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We consider the possibility that gravity may couple anomalously to the
weak interaction and thereby lead to a violation of the Weak Equivalence
Principle. It is shown that the contribution to the energy of a nucleus arising
from neutrino-antineutrino exchange can be calculated rigorously, and may be
the dominant contribution from higher order weak interactions. At the level
of sensitivity that could be reached in the proposed STEP (Satellite Test of
the Equivalence Principle) experiment, detection of an acceleration difference
between the test masses could lead to new constraints on the coupling of

gravity to neutrinos, and to higher-order weak interactions.
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I. INTRODUCTION

Recent interest in the possibility of deviations from the predictions of Newtonian gravity
[1-5] has led to remarkable advances in the technology of experimental searches for violations
of the Weak Equivalence Principle (WEP). This assumption, that the acceleration of an
object in a gravitational field is independent of its chemical composition (universality of
free fall) is central to both relativistic and non-relativistic theories of gravity. A breakdown
of the universality of free fall (UFF) can arise in at least two distinct ways: a) A new
long-range force coexisting with gravity (e.g. the so-called “fifth force” [6,7]) will in general
produce such an effect. b) The gravitational interaction itself may fail to respect the WEP.
It is the latter possibility that we wish to explore in the present paper, by focusing on
possible deviations from the WEP arising from the higher-order weak interactions. We
demonstrate that at the sensitivity level of the proposed STEP experiment [8] (Satellite
Test of the Equivalence Principle) new and interesting limits will emerge on the coupling
of gravity to weak interaction energy, and particularly to neutrinos. We show specifically
that the contribution to the mass-energy of a nucleus arising from neutrino-antineutrino
(v7) exchange can be calculated rigorously, and may be the dominant higher-order weak
contribution. Moreover, an anomalous coupling of gravity to the weak energy arising from
vi-exchange would have a characteristic composition-dependence, and this can be used to
isolate this contribution and to thereby set limits on an anomalous coupling of gravity to
neutrinos.

To frame more carefully the motivation for our work we briefly review the history of
precision tests of the WEP and UFF. The experiments by E6tvés, Pekar, and Fekete [9]
were originally interpreted as supporting UFF and WEP to a precision Aa/g ~ 5 x 1079,
where Aa is the acceleration difference of the two samples being compared, g = | — vU l,
and U is the Newtonian potential. A subsequent reanalysis [6,7] of the Eotvos experiment
uncovered a systematic effect in the data which could be interpreted as a breakdown of UFF.

This in turn helped to stimulate the recent revival of interest in such tests, as well as in



theoretical models of how a breakdown of the WEP can come about [3].

Following the suggestion of a possible “fifth force” [6,7], a large number of experiments
have been carried out comparing the accelerations of different pairs of test materials to
various sources. Modern experiments differ from the original E6tvos experiment not only
in their design, but in their philosophy as well. Rather than study many pairs of materials,
as E6tvos and collaborators did, recent experiments focus on comparing the acceleration
of a single pair of materials, or at most a small number of such pairs [1-5]. This shift in
philosophy can be traced to the classic experiment of Roll, Krotkov, and Dicke [10] and to a
paper by Wapstra and Nijgh [11]. The shift stems from the realization that WEP cannot be
valid unless gravity couples universally to all types of energy, since only a universal coupling
can guarantee that samples of matter composed of different proportions of mass-energy,
strong-energy, electromagnetic-energy, ..., will fall with identical accelerations. If gravity
does couple anomalously to energy of type-a (a = strong, electromagnetic, weak, ...),
then a sample’s type-a energy content contributes differently to its inertial and (passive)
gravitational masses. One finds that the gravitational mass of a sample i, (mg);, can be

expressed as,

(mc):‘ = (ml)i + T’a(Ea)i/c27 (11)

where (my); and (E,); are the sample’s inertial mass and type-a energy content, and where
7, is a dimensionless constant whose magnitude reflects the strength of the violation of the
weak equivalence principle induced by the anomalous coupling to type-a energy. Since the
gravitational acceleration of sample 7 is a; = (mg):g/(m;);, an experiment like that of Roll,

Krotkov, and Dicke sets a limit on the difference between the accelerations of a selected pair

a ;az - [<niz2>1 _ (T:j[‘:?z)g] , (1.2)

When combined with estimates of the type-a energy content of each sample, this experi-

of samples,

mental limit implies a constraint on the magnitude of the parameter 7,, and hence, on the

nature of the coupling between gravity and matter.
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Wapstra and Nijgh [11] used the semi-empirical mass formula [12,13] to estimate the nu-
clear and electromagnetic energy content of such samples. Recently, more detailed estimates
of the energy content of samples have been used to refine the interpretation of WEP tests
[14]. The first estimate of the weak contribution was made by Nordtvedt [15], and this was
followed by a more detailed analysis by Haugan and Will {16], who calculated the contri-
bution of the parity-conserving (pc) weak interaction to the ground state state energies of
nuclei. They concluded that |r,.| < 0.01 and, thus, that parity-conserving-weak interaction
energies obey the equivalence principle to better than a part in 100. Fischbach et al. [17] lent
support of this constraint by showing that an equivalence-principle-violating coupling to the
intermediate vector bosons studied by Nielsen and Picek [18] leads directly to Eq. (1.2).

The preceding discussion can be extended by observing that WEP experiments also imply
limits on possible anomalous direct couplings of gravity to various elementary particles. We
note that in a field theory description, a nucleus has a nonzero probability amplitude for
containing particle-antiparticle pairs. It follows that the interaction of a nucleus with the
gravitational field probes the separate interactions of these particles with gravity. Schiff
[19] started from such a picture to set a limit on the possibility that matter and antimatter
“fell” in opposite directions in a gravitational field. As we see from Fig. 1, the amplitude for
producing a virtual e*-e~ pair in the field of a nucleus of charge Z is proportional to (Ze?)?,
where e is the unit of electric charge. Hence the contribution E,;, from such a diagram to

the gravitational mass-energy of a nucleus is of order
Epair =~ mc*(Za)?, (1.3)

where o = e?/hc and m, is the electron (or positron) mass. By combining Egs. (1.1)-(1.3)
a limit on a possible anomalous coupling of gravity to antimatter can be inferred. This
limit is of interest in connection with current attempts to directly compare the acceleration
of matter and antimatter [20]. The Schiff argument is particularly interesting because of
the possibility that it could be taken over, with the obvious modifications, to set limits on

possible anomalous couplings to neutrinos and antineutrinos.
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The focus of the present paper is the vi-exchange contribution to the mass-energy of
a nucleus shown in Fig. 2, which can be viewed as the direct weak interaction analog of
Fig. 1. We will show that not only can this contribution be calculated rigorously, but it is
likely the dominant contribution in O(G%), where [21] Gr = 1.16639(2) x 1075 GeV~%(hc)?
is the Fermi decay constant. The first correct calculation of the 2-body potential arising
from Fig. 2 was carried out by Feinberg and Sucher [22] who used an effective low-energy
4-fermion interaction involving only charged currents. They found for the potential energy

V(r) describing the interaction of two electrons via the vi-exchange diagram shown in

Fig. 2,
V& (r) = G /47, (1.4)

where r = |7} — 73] is the separation of the electrons. (Except where otherwise noted, we set
h = ¢ = 1.) Subsequently Feinberg, Sucher, and Au (FSA) [23] recalculated V2)(r) in the
framework of the Standard Model and found

V3 (r) = G%L(2sin® Oy + 1/2)?/47%r®, (1.5)

where Oy is the weak mixing angle, with [21] sin? 8y = 0.2319(5). The result in Eq. (1.5)
has been confirmed recently by Hsu and Sikivie [24] using a different formalism from FSA. In
Sec. II we rederive Eq. (1.5) using the formalism of Schwinger [25] and Hartle {26,27], which
lends itself naturally to a study of the many-body neutrino-exchange potentials. Owing to
the fact that neutrino-exchange gives rise to long-range forces, the many-body potentials
could lead to observable effects, as we discuss in greater detail below. In Sec. III we derive
the expression for the 2-body contribution W® to the weak energy W of a nucleus arising
from neutrino exchange. Particular attention is devoted to analyzing the characteristic
composition dependence of W® which is also a consequence of the long-range nature of the
neutrino-exchange force. We also calculate the 4-body contribution W*) and verify that it
is small compared to W® | as expected naively. We demonstrate, however, that many-body
neutrino-exchange effects could be large in other systems, such as neutron stars or white

dwarfs, and the implications of this are discussed. Our results are summarized in Sec. IV.
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II. THE TWO-BODY NEUTRINO-EXCHANGE POTENTIAL

The exchange of v pairs among neutrons (n) and protons (p) in a nucleus gives rise to
2-body n-n, p-p, and n-p potentials. Because of the long range of the neutrino-exchange
force, interactions involving electrons should also be considered, but these are relatively
smaller as we discuss in Sec. III. For the sake of definiteness we consider the n-n potential
which will emerge as the dominant contribution. Following an argument due to Fermi [28]
we note that the effects of a long-range force can be approximated by the classical (spin-
independent) contribution which increases approximately as N2, where N is the number of

neutrons. The vi-exchange potential between neutrons, V,(?)(r) is thus analogous to the

2-body Coulomb potential
Vo = é/r, (2.1)

which leads directly to the familiar expression for the Coulomb energy W of a nucleus with
radius R containing Z protons {12,13]:

W = §Z(z - 1)i (2.2)
€75 R :

In fact we demonstrate explicitly in Sec. III below that W and the 2-body weak contribution
W® given in Eq. (3.9) can be derived using the identical formalism.
Following references {22,23,26,27] we assume that the low energy neutrino-neutron cou-

pling can be written in the form

£7°(@) = ZEantulz)Nu(a), (2.32)

6, = (@)1 + 1 )(). (2.3b)

Here 1(z) is the neutrino field operator, £,(z) is the neutrino current, a, is the neutrino-
neutron coupling constant, and N, = i¥(z)y,¥(z) is the vector current for the neutrons,
which is the only component which contributes to the static spin-independent 2-body po-
tential. In the Standard Model the constants a,, a,, and a., which describe the coupling of

neutrinos to neutrons, protons, and electrons respectively, are given by [21]
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N=—e 2.4

an =~ (24)
1

a4 =73 — 2sin’ Oy = 0.036, (2.4b)
1

a =3+ 25sin’ Oy = 0.964. (2.4c)

Using Eqgs. (2.3) and (2.4), the weak energy W arising from neutrino-exchange among

neutrons can be expressed in terms of the Schwinger formula [25-27]:

W= —’n {/ dE In[l + G\F@" N,v.(1+ 'ys)Sﬁ”(E)]} : (2.5)

Here Sg)) is the operator whose matrix element in configuration space, S},P)(f, 7', E), is the

Fourier transform of the usual free Feynman propagator S,(,P)(f, T):

Sp(z,z') = / = 4B ipeng (7,7 E). (2.6)

—o0 2T
In our metric conventions [29-31], S&)(Z,0, E) = S©(z E) is given by

c'|E|(|:E|+ic)

SP(E,E) =7 [ o W;—] =7 145(Z, B), (27)

where
v-n=7-8-mE. (2.8)

As usual, the trace (Tr) in Eq. (2.5) is then understood as denoting both an integral in

configuration space and a trace over Dirac indices.

Expanding Eq. (2.5) to O(G%), the 2-body energy W® is given by

. 2
w® = .2_.7; (G\F/g") / Bz, dz, / dE

xtr {7,(1 +%5)SE (Fiz, EVn (1 + 1) SE (Fn, B) } Nu(21) No(32). (2.9)

Here 72 = (&1 — Z3), N.(z1) and N,(z,) denote the external neutron currents at z; and z,
and S(O)(rij,E) is given by Eq. (2.7) with £ — 7; and n — 7(ij). The overall minus sign
arises from the expansion of In[1 + - -] in Eq. (2.5), and tr denotes the trace over the Dirac

matrices in {---}. The factors of (1 + 75) can be anticommutated past S and, using the

relation



(1 +7)* = 2(1 + %), (2.10)
we have
tr{---} =2tr {559)(7_"21, E)’YMS}(‘))(FI% E)yyn(1+ '75)} . (211)

Since we are interested in computing the self energy of a static collection of neutrons (which

are assumed to have no net polarization), the neutron currents are given in our metric
conventions by [29-31] by,
Nu(xl) = 1:/)16#4; N,,(xz) = ip25,,4, (212)

where p; = p; = p is the number density of neutrons. Combining Egs. (2.11) and (2.12) we

see that the term containing ~s, whose trace is proportional to €,,,, makes no contribution.

The remaining terms give

w = O (O)' [ e, [ gt [
X t1 (Va2 Y5 Ya) Ma(21) A F (P21, E)np(12) Ap (712, E). (2.13)

Using
tr[Ya72Y5ve) = 4(26a48ps — bap), (2.14)
the expression in curly brackets in Eq. (2.11) can be written as
{(2.11)} = 4[2n4(21)n4(12) — n(21) - n(12)]
= 4[E? — 8}5 - Ba), (2.15)
where 8;, = 8/0F)5. Combining (2.15) and (2.13) we have

4i (Gra,\’ oo
2) _ FQn 3 3
W = ( \/5) /pld.m/pzdmg/_ dE
X {EzAF(Fgl, E)AF('FH, E) —_ 512 . 521AF(F21, E)AF(FIQ, E)}

= fl—z (GF;")z/pld3zI/p2d3$2 [: dE

™\ V2

7 2 65|E|(712+721+i5) . B e,’|E|(,-12+,.21+,'5)
X (—) {EZ___...__ — — 042 - Oy (————-——)} . (2.16)
4 T12T21 T12T21




We note from Egs. (2.7) and (2.8) that the operators 812 and 521 act on the respective
coordinates 72 and 75, as if these were independent, notwithstanding the fact that ¥13+72; =
0. This applies as well to all the derivative terms that appear in the many-body amplitudes.

Following Hartle [27] the integral over E can be evaluated by considering the functions
I.(z) defined by
L) = [ dE preteiens
2 [®dE E® e'Elztie) = [ (2) even n
_ )2k (2) (2.17)
0 odd n,

where z = 7,5+ 73;. Since |E| is an even function of E, I,(z) is nonzero only for even values

of n. An elementary integration gives

2
I = 2.18
O(Z) 2+ 'i€7 ( )
and differentiating Eqs. (2.17) and (2.18) with respect to z leads to
d]o(Z) -2
— =17 = 2.19
- 1(2) (z + 1€)? (2.19)
Continuing in this way we find [27]
2" +1n!
I(z) = — ™ 2.20
(2) (z + 1€e)nt! (2:20)

Combining Egs. (2.16) and (2.20) allows W® to be written as

~1\ (Gra,\’
oot 55

1 12 1
X |: + 5612 . 621 ]} . (221)

T1o721(r12 + 721)3 T12T21(T12 + T21)

The quantity in curly brackets in Eq. (2.21) is, evidently, the 2-body potential V¥ (ry,),

~1 (Gra,\’ 1 1z 3 1
VO(r.) = 1 (GFn + =8, -0 . 2.22
(ri2) ™\ V2 rera(ra+ra)® | 2 0 rara(ri + 7o) 222

Since r = ry3 = Ta1, first term in square brackets in Eq. (2.22) reduces to 1/8r°. In the

second term we note that the gradients act on a function which depends only on r;; and

r91, and hence we can write



-~ = ) 0 .8 0 8 &8
O12 - 091 = (7’12‘6—‘) ) (7’21"—> =Tz T = (2~23)
T12

67'21 6T12 67'21 67‘12 67’21 '

Using Eq. (2.23) the expression in square brackets in Eq. (2.22) can be written as

- (2.24)

and hence,
VO =+ 20— = —. (2.25)

Eq. (2.25) gives the original FS result [22-24] when we set a, = 1, which is the value
appropriate to the charged-current model of the weak interaction assumed by FS. We note
that Eq. (2.25) applies separately to the exchange of each of the species vebe, V7, and v, ;.

For later purposes it is interesting to note that the functional form of V@(r) can be
inferred on dimensional grounds, as noted originally by Feinberg and Sucher [22]. The
only dimensional quantities upon which a static neutrino-exchange potential can depend are
Gr, r and (possibly) the masses of the external particles. However, in the non-relativistic
limit appropriate to a static potential, bilinear covariants such as @(p')ya(1 + ¥s)u(p). are
independent of the mass of the fermion characterized by the spinor u(p). Thus the only
relevant dimensional parameters are G and r and, since the 2-body operator is proportional
to G%, it follows that V(®(r) o« G%/r®. Implicit in this argument is the assumption that no
other dimensional parameters are present and, since the standard model is renormalizable,
this will indeed be the case. This argument holds even in the framework of the (non-
renormalizable) charged-current model originally assumed by FS, since the regularization
procedure employed by FS to extract the long-distance behavior of V@(r) introduces no

additional mass parameters.
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III. EVALUATION OF w(®
A. General Formalism

From Eq. (2.21) the 2-body vi-exchange contribution W(®) can be obtained by carrying
out the integrals over £; and I, after writing r = ry2 = |&; — Z2|. The evaluation of these
integrals can be simplified by considering the function P(r) which gives the normalized
probability density for finding two points randomly chosen in a sphere to be a distance
r = 112 apart. The functional form of P(r) has been obtained by a number of authors
[32-34] and is given by
3r2 973 3 7r°
B IR GR 3
31 RHCOREON &)

The average value (g) of any function g(r) taken over a spherical volume is then given by

P(r) =

2R

(9)= [ drP(r)g(r), (3.2)

0
where

2R

| drP(r)=1. (3.3)

Returning to the Coloumb problem we wish to calculate (¢?/r) by this method. From
Eq. (3.1),

2R 2 3 5 2
e*(1/r) = 62/ dr (3T o Sr ) 1_ge
0

B IR TGE) TSR (34)

The result in Eq. (3.4) gives the Coulomb energy for a single pair of charges spread out

through a spherical volume, and for a nucleus containing Z charges there are

(g) - %Z(Z _1) (3.5)

such pairs. Hence the final expression for the Coloumb energy W¢ is given by
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1 6e> 3 e?
W = - —_ —_—— = - - h— i
c=52(Z -5 =522~ )% (3.6)

in agreement with Eq. (2.2).
The vi-exchange contribution can be calculated in an identical manner, the only differ-

ence being that the nucleon-nucleon hard core radius r, must be included explicitly. We find

for (V®(r)),

(V) = rder’P(r)V(z)(r)

2R

- [ramo (3
3
= Wg’frg.s(x), (3.7)
where
£(z)=1-3z+32* - 2% ==r,/2R. (3.8)

In analogy to the Coulomb case, the final expression for W® is then obtained by multiplying
the result in Eq. (3.7) by N(N — 1)/2 which gives

@ _ 3NN -1 3 (Gra,)!)N(N-1)

W 4 R37‘Z (.T) = 1671'3 hc Rs’f'g 6(.’1:), (39)

where a factor of iic has been reinstated. Eq. (3.9) gives the desired expression for the contri-
bution to W® from the n-n vi-exchange potential. Evidently the p-p and n-p contributions
can be obtained from Eq. (3.9) by replacing a2 by af, or a,a, respectively, and at the same
time replacing N(N — 1)/2 by the appropriate combinatoric factor. For p-p this factor is

Z(Z — 1)/2 while for n-p it is NZ. Hence the contributions of p-p and n-p relative to n-p

are given by

W®(pp) e Z(Z-1) 3 2(Z-1)
—_— == e =5, T o—— 1
WO(nm) ~ 2 NN=1) 2 X0 w1y (3:10)
W®(np) a, 2Z VA
e e R e R (3.11)



Since Z < N for almost all nuclei it follows from Eq. (3.10) that W(®(p-p) is negligible
compared to W@ (n-n). Similarly |W(?(n-p)|, although not negligible, is nonetheless small.
Hence for practical purposes we can approximate the nuclear contribution to W® by the
n-n contribution. Turning to the contributions from the n-e potential, we note that since
electrons are épread out through a volume of order (1 A)3, where as nucleons are confined
to a volume of order (1 fm)?, it follows from Eq. (3.9) that contributions from electrons
are suppressed relative to the n-n contribution by a factor of order (1 fm/1 A)® = 107
We conclude that among all possible interactions involving n, p, and e, neutrino-exchange

between neutrons is the dominant contribution, and is given by the result in Eq. (3.9).

B. Numerical Results

We proceed to evaluate W% for a nucleus with N neutrons and Z protons, with N+ Z =

B. The hard-core radius r. is taken to be [35],
r. = 0.49 x 107 cm, (3.12)
and for R we use {36]
R~124x 1078 cm - BY3. (3.13)

The function £(z) in Eq. (3.8) now becomes a function of B given by

0.593 0.117 0.008

£&B)=1- B/ + 55 T B (3.14)
W@ can then be expressed in the form
W@ =134 %1077 eV N—(Jy——i)g(B). (3.15)

Since W) represents the energy E, in Eq. (1.1) ’arising from neutrino exchange, it follows
from Eq. (1.2) that the quantity which determines the acceleration is W /M, where M is
the (inertial) mass of the nucleus. It is convenient to express M in atomic mass units (amu)

so that for any nucleus,
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M = p(1 amu). (3.16)

W® /M can then be written in the form

w® s N(N=-1)

(3.17)

If 0,5 denotes the constant in Eq. (1.1) corresponding to the vi-exchange energy W2, then
from Eq. (1.2)

g — ay — as Ng(Ng - 1)

Bops

= 7,5 (1.4 x 10716) MM - 1)

9 g B §By) -

§(B2)|. (318

In Table I we present the values of the “neutrino charge” N(N — 1)é(B)/By for the first 92
elements in the Periodic Table, and a plot of this charge is shown in Fig. 3. Following the
discussion in Ref. [7] we can show that for an element having several isotopes, with relative

abundances rx (X; 7« = 1), the effective “neutrino charge” is

N(N -1)

Sure[N(N — 1)¢(B)/B]
B (B - = -,

Dok Tk

(3.19)

Eq. (3.19) was used in obtaining Table 1.
The sensitivity of the proposed STEP experiment to vi-exchange can be estimated by

considering as an example the samples used in the experiment of Roll, Krotkov, and Dicke

[10] which were Al and Au:

AP = Ba £(B) = 0.204, (3.20a)
N —
79Au179 = ]V(—B;t-i) E(B) = 0.321. (320b)

Combining Egs. (3.18) and (3.20) we then have

A
7“ =17 x 10"y, (3.21)

Since the proposed STEP experiment is designed to achieve a sensitivity Aa/g ~ 10717 [§],

it follows from Eq. (3.21) that STEP will be able to set a nontrivial limit on 7n,;,
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|| S 0.60, (3.22)

for each neutrino species ¢. If there is a universal breakdown of the WEP for all neutrinos,
characterized by a common value of 7,;, then in this case the indicated level of sensitivity

in the STEP experiment would lead to

Imws| S 0.20. (3.23)

Given a limit such as (3.22) or (3.23), one can in principle work backwards in any detailed
theory of WEP violation to infer a constraint on the anomalous coupling of gravity to any
of the neutrinos v,, ., v,, V,, v, and 7.

In Ref. [7] plots are given of other “charges” that have been considered in the literature
including B/p, I,/u = (N—2Z)/u, L/u (L = lepton number), and the charge associated with
a model of Lorentz-noninvariance [17,18]. The variations of these charges across the periodic
table are different from one another and, with the exception of I,/u, all of these are different
from the “neutrino charge” in Eq. (3.17). A comparison of the “neutrino charge” and I,/u
is given in Fig. 3 from which we see that these charges have similar shapes, although the
two graphs are shifted relative to each other. This shift is physically significant, however,
since an important characteristic of a coupling to I, is that many sources {and samples) have
I, = 0 [2]. Hence, if an anomalous acceleration difference were seen in the STEP experiment,
or in a future terrestrial experiment, then the “neutrino charge” could be distinguished from
I, by utilizing samples for which I, was zero but the neutrino charge was not. It follows from
this discussion that all of the generalized “charges” which have been proposed as sources
for WEP violation could be distinguished from one another by an appropriate choice of test
samples and sources. It follows that if a non-zero value of Aa/g were observed, then it would
be possible to discriminate among possible sources of this effect by comparing the results

obtained using appropriate materials.
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C. Many-Body Effects

Following Primakoff and Holstein [37] we note that when the interactions of particles
(neutrons in the present case) are described by means of static potentials, as in Eq. (2.25),
then relativistic invariance requires that all possible many-body interactions be included
along with the 2-body interaction. Ordinarily many-body effects are relatively small in
both electromagnetic and strong interactions, for reasons originally discussed in Ref. [37].
However, the considerations that apply to these interactions do not necessarily apply to the
interactions between neutrons arising from neutrino-exchange, and hence we briefly examine
the many-body effects arising from neutrino exchange in more detail.

Since the Schwinger formula in Eq. (2.5) is relativistically covariant, expanding W in
powers of G gives the k-body generalization of V(®(r) in Eq. (2.25), where k = 3,4,....
The k-body potential thus arises from diagrams in which k& neutron lines are attached to a
closed neutrino loop, as shown in Fig. 4 for k = 4. In O(G%) there are (k — 1)!/2 pairs of
topologically distinct diagrams, with each pair comprising the two diagrams with opposite
senses of the neutrino loop momentum. It can be shown that for a spherical nucleus there are
no contributions from odd values of k, and hence the first non-trivial many-body contribution
comes from k = 4. The 4-body potential arising from Fig. 4(a) has been derived by Hartle
[26,27] who finds

Gra,\* 1 ( &
VO (712, o3, T4, T =( ") {
(12 23,134 41) \/5 471'5 P4S§

o T
+ 2! (612 * 023+ 093 - O34+ O34 - Oy + D12+ O34 + D12 - 01 + Oag - 641) P,S}
1
L
+ [(312 - 023) (034 - Oa1) — (012 - 034) (023 - Oa1) + (D12 - 041)(823 - 634)] PyS, }
(3.24)

Here Z,, 3, T3, and T, are the coordinates of the 4 particles, with r;, = |Z; — 5|, etc., and
Sy =T+ 123+ T34 + 141, (3.25a)
Py = 119793734701, (3.25b)
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The contributions from diagrams 4(b) and 4(c) can be written down immediately by ap-
propriately relabeling the variables in Eq. (3.24).
To determine whether V(*) makes a significant contribution to the weak energy W, which

is a sum of all the k-body contributions, we have integrated Eq. (3.24) numerically [38], and
find

UY = 4 _GLa"_ 4(7_7)_ (3.26)
nR \ 2rv/2R?

The notation U¥) indicates that the result in Eq. (3.26) represents the energy of a specific
set of 4 particles. We note that, in contrast to the 2-body casé, the k-body results for k > 4
are well-behaved even if r. — 0, and hence we have set r. = 0. Since these 4 particles can

be chosen from among N neutrons in (1:) ways, where (IZ ) is the binomial coefficient

(]’Z) B E'(TN}E)"' (3.27)

it follows that the 4-body contribution W is given by

W@ — g® (N )
4

- () ()

4 ( Gra, \* N(N—1)(N-2)(N =3)
=(7.7)— . 3.28
Ay (2m/'2'Rz> 4! (8.28)
For a nucleus with N > 3, W* can thus be approximated by
4he [(Gr/hc)a N1 1
W~ (1) — || — 2
(7 )'n'R [ 272 R? 4\ (3:29)

where factors of fic have been reinstated. From Eq. (3.13) we then find (using the exact

expression in Eq. (3.28))

4 4.5 x 10731 3A1Y
[(Gp/hc)anN] _ 13 (3.30)

271V2R?

1.1 x 1072, ,4Aul¥’

and
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o _ | BOX 107V, Al (3:31)
1.3 x 10_22 eV, 79Au197

We see from Egs. (3.15) and (3.31) that |[W®*| « [W?)|, so that the 4-body contribution
to the weak energy is indeed negligible. For k > 4 the k-body contribution W®) will be of

order

he\ (Gra,N\*
k) |25 FUn
w (R)( R? ) ’ (3:32)

and from Eq. (3.30) it follows that higher order many-body effects make increasingly smaller
contributions to W. We thus conclude that the neutrino-exchange energy of a nucleus is
dominated by the 2-body contribution given in Eq. (3.9).

We note in passing that the preceding formalism can be applied directly to a neutron
star, which can be approximated for present purposes as a large nucleus. Consider, for
example, the observed pulsar in the Hulse-Taylor binary system PSR 1913416 [39-41]. The

mass M; of this pulsar is accurately known [40,41],
M; = 1.4411(7) My, (3.33)
and hence the mass of a typical neutron star can be taken to be
M =14My =28 x 10¥ g. (3.34)

To calculate the number of neutrons N we can ignore the contribution to M from gravita-

tional binding energy, and assume that the neutron star is composed exclusively of neutrons.

Using Eq. (3.34) then leads to
N =1.7 x 10, (3.35)

The radius R of the neutron star, although not directly observable, can be inferred in various
models. We assume the nominal value R = 10 km = R, which corresponds to a mass density

pm and a number density p given by
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pm = 6.7 x 10" gem ™3, (3.36)

=4.0x 10*® ecm™3. 3.37
p

These values of N, R, and p are typical of the results that arise in existing models of neutrons

stars [42,43]. We then have

(Gr/he)N
R},

= 7.6 x 10'% (3.38)
It follows from Eq. (3.38) that for a neutron star higher-order many-body effects make in-
creasingly larger contributions to W, in contrast to what we found above for nuclei. Using
Egs. (3.32) and (3.38) it is straightforward to show that successive terms in the expansion
of the Schwinger formula in Eq. (2.5) increase in magnitude, and that W® would exceed
the known mass-energy of the pulsar. Although this may indicate a breakdown of pertur-
bation theory, an alternative possibility is that perturbation theory remains valid but that
neutrinos have a small mass m,. In such a case the vi-exchange force “saturates” and, for
an appropriate value of m,, the mass-energy of the pulsar arising from neutrino-exchange
would be reduced to a physically acceptable value. The critical value of m, (for any species

Ve, Vy, OF ;) is

2 Gr
2 -
myc* 2 303 \/5|a,,|p =0.4 eV, (3.39)

where now Ine = 1. Interestingly, for v, this is just below the existing upper bound,
m,, S 7 eV [21]. A more detailed discussion of these calculations will be presented

elsewhere, along with similar results for white dwarfs where the same problem also arises.

IV. DISCUSSION AND SUMMARY

The object of this paper has been to study for the first time the 2-body vi-exchange
contribution W® to the mass-energy of a nucleus. We have shown that because this is a long-

range interaction, W(? can be calculated semiclassically, just as in the case of the Coulomb
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energy. Although the result in Eq. (3.15), like the Coloumb result, applies strictly to spherical
nuclei, both results should be good approximations for most nuclei. The numerical results
for W /M and Aa/g in Eqgs. (3.17) and (3.21) are interesting because they indicate that
at the level of sensitivity of the proposed STEP experiment (Aa/g ~ 10717), a non-trivial
constraint on the WEP-violating parameter 7,; could be set. Were an anomaly to be seen in
the STEP experiment, then the characteristic composition dependence of the vv-exchange
contribution as shown in Fig. 3 could be used to test whether this contribution or some
other was the source of the WEP violation.

We note that both the magnitude and composition dependence of the vi-exchange force
are consequences of the fact that the interaction mediated by v7 is long-ranged. This
uniquely distinguishes v-exchange from other weak interaction contributions: The long-
range is what is responsible for the combinatoric factor ~ N(N — 1)/2, and because all
the neutron contributions thus add coherently, this process likely constitutes the dominant
weak effect in O(G%). The long-range nature of this interaction is also what allows a detailed
semi-classical calculation to be carried out, in analogy to the Coulomb energy of the nucleus.

Many-body neutrino-exchange contributions have also been investigated to verify that
these would not alter the conclusions to be drawn from W®). We have shown that the
many-body contributions are indeed small in all nuclei, although they could be quite large
in a neutron star. Interestingly this observation could lead to a lower bound on neutrino

masses.
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TABLES

TABLE I. Average value of the “neutrino charge” N(N — 1)§(B)/Bp for the first 92 elements

of the Periodic Table. See text for further details.

Element N(N —1)¢(B)/Bu Element N(N - 1)¢{(B)/Bu Element N(N -1)¢(B)/Bu
Hydrogen 0.000 Germanium 0.265 Europium 0.303
Helium 0.084 Arsenic 0.265 Gadolinium 0.311
Lithium 0.172 Selenium 0.276 Terbium 0.309
Beryllium 0.183 Bromine 0.269 Dysprosium 0.313
Boron 0.181 Krypton 0.278 Holmium 0.313
Carbon 0.159 Rubidium 0.275 Erbium 0.313
Nitrogen 0.166 Strontium 0.275 Thulium 0.311
Oxygen 0.171 Yttrium 0.270 Ytterbium 0.315
Fluorine 0.198 Zirconium 0.271 Lutetium 0.314
Neon 0.183 Niobium 0.268 Hafnium 0.317
Sodium 0.201 Molybdenum 0.272 Tantalum 0.317
Magnesium 0.191 Technetium? 0.271 Tungsten 0.318
Aluminum 0.204 Ruthenium 0.276 Rhenium 0.318
Silicon 0.192 Rhodium 0.274 Osmium 0.322
Phosphorus 0.206 Palladium 0.280 Iridium 0.321
Sulfur 0.195 Silver 0.276 Platinum 0.322
Chlorine 0.213 Cadmium 0.286 Gold 0.321
Argon 0.242 Indium 0.286 Mercury 0.323
Potassium 0.210 Tin 0.293 Thallium 0.326
Calcium 0.200 Antimony 0.295 Lead 0.327
Scandium 0.230 Tellurium 0.308 Bismuth 0.326
Titanium 0.238 Iodine 0.297 Polonium? 0.321
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Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc

Gallium

0.247

0.238

0.245

0.236

0.244

0.227

0.247

0.246

0.260

Xenon

Cesium
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium?

Samarium

0.304

0.302

0.309

0.306

0.302

0.298

0.301

0.296

0.305

Astatine?
Radon?
Francium?
Radium?
Actinium?
Thorium?
Protactinium?

Uranium

0.318
0.337
0.333
0.335
0.332
0.337
0.331

0.339

8No stable isotopes.
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FIGURES

FIG. 1. Coupling of gravity to e*-e~ pairs in the field of a nucleus. The solid dots (e) denote

the electromagnetic interaction.

FIG. 2. Interaction of two neutrons via neutrino-antineutrino (v7) exchange. The heavy (light)

lines denote neutrons (neutrinos).

FIG. 3. Plot of the average “neutrino charge” N(N — 1)¢(B)/Bp and I,/p as functions of
atomic number Z for the first 92 elements. Although both plots show a similar variation, these
charges can be distinguished from each other by noting that I,/u = 0 for several elements and

various compounds. See text for details.

FIG. 4. Contributions to the 4-body potential energy arising from neutrino exchange. As
before, heavy (light) lines denote neutrons (neutrinos). Each of the diagrams (a), (b), and (c) is
topologically different from the others, as can be seen by redrawing the graphs as shown. For each
of these diagrams there is another that is obtained by reversing the sense of the neutrino loop

momentum.
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