the mass degenera
ybetween the spinorial/anti-spinorial representations of SO(10) and the ve
torial representationsof SO(10). In a third part, we will fo
us on one twisted plane (that is, one family of twistedse
tors) of the theory. We will start by 
onsidering one spe
i�
 model in the �rst twisted plane,and detail its massless spe
trum. Then, we will enun
iate the rules to 
onstru
t the (St ↔ V )-dual of a model, and apply them on the model we just 
onstru
ted. We will also give sometools to perform this duality dire
tly on the partition fun
tion of the theory. Finally, we will
on
lude by some remarks on the signi�
an
e of this duality, espe
ially regarding the stru
tureof the va
ua of N = 1 heteroti
 string theories.2 Free fermioni
 
onstru
tion2.1 N = 1 and N = 2 parity set basis and partition fun
tionStarting for a four-dimensional superstring theory made out of free fermions [5℄, the 20 left-moving fermions are noted, following referen
es [9, 12℄

{ψµ, χ1...6, y1...6, ω1...6} (2.1)2



and the 44 right-moving ones
{ȳ1...6, ω̄1...6, ψ̄1...5, η̄1...3, φ̄1...8} (2.2)where the ψ̄'s, η̄'s and φ̄'s are 
omplex fermions. These notations �xed, we are 
onsidering thesets

F = {ψµ, χ1...6, y1...6, ω1...6 | ȳ1...6, ω̄1...6, ψ̄1...5, η̄1...3, φ̄1...8};

S = {ψµ, χ1...6}; ei = {yi, ωi | ȳi, ω̄i}, [ i = 1 . . . 6 ] ;

b1 = {χ3...6, y3...6 | ȳ3...6, ψ̄1...5, η̄1}; (2.3)
b2 = {χ1,2,5,6, y1,2,5,6 | ȳ1,2,5,6, ψ̄1...5, η̄2};

z1 = {φ̄1...4}; z2 = {φ̄5...8}.Noting additively the usual 
omposition law of the free fermioni
 formalism, we will use that
x = {ψ̄1...5, η̄1,2,3} = F + S +

∑

i

ei + z1 + z2 (2.4)and
b3 = b1 + b2 + x = {χ1...4, y1...4 | ȳ1...4, ψ̄1...5, η̄3} (2.5)are part of the va
ua of the theory. Note that the 
ase of a N = 2 theory is treated by
onsidering the previous set, amputated of b2. This has the e�e
t of 
onsidering a T 4/Z2 × T 2orbifold instead of a T 6/Z2 × Z2. The duality also holds in this 
ase, as we will see from theme
hanism of 
onstru
tion that the duality holds separately in ea
h twisted se
tor; and withina twisted se
tor, N = 2 supersymmetry is preserved.The generi
 form of this partition fun
tion is quite lengthy but useful. We note, as an indexof the various blo
ks, the 
orresponding degrees of freedom. Noting for brevity h3 = −h1 − h2,it reads :

ZN=1 =
∫

F

d2τ

τ2
2

τ−1
2

η12η̄24

1
22

∑

hi,gi


1

2

∑

a,b

(−)a+b+abϑ [ab ]ϑ
[
a+h1
b+g1

]
ϑ
[
a+h2
b+g2

]
ϑ
[
a+h3
b+g3

]


ψµ,χ

×


1

2

∑

ǫ,ξ

ϑ̄
[
ǫ
ξ

]5
ϑ̄
[
ǫ+h1
ξ+g1

]
ϑ̄
[
ǫ+h2
ξ+g2

]
ϑ̄
[
ǫ+h3
ξ+g3

]


ψ̄1...5,η̄1,2,3

(2.6)
×


1

2

∑

H1,G1

1
2

∑

H2,G2

(−)H1G1+H2G2ϑ̄
[
ǫ+H1
ξ+G1

]4
ϑ̄
[
ǫ+H2
ξ+G2

]4


φ̄1...8

×
(∑

si,ti

Γ6,6

[
hi|si

gi|ti

])

(yωȳω̄)1...6

× eiπΦ(γ,δ,si,ti,ǫ,ξ,hi,gi,H1,G1,H2,G2)3



where the internal twisted/shifted (6, 6) latti
e is given by
Γ6,6

[
hi|si

gi|ti

]
=

1
26

∑

γi,δi

(∣∣∣ϑ
[
γ1+h1

δ1+g1

]∣∣∣
∣∣∣ϑ
[
γ1
δ1

]∣∣∣ (−)γ1t1+δ1s1+s1t1
)

(yωȳω̄)1

×
(∣∣∣ϑ

[
γ2+h1

δ2+g1

]∣∣∣
∣∣∣ϑ
[
γ2
δ2

]∣∣∣ (−)γ2t2+δ2s2+s2t2
)

(yωȳω̄)2
(2.7)

×
(∣∣∣ϑ

[
γ3+h2

δ3+g2

]∣∣∣
∣∣∣ϑ
[
γ3
δ3

]∣∣∣ (−)γ3t3+δ3s3+s3t3
)

(yωȳω̄)3

×
(∣∣∣ϑ

[
γ4+h2

δ4+g2

]∣∣∣
∣∣∣ϑ
[
γ4
δ4

]∣∣∣ (−)γ4t4+δ4s4+s4t4
)

(yωȳω̄)4

×
(∣∣∣ϑ

[
γ5+h3

δ5+g3

]∣∣∣
∣∣∣ϑ
[
γ5
δ5

]∣∣∣ (−)γ5t5+δ5s5+s5t5
)

(yωȳω̄)5

×
(∣∣∣ϑ

[
γ6+h3

δ6+g3

]∣∣∣
∣∣∣ϑ
[
γ6
δ6

]∣∣∣ (−)γ6t6+δ6s6+s6t6
)

(yωȳω̄)6
.Here eiπΦ is a global phase whose e�e
t is to implement the various GGSO proje
tions a
tingon the spe
trum of this theory. Following the formalism of [5℄, these GGSO proje
tions areequivalently de�ned by the 
oe�
ients C(vi|vj) ≡ [vi|vj ], where vi and vj are the ve
tors of (2.3).This phase is required to satisfy modular invarian
e 
onstraints, that is, it must be invariantunder the following transformations :

τ → τ + 1 ⇒





(a, b) → (a, a+ b+ 1)
(γi, δi) → (γi, γi + δi + 1)
(ǫ, ξ) → (ǫ, ǫ+ ξ + 1)
(hi, gi) → (hi, hi + gi)
(Hi, Gi) → (Hi,Hi +Gi)
(si, ti) → (si, si + ti)

; τ → −1/τ ⇒





(a, b) → (b, a)
(γi, δi) → (δi, γi)
(ǫ, ξ) → (ξ, ǫ)
(hi, gi) → (gi, hi)
(Hi, Gi) → (Gi,Hi)
(si, ti) → (ti, si)

.(2.8)Here we may make some remarks.� The global phase Φ does not depend on the spin stru
ture of the spa
e-time fermions,
(a, b). This is ne
essary to preserve N = 1 supersymmetry; otherwise supersymmetry isspontaneously broken, as the gravitini a
quire a mass. We will not 
onsider this me
hanismhere. Note however that the 
onstru
tion of a realisti
 model also requires su
h a breaking.� We want to emphasize the physi
al meaning of the parameter ǫ in the expression (2.6). Asthe ψ̄ blo
k 
orresponds to the representations of SO(10), ǫ is the asso
iated 
hirality :spinorials of SO(10) have ǫ = 1, whereas ve
torials have ǫ = 0. We will relate this laterto the right-moving SCFT of the model; breaking this SCFT will be done by assuming anon-trivial dependen
e of the global phase Φ of the spin-stru
ture (ǫ, ξ).� The in
lusion of (si, ti) performs additional shifts on the six (fermionized) internal dimen-sions 
ompa
ti�ed on T 6/Z2 × Z2. These shifts 
orrespond to the presen
e of the sets (ei)in the parity basis; similarly, the twisting parameters (Hi, Gi) a

ount for the presen
e ofthe sets zi. Coupling these parameters to various spin stru
tures by a suitable form of thephase Φ will generate the S
herk-S
hwarz symmetry breakings we will 
onsider.4



2.2 SO(10) models as Gepner-map duals of Type II modelsThe model we have 
onsidered above is in fa
t obtained dire
tly from a Type II model by a mapintrodu
ed in [13℄. This map de�nes a 
orresponden
e between a heteroti
 model and a Type IImodel by the following 
onstru
tion.If we label Bλ=1,2,3,4 the four 
hara
ters of SO(8) O8, V8, S8, C8, one 
an write a generi
 Type IIpartition fun
tion in the following form
ZII =

1
τ4
2 η

8η̄8

∑

λ,λ̄

BλB̄λ̄Zλ,λ̄ (2.9)Here, Zλ,λ̄ a

ount for the spin-statisti
s of the model and, in the 
ase of 
ompa
ti�ed theories,for the internal latti
es. The general pro
edure2 is then to repla
e the SO(2d) 
hara
ters of theright-moving side of the theory by SO(8 + 2d) × E8 
hara
ters, so that the modular propertiesof the partition fun
tion are preserved. The produ
t only involves the singlet 
hara
ter of E8,whereas the map for the SO(2d) 
hara
ters is done as follows :
Ō2d → V̄2d+8, V̄2d → Ō2d+8, S̄2d → −S̄2d+8, C̄2d → −C̄2d+8. (2.10)In parti
ular, for the usual IIA and IIB spa
e-time fermions blo
ks, d = 4 and the repla
ementis done by

1
2

∑

ā,b̄

(−)ā+b̄ϑ̄
[
ā
b̄

]4 →


1

2

∑

ā,b̄

(−)āb̄ϑ̄
[
ā
b̄

]8

× 1

2

∑

γ̄,δ̄

ϑ̄
[
γ̄
δ̄

]8 (2.11)
1
2

∑

ā,b̄

(−)ā+b̄+āb̄ϑ̄
[
ā
b̄

]4 →


1

2

∑

ā,b̄

ϑ̄
[
ā
b̄

]8

× 1

2

∑

γ̄,δ̄

ϑ̄
[
γ̄
δ̄

]8 (2.12)We see that the reversal of the sign of the fermioni
 
hara
ters breaks the usual spin-statisti
s,so that, from a spa
e-time point of view, this operation has traded a supersymmetri
 se
tor fora purely bosoni
 se
tor. Following our notations for the free fermioni
 degrees of freedom andtheir obvious extension to Type II models, the mapping Type II→ Heteroti
 is done by repla
ingthe free fermions of Type II {ψ̄µ, χ̄1...6} by the free fermions of the heteroti
 {ψ̄1...5, η̄1,2,3, φ̄1...8}.Also note that in both Type IIA and Type IIB 
ases, the obtained blo
k is in fa
t a se
ond 
opyof the singlet of E8, whi
h signals an enhan
ement of SO(16) to E8.Carrying out the Z2 × Z2 orbifold on both of these models, we see that the heteroti
 model we
onsider in this paper is no other than the Gepner-map of a Type II N4 = 2 model, via themapping2There exists a se
ond solution, whi
h is the repla
ement by SO(32) 
hara
ters.
5



1
2

∑

ā,b̄

(−)ā+b̄+āb̄ϑ̄
[
ā
b̄

]
ϑ̄
[
ā+h1

b̄+g1

]
ϑ̄
[
ā+h2

b̄+g2

]
ϑ̄
[
ā+h3

b̄+g3

]
−→ (2.13)


1

2

∑

ā,b̄

ϑ
[
ā
b̄

]5
ϑ̄
[
ā+h1

b̄+g1

]
ϑ̄
[
ā+h2

b̄+g2

]
ϑ̄
[
ā+h3

b̄+g3

]

× 1

2

∑

γ̄,δ̄

ϑ̄
[
γ̄
δ̄

]8
.One re
ognizes the blo
k of (2.6) 
orresponding to the ψ̄'s and η̄'s. The se
ond blo
k a

ountsfor an E8 gauge group formed by the 
omplex fermions φ̄1...8; generi
ally, this group will bebroken due to the in
lusion of the sets z1 and z2 in our 
onstru
tion.Out of the two four-dimensional supersymmetries of the Type II model, only the left-movingone is still present in the heteroti
; however, the right-moving super
onformal algebra survivesthe mapping. This is nothing but the embedding of the spin 
onne
tion of Type II models into the
onne
tion of the 
orresponding heteroti
 ones. Then, this super
onformal algebra does not givebirth to a spa
e-time SUSY, but relates spinors to ve
tors, belonging to representations whi
hare now of the internal SO(10) spanned by the ψ̄'s. The survival of this symmetry will guaranteethe existen
e at the massless level of what were formerly right-moving gravitinos and are nowgauge bosons in a spinorial of SO(10) : then, SO(10)×U(1)3 gets enhan
ed to E6×U(1)2. Thisenhan
ement 
omes as no surprise from the Calabi-Yau point of view : the general embeddingof spin-
onne
tion into gauge 
onne
tion singles out a subalgebra SU(3) inside the �rst E8,
orresponding to the holonomy of the 
ompa
ti�
ation manifold. The anomaly 
an
ellationme
hanism [14℄ then requires that we swit
h on ba
kground values for this SU(3), and thesurviving gauge group is E6, 
oming from the embedding SU(3) × E6 ⊂ E8. Of 
ourse, theCartans of SU(3) still de�ne a gauge group U(1)2, so that, in the presen
e of a right-moving

N = 2 SCFT, we indeed �nd a gauge group E6 × U(1)2 × E8. This is realized expli
itly in our
onstru
tions.Note that this pro
edure underlines the naturalness of the appearan
e of a gauge group
SO(10) in N = 1 realisti
 theories : the Type II right-moving fermioni
 blo
k made out of S, V,Crepresentations of the Lorentz group SO(8) is traded for a blo
k made out of E8 
hara
ters. The
Z2 × Z2 orbifold required to break the four-dimensional supersymmetry N = 4 → 1 is for
ed by
onsisten
y to a
t on this E8, generi
ally breaking it to E6 × U(1)2.We will now enumerate the se
tors from whi
h we will be able to build massless states, andidentify their interpretation as twisted se
tors of the N = 4 → N = 1 Z2 × Z2 orbifold.3 Spe
trum of the model; super
onformal x-map and its sponta-neous breaking3.1 Z2 × Z2 twisted se
torsIt is pretty straightforward to 
he
k that the N = 1 supersymmetri
 partner of a state builton some va
uum |α〉 will 
ome from the va
uum |α + S〉. Here, we will therefore restrain ourenumeration to the bosoni
 va
ua. Apart form the pure NS va
uum, states 
an be built fromthe following sets : 6



• the 16 twisted se
tors ∣∣B1
λ3λ4λ5λ6

〉
=
∣∣∣b1 +

∑6
i=3 λiei

〉, where λi = 0 or 1;
• the 16 twisted se
tors ∣∣B2

λ1λ2λ5λ6

〉
=
∣∣∣b2 +

∑
i=1,2,5,6 λiei

〉, where λi = 0 or 1;
• the 16 twisted se
tors ∣∣B3

λ1λ2λ3λ4

〉
=
∣∣∣b3 +

∑4
i=1 λiei

〉, where λi = 0 or 1;
• the se
tors |α+ x〉, where α is any of the se
tors des
ribed above;
• the se
tors |z1〉, |z2〉, |z1 + z2〉.To properly distinguish a parti
le from its anti-parti
le, it will be handy to 
onsider instead thefermioni
 se
tors B ≡ S + B, so as the spa
e-time 
hirality appears in a 
lear way. We will thenrestrain ourselves to 
onsidering positive ψµ-heli
ity states. In the following, we will denote |B1〉(and similarly for |B2〉, |B3〉) a generi
 se
tor ∣∣B1

λ1λ2λ3λ4

〉, and more generally |B〉 an arbitrarytwisted se
tor. The |B〉 se
tors are in one-to-one 
orresponden
e with the �xed points of the
Z2 × Z2 orbifold transformation.Let us make some 
omments :� In the following, we will pay no attention to the se
tors |z1〉, |z2〉, |z1 + z2〉, whi
h 
anlead to additional gauge bosons. The minimal gauge group is SO(8) × SO(8); as pointedout in [4℄, appropriate 
hoi
e of the GGSO phases ensures that this gauge group is notenhan
ed, and that no mixed3 massless states appear. In the following, we will assumethese no-enhan
ement hypotheses, whi
h state that there exists ei and ej , i 6= j, su
has [ei|z1] = −1 and [ej |z2] = −1. This 
hoi
e proje
ts out any would-be gauge bosonsthat would enhan
e SO(8) × SO(8) → SO(16); the largest enhan
ement one 
an have inthat 
ase is a SO(8) → SO(9), whi
h 
an also be eliminated by allowing one more i su
has [ei|z1] = −1; at any rate, there is no mixing between the �observable� gauge and the�hidden� gauge.� The spinor-ve
tor duality �nds its root from the fa
t that if |α〉 is a relevant va
uum tobuild massless states, so is |α + x〉. This 
orresponden
e is the super
onformal �x-map�

|B〉 7→ |B + x〉 pointed out in [15℄. It is obvious that if (the ex
itations of) |α〉 are inthe ve
torial of the SO(10) indu
ed by the 5 
omplex fermions ψ̄1...5, then |α + x〉 willbelong to a spinorial of the same group; the x-map being an involution, the 
onverse is alsotrue. What is at stake is then to �nd, given a set of GGSO proje
tions, whi
h se
tors willsurvive; and for ea
h theory, des
ribe the dual theory in terms of the e�e
ts of its variousGGSO proje
tions.� An important 
ase of �gure brings a self-dual 
ase. When preserving the N = (0, 2)super
onformal �eld theory, the SO(10)ψ̄×U(1)η̄ , where U(1)η̄ is the diagonal U(1) indu
edby η̄1,2,3, is lifted to E6. In this 
ase, the ve
torial 10 and the spinorial 16 of SO(10)(resp the anti-spinorial 16) are grouped in the fundamental 27 (resp. 27) of E6, whi
hde
omposes as 27 → 10⊕ 16⊕ 1 (resp. 27 → 10⊕ 16⊕ 1).3By mixed states, we mean states 
harged under both the �observable� SO(10) or E6 and the �hidden� gaugegroup 
ontaining the SO(8) × SO(8). 7



3.2 The x-map and super
onformal algebra in representations of SO(10)To begin with, we will restrain ourselves to 
onsider only one twisted se
tor, namely B1
0000 =

S + b1. We will note the asso
iated ground state |B1
0000〉. Our results will easily be extended toany of the 48 twisted se
tors detailed above. The untwisted se
tor, built out of the pure Neveu-S
hwarz ground state, gives the gauge bosons of the gauge group, but not the spinorial/ve
torialrepresentations we are interested in.The B1

0000 va
uum is then written as
B1

0000 : Spin (ψµ, χ1,2, y3...6
)
⊗ Spin (ȳ3...6, ψ̄1...5, η̄1

) (3.1)and the addition of the se
tor x brings the va
uum
B1

0000 + x : Spin (ψµ, χ1,2, y3...6
)
⊗ Spin (ȳ3...6, η̄2,3

)
. (3.2)Here, one may make a few remarks, whi
h will be valid for any of the 48 twisted se
tors. Firstly,due to the presen
e of 8 left-moving and 16 right-moving real fermions obeying Ramond boundary
onditions, the se
tor |B1

0000〉 is massless by itself, and 
ontains spin-�elds made out of the SO(10)fermions ψ̄; it therefore indu
es a spinorial of SO(10). On the other hand, the se
tor |B1
0000 +x〉has 8 left-moving and 8 right-moving Ramond real fermions, so that its ground energies read

M2
L = 0; M2

R = −1
2
.A massless state will then be rea
hed when ex
iting this ground state by a weight 1/2 right-moving fermioni
 os
illator. If we wish to 
onsider states 
harged under SO(10), this ex
itationhas to be taken to be ψ̄i−1/2, and the resulting state lies in a ve
torial representation of SO(10).Therefore, the x-map links ve
torials to spinorials of SO(10). Obviously, the x-map arises asthe right-moving part of the N = (2, 2) super
onformal �eld theory that is still present after theType II→ Heteroti
 Gepner-map, and a
ts inside the gauge group, due to the embedding of thespin 
onne
tion into the gauge 
onne
tion.As in the 
ase of spontaneous breaking of supersymmetry, a spontaneous breaking of the

x-map will amount to proje
ting out from the spe
trum spinorial or ve
torial representations of
SO(10), giving di�erent masses to the two partners. In terms of the free fermioni
 
onstru
tion,this situation is re�e
ted in the fa
t that states from the massless se
tor |B〉 (resp. |B+ x〉) willbe proje
ted out, whereas states from the se
tors |B + ei〉 (resp. |B + x+ ei〉) will be preserved.These se
tors are massive and are naturally interpreted as the twisted se
tor of the freely-a
tingorbifold based on the half-shift of the 
oordinate Xi. We see that the net e�e
t of this a
tion isthat the se
tors |B〉 (resp. |B + x〉) will get a mass, whereas the se
tors |B + x〉 (resp. |B〉) willremain massless. We 
arry out an expli
it example of su
h a mass lift in the next subse
tion; asone 
an expe
t, it 
ru
ially relies on a 
areful 
hoi
e of the GGSO proje
tions.3.3 Implementing the ei-generated freely-a
ting orbifoldsIn this subse
tion, we brie�y re
all some useful results about twisted/shifted latti
es. The usualequivalen
e between a 
ompa
t boson taken at the fermioni
 point and two left-moving plus tworight-moving real fermions is easily extended to orbifold partition fun
tions of ea
h theory.8



When we 
onsider two internal dimensions , the ϑ-fun
tion form of a zero-mode latti
e Γ2,2,taken at the enhan
ed symmetry (or fermioni
) point (denoted f.p.)
Γ2,2

∣∣∣
f.p.

=


1

2

∑

γ,δ

∣∣ϑ
[γ
δ

]∣∣2



2 (3.3)is generalized to the orbifold version of the theory. When one implements the non-freely-a
ting
Z2 orbifold X1,2 → −X1,2, whose twisting parameters will be denoted (h, g), as well as the twofreely-a
ting Z2 orbifolds X1,2 → X1,2+π, whose shifting parameters will be noted (s1, t1, s2, t2),the latti
e sum is modi�ed as

Γ2,2

[
h|s1,s2
g|t1,t2

] ∣∣∣
f.p.

=
1
4

∑

γ1,2,δ1,2

(−)γ1t1+δ1s1+s1t1(−)γ2t2+δ2s2+s2t2 (3.4)
×

∣∣∣ϑ
[
γ1+h
δ1+g

]
ϑ
[
γ1
δ1

]
ϑ
[
γ2+h
δ2+g

]
ϑ
[
γ2
δ2

]∣∣∣Therefore, implementing in the above partition fun
tion the freely-a
ting orbifolds (in this 
ase,half-way shifts) 
orresponding to the sets ei only amounts to inserting the phases (−)γt+δs+st.For now, we have just shifted the internal Γ6,6 latti
e, independently of the rest of the spe
trum.The 
orresponding orbifold is the Z2-translation along ea
h 
ir
le of the internal spa
e.If we wish to 
ouple this shift to other states of the theory, we must introdu
e a phaserelating the shift parameters (si, ti) to the spin stru
tures of the states we want to a
t on.Su
h a freely-a
ting orbifold takes the form (−)Q · T i, where T i is the Z2-translation of the ith
oordinate Xi 7→ Xi + πRi, and (−)Q is the parity operator asso
iated to the spin stru
ture weare 
onsidering (generalizing the usual fermion 
ounting operator (−)F , whi
h would 
orrespondto 
oupling to the spin-stru
ture of the spa
e-time fermion spin stru
ture (a, b)).One 
an 
arry out the 
al
ulation of the partition fun
tion 
orresponding to this orbifold, byinserting the proje
tion operator in the 
omputation of the tra
e over physi
al states and addingthe 
ontribution of the twisted se
tor. The result is that this orbifold is done by simply addinga 
o
y
le in the partition fun
tion. As an example, if we 
onsider a Γ1,1 latti
e 
oupled to somespin stru
ture (ǫ, ξ), the modi�
ation is made as follows :
Z = [...]

R√
τ2

∑

m̃,n

exp
[
−πR

2

τ2
|m̃+ nτ |2

]

−→ [...]× 1
2

∑

h,g

(−)ǫg+ξh+gh R√
τ2

∑

m̃,n

exp

[
−πR

2

τ2

∣∣∣∣
(
m̃+

g

2

)
+
(
n+

h

2

)
τ

∣∣∣∣
2
] (3.5)

= [...]×
∑

h,g

(−)ǫg+ξh+gh Γ1,1[hg ]
(
R

2

)where Γ1,1[hg ] is the shifted Γ1,1 latti
e
Γ1,1[hg ] =

R√
τ2

∑

m̃,n

exp
[
−πR

2

τ2
|(2m̃+ g) + (2n+ h) τ |2

] (3.6)9



and the overall [...] refers to all the other blo
ks of the partition fun
tion, whi
h are un
hangedin the pro
ess.Setting RSS = R/2, we re
over the well-known fa
t that this me
hanism is equivalent to perform-ing a stringy S
herk-S
hwarz 
ompa
ti�
ation, whi
h is done by 
oupling the internal dimensionto the SO(10) heli
ity 
urrent [3℄ ∮
(ψ̄1)† ψ̄1.Su
h a task is a
hieved by inserting in the 
on
erned partition fun
tion blo
k the 
o
y
le

(−)ǫm̃+ξn+m̃n, (3.7)where now m̃ and n are the momentum/winding numbers of the string state along the radius RSS[3℄. Looking at the expressions (3.4) and (3.5), one sees that, sin
e the internal shift parametersof the internal dimensions are no other than (si, ti) that the 
oupling of the internal shiftedlatti
e to the SO(10) spin-stru
ture (ǫ, ξ) will be done by inserting a phase of the form
(−)ǫti+ξsi+siti . (3.8)It is worth noting that this 
oupling indeed lifts the mass of the states a

ording to their 
hirality

ǫ : by 
onsidering the insertion of the S
herk-S
hwarz 
o
y
le (3.7), a Poisson resummation ofthe modi�ed latti
e
RSS√
τ2

∑

m̃,n

(−)ǫm̃+ξn+m̃n exp
[
−πR

2
SS

τ2
|m̃+ nτ |2

] (3.9)shows that the string states now have momentum and winding numbers
(
m− ǫ

2
− n

2
, n
) (3.10)whi
h signals a mass lifting in the ǫ = 1 se
tor. This pro
edure is of 
ourse en
oded in the basi
form of the fermioni
 
onstru
tion and does not require further elaboration : it is related to thevalues of the dis
rete torsions [ei|B] and [ei|B+x], where B is an arbitrary twisted se
tor of thetheory.3.4 Breaking the x-symmetry with the freely-a
ting orbifold eiWe start by 
onsidering the two se
tors already written above, whi
h read, in terms of spin-�elds

B1
0000 : Spin [(ψµ)+, (χ12)ǫ2, (y

34)ǫ3, (y
56)ǫ4

]
⊗ Spin [(ȳ34)ǭ1 , (ȳ

56)ǭ2, (ψ̄
1...5)ǭ3 , (η̄

1)ǭ4
] (3.11)

B1
0000 + x : Spin [(ψµ)+, (χ12)ǫ2 , (y

34)σ3 , (y
56)σ4

]
⊗ Spin [(ȳ34)σ̄1 , (ȳ

56)σ̄2 , (η̄
2)σ̄3 , (η̄

3)σ̄4

] (3.12)where the ǫi, ǭi, σi, σ̄i are the heli
ities of the spin-�elds.As dis
ussed above, the physi
al states of the se
tor B1
0000 + x we are interested in are obtainedby ex
iting the va
uum with a weight 1/2 ψ̄ os
illator :10



Spin [(ψµ)+, (χ12)ǫ2, (y
34)σ3 , (y

56)σ4

]
⊗
[
ψ̄i−1/2

] Spin [(ȳ34)σ̄1 , (ȳ
56)σ̄2 , (η̄

2)σ̄3 , (η̄
3)σ̄4

] (3.13)The relevant GGSO proje
tions to 
arry out in this example as those arising from the sets
S, S + b1, b2, (ei)i=1...6. The F -proje
tion is redundant with the S+ b1-one. The zi-proje
tionsdo not 
hange the features of the spe
trum in the se
tor B1

0000 as soon as we assume that theydo not proje
t the whole se
tor out; we will, for now, negle
t them.Equivalently, we will �nd it handy to 
onsider instead, on a se
tor B1
λ3λ4λ5λ6

the proje
tionsindu
ed by the sets
S, S + b1, b̃2 = S + b2 + (1− λ5)e5 + (1− λ6)e6, (ei)i=1...6 . (3.14)Re
all that, as |B1

λ3λ4λ5λ6
〉 are fermioni
 se
tors, the 
onstraints to be met are (−)α = −(α|B1

λ3λ4λ5λ6
),where α is one of the sets above.Initially, the se
tors B1

λ3λ4λ5λ6
have 212 degrees of freedom. Carrying out the S, S + b1, b̃2,

(e3...6) proje
tions 
ut the number of physi
al states down to 25 = 32. Noti
ing that
b̃2 ∩B1

λ3λ4λ5λ6
= {ψµ|ψ̄1...5}, (3.15)we see that, as the ψµ heli
ity has been �xed, this GGSO proje
tion implies that the spe
trumof states inside the se
tors B1

λ3λ4λ5λ6
is 
hiral with respe
t to the group SO(10). Su
h a feature
ru
ially depends on the presen
e of the set b2 in our 
onstru
tion; this is 
onsistent with thefa
t that the presen
e of a 
hiral matter spe
trum requires N = 1 spa
e-time supersymmetry.Now we look at the e�e
t of the e1 and e2 proje
tions, �rst restri
ting our attention to B1

0000.The latter survives the e1 proje
tion if [e1|B1
0000] = −1; otherwise the entire se
tor |B1

0000〉is proje
ted out. However, in the latter 
ase, as mentioned earlier, one has to 
onsider themassive se
tor |B1
0000 + e1〉. The spin �eld a

ounting for this Ramond ground now has an initialdegenera
y of 214; 
arrying out the S, S + b1, b̃2, (e1,3...6) proje
tions 
ut the number of degreesof freedom to 26. This time, the various proje
tions are not able to �x the SO(10)-
hirality ofthe massive state, sin
e

b̃2 ∩
(
B1
λ3λ4λ5λ6

+ e1
)

= {ψµ, ω1|ω̄1, ψ̄1...5}. (3.16)This is 
onsistent with the fa
t that when �xing the spa
e-time spin, we still have a degenera
yin the representations 16 and 16 of SO(10), whi
h is mandatory for these representations to bemassive.The super
onformal partner of |B1
0000〉 is |B1

0000+x〉; this se
tor 
ontains ve
torial representationsof SO(10). Let us re
all that, from the usual 
onstraints of the free fermioni
 models, the dis
retetorsion 
oe�
ients we are interested in obey, for i = 1, 2 :
[B1 + x|ei] = [B1|ei][x|ei]. (3.17)Therefore, if we set [x|ei] = 1, the se
tor |B1

0000 + x〉 will behave in the same way as |B1
0000〉with respe
t to the ei proje
tions. If [B1

0000|ei] = 1, the twisted se
tor will be proje
ted out as11



a whole, regardless of the spinorial/ve
torial 
hara
ter of the representations; if [B1
0000|ei] = −1,both spinors and ve
tors will survive.Up to now, we have thus not been able to dis
riminate between spinorial and ve
torialrepresentations of SO(10) lying in the same twisted se
tor. As one 
an expe
t, this will be doneby a
ting on the value of the dis
rete torsion [x|ei]. Indeed, let us again pla
e ourselves in thetwisted se
tor |B1

0000〉, and its ve
torial 
ounterpart |B1
0000 + x〉. The same reasoning as before,and the use of the equation (3.17), yields the following rules of survival (we re
all that δB = −1for any fermioni
 twisted se
tor):� when [B1

0000|ei] = −1 and [x|ei] = 1, both se
tors |B1
0000〉 and |B1

0000 + x〉 survive at themassless level;� when [B1
0000|ei] = 1 and [x|ei] = 1, both se
tors |B1

0000〉 and |B1
0000 + x〉 are proje
ted out;� when [B1

0000|ei] = −1 and [x|ei] = −1, |B1
0000〉 survives and |B1

0000 + x〉 is proje
ted out;� when [B1
0000|ei] = 1 and [x|ei] = −1, |B1

0000〉 is proje
ted out and |B1
0000 + x〉 survives.Now that we know how to manipulate ea
h twisted se
tor, we 
an start to explore the duality.Note that the list of ingredients at our disposal is quite simple and handy.We are dealing with three twisted planes, in whi
h four left-moving and four right-movingfermions pi
ked among the fermionized 
oordinates (yiωi)(ȳiω̄i) are in Ramond boundary 
on-ditions. These fermions 
arry indi
es (i1, i2, i3, i4) = (3, 4, 5, 6) for the B1 family, (1, 2, 5, 6) forthe B2 family, and (1, 2, 3, 4) for the B3 family. We 
an a
t on these twisted se
tors by makingthe freely-a
ting orbifold generated by the set ei a
t in a non-trivial way on them. Then onesees that, to be able to proje
t out states, one must 
onsider the a
tion of the sets ei and ej,where i and j are di�erent from i1...4; otherwise, the ei-proje
tion's e�e
t is to 
hoose the internal
hiralities of the 
orresponding spin-�eld. Moreover, if i is one of the four indi
es i1...4, the se
tor

B + ei is not massive, but rather another twisted se
tor of the same plane.Then two proje
tions have to be 
onsidered for ea
h twisted plane. In the following, we will beinterested in the B1 plane, so that we will 
onsider the orbifolds indu
ed by e1 and e2. Thisfa
t is not surprising : in the B1 plane, the physi
s is independent of the volume of the fourinternal 
oordinates 
orresponding to the fermions (yω|ȳω̄)3456; therefore, a spontaneous break-ing of symmetry in this plane must be 
onstru
ted out of the two last internal 
oordinates, asthe value of the mass gap will depend on the size of these 
oordinates. Of 
ourse, in this paperwe will en
ounter no su
h dependen
e, as all moduli are set at the fermioni
 point; however, adeformation of these models would make this feature 
lear.Finally, to 
ompute the a
tion of the orbifolds e1 and e2 on one arbitrary se
tor of the �rsttwisted plane |B1
λ3λ4λ5λ6

〉, we remark that the usual 
onstraints of the fermioni
 
onstru
tionimpose
[
B1
λ3λ4λ5λ6

|ei
]

= [b1 + S|ei]
6∏

j=3

[ej |ei]λj i = 1, 2. (3.18)Knowing all the 
oe�
ients [ei|ej ] , whi
h are part of the de�nition of the model, we are thenable to repeat the above reasoning to dedu
e the a
tion of e1 and e2 proje
tions on |B1
λ3λ4λ5λ6

〉and |B1
λ3λ4λ5λ6

+ x〉. 12



3.5 The zi proje
tionsThe 
ase of the zi proje
tions is in many ways similar to the 
ase of the ei's. This time, as wehave, for any twisted se
tor B of the theory B∩z1 = B∩z2 = ∅, any non-trivial dis
rete torsionturned on for the z sets will have an e�e
t on the three twisted planes. One 
an derive all the rulesin a similar way as for the ei's : the zi proje
tions 
an be taken to break the x super
onformalCFT or not, and various 
ombinations of hypotheses on the GGSO yields various 
uts in thespe
trum of the theory. As this 
ase is identi
al to the e1,2 orbifolds, the rules of the previoussubse
tion apply.We will often omit the zi proje
tions, to whi
h most of the rules we derive for the (ei) proje
tionssimilarly apply. We will a
tually spe
i�
ally need them to perform further 
uts in the spe
trum,giving us the possibility to restrain the number of representations present in our models.4 Constru
tion of dual pairs of models4.1 A 
lass of self-dual models : the E6 modelsAs we mentioned previously, sin
e in E6 models the spe
trum arranges itself in fundamentalrepresentations 27 and 27, these models are trivially self-dual.The gauge group E6 is present in a model if and only if the x-map is unbroken. This isequivalent to requiring that the freely-a
ting orbifolds do not break the right-moving part of the
N = (2, 2) super
onformal algebra of the initial model. In terms of dis
rete torsion 
oe�
ients,this 
ondition is en
oded in the equality

∀ i = 1 . . . 6, [x|ei] = 1; [x|z1,2] = 1. (4.1)From the 
onsiderations of the previous se
tion, it is then obvious that if the above equalities aremet, in any twisted se
tor |B〉, the representations (S, V ) ⊂ 27 and (S̄, V ) ⊂ 27 will be eithersimultaneously 
onserved or simultaneously destroyed, depending on the value of the GGSO
oe�
ients [B|ei], [B|zi]. Expli
itly building the spe
trum and 
ounting the states survivingafter the appli
ation of the various GGSO proje
tions 
on�rms the self-duality; we �nd that agiven twisted se
tor |B〉 possesses one SO(10)-spinor (
hiral or anti-
hiral, its 
hirality being�xed by the b̃2-proje
tion), one SO(10)-ve
tor and one singlet under SO(10), but 
harged withrespe
t to the additional U(1) of SO(10)× U(1) ⊂ E6 :
|B〉 : (S, V ) ⊂ 27 or (S̄, V ) ⊂ 27. (4.2)When the a
tion of all zi-indu
ed and ei-indu
ed freely-a
ting orbifolds are trivial on the twistedse
tors, we �nd therefore that the model possesses N+ 27 and N− 27 E6 representations, with

N+ +N− = 48. As the various orbifolds a
t, they are able to 
ut in ea
h twisted se
tor, eitherthe ve
torial, or the spinorial, or the whole se
tor. As an example, we 
onsider the twistedse
tors |B1
λ3λ4λ5λ6

〉. Depending on the values of the GGSO 
oe�
ients [b1|ei] ,i = 1, 2 and [ej |ei],
i = 1, 2, j = 3, 4, 5, 6, we are able, thanks to the identities

[
B1
λ3λ4λ5λ6

|ei
]

= [B1
0000|ei]

6∏

j=3

[ej |ei]λj , (4.3)13



[
B1
λ3λ4λ5λ6

|ei
]

= [B1
0000|zi]

6∏

j=3

[ej |zi]λj , (4.4)to determine the e�e
t of the ei- and zi-proje
tions on ea
h one of the twisted se
tors of the B1plane. In parti
ular, if [ek|ei] = −1, one sees that the ei-proje
tion has opposite e�e
ts on these
tors ∣∣B1
λ3λ4λ5λ6

〉 and ∣∣B1
λ3λ4λ5λ6

+ ek
〉.4.2 Duality inside the N = 2 se
torsAs the 
lassi�
ation in [4, 9℄ shows, one 
an 
reate several kinds of non-self-dual models, inwhi
h, in a given twisted plane generated by the se
tors |B1〉 and |B1 + x〉, one has either onlyspinorials of SO(10) (with either positive or negative 
hirality; moreover, the number of spinorsand antispinors do not have to be equal) or only ve
torials. For a non-self dual model, as the

x-super
onformal map is broken, there exists at least one i ∈ {1 . . . 6} su
h that [x|ei] = −1 or(in
lusive) one i ∈ {1, 2} su
h that [x|zi] = −1.Let us start by 
onsidering a breaking by ei. First we argue that the 
ondition [x|ei] = −1is able to break the self-duality only in the se
tors where the freely-a
ting orbifold ei has thepossibility to proje
t out entire representations of SO(10) : namely i = 1, 2 for B1 se
tors,
i = 3, 4 for B2 se
tors, and i = 5, 6 for B3 se
tors. Indeed, let us suppose that [x|e1] = −1while the others [x|ei] = 1, and investigate the 
onsequen
es on the spe
trum. In the B1 se
tors,we have seen in a previous se
tion that this breaking of x-map 
an proje
t out spinors and/orve
tors of SO(10). However, in B2 and B3 se
tors, due to the interse
tions

∀λi ∈ {0, 1}, B2
λ1λ2λ5λ6

∩ e1 = (B2
λ1λ2λ5λ6

+ x) ∩ e1 6= ∅ (4.5)and
∀λi ∈ {0, 1}, B3

λ1λ2λ3λ4
∩ e1 = (B3

λ1λ2λ3λ4
+ x) ∩ e1 6= ∅ (4.6)the e1-proje
tion only kills heli
ities, having a similar a
tion in the se
tors B2,3 and their super-
onformal partners B2,3 + x; it is not able to annihilate entire representations. Then the dualityspinor-ve
tor is still valid in these se
tors.With this in mind, we fo
us on a 
ase where the x-map is only broken in the �rst plane, thatis by e1 and/or e2. The duality map is then the following : the (St ↔ V )-dual of a model wherethe x-map is broken only in the �rst twisted plane is 
onstru
ted by reversing the signs of thedis
rete torsion 
oe�
ients [B1

0000|ei] and [B1
0000|zj ] for every ei, i = 1, 2, satisfying [x|ei] = −1,and for every zj satisfying [x|zj ] = −1. This pro
edure is easily seen to be in agreement withthe rules given in [4℄, where the general form of the duality transformation is formulated as theex
hange of the ranks of the matri
es [∆(1), Y

(1)
16

] and [∆(1), Y
(1)
10

]; this parti
ular set of rulesa
tually ex
hanges the ve
tors Y (1)
16 and Y (1)

10 .To prove this, let us suppose that [x|e1] = −1 and 
onsider the a
tion of the e1 proje
tion on agiven se
tor ∣∣B1
λ3λ4λ5λ6

〉. 14



• Sin
e one has
[B1

λ3λ4λ5λ6
|e1] = [B1

0000|e1]× [e3|e1]λ3 [e4|e1]λ4 [e5|e1]λ5 [e6|e1]λ6

︸ ︷︷ ︸
=ε

(4.7)we 
on
lude that the se
tor B1
λ3λ4λ5λ6

survives the e1 proje
tion i� [B1
0000|ei] = −ε, and isproje
ted out i� [B1

0000|ei] = ε;
• Then, sin
e [x|e1] = −1, we see that the se
tor B1

λ3λ4λ5λ6
+ x survives i� [B1

0000|ei] = ε,and is proje
ted out i� [B1
0000|ei] = −ε.

• Therefore, the 
ase [B1
0000|ei] = ε 
orresponds to keeping only the spinorial of SO(10)arising from B1

λ3λ4λ5λ6
, whereas [B1

0000|ei] = −ε preserves only the ve
torial representationfrom this se
tor.
• Then, it is obvious to see that reversing the sign of [B1

0000|e1] will bring the dual model,sin
e the fa
tor ε = [e3|e1]λ3 [e4|e1]λ4 [e5|e1]λ5 [e6|e1]λ6 has not been 
hanged in the pro
ess.One must also look at the 
ase where both e1 and e2 are breaking the x-map. It is easy to
onvin
e oneself that one must reverse the two dis
rete torsions [B1
0000|e1] and [B1

0000|e2] to getthe dual model. Indeed, supposing that we start from a 
on�guration where only the spinorialrepresentation survive from the se
tor B1
λ3λ4λ5λ6

after the two proje
tions, one sees that reversingonly one of the two GGSO 
oe�
ients annihilates the whole se
tor B1
λ3λ4λ5λ6

; whereas reversingboth 
oe�
ients brings ba
k the ve
torial of the se
tor.Using similar arguments, one shows that, in the 
ase of a breaking of the x-map by a set
zi, the dual model is obtained by also swit
hing the sign of the 
orresponding GGSO 
oe�
ient
[B1

0000|zj ]. Indeed, the zi are never, in all three planes, part of the spin-�elds giving the va
uum,and then we 
an derive rules for them whi
h are similar to the rules we have for e1,2 when a
tingon the �rst plane, e3,4 on the se
ond plane and e5,6 on the third plane. We note that, sin
e the
oe�
ients (S|ei) and (S|zi) are set to preserve N = 1 supersymmetry, we may repla
e in theabove rules [B1
0000| . . . ] by [b1| . . . ]. We re
over the fa
t that the spinor-ve
tor duality is realizedwithin ea
h N = 2 twisted plane B1,2,3.Note that the rule we gave for the duality is not unique. One 
an 
he
k that, if we performthe duality in the �rst plane, a dual model 
an be obtained by reversing the sign of [B1

0000|ei]for every i, i = 1 . . . 6, satisfying [x|ei] = −1 (that is, we do not restrain ourselves to the two�relevant� proje
tions in the �rst twisted plane whi
h are e1 and e2). As a 
onsequen
e, a givenmodel admits more than one dual. We will give additional arguments to this point at the end ofthis se
tion.When the x-map is broken in more than one plane, some subtleties arise, that require �nerdetails. Consider a x-map-breaking set α, that is, [α|x] = −1. α may be one of the ei or one ofthe zi. The duality operation has to be 
arried out in the three planes, by reversing the GGSO
oe�
ients [b1|α], [b2|α], and [b3|α]. However, the third twisted plane is not independent from15



the two others, sin
e b3 = b1 + b2 + x. Having 
arried out the two �rst steps of the duality, wesee that the two reversals
[b1|α] → −[b1|α], [b2|α] → −[b2|α] (4.8)entail, sin
e [b3|α] = [b1|α] · [b2|α] · [x|α] :

[b3|α] → [b3|α]. (4.9)This situation arises if a set α is able to break the spinor-ve
tor duality in all three planes. Thisis not the 
ase for the ei's : as we have seen, e1 and e2 
an only break the duality in the �rstplane B1, e3 and e4 in the se
ond plane B2, and e5 and e6 in the third plane B3.It is however problemati
 when α is equal to z1 and z2. In that 
ase, the duality is restored ifwe assume the existen
e of ei and ej , i 6= j, su
h as :
[ei|z1] = −1 and [ej |z2] = −1. (4.10)These 
onditions are pre
isely the no-enhan
ements hypotheses we assumed to de�ne the 
lassof models in whi
h we demonstrate the duality.Indeed, when (4.10) is veri�ed, the transformation (4.8) for α = z1 entails4

[b3|z1] → −[b3 + ei|z1]. (4.11)This feature has the following e�e
t. In the two �rst twisted planes, the transformations (4.8)imply that if, in a model, the se
tor |B1
λ3λ4λ5λ6

〉 
ontains a spinorial representation, it will
ontain a ve
torial representation in the dual model. However, due to the transformation (4.11),we learn that if, in a model, the se
tor |B3
λ1λ2λ3λ4

〉 
ontains a spinorial representation, the se
tor
|B3

λ1λ2λ3λ4
+ ei〉 will 
ontain a ve
torial representation in the dual model. Then, in the thirdplane, we have a modi�ed the x-map : instead of linking a se
tor |B3

λ1λ2λ3λ4
〉 to |B3

λ1λ2λ3λ4
+ x〉,we have linked it to |B3

λ1λ2λ3λ4
+(x+ ei)〉. In this respe
t, the duality in the third plane 
an alsobe viewed as being a se
tor-by-se
tor 
orresponden
e.This also points out that the duality operation is not unique : one 
an 
hoose to modify the

x-map α 7→ α+x into α 7→ α+x+ ei in the two �rst planes, for appropriate sets ei, i.e. su
h as
α + ei is massless, and ei satis�es a 
ondition of the type (4.10). This observation is 
onne
tedto the fa
t that the duality operation is viewed in [4℄ as an ex
hange of the rank of the matri
es

rank
[
∆(I), Y

(I)
16

]
↔ rank

[
∆(I), Y

(I)
10

]
; (4.12)this rank being 
onstant under linear 
ombinations on the 
olumns of ∆(I).Also note that when we will detail in se
tion 4.4 the duality pro
edure, in the no-enhan
ementframework, in terms of 
o
y
le insertions, it will be su�
ient to insert 
o
y
les relative to thetwist parameters h1 and h2; the e�e
t on the third plane will automati
ally follow.4We suppose here that ei 6= e5, e6. If not, one adapts the proof in the straightforward way by ex
hanging theroles of b1, b2, b3. 16



4.3 Expli
it realization of the duality in the �rst twisted planeWe 
onsider a model given by the following dis
rete torsion 
oe�
ients :
[B1

0000|e1] = 1, [x|e1] = 1, [x|e2] = −1; (4.13)and
[.|.] e1 e2
e3 −1 1
e4 1 −1
e5 1 1
e6 −1 1Then the a
tion of e1 and e2 proje
tions on the B1 twisted plane and the resulting spe
trum aresummarized in table 1. This table gives, for a model and its dual, the dis
rete torsion a

ountingfor the e�e
t of the proje
tions e1 and e2 for ea
h of the 16 se
tors of the �rst twisted plane, andthe 
orresponding surviving representations. The left part of the table assumes [B1

0000|e2] = 1while the right part is for [B1
0000|e2] = −1. As we dis
ussed, a 
oe�
ient 1 relatively to e1proje
ts out spinors and ve
tors altogether; a 
oe�
ient 1 with respe
t to e2 proje
ts out spinorsand a −1 proje
ts out ve
tors.

[.|.] e1 e2 rep. e1 e2 rep.
B1

0000 1 1 ∅ 1 −1 ∅
B1

0001 −1 1 V −1 −1 S
B1

0010 1 1 ∅ 1 −1 ∅
B1

0100 1 −1 ∅ 1 1 ∅
B1

1000 −1 1 V −1 −1 S
B1

1100 −1 −1 S −1 1 V
B1

1010 −1 1 V −1 −1 S
B1

1001 1 1 ∅ 1 −1 ∅
B1

0101 −1 −1 S −1 1 V
B1

0110 1 −1 ∅ 1 1 ∅
B1

0011 −1 1 V −1 −1 S
B1

1110 −1 −1 S −1 1 V
B1

1101 1 −1 ∅ 1 1 ∅
B1

1011 1 1 ∅ 1 −1 ∅
B1

0111 −1 −1 S −1 1 V
B1

1111 1 −1 ∅ 1 1 ∅Table 1: GGSO 
oe�
ients for the �rst twisted plane and 
orresponding surviving representation,for the 
hoi
e of 
oe�
ients (4.13).Note that in fa
t, this model is already self-dual; however, the duality operation is non-trivial, as it ex
hanges spinorial and ve
torial representations inside ea
h twisted se
tor B1
λ3λ4λ5λ6

,and we �nd it more instru
tive to detail the duality pro
edure in this model rather than in a17



purely ve
torial or purely spinorial model (re
all from [4℄ that in one twisted plane, one haseither a purely ve
torial, purely spinorial/anti-spinorial or half-ve
torial half-spinorial � i.e. self-dual � spe
trum). Obviously, under a duality transformation, a model having only spinorialrepresentations (whi
h 
an be spe
i�
ally obtained, for example, by setting [e3,4,5,6|e2] = 1) willbe related to a model having only ve
torial representations, the transformation being done se
torby se
tor. We present an expli
it example of su
h a duality transformation in Appendix I.We have not mentioned here the 
hirality of the spinorial representations; these depend onthe b̃2 proje
tion, whi
h in turn depends on the dis
rete torsions
[B1

0000|b̃2]; [ei|b̃2], i = 3, 4, 5, 6. (4.14)We will �x [B1
0000|b̃2] = −1 and 
onsider two 
ases of �gure for the other four GGSO 
oe�
ients :(1) : [.|.] b̃2

e3 1
e4 1
e5 1
e6 1

and (2) : [.|.] b̃2
e3 1
e4 −1
e5 1
e6 −1Extra
ting the spinorial representations from the previous model, we �nd that for 
ase (1), beforeand after duality, all SO(10) spinors have positive 
hirality. For 
ase (2), we �nd that, beforeand after duality, we have 2 
hiral and 2 anti-
hiral spinors.Note that to put in eviden
e more features of the 
onstru
tion, we have taken non-trivial valuesfor the 
oe�
ients [e3,4,5,6|e1,2]. Had we not done this, the remaining model would have had moregenerations. One sees that within a twisted plane, arbitrary values of the 
oe�
ients [e3,4,5,6|ei],where ei doesn't break the x-map, are only able to proje
t out half of the twisted se
tors; only8 se
tors out of 16 
ontribute, giving either a purely spinorial, purely ve
torial, or half-ve
torialand half-spinorial spe
trum.Further proje
tions in the spe
trum 
an then be performed by a
ting with the orbifoldsgenerated by z1 and z2. Indeed we 
an obtain the formula

[B1
λ3λ4λ5λ6

|z1,2] = [B1
0000|z1,2]×

6∏

i=3

[ei|z1,2]λi (4.15)and the survival 
ondition of the se
tor ∣∣B1
λ3λ4λ5λ6

〉 is
[B1

λ3λ4λ5λ6
|z1,2] = −1. (4.16)Setting, for some (i, j) ∈ {3, 4, 5, 6} × {1, 2}, some dis
rete torsions

[ei|zj ] = −1 (4.17)gives one a

ess to models in whi
h only 4 se
tors or only 2 se
tors out of the 16 survive at themassless level. 18



To 
on
lude this subse
tion, let us note that the expli
it model we 
onstru
ted above isself-dual; however the E6 gauge symmetry has been broken. Breaking E6 → SO(10) × U(1),as it makes an abelian fa
tor U(1) appear in the gauge group, is generally believed to lead toanomalies. However, in a 
lass of self-dual models, U(1) anomalies 
an be evaded when summingon the 
ontribution of the three twisted planes. We provide an expli
it example of this propertyin the Appendix II.4.4 Plane by plane insertions of dis
rete torsion 
oe�
ients, and their overalle�e
tsIn this subse
tion, we want to indi
ate how these 
onstru
tions 
an be translated in terms ofmodi�
ations of the overall phase Φ introdu
ed in the general form of the partition fun
tion(2.6). Again, we fo
us on the �rst twisted plane; the generalization for the simultaneous a
tionon the three planes will be addressed at the end of this subse
tion. We are then 
onsidering theinternal dimensions ei, i = 1, 2. The term of the partition fun
tion representing the �rst twistedplane is obtained when the four spa
e-time fermions χ3,4,5,6 are twisted : therefore, h1 = 0 and,
h2 = h3 = h is the relevant twisting parameter.Remembering that the freely-a
ting orbifolds are 
onveniently represented by the insertionof 
o
y
les in the partition fun
tion, we �nd the following rules.First, in the absen
e of super
onformal symmetry breaking, one is able to proje
t out a wholese
tor of the twisted plane (that is, both the spinorial and the ve
torial 
oming from this se
tor)by adding a phase

(−)hti+gsi , (−)hGi+gHi , (4.18)depending on the breaking being done by a ei or a zi proje
tion. As we dis
ussed earlier, su
h a
oupling renders the h = 1 se
tors massive, whi
h is the 
ase in the plane that we are 
onsidering.Furthermore, as we have explained before, the e�e
t the di�erent se
tors of the plane is di
tatedby the values of the 
oe�
ients (ei|ej). These dis
rete torsions are 
ontrolled by the insertion ofthe 
o
y
les
(−)sitj+sjti . (4.19)One is then able to 
onstru
t a variety of self-dual models using these rules. Similarly, one isable to 
ontrol the value of the 
oe�
ient (ei|zj) by means of the insertion of
(−)siGj+Hjti . (4.20)The super
onformal x-map is broken as soon as we 
ouple a freely-a
ting orbifold to the SO(10)spin-stru
ture (ǫ, ξ). In the �rst twisted plane, su
h a breaking requires the a
tion of at leastone of the sets (e1, e2, z1, z2); the 
orresponding 
o
y
les to be inserted then read, respe
tively :

(−)ǫti+ξsi+siti , i = 1, 2 ; (−)ǫGi+ξHi+HiGi , i = 1, 2 . (4.21)Coupling the two previous e�e
ts now allow us to 
ontrol whi
h representation (spinorial orve
torial) survives at the massless level in the model. Starting from a 
ase where both spinorsand ve
tors survive, the addition of one of the SCFT-breaking phases (4.21) lifts the spinorials19



of SO(10), so that only the ve
torials survive. If instead we start from a 
ase where the wholese
tor has been proje
ted out, by the insertion of a 
o
y
le of the form (4.18), adding a 
o
y
le(4.21) re
overs the spinorials, while the ve
torials remain massive. The phase we inserted in this
ase is then the produ
t of (4.18) and (4.21).We may summarize the possibilities as follows :� no 
o
y
le introdu
ed : S and V stay at the massless level;� (−)hti+gsi : both S and V be
ome massive;� (−)ǫti+ξsi+siti : S be
omes massive, V stays massless;� (−)(ǫ+h)ti+(ξ+g)si+siti : S stays massless, V be
omes massive.Of 
ourse, if one 
onsiders a breaking by zi, one has to repla
e (si, ti) by (Hi, Gi).We then learn how to engineer the duality map dire
tly on the partition fun
tion. We havestated that it has to be done by reversing the GGSO proje
tions [B1|ei], [B1|zi] for ea
h x-breaking proje
tions ei, zi. But these values are en
oded in 
o
y
les
(−)hti+gsi , (−)hGi+gHi . (4.22)where h is the orbifold parameter relevant for the plane we are interested in. Therefore, to 
arryout the duality map, one has to insert a 
o
y
le (4.18) for ea
h proje
tion breaking the x-map(i.e. su
h that a 
o
y
le of the form (4.21) is present in the partition fun
tion).5 Con
lusion and dis
ussionIn this paper, we gave a new demonstration of the spinor-ve
tor duality that was shown tohold among the N = 2 Z2 and the N = 1, Z2 × Z2 heteroti
�string va
ua obtained via thefree fermioni
 
onstru
tion. We interpreted the freely-a
ting orbifolds present in the modelin terms of stringy S
herk-S
hwarz me
hanisms; these have been used to give a non-vanishingmass to some se
tors of the theory, and/or to perform a spontaneous breaking of the right-moving super
onformal algebra (also 
alled x-map) whi
h is responsible of the gauge enhan
e-ment SO(10)×U(1) → E6. Su
h a breaking 
reates non-self-dual models, where we do not havethe same number of spinorial and ve
torial representations of SO(10) at the massless level of thetheory. We des
ribed the pro
edure used to 
onstru
t the dual of a given model. Moreover, weexpli
itly 
onstru
ted self-dual models in whi
h E6 gauge is broken.Su
h models may, or may not, be free from all Abelian and mixed anomalies. The 
asesin whi
h the self�dual models are parti
ularly interested, as in su
h models one does not needto resort to �eld theory arguments to shift the va
uum to a stable supersymmetri
 va
uum.Finally, we have given rules on how to perform this duality dire
tly on the expression of the1-loop partition fun
tion of the model.One may ask what are the impli
ations of su
h a duality. Firstly, we 
an see it as a symmetryin the spa
e of va
ua of string theory, whose study has been of great interest over the past years[16℄. Furthermore, the duality is exhibited in the spa
e of free fermioni
 models that have alsogiven rise to some of the most realisti
 string models 
onstru
ted to date. The geometri
alstru
ture underlying the free fermioni
 models is that of the Z2 × Z2 orbifold, and a natural20



question is whether it extends to other orbifolds. The spinor�ve
tor duality 
an be thoughtof as being of the same kind as mirror symmetry [17℄. Indeed, mirror symmetry is manifestin this model as the symmetry ex
hanging spinorials of SO(10) into anti-spinorials of SO(10).This is due to the Type II ↔ Heteroti
 
orresponden
e being related to the embedding of thespin-
onne
tion in the gauge 
onne
tion. Therefore, 
hanging the 
hirality of the SO(10) spinorsamounts, on the Type II side, to 
hange the GSO proje
tion on the right-hand side of the theory.This Type IIA ↔ Type IIB swit
h is known [18℄ to be equivalent to the substitution of the
ompa
ti�
ation manifold by its mirror. Our 
onstru
tions displays this mirror symmetry : thisrelies on the 
hoi
e of the 
oe�
ients [b1|b̃2] and [ei|b̃2], as we have shown that the b̃2 proje
tionimposes the 
hirality of the massless spinorial representations (if any). The mirror symmetryimplies a 
hange in the topology of the 
ompa
ti�
ation manifold, as the Euler 
hara
teristi
is taken to its opposite. Spinor-ve
tor duality 
an, as well, be thought of as another topology�
hanging duality. Note that its range of appli
ation is wider than the mirror 
ase. Here, non-self-dual points 
orrespond to N = (2, 0) 
ompa
ti�
ations. Just as mirror symmetry 
an bethought of as a manifestation of T�duality [18℄ also the spinor�ve
tor duality may be regarded assu
h, but with the added a
tion on the bundle representing the gauge degrees of freedom of theheteroti
 string, indu
ed by the breaking of the N = 2 world�sheet super
onformal symmetryon the right-moving bosoni
 side of the heteroti
 string. Thus, just as mirror symmetry haveled to the notion of topology 
hanging transition between mirror manifolds, the spinor�ve
torduality suggests that the web of 
onne
tions is far more 
omplex, and further demonstratingthat our understanding of string theory is truly only rudimentary. Furthermore, what we may�nd is that the distin
tion of parti
les into spinor and ve
tor representation is a mere low energyorganisation. What the string truly 
ares about is its internal 
onsisten
y, 
hara
terized by themodular invarian
e of the partition fun
tion.A
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Appendix IA dual pair of models with spe
trum in the �rst twisted planeWe 
onsider the model given by the following GGSO 
oe�
ients matrix :
[vi|vj] = eiπ(vi|vj) (I.1)

(vi|vj) =




1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1
S 1 1 1 1 1 1 1 1 1 1 1 1
e1 1 1 0 1 0 0 0 1 0 0 1 1
e2 1 1 1 0 0 0 1 1 0 0 0 0
e3 1 1 0 0 0 0 0 0 0 0 0 0
e4 1 1 0 0 0 0 0 0 0 1 1 1
e5 1 1 0 1 0 0 0 0 0 0 1 0
e6 1 1 1 1 0 0 0 0 1 1 1 0
b1 1 0 0 0 0 0 0 1 1 0 0 1
b2 1 0 0 0 0 1 0 1 1 1 0 0
z1 1 1 1 0 0 1 1 1 0 0 1 0
z2 1 1 1 0 0 1 0 0 1 0 0 1




(I.2)
As far as the SO(10) representations are 
on
erned, this model 
ontains two ve
torials 10,one in the se
tor S + b1 + e5 + x, and one in the se
tor S + b1 + e3 + e5 + x. The spe
trum istherefore 
ontained in the �rst twisted plane; we will only need to 
arry out the duality in thisplane.We apply the duality pro
edure as follows.First, we noti
e that, sin
e

x = 1 + S +
6∑

i=1

ei + z1 + z2,we have
(x|e1) = 0, (x|e2) = 1, (x|e3) = 0,

(x|e4) = 0, (x|e5) = 0, (x|e6) = 1,

(x|z1) = 1, (x|z2) = 1.The method we exposed then 
onsists in reversing the GGSO 
oe�
ients (b1|e2), (b1|z1) and
(b1|z2). The resulting matrix is therefore (the 
oe�
ients we 
hanged are in bold) :
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(vi|vj) =




1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1
S 1 1 1 1 1 1 1 1 1 1 1 1
e1 1 1 0 1 0 0 0 1 0 0 1 1
e2 1 1 1 0 0 0 1 1 1 0 0 0
e3 1 1 0 0 0 0 0 0 0 0 0 0
e4 1 1 0 0 0 0 0 0 0 1 1 1
e5 1 1 0 1 0 0 0 0 0 0 1 0
e6 1 1 1 1 0 0 0 0 1 1 1 0
b1 1 0 0 1 0 0 0 1 1 0 1 0
b2 1 0 0 0 0 1 0 1 1 1 0 0
z1 1 1 1 0 0 1 1 1 1 0 1 0
z2 1 1 1 0 0 1 0 0 0 0 0 1




(I.3)
When expli
itly 
omputing the spe
trum of this new model, we �nd indeed that two spinors

16 of SO(10) arise from the �rst plane, in the se
tors S + b1 + e5 and S + b1 + e3 + e5. Wesee then that in this simple 
ase, the duality transformation o

urs se
tor by se
tor in the �rsttwisted plane, like des
ribed in se
tion 4.Appendix IIA self-dual, anomaly-free model without E6 enhan
ementWe are 
onsidering the model given by the matrix whi
h 
oe�
ents (vi|vj) ∈ {0, 1} are de�nedby
[vi|vj] = eiπ(vi|vj) (II.1)

(vi|vj) =




1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2

1 1 1 1 1 1 1 1 1 1 1 1 1
S 1 1 1 1 1 1 1 1 1 1 1 1
e1 1 1 0 0 0 0 0 1 1 0 0 1
e2 1 1 0 0 1 1 1 1 1 0 0 0
e3 1 1 0 1 0 1 1 0 0 0 0 0
e4 1 1 0 1 1 0 1 1 0 1 1 0
e5 1 1 0 1 1 1 0 1 0 0 1 1
e6 1 1 1 1 0 1 1 0 1 0 0 1
b1 1 0 1 1 0 0 0 1 1 0 1 1
b2 1 0 0 0 0 1 0 0 1 1 1 0
z1 1 1 0 0 0 1 1 0 1 1 1 0
z2 1 1 1 0 0 0 1 1 0 0 0 1




(II.2)
We see that sin
e (z1|x) = (z1|1) + (z1|S) +

∑6
i=1(z1|ei) + (z1|z1) + (z1|z2) ≡ 1 mod. 2, thegauge group E6 is broken. Moreover, the 
onditions (e1|z2) = (e4|z1) = 1 ensure that the�hidden� gauge group is minimal and the full gauge group is SO(10)× U(1)3 × SO(8)× SO(8).23



The spe
trum of this model 
ontains (we note as an index the three 
harges under the U(1)η̄i ,
i = 1, 2, 3) :� three spinors 16 of SO(10), one for ea
h twisted plane,

16(1/2,0,0), 16(0,−1/2,0), 16(0,0,−1/2),� three ve
tors 10 of SO(10), one for ea
h twisted plane,
10(0,1/2,1/2), 10(−1/2,0,1/2), 10(−1/2,1/2,0),� six non-abelian gauge group singlets, two for ea
h twisted plane,
1(1,−1/2,−1/2), 1(1/2,1,−1/2), 1(1/2,−1/2,1),

1(−1,−1/2,−1/2), 1(1/2,−1,−1/2), 1(1/2,−1/2,−1).By verifying the identities ∑ qi =
∑
q3i = 0 for the three abelian fa
tors of the gauge group, wesee that the observable spe
trum is anomaly-free. Note that this anomaly does not o

ur planeby plane, but results from a 
an
ellation between the three planes.One 
an also 
he
k that in this model, the 
ontributions of the (8,1) and (1,8) multiplets of

SO(8)× SO(8) to the U(1) anomalies 
an
el.
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1 Introduction

Perhaps the most natural setting for testing string theory is the cosmology of our Universe.

By now, there is a plethora of cosmological data favoring the phenomenological model of hot

Big Bang cosmology, where the cosmological evolution starts with a highly singular event,

the Big Bang, followed by an initial period of rapid inflation, a very high temperature phase,

a proportionally large amount of dark matter and dark energy [1]. Many features of this

phenomenological model are not well understood, and the hope is that their explanation will

arise from a fundamental theory of quantum gravity such as string theory.

In an effort to build a concrete theoretical framework for studying cosmology, a class of string

theory vacua, where the backreaction of both thermal and quantum effects can be system-

atically taken into account, was recently examined in [2–5]. In particular, starting with four

dimensional heterotic string models, with initial N = 4 or N = 2 space-time supersym-

metry [5], and implementing the thermal and the quantum corrections due to spontaneous

breaking of supersymmetry, cosmological solutions are found, at least when the temperature

T and the supersymmetry breaking scale M are sufficiently below the Hagedorn temperature

TH . In these examples, all moduli that are not involved in the breaking of supersymmetry

give exponentially suppressed contributions to the (thermal) effective potential. This is es-

sentially the underlying reason for the no-scale structure [4, 5] characterizing these models.

Due to this remarkable property, the thermal and quantum corrections are under control and

calculable. We would like to stress here that the absence of both infrared and ultraviolet

ambiguities leads to a well defined energy density and pressure [5].

To be more precise, we are forced to separate the cosmological evolution in four distinct

phases, according to the value of the temperature, namely:

(i) The very early “Big Bang” phase, where the underlying string theory degrees of freedom

are strongly coupled. Perhaps string dualities can be applied to understand this phase and

resolve the classical Big Bang singularity. See e.g. [6–11,19] and references therein.

(ii) A high temperature stringy phase, T . TH , where string oscillators and winding states

must be properly taken into account [13–17]. Often, these lead to a non-geometrical structure

of the Universe, e.g. the T-fold cosmologies of [2], or even to a change of the topology and

dimensionality of space [7, 11].

1



(iii) The third phase has features similar to that of a standard, radiation dominated Fried-

mann cosmology. Here, the Universe has cooled down to temperatures far below Hagedorn.

The effects of string massive states are exponentially suppressed O(exp(−Ms/T )). In this

phase, the ratio of the temperature T and supersymmetry breaking scale M is fixed, both

evolving inversely proportional to the scale factor of the Universe [4,5]. In cases with N = 1

initial supersymmetry, the behavior can be that of a cosmological constant dominated infla-

tionary universe [3, 4].

(iv) At lower temperatures, new phenomena such as the electroweak phase transition, QCD

confinement and structure formation are taking place. We expect also that in this phase,

some dynamics becoming relevant at these lower temperatures will stabilize the no-scale

modulus associated to the supersymmetry breaking scale [18].

Some interesting ideas concerning the first two stringy phases have been presented recently in

[19], where it was argued that the introduction of certain chemical potentials in the standard

canonical ensemble of superstrings removes the Hagedorn instabilities. These ensembles are

characterized by a “Temperature duality,” Z(T/TH) = Z(TH/T ). (See also [12] for some

related work.) Equally interesting are the models of [11], which possess a new kind of massive

boson-fermion degeneracy symmetry. Type II, heterotic and orientifold models have been

presented. Some proposals are put forward, in the framework of these theories, concerning

the early structure of the Universe.

Here however, we would like to examine more thoroughly the generalization of supersym-

metry breaking in the cases where more moduli are involved, not only in heterotic string

but also in type II closed string theories, working in the intermediate region (iii). It is

interesting that this intermediate phase can be studied with high precision at the full string

level [5], thanks to to the fact that just below the Hagedorn temperature, the theory pos-

sesses a no-scale structure. The free energy is set by a single, overall scale, which can be

chosen to be either the temperature or the supersymmetry breaking scale, and the rest of

the dependence is given in terms of functions of dimensionless, complex structure like ratios.

The backreaction on the initially flat background induces the cosmological evolution [4, 5].

In the string models studied in [5], only a single modulus was participating in the super-

symmetry breaking mechanism. In this work we extend the analysis for cases where more

geometrical moduli participate in the spontaneous breaking of supersymmetry. As we already
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remarked, all such moduli give non-exponentially suppressed contributions to the effective

potential. We examine in more detail the case where the supersymmetry breaking arises via

geometrical fluxes [20] induced by stringy Scherk-Schwarz [21] boundary conditions along

two internal spatial cycles with radii denoted by R4 and R5. The supersymmetry breaking

scale M is proportional to the inverse of the volume modulus
√
R4R5. The results can be

easily extended to cases involving more internal cycles. The heterotic or type II geometrical

fluxes are introduced by utilizing the helicity and/or other internal R-symmetry charges.

In the type II models, left-moving and right-moving R-symmetry charges can be coupled

symmetrically or asymmetrically to the two cycles.

As we will see, the low energy dynamics of some models admits a solution describing a

radiation dominated era. During the evolution, the supersymmetry breaking scale M and the

temperature T evolve in time the same way as the inverse of the scale factor of the Universe.

It is then important to analyze the stability for the dimensionless modulus describing the

shape of the internal space, U ≡ R5/R4. We find a rich structure of phenomena, depending

on whether the corresponding effective potential admits a minimum, a maximum or a run-

away behavior. Complementary results can be found in [22]. There, it is shown that these

solutions are attractors for the dynamics. That is, there are basins of initial conditions

whose associated cosmological evolutions converge towards the radiation dominated era with

stabilized complex structures.

The paper is organized as follows. In Section 2, we describe the basic principles of the

construction, clarifying the domain of validity of our analysis. We examine different classes

heterotic and type II string vacua and implement various ways that lead to a spontaneous

breaking of supersymmetry. We calculate the free energy at the full string level, and obtain

the generic structure of the thermal effective potential in the intermediate region where

T � TH . We use these general results to find their counterparts at zero temperature. We

also derive in the Einstein frame the gravitational equations and the equations of motion

for the main moduli participating in the supersymmetry breaking mechanism, including the

dilaton field. We present solutions at zero temperature, where the time evolution of the scale

factor and the stability of the complex structure U are analyzed.

In Section 3, we present explicit thermal models leading to radiation dominated cosmological

evolutions. The compatibility between the gravitational equations and the equations of mo-

3



tion of the relevant moduli leads to the equation of state ρ = (3+n)P , where n is the number

of internal dimensions involved in the supersymmetry breaking mechanism. In addition, we

analyze the stability for the modulus U . We compare to the zero temperature situation,

mainly to show the relevance of the thermal corrections to the cosmological evolution. We

show that during the radiation era, even when the temperature is very small, thermal effects

are never negligible. The qualitative behaviors of thermal and non-thermal evolutions are

drastically different. This is due to the non-linear character of the gravitational and moduli

equations.

The final Section is devoted to conclusions and perspectives.

2 General setup

We consider initially supersymmetric flat backgrounds within the context of four dimensional

superstrings constructed via orbifolds [23] and/or via the free fermionic construction [24].

By turning on certain non-trivial geometrical fluxes, we can spontaneously break space-time

supersymmetry [21]. The procedure that we follow involves coupling some of the internal

lattice quantum numbers to the space-time Fermion number F and/or to any of the discrete

R-symmetry charges QR. This is a generalization of the Scherk-Schwarz mechanism to

superstrings [21]. In addition, the system is put at finite temperature [13–15]. Our aim is to

study cosmological evolutions induced by the thermal and quantum corrections, as in [5], and

in particular investigate how some of the geometrical moduli, participating in the breaking

of supersymmetry, can be stabilized around a local minimum.

2.1 Heterotic models

We start with heterotic string compactifications on six-manifolds of the form S1(R4) ×
S1(R5) ×M4. Here, the choice of the four-manifold M4 determines the initial amount of

supersymmetry: N4 = 4 for the case of T 4, and N4 = 2 for the cases of T 4/Z2 orbifold and

K3 compactifications. Two internal cycles, associated to the X4 and X5 directions, have

been singled out, since these are to be utilized to break supersymmetry spontaneously.

We illustrate the derivation of the pressure on the simplest example. The initially super-
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symmetric string partition function is given by

Z =
V3

(2π)3

∫

F

d2τ

τ
5/2
2

Γ(1,1)(R0)
1

2

∑

a,b

(−)a+b+abθ [ab ]
4 Γ(6,22)

η12η̄24
, (2.1)

where the Euclidean time direction is compactified on a circle of radius R0. V3 is the volume

of the three large spatial directions. The Γ(6,22) lattice is associated to the zero mode contri-

bution of the internal six-manifold, along with the E8 × E8 or SO(32) right-moving lattice.

For instance, the E8 × E8 case on T 6 gives the block

Γ(6,22) = Γ(6,6)
1

2

∑

γ,δ

θ̄[γδ ]
8 1

2

∑

γ′,δ′

θ̄[γ
′

δ′ ]
8 , (2.2)

where γ, δ and γ′, δ′ are integers defined modulo 2.

We wish to implement a non-zero temperature in the model. This is done by coupling the

momentum and winding quantum numbers associated to the Euclidean time circle to the

space-time fermion number F [13–15] [5]. The contributions of the right-moving world-sheet

degrees of freedom to F are always even. Thus, at the level of the one-loop string partition

function, the operation amounts to replacing the Γ(1,1)(R0) lattice with

Γ(1,1)(R0)→
∑

h0,g̃0

Γ(1,1)[
h0
g̃0

](R0) (−)ag̃0+bh0+g̃0h0 , (2.3)

where Γ(1,1)[
h
g̃ ] is a Z2-shifted lattice [25] given by [13–15] [5]

Γ1,1[hg̃ ](R) =
R√
τ2

∑

m̃,n

e
−πR2

τ2
|(2m̃+g̃)+(2n+h)τ |2

. (2.4)

The spontaneous breaking of space-time supersymmetry is done by coupling the two Γ(1,1)

lattices associated with the internal circles of radii R4 and R5 to generic R-symmetry charges

[5, 13–15, 21]. In the case of models with N4 = 4 initial supersymmetry, all such charges

associated to the left-moving world-sheet degrees of freedom are equivalent by symmetry.

Different choices exist involving right-moving gauge R-charges [5]. For example, consider

the E8 × E8 models and decompose the E8 representations in terms of SO(16) ones. One

can choose R-charges which are odd for the SO(16) spinorial representations and even for

the others1.

1In the N2 = 2 orbifold models, one can choose R-charges associated to the twisted T 4 planes to which
the left-moving world-sheet degrees of freedom contribute as well [5].
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We will present a class of cases, where starting with N4 = 4, E8 × E8 vacua, space-time

supersymmetry is broken if we couple the X i lattices, i = 4, 5, to F + Q̄i, where the right-

moving charges Q̄i are odd for the SO(16) spinorial representations associated with one or

both the E8 factors. So we replace the X4 and X5 lattices as follows:

Γ(1,1)(Ri)→
∑

hi,g̃i

Γ(1,1)[
hi
g̃i

](Ri) (−)(a+Q̄i)g̃i+(b+L̄i)hi+εig̃ihi . (2.5)

Q̄i, i = 4, 5, can be identified to be either γ, γ′ or γ + γ′. [γ and γ′ are odd for the

corresponding SO(16) spinorial representations.] L̄i is equal to δ, δ′ or δ + δ′ respectively,

as dictated by modular invariance, and εi = 0, 1 depending on the modular transformation

τ → τ + 1. Under this,

a+ Q̄i → a+ Q̄i , b+ L̄i → a+ b+ Q̄i + L̄i + εi . (2.6)

For instance, for (Q̄i, L̄i) ≡ (γ + γ′, δ + δ′) one has εi = 1, while for (Q̄i, L̄i) ≡ (γ, δ)

or (γ′, δ′), εi vanishes. With these modifications taken into account, the one-loop string

partition function is given by

Z =
V3

(2π)3

∫

F

d2τ

τ
5/2
2

Γ(4,4)

η12η̄24

1

2

∑

a,b

(−)a+b+abθ [ab ]
4

×1

4

∑

γ,δ

∑

γ′,δ′

θ̄[γδ ]
8 θ̄[γ

′

δ′ ]
8
∏

i=0,4,5

∑

hi,g̃i

Γ(1,1)[
hi
g̃i

] (−)(a+Q̄i)g̃i+(b+L̄i)hi+εg̃ihi . (2.7)

In this equation, we have Q̄0 = L̄0 = 0. Redefining a = â +
∑

i hi and b = b̂ +
∑

i g̃i, and

using the Jacobi identity [5], one obtains

Z = − V3

(2π)3

∫

F

d2τ

τ
5/2
2

Γ(4,4)

η12η̄24

∑

hi,g̃i

θ
[

1+
P
i hi

1+
P
i g̃i

]4

(−)
P
i hi+

P
i g̃i+(

P
i hi)(

P
i g̃i)

× 1

4

∑

γ,δ

∑

γ′,δ′

θ̄[γδ ]
8 θ̄[γ

′

δ′ ]
8
∏

i

Γ(1,1)[
hi
g̃i

] (−)εihig̃i+Q̄ig̃i+L̄ihi . (2.8)

In the large radii regime Ri � RH , where RH is the Hagedorn radius, the system is free of

tachyons. The odd winding sectors, hi = 1, are exponentially suppressed. In this regime

only the sectors hi = 0, i = 0, 4, 5 and g̃0 + g̃4 + g̃5 = 1 modulo 2 contribute significantly (the

latter condition due to the fact that θ[11] vanishes identically). Furthermore, if the internal

lattice Γ(4,4) moduli are kept to be of order unity, we can express the leading contributions
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as the following integral [5]:

Z =
V3

(2π)3
R0R4R5

∑

g̃i

1− (−)
P
i g̃i

2

∑

s

(−)Q̄4(s)g̃4+Q̄5(s)g̃5

×
∫ ∞

0

dτ2

τ 4
2

∑

m̃i

e
− π
τ2

[(2m̃0+g̃0)2R2
0+(2m̃4+g̃4)2R2

4+(2m̃5+g̃5)2R2
5]
. (2.9)

In the first line the sum over s runs over the 23 × 504 massless boson/fermion pairs of

the initially supersymmetric model. The contributions of massive states are exponentially

suppressed, of order e−πRi . The integral gives the pressure in the string frame:

Pstring =
Z

V4

=
R4R5

(2π)4

2

π3

∑

g̃i

1− (−)
P
i g̃i

2

∑

s

(−)g̃4Q̄4(s)+g̃5Q̄5(s)

×
∑

m̃i

1
[
(2m̃0 + g̃0)2R2

0 + (2m̃4 + g̃4)2R2
4 + (2m̃5 + g̃5)2R2

5

]3 . (2.10)

We parameterize the various moduli as follows:

T :=
1

2πR0

√
ReS

, M :=
1

2π
√
T ReS

, ReT1 := R4R5 ≡ T ,

ReU1 :=
R5

R4

≡ U , u :=
R0√
T
, (2.11)

where S is the 4d dilaton-axion modulus, ReS = e−2φD . The two supersymmetry breaking

scales, in the Einstein frame, are the temperature T and the gravitino mass scale M . The

pressure in this frame is related to the string frame pressure by:

P =
1

(ReS)2
Pstring = T 4p(u,U) , (2.12)

with

p(u,U) = n100 p100(u,U) + n010p010(u,U) + n001 p001(u,U) + n111 p111(u,U) . (2.13)

The coefficients ng̃0g̃4g̃5 are given in terms of the supersymmetry breaking R-charges,

n100 = 23 × 504, n010 =
∑

s

(−)Q̄4(s), n001 =
∑

s

(−)Q̄5(s), n111 =
∑

s

(−)Q̄4(s)+Q̄5(s),

(2.14)

while the dependence on the complex structure moduli u and U involves the shifted Eisenstein

functions:

pg̃0g̃4g̃5(u,U) =
2

π3

∑

m̃0,m̃4,m̃5

u4

[
(2m̃0 + g̃0)2u2 + (2m̃4 + g̃4)2U−1 + (2m̃5 + g̃5)2U

]3 . (2.15)
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2.2 Type II models

We construct Type II models with similar thermal and supersymmetry breaking properties.

In these examples, the internal manifold involves either a T 4 factor for N4 = 8 initial super-

symmetry or a T 4/Z2 factor for N4 = 4. Orientifolds of these lead to models with N4 = 4

and N4 = 2 initial supersymmetry respectively, and include open string matter sectors. At

weak coupling in four dimensions, these are dual to heterotic models [26], some of which we

considered in the previous section. Models with N4 = 2 initial supersymmetry can also be

constructed if we start with a T 6/(Z2 × Z′2) orbifold [27]. We illustrate the derivation of

the pressure in the intermediate cosmological region, with T � TH , for the type II N4 = 4

models, but the results can be generalized to the other cases.

The N4 = 4 partition function is

Z =
V3

(2π)3

∫

F

d2τ

τ
5/2
2

1

(ηη̄)8

∏

i=0,4,5

Γ(1,1)(Ri)
1

2

∑

H,G

Z(4,4)[
H
G ]

× 1

2

∑

a,b

θ[ab ]
2θ[a+H

b+G ]θ[a−Hb−G ](−)a+b+ab 1

2

∑

ā,b̄

θ̄[āb̄ ]
2θ̄[ā+H

b̄+G
]θ̄[ā−H

b̄−G ](−)ā+b̄+āb̄ . (2.16)

The T 4/Z2 part is given by [25]:

Z(4,4)[
H
G ] =

Γ(4,4)

(ηη̄)4
, when (H,G) = (0, 0)

Z(4,4)[
H
G ] =

24η2η̄2

θ[1−H1−G ]2θ̄[1−H1−G ]2
, when (H,G) 6= (0, 0) .

(2.17)

The characters H,G are integers defined modulo 2.

As usual, the finite temperature is implemented by inserting the thermal co-cycle and re-

placing the Euclidean time lattice as follows [13–15]:

Γ(1,1)(R0)→
∑

h0,g̃0

Γ(1,1)[
h0
g̃0

](R0) (−)(a+ā)g̃0+(b+b̄)h0 . (2.18)

In contrast to the heterotic case, the contributions to the space-time fermion number F from

both the left-moving and right-moving sectors can be odd or even. In the sequel, we denote

by FL the contribution of the world-sheet left-movers to the space-time fermion number and

similarly for FR.

There are several ways to break the initial N4 = 4 supersymmetry spontaneously, either

by symmetric or asymmetric geometrical fluxes [20, 21, 23]. The two left-moving space-time
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supersymmetries can be broken if we couple either or both the X4 and X5 lattice charges to

FL, or to left-moving R-charges associated with the twisted planes: FL + Qi. Also, the two

right-moving space-time supersymmetries are broken by coupling the lattice charges to FR

or to FR + Q̄i. Each lattice is replaced as follows [19]:

Γ(1,1)(Ri)→
∑

hi,g̃i

Γ(1,1)[
hi
g̃i

](Ri) (−)[(a+Qi)g̃i+(b+Li)hi+g̃ihi]εi (−)[(ā+Q̄i)g̃i+(b̄+L̄i)hi+g̃ihi]ε̄i , (2.19)

where Qi, Q̄i can be set to zero or identified with the twist charge H. Correspondingly

Li, L̄i can be set to zero or identified with the character G. Also, we have introduced the

parameters εi, ε̄i, taking the values 0 or 1, to indicate whether we couple the circle i to the

left- or right-movers.

In particular, we will examine 3 distinct cases where N4 = 4 is spontaneously broken to

N4 = 0 (and then thermalized):

-Case 1 : Two asymmetric breakings, e.g. (ε4, ε̄4) = (1, 0), (ε5, ε̄5) = (0, 1).

-Case 2 : One symmetric and one asymmetric breaking, e.g. (ε4, ε̄4) = (1, 1), (ε5, ε̄5) =

(0, 1).

-Case 3 : Two symmetric breakings, (ε4, ε̄4) = (1, 1), (ε5, ε̄5) = (1, 1).

In addition, we will consider a case where the N4 = 4 supersymmetry is partially broken to

N4 = 2. The remaining supersymmetries are then broken by thermal effects:

-Case 1’ : Two left-moving asymmetric breakings, e.g. (ε4, ε̄4) = (1, 0), (ε5, ε̄5) = (1, 0).

The partition function can be written as follows:

Z =
V3

(2π)3
R0R4R5

∫

F

d2τ

τ 4
2

1

(ηη̄)8

1

2

∑

H,G

Z(4,4)[
H
G ]

× 1

2

∑

a,b

θ[ab ]
2θ[a+H

b+G ]θ[a−Hb−G ](−)a+b+ab 1

2

∑

ā,b̄

θ̄[āb̄ ]
2θ̄[ā+H

b̄+G
]θ̄[ā−H

b̄−G ](−)ā+b̄+āb̄ (2.20)

×
∏

i=0,4,5

{∑

hi,g̃i

∑

m̃i,ni

e
−πR

2
i

τ2
|(2m̃i+g̃i)+(2ni+hi)τ |2(−)[(a+Qi)g̃i+(b+Li)hi+g̃ihi]εi+[(ā+Q̄i)g̃i+(b̄+L̄i)hi+g̃ihi]ε̄i

}
.

Here (ε0, ε̄0) = (1, 1) and (Q0, Q̄0) = (L0, L̄0) = (0, 0).

As in the heterotic case, we are interested in the regime where the radii Ri, i = 0, 4, 5,

are much bigger than the Hagedorn radius, Ri � RH . In this intermediate cosmological
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regime, the system is free of any tachyonic instabilities. The odd winding sectors, hi = 1,

are exponentially suppressed, and the only significant contributions to the partition function

occur for hi = 0, g̃0 + ε4g̃4 + ε5g̃5 = 1 modulo 2 and g̃0 + ε̄4g̃4 + ε̄5g̃5 = 1 modulo 2.

The pressure receives contributions from the untwisted sector, H = 0, and from the twisted

sector H = 1. In the untwisted sector, the result is given by

Zuntwisted

V4

=
R4R5

(2π)4

∑

g̃i

1− (−)
P
i εig̃i

2

1− (−)
P
i ε̄ig̃i

2

× 2

π3

∑

m̃i

nuntwisted
0[

(2m̃0 + g̃0)2R2
0 + (2m̃4 + g̃4)2R2

4 + (2m̃5 + g̃5)2R2
5

]3 .
(2.21)

nuntwisted
0 is the number of massless boson/fermion pairs in the untwisted sector of the initially

supersymmetric N4 = 4 model. We have nuntwisted
0 = n0/2, where n0 = 27 counts the massless

pairs of the N4 = 8 model; the factor of 1/2 is due to the orbifolding.

In the twisted sector we have

Ztwisted

V4

=
R4R5

(2π)4

∑

g̃i

1− (−)
P
i εig̃i

2

1− (−)
P
i ε̄ig̃i

2
(−)(ε4Q4+ε̄4Q̄4)g̃4+(ε5Q5+ε̄5Q̄5)g̃5

× 2

π3

∑

m̃i

ntwisted
0[

(2m̃0 + g̃0)2R2
0 + (2m̃4 + g̃4)2R2

4 + (2m̃5 + g̃5)2R2
5

]3 .
(2.22)

ntwisted
0 = 28/2 is the number of massless boson/fermion pairs in the twisted sector of the

initially supersymmetric N4 = 4 model. The Q4, Q̄4, Q5, Q̄5 appearing in Eq. (2.22) can be

either zero or identified to the twist charge H = 1.

Using the definitions of the moduli introduced in Eq. (2.11), the pressure P is taking the

same form as in Eq. (2.12) with

p(u,U) =
∑

g̃0 + ε4g̃4 + ε5g̃5 = 1 mod 2
g̃0 + ε̄4g̃4 + ε̄5g̃5 = 1 mod 2

ng̃0g̃4g̃5 pg̃0g̃4g̃5(u,U) , (2.23)

where the functions pg̃0g̃4g̃5 are given in Eq. (2.15), and the coefficients ng̃0g̃4g̃5 are similarly

defined, in terms of supersymmetry breaking R-charges, as in Eq. (2.14),

ng̃0g̃4g̃5 = n0 =
28

2
, for N4 = 8 , (2.24)

ng̃0g̃4g̃5 =
n0

2

(
1 + 2(−)(ε4Q4+ε̄4Q̄4)g̃4+(ε5Q5+ε̄5Q̄5)g̃5

)
, for N4 = 4 . (2.25)

In the N4 = 4 cases, the coefficients ng̃0g̃4g̃5 can take negative values as well. The results can

be generalized to N4 = 2 models.
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2.3 The zero temperature limit

Setting T = 0, or R0 → ∞, in Eqs (2.10), (2.21) and (2.22), we can obtain the one-loop

effective potential at zero temperature. It arises from quantum effects due to the spontaneous

breaking of supersymmetry. For the heterotic models, the effective potential takes the form

V = M4 v(U), (2.26)

where M is defined in (2.11), and

v(U) = n10v10(U) + n01v01(U) . (2.27)

The coefficients ng̃4g̃5 are determined in terms of the R-charges,

ng̃4g̃5 =
∑

s

(−)g̃4Q̄4(s)+g̃5Q̄5(s) , (2.28)

and

vg̃4g̃5(U) = − 2

π3

∑

m̃4,m̃5

1
[
(2m̃4 + g̃4)2U−1 + (2m̃5 + g̃5)2U

]3 . (2.29)

The type II effective potential takes a form similar to the heterotic one, as in Eq. (2.26),

where now

v(U) =
∑

ε4g̃4 + ε5g̃5 = 1 mod 2
ε̄4g̃4 + ε̄5g̃5 = 1 mod 2

ng̃4g̃5vg̃4g̃5(U) , (2.30)

with ng̃4g̃5 = ng̃0g̃4g̃5 , given in (2.25) (or (2.24)).

2.4 Non thermal cosmologies

In the zero temperature limit, the 1-loop effective action takes the form:

S =

∫
d4x
√
−det g

{
1

2
R− gµν

(
∂µS∂νS̄

(S + S̄)2
+

∂µT1∂νT̄1

(T1 + T̄1)2
+

∂µU1∂νŪ1

(U1 + Ū1)2

)
− V

}
. (2.31)

All other moduli can be frozen since they do not appear in the effective potential. More

precisely, their contributions to the effective potential are exponentially suppressed. Freezing

further ImS, ImT1 and ImU1, we obtain for the Lagrangian

 L =
1

2
R− 1

2

(
(∂φS)2 + (∂φT )2 + (∂φU)2

)
− e−2

√
2(φS+φT ) v(U)

(2π)4
, (2.32)
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where

ReS := e
√

2φS , T := e
√

2φT , U := e
√

2φU . (2.33)

It is useful to redefine the fields as follows
(

φ
φ−

)
:=

(
−1/
√

2 −1/
√

2

1/
√

2 −1/
√

2

)(
φS
φT

)
(2.34)

since the field φ− does not appear in the potential:

 L =
1

2
R− 1

2

(
(∂φ)2 + (∂φ−)2 + (∂φU)2

)
−M4 v(U) with M =

eφ

2π
. (2.35)

We look for homogeneous and isotropic solutions where the metric is of the Friedmann-

Robertson-Walker form, with vanishing spatial curvature:

ds2 = −N(t)2dt2 + a(t)2dxidxi , H ≡
(
ȧ

a

)
. (2.36)

Here N is the laps function, a(t) the scale factor and H the Hubble parameter. In the gauge

choice N = 1, the gravitational field equations are

3H2 =
1

2
φ̇2 +

1

2
φ̇2
− +

1

2
φ̇2
U + V , (2.37)

2Ḣ + 3H2 = −1

2
φ̇2 − 1

2
φ̇2
− −

1

2
φ̇2
U + V . (2.38)

Their linear sum is independent of the fields kinetic terms:

Ḣ + 3H2 = V = M4 v(U) . (2.39)

Eq. (2.38) follows by differentiating the Friedmann-Hubble Eq. (2.37), once the following

moduli field equations are satisfied:

φ̈+ 3Hφ̇ = −∂V
∂φ

= −4M4 v(U) , (2.40)

φ̈U + 3Hφ̇U = − ∂V
∂φU

= −
√

2 M4 U v′(U) , (2.41)

φ̈− + 3Hφ̇− = 0 , (2.42)

where prime derivatives are with respect to U . The last equation can be integrated giving

1

2
φ̇2
− =

c−
a6
, (2.43)
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where c− is a positive constant. Eq. (2.41) can be satisfied for a constant U , if there exists

a solution to

v′(U) = 0 . (2.44)

We will look for models for which this extremum is a local minimum so that the complex

structure modulus U is stabilized. The compatibility of Eqs (2.39) and (2.40) requires that

there exists a constant cφ such that:

φ̇ = −4H +
cφ
a3
. (2.45)

In [22], it is shown that the solution for cφ = 0 is an attractor. Thus, we concentrate on the

case cφ = 0, so that

M ≡ eφ

2π
= M0

(a0

a

)4

, (2.46)

where M0a
4
0 is a positive integration constant.

The Hubble equation takes the form:

3H2 = −cm
a6

+
c

a16
where cm =

3

5
c− > 0 , c = −v(U)× 3

5
M4

0 a
16
0 . (2.47)

If c > 0, one has for cm = 0

a(t) = A t1/8 where A = 23/8
( c

3

)1/16

. (2.48)

When the kinetic energy for φ− is switched on, i.e. when cm > 0, one has a big bang/big

crunch cosmology. The solution t(a) is given by

t(a) = ± t0
∫ 1

a/A

x7dx√
1− x10

, 0 ≤ a ≤ A where A =

(
c

cm

)1/10

, t0 =
√

3c3/10c−4/5 .

(2.49)

We investigate whether some of the heterotic and type II models we considered satisfy the

minimization condition (2.44), which fixes the modulus U , and the positivity of the parameter

c, Eq. (2.47), which allows for real time solutions:

Extremum : v′(U) = 0 , Stability : v′′(U) > 0 , Real time : v(U) < 0 . (2.50)

The shape of the potential as a function of U depends on the R-symmetry breaking charges

which define the coefficients ng̃4g̃5 . Since the functions vg̃4g̃5 in Eq. (2.29) are negative, we

need some of the ng̃4g̃5 to be positive.
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In the heterotic models, the functions v10 and v01 defining the effective potential, Eq. (2.27),

are monotonic functions of U , the former decreasing and the latter increasing, (see Fig. 1a).

To have an extremum, n10 and n01 must be of the same sign. The real time condition requires

U

v01 v10

a) ln Ub) ln

v11

Figure 1: The functions vg̃4g̃5 versus lnU .

this sign to be positive, which implies that the solution is unstable under fluctuations of U .

Stable cosmological solutions exist only at non-zero temperature, as we will see in the next

section. We may have, however, stationary domain wall solutions.

We now study the effective potential given in Eq. (2.30) for the different type II cases.

-Case 1 : The potential is proportional to the function v11, which is invariant under

U → 1/U . This implies that a stationary point, which is a minimum, occurs at U = 1, (see

Fig. 1b). The conditions (2.50) are simultaneously satisfied if n11 > 0. This can be realized

by choosing Q4 = Q̄5 = 0 or H.

-Case 2 : Since the potential is proportional to the monotonic function v01(U), there is

always a runaway behavior for this model: U → 0 i.e. R4 → +∞ for n01 > 0 and U → +∞
i.e. R5 → +∞ for n01 < 0. Thus, the dynamics drives the system out of the scope of

our analysis, and one should look for a solution in five dimensions, where supersymmetry is

spontaneously broken by the remaining finite size internal radius.

-Case 3 : This type II model has an effective potential of the form encountered in the

heterotic case.

-Case 1’ : The model is supersymmetric with a flat effective potential.

At finite temperature, we are going to see that the situations in the type II cases also change

drastically.
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3 Thermal cosmologies

3.1 Equations of motion and thermodynamics

Using the field redefinitions (2.33)–(2.34) and the FRW ansatz (2.36), the thermal effective

action is

S = −1

6

∫
dtNa3

(
3

N2
H2 − 1

2N2
φ̇2 − 1

2N2
φ̇2
− −

1

2N2
φ̇2
U − P

)
, (3.1)

where the pressure can be expressed in terms of the supersymmetry breaking scale M(φ) as

P = M4 p(u,U)

u4
, M =

eφ

2π
, u =

M

T
. (3.2)

The gravity equations are obtained by varying with respect to N and a,

3

N2
H2 =

1

2N2
φ̇2 +

1

2N2
φ̇2
− +

1

2N2
φ̇2
U + ρ with ρ := −P −N ∂P

∂N
, (3.3)

2

N2
Ḣ +

3

N2
H2 − 2

N3
HṄ = − 1

2N2
φ̇2 − 1

2N2
φ̇2
− −

1

2N2
φ̇2
U − P −

1

3
a
∂P

∂a
, (3.4)

where in general P can depend on N and a. To determine the dependence, we recall in

which specific frame we computed P :

P =
Z

(ReS)2V4

=
Z

N a3
=⇒ N = 2πR0

√
ReS =

1

T
, a = 2πR

√
ReS , (3.5)

where R1 = R2 = R3 ≡ R are the radii of the large three spatial directions (before the large

volume limit R → +∞ is taken). Since P = T 4p(u,U) and T is identified with the inverse

of the laps function, we have

ρ = T
∂P

∂T
− P and

∂P

∂a
= 0 . (3.6)

It is remarkable that these expressions are identical to the ones derived from thermodynamics.

We thus show that the variational principle is in perfect agreement with thermodynamics.

Since P (in the action (3.1)) and ρ (in Eq. (3.3)) are scalars under time reparameterizations,

we can write the gravitational equations in the simple gauge N = 1 as follows:

3H2 =
1

2
φ̇2 +

1

2
φ̇2
− +

1

2
φ̇2
U + ρ , (3.7)

2Ḣ + 3H2 = −1

2
φ̇2 − 1

2
φ̇2
− −

1

2
φ̇2
U − P . (3.8)
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Combining Eqs (2.12) and (3.6), we obtain

ρ = T 4r(u,U) where r = 3p− u∂up . (3.9)

The equations of motion for the moduli fields can be written as follows:

φ̈+ 3Hφ̇ =
∂P

∂φ
≡ T 4 {3p(u,U)− r(u,U)} , (3.10)

φ̈U + 3Hφ̇U =
∂P

∂φU
≡ T 4

√
2 U ∂Up(u,U) , (3.11)

φ̈− + 3Hφ̇− = 0 , (3.12)

where the r.h.s. of Eq. (3.10) follows from Eqs (3.2) and (3.9).

The last equation gives (2.43). We would like to find solutions to the remaining system of

equations, with U stabilized. Then, Eq. (3.11) amounts to the following algebraic equation

D(u,U) := U ∂Up = 0 , (3.13)

requiring that u is also a constant. It follows that the time dependence of ρ and P arises

from the T 4 pre-factors only. From the relations in (3.2), we have that

M(φ) = uT =⇒ φ̇ =
Ṫ

T
. (3.14)

Instead of solving the scale factor Eq. (3.8), we choose to solve the equation that arises from

the conservation of the energy-momentum tensor:

d

dt

(
1

2
φ̇2 +

1

2
φ̇2
U +

1

2
φ̇2
− + ρ

)
+ 3H

(
φ̇2 + φ̇2

U + φ̇2
− + ρ+ P

)
= 0 . (3.15)

Using the equations of motion for the scalar fields and (3.14), this gives

φ̇ =
Ṫ

T
= −H =⇒ a T = a0 T0 , (3.16)

where a0T0 is a positive integration constant.

Next, we consider the linear sum of Eqs (3.8) and (3.7),

Ḣ + 3H2 =
1

2
(ρ− P ) =

1

2
T 4 {r(u,U)− p(u,U)} . (3.17)

Using (3.16), the compatibility between this equation and (3.10) implies the following thermal

equation of state:

ρ = 5P . (3.18)
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This is one of the main results of this paper. It reminds us of the analogous equation,

ρ = 4P , derived in [5, 28], when a single modulus was participating in the spontaneous

supersymmetry breaking mechanism. These results are very suggestive, and we conjecture

that they will be generalized to the cases when more moduli participate in the supersymmetry

breaking. When n such fields are involved, we expect the equation of state to take the form:

ρ = (3 + n)P . (3.19)

In the two moduli case, which we are considering here, Eq. (3.18) can also be written as

C(u,U) := (2 + u∂u)p = 0 . (3.20)

As a result, the complex structure ratios (u,U) are determined by the equations D = C = 0.

It is interesting that along this critical trajectory, complex structure moduli participating in

the breaking of supersymmetry are stabilized, and thus the cosmology is characterized by a

single running scale.

The time dependence of the scale factor is dictated by the Friedmann-Hubble Eq. (3.7). The

latter takes the form

3H2 =
cr
a4

+
cm
a6

where cr = 6(a0T0)4p(u,U) , cm =
6

5
c− > 0 . (3.21)

When cm = 0, the universe is effectively radiation dominated and a cosmological solution

exists if the constant p(u,U) is positive:

a(t) = B
√
t with B =

√
2
(cr

3

)1/4

. (3.22)

When cm is non-trivial, the time t can be expressed as a function of the scale factor as

follows:

if cr > 0 : t(a) = t0

∫ a/B

0

x2dx√
1 + x2

, ∀a ≥ 0 ,

if cr < 0 : t(a) = ± t0
∫ 1

a/B

x2dx√
1− x2

, 0 ≤ a ≤ B ,
(3.23)

where

B =

√
cm
|cr|

and t0 =
√

3cm|cr|−3/2 . (3.24)

In the explicit examples presented in the following section, we always find cr > 0. It would

be interesting to find if models with “negative effective radiation energy density”, cr/a
4, are

allowed.
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As noticed in [5], the fact that the cosmological evolution we have found behaves effectively

like a four dimensional universe filled with thermal radiation is not in contradiction with the

state equation ρ = 5P . The reason is that the total energy density and pressure contain the

“cold” part associated to the kinetic energy of φ. When cm = 0, one has φ̇2/2 = ρ/5, so that

ρtot =
1

2
φ̇2 + ρ =

6

5
ρ

Ptot =
1

2
φ̇2 + P =

2

5
ρ , (3.25)

in agreement with the expected state equation ρtot = 3Ptot.

3.2 Some stringy examples

We examine whether the extremization condition (3.13) and the compatibility condition

(3.20) are simultaneously satisfied in the various heterotic and type II models under consid-

eration:

Extremum : D(u,U) = 0 , Compatibility : C(u,U) = 0 , Stability : ∂2
Up(u,U) < 0 . (3.26)

As in the non-thermal situation, the shape of the potential depends on the R-symmetry

breaking charges. Their choices determine the coefficients ng̃0g̃4g̃5 that satisfy −n100 ≤
ng̃0g̃4g̃5 ≤ n100.

However, in the heterotic cases, n111, n010 and n001 are not totally arbitrary. It is convenient

to parameterize the a priori allowed models by separating the n100 states into 4 groups,

depending on their parity under the operators (−)Q̄4 and (−)Q̄5 , as shown in Table 3.27.

n100ξ1 states n100ξ2 states n100ξ3 states n100(1− ξ1 − ξ2 − ξ3) states

(−)Q̄4 + + − −
(−)Q̄5 + − + −

(3.27)

We observe that the parameter space of models is the tetrahedron:

{
(ξ1, ξ2, ξ3) ∈ [0, 1]3 such that ξ1 + ξ2 + ξ3 ≤ 1

}
, (3.28)

which constrains the ratios:

r010 :=
n010

n100

= 2(ξ1 + ξ2)− 1 , r001 :=
n001

n100

= 2(ξ1 + ξ3)− 1 , r111 :=
n111

n100

= 1− 2(ξ2 + ξ3) .

(3.29)
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The conditions (3.26) and the ξ2 ↔ ξ3 duality symmetry can be visualized geometrically

in terms of the tetrahedron representation. Some type II models are also characterized in

terms of this representation.

In the large/small u and U regimes, p contains exponentially suppressed contributions that

we have to neglect by consistency. The dominant contributions take the form of a linear

sum of a finite number of monomials uaU b. The (lnu, lnU)-plane is divided into 6 sectors

inside of which a power expansion is defined, (see Fig. 2). The boundaries of these sectors

are the lines U = λuω, where ω = −2, 0, 2. We show in the Appendix the power expansion of

uln
(1) (4)

lnU

II III

IVVVI

I

(6) (5)

(3)(2)

Figure 2: The (lnu, lnU)-complex plane can be divided in 6 sectors, I, . . . , V I, separated by 6 edges of slope
−2, 0 or 2. The power expansions of p(u,U), which are listed in the Appendix are well defined in each sector.

p(u,U) in each sector. More accurate expressions are also given along the lines U = λu±2,0

that are useful to connect the power expansions on each sides. D(u,U) = 0 and C(u,U) = 0

define curves which asymptote to the lines U = λu±2,0, for which we have determined the

intercept λ as a function of the ratios rg̃0g̃4g̃5 . The constraints are simultaneously satisfied if

these curves meet at a point (uc,Uc). Then, the stability condition, ∂2
Up(uc,Uc) < 0, and the

sign of the radiation density are determined. The C(u,U) = 0 constraint requires to have

at least one negative rg̃0g̃4g̃5 .

• Our analysis shows the existence of non-trivial thermal cosmological solutions in heterotic

models with Q̄4 ≡ Q̄5, and type II Case 3 models with Q4 + Q̄4 ≡ Q5 + Q̄5, where the

pressure takes the general form

p(u,U) = n100[p100 + r(p010 + p001) + p111] , (3.30)

with −1 ≤ r ≤ 1. These models lie along the edge ξ2 = ξ3 = 0 of the tetrahedron. The

duality symmetry U → U−1 implies that along the axis U ≡ 1, D(u,U) = 0. As r varies, we
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find 4 distinct patterns, specified by

rc3 = −
f ee5/2(1) + f oo5/2(1)

2f oe5/2(1)
' −0.215 , rc2 = −S

e
5

So5
= − 1

31
and rc1 = 0 , (3.31)

where the functions in the definition of rc3 can be found in Eq. (A.12).

- It turns out that there are no cosmological solutions with constant u and U when r < rc3

or r > 0, since then C(u,U) 6= 0 everywhere.

- A stable cosmological solution exists when rc3 < r < rc2, with cr > 0, (see Fig. 3a). It

corresponds to a global minimum of the thermal effective potential.

Ulna)

uln
C > 0
C < 0

> 0D

D < 0
uc

b)

uln

lnU

> 0C
uc

C< 0D
D

D> 0
< 0
> 0

D< 0

Figure 3: For a pressure of the form (3.30), the curves defined by C(u,U) = 0 (straight lines) and
D(u,U) = 0 (dashed lines) are represented. When rc3 < r < rc2 (Fig. a), there is a stable cosmological
solution (uc,Uc = 1). It corresponds to a global minimum of the thermal effective potential. When rc2 ≤ r < 0
(Fig. b), there is a stable cosmological solution (uc,Uc = 1) that corresponds to a local minimum. Two run
away behaviors that bring the system to five dimensions are also allowed.

- When rc2 ≤ r < 0, a stable cosmological solution with Uc = 1 still exists, with cr > 0,

but this corresponds to a local minimum of the thermal effective potential. Actually, new

branches of the locus D = 0 are present and converge exponentially towards the curve C = 0,

(see Fig. 3b). Formally, their common asymptotes define flat directions. However, since these

“solutions” imply R5 (or R4) to be very large, they are out of the scope of our analysis. They

are better understood in terms of runaway behaviors that decompactify the system to five

dimensions, where supersymmetry is broken by the remaining finite size internal radius R4

(or R5) and thermal effects.2

2 A similar runaway behavior can be realized in type II Case 2 models, with generic operator Q̄5. They
involve a pressure p(u,U) = n100[p100 + rp001], where −1 ≤ r ≤ 1. Their representative points in the
tetrahedron satisfy ξ1 = ξ3 = 1

2 − ξ2, where 0 ≤ ξ2 ≤ 1
2 . When r varies, there is a phase where the curves

D = 0 and C = 0 are non-trivial and asymptotic to one another. The situation is similar to what is observed
in the lower half plane of Fig. 3b.
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For the heterotic model with the choice Q̄4 = Q̄5 = γ + γ′, one has

n100 = n111 = 23 × 504 ,
n010 = n001 = 23

[
[2]X2,3 + [6]T 6 + [120− 128]E8 + [120− 128]E′8

]
= −23 × 8 ,

(3.32)

so that rc2 < r = −1/63 < rc1. In this specific case, the cosmological solution corresponds

to (uc,Uc) ' (1.649, 1), where cr ' 0.0708× 6(a0T0)4.

Another model considered in [5] is based on the heterotic T 4/Z2 orbifold, with non-Abelian

gauge group E8 × E7 × SU(2). In that case, one has rc2 < r = −1/127 < rc1 and the

corresponding cosmological solution fixes (uc,Uc) ' (1.996, 1), with cr ' 0.0762× 6(a0T0)4.

•We can treat in a similar way type II Case 1’ models with arbitrary Q4 +Q5. The pressure

is of the form

p(u,U) = n100[p100 + rp111] , (3.33)

where −1 ≤ r ≤ 1. This class of models belongs to a segment in the interior of the

tetrahedron, ξ2 = ξ2 = 1
2
− ξ1, 0 ≤ ξ1 ≤ 1

2
. The symmetry U → U−1 implies D(u,U) = 0

along the axis U ≡ 1. Also, p(u,U) is constant in sectors III and IV (and their common

edge (4)), implying that D(u,U) is vanishing. For r < 0, there is no other solutions to D = 0.

When r varies, the set of solutions to C(u,U) = 0 is divided into 3 classes characterized by

rc4 ' −0.77 , r′c3 = −
f ee5/2(1)

f oo5/2(1)
' −0.215 . (3.34)

- For r < rc4, the right boundary of the locus C ≤ 0 is asymptotic to the edges (3) and (5),

where D is not vanishing yet, (see Fig. 4a). The only solution to D = C = 0 arises at U = 1,

but the corresponding cosmological evolution is unstable to small fluctuations of U .

- For rc4 < r < r′c3, a cosmological solution with constant u and U exists, (see Fig. 4b), but

is again unstable to small fluctuations of U .

- For r′c3 < r, one has C(u,U) > 0 everywhere: There is no cosmological solution with

constant complex structures.

• The last class of systems we analyze corresponds to type II Case 1 models with arbitrary

Q4 + Q̄5. The pressure is

p(u,U) = n100[p100 + rp011] , (3.35)

where −1 ≤ r ≤ 1. In contrast to the previous cases, these models are not represented by

points in the tetrahedron. For r < 0, the only solutions to D(u,U) = 0 are along the axis
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a)

uln

Uln

> 0
D < 0
D

D= 0

C> 0

C> 0

C> 0

uc

< 0C

b)

uln

Uln

D= 0
cu

C < 0

D< 0

D> 0
> 0C

Figure 4: For a pressure of the form (3.33), the curves defined by C(u,U) = 0 (straight lines) are repre-
sented. The locus D = 0 is composed of the axis U = 1, and the sectors III and IV , (see Fig. 2). When
r < rc4 (Fig. a) or rc4 ≤ r < r′

c3 (Fig. b), there is an unstable cosmological solution (uc,Uc = 1).

U = 1. The set of solutions to C(u,U) = 0 is characterized by the point r′c3 of Eq. (3.34)

and rc1 = 0.

- For r < r′c3, the axis U = 1 is entirely inside the region C(u,U) < 0 that has two distinct

boundaries, (see Fig. 5a), and so there is no cosmological solution with constant u and U .

- For r′c3 ≤ r < 0, the region C(u,U) < 0 has now a connected boundary, (see Fig. 5b).

The latter crosses the axis U = 1, so that a cosmological solution (uc,Uc = 1) exists. It is

however unstable to small fluctuations of U .

- For 0 < r, one has C(u,U) > 0 everywhere: There is no cosmological solution with constant

u and U .

a)

uln

Uln
> 0C

C

D> 0

D< 0
C < 0

> 0

b)

uln

Uln

CC
D< 0

uc

> 0 < 0

D> 0

Figure 5: For a pressure of the form (3.35), the curves defined by C(u,U) = 0 (straight lines) and
D(u,U) = 0 (dashed lines) are represented. When r < r′

c3 (Fig. a), there is no cosmological solution
with constant complex structures. When r′

c3 ≤ r < 0 (Fig. b), there is an unstable cosmological solution
(uc,Uc = 1).
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3.3 Non-thermal vs thermal cosmologies

The cosmological evolutions found in the non-thermal and thermal cases, Eqs (2.47) and

(3.21), have drastically different properties we would like to comment on.

First, the contributions of the kinetic energy of the field φ− to the “effective” Friedmann-

Hubble equation are of opposite sign. This phenomenon is due to the different compatibility

relations φ̇ = −4H for the non-thermal cosmology and φ̇ = −H for the thermal one, once

they are inserted in the respective Friedmann-Hubble Eqs (2.37) and (3.7). This is also the

reason why these equations have 1/a16 and 1/a4 monomial contributions, respectively. The

intermediate cosmological region we are considering is described by the thermal cosmologies.

At late times however, the temperature, being proportional to the inverse of the scale factor,

tends to zero, and a paradox seems to arise as the cosmological evolution is never described

by the non-thermal solutions.

To better understand this point, we rewrite the pressure and energy density as follows, (see

the relations (3.2) and (3.9)):

P = −M4 vth , ρ = M4 (vth + u∂uvth) where vth(u,U) = −p(u,U)

u4
. (3.36)

When the pressure is of the general form (A.1), one can use the expansion valid for u � 1

(U fixed), Eqs (A.11) and (A.15), to decompose vth into two pieces:

vth(u,U) = −
{
n010k

oe
3 (U−1) + n001k

oe
3 (U) + n011k

oo
3 (U)

}
+ v̂th(u,U) , (3.37)

where

v̂th(u,U) = − 1

u4
× {(n100 + n111)So4 + (n010 + n001 + n011)Se4}+ · · · , (3.38)

up to exponentially suppressed terms as u→ +∞. Clearly, v̂th(u,U)→ 0 in this limit. Since

ng̃0g̃4g̃5 = ng̃4g̃5 , the u-independent terms of the r.h.s. of Eq. (3.37) are equal to the zero

temperature effective potential v(U) found for the heterotic or type II cases, Eqs (2.27) and

(2.30). Thus, P and ρ are only converging to their T = 0 counterparts when u → +∞.

However, the thermal cosmologies we have considered have stabilized u ≡ uc, implying

that the finite temperature corrections v̂th(u,U), even if the temperature is small, are never

negligible. In fact, the condition u = M(t)/T (t) → +∞ for the thermal system to be

correctly approximated by the non-thermal one implies that the thermal corrections should

be screened by radiative corrections, and not that they would necessarily vanish. Explicit
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cosmological evolutions with u → +∞ are analyzed in [22]. They describe Big Crunch

cosmologies, where the temperature is proportional to 1/a. So, T is large in absolute value

(but still negligible compared to M).

Finally, we note that in the present work, each time a stable cosmological solution at finite

temperature is found, its counterpart at T = 0 is unstable, and vice versa. As explained

in [22], this is a consequence of the fact that for arbitrary initial conditions, the cosmological

evolutions are always converging to an attractor. Depending on the model, the latter can

be the radiation dominated universes studied in [5] and the present paper, or Big Crunch

cosmologies where the thermal effects are screened by radiative corrections.

4 Conclusions

The main result of this work is to show the existence of the critical stringy cosmologies

of [5], even in the cases where more than one modulus participate in the supersymmetry

breaking mechanism. They correspond to a radiation dominated era with constant complex

structures. A thorough analysis was done for several string models with N4 ≥ 2 initial

supersymmetry. Depending on the pattern of supersymmetry breaking, the critical values

of the thermal effective potential for the complex structure moduli are either minima or

maxima. Run away behaviors that bring the system to higher dimensions can also occur.

When the radiation era is stable, we explicitly show that even if the temperature tends to

zero at late times, thermal corrections to the dynamics are never negligible.

Our approach was to separate the cosmological evolution in distinct regions, according to

the value of the temperature. The stringy non-geometrical region, where the temperature

is of order the Hagedorn temperature, is much harder to understand. Stringy phenomena

occur where conventional field theoretic notions concerning the geometry and topology are

breaking down. Some interesting proposals to understand this early time region have been

put forward in [11, 19]. The intermediate region, just after the Hagedorn era is shown

to be under control. The free energy is free of any infrared and ultraviolet ambiguities,

allowing us to follow the backreaction on the geometry and determine the time evolution of

several moduli fields. We show that the only relevant moduli are the ones participating in

the supersymmetry breaking mechanism. The others are either frozen by receiving a soft-
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breaking mass, or they remain flat directions with exponentially suppressed contribution to

the free energy.

A very interesting result is that the critical cosmological solutions are governed by a higher

dimensional thermal state equation, ρ = (d − 1)P , or in the four dimensional effective de-

scription, this equation becomes ρ = (3+n)P where n is the number of moduli participating

in the breaking of supersymmetry. In [5,28], we analyzed the case n = 1. Here, we generalize

the result to the n = 2 case. The overall scale evolves in time such that the state equation

is valid, while complex structure -like ratios of scales are frozen.

Although our work covers adequately and unambiguously the intermediate cosmological re-

gion, it is incomplete to describe the very early Hagedorn era, where non-geometric stringy

phenomena are important. It is incomplete as well to describe relatively late time phenom-

ena, like the radiative breaking of the electroweak gauge symmetry and QCD confinement,

where non-perturbative transmutation scales, like for instance ΛQCD, are relevant. The

extension to the late time era requires to consider at least models with N4 = 1 initial super-

symmetry. Progress concerning the very early era can be made provided that we understand

better the resolution of the Hagedorn instabilities and the stringy non-geometrical structure

of the early universe.
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Appendix A

We list in this Appendix the large and small complex structure expansions of an arbitrary

linear combination of functions pg̃0g̃4g̃5 defined in Eq. (2.15),

p(u,U) = n100(p100 + r010p010 + r001p001 + r111p111 + r011p011) . (A.1)

For fixed ω and λ, we determine the power expansion along the lines lnU = ω lnu + lnλ

when lnu and/or lnU are large, by making an extensive use of the approximations

∑

m

1

((2m+ 1)2x+ a)3 =
3π

16

1

a5/2

1√
x

+ · · · ,
∑

m

1

((2m)2x+ a)3 =
3π

16

1

a5/2

1√
x

+ · · · ,
(A.2)

where a > 0, x→ 0+ and the dots stand for Ø
(
e−π
√
a/x
/
x3/2

)
terms. Similarly, we use

∑

m

1

((2m+ 1)2x+ a)5/2
=

2

3

1

a2

1√
x

+ · · · ,
∑

m

1

((2m)2x+ a)5/2
=

2

3

1

a2

1√
x

+ · · · ,
(A.3)

where again we neglect exponentially suppressed terms. The (lnu, lnU)-plane can then be

divided in 6 sectors, I, II, . . ., V I, where the expansions are independent of ω (and λ). The

boundaries of these sectors are the lines whose slopes are ω = −2, 0 or 2, (see Fig. 2). In

each sector, we find,

pI

n100

= u−2 So6

+u3 U−5/2(Se5 + r001S
o
5)

+u3 U3/2((1 + r010 + r001)Se4 + (r111 + r011)So4) ,

(A.4)

pII

n100

= u4 U−3 r001S
o
6

+u−1U−1/2 (So5 + r001S
e
5)

+u3 U3/2 ((1 + r001)Se4 + (r010 + r111 + r011)So4) ,

(A.5)

pIII

n100

= u4 U−3 r001S
o
6

+u4 U2 ((r010 + r011)So5 + r001S
e
5)

+(1 + r111)So4 + (r010 + r001 + r011)Se4 ,

(A.6)
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pIV

n100

= u4 U3 r010S
o
6

+u4 U−2 ((r001 + r011)So5 + r010S
e
5)

+(1 + r111)So4 + (r010 + r001 + r011)Se4 ,

(A.7)

pV

n100

= u4 U3 r010S
o
6

+u−1U1/2 (So5 + r010S
e
5)

+u3 U−3/2 ((1 + r010)Se4 + (r001 + r111 + r011)So4) ,

(A.8)

pV I

n100

= u−2 So6

+u3 U5/2 (Se5 + r010S
o
5)

+u3 U−3/2 ((1 + r010 + r001)Se4 + (r111 + r011)So4) ,

(A.9)

where we have defined

So6 =
2

π3

∑

m

1

(2m+ 1)6
=

π3

240
,

So5 =
2

π3

3π

16

∑

m

1

|2m+ 1|5 =
93

128

ζ(5)

π2
, Se5 =

2

π3

3π

16

∑

m6=0

1

|2m|5 =
3

128

ζ(5)

π2
,

So4 =
2

π3

3π

16

2

3

∑

m

1

(2m+ 1)4
=

π2

192
, Se4 =

2

π3

3π

16

2

3

∑

m6=0

1

(2m)4
=

π2

2880
.

(A.10)

The previous sectors are separated by edges, (1), . . . , (6), in the neighborhood of which some

terms we neglected in the interior of the adjacent sectors are not exponentially suppressed

anymore. Along these edges, one has U = λu±2,0, where λ ' 1, and

p(1)

n100

= u−2 So6

+u3 (f ee5/2(λ) + r010f
oe
5/2(λ−1) + r001f

oe
5/2(λ) + (r111 + r011)f oo5/2(λ)) , λ = U ,

p(2)

n100

= u3 U3/2 ((1 + r001)Se4 + (r010 + r111 + r011)So4)

+u−2 (geo3 (λ) + r001g
oe
3 (λ)) , λ = Uu−2,

p(3)

n100

= u4 U−3 r001S
o
6

+hoe5/2(λ) + (r010 + r011)heo5/2(λ) + r001h
ee
5/2(λ) + r111h

oo
5/2(λ) , λ = Uu2,

p(4)

n100

= (1 + r111)So4 + (r010 + r001 + r011)Se4

+u4 (r010k
oe
3 (λ−1) + r001k

oe
3 (λ) + r011k

oo
3 (λ)) , λ = U ,

p(5)

n100

= u4U3 r001S
o
6

+hoe5/2(λ−1) + r010h
ee
5/2(λ−1) + (r001 + r011)heo5/2(λ−1) + r111h

oo
5/2(λ−1) , λ = Uu−2,
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p(6)

n100

= u3U−3/2 ((1 + r010)Se4 + (r001 + r111 + r011)So4)

+u−2 (geo3 (λ−1) + r010g
oe
3 (λ−1)) , λ = Uu2,

(A.11)

where we have introduced the functions

f ee5/2(λ) =
2

π3

3π

16

∑

(m,n)6=(0,0)

1

((2m)2λ+ (2n)2λ−1)5/2
,

f oe5/2(λ) =
2

π3

3π

16

∑

m,n

1

((2m+ 1)2λ+ (2n)2λ−1)5/2
,

f oo5/2(λ) =
2

π3

3π

16

∑

m,n

1

((2m+ 1)2λ+ (2n+ 1)2λ−1)5/2
,

(A.12)

geo3 (λ) =
2

π3

∑

m,n

1

((2m)2λ+ (2n+ 1)2)3
, goe3 (λ) =

2

π3

∑

m,n

1

((2m+ 1)2λ+ (2n)2)3
, (A.13)

hoe5/2(λ) =
2

π3

3π

16
λ2
∑

m,n

1

((2m+ 1)2λ+ (2n)2)5/2
,

heo5/2(λ) =
2

π3

3π

16
λ2
∑

m,n

1

((2m)2λ+ (2n+ 1)2)5/2
,

hee5/2(λ) =
2

π3

3π

16
λ2

∑

(m,n)6=(0,0)

1

((2m)2λ+ (2n)2)5/2
,

hoo5/2(λ) =
2

π3

3π

16
λ2
∑

m,n

1

((2m+ 1)2λ+ (2n+ 1)2)5/2
,

(A.14)

koe3 (λ) =
2

π3

∑

m,n

1

((2m+ 1)2λ+ (2n)2λ−1)3
, koo3 (λ) =

2

π3

∑

m,n

1

((2m+ 1)2λ+ (2n+ 1)2λ−1)3
.

(A.15)
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