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ABSTRACT

Context. The upcoming Legacy Survey of Space and Time (LSST) at the Vera C. Rubin Observatory is expected to detect a few mil-
lion transients per night, which will generate a live alert stream during the entire ten years of the survey. This stream will be distributed
via community brokers whose task is to select subsets of the stream and direct them to scientific communities. Given the volume and
complexity of the anticipated data, machine learning (ML) algorithms will be paramount for this task.
Aims. We present the infrastructure tests and classification methods developed within the FINK broker in preparation for LSST. This
work aims to provide detailed information regarding the underlying assumptions and methods behind each classifier and enable users
to make informed follow-up decisions from FINK photometric classifications.
Methods. Using simulated data from the Extended LSST Astronomical Time-series Classification Challenge (ELAsTiCC), we show-
case the performance of binary and multi-class ML classifiers available in FINK. These include tree-based classifiers coupled with
tailored feature extraction strategies as well as deep learning algorithms. Moreover, we introduce the CBPF (Centro Brasileiro de
Pesquisas Físicas) Alert Transient Search (CATS), a deep learning architecture specifically designed for this task.
Results. Our results show that FINK classifiers are able to handle the extra complexity that is expected from LSST data. CATS achieved
≥93% precision for all classes except ‘long’ (for which it achieved ∼83%), while our best performing binary classifier achieves ≥98%
precision and ≥99% completeness when classifying the periodic class.
Conclusions. ELAsTiCC was an important milestone in preparing the FINK infrastructure to deal with LSST-like data. Our results
demonstrate that FINK classifiers are well prepared for the arrival of the new stream, but this work also highlights that transitioning
from the current infrastructures to Rubin will require significant adaptation of the currently available tools. This work was the first step
in the right direction.

Key words. methods: data analysis – surveys – supernovae: general

1. Introduction

The advent of large-scale sky surveys has forced astronomy to
enter the era of big data, with current experiments already pro-
ducing data sets that challenge traditional analysis techniques
(Hilbe et al. 2014). In this context, machine learning (ML) meth-
ods are almost unavoidable (e.g. Bamford et al. 2009; Baron
2019; Bom et al. 2022). For time-domain astronomy, the abil-
ity to quickly process data and obtain meaningful results has
become critical due to current and upcoming projects such as the
Zwicky Transient Facility (ZTF; Bellm et al. 2019) and the Vera
C. Rubin Observatory Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019), respectively. As will be the case for LSST,
the ZTF project employs a difference imaging analysis pipeline
that streams to community brokers, in the form of alerts, every
detection above a given signal-to-noise threshold.

⋆ Corresponding author; bernardo@cbpf.br

Brokers are subsequently tasked with filtering and analysing
the data in detail, selecting the most promising objects for dif-
ferent science cases, and redirecting them to different research
communities. FINK (Möller et al. 2021) is one of the official
LSST brokers that has been selected to receive the raw alert
stream from the beginning of LSST’s operations1, which are
expected to start in 2025. In the meantime, broker systems are
operating and being tested with alerts from ZTF. FINK ingests
and processes the stream, making use of several different science
modules that contain cross-matching capabilities, ML classifiers,
and user-specified filters (for details on FINK see Möller et al.
2021, and references therein).

The experience accumulated in the past few years in FINK
with ZTF has been paramount for the design, development, and

1 The other selected brokers are ALERCE (Förster et al. 2021), AMPEL
(Nordin et al. 2019), ANTARES (Matheson et al. 2021), Babamul, LASAIR
(Smith et al. 2019), and Pitt-Google.
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fine-tuning of the broker services according to the needs of
different scientific communities. Beyond the scientific results
already reported (see, e.g., Aivazyan et al. 2022; Kuhn et al.
2023; Carry et al. 2024; Karpov & Peloton 2022), this partner-
ship has enabled the development of a series of tools specifically
designed to deal with the alert stream (Leoni et al. 2022; Biswas
et al. 2023a; Russeil et al. 2022; Allam et al. 2023; Le Montagner
et al. 2023; Biswas et al. 2023b; Karpov & Peloton 2023; Moller
& Main de Boissiere 2022). Nevertheless, given the volume
and complexity of the expected data, restructuring algorithms
to transition from ZTF to LSST is a non-trivial task.

Fortunately, there have been similar situations in the past
from which important lessons were learned. The astronomical
transient community has a long-standing tradition of preparing
for the arrival of data from a new survey by producing detailed
light curve simulations and hosting data challenges. The Super-
Nova Photometric Classification Challenge (SNPCC; Kessler
et al. 2010) consisted of simulated data representing three super-
nova classes (Ia, Ibc, and II) whose light curve properties and
rate were built to mimic the then upcoming Dark Energy Sur-
vey2 (DES; Dark Energy Survey Collaboration et al. 2016). The
challenge was open to professional astronomers, and received
answers from ten different research groups. Despite not identify-
ing a single classifier as being significantly better than the others
and even when considering the undeniable differences between
the generated simulations and the data finally observed by DES,
the challenge was of crucial importance to prepare the necessary
tools for the upcoming telescope.

This successful experience led to the development of a sec-
ond simulated data set, this time in preparation for the arrival of
LSST. The Photometric LSST Astronomical Time-series Clas-
sification Challenge3 (PLAsTiCC, Hložek et al. 2023) was
proposed to the general public and received more than 1000 sub-
missions. The data set enclosed 14 different transient classes in
the training sample and 15 in the target sample4. Many algo-
rithms were able to achieve similar results, while the numerically
best ranked solution used data augmentation and boosted deci-
sion trees (Boone 2019). Beyond the official results presented
within the time frame of both competitions, the most enduring
legacy of both challenges has been the data sets they produced,
which were subsequently used for the development of numerous
methods and tools (e.g. Alves et al. 2022; Qu & Sako 2022;
Malz et al. 2024; Allam et al. 2023, to cite a few).

All of these efforts constitute the astronomical branch of ML
exploring ‘transfer learning’ (Pan & Yang 2010; Eriksen et al.
2020), a strategy commonly employed when labels are rare or
expensive. It consists of training ML models in one domain (sim-
ulations) and using it to leverage information from the target one
(real data). The most recent sample of photometrically classi-
fied supernova Ia from DES (Möller et al. 2024) was identified
following this approach (Möller & de Boissière 2019).

Nevertheless, in all the previous attempts, simulations were
generated in the format of full static light curves. The task of
on-the-fly classification of nightly detected transient candidates
had yet to be approached. The Extended LSST Astronomi-
cal Time-Series Classification Challenge5 (ELAsTICC; Knop &
ELAsTiCC Team 2023), developed by the LSST Dark Energy

2 https://www.darkenergysurvey.org/
3 https://www.kaggle.com/c/PLAsTiCC-2018
4 The extra class was intended to test the resilience of algorithms to
anomalous observations.
5 https://portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/
ELASTICC/

Science Collaboration (DESC) was created to allow for a con-
crete assessment of the performance of different stages of
the communication pipeline. This includes simulating an alert
stream to be received by brokers, the ingestion and analysis of
the alerts using ML-based classifications by the broker teams,
and reporting back such scores to DESC. Recently, one of the
instances of this data set was used by Cabrera-Vives et al.
(2024) to test a multi-class classifier using transformers and by
Khakpash et al. (2024) in the study of stripped-envelop super-
novae. In this work, we use the first version of the ELAsTiCC
data set, streamed between September 2022 and January 20235

in alert format, to stress test the performance of the entire FINK
infrastructure in an LSST-like data scenario.

This paper is organised as follows: In Sect. 2, we present
the data set, its properties, and our chosen experiment design.
Sect. 3 presents with more details how FINK works, showing the
preparations for LSST. Section 4 presents the metrics we used
to evaluate the classifiers. Sect. 5 gives more details about the
construction and training of ML models, while Sect. 6 presents
an evaluation of these models on a blind test set. We show how
some classifiers can be combined to improve stand-alone perfor-
mances in Sect. 7, and Sects. 8 and 9 contain discussions and our
conclusions, respectively.

2. The ELAsTiCC data set

The Extended LSST Astronomical Time-series Classification
Challenge (Knop & ELAsTiCC Team 2023) was designed to
test broker systems and classification algorithms when applied
to a state-of-the-art data set that mostly resembles LSST alerts.
It emerged from the experiences accumulated during two pre-
vious challenges, SNPCC (Kessler et al. 2010) and PLAsTiCC6

(Hložek et al. 2023), and it is lead by LSST DESC. Its first objec-
tive was to test the brokers infrastructure capability of ingesting
and processing a real-time alert stream. The second goal was to
enable the evaluation of ML classification algorithms.

In the first instance of the challenge (hereafter ELAs-
TiCCv1), two different simulated data sets were provided: a
static set of full light curves (one light curve per astrophysical
source) was made available in 18 May 2022 and an alert stream
corresponding to three years of LSST operations was streamed
between September 2022 and January 2023. Both data sets
were simulated using SuperNova ANAlysis package (SNANA;
Kessler et al. 2009) and contained 19 classes divided into five
broad categories7 (SN-like, periodic, non-periodic, long, and
fast). Light curves, comprising detections and forced photome-
try in the LSST broad-band filters {u, g, r, i, z,Y} were provided
(for details on how the simulation was generated we refer to
the project website5). In order to isolate the performance of our
classifiers, avoid issues due to the data generating process and
circumvent the need to transform full light curves into alerts, we
chose to use here only the streamed data set8. In this format,
each alert holds the photometric information obtained at a given
day, as well as the previous photometric history of that point in
space. Thus, at each new light curve point, a new alert is gen-
erated that differs in one point from previous alerts from that
same source.

6 https://www.kaggle.com/c/PLAsTiCC-2018
7 Full taxonomy can be found at https://github.com/LSSTDESC/
elasticc/blob/main/taxonomy/taxonomy.ipynb
8 A second version, ELAsTiCCv2, was released in mid-2023, with
updates in photometric redshift model and cadence. The second version
was not used in this work.
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Fig. 1. ELAsTiCC class distribution for our training (dark blue) and test (orange) sets.
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Fig. 2. ELAsTiCC broad class distribution for our training (dark blue)
and test (orange) sets.

We selected one third of all unique objects as training sample
for all our algorithms (1 417 375 distinct objects corresponding to
17 214 758 alerts). The remaining objects were used as a test set
to evaluate the performance of our classifiers (2 874 008 distinct
objects corresponding to 34 891 855 alerts).

The class distributions for the alerts in our train and test
sets are shown in Figs. 1 (unique classes) and 2 (broad classes).
We note that in our experiment design, the population distribu-
tions between classes are similar in both samples, with supernova
types Ia (SNIa) and II (SNII) comprising almost half of the
alerts, and the fast class being the least represented one. Overall,
the distributions for the unique and broad classes are extremely
imbalanced, which could pose a problem for multi-class
classifiers.

Each alert package included both, light curve data (mjd,
fluxcal, fluxcal_err, band-pass filter: filtername) as well
as object metadata, comprised of properties such as posi-
tion, Milky Way extinction and estimated photometric redshift,
among others. In Fig. 3 we show the distributions for two of
these properties for the training and test set: the Milky Way
extinction (mwebv, left) and photometric host galaxy redshift
(hostgal_zphot, right). Approximately 91% of the objects in
the training and test sets have a photometric redshift available.
The distributions are similar, with both photometric redshift
distributions displaying a double peaked structure.

Fig. 4 shows the distribution of number of detection points
per alert with and without forced photometry (left), as well as
the global number of detection points in each bandpass (right),
for the training (top) and test (bottom) sets. It can be seen
from the left panel that the distribution of light curve sizes
considering only the detections is strongly peaked around 10
detections, dropping heavily after that, with very few alerts hav-
ing more than 50 measurements in both the training and test sets.

Including forced photometry, the peak is still present around 10
detections, although less pronounced; the decrease is also less
steep, as expected. Overall, the distribution is similar for both
sets, with the majority of alerts having less than 50 points, even
including forced photometry.

The distribution of detections per passband (right column of
Fig. 4) is similar for the training and test sets: the redder the band,
the larger the maximum number of detections. The exception to
this is the z band, which do not appear in longer light curves.
This is especially important for classifiers that rely on colours or
use only specific passbands. Nevertheless, this feature is a direct
consequence of the chosen survey strategy, and it is reasonable
to expect that the real data will also hold differences in number
of detections on each band. Thus, it is paramount to assess the
robustness of classifiers in this scenario.

3. Fink infrastructure

Since 2019, FINK has been processing alert data from the ZTF
public stream. Not only the ZTF data rate is lower than the
one intended for LSST, but the schema and content of the
alert packets from each stream are also different. Therefore,
the ELAsTiCC challenge was an opportunity to show that the
Fink architecture can scale in terms of data volume and that it
is possible adapt the current classifiers, or create new ones, to a
new schema with different incoming information.

FINK operates in real time on large-scale computing infras-
tructures. For the ZTF processing, the incoming data stream
is provided by the ZTF Alert Distribution System (ZADS;
Patterson et al. 2018) that runs a Kafka instance on the DigitalO-
cean cloud infrastructure (USA). FINK is currently deployed on
the VirtualData9 cloud infrastructure (France), and makes use
of distributed computing to split the incoming stream of alerts
into smaller chunks of data to be analysed independently over
many machines in parallel. For LSST, FINK will be deployed at
CC-IN2P3 (Centre de Calcul de l’Institut National de Physique
Nucléaire et de Physique des Particules), which will have a local
copy of LSST data that can be efficiently exploited for internal
cross-match needs.

What is deployed for ZTF typical rates (of the order of
200 000 alerts per night can be easily scaled to ELAsTiCC
rates (of the order of 1 000 000 alerts in a few hours every
night) by adding more machines. In practice for the challenge,
we use a total of 33 cores for all operations (listening to the

9 https://virtualdata.fr/
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Fig. 3. Distribution of milky way extinction (left) and host galaxy photometric redshift (right) for the training (dark blue) and test (orange) sets.
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Fig. 4. Distribution of light curve length in the training (top) and test (bottom) samples. On the left, the total number of points including only
detections (blue) and with forced photometry (orange). On the right, the distribution of detections per filter.
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incoming stream, processing it and sending back results). More-
over, the processing was done on the same platform, alongside
the real-time processing of ZTF alerts.

For the ELAsTiCC challenge, FINK operations consisted in
three steps, done in real time: (1) decoding the incoming alert
stream, (2) applying all classifiers on every alert, and (3) redis-
tributing all enriched alert packets to the DESC team in the
USA. The first and last steps are under the responsibility of the
FINK engineering team, while the second part involves classi-
fiers provided by the community of users. The development of
science models within FINK is completely driven by the user
community10, who is responsible for development and validation
of its outputs. Each team responsible for a classifier typically
provides a pre-trained model, as well as the snippet of code
necessary to run the inference on one alert11, and the FINK engi-
neering team integrates it into FINK for streaming processing
at scale.

Given the large volume of data, we developed a new service
for the community during the challenge, the FINK Data Transfer
service12. The ELASTICC training set was made available via
this service, which enables easy distribution of large volumes of
data for many decentralised users. It also allows users to select
any observing nights, apply selection cuts based on alerts con-
tent, define the content of the output, and stream data directly
anywhere. Since the start of the challenge, more than one billion
alerts have been streamed via this service.

For the experiments described in this work, nine classifiers
were deployed (see Sect. 5). Some of the classifiers used in
the challenge are also classifiers used to process the ZTF alert
stream. The differences in data rate, schema and the data itself
(available filter bands, cadence and magnitude limit, among oth-
ers) between the ZTF stream and the simulated ELAsTiCC data
made the transition less easy than we had originally anticipated.
From this point of view, the lessons learned from the ELAs-
TiCC challenge were paramount in preparing for the arrival of
the LSST alert stream.

Throughout the classifier design phase and the challenge
itself, we monitor classifier performance in terms of throughput
(alerts processed/second/core) and memory usage (MB/core).
LSST will impose stringent requirements on throughput (we
expect a continuous flow of 10 000 alerts per exposure, i.e. every
30 seconds), while our computing infrastructure imposes con-
straints on memory usage (cores with 2 GB RAM each). As an
example, while processing in real-time the first version of the
challenge (using 24 cores in parallel), 82.2% of alerts were clas-
sified in less than 30 seconds (the time between when an alert
enters FINK and when it is fully classified by the nine clas-
sifiers), 90.5% in less than a minute, and over 99.9% in less
than 10 minutes. Delays larger than expected are partly due to
processing (classifier versions and performance have evolved
over time), but the high values are mainly explained by human
intervention in the computing infrastructure, which interrupted
operations while we were processing live data. These interven-
tions are not expected during normal LSST operations. Regular
measurements of Fink operations performance (profiling) are
analysed to check that requirements are met.

10 Users can propose science modules following instructions at https:
//fink-broker.org/joining/
11 The FINK engineer team provides examples to manipulate alert data,
and all code and models can be found online at https://github.com/
astrolabsoftware/fink-science
12 https://fink-portal.org/download

4. Metrics

In a classification task, several metrics can be used to assess
the performance of the classifier, such as the receiver operating
characteristic (ROC) and precision-recall curves and the confu-
sion matrix. These are built from the precision (P), recall (R,
also called the true positive rate, or TPR), and false positive rate
(FPR), which in a binary classification are defined as

P =
T P

T P + FP
,

R =
T P

T P + FN

FPR =
FP

FP + T N
, (1)

with TP(N) the number of true positives (negatives) and FP(N)
the number of false positives (negatives). Precision can be
understood as the purity of the predictions, while Recall is its
completeness or efficiency, and the FPR is the ratio of wrongly
classified objects of the negative class (also known as the false
alarm rate). The output of a binary classifier is a the probability
of a light curve belonging to the class of interest. Thus, the quan-
tities on Eq. (1) will depend on a chosen probability threshold.
By varying this threshold, one can obtain curves for recall ver-
sus FPR (ROC) and precision versus recall. The area under these
curves (AUC) can be used as a metric to assess the performance
of the classifier, where a perfect classifier would have an AUC
of 1, and an AUC of 0.5 for the ROC corresponds to a random
classifier.

The binary case can be straightforwardly extended to the
multi-class case by using a one versus all approach, wherein the
problem is split into a binary classification case per class, gath-
ering every class except one as the negative class. In this case,
there will be a ROC and a precision-recall curve for every single
class.

Anther popular metric for classification task is the confusion
matrix, a square matrix showing the number (or percentage) of
objects classified in every combination true/predicted class. Both
metrics are used to access the efficiency of classifiers described
in this work.

5. Classifiers in Fink

For this work, we used 4 algorithms for classification. These are
meant to represent the two possible applications of the broker
infrastructure: broad classifiers using deep learning (DL), rep-
resented by CATS (Sect. 5.1) and SuperNNova (Sect. 5.2), and
binary classifiers using feature extraction and tree-based algo-
rithms, represented by the Early SNIa (Sect. 5.3) and the SLSN
(Sect. 5.4) classifiers.

The class specific classifiers (Sects. 5.3 and 5.4) represent the
most common scenarios in which a team interested in a specific
class can profit from the broker infrastructure. As an example,
we used a tool that incorporates physical assumptions about ther-
modynamic behaviour of the transient (Russeil et al. 2024b) in
combination with traditional ML algorithms. The same infras-
tructure can be used to incorporate other requests coming from
science teams.

5.1. CATS

Recurrent neural networks (RNNs) are a class of models adapted
to work with sequential data. They do so by constructing hidden
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Fig. 5. Illustration of the CATS architecture.

states that carry information from the previous part of the
sequence (Rumelhart & McClelland 1987; Schmidt 2019). One
of the main problems found in training RNNs was the vanish-
ing gradients: When the input sequence was long, the successive
derivatives during backpropagation tended to erase the gradi-
ent (Bengio et al. 1994), which then cause later time steps
to be ‘disconnected’ from earlier ones (i.e. a low memory
capacity). Long-short term memory units (LSTM; Hochreiter &
Schmidhuber 1997) were designed to avoid the vanishing gra-
dient problem by keeping not only a hidden state but also a
memory state across all time steps. By using gates, the network
can learn what information needs to be kept, removed, or inserted
to the memory vector, increasing the RNN’s memory capacity.

The CBPF Alert Transient Search (CATS) was built by
starting with a base network very similar to the Multivari-
ate LSTM Fully Convolutional Network (MLSTM-FCN; Karim
et al. 2019), using squeeze and excitation blocks; we use bidi-
rectional LSTM layers and a series of fully connected layers
before the output, adding a dropout layer after each of those. This
architecture was shown to perform very well in several different
time series tasks13, and the base architecture is shown in Fig 5.
We then performed a hyperparameter search using keras-tuner,
searching for the best configuration of number of convolutional,
LSTM and Dense blocks, convolutional filters, LSTM and Dense
layers’ units and activation functions. This search was done using
a subset of 10% of the unique objects in our training sample to
speed up the process. The final architecture consisted of one con-
volutional block with 32 filters, two bidirectional LSTM layers
with 400 and 500 units respectively, and two fully connected lay-
ers with 64 and 96 units. All convolutional and fully connected
layers are followed by a Rectified Linear Unit (ReLU) activation.

Our inputs were the normalised flux and errors, (where both
are normalised per light curve), and the difference in days from
the first available light curve data point for that transient and the
current alert detection, using forced photometry when available.
To that, the filter was added as an integer in the range [1, 6] corre-
sponding to the LSST passbands, [u, g, r, i, z, Y]. All inputs were
right-padded to match the longest light curve, so that the shape of
13 See https://paperswithcode.com/task/time-series-clas-
sification for benchmarks on several different time series tasks.

Table 1. CATS results for the validation sample across all folds.

ROC PR Precision RecallAUC AUC

SN-like 0.99
(0.0001)

0.99
(0.0002)

0.97
(0.0022)

0.99
(0.0013)

Fast 0.99
(0.0013)

0.80
(0.047)

0.85
(0.092)

0.72
(0.017)

Long 0.96
(0.0012)

0.68
(0.0041)

0.82
(0.032)

0.47
(]0.041)

Periodic 1.00
(0.00001)

1.00
(0.00003)

1.00
(0.0002)

1.00
(0.0001)

Non-
Periodic

1.00
(0.00003)

1.00
(0.0005)

0.97
(0.003)

0.96
(0.005)

Notes. Reported are the means with standard deviations in parentheses.
ROC AUC and PR AUC are the area under the curve for the ROC and
precision-recall curves, respectively, while the values for the precision
and recall are taken from the confusion matrix averaged over all folds.

the input is (395, 4) (top-right box in Fig. 5). To this, we concate-
nated the Milky Way extinction (mwebv), host galaxy redshift
(hostgal_zphot), and the redshift of the transient (z_final),
when available, plus their errors (Input metadata) before passing
the result to the fully connected layers. Using these features gave
the best results when testing with a smaller subset of the data,
slightly better than using only extinction and redshift of the host.

We performed a K-fold cross-validation process to assess the
robustness of our model. It consists of splitting the data into k
groups (folds), and performing k iterations of training; at each
iteration, one of the folds is used for validation, while the other
k − 1 are used for training.

We used five folds; the unique object identifier
(diaObjectId) was the parameter used to split the data,
thus making every light curve of a single object either part of
the training or validation set, with no contamination between
them.

The model was trained for 15 epochs at each fold, with the
NAdam optimizer (Dozat 2016), on a cluster with eight NVIDIA
RTX A6000. At each fold, the model where the validation loss
was lowest was selected to perform the predictions. The architec-
ture and training were implemented using TensorFlow 2 (Abadi
et al. 2015).

Table 1 shows the metrics derived from the validation sets
of the k-fold. The model performed satisfactorily, having a mean
ROC AUC above 0.95 for all classes, and a mean precision-recall
AUC above 0.8 except for the Long class, with little variance
between the folds. Although the mean Precision for the Long
class is approximately 80%, the Recall is less than 50%, due
to half of the Long alerts being classified as SN-like events.
The major type behind this confusion are Super luminous Super-
novae (SLSN), which could resemble some types of supernovae
when looking at short enough light curves. On the other hand,
the 20% rate of false positives of the Long class is dominated by
SNII, which is also the dominant subclass; however, contamina-
tion by SNIa (the second most dominant subclass) is negligible.
SNII with an extended plateau can be very similar to SLSNe,
while SNIa are generally brighter and exhibit a characteristic
feature in redder passbands, thus rendering their classification
less controversial. Despite such caveats, results shown in Table 1
confirm that CATS will be able to provide reliable classification
results even under challenging data scenarios.
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5.2. SuperNNova

SUPERNNOVA (SNN; Möller & de Boissière 2019) is a DL light
curve classification framework based on RNNs. SNN makes
use of fluxes over different band-passes and their measure-
ment uncertainties over time for classification of time-domain
candidates in different classes. Additional information such as
host-galaxy redshifts and Milky Way extinction and their errors
can be included to improve performance.

SUPERNNOVA includes different classification algorithms,
such as LSTM RNNs and two approximations for Bayesian
Neural Networks (BNNs). Here, we only use the LSTM archi-
tecture, which was also used for classification of type Ia SNe
(SNe Ia) in the Dark Energy Survey (Möller et al. 2022, 2024).
For work on BNNs in the context of Rubin see Moller & Main
de Boissiere (2022).

We used the LSTM RNN to process the photometric time
series and produce a sequence of hidden states. The sequence is
condensed to fixed length through mean pooling. Finally, a linear
projection layer was applied to obtain an N- dimensional vector,
where N is the number of classes. A softmax function was used
to obtain probabilities for an input to belong to a given class.
During training, we randomly truncated light curves to improve
the robustness of the classifier with partial light curves. SNN is
trained to optimize accuracy of balanced classes.

We grouped observations in each passband within a given
night. If a given filter is not observed, we assigned it a special
value to indicate that it is missing. To deal with irregular time
sampling, we added a delta time feature to indicate how much
has elapsed since the last observation. We used the default con-
figuration of SNN with the normalisation as in (Möller et al.
2022) and added redshift and Milky Way extinction as additional
features for this work.

Classification probabilities from SNN can be used to select a
sample by performing a threshold cut or by weighting the contri-
bution of candidates by their classification score (Vincenzi et al.
2023, 2024; DES Collaboration 2024). In this work we evalu-
ated only the selection of samples using a probability cut set to
p > 0.5 or in multi-class classification, the largest probability for
all classes.

We trained binary and broad class models. For the binary
classification, we balanced the training set light curve numbers
between the target class and other classes (randomly sampled).
For the broad classifier we did also a balanced training set.
However, the fast, long and non-periodic classes have consider-
ably smaller numbers than the SN and periodic classes as shown
in Fig. 2; the balanced training set for broad classification was
≈2000 events per class.

We split the data set in 80% for training, 10% for validation
and 10% for performance evaluation. In Table 2, we show the
performance metrics for the different models obtained for this
test set.

For the broad model, we find that the lowest accuracy classes
are SNe and Long events. This may be due to the time-range of
the light curve provided for classification as some Long events
such as PISN and SLSNe during a reduced time range may
resemble shorter time-scale SNe. We also find small confusion
between Fast and Periodic transients that may be due to the same
effect.

For the binary models, we also find that the model targeting
Long events has lower accuracies than the other binary classi-
fication models. This may be due to the small data set used for
training, which is composed of only thousands of light curves.

Table 2. SUPERNNOVA results for a blind test sample.

Class Accuracy ROC Precision RecallAUC

SN-like 95.58 0.9890 96.19 93.38
Fast 98.15 0.9958 99.98 96.3
Long 84.58 0.9270 83.85 87.76
Periodic 99.93 0.9999 99.98 99.9
Non-Periodic 99.4 0.9999 99.98 99.07

Broad 88.52 – 68.15 80.0

Notes. Results obtained on complete light curves using an independent
test set from the training sample. All rows except the last one show the
metrics for a binary target versus other types.

As expected, small and unbalanced training sets impact the
performance of this framework, which was built for accurate
classification with large and representative training sets. Further
discussion on the performance of SUPERNNOVA with respect to
training set size can be found in Möller & de Boissière (2019).

5.3. Early supernova Ia

Supernovae Ia (SNIa) were first used as standard candles in cos-
mological analysis in the end of the 20th century, when they
provided the first evidence of the Universe’s current accelerated
expansion (Riess et al. 1998; Perlmutter et al. 1999). Since then,
large efforts have been devoted to the compilation of large SNIa
samples, in the hope they can help unravel details about the
behaviour of dark energy (e.g. Aleo et al. 2023; Möller et al.
2024).

Despite the undeniable impact large scale sky surveys can
imprint on SN cosmology results, such potential is strongly
dependent on our ability to distinguish SNIa from other types of
SN-candidates (see, e.g., Ishida 2019, and references therein). In
the context of real data, labelling is an extremely expensive pro-
cess and ideally we would like to discover such transients early
enough so they are still sufficiently bright to allow spectroscopic
classification.

For ZTF processing, FINK has an early supernova Ia classi-
fier (hereafter, EarlySNIa) based on independent feature extrac-
tion for each of the two ZTF passbands and a random forest
classifier enhanced by active learning (for a complete descrip-
tion see Leoni et al. 2022). Its goal is to identify SNIa before
or at peak, to optimally allow spectroscopic follow-up resources
to be allocated. The module has been successfully reporting
EarlySNIa candidates to the Transient Name Server (TNS) since
November/2020. However, in the context of LSST, with 3 times
more passbands and a considerable sparser cadence, the module
required significant modifications.

In order to allow classification with a lower number of
points per filter and, at the same time, take into account colour
information, we implemented the RAINBOW multi-band feature
extraction method proposed by Russeil et al. (2024b) to comply
with the characteristics of the new data set. A parametric model
was simultaneously fitted to the light curves in all available pass-
bands, and the best-fit parameter values were used as features,
thus given as input to the random forest classifier (Ho 1995).
Assuming the transient can be approximated by a black-body,
the framework combines temperature and bolometric light curve
models to construct a 2D continuous surface. This approach
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Fig. 6. Example of light curve fit for an early SNIa performed with
RAINBOW. The estimated light curve behaviour in each filter (full
lines) was found by using the photometric history within alertId =
244687224069 (circles). The most recent observation within that alert
(cross) was added subsequently to illustrate the agreement between the
estimation and measured value in the z-band.

enables early description even when the number of observations
in each filter is significantly limited (for more details see Russeil
et al. 2024b).

The preprocessing for each alert included (i) averaging all
observations within the same night; (ii) removing any intra-
night flux measurements lower than −10 (FLUXCAL > −10); (iii)
requiring a minimum of seven points per object, in any filter,
including forced photometry; and (iv) ensuring that intra-night
flux measurements are consistently increasing within at least
two passbands. Thus, considering that only rising alerts survived
such selection cuts, we described the bolometric evolution of our
light curves with a logistic function of the form

f (t) =
amplitude

1 + exp(− t−t0
rise_time )

, (2)

where rise_time is the characteristic time of rise, amplitude
is the amplitude, and t0 describes a reference time that corre-
sponds to the time at half of the rising light curve. The temper-
ature evolution was described with a falling logistic function of
the form

T (t) = Tmin +
delta_T

1 + exp t−t0
k_sig

, (3)

where delta_T is the full amplitude of temperature, Tmin
denotes the minimum temperature reached, k_sig describes a
characteristic timescale, and t0 is a reference time parameter that
corresponds to the time at half of the slope. We note that t0 from
the bolometric and temperature descriptions is used as a single
common parameter whose role is to anchor functional behaviour,
but it holds no physical meaning without a reference point, and
thus it was not included in our final parameter set. Beyond these,
RAINBOW also returns a measurement of the quality of the fit
(reduced_chi2) and the maximum measured flux (lc_max).
Figure 6 illustrates the capability of the method in extrapolat-
ing the behaviour of a rising light curve even when the number
of rising points is sparse. In this figure, the model (full lines)
was fit using only the history within the alert (circles). The most

recent observation (cross) was added subsequently as a way to
compare the measurement with the prediction.

As a result, each alert is represented by seven values.
To this we added the mean signal-to-noise ratio (FLUXCAL/
FLUXCALERR); the number of points in all passbands before
intra-night smoothing14 (nobs); separation between the host
and the transient (hostgal_snsep) and the host photomet-
ric redshift (host_photoz). Thus resulting in 11 parameters
per alert.

A total of 5 334 911 alerts (791 779 objects) survived
selection cuts, which corresponds to ≈31% of the alerts in the
full training sample described in Sect. 2. Among them, SNIa
(≈34%), SNII (≈28%), RRLyrae (≈11%), Ibc (≈8%) and AGN
(≈8%) were the most frequent classes. From these, we selected
a sample of 205 228 alerts (30 000 objects) for training a super-
vised ML model. In this sample, the distribution of the major
classes was unchanged. We note that we report populations of
individual classes to better illustrate the composition of the sam-
ple, but in reality, we trained a binary classifier whose positive
class corresponded to approximately a third of the full sample.
The remaining 5 131 798 alerts (761 779 objects) were used for
validating the classifier results. To avoid an information leak, we
made sure to place all alerts from the same object either in the
training or in the validation sample.

We trained a random forest model using a scikit-learn
(Pedregosa et al. 2011) implementation, using 50 trees, maxi-
mum depth of 15 and set the minimum number of alerts per leaf
to be 0.01% of the training size. In the validation sample, this
resulted in P = 0.70/R = 0.70, considering a probability threshold
of 0.5.

5.4. Superluminous supernovae

Superluminous supernovae (SLSN) are SNe whose peak optical
luminosity exceeds −21 mag (see, e.g., Moriya et al. 2018 for a
review). Their rise times can vary between ∼20 days to more than
100 days for some events, but their post-maximum decline rates
are either consistent with 56Co decay (at least initially), or signif-
icantly faster. This suggests that some SLSN can have a possible
thermonuclear origin, which given the mass required can only
be explained by population III star origin. At such mass, a pair
production mechanism triggers and results in an instability that
eventually leads to the collapse of the core, hence pair-instability
SNe (PISN). Currently, there have been no direct confirmation
of their existence, although good candidates have been reported
(Moriya et al. 2022; Pruzhinskaya et al. 2022). The discovery
and characterisation of a PISN would significantly impact our
understanding of the connection between chemical evolution and
structure formation in the Universe (LSST Science Collaboration
2009).

Given that predicted light curves of SLSNe and PISNe can
have a similar morphology, we use a common classifier for
both and call it the SLSN classifier. Its core implementation
is based on a feature extraction of normalised alerts followed
by a random forest classification. For each filter we computed
the following set of features: maximum and standard devia-
tion of the flux; mean signal-to-noise ratio and number of
points. We also added the following metadata information: right
ascension (ra), declination (dec), host galaxy photometric red-
shift (hostgal_zphot), host galaxy photometric redshift error
(hostgal_zphoterr) and distance between the host and the

14 This number was obtained by counting the number of observations
and each alert, not the corresponding metadata column.

A208, page 8 of 17



Fraga, B. M. O., et al.: A&A, 692, A208 (2024)

Fig. 7. Example of a RAINBOW fit on an SLSN light curve
(diaSourceId = 35707054076) using Eq. (4) for the bolometric com-
ponent and Eq. (3) for the temperature component. The flux is nor-
malised to have a maximum at one.

transient (hostgal_snsep). In addition, parametric fits of the
light curves are computed and best-fit values are used as param-
eters. Similarly to Sect. 5.3, we used the RAINBOW (Russeil et al.
2024b) framework to obtain a multi-passband description of the
light curves. In this context, the bolometric flux is modelled
using the following three-parameter function:

f (t) = max (0, A(t − t0) × e
−

t−t0
t f all ), (4)

which depends on amplitude (A), a time offset (t0) and a char-
acteristic time of decay (t f all). We found this simple functional
form to be effective in classifying both SLSN-I and PISN. This
equation was obtained by applying the Multi-View Symbolic
Regression algorithm (Russeil et al. 2024a) to real ZTF light
curves from the SLSN candidate SNAD16015 (Pruzhinskaya et al.
2023). The max operation has been manually added to pre-
vent negative fluxes. We chose to model the temperature using
Eq. (3), which enables the description of cooling transients.
An example of a SLSN fit is shown in Fig. 7. It highlights
the good agreement of the blackbody approximation to SLSN
observations. The fit is performed using LIGHT-CURVE16 python
package, which internally uses iminuit minimising the nega-
tive log likelihood. The optimised parameters and the loss are
included as features for the classifier. Thus we imposed that
alerts contain at least seven observed points. In total, 26 features
are extracted for each alert.

The classifier was based on a scikit-learn random forest algo-
rithm trained using the active learning (AL) procedure proposed
in Leoni et al. (2022). This strategy allows the classifier to focus
on the relevant boundaries between SLSN and similar transients
rather than simply learning the global distribution between very
unbalanced classes. This procedure tends to favour purity over
completeness, which is reasonable given the volume of alerts
that will be produced by LSST. To proceed we randomly sampled
2 million alerts from the full training sample (Sect. 2), which
were further equally divided in training and validation samples.
We queried 6 alerts at a time for 3500 loops (further queries
15 https://ztf.snad.space/dr17/view/821207100004043
16 https://github.com/light-curve/light-curve-python

resulted in overfitting, leading to performance decrease) for a
final training sample composed of 21 100 alerts. We set the max-
imum depth of trees and minimum number of alerts per leaf are
set to be 15 and 0.01% of the training size, respectively. The
model achieved 90.8% purity and 52.4% completeness in the
validation sample.

6. Performance of classifiers

In this section we evaluate the different classifiers available in
FINK using the test sample composed of all alerts from objects
not in the training set of ELAsTiCCv1. In Sect. 7 we show how
combining different classifiers can boost classification results.

Figure 8 shows the confusion matrix for each classifier; each
cell in the confusion matrix displays the results normalised by
the predictions on top (bold), and by the true values at the bottom
(italics). Besides these overall metrics, we analyse in Fig. 9 how
metrics change with the number of detections and the true host
redshift (ZHELIO from the truth table). This allows us to assess
the ability of classifiers to generate unbiased samples, and their
capabilities as a tool to select follow-up sources close to the time
of detection.

Machine Learning metrics such as ROC and precision-recall
curve can be found in Appendix A.

6.1. CATS broad classification

Figure 8a shows the metrics for the CATS broad classifier.
Similar to the cross-validation results presented in Sect. 5.1,
the model performs excellently with the SN-like, Periodic and
Non-Periodic classes, having AUCs above 0.95 for all of them.
However, again similar to the earlier results, it had some issues
with the Long and Short classes: more than half of the Long
alerts were classified as SN-like, and about 30% of the Fast alerts
were classified as Periodic, lowering the recall for both classes
when compared to the other three. However, the purity for the
Fast class is still above 90%, while for the Long class the value
is 83%, significantly lower than for all others.

In Fig. 9a, it can be seen that CATS is able to correctly clas-
sify samples with less than ten detections, obtaining a precision
of over 80% for every class except Long, and nearly 100% for
SN-like, Periodic, and Non-periodic events. CATS is able to suc-
cessfully classify these objects very early, an important quality
when considering the schedule of follow-up observations. Also,
Precision remains nearly constant as the number of detections
grow for all classes (except for the Long class), showing the
robustness of the model.

Precision for the Long alerts increase as the number of detec-
tions grow since the model starts to better distinguish SN-like
from SLSN alerts as the features from longer light curves begin
to show. As expected from the results in Fig. 8a, recall for both
the Fast and Long classes increase as the number of detec-
tions grow, while SN-like and Periodic alerts have near-constant
recall for all light curve lengths. Interestingly, very short Non-
periodic light curves are classified as SN-like by the model,
producing a low recall for Non-periodic alerts with less than
five detections.

When looking at the metrics as a function of redshift, the pre-
cision for SN-like alerts drop as the simulated redshift increases:
this is due to SLSN alerts being classified as SN-like. The oppo-
site is seen for the Long class, where low redshift alerts are
classified as SN-like. Recall, on the other hand, remains almost
constant for the full redshift range.
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Fig. 8. Confusion matrices for each classifier in the test test. For each cell in the confusion matrix, the top row (in bold) was normalised to the
predictions and the bottom row (in italics) to the true values so that the main diagonal shows the precision in bold, on top, and recall in italics, at
the bottom.

6.2. SUPERNNOVA as a broad classifier

We show the performance metrics and confusion matrix in
Fig. 8b for SNN broad classifier. As found when validating the
model, both the SN and Long classes have large classification
confusion. In Fig. 9b we see this confusion is reduced with
more detections as the classifier disentangles Long and SNe light
curves with more precision.

As with the CATS classifier, the Fast class is where the
results differ the most between the training and test metrics with
a similar trend of confusion between Fast and Periodic light
curves.

We highlight, that the loss used to train SUPERNNOVA is
optimised for classification with large and representative train-
ing sets. In Möller & de Boissière (2019), we have shown that
≈105 light curves per class for training are necessary to achieve
its top performance. To improve performance with ELASTICC,

the loss could be modified to allow the usage of non-balanced
training sets and/or larger training sets could be constructed with
additional simulations or augmentation techniques. We leave this
task for future work.

6.3. SUPERNNOVA binary classifiers

We find better performance for the SN-like classification with
the binary classifier (Fig. 8c) than with the broad one in par-
ticular for recall. This suggests, as expected, that the increase
of the training set for the target is extremely important for our
algorithm. We also find an improvement for classes with smaller
training sets such as the Long class (Fig. 8e), although the model
still has troubles with this class. The Fast class remains the
hardest to classify with this algorithm (see Fig. 8d).

The evolution of metrics as a function of number of detec-
tions and redshift for the SNN binary and broad classifiers is

A208, page 10 of 17



Fraga, B. M. O., et al.: A&A, 692, A208 (2024)

Fig. 9. Evolution of precision and recall as a function of the number of detections (left two panels) and host galaxy redshift (right two panels). Fast
and periodic alerts have no redshift available and thus have only the first two panels.

shown in Figs. 9c and 9b. The same trend is found for both
the broad and binary classifiers, where the precision for the
Non-periodic and Long classes increase as more detections are
available. Periodic and SN-like classification show high perfor-
mance with low number of detections. Thus, we expected a good
performance in the classification of early light curves for these
classes. This is an important feature when scheduling follow-
up observations, as explored for Rubin SNe Ia in Möller et al.
(2024).

We highlight that the binary classifiers presented in this work
were all trained in a similar manner without tuning SNN to
the different targets. Depending on the science goal, data cura-
tion, loss and algorithm hyper-parameters could be adjusted to
improve its performance. For example, to improve Fast tran-
sients classification we could train with shorter light curves for
all classes, an augmented training set or a modified loss to tackle
small training sets. As shown in Möller et al. (2022) for SNe Ia,
an adequate light curve time span selection for a given goal to
reduce non-transient detections improves performance.

6.4. Early supernova Ia

The performance of the EarlySNIa classifier is reported in
Fig. 8i. One caveat we should keep in mind is that the module
is only interested in classifying rising light curves. Thus, sev-
eral alerts are eliminated by selection cuts, never being classified
at all. Results presented here correspond to alerts that survived
the feature selection (Sect. 5.3). Among these, the module was

able to achieve ∼0.7 precision and recall. Meaning the precision
was maintained while recall increased slightly when compared
to results from the validation sample. This matches the results
found during training and represents ≈10% decrease in compari-
son to those reported in Leoni et al. (2022), which reports results
from the current EarlySN Ia module within FINK, applied to the
ZTF stream. Considering the significant increase in volume and
complexity present in the ELAsTiCC data set, we consider this
a resilient and promising result. Once LSST start running, an
active learning procedure similar to the one described in Leoni
et al. (2022) can be employed in real time, thus improving results
found in this work. The most common contaminants are: SN
II (∼18%) and SNIbc (∼9%). All other classes correspond to
the remaining 3%, with SNIa-91bg and SNIax comprising ∼1%
each.

Figure 9e shows how classification results evolve with the
number of detections and simulated redshift. We note that preci-
sion already starts higher than 0.6 for seven observed data points
(the minimum requirement) and peaks around 20 photometric
points, while recall remains almost stable even with more detec-
tions. The sample identified as EarlySNIa by the algorithm is
highly skewed towards small light curves, with ∼75% of them
having ten detections or less. Moreover, since we are working
only with rising behaviours, it is reasonable to expect that light
curves with lower number of points will dominate the results17.

17 The long duration alerts are attributed to long history of forced pho-
tometry or variable sources with a significant burst in the last months of
the survey. This also correlates with the steep decline in precision.
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Fig. 9. Continued.

In this figure, we can also observe that classification results peak
for redshift around 0.5 and degrades after that. This is expected
since the SN is most likely to be discovered at or after maximum
when at high redshifts.

6.5. Superluminous supernovae

Figure 8h displays the confusion matrix of the binary SLSN clas-
sifier. It provides an excellent purity of 90.0% and a recall of
45.8%. In the context of the very large ELAsTiCC data set, we
favour this high precision low recall asymmetry as it would still
result in almost 200K SLSN alerts being classified with high
confidence. However, as illustrated by Fig. 9d, the recall is highly
dependent on the number of detections of the light curves. While
most SLSN are missed when only a few data points are avail-
able, the recall increases to ∼50% when 20 observations are
available and up to ∼80% for 100 detections. Purity-wise, the
performance of the model linearly increases with the number
of detections, ranging from ∼60% to almost 100%. We observe
that the classifier presents a clear under performance in preci-
sion for objects with redshift lower than 0.5. Indeed, SLSN are
intrinsically bright objects that are more frequently found at high
redshift (corresponding large observation volumes). Therefore, a
large majority of the sample has a redshift above 0.5 (with a max-
imum around z = 1). It results in a challenging learning task at
low redshift, which impacts the final performances. Outside this
range, the classifier is conservative and therefore very reliable on
positive answers.

Although the purity of the classifier is very high, a study
of the contamination reveals that almost two thirds of the
alerts wrongly classified as SLSN are SNII. This result can be
explained by the presence of SNIIn within the ELAsTiCC data
set. This subtype of SNII, resulting from the interaction of the
SNII with the circumstellar medium, is particularly bright and
long-lasting. The most extreme ones even stand at the border
between the SNII and the SLSN class, potentially forming a con-
tinuum between the two classes Moriya et al. (2018). Hence, the
classifier contamination is to be expected and is particularly hard
to reduce.

Finally, a feature importance study has been conducted in
order to characterize the decision process. The most important
column for classification is the error on the fit, highlighting that
the parametric model chosen is suited to describe SLSN events.
The second and third most important features are parameters
from the model, respectively the amplitude (A) and the minimum
temperature (Tmin). It once again demonstrates that the fit is key
in the separation of the parameter space. The high relevance of
the temperature parameter in particular indicates that the RAIN-
BOW framework enables the computation of informative features
to distinguish transient events.

7. Combining classifiers

Given the wealth of developed classifiers targeting different sci-
ence cases, combining some of them could provide better results.
In this session we investigate the effectiveness of considering
ensembles of two classifiers built from intrinsically different
algorithms in order to boost classification results.

7.1. Broad classifier as a first step

We investigate the possibility of building a hierarchical clas-
sifier, where a broad classifier is initially applied to remove a
large part of the contaminants, passing its results to a binary,
more specific, model, possibly resulting in a more pure sample.
We explore here using CATS before the SLSN classifier. Since
the EarlySNIa binary classifier has the majority of contaminants
within the SN-like broad class, a previous broad classifier is not
expect to impact their results.

We take only the alerts that CATS classified as Long to assess
the performance of the SLSN classifier. Results are shown in
Fig. 10, where we can see improvement in both, precision (from
0.9 to 0.953) and recall (0.458 to 0.682), together with both
AUCs (from 0.887/0.687 to 0.907/0.955 values for ROC/PR).
Albeit small, this improvement could help produce more reliable
follow-up catalogues with very few contaminants. The fraction
of false negatives increased, simply due to the sample to be
classified by the SLSN binary classifier being smaller.
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Fig. 10. Performance metrics for the SLSN classifier applied to the sam-
ple of alerts classified as ‘long’ by CATS.

The total completeness from this sample is approximately
35%, a small decrease when compared to the binary classi-
fier alone. The fraction of correctly identified PISNe drops by
approximately the same amount; a still significant amount of
PISNe were identified by this hierarchical method, an important
result considering the rarity of the class.

This comes mainly from missing SLSNe, while the fraction
of misclassified PISNe lowers by approximately 10%; an impor-
tant result since PISNe are one of the least represented objects in
the test set.

7.2. SUPERNNOVA binary into a broad classifier

Given that SNN has one binary classifier for each broad class,
we can combine them to create a multi-class classifier, poten-
tially outperforming the broad SUPERNNOVA model. In order
to obtain ROC and precision-recall curves, we join together all
probabilities for all five binary broad classifiers and apply a soft-
max function to the probability vector, similar to what a standard
DL multi-class classifier does. The predicted class is considered
to be the one with highest probability. We note that there are
a few light curves (approximately 0.09%) that have all binary
probabilities less than 0.5; that is, the models did not classify
it as being in any of the broad classes. These alerts are mainly
from the SN-like class, with SNII as the majority. We neverthe-
less assigned the broad class with the highest probability to them
since it will not impact the results.

Results are presented in Fig. 11 where we see improvements
over the broad SUPERNNOVA classifier mainly for the SN-like
and Long classes, while for the Periodic and Non-periodic the
results are similar. The Fast class is the exception, where the
combined binary results are worse than the broad SNN and
the binary SNN; the reason is that for a lot of Fast alerts, the
binary classifiers for Periodic and Non-periodic give larger prob-
abilities than the Fast one. So although in a Fast versus others
scenario they would be correctly classified, when combining all
binary classifiers they end up being classified as either Periodic
or Non-periodic, making the results worse. Since SUPERNNOVA
requires balanced samples for training, the limitation on the
number of alerts is applied on each class separately, instead of all
classes being limited by the least represented. The model now is
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Fig. 11. Performance metrics for the combined SUPERNNOVA binary
classifiers.

presented with more variety during training, and the probability
of the correct class are improved.

7.3. Combining classifiers for purity

Given the large volume of data LSST is expected to deliver on
a daily basis, being able to build extremely pure samples out
of tens of millions of light curves is extremely important, espe-
cially for follow-up purposes. Some of the models presented in
Sect. 5 target the same class (or broad class); therefore, one way
to improve the purity is to combine classifiers by only consider-
ing alerts that have been assigned the same class when presented
to intrinsically different classifiers.

We analyse how our broad classification may be improved
using CATS and the SUPERNNOVA binary classifiers: we only
consider alerts for which the probability of the binary SNN clas-
sifier corresponding to the class predicted by CATS is larger than
0.5. This happens for approximately 96% of the alerts in the test
set. We show the confusion matrix over this sample in Fig. 12,
where it can be seen that the precision improved for all classes
when compared to CATS and all SUPERNNOVA classifiers. The
recall is lower compared to SNN for the long and fast classes
(due to CATS).

8. Discussion

Our results show that all classifiers have mostly satisfactory per-
formance for their classes of interest, with very few exceptions.
Despite the difference in models and training methods in the
classifiers, a few common trends emerged.

All broad classifiers have trouble identifying the fast and long
classes, for both the validation and test sets. CATS and SUPERN-
NOVA (both the broad and the combined binary classifiers) have
different issues, with the former having higher purity and the
latter higher completeness. Furthermore, looking at Figs. 8a, 8b,
and 11, both CATS and SUPERNNOVA mix up the same classes:
Long with SN-like, Fast with Periodic. This suggests that the
similarity of the classes is intrinsic to the data set.

The Periodic broad class is very well characterised in the
data, with all multi-class classifiers achieving almost perfect
purity and completeness. Indeed, the light curves for variable
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Fig. 12. Confusion matrix for the alerts where CATS and each
SUPERNNOVA binary classifier agree (see text for details).

stars show a very distinctive periodicity, making them easy to
identify among the other classes.

CATS can be used as a first step in a hierarchical classifica-
tion scheme, in which it sends to binary classifiers only the alerts
belonging to their respective broad class. When applied to the
SLSN classifier, it shows a small increase in purity, even though
both classifiers were not meant to work together in the first place.
The in-sample completeness shows significant increase when
compared to SLSN by itself.

The false positives of the EarlySNIa classifier are all within
the SN-like broad class. This in turn means that using a broad
classifier as a first step will not help improve its results.

SUPERNNOVA binary classifiers have better recall than the
broad classifier for most classes, and an overall improvement par-
ticularly for the Long and SN-like classes. Given the current
configuration of SNN, binary classifiers leverage better small
training sets. Additionally, binary classifiers can be tuned to the
target goal and improve performance with simple actions such as
light curve length selection and hyper-parameter variation.

SUPERNNOVA binary classifiers can be combined into one
multi-class model, with better (or similar, depending on the
class) performance than its broad classifier. SNN is lightweight,
and thus it is feasible to do this without impacting LSST process-
ing. A similar approach could be used by other broad classifiers,
although care must be taken that the model is lightweight enough
so that the extra computational cost does not affect the time
necessary to process the alerts.

Samples with close to perfect purity can be built by requiring
two or more classifiers to match their predictions. Combining
CATS and all SUPERNNOVA binaries gives slightly better purity
for all classes when compared to each individual model, with all
classes except the Long reaching close to 100% purity.

9. Conclusions

For a few years now, broker teams have been successfully work-
ing with the ZTF alert stream and communication protocols as
a test bench for what is to be expected for LSST. This expe-
rience has been extremely successful and has allowed for the

development of an entire broker ecosystem, along with a diverse
and interdisciplinary community who supports it. Neverthe-
less, as valuable as this experience has been, it is also crucial
to prepare the infrastructure for the important and challenging
differences between the data delivered by the two experiments.

ELAsTiCC is a kind reminder that beyond hardware and
data format, ML models and broker infrastructure will need to
change significantly in order to fulfill expectations that will rise
with the arrival of LSST. This includes the design of algorithms
themselves, protocols for massive data transfers between geo-
graphically disconnected science teams, and experiment design
for proper evaluation and optimisation of trained models to allow
for the processing of millions of alerts per night. The analysis
presented here describes the strategies developed by the FINK
team to address these issues.

We introduced CATS, a deep learning classifier built espe-
cially to work with LSST data for broad classification, and it has
shown great performance. Other classifiers, including SUPERN-
NOVA and tree-based models, were adapted from their current
use on ZTF data. The adapted models performed well in their
respective classification tasks, delivering pure and/or complete
sub-samples. Moreover, we have also shown examples of how
different algorithms can be used to build an ensemble classifier
whose results outperform those from individual algorithms.

Nevertheless, it is important to keep in mind that FINK oper-
ates in a framework where each classifier (science module) is
developed independently by different science teams. Processing
is centralised by the FINK infrastructure, but model development
is geographically and scientifically distributed. This means that
each team has a different scientific goal in mind when developing
their own classifier.

Given nine different classifiers (plus the combined ones)
working at different tasks and showing different strong points,
it is paramount to clarify the requirements for each science case
so that the user can make an informed decision when applying
the models presented here. CATS, for example, can produce pure
samples for every class, but SUPERNNOVA (both multi-class
and binary classifiers) have a better completeness for the fast
and long classes and a similar purity for the SN-like and peri-
odic classes. In the future, it will be important to tailor models
and/or combine different ones to achieve the top performance for
a given science goal.

We also call attention to details that should be kept in mind
when interpreting the classification results stated here. First, we
are bound by the diversity and complexity of the initial data
set. The real data will certainly contain a number of inter-
mediate objects whose properties lie in between classes, thus
affecting these results. Moreover, the choice of training sam-
ple is of utmost importance in ML problems regarding both
their sample sizes and representativeness. Compared to its pre-
decessor, PLAsTiCC, the objective of ELAsTiCC was the clas-
sification of alerts (i.e. partial views of complete light curves).
Faced with the two different possibilities for a training set, we
chose the streamed alerts since they most resemble the test set
and results are more easily transferable to what is expected
from LSST.

Moreover, it is crucial to recognise that training an ML model
implies access to the data and to the necessary hardware to pro-
cess it. During this challenge, a new service was designed by
FINK so that each team could access the curated data neces-
sary for the training. This service was able to serve millions of
alerts regularly to various teams, where the training of the mod-
els was largely performed on commodity hardware. Despite the
undoubted usefulness of the data transfer service, irrespective of
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the volume of data to be transferred, we note that at the LSST
scale, training models will require user teams to access dedi-
cated hardware accelerators hosted on large data centres. This
is an area where FINK is actively planning on providing and thus
enabling a service for the community to train models at scale.

Considering the practical observational application of the
classification results, early identification is paramount for the
optimisation of follow-up resources and a major task of alert
brokers. We have shown that most of our ML algorithms are
capable of obtaining high-precision classification with less than
20 points. As more observations are added, the models gener-
ally give more accurate results. For the SN-like and fast classes,
this performance increase is only valid with detection time spans
related to their variability.

Finally, keeping in mind the intrinsic differences between
simulated and real data, results presented here can be used
to calibrate expectations regarding the output of FINK science
modules in the first stages of LSST operations. Throughout the
ten years of the survey, classifications will certainly evolve and
present even better numerical results.

In summary, we have shown that FINK is able to process
ELASTICC alerts in a fast and efficient manner and provide
informative ML classification scores for a variety of science
cases. This proves the adequateness of the FINK infrastructure
and ML algorithms to process the big data volumes of Rubin
LSST and, consequently, to contribute to the realisation of its
scientific potential.
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Appendix A: ROC and precision-recall curves

Fig. A.1: Receiver operating characteristic and precision-recall curves for all classifiers.
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Fig. A.1: Continued.
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