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FIGURE 1 — Intrusion de la théorie des cordes dans la culture populaire.
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Résumé

Cette these est consacrée a 1’étude d’applications de la théorie des cordes dans deux domaines
de la physique fondamentale : la physique des particules et la cosmologie. Le principe unificateur
de nos deux travaux est 1'utilisation en théorie des cordes du mécanisme, initialement introduit
en théorie des champs, de brisure spontanée de (super)symétrie.

Nous commencons par une présentation générale de la théorie des cordes, principalement focalisée
sur les concepts que nous manierons.

Nous introduisons ensuite notre premier travail, dans lequel nous exhibons une dualité de
lespace des vides des théories de supercordes hétérotiques N' = 1, qui relie les représentations
spinorielles et vectorielles du groupe de grande unification.

Dans un second travail, nous nous intéressons cette fois a la modélisation par la théorie des
supercordes d’une évolution cosmologique a température non nulle et en présence d’une échelle
de brisure de supersymétrie. Nous donnons également des arguments pour une stabilisation des
divers modules de compactification.

Summary

This thesis is devoted to the study of some applications of superstring theory in cosmology and in
particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry
breaking mechanism.

Our manuscript starts with a general overview of string theory, where the emphasis is put on
the aspects that will be important throughout our work.

We introduce then our first work, in which we exhibit a new symmetry of the vacua of N' =1
heterotic string theory, exchanging the vectorial and spinorial representations of the grand
unified gauge group.

In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in
the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of
the compactification moduli.

Mots-clés : Théorie des cordes, Grande unification, Dualités, Supergravité, Cosmologie.
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Chapitre 1

Introduction

1.1 Pourquoi la théorie des cordes?

La physique théorique du 20eme siecle a vu le développement des deux théories majeures utilisées
a ’heure actuelle pour expliquer le monde qui nous entoure. La premiere est la mécanique
quantique, née dans les années 1920 sous l'influence de nombre de physiciens majeurs, qui
évolua plus tard en théorie quantique des champs. A I'aide de cette théorie, on décrit avec une
trés grande précision ’électromagnetisme (électrodynamique quantique), 'interaction faible
(dans le modele de Glashow-Salam-Weinberg, cette derniére interaction est unifiée a 1’électro-
magnétisme ; toutefois a basse énergie cette unification est brisée), et enfin I'interaction forte
(chromodynamique quantique). L’ensemble de ces trois édifices constitue le modele standard,
théorie présentant une symétrie de jauge SU(3)c x SU(2)r x U(1)y.

La deuxieme théorie majeure décrit la quatrieme interaction, la gravitation. Il s’agit de la
relativité générale d’Einstein, développée en 1915, une théorie essentiellement géométrique dans
laquelle I'espace-temps est courbé par la matiere, et la chute libre n’est rien de plus que la
propagation suivant les géodésiques de la géométrie de I'univers. Ces deux théories ont été
vérifiées a de tres grandes précisions par diverses observations, allant de la physique des particules
a la cosmologie ; leurs applications pratiques sont extrémement nombreuses.

Toutefois, cet état des choses n’est pas entierement satisfaisant. En effet, il s’avere que ces
deux théories ne sont pas compatibles : si on essaie de modéliser 'interaction gravitationnelle
dans le cadre de la théorie quantique des champs, en quantifiant ’action d’Einstein-Hilbert, on
obtient une théorie non renormalisable du fait de la localité de l'interaction gravitationnelle. La
théorie quantique des champs associée présente alors des quantités divergentes dans le régime
ultra-violet, et est de ce fait mal définie et non prédictive.

Or, l'unification de ces deux théories est souhaitable pour plusieurs raisons. Premiérement, méme
si la relativité générale est assez précise pour décrire la majorité des interactions gravitationnelles
régissant notre univers, il existe des phénomenes, qui, de par les échelles d’énergie auxquelles ils
ont lieu, requierent un traitement a la fois relativiste et quantique. On peut notamment citer les
trous noirs, qui sont devenus au fil du temps une des applications les plus prisées en théorie des
cordes. Dans ce dernier champ, la théorie des cordes a enregistré un de ses grands succes en
reproduisant ’entropie de Bekenstein-Hawking des trous noirs par le comptage d’une certaine
classe d’états BPS | ] (le lecteur pourra trouver un panorama général du traitement des



trous noirs en supergravité dans | ]). Les cordes pourraient également permettre de poser
un nouveau regard sur le paradoze de l’information, un autre symptome de I'incompatibilité
entre mécanique quantique et relativité générale.

Un second exemple est la cosmologie au voisinage du Big Bang, et plus généralement aux
premiers stages de la vie de I'Univers; en effet, a cette époque, les phénomenes quantiques
deviennent prépondérants, et la compréhension des grandes structures de 'univers actuel passe
par une compréhension des fluctuations quantiques primordiales.

Deuxiemement, le modele standard présente une certaine quantité d’arbitraire, allant du choix
du groupe de jauge a la vingtaine de parametres libres additionnels qu’il faut se donner pour
fonder une théorie s’accordant aux données expérimentales. Un premier pas dans la réduction de
ce nombre de parameétres est fourni par les théories de grande unification. Ces théories supposent,
en se basant sur la concourance des trajectoires des constantes de couplage sous le groupe de
renormalisation dans le cadre du modeéle standard supersymétrique minimal, que le groupe de
jauge a basse énergie SU(3)c x SU(2)p x U(1)y est issu de la brisure d'un groupe de jauge plus
grand par mécanisme de Higgs (de méme que SU(2);, x U(1)y est brisé en U(1)e,, par le boson
de Higgs). Des candidats naturels pour ces groupes unifiés sont SU(5), SO(10) et Eg.

On peut alors se demander quelles raisons physiques peuvent étre a 1’origine du choiz de ce
groupe de jauge, et d’autres caractéristiques comme le nombre de générations. La théorie des
champs ne prétend pas fournir de réponses a ces questions : elle modélise les interactions en les
supposant connues. La théorie des cordes, au contraire, est formulée dans un cadre extrémement
restrictif, ce qui lui fournit un tres fort pouvoir prédictif. Ainsi, dans les modeles de cordes
hétérotiques a dix dimensions présentés dans la section 3.4, il n’existe que deux groupes de
jauge rendant la théorie a dix dimensions consistante. Il se trouve alors que I'une de ces deux
possibilités conduit naturellement, apres réduction de la théorie a quatre dimensions, aux groupes
de grande unification sus-cités. D’autres caractéristiques comme le nombre de générations sont
controlés par la géométrie de 1'espace interne, qui obéit ici encore a des restrictions fortes.

Enfin, la théorie des cordes est formulée dans le cadre de la supersymétrie (parfois amicalement
dénommée SUSY dans la suite de ce mémoire). Cette symétrie suppose que les fermions et les
bosons s’arrangent en paires ; autrement dit, tout fermion admet un partenaire bosonique (et
inversement). Cette hypothése semble assez hardie & premiére vue puisqu’on n’a jamais observé
de partenaires supersymétriques de particules connues; elle est pourtant attrayante a plusieurs
niveaux. Elle permet d’abord de rendre compte de I'existence de la hiérarchie observée entre
I’échelle de brisure électro-faible donnée par la masse du Higgs et ’échelle de grande unification.
Dans le cadre des théories supersymétriques, cette hiérarchie doit toujours étre introduite a
la main ; elle est cependant préservée sous le processus de renormalisation, dans le cadre d’un
mécanisme qui ne repose plus sur des hypotheses de réglages fins parfois peu physiques. Elle
rend ensuite treés précise la convergence des trajectoires des constantes de couplage, qui n’était
qu’approximative dans le cadre de théories non supersymétriques. Enfin, elle fournit un candidat
naturel de constituant de la matiere noire en la personne du neutralino.

La théorie des cordes qui a vu le jour a la fin des années 1960 sous le nom de modéles duauz avait
pour but de modéliser les interactions fortes, avant que la chromodynamique quantique (QCD),
théorie de jauge non-abélienne basée sur le groupe SU(3), n’apparaisse comme le modele correct.
Toutefois, en 1974, Scherk et Schwarz | ] remarquerent que cette théorie quantique modélisait
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correctement une particule de spin 2 obéissant aux équations du mouvement dérivées de ’action
d’Einstein. On tenait ainsi un candidat de graviton, et une possible théorie de gravité quantique.
Cette théorie n’est toutefois valable qu’au niveau perturbatif. Au cours des années, plusieurs
incursions majeures dans le domaine non-perturbatif de la théorie ont été réalisées, en exploitant
I'existence de dualités reliant les différentes théories consistantes. Ce réseau de dualités a donné
naissance au concept de M-théorie, théorie fondamentale définie a onze dimensions, et dont les
cing théories des cordes a dix dimensions ne seraient que les manifestations en divers points de
I’espace des modules.

Nous donnons dans la section suivante les principes de base de la théorie des cordes; nous ne
poursuivrons pas d’étude non-perturbative au cours de cette these.

1.2 Principe et enjeux

Le postulat de départ de la théorie des cordes est de remplacer les particules de la théorie
quantique des champs, qui sont des points matériels sans extension, par des cordes, c’est-a-dire
des objets possédant une extension spatiale dans une direction. Ces cordes peuvent étre ouvertes
ou fermées; les excitations élémentaires, donnant naissance aux états massifs de la théorie,
seront données par des oscillations de la corde, quantifiées de maniere similaire a 'oscillateur
harmonique standard en mécanique quantique.

Le traitement perturbatif qui se fait en théorie des champs en sommant sur les diagrammes de
Feynman va ici se faire en sommant sur les diagrammes de diffusion entre états de cordes, qui
vont maintenant se représenter comme des surfaces (voir figure 1.1). Ces surfaces peuvent étre a
bord (cas des cordes ouvertes) ou sans bord (cas des cordes fermées) ; nous verrons plus tard que
cette caractéristique de la théorie nous permet de la considérer comme une théorie des champs
en deux dimensions, ol “I’espace-temps” associé n’est autre que cette surface de propagation des
états de cordes, que 'on appelle feuille d’univers. La notion de boucle en théorie des champs est
ici remplacée par la notion de genre des surfaces sur lesquelles on va sommer. Nous verrons que
le développement perturbatif s’organise naturellement selon le nombre de boucles des surfaces
considérées.

FI1GURE 1.1 — Exemple d’interaction a 3 points en théorie des champs; interaction a 3 points en
théorie des cordes fermées.

D’un point de vue heuristique, notons que 'interaction entre des états de cordes n’a plus lieu
en un point, comme c’était le cas en théorie des champs. Ce formalisme va donc “délocaliser”
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I'interaction, en introduisant une longueur minimale dans la modélisation des interactions, qui
est la longueur de la corde; on prend cette longueur de 'ordre de la longueur de Planck

_ M 035

l P = 3 10 m, (11)
échelle a laquelle on attend que les corrections quantiques a la gravitation deviennent pré-
pondérantes. Cette longueur minimale joue un réle de cut-off ultra-violet, régularisant ainsi
naturellement les divergences qui rendaient la gravité quantique inutilisable.

1.3 Plan de la these

Cette these a pour but, dans un premier temps, de présenter la théorie des cordes au lecteur
étranger a cette discipline. Le lecteur devra toutefois étre muni d’un bagage conséquent en
physique théorique, faute de quoi le manuscrit atteindrait une taille indécente. Il est toutefois
hors de question d’englober tous les aspects de la théorie des cordes actuelles; nous choisissons
donc naturellement de présenter les prérequis a la bonne compréhension des travaux effectués
au cours de mes quatre années.

Nous commencons donc par quelques prérequis. Le premier concerne les théories de jauge,
ingrédient fondamental de la physique théorique qui repose sur le formalisme des algebres de
Lie et les nombreux théorémes régissant leur structure et leur classification. Nous détaillons
ensuite quelques aspects des théories de supergravité. Ces théories, basées sur le jaugeage de
la supersymétrie, ont été construites au cours de la seconde moitié des années 1970 ; elles
apparaissent en théorie des cordes comme des limites de basse énergie. La encore, les hypotheses
de consistance fourniront quelques contraintes fortes sur la physique émergeant de ces théories.

Nous construisons ensuite la premiere quantification de la corde bosonique, puis de la supercorde.
Deux contraintes vont fortement réduire le nombre de théories des cordes consistantes : I'inva-
riance conforme de la théorie formulée sur la feuille d’univers, et I'invariance modulaire de la
fonction a une boucle. Nous verrons que la dimension de I’espace-temps, de maniére spectaculaire,
est fixée par la construction, et que l'invariance modulaire implique qu’il n’existe que cinqg
théories consistantes. Nous verrons encore comment apparait naturellement la régularisation
ultra-violette, dont ’absence condamnait les premieres tentatives de gravité quantique.

Nous nous pencherons ensuite sur la définition d’une théorie des cordes a quatre dimensions.
Deux pistes sont possibles, dont nous discuterons finalement les similitudes : compactifier six
dimensions d’espace sur une variété interne de type Calabi-Yau ou de type orbifold, ou combler
I’anomalie conforme existant dans une théorie a quatre dimensions par des degrés de liberté
internes. Une des propriétés fondamentales inhérente a toute compactification est la possibilité
de générer des brisures de symétrie. Scherk et Schwarz furent parmi les pionniers de ’application
de ce mécanisme a la supersymétrie dans les fondateurs | , | ; leurs idées se prolongent
naturellement en théorie des cordes sous la forme d’orbifolds et de lignes de Wilson, dont nous
vanterons les mérites.
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Nous nous étendrons particulierement sur les mécanismes de brisure spontanée d’une symétrie,
qu’elle soit une supersymétrie ou une symétrie de jauge, au moyen d’orbifolds a action libre;
ce mécanisme sera au coeur des deux facettes de nos travaux. Munis d’un arsenal théorique
conséquent, nous aborderons ensuite les travaux originaux effectués pendant cette these.

Le premier travail porte sur des aspects phénoménologiques des modeles de supercordes hété-
rotiques. On attend de modeles réalistes qu’ils possédent une supersymétrie N' = 1 & quatre
dimensions. Cette supersymétrie s’obtient naturellement en compactifiant la théorie hétérotique
sur une variété vérifiant certaines contraintes d’holonomie ; cette procédure a aussi pour effet
de briser le groupe de jauge existant a dix dimensions, et nous dirige naturellement vers des
groupes de jauge réalistes en vue de la construction de théories grand-unifiées.

Pour I’étude du spectre de matiere, il est équivalent de se placer en des points particuliers
de I'espace des modules, 1a ou la géométrie de la variété dégénere et admet des singularités.
Paradoxalement, la théorie des cordes correspondante est toujours définie en de tels points, et
beaucoup plus facile a étudier.

Nous construirons alors nos modeles grace au formalisme de la construction fermionique. Ce
formalisme, par son aspect systématique, ouvre la voie a une classification de modeles réalistes
selon plusieurs aspects de leur spectre (anomalies, nombre de familles; . ..). Cette classification
fut effectuée dans une série d’articles précédents | , , , |. Dans les
deux derniers articles de cette série, une dualité fut exposée, reliant le nombre de représentations
vectorielles et le nombre de représentations spinorielles de SO(10), le groupe de jauge émergeant
naturellement de cette classe de modeles; une preuve formelle en fut donnée.

Nous reprenons ce mécanisme et en donnons une nouvelle preuve, basée sur 1’étude de la brisure
spontanée de symétrie de jauge Eg — SO(10). Nous interprétons les ingrédients de la classe de
modeles de fermions libres comme des orbifolds a action libre ; I’étude des coefficients définissant
un modele, dits coefficients de projection GSO généralisée, nous permet de déterminer lesquels
de ces orbifolds brisent la symétrie de jauge étendue. Il est alors aisé de construire les coefficients
définissant un modele dual. Nous nous intéressons par la suite a quelques propriétés intéressantes
de cette classe de construction. Il est notamment possible de construire des modeles auto-duaux ;
cette classe contient des éléments dans lesquels toutes les composantes U(1) du groupe de jauge
sont dépourvues d’anomalies.

Dans la deuxieme partie de cette these, nous étudions des solutions cosmologiques issues de la
théorie des cordes. A I'aide d’une compactification de Scherk-Schwarz du temps euclidien, nous
nous intéressons a des théories des cordes a température finie, dans lesquelles la supersymétrie
est de plus spontanément brisée par un mécanisme de Scherk-Schwarz sur une dimension interne
dont on note le rayon Rs5. Le schéma précis de cette brisure est décrit par une R-charge a + @,
dont 'effet est de pondérer d’un signe + la contribution des différentes paires boson/fermion
dans le potentiel effectif.

La théorie de supergravité correspondant a la limite a basse énergie de cette théorie des cordes
est alors corrigée a 'ordre d’une boucle par des effets thermiques et quantiques. Nous calculons
explicitement ces effets, sous certaines approximations que nous motiverons. Notamment, la
structure “sans-échelle” partagée par toutes les réductions dimensionnelles de théories des cordes
est brisée par la prise en compte de ces effets.

Nous cherchons alors a faire correspondre a cette supergravité déformée une évolution cosmo-
logique. Pour cela, nous identifions les équations de la supergravité aux équations d’Einstein
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donnant 1’évolution d’un univers de Friedmann-Robertson-Walker. Ceci passe notamment par
I'identification du module sans échelle au dilaton. Alors que I’évolution de la température au
cours du temps est donnée par la condition adiabatique, nous postulons, mus par des considé-
rations dimensionnelles et des travaux antérieurs, que le rapport de la température et de la
masse du gravitino est constant. Cette contrainte est non-triviale ; elle restreint le choix de la
R-charge définissant la brisure selon la dimension Rs. Le calcul du potentiel dans un cas simple
donne des termes de rétroaction ayant la forme de termes de radiation ; nous nous intéressons
ensuite a la génération possible de termes ayant la forme d’une courbure, puis d’une constante
cosmologique. Le potentiel ne dépend dans un premier temps que du module sans échelle, qui
n’est donc plus plat : nous présentons enfin la forme des évolutions cosmologiques associées a
de tels scénarios. Les termes du potentiel effectif qui dépendent des modules spectateurs sont
par contre exponentiellement petits : ces modules restent plats. Toutefois I’apparition, dans le
contexte de la supergravité, de termes de brisure douce, stabilise ces modules spectateurs. Le
module sans échelle sera lui aussi stabilisé a la transition électro-faible, au-dela de laquelle le
systeme sort du cadre de nos approximations.

Nous considérons enfin la généralisation de ce modele a la présence de deux rayons brisant la
supersymétrie, notés R, et R5. Ce modele est défini sous des contraintes assez similaires au
cas a un seul rayon. Il se pose alors un nouveau probléeme : le module de structure complexe
R5/ R, participe a la brisure de supersymétrie, et le potentiel effectif a une boucle lui confere
une dynamique non-triviale. Nous donnons des modeles explicites dans lesquels ce module est
stabilisé, ce qui empéche ce nouveau modele d’évoluer dynamiquement vers le cas a un seul
rayon étudié précédemment.
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Chapitre 2

Quelques prérequis

2.1 Algebres de Lie et théories de jauge

La notion de symétrie d’un systeme est I'un des piliers de la physique moderne. En effet,
connaitre les transformations par lesquelles un systeme est laissé invariant permet de déduire des
propriétés non triviales dudit systeme. De méme, imposer une symétrie lors de la modélisation
d’interactions permet de fortement contraindre la forme de la théorie obtenue : ainsi, la forme
des interactions doit étre invariante, et le contenu en champs de la théorie doit s’arranger en
représentations du groupe de symétrie considéré.

La majorité des groupes de symétrie que nous allons rencontrer sont des groupes de Lie. Cette
structure spécifique ouvre la voie a de nombreux résultats extrémement intéressants.

Groupes et algebres de Lie

On ne donnera ici qu'une breve introduction a la théorie des groupes et algebres de Lie, en se
restreignant aux propriétés qui nous seront utiles par la suite. On pourra notamment consulter
[ ] ou | ] pour de plus amples détails.

Un groupe de Lie est défini comme une variété munie d’une structure de groupe, tel que les
deux opérations associés a cette structure de groupe

(91, 92) — G192,
g9
soient différentiables. Notamment, les groupes de rotation SO(n), et plus généralement les
groupes SO(n, m) préservant la métrique de signature (n,m) sont des groupes de Lie.
Si G est un groupe de Lie, on peut définir en tout point g de G I'espace vectoriel tangent a G
en g, que 'on notera T,. On définit alors ’algebre de Lie associée au groupe G, notée g comme
I’espace tangent a G en l'identité :

g="T. (2.1)

Ainsi, I'algebre de Lie est formée par les transformations infinitésimales de GG, ce qui veut encore
dire que g décrit G au voisinage de I'identité. Par exemple, si G est le groupe de Lie des matrices
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orthogonales n x n réelles de déterminant 1
G = SO(n), (2.2)
alors 'algebre de Lie associée est 'ensemble des matrices n X n réelles antisymétriques

so(n) = {M € M,(R) | "M = —M}. (2.3)

A partir de la donnée d’une algebre de Lie g, il est possible de remonter & la structure du groupe
G lorsque celui-ci est simplement connexe (dans le cas contraire, on n’arrive a reconstituer que
la composante connexe de G contenant 1’élément neutre). Dans le cas simplement connexe, on
montre que

G = exp(g). (2.4)

Par exemple, on note que O(n) et SO(n) ont mémes algebres de Lie ; par contre 1’exponentiation
de so(n) ne reconstitue que SO(n), qui est la composante connexe de O(n) contenant l'identité.

A partir de la définition comme espace tangent, on peut montrer qu’il existe sur g une application
bilinéaire antisymétrique, appelée crochet de Lie ou commutateur :

[,] @ gxg — ¢ (2.5)
(X,Y) — [X,Y]

qui vérifie [’identité de Jacobi :

(X, Y. Z]|+ [Z,[X,)Y]| + [Y, [Z, X]] = 0. (2.6)

Si on note (J*)1<a<n des générateurs formant une base de g, on a les relations de commutation
suivantes

[J8 T =i, Je (2.7)
(&

Les constantes f% _ sont appelées constantes de structure de I’algébre g. Elles caractérisent de
maniere unique la structure de 1’algebre.
Une des bases de g parmi les plus utiles a considérer est la base de Cartan- Weyl. On commence
par définir la sous-algebre de Cartan de g : c’est la sous-algebre commutative maximale de
g. On note (H;)1<;<, une base de générateurs de cette sous-algebre; r est la dimension de la
sous-algebre de Cartan et est appelé rang de g. Ces générateurs étant hermitiens et commutant
deux & deux, on en déduit par I'identité de Jacobi que les endomorphismes de g Ady: : g — [h, ¢
commutent aussi deux a deux. Ils sont donc sont simultanément diagonalisables : ceci nous
permet de compléter la famille (k%) en base de g par des éléments (E“), appelés opérateurs
d’échelle, qui sont des vecteurs propres simultanés des applications Ady:. Ainsi, on a :

[H', E*] = o' E~. (2.8)

Les vecteurs & r composantes («;)1<i<, ainsi définis, que I'on notera de maniere condensée «,
sont appelés racines de 'algebre. L’algebre de Lie est en fait entierement spécifiée par I’ensemble
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de ses racines. Ainsi, pour classifier les algébres de Lie simples !, il suffit de classifier les systémes
de racines. On trouve 4 familles infinies d’algebres (on a noté dans la seconde colonne le groupe
de Lie associé G) :

g G

A, | SUMn+1)
B, | SO(2n+1)
Ch Sp(2n)
D, SO(2n)

TABLE 2.1 — Familles infinies d’algebres de Lie simples.

ainsi que cinq algebres exceptionnelles : Fg, Fr, Es, Fy, Gs.

Représentations des algebres de Lie et théories de jauge

Une algebre de Lie est a priori un ensemble abstrait, caractérisé par ses constantes de structure.
Une représentation d’une algebre de Lie est en quelque sorte une “incarnation” de cette algebre
par son action sur un espace vectoriel. Plus précisément, si £ est un espace vectoriel, on appelle
représentation linéaire d’un groupe G un morphisme de groupes continu de G dans GL(E) :

T:G — GL(E) (2.9)
g — T(g)

En d’autres termes, on représente chaque élément de G par un isomorphisme d'un espace
vectoriel V. On appelle alors dimension de la représentation la dimension de 1’espace vectoriel E.
Ainsi, le groupe de Lie SO(n) admet une représentation de dimension n : T'(g) est simplement
donné par I’écriture matricielle de g. Cet exemple trivial ne doit cependant pas faire oublier
qu’un groupe admet plusieurs représentations, méme si sa définition méme lui associe souvent
naturellement une de ses représentations. Ainsi, le groupe SU(2) des matrices complexes unitaires
de déterminant 1 admet des représentations de dimension 25 + 1 quelque soit l'entier j > 0.

La classification de ces représentations est essentielle en ce qu’elle permet de prévoir le contenu
d’une théorie : si une théorie admet une symétrie sous la forme d’un groupe de Lie GG, son spectre
doit s’arranger en représentations de GG. Ce point permet notamment d’aiguiller le théoricien
dans sa recherche de groupes de jauge unifiés ; nous reviendrons sur ce point dans le chapitre 5.

Pour définir la notion de représentation sur une algebre de Lie, on note que si g € g, alors le
groupe unidimensionnel {exp(gt)|t € R} est un sous-groupe de G. Ceci nous permet d’étendre
la définition de T" a g, par

(2.10)

t=0

1. Une algebre de Lie est dite simple si elle ne contient pas d’idéaux (au sens du crochet de Lie) non triviaux.
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L’application 7' est maintenant une application linéaire de g dans £(V'). Ce prolongement
préserve de plus le commutateur : on a T([g, h]) = T(g)T'(h) — T'(h)T(g).
Il est évident qu'un groupe de Lie G et son algebre g admettent les mémes représentations.

Une représentation va nous intéresser en particulier : il s’agit de la représentation adjointe, dans
laquelle 'algebre de Lie va agir sur elle-méme.
D’apres les propriétés du commutateur, 'application

Ad g — L(g) (2.11)
g Adg

ou Ady(h) = [g, h] définit une représentation linéaire de g : 'espace vectoriel associé est dans ce
cas g lui-méme, et la dimension de cette représentation est la dimension de l’algebre.

L’intérét primordial des groupes et algebres de Lie en physique théorique vient de la considération
des théories de jauge. Nous n’allons pas exposer les détails du jaugeage d'une symétrie globale
d’une théorie des champs. Nous rappelons néanmoins que cette procédure consiste a rendre
locale cette symétrie globale : autrement dit,le parametre de la transformation dépend lui aussi
de I'espace-temps. Pour que la théorie reste invariante sous cette opération, il est alors nécessaire
de modifier la dérivée usuelle 9, en dérivée covariante 0, —iAj, T. A est un nouveau champ de
la théorie, médiateur de la transformation de jauge, et est nommé boson de jauge ; les matrices
T% forment une base du groupe des transformations dans la représentation R. L’indice a est ici
I'indice adjoint : les bosons de jauge sont toujours dans la représentation adjointe du groupe de
jauge. La modification de la dérivée partielle en dérivée covariante implique alors la présence
d’un terme cinétique pour les champs de jauge, qui prend la forme suivante

1
Lein, = = F I (2.12)

ou le tenseur de courbure F),, est défini comme

Fuw = 0,48 — 0,A% + g [, ALA; (2.13)

g est ici la constante de couplage.

En pratique, il est important de noter que les bosons de jauge sont dans la représentation
adjointe du groupe de jauge : ceci nous permettra de déterminer explicitement les groupes de
jauge associés aux différentes théories des cordes que nous allons construire dans cette these. Il
suffira pour cela d’identifier les systemes de racines donnés par les vertex des états que nous
construirons. A ces bosons s’ajouteront des états de matieére qui s’arrangeront dans diverses
représentations du groupe.

Notons enfin qu’en théorie des cordes, il n’existe pas de symétrie continue globale | | : une
telle symétrie est en effet automatiquement jaugée a cause de la présence sur la feuille d'univers
des états de vertex donnant naissance aux bosons de jauge.

Le formalisme des théories de jauge est trés puissant ; il est en effet possible de voir la relativité
générale comme un jaugeage de I'invariance par difféomorphismes d’une théorie physique. Le
terme cinétique du champ de jauge correspondant est alors le scalaire de Ricci R, la dérivée
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covariante est celle usuellement construite a partir des symboles de Christoffel, et le boson de
jauge est donné par la métrique g, (qui se transformera en graviton dans une théorie de gravité
quantique). Cette procédure est aussi a 'origine de l'introduction de la connection de spin,que
nous rencontrerons dans la section 5.2. De méme, la supergravité sera construite par jaugeage
de la supersymétrie.

2.2 Algebres de supersymétrie et théories de supergra-
vité quadri-dimensionnelles

2.2.1 Algebres de supersymeétrie

L’importance des symétries dans la définition d’'une théorie quantique peut nous pousser a
introduire de nouvelles symétries, qui engendreront de nouvelles contraintes. Jusqu’'a présent, le
groupe de symétrie le plus général que nous avons rencontré s’écrit sous la forme P x G, ou
P est le groupe de Poincaré, et G un groupe de jauge ayant la forme d’une algebre de Lie. Le
théoreme de Coleman-Mandula, démontré dans le cadre d’hypotheses physiques naturelles, force
ce produit a étre direct : les symétries internes doivent commuter avec le groupe de Poincaré.
Il existe toutefois un moyen de contourner ce théoreme, qui est de considérer une extension
de la symétrie faisant intervenir des superalgébres de Lie, c’est-a-dire des symétries ayant un
parametre fermionique, et dont la structure est caractérisée par des relations d’anticommutation
(on pourra trouver des informations plus complétes sur les superalgebres de Lie dans | 1.
Une introduction tres compleéte a la supersymétrie est donnée dans | ]. Pour construire
I’algebre de supersymétrie, on complete 1’algebre de Poincaré, donnée par les générateurs des
translations P, et des rotations/boosts M, en introduisant des supercharges, prenant la forme
de spineurs de Majorana d’espace temps, vérifiant

[P/m Qé] =0, [Muw Qé] = i(‘%V)aﬁQé’
(2.14)

{QLQN =20",P07, {QLQJ) = casZ".

I,J=1...N donne le nombre de supersymétries. Si N' > 2, on parle de supersymétrie étendue.
Le comportement des charges () sous les rotations confirme que ces charges sont des spineurs.
Leur action sur les états physiques de la théorie permet d’organiser le spectre en supermultiplets,
qui comportent le méme nombre de degrés de liberté fermioniques et bosoniques. De plus,
tous les états physiques d’un supermultiplet ont la méme masse. Les supermultiplets sans
masse compotent 2%V états; pour les multiplets massifs, on trouve génériquement dans un
supermultiplet contenant 22V états. Des supermultiplets réduits existent en présence des termes
de charge centrale Z!/ ; la masse de ces multiplets est reliée aux valeurs propres de la matrice
Z!7. Lorsque k supercharges s’annulent sur la représentation, on obtient des supermultiplets
BPS, de dimensions 220V=F),

Parmi les motivations de 'introduction de la supersymétrie, on note que sa structure permet
I'obtention de certains théorémes de non-renormalisation. Ces résultats permettent d’apporter
une solution partielle au probleme de la hiérarchie. Le probleme de la hiérarchie de jauge, qui
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intervient en théorie quantique des champs, consiste a expliquer la différence de magnitude
extrémement importante existant entre 1’échelle de brisure électro-faible du modele standard
(qui est de 'ordre de la masse du Higgs, soit de 'ordre de 100 GeV), et les échelles de grande
unification (Mgyr ~ 10'% GeV) ou de Planck (Mp ~ 10'® GeV). L’introduction & la main de ce
rapport dans la théorie quantique (sous la forme de 'introduction de la masse du Higgs) est
évidemment possible au niveau des arbres, mais dans une théorie bosonique, la forme générique
des corrections quantiques a cette quantité issues de la renormalisation sont trop importantes pour
préserver le rapport des échelles. Il semblerait possible d’annuler les contributions déstabilisant
la hiérarchie par fine tuning; toutefois la relation imposée a cet effet au niveau des arbres
n’est pas invariante par le groupe de renormalisation, et la hiérarchie est détruite aux ordres
supérieurs. Par contre, dans une théorie supersymétrique, ces corrections sont beaucoup mieux
controlées, et, sous certaines conditions (qui définissent les Large Hierarchy Compatible models
[ |), les corrections au potentiel sont logarithmiques dans I’échelle de cut-off, ce qui écrase
les corrections ; la hiérarchie introduite est alors préservée. Nous donnerons de plus amples
précisions sur la structure de ces corrections dans la section 6.5.

2.2.2 Supergravités a quatre dimensions

Les théories de supergravité sont définies comme la promotion de la supersymétrie globale
en une symétrie locale, de maniere analogue a la construction des théories de jauge telles
que ’électromagnétisme. Une telle construction est indissociable de la gravitation. En effet,
les transformations de supersymétrie, comme on ’a vu dans la section précédente, sont les
“racines carrées” des transformations du groupe de Poincaré. Ainsi une théorie exhibant une
supersymétrie locale devra forcément exhiber une invariance de Poincaré locale : en d’autres
termes, cette théorie inclura la gravitation.

Le champ médiateur des transformations locales de supersymétrie est le partenaire supersymé-
trique du champ médiateur de la gravitation, c’est-a-dire le graviton de spin 2. Il correspond
ainsi & une particule de spin 3/2, nommé gravitino. Outre ces deux champs, les théories de
supergravité incorporent ensuite des degrés de liberté de matiere (champs de jauge, etc.), qui
s’arrangent en multiplets de supersymétrie.

L’étude des dimensions dans lesquelles il est possible de définir une théorie de supergravité a
été effectuée a la fin des années 1970, principalement dans | , , ]. Le fait que
I’'on ne puisse pas considérer de particules ayant un spin > 2 a quatre dimensions implique que
le nombre maximal de supercharges d’une théorie de supergravité est de 32; ainsi la dimension
maximale est D = 11. La supergravité D = 11 de | | est le candidat naturel de limite a
basse énergie d'une théorie quantique fondamentale définie a onze dimensions, et dénommée
M-théorie. La compactification de la supergravité a onze dimensions sur un cercle ou un orbifold
fournit plusieurs théories a dix dimensions, a 32 ou 16 supercharges, qui peuvent s’identifier
aux limites a basse énergie de théories des supercordes connues. Nous ne rentrerons pas dans
ces détails, éloignés du travail mené dans cette these. Ces considérations ont été tres riches en
conséquences physiques, notamment en reliant par des opérations de dualité non-perturbative
les différentes théories des cordes a dix dimensions.

Nous allons ici nous intéresser aux propriétés des théories de supergravité en 4 dimensions
d’espace-temps. Le nombre maximal de 32 supercharges nous apprend que la supersymétrie
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étendue maximale est N/ = 8 ell est unique, en ce sens que le seul multiplet de la théorie est le
multiplet gravitationnel. Plus généralement, les théories de supergravité étendues N' > 5 sont
uniques; & AN/ = 4, on voit apparaitre le multiplet vectoriel, puis 'hypermultiplet & N = 2, et
enfin le multiplet chiral & A/ = 1. On note au passage qu’'une théorie chirale a obligatoirement
N <1

La présence de supersymétrie N =1 (et a fortiori, éventuellement de supersymétries étendues
2 < N < 8) contraint fortement la forme du lagrangien, dont les termes cinétiques et les
couplages se déduiront de deux fonctions définissant la théorie. les observations montrent de
maniere évidente que la supersymétrie ne peut étre une symétrie exacte du monde qui nous
entoure. Il convient alors de la briser a basse énergie, de maniere analogue a la brisure électro-
faible par le mécanisme de Higgs. Cette brisure de la supergravité est dite spontanée : elle
introduit un décalage entre les masses de partenaires supersymétriques, dont ’amplitude est
donnée par la masse du gravitino Mjz/y. Cette masse provient de l'absorption du champ du
goldstino par le gravitino : c¢’est le mécanisme de super-Higgs.

Lors de la brisure spontanée de supersymétrie, la valeur du potentiel dans le vide de la théorie
peut devenir non-nulle. Cette valeur n’étant rien d’autre que la constante cosmologique, il
est essentiel de réaliser des modeles de supergravité spontanément brisée garantissant une
constante cosmologique nulle. En fait cette contrainte peut s’imposer sur n’importe quel modele
de supergravité, en imposant un réglage fin des parametres de la théorie (masse des particules,
etc...). Cette solution est assez artificielle ; nous verrons qu’il existe une classe particuliere de
modeles, dits sans échelle, pour lesquels la constante cosmologique reste nulle en présence
d’une brisure spontanée de supersymétrie. Cette dénomination provient du fait que la masse
du gravitino est dans le cadre de cette théorie indéterminée, car correspondant a une direction
plate du potentiel.

En plus de de ces propriétés hautement intéressantes sur la plan phénoménologique, nous verrons
que ces modeles ont le bon gotit de s’identifier aux limites a basse énergie des théories des cordes
que nous définirons plus tard.

Supergravité A/ = 1 & quatre dimensions et sa brisure spontanée

La meilleure maniere d’écrire une action invariante sous les transformations de supersymétrie
locale N' = 1 est d’utiliser le formalisme des superchamps?, dans lequel on remplace les champs
usuels ¢(z#) par des superchamps ®(z#, ©,,04). ©, O sont ici des coordonnées ayant la forme
de spineurs de Majorana; ce sont des variables de Grassmann (anti-commutantes). En quatre
dimensions, © et © ont chacun deux composantes indépendantes.

Ce formalisme a pour effet de rassembler en un méme champ les degrés de liberté bosonique
et fermionique d’un doublet de supersymétrie. Il permet aussi une expression simple des
transformations de supersymétrie.

Un multiplet chiral comprenant un scalaire z et un fermion de Weyl v se représente alors par
un superchamp :

2. On trouvera par exemple dans | ] une présentation détaillée de ce formalisme, et son application & la
construction de lagrangiens supersymétriques.
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®(r,0,0) = 2(x)+v20(x) +i00"00,2(x) — OO f(x) — L@@@,ﬂb(m)au@— i@@@@@zz(m) :

V2
(2.15)

On voit notamment que cette expression introduit un troisieme champ f, dit auxiliaire. Ce
champ n’aura pas de terme cinétique dans ’action, et pourra étre remplacé par sa valeur on-shell.
Il donnera cependant lieu a un terme de potentiel, dit F-terme.

Dans le méme esprit, on montre que la représentation d’un multiplet vectoriel (v*, ) en terme
d’un superchamp V(z,©, ©) fait intervenir un champ auxiliaire D(z); sa substitution fera
apparaitre des D-termes dans le potentiel scalaire.

On s’intéresse maintenant a la construction d’une théorie de supergravité. Pour cela, il nous
faut définir le spectre en matiere de la théorie. Ce spectre se compose de multiplets chiraux ®/
et de multiplets vectoriels de jauge® V* (a est donc ici un indice adjoint).

La théorie est alors caractérisée par une fonction de Kdhler

G(z,2) = K(z, %) + log |w(2)? (2.16)
dont les dérivées
oG oG oG
Cr=gor Y=g G g (2.17)

définissent la métrique de Kihler G;; = K;j. Cette métrique et son inverse G/ = (G,;)™*
servent & monter et baisser les indices I, J.

Cette métrique définit les termes cinétiques des multiplets chiraux. On se donne ensuite la
fonction cinétique de jauge fu(2). Cette fonction donne les constantes de couplage de jauge et
les constantes de couplage axionique

1
Re foo=—5,  Im fop = Oup; (2.18)

Yab
tels qu'apparaissant dans le lagrangien bosonique

1 a v, a TV
Lgauge = “12 5 JFHY 4 g P (2.19)

Le potentiel scalaire de cette théorie provient alors des F-termes et des D-termes : on a

[(Regl]a (GI(Ta)fjgj> (zK(Tb)KEGL) (2.20)

De maniere générique, le D-terme est défini positif, alors que le F-terme est de signe arbitraire.
Il convient alors, pour définir le vide de cette théorie, de minimiser ce potentiel relativement aux
différents champs; la constante cosmologique sera donnée par la valeur du potentiel dans ce vide

V=Ve+Vp=e" (GG —3) +

A=Vp

+Vb

Z=Zmin.

(2.21)

Z=Zmin.

3. Les multiplets chiraux s’ordonnent bien entendu en représentations sous le groupe de jauge : I'indice I est
donc celui d’une représentation, dans laquelle la symétrie de jauge sera implémentée par les matrices (7¢)7 7
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Brisure spontanée de la supergravité

L’algebre de supersymétrie est brisée lorsque 'un des deux champs auxiliaires (F* est le champ
auxiliaire d'un superchamp chiral, et D* celui d’'un multiplet vectoriel) de la théorie regoit une
valeur moyenne dans le vide non-nulle. Ceci est résumé par la condition

(G;) #0. (2.22)

Dans ce cas, par le mécanisme de super-Higgs | ], le gravitino absorbe le goldstino et acquiert
une masse Mz, = eC/2.

On peut alors identifier les champs participant & la brisure comme les scalaires z! tels que
G # 0, ou encore G;GT # 0 (non sommé). En effet, ces champs ont une composante selon la
direction du goldstino.

La brisure spontanée de la supergravité entraine aussi ’apparition d’'un cortege de termes
donnant une masse aux divers champs de la théorie. Ces termes sont appelés termes de brisure
douce ; leur expression dépend des détails de la fonction de Kahler du coset formé par les scalaires.
On pourra se rapporter a | , | pour des détails plus poussés. L'intérét de I'existence
de tels termes, dont 1'ordre de grandeur est celui de la masse de brisure de supersymétrie, est de
participer a la stabilisation de certains modules, lorsque les énergies mises en jeu sont de 'ordre
de mg/>. Nous donnons des précisions sur ce mécanisme dans | .

Au minimum du potentiel scalaire (2.20), on remarque que la constante cosmologique peut
étre nulle méme en présence d’une brisure spontanée de la supergravité (c’est-a-dire, avec une
masse du gravitino non-nulle). Un réglage ad hoc des différents parametres de la théorie permet
I’annulation de cette constante. Ces contraintes de fine tuning sont le plus souvent peu naturelles ;
il conviendrait de trouver un modele plus satisfaisant.

Les modeles de supergravité sans échelle

Dans cette sous-section, on va montrer, en utilisant I'expression du potentiel scalaire (2.20) ci-
dessus, comment la théorie de supergravité sans échelle introduite dans | ] et développée
dans | , , | permet d’obtenir, apres brisure spontanée de la supersymétrie,
une constante cosmologique nulle et une masse du gravitino indéterminée au niveau classique.
On suppose pour cela qu’il existe un module 7', tel que la fonction de Kéhler se décompose
comme

Gror. = G(T, T) + G(2", 2" (2.23)
On note :
oG oG 0*°G oG 0g 0*G )
C;1T - ﬁu C;’T - ﬁv GTT - aTaTu gl — 87217 gJ — g—jugltf — 82;82{ (224)

Grp, Gr7 définit alors une métrique qui permet de remonter les indices.

Si on choisit alors

G(T,T) = —3log(T + T) + log |c|? (2.25)
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ol ¢ est une constante, on a, de maniére identique, e“” ((G’T) 1(Gr)!f — 3) = (0. Maintenant, si
on rajoute les autres degrés de liberté z, z dans la théorie, le potentiel prend la forme

V =Ve+Vp=e%" (G.)1(G.) 4+ Vp (2.26)

Sous I’hypothese de couplage minimal des autres champs z, z, le potentiel est positif, et on
montre qu’il admet un minimum a V' = 0. Ceci annule la constante cosmologique de la théorie
de supergravité.

Dans le mécanisme de brisure spontanée de supersymétrie, la masse du gravitino est donnée par

Gtot.

M3/2=€ 2

(2.27)

Dans les modeles que nous considérons, le module 7" est le seul a contribuer a la masse du
gravitino : on a

e
L’indétermination au niveau classique de la masse du gravitino est assurée par la platitude du

potentiel, qui ne dépend pas de T'. Le terme cinétique généré par la fonction de Kéhler pour le
module 7', dont ’expression est

(2.28)

9,170, T

/—ad™ 3 V.
92 Ty

possede une symétrie non-compacte SU(1,1).

(2.29)

Nous verrons cependant plus tard que les corrections quantiques a ce potentiel permettent de
lever cette indétermination, en générant un potentiel non trivial pour Ms,. Il faut pour cela
avoir a disposition une théorie quantique dont la limite de basse énergie peut étre décrite par une
théorie de supergravité : la théorie des cordes. Dans notre modele, ces corrections s’obtiendront
en considérant des théories des supercordes, hétérotiques ou de Type II, a supersymétrie étendue.

Comme reconnu dans | ] dans le cas de compactifications sur des variétés d’holonomie
SU(3), et dans | | dans le cas de compactification sur des orbifolds, nous verrons que les
supergravités a quatre dimensions correspondant a la limite de basse énergie des compactifications
des différentes théories des supercordes correspondent a des modeles sans échelle. En particulier,
dans le cas de compactification sur un tore 72 x T? x T? ou des orbifolds Zs x Zs, 'espace
des modules de la théorie est donné par 7 champs : le dilaton/axion S, les trois modules de
Kahler T et les trois modules de structure complexe U!. Le potentiel de Kéhler effectif est
alors donné par

3 3
K =—log(S+9) =Y log(T' +T") — > log(U' + U"). (2.30)
I=1

I=1 =
Nous reviendrons plus en détail dans la section 4.4 sur la structure de ce s supergravités et
I'interprétation des différents modules.
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Il est alors possible, en gelant certains degrés de liberté du systeme, de définir des combinaisons
de ces modules vérifiant la propriété sans échelle. Nous utiliserons cette méthode dans les travaux
présentés au chapitre 6.
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Chapitre 3

Théories des supercordes en 10
dimensions

Nous allons commencer par présenter la théorie des cordes a dix dimensions, d’abord dans le
cas bosonique, puis dans le cas de la supercorde. Nous nous inspirons principalement de | ]
et | ].

3.1 Action et quantification de la corde bosonique

Le point de départ le plus naturel pour écrire la théorie quantique d’une corde est de postuler
une action qui généralise celle de la particule libre. L’action de cette derniere s’écrit, pour une

particule de masse m,
S = —m/ds = —m/dﬂ/—jrua':“ (3.1)

et n’est autre que la longueur propre de sa ligne d'univers (7 est le temps propre de la particule).
De la méme facon, on peut donc définir 'action de la corde comme l'intégrale de I’élément de sa
surface d’univers : c¢’est I'action de Nambu-Goto

[ /M dodr /= det(0,X1D,X,,). (3.2)

Ici, M est appelée feuille d’univers de la corde, et est paramétrée par les coordonnées o et T,
respectivement longueur propre et temps propre de la corde, comme représenté sur la figure 3.1.
T est la tension de la corde, donnée en fonction de la pente de Regge o' par T = 1/27a/.
Toutefois, cette action est difficile a utiliser en vue d’une quantification. On lui préfere ’action
de Polyakov, qui lui est équivalente :

T
S = —5/ dodr VAo f)/ab 77/,“/ 8aXuabXV' <33)
M

Cette action fait apparaitre la théorie comme une théorie a deux dimensions, dans laquelle
les X* sont des champs scalaires (au sens des difféomorphismes de la feuille d’univers). Ces
scalaires vivent sur la feuille d’univers, et prennent leurs valeurs dans [’espace cible, qui est ici
I’espace-temps habituel ; la symétrie de Poincaré propre a ’espace-temps, dans ce formalisme,
devient une symétrie interne de notre théorie bi-dimensionnelle.
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FIGURE 3.1 — Paramétrisation de la feuille d’univers de la corde ouverte et de la corde fermée.

Cette reformulation de la théorie a plusieurs conséquences : une des plus importantes est
I’apparition, en plus des symétries de Poincaré

Yab — Vab Xt —a"+ LM XY, (3.4)

et de reparamétrisation de la feuille d’univers

o)~ @ an) e () (2 (35)

de la symétrie conforme
Yab — €XP (2¢(O-7 T)) “Yab; Xt — XF, (36)

Cette invariance, dite de Weyl, est valide au niveau classique. Notons que ce résultat est spécifique
aux théories des champs a deux dimensions : ce n’est qu’a cette condition que la quantité

Vet ki (3.7)

est invariante sous la transformation de Weyl (3.6). L’annulation de ’anomalie quantique associée
a la symétrie conforme, qui équivaut a I’annulation de la trace du tenseur énergie-impulsion de la
théorie, va fortement contraindre les conditions dans lesquelles nous pourrons définir une théorie
des cordes consistante. Les conséquences de 'invariance conforme du modele-sigma feront ’objet
de la section suivante ; pour 'instant nous allons donner la procédure de quantification de la
corde bosonique.

Les invariances de reparamétrisation et de Weyl nous permettent de nous placer dans la jauge
conforme, ¥ = n®, dans laquelle action (3.3) induit les équations du mouvement correspondant
a une propagation d’ondes :

8, XX =0. (3.8)

En théorie des cordes fermées la solution générale se sépare en secteur gauche et secteur
droit : X(7,0) = Xp(7 — o) + Xg(T + 0). Prenant en compte la condition de périodicité
X (1,0 4 27) = X(1,0), la solution générale s’écrit comme
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1 s o ey O —ik(T+0)
Xp(r+o)=cab+-p'(t+o)+iy = >, e : (3.9)
2707 2 Sk
1, o o Xk ik(r—o)
Xp(r—o)=zaf+ =p'(T—0)+i/ = D —e : (3.10)
2707 2 =k
p" est ici 'impulsion (ou mode zéro) de 'état de corde, donnant le mouvement du centre de
masse. La réalité de X* impose les relations a_p = (a)' et a_;, = (a)'. Par extension, on pose

par définition off = aff = \/a//2 p*.

Il est ici pratique de passer en temps euclidien 7 = it ; en effet, les développements précédents
s’expriment alors comme des fonctions holomorphe et anti-holomorphe de la variable complexe
w=o0+ir : Xp (1 +0) = Xp(w), Xg(t — 0) = Xg(w).

La quantification de cette théorie se fait comme dans le cas d’école de 'oscillateur harmonique :
les relations de commutation a imposer sur les opérateurs de la théorie sont

v
n

] = [O_‘ﬁna O_‘Z] =mn" 5m+n,0 ; [Oégw 0_5;;] =0; [xgapy] =in". (3'11)

[ady,, o
L’espace des états du systéme est alors un espace de Fock qui se construit a partir d'un vide |p)
d’impulsion p# annihilé par tous les opérateurs d’annihilation {a#, a* | n > 0}. La tour des

états physiques s’obtient par application successive des opérateurs de création {a#, a* | n < 0}.

Contraintes de Virasoro

L’espace des solutions que nous avons obtenu jusqu’ici n’est pas physique. Il faut en effet
imposer des contraintes supplémentaires, dites contraintes de Virasoro, qui correspondent a
I'annulation classique du tenseur énergie-impulsion (ce qui correspond a satisfaire les équations
du mouvement de la métrique sur la feuille d’univers; bien que la métrique soit entiérement
fixée par le choix de jauge, ces contraintes sont non-triviales et doivent étre imposées; elles
découlent du fait que I'amplitude d’un processus physique doit étre indépendante de la jauge
dans laquelle on exprime la métrique). Ces contraintes prennent, dans la jauge conforme, la
forme (on définit 0+ comme les dérivées par rapport aux variables gauche et droite o = 7 + o,
7 étant ici & nouveau le temps “lorentzien”) :

1
T__ = ia_X'u a_XM = 0, T++ = a_,_X” a_;,_XM = 0 . (312)

Si on note L,, (resp. L,,) les modes de Fourier de T, = T'(w) (resp. T—_ = T(w)), les contraintes
choisies ! consistent & imposer les équations d’opérateurs suivantes sur les états physiques :

L>o|phys) = 0. (3.13)

L’expression des opérateurs de Virasoro en fonction des oscillateurs est la suivante :

1. La forme de ’algeébre de Virasoro, que nous rencontrerons plus tard, rend impossible le fait d’imposer
toutes les contraintes L,,|phys) = 0 quel que soit 'entier m.
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/

o S
Lo = Z Ay ko Ly=—p*+ Z atag, —a; (3.14)

kEZ 4 k=1
o 00

— 2 Ny 5.

7n¢0 - j{:(lka%l ks ALO‘— - D +_§£:(Ifkak¢L__a7
kEZ 4 k=1

ou a,a sont des constantes issues de la procédure de réordonnement (vers 'ordre dit normal)
des opérateurs a dans Ly, faisant apparaitre les commutateurs [a_g, ax] = k. On montre que,
en dimension critique de la corde bosonique D = 26, a = a = 1. Il existe plusieurs fagons
d’arriver a ce résultat ; celles que nous allons évoquer nous resservira par la suite dans le cas de
la supercorde.

La prescription d’ordre normal dans 'opérateur Ly = % p? + %Zkez* a” Loy, consiste a écrire
I'opérateur d’annihilation a droite de celui de création, de facon a ce que cet opérateur compte
le nombre d’excitations de I’état quantique sur lequel il agit. Cette formule donne :

o0 1 oo
- Z ot pag, =Y oo, + 5 d k. (3.15)
k=1 k=1

kGZ*

Le dernier terme est divergent ; ¢’est une sommation sur les énergies du vide des divers oscillateurs
de la théorie. Une telle divergence n’est pas problématique : elle apparait déja en théorie des
champs dans le calcul de la force de Casimir, vérifiée expérimentalement. Il existe une maniere
de la régulariser (voir par exemple | ] pour des idées similaires) : la fonction de Riemann

=> n", (3.16)
n=1

définie pour Re(s) > 1, se prolonge analytiquement en s = —1; on trouve ((—1) = —1/12.
Ainsi, pour D dimensions, la version régularisée de L, prend la forme

o e D -2
.LO ::44*p2-+-§£:(lﬁk(¥h - ; (3’17)
4 Pt Y

(la présence de D — 2 en lieu et place de D vient du fait qu’on ne prend en compte que les
dimensions transverses) ; et donc a = 1 pour D = 26 (et, de méme, a = 1) .

Comme dans la quantification de I’électromagnétisme a la Gupta-Bleuler, les conditions (3.13)
sont imposées a posteriori sur le spectre de la théorie pour obtenir les états physiques.
L’annulation simultanée de Ly et Ly donne I'expression des masses des états de la théorie et
une condition dite de level-matching :
4 4
%

M= —p? = S(Ny—1) =~ (Na—1) = 5 (Ny + Np —2); (3.18)

2. En fait, le fait que la théorie des cordes bosoniques ne se définit naturellement qu’en D = 26 peut se déduire
de ce calcul. En effet, les premiers états excités o ;a”|p), ot u et v sont des degrés de liberté transverses, ne
peuvent pas se transformer dans les représentations massives du sous-groupe SO(D — 2,1) du groupe de Lorentz
SO(D —1,1); ces états doivent donc étre sans masse. Donc a = 1, et D = 26.
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Nous remarquons donc qu’en 'absence d’excitation par les oscillateurs, on obtient un état de
masse carrée négative : cet état instable est appelé tachyon ; sa présence compromet fortement
la pertinence de la théorie des cordes bosoniques. Nous verrons heureusement que ce probleme
sera éliminé en théorie des supercordes.

Intégrale de chemin de Polyakov, et généralisation du modele sigma en présence
de champs de fond

A partir de l'action (3.3), il est naturel de définir une intégrale de chemin. L’intégration
fonctionnelle portera alors sur les champs de la théorie, qui ne sont autres que les coordonnées
d’espace-temps X*, ainsi que sur les métriques g définies sur les feuilles d’univers. Bien sfr,
ce domaine d’intégration est bien trop vaste : il faut en fait se restreindre aux configurations
non-équivalentes sous des transformations de type difféomorphisme ou Weyl. En divisant par le
volume de ce groupe, on a donc, en temps euclidien

7 = we—sm} (3.19)

Pour évaluer cette quantité, la prescription a adopter est d’introduire les fantomes de Faddeev-
Popov. Par des arguments que nous ne détaillerons pas, ce mécanisme permet de fixer la jauge
en posant g., = Nap, €t en introduisant dans l'action de nouveaux degrés de liberté : le systeme
de fantomes de reparamétrisation anticommutants (b, ¢), de poids respectifs 2 et —1, et d’action

Sy = 217T / Ao (bysO-ct +b__0yc) (3.20)

De sorte que notre intégrale de chemin prend la forme

7= /[DX] e~ SXm=Sqn (3.21)

On peut anticiper qu’apres introduction de degrés de liberté fermioniques, le jaugeage des
super-reparamétrisations (ou transformations de supersymétrie), se fera en introduisant le
systéeme de fantémes superconformes commutants /3, , de poids 3/2 et —1/2.

Nous allons maintenant généraliser le modele sigma donnant ’action des cordes sur la feuille
d’univers, Le spectre d’états de cordes donné dans la section précédente comporte des états
de masse nulle, a savoir les états ayant N, = Nr = 1. Ces états, correspondant aux états
quantiques o a” {|p), se décomposent en

e une partie symétrique de trace nulle, donnant le graviton G, ;
e un tenseur antisymétrique donnant le tenseur antisymétrique (dit de Kalb-Ramond) B, ;
e la trace du tenseur, donnant le dilaton ®.

I1 est alors possible de généraliser 'action sur la feuille d’univers (3.3) en incluant les champs de
fond correspondant aux états sans masse de la théorie. On obtient

1

Ve

g —

/ dodr /7 [1Cu(X) 0.XF0,X" + ¢V B (X)0,XM0,X" + o/ RB(X)] . (3.22)
M
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Cette généralisation du modele sigma fait apparaitre le terme topologique de Gauss-Bonnet

1
4—/(120\/—71% =x=2-2g, (3.23)
T

R étant le scalaire de courbure de la métrique v de la feuille d'univers. Ici, x est la caractéristique
d’FEuler, et g le genre de la surface de feuille d'univers, qu’on peut voir heuristiquement comme
le nombre de “poignées” *de la surface : ainsi une sphere a g = 0, un tore g = 1, etc. (voir la
figure 3.2)

Lors d’un calcul d’amplitude, le formalisme de 'intégrale de chemin nous fait sommer sur les
différentes feuilles d’univers rendant compte de la diffusion, de la méme fagon qu’on va sommer
sur tous les diagrammes de Feynman en théorie quantique des champs. Le résultat précédent
mous apprend donc que ces sommes vont étre pondérées par le genre de la feuille d'univers :
la contribution d’une surface de genre g sera proportionnelle & e21=9® (voir figure 3.2). La
constante de couplage de la théorie est alors contrélée par la valeur moyenne dans le vide du
dilaton : I'ajout d’une poignée sur la feuille d’univers revenant a I’émission puis I’absorption
d’une corde fermée, on en déduit que la constante de couplage de la théorie des cordes est
donnée par

gs =e®. (3.24)

Ce résultat est tres différent de ce qu’on obtient en formalisme de théorie des champs : ici, la
constante de couplage de notre théorie n’est plus un parametre libre, mais bien la valeur moyenne
dans le vide d'un champs de la théorie. D'un point de vue théorique (voire épistémologique) la
suppression de parametres libres dans une théorie est extrémement satisfaisante.

L’investigation de la contrainte d’invariance conforme du modele sigma (3.22) a été effectuée
dans | |. Les conditions sont des équations du mouvement sur les champs de fond G, B, ®
qui dérivent de 'action effective d’espace-temps

Sepf o / d? X \/-G(X)e 2 [—Q(Dg_%) +R ! H,pyH™P + 4(0,9)(0"®) + O(O/)] :

o 12

(3.25)
R est le scalaire de Ricci associé a la métrique G ; H = dB est le tenseur de courbure de la
2-forme B. On voit ainsi que cette contrainte redonne pour action effective ’action d’Einstein-
Hilbert, généralisée en présence d’autres excitations. Cette action fait aussi apparaitre de maniere
provocante la quantité D — 26. Le terme constant en 26 vient de la contribution a I’anomalie de
Weyl des fantomes b et c.
On a la un nouveau moyen de déterminer la dimension critique. L’équation du mouvement du
dilaton issue de cette action s’écrit en effet

D-2% o
— - %82@ ~0. (3.26)

Pour un espace-temps de faible courbure (R, >> v/«’') et un dilaton d’échelle typique de
variation R., il faut donc D = 26. Toutefois, d’autres solutions sont possibles; un exemple

3. Une définition plus rigoureuse de cette propriété topologique est donnée en termes de groupes d’homotopie.
Nous ne nous y attarderons pas.
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(ViVaVaVy) = e2® +

+ *® + ...

FIGURE 3.2 — Développement perturbatif d’une fonction a quatre points. Les quatre surfaces
représentées ont respectivement g = 0,1, 2, 3.

est la théorie de dilaton linéaire, ou ® =V, X" et V, VI = 26=D " (les théories des cordes sont

R «
consistantes en D # 26, tant que la condition V,V# = 2%;,5 est vérifiée. On parle de cordes

non-critiques. Nous ne rencontrerons pas de telles configurations dans ce mémoire.

3.2 Théorie des cordes et invariance conforme

Le résultat d’invariance conforme de la formulation de la théorie des cordes sur la feuille d univers
permet d’utiliser ’arsenal entier des théories conformes bi- dimensionnelles, dont ’exploration
des nombreuses conséquences a été initiée par I'article fondateur | ].

Premiérement, comme nous ’avons déja annoncé, I'exigence de la conservation de cette invariance
apres quantification est une contrainte tres forte sur les caractéristiques du background dans
lequel nous pouvons définir la théorie : la dimension de I'espace-temps n’est pas un parametre
libre de la théorie; les éventuels champs de fond doivent obéir a des équations généralisant
I’équation d’Einstein. Ensuite, cette propriété nous permet de simplifier considérablement le
calcul d’amplitudes de diffusion : par invariance conforme, on peut reparamétriser la feuille
d’univers modélisant I'interaction de maniere a obtenir une surface tres simple, qui ne dépendra
en fait que du genre de la feuille d’univers (qui s’identifie au nombre de boucles du processus
considéré). Ainsi, dans une théorie de cordes fermées, toute interaction a 'ordre des arbres se
ramenera a un calcul sur la sphere, le calcul a ’ordre d’une boucle se fera sur le tore, etc. Les
différentes branches externes du processus seront alors représentées par l'insertion sur cette
surface d’opérateurs de vertex.

Enfin, ces amplitudes auront de plus une forme extrémement contrainte : lorsqu’on s’intéresse
aux champs dits primaires (ce qui sera le cas de la plupart des champs que nous rencontrerons),
on montre que les amplitudes a deux et trois points sont entierement déterminées a une constante
multiplicative pres, et que les fonctions a quatre points ne dépendent que d’une constante et du
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(21—22)(23—24)

cross-ratio )
(z1—23)(22—74)

3.2.1 Eléments de théorie conforme bidimensionnelle

Nous présentons ici rapidement quelques points cruciaux reliés a la propriété d’invariance
conforme ; beaucoup de détails supplémentaires sont disponibles dans | , , ],
entre autres.

Pour un espace a d dimensions muni d’une métrique g, (), on appelle transformation conforme
toute transformation de coordonnées x — 2’ laissant la métrique invariante a un facteur d’échelle
pres :

(@) = g () = Q*(2) g (). (3.27)
Ces transformations sont exactement celles qui préservent les angles. Il est possible de caractériser
completement ce groupe en dimension > 2 : il est composé des translations z* — z* + a*,
des rotations z# — A z¥ des dilatations x# — Ax* et des transformations dites “spéciales
conformes”
TH + 22 bH

H . 2
v 1+ 2b,2+ + b?2? (3.28)

En deux dimensions, cette structure est considérablement étendue : si on part de la métrique
Guv = Oy, alors I'élément de longueur s’écrit

ds® = da® + dy* = dzdz, (3.29)

ol on a posé z = z + iy. On voit alors que toute transformation analytique z — 2’ = f(z) est
conforme :

2

OV foaz. (3.30)

ds* = dzdz — ds"* = | ==

0z

Le groupe conforme est alors de dimension infinie. On peut s’intéresser a ses générateurs
infinitésimaux, qui sont des translations infinitésimales z — 2 + ¢,(2), ol €,(2) = 2"™'. Cet

opérateur agit alors sur les fonctions de z comme L, = 2""19,. On voit donc que

[Lons L] = (1 — 1) L. (3.31)

De méme, on définit les opérateurs L, agissant sur le coté antiholomorphe. Ils satisfont des
relations de commutation identiques, et les deux algebres sont indépendantes.

L’algebre définie par les relations ci-dessus engendre toutes les reparamétrisations holomorphes
d’une théorie de champs bi-dimensionnelle ; on la retrouvera donc plus tard comme caractérisant
les modes du tenseur énergie-impulsion de la théorie. Toutefois, une correction quantique
apparaitra dans (3.31) : nous verrons un terme de charge centrale, qui représentera une brisure
au niveau quantique de la symétrie classique (on parle d’anomalie).

Les propriétés de certains champs, dits primaires, sous ’action des transformations conformes
sont aussi cruciales. Elles sont de la forme
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= h
. ar\" (df _
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En particulier, sous une transformation infinitésimale z — 2z + €(z), la variation du champ est

56 = ((hde + €0) + (hOe + €0))p(z, 2). (3.33)

Pour une théorie bidimensionnelle, on montre que I'invariance conforme (ie sous rescaling local
de la métrique) équivaut a 'annulation de la trace du tenseur énergie-impulsion 7 #. Dans les
coordonnées z, z, cette trace est égale a T’.z. La loi de conservation 9, 7" implique alors que
T.. = T(z) est holomorphe, et TzZ = T(Z) est antiholomorphe. Ainsi, nous avons toute une
famille de courants conservés

J.=€(2)T(z2), (3.34)

qui génerent les translations d’espace-temps

[Qe, ¢(2, 2)] = 60, (3.35)
ou d¢ est donnée par (3.33).

Nous nous intéressons maintenant a la représentation de cette transformation infinitésimale sur
les coordonnées sous forme de ’action d’une charge sur un état quantique. Pour développer ce
formalisme, il est nécessaire d’introduire la notion de compactification radiale.

La feuille d'univers correspondant a la propagation d’une corde fermée de 7 = —o00 & 7 = 400
est un cylindre infini. Si on passe en temps euclidien comme précédemment, on définit la variable
complexe w comme w = o + i7. On peut alors définir un mapping conforme w +— z = e~ : il
est aisé de voir qu’alors le cylindre est mappé sur le plan complexe privé de 'origine ; les lignes
de temps constant sont des cercles centrés sur 'origine. Cette nouvelle représentation de la
feuille d'univers est particulierement utile. En effet, dans le calcul des amplitudes de diffusion, la
surface définissant un processus peut étre déformée, via des transformations conformes, jusqu’a
obtenir une surface simple : une sphere pour les processus a I'ordre des arbres, un tore pour les
interactions a une boucle, etc. Les états asymptotiques sont alors représentés par des opérateurs
insérés sur la feuille d’univers, selon le mécanisme de state-operator correspondance.

Ceci nous permet aussi d’utiliser efficacement des outils extrémement puissants d’analyse
complexe. En effet, la construction de la charge de Neether associée a un courant de divergence
nulle en deux dimensions :

Q= dz jo(z) (3.36)

espace

devient ici I'intégrale de contour

Q= 2; az(z) (3.37)

les surfaces de temps égal étant les cercles centrés sur 'origine du plan complexe.
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La formule (3.37) nous permet également d’exprimer les opérateurs L,, introduits précédemment
en termes du tenseur énergie-impulsion : si on note

Ly

T(:) =3 5 (3.38)
I'expansion en série de Laurent de T'(z), on trouve que
1
L= 5 74 dz 2T () (3.39)

est bien la charge associée a la reparamétrisation z s z + 21

L’action d'une charge sur un champ conforme est alors aussi donnée par une intégrale de contour :
la procédure d’ordre temporel en théorie des champs habituelle devient ici une procédure d’ordre
radial, et a pour conséquence que 'action de la charge associée au courant j se met sous la
forme

@ dlw,a) = 5= [, dzietwa)+ f aziEotw ) (3.40)

17T

ou (', et Cy sont des lacets fermés entourant respectivement w et w.
Cette méme procédure d’ordre radial implique aussi que le commutateur de deux charges
s’exprime comme une intégrale de contour : si on a les deux charges

1 :
Q= %fd2j1(2) (3.41)

1 :
Q2 = 5~ dzia(2) (3.42)

alors le commutateur [@Q, Q2] est donné par
Q1.Qs] = 5 fdz 5 f dw i ()ia(w) (3.4
T Z2@'7r WIR2) 3280 - ‘

Dans le cas ou j(z) = €(2)T(z) génere une transformation infinitésimale de coordonnées

2+ z +¢€(z), 'accord entre les formules (3.35) et (3.40) implique les développements suivants
pour un champ de poids conformes h, h :

_ h(w,) | 08(w,0)

T(z)p(w,w) (= w)? . Ty (3.44)
(2o, ) = P+ U ey (349

ou les derniers termes des deux sommes désignent des contributions régulieres lorsque z — w.
On touche ici & un des points qui nous intéressera le plus : celui d’expansion en produits d’opé-
rateurs (OPE). On la définit sur les champs primaires comme le développement correspondant
au comportement du produits de deux opérateurs lorsque leur distance tend vers zéro. Ce
développement est relié a 1’expression du propagateur du champ considéré. La forme générale
est, pour une famille de champs conformes ¢; et dans la limite z; — 25 :
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Bi(21,21) 02 (20, 52) ~ 3 O (21 — zo) (2 — )iy (2 Z) + reg. (3.46)
k

En particulier, les développements (3.44) et (3.45) doivent avoir lieu pour tout champ primaire
¢ dans toute théorie ou 'invariance conforme est respectée au niveau quantique. On montre que
l'opérateur T'(z) est de poids conforme (2,0) : si I'invariance conforme est respecté au niveau
quantique, on doit avoir ’OPE

2T (w) 0T (w)
(z —w)? * zZ—w

T(2)T(w) = + reg. (3.47)
Nous verrons en théorie des cordes ce résultat est en général mis en défaut : un terme de charge
centrale apparaitra dans ce développement, et ’algebre définie par ces commutateurs est alors
appelée algebre de Virasoro :

c 2T (w) 0T (w)

T(2)T(w) = 2wy + G w)? + w + reg. (3.48)

les centrale

Enfin, les OPE nous seront d’une grande utilité pour une autre raison. En effet, on remarque
que 'équation (3.43) relie le commutateur de deux charges a 'OPE des deux courants associés.
Le plus souvent, nous travaillerons avec les courants plutot qu’avec les charges; la forme des
OPE associées nous permettra de déterminer les symétries de jauge présentes dans une théorie
en s’intéressant aux structures d’algebre de Lie induites par les différents courants présents dans
le spectre de la théorie. On pourra aussi déterminer les charges des différents états sous ’action
de ces courants, et les arranger en représentations.

3.2.2 Applications a la théorie des cordes
Théorie conforme du boson libre
En théorie des cordes, on montre que ’action d’un boson libre s’écrit
S = 2730/ / OX13X,,. (3.49)
De I’équation du mouvement -
00X" =0, (3.50)

on déduit que le produit d’opérateurs X (z, z) X (w, w) se développe comme *

/

XH(z,2) X" (w,w) ~ —% " In (|z — w|2> : (3.51)

Notons que cette OPE implique que le champ X n’est pas un champ primaire de la théorie.
Nous allons par contre déterminer quelques opérateurs primaires, qui seront les opérateurs de
vertex créant les états bosoniques de la théorie des cordes.

4. On omettra de mentionner les termes réguliers “+4 reg”, leur intérét étant souvent nul dans les applications.
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Le tenseur énergie-impulsion, déterminé comme en théorie des champs en introduisant une
métrique bidimensionnelle dans I’action et en dérivant par rapport a cette métrique, s’écrit
(dans les coordonnées complexes)

T(z) = —01/ IX()0X(2) T(5) = —01/ IX (23X (3). (3.52)

On en déduit notamment, d’apres (3.51), les champs primaires suivants (indiqués avec leurs
poids (h, h)

(0X)(z) (1,0
0X)z)  (©0,1) (35

/1.2
ikX(2) o'k 0
o ()

Les opérateurs de vertex e*X sont importants a plusieurs titres. En particulier, ils sont res-
ponsables de l'extension de groupes de jauge U(1)" (branche de Coulomb) a des groupes non
abéliens.

Nous rencontrerons souvent par la suite des réalisations de groupes de jauge sous la forme
d’algebres de courants. Dans ces constructions, les opérateurs de Cartan seront donnés par les
courants conformes, correspondant dans tous les cas a des états sans masse de la théorie, i0X7(2)
(qui commutent en vertu de 'TOPE 0X0X ~ (z —w)~?). L’extension de I'algebre correspondra
A apparition de nouveaux états sans masse, générés par des courants de la forme e X(), De
I’OPE suivante

kX

/ I
iox1 () ek o O L_grx

w) . 3.54
> =) +reg (3.54)

on tire que, si on note (de maniére assez évocatrice) H! et ET les opérateurs correspondant
respectivement & i 0X!(2) et 7 X POPE précédente se traduit, lorsque o/ = 2, par le
commutateur

[H!, E"] = PTE* (3.55)
On voit ainsi que dans le cas d’un groupe de jauge non-abélien, les e’ X(*) correspondent aux
opérateurs d’échelle. Les racines de I'algebre de Lie sont alors les vecteurs (P!), et la condition
de masse nulle (la mettre) montre alors que les algébres obtenues sont les algebres simplement
lacées des familles A,,, D,,, Eg 7 (voir tableau 2.1). En langage de théorie de jauge, I'OPE (3.54)
montre également que la charge de E sous I'opérateur de Cartan i0X' n’est autre que PZ.

Théorie conforme du fermion libre

En vue de développer une théorie supersymétrique sur le world-sheet, on va également s’intéresser
a un modele de fermions libres sur le world-sheet, donnée par 'action

5 = —817T / A2z (Y8 + POP) . (3.56)
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Cette action conduit & ’'OPE suivante (la partie anti-holomorphe n’étant qu'une copie de la
théorie holomorphe, et les deux théories n’interagissant pas, on ne développe ici que la théorie
holomorphe) :

Y(2)Y(w) = (3.57)

Le tenseur énergie-impulsion s’écrivant

T(z) = —;waw, (3.58)

on conclut facilement que le champ 1 est de poids conforme (1/2,0) et que cette théorie a une
charge centrale ¢ = 1/2.

Théorie conforme des (super-)fantémes, et conséquences

Nous ne démontrerons pas les propriétés de cette CFT, nous contenant de les citer. On trouve
que le systeme de fantomes be, a une charge centrale —26, tandis que celui des fantomes
super-conformes (37 a une charge centrale 11.

L’annulation de I’anomalie de Weyl pour une théorie de cordes bosoniques comprenant D bosons
X7 et des fantémes be donne alors la dimension critique D = 26 ; de méme, pour une théorie de
supercordes comprenant D fermions X! et D fermions 1!, ainsi que des fantomes be et 5, on
trouve que ’anomalie de Weyl est nulle pour D = 10. On retrouve ainsi les dimensions critiques
des cordes et des supercordes.

Bosonisation

Nous allons maintenant introduire une équivalence utile, qui semble étrange a priori. En analysant
les OPE dérivées précédemment, on voit que la théorie conforme décrite par un boson holomorphe
est équivalente a celle décrite par deux fermions réels gauches (ou, de maniere équivalente, un
fermion complexe gauche). Nous préciserons cette équivalence plus tard, dans la section 4.1.1 :
les vertex de la théorie bosonique décrite sont en fait ceux d’un boson compact.

Soit, donc, un boson H(z) et deux fermions réels 1! (z), 1?(z). Du coté bosonique, les 3 courants
JU(2) =i0H(2), J*(z) = 7 vérifient les OPE

1

J(2) ) (w) ~ ——— 3.59
@)~ (359)
1
JO(z)J* (w) ~ £ ; 3.60
()7 () ~ (3.60)
Le tenseur énergie-impulsion associé est T'(z) = —%&X 0X, et les poids conformes des opérateurs
sont h(J%) =1, h(J*) = 1.
On vérifie alors que si on définit le fermion complexe
wl + Zw2 _ wl _ Z¢2
p="— Pp=1—" (3.61)

V2 V2

les mémes OPE et les mémes poids conformes sont reproduits par les courants suivants :
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J2) =0(2)0(2), T (2) =9(2), J(2) =9(2), T(z)= —;wl(z)awl(z) — 9*(2)0¢*(2))
(3.62)
De plus, cette équivalence, comme on le reverra plus tard, est aussi valide au niveau des fonctions
de partition : la fonction de partition d’un boson compactifié sur un cercle de rayon \/a//2 est
identique a celle de deux fermions réels holomorphes + deux fermions réels anti-holomorphes.
Ce résultat important s’étend aussi a plusieurs dimensions : ainsi, 2n fermions réels holomorphes
+ 2n fermions réels anti-holomorphes sont équivalents a n bosons compacts. La géométrie du
tore correspondant a ces n bosons compacts est entierement déterminée par cette équivalence et
est nommée point fermionique.
Comme nous le verrons avec les supercordes, cette équivalence est étendue par la présence des
champs de spin | ], qui permettent d’écrire des vertex explicites pour les vides de Ramond
de la théorie. Nous reviendrons sur ce point dans la section 3.4.

Cette procédure admet un inverse, habilement nommé fermionisation : des dimensions compac-
tifiées en un tore au point fermionique peuvent étre paramétrées par un ensemble de fermions
libres. Cette propriété permet de relier les constructions en termes de fermions libres que
nous exposerons dans la section 4.5 a des compactifications géométriques, et de considérer des
compactifications non-géométriques.

3.3 Action des supercordes

On a obtenu jusqu’a présent une théorie des cordes bosonique : les différents états du spectre
se transforment dans des représentations vectorielles du groupe de Lorentz. D’un point de vue
phénoménologique, cela ne saurait nous satisfaire : les particules constituant la matiere, quark et
leptons, sont des fermions : leur spin est demi-entier, ils se transforment dans des représentations
spinorielles du groupe de Lorentz et obéissent a la statistique quantique de Fermi-Dirac (ce qui
implique que leur quantification fera intervenir des anticommutateurs). De la méme maniére que
I'on a écrit une action pour les champs bosoniques de la feuille d'univers X*(o, 1), il est possible
d’introduire des fermions ¢* sur la feuille d’univers, qui seront des variables de Grassmann
possédant un indice vectoriel. On note que ce ne sont donc pas directement ces états qui
formeront des représentations spinorielles du groupe de Lorentz (les ¥* sont des spineurs sur la
feuille d'univers ; leur transformation sous le groupe de Lorentz, qui est une symétrie interne de
la théorie des champs bi-dimensionnelle, peut étre choisie de maniére arbitraire). Nous allons
voir plus tard que les spineurs d’espace-temps seront construits comme des vides issus de la
quantification de cette théorie.

L’équivalent supersymétrique de 1'action de Polyakov s’écrit, en jauge super-conforme® :

S = —;ﬁ / d*o <8GX“8“XM — i&ﬂpaaa%) (3.63)

5. L’action générale a une forme plus complexe, faisant intervenir comme dans le cas conforme une métrique
sur la feuille d’univers et un gravitino ; toutefois, les transformations compleétes par difféomorphismes, Weyl et
supersymétrie permettent d’aboutir a la forme réduite suivante.
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Ici, les matrices p® sont les matrices de Dirac a deux dimensions. Le conjugué de Dirac du
fermion * est défini par ¥* = ¥*1p°. En termes des variables complexes introduites comme
dans le cas bosonique, les équations du mouvement pour les fermions s’écrivent

o, =0 =0 (3.64)

ou ¢4 sont les deux composantes du spineur . dans le cas des cordes fermées, on trouve ainsi
des fermions dans les secteurs holomorphe et anti-holomorphe.

Cette symétrie va se révéler tres utile, en imposant de nouvelles contraintes sur le spectre,
nécessaires car comme dans le cas bosonique, la quantification des fermions de la feuille d’univers
introduit dans le spectre des états non-physiques, dont il faut se débarrasser. Dans la théorie
des cordes bosonique, ces états non-physiques sont éliminés en imposant des contraintes issues
de I'algebre de Virasoro. Ici, la quantification se fait en introduisant les anticommutateurs

{0, 7), 0" (0", 7)} =7t o(0 — o'); (3.65)

on voit donc de méme que les composantes temporelles 1° vont induire des états de norme
négative. Ces états seront éliminés par un nouvel ensemble de contraintes issues des transforma-
tions de supersymétrie, qui forment 1’algebre de super-Virasoro. L’algebre de super-Virasoro
est une généralisation de I’algebre de Virasoro : en plus du tenseur énergie impulsion 7'(z)
(qui comprend les contributions des bosons X* et des fermions ¢*), on introduit le courant de
supersymétrie sur la feuille d’univers Tr = ¢*0X,, ; les modes positif de ce courant devront
aussi annuler les états physiques. Nous renvoyons le lecteur a | | pour la forme explicite
de I'algebre superconforme et pour une discussion détaillée.

3.4 Théories de supercordes a dix dimensions

Fermions sur la feuille d’univers

De la méme maniere que 1’on a introduit les bosons comme des champs sur la feuille d’univers,
on peut considérer I'introduction de champs conformes fermioniques dont 'action est donnée
par (3.56) (ou, de maniere équivalente, par la partie fermionique de (3.63)).

Les équations du mouvement dérivant de cette action montrent que le champ * est holomorphe,
et que le champ 9" est antiholomorphe. La théorie se sépare donc naturellement en coté gauche
et coté droit, conduisant a deux théories conformes de fermions libres indépendantes.

Le fait de considérer des coordonnées fermioniques nous permet maintenant d’envisager deux
conditions aux limites lors du transport du degré du champ le long du cercle défini par
I'identification ¢ ~ ¢ + 27 : on définit le secteur de Ramond comme les solutions vérifiant
V(o + 2m, 1) = YH(0, T) et le secteur de Neveu-Schwarz comme les solutions vérifiant " (o +
21, 7) = =t (o, 7).

Les solutions se développent en modes, comme dans le cas bosonique : pour le secteur de
Ramond, on trouve (en fonction des variables complexes w, w) :

Prw) = Y Ype™y (3.66)

1—
kGZ“rTa
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Prw) = > et (3.67)

l—a
ke€Z+15

Dans les expressions précédentes (a,a) indiquent le secteur dans lequel on se place : a = 1
correspond au secteur de Ramond (R) dans lequel les modes du développement sont entiers, et
a = 0 au secteur de Neveu-Schwarz (N.S), dans lequel ces modes sont demi-entiers.

La quantification s’effectue cette fois en considérant des anticommutateurs : on pose les relations
(m ou n étant entiers ou demi-entiers selon le secteur considéré) :

{wﬁm ¢Z} = 77’“/5m+n,0 . (368)
Les composantes holomorphe et anti-holomorphe du tenseur énergie-impulsion 7'(z) = —% LOYH
et T(z) = —%@#51@‘ donnent les opérateurs de l'algebre de Virasoro suivants :
1
L, = 3 Z (LSRR (3.69)
keZ+154

Le réordonnement de cet opérateur, de méme que dans I’équation (3.15), fait apparaitre une
énergie du vide, rendue finie apres régularisation de la fonction ¢. On trouve que 1’énergie du
vide d’un fermion réel dans le secteur de Neveu-Schwarz est de —ﬁ et celle dans le secteur de
Ramond de 5;. Ainsi, la différence d’énergie du vide entre un vide NS et un vide R est de 1/16
par fermion réel.

L’espace de Fock des états physiques s’obtient comme précédemment par ’action des opérateurs
de création sur un vide annihilé par tous les opérateurs d’annihilation. Dans le secteur de
Neveu-Schwarz, il n’y a pas de mode zéro donc ceci se fait de maniére non-ambigué.

Dans le secteur de Ramond, la situation est plus complexe : les modes zéro vérifient 1’algébre de
Clifford

{vbo, vgr = 0" (3.70)
Le vide n’est alors pas défini de maniére unique, car ’action d’un mode zéro sur un état annihilé
par tous les modes strictement positifs fournit encore un état annihilé par tous les modes
strictement positifs. Les vides de la théorie forment une représentation de 1’algebre de Clifford
associée aux opérateurs ¥, ¢’est-a-dire une représentation spinorielle du groupe de Lorentz
SO(d —1,1). Les fermions d’espace-temps vont donc étre donnés par les états du secteur de
Ramond de la théorie. Les opérateurs de création agissent ensuite sur ce vide spinoriel de
maniere habituelle.
Un vide de Ramond sera noté [s), ou s = (i%,i%, . .,i%) donne les hélicités sous les
générateurs de Lorentz.
La procédure de bosonisation décrite dans la section 3.2.2 peut s’étendre au vide de Ramond
de la théorie. Si les 2d fermions 1)* sont bosonisés en d bosons H;, alors le vide de Ramond est
représenté par les 2¢ vertex suivants :

S, = et (EHiEHsEHY) (3.71)
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Sous I’hypothese o/ = 2, on voit que le poids conforme d'un tel vertex est bien h = d/8 =
2d x (1/16), de sorte qu'on passe bien d'un vide de Neveu-Schwarz a un vide de Ramond.
L’hélicité de ce vide s’identifie au produit des signes + apparaissant dans ’exponentielle.

Théories de Type 11

On s’intéresse a la construction de théories des cordes présentant une supersymétrie d’espace-
temps non-nulle ; il faut donc que I'on réalise une supersymétrie sur la feuille d’univers sur au
moins un des deux secteurs (gauche ou droit) de la théorie. Pour un secteur supersymétrique,
la CFT a ajouter pour annuler la charge centrale des fantomes et superfantomes doit étre de
15. Ceci nous définit la dimension de 1'espace-temps dans lequel on peut définir une théorie de
supercordes. Un boson libre ayant une charge centrale 1 et un fermion libre une charge centrale
1/2, la condition 3D /2 = 15 montre que 'on doit se placer en 10 dimensions d’espace-temps.
On remarque donc immédiatement qu’a priori, il n’est pas cohérent de définir une théorie de
supercordes en 4 dimensions d’espace-temps. On reviendra dans les paragraphes suivants sur la
maniere de remédier a ce probléeme conceptuel ; on va pour l'instant développer les théories des
cordes a 10 dimensions.

Dans les théories de cordes fermées de Type II, la supersymétrie sur la feuille d’univers est
réalisée a gauche et a droite. On est alors en dix dimensions d’espace-temps, et la théorie contient
dix bosons libres X*, u = 0...9, 10 fermions gauches libres ¥*, u = 0...9 et 10 fermions
droits *, u=0...9. L'invariance de Lorentz de cette théorie implique que les conditions aux
limites soient les mémes pour tous les fermions : ainsi, dans le spectre de la théorie, les fermions
seront tous dans le secteur NS ou tous dans le secteur R.

Dans le secteur NS, I'énergie de vide de la théorie est maintenant égale a —8/24 —8/48 = —1/2.
On voit donc que le vide du secteur NS-NS est encore tachyonique, de masse carrée —1/2.
Il existe cependant une maniere consistante de tronquer ce spectre, qui va de plus assurer la
présence d’une supersymétrie d’espace-temps. Cette opération de projection GSO va imposer
une valeur pour les nombres fermioniques gauche et droit des états physiques. Dans le secteur
Neveu-Schwarz, le vide a un nombre fermionique égal a —1 (ceci est dii & la prise en compte d’une
excitation du fantéme c; nous ne rentrerons pas dans les détails) ; la projection conservera alors
les états comportant un nombre impair d’oscillateurs gauches et un nombre impair d’oscillateurs
droits. Dans le secteur de Ramond, la projection GSO prend également en compte la chiralité
du vide de Ramond considéré ; on obtiendra la théorie de Type IIA si les signes de la projection
GSO sont opposés dans les secteurs Ramond gauche et Ramond droit, et la théorie de Type IIB
si ces signes sont identiques.

La projection GSO élimine donc le tachyon. Dans le secteur NS-N S, le premier état de la théorie
est alors sans masse : en termes d’opérateurs, il s’écrit ¢, /21/331 /2 |p*)ns, et donne comme dans
le cas bosonique, des degrés de liberté correspondant respectivement au graviton, au tenseur
antisymétrique, et au dilaton, selon la décomposition en représentations de SO(8) x SO(8)
suivante :

8, x 8, =35, + 285 + 1g. (3.72)

Si maintenant on considere des conditions au bord de Ramond, 1’énergie du vide de la théorie
s’annule. Parmi les états sans masse de la théorie, on trouve alors
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e dans le secteur Ramond-Neveu-Schwarz (R-N.S), on a les états 1/"|s, p). Ces états forment
une représentation de SO(8), x SO(8)g s’écrivant comme 8; x 8,. La décomposition

8, x 8, =8, + 56, (3.73)

sépare ces états en, respectivement, un fermion de chiralité opposée (qui s’écrit comme la
“~y-trace” ’ym/?“[s,p)) et un gravitino de spin 3/2.
e dans le secteur Neveu-Schwarz-Ramond (N S-R), on a de méme un fermion et un gravitino.
e enfin, le secteur de Ramond-Ramond RR est sans masse en ’absence d’excitations supplé-
mentaires. Le choix des projections GSO va alors déterminer le spectre. Dans la théorie de
Type 1IB, les projections GSO sont identiques & gauche et a droite : (—)f* = (=) = 1; les
états du spectre sont issus du produit de représentations de SO(8)

8, x8 =1+ 28 + 35 (3.74)

sont respectivement un scalaire, une 2-forme, et une 4-forme dont le tenseur de courbure est
self-dual.

Dans la théorie de Type ITA, les projections GSO s’écrivent (=) =1, (=)* = (=) (a =1
dans le secteur de Ramond, a = 0 dans le secteur de Neveu-Schwarz). Les états sont cette fois
issus de la décomposition

8, x 8. =8, + 56,, (3.75)

et on obtient une 1-forme et une 3-forme.

Théories hétérotiques

Dans les théories des cordes hétérotiques | , | , la supersymétrie sur la feuille
d’univers n’est réalisée que du coté gauche de la théorie. Les degrés de libertés sont alors
les bosons gauches et droits 9X*, OX* et les fermions gauches ¢*. Pour garantir I’absence
d’anomalie conforme de cette théorie, on doit ajouter une théorie conforme de charge ¢ = 16 du
coté droit. On introduit pour cela 32 fermions libres, qui seront des scalaires d’espace-temps,
qu’on note A\'(w), ..., A3(w).

L’ajout de ces fermions introduit une difficulté supplémentaire : ici, les 32 fermions ne sont
pas contraints a avoir les mémes conditions au bord. La consistance de la théorie obtenue va
toutefois limiter les possibilités.

L’exigence d’invariance modulaire restreint de maniere drastique les possibilités : il n’existe en
fait que deux® théories hétérotiques.

Dans la théorie SO(32), on contraint les 32 fermions droits a avoir les mémes conditions aux
limites. Ainsi, lorsque les 32 fermions droits sont en conditions de Ramond, le vide obtenu est
massif. L’implémentation de la projection GSO se fait alors en imposant (—)f2 = 1, et (—)f" =1
du coté droit, ott F est le nombre fermionique associé aux 32 fermions !, ..., \32.

Le spectre se sépare comme précédemment en secteur NS et secteur R :

6. Nous verrons cependant dans la section 4.1.1 qu’on peut en fait passer continiment de I'une a I'autre.
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e dans le secteur Neveu-Schwarz, on trouve d’une part les états Y*0X Y|p) Ns qui se séparent,
toujours selon (3.72), en un graviton, un tenseur antisymétrique et un dilaton; on a ensuite
les états 1/1“/\[f1 /2)\{] 1/2|P) ns (Uantisymétrisation des indices vient de anticommutation des
fermions \) : les vertex associés a ces états forment une algebre de Kac-Moody SO(32) de
niveau 1, de sorte que ces états sont en fait des bosons de jauge de SO(32);

e dans le secteur de Ramond, les états sans masse sont d’une part X*|s, p), qui se Separe comme
précédemment en un gravitino et un fermion anti-chiral, et d’autre part les A" C1j0AT /2|s D)
qui sont les partenaires supersymétriques des bosons de jauge issus du secteur NS.

Dans la théorie Eg x Eg, on sépare les 32 fermions droits en deux sous-ensembles A, ... A6 et
AT A3

On impose alors que tous les fermions du premier groupe et tous ceux du second groupe aient
les mémes conditions au bord. Ceci va rendre les états |s;) (dans lequel les fermions du 1°
groupe sont en conditions de Ramond et ceux du second en conditions de Neveu-Schwarz) et
|so) (inversement) sans masse.

La condition GSO va consister & demander (=)™ = (=)™ =1, ot F} est le nombre fermionique
associé aux 16 fermions \!,..., A6, et F, celui associé aux fermions A\'7, ..., \32,

La partie du spectre de cette théorie ne faisant pas intervenir d’excitations en A est identique a
celui de la théorie précédente. Pour la partie de jauge, on trouve les bosons de jauge suivants
si les fermions d’espace-temps sont pris en NS (la partie R du spectre donnera les gauginos
correspondants) :

o les états ¢“A[f1/2)\j_]1/2|p>NS sont maintenant limités a 7,5 € {1...16} oud,j € {17...32},
ce qui nous donne des bosons de jauge de SO(16) x SO(16) dans la représentation adjointe
(120,1) + (1,120).

e les états ¥ sy, p) et ¥*|sy, p) compléetent 1'algebre de Kac-Moody de SO(16) x SO(16) en
celle de Eg x Eg. Cette complétion est en fait issue de la décomposition de I'adjoint de Eg en
représentations de SO(16) :

248 = 120,4 + 128,. (3.76)

Il est possible de décrire plus en détail I'extension de SO(16) en Fg en introduisant les champs
de spin correspondant aux vides de Ramond. On bosonise donc les 16 fermions A'1® en 8 bosons
compacts H'® pris au point fermionique.

Le vide de Ramond |s), ott s = %(e1,. .., €s) est alors reproduit par le vertex suivant

V(s, z) = ezt testls) (3.77)

La condition GSO (=)t = 1 fixe le produit [}, ¢; = 1. Le groupe de jauge formé par les
fermions est alors composé :

e des 8 vertex A2~1)\% j=1...8, qui, d’apres la procédure de bosonisation détaillée dans la
section 3.2.2, sont équivalents aux vertex i0H®, i =1...8;

e des 112 vertex AP\ ne faisant pas partie de la catégorie précédente, qui se représentent par
les opérateurs bosoniques e“Hit<iHi j £ j € {1...8}, ¢ = +1, ¢; = £1; cet ensemble de
vertex forme avec les Cartans de l'item précédent I'algebre de SO(16);
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FIGURE 3.3 — Réseau du plan complexe défini par le module 7. Les réseaux définis par 7 et
7 4+ 1 sont identiques

e des 128 champs de spin exp (%(elﬂl + et eng)) vérifiant la condition GSO [[5_; ¢ = 1.

D’apres I'équation 3.55 et les commentaires qui I’entourent, on voit que le systéme de racines de
'algebre correspond a celui d’Eg (cf. par exemple le tableau 3.5 de | D).

Les théories des cordes hétérotiques ont un énorme intérét phénoménologique : elles présentent a
dix dimensions un groupe de jauge non trivial, au contraire des théories de Type II. Ces groupes
de jauge sont de plus tres intéressants en vue de la construction de modeles réalistes. Nous
reviendrons en grand détail sur ce point, qui est au cceur d'une partie de notre travail de these,
dans le chapitre 5.

Fonctions de partition a une boucle

Une quantité définissant en grande partie un modele de théorie des cordes est la fonction de
partition a une boucle. Cette fonction de partition correspond a I'amplitude “vide-vide” de la
propagation d’une corde fermée sur un tore.

Dans le plan complexe défini par les coordonnées de la feuille d’univers o,¢ (on note ici t le
temps propre de la corde pour éviter la confusion avec le parameétre de Teichmiiller du tore, 7),
le tore se représente comme un réseau correspondant aux identifications

w=0+it ~w+ 21T ~w+ 27T (3.78)

La propagation de la corde fermée sur ce tore correspond alors a une corde fermée se propageant
pendant un temps euclidien 2775, et le long de I'extension de la corde sur une longueur 277y. Le
générateur des translations temporelles (resp. spatiales) étant le hamiltonien Lo+ Lo—c/24—¢/24
(resp. Uimpulsion Ly — Lg), amplitude est donnée par la trace suivante

Z(T) — Ty (eQiTFT1 (L07Z0) 6727T7'2(L0+E076/2475/24)) — Ty (qL070/24 q—E075/24) ’ (379)

21mT

ol ¢ = e*™ et ou la trace est prise sur les états physiques de la théorie.
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Pour avoir la fonction de partition de la théorie, il suffit maintenant d’intégrer cette quantité
sur les valeurs inéquivalentes du parametre 7. Le réseau défini par 7 dans le plan complexe est
invariant sous les transformations

1

T : 7—717+1; S T ——. (3.80)
T

Ces deux transformations génerent le groupe modulaire PSL(2,7Z) = SL(2,7)/Z,, dont une
transformation générique est donnée par

at +b
ct+d’
le quotientage par Zs venant du fait que (a,b,c,d) et (—a,—b,—c,—d) géneérent la méme
transformation.

On montre alors (une preuve se trouve par exemple dans [Scr94]) que le domaine d’intégration
a considérer, dit domaine fondamental, est donné par

T —

(a,b,c,d) € Z* | ad — be = 1; (3.81)

F:{TGC

1
|Ret| < 3 || > 1}. (3.82)

F' est représenté sur la figure 3.4.

FIGURE 3.4 — Le domaine fondamental du groupe modulaire PSL(2,7Z) est ici représenté en grisé.

Ici se manifeste un énorme avantage de la théorie des cordes : dans cette intégration, 'intégration
sur 7; impose le level-matching entre les états gauche et droit de la théorie; 'intégration sur
est I’équivalent cordiste de I'intégration sur le parametre de Schwinger ¢ en théorie des champs.
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Ty étant borné par une quantité strictement positive, la divergence ultra-violette due a la limite
t — 0 qui existait en théorie des champs a ici disparu.

La mesure d’intégration ” est la quantité invariante modulaire d?7 /72 . Dans cette partie toutefois,
nous n’effectuerons pas les intégrations, nous contentant de calculer Z(7).

Nous allons maintenant donner quelques blocs élémentaire pour construire une fonction de
partition. Pour un boson libre, les modes zéro p sont des réels arbitraires; leur intégration
fournit la contribution suivante a Z (en se limitant aux degrés de liberté transverses) :

/dD_zp e 2Pt (7‘2)_(D_2)/2. (3.83)

La seconde partie & traiter est celle correspondant aux oscillateurs bosoniques o, : il est facile
de voir que la trace sur toutes les configurations donne le résultat suivant (qui intégre aussi les
charges centrales ¢/24, ¢/24)

Zose.(T) = |77(7')|12(D_2) (3.84)
1) = ¢ T = ¢) (3.85)

est la fonction de Dedekind.

Les blocs de fonction de partition correspondant aux fermions d’espace-temps vont s’exprimer
en fonction des fonctions theta de Jacobi. La fonction o [!] est associée a la structure de spin
(a,b), dans laquelle les fermions considérés ont des conditions aux limites caractérisées par a et
b le long des deux cycles non-contractables du tore, comme représenté sur la figure 3.5 . a,b =0
correspond a une condition au bord antipériodique, et a,b = 1 & une condition antipériodique. a
étant la condition au bord de “fermeture” de la corde fermée, sa valeur indique si on se trouve
dans le secteur de Ramond (a = 1) ou Neveu-Schwarz (a = 0). b dénote quant a lui la condition
de périodicité le long du cycle “temporel” de propagation de la corde fermée : sa valeur reflete
I'insertion dans la trace de l'opérateur de comptage de fermions (—). Pour b = 0, cet opérateur
est présent ; pour b = 1, il est absent. Ces regles sont tres utiles pour “lire” les différents degrés
de liberté de la théorie par simple examen de sa fonction de partition a une boucle.

De maniere explicite, on a, pour n fermions chiraux libres :

o 9 01\ ™ 9 n
Trys (qLO_C/24qLO /24) = (E) = (;) ;

Tryg ((—)F QLO_C/MCYEO_E/M) = <197£8]> = <Qj73> ; (3.86)

B 1 n n
Trp <qL07c/24qL076/24) _ (197£1]> _ (‘j;) :

7. Cette mesure peut se dériver en remarquant que l'intégration sur le tore doit étre effectuée apres quotientage
par le groupe de Killing conforme, ce qui fournit un facteur 7 au dénominateur. Le second 75 est donné par
la contribution des modes zéro des deux bosons du cone de lumiere, dont on ne tient la plupart du temps pas
compte dans le calcul de Z(7)
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_ —Lo—¢C 79 ! " 192 "
Trp ((_)F qLo c/24qL0 c/24) _ < [0]) _ <
Ui Ui
En regroupant toutes ces contributions, on obtient les fonctions de partition suivantes :

e pour les théories de Type II,

1 dENT 11 & aseen (VL]
T — _ - a+b+ab ( b > % | = __\a+btead L ’ 3.87
s QC%:O 7 2-,;,:0< ) 7 (3.87)

ou € = 0 pour la théorie IIA et e = 1 pour la théorie I1B.

e pour les théories hétérotiques,

1 (1 g [t & o\
Z - x|z a+b+ab< b) — —9d , 3.88
S0 75 B0 262::0 n 27%0 U (388)
- . - _ 2
1 L& e (VBN L [T & (BN
ren =z s 507 () | 2, (5 359
L &0= _ L 7.9=

FIGURE 3.5 — Structure de spin (a,b) sur le tore de module 7.

Supersymétrie d’espace-temps

Dans les fonctions de partition (3.87), (3.88), (3.89), la projection GSO implémentée sur les
bosons et fermions d’espace-temps a permis de faire apparaltre les combinaisons suivantes de
fonction ¥ :

1

Z a+b+e abﬁ ]

a,b=0

(3.90)
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En fait, la fameuse aequatio identica satis abstrusa, formulée en 1829 par Jacobi, montre que
ce terme est identiquement nul. On trouvera cette identité, ainsi qu’un recueil des formules
faisant intervenir les fonctions ¥ qui nous seront utiles, dans ’appendice A. Les fonctions de
partition précédentes sont donc nulles, ce qui implique la présence a chaque niveau de masse de la
théorie d’autant de degrés de liberté bosoniques que fermioniques (le facteur de spin-statistique
étant automatiquement incorporé dans I'expression de la fonction de partition, toujours par la
construction GSO). Ceci suggere fortement la présence d’une (ou plusieurs) supersymétrie(s)
d’espace-temps.

Il est en fait possible de construire explicitement les charges de supersymétrie. La bosonisation
de tous les fermions de la théorie permet de représenter tous les vides de Ramond sous la forme
de champs de spin, et de construire les vertex des courants de supersymétrie. En effectuant les
OPE des divers vertex des éléments du spectre, on reconstitue les multiplets de supersymétrie.
Nous renvoyons a I’appendice B de | |, ot cette procédure est effectuée dans le cadre des
théories de Type II compactifiées sur des orbifolds.

L’annulation de ces fonctions de partition peut aussi étre comprise a ’aide de la propriété de
trialité de SO(8), qui relie la représentation vectorielle v aux deux représentations spinorielles s
et c. Les caractéres associés aux représentations de SO(8) sont donnés en fonction des fonctions
Y comme

V3 + U 5 — 04 5 + 0% U5 — U]
On vérifie donc que 'identité de Jacobi (A.15) est équivalente a I’égalité xy = xs = x¢. Comme
on a

(3.91)

1 1
o S PTG - g SRR e (392
a,b=0 a,b=0

on retrouve que les fonctions de partitions de partition des théories de Type II et hétérotiques
sont nulles. L’absence dans les expressions du caractére yo confirme de plus que ces théories
sont non-tachyoniques.
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Chapitre 4

Théories des supercordes en 4
dimensions

Les théories des supercordes que nous avons développées jusqu’a présent ont un inconvénient
assez facheux. Elles sont en effet définies pour un espace-temps a dix dimensions, alors qu’il est
notoire que 'espace-temps dans lequel nous vivons comporte quatre dimensions. La premiere
solution venant a l’esprit pour remédier a ce probleme est une idée remontant au début du
20°™¢ siecle et aux travaux de Kaluza et Klein. Ces derniers remarquérent que si l’on s’intéresse
a un espace-temps a cinq dimensions, et que I’on compactifie une dimension sur un cercle, on
obtient, d'un point de vue quadri-dimensionnel une théorie comprenant une métrique a quatre
dimensions, un vecteur et un scalaire ; de plus, ’action d’Einstein-Hilbert en cinq dimensions se
réduit en quatre dimensions a une action décrivant la métrique quadri-dimensionnelle, un vecteur
de jauge U(1) et un scalaire libre. Cette théorie unifiait alors classiquement la gravitation et
I’électromagnétisme en postulant que 'espace-temps comportait une dimension supplémentaire,
repliée sur elle-méme sur un rayon tres faible, ce qui la rend invisible aux énergies habituelles.
En suivant cette logique, on peut donc envisager de factoriser I'espace-temps a 10 dimensions
dans lequel nous définissons la théorie des supercordes sous la forme

Ms1 x K (4.1)

ou K est une variété compacte qui devra vérifier de bonnes propriétés. L’échelle de taille de
cette variété est alors naturellement choisie comme la taille typique a laquelle les effets cordistes
deviennent prépondérants, a savoir la longueur de Planck [p.

Cette solution parait la plus naturelle; il est toutefois possible d’en envisager une autre. En
effet, la contrainte de dimensionnalité de ’espace-temps nous est apparue comme contrainte
nécessaire pour annuler ’anomalie conforme. Une autre solution serait donc d’ajouter a la
théorie des supercordes en 4 dimensions de nouveaux degrés de liberté sur la feuille d’univers
formant une théorie de champs conformes et dont la charge centrale compense ’anomalie ;
autrement dit nous cherchons des théories de charges conformes (c,¢) = (9,9) dans le cas des
théories de Type II, et (¢,¢) = (9,22) dans le cas des théories hétérotiques. Ce mécanisme
est déja partiellement mis en ceuvre dans la construction méme des cordes hétérotiques, ou
I’ajout de 32 fermions libres droits permet de compenser la charge centrale issue des fantémes
bc et des 10 bosons d’espace-temps. On verra dans la derniere section de ce chapitre que ce
mécanisme se généralise naturellement a la construction de théories quadridimensionnelles. Ces
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deux approches se révelent en fait complémentaires : ’ajout de théories conformes bien choisies
permet de reproduire des compactifications géométriques en certains points de leur espace
de modules; elles permettent aussi de généraliser ces constructions géométriques de maniere
intéressante.

4.1 Compactifications usuelles

On cherche a écrire une théorie des cordes sur un espace-temps a dix dimensions se factorisant
comme produit de 'espace-temps de Minkowski et d'une variété K a six dimensions représentant
I’espace interne. Une telle variété K doit satisfaire certaines contraintes. Notamment, le vide de
la théorie doit étre une solution des équations du mouvement, ce qui implique, en demandant
I'invariance conforme du modele-sigma sur la feuille d'univers, que le tenseur de Ricci de la variété
doit s’annuler. De plus, pour des raisons phénoménologiques, on va chercher a compactifier sur
une surface qui conserve au moins une supersymétrie N' = 1 dans la théorie a quatre dimensions.
On montre que cette condition est satisfaite s’il existe un spineur covariamment constant sur la
variété, ce qui est encore équivalent a demander que 1'holonomie de la variété (c’est-a-dire, le
groupe de transformations que peut subir un spineur par transport paralléle le long de la variété)
soit inclus ' dans SU(3). On montre en fait qu’une variété de Kéhler complexe, compacte, de
dimension (complexe) 3 et d’holonomie SU(3) est automatiquement Ricci-plate. De tels espaces
sont appelés espaces de Calabi-Yau, et constituent la géométrie naturelle de compactification de
la théorie des supercordes | .

Nous allons énoncer quelques aspects géométriques qui nous seront utiles par la suite, en
nous inspirant fortement de | |. Nous commencons par détailler la structure de I’espace
des modules d'une variété de Calabi-Yau, puis nous examinerons ’apparition d'une symétrie
échangeant deux espaces de Calabi-Yau, nommeée symétrie miroir. Nous rencontrerons a nouveau
cette symétrie au chapitre 5, ou 'existence d’une autre symétrie du méme genre sera obtenue.

Espace des modules et symétrie miroir

Par définition, il existe sur une variété de Calabi-Yau une métrique Ricci-plate. Toutefois,
celle-ci est loin d’étre unique ; I'espace des modules se définit alors comme ’espace sur lequel on
peut déformer une métrique Ricci-plate en une autre métrique Ricci-plate. On distingue alors
deux classes de déformations. Premicrement, les déformations de type Kéhler dg,;, s’écrivant
avec un indice holomorphe et un indice anti-holomorphe. Une telle déformation ne modifie
pas la structure complexe de la variété (c’est-a-dire, intuitivement, la maniére dont les six
coordonnées réelles sont groupées en trois dimensions complexes), mais agissent sur la taille de
la variété. Deuxiémement, les déformations de structure complexe de la forme dg;;, avec deux
indices holomorphes. Cette fois, ces déformations modifient la structure complexe. En effet,
on veut définir sur la variété une métrique ou toutes les composantes purement holomorphes
ou purement anti-holomorphes sont nulles (dite métrique hermitienne). Pour intégrer une

1. Si ce groupe est inclus dans SU(3) mais pas dans SU(2), la supersymétrie sera N' =1 dans le cas de la
compactification d’une théorie hétérotique et A' = 2 dans le cas d’une théorie de Type II; si ce groupe est inclus
dans SU(2), les supersymétries conservées seront respectivement ' = 2 et N = 4.
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déformation purement holomorphe dans ce contexte, il faut alors redéfinir les coordonnées
complexes, de sorte que la métrique déformée reste hermitienne.

Des considérations de géométrie différentielle que nous n’évoquerons pas ici montrent que I'espace
des déformations de Kahler s’identifie & la cohomologie de Dolbeault? H'!, tandis que celui des
déformations de structure complexe s’identifie & H?!.

Dans le cas d’une compactification sur un espace de Calabi-Yau, I’holonomie SU(3) implique
la présence sur la feuille d’univers de deux algebres superconformes N = 2, 'une du coté
holomorphe de la théorie et 'autre du c6té anti-holomorphe. Dans le cas des théories de Type
I1, ces deux algebres donnent naissance a deux supersymétries d’espace-temps ; par contre dans
le cas de la compactification d’une théorie hétérotique, seule la partie holomorphe impliquera
une supersymétrie d’espace-temps. L’algebre superconforme antiholomorphe a toutefois un role
crucial dans la détermination du groupe de jauge : nous détaillerons ce point dans le chapitre 5.
Les propriétés de 'algebre superconforme détaillées dans 'appendice B permettent de définir,
pour une algebre (2,2), ’anneau chiral composé de quatre catégories de champs notés (¢, ¢),
(a,c), (c,a), (a,a). On montre alors que les champs de type (c,c) sont en bijection avec les
éléments de H?*!, alors que ceux de type (c,a) sont en bijection avec les éléments de H™!.
Cette propriété semble étonnante : deux familles de champs dont les propriétés ne different
que par le signe d’une charge, fixée de maniere a priori conventionnelle, déforment la théorie
de maniére drastiquement différente. Ceci tend a faire penser que la théorie conforme donnée
par un Calabi-Yau peut aussi étre donnée par un autre Calabi-Yau, miroir du premier, dans
lequel on a échangé les cohomologies H%! et H*!. Du point de vue de la théorie conforme,
on voit qu’une telle opération va avoir pour effet de renverser le signe de la charge U(1) des
champs anti-holomorphes. Or, I'expression de J donnée dans I'appendice B dans le cadre de la
réalisation de I’algebre superconforme montre bien que cette charge U(1) est reliée a I’hélicité
des états fermioniques. L'effet de la symétrie miroir va donc, dans ce cas, correspondre au
renversement de 1’hélicité des fermions. Bien siir, dans le cas d'une théorie hétérotique, le coté
droit de la théorie ne comporte pas de fermions a proprement parler; la chiralité renversée sera
donc celle de représentations du groupe de jauge (nous verrons que les groupes de jauge obtenus
admettent bien des représentations chirales). Par contre, dans le cas des théories de Type II,
la mise en ceuvre d’une symétrie miroir a bien pour effet de renverser 1’hélicité des fermions
anti-holomorphes. Ceci est confirmé par analyse de | ] : si 'on se donne une théorie de
Type IIA compactifiée sur un espace de Calabi-Yau, sa théorie T-duale® est obtenue comme la
compactification de cette méme théorie sur le Calabi-Yau miroir. Ou, de maniere équivalente :
la compactification de la théorie IIA sur un Calabi-Yau est équivalente a la compactification de
la théorie IIB sur le Calabi-Yau miroir.

Un inconvénient de la procédure générale de compactification de Calabi-Yau est qu’il est
difficile d’obtenir des informations concretes sur le spectre de la théorie, ou la structure des
supersymétries présentes a quatre dimensions. L’exemple de Calabi-Yau le plus simple, le tore
TO, permet d’expliciter le spectre de la théorie compactifiée. Le tore est d’holonomie triviale, de
sorte que toutes les charges de supersymétrie sont préservées par la compactification.

2. La cohomologie de Dolbeault HP-9 est le quotientage de I’espace des (p, ¢)-formes fermées w vérifiant Ow=0
par celui des (p, ¢)-formes exactes w vérifiant w = dp, ol p est une (p,q — 1)-forme.
3. La T-dualité est introduite dans la section suivante.
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Nous allons détailler cette procédure de compactification toroidale, et en donner le spectre. Nous
utiliserons abondamment cette compactification dans les sections suivantes ; elle nous servira en
outre a construire les compactifications d’orbifold, présentées dans ce chapitre, qui permettent
une étude explicite du spectre et des propriétés de théories a supersymétrie réduite.

4.1.1 Compactifications toroidales et réseaux

Nous allons commencer par traiter la compactification d’un boson X sur un cercle S* de rayon
R.

Dans un formalisme de théorie des champs, l'impulsion est quantifiée par la condition de
périodicité imposée sur le degré de liberté bosonique. L’opérateur de translation le long de la
dimension compacte > devant étre égal a I'identité, on obtient la condition habituelle

p:%, me 7. (4.2)

En théorie des cordes, cette impulsion est celle qui se rapporte au temps propre de la corde :
avec nos notations, elle correspond a ag + ay.

Les cordes fermées font apparaitre une nouvelle caractéristique de la compactification : ces
cordes peuvent s’enrouler autour de la dimension compacte avant de se refermer [dessin]. Ainsi,
I’équation

X(o+2m,7)=2mnR+ X(o,7) (4.3)

caractérise un état de corde ayant un nombre d’enroulement n autour de S!. Cette contrainte
implique alors sur les modes zéro

oy — do =nR. (44)

De sorte que finalement, les modes zéro de la corde fermée le long de la dimension compacte
dépendent de deux entiers (m,n) appelés nombre d’impulsion et nombre d’enroulement. Pour
I'état |m, n), on a les modes zéro gauche et droit suivants :

m nR m nR

7R + o’ =R o (45)
Pour que ces états soient physiques, ils doivent satisfaire la condition de level-matching
P? P2
(; ; NL> _ (2 ; NR) 0. (16)

En particulier, P} — P2 doit étre pair. Ceci est trivialement vérifié dans notre cas; nous verrons
que l'extension de cette propriété a des réseaux de dimension élevée contraint fortement la
théorie.

On remarque que le spectre est invariant sous la transformation R — o//R. Cette symétrie,
dite T-dualité, échange le nombre d’enroulement et le nombre d’impulsion ; dans le cas d’une
théorie de Type II, la T-dualité échange le boson compact antiholomorphe X (z) en —X(Z). Par
symétrie superconforme, le fermion antiholomorphe partenaire change aussi de signe, et donc la
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chiralité des spineurs droits de la théorie est modifiée. On est ainsi passés d’une théorie de Type
IT a I'autre. La T-dualité se généralisera a plusieurs dimensions dans les paragraphes suivants.

La fonction de partition du boson compact différe de celle du boson rencontrée précédemment.
La contribution des oscillateurs est identique, et est donnée en fonction de la fonction n de
Dedekind : Z,,. = |n|72. La contribution des modes zéro est modifiée : on a

' , ! R\? o (m  nR\?
Ta(R) =Y of PP /Ao PR/4 _ S ; a(m n> T <_> (47
wlf) =2 it 2 ey (Rt w) TR (47)

La notation I'; 1 (R) que nous avons introduite donne le bloc de la fonction de partition issus des
modes zéros d’un boson gauche et un boson droit compactifiés sur un cercle de rayon R, dans la
représentation dite hamiltonienne. Cette notation s’étend au cas de plusieurs dimensions; dans
la suite, on notera I', ,(G, B,Y) le réseau des modes zéro de p bosons gauches et ¢ bosons droits
compactifiés sur un (p, g)-tore. Nous reviendrons d’ici peu sur cette expression, en précisant
notamment la signification physique des pg parametres que 'on a notés G, B, Y.

Intéressons-nous encore un peu au cas simple du cercle. Il est possible d’obtenir une autre
représentation de la somme de réseau (4.7), en utilisant la formule de resommation de Poisson * :
la représentation lagrangienne. On trouve alors

R T R?
I 4(R) = ——|n 20 4.8
1,1( ) \/O/_TQ m;ezexp [ ' |m + nT| ] ( )

Enfin, nous allons donner une conséquence de I’équivalence de bosonisation : au point fermionique

R = /a’/2, on a 'égalité entre les fonctions de partition d'un boson compact d’une part, et de
deux fermions gauches et deux fermions droits d’autre part :

1 o 1 1 T 1
T = = = _ 2} I
B 1,1 ( 2) RN Z exp { 2T2\m + nT| 5 Z

m,nez a,b=0

2

. (49

Al
U

Cette formule sera généralisée dans la section 4.2.2.

Nous allons maintenant considérer le cas général de compactification de p dimensions, ce qui
correspond a considérer des réseaux (p,p). En vue de décrire les compactifications de la théorie
hétérotique, nous nous intéresserons également au cas des réseaux (p,p + 16).
Nous considérons de p bosons gauches et ¢ bosons droits compacts, en suivant | , ].
Les impulsions internes sont données par deux vecteurs Pj, Pg, respectivement a p et ¢
composantes, et vérifiant les conditions de level-matching (4.6) :

P? — PE =2(Np — Np) (4.10)

Si on définit sur notre réseau une norme lorentzienne de signature (p,q), on a la propriété
suivante : le réseau doit étre auto-dual et pair. L’espace de déformation d’un réseau lorentzien
vérifiant ces propriétés est O(p,q); ce groupe est appelé groupe de T-dualité. On peut vérifier

4. On trouvera une version trés générale de cette formule dans appendice A de [ ].
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que la T-dualité R — 1/R du cercle se généralise ici en une opération d’inversion d’une matrice
fonction des modules de compactification (voir par exemple | |) toutefois, on voit que
le spectre de masse de la théorie obtenue apres compactification est invariant sous les deux
groupes O(p);, (préservant P7) et O(q)r (préservant P3). Ainsi, I'espace des théories des cordes
inéquivalentes obtenues par cette compactification est O(p, q¢)/O(p) x O(q).

Un élément de I'espace O(p,q)/O(p) x O(q) est paramétrisé par pg parametres. Dans le cas
d’'une compactification de p dimensions, et donc d’un réseau (p, p), ces p?> modules sont donnés
par la métrique G; et la 2-forme antisymétrique B;; vivant sur le p-tore et intervenant dans
I’action du modele-sigma pour les dimensions compactes

S = / o (G0, X'0"X7 + B0, X'9,X7) . (4.11)

Ces modules correspondent a des directions plates du potentiel dans la théorie effective. Ils
définissent la géométrie de la variété de compactification.
Dans ce cas-la, la représentation lagrangienne de la somme de réseau se généralise en

\/ det Gij Z
Y Y exp
a/p/275/2 (m5),(ns)

et la resommation de Poisson montre que® les impulsions valent

Fp,p =

— (G + Big) (i + mar) (17 + nﬂ)] , (4.12)
' To

i ij nk . GY nk
P = ﬁ (mj + (Bjr, + Gjk) o/) ;. Pp= ﬁ <mj + (Bjk — Gjr) o/) : (4.13)

Dans le cas hétérotique, nous devons maintenant compactifier sur un réseau pair, self-dual de
dimension (p,p + 16). Ces conditions sont en fait extrémement restrictives : ces réseaux sont de
la forme

Fp,p+16 = Fp,p ) F(SO(32)) ou Fp,p+16 = Fp,p ) F(Eg) ) F(ES) y (414)

ce qui redonne les deux groupes de jauge possibles pour la théorie hétérotique. 16 p nouveaux
modules apparaissent ici. Il s’agit de lignes de Wilson, qui représentent la valeur moyenne
dans le vide des éléments de la sous-algebre de Cartan de rang 16 de la théorie hétérotique
(SO(32) ou Eg x Eg). Dans une théorie de jauge non-abélienne, ces degrés de liberté restent
non-dynamiques : leur terme dans le lagrangien étant donné par Tr((F1)?) + [AL, A”], il reste
nul dés que les A? commutent. Les lignes de Wilson vont modifier les conditions aux limites
des états chargés sous le groupe de jauge : si m' et n' sont les nombres quantiques (dans la
représentation hamiltonienne) d'un état de corde de charges (e®) sous la ligne de Wilson A** (a
parcourt ici la sous-algebre de Cartan) alors la présence de cette ligne induit la modification

m'— m'+ e A% nf ot (4.15)

5. La forme de ces impulsions se dérive aussi en étudiant ’action du modeéle-sigma (4.11).

o7



Le changement se fait en fait sur I'expression des impulsions : on a maintenant | ]

P =% (mj + A% e(Bjy, + G + LA2AY ’;7) ,
(4.16)

Ph = S5 (m; + A% e(Bjx — Gj)% + JAIAL %)
Ce shift se répercute évidemment sur le spectre de masse. Les états de corde correspondant
aux opérateurs de Cartan étant neutres sous le groupe de jauge et de nombre d’enroulement
nul, leur masse n’est pas modifiée; par contre, la partie non-abélienne du groupe peut acquérir
une masse. Dans ce cas, le groupe de jauge est brisé ; une configuration générique de lignes de
Wilson brisera ainsi le groupe de jauge de rang 16 de la théorie hétérotique en sa sous-algebre
de Cartan U(1).
Le groupe O(p,p + 16)/O(p) x O(p + 16) apparait ici encore comme groupe de T-dualité de la
théorie.

Supersymétries et groupes de jauge

Comme dans le mécanisme original de Kaluza et Klein, la compactification a pour effet de faire
apparaitre des degrés de liberté de jauge dans la théorie. Les bosons de jauge sont représentés,
en théorie bosonique ® par les opérateurs de vertex (a est ici la dimension compactifiée)

GH e (OXHOX™ + 0X“0XH)erX (4.17)

B s (0XHOX® — 0X"0XHM)e* (4.18)
Ces états, scindés en leur partie gauche 0X*9X® et leur partie droite dX*0X*, générent un

groupe de jauge U(1), x U(1)g. Ce groupe de jauge est présent quelque soit le rayon de
compactification.

Toutefois, en une valeur particuliere du rayon, de nouveaux états sans masse apparaissent. Ces
états vont étendre le groupe de jauge, et celui-ci va devenir non-abélien 7.

La masse d'un état de mode zéro |m,n) et de nombres d’oscillateurs N, N est donnée, une fois
prise en compte la condition de level-matching, par

! R\? o /m  nR\? -
M2:O‘<m ”) N—l:(—) N-1 4.19
4 R+O/ + 4 \ R o + ( )

Si R =+/d/, en plus des états ci-dessus, on remarque que les états

OXM(Z)| £ 1,41, k) = eFCVXEH x1(7) X (4.20)

6. L’extension a la corde supersymétrique est immeédiate : 'excitation de poids 1 correspondant au vertex
OX* doit étre remplacée par celle de poids 1/2 correspondant au vertex ).

7. Dans le cadre de compactifications toroidales, le rang du groupe de jauge issu de la compactification reste
toutefois constant ; si on compactifie sur un (p, ¢)-tore, ce rang est égal a p + q.
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sont sans masse. En effectuant les OPE de ces vertex avec le boson de jauge U(1) 9X*0X*, on
remarque que les trois courants réalisent une algebre affine SU(2). On a donc étendu U(1), &
SU(2)r. De méme, on voit facilement que les états

OXM(2)| £ 1, F1, k) = OX"(2) eF@/VaX() kX (4.21)

étendent U(1)g en SU(2)g. Cette extension de jauge est un phénomene purement cordiste,
faisant intervenir des états d’enroulement non-nul.

On peut généraliser cette extension au cas de la compactification de p dimensions. Il est facile de
voir qu’en I’absence d’hypothése supplémentaires, le groupe de jauge obtenu est ici U(1)7 x U(1)%,.
Ce groupe peut en fait s’étendre | |, au maximum en SO(2p);, x SO(2p)g. Pour cela, on
doit se placer en un point de I’espace des modules tel que des vertex supplémentaires de la forme
ePrXe X1 ot 9X L P Xr deviennent sans masse, et que la structure du groupe résultant soit
celle de SO(2n). Cette structure sera donnée par les OPE (3.55). Nous renvoyons a | ]
pour plus de précisions; il y est noté entre autres que les deux théories hétérotiques SO(32)
et By x Fg sont contintiment reliées par déformation du réseau I', 1 16. Notons enfin que, sous
extension ou sous brisure par des lignes de Wilson, le rang des groupes de jauge obtenus est
inchangé.

Nous reviendrons amplement par la suite au point d’extension de la jauge en SO(2p)r, x SO(2p)r,
qui n’est autre que le point fermionique.

La réduction dimensionnelle change les propriétés de supersymétrie. La maniere la plus simple
d’appréhender ce mécanisme est de raisonner en termes de supercharges. Le nombre de super-
charges maximal d’une théorie physique, comme montré dans la section 2.2 est de 32.

Les théories de cordes de Type II présentent une supersymétrie N’ = 2 en dix dimensions, soit
32 supercharges (la dimension minimale d’une représentation spinorielle de SO(10) étant de
16, pour des fermions de Majorana ou de Weyl). En dimension 4, cette dimension est de 4;
si toutes les supercharges survivent, on a donc une supersymétrie N/ = 8. Des supercharges
formant une représentation 16 de SO(9, 1) se décomposent sous SO(9,1) — SO(3,1) x SU(4)
comme 16 = (2,4) @ (2,4). En décomposant de la méme maniere la 16 dans le cas d'une
théorie de Type ITA, on reconstitue bien les 8 générateurs de supersymétrie en 4D, en utilisant
la décomposition du spineur de Dirac a quatre dimensions 4 — (2, 2).

En termes d’opérateurs de vertex, il est possible de se faire une image claire de la situation.
En effet, dans une théorie de Type II par exemple, si on fermionise les 10 fermions gauches
d’espace-temps en 5 bosons Hy, Hy, Hy, H3, Hy (et de méme pour les droits) en comparant les
vertex du graviton

eiHo ez’f{o
et du gravitino gauche
e%(HO:I:Hl :I:Hg:l:Hg:tH4)eiI_{0
on voit que les 16 supercharges sont associées aux courants

6—%(H0:EH1) 6%'(ﬂ:H2ﬂ:H:a:f:Hzx)
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Dans I’hypothese ou toutes les charges survivent a la procédure de compactification, on voit
que sous décomposition du groupe de Poincaré a dix dimensions, le facteur correspondant aux
directions compactifiées donne le groupe de R-symétrie, en produit direct avec le groupe de
Poincaré a quatre dimensions. Ainsi, la présence de A/ = 1 en dimension 10 implique N' = 2 en
dimension 6 et A/ = 4 en dimension quatre. De méme, N’ = 2 en 10D donne N’ = 4 en 6D et
N =8 en 4D.

Les exemples précédents décrivent des compactifications sur des géométries régulieres. Nous allons
cependant voir que les possibilités de compactification sont beaucoup plus vastes. Elles incluent
notamment les orbifolds, qui sont des espaces quotients pouvant admettre des singularités.
Les orbifolds les plus simples ont une interprétation géométrique claire; on peut toutefois
envisager des compactifications sur des orbifolds non-géométriques, qui débouchent sur des
théories conformes parfaitement définies. Entre autres propriété, la compactification sur des
orbifolds va éliminer des supercharges, et donc réduire la supersymétrie a quatre dimensions
(comme le faisait déja la compactification sur un Calabi-Yau par des propriétés d’holonomie).

4.2 Orbifolds

Lorsqu’une variété possede un groupe de symétrie, il est possible de considérer la variété quotient,
dans laquelle on identifie un point de la variété avec son orbite sous le groupe de symétrie. La
géométrie de la variété en est alors fortement affectée : notamment, dans le cas ou le groupe
de transformations admet un ou plusieurs points fixes (on parle d’orbifold a action non-libre),
I’espace-quotient admet des singularités en ces points. Nous allons néanmoins voir que 'on
peut définir sans probleme une théorie des cordes compactifiée sur ce type d’espaces, dont la
construction consistera dans un premier temps a garder les états de cordes invariants sous le
groupe de transformation considéré. On verra ensuite que la consistance de la théorie impose
d’introduire de nouveaux secteurs, dits twistés.

Les constructions d’orbifold ont été introduites dans | , |. Les raisons motivant
cette introduction sont multiples.

Premieérement, apres les compactifications toroidales, les compactifications sur des orbifolds sont
les plus faciles a décrire. En effet, les surfaces de Calabi-Yau que 'on considere généralement ne
permettent pas beaucoup de calculs explicites ; les calculs se font souvent aux points de I'espace
des modules ou la variété de Calabi-Yau considérée développe une singularité de type orbifold.
Ainsi, la variété K3 dégéneére en l'orbifold T*/Zy en un point particulier.

Deuxiemement, la construction d’orbifold, en projetant certains états de cordes hors du spectre
physique, permet de réduire les symétries de la théorie. Ceci a plusieurs utilités en vue de décrire
des modeles réalistes, dans lequel on attend une supersymétrie N' = 1 brisée a 1’échelle du TeV et
un groupe de jauge de type SU(5) ou SO(10). A titre de comparaison, la compactification d’une
théorie hétérotique sur le tore T° fournit une théorie a 4 dimensions ayant une supersymétrie
N = 4, et un groupe de jauge de rang 28. Les caractéristiques topologiques de 1’orbifold
et I'apparition de secteurs twistés permettent aussi de contrdler plusieurs caractéristiques
intéressantes de la théorie, comme par exemple le nombre de générations.

Enfin, la construction d’orbifold permet de construire des théories conformes qui n’ont pas
d’interprétation géométrique simple, comme des orbifolds asymétriques, dans lesquels le groupe
de symétrie n’agit pas de la méme maniere sur les degrés de liberté gauches et sur les droits.
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FIGURE 4.1 — L’orbifold S'/Z, “aplatit” le cercle en segment par identification des points reliés en pointillés;

0 et 7 sont points fixes du groupe de symétrie considéré.

Ces constructions présentent néanmoins un grand intérét, d’un point de vue phénoménologique,
que ce soit dans la création de modeles a supersymétrie étendue ou dans I'étude de dualités.

4.2.1 Orbifolds a action non-libre

L’exemple le plus simple d’orbifold est aussi celui que nous rencontrerons le plus souvent. Il s’agit
de la compactification d’une dimension d’espace sur I'espace quotient S'/Z,, schématiquement
représenté sur la figure 4.1. Cet orbifold est a action non-libre : I'identification X ~ —X a deux
points fixes sur le cercle, qui sont X =0 et X = 7. Le calcul de la fonction de partition a une
boucle de ce modele va illustrer I'apparition des secteurs twistés de la théorie.

Pour retenir les états invariants sous le groupe Zs, il faut introduire dans la trace le projecteur

_1+g

- (4.22)

p

ol g est la transformation X — —X. L’effet de cette projection sur les opérateurs de la théorie
se déduit de la solution classique des équations du mouvement

On _in(r—0o &n —in(7+0
X =Xo+pr(r—0)+pr(r+o)+ Y e ™) 4 3~ Hein(rto) (4.23)
n#0 n n#0 n

on voit que les transformations sont
XO — XO ) |pL7pR> — | — PL, _pR> ) (an7 @n) — (_an7 _@n> (424)
de sorte que la fonction de partition est

i
02
Cette quantité n’est toutefois pas invariante modulaire. Pour la compléter, on peut ici raisonner
en termes géométriques. L’introduction du projecteur dans la trace force les états invariant a
obéir a la condition aux limites

1 . 1
Zunt. = Tr (‘5 J qLO_C/24qL0_C/24> =-Z(R)+ || (4.25)

X(o,7+27) = =X (o,7). (4.26)
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Toutefois, la transformation modulaire 7 — —1/7 nous force a considérer une condition au bord
antipériodique sur le second cycle du tore :

X(o+2m,7)=—-X(0,7). (4.27)

Ces états sont dits twistés : la corde fermée se referme en fait a une transformation du groupe de
symétrie pres. Le second terme de la fonction de partition est alors la trace sur les états twistés :

1 -
th‘ = Trt'w. ( ;_quOC/24qLOC/24> . (428)

Pour effectuer le calcul, on note que cette fois les modes d’oscillation sont demi-entiers. On
trouve cette fois

Ui n

L4+ 9 ro—c/pa-Lo-c
Ziw, = Tr [ —=glo—e/24gko 6/24> = |1+ |L]. 4.29
= Tr (5 gt e (4:29)
La somme Z,,,; + Z;, est maintenant invariante modulaire.
Elle se note de facon condensée comme
1 &
7 = 5 Z Z[g], (4.30)
h,g=0
ou
2n
20 =Z(R);  Z[j = =il (h,g) # (0,0). (4.31)
1-g

Le facteur 2 du numérateur s’explique par la présence de deux vides twistés, correspondant aux
2 points fixes de 'orbifold.

De fagon générale, on construit souvent les fonctions de partition d’orbifold en appliquant le
groupe modulaire a la partie correspondant au secteur non-twisté, qui est facile a construire ; en
effet une interprétation géométrique des secteurs twistés est souvent impossible.

Plusieurs choses sont importantes a noter :

e 'énergie du vide a changé. Ceci est dii au fait que les états twistés sont créés a partir du vide
conforme par des opérateurs de poids non nuls. Nous verrons plus tard que ces états peuvent
étre identifiés a des vides de Ramond.

e La partie twistée de la fonction de partition (ie (h, g) # (0,0)) ne dépend pas du rayon de
compactification. Ceci est caractéristique des orbifolds a action non libre : les états twistés de
la théorie sont localisés aux points fixes de la transformation (rappelons que (pr,pr) = (0,0))
et ne “voient” donc pas la géométrie de ’espace interne. Ainsi, il sera possible de calculer la
contribution de secteurs twistés en se placant en un point particulier de I’espace des modules
de la variété de compactification ; la déformation de ce modele vers une valeur arbitraire des
modules internes n’affectera pas la forme de cette contribution.

La plupart des orbifolds que nous rencontrerons seront une généralisation du cas S'/Zy A
plusieurs dimensions d’espace, & savoir le quotient T%/Z,. La fonction de partition se calcule
selon le méme principe : si on note G; et B;; les modules du tore, on a

62



1 1
L=+ Y 21, (432)

0 h ded
Zlo) = Z(Gyj, Byj) ; Zl) = Wa (h,g) # (0,0). (4.33)

Ici, Z(G,j, Bij) est la fonction de partition sur le tore vue [avant].
On emploiera souvent une notation séparant les modes d’oscillation du réseau des modes zéro :
ainsi, on réécrit la fonction de partition précédente comme

1 & Taal
Z = Aol (4.34)
2,2 TP
ou
0 h 2d’77|3d
Laalol = Taa(Gij Bi) s Taalgl = 2 (h,g9) #(0,0). (4.35)

=]

Il nous reste a traiter le cas des fermions, qui, pour des raisons de supersymétrie sur la feuille
d’univers, doivent subir les mémes transformations que leurs partenaires bosoniques. Le résultat
est intuitif au niveau de la fonction de partition : on a vu que dans la fonction de partition de
deux fermions gauches réels donnée par

1 &9
Zp= = b (4.36)
! 2a,bZO U

la structure de spin (a,b) correspond aux conditions au bord des fermions le long des directions
1 et 7 du tore. La présence d’une projection dans la trace, controlée par la valeur de g, change la
condition au bord b; la valeur de h, dénotant I’appartenance au secteur twisté, controle quant a
elle la valeur de a. Pour un twist (h, g), le bloc fermionique 9 [¢] va donc étre changé en ¢ [Zi;‘]
Cet exemple d’orbifold est géométrique : il correspond au quotientage du tore. On peut toutefois
imaginer des orbifolds non géométriques, qui vont agir formellement sur la théorie conforme
interne. Un exemple est donné par les orbifolds asymétriques | ]. Ces orbifolds a entre
autres pour effet de twister les bosons gauches 0X et de conserver les bosons droits 9X. Cette
démarche est parfaitement valable dans le cadre de la théorie conforme, ou les deux cotés sont
indépendants. Elle est d’une grande utilité, notamment pour la construction de théories de
cordes a supersymétrie étendue | , |, de paires S-duales de théories de cordes | ],
ou encore pour la réalisation de diverses brisures des groupes de jauge [ , ]
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4.2.2 Orbifolds a action libre et compactification de Scherk-Schwarz

Un orbifold & action libre correspond, a I'opposé, au quotientage de la variété par un groupe
n’ayant pas de point fixe. Nous allons voir que cette différence est cruciale du point de vue de la
théorie obtenue. En particulier, pour des raisons que 'on explicitera plus bas, les orbifolds a
action libre sont beaucoup plus intéressants d’un point de vue phénoménologique, notamment
dans les mécanismes de brisure de supersymétrie : les gravitinos, au lieu d’étre purement et
simplement éliminés du spectre comme c’est le cas dans les orbifolds a action non-libre, vont
cette fois subsister mais devenir massifs. On peut ainsi construire des théories dans lesquelles
la supersymétrie est spontanément brisée a une échelle dépendant de la taille des dimensions
compactes ; dans une limite de décompactification, on peut recouvrer la supersymétrie initiale.

Un exemple simple d’orbifold a action libre

Nous allons commencer par développer ’exemple le plus simple d’orbifold a action libre, qui
se base, pour un boson compactifié sur un cercle de rayon R, sur la symétrie Z, (trivialement
libre) de translation X — X + 7 R.

L’action de cette transformation sur les vertex des modes zéro de la théorie

im, n) = ¢+ EIXL() (G5 XR(2) (4.37)

est la suivante
Im,n) — (=)™ |m,n); (4.38)
elle laisse de plus invariants les oscillateurs ay,, a,,.

La partie de la fonction de partition correspondant au secteur twisté de la théorie est alors
construite comme

1 1 / R\ 2 / R\ 2

/ /
m,neE”L o R o

Nous avons vu qu’il est suffisant, pour construire la contribution twistée a la fonction de partition,
d’appliquer la transformation modulaire 7 — —1/7 a la contribution non-twistée. En effectuant
ce calcul et en sommant les deux contributions, on obtient la fonction de partition finale (apres
une transformation de Poisson pour passer en formalisme hamiltonien)

(m+g)+(n+g>7

1 2
Z:il Z Z exp[—ﬂR

) /
nm 2 h,g=0 m,n€Z a7

2] (4.40)

Réseaux twistés et shiftés

Il est possible de généraliser ces expressions et de méler les effets des orbifolds a action non-libre
(twist) et libre (shift) pour obtenir des formules générales. Nous allons donner ces formules sans
démonstration ; le lecteur peut se rapporte a | , , | pour plus de détails.
Pour cela, nous allons commencer par étendre 1’équivalence fermion-boson formulée en section
3.2.2 au cas d'un boson twisté. Cette formule est un avant-gotit du formalisme que nous
développerons en section 4.5, nous ne la démontrons pas.
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Au point fermionique R = /o’ /2, la généralisation de (4.9) donne 'équivalence

1 & Dl 11
Zogp. =5 Y, ——L=— = pth , (4.41)
’ 2%:0 n i 2 2 5] 08
o I'y 1 [!] a été défini en (4.35).
Une telle équivalence existe aussi dans le cas du boson shifté :
2

11 ¢ 2] 1 ! e

— = Y exp[ " <m+ >—|—<n+p>7 ] [bﬂ} (4.42)

nm 2 p,q=0 m,n€Z 27—2 2 2 Pq 0 a,b=0

Pour des raisons phénoménologiques, nous nous intéressons a ’orbifold d'un tore 7°, dont les
coordonnées peuvent étre twistés et/ou shiftées. Dans tous les cas de figures intéressants, les
twists seront caractérisés par les parametres (hy, g1) pour les deux premieéres dimensions, (hg, g2)
pour les deux suivantes, et (—h; — ha, —g1 — go) pour les deux dernicres® et les shifts par les
parametres (p;, ¢;)i=1..6-

La quantité importante dans ce cas-1a est le réseau (2, 2) twisté/shifté, qui est donné au point
fermionique par | ] :

%1711 5)22} — 1 Z (_)G1Q1+b1p1+p1q1(_)CLQQQ+b2p2+P2fI2

PP

o]0 [ig] o ] o ]|
(4.43)

et le réseau (6,6) le plus général s’écrit comme combinaison de ces blocs. Nous ferons usage de
ces constructions dans la section 5

a1,b1,a2,b2

Origines en théorie des champs : compactification de Scherk-Schwarz

Nous allons maintenant présenter une procédure de compactification issue de la théorie des

champs, introduite & la fin des années 1970 par Scherk et Schwarz | , |. Nous reprenons
ici en grande partie la présentation qui en est faite dans | ], ce qui nous permettra de
I’étendre aux cordes de maniére naturelle, comme effectué dans | , , |. Nous

verrons enfin que tout ceci se reformule agréablement sous forme d’orbifolds a action libre, et nous
verrons comment construire facilement les blocs correspondants dans la fonction de partition a
une boucle. Dans la section suivante, nous donnerons la maniere d’utiliser ce formalisme pour
briser spontanément la supersymétrie, procédure qui est au cceur de ce travail de these.

Dans une compactification usuelle (toroidale par exemple), I'identification X7 ~ X7 + 27 R!
faite sur les coordonnés spatiales internes doit se répercuter sur les champs physiques de la
théorie, qui doivent étre univalués : on doit avoir

d(X*, X! +27R") = &(XH, XT) (4.44)

8. L’existence de la relation hy + hg + hg = g1 + g2 + g3 = 0 garantit la présence d’une supersymétrie A" = 1
a quatre dimensions.
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Si l'on considére maintenant des symétries internes associées aux directions compactes X/,
données par des opérateurs ()7, on peut s’intéresser aux configurations de champs suivantes :

S(XH, XT) = exp (ie; Qr XT) B(X*, XT) (4.45)

On voit alors que lorsque les dimensions internes sont compactifiées sur des rayons R!, ces
nouveaux champs ont des conditions au bord modifiées :

S(X, X!+ 2nR") = exp (ie; Q1 R) D(X*, XT). (4.46)

Ainsi, la dépendance des champs en les dimensions internes n’est plus périodique : si on transporte
le champ le long d’une dimension compactifiée du systéme, la valeur a l'arrivée sera reliée a
celle du départ par une symétrie interne du systeme. D’un point de vue mathématique, ceci
peut s’interpréter en considérant que le champ multivalué prend ses valeurs sur un fibré, dont la
fibre est la groupe de symétrie interne considéré.

Cette transformation modifie les modes des impulsions internes comme

mt_oml g
R rR 1

ol ¢ est la charge du champ sous I'opérateur Q. Ceci a un effet sur le spectre de masse des
états de la théorie : des champs de charge différente prendront des masses différentes dans le
processus de compactification de Scherk-Schwarz, levant ainsi des dégénérescences aux différents
niveaux de masse de la théorie.

(4.47)

L’extension a la théorie des cordes se fait de maniere naturelle en partant de la propriété de
modification des conditions au bord pour les états chargés de la théorie. Si 'on s’intéresse a
la compactification d’une dimension sur un cercle de rayon R, les états de corde de la théorie
compactifiée sont caractérisés par le nombre d’impulsion 7m et le nombre d’enroulement n (m
est ici 'entier apparaissant dans la version lagrangienne de la fonction de partition du réseau
(1,1)). L’état de corde défini par les deux nombres (7, n) obéit aux conditions suivantes par
transport sur les 2 cycles non-contractables du tore :

X(o,7427) = X(0,7) +21mR; X(o+2m,7)=X(0,7) 4+ 2mnR. (4.48)

Ainsi, pour l'opérateur de vertex V (o, 7) de charge ¢ sous la symétrie considérée, les conditions
au bord Y sont modifiées de la maniére suivante :

V(o +2m,7)=e "V (0, 7T); (4.49)

V(o,7+2r1) =e ™V (5, 7). (4.50)

On note que la seconde condition n’est autre que la formule usuelle de théorie des champs. La
premiere condition est son extension cordiste, que I'on va interpréter comme caractérisant le
secteur twisté d’un orbifold.

9. Ceci peut s’étendre dans le cas ol on se place a 'ordre de plusieurs boucles : il suffit de considérer autant
de conditions aux limites modifiées qu’il y a de cycles indépendants non-contractables sur la surface d’univers
que 'on consideére. Dans cette theése, nous travaillons uniquement & 1’ordre d’une boucle.
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Ce mécanisme est en fait analogue a l'introduction de lignes de Wilson, évoquée en (4.15). On a
toutefois ici acces a plus de courants, notamment a des courants qui briseront la supersymétrie.

Parmi les multiples fagcons d’implémenter ces compactifications dans ’expression d’une fonction
de partition que nous allons détailler, nous en présentons une premiere, basée sur le couplage
d’un rayon interne R5 au courant d’hélicité d’espace-temps 1)%1)® (les deux fermions du cone de
lumiere). La théorie est ici hétérotique, mais 'extension aux théories de Type II est immédiate.
Si Zyn dénote la contribution du mode m, n au réseau I'y 1 (R5)

R5 7TR2 ~ 9
Zan(Rs) = NG exp [—0/72|m + n7| ] : (4.51)

alors les conditions au bord des états de structure de spin (a,b) chargés sous ce courant sont
modifiées comme | ]:

a — a+ 2ne, b— b+ 2me; (4.52)

ou dans ce cas e, la charge de 1’état sous le courant d’hélicité vaut 1.
Le bloc de la fonction de partition encodant les structures de spin se modifie alors comme

LY Zns sy ZC a,b) (4.53)

m5,n5
Y Zigs Zc’ )0 [ | 0T (4.54)
ms,ns

Ici, seule la premiere fonction 17, encodant la contribution des deux fermions du cone de lumiere
a quatre dimensions, est modifiée.

La modification des coefficients C'(a, b) est dictée par I'invariance modulaire ; on trouve C’(a, b) =
eiﬂ(bns-i-ﬁ%s%)c(a, b).

On remarque en fait, d’apres les propriétés des fonctions ¥, que I'implémentation de cette
compactification se fait en fait en insérant un cocycle (—)@mstinstmsns dang la fonction de
partition. En isolant les blocs fermionique et de la dimension interne de Z, la projection
s'implémente de la maniere suivante :

=

_ a-+b+ab a14 _LR2 ~ 2
(—) Y []" x exp — | 4 n| (4.55)
b a'To

2
_ Z a+b+ab am+bn+mn 9 [ ] X exp _WR |T7’L + 7’LT|2
2 ot 'y

e

Reformulation de la compactification de Scherk-Schwarz par orbifold a action libre

Nous allons maintenant formaliser le rapport exact entre compactification de Scherk-Schwarz
et orbifold a action libre, et utilisant I’exemple simple élaboré ci-dessus; sa généralisation sera
ensuite aisée.
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La symétrie Z, d’orbifold correspondant a cette brisure a pour expression g = (—)fd5, ou
(=) est I'opérateur de comptage de fermions (gauches dans le cas hétérotique correspondant a
I'exemple ci-dessus), et 05 : X5 — X5 + mR5 la translation selon la direction considérée pour
effectuer la compactification de Scherk-Schwarz.

Schématiquement, en réécrivant le bloc de la fonction de partition correspondant aux degrés de
liberté fermioniques et au réseau de la dimension compactifiée

;Z(_)Hbﬂbﬁﬁr X mZﬂexp (im’ <R + nR)2 — T (7; — nR)2> , (4.56)

a,b o
de maniere a faire apparaitre les caractéres de SO(8) introduits en (3.91) :
m nR\? _ _/m nR\’
;L [Vs — Ss] Z exp (271’7’ (R + 0/> —anT <R - 0/> ) (4.57)

I'insertion de l'opérateur de projection (1 + ¢g)/2 dans la trace nous donne la partie non twistée
de la fonction de partition

;g% %ggﬂwM¢M@+§f4W@_wfy (1.58)

/
m,n o

tandis que le secteur twisté, dans lequel les nombres d’enroulement sont demi-entiers et la
projection GSO inversée, s’écrit

LY (0 (1G] S (-1 e (” (e ) e (- WUQ)R))

= o o o

(4.59)

Il est alors facile de montrer que la fonction de partition de l'orbifold vaut finalement, en
repassant a ’écriture en termes de fonctions theta :

e a+tbtab(_ yag+bh+gh v [§]4
2h§02az,l;<_> =) ot (4.60)
(1) i (4 CLDE ) (2 L)

Une resommation de Poisson faisant repasser en formalisme hamiltonien donne alors I'expression

g AE
(m+2>+ <n+2>7 )
(4.61)
En posant R = R/2, on voit que dans cette expression, h et g ne sont autres que les parités des

nombres d’enroulement de 'état de corde sur le cercle de rayon R'; (—)29t+9h gidentifie alors
au cocycle inséré dans I’équation (4.55), et on retrouve bien le bloc de fonction de partition

1 . 1 a+b+ab ag+bh+gh ¥ bl 4 [a]4 WRQ
PIEINORARE .
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4.3 Brisure de supersymeétrie et de jauge dans les construc-
tions d’orbifold

Les compactifications d’orbifold ont la capacité de réduire les groupes de symétrie présents dans
une théorie. Deux types de brisure de symétrie existent : dans le cas d’une brisure explicite, les
états médiateurs de la symétrie (bosons de jauge ou gravitino) sont éliminées du spectre par
projection ; alors que dans le cas d’une brisure spontanée, ces états sont toujours présents dans
le spectre, mais sont devenus massifs. Nous voyons alors que dans le cas de la supersymétrie, un
modele réaliste exige la présence d’une brisure spontanée vers N' = 0, de maniére & introduire
un décalage de masse entre super-partenaires compatible avec les observations actuelles. Nous
remarquons aussi qu’une brisure spontanée du groupe de jauge, en levant la masse de certains
bosons de jauge, s’apparente a un mécanisme de Higgs; de méme, une brisure spontanée de
supersymétrie peut se voir comme un mécanisme de super-Higgs | ], dans lequel le gravitino
acquiert une masse.

Nous commencons par discuter le cas de brisures explicites. Nous développerons ici les résultats
correspondant aux constructions “canoniques”, qui s’avéreront les plus utiles pour décrire notre
travail. Ce cas est donné par I'action d’orbifolds a action non-libres, qui réduisent partiellement
la supersymétrie, et la symétrie de jauge dans le cas des théories hétérotiques. Le lien avec les
compactifications de Calabi-Yau sera ici assez clair. On considere pour commencer le cas de
orbifold T%/Z,, sous 'action duquel les 4 bosons X %910 les 4 fermions gauches 1”390 et les
4 fermions droits ¢™*%10 (dans le cas des théories de Type II) ou Ab*34 (dans le cas des théories
hétérotiques) sont envoyés sur leurs opposés. Dans le cas des théories de Type II, 'action de
I’orbifold sur les fermions gauches et droits est dictée par la supersymétrie sur la feuille d'univers ;
dans le cas des théories hétérotiques, 1’action sur les fermions droits est dictée par 'invariance
modulaire . La brisure de supersymétrie est alors induite par le fait que la transformation
d’orbifold agit aussi sur la chiralité des vides de Ramond de la théorie ; ainsi, parmi les états
Y*|sk, p), ¥*|sr, p) de la théorie de Type II donnant naissance aux gravitini et goldstinos, la
projection orbifold élimine la moitié des polarisations, de sorte que la supersymétrie est réduite
de moitié. Si I'on considére un Z, supplémentaire agissant sur les coordonnées X910 et les
fermions correspondants, on obtient un orbifold T°/Z, x Z,, dans lequel il ne reste plus qu’un
quart de la supersymétrie initiale, soit A" = 2 en Type II et N' = 2 en hétérotique. Dans le cas
de la théorie hétérotique, 'orbifold agit sur les bosons de jauge. On montre qu'un orbifold T*/Z,
réduit le groupe de jauge Egx x Fg en E; x SU(2) x Fg, tandis qu'un orbifold 7°/Z, x Z, donne
une jauge Fg X SU(3) x Es. Ces résultats sont identiques a ceux donnés par la compactification
de la théorie hétérotique sur, respectivement, K3 x T2 et sur un Calabi-Yau d’holonomie SU(3).

Nous nous intéressons maintenant au cas des brisures spontanées de symétrie, dans lesquelles
la masse de certains états devient non nulle. Notre point de départ est la version cordiste du

10. Cette action est en fait une traduction du plongement de la connection de spin dans la connection de
jauge ; nous détaillerons ce point dans la section 5.2.
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mécanisme de Scherk-Schwarz, dont on a vu qu'il se caractérisait par I'introduction d’un cocycle
de la forme (=)@ +ontmn T4 valeur de a dépendant du caractére fermionique ou bosonique de
I’état considéré, a est un exemple de R-charge. Nous allons maintenant étendre ce concept a des
R-charges de la forme a + Q, ol €™? est un opérateur de parité du systeme (c’est-a-dire, un
opérateur ayant des valeurs propres +1). a + @ est également une R-charge ; il est donc possible
de considérer le cocycle plus général suivant

(_)(a+Q)T~rL+(b+Q)TL+Eﬁ’LTL (463)

ot () s’obtient & partir de @ par une transformation modulaire 7 — —1 /7. la valeur de € = 0, 1
dépend des propriétés de transformation modulaire de @) : on doit avoir, sous 7 — 7+ 1 :

a+Q—a+tb+Q—c (4.64)

La supersymétrie est bien brisée, un décalage de masse étant introduit entre partenaires
supersymétriques. L’ajout de la charge @) introduit toutefois une différence dans le schéma de la
brisure : une resommation de Poisson montre que les états devenant massifs apres introduction
de ce cocycle sont ceux pour lesquels a + ) = 1 mod. 2. Ainsi, dans les paires supersymétriques
vérifiant () = 0, les fermions deviennent massifs, comme précédemment ; par contre dans le
cas Q = 1, ce sont les bosons qui acquiérent une masse. Les charges @, Q peuvent étre soit les
parametres de twist d’un orbifold (h, g), soit encore une hélicité associée a des représentations
d’un groupe de jauge, dans le cas d’une théorie comprenant des représentations spinorielles du
groupe de jauge. Notons que ceci revient a considérer des lignes de Wilson discretes. Le choix
de la R-charge revient donc a choisir quels états on veut rendre massifs, et quels états on veut
préserver dans le spectre sans masse. Nous rencontrerons ces brisures généralisées tout au long
de notre travail. Dans le chapitre 5, les orbifolds a action libre ne brisent pas la supersymeétrie,
mais discriminent les différentes représentations du groupe de jauge SO(10) par l'introduction
de Vopérateur de parité (—), ou e est I'hélicité SO(10). Dans le chapitre 6, nous utilisons
ce formalisme pour briser la supersymétrie; I’ajout d’'une charge supplémentaire permet de
pondérer par un signe + les contributions des différents états du spectre au potentiel effectif a
une boucle.

Il est facile d’étendre ces considérations aux théories de Type II. Ces théories comportent
deux hélicités d’espace-temps correspondant aux cotés gauche et droit. Nous avons vu dans
la construction des théories a dix dimensions que les états bosoniques viennent des secteurs
a = a = 0 (secteur de Neveu-Schwarz—Neveu-Schwarz) et a = a = 1 (secteur de Ramond-—
Ramond). I’implémentation d'une température dans les théories de Type II se fait donc par la
compactification de Scherk-Schwarz du temps euclidien, a I'aide du cocycle

(_)(a—&-&)’rﬁ—&-(b—i—i))n‘ (4.65)

Comme précédemment, la brisure de supersymétrie peut aussi s’effectuer en effectuant la
compactification de Scherk-Schwarz d’une (ou plusieurs) dimensions internes. Il est dans un
premier temps possible de généraliser la R-charge de la température en lui ajoutant une charge
de parité interne @), ce qui conduit a I'introduction du cocycle

(= )@ at Qi+ (b+b+Qpn-rermn, (4.66)
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On a maintenant aussi acces a des compactifications de Scherk-Schwarz asymétriques. En effet,
il est consistant de considérer I'introduction de cocycles

(=) (a+Q)in+(b+Q)n+ermn . (=) (a+Q)m+(b+Q)n+emn : (4.67)

correspondant respectivement, dans les notations de la section précédente, aux orbifolds par
(=)ft§ et (—)R4, ot F et Fr sont les nombres fermioniques gauche et droit.

Ces cocycles brisent bien la supersymétrie, en brisant spontanément une des deux algebres
superconformes (gauche ou droite) de la feuille d’univers : dans le premier cas, les états issus des
secteurs NS — NS et NS — R restent sans masse, tandis que leurs partenaires supersymétriques
provenant, respectivement, des secteurs R — NS et R — R, deviennent massifs.

Remrquons pour finir qu’une compactification de Scherk-Schwarz peut aussi étre effectuée sans
brisure de supersymétrie, en introduisant un cocycle de la forme

(_)Qﬁz—l—@n—i—eﬁm. (4.68)

Dans les deux cas typiques que nous rencontrerons, () est soit un parametre de twist d’un
Zo-orbifold, soit une charge sous un groupe de jauge de la théorie. Dans ce dernier cas, le
mécanisme de Scherk-Schwarz s’identifie en fait a ’allumage de lignes de Wilson discretes.

4.4 Supergravités effectives des réductions dimension-
nelles de théories de supercordes, et schémas de bri-
sure

Nous avons annoncé a la fin de la section 2.2.2 que les théories obtenues par réduction dimension-
nelle de la théorie des cordes sont des supergravités sans échelle. Nous allons donner ici plus de
précisions sur ce mécanisme, en développant les cas de compactification qui nous intéresseront en
particulier. Beaucoup de références donnent des détails sur ces supergravités ; le lecteur pourra
se rapporter, entre autres, a | , , , , , , ].

Dans les réductions dimensionnelles des théories des supercordes, les degrés de liberté compactifiés
s'identifient a des modules, dont le potentiel est plat. Ces modules s’arrangent génériquement
en des cosets : la structure de la variété sur laquelle ils vivent obéit a certaines symétries,
basées principalement sur la T-dualité. La forme de ces cosets est contrainte par la quantité de
supersymétries présentes a quatre dimensions. Nous allons cataloguer les cosets accessibles par
des compactifications toroidales ou d’orbifolds ; beaucoup de ces cosets ont été explicitement
réalisés dans | ], en utilisant le formalisme de construction fermionique que nous présenterons
dans le paragraphe suivant. Nous mettrons principalement ’accent sur les possibilités d’obtention
de modeles N/ = 1, dont nous ferons un usage abondant.

e Supergravité N' = 8 : cette théorie est unique; les 70 scalaires proviennent du multiplet
gravitationnel. Le coset obtenu est Er(7)/SU(8) | ]; SU(8) est ici le groupe de R-symétrie.
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e Supergravité N' = 4 : les scalaires de cette théorie sont de deux types : on trouve deux scalaires
dans le multiplet gravitationnel, et 6 Ny scalaires correspondant aux Ny multiplets vectoriels
que comporte la théorie. Il se trouve en fait que ’espace des modules ne prend en compte que
les scalaires commutant entre eux, donc associés a la sous-algebre de Cartan de la jauge. On
obtient donc 6(6 4 r) scalaires, ou r est le rang du groupe de jauge; le coset obtenu est alors

SU(1,1) SO(6,6 + r)

U1) " S0() x SO(6 + 1)
Cette structure s’identifie bien entendu a celle rencontrée au cours de 1’étude des réseaux de Na-
rain, dans la section 4.1.1. SO(6) ~ SU(4) est le groupe de R-symétrie N'=4; SU(1,1)/U(1)
donne la contribution du doublet dilaton/axion. Selon les détails de la construction du modéle,
ces scalaires peuvent provenir du multiplet gravitationnel ou de multiplets vectoriels. On note
que le doublet dilaton/axion appartient au multiplet gravitationnel dans le cas des théories
hétérotiques, alors qu’il appartient a un multiplet vectoriel dans le cas des théories de Type
II. Les supergravités N = 2 et N/ = 1 qui nous intéresseront seront construites'! & partir
de troncations de ce coset ; ces troncations seront effectuées soit au moyen de projections

orbifold, soit au moyen de compactification sur des variétés d’holonomie non-triviale (de type
Calabi-Yau).

(4.69)

e Supergravité N/ = 2 : il existe trois types de multiplets : les multiplets vectoriels, les hyper-
multiplets, et le multiplet gravitationnel. On montre que la variété des scalaires se factorise
en trois parties, la premiere donnant la contribution du scalaire complexe dilaton/axion, et
les deux autres donnant les contributions respectives des scalaires des multiplets vectoriels et
de ceux des hyper-multiplets. Les résultats concernant ces géométries, dites spéciales, sont
tres nombreux. Nous ne rentrerons pas dans les détails, qui ne sont pas nécessaires dans le
cadre de nos travaux.

e Supergravité N = 1 : cette fois, les trois types de multiplets & considérer sont le multiplet

gravitationnel, les multiplets vectoriels qui définissent le groupe de jauge de la théorie, et les
multiplets chiraux qui incluent les champs scalaires de la théorie.
Parmi les multiplets chiraux, on trouve le couple dilaton/axion S, ainsi que les modules
de compactification, se répartissant en modules de Kahler 7" et en modules de structure
complexe U’. On montre qu’au voisinage du point ot tous les champs chargés sous la jauge
s’annulent, le potentiel de Kéahler prend la forme

K =—log(S+5) =Y kilog(T'+T") = > p; log(U" + U") (4.70)

ot Y, k; = 3 (les modules T paramétrisant le volume de la variété).

La prise en compte des champs chargés sous le groupe de jauge sous la jauge modifie ce
potentiel de Kéahler . Ces scalaires ne sont en fait autres que les lignes de Wilson, qui font
partie du réseau de Narain des modules dans le cas des théories hétérotiques. Nous allons
donner quelques exemples de variétés sur lesquelles vivent les scalaires dans des constructions
explicites en théorie des cordes hétérotiques.

11. Dans le cas de constructions d’orbifold, la troncation donnera la contribution du secteur non-twisté; les
secteurs twistés donneront des contributions additionnelles.
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Dans le cadre d’orbifolds Z, x Z; de modeéles N/ = 4, on peut obtenir des potentiels de
Kaéhler de la forme

K = —log(S +S) - Z_: log((T* + T (U + UY) = (y'* +5)%) (4.71)

avec ig = 1...n4, A=1,2,3, paramétrisant le coset

SU(1,1) £ SO(2,2 +ny)
U() Xgl SO@2) x SO +na) |’

(4.72)

dans lequel les parties (2,2) représentent les modules géométriques des trois 2-tores, et les n4
donnent des multiplets chiraux supplémentaires. Cet espace ne rend toutefois compte que
du secteur non-twisté de I'orbifold (d’ou la présence des modules géométriques) ; les secteurs
twistés donnent génériquement des scalaires ayant pour potentiel

Ky, = —2 log(1 — CCY) (4.73)
et vivant dans un coset de type % [ , ].
Un autre exemple | ] est donné par I'orbifold Zsz de la théorie N' = 4 hétérotique Eg x Fg,

dont le coset est (4.69). Les scalaires du secteur non-twisté de la théorie s’organisent lors dans
un coset

SU(1,1) SU(3,3+n)
4.74
U1) ~SUB)x SUB+n) x U(1)’ (474)
de potentiel de Kéahler
K = —log(S + S) — log det(T}; + T} — 2CiC5). (4.75)

Bien que les détails de la compactification conduisent a des formes différentes pour la théorie
effective, il est possible de dériver des propriétés communes, dans le but de caractériser des
mécanismes de brisure de supersymétrie.

Pour effectuer une brisure de supersymétrie en préservant la nullité de I’énergie du vide, en se
plagant dans le cadre de Papproximation (4.70), il faut introduire une dépendance en S, T, U*
dans le superpotentiel (dans le cas contraire, on aurait G;Gf = 4+ 3, p; > 3 (I sommé sur S,
T, U"), ce qui garantirait Vy,;,. > 0 en vertu de la formule (2.20)). Cette modification témoigne
du mécanisme de brisure, qui peut prendre la forme d’une compactification orbifold, ou d’une
condensation de gauginos.

Dans une vaste catégorie de modeles orbifold, on montre que les termes cinétiques des modules
sont préservés lors de la brisure de supersymétrie, modulo une redéfinition analytique des
champs; ainsi la brisure est uniquement gouvernée par une modification du superpotentiel . On
montre ensuite que, lorsque les modules C' sont nuls, on peut factoriser I’espace des modules T%,
U7 en un produit d’espaces, dont le premier est donné par deux modules T°, U, de potentiel
de Kéhler

Ko = —log(T° +T°) — log(U® + U") (4.76)
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et un second espace regroupant les autres modules géométriques. La modification de superpo-
tentiel ne dépend alors pas de S, T°, U, de sorte que G'G; = 3 lorsque I est sommé sur ces
3 modules. On a donc un module sans échelle, en la personne d’une combinaison linéaire de
S, T° U°, qui définira la direction plate du potentiel et la masse indéterminée du gravitino.
On montre pour finir que, pour les modules autres que S, T°, U°, la condition G'G; = 0 est
vérifiée aux minima du potentiel scalaire, ce qui garantit la nullité de la constante cosmologique.
La masse du gravitino prend alors la forme

2 kQ
M. - - _
32 % (51 8) (10 + T0) (U0 + 09)

Nous rencontrerons effectivement cette forme dans la section 6; (T° 4+ T°)2(U° + U°)
s’identifie naturellement a un rayon de compactification.

(4.77)

1/2

Nous allons également considérer la possibilité de brisure de supersymétrie par allumage de
lignes de Wilson. On peut considérer au départ un modele N' = 4. Intuitivement, la structure
N = 4 disparait lorsque le coset correspondant est brisé. Ceci peut étre réalisé lorsqu’on donne
une valeur dans le vide non-nulle a certains des 6r scalaires du coset (4.69) correspondant a des
lignes de Wilson. Ces scalaires se notent Y}/, ot I représente la dimension interne et I'indice k
prend ses valeurs dans la sous-algebre de Cartan du groupe de jauge. Un choix arbitraire de
lignes de Wilson brise la symétrie SO(6) ~ SU(4) présente dans la forme (4.69) au moins en
SU(4) — SU(2) x SU(2)" x U(1). Or, ce SU(4) n’est autre que la R-symétrie de N'=4; on a
donc partiellement brisé la supersymétrie & N' = 2.

La brisure par lignes de Wilson est aussi visible dans 1’expression du superpotentiel. Rappelons
que pour des cosets de la forme SO(2,2 + n), la fonction de Kéahler prend la forme

G = —log [(T LTYWU +0) — (4 +75)? (4.78)

devient dans la limite de petites lignes de Wilson

(y' +7')?
(T +T)(U +U)

G = —log |(T+T)(U + U)} + (4.79)

(v'y")? V')’ + (%)
(T+T)YU+U) (T+T)(U+U)
Les termes ainsi apparus sont proportionnels a la masse du gravitino, et font partie de la
catégorie des termes de brisure douce. Le terme en yy fournit un terme cinétique minimal pour

les lignes de Wilson y, tandis que les parties purement analytique et purement anti-analytique
donnent des contributions au superpotentiel de 1'ordre de la masse de brisure de supersymétrie.

= —log [(T+T)(U+U) +2

4.5 Construction fermionique

4.5.1 Introduction

Dans cette section, on va présenter un mécanisme de construction de théories de supercordes
dans un espace-temps a quatre dimensions, développé dans | , ], ainsi que dans
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[ ]. Les modeles obtenus généralisent en quelque sorte les théories hétérotiques, en ce
qu’ils utilisent comme degrés de liberté supplémentaires des fermions libres; toutefois, cette
construction donne acceés a une bien plus grande variété de modeles, donnant entre autres acces
a une grande variété de groupes de jauge. Ceci est particulierement intéressant, par exemple
en vue de la construction de théories grand-unifiées a partir de modeles de cordes; en effet,
les groupes habituellement considérés dans les modeles de grande unification, tels SO(10) ou
SU(5), peuvent ici étre réalisés par une construction naturelle.

On verra aussi que ces mécanismes reproduisent des compactifications usuelles pour des valeurs
particulieres des modules internes : on retrouve ainsi la compactification toroidale au point
fermionique, ainsi que les compactifications sur des orbifolds. Mais ce mécanisme permet de
réaliser aussi des “compactifications non-géométriques”, tels les orbifolds asymétriques. Ces
orbifolds asymétriques sont particulierement utiles en vue de la construction de supergravités
avec un nombre arbitraire de supersymétries : on peut ainsi explicitement réaliser des théories
avec N = 6,5, 3, qui sont difficiles a obtenir par les compactifications et orbifolds usuels.

On sait qu'un boson libre a une charge centrale 1, et un fermion libre une charge centrale 1/2.
Une théorie de cordes bosoniques en quatre dimensions a donc ¢, = 4, ce qui nécessite, pour
annuler la charge centrale due aux fantomes de Faddeev-Popov, ’ajout dans la théorie de degrés
de liberté supplémentaires formant une théorie conforme de charge 22.

De méme, pour une théorie supersymétrique, ’annulation de I’anomalie conforme des fantomes
et superfantomes nécessite l'ajout de degrés de liberté internes vérifiant c¢;,; = 9.

Dans les modeles usuels de Type I, ot la supersymétrie est présente a gauche et a droite au
niveau de la feuille d’univers, le systeme de charges

c=¢=9

est réalisé par 6 bosons et fermions correspondant aux dimensions qui seront compactifiées.
Dans les modeles hétérotiques, ou la supersymétrie n’a lieu que du coté gauche, on ajoute un
systeme de charges

c=9¢=22=6+16

sous la forme de 6 bosons (compacts) et 6 fermions coté gauche, et 6 bosons (compacts) et
32 fermions internes coté droit. Le choix des conditions au bord pour ces fermions détermine
ensuite le groupe de jauge associé, SO(32) ou Fg X Ej.

Dans les constructions de fermions libres, on comble le déficit de charge centrale uniquement
par 'ajout de fermions libres. Ainsi, une théorie supersymétrique sera composée des bosons
et fermions d’espace-temps auxquels on ajoute 18 fermions internes ; et une théorie bosonique
comprendra les bosons d’espace-temps, auxquels s’ajouteront 44 fermions internes. Tout comme
dans le cas de la théorie hétérotique, le contenu de la théorie ainsi construite va étre donné par
I’ensemble des conditions au bord considérées pour les fermions.

On expose le principe de la construction pour des théories hétérotiques; il est immédiat de
I’étendre aux théories de Type II.

La fonction de partition a une boucle et le spectre de la théorie vont résulter d’une description
des différentes structures de spin admissibles pour tous les fermions introduits En suivant les
notations standard, ’ensemble de ces fermions, noté F', est égal a :
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F={" Xy o' | gh o ¢ (4.80)
Ici, ¥*, p = 2,3 représentent les deux fermions du céne de lumiere dans I'espace-temps a
quatre dimensions ; dans le cadre dans lequel nous nous placons, la contribution a la fonction de
partition des deux autres fermions d’espace-temps est compensée par celle des super-fantomes
(de méme, la contribution de deux bosons d’espace-temps sera compensé par celle des fantomes).
Les autres notations mettent en évidence le fait que la construction fermionique peut se voir
comme une fermionisation des directions internes de la théorie a dix dimensions : les bosons
internes X!, 90X sont alors modélisés sous la forme de deux fermions gauches y’, w’ et deux
fermions droits 3/, @!. Il est important de noter que cette équivalence entre compactification de
la théorie 10D et construction fermionique n’a lieu qu’au point fermionique. Par exemple, pour
une dimension compactifiée sur un cercle, I’égalité entre les fonctions de partition a une boucle
d’un boson compact

d*r 9
Zy = 2 \/F Zexp <—|m + nT| ) (4.81)

et celle d'un fermion complexe gauche + 1 fermion complexe droit (ou, de maniére équivalente,
de deux fermions réels gauches + 2 droits)

2

Zf_/FdTZQT;% 195(}7(;) (4.82)

est valable pour R = \/a’/2, qui est le point fermionique de S'. Toutefois il est important de
noter le point suivant : dans des constructions d’orbifold a action non-libre, les secteurs twistés
“vivent” au point fixes, et donc ne “voient” pas la géométrie de I'espace de compactification.
Ainsi, quels que soient les modules de compactification orbifold d’une théorie, les secteurs twistés
seront exactement décrits par le formalisme de construction fermionique.

La fonction de partition a une boucle de la théorie va s’écrire comme une combinaison linéaire

(on omettra & partir de maintenant l'intégration sur le module du tore 7) :

11
Z = T—QW Z Ciup) 23] (4.83)
(a,B)€E

ou =, baptisé groupe de parités est un ensemble de conditions aux limites pour les fermions de
F. Pour deux éléments o, 3 de Z, la fonction de partition Z[§] correspondante est obtenue en
rendant les fermions de « périodiques sur le cycle “1” du tore (ce qui détermine la structure
Ramond ou Neveu-Schwarz) et les fermions de (3 périodiques sur le cycle “7” du tore (voir la
figure 3.5)
L’expression de Z[§] est la suivante :

9 29 1/2 J 1/2
z15) = 11 (R;M) < 11 ( [,7 ]) - (4.84)
pEFL PEFR

On a séparé les contributions des fermions gauches et droits ; comme on I’a remarqué précédemmenta(¢)
vaut 1 si ¢ € a et 0 sinon; de méme b(¢p) vaut 1 si ¢ € 5 et 0 sinon.
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Il reste donc a fixer des conditions a la fois sur ’ensemble = de toutes les conditions aux limites
acceptables dans le cadre de notre modele, et les coefficients Cy3). Pour cela, on demande
premierement la préservation des propriétés de factorisation de 'amplitude a plusieurs boucles
lorsque 'on considére uniquement la propagation du vide dans la feuille d’univers (ce qui
correspond a faire tendre la distance entre les différentes boucles vers I'infini). Il faut aussi
imposer I'invariance modulaire des fonctions de partition a n’importe quel ordre en perturbation
(en fait, les propriétés de factorisation d’amplitudes font que I'on n’a qu’a explorer le tore (genre
1) et le double tore (genre 2)).

Les contraintes résultant de ces exigences sont alors les suivantes :

e Les éléments de = doivent respecter l'invariance de Lorentz : aucun ensemble ne peut contenir
qu'un seul des deux ¥*.
De plus, les éléments de = doivent étre définis de maniere a ce que les conditions au bord du
courant de supersymétrie

Tp =P 0X, + > x'y'w! (4.85)
1

soient bien définies. Pour formaliser cette contrainte, on définit, pour un ensemble o € = le
signe J, comme suit '? : si Y* € «, alors §, = —1; sinon J, = 1. Relativement aux fermions
d’espace-temps, J,, est donc le facteur spin-statistique associé a « (rappelons que si " € «,
les états correspondants sont construits sur le vide de Ramond des fermions #* : on obtient
donc des états se transformant dans les représentations spinorielles du groupe de Lorentz
SO(3,1)).

On vérifie alors que la condition évoquée se traduit en

Vaes, ()T = 6,Tr(—)°. (4.86)

Dans l'expression précédente, on a noté (—)* l'opérateur de comptage des fermions de
I'ensemble « (c’est-a-dire, 'opérateur anticommutant avec les fermions de « et commutant
avec les autres).

Ainsi, par exemple, si un ensemble a contient les ¢*, §, = —1 et cet ensemble devra contenir,
pour tout I, 1 ou 3 fermions parmi (x%,y!,w’).

e Va,fBek (C(a‘ﬁ))2 =1.

e On munit P(F), 'ensemble des parties de F', d'une loi de groupe, notée additivement,
correspondant a la différence symétrique ' :

at+pB=aUpf—-—anp (4.87)
On obtient une théorie consistante si et seulement si = est un sous-groupe de P(F) pour cette
loi, qui contient F. De plus, si on note des générateurs (F,b,...,b,) les générateurs de =,

alors les conditions suivantes doivent étre remplies :

12. Pour les théories de Type 11, §,, vaudra 1 si (¥ € a A P* € a) ou (Y* ¢ o A " ¢ @), et —1 sinon.
13. On note qu’avec cette loi, 'ensemble vide est ’élément neutre, chaque élément b vérifie b.b = &, et que F.b
est le complémentaire de b.

7



n(b;) =0 [8] (4.88)

ou n(b) = np(b) — ng(b) est la différence entre le nombre de fermions gauches et le nombre de
fermions droits de I’ensemble b.

e L’ensemble des coefficients C,|3) est entierement déterminé par les coefficients Cpjry, C(rp,)

. . — P NN+ 4 g \
et Ciy,pp;) pour @ > j. On a donc, pour = engendré par (F,by,...,b,), 27 2 modeles de
cordes consistants.

Les coefficients restants se déduisent par les regles suivantes :

Clojp) =1 (4.91)

Va €z, Cuajg) = 0o (4.92)

¥V (2,8,7) € 2%, Clajpry) = 0aCla}p)Clal) (4.93)
¥ (@,8) € 2%, Clappy = T Clga) (4.94)

La résolution de ces contraintes fournit le modele le plus général de supercordes a quatre
dimensions basées sur des fermions libres. Munis de ces coefficients, nous construisons maintenant
la fonction de partition du modele et le spectre associé.

4.5.2 Construction du spectre et projections GGSO

Etant donné un groupe de parités =, on montre que la fonction de partition s’écrit
|
Z = Z O H B (1 + 5a0(a|bi)(—)bi) RN ST, (4.95)
a€Z =0

Cette expression se comprend comme suit : pour chaque «, on calcule le bloc de la fonction de
partition en effectuant la trace habituelle, sur les états ou les fermions de « sont en conditions
de Ramond et les autres en conditions de Neveu-Schwarz ; on insére ensuite dans la trace les
facteurs 3 (1 + 5aC(a‘bi)(—)bi).
Dans la plupart des cas, on s’intéresse aux états sans masse de la théorie. On va donc s’intéresser
aux secteurs R*NSF® pouvant donner des états sans masse; ces secteurs peuvent avoir une
énergie de vide nulle, ou bien contenir des états excités de masse nulle. Dans la cadre d’une
théorie hétérotique, les énergies du vide du secteur R*N ST s’écrivent

1
I AC

nr(a)
2 16 '

MpE=—1+ 1

(4.96)

78



On va voir que I'expression des coefficients C(,|3) conduit a une généralisation naturelle de la
projection GSO. On parle de projection GSO généralisée (GGSO).

On voit donc que chaque générateur b; de = génere une projection de type GSO : dans le secteur
RN SFe seuls subsisteront les états pour lesquels

Vb, (=) = 64Calpn)- (4.97)

La projection relative a S (resp., en type II, les deux projections relatives a S et S ) n’est autre
que la projection GSO habituelle (=) (resp. (=) et (—)™®). On peut par exemple vérifier son
effet sur le secteur purement Neveu-Schwarz : dans ce cas o = @ (qui appartient toujours a =
car F' € Z), et on a alors C(g|s) = dg = —1. Notre projection s’écrit alors

(=) = —1. (4.98)

On note de plus que les états fondamentaux graviton/tenseur antisymétrique/dilaton survivent
toujours aux projections : dans le cas hétérotique, ces états sont issus du secteur RZN ST, que
I'on note |9) :

G, B, ® : "90X"|2). (4.99)

En utilisant (4.92), on voit qu’avec o = &, la condition de survie (4.97) est remplie par les états
ci-dessus quelque soit b;.

4.5.3 Reproduction de constructions précédentes

Nous allons développer un premier exemple pour illustrer de maniere simple comment se
reproduit la compactification de la théorie hétérotique Eg X Eg de maniére intuitive. Notamment,
la séparation des 32 fermions internes en deux blocs de 16, et la séparation des contraintes GSO
associées se fait naturellement. Dans la section suivante, en lieu et place de la compactification
sur 7%, nous envisagerons une compactification sur T74/Zy x T?. Enfin, nous examinerons la
construction d’un orbifold & action non-libre, et nous verrons comment les propriétés intéressantes
(notamment celle de brisure spontanée de supersymétrie) apparaissent dans ce modele.

Théorie hétérotique Ey x Ey compactifiée sur 7% au point fermionique

La construction se fait en deux étapes. Il faut d’abord choisir une base du groupe de parités =
qui va définir les différents secteurs av de la théorie ; ensuite il nous faudra spécifier les regles de
projection GGSO en donnant les coefficients Cq3).

Dans une théorie supersymétrique, le groupe de parité, doit contenir & et S, ou S est un
ensemble de 8 fermions gauches contenant les deux fermions du cone de lumiere ¥*. En effet,
la théorie doit comporter un secteur de pur Neveu-Schwarz, qui sera, dans les notations de la
section précédente, donné par B2 NST'; on a également besoin de 1’état donnant le gravitino,
dont on a vu dans la section 3.4 qu’il se construisait a partir d'un vide ou les 8 fermions du cone
de lumiere a dix dimensions sont en conditions de Ramond. En toute généralité, on peut choisir

S = {¢" X"} (4.100)
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Le tore T pris au point fermionique correspond, par fermionisation, & 12 fermions gauches et
12 fermions droits. L’ensemble décrivant ce tore est donc

t = {yl...G7 wl...6|g1...67 @1"'6} (4101)

Il nous faut enfin décrire les 32 fermions A de la théorie hétérotique. On a vu que la construction
de la théorie Eg x Ejg sépare ces 32 fermions en deux groupes de 16 qui doivent avoir les mémes
conditions aux limites, et demande deux projections “GSO”. Il est donc naturel d’ajouter a =
les ensembles

ey = {A10 0 ey = {AIT32) (4.102)

On vérifie alors que la base obtenue {F), S,t, ey, es} vérifie les conditions de consistance (4.86),
(4.88), (4.89) et (4.90).

On construit maintenant le spectre sans masse de la théorie. Il faut pour cela décrire tous les
ensembles a € = dont le secteur correspondant R*NSF® peut contenir des états sans masse.
En examinant la formule (4.96), on voit que les ensembles en question doivent contenir 0 ou 8
fermions gauches et/ou 0,8 ou 16 fermions droits.

On trouve les secteurs définis par les ensembles suivants :

a; S; e;; S+e; ey Ses. (4.103)

Comme on I’a vu, les degrés de liberté bosoniques sont construits sur les secteurs { R* N .S¥ | y# ¢
a}, et les fermions sur les secteurs { R*N.S™ | # € a}. Il est en fait aisé de voir que le partenaire
supersymétriques d’un état du secteur « est a chercher dans le secteur Sa. Pour cette raison,
nous ne décrirons que le spectre bosonique de la théorie, donné par les ensembles &, eq, es.

Le secteur RN ST est composé d’états représentés par des opérateurs de vertex agissant sur
un état de vide ou les fermions de « sont en conditions de Ramond et les autres en conditions
de Neveu-Schwarz. On notera un tel vide |a) ; I'état |@) est donc le vide de pur Neveu-Schwarz.
En imposant les projections GGSO suivantes '

(D)= =1 ) =(=)=()=1, (4.104)
le spectre de la théorie est le suivant : en partant du vide de pur Neveu-Schwarz |@), on trouve
le multiplet graviton/2-forme/dilaton commun & toutes les théories, ainsi que les bosons de jauge
de SO(16); C (Fg); et SO(16)y C (Eg)s. A partir des vides |e) et |es), on géneére les bosons de
jauge de Spin(SO(16),) et Spin(SO(16)s), qui completent le groupe de jauge en (Eg); X (Eg)a.
Les secteurs supersymétriques |S), [Se;) et |Ses) donnent quant a eux les gauginos associés, ainsi
que les états fermioniques du multiplet gravitationnel. Enfin, un groupe de jauge additionnel
SO(12) apparait, construit & partir des vertex des six dimensions internes fermionisées en y’, w’;
ceci réalise 1'extension non-abélienne de la jauge U(1)° qui existe au point fermionique.

14. Ces projections ont une forme simplifiée : en toute généralité, la condition de survie d'un état (4.97) dépend
de l'ensemble créant la projection (b; dans (4.97)) et du secteur dans lequel se trouve 1'état (o dans (4.97)). Ici,
on adopte des conditions indépendantes de «; ce choix est toutefois consistant.
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Orbifold & action non-libre 7*/Z,

Cet orbifold est le quotientage de la transformation Z, agissant sur 4 coordonnées X678 et
leurs partenaires fermioniques %78 par X + — X, 1) — —). Traduits en termes de fermions
libres, ces degrés de liberté correspondent aux fermions suivants

y' W'y @t i =3,4,5,6; X', i=13,4,5,6. (4.105)

Nous introduisons alors ’ensemble suivant :

b= {X3,4,5,6’y3,4,5,6 ’ g3,4,5,6, 5\1,2,3,4} (4.106)

Notons que seuls des fermions de type y,y sont éléments de b : en effet, I'inclusion des deux
fermions vy, w dans I’ensemble ferait que yw = 10X est invariant sous la transformation que 'on
cherche a réaliser ; au contraire, en prenant uniquement les y, 90X — —9X comme désiré.

On note également la présence de fermions A réalisant le groupe de jauge SO(32) ou Eg x Eg.
Cette inclusion est nécessaire pour préserver 'invariance modulaire de la fonction de partition,
exigence qui se traduit dans notre cadre par le respect des regles de la construction fermionique
sur les cardinaux des ensembles considérés; comme nous l’avons signalé, ce mécanisme est celui
de l'inclusion de la connection de spin dans la connection de jauge. De maniere générale, la
compactification des théories hétérotiques sur des orbifolds brise le groupe de jauge.

Nous n’allons pas détailler tout le spectre sans masse du modele issu du groupe des parités généré
par I, S, b, e1, es. Nous retrouvons juste les caractéristiques usuelles de la compactification
d’orbifold, reformulée dans le langage de la construction fermionique.

e La supersymétrie du modele est explicitement brisée de N' = 4 vers N' = 2 : en effet, la
projection (—) élimine la moitié¢ des 8 hélicités du secteur 9X*|S) qui subsistaient apres les
projections (—)% et (—)F;

e Le groupe de jauge Fg x Eg est brisé en E7 x SU(2) x Eg. En effet, parmi les 248 bosons de
jauge du groupe Eg généré par les fermions A1 = e, qui s’écrivent soit comme éléments
de Adj(SO(16)), soit comme éléments de Spin(SO(16)), certains sont éliminés par (—)°. On
montre que les bosons de jauge restants forment effectivement E7 x SU(2). Le second facteur
FEy est quant a lui intact.

e Les états twistés apparaissent comme des champs de spin. L’adjonction de b dans la base
de 'ensemble des parités introduit le nouveau secteur |b), qui donne lieu a des états sans
masse. b induit aussi une nouvelle projection GSO généralisée. Parmi les 2% hélicités du
secteur |b), seules 2° survivent aux projections (—)?, (=), (=)¢'. En particulier, les états du
secteur |b) s’organisent en 16 secteurs, donnés par les 16 hélicités possibles du champ de spin
|x3456 y3156) @ |3456)  On a donc réécerit les vides twistés de T /Zy comme des vides de
Ramond.

Orbifold & action libre S*/Z,

Si 'on fermionise un boson X en deux fermions réels y,w, la transformation a action libre
X — X + 7 se traduit par y — —y,w — —w. L’ensemble a introduire dans une base de parités
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pour modéliser I'orbifold X* — X+ 7 est donc

Le secteur twisté de cet orbifold est alors caractérisé par I’adoption de conditions de Ramond
pour les fermions appartenant a e;. Ceci rend génériquement le vide massif '°. La encore, le vide
twisté est donné, au point fermionique, par un vide de Ramond.

15. La réalité est en fait plus complexe; les détails de la construction exposée dans le chapitre 5 et dans
[ | apporteront beaucoup de précisions sur les différentes possibilités envisageables.
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Chapitre 5

Dualité spineur—vecteur dans une
classe de modeles réalistes hétérotiques

N =1

Dans le chapitre précédent, nous avons donné plusieurs méthodes pour construire des théories
des cordes a quatre dimensions. Nous avons entre autres développé le formalisme des fermions
libres, qui permettent de reproduire de maniere systématique des orbifolds de type Zs ou Zg X Zs.
Dans ce chapitre, qui présente les travaux effectués dans la publication | ], nous al-
lons nous intéresser aux propriétés d’une classe de modeles quadri-dimensionnels basés sur
la théorie des cordes hétérotiques. Nous mettrons ’accent sur 'intérét phénoménologique de
telles constructions; en effet, de nombreuses théories parmi les plus réalistes obtenues a I’heure
actuelle ont été obtenues par cette construction (les exemples sont nombreux : voir par exemple

[ ) ) ) ) ) ])

L’intérét de ces modeles réside dans les propriétés suivantes :

e Premierement, une compactification de type Calabi-Yau ou Zy X Z, fournit une supersymétrie
N =1 a quatre dimensions, ce qui est 'hypothése privilégiée pour la phénoménologie.

e Deuxiemement, au contraire des théories de Type II, les théories hétérotiques sont natu-
rellement équipées d’un groupe de jauge non-abélien. Les contraintes tres restrictives de
consistance de la théorie des cordes n’autorisent que deux groupes de jauge a dix dimensions
(comme nous 'avons signalé, ces deux groupes de jauge sont en fait reliés par déformation
continue du réseau de Narain). Ceci donne un fort pouvoir prédictif a la théorie des cordes;
il est tres agréable de constater la présence dans les candidats du groupe Eg X Fg, qui est
particulierement intéressant. La procédure “canonique” de compactification le brise en effet
en Fjg, groupe qui a des bonnes propriétés en perspective de la construction d’une théorie de
grande unification (entre autres, Fg admet des représentations chirales). Il est en fait facile
de construire des théories SO(10) en partant de théories Eg; c’est la procédure que nous
adapterons dans notre travail.

e Troisiemement, ces constructions fournissent une classe privilégiée de modeles réalistes.
Notamment, il a été montré statistiquement dans | ] que parmi les ~ 10'% modeles
que nous considérons, environ 15% ont la propriété d’avoir trois familles chirales. Il a par
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contre été impossible jusqu’a présent de dériver des modeles a 3 familles par compactification
sur des espaces de Calabi-Yau ou sur des orbifolds symétriques de type Zs x Zs. Les espaces
de Calabi-Yau posent de plus d’autres problemes phénoménologiques, comme le fait qu’il est
impossible de générer un terme de brisure douce de supersymétrie donnant une masse au
Higgs.

e Enfin, le schéma de compactification sur des orbifolds Zy x Zs donne naturellement naissance
a de la matiére chirale N’ = 1, contenue dans les trois secteurs twistés de I'orbifold. Le fait
que cette classe d’orbifolds admette trois “plans” de secteurs twistés permet de développer
des modeles a 3 familles de maniere extrémement naturelle (notamment en conservant une
famille par plan).

Malgré le cadre apparemment tres restrictif des modeles de fermions libres, ces constructions ont
en fait une grande portée : en effet, nous avons souligné dans le chapitre précédent que la forme
et le contenu des secteurs twistés d’un orbifold ne dépend pas de la géométrie de I'espace de
compactification. Les caractéristiques des secteurs twistés que nous décrirons au point fermionique
seront donc valables en un point arbitraire de ’espace des modules de compactification. Il se
trouve justement que ces secteurs twistés vont nous donner les représentations correspondant a
la matiere chirale indispensable a un modele réaliste.

Nous réalisons en termes de fermions libres une classe générale d’orbifolds Zs X Zs. Ces orbifolds
peuvent étre vus comme des limites singulieres d’espaces géométriques. Dans certains cas de
figure, le groupe de jauge Eg n’est pas brisé : les espaces correspondants seront des Calabi-Yau.
Toutefois, dans la majorité des modeles que nous rencontrerons, Eg se brise en SO(10) x U(1).
La géométrie correspondante n’est alors plus de type Calabi-Yau ; une algebre superconforme
est brisée par la compactification.

Nos constructions font naturellement apparaitre le groupe de grande unification SO(10). Les
secteurs twistés d'un modele SO(10) fournissent de la matiere, sous la forme de représentations
vectorielles de SO(10), notées 10; et de représentations spinorielles (anti-spinorielles) de SO(10),
notées 16 (16). Dans le cas d'une théorie Fg, le fait que la matiére s’arrange en représentations
de Es implique que le modele comporte autant que vecteurs que de spineurs (on sous-entend
ici : spineurs + anti-spineurs). Quand la symétrie Eg est brisée, cette propriété peut subsister,
avec des conséquences intéressantes ; toutefois, elle est en général perdue.

On obtient donc un ensembles de modeles ou, en général N(g gy # Ny. On a alors un résultat
de dualité sur I’ensemble de ces modeles : s’il existe un modele avec V' vecteurs et S spineurs,
alors il existe aussi un modele avec S vecteurs et V' spineurs. Le travail effectué dans | ]
consiste alors a prouver cette dualité, en utilisant le fait que les ensembles introduits dans la
base des parités des constructions fermioniques permettent de générer des orbifolds a action
libre donnant des compactifications a la Scherk-Schwarz. Les orbifolds a action libre agissent
sur les différents secteurs twistés de la théorie, et leur action détermine quelle(s) représentations
de SO(10) vont subsister dans chaque secteur twisté. L’opération de dualité consistera alors a
changer 'effet de ces projections, de maniere a changer le spectre de la théorie en son dual. On
notera que cette opération n’est pas unique : il existe plusieurs duaux a un modele donné.

Le plan de ce chapitre sera le suivant. Dans un premier temps, nous donnerons quelques rappels
sur les théories de grande unification ; nous nous pencherons particulierement sur les théories
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basées sur SO(10), qui sont celles que nous manierons plus tard. Nous aborderons également le
problemes des anomalies, chirale et gravitationnelle. Dans un second temps, nous rappellerons le
mécanisme d’apparition de la jauge Ejg, résultant de 'inclusion de la connection de spin dans la
connection de jauge et des propriétés des espaces de Calabi-Yau. En particulier, nous insisterons
sur la présence d’une algebre superconforme N = (2,2) dans la théorie lorsque la jauge est Eg.
Nous détaillerons ensuite le processus de la construction fermionique, en donnant les expressions
et le role des différents éléments de la base des parités. Un point central de notre raisonnement
sera d’identifier la présence de ’algebre superconforme a une correspondance entre secteurs de
la théorie, dénommée “z-map ”. Cette xz-map pourra étre brisée par les projections orbifold
contenues dans la théorie, ce qui conduira a la brisure de la jauge Fg et a I’apparition de modeles
ne comprenant pas le méme nombre de spineurs et de vecteurs de SO(10). L’identification des
projections brisant la x-map nous amenera a formuler les regles de dualité.

Deux aspects intéressants de ce travail seront enfin mis en relief. On tissera premierement un
parallele entre cette dualité et la dualité miroir que 'on a évoquée dans la section 4.1, et on
discutera de I'intérét d'une telle structure sur I’ensemble des vides de la théorie des cordes. Nous
nous intéresserons enfin a ’existence de modeles auto-duaux, mais néanmoins dépourvus de
symétrie Ejg; parmi ces modeles, on notera 'existence de modeles dépourvus d’anomalie.

5.1 Grande unification et groupe SO(10)

La recherche de théories grand-unifiées est motivée par le fait que, sous l'effet de la procédure de
renormalisation, les trajectoires des trois constantes de couplage du groupe de jauge du modele
standard non supersymétrique SU(3)c x SU(2), x U(1)y sont presque concourantes a une
échelle d’énergie élevée (E ~ 10 GeV). De plus, lorsqu’on ajoute I'hypothése de supersymétrie
pour considérer le modéle standard supersymétrique minimal, la coincidence des trois constantes
de couplage est bien plus précise que dans le cas non-supersymétrique, et a lieu cette fois a
I'échelle de grande unification Mayr ~ 10* GeV. Ceci suggere qu’a cette échelle, le groupe de
jauge est unifié, et que le groupe de jauge observé a basse énergie est le résultat de brisures
spontanées de la jauge. La propriété de concourance des trajectoires de couplage est d’ailleurs
une autre motivation forte pour I'introduction de la supersymétrie.

Si le groupe de jauge visible est un sous-groupe du groupe de jauge unifié Ggyr, les différentes
particules observées doivent s’arranger en des représentations de Ggyr. 1l existe effectivement des
groupes tels que cet arrangement existe. Nous présentons (tres!) rapidement ci-dessous le modele
standard et son contenu de matiere, que nous réarrangerons par la suite en représentations du
groupe SO(10).

Le modele standard de la physique des particules modélisant les interactions faible, forte, et
électro-magnétique est une théorie de jauge basée sur le groupe

La symétrie de jauge électro-faible SU(2), x U(1)y est spontanément brisée a basse énergie
par le mécanisme de Higgs, dans lequel un champ scalaire, dit boson de Higgs, vivant dans une
certaine représentation du groupe de jauge, acquiert une valeur dans le vide non-nulle, et génere
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de ce fait des termes de masse pour les générateurs du groupe de jauge qui ne laissent pas ce
vide invariant. Ainsi, sur les 4 bosons de jauge W}*3, B, du groupe SU(2); x U(1)y, trois
deviennent massifs, et la seule partie visible & basse énergie est I’électromagnétisme U(1)ep,,
dont le boson de jauge sans masse est le photon A,,, obtenu comme combinaison linéaire de
Wj’ et B,. Le mécanisme de Higgs donne également une masse aux quarks et aux leptons de la
théorie.

Le spectre de matiere du modele standard se sépare en trois générations, notées e, u, 7. Le
contenu d’une génération est le suivant (on note entre parentheses les représentations de SU(3)
et SU(2);, correspondantes, et en indice I'hypercharge ' sous U(1)y) :

quarks gauches (ur,dr) = (3,2)1/6;

quarks droits ur = (3,1)_9/3 et dg = (3,1)1/3;
électron/neutrino gauche (er,ve) = (1,2)_1/2;
électron droit eg = (1,1);.

A cela, il faut ajouter le doublet de Higgs et son conjugué, qui fournissent les représentations
(1,2)41/0-

Les dernieres observations indiquant la non-nullité de la masse du neutrino, il convient d’en
rendre compte dans le modeéle standard en introduisant un neutrino droit ? sous la forme dun
singlet (1,1)o.

Les deux candidats principaux de groupe de grande unification sont SU(5) et SO(10). En effet, il
est possible de regrouper les représentations du modele standard contenues dans une génération
en deux représentations de SU(5) décomposées sous SU(5) — Ggyy :

10 = (3,2)1/6 ® (3,1) a3 @ (1, 1), (5.2)
5=(3,1)13 (1,2)_1.

De plus, apres introduction dans la théorie du neutrino droit, on peut en fait arranger toute
une génération dans une représentation spinorielle de SO(10). En effet, sous SO(10) — SU(5),
onal6=10®5® 1, ce qui donne finalement sous SO(10) — Ggp

16 = (37 2)1/6 @ (ga 1)—2/3 ® (17 1)1 ©® (37 1>1/3 D (17 2)—1/2 D (17 1)0- (53)

Ce réarrangement est un signe supplémentaire tres fort de la pertinence d’une telle unification
de la jauge. Le doublet de Higgs trouve aussi sa place dans le cadre de 'unification SO(10), de
par la décomposition du multiplet vectoriel 10 sous SO(10) — Ggyy :

10 - (1, 2)1/2 EB (]_, 2)_1/2 EB (3, 1)_1/3 EB (g, 1)1/3. (54)

On remarque toutefois que 'apparition de bosons de Higgs dans le cadre d’une théorie unifiée
SO(10) fait apparaitre des triplets de couleur. Ceci pose un probléeme : si le doublet de Higgs
se manifeste a basse énergie par la brisure de jauge électro-faible, il n’existe pas de triplets de
couleur ayant la méme échelle de masse (ceci impliquerait une amplitude de désintégration du

1. définie de sorte que Qep, =T, +Y
2. Un fermion chiral ne peut pas étre massif : il n’est en effet pas possible de générer un terme de masse
invariant de jauge. Le mécanisme de Higgs permet toutefois de remédier a ce probleme.
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proton incompatible avec les observations). Il faut donc introduire un décalage de masse entre
le doublet de Higgs et le triplet de Higgs. Ceci peut étre réalisé par I'inclusion dans la théorie
de lignes de Wilson discretes.

Une théorie de grande unification basée sur le groupe SO(10) devra donc, pour étre réaliste,
étre chirale ®. Chaque représentation spinorielle fournira une génération, et les bosons de Higgs
proviendront de multiplets vectoriels.

Nous allons obtenir des théories ayant pour groupe de jauge SO(10) en passant par des
théories Fg. Nous détaillerons dans le paragraphe suivant ’apparition naturelle de Eg dans la
compactification des cordes hétérotiques. Certaines propriétés de Eg font en fait de lui un groupe
de grande unification viable : il possede en effet des représentations spinorielles complexes qui
rendent possible I’écriture d’une théorie chirale. De plus, Eg se brise naturellement en les autres
candidats a la grande unification comme

Eg — SO(10) x U(1) — SU(5) x U(1)? (5.5)

Enfin, les théories de grande unification basées sur Fg sont exemptes d’anomalies, gravitationnelle
ou chirale.

Anomalies de jauge, et conditions de leur absence

Les anomalies de jauge sont une brisure quantique de I'invariance de jauge classique; elles ré-
sultent de la non-invariance de la mesure d’intégration dans l'intégrale de chemin. Ce phénomene
signe 'arrét de mort d’une théorie quantique : en effet, en présence d’anomalies, des conditions
de consistance fortes comme 1'unitarité ou I’élimination des états de norme négative peuvent
étre perdues. Il convient donc d’annuler ces anomalies.

Les anomalies qui nous intéresseront se classent en deux especes, I’anomalie chirale et ’anomalie
gravitationnelle (nous renvoyons par exemple au chapitre 19 de | ] pour une dérivation com-
plete de ces anomalies). Nous détaillons premierement les conditions d’apparition de ’anomalie
chirale.

L’apparition de I’anomalie chirale dans les théories de jauge résulte de la non-conservation du
courant de jauge

- 14+4°
e = Py ( - ) 9. (5.6)
Ici, ¥ est un fermion de Dirac, et le couplage est chiral en ce sens qu’il sélectionne une chiralité via
Iinsertion du projecteur. t* parcourt les générateurs du groupe de jauge dans une représentation
chirale. Des calculs assez fastidieux montrent que la valeur moyenne de la divergence de ce

courant fait intervenir la trace suivante, prise sur la représentation chirale considérée, notée R :

Abe = rg [t{t", 17} ] (5.7)

3. Ceci est possible, car SO(10) admet bien des représentations chirales.
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La présence de ’anomalie chirale résulte de la non-nullité de cette derniere expression. En
particulier, on montre que si le groupe de jauge n’admet que des représentations réelles (ie telles
que les générateurs t% de la représentation soient égaux a une transformation unitaire pres aux
représentations de la représentation conjuguée t% = —(t%). Cette conclusion reste vraie dans
le cas de représentations pseudo-réelles . La présence d’anomalies a donc seulement lieu pour
des groupes de jauge admettant des représentations complexes. On trouve les groupes de Lie
suivants :

Ul); SU(n); SO(4n—+2); FEs. (5.8)

I1 se trouve en fait que pour les groupes SO(4n + 2) et Eg, les anomalies chirale sont nulles.
Nous nous intéresserons souvent aux conditions d’annulation de I’anomalie chirale U(1) : on
voit que dans ce cas, celle-ci est nulle pour Y5 ¢¢ = 0.

L’anomalie gravitationnelle [ | intervient, quant a elle, lors du couplage d’une théorie
de jauge a la gravitation et rend inconsistante ce couplage (I'une des deux hypotheses de
conservation de l'invariance de jauge et de I'invariance sous les difféomorphismes est mise en
défaut). Cette anomalie s’annule des que les traces des générateurs trg[t?] sont nulles. Ceci est
le cas des que la jauge est non-abélienne ; 'anomalie gravitationnelle ne concerne donc que des
facteurs U(1) du groupe de jauge, et la condition d’annulation est donc 5 ¢q; = 0.

La brisure d’une symétrie de jauge non-porteuse d’anomalies vers des groupes contenant des
facteurs potentiellement porteurs d’anomalie est intéressante car elle peut annuler automati-
quement cette anomalie, si les représentations présentes apres brisure peuvent s’arranger en
représentations du groupe “parent”. Ce n’est toutefois pas une regle générale, et nous exami-
nerons les occurrences et les conditions d’une telle annulation des anomalies U(1) dans nos
modeles.

Nous devons encore souligner un point important | ] : en théorie des supercordes, il se
trouve en fait qu'un groupe U(1) porteur d’anomalie génere, a I'ordre d’une boucle, un terme
de Fayet-Iliopoulos dans I’action effective a basse énergie. Le vide de la théorie peut alors étre
déstabilisé par la présence de tachyons; de plus, le groupe porteur d’anomalie est spontanément
brisé, car la correction de I'action effective, prenant la forme d'un terme (3, ¢;)B A F, ou B est
le tenseur antisymétrique et F' la courbure du champ de jauge U(1), donne une masse au boson
de jauge correspondant.

5.2 Méthode de construction et propriétés générales

L’apparition d’'une jauge Fg dans les compactifications de la théorie Eg x Eg sur des espaces de
Calabi-Yau est un processus bien connu. Nous en reproduisons toutefois ici les détails; nous
tisserons le parallele entre cette construction et les compactification sur des orbifolds Zsy X Zs.
Ceci nous permettra d’une part de comprendre 1’apparition de 1’algebre superconforme (2, 2) lors
de la compactification, et son réle dans la structure de la jauge. Nous en déduirons la marche a

4. La nuance entre représentations réelles et pseudo-réelles ne nous concernera pas dans le cadre de notre
travail.
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suivre pour briser Eg en SO(10); tout cela sera facilement traduit en termes de construction
fermionique.

La compactification sur des espaces de Calabi-Yau des théories de Type II, comme on l'a
vu, préserve une supersymétrie N’ = 2 a quatre dimensions. Une de ces deux supersymétries
vient du c6té gauche de la théorie, et 'autre du coté droit. Cette propriété résulte du fait que
I’holonomie SU(3) permet 'existence d’un spineur covariant ; ces supersymétries impliquent
[ ] la présence d’une structure d’algebre superconforme (2, 2g) sur la feuille d'univers.

Dans le cas de la théorie hétérotique, la partie droite ne donne plus lieu & une supersymétrie
d’espace-temps; elle fournit par contre le groupe de jauge de la théorie. La brisure de la
supersymétrie en Type Il va alors se traduire comme une brisure du groupe de jauge en
hétérotique. Ce mécanisme est connu sous le nom de plongement de la connection de spin dans
la connection de jauge. Une des conséquences de cette similitude est que la structure d’algebre
superconforme sera, elle, toujours présente dans la cas hétérotique.

Connection de spin et connection de jauge, et correspondance de Gepner

La connection de spin est définie dans le but d’écrire une théorie de relativité générale in-
cluant les spineurs. L’exigence d’invariance sous les difféomorphismes de la théorie est difficile
a maitriser en présence de degrés de liberté spinoriels, car il n’existe pas de représentations
spinorielles de GL(n,R). La solution consiste a définir en chaque point de la variété une té-
trade ey vérifiant g, = €y Nmn €y ou g, est la métrique sur la variété considérée. Cette
tétrade permet d’introduire localement des coordonnées plates, pour lesquelles la métrique
associée est la métrique de Minkowski ™. Les changements de coordonnées sont maintenant des

transformations du groupe de Lorentz SO(1,n—1), qui agissent sur les indices plats de la tétrade.

Le groupe de Lorentz, quant a lui, admet des représentations spinorielles construites a partir
des matrices gamma de 1'algebre de Clifford : sous une transformation infinitésimale ©™", 1 se
transforme comme

Y = O T, (5.9)

oul',, = %[Fm, Ty

Pour écrire une action rendant locale cette symétrie, il est alors nécessaire d’introduire un champ
de jauge et une dérivée covariante associée

On introduit alors la connection de spin w,™ par la procédure habituelle de jaugeage. Elle se
transforme comme

W T 49,0 4 (b, O™ (5.10)

et la dérivée covariante a considérer est

1 mn
Dy = 0+ LW Toun (5.11)
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Cette formulation fait apparaitre w;™ comme un boson de jauge dans la représentation adjointe
du groupe de Lorentz. Il est & noter que, dans le cas de la relativité générale® cette procédure
n’introduit pas de nouveau degré de liberté dans la théorie; la connection est déterminée de
maniere unique si 'on demande que la tétrade soit covariamment constante. En particulier, le
tenseur de Riemann R, ,, s’exprime uniquement en fonction de la connection de spin.

Nous voyons donc que l'introduction de la connection de spin n’est rien d’autre qu'un jaugeage
du groupe de Lorentz, tel qu’agissant sur les spineurs de la théorie. En particulier, si on
considere une théorie des cordes compactifiée sur une variété a six dimensions, d’un point de
vue quadri-dimensionnel, la composante interne de la connection de spin correspond a une
symétrie interne du systeme. Le groupe de Lorentz SO(9, 1) est brisé lors de la compactification
en SO(3,1) x SO(6), et les bosons de jauge du SO(6) interne sont les w/™.

La contrainte de préservation d'une supersymétrie lors d'une compactification sur un Calabi-Yau
sans torsion impose une relation non-triviale entre la connection de spin et la connection de
jauge. Plus précisément, il s’agit d’isoler un certain sous-groupe du groupe de jauge de la théorie
Ly x Eg, et de l'identifier a la connection de spin. Les transformations associées a la connection
de spin ne sont autres que les transformations que peut subir un spineur lors de son transport le
long de la variété, c’est-a-dire I’holonomie de la variété. Sans aucune hypothese, cette holonomie
est SO(6) et l'identification des connections brise Fg en SO(10) x SO(6); dans le cas d'un
Calabi-Yau, sur lequel il existe un spineur partout non nul, ce groupe d’holonomie est réduit a
SU(3), et on montre alors que le groupe de jauge résultant est Fg x SU(3). On voit donc que
I’holonomie a brisé le groupe de jauge du coté bosonique de la théorie hétérotique, alors qu’elle
brisait la R-symétrie en Type II.

Ce plongement de la connection de spin dans la connection de jauge est reproduit dans la
correspondance de Gepner, introduite par D. Gepner dans | ]. Cette correspondance,
aussi développée dans | ], permet un passage d’une théorie de Type II compactifiée a 4
dimensions a une théorie hétérotique, en remplacant, au niveau de la fonction de partition, les
caracteres issus des 8 fermions droits d’espace-temps présents du coté de la théorie de Type 11
par des caracteres qui vont rendre compte des 16 bosons droits que 'on droit introduire dans le
secteur bosonique de la théorie hétérotique pour annuler la charge centrale. Ce remplacement se
fait au niveau des théories conformes associées aux divers facteurs de la fonction de partition
et est dicté par des propriétés de conservation de l'invariance modulaire. Dans le cas que nous
utiliserons, les caracteres de SO(8) seront remplacés par des caracteres de Eg x Eg ou de SO(32).
On note immédiatement que cette correspondance reproduit naturellement les deux théories
hétérotiques consistantes a dix dimensions. La contrainte d’invariance modulaire demande aussi
que 'on change les signes devant ces caracteres : 1'effet est d’0ter les signes rendant compte
de la spin-statistique dans la fonction de Type II, ce qui est cohérent avec le fait que le coté
droit de sa partenaire hétérotique est purement bosonique du point de vue de I’espace-temps
quadri-dimensionnel.

Si I'on prend par exemple une théorie de Type IIB que I'on veut mapper sur une théorie Eg X Fj,
le changement a opérer est

5. En l'absence d’exigences de réalisme de la théorie, on peut tout a fait considérer la connection de spin
comme un nouveau champ de la théorie écrite.
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; S ()b [gr . (; %019 ms) (5.12)

La jauge Eg x Eg de la théorie a 10 dimensions est conservée a quatre dimensions dans le cas
d’une compactification sur 7°. Du c¢6té Type II, on a une supersymétrie N’ = 4 pour le coté
droit de la théorie. Si maintenant on compactifie sur une variété qui brise la supersymétrie,
I’holonomie devient non-triviale, et le mécanisme de plongement de la connection de spin dans
la connection de jauge va briser Eg x Eg. Le cas particulier de I'orbifold T°/Zy x Zs,, obtenu en
une limite singuliére de 1'espace des modules d’une variété de Calabi-Yau brise N =4 — N =1
sur le coté droit de la théorie de Type II. La correspondance de Gepner se fait maintenant par
la substitution

i st [a] § [e+m]  [aha) i o] (5.13)

b+g1 b+g2 b—g1—g2

l\D\»—t

ZZ_

h1791 0 h2,92=0 ,b=0

(5,5, 2 5 ol oo o)) « (5 2 96T)

et on vérifiera explicitement, via la construction fermionique, que la fonction de partltion obtenue
a la fin donne bien un facteur Eg dans le groupe de jauge.

Méme si, au contraire de la théorie de Type II, le c6té droit de la théorie hétérotique ne
présente pas de supersymétrie d’espace-temps, (a cause des changements du signe des caracteres
fermioniques lors de la correspondance), la structure d’algebre superconforme N = 2 est préservée
par la transformation de Gepner. Cette algebre superconforme va impliquer ’extension du groupe
de jauge SO(10) x U(1)? & Eg x U(1)?, par inclusion du U(1) diagonal & SO(10). Cette extension
est une conséquence de la structure d’anneau chiral des théories (2,2) superconformes, qui
implique que méme en 'absence de supersymétrie, il existe toujours des “spineurs” droits, qui,
par bosonisation, vont s’exprimer comme des champs de spin ayant des hélicités demi-entieres.
Ces hélicités ne sont autres que les charges de ces états sous les générateurs du sous-groupe
de Cartan de SO(10) x U(1). Ce sont précisément ces spineurs qui vont fournir les bosons de
jauge supplémentaires nécessaires a l'extension SO(10) x U(1) — Eg. La traduction de ces
constructions en termes de construction fermionique va éclairer ce phénomene : les bosons de
jauge nécessaires a l’extension vont émerger d'un secteur spécifique de la théorie, ce qui va faire
apparaitre I’expression en termes de champs de spin.

Traduction en termes de fermions libres

Munis des exemples de construction fermionique que nous avons détaillés dans la section
précédente, il est assez facile de se convaincre qu’un orbifold T°/Zy x Z,, agissant sur les six
coordonnées internes notées X!+6 et leurs partenaires fermioniques x'¢ comme

3456 _ 3456 1256 _ 1256
g 3,4,5,6 ~ 3.4,5,6 2 1,256 ~ 1256 (5.14)
X 9 b 9 _X bl b 9 X b b 9 _X bl b b
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va étre implémenté en considérant un groupe de parités comprenant les deux vecteurs

— {X3...6’y3...6 | g?>..fi7 [q;]}’ (515)

bg — {X1,2,5,6’y1,2,5,6 ‘ g1,2,5,6, [&]/} (516)

Les fermions supplémentaires [¢] et [¢] sont a choisir dans les 32 fermions droits supplémentaires ;
leur forme apparaitra lors de I'explicitation de la classe de modeles que nous allons considérer.

Dans le cadre de ’élaboration de modeles réalistes de cordes hétérotiques, il est pratique de
noter les 62 fermions libres réels sous la forme

F = {w,u7xl...67y1...6 wl...6 | gl..‘ﬁ @1...6 7\El...S ~1...3 él...8} (517)

Les fermions 1,7, ¢ sont ici des fermions complezes (et comptent donc comme deux fermions
réels).

La dénomination de ces fermions fait apparaitre SO(10) comme l'algebre de Lie affine associée
aux 5 fermions complexes droits 1'®. Cette notation est motivée par la transformation de

- — (15
Gepner (5.13) : les fermions v correspondent au bloc m , et les trois fermions 77 aux blocs

) E’i:] Les fermions complexes ¢, quant & eux, donnent le bloc additionnel Fy introduit dans

(5.13). On voit donc que la forme des ensembles by et by doit en fait étre

bl — {X3M67y3m6 | g3...6’d—}1“.5’,r71}; (518)

bg — {X1,2,576’ y1,275,6 | g1’275767d_]1m57772}- (519>

et que nos modeles seront obtenus en considérant les ensembles additionnels

— {yl...67 1...6 | yl 6 —1 6} y = {élS} (520)

représentant respectivement le tore 7% des dimensions internes et le bloc Eg additionnel.

On peut maintenant facilement voir le mécanisme d’extension de la jauge SO(10); x U(1 ) 1,2,3
A FEg x U(1)? grace a la construction fermionique. Les bosons de jauge de Eg sont Constrults
sur deux secteurs de la théorie : le secteur de pur Neveu-Schwarz |@) et le secteur |16, 77"23)
(obtenu par x = F'+ S 4+t + z). On remarque qu’en fait, les bosons de jauge de Fj ne seront rien
d’autre qu’un sous-ensemble des bosons de jauge de Eg, qui survivent aux projections induites
par la présence de nouveaux éléments dans I’ensemble des parités. En particulier de la méme
maniere que SO(16) était étendu a Eg par les états de Spin(SO(16)), SO(10) va étre étendu a
B par les états construits sur |16, 7523). Si ce secteur est éliminé (notamment en acquérant
une masse), l'extension a Fjs est perdue. La présence de I'algebre superconforme est alors la
manifestation de la présence au niveau sans masse d’états du secteur [i)'~%,7'23). On peut
explicitement écrire les vertex des états survivant aux projections.

Les bosons de jauge résultant de cette construction sont les suivants :

e & partir de |@), on construit les bosons de jauge de SO(10), ¢*4pMp(1il| &) ainsi que les 3
bosons de jauge de U(1)3 o+ i (7%)T|@) ;
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e & partir de |6, 7"%%) on construit les fermions qui permettent I'extension. On bosonise les
16 fermions droits en 8 bosons H; g, de sorte que

.8
16, 7123) = exp (; Se H@.) (5.21)
i=1

On vérifie alors que les restrictions sur les hélicités €; données par les projections (—)F, (=),
(—)?2 reproduisent bien le second groupe de racines de Eg (voir 'expression des racines dans

[ D).

L’algebre superconforme se traduit de fagon assez intuitive d’un point de vue de construction
fermionique, en utilisant un parallele avec 1’algebre superconforme donnant la supersymétrie
d’espace-temps. Le point crucial est la présence d’'un mapping des états fermioniques vers les
états bosoniques. Du point de vue de la construction fermionique, dans le cas de la transformation
de supersymétrie N' = 1 engendrée par le coté droit de la théorie sur la feuille d’univers, ce
mapping agit sur les différents secteurs comme |a) — |a+ S). On a vu que la correspondance
de Gepner a échangé les fermions d’espace-temps droits {¢*, Y*6} en {1)'~5 7b23}. Cette fois,
le mapping se fera donc entre les secteurs |a) et |a + z), ou

T = {&1..5) ﬁ1,273}' (522)

Nous appellerons cette transformation “x-map ”. On congoit déja que, de la méme fagon qu'une
brisure (spontanée ou explicite) de la supersymétrie revient a briser une “S-map”, la brisure
de l'algebre superconforme N = 2 droite va revenir a briser la xz-map . Les bosons de jauge
permettant l'extension a Fjg sont dans 'image du secteur de pur Neveu-Schwarz par 'opération
de z-map : la brisure de cette derniere va donc bien détruire la structure de jauge Eg.

Terminons cette section par la définition la plus générale des modeles que nous allons considérer.
On montre que le respect des regles de construction fermionique nous permet d’introduire deux
nouveaux ensembles, qui vont briser le groupe de jauge caché Fg, et qui s’écrivent

2 = {&1,2,3,4}’ 29 = {é5,6,7,8}' (523)

De plus il est aussi possible de factoriser le tore 7% des dimensions internes, donné par les
fermions ", w", ', W en six cercles pris au rayon d’extension de symétrie de jauge. On introduit
pour cela les ensembles

e, ={y,w' |y, o'}, i=1...6. (5.24)

Finalement, la base de ’ensemble des parités est donnée par

F, S, (€i)i=1.6, b1, ba, 21, 22. (5.25)

En suivant la procédure de construction de modeles de fermions libres, nous devons maintenant
choisir les coefficients C(45), qui vont implémenter diverses projections sur le spectre. Nous

noterons ces coefficients [a|f] € {—1, 1}, et nous définissons aussi («|3) € {0,1} par [«|F] =
in(a|B)
e .
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Présence des orbifolds a action libre

Dans la section 4.3, on a vu comment le couplage de shifts de réseaux internes a diverses charges
(ou opérateurs de parité) permet de briser spontanément une (super)symétrie de maniere
analogue au mécanisme de Scherk-Schwarz. Ce couplage est naturellement présent dans le
formalisme de la construction fermionique. Le quotientage de la théorie par I'action libre de
translation sur la coordonnée interne X! — X + 7R’ devient, au point de fermionisation,
modélisée par I'introduction de ’ensemble e;. Le couplage de cette action libre a une charge se
fait par la spécification des coefficients de projection GSO généralisée.

Dans tous les cas que nous allons considérer, la charge @) introduite dans I’équation (4.68) peut
étre vue comme une condition au bord de I’état de corde, et est donc reliée a un vecteur de
I’ensemble des parités. Nous allons en donner deux exemples.

Le premier exemple est le cas le plus simple de brisure spontanée de supersymétrie par mécanisme
de Scherk-Schwarz décrit par le bloc (4.61) de la fonction de partition. Dans ce bloc, h et g
sont les parameétres de shift de la coordonnée interne X*, et sont donc naturellement associés
au vecteur e;, tandis que a et b sont les éléments de la structure de spin d’espace-temps et
sont associés au vecteur S. On voit donc qu'un tel couplage va étre controlé au niveau de la
construction fermionique par la valeur du coefficient GGSO [e;|S].

Vérifions alors que ce couplage introduit bien une différence de masse entre les bosons et les
fermions. Pour simplifier, on se place dans un vide bosonique |«) sans masse, ne contenant
aucun fermion de I’ensemble e;, et tel que |a + S) soit également sans masse®. On suppose que
le vecteur e; ne détruit pas ce vide, soit (—)¢ = [e;|a]. Alors le vide fermionique superpartenaire
est |a+ S), et 'équation de “survie” s’écrit cette fois (—)% = [e;]a + S] = —[e;|a]. Le partenaire
supersymétrique est donc éliminé. Toutefois, dans ce cas, le nouveau partenaire supersymétrique
a considérer va provenir du secteur massif |a+ S + e;). Des états provenant de ce secteur sont
conservés quel que soit 'effet de la projection e;, son effet étant ici de couper la moitié des
hélicités. Le partenaire fermionique est donc bien devenu massif. On note, comme remarqué
dans la section 4.3, que les états fermioniques correspondent a des vides contenant le vecteur e;,
c’est-a-dire & des états de cordes ayant des modes demi-entiers dans la direction X* (h = 1 dans
I'équation (4.61)).

Notons ici que ce mécanisme semble différent d’'une brisure spontanée de symétrie telle qu’on
I’avait introduite dans la présentation des orbifolds a action libre. En effet, dans le mécanisme
usuel, les états qui deviennent massifs sous 'effet de la brisure ont une masse dépendante des
modules de compactification de I’espace interne (le plus souvent, de rayons internes). Ici, on
trouve par contre que la masse acquise par les secteurs “éliminés” est fixée; dans l'exemple
précédent, d’apres les formules (4.96), la variation de masse AM? = { est fixe. Ceci vient
justement du fait que les modules de compactification sont fixés au point fermionique. Si I'on
déformait ce modele pour sortir du point fermionique, la masse des états projetés dépendrait du
rayon. Nous donnerons plus tard des pistes pour exploiter ce mécanisme en vue de la construction
de modeles réalistes.

Le deuxieme exemple est tres similaire, et explicite en termes de construction fermionique un

6. Ces hypotheéses tres restrictives ont pour but de rendre 1’exemple simple et rapide; le rapport entre
coefficient GGSO et orbifold a action libre fonctionne en fait en toute généralité.
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des couplages que 'on réalisera dans | ] : il s’agit de coupler une dimension e; aux
parametres h, g d'un orbifold. Dans le cas qui nous occupe dans ce chapitre, 'orbifold sera celui
implémenté par les ensembles by 5 et les parametres seront (hq, g1) ou (ha, g2). Dans le cas décrit
dans le chapitre suivant et | ], (h, g) sont les paramétres de 1'orbifold T%/Z,, qui peut
étre obtenu par la construction fermionique. De méme, on conclut que ce couplage sera controlé
par la valeur du coefficient [e;|b], o le vecteur b génere 'orbifold correspondant.

Il nous reste a considérer le role des deux ensembles z; et zo. Leur présence brise génériquement
le facteur Eg en SO(8) x SO(8). Cette brisure n’est toutefois pas inéluctable ; les groupes SO(16)
et Fg peuvent étre retrouvés de la maniére suivante. Rappelons que 'adjoint de SO(16) se
décompose sous SO(16) — SO(8) x SO(8) comme

120 = (28,1) & (8,,8,) ® (1, 28) (5.26)

La complétion de (Adj(SO(8)))? en Adj(SO(16)) se fait donc en rétablissant la “bi-vectorielle”
(8,8). Mais d’apres la propriété de trialité de SO(8), ces états peuvent s’obtenir par exemple
& partir d’états dans (8,,8,.), donnés par les bosons de jauge ¥* ¢'4|z,). Sils survivent aux
projections, ces états étendent SO(8)? en SO(16). Une fois SO(16) obtenu, une extension a Fjg
est encore possible en cas de survie des spineurs de SO(16) construits sur |z; + z2).

Nous verrons cependant dans | | que notre preuve de la dualité impose I'existence de
ie{l...6}etdeje{l...6} tels que

leilz1] = —1 et [ej|z] = —1. (5.27)

Sous ces hypotheses, les éventuels états de type (8,,8;.) ou (8,.,8,) sont éliminés par une
projection (—)% et I'extension du groupe de jauge vers SO(16) ou Eg n’a pas lieu. D’autres
extensions sont cependant possibles, impliquant des fermions y ou w. Elles n’apparaissent
toutefois qu’au point fermionique et sont donc éliminées par déformation du modele ; de plus,
elles ne modifient pas le rang du groupe de jauge.

Deux familles d’orbifolds a action libre vont nous intéresser : les orbifolds engendrés par les
éléments e; et ceux engendrés par les éléments z;. Nous verrons que leurs roles sont sensiblement
différents.

Pour cela, nous commencons par détailler quelques aspects du spectre de la théorie. De méme
qu’un orbifold Z, implique la présence d’'un secteur twisté h = 1, un orbifold Zy x Z, implique
la présence de trois secteurs twistés (hq, he) = (1,0),(0,1), (1,1). Ces secteurs correspondent,
sans surprise, respectivement a des vides (fermioniques, par exemple) de la forme

by = [, x "2,y 00 | R0 10 gt (5.28)
by = [, Pyt 200 | g0 0 i) (5.29)
by = [P, x>0, yt 23 | g2 0 ) (5.30)

En fait, chacun de ces 3 vides donne naissance a un plan twisté : en effet, ajouter un ensemble
e;, pour i tel que (yy)" € b, a I'un des trois vides b ci-dessus, envoie sur un autre état sans
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masse. L’opération consiste alors a remplacer un couple (yy)’ par (ww)’. Un plan twisté est
donc constitué de 16 secteurs twistés; on trouve au total 48 secteurs twistés. Notons que la
présence de trois plans twistés constitue un bon augure en vue de la réalisation de modeles a
trois générations, comme requis par le modele standard.

Le mécanisme exposé précédemment par lequel une projection e; “rend massif” un secteur |a)
en I’éliminant et en considérant a sa place le secteur |« + ¢;) suppose que e; N = &. On voit
donc que, sur un plan donné, seuls deux vecteurs e; peuvent avoir cet effet : par exemple, seuls
e1 et es peuvent éliminer des états du spectre contenu dans le plan associé a b;. Les projections
engendrées par les ensembles z; et z5 peuvent par contre agir sur les trois plans twistés de nos
modeles.

5.3 Mise en ceuvre de la dualité

Comme nous commencons par le remarquer, la théorie est auto-duale sous 1’échange représen-
tations spinorielles < représentations vectorielles de SO(10) des que le groupe de jauge est
étendu a Eg. En effet, dans ce cas, les champs de matiere s’arrangent dans les représentations
fondamentales 27 et 27 de Eg, qui se décomposent sous Eg — SO(10) x U(1) comme

27 =109 16 @ 1. (5.31)

27T=10016 @ 1. (5.32)

On a donc 119 = n16 + Nyg-

Les bosons de jauge de Eg qui n’appartiennent pas a la sous-algebre SO(10) x U(1) sont
construits sur le vide |x); leur survie aux projections e; et z; indique que, dans les modeles
FEs, [e;|x] = [zi]|z] = 1. Ceci garantit que l'algebre superconforme N = 2 droite est préservée,
propriété confirmée par le fait que dans un secteur twisté parmi les 48 de la théorie, si les
spineurs sont construits sur un vide |a) sont présents dans le spectre, alors les vecteurs, leurs
partenaires superconformes obtenus par “z-map ”, construits sur le vide |a + x), seront aussi
présents, en vertu de la regle

o+ zle;] = [aes][z]es], o+ z|z] = o] z][z] ] (5.33)

valable lorsque a est un des 48 secteurs twistés. Dans chacun de ces secteurs, on trouve alors
soit une représentation vectorielle et une représentation spinorielle (ou anti-spinorielle), soit
aucune représentation du tout.

Si on consideére un modele qui n’est pas dual, il existe donc un e; et/ou un z; vérifiant [e;|z] = —1,
[zj]z] = —1. Un tel ensemble engendre une projection qui brise spontanément la z-map . Soit e;
un ensemble brisant la z-map . Intéressons-nous alors a un plan twisté dans lequel la projection
associée a e; peut ¢éliminer des états du spectre. Pour un secteur o de notre plan twisté, on
obtient que seul I'un des deux vides |a) et |a + z) donne naissance a des états physiques; les
états de 'autre vide sont éliminés par la projection associée a e;. Pour des raisons de clarté,
on dira que |«o) contient des représentations spinorielles (resp. vectorielles) si I'un des deux
secteurs |a), |a + x) contient des représentations spinorielles (resp. vectorielles). L’opération
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de dualité va donc consister a échanger, secteur par secteur, la représentation survivante. Ceci
est contrdlé par le coefficient [ale;], soit, en fait, par le coefficient [ble;], out b est I'un des trois
vecteurs by, by, b3 définissant le plan twisté auquel on s’intéresse. Le raisonnement étant analogue
dans le cas des ensembles z;, 'opération de dualité a l'intérieur d’un plan twisté donné par |b)
va donc consister a renverser les coefficients

e [b|z;] pour z; brisant la z-map;
e [ble;] pour les e; susceptibles d’éliminer des représentations dans le plan |b), et brisant la
z-map .

Ceci est montré en détail dans | |. Il apparait la subtilité suivante : si on effectue la
dualité dans plusieurs plans twistés, on est confrontés au fait que les coefficients [by|z;], [ba|zi],
[b3|z;] ne sont pas indépendants (cette subtilité ne concerne pas les ensembles e;, qui ne peuvent
pas agir dans les trois plans). Le moyen d’éviter cet écueil est, sous les hypotheses (5.27), de ne
plus effectuer une dualité secteur par secteur, mais seulement “plan par plan”.

L’opération de dualité effectuée jusque-la est en effet la suivante :

Si un secteur |a) comporte uniquement une représentation spinorielle (resp. vectorielle), le
modéle dual sera tel que |o) comporte uniquement une vectorielle (resp. spinorielle).

On peut néanmoins envisager une transformation de dualité plus générique, comme suit :

Si un secteur |a) comporte uniquement une représentation spinorielle (resp. vectorielle), le modéle
dual sera tel qu’on ait un secteur |y qui comporte uniquement une vectorielle (resp. spinorielle).

Dans ce cas, la correspondance o — o’ doit bien entendu étre une bijection. Ceci est schématisé
plus clairement dans la figure 5.1.

]

2] <
< o
< n »

< <
7]
(%]

[}
<
<
<

FIGURE 5.1 — Procédure de dualité secteur par secteur (a gauche) et plan par plan (a droite). la
ligne verticale représente un plan twisté, et les points noirs ses différents secteurs.

Comme détaillé dans | |, cette modification est indispensable pour pouvoir effectuer
une dualité simultanément dans les trois plans twistés; tout ceci souligne toutefois que le choix
de dualité secteur par secteur que nous effectuons dans les deux premiers plans n’est pas unique.
En fait, la prescription la plus générale (mais plus abstraite) est celle formulée dans | | :
nous la reprenons formellement dans le cas d'une dualité dans le plan b;.
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Si on définit la matrice et les vecteurs suivants :

on montre que le nombre de représentations spinorielles dans le plan by est égal & 247 "2&(4) i Y4
est combinaison linéaire des colonnes de A, et 0 sinon; de méme, le nombre de représentations
vectorielles dans le plan by est égal & 247"228(2) 5i Y est combinaison linéaire des colonnes de A,
et 0 sinon. On voit alors qu’une facon simple de construire un modele dual consiste a intervertir
les vecteurs Yig et Yig, ce qui équivaut a la procédure que nous avons détaillée. Toutefois, ce
n’est pas une condition nécessaire : il suffit d’intervertir les rangs des matrices augmentées
[A, Yie] et [A, Yig], ce qui implique qu'il suffit d’intervertir Yi4 et Yig d une combinaison linéaire
des colonnes de A pres. Cette généralisation permet de considérer des dualités qui ne se font
plus secteur par secteur (au sens de la figure 5.1), mais plan par plan.

Nous ne rentrerons pas plus dans les détails de la démonstration de la dualité, ce qui paraphra-
serait inutilement | |. Nous allons par contre effectuer quelques remarques.

5.4 Remarque additionnelle

Nous souhaitons ici faire une remarque complémentaire en vue de la création de modeles réalistes.
Nous venons de voir, a la fin de la section précédente, que le nombre de secteurs sans masse
dans un plan donné est toujours une puissance de 2 inférieure ou égale a 16. D’un point de
vue phénoménologique, nous cherchons évidemment a construire des modeles a 3 familles. On
voit qu’il n’existe que 2 possibilités : 1 famille dans chacun des 3 plans, ou 2 familles dans un
premier plan, 1 famille dans un second plan, et 0 famille dans le troisieme plan. Le choix entre
ces deux catégories de modeles peut étre effectué en considérant les masses des quarks issus de
chaque génération : en particulier, la hiérarchie existant entre la masse du top et les masses
typiques des leptons des deux autres générations pourrait favoriser des modeles (2,1,0) (ce
comptage concerne les représentations spinorielles de SO(10) qui donnent naissance a la matiére
chirale ; on est ensuite libre de considérer des modeles self-duaux ou non). Rappelons qu’une
fois le nombre de familles fixé par I'implémentation des divers orbifolds a action libre, il est
possible de lever la masse d’'un plan twisté entier en couplant un rayon au parametre de twist
correspondant au plan twisté concerné ; la déformation de ce modele permet de nous écarter du
point fermionique et d’ajuster les masses des différents plans sans modifier les caractéristiques
du spectre.

5.5 Conclusions et perspectives

Nous avons donc exhibé une nouvelle symétrie présente sur une classe de vides des modeles
hétérotiques quadri-dimensionnels basés sur des constructions de fermions libres. Ce résultat est
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intéressant a plusieurs points de vue.

Premierement, il est intéressant de dériver des résultats nous renseignant sur la structure des
vides de la théorie des supercordes. Un des grands problemes de la théorie des cordes a I’heure
actuelle est la quantité gigantesque de vides dans lesquels on peut former une théorie consistante.
Ces vides ont des caractéristiques plus ou moins prometteuses en vue de faire le lien avec la
physique a basse énergie que nous observons au quotidien : on s’intéresse notamment au rang
du groupe de jauge, au nombre de générations de matiere, ou a I’absence d’anomalies abéliennes.
Beaucoup de recherches ont en fait été faites dans le but de rechercher un éventuel processus
de sélection du vide de la théorie. Plusieurs stratégies ont été avancées. Une bonne direction
serait de chercher une densité de probabilité sur I'espace des vides (nommé “landscape” dans
la littérature). La construction d’une telle mesure est facilitée par la présence de symétries
non-triviales, telle que la symétrie spineur-vecteur. Une symétrie du méme ordre est la symétrie
miroir, découverte au début des années 1990 | ]. Cette symétrie relie deux espaces de
Calabi-Yau de topologie différente : les dimensions des cohomologies de Dolbeault H%! et H?!
ont été échangés dans la transformation miroir. Il a été montré dans | ] que la théorie ITA
compactifiée sur un Calabi-Yau est équivalente a la théorie IIB compactifiée sur le Calabi-Yau
miroir. Les Calabi-Yau s’organisent alors en paires miroir; ce résultat mathématique facilite
grandement la classification des vides correspondants. Nous avons toutefois signalé que dans
le cadre des Calabi-Yau, il n’existe pas de modeles a trois familles; il faut considérer des
déformations, sous la forme de classes de torsion non-nulles ou d’orbifolds asymétriques.

La dualité présentée dans notre travail est comparable. A la différence de la symétrie miroir
qui relie deux théories présentant une algebre superconforme (2,2) apres compactification, la
symétrie spineur-vecteur relie deux théories présentant une algebre superconforme (2,0); les
théories (2,2) superconformes peuvent étre considérées comme des points fixes de la symétrie
spineur-vecteur. Ces théories (2,0) peuvent étre interprétées comme des compactification sur
des espaces de Calabi-Yau généralisés, comportant une torsion non-nulle. Cette torsion est a
I'origine de la brisure spontanée de ’algebre superconforme du coté droit de la théorie.

Cette nouvelle dualité impose donc des contraintes sur les résultats éventuels de mécanisme de
sélection du vide. On pourrait en outre envisager, par exemple, que les configurations auto-duales
ou présentant presque autant de spineurs que de vecteurs soient préférées a des configurations
plus dissymétriques.

Enfin, I'existence de modeles auto-duaux malgré la brisure spontanée de Fg est intéressante
en ce qui concerne les éventuelles anomalies de la théorie. Dans certains de ces modeles, les
trois U(1) issus de la brisure Fg — SO(10) x U(1)? sont dépourvus d’anomalies; ceci va a
I'encontre de 'idée généralement formulée selon laquelle tout groupe U(1) issu de la brisure du
Ej originel et ne faisant pas partie du facteur donnant le modele standard est porteur d’anomalie.
Nous rappelons toutefois que la présence d’une telle anomalie est souhaitable, car elle brise
spontanément le facteur U(1) en question | -

Plusieurs pistes d’approfondissement peuvent étre explorées. Il est d’abord obligatoire, pour
rendre viable de tels modeles, de briser spontanément la supersymétrie de N =1a N = 0;
ceci peut étre réalisé en couplant une dimension interne a I’hélicité des fermions d’espace-temps

(a,b).
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On peut aussi se poser la question du traitement des états chargés sous le groupe de jauge caché
inclus dans FEg; il est souhaitable que les interactions induites par cette jauge soient invisibles a
basse énergie.
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Chapitre 6

Théories hétérotiques a température
non-nulle, brisures spontanées de
supersymeétrie et évolutions
cosmologiques associées

6.1 Introduction et enjeux

La cosmologie est un des terrains favoris d’application de la théorie des cordes. En effet, on
attend d’une théorie quantique de la gravitation qu’elle nous éclaire sur les problemes rencontrés
par la cosmologie a I’heure actuelle, notamment en ce qui concerne les premiers stages de la vie
de 1'univers. Parmi ces problemes figurent la description de I’Univers a ses premiers instants,
quand sa taille atteint ’échelle de Planck ; la prépondérance des effets quantiques a ces échelles
d’énergie rend indispensable 'utilisation d’une théorie de gravitation quantique. On peut aussi
citer le probleme de l'inflation, dont une description précise manque toujours. La théorie des
cordes se caractérisant par un fort pouvoir prédictif venant des conditions tres restrictives dans
lesquelles on peut la définir, son utilisation implique qu’au contraire du théoricien des champs,
le théoricien des cordes n’est pas libre de décider du spectre de la théorie qu’il étudie. Ainsi, la
modélisation de I'inflation, qui nécessite un champ scalaire évoluant dans un potentiel possédant
de bonnes propriétés, passe par l'identification en théorie des cordes ce ce champ et de son
potentiel associé; on n’a plus la liberté de postuler 'existence d’un champ ayant les bonnes
propriétés.

Un deuxieme probleme théorique important concerne la constante cosmologique. Les observations
récentes | , ] font état d’une constante cosmologique non nulle et tres petite (A ~ 107120
en unités de Planck). La encore, la théorie des cordes se doit d’expliquer 'apparition d’une telle
valeur, qui apparait comme un terme constant dans I’action d’Einstein-Hilbert

1(;/ d'z /=g(R — 2A) (6.1)

La constante cosmologique apparait dans les théories de supergravité a quatre dimensions
comme 1’énergie dans un vide de la théorie. Ce vide est obtenu en minimisant le potentiel par
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rapport aux champs scalaires de la théorie. L’étude de ces conditions a révélé que dans les
théories de supergravité sans échelle introduites dans la section 2.2.2, la constante cosmologique
est automatiquement nulle. Nous allons toutefois voir qu’en général, les théories des cordes
favorisent des constantes cosmologiques négatives.

Compactifications avec flux et stabilisation des modules

Les compactifications de la théorie des cordes sont caractérisées par la valeur des modules, qui
détaillent la géométrie de ’espace interne. Le potentiel effectif de la théorie a basse énergie, dans
le cas d’'une compactification simple, ne dépend pas de ces modules, et leur valeur n’est donc
pas fixée au niveau classique de la théorie. La présence de scalaires sans masse dans une théorie
est génante a deux niveaux. Premierement, on perd dans un tel cas de figure le pouvoir prédictif
de la théorie des cordes concernant les valeurs des différents couplages effectifs (constantes de
couplage, couplages de Yukawa...) ; ces couplages dépendent en effet de la valeur dans le vide des
modules. Deuxiemement, des scalaires sans masse propagent des interactions de longue portée ;
en leur présence, différents types de matiere coupleraient alors différemment a cette nouvelle
force , ce qui violerait les bornes expérimentales sur le principe d’équivalence.

Il est possible de générer un potentiel non-trivial pour les modules en effectuant une compacti-
fication avec fluz (voir la revue | ]). Dans ce schéma de compactification, on donne des
valeurs dans le vide non-nulles aux composantes internes des champs de la théorie; il en résulte
I’apparition d’un potentiel effectif, fonction des modules de compactification.

Une premiere exigence lors de la compactification avec flux est la préservation d’au moins
une supersymétrie. En I'absence de flux, on a vu que cette condition impliquait que la variété
de compactification devait étre de type Calabi-Yau. Cette condition est modifiée en présence
de flux : si la structure de la variété doit toujours étre incluse dans SU(3), I’holonomie est
modifiée par des classes de torsion non-nulle. Nous ne rentrerons gueére plus en détail sur ces
considérations techniques assez poussées de géométrie différentielle ; par contre, on note que la
condition de présence de la supersymétrie donne des relations entre les classes de torsion de la
variété et les flux allumés.

La présence de flux contraint aussi la forme de la métrique d’espace temps. En toute généralité,
on considere une métrique a dix dimensions de la forme

ds?, = Wy datdr” + e AW g, (y)dy™dy". (6.2)

Ici, x représente les coordonnées de l'espace temps quadri-dimensionnel, y les coordonnées
internes. Dans cette métrique, la présence du facteur de warp A(y) rend le produit espace-temps
X espace interne non-trivial. La procédure de compactification avec flux sur des espaces ayant
cette forme impose également des relations entre les flux allumés et le facteur de warp. Nous ne
donnerons pas les formes de ces relations, que 1'on peut trouver dans | , |. Le résultat
est le suivant | , ] : il n’existe pas de compactifications avec flux conduisant & un
espace de de Sitter a quatre dimensions; le seul cas donnant lieu a une compactification sur un
espace de Minkowski (g,,, = 1,,) est caractérisé par 'annulation de toutes les valeurs moyennes
dans le vide des flux, et la constance du facteur de warp. Intuitivement, les termes effectifs induits
par les flux contribuent négativement a la constante cosmologique quadri-dimensionnelle. Ce
théoreme de no-go est valable en ’absence de corrections de supergravité aux dérivées supérieures
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et en 'absence d’effets non-perturbatifs. Son existence est évidemment problématique en vue
d’applications phénoménologiques : la procédure de stabilisation des modules condamne le
cordiste a considérer des univers de type Anti de Sitter, qui ne correspondent pas a la réalité

physique.

Heureusement, ’horizon n’est pas si noir : il existe des moyens de contourner ce résultat. Une
)

premiere approche, développée dans | |, consiste a, dans un premier temps, stabiliser

tous les modules de compactification en incluant des flux et des contributions non-perturbatives
(qui permettent briser la structure sans échelle de la supergravité et de fixer le' module de
Kahler ), puis a lever 'énergie du vide obtenue apres stabilisation par inclusion dans la théorie
de nouveaux degrés de liberté sous la forme de D3-branes. On obtient ainsi un vide métastable
pour 'espace des modules, en un point ou la constante cosmologique est positive et peut étre
ajustée.

Plusieurs reproches peuvent néanmoins étre faits a ce mécanisme. Premiérement, ce travail ne
considere pas d’effets thermiques dans 1’évolution de I'univers. Deuxiemement, la procédure de
stabilisation des modules (et en particulier du module de Kéhler ) fait appel a une contribution
non-perturbative au superpotentiel, qui est donc supposée étre du méme ordre que le superpo-
tentiel a 'ordre des arbres. La procédure de stabilisation de 7" uniquement apres stabilisation des
autres modules peut aussi étre discutée. Nous noterons d’ailleurs que la forme de la modification
du superpotentiel, qui est en e~" est retrouvée dans notre modele, mais au niveau perturbatif.
Enfin, la procédure de levée du potentiel du vide vers des valeurs positives a I'aide de D3-branes
pose probleme. En effet, 'amplitude des corrections apportées au potentiel par ces nouveaux
degrés de liberté rend nécessaire une étude de la rétroaction qui en résulte. Notamment, il est
raisonnable de penser que les modifications apportées ne seront pas simplement linéaires. Un tel
calcul est de plus difficile : en effet, 'ajout des D3-branes rend invalide I'usage du formalisme
de la supergravité N/ = 1, car toutes les supersymétries sont brisées.

Plan d’attaque

Nous développons ici une autre approche, dans laquelle nous ne tentons pas de stabiliser tous
les modules, mais plutét de considérer une dynamique cosmologique pour certains d’entre eux.
Autrement dit, nous minimisons 'action effective de la théorie, et non le potentiel.

Nous considérons des théories des cordes, le plus souvent hétérotiques, a température non-nulle,
dans lesquelles la supersymétrie est spontanément brisée par une ou plusieurs directions com-
pactifiées selon le mécanisme de Scherk-Schwarz développé dans la section 4.3. La température
traitant différemment les bosons et les fermions, le temps euclidien est I'une de ces dimensions ;
nous commencons par supposer que la brisure s’effectue également sur une seconde dimension
interne, notée Rs5. La forme explicite du potentiel a une boucle permet d’isoler le module sans
échelle de cette théorie. L'indétermination a ’ordre des arbres de ce module est levée a l'ordre
d’une boucle par la prise en compte des termes thermiques et des termes de brisure spontanée
de supersymétrie. Ces corrections sont décrites par un potentiel effectif, que nous calculons via
le calcule de I’énergie libre du systeme. Dans le formalisme de la supergravité, un tel potentiel
reflete en fait la renormalisation a une boucle du potentiel de Kéahler . Un changement de
variables sur les champs rétablit alors le potentiel de Kahler vers sa forme originelle, mais fait

1. Les auteurs de [ ] se placent dans le cas ou il existe un unique module de Kéhler .
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apparaitre une correction au potentiel scalaire. Le superpotentiel, quant a lui, est protégé par
les théoremes de non-renormalisation.

Sous certaines hypotheses, les termes du potentiel effectif impliquant les autres modules de
compactification seront exponentiellement petits, de sorte que ces modules pourront étre pris
constants. Le rayon typique correspondant a ces dimensions étant de 'ordre de la taille de
la corde, I’échelle d’énergie a laquelle interviennent ces degrés de liberté sera de l'ordre de la
température d’Hagedorn ; nous ne considérerons pas ce régime dans notre travail.

Dans un premier temps, le module sans échelle sera, avec la température, le seul parametre
dynamique de notre construction. Le calcul de 'amplitude du vide a une boucle de la théorie
des cordes considérée permet de définir le contenu en radiation de I'univers sous la forme d’une
pression et d’'une densité d’énergie, par des relations usuelles de thermodynamique que nous
rappelons dans la section 6.2. Ce contenu en énergie va modifier I’évolution de I'univers en
introduisant un terme de rétroaction dans I’équation de Hubble. Nous détaillerons la forme la
plus générale que peut prendre une telle correction quantique en utilisant les propriétés des
théories de supergravité, puis indiquerons comment réaliser les différents termes envisageables.
Enfin, nous présenterons les évolutions cosmologiques associées : pour cela, nous nous placerons
dans le cadre d'un univers de Friedmann-Robertson-Walker, dont 1’évolution est régie par le
facteur d’échelle. Nous définirons un ansatz pour 1’évolution, qui nous permettra d’interpréter
physiquement les différents termes du potentiel obtenu; cet ansatz est toutefois valide sous
certaines contraintes, que nous expliciterons.

Dans un second temps, nous tenterons de généraliser ce mécanisme a un schéma de brisure
par deux rayons internes, notés R4, R5. De la méme maniere que précédemment, les seules
contributions a considérer dans le potentiel effectif sont celles faisant intervenir ces dimensions,
qui participent a la brisure. Les autres quantités peuvent étre gelées de manieére consistante :
leurs termes dans le potentiel effectif seront négligés car ils ne se manifestent qu’a des échelles
d’énergies de l'ordre de la température d’Hagedorn; de plus, la supergravité effective fait
apparaitre des termes de brisure douce de supersymétrie prenant la forme de termes de masse,
de l'ordre de la masse du gravitino M3 ;. Il existe par contre dans ce modele un nouveau module
présentant une dynamique non-triviale : le module de “structure complexe” R5/R,. La structure
des corrections quantiques sera assez similaire a celle détaillée dans le cas d’un rayon ; un point
d’intérét sera alors de savoir s’il est possible de stabiliser ce nouveau module, ou s’il sera attiré
vers I'une des deux limites ou I'on “perd” une brisure de supersymétrie. Un cas de stabilisation
pourrait donner acces a de nouvelles cosmologies.

6.2 Quelques rappels de thermodynamique

Dans cette section, nous redérivons des formules de thermodynamique reliant les quantités
que nous rencontrerons par la suite. Nous supposons que nous sommes en présence d'un gaz
de cordes en équilibre & une température 7" = 1/3. Nous pouvons alors définir sa fonction de
partition

7 = Tre PH

106



Un résultat de théorie des champs stipule que la fonction de partition Z s’exprime en fonction
de la fonctionnelle génératrice des diagrammes connexes W comme

W =1InZ (6.3)

Dans un cadre perturbatif, on considere la constante de couplage des cordes faible, de sorte que
dans le développement de ’expression cordiste de la fonctionnelle génératrice des diagrammes
connexes

1
Wstr. - ?ZO—loop + Zl—boucle + 9322—1001) + ... (64)

S
on ne considérera que les amplitudes dans le vide a une boucle et a 'ordre des arbres. Cette
derniére étant nulle (voir par exemple | , , |), Wyt est approximée par la
fonction de partition a une boucle de la théorie des cordes; on suppose donc

Zl—boucle =InZz. (65)

D’apres les propriétés élémentaires de I’ensemble canonique, I’énergie interne, qui est la valeur
moyenne de I'énergie du systeme, s’exprime comme

1 0 0
U:—/dEE B = _ S mZ =~ 2 hone 6.6
Z ‘ o5 o “bend (6.6)
Ceci nous donne la densité d’énergie du systeme considéré, de volume spatial fini V3 :
U 1 0
:7:—772—ouce 6.7
TV Tvaap T 67)
L’énergie libre du systeme est définie comme F' = U — T'S’; on montre (ref.) que
1 Zlfboucle
F=—InZ=—""17"— 6.8
3 3 (6.8)
L’identité thermodynamique s’écrivant dF' = —PdV — SdT, on a
oF F
P—_—— - 6.9
PR (6.9)

La deuxieme égalité est obtenue par la propriété d’extensivité; dans nos calculs, le volume de
I’espace tri-dimensionnel apparait bien comme un facteur global.
Il vient donc que

Zlfboucle
P=—— 6.10
‘/4 ’ ( )

ou cette fois Vy = (V35 est le volume de 'espace-temps euclidien.
On tire de (6.7) et (6.10)

or 0P
o3~ oT’

Par ailleurs, on a, pour un gaz relativiste a 3 dimensions d’espace, p = 3 P.

p+P=— (6.11)
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On en déduit que (p, P) oc T%, ce qui est bien une propriété de I'énergie radiative.
Nous établissons maintenant une propriété caractérisant une évolution isentropique, hypothese
que que nous supposerons dans le cadre de notre travail. L’entropie peut s’exprimer comme

S = Zl—boude + ﬁU = V;l(p + P) (612)

p et P étant proportionnels a T4, il vient que I'on doit avoir, au cours d'une évolution homogene
isotrope caractérisée par le facteur d’échelle a(t), a®(t) T3(t) = cste. L’évolution isentropique
implique donc

1

T(t) o o’ (6.13)

Ceci correspond bien a une dilatation du temps euclidien proportionnelle au facteur d’échelle.

Pour la suite de notre travail, nous avons également besoin d’explorer le cas ou p et P ne
dépendent pas uniquement de la température. On suppose qu’il existe dans le systeme des autres
degrés de liberté d’énergie typique M;(t) dans le systeme, représentant des degrés de liberté en
équilibre thermal. Des arguments dimensionnels nous convainquent alors que pour un systeme
quadri-dimensionnel, ’hypothese (p, P) o< T* se généralise en

(Z Y a‘;) (0,P)=4(p, P). (6.14)

Ceci nous permettra, en considérant des masses typiques constantes pour des degrés de liberté
additionnels, d’envisager des termes issus d’un calcul thermodynamique, mais se comportant
en a(t)™? ou constants dans le temps. On peut montrer alors que (6.13) est toujours vérifiée,
en utilisant le fait que P et p restent des quantités de dimension 4 en les échelles d’énergie du
systeme (voir la relation (6.14)).

Nous allons maintenant appliquer nous intéresser au probleme de la modélisation d'une tempé-
rature finie en théorie des cordes. Munis de ce formalisme, nous serons en mesure de dériver la
fonction de partition thermale Z; _poucte(3), €t pourrons utiliser le formalisme thermodynamique
développé ci-dessus pour modéliser le contenu de 1'univers correspondant a notre modele.

6.3 Aspects de la théorie des cordes a température finie

Les modeles construits dans nos travaux font intervenir une température non-nulle ; 'introduction
de la température en théorie des cordes (ainsi qu’en relativité générale) n’est pas une démarche
triviale. Nous commencons par en discuter la validité, pour ensuite donner la prescription, issue
de la théorie des champs, que nous utiliserons. Nous verrons en particulier que la théorie des
cordes fait apparaitre une valeur critique de la température, dite température de Hagedorn.

La température, telle qu’introduite en thermodynamique, est une notion définie pour un systeme
en équilibre avec un réservoir de température 7' (on notera la température inverse 1/7 = [3).
Ainsi placés dans I’ensemble canonique, la fonction de partition du systeme est donnée par une
somme sur les états pondérée par le facteur de Boltzmann :
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Zihermar = Tre 1. (6.15)

H est ici le hamiltonien du systeme.

Un résultat classique de théorie de l'intégrale de chemin est que la fonction de partition d’un
ensemble thermal a température 1/5 se calcule en effectuant une rotation de Wick sur le temps
et en compactifiant le temps euclidien ainsi obtenu sur un cycle de longueur 3.

En effet, on voit alors que l'intégrale de chemin, qui consiste a faire évoluer le systeme dans
le temps au moyen de 'opérateur d’évolution e~**, redonne bien la fonction de partition de
I’ensemble canonique dans le cas d’un temps imaginaire compact.

Ceci pose alors quelques problemes d’application dans le cas d’espaces courbes, détaillés dans
[ ] : notamment, il est ambigu de vouloir fixer le rayon de la dimension de temps euclidien,
qui est en toute rigueur une variable dynamique dans le contexte d’une évolution gravitationnelle ;
I’hypothese d’équilibre du systeme avec un réservoir de température empéche méme de considérer
une éventuelle valeur asymptotique dans le vide pour ce rayon. Par ailleurs, la définition méme
du hamiltonien du systeme, et donc de ’énergie, pose probleme dans le cas de I’ensemble thermal,
car on ne peut pas considérer comme isolé ce systeme.

Faute de pouvoir considérer I’ensemble dans son intégralité (celui-ci étant infini), une approxi-
mation valide de la température se fait en considérant un volume contenant un grand nombre
de degrés de liberté, pour que les notions de mécanique statistique s’appliquent de maniere
satisfaisante. Une limite supérieure sur la taille du systeme est toutefois imposée par la propriété
d’instabilité de tout systéme gravitant, qui a tendance a s’effondrer sur lui-méme : il nous
faut alors considérer un systeme échappant a cette instabilité de Jeans. On renvoie a | ]
pour des informations complémentaires. Dans le cadre de notre travail, nous nous placerons
systématiquement au voisinage de 1’espace plat, que nous perturberons par divers termes de
potentiel effectif.

Un deuxieme aspect de cette définition de la température comme intégrale de chemin concerne
I'incorporation de la spin-statistique. Le résultat est le méme qu’en théorie des champs : lorsque
la corde fermionique est transportée le long du temps compactifié, les conditions au bord doivent
étre antipériodiques. Ainsi, nous devons en fait calculer la quantité

Zthermal =Tr <_)F eiﬁH; (616)

ott (=) est Popérateur de comptage de fermions.

Ainsi, la compactification de la dimension temporelle n’est en fait pas une compactification
toroidale triviale : selon leur hélicité d’espace-temps, les conditions au bord des états de
cordes qui contribuent a la fonction de partition sont différentes. Ceci rappelle fortement les
compactifications sur des orbifolds a action libre de type Scherk-Schwarz décrits dans la section
4.2.2. C’est en effet le bon formalisme & adopter | |. Nous calculons la fonction de partition a
I'ordre d’une boucle, correspondant a la propagation sur le tore. Sous transport le long des deux
cycles du tore, la phase prise par les états de corde est donc fonction de leur hélicité d’espace-
temps. La compactification de Scherk-Schwarz s’effectue alors exactement par la modification
(4.55) de la fonction de partition. Dans un contexte de théorie des champs, la phase non-triviale
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& introduire serait (—)*", correspondant au transport m fois le long du cycle “temporel” du
tore et a l'insertion dans la trace d’autant d’opérateurs renversant les conditions au bord. En
théorie des cordes, on doit compléter la phase par un facteur (—)+™*. Ce facteur rend compte
de la modification des conditions au bord de 1’état de cordes sur le second cycle du tore (le
cycle “spatial”); il se comprend aisément dans le formalisme d’orbifold a action libre, ou le
cocycle devient (—)a9toh+dh b et g étant les parités des nombres d’enroulement de I’état de
corde autour des deux cycles du tore. La partie (—)% correspond a 'effet présent en théorie
des champs ; 'apparition de la phase (—)% correspond au secteur twisté de I’orbifold, ou les
conditions au bord le long de I'autre cycle sont modifiées.

L’introduction de la température en théorie des cordes révele un phénomene inédit en théorie
des champs : 'existence d'une température critique, dite température de Hagedorn. Un résultat
classique de la théorie des cordes est que la croissance de la densité d’états par niveau d’énergie
est exponentielle : on a n(E) ~ exp(bE), ou b est une constante. Il existe alors une valeur critique
Ty = b~! au-dela de laquelle la fonction de partition & température 1/3 (6.15) ne converge plus.
Plusieurs aspects sont présents dans l'existence de cette température critique. Premierement,
cette température correspond précisément a I’apparition d'un état tachyonique dans le spectre
[ ) |. Ceci est consistant avec le fait que la fonction de partition sur le tore (3.79)
diverge en présence d'un état vérifiant M? < 0.

Il est bon d’analyser les détails de 'apparition de cet état tachyonique. La formulation de la
température en terme d’orbifold libre développée dans la section 4.2.2 montre que dans le secteur
h =1 (soit un nombre d’enroulement impair autour du temps euclidien) , la projection GSO est
renversée par le facteur (—)", ce qui ouvre la voie & I'apparition d'un tachyon dans des théories
précédemment non-tachyoniques. Ensuite, une resommation de Poisson de 1'expression (4.55)
montre que les nombres d’enroulement selon la dimension de temps euclidien sont modifiés par
le couplage comme :

m LMt (6.17)

n n

Un calcul simple montre alors I'apparition d’un état bosonique tachyonique (rappelons que
I'introduction de la température a introduit un mass gap entre bosons et fermions), pour n = 1
et a = 0 (voir par exemple | ).

Nous nous posons maintenant la question de la pertinence du role des termes de température
dans une évolution cosmologique d’inspiration cordiste. Ce role a été mis en évidence dans
plusieurs travaux, dans le cas de I’étude d’univers jeunes.

Notre approche consiste a corriger les équations d’Einstein par inclusion des corrections ther-
miques. Ces corrections thermiques sont importantes dans le cas d'un univers de de Sitter
(c’est-a-dire, a constante cosmologique positive) ; en effet, une des propriétés des univers de de
Sitter est la présence d’un horizon, et donc | | d’une température de Hawking. Cette tempé-
rature de Hawking, comme dans le cas des trous noirs, existe en ’absence de sources de matiere,
et résulte donc des fluctuations de la métrique. Il a été montré explicitement dans | |, par
développement en fonctions harmoniques des fluctuations de la métrique, qu’en sommant sur ces
fluctuations, I’équation d’évolution pour I'univers de Friedmann-Robertson-Walker est modifié
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par un terme proportionnel & a(t)™*, ce qui correspond bien a une contribution thermique.
Le résultat reste de plus valide lorsque 'on inclut aussi des scalaires sans masse. Ainsi, toute
solution de de Sitter est déformée de maniere intrinseque. Ceci joue un role par exemple dans
certains scénarios de sélection de la constante cosmologique. Il semble donc obligatoire, pour
des applications cosmologiques de la théorie des cordes, d’introduire dans nos modeles une
température non nulle.

Notre démarche consiste a introduire a la main cette température dans le modele, de maniere
a générer la rétroaction sur les équations d’évolution de I'univers par calcul de la fonction de
partition a une boucle (cette fonction de partition n’est donc maintenant rien d’autre que la
fonction de partition du systeme a température 7' pris dans le formalisme canonique). Cette
démarche permet de calculer explicitement la déformation thermique de la cosmologie pour
tout modele de théorie des cordes. L’hypothese adiabatique, ou, de maniere équivalente, la
conservation de I'entropie, implique que cette température doit varier comme l'inverse du facteur
d’échelle : T'(t) oc a™1(1).

On suppose de plus que 'on se trouve loin de la température de Hagedorn Ty, c’est-a-dire
que le rayon de compactification du temps euclidien Ry est grand devant 1’échelle typique des
cordes. Ceci a plusieurs effets : d’une part, I’absence de tachyon préserve le systeme d’une
instabilité infra-rouge ; d’autre part, cela rendra exponentiellement petites les contributions au
potentiel effectif des dimensions compactifiées qui ne participent pas a la brisure de supersymétrie
(nous renvoyons a | | pour une dérivation explicite de ces propriétés). La pertinence
du formalisme de I’ensemble canonique (et donc de I'implémentation de la température par
compactification du temps euclidien) peut également étre remise en cause au voisinage de
la température de Hagedorn | , |. Par exemple, il est suggéré dans | | que la
température de Hagedorn soit une température limite d'un gaz de cordes; en s’approchant de
cette température, I’énergie se stocke dans les états d’enroulement non-nul au lieu d’étre dans
les états de moment non-nul (ou inversement) ; la théorie est alors identique a sa T-duale, et
on obtient encore une température effective inférieure a la température de Hagedorn. Notons
que des travaux récents proposent une méthode de résolution de cette singularité a 'aide de
compactifications de Scherk-Schwarz effectuées sur des backgrounds d’orientifold de théories de
Type II | ].

Nous avons donc acces a un formalisme dépourvu de divergences ultra-violettes (car supprimées
dans le cadre de la théorie des supercordes), de divergences infra-rouges (en absence de tachyon).
Nous allons maintenant utiliser ce formalisme pour générer des évolutions cosmologiques régies
par les effets thermiques et de brisure de supersymétrie que nous considérons. Pour cela, nous
considérons un modele tres simple d’évolution de I'univers : le modele de Friedmann-Robertson-
Walker. Nous examinerons, par des arguments généraux de supergravité, la structure des différents
termes pouvant intervenir dans les corrections a une boucle, et les effects correspondants de
la rétroaction sur les équations du mouvement. Nous esquisserons les contours du calcul du
potentiel et les manieres de générer les différents termes.
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6.4 Cosmologie de Friedmann-Robertson-Walker

Notre but va étre d’établir un contact entre les équations de supergravité corrigées a une boucle
issues de nos modeles de cordes et des évolutions cosmologiques. Pour cela, nous allons considérer
une des formes les plus simples de cosmologie : 'univers de Friedmann-Robertson- Walker. Notre
présentation s’inspire de | ]

Sous des hypotheses d’homogénéité et d’isotropie de 'univers, on montre que la métrique la
plus générale décrivant une évolution cosmologique a la forme suivante :

2
1—Ekr?

Dans cette expression, k est un parametre donnant la courbure de 'univers ainsi construit, le
facteur d’échelle a(t) paramétrise la taille de 'univers, et dQ3 est 1’élément de surface de la
spheére S2.

Ce modele d’univers fait intervenir un seul parametre dynamique qui est le facteur d’échelle ; il est
donc possible d’obtenir, a partir de 1’équation d’Einstein en présence de sources modélisées par
un tenseur énergie-impulsion T#  une action effective pour a(t), dite action du mini-super-espace,
et des équations du mouvement.

Si 'on applique les mémes hypotheses d’homogénéité et d’isotropie aux sources de matiere
considérées comme des fluides parfaits, on montre que le tenseur d’énergie-impulsion se met
sous la forme

ds* = dt* — a*(t) < + 7“2ng> (6.18)

1", = diag (p(t), —p(t), —p(t), —p(1)) (6.19)
ou p est la densité d’énergie et p la pression du fluide. Si 'on définit la constante de Hubble
H = a/a, les équations d’Einstein donnent 1’équation de Hubble

3H? = —a T (6.20)
ainsi que ’équation

: k
2H + 3H* = -5 - P (6.21)

L’action effective se dérive en introduisant un nouveau degré de liberté N(t) (factice, car
absorbable par une redéfinition du temps), et en considérant la métrique

dr?
2 2 42 2 2 1092
ds® = N(t)*dt* — a*(t) (1 " +7r dQ2> (6.22)
L’action [ ]
1 3 3kEN 1 N

redonne alors, par variation respective des degrés de liberté N et a, les équations (6.20) et
(6.21). Le degré de liberté N étant non-physique, ce systeme est en fait dégénéré, et il suffira de
considérer une combinaison linéaire de ces deux équations; on fixera également N(t) = 1.
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Si on souhaite ajouter de nouveaux degrés de liberté a cette action, la prescription est la suivante :
les termes cinétiques sont divisés par N, et les termes de potentiel sont multipliés par N. Dans
le cas qui nous occupe, I'incorporation du dilaton se fait par le terme

1 1 .
—~[anNd® <—<1>2 NV) 6.24

6 / 2N + (6.24)
Tel qu’on I’a introduit, le terme cinétique du dilaton est sous la forme [ /—g(0®)?. Nous verrons
que le calcul cordiste ne renvoie pas automatiquement cette forme pour ’action effective : il
faudra rescaler la métrique obtenue apparaissant canoniquement dans la théorie des cordes pour
pouvoir procéder a une identification des actions effectives.

Lorsqu’on introduit dans I'action effective le terme (6.24), on obtient premiérement 1’équation
du mouvement pour le module ® :

. . ov
OP+3HP = ———. 6.25
5% (6.25)
De plus, les équations (6.20) et (6.21) sont modifiées ; par contre la redondance que nous avons
signalée fait que nous n’avons qu’a considérer une combinaison linéaire de ces deux équations

pour décrire la dynamique du systéme. La sommation de (6.20) et (6.21) fournit alors

. 2k 1
H+3H2:—§+§(p—P), (6.26)

équation qui reste toujours valable en présence du dilaton ® et d’une large classe d’autres
modules, caractérisés par des termes cinétiques en (1/2)$? ou en (1/2)e**®p2. Ces modules
participent bien au contenu en énergie de 1'univers (nous verrons que le terme d’énergie cinétique
du dilaton permet de retrouver I’équation d’état usuelle pour la radiation), mais la considération
de cette équation fait qu’ils ne modifient pas 1’évolution du facteur d’échelle.

Nous allons maintenant procéder a la définition de notre modele du c6té de la supergravité. La
forme du potentiel effectif et celle de ’action nous guideront pour établir le contact entre les
deux approches, et modéliser correctement la rétroaction donnée par les effets thermiques et
quantiques a une boucle sur la cosmologie FRW.

6.5 Forme des corrections thermiques et quantiques

Structure des corrections quantiques a la supergravité sans échelle

La structure du potentiel a une boucle dans une théorie ou la supersymétrie est spontanément
brisée s’écrit sous la forme générale suivante (voir par exemple | | et les références associées)

! StrM? A? + ! Str [ M*1o M +... (6.27)
3272 G4n? &7 )T

1 . A?
‘/l—boucle = Vb + @SUAM A log E +

Dans cette expression Str désigne la supertrace StrM?" = 3,(—)*/1(2J; + 1)m?", obtenue en
pondérant la trace classique par un facteur dépendant de I’hélicité de ’état. A est un cut-off
ultra-violet, et p 1’échelle de renormalisation, soit 1’échelle d’énergie a laquelle on se place pour
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mesurer la valeur de notre potentiel. Dans le cadre de notre travail, il semble naturel de prendre
o~ T.“+...7 représente quant a lui la contribution de termes indépendants de 1’échelle de
cut-off A. Nous allons analyser ces différents termes, avant de les réaliser explicitement par le
calcul du potentiel.

Evidemment, dans une théorie supersymétrique, le terme Str M est nul. Dans un modeéle sans
échelle, le terme constant Vj est également nul. On montre aussi que le terme en StrAM? A2,
dans le cas de N’ = 2 spontanément brisée, est proportionnel & la masse du gravitino :

StrM? = Q M3, (6.28)

et qu’il s’annule identiquement dans le cas de N' = 4 spontanément brisée.
Il nous reste donc a considérer les contributions au potentiel effectif provenant du terme

Str <M4 log J;/l) : (6.29)

En toute généralité, ce terme peut donner naissance a des contributions en Mgl/g, Mg/z, ou des
termes constants, “habillés” par des termes en log(M3/2/7"). On montre cependant que dans le
cas oll on considere la brisure spontanée d’une théorie a supersymétrie étendue N = 4, la seule
contribution est proportionnelle a M§/2, olt M3/, est la masse du gravitino (c’est-a-dire, I’échelle
typique de brisure de supersymétrie).

Forme du potentiel effectif

Nous n’effectuerons pas le calcul explicite, qui est détaillé dans | ]. Nous allons par
contre détailler et justifier les hypotheses physiques adoptées.

Nous supposons en premier lieu que la variété de compactification se décompose en S' x T°, ol
le cercle St est de rayon Rs. Initialement, tous les données géométriques de la compactification
sont des modules, c¢’est-a-dire des directions plates du potentiel. La correction a une boucle va
générer un potentiel effectif levant la dégénérescence sur une combinaison de ces modules, que
I’'on va rendre cosmologique, et générant des contributions exponentiellement petites pour les
autres modules. On est naturellement amenés a considérer que les modules non cosmologiques
sont de taille comparable a 1’échelle des cordes. Dans ce cas-la, la dépendance du potentiel en
ces modules est exponentiellement petite, et ils peuvent étre considérés comme constants.

On a vu que I'énergie des états de nombre d’enroulement non nul autour d’une dimension de
rayon R comporte un terme proportionnel a R. Dans notre cas, pour un rayon R grand devant
les autres énergies mises en jeu, on va donc négliger les contributions des nombres d’enroulement
impairs. Il se trouve que les nombres d’enroulement pairs peuvent étre pris en compte de la
maniére suivante. Notre point de départ est de décomposer la forme lagrangienne ? du réseau
I'1 1 selon la parité des nombres quantiques m,n :

1 . 1R TR )
', = Z Fl,l[g] = y— Z exp |——|(2m +g) + (2n + h)T|7| . (6.30)
h,g=0 h,g=0 VT2 m,neZ T2
2. Pour suivre les notations de | ], nous prenons ici o' = 1.
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Alors, en négligeant les nombres d’enroulement impairs, il vient

i =T340 + i) (6.31)

Comme I'11[§] = (1/2)T'11(2R), on a exprimé 'y 1[{] en termes de quantités invariantes modu-
laires. Ceci va nous permettre d’effectuer I'intégration de la fonction de partition sur le domaine
fondamental de PSL(2,7Z) noté F', par la méthode suivante | ].

On souhaite intégrer une quantité invariante modulaire de la forme Y=,,,, . 1o npezt f(mM1, 11, M2, 19)
sur le domaine fondamental ' de PSL(2,Z). L’ensemble des images de (mq, n1, ma, n2) par les
transformations du groupe modulaire définit une orbite O, dont on peut choisir un représentant
<m1>n17m2>n2)0

On peut maintenant écrire

/ S f((may g, mayny)) = /F S f((ma, 1, ma, 1)) (6.32)

ml,nl,mz,ng)€Z4 O orbit (m1 niy,ma, 712)60

_ /EF%:f((ml,nl,mz,nz)o), (6.33)

ou X F est I'union de toutes les images de F' par le groupe modulaire. Dans le cas d’un réseau
bidimensionnel, la forme des transformations :

7__>7-+1 = (m17n17m27n2) - (m1+n17n1am2+n2an2)

(6.34)

T = _]‘/T = (m17n17m27n2> - (_n17m17_n27m2)

donne trois classes d’orbites : 'orbite {(0,0,0,0)}, les orbites dégénérées Oy my, (M1, m2) €
(Z?)*, dont un représentant est (mq,0,ms,0); et enfin les orbites non dégénérées O, dont les
éléments vérifient mqin, + mong # 0.

On a XF =2 x H, la double couverture de H, le demi-plan Im 7 > 0. En fait, on peut ramener
I'intégration sur Re7 € R a Rer € [-1/2,1/2].

Si on note || la bande {7 | |[Re7| < 1/2, Im7 > 0}, on a alors (>3 balaie les orbites non-
dégénérées) :

Z f((my,n1,ma,m2)) =2

F T2 mi,m1,m2,n2€ZL

2 2
di ﬂ |: Z f(mlvOam?,O)+Zf((m17n17m27n2)@)
m1,mo €72 10)

(6.35)
Pour le modele que nous considérons, les termes correspondant a une orbite non-dégénérée
impliquent, par level-matching, que I'état de corde associé comporte au moins une excitation
d’oscillateur. Sa masse est donc de l'ordre de I’échelle de cordes, et nous pouvons négliger cet
état. On ne va donc sommer que sur les orbites dégénérées. On trouve ainsi que dans l'intégrale
donnant le potentiel a une boucle, on peut remplacer le réseau

T14lg,)(Ro) T1aly,J(Rs)

[l T2
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par
RoRs

T2

2 > exp —L((Qmo + 90)*RE + (25 + g5)* R2)| .
0,5 VT2

Dans le cadre de nos approximations 1'égalité T'y 1[{] = T’y 1(R) — (1/2)'11(2R) montre que la
contribution /m = n = 0 s’annule donc identiquement, et I'orbite {(0,0,0,0)} est donc absente
de la fonction de partition. Ceci annule la divergence infra-rouge qui découle normalement de la
contribution de cette orbite (voir | |); la raison physique sous-jacente est que ce secteur

est supersymétrique.

Nous traitons ensuite la partie fermionique de la fonction de partition. La brisure spontanée
s’effectue, en suivant la section 4.3, en couplant les dimensions Ry et R5 a des R-charges a,
a + Qs. L'utilisation de la formule de sommation de Jacobi® nous conduit alors & 1'expression
suivante :

Vs 427 1 Hihoihz/)} 4
Z= _75/ 2 (—)hothstootes Ty [10)(Ro) Ty, [22) (Rs) — o X Ta20-
(271.)5 F 7_27/2 hO,gO%%:O »+lgo +lgs 77121724 )

(6.36)
Cette forme implique alors que, si les compactifications de Scherk-Schwarz selon Ry et Rs
brisent spontanément la supersymétrie, on ne doit garder que les composantes de la somme pour
lesquelles go+ g5 = 1 (toujours dans 'approximation des nombres d’enroulement pairs). Sous ces
hypothéses, la présence du terme en 93 du coté gauche de la fonction de partition implique que
celui-ci ne contient que des états de masse carrée positive. Les tachyons potentiels sont en effet
détruits par la projection GSO, qui n’est pas altérée dans le cas de nombres d’enroulement pairs.
Par level-matching, le spectre sera donc non-tachyonique*. Un développement en Im 7 — oo
permet alors d’isoler la contribution des états de masse petite devant 1’échelle de corde.

La sommation sur gy + g5 = 1 comprend deux termes : (go, g5) = (1,0) et (0,1). Lorsque g = 0,
le bloc correspondant de la fonction de partition ne prend en compte que les enroulements et
les moments pairs, de sorte que le cocycle introduit dans le but de briser la supersymétrie est
en fait trivial. On en déduit que, dans les différentes contributions au potentiel effectif, seules
les dimensions sur lesquelles g = 1 participent a la brisure; les autres sont “spectatrices”. Dans
le cas de deux dimensions, les deux termes correspondent a la brisure par chacune des deux
dimensions, tandis que I'autre reste spectatrice. Si Q5 = 0, on a donc une dualité T" < M3/, au
niveau de la fonction de partition. Cette dualité pousse a considérer ’ansatz suivant pour la
cosmologie : Msz/5(t) ~ 1/a(t), ou encore M3/, /T = cste. Il est en fait montré dans | ] que
cette trajectoire est un attracteur. Une partie du travail effectué dans | | consistera a
déterminer sous quelles hypotheses un tel ansatz est valide.

La dualité T « M est brisée quand ()5 # 0 : les contributions des différents états sont
alors pondérées par (—)¥. On sait que les états acquérant une masse sont ceux pour lesquels
a+ Qs =1 : pour Q5 = 1, les bosons deviennent massifs, alors que les fermions restent sans

3. Voir 'appendice A, équation (A.17).
4. Au voisinage de la température d’Hagedorn, il n’est plus consistant de négliger les nombres d’enroulement
impairs, et des tachyons apparaissent dans le spectre.
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masse. Les calculs explicites montrent alors que le potentiel effectif se décompose comme la
somme de ses contributions venant des différents états du spectre, pondérée par le facteur (—)@s.
Il est en fait possible d’aller plus loin. Si on note ny = Y, 1 le nombre de paires boson-fermion

de la théorie, et

= ()%, (6:37)

S

le potentiel effectif se décompose en deux termes ; le premier est proportionnel a ny et correspond
a la brisure par la température (la R-charge associée a la température est forcément a), tandis
que le second est proportionnel & ny, et correspond a la brisure par la dimension X°. Toute la
dépendance en Q5 est alors concentrée dans ny (voir 1'équation (3.9) de | ]), de sorte
que la condition de validité de I’ansatz, que nous traiterons plus bas, va en fait se traduire par
une condition sur le parametre

n="Yel-1,1]. (6.38)
nr

Rescaling du potentiel et définition du parametre sans échelle ; identification avec
le dilaton

Le potentiel a une boucle calculé grace a la fonction de partition de la théorie des cordes corrige
I’action effective donnée, dans le repére de cordes, par

5= [dzv=g [e_w (;R 120,608 + ... ) - vsmng} (6.39)

On remarque le terme e~2?, qui vient du développement perturbatif en nombre de boucles. Une
telle forme de ’action signale que nous nous sommes placés dans le repére de cordes, dans lequel
les champs sont ceux apparaissant dans le modele-sigma de la théorie des cordes, ou encore
correspondant aux vertex. Le potentiel effectif Viying apparaissant a ’ordre d’une boucle, il ne
comporte donc pas de préfacteur fonction du dilaton (voir la figure 3.2).

Pour comparer cette action a celle du mini-superespace que nous avons détaillée dans la section
précédente, il faut passer dans le repére d’Einstein, dans lequel le terme cinétique de la métrique
est découplé du dilaton. On applique donc une transformation conforme sur la métrique en
posant g, = € 2?g,,, ce qui élimine le préfacteur e~2?. On trouve alors que la normalisation du
potentiel est changée :

1
VEinstein = ?‘/string (640)

ol s = e~ 2?. Ce facteur supplémentaire sera crucial car il fera apparaitre de maniére naturelle le
module sans échelle dans I’expression du potentiel.
Dans ce repére, ’action de supergravité se met sous la forme

1 _
S = /d433’ vV —g <2R + ngKij auq)[auq)j - VEinstein) (641)

La brisure de supersymétrie que nous avons mise en place est générée par un 2-tore correspondant
aux coordonnées Ry et Rs. Ceci définit deux modules complexes, T et U, tels que t = ReT' =
Ry R5 et u=ReU = Ry/R5. De plus, on inclut le doublet dilaton-axion S, dont la partie réelle

117



s = Re S apparait explicitement dans le potentiel dans le repere d’Einstein. Le potentiel de
Kahler associé a ces modules s’écrit comme

K = —log(S+S) —log(T +T) —log(U + U). (6.42)

Nos modeles supposent que u = cste. Dans ce cas, on remarque que le potentiel a une boucle
dans le repere d’Einstein ne dépend que de la combinaison stu, et que la masse du gravitino
dans le repere d’Einstein est donnée par ]\4§/2 = (stu)~!. Cette masse réalise I'expression de
la masse du gravitino introduite en (4.76). Il est donc consistant de considérer que s, t et u
évoluent proportionnellement, les autres directions restant plates a une boucle. On pose donc
(ReZ)® = 23 = stu comme étant le seul parametre ayant une dynamique non-triviale. Le
potentiel de Kahler devient

K = —3log(Z + 7) (6.43)

et a la forme sans échelle voulue. La masse du gravitino, qui vaut Mz, = |[W|e2, ou le
superpotentiel W est ici constant (les autre modules de compactification étant fixés), est
proportionnelle & (Re z) 3. Lorsqu’on pose

My = e*®, (6.44)

le terme cinétique du module sans échelle est bien en proportionnel & (9®)2. Pour faire contact
entre la théorie effective de supergravité et les évolutions cosmologiques présentées, on identifie
alors le module sans échelle au dilaton. Cette identification est guidée par le fait que ces deux
champs couplent a la trace du tenseur énergie-impulsion. Dans le cas de la brisure par la
température et par une dimension interne, le coefficient a vaut \@ Nous verrons que cette
égalité est modifiée lorsque l'on considére la brisure par un second rayon interne.

Génération de termes de courbure et de constante cosmologique

Nous avons vu précédemment que dans le cadre de N' = 4 spontanément brisée, le seul terme
susceptible d’apparaitre a une boucle varie comme Mg‘/z, soit en 1/a*. Sa rétroaction sur les
équations de FRW prend donc la forme d’un terme de radiation. Vu la structure des corrections
a une boucle donnée en (6.27), il est théoriquement possible de générer des termes en 1/a?; et
des termes constants. Nous allons commencer par donner la marche a suivre pour générer les
termes de courbure.

Dans | ], nous commengons par explicitement briser cette supersymétrie en compac-
tifiant sur 'orbifold T*/Z, x T?. On peut ensuite considérer de petites déformations dans le
spectre de masse de la théorie par I’addition de lignes de Wilson, telles qu’on les a introduites
dans la section 4.1.1. Les différents états de la théorie sont chargés sous les lignes de Wilson
considérées, et leur spectre de masse va étre modifié. Dans la formulation hamiltonienne, les
nombres quantiques m;, ou I = 5...10, vont étre modifiés en m; + Q,y¢, ou Q¢ est la charge
de I'état considéré sous la ligne de Wilson y§. Souvenons-nous que, pour qu’il soit consistant de
considérer les lignes de Wilson constantes, 1'indice a est restreint a la sous-algebre de Cartan
du groupe de jauge de la théorie. Il faut maintenant prendre en compte le shift des masses
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de I'états d’enroulement (my,n;) = (0,0) sur les Ry, I = 6,...10, qui donne une contribution
exponentielle

Ts.5(Ry) ~ e ™ 2 (Quvi)*/ BT (6.45)

Les termes du réseau tels que (my,n;) # (0,0) sont quant a eux exponentiellement petits. Le
développement de cette exponentielle & un ou deux ordres en Mg = Y (Q.y%)?/R? va générer
des termes en M3, Mg, My

Nous avons décidé dans | | de générer des termes spécifiques N' = 2 en brisant d’abord
explicitement la supersymétrie en N/ = 2 au moyen d’une compactification sur un orbifold 7 /Z,.
Une telle démarche est légitime et pose clairement ’hypothése N = 2 elle n’est par contre
pas indispensable. En effet, comme on I’a vu dans la section 4.4, la considération de valeurs
moyennes dans le vide non-nulles pour les lignes de Wilson brise en fait la supersymétrie, car
elle brise spontanément ’algebre de R-symétrie SO(6) ~ SU(4) donnée par les 6 coordonnées
internes X!, I =5...10.

Les deux contributions au potentiel effectif correspondant respectivement a la brisure par la
température et par la dimension X° vont avoir, au premier ordre en les lignes de Wilson, des
termes respectifs en 7% M et M3, Mi. Comme dans le cas des termes en 1/a*, ces termes sont

en fait respectivement de la forme T? M2 et M? /2 M‘(f), ou la charge ()5 pondere la somme dans
le cas de la brisure par la dimension spatiale :

10

Mi(y) = Z e RQZ yiQs)? (6.46)

M (y) = z I 32 oA (6.47)

L’ajustement de la charge 5 permettra ici aussi de générer des rétroactions ayant la forme d’un
terme de courbure positif ou négatif.

La possible génération d'un terme de constante cosmologique ne peut se faire que dans le cas
d’une structure NV = 1 spontanément brisée. Cette fois, il n’est plus possible de commencer
par briser explicitement la supersymétrie N' =4 — N = 1 préalablement a I'introduction de
lignes de Wilson : en effet, une telle démarche suppose une compactification sur T°¢/Zy x Zs, ce
qui fait disparaitre, dans le secteur twisté, la dépendance en les rayons internes, et donc en la
masse du gravitino. Ceci ne permet donc pas de réaliser les termes spécifiques N = 1 issus de la
quantité Str (M*log(M/T)). 1l faut donc adopter une autre approche.

L’étude des théories de supergravité nous indique que la structure NV = 1 est atteinte dés que le
coset N = 2, qui fait apparaitre la R-symétrie SU(2) (voir la section 4.4), est brisé¢ en un coset
N = 1. Dans une configuration de lignes de Wilson ol cette brisure est effectivement réalisée, la
constante cosmologique se calculera en poussant le développement de 1’exponentielle (6.45) a
I'ordre y*, puis en effectuant I'intégration sur ||.
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6.6 Consistance de I'ansatz M;/, oc T

Méme s’il est dicté par des considérations dimensionnelles, et par le résultat de [ | qui
montre que cette trajectoire est un attracteur, I'ansatz Msz/; = uT', o u est une constante,
n’est pas toujours vérifié. C’est pourtant sous cette hypothese que le potentiel que nous avons
calculé prend, en I’absence de lignes de Wilson, une forme de radiation en 1/a(t)*. L’hypothese
Mj/5 o< 1/a(t), couplée a la relation (6.44), implique que H et ® sont proportionnelles. Ceci
implique que I’équation d’évolution cosmologique (6.26) et I’équation d’évolution du dilaton
(6.25) doivent étre proportionnelles. En identifiant les termes quartiques, on trouve que I’équation
d’état du contenu effectif en radiation de notre univers (soit les termes de la pression et de la
densité d’énergie qui se comportent en 1/a*) doit vérifier 'équation d’état

60 —1

L 4
2a2 — 1M (6.48)

P4
En injectant o = \/% on trouve py = 4 p4. On trouve donc que notre contenu purement radiatif
vérifie bien I’équation d’état de la radiation, mais a cing dimensions. Ceci est di au fait que les
états de moment non nuls suivant la direction X° sont pris en compte dans le calcul du potentiel.
L’étude de | | donne alors une condition sur les schémas de brisure de supersymétrie
pour qu’il existe une constante u vérifiant cette propriété.

Une telle forme semble problématique dans notre modélisation : un contenu en radiation classique
dans un univers a quatre dimensions doit vérifier I’équation d’état usuelle p = 3p. C’est en fait
le cas, une fois que I'on prend en compte la contribution a ces deux quantités du terme cinétique
du dilaton. Cette incorporation du dilaton en tant que terme de radiation est légitime : il se
comporte en effet, dans le contexte de validité de notre modeéle, en T4,

La discussion de I'existence d une solution a I’équation d’état p = 4 p est effectuée numériquement
dans | ]. On trouve la condition —0.0666 < ny/ny < 0. Dans cet intervalle, la
constante u, = Ms/o/T est fonction de n (défini en (6.38)). Il est en fait possible de ré-absorber
la dépendance en ny et en ny dans une redéfinition de la température T et de la masse de
brisure de supersymétrie Ms/,. La condition (6.48) peut en effet se réécrire sous la forme

ny T f(u) + ny M§/2f(u) =0 (6.49)

Les équations régissant I'évolution étant logarithmiques en T' et Ms/s, elles sont invariantes sous
la redéfinition

Iny|

np T =T, — My, = M3, (6.50)
L’équation devient
T*f(4) + signe(n) n, M§/2f(a) =0 (6.51)

On montre alors premiérement que cette équation admet des solutions si signe(n) < 0, et, comme
signalé, pour n. < 0.0666.

~

On réduit alors en
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T f(i) — ne My, f (@) =0 (6.52)

Si on trouve une solution 4 = iy, comme

N M3/2 |nvl % 1 M3/2
== = 6.53
Uo 7 < Ny ni/4 T ( )

on a la relation |n]1/ 4.4 = cste ce qui implique bien que n se comporte en u~*. Ce comportement

est bien reproduit numériquement, dans le domaine d’existence de solutions (voir la forme de la
Figure 1 de | D

En présence de termes de courbure et de constante cosmologique, 'identification des équations
(6.26) et (6.25) implique Iidentification de tous les monémes du second terme. L’identification
des termes quadratiques (en a(t)~2) ne pose pas de nouvelle condition sur le systeme et redéfinit
la courbure effective de I'espace. L’ajout de termes indépendants de a(t) pose par contre probleme

dans le cadre de l'article | |. En effet, a la condition
6a? — 1
= — 6.54
P4 202 — 1 P4 ( )
qui fixe u, on doit maintenant ajouter la condition sur les termes constants
14202 (6.55)

Remarque sur le régime de validité du modele

Nous avons construit une évolution cosmologique dans laquelle la température et la masse
typique de brisure symétrique, qui se comporte comme l'inverse de la taille typique d’une
dimension interne de ’espace, sont proportionnels. En particulier, si ce modele était valide pour
un univers assez vieux, la dimension qui participe a la brisure devrait décompactifier, et la
masse supersymétrique tendre vers zéro. Un tel comportement serait loin d’étre réaliste. Nous
allons cependant voir que ce n’est pas le cas.

Pour cela, ’exemple le plus simple est de considérer la brisure de symétrie électro-faible SU(2), x
U(1l)y — U(1)em, effectuée par le boson de Higgs. Nous allons voir que cette brisure est générée
par des corrections radiatives venant des partenaires supersymétriques | , ]. A
haute énergie, le groupe de jauge électro-faible est préservé : la masse effective du Higgs (ie la
dérivée seconde a 'origine) est strictement positive, de sorte que (H) = 0 est une configuration
stable. Toutefois, cette masse est modifiée par les équations du groupe de renormalisation. Les
contributions des termes de brisure douce de la supergravité attirent la masse carrée du Higgs
vers des valeurs négatives : a 1'échelle de transmutation, la solution (H) = 0 est déstabilisée, et
le Higgs acquiert une valeur dans le vide non-triviale, ce qui brise la jauge. La contribution des
termes de brisure douce est prépondérante : si la masse du Higgs reste nulle lorsqu’on passe
en dessous de Mgy gy, la brisure n’aura pas lieu. Ainsi, on voit que ’échelle de brisure de la
symétrie électro-faible est de 'ordre de la masse du Higgs.

Dans le cas qui nous occupe, ceci implique que lorsqu’on descend en dessous de la masse
électro-faible, I'excitation du Higgs est a prendre en compte, ce qui rend invalide I’hypothese
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selon laquelle P et p ne dépendent que de T et des échelles M;. On montre alors que I'apparition
de cette nouvelle échelle stabilise en fait la masse du gravitino a 1’échelle de brisure électro-faible ;
le module sans échelle est donc finalement stabilisé.

D’autre part, nous avons systématiquement gelé les dimensions ne brisant pas la supersymétrie
a une valeur de l'ordre de I’échelle de corde. Cette hypothese de stabilisation de modules de la
théorie mérite quelques précisions. Deux cas sont a analyser : selon I'expression de la R-charge
que 1'on utilise pour briser spontanément la supersymétrie, nous avons signalé que la brisure
donne une masse soit aux bosons, soit aux fermions. Par exemple, si la R-charge considérée est
a+ H, ou H est le parametre de twist d'un orbifold Zs, les fermions du secteur non-twisté et
les bosons du secteur twisté acquerront une masse.

Le cas des modules twistés est réglé par le potentiel effectif généré a une boucle en théorie des
cordes : en effet, les termes correspondants sont positifs, ce qui induit au voisinage de zéro une
masse positive pour les modules ne participant pas a la brisure de supersymétrie. Dans le cas
des modules du secteur non-twisté, qui comprend les modules géométriques, la stabilisation des
modules de structure complexe est assurée par la présence de termes de brisure douce (refs.);
le module de Kéahler reste quant a lui plat au niveau de la supergravité, et recoit un potentiel
de type runaway a une boucle en théorie des cordes toujours sous I’hypothese sans échelle. Sa
stabilisation radiative intervient a ’échelle de brisure électro-faible, comme détaillé ci-dessus.

Un traitement assez complet des termes de brisure douce peut étre trouvé dans | , ],
et des rappels sont effectués dans | ]. Il y est entre autres montré que pour les modules ne
participant pas a la brisure de supersymétrie, le terme de masse généré est positif et proportionnel
a Ms/,, tandis que les modules de type sans échelle restent plats.

6.7 Forme des cosmologies effectives obtenues

Nous résumons ici trés succinctement les résultats obtenus dans | |, ainsi que dans
[ , |, concernant les formes de cosmologie accessibles par les modeles que nous
avons détaillés. Le cas d’un terme de radiation négatif, théoriquement possible, n’ayant pas
été explicitement réalisé dans nos travaux, nous renvoyons aux références ci-dessus pour ses
conséquences cosmologiques. Nous nous intéressons aux univers, plats ou de type de Sitter,
déformés par une rétroaction comprenant des termes de radiation positifs, ainsi qu'un terme de
courbure de signe arbitraire, et une contribution en 1/a® venant de la considération de modules
sur la couche de masse. On rappelle que tous les résultats exposés dans les section précédentes
restent valables en présence de tels modules.

On trouve ainsi, selon le signe de la courbure effective fournie par I'allumage de lignes de Wilson,
un univers en éternelle expansion dans le cas d'une courbure négative, avec une croissance du
facteur d’échelle linéaire dans le temps pour un univers assez vieux; et un univers se terminant
dans un big crunch dans le cas d’une courbure positive. Le cas limite de courbure nulle fournit
un univers en expansion infinie, avec, pour un univers assez vieux, a(t) oc v/t. N'oublions pas
toutefois que le champ d’application de notre théorie ne concerne ni l'univers trés jeune, ni
les univers trop vieux (auquel cas 'hypothese sans échelle est mise en défaut et la masse du
gravitino est stabilisée). Dans le premier cas, on se rapproche en effet de la température de
Hagedorn, a laquelle il convient de prendre en compte les états d’enroulement non-nul. La
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physique au voisinage de cet espace est mal connue : une transition de phase peut avoir lieu
(ref.) ; de plus, au voisinage du point fixe de la T-dualité selon la direction temporelle 5 < 1/4,
la notion méme d’espace-temps est remise en cause, et il n’est plus question de parler d’effets
thermiques tels qu’on les envisage normalement. Cette singularité pourrait toutefois étre évitée
dans une classe de modeles construits récemment, par 'allumage de flux géométriques (qui ne
sont autres que des compactifications de Scherk-Schwarz) | .

Enfin, pour un univers vieux, la masse supersymétrique se stabilise a la valeur du Higgs; de plus
la matiere découple de la radiation, et on passe vers la phase d’expansion actuelle de I'univers,
dominée par la matiere.

6.8 Extension a deux directions de brisure, et stabilisa-
tion du module de structure complexe

Dans cette section, nous allons présenter la généralisation de ce modele développée dans
[ ]. Dans ce travail, nous considérons la brisure de supersymétrie selon deux directions
internes, de rayons respectifs Ry et Rs. Mus par une analogie avec le cas d’un seul rayon, nous
définissons les modules T" et U sous la forme

Ry R;
\/m, Re T1 =7 = R4R5, Re U1 = = R4. (656)
Le module u sera fixé, comme précédemment, par la consistance de notre modele ; le module 7°
aura une évolution cosmologique similaire a celle qu’avait R; dans la section précédente. La
nouveauté réside donc dans I'apparition du module ¢. Nous allons voir qu’il ne participe pas a
la définition du module sans échelle et a ’évolution de 1’échelle de brisure de supersymétrie ; par
contre, au contraire des modules spectateurs de la théorie, il apparait dans le potentiel a une
boucle dans des termes qui ne sont pas, comme précédemment, exponentiellement petits.
Sa dynamique est donc déterminée par le potentiel a une boucle ; notre but sera de donner des
conditions sur les modeles construits permettant la stabilisation de U. En effet, s’il n’existe
pas d’état (méta-)stable pour U, on obtient un comportement de type runaway, dans lequel
U est attiré soit vers 0, soit vers +oo. Dans ces cas-la, un des deux rayons se replie a une
échelle de l'ordre de 1’échelle de cordes, et on est ramenés au mécanisme développé dans la
section précédente : la hiérarchie entre le rayon participant a la brisure et les dimensions
repliées a I’échelle de cordes font que les états de Kaluza-Klein sur ces dernieres dimensions sont
exponentiellement supprimés; la brisure de supersymétrie est donc perdue et un des deux rayons
devient spectateur. La pertinence de cette généralisation nécessite donc la stabilisation de U.

u =

Plus généralement, cette extension pose la problématique de la prise en compte de modules
supplémentaires dans le mécanisme de Super-Higgs. Nous avons vu précédemment que la
supersymétrie fait apparaitre pour les modules ne rentrant pas en compte dans I'expression de
la masse du gravitino des termes de masse (positifs) de I'ordre de Ms/,. Ces modules sont donc
automatiquement stabilisés. Toutefois, la situation se complique pour les modules participant a
la brisure : en effet, dans ce cas-la, le poids conforme A est non-nul, et les termes de brisure
douce ne prennent pas nécessairement la forme d’un terme de masse. Par exemple, dans le cas
des trois modules S, T, U du mécanisme a un seul rayon, A = —1 et le terme de brisure douce
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est identiquement nul. Il nous faut donc aller chercher des corrections issues de la théorie des
cordes pour procéder a une éventuelle stabilisation de ces modules supplémentaires.

Beaucoup d’aspects du modele a deux rayons sont similaires au cas comportant une brisure selon
un seul rayon ; nous allons passer en revue les principales différences entre les deux mécanismes
mis en ceuvre.

Un premier point vient de la structure de la supergravité sous-jacente. Le calcul du potentiel
effectif dans le repere d’Einstein montre que le potentiel effectif est de la forme

1
(Re 5)%77?
ce qui implique, a u et U fixés, qu’en notant s = Re S, la dégénérescence issue de la structure

sans échelle est levée pour la direction (s7).
La fonction de Kahler pour les trois modules S, 7, U conduit au lagrangien suivant :

1 1(0s\* 1/0T\> 1 [/ou\’
£—2R—4<8> _4<T) _4<u> _VEinstein(STau7u) (658)

VEinstein(ua Sa T,U) - f(U,U) (657)

En définissant /2 bsu = log(s, T ,U), le terme cinétique devient, par rotation orthonormale
sur les ¢

1 2 1 AV 1
- 5(5‘1’) - 5(5@) - 5(8@,) (6.59)
b = —1 P = —1 6.60
__\/5(¢5+¢T)7 - \/§(¢s_¢7) ( . )

La forme du potentiel effectif montre qu’il est consistant de geler @', et ¢y sous réserve
de l'existence d’un extremum en U. La normalisation du terme cinétique de ® l’identifie
naturellement au dilaton physique. On a ¢*® = 1/s7 o M32/2, de sorte que, dans les notations
de la section précédente v = 1. La contrainte de consistance (6.48) entre les équations de
supergravité et les équations d’Einstein donne dans ce cas I'équation d’état py = 5py4, qui
correspond sans surprise a un contenu radiatif dans un espace-temps a six dimensions. La
encore, cette équation d’état, qui ne correspond pas a un contenu radiatif dans un univers
quadri-dimensionnel, sera “rectifiée” par la prise en compte du terme cinétique du dilaton.

Ce schéma étant fixé, nous construisons plusieurs modeles de supercordes, hétérotiques ou de
Type II, dans lesquels la supersymétrie est spontanément brisée par la température et les deux
rayons R4 et Rs. Une subtilité nouvelle apparait lorsque ’'on considere la brisure de théories
de Type II : en effet,dans ce cas-la, la brisure peut étre effectuée de maniere asymétrique,
comme introduit dans la section 4.3. Bien sfir, la brisure par le temps euclidien reste une brisure
symétrique, et la considération de cette nouveauté ne concerne que les brisures selon les deux
rayons internes.

Les conditions de validité du modele prennent la méme forme que dans le cas a un rayon :
I’identification des équations d’Einstein et d’évolution du parametre sans échelle impose, par
identification des termes quartiques, I’équation d’état py(u,U) = 5 ps(u,U). De plus, on veut
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maintenant minimiser le potentiel selon la direction ¢/ : on cherche donc a imposer, simultanément
a équation d’état ci-dessus, les conditions 9,V (u,U) = 0 et OV (u,U) > 0.

Théories hétérotiques

Commencons par le cas qui est 'extension directe de nos précédents travaux, c’est-a-dire le
cas d'une théorie hétérotique. Le choix du schéma de compactification de Scherk-Schwarz du
temps euclidien et de deux rayons internes Ry et Rs5 se réduit en fait au choix des deux charges
R4, Q5 qui interviennent dans les R-charges a + Q4 et a + @5 que 'on utilise pour la brisure de
supersymétrie. La définition de ny introduite en (6.37) se généralise aisément, et on considere
maintenant les sommes suivantes

N1 = Z(_)sz’ nop = Z(_>Q57 ny = Z<_)Q4+Q5’ (6.61)

S S S

qui ponderent les contributions au potentiel correspondant aux termes ou la supersymétrie est
brisée respectivement par la direction Ry, la direction Rs, et les deux directions simultanément.
Le coefficient gy = 0, 1, qui indique si la température participe aussi a la brisure de supersymétrie,
se déduit de la condition gg + g4 + g5 = 1 mod. 2. Il est possible de mener en toute généralité
une étude des solutions cosmologiques pour des valeurs arbitraires de nio/nr, noi1/nr, ni/nr;
la prise en compte du fait que ces trois parametres ne sont pas indépendants s’effectue en
paramétrisant ’espace des parametres par trois réels positifs &1, &, €5 appartenant au tétraedre
Si+&+86 <1

Il est assez ardu de mener une exploration méthodique de tout le tétraedre. Un cas cependant
offre des solutions stables : celui ou Q)4 = @5, ce qui équivaut a nig = ng; et ny; = np, ou encore
a & = & = 0. De nombreux détails sur la structure des solutions aux équations de consistance
et d’existence d’un minimum se trouvent dans | | ; nous citons juste dans ce manuscrit
qu’une solution cosmologique existe, stabilisant & au point self-dual & = 1, lorsque

o1 10

—0215< 2 =2 <. (6.62)
nr nr

Cette configuration est de plus réalisable en adoptant des R-charges utilisées dans | ]:
en choisissant la R-charge associée aux rayons R, et Ry comme a + v + 4/, ot v et 7/ sont
les hélicités des états associées aux représentations du groupe de jauge Eg x Ef, on obtient
no1/nr = —1/63; en choisissant la R-charge a+ H, ou H est le parameétre de twist d’un orbifold
T*/Zy, on obtient ng; /ny = —1/127; ces deux quantités vérifient bien (6.62).

Théories de Type 11

L’extension du mécanisme de Scherk-Schwarz aux théories de Type II permet de considérer
des brisures asymétriques. Une telle possibilité ne concerne évidemment pas la direction du
temps euclidien, le cocycle étant donné par I'expression (4.65). Par contre on peut considérer les
configurations symétrique/symétrique, symétrique/asymétrique, asymétrique/asymétrique pour
les deux rayons, le dernier cas se séparant encore en deux sous-cas selon que la brisure a lieu
du méme c6té pour les deux rayons, ou que le premier rayon brise selon le nombre fermionique
gauche et le second selon le nombre fermionique droit.
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R4 RS
Sym/Sym | (—)@tatQamtbrbtQuntemn | (_)(atat+Qs)m+(b+b+Qs)ntemn

Sym/ASym (_)(a+EL+Q4)m+(b+E+Q4)n+sﬁm (_)(a+Q5)7h+(b+Q5)n+smn

a+Qq)m+(b+Q4)n+emn (_)(a+Q5)ﬁL+(b+Q5)n+€ﬁm

(
)(a+Q4)fn+(b+Q4)n+smn (_)(&+Q5)m+(5+Q5)n+smn

Asym/Asym (—)
(_

L’exploration des modeles de Type II est ensuite assez limitée : en effet, du fait de I'absence de
jauge non-triviale °, les R-charges disponibles sont assez peu nombreuses. La seule configuration
dans laquelle il est possible de définir une R-charge différente des trois usuelles a, a et a + a est
en fait d’effectuer un orbifold T /Z, sur les quatre dimensions supplémentaires spectatrices, et
de coupler aux R-charges a + H, a + H ou a+ a + H. Nous cataloguons dans | | les
différents cas possibles ; nous trouvons en fait que, méme dans le cas de I'existence d’une solution
critique aux équations de consistance et d’existence d’un extremum, la position d’équilibre
obtenue pour U est instable. Les solutions de Type II semblent donc inintéressantes d’un point
de vue cosmologique, en vue de la modélisation d’une phase thermique de I'univers; par contre
elles sont prometteuses en vue de ’exploration de la physique au voisinage de la température de
Hagedorn, en utilisant des constructions d’orientifold.

5. En fait, inclusion de D-branes dans la théorie permettrait de faire apparaitre une jauge non-abélienne ;
une telle possibilité serait intéressante a explorer dans des travaux futurs.
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Chapitre 7

Conclusion

Au cours de ce travail de thése, nous nous sommes intéressés a deux champs d’application de la
théorie des cordes.

Le premier touche a la physique des particules et a la reproduction de propriétés caractéristiques
des théories de grande unification et du modele standard. A I'aube du démarrage des expériences
du LHC au CERN, dont toute la communauté cordiste espere qu’elle validera les hypotheses
actuelles que sont le mécanisme de Higgs et la supersymeétrie, il est plus que jamais nécessaire
d’explorer les possibilités offertes par la théorie des supercordes pour décrire la physique des
particules. En particulier, le processus de sélection du vide, c’est-a-dire des caractéristiques de
I’espace interne, est un probléme ouvert. Une maniere de progresser dans le compréhension de ce
mécanisme passe par une exploration méthodique de I'espace des vides dans lesquels la théorie
est définie sans ambiguité. Nous avons mis en évidence le fait qu’il existe deux approches a
cette exploration, qui donnent en fait des résultats complémentaires. La premiere approche est
purement géométrique, et passe par la considération de familles d’espaces de Calabi-Yau; dans
ce cas, les propriétés phénoménologiques correspondantes découlent de propriétés topologiques
et différentielles des surfaces de compactification. Les travaux en ce sens ont toutefois conclu
qu’il était nécessaire de sortir du cadre rigide des géométries Calabi-Yau, et de considérer des
compactifications avec torsion, ou encore des compactification asymétriques.

La deuxieme approche, qui est celle que nous avons poursuivie, consiste a explorer une classe
de modeles basés sur des fermions libres. Il est montré que ces constructions reproduisent,
entre autres, des orbifolds de type Zs ou Zs X Zs; la résolution de ces orbifolds fournit en
fait des espaces de Calabi-Yau. La plupart des propriétés intéressantes d’un point de vue
phénoménologique proviennent de la forme des secteurs twistés de la théorie, de sorte qu’elles
sont invariantes sous le processus de régularisation des singularités : la construction fermionique
reproduit ainsi les aspects de compactification de type Calabi-Yau, et donne de plus accées
a des schémas de “compactifications non-géométriques” Il est de plus en plus clair que les
compactifications de type orbifold sont les configurations privilégiées en vue de reproduire les
caractéristiques du modele standard (voir par exemple | ] pour une revue récente). Le
mécanisme de Scherk-Schwarz se traduit ici en termes de flux géométriques, et donne acces a
des modeles plus généraux que les Calabi-Yau.

Au sein de cette classe de vides de la théorie, nous avons montré I'existence d’une symétrie,
analogue a la symétrie miroir, qui échange le nombre de représentations vectorielles et le nombre
de représentations spinorielles du groupe de grande unification SO(10) présentes dans le spectre.
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Nous avons de plus explicité la transformation a effectuer sur un modele donné pour obtenir
un modele dual. Contrairement a la symétrie miroir, qui relie des compactifications (2, 2), la
symétrie spineur-vecteur s’étend aux compactifications (2, 0); les modeles (2, 2) sont auto-duaux.
En plus de faciliter la classification, la mise en évidence d'une telle structure de I'espace des vides
nous permet de suggérer des pistes de réflexion pour une hypothétique loi de sélection des vides :
des configurations auto-duales pourraient par exemple se voir privilégiées par rapport a d’autres
vides dissymétriques. De maniere générale, il apparait clair que toute étude du landscape sera
facilitée par I'exploitation des symétries de celui-ci, de la méme maniere que 1’exploitation des
symétries est et a été au coeur de tous les progreés de la physique théorique du 20°™ siecle.

Dans la seconde thématique de notre travail, nous avons cette fois appliqué le mécanisme de
brisure spontanée de supersymétrie a la Scherk-Schwarz a 1’étude de solutions cosmologiques
en présence d'une température non-nulle et d’une échelle de brisure de supersymétrie. Dans
un régime protégé a la fois de singularités de type Hagedorn et de I'apparition dans la théorie
d’échelles privilégiées telles que 1’échelle de brisure électro-faible, nous avons montré que
I’évolution cosmologique était régie par une théorie de supergravité sans échelle. Sous certaines
conditions, le rapport entre la température et la masse de brisure de supersymétrie est fixée, et
obtient un univers dominé par la radiation, avec des corrections possibles prenant la forme d’une
courbure ou d’une constante cosmologique effective. Le module sans échelle est cosmologique
et se stabilise finalement a 1’échelle électro-faible ; les autres modules sont spectateurs, et sont
automatiquement stabilisés par des termes de brisure douce. Etendant ce scénario au cas ol
plusieurs modules participant a la brisure de supersymétrie, nous avons de plus montré qu’il est
possible de stabiliser dynamiquement certains modules de structure complexe non spectateurs.
Notre travail n’a par contre pas pris en compte les premiers instants de 1'univers, ou la notion
de température n’a de toute fagon plus cours; dans ce régime, des travaux récents mettent a
profit le mécanisme de brisure de supersymétrie a la Scherk-Schwarz dans le cadre d’orientifolds
de théories de Type II pour proposer une résolution de la singularité de Hagedorn.

129



130



Annexe A

Quelques identités utiles sur les
fonctions v

En théorie des supercordes, les fonctions 9 font partie des blocs élémentaires de construction
des fonctions de partition. Elles interviennent dans la plupart des caracteres des algebres de Lie
qui sous-tendent les différentes théories.

On définit

9 [g] (U‘T) _ Z eim’(n—a/2)2eiw(2v—b)(n—a/2)‘ (Al)

nez

Quand les variables ne sont pas explicitement notées dans les formules, on considére v = 0. On
note ¢ = "7,

Les transformations modulaires agissent sur les fonctions 9 et sur la fonction de Dedekind n
comme

93] (vl +1) = exp (~Tala = 2)) 9 [saia] o17) (A2)
98] (v] = 1/7) = V=it exp (Z;Tab + z'7r7”02) v [_ba} (v]T) (A.3)

n(r+1) =n(r); n(=1/7) = V—=irn(7) (A.4)

Suivant les conventions usuelles, on note

=00 =0 ds=v[)]; du=v]]. (A.5)

et on a les propriétés de péridicité suivantes sur les indices (a, b)
9 i) (lr) = ™9 [] (v]7) (A.6)
9| 55] (vl7) = 9 [5] (—vl7) (A7)

Nous commengons par quelques identités utiles. Les représentations des fonctions 9 sous forme
de produit sont donnée par :
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Vi (v|T) =2 gt sin (7o) ]_O_:[l(l —¢")(1 = g" ¥ (1 — g™ e *™) (A.8)
Oa(v|7) = 2¢5 cos(mv) ﬁ 1—¢")(1+q" ™) (1 + q" e ™) (A.9)
n=1
Bafolr) = [T = g1+ g2 ) (14 g=1/2 e720) (A10)
n=1
9a(o]r) = TL(1 = ¢")(1 = "2 e2min)(1 — g 1/2 e-mi) (A11)

I
—

n

Elles impliquent notamment, pour v = 0, les développements suivants a ¢ petit, utilisés dans
[ ] :
Vg ~2¢3(14¢q), Y3~14+2¢"% 9y~ 1-2¢"2 (A.12)

On note que 'énergie du vide dans la fonction 95 correspond bien a deux fermions réels pris en
conditions au bord de Ramond, h = 1/8.
On a également

192193194 = 2773 (A13)

ce qui se traduit dans 'approximation sans masse par
¥y ~ 21> (A.14)

Les fonctions v satisfont un grand nombre d’identités remarquables. La fameuse identité de
Jacobi, que nous avons déja évoquée, est donnée par

V3 — U5 — 5 = 0. (A.15)

Elle se généralise en présence d’un parametre affine comme

I3(v]7) = Di(v|T) = D3(v|T) — Vi (v|T). (A.16)
et reflete la propriété de trialité de SO(8). Apres projection GSO, c’est également cette égalité
qui assure la présence d’autant d’états bosoniques que d’états fermioniques a chaque niveau de
masse des théories hétérotiques ou de Type II. Cette égalité admet deux généralisations, une de
Type IIB, dont nous faisons un usage abondant tout au long de la section 6 :

1 1 4

3 3 e Tt o) = - 110 5] i) (A7)

a,b:0
et une de Type ITA

DS H1 9 [0 (ulr) = — T1 0 [1%] (i) + T 0 [1] ko). (A.18)

a,b=0



Dans ces deux dernieres formules, on suppose que >, h; = ,9; =0 et on a

1 1
V) = 5(—1)1 + Vg + V3 + V4); vy = 5("‘”1 — U2 + V3 + v4) (A.19)
/ 1 ! 1
vy = 5(1)1 + vy —vgF+g); Uy = 5(4—01 + vy + v3 — v4) (A.20)
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Annexe B

Algebre superconforme N =2 et flot
spectral

La réalisation de la supersymétrie sur la feuille d'univers d'une théorie des cordes est donnée
par la structure de 1’algebre superconforme N = 1 (algebre de super-Virasoro). Toutefois, pour
des raisons phénoménologiques évidentes, on cherche maintenant a réaliser des supersymétries
d’espace-temps. En fait, ceci implique la présence d’une algebre superconforme N = 2. Nous
allons dans un premier temps d’écrire la structure de I'algebre superconforme N = 2, puis dans
un second temps la réaliser explicitement dans une théorie comprenant des degrés de liberté
bosoniques et fermioniques.

La présence de N' =1 SUSY d’espace temps implique la présence de N = 2 superconforme sur
la feuille d’univers. La considération deans le chapitre 5 de I’algebre superconforme présente
du c6té non-supersymétrique des théories hétérotiques montre toutefois que la réciproque est
fausse; il est néanmoins possible de traduire les champs chiraux de ’algebre superconforme en
termes de champs de spin.

On commence par définir la théorie conforme qui contient le tenseur énergie-impulsion 7'(z).
Son OPE est de la forme

c 2T (w) 0T (w)
. B.1
2(2—w)4+(z—w)2+z—w+reg (B-1)
La théorie conforme est alors complétée par la donnée des champs primaires ¢, de poids conforme
hg, tels que

T(2)T(w) =

ho(w) |, 99w

(z—w)? z—w

T(z)p(w) = + reg. (B.2)

et des modules de Verma correspondants.
Le passage a la théorie superconforme N = 2 se fait en introduisant deux super-partenaires
G*(z) et un courant U(1) J(z) tels que les OPE suivantes soient réalisées :

T(2)G*(w) = (Z?)_/i)QGi(w) + W + reg. (B.3)
T(2)I(w) = LW 2T (B.4)

(z—w)? z—w
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2¢/3 N 2 J(w) +2T(w)+3J(w)

G (2)G (w) = o) owpe o + reg. (B.5)
J(2)GE(w) = ifi_(l;) +reg. (B.6)
J(z)J(w) = @i/?zw + reg. (B.7)

Avant de voir les implications d’une telle structure sur la théorie, nous allons la réaliser
effectivement en terme d’un boson complexe libre X(z, z), d’un fermion complexe holomorphe
1 et d'un fermion complexe antiholomorphe A. On note alors T I'opération de conjugaison
complexe : si ¥(z) = %(wl(z) +i12(2)) alors 9T = %(@bl(z) — 11)%(2)). Cette construction est
tirée de | ].

Nous considérons alors l'action usuelle :

S = / 2z (0XOXT + 10y + pawt + MO + AIAD) (B.8)
Alors, les courants
1 1
T(z) = —0X0XT — §¢Ta¢ — §¢3¢T (B.9)
Gt (2) =ivV29oXT, G (2) =ivV2yTaX (B.10)
J(z) =~y (B.11)
forment une théorie superconforme N = 2 du c6té holomorphe; de méme la partie anti-

holomorphe est obtenue en effectuant & — 9, 1) — .

Flot spectral

Les courants de ’algebre superconforme admettent les développements en modes suivants :

T(z)=)_ ;ZQ (B.12)
Jz) =% Ziil (B.13)
GH(z) =) ,ﬁé%l (B.14)

n

Les conditions au bord des supercourants G* dépendent d’'un parameétre a € [0, 1[. 1l existe
alors pour chaque a une algebre différente. Mathématiquement, on montre en fait que toutes
les algebres sont isomorphes. Il existe donc une bijection unitaire U, envoyant un vecteur |f,)
membre d’une représentation de 1’algebre superconforme prise en a = 7 sur un vecteur |f)
correspondant a a = 0. Cet opérateur est dit de flot spectral. En pratique, deux valeurs de a nous
intéressent : @ = 0, qui donne le secteur de Neveu-Schwarz; et a = 1/2, qui donne le secteur de
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Ramond de la théorie. On voit alors que I'opérateur de flot spectral Uj o est un bon candidat de
générateur de supersymétrie d’espace-temps. Pour mieux s’en convaincre, nous allons examiner
le cas de la théorie a charge centrale ¢ = 3, donnée par les opérateurs (B.9), (B.10), (B.11). I
est possible de bosoniser le courant .J de (B.11) en J(z) =i d¢; alors on a Uy, = e~**/2. Mais
d’apres la définition de ¢, on voit que ce dernier n’est autre que la version bosonisée du fermion
complexe 1) ; de sorte que U, /o s’identifie a un champ de spin, et relie bien les vides de Ramond
du fermion 1 et les vides de Neveu-Schwarz.

Toutefois, le flot spectral n’engendre pas toujours la supersymétrie : en effet, si les fermions
pris en conditions de Ramond ne sont pas d’espace-temps, les secteurs a = 0 et a = 1/2 sont
tous deux bosoniques. Nous allons voir quelles sont dans ce cas les conséquences de la structure
superconforme.

N = 2 superconforme en théorie hétérotique

Nous allons ici construire la théorie superconforme N = 2 présente du c6té bosonique de la
théorie des cordes hétérotiques. Les degrés de liberté physiques de cette théorie ont une charge
centrale totale ¢ = 24. Afin de faire le lien avec le chapitre 5, nous notons les degrés de liberté
de la maniere suivante :

e 4 bosons complexes X'+4. Dans le cadre de la construction fermionique, les bosons X'?3 sont
équivalents aux fermions libres (yw)'¢; X est le boson complexe transverse d’espace temps.

e 4 bosons complexes H*. Dans le cadre de la construction fermionique, ces bosons sont
équivalents aux fermions libres ¢!,

e 8 fermions complexes, notés sans surprise ', 7423,

L’algebre superconforme est réalisée par les courants :

T(z) = -3 oxoxt - Z oHOH! — - [fj (@) foy' + o)) + fj [()ton’ + nia(ni)ﬂ :

i=1 i=1 i=1 =1

(B.15)
3
GH(z) =i lenla (X + ooyt +Zwa (H') ] (B.16)
=1 =1
3
G (2) =iV2 [Z Vox! 4 T8X1+Z TaHZ] (B.17)
=1 =1

5 3

J(2) = =@ = > (). (B.18)
i=1 i=1

On voit notamment dans la derniere équation que le courant J n’est autre que le courant

d’hélicité associé aux fermions t'+?, nh®3.

On voit qu’il est possible de se ramener au cas ¢ = 3 en découpant cette algebre superconforme

en huit parties ¢ = 3 indépendantes (les OPE entre des éléments de deux parties distinctes

étant régulieres). De maniere similaire, les états physiques vont prendre la forme de produits
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tensoriels, et ainsi 'opérateur de flot spectral Uy, ., pour a; = --- = ag = 1/2, va prendre
la forme d’un champ de spin pour lequel les fermions ', n'+3 sont pris en conditions de
Ramond. Cet opérateur est analogue a un opérateur de supersymétrie ; les fermions ¢, n’étant
pas d’espace-temps, on ne construit toutefois pas une supersymétrie d’espace-temps. Par contre,
on relie bien des états de Ramond a des états de Neveu-Schwarz.

Pour faire le lien avec le chapitre 5, nous allons voir dans ce contexte comment apparait la
brisure de cette algébre superconforme. On suppose donc qu’il existe un boson interne X* qui
couple a la structure de spin des fermions 1, n. Alors, si I'on considere le vertex de charge
superconforme qui réalise le flot spectral, on voit que les conditions de Ramond des fermions
1, n implique que le nombre d’enroulement du mode zéro de X* est demi-entier, et donc que le
vertex médiateur du flot spectral est massif. Ainsi, cette symétrie est spontanément brisée.
Les vertex de Eg qui ne faisant pas partie de sa sous-algebre SO(10) x U(1) s’expriment comme
des champs de spin; ils sont les partenaires superconformes des vertex de SO(10) x U(1). Leur
masse est donc levée par la brisure superconforme, et le groupe de jauge est brisé.
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1 Introduction

It is important to develop a string theoretic framework for studying cosmology. The ultimate
goal of this task is to determine whether string theory can describe basic features of our
Universe. Despite considerable effort towards this direction over the last few years (see for
example [1] — [10]), still very little is known about the dynamics of string theory in time-
dependent, cosmological settings. The purpose of this work is to provide a new class of
non-trivial string theory cosmological solutions, where some of the difficult issues can be

explored and analyzed concretely.

At the classical string level, it seems difficult to obtain exact cosmological solutions [8].
Indeed, after extensive studies in the framework of superstring compactifications (with or
without fluxes), the obtained results appear to be unsuitable for cosmology. In most cases,
the classical ground states correspond to static Anti-de Sitter or flat backgrounds but not to
cosmological ones. The same situation appears to be true in the effective supergravity theo-
ries. Naively, the results obtained in this direction lead to the conclusion that cosmological

ground states are unlikely to be found in superstring theory.

From our viewpoint this conclusion cannot be correct for two reasons:
e The first follows from the fact that already exact (to all orders in o) cosmological
solutions exist, which are described by a two dimensional worldsheet conformal field theory
SL(2,R)
T >< M’ [274].
e The second is that quantum and thermal corrections are neglected in the classical

based on a gauged Wess-Zumino-Witten model at negative level —|k|:

string /supergravity regime.

The first class of stringy cosmological models was studied recently in [5], where it was shown
how to define a normalizable wave-function for this class of backgrounds, realizing the Hartle-
Hawking no-boundary proposal [11] in string theory. Explicit calculable examples were given
for small values of the level |k|. As it was shown in [5], these models are intrinsically thermal
with a temperature below but still close to the Hagedorn temperature. The disadvantage
of small level |k|, however, is the absence of a semi-classical limit with |k| arbitrarily large,
which prevents us from obtaining a clean geometrical picture and studying issues such as

back-reaction and particle production in a straightforward way.

Another direction consists of studying the “quantum and thermal cosmological solutions,”



which are generated dynamically at the quantum level of string theory [6,12]. Although this
study looks to be hopeless and out of any systematic control, it turns out that in certain
cases the quantum and thermal corrections are under control thanks to the special structure
of the underlying effective supergravity theory in its spontaneously broken supersymmetric

phase. An effective field theory study has already been initiated in [6,12]. (See also [13,14].)

In order to see how cosmological solutions arise naturally in this context, consider the case
of a supersymmetric flat string background. At finite temperature the thermal fluctuations
produce a non-zero energy density that is calculable perturbatively at the full string level.
The back-reaction on the space-time metric and on certain of the moduli fields gives rise to
a specific cosmological evolution. For temperatures below the Hagedorn temperature, the
evolution of the universe is known to be radiation dominated. (See for instance [15,16] for

some earlier work in this case and [16] for a review on string gas cosmology.)

More interesting cases are those where space-time supersymmetry is spontaneously broken
at the string level either by geometrical [17] or non-geometrical fluxes . In the case where the
geometrical fluxes are generated via freely acting orbifolds [18] — [23], the stringy quantum
corrections are under control in a very similar way as the thermal ones. The back-reaction
of the quantum and thermal corrections on the space-time metric and the moduli fields

results in deferent kinds of cosmologies depending on the initial amount of supersymmetry

(N=4,N=2,N=1).

In this work we restrict attention to four-dimensional backgrounds with initial N = 4 or
N = 2 space-time supersymmetry, obtained by toroidal compactification of the heterotic
superstring on 7% and T°/Z,-orbifolds. The spontaneous breaking of supersymmetry is im-
plemented via freely acting orbifolds (as in [18] — [23]). The quantum and thermal corrections
are determined simultaneously by considering the Euclidean version of the model where all
coordinates are compactified: Sk x T? (for the four-dimensional space-time part) x M (for
the internal manifold). Apart from being interesting in their own right, these examples may
give us useful hinds on how to handle the phenomenologically more relevant N = 1 cases.

The N =1 cases will be studied elsewhere [31].

The thermal corrections are implemented by introducing a coupling of the space-time fermion
number Q) to the string momentum and winding numbers associated to the Euclidean time

cycle Sk. The breaking of supersymmetry is generated by a similar coupling of an internal



R-symmetry charge Qg to the momentum and winding numbers associated to an internal

spatial cycle Si,, e.g. the X5 coordinate cycle.

We stress here, that the thermal and supersymmetry breaking couplings correspond to string
theoretic generalizations of Scherk-Schwarz compactifications. Two very special mass scales
appear both associated with the breaking of supersymmetry. These are the temperature
scale '~ 1/(27Ry) and the supersymmetry breaking scale M ~ 1/(27R5), with Ry and Rs
the radii of the Euclidean time cycle, S}, and of the internal spatial cycle, S},, respectively.
The initially degenerate mass levels of bosons and fermions split by an amount proportional
to T or M, according to the charges Qr and Qr. This mass splitting is the signal of su-
persymmetry breaking and gives rise to a non-trivial free energy density, which incorporates
simultaneously the thermal corrections and quantum corrections due to the supersymmetry

breaking boundary conditions along the spatial cycle S},.

At weak coupling, the free energy density can be obtained from the one-loop Euclidean
string partition function [20] — [22]. The perturbative string amplitudes are free of the usual
ultraviolet ambiguities that plague a field theoretic approach towards quantum gravity and
cosmology. For large enough Ry, Rs, the Euclidean system is also free of tachyons — the
presence of tachyons would correspond to infrared instabilities, driving the system towards
a phase transition [21] — [23]. Therefore, the corresponding energy density and pressure can
be determined unambiguously, and we can use them as sources in Einstein’s equations to
obtain non-trivial cosmological solutions. This perturbative approach breaks down near the
initial space-like singularity. We speculate whether this breakdown of perturbation theory

can be associated with an early universe phase transition.

The paper is organized as follows. Section 2 is mainly a review, where we also fix most of our
notations and conventions. We first consider the four-dimensional heterotic string models at
finite temperature. We obtain the one-loop thermal partition function at the full string level,
and then we discuss the effective field theory limit at large radius Ry. We also review the
analogous computation of the one loop string partition function at zero temperature and in
the case where Susy-breaking boundary conditions are placed along the internal spatial cycle
Si,, [18] — [23]. In the large radius limit, the Einstein frame effective potential is proportional
to the fourth power of the gravitino mass scale, and it can be positive or negative depending

on the choice of the Susy-breaking operator Qg.



In section 3, we consider the case where thermal and quantum corrections due to the su-
persymmetry breaking are present simultaneously. For the simplest choice Qr = Qp, the
corresponding one-loop string partition function is invariant under the T < M exchange,
manifesting the underlying temperature/gravitino mass scale duality of the models. This
duality is broken by the other allowable choices for the Susy-breaking operator (Qr, which
we classify for both the N = 4 and the N = 2 orbifold cases.

In the large radii Ry, R5 limit, the pressure consists of two pieces: the purely thermal part
which scales as nT?, with the coefficient n% being the number of all massless boson /fermion
pairs in the initially supersymmetric theory, and another potential-like piece which scales
as nj,M* and with the coefficient nj, being positive or negative depending on the choice of
the operator QQg. In both pieces, the rest of the dependence on the scales T" and M can be
expressed neatly in terms of non-holomorphic Eisenstein series of order 5/2 whose variable
is the complex structure-like ratio M/T. In addition, we incorporate the effects of small,
continuous Wilson line deformations in our computation. Wilson lines along any of the
internal spatial cycles, other than S},, introduce new mass scales, and pieces proportional

to ~ T? and ~ M? arise in the effective thermodynamic quantities.

In section 4 we present our ansatz for the induced cosmological solutions. These are homo-
geneous and isotropic cosmologies for which the Susy-breaking scales T and M as well as the
inverse of the scale factor 1/a evolve the same way in time, and so the ratio of any two of
these quantities is constant. The form of this ansatz is dictated by the scaling properties of
the effective energy density and pressure. The compatibility of the gravitational field equa-
tions with the equation of motion of the scalar modulus controlling the size of the gravitino
mass scale fixes the ratio M/T. By solving the compatibility equations numerically, we find
that in the absence of Wilson lines along S},, non-trivial four dimensional solutions exist
when nj is negative and the ratio |nj,|/n} is small enough. These conditions are satisfied
by various models we describe explicitly in the paper. When we include Wilson lines along
Si,, the value of the ratio M /T for some of the solutions can be large or small, and so we

can have models with a hierarchy for the scales M and T.

Having solved the compatibility equations, the time-dependence of the system is governed
solely by the familiar Friedmann-Hubble equation. There is a radiation term, ¢,/a* whose

coefficient ¢, is positive in our examples. An effective curvature term, —k/a?, can be gen-



erated by turning on Wilson line deformations. The sign of k can be positive or negative
depending on the model. When we turn on the kinetic terms of some of the extra flat moduli,

we generate an additional term that scales as ¢,,/a® (with ¢, positive).

In section 5, we solve the Friedmann-Hubble equation for the various possible cases, and we
elaborate on the properties of the cosmological solutions:

e When ¢, > 0, we have standard hot big bang cosmologies with an intermediate radiation
dominated era. The late time behavior is governed by the spatial curvature of the models.

e We also consider a priori possible exotic models characterized by ¢, < 0. A big bang
occurs when ¢,;, > 0. The cosmological evolution always ends with a big crunch when k> 0.
The case k < 0 however is more interesting. It involves either a first or second order phase
transition between the big bang cosmology and a linearly expanding universe. The first case
corresponds to a tunneling effect involving a gravitational instanton, while the transition is
smooth in the second case. If the first order transition does not occur, the universe ends in
a big crunch.

We finish with our conclusions and directions for future research.

2 Thermal and quantum corrections in heterotic back-
grounds

Our starting point is the class of four dimensional string backgrounds obtained by toroidal
compactification of the heterotic string on T° and T°¢/Z, orbifolds. Initially the amount
of space-time supersymmetry is N, = 4 for the case of compactification on the 7° torus
and N, = 2 for the orbifold compactifications, and the four dimensional space-time metric
is flat. Space-time supersymmetry is then spontaneously broken by introducing Scherk-
Schwarz boundary conditions on an internal spatial cycle and/or by thermal corrections.
Due to the supersymmetry breaking, the one-loop string partition function is non-vanishing,
giving rise to an effective potential. Our aim is to determine the back-reaction to the initially

flat metric and moduli fields.

At the one-loop level, the four dimensional string frame effective action is given by

1
S = [ d'z\/—detg (e_2¢(§R + 20,00 ) + ) — vString) , (2.1)

where ¢ is the 4d dilaton field and the ellipses stand for the kinetic terms of other moduli



fields (to be specified later). At zero temperature, the effective potential Vsiing can be
obtained from the one-loop Euclidean string partition function as follows:
Zz
Vi
with Vj the 4d Euclidean volume. The absence of a dilaton factor multiplying the potential

= _VString ) (22)

term in the action is due to the fact that this arises at the one loop level.

At finite temperature, the one-loop Euclidean partition function determines the free energy

density and pressure to this order

Z
74 - _fString - PString- (23)

The subscript indicates that these densities are defined with respect to the string frame met-
ric. The relevant Euclidean amplitude incorporates simultaneously the thermal corrections
and quantum corrections which arise from the spontaneous breaking of supersymmetry and

which are present even at zero temperature.

In order to determine the back-reaction of the (thermal and/or) quantum corrections, it is
convenient to work in the Einstein frame where there is no mixing between the metric and

the dilaton kinetic terms. We define as usual the complex field S,
S = e 2 4y, (2.4)

where x is the axion field. Then after the Einstein rescaling of the metric, the one loop

effective action becomes:
1 5 _ 1 _
S = [ d*x\/— det g {iR —g" K;7 0,920,257 — 2 Vstring(Pr, P7) | (2.5)

where [;; is the metric on the scalar field manifold {®;}, which is parameterized by various
compactification moduli including the field S. This manifold includes also the main moduli
fields T, Uy, I = 1,2,3, which are the volume and complex structure moduli of the three
internal 2-cycles respectively. We notice that in the Einstein frame the effective potential,
Vstring, 18 rescaled by a factor 1/s% where s = Re(S) = e 2. Taking this rescaling into
account, we have

1
VEin = ?VString- (26)

This relation will be crucial for our work later on. (We will always work in gravitational

mass units, with Mg = \/aaiTN =24 x 10'® GeV).
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Keeping only the main moduli fields {5, 77, U}, their kinetic terms are determined in terms

of the Kélher potential K [24,25]:
K=-log (S+S5)=> log (Tr+T;)— > log (U + ;) (2.7)
I I

with K;; = 0;0;K. The classical superpotential depends on the way supersymmetry is
broken. Generically string backgrounds with spontaneously broken supersymmetry are flat
at the classical level due to the no-scale structure of the effective supergravity theory [25].
Once the thermal and/or quantum corrections are taken into account, we obtain in some

cases interesting cosmological solutions.

2.1 Heterotic supersymmetric backgrounds at finite temperature

In order to fix our notations and conventions, we first consider the case of an exact supersym-
metric background at finite temperature [21] — [23]. For definiteness we choose the heterotic
string with maximal space-time supersymmetry (Ns = 4). All nine spatial directions as well
as the Euclidean time are compactified on a ten dimensional torus. At zero temperature,
the Euclidean string partition function is zero due to space-time supersymmetry. At finite
temperature however the result is a well defined finite quantity. Indeed, at genus one the
string partition function is given by:

— drdr 1 atbiab praid L(10,26) [
7= ]{: AIm7r 2 ;( ) an n(r)2 p(r)2t (2.8)

where ['(10.96) [¢] is a shifted Narain lattice (which we specify more precisely below). The
non-vanishing of the partition function is due to the non-trivial coupling of the lattice to
the spin structures (a,b). Here, the argument a is zero for space-time bosons and one for
space-time fermions. The spin/statistics connection and modular invariance require that the

unshifted I'(; 1) sub-lattice of the Euclidean time cycle

\m+n7’\2

Lag = Z Ro(Im7)~2 e ™ 17 (2.9)
be replaced as follows:
m4nT 2 .
Fay — ZRO(ImT)’% "R i gim(matnbtmn) (2.10)

m,n



Redefining
m—2m+g, n—2n+h, (2.11)

where g, h are integers defined modulo 2, and introducing the notation I'( 1) [Z} for a shifted

lattice,
m-+g n T 2
IR, [Z} = ZRO(ImT)_% e_“Rgilz Lol 7 (2.12)
the thermal partition function takes the form:
drdrt 1 92511 m
7 — % - _\9athbthg (_yatbtab gia 4 ) - 91 213
I 4ImT 2 (a’zgy(;hg) ( ) ( ) [b] n(T)lg 77<7_>24 ( )

Defining @ = a — h and b=0b— g and using the Jacobi identity

1 atbtrab g [ath]? 4
g0 (g ] = o[ (214)
(@)
we obtain
drdTt 4 ['(9,25)
Z = — (=)t g [T n 02 2.1
7{F4Im7 Z ( ) [1+g] (1,1) [g] 77(7)12 77(;)24 (2.15)

(h.9)
The temperature in string frame is given by Tsying = 1/(27Ry).

Since our aim is the study of induced cosmological solutions in 3+ 1 dimensions, we consider
the case for which the radii of three spatial directions are very large: R, = R, = R, = R > 1.
In this case the three dimensional spatial volume factorizes

s Vs
- (2m)?

Using the expression for the I'j 1 [Z] shifted lattice we obtain:

Njw

Taa = R (Imr)” (ImT) 2. (2.16)

J = — (27TRO)‘/3 fString = ‘/4 PString
V d d7 m n 7|2 F

C(21)4 AIm73 o 1+g 127724’(
(2m) mrt Lo (O 7(7)

where Vy = (2w Ry)V3 is the four dimensional space-time volume, Fging the free energy

2.17)

density and Pgying the pressure in string frame.

Before we proceed further, we make some comments:
e The sector (h, g) = (0,0) gives zero contribution. This is due to the fact that we started

with a supersymmetric background.



e In the odd winding sector, h = 1, the partition function diverges when R, is between
the Hagedorn radius Ry = (v/2+ 1)/2 and its dual 1/Ry: ﬁ < Ry < Ry. The divergence
is due to a winding state that is tachyonic when Ry takes values in this range, and it signals
a phase transition around the Hagedorn temperature [21] — [23]. In this paper we study
the regime Ry > Ry, where there is no tachyon and the winding sector is exponentially
suppressed. The high temperature regime and the cosmological consequences of the phase
transition will be examined in future work [32].

e When Ry > 1, the contributions of the oscillator states are also exponentially sup-
pressed, provided that the moduli parameterizing the internal I'(0) lattice are of order

unity.

2.2 The effective field theory in the large R, limit

As we already mentioned, the h = 1 sector of the theory gives exponentially suppressed con-
tributions of order O(e~). Also, the (h, g) = (0,0) sector vanishes due to supersymmetry.
Thus for large Ry, only the sector (h, g) = (0, 1) contributes significantly. Using the identity:

Can(Ro) =T [o) + Tan B +Ta [o] + Tay [1] (2.18)

and neglecting the h = 1 sectors, we may replace

1
Lo [§] = Pan(Ro) — T [0] = Tan(Ro) — §F(1,1)(230) (2.19)

in the integral expression for Z. For each lattice term we decompose the contribution in
modular orbits: (m,n) = (0,0) and (m,n) # (0,0). For (m,n) # (0,0), the integration over
the fundamental domain is equivalent with the integration over the whole strip but with
n = 0. The (0,0) contribution is integrated over the fundamental domain. Now the (0, 0)
contribution of I'(; 1)(Ry) cancels the one of %F(l,l)(RO); and we are left with the integration
over the whole strip:

Vi drdr a2 emE? g ['6,22)
7 = ™ " _ 2.20
I S 220

The integral over 7, imposes the left-right level matching condition. The left-moving part

contains the ratio
o
b
12

2 + O(e™™™), (2.21)



which implies that the lowest contribution is at the massless level. Thus after the integration

over 1y (1o = t), the partition function takes the form
‘/;1 o0 dt _rR2 (27n+1)2 4 —rtu2
(2W)4/0 F; o TR (2 Do+ Y D(p) e ) , (2.22)

where D(u) denotes the multiplicity of the mass level p and 2* Dy is the multiplicity of the

7 —

massless level. Changing the integration variable by setting ¢t = 7 R3(2m + 1)? x, we have:

V4 1 o dZC _1 2 2,22
7 = ; (24 D D am?(2m+1)° Ro) (223
m2(21 Ry ) Em: (2m + 1)* /o o3 € U Z (k) e (2.23)

Now the second term in the parenthesis is exponentially suppressed when the masses p are

of order (or close) to the string oscillator mass scale. This will be the case when all of the
internal radii and the Wilson-line moduli of the I'(99) lattice are of order unity. For this
specific case, the partition function simplifies to

| 1 B 23 Do 72 Vi 1 n*r?
2 o

= = —— Vi Ty, 2.24
(27 Ro)* +1) B @Ry 3 16 V0 Tswne (22

Z = 2% D,

where n* = 23D is the number of the massless boson/fermion pairs in the theory. The free
energy density and pressure in string frame are given by
1 n*ﬂ-Q TS4tring

PString - _fString =5

2.25
3 16 ( )

In the Einstein frame, energy densities are rescaled by a factor 1/s? as in equation (2.6).

Thus the pressure and free energy density in this frame are given by

1n w2 TS, 1n*m? T4
Prin = —Fiin = = e — 2 , 2.26
E Bin = 3716 82 3 16 (2.26)

where T' = Titring/+/ is the proper temperature in the Einstein frame. This result is expected
from the effective field theory point of view. When only massless states are thermally excited,
the field theory expression for the pressure is given by

1 7 i
pP—- ! 2.97
3 <"B+ 8”F> 30 (2.27)

where np and np are the numbers of massless bosonic and fermionic degrees of freedom
respectively. When ng = np = n*, as in a supersymmetric theory, we recover equation

(2.26).

10



2.3 Spontaneous breaking of supersymmetry at zero temperature

In this case we consider the same class of heterotic models, but now the breaking of super-
symmetry arises due to the coupling of the space-time fermion number to the momentum
and winding quantum numbers of an internal spatial cycle [18] — [23]. Since the temperature
is taken to be zero, the spin structures (a,b) do not couple to the quantum numbers of the
Euclidean time cycle which will be taken to be very large. We also consider the case where
three additional spatial directions are large. Following similar steps to the purely thermal

case, the partition function is given by

S V. j[ drd= Z (—)o+h e_ﬂREW 0 [1+h}4 & 2.28)
F

5 7 1+g 12 =(=\24 ° (
(27)° Jp dlmr2 | o ()2 (1)

where now V5 = V, (27 R5) is a five dimensional volume and the I'(5 51y lattice parameterizes
the internal space. Here also, the h = 1 sectors give exponentially suppressed contributions
O(e~ 1), and the (h, g) = (0,0) sector vanishes due to supersymmetry. The rest of the steps

can be repeated as in the derivation above to find
‘/5 > dt 2 (2m+1)2 2
7= —mRE (24 D D() =™ ) , 2.29
5 | Ik )+ YD) e (229)
which after the change of variables t = 7 R2(2m + 1)? x gives

‘/5 1 /OO d.%‘ _1 4 2 2,2 p2
7 = e (2D+ D e”@m“)”s).
7_‘_%(271_}%5)5 %: ’2m_|_ 1’5 0 7 0 Z (:u’>

2x2
(2.30)

For p of order unity, this simplifies to

N[Ot
~—
*
=

Z=2(1-27°

¢(5)T (
) . n @rR) (2.31)

with n* = 23D0.

This result was expected from the effective field theory point of view. Indeed in a theory with
spontaneously broken N = 4 supersymmetry, the one loop effective potential receives a non-
zero contribution proportional to the mass super-trace StrM?*, which in turn is proportional
to the fourth power of the gravitino mass. The super-traces StrM"™ vanish for n < N = 4.
In the example of supersymmetry breaking we examined above, the masses of the states are

shifted according to their spin. For initially massless states, the mass after supersymmetry

11



breaking becomes :

,  QF

Mg — :
¢ R

This shows that the string frame gravitino mass is of order Mgyying ~ 1/R5 and thus StrM* ~

(2.32)

¢/R3. Including the contributions from all Kaluza-Klein states, one obtains the result given

in formula (2.31). We obtain for the string frame effective potential:

Z_ 9 (1-27°) O ) e 1 (2.33)

Yo = 7y = " )

In the Einstein frame, we have Vg, = S%Vsning — see equation (2.6) — so that

¢orE .1 1 4
) n SR —Ov(i =-Cy M*, (2.34)

Vi = —2(1-27°
E ( S t1U1)2

5
T2

where t; = Re(T}), u; = Re(U;), and M = 1/(styu;)"/? is the gravitino mass scale in the

Einstein frame.

We stress here that the one loop effective potential depends only on the gravitino mass scale,
which in turn depends only on the product of the s, t; and u; moduli. This suggests to freeze

all moduli and keep only the diagonal combination
3 log z =log s + logt; + logu, . (2.35)

The Kélher potential of the diagonal modulus Z, (with z = Re(Z)), takes the well known
SU(1,1) structure [25]
K=-3log(Z+ 7). (2.36)

This gives rise to the kinetic term and gravitino mass scale,

g (%iagf M2 = 8eK TE EZ)S _ (2.37)
Freezing ImZ and defining the field ® by
2 _ g2 S , (2.38)
(Z+2Z)3
one finds the kinetic term
— g™ 3% S—— O‘; 0,00,® . (2.39)
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The choice o = 3/2 normalizes canonically the kinetic term of the modulus ®. The potential

for this particular model is:

Ve (®) = —Cy M = —Cy **, o= g (2.40)
Observe that in this simple model the sign of the potential is negative. As we now explain,
we can construct models with a positive potential, but with the rest of the dependence on
the modulus ® being the same. All we have to do is to couple the momentum and winding
numbers of the Scherk-Schwarz cycle not only to the space-time fermion number but also
to another internal charge. For example consider the Eg x FEj heterotic string on 7% and
instead of coupling just to @, we couple to Qp + Qg + Q',, where Qg denotes the charge
of an Eg representation decomposed in terms of SO(16) ones, and similarly for Q' . These
charges take half integer values for the spinorial representations and integer values for the

others. The initial Susy-breaking co-cycle gets modified as follows

(_)ag+bh+hg — () (a4+547)g+(b+0+8" Y hthg : (2.41)

where as before the argument a is one for space-time fermions and zero for space-time
bosons, and (7,%") = (1,1) for the spinorial representations of SO(16) x SO(16)" and (0, 0)
for the adjoint representations. This operation breaks explicitly the Eg x E} gauge group to

S0(16) x SO(16)". Proceeding in similar way as in the previous example, one finds:

CEL(G) Vi

Z=2(1-27° 2.42
( ) 71'% (27TR5)47 ( )

where
=2 2lx,, + [6l7 + [120 —128]p, + [120 —128]g; | = —2° x 8= —64. (2.43)

In the previous example only positive signs appear in the above formula since there is no
coupling of the Scherk-Schwarz lattice quantum numbers to the Eg x E charges, giving the
value n* = 22 x 504. The reversing of sign for some representations indicates that it is for the

bosons that the masses are shifted and not for the fermions in the corresponding multiplet.

We note that in the N = 4 case, we cannot change the left-multiplicity since all of the
left-moving R-charges are equivalent as required by symmetry. This however is not true

for the N = 2 and N = 1 cases. Consider for instance the class of N = 2 supersymmetric

13



backgrounds obtained by compactifying the heterotic string on a T /Z, orbifold (e.g. the Z,-
orbifold limit of the K3 CY-compactification). In this class of models (see for instance [26])
four internal supercoordinates are twisted and the corresponding four internal R-charges are
half-shifted. The Euclidean partition function is given by

_ a a 2
Zj[; drdr 1 T (e 01:1°0 [114]

ATmr 4

4 (a,b),(H,G) T]<T)

a1y (Ro) I'3,3)(space)
77(7)2 77(;)2 Z(272+n0) [8} Z(474+"t) [g] : (2-44)

Here Z 3 94n,) is the contribution of two internal coordinates' (Xj, Xg) and ng-right moving

world-sheet bosons ¢;. Before supersymmetry breaking, the corresponding (2, 2 + ng)-lattice
is unshifted. Z441n,) stands for the contribution of four internal coordinates (X7, Xs, Xy, X19)
all of which are Z,-twisted by (H,G), and n-right moving world-sheet bosons ¢; which can
be Zo-twisted breaking part of the initial gauge group. The #-function terms come from
the contribution of the left-moving world-sheet fermions. Four of them are Z,-twisted by
(H,G). The contribution associated to the space-time bosons is when a = 0, while the one

associated to the space-time fermions is when a = 1.

From the above supersymmetric N = 2 partition function, the thermal partition function
is obtained in a way similar to the N = 4 example, by the following replacement of the

Euclidean time sub-lattice:
F(l,l)(RO) — F(l,l) [le] (Ro) (_)g1a+h1b+hlg1' (245)

In the case of Scherk-Schwarz spontaneous supersymmetry breaking, the partition function
can be obtained by a similar replacement of the internal X5 coordinate lattice, either by

utilizing the same operator Qg
Pan(Rs) — T [gr] (Bs) (m)merhetrhoe (2.46)
or by utilizing an R-symmetry operator associated to one of the twisted complex planes

F(l,l)(Rs) _ F(l,l) [19122] (Rs) (_)92(G+H)+h2(b+G)+h292. (2_47)

These are in fact the only two possibilities involving left-moving R charges since all others

are equivalent choices. However, many other choices exist by utilizing parity-like operators
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involving the right moving gauge charges > 7;, as in the explicit example of SO(16) x SO(16)’

spinorial representations we gave above:
F(1,1)<R5) N F(l,l) [222} (R5) (_)92(G+H+Z’%)+h2(b+c+zSi)+hzgz. (2.48)

In the next section we examine representative examples in the case where thermal and

spontaneous Susy breaking operations are present simultaneously.

3 Thermal and spontaneous breaking of Susy

The most interesting situation for cosmological applications is the case where spontaneous

supersymmetry breaking and thermal corrections are taken into account simultaneously.

3.1 Untwisted sector

The untwisted sector of the N = 2 case, (H,G) = (0,0) in equation (2.44),% has an N = 4
structure and thus all choices for the left R-symmetry operators are equivalent. The quantum
numbers of the Euclidean time cycle and the internal Xs-cycle are coupled to the spin
structures (a,b) in the same way. After performing the Jacobi theta-function identity the

partition function becomes:

1 Vs drdTt
Zontwist = — — _\g1+g2+hi1+h2
twist 2 (2m)5 ﬁ Z Z (=)

T
Almr3 (n1,m1),(h1,91) (n2,m2),(h2,92)

R 2mita Gy bh)r® s |3mgteyt Gng k) g [1+hiha]d ['(5,21 a1
€ mr € " [1+g1+g2] (T)2 (72t (3.1)
mrT) = T

The factor of 1/2 is due to the Z, orbifolding of the N = 4 theory.

Proceeding as in the simpler examples before and neglecting the h; = 1 and hy = 1 sectors
for large Ry, Rs5, the non-zero contributions to the partition function occur when g1 + g, = 1.
Assuming also that all other moduli are of order unity, the only non-exponentially suppressed
contributions come from the zero mass left- and right-levels. We obtain
Vs (1 — (—>91+92) > dt o (@mitep? o (2matge)?
Zuntwist = 25D R TR 3.2
untwist 0 (2’71')5 Z 9 o Zt% Z € ’ ( )

91,92 mi,m2

2For hy = hy = 0 (even windings), the sector (H,G) = (0,1) gives zero net contribution due to the
3 M a a a a a 2 a a
identity 5375, ,(—)**re (=) ()220 [3170 [3,,] 0 [5_,] = 0.
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which after the change of variables t = 7 (R%(2my + ¢1)? + RZ(2ma + ¢2)?) z gives

4Dy T (3) i 5 1

Zuntwist -

ws o (20 A= (R3(2my + 1)2 + R2(2ms)?)}
4D, T (2 1
PATE) Vg . (33)
wi o (2m)° = (R3(2ma)? + RE(2ms + 1)2)3

This expression is symmetric under the Ry «» R5 exchange. This is suggestive of a temper-
ature/gravitino mass, T//M, duality. This duality will be broken when the supersymmetry
breaking arises due to the coupling to a different Qg charge than Q.

To obtain the effective four dimensional pressure, we must factorize out the space-time

volume Vj. To this extent it is convenient to define the complex structure-like ratio

Ry M
_ o _ 3.4
u= = (34)
and re-write the partition function in the following way
Jua = TG Vi 5 !
st (27 Ry)! = 1(2ma + Diu + 2mf
4Dy T (2 Vi 1
+ 5 (2) 4 Z ; 5° (3.5)
T2 (27TR5> . ]2m1zu + (2m2 + 1)|
Define the function A
u
= 3.6
UOEDY [(2my + 1)iu + 2maf>’ (3:6)

mi,ma2

which we can express in terms of Eisenstein functions of order 5/2:

flu) = u? (%Em (%) — %Ewg(iu)) , (3.7)

where N
Im U
EL(U) = —_ ] . 3.8
W)= 2 <|m+nU|2> (38)
(m,n)#(0,0)

Then the pressure in the Einstein frame can be written as

1
Puntwist - C;“nt T4 f(U) + C‘u/nt M4 f( /u>7 (39)
U
where .
INE
Ol = OB = ¥ —(g). (3.10)
T2
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Here n} , = 4Dq is the number of massless boson/fermion pairs in the untwisted sector. It
is smaller by a factor of 1/2 from the corresponding number in the N = 4 case due to the
Zy-orbifolding. In this particular model the coefficients C#** and C{™ are equal due to the
underlying gravitino mass/temperature duality. For fixed u the first term stands for the
thermal contribution to the pressure while the second term stands for minus the effective

potential.

We note that the coefficient CH* is fixed and positive as it is determined by the number of all
massless boson/fermion pairs in the untwisted sector of the initially supersymmetric theory:
ni = 4Dg. In general, the coefficient C™ will depend on the precise way supersymmetry
is broken. As we have demonstrated in the previous section, it can take both negative and
positive values, depending on how the Susy-breaking operator couples to the right movers:

Cy™ ~ .. Thus in general the temperature/gravitino mass scale duality will be broken.

Let us discuss the large u limit, which can be obtained by taking Rs to be small (but still
parametrically larger as compared to the string scale), while taking Ry to be much larger. In
this limit we expect to find a four dimensional system at finite temperature, for which only
massless bosonic degrees of freedom are thermally excited. All fermions attain a mass from
the Scherk-Schwarz boundary conditions along the X5 cycle, and this mass is much bigger
than the temperature for large u. Therefore they can be integrated out giving a temperature
independent contribution to the pressure of order 1/R3. Setting @ = 1/u, we have in the
limit @ — 0 (u — 00):

1 =
£(1/4) / -=3 T=oxo (311
flu)=1(1/%) Z ((2my + 1)? +4x2 2 Z 2m1+ 3 24 ( )

2

and
f(/u) 1 /
U Z ]2m1—|—1|5 20 u4 mz;;o mQ—l—xQ %
1
=2(1-27°) ¢(5
( ) )+ 24 u* m%
ma#0
=2(1-27°) ¢(5)+ LI 7r—4. (3.12)
12u* 90
Using these results, we find
1 22Dy w2T* 5)I (2
Prntwist = = 0T +2(1-277) A >5(2) (4Dg) M* (3.13)
3 2 30 T3



for the first two leading terms for small @ = 1/u. We have used the relation I'(2) = 3/7 /4.
The first contribution arises from the thermally excited massless bosons. As compared to
equation (2.27) with ng = 2°Dy and ng = 0, it is off by a factor of 1/2 due to the Zo-
orbifolding. Similarly, the second term is off by a factor of 1/2 as compared to equation
(2.31) due to the orbifolding. For large u, the potential term is dominant. For generic values
of u both fermions and bosons contribute to the thermal piece as in equation (3.9), with the
contribution depending on the number of massless states at zero temperature and before the
breaking of supersymmetry. Finally for small u, the system is essentially a five dimensional

purely thermal system.

3.2 Twisted sector, H =1

The contributions of the twisted sectors in the large Ry, R5 limit depend on the number of
the massless twisted states before the supersymmetry breaking, and can be determined in
similar way as before. However, there is a class of models where the Zs-orbifolding acts
freely, without any fixed points, and therefore there are no massless states in the twisted
sectors. For this class of models, the whole contribution to the one-loop partition function,
in the large Ry, R5 limit, is that of the massless untwisted sector states we have already
determined. One example with this property is when the Zs-twists (H, G) are accompanied
with a shift of the I'¢ 1y(Rs) sub-lattice. This operation leads to the modification of Z 10

in equation (2.44), where we also set (ng,n:) = (8,8), as follows:

La)(Rs) Dy Ra
n(r)? (7

Zoao) o) — Zoao (6] = (3.14)

1

> Z
7,8

If Rg is sufficiently large, the coupling of the (H, G)-shift of the lattice to the twisted partition

function Z(4,19) [g ] ensures the absence of massless states in the twisted sector.

In other situations, there are massless states in the twisted sector. Before the supersymmetry
breaking, the number of massless bosons is equal to the number of massless fermions with
a multiplicity n{. Proceeding as in the untwisted sector, and neglecting the hy,he = 1
sectors, one finds that there is only a non zero contribution when ¢; + go = 1. The relative
sign of the thermal part ~ 7% and the supersymmetry breaking part ~ M* depends on the
choice of the operators Qr and (Jg. When there is no coupling to the right-moving gauge
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charges we obtain:

f(1/u)

thist — C%wist T4 f(u) + C{c/wist M4 SR (315)
u
where .
. (2
C’%WISt = n;;kwist (52)
T2
) INE
O™ — ¢ g, 2
T2
€ = (_)(QR—QF). (316)

Here, we have for the coefficient e:
.€:1WhenQR:QF.

e ¢ = —1 when QR?AQF

In the later case, (—)@r=9r) = (=) = 1, see equation (2.47), and H = 1 in the twisted
sector. The change of sign indicates that it is the bosons that are becoming massive because
of the supersymmetry breaking. This is related to a mechanism for moduli stabilization

induced by geometrical fluxes [17].

Adding the contributions of the untwisted and twisted sectors together we obtain for the

pressure

P= CpT" f(u)+Cy M* w (3.17)

where Cp = C¥ 4+ Cvist and likewise for Cy. The sign of the thermal contribution is always
positive,

Cr = %;ﬁ (3.18)

Ny = N+ M- Lhe coefficient multiplying the supersymmetry breaking part is given by

AN (3.19)

™

Nl

with nj, = n’,, +€ n,- 0 general nj, can be positive or negative depending on the model.

3.3 An explicit example

As an example we consider the Eg x Eg heterotic string on a T*/Z, orbifold, whose initially

supersymmetric partition function is obtained by setting

L (Rs) Tan(Rs) 1 0[)°
Z = — : 5
(2,10) n(7)? i(7)? 2 Z

(3.20)
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and

" olu 0\t e|n-d
R Y 1 1L 2 R

in equation (2.44). We shall use an R-symmetry operator associated to one of the twisted
complex planes for breaking the supersymmetry, replacing the I'¢; 1)(R5) lattice as in equation
(2.47). In the twisted sectors, (H,G) # (0,0), the internal I'(4 4y shifted lattice is given by
2'(7)° n(7)°
0[ie) o [a”
The orbifolding breaks the Egx Eg gauge group to Egx F7; x SU(2). Under Eg — E;xSU(2),

the 248-dimensional adjoint representation of Fy decomposes as

Lua [6] = (3.22)

(1,3) @ (56,2) @ (133, 1). (3.23)

The untwisted sector contains 23 x 504 massless states giving the value nf, = 4 x 504
for the total number of boson/fermion pairs. These numbers arise as follows. In terms of

world-sheet left /right movers the number of bosonic degrees of freedom is given by
Ny =4 x 504 = [4]w2,3,5,6 X ([4]X2,3,5,6 + [248]]58 + [133]E7 + [S}SU(Q)) +

[4]¢7,8,9,10 X ([4])(7,8,9,10 —+ [2]5‘[](2) X [56]]57) . (3.24)

The first line gives the bosonic content of a d = 6 supergravity multiplet, a tensor multiplet
and a vector multiplet in the adjoint of the Eg x E; x SU(2) gauge group. The second line
gives the bosonic content of four uncharged and one charged hyper-multiplets. The number
of fermionic degrees of freedom follows by supersymmetry. At finite temperature and when
Susy is broken, the contribution of the massless untwisted states is determined as before (see

equation (3.5)).

Next we analyze the contribution of states in the twisted sectors, H = 1. For large Ry, Rs,
we may neglect the hy = 1 and hy = 1 sectors. Also for Ry of order unity we may set

[,1)(Rg) =2 1. Setting H = 1, the partition function becomes in this limit

‘/:r) drdT 1 . p2(@my+g1)? 2 (2ma+g2)?
thisted = E e mhg Imr e TR; ImT
I

5 z 65 (7)18
(271') 4Im7? U(T) 77(7—) (m1,91),(m2,92)
1 wibia “ a a2 g [a 2
< Z (—)etbrab (—yeor (—)letlez g2 g [oFL]
(a,b,G)
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The non-vanishing contributions arise when ¢g; + g» = 1. Non-exponentially suppressed

contributions arise only at the zero mass level. To obtain them, we expand the integrand in

2miT

powers of g = ¢

When ¢; + g = 1, we have for the left movers

; E _\a+b+ab ( Nag1 (_\(a+1)g2 0 ng Z+(1; 2

e 2 ) (0 [51e]

e I R )
n(T) 0 [(1)+G]2 2 (a,b) ' e

_( >g29292 ( )929292

0 for G=0 or 6792f G=1
— 4(0)=(1+ O(q")) (3.26)
For the right movers we have
ap 010 013551015,
(7)1 g [H—G} Z /25/ [5] [5 +G] [5 }
1

= ga (1 (947 +. )0 +200 g+ ) [0 (()°2+56 47+ )]
= # [(—)92+8 ¢ +56 ¢+ 0(q)] . (3.27)

When we add the contributions of the (H,G) = (1,0) and (H,G) = (1,1) twisted sectors
together, we find that the lowest right-mass level is at zero mass as it is the case for the

lowest left-mass level.

Using these results we obtain the contribution to the partition function of the massless

twisted states:

V _\92 _ (_\91 o0 dt _ (2m +g) (2m +g)
o = 2060+ 97505 3 S [T 5 e

91,92 (m1,ma)
_2(56 +7r §)F(§) ((2:1%)4 Flu) - <2£5)4f<2/m)' (3.28)

The contribution to the pressure is as in equations (3.15), (3.16) with nf, ., = 2°(56 + 8),

the number of massless boson/fermion pairs in the twisted sector, and € = —1. The massless
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bosonic content consists of 32 scalars in the (56, 1) representation of E; x SU(2) and 128
scalars in the representation (1,2). The number of massless fermionic degrees of freedom

follows by supersymmetry.

Adding the contributions of the untwisted and twisted sectors together, we obtain
np =4 x 504 4+ 16 x 128 = 4064

nt =4 x 504 — 16 x 128 = —32. (3.29)

In addition, we have the choice with € = 1 in equation (3.16), giving n}. = nj, = 4064. We
can also change nj, by considering Susy-breaking operators involving the right-moving gauge

charges as in equation (2.48).

3.4 Small mass scales from Wilson line deformations

A generic supersymmetric heterotic background may contain in its spectrum massive super-
multiplets whose mass is obtained by switching on non-trivial continuous Wilson-lines [26]
— [28]. This is a stringy realization of the Higgs mechanism, breaking the initial gauge group
G to a smaller one spontaneously. This statement is not absolutely correct for discrete
Wilson lines corresponding to extended symmetry points where the gauge symmetry may

enhance or even get modified.

For our purposes, we restrict to arbitrary and small Wilson line deformations starting from
a given supersymmetric background where R;, I = 6,7,...,10 are of the order the string
scale. This restriction ensures that the contributions to the thermal partition function of
the momentum and winding states in these five internal directions will be exponentially

suppressed in the limit where Ry and Rj; are large.

A systematic study of the effects of Wilson lines can be found in [26] — [28]. In the zero
winding sector, a Wilson line just modifies the Kaluza-Klein momenta, and the corresponding
Kaluza-Klein mass becomes

mi (it yf Qa)?
R} R ’

(3.30)

where @), is the charge operator associated to the Wilson-line y¢. We distinguish two different

situations according to the direction I:
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i) I =5 where Rj is large,
ii) I =6,...,10 where the R; are of order the string scale.

In the first case, I = 5, after a Poisson re-summation, the net modification to the partition

function is obtained by the following replacement in equation (3.5):

o dt (2m1+91)? (2mo+g9)?
D N
0 t2 mi,m2
. (3.31)

9] 2 2
/ dt Z R BT gz Bmakon) [62i7r(2m2+92) ¥3Qu]
7
o tz

mi,m2

The term in the brackets can be replaced with
(3.32)

cos (27 (2my + g2) Y2Q,) = 1 — 2sin? (7(2mag + ¢2) Y5Q.)

In the second case, [ =6,7,...,10, we can set the momentum and winding numbers to zero,
m; = n; = 0, so that the extra modification in the partition function is the insertion of the

(3.33)

term:

2
yiQ
efﬂt21< %1a> ]

Incorporating the effects of the Wilson lines up to quadratic order, we get for the overall

T (=23, sin®(2rmaytQs) )

pressure:
T(2
port Tl ey
T = [(2my + 1)iu + 2mg|
el (3) 3 u? (M7 =230, M2 sin?(2mrmaysQs) )
s = |(2my + 1)iu + 2my |3
Y r (g) Z ni — 2> sign(s)sin® ((2ms + 1)7y2Q3)
73 = |2myiu + (2mg + 1)[°
el (2) > MY — 23 sign(s)M2 sin? ((2m + DrysQ;) (3:34)
e o= 12myiu + (2mg + 1)]3
In this expression, we have defined
10
1 (yaQs)Q
M =— [xa 3.35
S 4rm Z R? (3.35)
=6
(3.36)

for the pair of boson/fermion states s and also introduced

ME=Y"M2, MP = sign(s)M?,
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where sign(s) indicates whether the state s contributes positively or negatively to nj, and

M‘(,2 ), both being possibly negative.

The following comments are in order:

e In the above expression, y#() is an effective number summarizing the contribution of
the Rs-Wilson line in the term corresponding to the pair of boson/fermion states s. It does
not introduce a new scale.

e The M,’s introduce new mass scales in the theory, qualitatively different than 7" and
M. The masses M, are supersymmetric mass scales rather than Susy-breaking scales like 7'
and M.

e The first two terms (which arise from the (g1, g2) = (1,0) sector) can be identified in
the effective field theory as the thermal contribution to the pressure, Piperma- Again the
number nk is always positive being the number of the massless boson/fermion pairs in the
initially supersymmetric background. This purely thermal piece is always positive.

e The two last terms can be identified as minus the effective potential —V,g. This is
naturally regularized in the infrared by the temperature scale T'. This infrared regularization
differs from that considered in [29], and used in [6], which is valid at zero temperature.

e The number nj, can be either positive or negative depending of the way supersymmetry
is broken. This shows that the sign of the one loop effective potential depends on the way
supersymmetry is broken, as it can be seen in supergravity by utilizing the super-trace

arguments [30].

3.5 Scaling properties of the thermal effective potential

The final expression for P contains various mass scales: the two supersymmetry breaking
scales which are the temperature 7" and the gravitino mass scale M, as well as the super-
symmetric masses M, which are generated by the Wilson-lines in the directions 6,7, 8,9, 10.

The first identity follows immediately from the definition of P:

0 0 0
T—+M— My—— | P=4P .
( aT " 0M+§S: 88M3> (3.37)
which can be best seen by writing P as
_ i 2 M
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where

pi= 8 (P + i) . m =22 (Gl + G . (339

5
T2

and using the definitions

u* cos(4mmaylQ?)
F ay _ 5%a
(wag) = D [(2my + 1)2u2 + 4mZpr2’

mi,m2,s

- u'sign(s) cos(2m(2ms + 1)y2Q%)
Flu,yg) = o tas 3.40
(u7y5) Z [4m%u2 + (2m2 + 1>2]5/2 ) ( )
mi,m2,8
u? M? cos(4mmaylQ?)
G ay _ s 5 a{ ’
(Ua y5) lemQ . [<2m1 + 1)2u2 + 4mg]5/2
~ u?sign(s)M? cos(2m(2mg + 1)y2Q%)
G(u,yd) = : b rar 3.41
(U, y5) Z [4m2u2 + (277’12 + 1>2]3/2 ( )
mi,m2,8 1
Using standard thermodynamic identities, we can obtain the energy density p:
oP
p=T—=—P=T" " 7r4u) + T? ry(u) (3.42)
oT
where
Ty =3ps—upy, To=ps— upl (3.43)

and the primes stand for derivatives with respect to u. In the sequel, we allow the Susy-
breaking scales T" and M to vary with time while fixing the supersymmetric masses M, and

investigate the back-reaction to the initially flat metric and moduli fields.

4 Gravitational equations and critical solution

We assume that the back-reacted space-time metric is homogeneous and isotropic,
a
ds® = —dt* +a(t)? dQ, H= (5) , (4.1)
where €2, denotes the three dimensional space with constant curvature k and H is the Hubble

parameter.

From the fact that — P plays the role of the effective potential and the relation between the

gravitino mass scale M and the no-scale modulus ,

3
M = ™® :\ﬁ
e, « 5
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we obtain the field equation for ®:

. . P P
<I>+3H(I>:a—:au(a

b ) = —a (T*(ra — 3pa) + T%(r2 — p2)) - (4.2)

o), =
We have made use of equation (3.43).

For other flat moduli ¢;, with ® independent kinetic terms, the equation of motion is straight-
forward to solve,

. . 1, o

$i+3Hp =0 — i(pi:a_zﬁ’ (4.3)
where the ¢;’s are integration constants.
Knowing the thermal effective potential — P, the energy density p as well as the field equation
for the modulus ®, we can derive the (one-loop) corrected space-time metric by solving the

gravitational field equations. These are the Friedmann-Hubble equation,

1. 1 3k
2 _ 2 -2
3H _§<I> +§§ (pi—i—p——aQ, (4.4)

and the equation that follows from varying with respect to the spatial components of the
metric:

: k 1., I,
2H+3H2:———P—§<I>2—§ng?. (4.5)

a2
For our purposes, it will be useful to replace equation (4.5) by the linear sum of equations

(4.4) and (4.5), so that the kinetic terms of ® and ¢; drop out:

. 2k 1
H+3H2:—?+§(p—P). (46)

4.1 Critical solution

The fundamental ingredients in our analysis are the scaling properties of the thermal effective
potential —P = —T"p,—T"?p,. These scaling properties suggest to search for a solution where
all varying mass scales of the system, M (®), 7" and 1/a, remain proportional during time
evolution:

e®® = M(d) = 71(1 — H=—ad, M(@®) =uT, (4.7)
with v and u fixed in time. Our aim is thus to determine the constants vy and u.
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On the trajectory (4.7), the ®-equation is given by
. M* M?
H+ 3H2 = OzQ ((7’4 — 3p4>¥ + (7’2 — pz)?) (48)

and the gravity equation (4.6) by

1 M* 1 M?
5(7’4—174)?4'5(7’2—2?2)?- (4.9)

H+3H? = —2k~*M? +
The compatibility of these two equations requires an identification of the coefficients of the
monomials in M. The quartic terms give an equation for u, while the quadratic terms

determine the sign of the parameter k and the magnitude of |kv?|,

602 — 1 3
Ty = ml% (7“4 = 4p, for o = 5) ) (4.10)
2052 —1 1 (7"2 — pg) 3
2 2 2
— 2]{7’7 = 2 (TQ — pg) ?, <—2]€’}/ = T fOI' o = 5 . (411)

Equation (4.10) reminds us of the equation of state for thermal radiation in five dimensions.
In the absence of Wilson lines, where r = py = 0, we have that p = 4P, which is indeed the

5d state equation for thermal radiation.

Next let us consider the Friedmann-Hubble equation (4.4) along the critical trajectory (4.7)

where we may set ®* = H?/a2. It becomes

62 — 1
(O‘ )3H2 —f+p+ sz———+T4r4+Tr2+Z . (4.12)

62

Then by using the compatibility conditions (4.10) and (4.11), it is easy to check that equation
(4.9) follows. Our ansatz (4.7) allows to reduce the differential system of equations for the
modulus ® and the gravitational field to the compatibility equations for the constants v, u

and k and the Friedman-Hubble equation (4.12).

The dilatation factor in front of 3H? can be absorbed in the definition of l%, ¢, and ¢,,, once

we take into account equations (4.14) and (4.15) below:

3k ¢ Cm

2 _
where ) ,
. 1 70" 1 3(2a% — 1)
3k=— ——— — | ———— (19 — 4.14
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1 2 1 2
=L O T _ 1 S pu (4.15)
v 60?2 —1 ut At 202 —1 u?
and )
Gor 9
en =y Zc . (4.16)

Recalling that o = 3/2 and the relation (3.43), equation (4.10) for u becomes

patupy=0, (4.17)
whose solution determines
9 9 - 3 2py — bupl
Cm==Y &, CT:—p—4, kE=— P2 — OUPy (4.18)
8 & 24 ut 16~2 u?

)

Clearly, a necessary condition for the curvature k not to vanish is to have non trivial Wilson

lines in any of the directions 6, 7, 8, 9, 10.

We note that equation (4.13) also controls the dynamics of a FRW universe, where space
has constant curvature k and is formally filled with a thermal bath of radiation (since the
sign of ¢, can a priori be positive as well as negative). There can be an extra contribution,

arising from the kinetic terms of some extra flat moduli, that scales as 1/aS.

Finally let us address a seeming puzzle. We said that along the critical trajectory and in
the absence of Wilson lines, our thermodynamic quantities satisfy p = 4P. How can this
situation correspond to a 4d universe filled with thermal radiation? The answer is that we
must take into account the kinetic energy density of the modulus field ®. When there are
no Wilson lines and the kinetic terms of the other moduli are switched off, the Friedmann-
Hubble equation gives & = (rsT*)/4 along the critical trajectory, and so the total energy

density and pressure satisfy

1. 9’/“4
o = T4 _@2 — T4
Prot = Tad ™ + 5 3
1. 3
Py = pal" + 567 = % T, (4.19)

Thus pioy = 3P, which is the 4d equation of state for thermal radiation.
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4.2 Numerical study

4.2.1 Without Wilson lines yg

Let us consider the case where the Wilson lines along the Xs-direction are switched off. From

equation (3.40), we obtain
pulw) = 2 () + i Fw), Fw) = (1), (4.20)

2
thanks to the identities n% f(u) = F(u,y¢ = 0) and n§, f(u) = F(u,y® = 0). Since f + uf’
and f 4+ uf’ vanish at the origin, equation (4.17) admits a universal solution u = 0 for
arbitrary n}, in the range —nj. < nj, < nk. This solution corresponds to M(t) = 0 at some
finite 7', and is associated to a 5-dimensional purely thermal system (R; = oo). The 4d

effective description we have considered is not valid in this case.

We are thus looking for non trivial solutions u > 0 of equation (4.17), which we write in the

form

n} +uf’
¥ = _fuf (4.21)
np f+uf

A numerical study shows that such non-trivial solutions (and consequently, non-trivial cos-

mological evolutions) exist only for models satisfying

*

— 0.0666... < -V < 0. (4.22)

*
np

The non vanishing root of equation (4.21) is an increasing function of the ratio nj /ni

satisfying v — +oo when nj,/n} — 0_ and v — 0 when nj, /n} — —0.0666.... (See Fig. 1.)

The corresponding value of ¢, in equation (4.18) is finite and always positive. This can
be seen by noting that the quantity ni f + nj, f appearing in the expression for ¢, equals
—u(nif 4+ ni, f) > 0. The positivity follows since f’ and f’ are always negative and positive

respectively.

When Wilson lines in the directions 6,7,8,9, 10 are switched on, we need to determine the

value of k. Defining G (u,y? = 0) = M2g(u) and G(u, y& = 0) = M‘(,Q)g(u), eq. (3.39) gives

pa(u) = _rg) (MEg(w) + MPG(w) . gu) = ug(1/u), (4.23)

so that the condition for the sign of k — see equation (4.18) — can be expressed as

. (2) _ /
k>0 pE—. —1§MV2 g—Z{’ 5”?.
Mz, 29 — dug’

(4.24)
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Figure 1: The non trivial root u of eq. (4.17) as a function of the ratio nj, /nk.

The function of u appearing in the RHS of the inequality is monotonically decreasing from
+oo (at u = 0) to 0 (at u = 00). It takes the value 1, which is the maximum allowed value of
the ratio M‘(/Q)/M%, for w ~ 0.940.... Thus a non trivial solution of equation (4.17) satisfying
u < 0.940... always implies k > 0. If instead u > 0.940..., one has

. 2 _ 5 / M(Q)
<0 o T2 v
2g — dug Mz

<1. (4.25)

For the critical value u = 0.940..., equation (4.21) requires that nj,/n} ~ —0.0348.... Figure
2 represents the two-parameter phase diagram (n*v/n*T,M‘(/Q) /M%) of the models. It is
divided in two regions characterized by opposite signs for k negative above the critical
curve and positive elsewhere. Let us detail the models we considered in the previous sections
by computing the quantities n},, n%, M?% and M‘(/2 ) to determine where they are located on

this phase diagram.
Model 1:

We consider an N = 4 heterotic string model, for example the Eg x Eg theory on 79, at

finite temperature and when supersymmetry is spontaneously broken by choosing Qr = Q.
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-0.0666 —-0.0348
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Figure 2: Phase diagram (n*{,/n*T, M‘(/Q)/]V[%) of possible models with vanishing Wilson lines in the direction
5 and arbitrary ones in the directions 6, 7, 8, 9, 10. The quantity c, is everywhere positive, while the curvature
k is negative above the critical curve and positive elsewhere. There is no critical point u > 0 outside the
rectangular domain.

For this model
ni =n} = 2% x 504. (4.26)

Since nj, > 0, there is no critical solution u > 0.

Model 2:

In the same Eg x Eg heterotic string model, the R-symmetry operator used to break super-
symmetry is chosen to be Qr + Qg + Q' in order to have nj, < 0 (see equation (2.43) for
the T'= 0 case):

np=2%x504; nj =2°x(-8). (4.27)

Then nj,/nk = —1/63 ~ —0.0159, and so the model admits a critical solution v > 0. One

finds numerically that u ~ 1.46 and v%c, ~ 441.

Let us consider Wilson lines y¢ in the directions I = 6,7,8,9, 10 and define

1 y¢ 2
Ya2=—§ L =1,....16 4.28
( ) 47T (R[) ) a ) ? ) ( )

I
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where a = 1,...,8 stand for the Cartan generators of the first Eg factor and a = 9,...,16
for the second. The derivation of the charges @), of the initially massless states (see the

Appendix) gives:

M7 =2° %60 ((Y")?+-- + (V'9)?) | (4.29)
and
MP =23 x (—4) (Y12 4 -+ (Y19)?) . (4.30)

Their ratio is Wilson line independent, M‘(,2 )/M 2 = —1/15, which is negative, and so the
effective curvature is positive. Numerically, one finds 72k ~ 67.2 (Y1)2 4 - - - 4 (Y'16)2).

Model 3:
In the N = 2 orbifold model (see section 3.3 for details), we set Qr = Qr + Qn + Qp, with
Q g, being 1 for the spinorial representations of E;, decomposed in terms of SO(12) ones,

and 0 for the vectorial ones. We find the following :
nh = 4064; ni =992, (4.31)

Since nj, /nk. is positive, this model doesn’t admit a critical point u > 0 at this stage.

Model /:
This is the N = 2 orbifold model constructed in Sect. 3.3, with

nh =4064, nl =—32. (4.32)

Since n}, /n% = —1/127 ~ —7.87 - 1073, there is again a non trivial critical solution u > 0.

Numerically, we find u ~ 1.90 and ~%c, ~ 130.

Before switching on Wilson lines in the directions I = 6,7,8,9,10, the gauge group is
E7; x SU(2) x Eg. Let us consider arbitrary Wilson lines, Y% a = 1,...,16: Y'...Y® for
the Cartan generators of the SO(12) subalgebra of E;, Y7 for the Cartan generator of the
SU(2) subalgebra of E;, Y8 for the SU(2) factor and Y?,....Y'' for the Fg. The mass square

scales, computed in the Appendix, are:

6 16
M7 =624 ) (Y*)? 41248 (Y7)? + 736 (Y®)? + 240 ) (V)? (4.33)
a=1 a=9
and
6 16
M =144 ) " (v)? — 288 (Y7)2 +224 (Y¥)2 +240 Y (Y)?. (4.34)
a=1 a=9
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Since .M‘(/2 ) has both definite positive and definite negative monomials, we can choose config-
urations of Wilson lines giving rise to either positive or negative effective curvature k, due
to the fact that —0.0348... < n},/n}. < 0. For instance, if any Y% a = 1,...,7 is non trivial
(while Y* = 0, a = 8, ...,16), one has M2 /M2 = —3/13, and so k is positive. Numerically,
one finds 42k ~ 101 (Y1)2 4 - -- + (Y%)2 + 2(Y")2). On the contrary, if any Y, a =9, ..., 16
is non trivial (while Y* = 0, a = 1,...,8), one has M‘(/Q)/M% = 1 and so the representa-
tive point in the phase diagram of Fig. 2 sits above the critical curve, i.e. k is negative.
Numerically, one has 72k ~ —274 (Y?)2 4 - - - + (Y16)2),

4.2.2  With Wilson Lines yg

Any model originally characterized by the quantities n}., ni,, M? and M‘(,2 ) can be deformed
by switching on the Wilson lines y¢, a = 1,...,16. We are looking for solutions of equation

(4.17) written in terms of the functions defined in (3.40):
F(u, y5) +uF"(u,95) + F(u, y5) + uF (u,45) = 0. (4.35)

We observe that the thermal contribution described by F(u,y?) + uF’(u,y?) vanishes at
u = 0 and asymptotically at infinity. In all of the following examples, it is also positive.
On the contrary, the “effective potential” corrections F'(u,y?) 4+ wF"(u,y?) vanish at u = 0
and diverge to +00 or —oo at infinity. Thus, in presence of arbitrary Wilson lines yg, the
universal solution v = 0 remains and we are looking for non trivial ones uv > 0. These can

only arise when F(u,y2) + uF'(u,y¢) takes negative values.

Model 1:

Among the Wilson lines y¢, (a = 1,...,8 for the first Eg factor and a = 9,...,16 for the
second), we choose to switch on either

i) y5 (with y3 = -~ =y;°=0) or

i) ys = -+ =y5 (with y§ = = y3° = 0).

In these cases and at fixed Wilson lines, F(u,y?) + uF"'(u, y¢) increases from 0 to 400, and

so there is still no solution uw > 0.

Model 2:

For the Wilson lines defined in case ii) above, one finds that the critical solution v > 0

present before deformation is slightly shifted. However, in case ), the root u > 0 is sent to
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+00 when y2 approaches the numerical value 0.227... from below. For ! above this critical

bound, there is no non trivial solution anymore.

Model 3:

As said before, this model does not admit a critical solution u > 0 when all Wilson lines in
the fifth dimension are switched off. We consider four patterns of deformations, by switching
on a Wilson line for a single Cartan generator:

i) ys (Cartan generator of SO(12) C Er)

ii) y? (Cartan generator of SU(2) C Er)

iii) y§ (Cartan generator of SU(2))

iv) y§ (Cartan generator of Fg)

In cases i) and iv), a large enough Wilson line deformation generates a non-trivial solution.
We find the critical bound yi = 0.895... for case i), and y§ = 0.772... for case ). In all
these cases, the phase transition occurs when the limit at u — oo of the “effective potential”
contribution F(u, y¢) + uF’(u,y?) is switched from 400 to —oo. In some sense, a solution
u = 400 appears at the transition, and then decreases for a larger Wilson line, and finally
reaches a non-zero minimal value. In cases i) and 747), since F'(u, y%) +uF" (u, y?) is positive

for any value of the Wilson line, the deformation does not create a non-trivial solution.

Model 4:

We consider the same four patterns of Wilson lines. This time, the critical solution v > 0
exists before deforming the model. We find that in the above cases, switching on a large
enough Wilson line makes this solution disappear. However, two distinct behaviors are
found:

In cases i) and i), we find again that the phase transition corresponds to a change in the
behavior of the “effective potential” contribution at co. In a similar way as before, the
solution u > 0 existing before deformation will increase when switching on the Wilson line,
then go to +o00 at the transition point, and disappear for a larger Wilson line. We find the
critical bound y2 = 0.105... for case 7), and y? = 0.074... for case ii).

For 4ii) and iv), switching on the Wilson line makes the critical solution u > 0 decrease
towards zero, so that we are left only with the universal solution when the Wilson line is
above some bound. In case 4ii), this maximal value is y§ = 0.205..., while it is y2 = 0.207...

for case iv).
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Some remarks are in order

e In all cases presented above, when a critical solution u > 0 exists, the effective radiation
term ¢, given by equation (4.18) is strictly positive.

e In some models, incorporating the Wilson lines in the fifth direction allows the critical
solution u > 0 to be close to 0 or large. In other words, a hierarchy between the scales M

and 7' can be found by tuning the moduli y¢.

5 Cosmological evolutions

When a non degenerate solution v > 0 exists, the model admits a well defined low energy
description in four dimensions. The dynamics in this regime is controlled by the Friedmann-
Hubble equation, whose behavior depends drastically on the signs of ¢, and k. In all models
we considered here, with initial N = 4 or N = 2 supersymmetry, ¢, turns out to be positive.
However, this situation may not be generic in more complex stringy examples with initial
N = 1 supersymmetry. For completeness, we briefly describe all possible cosmologies arising
for any positive or negative value of ¢,. In addition, we allow non trivial time dependent

profiles for the moduli ¢;, giving ¢, > 0.

5.1 Solutions for ¢, > 0

o« Fork=0,c >0, cp>0

When Wilson lines in the directions 6,7, ..., 10 are absent, the curvature k; vanishes. In real

time, the Friedmann-Hubble equation (4.13),

o (5.1)

at  ab

3H? =

can be used to express the time variable ¢ as an integral function of the scale factor a,

3 [ vidv Cm
ta)=+/2 | ——— (a>0), ag= /. 5.2
W=\ | T @20 w= T (5.2

In this form, it is straightforward to draw a(t) (see Fig. 3). The explicit solution is

a a? ) a V3 e
t(a) = to <a—01 /14 a,_% — arcsinh <a_0)> ) lo = 5 CET ) (5.3)
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describing an expanding universe that starts with a big bang. As can be seen from equation
(5.1), the slope a is infinite when @ vanishes. At large ¢, the scale factor behaves as in the

cm = 0 particular case:

alt) = (%)1/4@, (t>0). (5.4)

t

Figure 3: Cosmological evolution for the case k=0,c >0, ¢ >0.

Since the transformation ¢ — —t is a symmetry of the Friedmann-Hubble equation, the
previous expanding solutions have contracting counterparts and thus ending at t = 0 with
a big crunch. Finally, since the RHS of equation (5.1) is positive, there is no solution in

Euclidean time.

The effective field theory description always breaks down before the occurrence of a space-like
singularity, when the temperature (in string frame) is of order the Hagedorn temperature.
At this temperature scale, new stringy dynamics must be taken into consideration which can

result into a phase transition, realizing the scenario of [16].
.FOTk>O, Cr>0; CmZO

When we switch on Wilson lines, k> 0. Rewriting the Friedmann-Hubble eq. (4.13) in the

. \/c$+121%cmj:cT
(a*a)* = k(a* + a*)(a* — a?), ay = (5.5)

6k ’

form




one expects a cosmological evolution satisfying 0 < a < a, should exist, while a solution
with a scale factor greater than a, should make sense in imaginary time only. In real time,

one can actually express t as a function of a as follows

v

[ v2d
= (t" : ﬂ/o V) - v2)> mesn o0

where

1 ot v23dv
_\/i/o V(W2 +aZ)(ad —?)

From these expressions, one can see that the cosmological evolution starts with a big bang

ti =

(5.7)

at t = t;. It expands until ¢ = 0 where the maximum size of the universe a, is reached, and

then it contracts until a big crunch occurs at t = —t,.

To find a Euclidean solution, one needs to consider a scale factor greater than a,. It is
then possible to find it by proceeding as before, or use the fact that such a solution can be

obtained by analytic continuation of the expression (5.6) at t = 0, where a = a,. One can

write
A P 1 /a+ v2dv N 1 oB v2dv ,
= i — — = —iT,
Vih VA @ =) Vil VA0 =)
(5.8)
from which we derive
1 aE v2dv
T(ag) = £——= , ag > a4). 5.9
T Ve e i

Fig. 4 represents the solutions a(t) and ag(7).

In the particular case where ¢,, = 0, the solutions (5.6) and (5.9) are taking the explicit

forms
£\ c 1 /e
t) = 1—(— t <t < —t), ==, ti=—=4/—, 5.10
d@=afi-(7) . Gstsow a= /% SYE AT

ap(t) = asy |1+ (3)2, (5.11)

and

t;

whose shapes are similar to the generic case with ¢, > 0.

o Fork<0,¢ >0, c,>0
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Figure 4: Cosmological evolution for the case k>0,¢ >0, ¢y >0 (in bold line). A big bang and a big
crunch are occurring at t = t; and t = —t; respectively. This solution is connected to a Euclidean one at
t = —iT = 0 that is asymptotically linear.

This case is easier to deal with. Eq. (4.13) can be rewritten as

R ¢ £/ — 12|k|ep
(a*a)® = |k|(a® + a*)(a® + a3) , ay = : (5.12)

6/k|

and admits the expanding solution

v

[ v3d
)= \/2/0 V@ +a2)(wr+a2)

t(a (5.13)

(See Fig. 5.) After a big bang, the scale factor is growing linearly in time.

The result for the particular case ¢,, = 0 can be written more explicitly. The solution takes

the form

t+t\’ [ ¢, 1 /e,
a(t):a+ ( t 0) -1, (t20), ay = %7 toZE § (5.14)

These cosmological solutions do not admit a sensible Euclidean continuation.
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Figure 5: Cosmological evolution for the case k <0, ¢; > 0, ¢ > 0.

5.2 Exotic cosmologies with ¢, < 0

Although in all explicit models we presented before ¢, is positive, it is interesting to analyze
the exotic situation with negative ¢,., which is not a priori forbidden in more general cases

with N = 1 initial supersymmetry.
oForlAc:0, ¢ <0,¢,>0

A cosmological evolution in real time only exists if ¢,, is switched on. The scale factor

satisfies 0 < a < ag where

= | (5.15)

ler|
Between a big bang at ¢; < 0 and a big crunch at —¢; > 0, a reaches a maximum ag at t = 0.
At this time, an analytic continuation is allowed: A Euclidean solution satisfies agp > a¢ and

goes to infinity for large positive or negative Euclidean time (see Fig. 6).
o Fork>0,c¢ <0,c¢, >0

Most of the considerations of this case are identical to the one derived for k > 0, ¢, >0,
¢m > 0. In particular, the Friedmann-Hubble equation is still given by equation (5.5) and
both the cosmological solution (5.6) and the Euclidean one (5.9) are valid. They are shown
in Fig. 7. As long as ¢, > 0, the only qualitative difference with the case ¢, > 0 is that

the Euclidean solution has two symmetric inflexion points. However, when ¢, vanishes, the
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(1)

N

_r—t
~—t

crunch are occurring at t = t; and t = —t; respectively. This solution is connected to a Euclidean one at
t=—iTt=0.

Figure 6: Cosmological evolution for the case k=0,¢ <0, c¢n>0 (in bold line). A big bang and a big

evolution in real time ceases to exist.

Figure 7: Cosmological evolution for the case k>0,¢ <0, cp >0 (in bold line). A big bang and a big
crunch are occurring at t = t; and t = —t; respectively. This solution is connected to a Euclidean one at
t = —iT = 0 that is asymptotically linear and has two symmetric inflexion points.
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o Fork <0,¢ <0, cn>0

This case presents the most interesting features and involves either a first or second order
phase transition in the early universe. The former case is the only one considered in this
paper, where a Euclidean solution has a finite action and thus can be interpreted as an
instanton involved in a tunneling effect. These behaviors are qualitatively similar to the
inflationary case studied in [6,12]. To be more specific we consider the Friedmann-Hubble
equation in the form

3(a*a) = 3|k|a* — |eo|a® + ¢m (5.16)

and discuss various regimes, depending on the value of the discriminant of the RHS

§ = —12|klcp, . (5.17)

i) When ¢ > 0, there are two critical values for the scale factor

leo| £ 1/ — 12|k|ep
. (5.18)

6/k|

a4+ —

Equation (5.16) then admits two distinct cosmological evolutions. The first one satisfies
0 < a < a_ and corresponds to the usual dynamics between a big bang at ¢; < 0 and a big
crunch at —t;. The scale factor reaches a maximum a_ at ¢ = 0. The second one describes
an asymptotically linear contracting solution followed by an asymptotically linear expanding
one. The two branches are smoothly connected at t = 0, where the scale factor reaches a

minimum value a. Therefore, this solution is non-singular. (See Fig. 8.)

The two cosmological evolutions are also related to one another by a double analytic con-
tinuation: ¢t = —i7 and then 7 = 74 4 it. Between 7 = 0 and 7 = 74, a Euclidean solution
whose action can be shown to be finite is allowed. It is thus an instanton between the two
branches in real time and contributes to a first order phase transition. We note that when

¢m = 0, the big bang / big crunch solution disappears since a_ vanishes.

i1) Let us turn now to the second case where the discriminant (5.17) satisfies 6 < 0. Equation
(5.16) does not admit any critical point and the scale factor is never stationary. There is a
single cosmological evolution (and no Euclidean solution). It increases from a big bang at
t = 0, while for large ¢, its time dependence becomes linear. Thus, close to the big bang, the

evolution is similar to the first solution occurring when ¢ > 0, while for large t its behavior
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Figure 8: There are two cosmological evolutions (in bold lines) for the case k< 0, ¢, <0, ¢ >0, when
6 > 0. The first one starts with a big bang at t = t; and ends with a big crunch at t = —t;. The second one
has a contracting phase followed by an expanding one. These two branches are connected to each other by a
first order phase transition via an instanton.

is similar to the second expanding solution. Since there is an inflexion point at ¢t = t,,, when
a = \/2¢y,/|c|, the cosmological evolution for 6 < 0 can be interpreted as a second order
phase transition between the same initial and final states encountered in the first order phase

transition for § > 0. (See Fig. 9.)

i11) In the critical case 6 = 0, equation (5.16) admits two expanding cosmological evolutions

which are asymptotic to a static one, a = ag, where

— a/inf — T (519)

together with two contracting ones obtained by time reversal. The first expanding solution

starts with a big bang, while the second one is linear for large positive time. (See Fig. 10.)
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tinf 2 t

Figure 9: Cosmological evolution for the case k< 0, ¢, <0, ¢y, >0, when 6 < 0. It describes a second

order phase transition occurring at t,;, belween a phase that starts with a big bang to another phase that
expands linearly in time.

- -

; P
/

Figure 10: There are two expanding (contracting) cosmological evolutions for the case k<0, ¢ < 0,
cm >0, when § = 0. All are asymptotic to the static solution a = ag.

43



6 Conclusions

We have obtained several cosmological solutions in a large class of four dimensional heterotic
string compactifications with spontaneously broken N = 4 or N = 2 space-time supersymme-
try. The cosmological evolution is induced once radiative quantum and thermal corrections
are taken into consideration. These corrections are calculated at the perturbative string
level and shown to possess universal scaling properties. The reason is an underlying duality

between the temperature and the supersymmetry breaking scale.

Our solutions correspond to homogeneous and isotropic Friedmann-Robertson-Walker uni-
verses. They are characterized by the ratio of the supersymmetry breaking scale to the tem-
perature, and this ratio remains constant during time evolution. Even though Kaluza-Klein
states associated to the supersymmetry breaking cycle are thermally excited, the equation
of state governing cosmological evolution is identical to that of massless thermal radiation
in four dimensions. This is due to the special relation between the no-scale modulus field
associated to the supersymmetry breaking scale and the Hubble parameter: ®2 = 2H> /3.
Universes with spherical, toroidal or hyperbolic spatial sections can be found once we incor-

porate Wilson line deformations.

In this paper we focused on the low temperature phase of the models. When the temperature
is close to the Hagedorn temperature our effective field theory analysis breaks down and new
stringy dynamics must be taken into consideration. It would be interesting to investigate
if phase transitions can occur in these models as the temperature approaches the Hagedorn
temperature, and whether such phase transitions result in non-singular time-dependent ge-
ometries. To this extent it could prove useful to incorporate in our work the proposal of [23],
where such a phase transition is shown to occur in N = 4 heterotic string models, and study

the cosmological implications.

It would be interesting to extend our analysis to the N = 1 heterotic orbifold models,
and for the cases where supersymmetry is broken spontaneously. In this class of models, one
expects to find inflationary phases, once radiative and thermal corrections are properly taken
into account. The analysis of [6,12] reveals interesting transitions between such inflationary
phases and radiation dominated phases with similar properties to those found in this work. In

our examples, the coefficient of the 1/a* term in the Friedmann-Hubble equation is positive.
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Perhaps among the N = 1 examples it is possible to find models characterized by negative
values of this coefficient. Then non trivial cosmological phenomena would occur, including
first or second order phase transitions that allow for the possibility to realize the proposal

for the creation of a universe from “nothing” [11] in string theory [6,12].

The relation between the supersymmetry breaking scale with the temperature is a key prop-
erty of our solutions. Suppose that such a scaling property persisted in an early universe
epoch, and that initially supersymmetry was broken around the string scale. During such
epoch, the Susy-breaking scale gets lower and lower as the universe expands and cools. At
lower temperatures new dynamics may become relevant that can stabilize this scale. Such
a scenario can give us a new perspective on how to handle the hierarchy and naturalness

problems.
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Appendix A

In this Appendix, we provide details on the derivation of the charges associated to the
Cartan generators of the gauge groups of the heterotic string models we considered. We
also derive the contributions to M? and M‘(/Q) (see equation (3.34)) associated to Wilson
lines in the internal direction 6 only. Since the result is linear in the (y4)%’s, the result for
arbitrary Wilson lines in the directions 6, 7, 8, 9, 10 is obtained under the replacement

(y8)?/(4rR%) — (Y")?2, where (Y%)? is defined in (4.28).

Consider the N = 4 heterotic model with gauge group Eg x Eg. When built out from 32
worldsheet fermions as in the standard procedure, the vertex operators for the gauge fields

associated to the Cartan generators of the first Fg factor are given by
AN =1,....8, (A1)
whereas those associated to the Cartan generators of the second Fg are given by
NN =9, ... 16. (A.2)
In terms of representations of SO(16), the adjoint representation of Eg decomposes as
248 = 1204 128, (A.3)

where the 120 is the adjoint representation of SO(16) and the 128 is the spinorial represen-
tation with positive chirality. The corresponding vertex operators can be written explicitly
by bosonizing the 32 fermions into 16 free bosons H;, i = 1,...,16. This formalism has the

advantage to make the roots of the Lie algebra appear in a clear way. For the 120 we obtain
120 : () (£ k) @ i0H;, j.ke{l,...,8}. (A.4)
The 8 latter vertex operators correspond to the Cartan generators. For the 128 we have

128 : ep(@fitelotall) (A.5)

with the GSO constraint Hle ¢; = 1. Our goal here is to compute the quantity

1
Py > Qe (A.6)

6 sc248

M (yg) =
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where we denote by @) the charges of a state s with respect to the Cartan generators.
We are going to consider the case of one Eyg gauge group; the generalization to Fg x FEy is

straightforward.

To begin with, we recall that the Cartan states are neutral. Then we are interested in the

112 remaining states of the 120 adjoint representation. It is not hard to see that

S@ueyr= > > (e + )’ (A7)

s€120 i#j€{1,...,8} €1,e2==%1

Therefore we get a quadratic polynomial in the y4’s. Noticing that this polynomial is invari-

ant under the transformations y} <> —y and i < yJ, we obtain

> Qe =a Z(yé)Q- (A.8)

Computing the (y§)? term, we get a = 28.

For the 128, we see that

2
Z (Qvg)? = Z (Elyé + ey + -+ (H 6i)@/§> : (A.9)
s€128 €1,...,e7==%1 ]

NN

=1

If we set y§ = 0, the symmetries y — —yi and yi < v, valid for i,j = 1,...,7, guarantee
that this polynomial will be of the form

7

B> (). (A.10)

i=1
Restoring y§ # 0 gives a (y§)? term and crossed terms yiys. However, y§ has been artificially
isolated in the treatment of the GSO constraint: by isolating other y4’s and using the same
arguments, we can show that our polynomial is of the from

8

D (@) =6 () (A1)

s€128 i=1

We obtain § = 32.

It is then straightforward to evaluate the sums encountered before. We obtain

- 2 (s (yi)? (A.12)
T 47TR% — 6 ) .
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and when coupling the Scherk-Schwarz cycle to the helicity of the Eg representation

23 16 '
(2 _ 1\2
MP = (—4 S ) ) . (A13)

i=1

In the N = 2 models, the orbifolding breaks Es — FE7; x SU(2), under which the adjoint

representation decomposes as
248 — (133,1) & (56,2) & (1, 3). (A.14)
The Cartan generators of Eg give the Cartan generators of E; x SU(2):
(10H,,...,10Hg, i(0H7 — OHg)); i(0OH7 + OHsy). (A.15)
Switching on arbitrary yg, ..., vy, y5, we compute the charges of the various states step by

step.

In the 133, we have 7 neutral Cartan operators, 60 ladder operators in the Adj(SO(12))

subalgebra
e EHE) g oL e {1,...,6}, (A.16)

2 ladders in the Adj(SU(2))
i = M) (A.17)

and 64 ladders in a spinorial representation
e%(iHli---ngi(H7ng)) (A.18)
obeying a GSO condition. We see that y{ has a particular role here. The latter states have

charges :I:% under the first six Cartan generators, and charges +1 under the seventh. Using

the same arguments as before, we see that the sum for the spinorial states is of the form

a (Z(yé)2 + (2y§)2) : (A.19)

=1

The polynomial we are looking for is therefore
6 6 6
D Q) =20 (yh)* +2(2y)* + 16 (Z(%)Q + (2y§)2> =36 (ye)” + 72(yg)".
5€133 i=1 i=1 i=1
(A.20)
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Note that if we want to couple the Scherk-Schwarz cycle to the helicity of the 7, we have to
compute also Y sign(s)(Qqyg)?, where states in the spinorial representations of the SO(12)
subgroup contribute with a minus sign. To get this sum we have to put a minus sign in front

of the 64 part, so that

> sign(s)(Qaug)” =20 ) (ve)* +2(2¢)” — 16 (Z(yé)2 + (2y§)2>

s€133 i=1 =1

= 42(3/%)2 —56(yg )% (A.21)

For the (56,2) representation, we begin with the states with vertex operators

6iH¢iH77 eiHing. (A22)
The corresponding Q);y¢ are respectively
i 7,8 i T8
+ v £ (Y5 + ¥s) £ g £ (Y — Ys)- (A.23)

Therefore the sum for these states equals

6

6
D Q) =4 (i) +24 (yh + > +4) (W) + 24 (yi — us)’

=8 Z(yé)2 +48 ((46)* + (u§)?)- (A.24)

The remaining states to be considered have vertex operators

eé(iHli"'iH6i(H7+H8)) (A.25)

For these, we get
6
16 (Z(yé)2 + (2y§)2> : (A.26)
i=1
Adding everything, we get the final result for the representation:

6

D0 (Que)? =24 (e)* +48 (y)* + 112 (). (A.27)

5€(56,2) i=1
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If we couple to the E; helicity, we also have

Y sign(s)(Qoye)’ = —8 Y (ye)* +48 (y5)* — 16 (o)™ (A.28)

5€(56,2) i=1

For the 3 of SU(2) the two states
eHiHTHHs) (A.29)

have charges +2. So we get

D> (@) =8 () (A.30)

s€(1,3)

In the twisted sector, we encounter the representation (56,1), whose sum is obtained by
switching off 35 in the result obtained for the (56,2) representation and by dividing the
result by 2. One then obtains,

(@) =12 ) () + 24 (1)), (A.31)
5€(56,1) i=1
6
S sin() (@)t = —4 S () + 24 () (A.32)
s€(56,1) i=1

We also encounter the (1,2) representation, where the sum equals 2(y3)?.

Application to Models 3 and 4

For model 4, we set Qr = Qr + Qg. If we consider Wilson lines corresponding to the 16

Cartan generators of Fg x E7 x SU(2), the result is

4
MR = p 60 Z us) +36Z yo)? + T2(ye)? + 24 Z o)+ 48 (y5) + 112 (y5)% + 8(y5)?
=1 i=1
1 6
i\2 72 8\2
= |2 (12 ;@6) +24 (y§) ) +128 (2(y5) )]-
So we get
16 6
1 A A
2 i\2 i\2 7\2 8\2
M2 = pos (240 ;(yﬁ) + 624 ;(yﬁ) + 1248 (y3)? + 736 (v§) )
1 16 6
2 7 7
M = p (240 D (e — 144 > (yg)” — 288 (yg)” + 224 (yg%)?) : (A.33)
=9 =1
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For model 3, we set Qr = Q, + Qu + Qp,. We get the same expression for M2, while

6 16
4 , ,
My = 42y6 = 56(y5)° =8 Y (45)° + 48 (ug)® — 16 (45)* + 8(y)* + 60 Y (5)?
=1 =1 =9
1 6
- 4 24 ( 128 (2(y3)?
47TR§ ( ; >+ y6 ) + 8( (Ys) )]
1 16
=R <112 21: yi)? — 800 (y1)? — 288 (13)? + 240 z; ) > . (A.34)
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1 Introduction

A fundamental challenge for string theory is to explain the cosmology of our Universe. How
can the theory describe, or even better predict, basic features of our Universe? Despite
considerable effort over the last few years (see [1] — [9] for a partial list of references), still a
concrete string theoretic framework for studying cosmology is lacking. The purpose of this
article is to report some progress toward this direction by exhibiting new, physically relevant
cosmological solutions of superstring theory. These solutions were obtained and analyzed
recently in [10], after taking into account thermal and quantum corrections in superstring

models for which supersymmetry is spontaneously broken.

At the level of classical string compactifications (with or without fluxes), it seems difficult to
obtain realistic, tractable cosmological solutions. In most cases, the classical ground states
correspond to static Anti-de Sitter or flat backgrounds and not to cosmological ones. But
this classical analysis neglects the thermal and quantum corrections, which inevitably must

play an important role in any attempt to identify non-trivial cosmological states.

It is precisely this direction that we wish to explore in this article. It involves studying
cosmologies that are generated dynamically at the quantum level of string theory [6-8, 10].
For certain cases the quantum and thermal corrections are under control due to the very
special structure of the underlying effective supergravity theory in its spontaneously broken

supersymmetric phase.

In order to see how cosmological solutions emerge naturally in this context, consider the
case of an initially supersymmetric flat string background at finite temperature. The ther-
mal fluctuations produce a calculable energy density whose back-reaction on the space-time
metric and on certain moduli fields gives rise to a cosmological evolution. For temperatures
below the Hagedorn temperature, the evolution of the universe is known to be radiation

dominated [11,12].

More interesting cases are those where space-time supersymmetry is spontaneously broken
at the string level via freely acting orbifolds [13]- [18]. In these cases, the thermal and
supersymmetry breaking couplings correspond to a generalization of Scherk-Schwarz com-
pactification in superstrings. are The thermal corrections are implemented by introducing a

coupling of the space-time fermion number Q) to the string momentum and winding num-



bers associated to the Euclidean time cycle S7.. The breaking of supersymmetry is generated
by a similar coupling of an internal R-symmetry charge Qr to the momentum and winding

numbers associated to an internal spatial cycle Si,, e.g. the X5 coordinate cycle.

Two special mass scales appear both associated with the breaking of supersymmetry: the
temperature scale T' ~ 1/(27Ry) and the supersymmetry breaking scale M ~ 1/(27Rs),
where Ry and Rjs are the radii of the Euclidean time cycle, Sk, and of the internal spatial
cycle, Si,, respectively. The initially degenerate mass levels of bosons and fermions split
by an amount proportional to T" or M, according to the charges QQr and (Qg. This mass
splitting gives rise to a non-trivial free energy density, which incorporates simultaneously the
thermal corrections and quantum corrections due to the supersymmetry breaking boundary
conditions along the spatial cycle Si,. The back-reaction on the initially flat space-time
metric results in deferent kinds of cosmological evolutions, depending on the initial amount

of supersymmetry (N =4, N =2 N =1).

In [10] we concentrated on four dimensional heterotic models with initial N =4 and N = 2
amount of supersymmetry, leaving the phenomenologically more interesting N = 1 cases for

future work. Below we summarize some of our main results.

2 Thermal and quantum corrections in heterotic back-
grounds

We study the class of four dimensional string backgrounds obtained by toroidal compactifi-
cation of the heterotic string on T° and T°/Z, orbifolds. The initial amount of space-time
supersymmetry is Ny = 4 for the T° models and N, = 2 for the orbifold models. Space-
time supersymmetry is then spontaneously broken by introducing Scherk-Schwarz boundary

conditions on an internal spatial cycle and by thermal corrections.

The four dimensional one-loop effective action in string frame is given by

1
S = /d4:1:\/ —detg <€2¢(§R + 20,000+ ...) — Vsmng> , (2.1)

where ¢ is the 4d dilaton field. The ellipses stand for the kinetic terms of other moduli

fields. At zero temperature, the effective potential Vgging is given in terms of the one-loop



Euclidean string partition function as follows:

% = —Vstring (2.2)
with V} the 4d Euclidean volume. At finite temperature, the one-loop Euclidean partition
function determines the free energy density and pressure:

Z

74 = _]:String = PString' (23)

In order to determine the back-reaction on the metric and on certain moduli fields, it is
convenient to work in the Einstein frame. For this purpose, we define the complex field S,
S = e 2 + iy, where y is the axion field. Then after the Einstein rescaling of the metric,

the one loop effective action becomes:
1 - 1 -
S = /d4$\/ — detg |:§R — guy K]j au(b[ayéj — 3_2 vString(q)b q)j) . (24)

Here K;; is the metric on the scalar field manifold {®;}, parameterized by various com-
pactification moduli and the field S. This manifold includes also the main moduli fields
Tr, Ur, I =1,2,3, which are the volume and complex structure moduli of the three internal

2-cycles respectively.

In the Einstein frame the effective potential is rescaled by a factor 1/s%, where s = ReS =
e 2?. We have Vg, = Vstring/ s2. We always work in gravitational mass units, with Mg =

1 _ 18

What will be crucial in our analysis are some fundamental scaling properties of Vg;, in the
limit of large Ry, R5 > 1. In this limit, only the temperature scale T' ~ 1/4/sRy and three of
the main moduli fields, {S, T}, U;} appear in Vg,. All other moduli appear in exponentially

suppressed contributions:

F( sR%

SRR
sRz

e o) @25)

VEin ~

where the function F' will be determined later on. Freezing all other moduli, the classical
Kélher potential takes a no-scale structure [19], as was expected from the effective field

theory approach:
K=—log (S+S)—1log (Ty + 1)) —log (U +U,)=-3log (Z+ Z), (2.6)
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with z = Re Z and 2° = styu;.

The classical superpotential is constant, and so the gravitino mass scale is given by

1 1
M? = 8K = = . 2.7
¢ 5t1u1 23 ( )

Freezing further ImZ and defining the field ® by
2000 2

we obtain the following kinetic term

0,20,2 o

m = 9w 3 9,90,® (2.9)

_guy?’

from the Kéhler potential. The choice a? = 3/2 normalizes canonically the kinetic term of

the no-scale modulus ®.

In all, the effective potential in Einstein frame acquires the following structure:
sR? M? m?
Vem~ M F| =22 )M F|—,=X). 2.10
K ( sR2 ) T2 T2 (2.10)
The possible dependence on other Susy mass scales MZ will become clear latter on, when

we consider explicit examples.

3 Thermal and spontaneous breaking of supersymme-
try

We first consider the case of a heterotic string background with maximal space-time super-
symmetry (Ny = 4). All nine spatial directions as well as the Euclidean time are compactified
on a ten dimensional torus. At zero temperature and in the absence of Susy breaking cou-

plings, the Euclidean string partition function is zero due to space-time supersymmetry.

At finite temperature and in the presence of a Scherk-Schwarz Susy breaking coupling, the
result is a well defined finite quantity [16]- [18]. At genus one the string partition function

is given by:

drdr 1 (_)a+b+ab 0 [5}4
Z= /F 4ImT 2 Z n(T)12 7(7)% F(5721)(HI) F(3,3)(R)
a,b

X Z T [gé)] (RO) (_)90a+hob+goh0 Z T [;LS] (R5) (_)g5a+h5b+gsh5 ] (31)

ho,90 hs,95



The non-vanishing of the partition function is due to the non-trivial coupling of the I'(Ry)
and the I'(Rj) shifted lattices to the spin structures (a,b). Here, the argument a is zero
for space-time bosons and one for space-time fermions. The shifted lattices are given by

m n T 2
LCay [4] (R) = > mn R(Im7)~2 ¢ IS We are interested in the case for which
the radii of three spatial directions are very large, R, = R, = R. = R > 1, so that the three

= (V3/(27)?) Im7 2.

dimensional spatial volume factorizes I'(33) = R? Tm7 2

Before we proceed, the following comments are in order:

e The sector (hg, go) = (hs,95) = (0,0) gives zero contribution due to the fact that we

started with a supersymmetric background.

e In the odd winding sectors, hy = 1 and/or hs = 1, the partition function diverges when
Ry and/or R are between the Hagedorn radius Ry = (v/2 +1)/2 and its dual 1/Ry:
ﬁ < Rys < Rp. The divergence is due to winding states that become tachyonic.

Their condensation drives the system towards a phase transition [16]- [18].

e In the regime Ry, R5 > 1, there are no tachyons. As we will see, the odd winding
sectors as well as the string oscillator states give exponentially suppressed contributions
to the partition function. The contributions of the internal F(5721)(R1) lattice states

are also exponentially suppressed, provided that the moduli R; are of order unity.

Thus for large Ry, Rs, only sectors for which hy = hy; = 0 contribute significantly. By
utilizing Jacobi identities involving the theta functions, we can see that when hy = hs = 0,

we get a non-zero contribution only if gy + g5 = 1.

Next, using the relation I'(R) = I'[J] + T[] + ' [§] + I'[{] and neglecting the odd winding

sectors, we may replace
1
D[S = D(R) — T [3] = T(R) - 5T(2R) (3.2)

in the integral expression for Z. For each lattice term we decompose the contribution in
modular orbits: (m;,n;) = (0,0) and (m;,n;) # (0,0). For (m;,n;) # (0,0), the integration
over the fundamental domain is equivalent with the integration over the whole strip but with

n; = 0. Notice also that the (0,0) contribution of I'(R) cancels the one of {T'(2R). We are



left with the following integration over the whole strip:

drdT F(5 21) (R[) mR2 (2mo+90)° TR2 (2m5+g5)°
PR e 7)12 TEEEP I
90+95 1 mo,ms

The integral over 7, imposes the left-right level matching condition. The left-moving part
contains the ratio 0 [}]* /' = 2% + O(e~™™), which implies that the lowest contribution is
at the massless level. Thus after the integration over 7 (72 = t), the partition function takes
the form

% (1 — (_)gﬁ-gz) > dt _ 2(2m1+g1)2_ 2 (2ma+g9)?
__ 04 5 TR, 7 TR 7
Z =2'D, T > . /O ” > e : , o (34)

91,92 mi,m2

up to exponentially suppressed contributions that we drop. The factor 2* Dy is the multi-

plicity of the massless level.

Changing the integration variable by setting ¢t = m(R2(2m; + ¢1)*> + R2(2mg + g2)?) =, the

integral over x can be expressed neatly in terms of Eisenstein functions of order k = 5/2:
no- Y (22U) (35)
S lm+nU]?) '
(m,n)#(0,0)
The pressure in the Einstein frame can be written as

P= é = Cr T* f52(u) + Oy M* M, (3.6)
4 u

where u = Ry/Rs = M/T, and 2
(1 (a0 1 .

Here Cr = Cy ~ n*, where n* = 8Dy is the number of massless fermion/boson pairs. In
this particular model the coefficients Cr and Cy are equal due to the underlying gravitino
mass/temperature duality. For fixed u the first term stands for the thermal contribution to

the pressure while the second term stands for minus the effective potential.

We conclude this section with some further comments.

e The coefficient C7 is fixed and positive as it is determined by the number of all massless

boson/fermion pairs in the initially supersymmetric theory.

6



e The coefficient (', will depend on the way the Susy-breaking operator )z couples to
the left and right movers. In general, Qr # Qg and the temperature / gravitino mass

duality will be broken. Then Cy can be either positive or negative.

e For the Ty/Z, orbifold models with N = 2 initial supersymmetry, and with Q acting
only on the left-movers such that Qr # Qr, the net contribution of the twisted sectors
to Cy is negative [10]. The change of sign indicates that in the twisted sectors, the

states that become massive are the bosons rather than the fermions.

3.1 Small mass scales from Wilson line deformations

A generic supersymmetric heterotic background may contain in its spectrum massive super-
multiplets whose mass is obtained by switching on non-trivial continuous Wilson-lines [20].
This is a stringy realization of the Higgs mechanism, breaking spontaneously the initial gauge

group to smaller subgroups.

We restrict to arbitrary and small Wilson line deformations starting from a given supersym-
metric background where R;, I = 6,7,...,10 are of the order the string scale. In the zero
winding sector, a Wilson line just modifies the Kaluza-Klein momenta, and the corresponding

Kaluza-Klein mass becomes

m% (ml + y? Qa)2
4 ’
R R

where (), is the charge operator associated to the Wilson-line y¢. We can distinguish two

(3.8)

different cases: I = 5 where Ry is large, and I = 6,...,10 where the R; are of order the

string scale.

Here we shall consider the second case I = 6,7, ..., 10. In this case, we can set the momentum
and winding numbers to zero, m; = n; = 0, so that the relevant modification in the partition
function is the insertion of the term:

eiﬂ{ﬁ%) ~ 1 —m7t (y;]L%Qa)Q. (3.9)

1

Then incorporating the effects of the Wilson lines up to quadratic order, we get for the

overall pressure:

5 (1 5 (1
P =Tt fs(u) = Dp T* My fs(u) + Cy M* w — Dy M* M2 % (3.10)

7



Here, My ~ y7Q./R; introduces a new mass scale in the theory, which is qualitatively
different than T and M. My is a supersymmetric mass scale rather than a Susy-breaking

scale like T" and M.

3.2 Scaling properties of the thermal effective potential

The final expression for P contains three mass scales: M, T and My. The first identity it

satisfies follows from its definition:

9] 0 0
T—+M—+My——| P=4P 3.11
( or "o T YaMY) ’ (3:11)
which can be best seen by writing P as
M
P=T"py(u) + T* Mg py(u) = Py + Py, u= ik (3.12)
Using standard thermodynamic identities, we can obtain the energy density p = ps + po:
0
=T—P—-P= 3.13
p a7 pa + p2 (3.13)
with
3P. 0 P, P 0 P. (3.14)
= — U= = — U— . .
P4 4 ou 4 P2 2 ou 2

In the sequel, we allow the Susy-breaking scales 7" and M to vary with time while fixing the
supersymmetric mass scale My and also u, and investigate the back-reaction to the initially

flat metric and moduli fields.

4 Gravitational equations and critical solution

We assume that the back-reacted space-time metric is homogeneous and isotropic

ds? = —dt* + a(t)? 2, H = (9) , (4.1)

a
where €2, denotes the three dimensional space with constant curvature k and H is the Hubble

parameter.

From the fact that —P plays the role of the effective potential and the relation between the

gravitino mass scale M and the no scale modulus ®, M = e*®, we obtain the field equation:
- . 0P oP
CI)+3H(I):a—q):(XU(%)T:—OZ(p4—3P4+p2—P2) (42)

8



The remaining equations are the gravitational field equations. These are the Friedmann-

Hubble equation,

1. 3k
3H? == +p— — 4.3
5P (4.3)
and the equation that follows from varying with respect to the spatial components of the
metric:
off 4302 =~ _p_ Ly (4.4)
a2 2 '

This last equation can be replaced by the linear sum of the two gravitational field equations,
so that the kinetic term of ® drops out:
1

. 2k

4.1 Critical solution

The scaling properties of the thermal effective potential suggest to search for a solution
where all varying mass scales of the system, M(®), 7" and 1/a, remain proportional during
time evolution:

1 .

=M@ =— = H=-ad, M@®) =uT (4.6)

ya
with v and u fixed in time. Our aim is thus to determine the constants v and wu.
Along the critical trajectory, the compatibility of the ®-equation of motion with the gravi-

tational field equations requires that

6a? — 1 3
T4 = 2:27_11747 (7”4 = 4p, for o = 5) ) (4‘7)
202 — 1 1y — - 3
—2ky? = a 5 ik u2p2 M, <—2k‘72 = (742u72p2> Mg for o = 5) , (4.8)

where ry = py/T* and 7y = po/(T? MZ). The first equation is an algebraic equation for the
complex structure-like ratio u. The second equation determines the spatial curvature of the

solution.

Having solved for the compatibility equations, the dynamics for the scale factor a is governed
by an effective Friedmann-Hubble equation as follows:

3k Cy

2 _
BH? = == + =1 (4.9)

9



where

3k=——

1 622 1 [3(2a%-1)
v 6a? — 1 u?

(r2 — p2) + 72 ) M3, (4.10)

1 6a? 1 6a?
(= n_ - 0% P (4.11)
v 60?2 —1 ut A% 202 -1 u?

The following comments are in order:

e Clearly, a necessary condition for the curvature k not to vanish is to have non trivial
Wilson lines in any of the directions 6, 7, 8, 9, 10. Models with both positive and

negative k can be constructed [10].

e The value of the ratio u = M /T was obtained by solving the compatibility equations
numerically. It can be large or small depending on the model. In other words there
are models with a hierarchy for the Susy-breaking scales M and T. In all models

considered in [10], the value for the effective coefficient ¢, was positive.

5 Concluding remark

The purpose of this talk is to emphasize the plausible existence of cosmological superstring
solutions, inflationary or not, which are generated dynamically at the quantum sting level.
Such cosmologies arise naturally from an initially flat spacetime, once supersymmetry is
spontaneously broken by thermal and quantum effects. They are examples of no-scale,
radiatively induced cosmologies. We believe that this new set-up will result in a coherent

and fruitful framework in order to understand superstring cosmology.

Acknowledgements

The work of C.K. and H.P. is partially supported by the EU contract MRTN-CT-2004-005104
and the ANR (CNRS-USAR) contract 05-BLAN-0079-01 (01/12/05). N.T. and C.K. are
supported by the EU contract MRTN-CT-2004-512194. H.P. is also supported by the EU
contracts MRTN-CT-2004-503369 and MEXT-CT-2003-509661, INTAS grant 03-51-6346,
and CNRS PICS 2530, 3059 and 3747, while N.T. is also supported by an INTERREG IITA
Crete/Cyprus program.

10



References
[1] 1. Antoniadis, C. Bachas, J. R. Ellis and D. V. Nanopoulos, “An expanding universe in
string theory,” Nucl. Phys. B 328 (1989) 117.

[2] C. Kounnas and D. Lust, “Cosmological string backgrounds from gauged WZW mod-
els,” Phys. Lett. B 289 (1992) 56 [arXiv:hep-th/9205046];

[3] C. R. Nappi and E. Witten, “A closed, expanding universe in string theory,” Phys. Lett.
B 293 (1992) 309 [arXiv:hep-th/9206078).

[4] S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, “From big bang to big crunch and
beyond,” JHEP 0206, 017 (2002) [arXiv:hep-th/0204189].

[5] C. Kounnas, N. Toumbas and J. Troost, “A Wave-function for Stringy Universes,”

JHEP 0708, 018 (2007) [arXiv:0704.1996 [hep-th]].

[6] C. Kounnas and H. Partouche, “Instanton transition in thermal and moduli deformed

de Sitter cosmology,” arXiv:0705.3206 [hep-th].
[7] 1. Antoniadis and C. Kounnas, Nucl. Phys. B 284, 729 (1987).

[8] C. Kounnas and H. Partouche, “Inflationary de Sitter solutions from superstrings,”

arXiv:0706.0728 [hep-th].

9] J. M. Maldacena and C. Nunez, “Supergravity description of field theories on
curved manifolds and a no go theorem,” Int. J. Mod. Phys. A 16, 822 (2001)
larXiv:hep-th/0007018].

[10] T. Catelin-Jullien, C. Kounnas, H. Partouche and N. Toumbas, “Thermal/quantum
effects and induced superstring cosmologies,” arXiv:0710.3895 [hep-th].

[11] N. Matsuo, “Superstring Thermodynamics and its Application to Cosmology,” Z. Phys.
C 36, 289 (1987).

[12] R. H. Brandenberger and C. Vafa, “Superstrings in the Early Universe,” Nucl. Phys. B
316, 391 (1989); R. H. Brandenberger, “String gas cosmology and structure formation:
A brief review,” arXiv:hep-th/0702001.

11



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Scherk and J. H. Schwarz, “Spontaneous Breaking Of Supersymmetry Through Di-
mensional Reduction,” Phys. Lett. B 82 (1979) 60.

R. Rohm, “Spontaneous supersymmetry breaking in supersymmetric string theories,”

Nucl. Phys. B 237, 553 (1984).

C. Kounnas and M. Porrati, “Spontaneous supersymmetry breaking in string theory,”
Nucl. Phys. B 310 (1988) 355; S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner,
“Superstrings with spontaneously broken supersymmetry and their effective theories,”

Nucl. Phys. B 318 (1989) 75.

J. J. Atick and E. Witten, “The Hagedorn transition and the number of degrees of
freedom of string theory,” Nucl. Phys. B 310, 291 (1988).

C. Kounnas and B. Rostand, “Coordinate dependent compactifications and discrete

symmetries,” Nucl. Phys. B 341, 641 (1990);

[. Antoniadis and C. Kounnas, “Superstring phase transition at high temperature,”
Phys. Lett. B 261 (1991) 369; I. Antoniadis, J. P. Derendinger and C. Kounnas, “Non-
perturbative temperature instabilities in N = 4 strings,” Nucl. Phys. B 551 (1999) 41
larXiv:hep-th/9902032].

E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, “Naturally vanishing
cosmological constant in N = 1 supergravity,” Phys. Lett. B 133 (1983) 61; J. R. Ellis,
C. Kounnas and D. V. Nanopoulos, “Phenomenological SU(1,1) supergravity,” Nucl.
Phys. B 241 (1984) 406.

K. S. Narain, “New Heterotic String Theories In Uncompactified Dimensions | 10,”
Phys. Lett. B 169 (1986) 41; K. S. Narain, M. H. Sarmadi and E. Witten, “A Note on
Toroidal Compactification of Heterotic String Theory,” Nucl. Phys. B 279 (1987) 369.

12



Annexe E

Publication n® 3 :

Spinor-Vector Duality in Heterotic
SUSY Vacua

209



arXiv:0807.4084v1 [hep-th] 25 Jul 2008

LPTENS-08/33
LTH 797
July 2008

Spinor-Vector Duality in Heterotic SUSY Vacua

Tristan Catelin-Jullien*, Alon E. Faraggif, Costas Kounnas*
and John Rizos!

* Laboratoire de Physique Théorique', Ecole Normale Supérieure,
24 rue Lhomond, F-75231 Paris cedex 05, France.
catelin@Ipt.ens.fr, costas.kounnas@lpt.ens.fr

T Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK.
Alon. Faraggi@liv. ac.uk

! Department of Physics, University of Ioannina, GR45110 Ioannina, Greece.
111208 Quot. gr

Abstract

We elaborate on the recently discovered spinor-vector duality in realistic free fermionic
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1 Introduction

Heterotic string theory [1] is a preferred candidate to build realistic string theories. Indeed, its
structure allows a large variety of gauge groups, derived from the breaking of the original SO(32)
or Fg x Eg 10-dimensional gauge group upon compactification [2]. These groups include usual
grand unification groups such as SO(10) or SU(5), usually arising from the breaking of the Fp
gauge group present in a N = (2,2) Calabi-Yau compactification of heterotic string theories.

One expects a realistic theory to have N' =1 (which is further spontaneously broken) four-
dimensional supersymmetry. In our framework, this is achieved by compactifying the six internal
dimensions on a T° /7y x Zs orbifold. This procedure initially breaks supersymmetry from N = 4
to N = 1. The last breaking ' = 1 — N = 0 is assumed to be realized either by non-perturbative
phenomena or by (geometric or non-geometric) fluxes [3]. The T%/Zy x Zs orbifold framework
also has the advantage to have three N' = 2 twisted sectors, which can lead naturally to a
realization of models with three generations [4] — [8].

The models we are going to be interested in are built using the so-called fermionic construc-
tion [5], where the Weyl anomaly is cancelled by inclusion of free fermionic degrees of freedom
on the world-sheet. Over the years, several string-derived realistic models have been constructed
using this formalism [6]. It is known [7, 8] that such models reproduce a wide variety of com-
pactifications, toroidal or more generally Calabi-Yau, at special points of their moduli space. A
particular model is specified by a basis of sets of fermions, or more precisely by summation over
a set of spin structures authorized for the fermions. In this procedure, standard Zs freely-acting
and non-freely acting orbifolds are encoded in a very natural way, which arises from the prop-
erties of fermionization when the internal manifold is at the extended symmetry point, referred
to as the fermionic point. Placing ourselves at this specific point of the moduli space of the
theory is not very restrictive : indeed, if one chooses to deform these models in order to move
away from this point, the form of the twisted sectors, and therefore the chiral matter content of
the model, is unchanged as these sectors are insensitive to the geometry of the compactification
manifold [4, 8, 9]. The T%/Zy x Zs orbifold breaking the supersymmetry to A" = 1 is realized by
means of the introduction of two sets of fermions, that we will call by and by. We finally have
to specify the value of various discrete torsion coefficients, defining the action of the generalized
GSO projections present in the construction; this specification, among other things, encodes the
precise effect of all the orbifoldings that have been introduced.

In this paper, we will focus on a duality that has been pointed out in a recent work [4],
where several properties of all possible heterotic Zy X Zs models have been detailed, by means
of a computerized statistical study of their massless spectra. This study has been restricted to a
subclass of models closely resembling the usual three generation realistic string models, where the
gauge group yielded by the free fermions include a factor SO(10). This duality exchanges, within
the three twisted sectors of the orbifold, the number of vectorial representations of SO(10) with
the number of spinorial plus anti-spinorial representations of SO(10). Starting from obviously
self-dual cases, namely the cases where the SO(10) gauge is extended to Eg, which can be linked
to the usual N = (2,2) compactifications on Calabi-Yau surfaces, we will be able to project
out some of the representations of SO(10) by suitable freely-acting orbifolds, therefore explicitly
creating dual pairs of models in a straightforward way. We will be able to construct the dual
model of some generic model, which will prove the duality. As noted in previous work, this



duality is realized internally in each twisted sector. Consequentially, the duality has been shown
to hold in A/ = 2 theories as well (as /' = 2 supersymmetry is conserved in each of the twisted
sectors). The mechanism of the proof can be adapted in a straightforward way to this case.

The main ingredient of the construction will be to consider the effect of freely-acting orbifolds.
These orbifolds, when carried out in the simplest way, correspond to the modding out of a half-
shift symmetry X — X 4+ mR on an internal boson X. In this case, the generated twisted
sectors are massive; without further hypotheses, the mass shift does not depend on the various
representations to which the states belong. However, in a particular framework, the freely-acting
orbifold can break a symmetry by lifting the mass degeneracy between the symmetry partners.
This happens if, in addition to the translation, we consider modding out a parity operator,
discriminating states having different charges under a symmetry group. As a result, states
with different charges will undergo different mass shifts, leading to a spontaneous breaking of
symmetry. This mechanism is the stringy generalization [3] of the field-theoretic Scherk-Schwarz
compactification [10] ; it can be used to spontaneously break supersymmetry, when the parity
operator is chosen to be the space-time helicity of the string state [3]. More generally, various
patterns of spontaneous SUSY breaking are obtained by choosing an arbitrary R-symmetry
charge (see for example [11] for a recent cosmological application of these constructions).

This enables us also to break an internal superconformal algebra, relating vectorial and
spinorial representations of some gauge group of the theory. The current transforming the spino-
rial representation into the vectorial one and vice-versa is part of the right hand side of the
N = (2,2) superconformal algebra present in the model in the case of an unbroken Fg. By doing
a Scherk-Schwarz compactification of an internal direction coupled to the helicity associated to
the different representations of the gauge group, one is then able to break this superconformal
symmetry, discriminating vectorial and spinorial representations by creating a mass gap.

In the first part of this paper, we will review the free fermionic setup used to construct
the class of models we will be interested in. Then we will detail how one can implement freely-
acting orbifolds with the sets we introduced, how these freely-acting orbifolds can be used for the
spontaneously breaking of some symmetry, and how it can, in our case, lift the mass degeneracy
between the spinorial /anti-spinorial representations of SO(10) and the vectorial representations
of SO(10). In a third part, we will focus on one twisted plane (that is, one family of twisted
sectors) of the theory. We will start by considering one specific model in the first twisted plane,
and detail its massless spectrum. Then, we will enunciate the rules to construct the (S; < V)-
dual of a model, and apply them on the model we just constructed. We will also give some
tools to perform this duality directly on the partition function of the theory. Finally, we will
conclude by some remarks on the significance of this duality, especially regarding the structure
of the vacua of N' = 1 heterotic string theories.

2 Free fermionic construction

2.1 N =1 and N = 2 parity set basis and partition function

Starting for a four-dimensional superstring theory made out of free fermions [5], the 20 left-
moving fermions are noted, following references |9, 12|

{'Lp”, Xl...ﬁ’ yl...67 wl‘..ﬁ} (21)



and the 44 right-moving ones

{gl”ﬁ,@1"'6,’(;1"'5,7]1"'3,451"'8} (22)

where the v’s, f’s and ¢’s are complez fermions. These notations fixed, we are considering the
sets

F = {wu’xl..ﬁ,yl..ﬁ 1...6 | y 1 6’,(/}1 5 —1 37(;51...8};
S = {1/)“7X1"'6}5 € = {yivwi ‘ givaji}a [7/ =1.. 6] )
by = {x38,436 | 36 L5 ply. (2.3)

by = {X1,2,5,6’y1,2,5,6 | 51,2,5,6’1;1...57772};

a= {FY = ()

Noting additively the usual composition law of the free fermionic formalism, we will use that

e={P" PP = F+ S+ e+ + 2 (2.4)
and _
b3 — bl + b2 L= {Xl...4’yl...4 | gl.‘.47¢l..‘5’ﬁ3} (25)

are part of the vacua of the theory. Note that the case of a N' = 2 theory is treated by
considering the previous set, amputated of by. This has the effect of considering a 7% /Zy x T2
orbifold instead of a T®/Zy x Zs. The duality also holds in this case, as we will see from the
mechanism of construction that the duality holds separately in each twisted sector; and within
a twisted sector, NV = 2 supersymmetry is preserved.

The generic form of this partition function is quite lengthy but useful. We note, as an index
of the various blocks, the corresponding degrees of freedom. Noting for brevity hs = —hy — ho,
it reads :

d*r 1
2 +b+ab a+h a+h a+h
P T 24 92 Z 92 Z<_)a o510 [b+911] v [b+gﬂ v [b+g33}

hi,gi a, X

N3 L5, 7123

1

X

(_)H1G1+H2G21§ [6+H1} 4 3 [e—i—Hg} 4

: (;zﬂ e o] o [t 20

9 §+Gr §+Ga
H1,6‘1 H27G2 Br-8
X ( g FG 6 Z ||:Z ) X eiﬂ—q)('}'?azsizti767£:hivgi7Hl7G17H27G2)
i
Siyti (nga)lmﬁ



where the internal twisted/shifted (6,6) lattice is given by

hils,] 1 y1+h1 v
Too [oier] = 3 2 ([0 3] [2 3]

Vi»6i

<_)71t1 +41 51+51t1>
(ywyw)!
X

9 [v2+h1] 9 (2] (_)'ygt2+5252+sgt2

|62+91 | 62 | (2.7)

X

[v3+h2] (3] v3t3+03s3+s3t3
v [03+92 | v 03 | (=)

X

e N N N

|64+92 | 64 |

,& _’75+h3_ 19 _’75_ (_)’75t5+55s5+85t5

X |05+93 | |95 |

)
)
s [Ya+hs| 9 [4] (_)74t4+6434+54t4>
)
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Here €™ is a global phase whose effect is to implement the various GGSO projections acting
on the spectrum of this theory. Following the formalism of [5], these GGSO projections are
equivalently defined by the coefficients C,, ;) = [vi|v;], where v; and v; are the vectors of (2.3).
This phase is required to satisfy modular invariance constraints, that is, it must be invariant
under the following transformations :

(a,b) — (a,a+b+1) (a,b) — (b,a)
E%f)sz‘) — (%E% +0; + 1; E%,();i) - (5(%%';
€, — ee+E+1 . L 1/r €& — &€
ToTHl= (hiygi) — (hishi +9i) ’ Yr= (hiygi)  —  (gi,hi)
(H;,Gi) —  (Hi, Hi + Gy) (Hi,Gi) — (G, Hy)
(sisti)  — (8iy8i + ti) C (sint)) = (tiysi)
(2.8)

Here we may make some remarks.

e The global phase ® does not depend on the spin structure of the space-time fermions,
(a,b). This is necessary to preserve N = 1 supersymmetry; otherwise supersymmetry is
spontaneously broken, as the gravitini acquire a mass. We will not consider this mechanism
here. Note however that the construction of a realistic model also requires such a breaking.

e We want to emphasize the physical meaning of the parameter € in the expression (2.6). As
the v block corresponds to the representations of SO(10), € is the associated chirality :
spinorials of SO(10) have ¢ = 1, whereas vectorials have e = 0. We will relate this later
to the right-moving SCFT of the model; breaking this SCFT will be done by assuming a
non-trivial dependence of the global phase ® of the spin-structure (e, ).

e The inclusion of (s;, ;) performs additional shifts on the six (fermionized) internal dimen-
sions compactified on T/Zsy x Zo. These shifts correspond to the presence of the sets (e;)
in the parity basis; similarly, the twisting parameters (H;, G;) account for the presence of
the sets z;. Coupling these parameters to various spin structures by a suitable form of the
phase ® will generate the Scherk-Schwarz symmetry breakings we will consider.



2.2 SO(10) models as Gepner-map duals of Type II models

The model we have considered above is in fact obtained directly from a Type II model by a map
introduced in [13]. This map defines a correspondence between a heterotic model and a Type II
model by the following construction.

If we label By—1 2,34 the four characters of SO(8) Os, V3, Ss, Cs, one can write a generic Type II
partition function in the following form

1 _
Zir = ~1.8-8 Z B)\BS\Z/\,/_\ (2.9)
T2 NS

Here, Z, 5 account for the spin-statistics of the model and, in the case of compactified theories,
for the internal lattices. The general procedure? is then to replace the SO(2d) characters of the
right-moving side of the theory by SO(8 + 2d) x FEg characters, so that the modular properties
of the partition function are preserved. The product only involves the singlet character of Eg,
whereas the map for the SO(2d) characters is done as follows :

O2a — Voatrs, Vad — Ozdrsy Soq — —Soarss Cag — —Cagys. (2.10)

In particular, for the usual ITA and IIB space-time fermions blocks, d = 4 and the replacement
is done by

NS D S eI H S Sra .11)
ab L ab 7,0
1 a+btab g [a14 Icsmas] I8
S i e LA i ) BY H (2.12)
(,_17b a”b '_}/76

We see that the reversal of the sign of the fermionic characters breaks the usual spin-statistics,
so that, from a space-time point of view, this operation has traded a supersymmetric sector for
a purely bosonic sector. Following our notations for the free fermionic degrees of freedom and
their obvious extension to Type II models, the mapping Type II — Heterotic is done by replacing
the free fermions of Type II {1)*, !5} by the free fermions of the heterotic {¢!5 7123, o181,
Also note that in both Type IIA and Type IIB cases, the obtained block is in fact a second copy
of the singlet of Eg, which signals an enhancement of SO(16) to Ex.

Carrying out the Zs x Zsg orbifold on both of these models, we see that the heterotic model we
consider in this paper is no other than the Gepner-map of a Type IT Ny = 2 model, via the

mapping

*There exists a second solution, which is the replacement by SO(32) characters.
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One recognizes the block of (2.6) corresponding to the 1’s and 7’s. The second block accounts
for an Fg gauge group formed by the complex fermions ¢'8; generically, this group will be
broken due to the inclusion of the sets z; and z9 in our construction.

Out of the two four-dimensional supersymmetries of the Type II model, only the left-moving
one is still present in the heterotic; however, the right-moving superconformal algebra survives
the mapping. This is nothing but the embedding of the spin connection of Type II models into the
connection of the corresponding heterotic ones. Then, this superconformal algebra does not give
birth to a space-time SUSY, but relates spinors to vectors, belonging to representations which
are now of the internal SO(10) spanned by the 1)’s. The survival of this symmetry will guarantee
the existence at the massless level of what were formerly right-moving gravitinos and are now
gauge bosons in a spinorial of SO(10) : then, SO(10) x U(1)3 gets enhanced to Eg x U(1)2. This
enhancement comes as no surprise from the Calabi-Yau point of view : the general embedding
of spin-connection into gauge connection singles out a subalgebra SU(3) inside the first Fj,
corresponding to the holonomy of the compactification manifold. The anomaly cancellation
mechanism [14] then requires that we switch on background values for this SU(3), and the
surviving gauge group is Fjg, coming from the embedding SU(3) x Eg C Eg. Of course, the
Cartans of SU(3) still define a gauge group U(1)?, so that, in the presence of a right-moving
N = 2 SCFT, we indeed find a gauge group Eg x U(1)? x Eg. This is realized explicitly in our
constructions.

a,b

Note that this procedure underlines the naturalness of the appearance of a gauge group
SO(10) in N = 1 realistic theories : the Type II right-moving fermionic block made out of S, V,C
representations of the Lorentz group SO(8) is traded for a block made out of Eg characters. The
Zo X Z orbifold required to break the four-dimensional supersymmetry A' = 4 — 1 is forced by
consistency to act on this Eg, generically breaking it to Eg x U(1)2.

We will now enumerate the sectors from which we will be able to build massless states, and
identify their interpretation as twisted sectors of the N' =4 — N =1 Zy x Zy orbifold.

3 Spectrum of the model; superconformal r-map and its sponta-
neous breaking

3.1 Z, x Z twisted sectors

It is pretty straightforward to check that the N/ = 1 supersymmetric partner of a state built
on some vacuum |«) will come from the vacuum | 4+ S). Here, we will therefore restrain our
enumeration to the bosonic vacua. Apart form the pure NS vacuum, states can be built from
the following sets :



the 16 twisted sectors |B}\3)\4)\5/\6> = |b1 + 2?23 /\iei>, where \; =0 or 1;

the 16 twisted sectors |B§\1/\2/\5/\6> = |by + Zi:1,2,5,6 )\iei>, where \; =0 or 1;

the 16 twisted sectors |B?\1/\2/\3>\4> = |bg + Z?:l )\iei>, where \; =0 or 1;

the sectors |a + x), where « is any of the sectors described above;
e the sectors |z1), |22), |21 + 22).

To properly distinguish a particle from its anti-particle, it will be handy to consider instead the
fermionic sectors B = S + B, so as the space-time chirality appears in a clear way. We will then
restrain ourselves to considering positive 1*-helicity states. In the following, we will denote |B!)
(and similarly for |B2), |B3)) a generic sector ’B)l\l)\2)\3)\4>, and more generally |B) an arbitrary
twisted sector. The |B) sectors are in one-to-one correspondence with the fixed points of the
Zio X Zo orbifold transformation.

Let us make some comments :

e In the following, we will pay no attention to the sectors |z1), |z2), |21 + 22), which can
lead to additional gauge bosons. The minimal gauge group is SO(8) x SO(8); as pointed
out in [4], appropriate choice of the GGSO phases ensures that this gauge group is not
enhanced, and that no mixed? massless states appear. In the following, we will assume
these no-enhancement hypotheses, which state that there exists e; and ej, 7 # j, such
as [ej|z1] = —1 and [ej|22] = —1. This choice projects out any would-be gauge bosons
that would enhance SO(8) x SO(8) — SO(16); the largest enhancement one can have in
that case is a SO(8) — SO(9), which can also be eliminated by allowing one more ¢ such
as [e;|z1] = —1; at any rate, there is no mixing between the “observable” gauge and the
“hidden” gauge.

e The spinor-vector duality finds its root from the fact that if |«) is a relevant vacuum to
build massless states, so is |a 4+ x). This correspondence is the superconformal “z-map”
|B) — |B + x) pointed out in [15]. It is obvious that if (the excitations of) |a) are in
the vectorial of the SO(10) induced by the 5 complex fermions ' then |a + z) will
belong to a spinorial of the same group; the z-map being an involution, the converse is also
true. What is at stake is then to find, given a set of GGSO projections, which sectors will
survive; and for each theory, describe the dual theory in terms of the effects of its various
GGSO projections.

e An important case of figure brings a self-dual case. When preserving the N = (0,2)
superconformal field theory, the SO(10),xU(1)7, where U(1)j is the diagonal U(1) induced
by 7523 is lifted to Eg. In this case, the vectorial 10 and the spinorial 16 of SO(10)
(resp the anti-spinorial 16) are grouped in the fundamental 27 (resp. 27) of Eg, which
decomposes as 27 — 10 $ 16 & 1 (resp. 27 - 1016 D 1).

3By mixed states, we mean states charged under both the “observable” SO(10) or Es and the “hidden” gauge
group containing the SO(8) x SO(8).



3.2 The z-map and superconformal algebra in representations of SO(10)

To begin with, we will restrain ourselves to consider only one twisted sector, namely Bl,,, =
S + by. We will note the associated ground state |Bjgyo). Our results will easily be extended to
any of the 48 twisted sectors detailed above. The untwisted sector, built out of the pure Neveu-
Schwarz ground state, gives the gauge bosons of the gauge group, but not the spinorial/vectorial
representations we are interested in.
The Bjygo vacuum is then written as

Biggo © Spin (¥*, x"?,y7%) @ Spin (57,41, 77") (3.1)

and the addition of the sector x brings the vacuum

Biooo + : Spin (¢, x"?,y*%) @ Spin (57, 7%?) . (3.2)

Here, one may make a few remarks, which will be valid for any of the 48 twisted sectors. Firstly,
due to the presence of 8 left-moving and 16 right-moving real fermions obeying Ramond boundary
conditions, the sector | By, is massless by itself, and contains spin-fields made out of the SO(10)
fermions 1); it therefore induces a spinorial of SO(10). On the other hand, the sector | Bl + )
has 8 left-moving and 8 right-moving Ramond real fermions, so that its ground energies read

1

3

A massless state will then be reached when exciting this ground state by a weight 1/2 right-
moving fermionic oscillator. If we wish to consider states charged under SO(10), this excitation
has to be taken to be 1/7_1/2, and the resulting state lies in a vectorial representation of SO(10).
Therefore, the z-map links vectorials to spinorials of SO(10). Obviously, the z-map arises as
the right-moving part of the N = (2, 2) superconformal field theory that is still present after the
Type II — Heterotic Gepner-map, and acts inside the gauge group, due to the embedding of the
spin connection into the gauge connection.

As in the case of spontaneous breaking of supersymmetry, a spontaneous breaking of the
x-map will amount to projecting out from the spectrum spinorial or vectorial representations of
S0O(10), giving different masses to the two partners. In terms of the free fermionic construction,
this situation is reflected in the fact that states from the massless sector |B) (resp. |B + z)) will
be projected out, whereas states from the sectors |B + e;) (resp. |B + = + ¢;)) will be preserved.
These sectors are massive and are naturally interpreted as the twisted sector of the freely-acting
orbifold based on the half-shift of the coordinate X*. We see that the net effect of this action is
that the sectors |B) (resp. |B + z)) will get a mass, whereas the sectors |B + z) (resp. |B)) will
remain massless. We carry out an explicit example of such a mass lift in the next subsection; as
one can expect, it crucially relies on a careful choice of the GGSO projections.

3.3 Implementing the e;-generated freely-acting orbifolds

In this subsection, we briefly recall some useful results about twisted /shifted lattices. The usual
equivalence between a compact boson taken at the fermionic point and two left-moving plus two
right-moving real fermions is easily extended to orbifold partition functions of each theory.



When we consider two internal dimensions , the ¥-function form of a zero-mode lattice I's o,
taken at the enhanced symmetry (or fermionic) point (denoted f.p.)

2
1 2
r ’ =319 3.3
2,2 . 276| [5” ( )

is generalized to the orbifold version of the theory. When one implements the non-freely-acting
Zs orbifold X2 — — X2 whose twisting parameters will be denoted (h, g), as well as the two
freely-acting Zs orbifolds X2 — X247, whose shifting parameters will be noted (s1,t1, 52, t2),
the lattice sum is modified as

h|s1, 1
F272 [gl‘:f,tzz} ‘f'p. — Z Z (7)'}/1t1+5181+31t1(7)'y2t2+6232+32t2 (3.4)

~1,2,01,2

Y1+h 1 Y2+h Y2

< o] o o

Therefore, implementing in the above partition function the freely-acting orbifolds (in this case,
half-way shifts) corresponding to the sets e; only amounts to inserting the phases (7)7t+55+5t.

For now, we have just shifted the internal I'g ¢ lattice, independently of the rest of the spectrum.
The corresponding orbifold is the Zs-translation along each circle of the internal space.

If we wish to couple this shift to other states of the theory, we must introduce a phase
relating the shift parameters (s;, ;) to the spin structures of the states we want to act on.
Such a freely-acting orbifold takes the form (—)@ - T? where T? is the Zy-translation of the i*h
coordinate X’ — X* + 7R’ and (—)? is the parity operator associated to the spin structure we
are considering (generalizing the usual fermion counting operator (—)%, which would correspond
to coupling to the spin-structure of the space-time fermion spin structure (a,b)).

One can carry out the calculation of the partition function corresponding to this orbifold, by
inserting the projection operator in the computation of the trace over physical states and adding
the contribution of the twisted sector. The result is that this orbifold is done by simply adding
a cocycle in the partition function. As an example, if we consider a I'y ; lattice coupled to some
spin structure (e, ), the modification is made as follows :

R TR’
Z=l.]—= ——|n 2
[ ]ﬁ;exp[ - m+nr|]

1 R TR? g Y |?
z _\eg+&h+gh 0 _ e g Z
— [ x 22( ) \/T_QZexp ~ <m+2> - (n+ 2)7’ } (3.5)
h,g m,n
R
_ eg+&h+gh h
= [.]x Z(—) gtehtg ['11[g] <5>
h.g
where FM[Z] is the shifted I'; ; lattice
R TR?
== — (217 o2n + h) 7)? .
) = = e |~ (2 g)+ (20 )P 39

m,n



and the overall [...] refers to all the other blocks of the partition function, which are unchanged
in the process.

Setting Rss = R/2, we recover the well-known fact that this mechanism is equivalent to perform-
ing a stringy Scherk-Schwarz compactification, which is done by coupling the internal dimension
to the SO(10) helicity current [3]

faniat
Such a task is achieved by inserting in the concerned partition function block the cocycle
(—)cmtentmn (3.7)

where now m and n are the momentum /winding numbers of the string state along the radius Rgg
[3]. Looking at the expressions (3.4) and (3.5), one sees that, since the internal shift parameters
of the internal dimensions are no other than (s;,t;) that the coupling of the internal shifted
lattice to the SO(10) spin-structure (e, &) will be done by inserting a phase of the form

(_)Eti+£5i+5iti. (3.8)

It is worth noting that this coupling indeed lifts the mass of the states according to their chirality
€ : by considering the insertion of the Scherk-Schwarz cocycle (3.7), a Poisson resummation of
the modified lattice

Rss AA-En+iT [ TR 2]
—= —)EMTSRTIMN oy | ——22 | + nT 3.9
) p -T2+ (39

shows that the string states now have momentum and winding numbers

(m—%—g,n) (3.10)

which signals a mass lifting in the € = 1 sector. This procedure is of course encoded in the basic
form of the fermionic construction and does not require further elaboration : it is related to the
values of the discrete torsions [e;| B] and [e;|B + x|, where B is an arbitrary twisted sector of the
theory.

3.4 Breaking the z-symmetry with the freely-acting orbifold e;

We start by considering the two sectors already written above, which read, in terms of spin-fields

B(%OOO : Spin [(W)ﬁ (X12)527 (y34)e37 (y56)54] ® Spin [(§34)g1, (gSG)Em (151“'5)537 (7_71)54] (3-11)

BéOOO +x o Spin [(1/}“)4-7 (X12)627 (934)037 (y56)a4] ® Spin [(ﬂ34)51, (g56)527 (7_72)537 (ﬁ3)54] (3'12)

where the €;, €, 0;, ; are the helicities of the spin-fields.
As discussed above, the physical states of the sector By + = we are interested in are obtained
by exciting the vacuum with a weight 1/2 v oscillator :
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Spin [(7pu)+) (X12)62’ (y34)037 (y56)04] ® {&11/2] Spin [(g34)51’ (g56)527 (ﬁ2)53? (773)54] (3'13)

The relevant GGSO projections to carry out in this example as those arising from the sets
S, S+b1, b2, (€i)i=1..6- The F-projection is redundant with the S + bj-one. The z;-projections
do not change the features of the spectrum in the sector By, as soon as we assume that they
do not project the whole sector out; we will, for now, neglect them.

Equivalently, we will find it handy to consider instead, on a sector B}\B Mdshg Uhe projections
induced by the sets

S, S+ by, 52 =S +by+ (1—X5)es + (1 — Xg)es, (€i)i=1..6 - (3.14)

Recall that, as |B}\3/\4/\5/\6> are fermionic sectors, the constraints to be met are (—)* = —(a|B}\3)\4)\5)\6),
where « is one of the sets above.

Initially, the sectors B}\s)\4>\5>\6 have 2'2 degrees of freedom. Carrying out the S, S + by, b,
(es..¢) projections cut the number of physical states down to 25 = 32. Noticing that

52 N B)1\3/\4/\5)\6 = {wuw_}l..ﬁ}, (315)

we see that, as the ¥* helicity has been fixed, this GGSO projection implies that the spectrum
of states inside the sectors B}\:;A4A5>\e is chiral with respect to the group SO(10). Such a feature
crucially depends on the presence of the set by in our construction; this is consistent with the
fact that the presence of a chiral matter spectrum requires N’ = 1 space-time supersymmetry.

Now we look at the effect of the e; and e projections, first restricting our attention to By,
The latter survives the e; projection if [e1|Blyy] = —1; otherwise the entire sector |Blyg)
is projected out. However, in the latter case, as mentioned earlier, one has to consider the
massive sector |Bgy + €1). The spin field accounting for this Ramond ground now has an initial
degeneracy of 214, carrying out the S, S + b1, l~)2, (e1,3...6) projections cut the number of degrees
of freedom to 2%. This time, the various projections are not able to fix the SO(10)-chirality of
the massive state, since

62 N (B>1\3>\4>\5>\6 + 61) = {wu’w1|w17 1/7)1'”5}‘ (3.16)

This is consistent with the fact that when fixing the space-time spin, we still have a degeneracy
in the representations 16 and 16 of SO(10), which is mandatory for these representations to be
massive.

The superconformal partner of | Blgo) is | Bdgoo +2); this sector contains vectorial representations
of SO(10). Let us recall that, from the usual constraints of the free fermionic models, the discrete
torsion coefficients we are interested in obey, for ¢ = 1,2 :

[BY + z|e;] = [B'es][x|eq]. (3.17)

Therefore, if we set [r]e;] = 1, the sector |Blyy, + ) will behave in the same way as |Blyg)
with respect to the e; projections. If [Biylei] = 1, the twisted sector will be projected out as

11



a whole, regardless of the spinorial /vectorial character of the representations; if [Blyoolei] = —1,
both spinors and vectors will survive.

Up to now, we have thus not been able to discriminate between spinorial and vectorial
representations of SO(10) lying in the same twisted sector. As one can expect, this will be done
by acting on the value of the discrete torsion [z]e;]. Indeed, let us again place ourselves in the
twisted sector |Blygo), and its vectorial counterpart |Blygo + ). The same reasoning as before,
and the use of the equation (3.17), yields the following rules of survival (we recall that ip = —1
for any fermionic twisted sector):

e when [Blyglei] = —1 and [z|e;] = 1, both sectors |Byy) and |Blye + ) survive at the
massless level;

e when [Blyjlei] = 1 and [z|e;] = 1, both sectors |Blogo) and | By + ) are projected out;
e when [Blyplei] = —1 and [z|e;] = —1, |Byg) survives and | Bl + ) is projected out;
e when [Blyplei] =1 and [z|e;] = —1, |Biygo) is projected out and |Bgyg, + ) survives.

Now that we know how to manipulate each twisted sector, we can start to explore the duality.
Note that the list of ingredients at our disposal is quite simple and handy.

We are dealing with three twisted planes, in which four left-moving and four right-moving

fermions picked among the fermionized coordinates (y‘w?)(y'@’) are in Ramond boundary con-
ditions. These fermions carry indices (i1, i9,%3,14) = (3,4,5,6) for the B! family, (1,2,5,6) for
the B? family, and (1,2,3,4) for the B3 family. We can act on these twisted sectors by making
the freely-acting orbifold generated by the set e; act in a non-trivial way on them. Then one
sees that, to be able to project out states, one must consider the action of the sets e; and ej,
where ¢ and j are different from i1 _ 4; otherwise, the e;-projection’s effect is to choose the internal
chiralities of the corresponding spin-field. Moreover, if ¢ is one of the four indices ¢; 4, the sector
B + e; is not massive, but rather another twisted sector of the same plane.
Then two projections have to be considered for each twisted plane. In the following, we will be
interested in the B! plane, so that we will consider the orbifolds induced by e; and es. This
fact is not surprising : in the B! plane, the physics is independent of the volume of the four
internal coordinates corresponding to the fermions (yw|y@)34%%; therefore, a spontaneous break-
ing of symmetry in this plane must be constructed out of the two last internal coordinates, as
the value of the mass gap will depend on the size of these coordinates. Of course, in this paper
we will encounter no such dependence, as all moduli are set at the fermionic point; however, a
deformation of these models would make this feature clear.

Finally, to compute the action of the orbifolds e; and ey on one arbitrary sector of the first
twisted plane |B/1\3 Aads )\6>, we remark that the usual constraints of the fermionic construction
impose

6

[Bhoxunsaslei] = (b1 + Slei] [ Jlejled i=1,2. (3.18)
=3
Knowing all the coefficients [e;|e;] , which are part of the definition of the model, we are then
able to repeat the above reasoning to deduce the action of e; and ey projections on |B)1\3)\4/\5/\6)
and |B)1\3)\4/\5/\6 + ).
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3.5 The z; projections

The case of the z; projections is in many ways similar to the case of the e;’s. This time, as we
have, for any twisted sector B of the theory BNz, = BN zy; = &, any non-trivial discrete torsion
turned on for the z sets will have an effect on the three twisted planes. One can derive all the rules
in a similar way as for the e;’s : the z; projections can be taken to break the x superconformal
CFT or not, and various combinations of hypotheses on the GGSO yields various cuts in the
spectrum of the theory. As this case is identical to the e o orbifolds, the rules of the previous
subsection apply.

We will often omit the z; projections, to which most of the rules we derive for the (e;) projections
similarly apply. We will actually specifically need them to perform further cuts in the spectrum,
giving us the possibility to restrain the number of representations present in our models.

4 Construction of dual pairs of models

4.1 A class of self-dual models : the EFs models

As we mentioned previously, since in Fg models the spectrum arranges itself in fundamental
representations 27 and 27, these models are trivially self-dual.

The gauge group Ejg is present in a model if and only if the z-map is unbroken. This is
equivalent to requiring that the freely-acting orbifolds do not break the right-moving part of the
N = (2,2) superconformal algebra of the initial model. In terms of discrete torsion coefficients,
this condition is encoded in the equality

Vi=1...6, [zle]]=1; [z|z12] =1. (4.1)

From the considerations of the previous section, it is then obvious that if the above equalities are
met, in any twisted sector |B), the representations (S,V) C 27 and (S,V) C 27 will be either
simultaneously conserved or simultaneously destroyed, depending on the value of the GGSO
coefficients [Ble;], [B|z;]. Explicitly building the spectrum and counting the states surviving
after the application of the various GGSO projections confirms the self-duality; we find that a
given twisted sector |B) possesses one SO(10)-spinor (chiral or anti-chiral, its chirality being
fixed by the by-projection), one SO(10)-vector and one singlet under SO(10), but charged with
respect to the additional U(1) of SO(10) x U(1) C Es :

|B) : (S,V)cC27 or (S,V)cCZ2T. (4.2)

When the action of all z;-induced and e;-induced freely-acting orbifolds are trivial on the twisted
sectors, we find therefore that the model possesses N, 27 and N_ 27 Ej representations, with
N, + N_ = 48. As the various orbifolds act, they are able to cut in each twisted sector, either
the vectorial, or the spinorial, or the whole sector. As an example, we consider the twisted
sectors |B/1\3>\4A5>\6>. Depending on the values of the GGSO coefficients [bi]e;] ,i = 1,2 and [e;|e;],
1=1,2, j=3,4,5,6, we are able, thanks to the identities

6
[B}\3>\4>\5>\6|ei] BOOOO|61 H €j|ez ) (4.3)
7=3
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6
|:B>1\3)\4)\5)\6|ei] [Booool ] H lej]2i], (4.4)

to determine the effect of the e;- and z;-projections on each one of the twisted sectors of the B!

plane. In particular, if [eg|e;] = —1, one sees that the e;-projection has opposite effects on the
1 1

sectors | By axg) a0 [ By x a0 T €k)-

4.2 Duality inside the N = 2 sectors

As the classification in [4, 9] shows, one can create several kinds of non-self-dual models, in
which, in a given twisted plane generated by the sectors |By) and |B; + z), one has either only
spinorials of SO(10) (with either positive or negative chirality; moreover, the number of spinors
and antispinors do not have to be equal) or only vectorials. For a non-self dual model, as the

x-superconformal map is broken, there exists at least one ¢ € {1...6} such that [z]e;] = —1 or
(inclusive) one i € {1,2} such that [z|z] = —1.
Let us start by considering a breaking by e;. First we argue that the condition [z]e;] = —1

is able to break the self-duality only in the sectors where the freely-acting orbifold e; has the
possibility to project out entire representations of SO(10) : namely i = 1,2 for B! sectors,
i = 3,4 for B? sectors, and i = 5,6 for B sectors. Indeed, let us suppose that [z|e;] = —1
while the others [z]e;] = 1, and investigate the consequences on the spectrum. In the B! sectors,
we have seen in a previous section that this breaking of z-map can project out spinors and/or
vectors of SO(10). However, in B? and B3 sectors, due to the intersections

VA € {01}, B3I aaene Ne1 = (B3 s +2) Ner £ 2 (4.5)

and

V/\z € {0, 1}, B/S\l/\Q/\B/\AL N €1 = (Bil)\Q)\S)\AL + .1') N €1 7é (%] (46)

the ej-projection only kills helicities, having a similar action in the sectors B?3 and their super-
conformal partners B3 4 x; it is not able to annihilate entire representations. Then the duality
spinor-vector is still valid in these sectors.

With this in mind, we focus on a case where the z-map is only broken in the first plane, that
is by e; and/or ey. The duality map is then the following : the (S; <> V)-dual of a model where
the x-map 1s broken only in the first twisted plane is constructed by reversing the signs of the
discrete torsion coefficients [Blyoolei] and [Blooo|2i] for every e;, i = 1,2, satisfying [z]e;] = —1,
and for every z; satisfying [v|z;] = —1. This procedure is easily seen to be in agreement with
the rules given in [4], where the general form of the duality transformation is formulated as the

exchange of the ranks of the matrices [A(l),Yl(Gl)} and [A(l),Yl(Ol)}; this particular set of rules
actually exchanges the vectors Y1(61 ) and Yl(o1 ),

To prove this, let us suppose that [x|e;] = —1 and consider the action of the e; projection on a
given sector | B}, x.xg)-
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e Since one has

[Bsaanarel€1] = [Bloooler] x [esler]*[ealer] [es]ex]® [esler] (4.7)

=€

we conclude that the sector B}\B A Survives the e; projection iff [Blogolei] = —¢, and is
projected out iff [Blyylei] = &;

e Then, since [z|e;] = —1, we see that the sector B>1\3 AasNg T T survives iff [Blogolei] = &,
and is projected out iff [Bjyglei] = —¢.

e Therefore, the case [Byylei] = € corresponds to keeping only the spinorial of SO(10)
arising from B}\3 AdsAge Whereas [Blooolei] = —e preserves only the vectorial representation
from this sector.

e Then, it is obvious to see that reversing the sign of [Blyyle1] will bring the dual model,
since the factor € = [e3|e1]3[es]e1]*[es]e1]3 [es|e1]*® has not been changed in the process.

One must also look at the case where both e; and es are breaking the xz-map. It is easy to
convince oneself that one must reverse the two discrete torsions [Blyole1] and [Blogole2] to get
the dual model. Indeed, supposing that we start from a configuration where only the spinorial
representation survive from the sector B}\3 Mg after the two projections, one sees that reversing
only one of the two GGSO coefficients annihilates the whole sector B)l\3 AdsAgs Whereas reversing
both coefficients brings back the vectorial of the sector.

Using similar arguments, one shows that, in the case of a breaking of the z-map by a set
z;, the dual model is obtained by also switching the sign of the corresponding GGSO coefficient
[Béooo|zj]. Indeed, the z; are never, in all three planes, part of the spin-fields giving the vacuum,
and then we can derive rules for them which are similar to the rules we have for e; » when acting
on the first plane, e3 4 on the second plane and e5¢ on the third plane. We note that, since the
coefficients (Sle;) and (S|z;) are set to preserve N/ = 1 supersymmetry, we may replace in the
above rules [Bogo|- -] by [b1]...]. We recover the fact that the spinor-vector duality is realized
within each N = 2 twisted plane B1:23.

Note that the rule we gave for the duality is not unique. One can check that, if we perform
the duality in the first plane, a dual model can be obtained by reversing the sign of [Bloole:]
for every i, i = 1...6, satisfying [z]e;] = —1 (that is, we do not restrain ourselves to the two
“relevant” projections in the first twisted plane which are e; and es). As a consequence, a given
model admits more than one dual. We will give additional arguments to this point at the end of
this section.

When the z-map is broken in more than one plane, some subtleties arise, that require finer
details. Consider a z-map-breaking set a, that is, [a|x] = —1. « may be one of the e; or one of
the z;. The duality operation has to be carried out in the three planes, by reversing the GGSO
coefficients [b|a], [b2|a], and [bs|a]. However, the third twisted plane is not independent from
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the two others, since bs = b1 + by + x. Having carried out the two first steps of the duality, we
see that the two reversals

[brla] — —[bila],  [bafa] — —[ba]] (4.8)
entail, since [bs|a] = [b1]a] - [b2|a] - [z|a] :
[bs|a] — [bs|a]. (4.9)

This situation arises if a set « is able to break the spinor-vector duality in all three planes. This
is not the case for the e;’s : as we have seen, e; and ey can only break the duality in the first
plane B!, e3 and ey in the second plane B2, and es and eg in the third plane B3.

It is however problematic when « is equal to z; and z5. In that case, the duality is restored if
we assume the existence of e; and e;, 7 # j, such as :

leilz1] = —1 and [ej]zo] = —1. (4.10)

These conditions are precisely the no-enhancements hypotheses we assumed to define the class
of models in which we demonstrate the duality.

Indeed, when (4.10) is verified, the transformation (4.8) for a = z; entails*

[b3]21] — —[b3 + eilz1]. (4.11)

This feature has the following effect. In the two first twisted planes, the transformations (4.8)
imply that if, in a model, the sector |B)1\3 N )\5>\6> contains a spinorial representation, it will
contain a vectorial representation in the dual model. However, due to the transformation (4.11),
we learn that if, in a model, the sector |B§1 Aohs /\4> contains a spinorial representation, the sector
|BS x,xan, + €i) will contain a vectorial representation in the dual model. Then, in the third
plane, we have a modified the z-map : instead of linking a sector |B§1)\2>\3>\4> to \B§1A2A3A4 + ),
we have linked it to |B§1/\2/\3>\4 + (x+e;)). In this respect, the duality in the third plane can also

be viewed as being a sector-by-sector correspondence.

This also points out that the duality operation is not unique : one can choose to modify the
r-map « — a+ x into o — a+ x + ¢; in the two first planes, for appropriate sets e;, i.e. such as
a + e; is massless, and e; satisfies a condition of the type (4.10). This observation is connected
to the fact that the duality operation is viewed in [4] as an exchange of the rank of the matrices

rank [A(I),Yl(é)} < rank [A(I),Yl(ol)} ; (4.12)
this rank being constant under linear combinations on the columns of A,

Also note that when we will detail in section 4.4 the duality procedure, in the no-enhancement
framework, in terms of cocycle insertions, it will be sufficient to insert cocycles relative to the
twist parameters hi and hg; the effect on the third plane will automatically follow.

“We suppose here that e; # es, es. If not, one adapts the proof in the straightforward way by exchanging the
roles of b1, bz, bs.
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4.3 Explicit realization of the duality in the first twisted plane

We consider a model given by the following discrete torsion coefficients :

[Béooo|€1] =1,

and

[zler] = 1,
[H €1 €9
€3 -1 1
€4 1 -1
€5 1 1
(& -1 1

[z]ea] = —1;

(4.13)

Then the action of e; and ey projections on the B! twisted plane and the resulting spectrum are
summarized in table 1. This table gives, for a model and its dual, the discrete torsion accounting
for the effect of the projections e; and ey for each of the 16 sectors of the first twisted plane, and
the corresponding surviving representations. The left part of the table assumes [Blylea] = 1
while the right part is for [Bypole2] = —1. As we discussed, a coefficient 1 relatively to ey
projects out spinors and vectors altogether; a coefficient 1 with respect to es projects out spinors

and a —1 projects out vectors.

[.]-] e1 ey | rep. e1 ey | rep.
Bloww| 1 1| o 1 1] o
Blog1 | -1 1| V -1 -1| S
Blow| 1 1| o 1 -1| o
Bl | 1 -1| o 1 1] o
Bl | -1 1] V -1 -1 S
Bl | -1 -1] S -1 1|V
Blgw | -1 1| V -1 -1| S
Biow | 1 1| o 1 1| @
Bl | -1 —-1] S -1 1|V
Biio| 1 -1| o 1 1] @
Bl | -1 1| V -1 -1| S
Bl | -1 -1| S -1 1|V
Bin| 1 -1| o 1 1| @
Bion| 1 1| o 1 1| @
By | -1 -1| S -1 1|V
Bi,| 1 -1| o 1 1] @

Table 1: GGSO coefficients for the first twisted plane and corresponding surviving representation,

for the choice of coefficients (4.13).

Note that in fact, this model is already self-dual; however, the duality operation is non-
trivial, as it exchanges spinorial and vectorial representations inside each twisted sector B>1\3 AdsAg
and we find it more instructive to detail the duality procedure in this model rather than in a
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purely vectorial or purely spinorial model (recall from [4] that in one twisted plane, one has
either a purely vectorial, purely spinorial /anti-spinorial or half-vectorial half-spinorial — i.e. self-
dual — spectrum). Obviously, under a duality transformation, a model having only spinorial
representations (which can be specifically obtained, for example, by setting [e3 45 6le2] = 1) will
be related to a model having only vectorial representations, the transformation being done sector
by sector. We present an explicit example of such a duality transformation in Appendix I.

We have not mentioned here the chirality of the spinorial representations; these depend on
the bs projection, which in turn depends on the discrete torsions

[Bgooolb);  [eilba], i=3,4,5,6. (4.14)
We will fix [Blogol0%] = —1 and consider two cases of figure for the other four GGSO coefficients :
L] | b2 1T b
€3 1 es 1
(1): | e | 1 and (2): es | —1
€5 1 €5 1
€6 1 eg | —1

Extracting the spinorial representations from the previous model, we find that for case (1), before
and after duality, all SO(10) spinors have positive chirality. For case (2), we find that, before
and after duality, we have 2 chiral and 2 anti-chiral spinors.

Note that to put in evidence more features of the construction, we have taken non-trivial values
for the coefficients [e3 45 6|€1,2]. Had we not done this, the remaining model would have had more
generations. One sees that within a twisted plane, arbitrary values of the coefficients [e3 4.5 6|ei],
where e; doesn’t break the xz-map, are only able to project out half of the twisted sectors; only
8 sectors out of 16 contribute, giving either a purely spinorial, purely vectorial, or half-vectorial
and half-spinorial spectrum.

Further projections in the spectrum can then be performed by acting with the orbifolds
generated by z; and 29. Indeed we can obtain the formula

6
[B)lxs)\4>\5>\s|2172] = [B(%OOO|21,2] X H[ei|zl,2])\i (4.15)
i=3
and the survival condition of the sector ‘B}\B MAs /\6> is
[B>1\3>\4>\5>\6|Zl,2] =-L (4.16)

Setting, for some (i,7) € {3,4,5,6} x {1,2}, some discrete torsions

leil 2] = —1 (4.17)

gives one access to models in which only 4 sectors or only 2 sectors out of the 16 survive at the
massless level.
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To conclude this subsection, let us note that the explicit model we constructed above is
self-dual; however the Eg gauge symmetry has been broken. Breaking Es — SO(10) x U(1),
as it makes an abelian factor U(1) appear in the gauge group, is generally believed to lead to
anomalies. However, in a class of self-dual models, U(1) anomalies can be evaded when summing
on the contribution of the three twisted planes. We provide an explicit example of this property
in the Appendix II.

4.4 Plane by plane insertions of discrete torsion coefficients, and their overall
effects

In this subsection, we want to indicate how these constructions can be translated in terms of
modifications of the overall phase ® introduced in the general form of the partition function
(2.6). Again, we focus on the first twisted plane; the generalization for the simultaneous action
on the three planes will be addressed at the end of this subsection. We are then considering the
internal dimensions e;, ¢ = 1,2. The term of the partition function representing the first twisted
plane is obtained when the four space-time fermions y*%%% are twisted : therefore, h; = 0 and,
ho = h3 = h is the relevant twisting parameter.

Remembering that the freely-acting orbifolds are conveniently represented by the insertion
of cocycles in the partition function, we find the following rules.
First, in the absence of superconformal symmetry breaking, one is able to project out a whole
sector of the twisted plane (that is, both the spinorial and the vectorial coming from this sector)
by adding a phase

(_)hti+gsi ’ (_)hGi+gHi , (418)

depending on the breaking being done by a e; or a z; projection. As we discussed earlier, such a
coupling renders the h = 1 sectors massive, which is the case in the plane that we are considering.
Furthermore, as we have explained before, the effect the different sectors of the plane is dictated
by the values of the coefficients (e;|e;). These discrete torsions are controlled by the insertion of
the cocycles

(—)sititssti, (4.19)

One is then able to construct a variety of self-dual models using these rules. Similarly, one is
able to control the value of the coefficient (e;|2;) by means of the insertion of

(—)siCitHiti (4.20)

The superconformal z-map is broken as soon as we couple a freely-acting orbifold to the SO(10)
spin-structure (¢,&). In the first twisted plane, such a breaking requires the action of at least
one of the sets (e, es, 21, 22); the corresponding cocycles to be inserted then read, respectively :

(—)etitlsitsiti =1 2 (—)CHEHEIG = o (4.21)

Coupling the two previous effects now allow us to control which representation (spinorial or
vectorial) survives at the massless level in the model. Starting from a case where both spinors
and vectors survive, the addition of one of the SCFT-breaking phases (4.21) lifts the spinorials
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of SO(10), so that only the vectorials survive. If instead we start from a case where the whole
sector has been projected out, by the insertion of a cocycle of the form (4.18), adding a cocycle
(4.21) recovers the spinorials, while the vectorials remain massive. The phase we inserted in this
case is then the product of (4.18) and (4.21).

We may summarize the possibilities as follows :

e no cocycle introduced : S and V stay at the massless level;
e (—)Mit9si ; both S and V become massive;
o (—)ctit&sitsiti 1 G hecomes massive, V stays massless;

o (—)(etMtit(Etg)sitsiti + G stays massless, V becomes massive.
Of course, if one considers a breaking by z;, one has to replace (s;,t;) by (H;, G;).

We then learn how to engineer the duality map directly on the partition function. We have
stated that it has to be done by reversing the GGSO projections [Blle;], [BY|z] for each z-
breaking projections e;, z;. But these values are encoded in cocycles

(_)hti—l—gsi ’ (_)hGH‘gHi . (422)

where h is the orbifold parameter relevant for the plane we are interested in. Therefore, to carry
out the duality map, one has to insert a cocycle (4.18) for each projection breaking the x-map
(i.e. such that a cocycle of the form (4.21) is present in the partition function).

5 Conclusion and discussion

In this paper, we gave a new demonstration of the spinor-vector duality that was shown to
hold among the N’ = 2 Zs and the N' = 1, Zs X Zy heterotic—string vacua obtained via the
free fermionic construction. We interpreted the freely-acting orbifolds present in the model
in terms of stringy Scherk-Schwarz mechanisms; these have been used to give a non-vanishing
mass to some sectors of the theory, and/or to perform a spontaneous breaking of the right-
moving superconformal algebra (also called z-map) which is responsible of the gauge enhance-
ment SO(10) x U(1) — Eg. Such a breaking creates non-self-dual models, where we do not have
the same number of spinorial and vectorial representations of SO(10) at the massless level of the
theory. We described the procedure used to construct the dual of a given model. Moreover, we
explicitly constructed self-dual models in which Fg gauge is broken.

Such models may, or may not, be free from all Abelian and mixed anomalies. The cases
in which the self-dual models are particularly interested, as in such models one does not need
to resort to field theory arguments to shift the vacuum to a stable supersymmetric vacuum.
Finally, we have given rules on how to perform this duality directly on the expression of the
1-loop partition function of the model.

One may ask what are the implications of such a duality. Firstly, we can see it as a symmetry
in the space of vacua of string theory, whose study has been of great interest over the past years
[16]. Furthermore, the duality is exhibited in the space of free fermionic models that have also
given rise to some of the most realistic string models constructed to date. The geometrical
structure underlying the free fermionic models is that of the Zo X Zgo orbifold, and a natural
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question is whether it extends to other orbifolds. The spinor—vector duality can be thought
of as being of the same kind as mirror symmetry [17]. Indeed, mirror symmetry is manifest
in this model as the symmetry exchanging spinorials of SO(10) into anti-spinorials of SO(10).
This is due to the Type II < Heterotic correspondence being related to the embedding of the
spin-connection in the gauge connection. Therefore, changing the chirality of the SO(10) spinors
amounts, on the Type Il side, to change the GSO projection on the right-hand side of the theory.
This Type ITA « Type IIB switch is known [18] to be equivalent to the substitution of the
compactification manifold by its mirror. Our constructions displays this mirror symmetry : this
relies on the choice of the coefficients [by|bs] and [e;|by], as we have shown that the by projection
imposes the chirality of the massless spinorial representations (if any). The mirror symmetry
implies a change in the topology of the compactification manifold, as the Euler characteristic
is taken to its opposite. Spinor-vector duality can, as well, be thought of as another topology—
changing duality. Note that its range of application is wider than the mirror case. Here, non-
self-dual points correspond to N = (2,0) compactifications. Just as mirror symmetry can be
thought of as a manifestation of T—duality [18] also the spinor—vector duality may be regarded as
such, but with the added action on the bundle representing the gauge degrees of freedom of the
heterotic string, induced by the breaking of the NV = 2 world—sheet superconformal symmetry
on the right-moving bosonic side of the heterotic string. Thus, just as mirror symmetry have
led to the notion of topology changing transition between mirror manifolds, the spinor—vector
duality suggests that the web of connections is far more complex, and further demonstrating
that our understanding of string theory is truly only rudimentary. Furthermore, what we may
find is that the distinction of particles into spinor and vector representation is a mere low energy
organisation. What the string truly cares about is its internal consistency, characterized by the
modular invariance of the partition function.
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Appendix I

A dual pair of models with spectrum in the first twisted plane

We consider the model given by the following GGSO coefficients matrix :

[vilv;] = e (vilv;) (L.1)

9]
ik
D
N
D
w
D
N
)
ot
Y
=
=
i
=n
)
N
—_
N
N

e1
€2
€3
€4
es
€6
b1
by
Z1
z2

(vilv;) =

— OO OO OO O

R R R R R R R R R R R eR e
—R R, OO R R REFERFRRFE R~ R~
— _ OOk, OO0 O O~
OO OO R, OO0 R K
O OO OO OO O OO -
— == O 00000 o~
O = = = OO OO KF = =
— O RFPF P OOOOOoO K
OO OROROOO R K~
O R OO = MFHOORF = =
—_— O O, OO OO M

o

As far as the SO(10) representations are concerned, this model contains two vectorials 10,
one in the sector S + by + e5 + z, and one in the sector S + b; + e3 + e5 + x. The spectrum is
therefore contained in the first twisted plane; we will only need to carry out the duality in this
plane.

We apply the duality procedure as follows.

First, we notice that, since
[§

r=1+85+Y ei+z+ 2,

i=1

we have
(zle1) =0, (z[e2) =1, (w[es)

(zles) =0, (zles) =0,  (fes)
(x]z1) =1, (z|z2) =1

0,
1

)

The method we exposed then consists in reversing the GGSO coefficients (b1|e2), (b1]z1) and
(b1|z2). The resulting matrix is therefore (the coefficients we changed are in bold) :
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1 S €1 €2 €3 €4 €5 €4 bl bg zZ1 22
1 111 1 1 1 1 1 1 1 1 1
sf1r 1 1 1 1 1 1 1 1 1 1 1
eef1 1.0 1 0 0 O 1 0 0 1 1
e2f1 1 1 0 0 0 1 1 1 0 0 O
esf1 1.0 0 O O O O O O O O
e41 1. 0 0 0O 0O 0O O O 1 1 1

@ile)) = e 11 01 00 00 00 1 0 x3)

e¢sl 1 1 1. 1.0 0 O O 1 1 1 O
b1 0 0 1. 0 0O O 1 1 0 1 O
b1 0 0 0 0O 1 0O 1 1 1 0 O
211 1 1 0 0 1 1 1 1 0 1 O
z\1 1 1 0 0 1 O O O O 0 1

When explicitly computing the spectrum of this new model, we find indeed that two spinors
16 of SO(10) arise from the first plane, in the sectors S + by + e5 and S + by + e3 + e5. We
see then that in this simple case, the duality transformation occurs sector by sector in the first
twisted plane, like described in section 4.

Appendix 11

A self-dual, anomaly-free model without Fs enhancement

We are considering the model given by the matrix which coefficents (v;|v;) € {0, 1} are defined
by

[ifv;] = erriles) (IL1)

9]
h
D
N
D
w
@
N
)
ot
Y
=)
j=
ey
=
N
[N
—
N
N

1

S
€1
€2
e3
€4
es
€6
by
bo
21
z2

(vilvj) = (11.2)

e = N e e = R = R e N

H R R R R R R R RR R
e e e R e e e e e L Y))
O O MM OOOO O =
SO OO R FHFRFERFEMFEOOMF M
O OO OO OO =
OR R ORRLRORRHRORR
R, OO RFrRORRKFEFHOFRF
— OO R O RFROFRKF M=
O = == =0 OO
O R P OOOoO R, OO O
—H OO R KR P OOOR KM

o

We see that since (z1]z) = (21]1) + (21]S) + 20_ (21]e;) + (21]21) + (21]22) = 1 mod. 2, the
gauge group FEg is broken. Moreover, the conditions (e1]|z2) = (e4]z1) = 1 ensure that the
“hidden” gauge group is minimal and the full gauge group is SO(10) x U(1)* x SO(8) x SO(8).
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The spectrum of this model contains (we note as an index the three charges under the U(1)z,
i=1,2,3):

e three spinors 16 of SO(10), one for each twisted plane,
16(1/2,0,0): 16(0,-1/2,0)» 16(0,0,-1/2)
e three vectors 10 of SO(10), one for each twisted plane,
10¢0,1/2,1/2), 10(~1/2,0,1/2): 10(—1/2,1/2,0
e six non-abelian gauge group singlets, two for each twisted plane,
11, -1/2-1/2)s Ya21,-1/2), Ly2,-1/2,1)
11,-1/2,-172) Yaje,-1,-1/2), Lase,-1/2,-1)-
By verifying the identities Y ¢; = Y ¢ = 0 for the three abelian factors of the gauge group, we
see that the observable spectrum is anomaly-free. Note that this anomaly does not occur plane
by plane, but results from a cancellation between the three planes.

One can also check that in this model, the contributions of the (8,1) and (1,8) multiplets of
SO(8) x SO(8) to the U(1) anomalies cancel.
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1 Introduction

Perhaps the most natural setting for testing string theory is the cosmology of our Universe.
By now, there is a plethora of cosmological data favoring the phenomenological model of hot
Big Bang cosmology, where the cosmological evolution starts with a highly singular event,
the Big Bang, followed by an initial period of rapid inflation, a very high temperature phase,
a proportionally large amount of dark matter and dark energy [1]. Many features of this
phenomenological model are not well understood, and the hope is that their explanation will

arise from a fundamental theory of quantum gravity such as string theory.

In an effort to build a concrete theoretical framework for studying cosmology, a class of string
theory vacua, where the backreaction of both thermal and quantum effects can be system-
atically taken into account, was recently examined in [2-5]. In particular, starting with four
dimensional heterotic string models, with initial N = 4 or N = 2 space-time supersym-
metry [5], and implementing the thermal and the quantum corrections due to spontaneous
breaking of supersymmetry, cosmological solutions are found, at least when the temperature
T and the supersymmetry breaking scale M are sufficiently below the Hagedorn temperature
Ty. In these examples, all moduli that are not involved in the breaking of supersymmetry
give exponentially suppressed contributions to the (thermal) effective potential. This is es-
sentially the underlying reason for the no-scale structure [4,5] characterizing these models.
Due to this remarkable property, the thermal and quantum corrections are under control and
calculable. We would like to stress here that the absence of both infrared and ultraviolet

ambiguities leads to a well defined energy density and pressure [5].

To be more precise, we are forced to separate the cosmological evolution in four distinct

phases, according to the value of the temperature, namely:

(7) The very early “Big Bang” phase, where the underlying string theory degrees of freedom
are strongly coupled. Perhaps string dualities can be applied to understand this phase and

resolve the classical Big Bang singularity. See e.g. [6-11,19] and references therein.

(77) A high temperature stringy phase, T' < Ty, where string oscillators and winding states
must be properly taken into account [13-17]. Often, these lead to a non-geometrical structure
of the Universe, e.g. the T-fold cosmologies of [2], or even to a change of the topology and

dimensionality of space [7,11].



(77i) The third phase has features similar to that of a standard, radiation dominated Fried-
mann cosmology. Here, the Universe has cooled down to temperatures far below Hagedorn.
The effects of string massive states are exponentially suppressed O(exp(—M,/T)). In this
phase, the ratio of the temperature T" and supersymmetry breaking scale M is fixed, both
evolving inversely proportional to the scale factor of the Universe [4,5]. In cases with N =1
initial supersymmetry, the behavior can be that of a cosmological constant dominated infla-

tionary universe [3,4].

(1v) At lower temperatures, new phenomena such as the electroweak phase transition, QCD
confinement and structure formation are taking place. We expect also that in this phase,
some dynamics becoming relevant at these lower temperatures will stabilize the no-scale

modulus associated to the supersymmetry breaking scale [18].

Some interesting ideas concerning the first two stringy phases have been presented recently in
[19], where it was argued that the introduction of certain chemical potentials in the standard
canonical ensemble of superstrings removes the Hagedorn instabilities. These ensembles are
characterized by a “Temperature duality,” Z(T/Ty) = Z(Ty/T). (See also [12] for some
related work.) Equally interesting are the models of [11], which possess a new kind of massive
boson-fermion degeneracy symmetry. Type II, heterotic and orientifold models have been
presented. Some proposals are put forward, in the framework of these theories, concerning

the early structure of the Universe.

Here however, we would like to examine more thoroughly the generalization of supersym-
metry breaking in the cases where more moduli are involved, not only in heterotic string
but also in type II closed string theories, working in the intermediate region (iii). It is
interesting that this intermediate phase can be studied with high precision at the full string
level [5], thanks to to the fact that just below the Hagedorn temperature, the theory pos-
sesses a no-scale structure. The free energy is set by a single, overall scale, which can be
chosen to be either the temperature or the supersymmetry breaking scale, and the rest of
the dependence is given in terms of functions of dimensionless, complex structure like ratios.

The backreaction on the initially flat background induces the cosmological evolution [4,5].

In the string models studied in [5], only a single modulus was participating in the super-
symmetry breaking mechanism. In this work we extend the analysis for cases where more

geometrical moduli participate in the spontaneous breaking of supersymmetry. As we already



remarked, all such moduli give non-exponentially suppressed contributions to the effective
potential. We examine in more detail the case where the supersymmetry breaking arises via
geometrical fluxes [20] induced by stringy Scherk-Schwarz [21] boundary conditions along
two internal spatial cycles with radii denoted by R4 and Rs. The supersymmetry breaking
scale M is proportional to the inverse of the volume modulus v/R,;R5. The results can be
easily extended to cases involving more internal cycles. The heterotic or type II geometrical
fluxes are introduced by utilizing the helicity and/or other internal R-symmetry charges.
In the type II models, left-moving and right-moving R-symmetry charges can be coupled

symmetrically or asymmetrically to the two cycles.

As we will see, the low energy dynamics of some models admits a solution describing a
radiation dominated era. During the evolution, the supersymmetry breaking scale M and the
temperature 7" evolve in time the same way as the inverse of the scale factor of the Universe.
It is then important to analyze the stability for the dimensionless modulus describing the
shape of the internal space, U = R;5/R,. We find a rich structure of phenomena, depending
on whether the corresponding effective potential admits a minimum, a maximum or a run-
away behavior. Complementary results can be found in [22]. There, it is shown that these
solutions are attractors for the dynamics. That is, there are basins of initial conditions
whose associated cosmological evolutions converge towards the radiation dominated era with

stabilized complex structures.

The paper is organized as follows. In Section 2, we describe the basic principles of the
construction, clarifying the domain of validity of our analysis. We examine different classes
heterotic and type II string vacua and implement various ways that lead to a spontaneous
breaking of supersymmetry. We calculate the free energy at the full string level, and obtain
the generic structure of the thermal effective potential in the intermediate region where
T < Ty. We use these general results to find their counterparts at zero temperature. We
also derive in the Einstein frame the gravitational equations and the equations of motion
for the main moduli participating in the supersymmetry breaking mechanism, including the
dilaton field. We present solutions at zero temperature, where the time evolution of the scale

factor and the stability of the complex structure U are analyzed.

In Section 3, we present explicit thermal models leading to radiation dominated cosmological

evolutions. The compatibility between the gravitational equations and the equations of mo-



tion of the relevant moduli leads to the equation of state p = (3+n) P, where n is the number
of internal dimensions involved in the supersymmetry breaking mechanism. In addition, we
analyze the stability for the modulus &. We compare to the zero temperature situation,
mainly to show the relevance of the thermal corrections to the cosmological evolution. We
show that during the radiation era, even when the temperature is very small, thermal effects
are never negligible. The qualitative behaviors of thermal and non-thermal evolutions are
drastically different. This is due to the non-linear character of the gravitational and moduli

equations.

The final Section is devoted to conclusions and perspectives.

2 General setup

We consider initially supersymmetric flat backgrounds within the context of four dimensional
superstrings constructed via orbifolds [23] and/or via the free fermionic construction [24].
By turning on certain non-trivial geometrical fluxes, we can spontaneously break space-time
supersymmetry [21]. The procedure that we follow involves coupling some of the internal
lattice quantum numbers to the space-time Fermion number F' and/or to any of the discrete
R-symmetry charges Q. This is a generalization of the Scherk-Schwarz mechanism to
superstrings [21]. In addition, the system is put at finite temperature [13-15]. Our aim is to
study cosmological evolutions induced by the thermal and quantum corrections, as in [5], and
in particular investigate how some of the geometrical moduli, participating in the breaking

of supersymmetry, can be stabilized around a local minimum.

2.1 Heterotic models

We start with heterotic string compactifications on six-manifolds of the form S'(Ry) x
S1(Rs) x M,. Here, the choice of the four-manifold M, determines the initial amount of
supersymmetry: N, = 4 for the case of 7%, and Ny = 2 for the cases of T"/Zj orbifold and
K3 compactifications. Two internal cycles, associated to the X* and X® directions, have

been singled out, since these are to be utilized to break supersymmetry spontaneously.

We illustrate the derivation of the pressure on the simplest example. The initially super-



symmetric string partition function is given by

VE’) d27— 1 a+b+abp [a14 F(G’QQ)
2= |5 Tan(Re) 5 St o (2.1)
2 a,b

where the Euclidean time direction is compactified on a circle of radius Ry. V3 is the volume
of the three large spatial directions. The I'(g92) lattice is associated to the zero mode contri-
bution of the internal six-manifold, along with the Fg x Eg or SO(32) right-moving lattice.

For instance, the Fg x Fg case on T gives the block

L= g L m
oz =Tee 5 ) 001 5D 001, (2.2)

7,0 v'56"
where v, § and 7/, ¢’ are integers defined modulo 2.

We wish to implement a non-zero temperature in the model. This is done by coupling the
momentum and winding quantum numbers associated to the Euclidean time circle to the
space-time fermion number F' [13-15] [5]. The contributions of the right-moving world-sheet
degrees of freedom to F' are always even. Thus, at the level of the one-loop string partition

function, the operation amounts to replacing the I'(1 1)(Ro) lattice with

Ly (Ro) = D Ta[w](Ro) (=) dotthotaoho (2.3)

ho,go

where T'(1,1)[2] is a Zy-shifted lattice [25] given by [13-15] [5]

”R m n 72
Fl,l[g](R) \/T—QZB [(2m+3)+(2n+-h)7| (2.4)

The spontaneous breaking of space-time supersymmetry is done by coupling the two I'(q )
lattices associated with the internal circles of radii R4 and Rj5 to generic R-symmetry charges
[5,13-15,21]. In the case of models with N, = 4 initial supersymmetry, all such charges
associated to the left-moving world-sheet degrees of freedom are equivalent by symmetry.
Different choices exist involving right-moving gauge R-charges [5]. For example, consider
the Eg x Eg models and decompose the Fg representations in terms of SO(16) ones. One
can choose R-charges which are odd for the SO(16) spinorial representations and even for

the others!.

In the Ny = 2 orbifold models, one can choose R-charges associated to the twisted T planes to which
the left-moving world-sheet degrees of freedom contribute as well [5].



We will present a class of cases, where starting with Ny = 4, Eg x Fg vacua, space-time
supersymmetry is broken if we couple the X* lattices, i = 4,5, to F + Q;, where the right-
moving charges Q; are odd for the SO(16) spinorial representations associated with one or

both the Fy factors. So we replace the X* and X? lattices as follows:

1 1) Z F(l 1) gz (_)(U‘+Qi)gi+(b+zi)hi+€i§ihi _ (2'5)

hi,gi
Q;, i = 4,5, can be identified to be either v, 7/ or v + 4. [y and v are odd for the
corresponding SO(16) spinorial representations.] L; is equal to &, & or & + & respectively,
as dictated by modular invariance, and ¢; = 0,1 depending on the modular transformation

7 — 7+ 1. Under this,
a+Qi —a+Q;, b+L;—a+b+Q;+Li+e. (2.6)

For instance, for (Q;, L;) = (v + 7,6 + ¢&') one has ¢ = 1, while for (Q;, L;) = (v,6)
or (7/,¢"), € vanishes. With these modifications taken into account, the one-loop string

partition function is given by

‘/3 d*t F(44) 1 a+b+abp (a4
Z - (27‘(‘)3/ 5/2 77 1724 2Z<_) ot e[b]

a,b
A a i+ (b+L;)hi+egih;
TSI T Y Tanly) (er@msosta (o)
7(5 ~',8’ 1=0,4,5 h;,g;

In this equation, we have Qy = Ly = 0. Redefining a = a + Y, h; and b = b+ > .0, and
using the Jacobi identity [5], one obtains

Vs d*t I‘(44) 143, hi e y
7 = —(%)3/ 7 Ze [1+z gl] (=) hit S Gt (5 ) (4 62)
1 _
X Z Z Z 9 5/ H F(l 1) 51 higi+Qigi+Lih ) (28)
7,0 58

In the large radii regime R; > Ry, where Ry is the Hagedorn radius, the system is free of
tachyons. The odd winding sectors, h; = 1, are exponentially suppressed. In this regime
only the sectors h; =0, i = 0,4,5 and go + g4 + g5 = 1 modulo 2 contribute significantly (the
latter condition due to the fact that 0[}] vanishes identically). Furthermore, if the internal

lattice I'(4 4y moduli are kept to be of order unity, we can express the leading contributions



as the following integral [5]:

|74 1— <_)Zi§i

7 = — RoR.R - N _\Qa(8)da+Qs5(s)3s
oy T 3T 0
% /0 % Z o~ 75 [(2M0+30)* Ri+(2ma+54) Ri+(2ms+7s)* R3] (2.9)
2

In the first line the sum over s runs over the 23 x 504 massless boson/fermion pairs of

the initially supersymmetric model. The contributions of massive states are exponentially

suppressed, of order e~™_ The integral gives the pressure in the string frame:
A R4R5 2 1— (—)Zzgl . = o=
Ps ring — 1, — — _ _\94Qa(8)+35Qs5(s)
tring Vi (271.)4 3 ; 9 ;( )

x ) ! 5. (2.10)

o [(2m0 ¥ 0)2R2 + (2 + §a)2R2 + (25 + g5)2R§]

We parameterize the various moduli as follows:

1 1
T =———, M=—— ReT| := R4Rs =T ,
21 Ryv ReS 27V T ReS ! e
Rs Ry
RelUy, i = —=U, U= —, 2.11
VSR, = (2.11)

where S is the 4d dilaton-axion modulus, ReS = e~2%». The two supersymmetry breaking
scales, in the Einstein frame, are the temperature 7" and the gravitino mass scale M. The

pressure in this frame is related to the string frame pressure by:

1
P=—" Piine = T'p(u,U), 2.12
(RQS)2 tring p(u Z/{) ( )
with
p(u,U) = n1go proo(u, U) + no10po1o(w, U) + noo1 Poor (w, U) + 1111 prar (u, U) . (2.13)

The coefficients ng,5,5, are given in terms of the supersymmetry breaking R-charges,

nigo = 2° x 504, ngip = Z(_)@(s)’ Noo1 = Z(—)Q5(S), ni = Z(—)Q4(S)+Q5(S),

(2.14)
while the dependence on the complex structure moduli v and ¢/ involves the shifted Eisenstein
functions:

2 u?
Dgogags (u,z/{) = 3 Z . (2.15)

3
T o [(2m0 + Go)2u? + (2 + Gu)2U- + (25 + g5)2u}



2.2 Type II models

We construct Type II models with similar thermal and supersymmetry breaking properties.
In these examples, the internal manifold involves either a T* factor for Ny = 8 initial super-
symmetry or a T*/Z;, factor for Ny = 4. Orientifolds of these lead to models with N, = 4
and N, = 2 initial supersymmetry respectively, and include open string matter sectors. At
weak coupling in four dimensions, these are dual to heterotic models [26], some of which we
considered in the previous section. Models with N, = 2 initial supersymmetry can also be
constructed if we start with a T¢/(Zy x Z,) orbifold [27]. We illustrate the derivation of
the pressure in the intermediate cosmological region, with T' < Ty, for the type II Ny =4

models, but the results can be generalized to the other cases.

The N, = 4 partition function is

V3
Z = (Qﬂ)z/ 5/2 = H Ly (R ZZ(“)

1=0,4,5

a a a 1 a a a—+b+ab
x—Ze Zeg SR E (. (2.16)

The T*/Z, part is given by [25]:

T
Z(4,4) [g] = —77(;17’;)1 , when (H,G) = (0,0)
ot 2= (2.17)
Zuwll] = i —— when (H,G) +# (0,0).

0LclP0hcl
The characters H, G are integers defined modulo 2.

As usual, the finite temperature is implemented by inserting the thermal co-cycle and re-
placing the Euclidean time lattice as follows [13-15]:
Ly (Ro) = > T[] (Ro) (=)@t (b (2.18)
ho,go
In contrast to the heterotic case, the contributions to the space-time fermion number F' from
both the left-moving and right-moving sectors can be odd or even. In the sequel, we denote
by Fp, the contribution of the world-sheet left-movers to the space-time fermion number and

similarly for Fg.

There are several ways to break the initial Ny = 4 supersymmetry spontaneously, either

by symmetric or asymmetric geometrical fluxes [20,21,23]. The two left-moving space-time

8



supersymmetries can be broken if we couple either or both the X* and X? lattice charges to
7y, or to left-moving R-charges associated with the twisted planes: F + ;. Also, the two
right-moving space-time supersymmetries are broken by coupling the lattice charges to Fg

or to Fr + Q;. Each lattice is replaced as follows [19]:

N ZHLU[ZZ](RJ (=)@ Qg (b LihitGibiles (_)[(&+Qi)§i+(5+ii)hi+§ihi]€i, (2.19)

hi,gi
where Q;, Q; can be set to zero or identified with the twist charge H. Correspondingly
L;, L; can be set to zero or identified with the character G. Also, we have introduced the
parameters €;, €;, taking the values 0 or 1, to indicate whether we couple the circle ¢ to the

left- or right-movers.

In particular, we will examine 3 distinct cases where N, = 4 is spontaneously broken to

N, =0 (and then thermalized):
-Case 1 : Two asymmetric breakings, e.g. (e4,€4) = (1,0), (€5,€5) = (0, 1).

-Case 2 : One symmetric and one asymmetric breaking, e.g. (e4,é) = (1,1), (€5,6) =

(0,1).
-Case 3 : Two symmetric breakings, (e4,€) = (1,1), (e5,6) = (1, 1).

In addition, we will consider a case where the N, = 4 supersymmetry is partially broken to

N, = 2. The remaining supersymmetries are then broken by thermal effects:
-Case 17 : Two left-moving asymmetric breakings, e.g. (€4, &) = (1,0), (€5,€) = (1,0).

The partition function can be written as follows:

Vs r 1 1 H
7 = —_— = E Z
(2 > R‘)R‘*RS/f i T 2 9 700le]
H,G
a a al 1 § t_l a a-+b+ab
% = E 9 29 big +b+ab 9 B big a- G]( ) +b+ab (220)

M{ry.*

1=0,4,5 \hy,g; mi,n;

Here (g, &) = (1,1) and (Qo, Qo) = (Lo, Lg) = (0,0).

7i+Gi)+(2ni+hi) |2 <_)[(a+Qz’)§i+(b+Li)hi+§¢hi]€i+[(C_L+Qi)§i+(5+ii)hi+§ihi]€i } )

As in the heterotic case, we are interested in the regime where the radii R;, i = 0,4,5,

are much bigger than the Hagedorn radius, R; > Rpy. In this intermediate cosmological

9



regime, the system is free of any tachyonic instabilities. The odd winding sectors, h; = 1,
are exponentially suppressed, and the only significant contributions to the partition function

occur for h; =0, go + €474 + €595 = 1 modulo 2 and gy + €474 + €595 = 1 modulo 2.

The pressure receives contributions from the untwisted sector, H = 0, and from the twisted
sector H = 1. In the untwisted sector, the result is given by
Zuntwisted . R4R5 1— (_)Zl €idi 1— (_)Z’ €idi

Vi (2m) - 2 2
2 ngntwisted (221)

3 3"
T [(mo 4 Go)2R2 + (24 + §4)2R2 + (2105 + g5)2R§}

ng"=! is the number of massless boson/fermion pairs in the untwisted sector of the initially

supersymmetric Ny = 4 model. We have ng"™=! = n, /2 where ny = 2 counts the massless

pairs of the Ny = 8 model; the factor of 1/2 is due to the orbifolding.

In the twisted sector we have

1 — (—)Zisd 1 — (=)X:&d
2 2

thisted o R4R5
Vi o (27T)4 Z
twisted (222)

gi
= 0
X =3
T

.
Y [(%0 + Go)2R2 + (2 + §4)2R2 + (205 + §5)2R§}

(_ ) (€4Qa+E1Q4)Fa+(esQs5+E5Q5)Fs

ngsted = 28/2 is the number of massless boson/fermion pairs in the twisted sector of the
initially supersymmetric Ny = 4 model. The Q4, Q4, Q5, Q5 appearing in Eq. (2.22) can be
either zero or identified to the twist charge H = 1.

Using the definitions of the moduli introduced in Eq. (2.11), the pressure P is taking the
same form as in Eq. (2.12) with
p(u,U) = > Ngogags Paogags (U U) (2.23)

go + €494 + €5gs = 1 mod 2
Jo + €494 + €595 = 1 mod 2

where the functions pg,z,5, are given in Eq. (2.15), and the coeflicients ng,g,5, are similarly

defined, in terms of supersymmetry breaking R-charges, as in Eq. (2.14),

28
NGogags — To = Ea for Ny = 8, (2.24)
NGogags = % (1 4 2(_)(64Q4+€4Q4)§4+(65Q5+€5Q5)§5) , for Ny =4. (2.25)

In the Ny = 4 cases, the coefficients ng 5, can take negative values as well. The results can

be generalized to Ny = 2 models.

10



2.3 The zero temperature limit

Setting T' = 0, or Ry — oo, in Egs (2.10), (2.21) and (2.22), we can obtain the one-loop
effective potential at zero temperature. It arises from quantum effects due to the spontaneous

breaking of supersymmetry. For the heterotic models, the effective potential takes the form
V= MU), (2.26)
where M is defined in (2.11), and
v(U) = nyovio(U) + no1ver (U) . (2.27)
The coefficients ng,;, are determined in terms of the R-charges,

Ngags = Z<_)§4Q4(8)+§5Q5(s) ) (2'28)

S

and

Voo (U) = — = 1 . (2.29)

3 3
" [(277% + ga)? U + (25 + G5)2U

The type II effective potential takes a form similar to the heterotic one, as in Eq. (2.26),

where now

v(U) = > M5435 V5435 (U) (2.30)

€474 + €595 = 1 mod 2
€494 + €5g5 = 1 mod 2

with ng,g. = ng.g.5:, given in (2.25) (or (2.24)).

2.4 Non thermal cosmologies

In the zero temperature limit, the 1-loop effective action takes the form:

1 8,50,  o.T0,T,  0,U,0,U,
S = [ d*z\/—det —R—gv A e R )—V}. 2.31
TV ety {2 g ((s+5)2 (T + T2 (UL +0))? (2.31)

All other moduli can be frozen since they do not appear in the effective potential. More
precisely, their contributions to the effective potential are exponentially suppressed. Freezing

further ImS, Im7} and ImU;, we obtain for the Lagrangian

L= %R - % ((009)* + (967) + (9y)?) — e 2V20st0r) % (2.32)
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where

ReS :=eV?0s | T .=¢eV271 1 1= eV (2.33)

It is useful to redefine the fields as follows
o- ) T\ vz vz ) Ler |
since the field ¢_ does not appear in the potential:

L= %R - % ((00)* + (06-)% + (0du)?) — M*v(U)  with M = e’ (2.35)

=5
We look for homogeneous and isotropic solutions where the metric is of the Friedmann-

Robertson-Walker form, with vanishing spatial curvature:

a

ds* = —N(t)*dt* + a(t)*ds'dz’, H = (2) . (2.36)

Here N is the laps function, a(t) the scale factor and H the Hubble parameter. In the gauge

choice N = 1, the gravitational field equations are
o Liy Loy 1
3H = §gb + 5(;5_ + §¢u +V, (2.37)
. 1. 1. 1.
2H +3H? = —§¢2 - 5& - §¢§, +V. (2.38)
Their linear sum is independent of the fields kinetic terms:
H+3H* =V =MvU). (2.39)

Eq. (2.38) follows by differentiating the Friedmann-Hubble Eq. (2.37), once the following

moduli field equations are satisfied:

b+3Hp = —g—z = —4 M*v(U), (2.40)

bu +3Hdy = v —V2 MUV (U, (2.41)
Oou

b_+3Hp_ =0, (2.42)

where prime derivatives are with respect to U. The last equation can be integrated giving

3 ¢r = = (2.43)

12



where c¢_ is a positive constant. Eq. (2.41) can be satisfied for a constant U, if there exists
a solution to

v'(U) =0. (2.44)
We will look for models for which this extremum is a local minimum so that the complex
structure modulus U is stabilized. The compatibility of Eqs (2.39) and (2.40) requires that
there exists a constant ¢, such that:

Co
=4l + 5. (2.45)

In [22], it is shown that the solution for ¢, = 0 is an attractor. Thus, we concentrate on the

case ¢y = 0, so that

e? ap\*
Mzgzm«ﬂ, (2.46)
where Myag is a positive integration constant.
The Hubble equation takes the form:
5 Cm, c 3 3.4 16
3H* = % + P where Cm = ¢ €= > 0, c=—-vld)x 5 Mg ay. (2.47)
If ¢ > 0, one has for ¢,, =0
1/16
a(t) = AtY® where A=2%8 <§) . (2.48)

When the kinetic energy for ¢_ is switched on, i.e. when ¢,, > 0, one has a big bang/big

crunch cosmology. The solution ¢(a) is given by

U 2Tde ¢\ V3310475
tla) ==+t ———, 0<a<A where A=|— , to=V3c e
W=z [ AL (£) o«

(2.49)
We investigate whether some of the heterotic and type II models we considered satisfy the

minimization condition (2.44), which fixes the modulus ¢, and the positivity of the parameter

¢, Eq. (2.47), which allows for real time solutions:
Extremum : v'(U) =0, Stability : v"(U) >0, Real time : v(U) < 0.  (2.50)

The shape of the potential as a function of & depends on the R-symmetry breaking charges
which define the coefficients ng,4,. Since the functions vg,5 in Eq. (2.29) are negative, we

need some of the ng,; to be positive.
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In the heterotic models, the functions v1y and vg; defining the effective potential, Eq. (2.27),
are monotonic functions of U, the former decreasing and the latter increasing, (see Fig. 1a).

To have an extremum, 119 and ng; must be of the same sign. The real time condition requires

2 my Y | Iny

m \ Ull

Figure 1: The functions vg,5, versus Inld.

this sign to be positive, which implies that the solution is unstable under fluctuations of U.
Stable cosmological solutions exist only at non-zero temperature, as we will see in the next

section. We may have, however, stationary domain wall solutions.
We now study the effective potential given in Eq. (2.30) for the different type II cases.

-Case 1 : The potential is proportional to the function v;;, which is invariant under
U — 1/U. This implies that a stationary point, which is a minimum, occurs at U = 1, (see
Fig. 1b). The conditions (2.50) are simultaneously satisfied if ny; > 0. This can be realized
by choosing Qs = Q5 = 0 or H.

-Case 2 : Since the potential is proportional to the monotonic function vy (), there is
always a runaway behavior for this model: 4 — 0 i.e. Ry — 400 for ng; > 0 and U — 400
i.e. R; — 400 for ng; < 0. Thus, the dynamics drives the system out of the scope of
our analysis, and one should look for a solution in five dimensions, where supersymmetry is

spontaneously broken by the remaining finite size internal radius.

-Case 3 : This type II model has an effective potential of the form encountered in the

heterotic case.
-Case 1’ : The model is supersymmetric with a flat effective potential.

At finite temperature, we are going to see that the situations in the type II cases also change

drastically.
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3 Thermal cosmologies

3.1 Equations of motion and thermodynamics

Using the field redefinitions (2.33)—(2.34) and the FRW ansatz (2.36), the thermal effective

action is
1 3 1 . 1 . 1 .
S=—=[dtNd’ H? — 2 - S 5 — P 3.1
6 / ¢ (N2 o T one - T g u ’ (3:1)
where the pressure can be expressed in terms of the supersymmetry breaking scale M (¢) as
p(u,U) e? M
P=M* M=_— == 3.2
u4 Y 27T 9 U T ( )

The gravity equations are obtained by varying with respect to N and a,

3 1 oP
Oopro Loy Lo ith —_p_ N9 .
9 3 9 1 1 9P

I BN TR N SR 2 p_ 1,90 3.4
NERE RE ON? 2N2 ¢ — 5z O 3%%¢ 34

where in general P can depend on N and a. To determine the dependence, we recall in

which specific frame we computed P:

B Z _Z
"~ (ReS)2V; Na3

1
- N =21 RyVReS = 7 0= 2r RV ReS (3.5)

where Ry = Ry = R3 = R are the radii of the large three spatial directions (before the large
volume limit R — +oc is taken). Since P = T*p(u,U) and T is identified with the inverse

of the laps function, we have

It is remarkable that these expressions are identical to the ones derived from thermodynamics.

We thus show that the variational principle is in perfect agreement with thermodynamics.

Since P (in the action (3.1)) and p (in Eq. (3.3)) are scalars under time reparameterizations,

we can write the gravitational equations in the simple gauge N = 1 as follows:
1. 1. 1.
BH? = —¢* + =0 + =dp +p, (3.7)
2 2 2
. 1. 1. 1.
2H + 3H* = —§¢2—§¢2_—§¢Z,—P. (3.8)
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Combining Eqgs (2.12) and (3.6), we obtain
p="T7uU) where r=3p—ud,p. (3.9)

The equations of motion for the moduli fields can be written as follows:

4 3HG - 2—2 = T 3p(u,Ul) — r(u,U)} (3.10)

b+ 3Hu = 5o = T'VE UML), (.11)
U

¢_+3Hop_ =0, (3.12)

where the r.h.s. of Eq. (3.10) follows from Egs (3.2) and (3.9).

The last equation gives (2.43). We would like to find solutions to the remaining system of

equations, with U stabilized. Then, Eq. (3.11) amounts to the following algebraic equation
D(u,U) := Uup =0, (3.13)

requiring that u is also a constant. It follows that the time dependence of p and P arises

from the T* pre-factors only. From the relations in (3.2), we have that
. T
M(¢) = uT —= o= T (3.14)

Instead of solving the scale factor Eq. (3.8), we choose to solve the equation that arises from
the conservation of the energy-momentum tensor:

d

a(%qsu%qsm%&+p>+3ﬂ(¢2+¢z,+¢2+p+13)=0. (3.15)

Using the equations of motion for the scalar fields and (3.14), this gives

. T
¢ZTZ—H = aT =agTp, (3.16)

where a1} is a positive integration constant.

Next, we consider the linear sum of Eqs (3.8) and (3.7),
1

H 4 3H? = J(p— P) = %T‘* () — plu,U)} - (3.17)

Using (3.16), the compatibility between this equation and (3.10) implies the following thermal

equation of state:

p=5P. (3.18)
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This is one of the main results of this paper. It reminds us of the analogous equation,
p = 4P, derived in [5,28]|, when a single modulus was participating in the spontaneous
supersymmetry breaking mechanism. These results are very suggestive, and we conjecture
that they will be generalized to the cases when more moduli participate in the supersymmetry

breaking. When n such fields are involved, we expect the equation of state to take the form:

p=(3+n)P. (3.19)

In the two moduli case, which we are considering here, Eq. (3.18) can also be written as
Cu,U) := (24 ud,)p=0. (3.20)

As a result, the complex structure ratios (u,U) are determined by the equations D = C' = 0.
It is interesting that along this critical trajectory, complex structure moduli participating in
the breaking of supersymmetry are stabilized, and thus the cosmology is characterized by a

single running scale.

The time dependence of the scale factor is dictated by the Friedmann-Hubble Eq. (3.7). The
latter takes the form

32 =

6
1 : where cr = 6(aoTo)*p(u,U), cpm=-c_>0. (3.21)
a  a

5
When c¢,, = 0, the universe is effectively radiation dominated and a cosmological solution

exists if the constant p(u,U) is positive:

a(t) = BVE  with B=+2 (%)1/4 . (3.22)

When ¢, is non-trivial, the time ¢ can be expressed as a function of the scale factor as

follows: . ,
@ redx
ife, >0: tla)=t —, Va>0,
@=n [ oy )
z°dx
ife, <0: tla) ==t ——, 0<a<B,
(a) = +1q /Q/B o
where
B= |Cm| and  to = V3emler| 2. (3.24)
¢

In the explicit examples presented in the following section, we always find ¢, > 0. It would
be interesting to find if models with “negative effective radiation energy density”, c,/a*, are

allowed.
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As noticed in [5], the fact that the cosmological evolution we have found behaves effectively
like a four dimensional universe filled with thermal radiation is not in contradiction with the
state equation p = 5P. The reason is that the total energy density and pressure contain the

“cold” part associated to the kinetic energy of ¢. When ¢,, = 0, one has ¢? /2 = p/5, so that

1., 6
prov = SO tp=<p
1., 2
Pior = §§b +P:gpa (3.25)

in agreement with the expected state equation pyoy = 3FP;ot-

3.2 Some stringy examples

We examine whether the extremization condition (3.13) and the compatibility condition
(3.20) are simultaneously satisfied in the various heterotic and type II models under consid-

eration:
Extremum : D(u,U) =0, Compatibility : C(u,U) =0, Stability : Ip(u,U) < 0. (3.26)

As in the non-thermal situation, the shape of the potential depends on the R-symmetry
breaking charges. Their choices determine the coefficients ng. 5 that satisfy —mnjg0 <
Ngogags < M100-

However, in the heterotic cases, ni11, ng1o and ngg; are not totally arbitrary. It is convenient

to parameterize the a priori allowed models by separating the nigg states into 4 groups,

depending on their parity under the operators (—)2* and (—)??, as shown in Table 3.27.

] H nipo&1 states ‘ nip0&e states ‘ ni100és states ‘ nioo(1l — & — & — &3) states ‘

(—)@s + + — (3.27)
(_)QS + _ + _
We observe that the parameter space of models is the tetrahedron:
{(517 527 53) € [07 1]3 SUCh that 51 + 52 + 63 S 1} 5 (328)
which constrains the ratios:
n n n
rorp i= —=2 =2(&+&) -1, oo = o 26+ &) — 1, o= 2 1—-2(&+&).
n100 100 N100
(3.29)
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The conditions (3.26) and the & « &3 duality symmetry can be visualized geometrically
in terms of the tetrahedron representation. Some type II models are also characterized in

terms of this representation.

In the large/small u and U regimes, p contains exponentially suppressed contributions that
we have to neglect by consistency. The dominant contributions take the form of a linear
sum of a finite number of monomials u*U®. The (Inwu,Inif)-plane is divided into 6 sectors

inside of which a power expansion is defined, (see Fig. 2). The boundaries of these sectors

are the lines U = Au®, where w = —2,0,2. We show in the Appendix the power expansion of
©) 1nU )
VI 1V
Inu
(1) =4

Il 7 111

2) 3)

Figure 2: The (Inu,InU)-complex plane can be divided in 6 sectors, I,..., VI, separated by 6 edges of slope
—2, 0 or 2. The power expansions of p(u,U), which are listed in the Appendix are well defined in each sector.

p(u,U) in each sector. More accurate expressions are also given along the lines U = Au*%°

that are useful to connect the power expansions on each sides. D(u,U) =0 and C(u,U) =0
define curves which asymptote to the lines & = Au*??, for which we have determined the
intercept A as a function of the ratios rg,5,5,. The constraints are simultaneously satisfied if
these curves meet at a point (u.,U.). Then, the stability condition, d3p(u.,U.) < 0, and the
sign of the radiation density are determined. The C(u,U) = 0 constraint requires to have

at least one negative 7;,3,4;-

e Our analysis shows the existence of non-trivial thermal cosmological solutions in heterotic
models with Q4 = @5, and type II Case 3 models with Q4 + Q1 = Qs + Qs5, where the
pressure takes the general form

p(u,U) = n100[proo + 7(Poro + poor) + P11, (3.30)
with —1 < r < 1. These models lie along the edge & = & = 0 of the tetrahedron. The
duality symmetry i — U~! implies that along the axis i = 1, D(u,U) = 0. As r varies, we
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find 4 distinct patterns, specified by

fee 1 +f00 1 e 1
B 5/2( )Oe 5/2( ) ~ 0215, = __i =—— and rq =0, (3.31)
2f25,(1) 5 3l

Teg =

where the functions in the definition of 7.3 can be found in Eq. (A.12).

- It turns out that there are no cosmological solutions with constant u and U when r < r.
or r > 0, since then C'(u,U) # 0 everywhere.

- A stable cosmological solution exists when 7. < r < re., with ¢, > 0, (see Fig. 3a). It

corresponds to a global minimum of the thermal effective potential.

a) InU!

-~ | D<O Inu
c>0 J

C>0 U D>0
C<O0

Figure 3: For a pressure of the form (38.30), the curves defined by C(u,U) = 0 (straight lines) and
D(u,U) = 0 (dashed lines) are represented. When reg < v < reo (Fig. a), there is a stable cosmological
solution (u.,U. = 1). It corresponds to a global minimum of the thermal effective potential. Whenr.o < r <0
(Fig. b), there is a stable cosmological solution (u.,U. = 1) that corresponds to a local minimum. Two run
away behaviors that bring the system to five dimensions are also allowed.

- When r» < r < 0, a stable cosmological solution with U, = 1 still exists, with ¢, > 0,
but this corresponds to a local minimum of the thermal effective potential. Actually, new
branches of the locus D = 0 are present and converge exponentially towards the curve C' = 0,
(see Fig. 3b). Formally, their common asymptotes define flat directions. However, since these
“solutions” imply Rs (or Ry) to be very large, they are out of the scope of our analysis. They
are better understood in terms of runaway behaviors that decompactify the system to five
dimensions, where supersymmetry is broken by the remaining finite size internal radius Ry

(or R5) and thermal effects.?

2 A similar runaway behavior can be realized in type II Case 2 models, with generic operator Q5. They
involve a pressure p(u,U) = nigo[proo + 7Poo1], where —1 < r < 1. Their representative points in the
tetrahedron satisfy & = &3 = % — &, where 0 < & < % When r varies, there is a phase where the curves
D =0 and C' = 0 are non-trivial and asymptotic to one another. The situation is similar to what is observed

in the lower half plane of Fig. 3b.
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For the heterotic model with the choice Q4 = Q5 = v + 7', one has

nigo = ninn = 2% x 504,

noto = noor = 2% [ [2]x,, + [6]7s + [120 — 128] 5, + [120 — 128] | =-2%xs, (3.32)

so that r.o < r = —1/63 < r.. In this specific case, the cosmological solution corresponds

to (ue,U,) ~ (1.649,1), where ¢, ~ 0.0708 x 6(agTp)*.

Another model considered in [5] is based on the heterotic T/Z, orbifold, with non-Abelian
gauge group Eg x E; x SU(2). In that case, one has r.o < r = —1/127 < r. and the
corresponding cosmological solution fixes (u.,U.) ~ (1.996,1), with ¢, ~ 0.0762 x 6(agTp)*.

e We can treat in a similar way type II Case 1’ models with arbitrary (4 + @)5. The pressure

is of the form

p(u,U) = nigo[proo + rp1nl, (3.33)

where —1 < r < 1. This class of models belongs to a segment in the interior of the
tetrahedron, & = & = % —§,0<4 < % The symmetry U — U~ implies D(u,U) = 0
along the axis U = 1. Also, p(u,U) is constant in sectors I/ and IV (and their common
edge (4)), implying that D(u,U) is vanishing. For r < 0, there is no other solutions to D = 0.

When r varies, the set of solutions to C'(u,U) = 0 is divided into 3 classes characterized by

()

res >~ =077, 71ly= ~ —0.215. (3.34)

- For r < r.y, the right boundary of the locus C' < 0 is asymptotic to the edges (3) and (5),
where D is not vanishing yet, (see Fig. 4a). The only solution to D = C' = 0 arises at U = 1,
but the corresponding cosmological evolution is unstable to small fluctuations of i.

- For roy < r < rl;, a cosmological solution with constant u and U exists, (see Fig. 4b), but
is again unstable to small fluctuations of U.

- For rl; < r, one has C(u,U) > 0 everywhere: There is no cosmological solution with

constant complex structures.

e The last class of systems we analyze corresponds to type II Case 1 models with arbitrary

Q4 + Q5. The pressure is
p(u,U) = nigo[proo + rpon1] , (3.35)

where —1 < r < 1. In contrast to the previous cases, these models are not represented by

points in the tetrahedron. For r < 0, the only solutions to D(u,U) = 0 are along the axis
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o) Ut
D>0 Frimrr
C<0 70 iny
Ue | iy

i b=0"

D<O0 N

Figure 4: For a pressure of the form (5.33), the curves defined by C(u,U) = 0 (straight lines) are repre-
sented. The locus D = 0 is composed of the axis U = 1, and the sectors I11 and IV, (see Fig. 2). When
r <re (Fig. a) orrea <rv <71lg (Fig. b), there is an unstable cosmological solution (uc,U. = 1).

U = 1. The set of solutions to C'(u,U) = 0 is characterized by the point 775 of Eq. (3.34)
and r.; = 0.

- For r < /5, the axis U = 1 is entirely inside the region C'(u,U) < 0 that has two distinct
boundaries, (see Fig. 5a), and so there is no cosmological solution with constant u and U.
- For 7l < r < 0, the region C(u,U) < 0 has now a connected boundary, (see Fig. 5b).
The latter crosses the axis U = 1, so that a cosmological solution (u.,U, = 1) exists. It is
however unstable to small fluctuations of U.

- For 0 < r, one has C(u,U) > 0 everywhere: There is no cosmological solution with constant

w and U.

a) InU’ / b) InU

C>0 y

C<0 D>0 1, D>0 Inu

- -
- -

D<0 D<0 e
NN C>0 C<0

C>0 ‘\

Figure 5: For a pressure of the form (8.35), the curves defined by C(u,U) = 0 (straight lines) and
D(u,U) = 0 (dashed lines) are represented. When r < rls (Fig. a), there is no cosmological solution
with constant complex structures. When rls < r < 0 (Fig. b), there is an unstable cosmological solution

(uc:uc = 1)'
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3.3 Non-thermal vs thermal cosmologies

The cosmological evolutions found in the non-thermal and thermal cases, Eqs (2.47) and

(3.21), have drastically different properties we would like to comment on.

First, the contributions of the kinetic energy of the field ¢_ to the “effective” Friedmann-
Hubble equation are of opposite sign. This phenomenon is due to the different compatibility
relations (b = —4H for the non-thermal cosmology and (b = —H for the thermal one, once
they are inserted in the respective Friedmann-Hubble Eqgs (2.37) and (3.7). This is also the
reason why these equations have 1/a'® and 1/a* monomial contributions, respectively. The
intermediate cosmological region we are considering is described by the thermal cosmologies.
At late times however, the temperature, being proportional to the inverse of the scale factor,
tends to zero, and a paradox seems to arise as the cosmological evolution is never described

by the non-thermal solutions.

To better understand this point, we rewrite the pressure and energy density as follows, (see

the relations (3.2) and (3.9)):

p(u,U)
ut

P=—-M"'v,, p=M* vy, + udyvy,) where Ve (u,U) = — (3.36)

When the pressure is of the general form (A.1), one can use the expansion valid for u > 1

(U fixed), Eqs (A.11) and (A.15), to decompose vy, into two pieces:
Vo (u,U) = — {no1okS U™ + noor ks (U) + nonk$*U) } + a(u,U) (3.37)

where

~ 1 o e
O (u,U) = A X {(n100 + n111) S5 + (no10 + 001 + no11) S5+ -, (3.38)

up to exponentially suppressed terms as u — +oo. Clearly, 0y, (u,U) — 0 in this limit. Since
Ngogags = Maugs, the u-independent terms of the r.h.s. of Eq. (3.37) are equal to the zero
temperature effective potential v(U) found for the heterotic or type II cases, Eqgs (2.27) and
(2.30). Thus, P and p are only converging to their 7" = 0 counterparts when u — +o00.
However, the thermal cosmologies we have considered have stabilized u = wu,, implying
that the finite temperature corrections v,,(u,U), even if the temperature is small, are never
negligible. In fact, the condition u = M(t)/T(t) — +oo for the thermal system to be
correctly approximated by the non-thermal one implies that the thermal corrections should

be screened by radiative corrections, and not that they would necessarily vanish. Explicit
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cosmological evolutions with u — +oo are analyzed in [22]. They describe Big Crunch
cosmologies, where the temperature is proportional to 1/a. So, T is large in absolute value

(but still negligible compared to M).

Finally, we note that in the present work, each time a stable cosmological solution at finite
temperature is found, its counterpart at T' = 0 is unstable, and vice versa. As explained
in [22], this is a consequence of the fact that for arbitrary initial conditions, the cosmological
evolutions are always converging to an attractor. Depending on the model, the latter can
be the radiation dominated universes studied in [5] and the present paper, or Big Crunch

cosmologies where the thermal effects are screened by radiative corrections.

4 Conclusions

The main result of this work is to show the existence of the critical stringy cosmologies
of [5], even in the cases where more than one modulus participate in the supersymmetry
breaking mechanism. They correspond to a radiation dominated era with constant complex
structures. A thorough analysis was done for several string models with Ny > 2 initial
supersymmetry. Depending on the pattern of supersymmetry breaking, the critical values
of the thermal effective potential for the complex structure moduli are either minima or
maxima. Run away behaviors that bring the system to higher dimensions can also occur.
When the radiation era is stable, we explicitly show that even if the temperature tends to

zero at late times, thermal corrections to the dynamics are never negligible.

Our approach was to separate the cosmological evolution in distinct regions, according to
the value of the temperature. The stringy non-geometrical region, where the temperature
is of order the Hagedorn temperature, is much harder to understand. Stringy phenomena
occur where conventional field theoretic notions concerning the geometry and topology are
breaking down. Some interesting proposals to understand this early time region have been
put forward in [11,19]. The intermediate region, just after the Hagedorn era is shown
to be under control. The free energy is free of any infrared and ultraviolet ambiguities,
allowing us to follow the backreaction on the geometry and determine the time evolution of
several moduli fields. We show that the only relevant moduli are the ones participating in

the supersymmetry breaking mechanism. The others are either frozen by receiving a soft-
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breaking mass, or they remain flat directions with exponentially suppressed contribution to

the free energy.

A very interesting result is that the critical cosmological solutions are governed by a higher
dimensional thermal state equation, p = (d — 1) P, or in the four dimensional effective de-
scription, this equation becomes p = (3+n) P where n is the number of moduli participating
in the breaking of supersymmetry. In [5,28], we analyzed the case n = 1. Here, we generalize
the result to the n = 2 case. The overall scale evolves in time such that the state equation

is valid, while complex structure -like ratios of scales are frozen.

Although our work covers adequately and unambiguously the intermediate cosmological re-
gion, it is incomplete to describe the very early Hagedorn era, where non-geometric stringy
phenomena are important. It is incomplete as well to describe relatively late time phenom-
ena, like the radiative breaking of the electroweak gauge symmetry and QCD confinement,
where non-perturbative transmutation scales, like for instance Agcp, are relevant. The
extension to the late time era requires to consider at least models with N, = 1 initial super-
symmetry. Progress concerning the very early era can be made provided that we understand
better the resolution of the Hagedorn instabilities and the stringy non-geometrical structure

of the early universe.
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Appendix A

We list in this Appendix the large and small complex structure expansions of an arbitrary

linear combination of functions pg,5,5, defined in Eq. (2.15),

p(u,U) = n10o(Proo + To10Po10 + Too1Poo1 + T111P111 + To11Po11) - (A1)

For fixed w and A\, we determine the power expansion along the lines Inif = wlnwu + In A

when Inwu and/or InlU are large, by making an extensive use of the approximations

I N U

— ((2m +1)%x + a)® 16 a2 \/x ’
S 1 LR (A-2)
— ((2m)2x +a)® 16 5?2 x ’

where a > 0, x — 0, and the dots stand for <€_7TV o/ /x3/2) terms. Similarly, we use

1 211
) 23 g

— ((2m+1)2x+a)_ - 611 (A.3)
;((Qm)2m+a)5/2_§@_x+m’

where again we neglect exponentially suppressed terms. The (Inwu,Inif)-plane can then be
divided in 6 sectors, I, II, ..., VI, where the expansions are independent of w (and \). The
boundaries of these sectors are the lines whose slopes are w = —2,0 or 2, (see Fig. 2). In
each sector, we find,

I

p_ = u72 Sg

1100
+ud U52(SE + 1901.59) A
4B z,[3/2((1 + 7010 + T001)S5 + (1111 + 7011)59) ,

Pl

= = Jtu 7“00158

1100
+U_1Z/{_1/2 (Sg -+ T()Ong) (A5)

+uB U2 (14 1901) S5 + (ro10 + r111 + 1011)55)
111
—p = U3 TOOng

1100 A
+utU? ((ro10 + 7011)S8 + 70015%) (A.6)

+(1 4 7r111)S5 + (ro10 + 7001 + 7011)S5
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_— = u42/{3 rmoSg

1100 AT
+U4 Z/{*Q ((TOOI —+ 7"011)550 + 7"0105;) ( )

+(1 + 7111)S9 + (ro10 + r001 + r011) 55

_— = u4u3 7’010Sg

100
U U (S8 4 10105E) (A.8)

+ut U2 (14 7010) S5 + (roor + 7111 + 7011)55)
2 = y? S¢

+ud U2 (SE + 101052)

+ut U2 (1 + ro10 + 7001) S5 + (r111 + 7011)55) |
where we have defined

o 2 1 3
K= By ey e
2 3w 1 93 ¢(5) 2 3w 1 3 ¢(5)
SO = —-— — _—_—  — — SE = — — —_— e —— —
57 s 16;]2m+1|5 128 72 7 TP g8 167;)\2%5 128 72 (A10)
2 31 2 1 2 2 31 2 1 2

SO:——— —_— = — Se:——— _—
Pl 1634 2m )t 192 7 Tt 78 16 342 (2m)t 2880

The previous sectors are separated by edges, (1),...,(6), in the neighborhood of which some

terms we neglected in the interior of the adjacent sectors are not exponentially suppressed

anymore. Along these edges, one has U = AMu®2Y, where A\ ~ 1, and
(1)
reo_ u? 5S¢
1100 5 .
Fu” (f5i5(A) + 1010 f55o (A7) + 1001 f5j5(A) + (rin + ro11) 55 (A) . A=U,
p®? 37/3/2
T u U (14 7001) 55 + (To10 + 7111 + 7011)59)
100
+u? (g5°(N) + roo gt (N) » A =Uu?,
(3)
p— = vy3 7’00158
1100 2
+hgy(A) =+ (rowo +701) 57, (A) + 1001 hgjo(A) +rinhgly(A) . A = Un?,
p®
T (14 7111)5% + (ro10 + 7001 + 7011) 5%
100
Fut (ro10k3 (A1) + ro01kgE(A) + ronk3°(N)) , A =U,
(5)
p— = u4Z/{3 7“00153
1100

R, () + T0i0h5 (A1) + (oo + o )R + g, (A1) L A =2,
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(6)
P~ e (1 +7010) S5 + (roor + 7111 + 7011)S%)

n100
+u™? (g52(A) + ro10g5c(A7Y)) , A =UW?,

(A.11)
where we have introduced the functions
2 3w 1
f56/62(/\):_3_ Z 2 2)y—1)5/2
m ;6 (s 200) ((2m)2X + (2n)2A—1)%/
T
5N =515 Z ((@m + 12X + (2n)2A )52 (A.12)

2 37T Z 1
™ 16 e (2m 4 1)2X + (2n + 1)2A-1)5/27

f5/2( ) =

eo _ 1 oe — 1
9"V = F; (@mPr T @ ipp BN = FZ(<2m+1)2A+(2n)2)3’ (A.13)

oe 2 3 32

5/2( 16 Z (2m + 1)2X + (2n)2)5/2’
2 3w 1

e (\)= — = 2

2N =5 15 ; ((2m)2X\ + (2n + 1)2)5/2°
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