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1. INTRODUCTION

There are few concepts in mathematics and theoretical physics more important than that

of symmetry. For hundreds of years Galilean, or more recently Lorentzian, symmetry has

been a cornerstone in the development of our understanding of nature. Physicists have

frequently found that it is by understanding the symmetries that leave a physical system

invariant that allow them to make sensible hypotheses about its underlying structure.

Within the last century, symmetries, as exemplified by group theory, have been an

indispensable tool for the study of high energy particle physics as well as solid state

physics, crystallography and quantum chemistry to name only a few areas of current

scientific research.

Within the context of modern metric theories of gravitation, continuous symmetries

of spacetime may be elucidated by searching for Killing vectors. When we postulate the

existence of a spacetime Killing vector field the equations of motion themselves have

added symmetry. These are hidden, or internal, symmetries that can be made manifest

by the process of dimensional reduction; that is by regarding some of the metric compo-

nents as describing new matter content on an effective spacetime of a lower dimension.

From a purely mathematical viewpoint this procedure has great elegance giving rise as

it does to a harmonic mapping system. The effective matter content may then be in-

terpreted in terms of coordinates on another manifold; the target space of the harmonic

map. For pure gravity, Einstein-Maxwell theory and the truncation of Superstring the-

ory we will be discussing, these target manifolds have constant negative curvature. By

examining more closely these target spaces we can discover their symmetries. Under-

standing and parameterizing these symmetries in turn leads us to a reinterpretation of

the effective matter content in our theory. We are thereby led to the powerful method of

exact solution generating techniques. Given such a highly non-linear set of differential
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equations it seems at first quite remarkable that a few simple transformations involving

no more than simple algebraic manipulations can give us new and complicated solutions

from old.

The idea of dimensional reduction is not a new one. Kaluza-Klein theory attempts

to model the four-dimensional spacetime of everyday experience as the dimensional

reduction of a spacetime in five, or sometimes more, dimensions. The theory unifies

gravitation and electromagnetism, at least within a classical context, but requires the

existence of a new field which we call the dilaton. The unification of electromagnetism

and gravity isn’t quite what we expect from our understanding of the physics in the

laboratory insofar as there is a very special form of coupling between the dilaton and

the electromagnetic field. One may view the coupling as giving rise to an effective

polarization of the vacuum. That is to say we should distinguish between the electric

field and the electric displacement and between the magnetic field and the magnetic

induction. The effective permittivities and permeabilities are such that the speed of

light that one would measure remains unaltered.

Kaluza-Klein theory is not alone in exhibiting this sort of behaviour. String theory

too includes such a dilaton field. A problem immediately arises if we postulate the

existence of extra dimensions, namely that we do not observe them. The accepted

solution to this puzzle is to assume the extra dimensions are compactified, usually as a

circle of very small radius. When dimensionally reducing from more than five dimensions

more possibilities are available in the compactification procedure. Within the context

of String theory there is a special radius, related to the string tension that will allow

for enhanced symmetry; it is in this way that non-abelian gauge symmetries can be

incorporated within a quantum theory coupled with dimensional reduction.

When looking for a quantum theory of gravity most of the usual methods for quanti-

zation are fraught with conceptual difficulties. One reason for this arises because of the

special rôle time, or more generally the causal structure, is given in the quantization pro-

cedure. Fortunately the path integral formulation is free from most of these problems,

though it is not without its own difficulties. Postulating a path integral, or sum over

histories formulation to quantum gravity is useful in that some ideas can be tested with-
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out knowing the details of the full quantum theory. In particular certain semi-classical

processes can be investigated and provide hints on what is likely and unlikely to be a

feature of the full theory.

One area where there has been some debate is whether topology change is an essential

ingredient in a quantum theory of gravitation. Within the context of a path integral

formulation one might suppose that one sums over all metrics with a given fixed topology.

Others argue that it is metrics plus topologies, what we might call geometries, that one

should sum over. To try to resolve this question we can examine semi-classical processes

and see if we can find any that represent topology change. A semi-classical process

exhibiting such a phenomenon would surely imply that the full quantum theory must

allow for it and that the supposition of a path integral summation over only metrics was

doomed. Perhaps the most remarkable example (for most of us) of topology change is

the idea that the universe as whole tunnelled from nothing.

On a slightly less grand scale, there seem to be solutions in the semi-classical theory

that represent the pair production of black hole monopoles and anti-monopoles. To get

an idea of the rate of production of these monopoles we need to use something like a

saddle point approximation in the path integral. It is necessary therefore to know that

there are no other saddle points nearby. More formally we want to know about the

uniqueness of the instanton representing the pair creation process.

The black hole uniqueness theorem for the Kerr-Newman solution remained an un-

solved problem for the best part of a decade until it was completed in the early 1980s

when Bunting and Mazur exploited the special features present on the target space of

the appropriate harmonic mapping problem. It was only through an understanding the

symmetry that progress could be made. The analogous vacuum Einstein theory prob-

lem had been solved by a remarkable piece of trial and error manipulation of the field

equations by Robinson. The establishing of such a suitable divergence identity from the

field equations to prove a uniqueness result will be familiar to anyone who understands

the proof of the uniqueness of solutions to Laplace’s equation. We will be presenting a

new proof of the black hole divergence identity which exploits a complex manifold con-

struction of the effective electromagnetic Lagrangian. The advantage of the new proof
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is that it neatly fits in with the exact solution generating techniques that we will also

be discussing.

The problem of proving the uniqueness of the instanton amounts to proving the

uniqueness of a class of accelerating black holes confined inside a Faraday flux tube. This

is by no means a simple task. Not only is the solution is rather complicated, but more

importantly it has a different overall topology to that of the Kerr-Newman black hole.

The presence of an acceleration horizon complicates matters considerably, effectively

introducing a new boundary into the harmonic mapping problem. The domain on which

the harmonic mapping problem is played out is rectangular. The boundary conditions on

the horizons we need to impose are not very stringent, however the analysis is hampered

by the fact that two rectangles are in general not conformally homeomorphic, and thus

we cannot compare two candidate solutions that are defined on conformally inequivalent

domains. We may contrast this situation with the analysis of the uniqueness of the

Kerr-Newman black hole. The two dimensional domain we consider in that proof is a

semi-infinite rectangle. By scaling and translation any two such domains may be made

to coincide.

The trigonometric functions are invariant under a translation by 2π, they therefore

exhibit a discrete translational symmetry. Considerably more such symmetry is possible.

Amongst the meromorphic functions there are non-constant functions that are invari-

ant under translation by elements of a lattice. These are the elliptic functions. The

fundamental period parallelogram may be chosen in many different ways. One special

case is when we have a rectangular lattice so that the functions are naturally defined on

a rectangle in the complex plane. These maps are appropriate for the analysis of the

accelerating black hole uniqueness problem. Elliptic function theory is perhaps not as

well known as it might be to the physics community though from a mathematical point

of view it has many remarkable and fascinating results.

Hitherto the black hole uniqueness theorems have not allowed for the presence of

an acceleration horizon, in extending them in this direction we have made a significant

extension. So too is the extension to the Superstring, orN = 4 Supergravity theories. By

paying careful attention to the internal symmetries present when we require the solution
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to be static we can develop a formalism to prove black hole uniqueness results in these

theories. String theories are one of the most favoured routes to a theory of quantum

gravity. The low energy effective gravitational theory can be found and its black hole

solutions shed new light on possible non-perturbative aspects of these theories.

There exist analogous instanton solutions representing the black hole monopole-anti-

monopole pair creation in these theories. As in the Einstein-Maxwell theory the unique-

ness of these instantons is an important question. We can use the remarkable fact that

for a suitable truncation of these theories the appropriate harmonic mapping problem

is identical to two copies of that which we find for vacuum General Relativity and the

all-important divergence identity is readily at hand. We need to marry both new ex-

tensions to the uniqueness theorems to prove the uniqueness of these instantons which

have surprisingly until now been overlooked.

It is by no means the case that the uniqueness theorem formalism developed for the

Superstring theory is only applicable to accelerating black holes in electromagnetic flux

tubes. The theory has many applications though as yet rotating solutions fall beyond

its scope, as do the theories when incorporating an axionic field. Incorporating these

would involve establishing a suitable divergence identity of which we have only found a

special case. The positivity of the divergence result might be problematical to establish,

as the symmetric space has a signature with more than one timelike direction. Both the

Mazur method and the method given in the text rely on a single timelike direction. In

contrast Bunting’s result may well be the best method to establish such a result, relying

as it does much more on the negative curvature of the target space, than on the exact

details of the sigma-model. The uniqueness theorems we shall prove are important in

their own right but may also be regarded as illustrative of how we may use the theory

to prove uniqueness theorems subject to different asymptotic conditions.

Supersymmetry is another symmetry that is favoured by theoretical physicists. In

such theories the extremal black holes solutions are typically supersymmetric. These

satisfy the appropriate Bogomol’nyi bound and a state of anti-gravity can exist, that is

the attractive forces due to the even spin fields are held in equipoise with the repulsion

due to the odd spin ones. The basic result is that well-behaved solutions in such theories
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should be attractive at large distances. This is related to the idea that a congruence

of null geodesics passing at large distance from a source should converge due to the

gravitation influence. Using this focussing property, Penrose, Sorkin and Woolgar have

proved a version of the positive mass theorem. It is fundamentally different from the

existing proofs, and by mirroring the proof of their result in an auxiliary five dimensional

spacetime we can establish new anti-gravity bounds on the four-dimensional solutions

of dilaton gravity.

The special coupling the dilaton has to the electromagnetic field in such theories may

be interpreted in terms of an effective polarization of the vacuum. A simplified model of

this system is to neglect the gravitational effects and turn to the flat space version of this

theory. In such a way we can isolate the salient points of this aspect of the gravitational

theory, without needing to solve the full set of equations. In this limit the dilaton

coupling constant may be rescaled to unity. The cosmological defects in the theory

are more easily found than in the gravitational version and in particular cosmic string,

domain wall and Dirac monopole solutions may be found. The cosmic string solutions

are particular interesting in Dilation Electrodynamics. It turns out that magnetic flux

may become confined inside regions where the effective permeability is large compared to

infinity. When one repeats the calculation for a massive dilaton one finds that there are

solutions in which the flux becomes unconfined. In this way we can speculate a natural

solution to the monopole problem. Monopoles typically terminating cosmic string-like

solutions would be rapidly accelerated towards each other and annihilate in a phase

where the dilaton were massless. The breaking of supersymmetry is widely believed by

string theorists to lead to a massive dilaton. In this phase the magnetic flux may become

unconfined and leave no apparent defect to the future observer.

The stationary rotating black hole solutions in Einstein-Maxwell theory are described

by the Kerr-Newman Solution. In this solution the singularity is a ring within the event

horizon. Also within the horizon there is a region where Closed Timelike Curves (CTC’s)

are present. This need not cause much concern as the exterior region is causally dis-

connected from what happens inside the black hole. However the possibility of CTC’s

present within a region accessible to experiment has prompted some discussion recently.

One might hope that the concept of causality comes from an analysis of the physics,
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rather than having it as an added hypothesis. It is therefore worth studying spacetimes

where chronology violation may occur, and see to what extent physics throws up ob-

stacles to their existence. It is conceivable that at a classical level that self-consistent

histories be allowed. However there is a problem that the initial value problem in such

spacetimes is ill-posed in general, and there may be many classical solutions for a given

initial data set. It is therefore a good idea to try to understand the quantum mechanics

in such spacetimes; this may resolve some of the classical ambiguities and might provide

an arena for the play-off between the geometry (or rather the causal structure) and

quantum theory.

One particular problem with CTC spacetimes is the question of the unitarity of the

evolution operator. Work has been done which suggests that in such spacetimes an

evolution operator will not in general be unitary. There are two approaches one might

take. The first is to try to repair the theory by in some way extending the theory so

that unitarity is restored. The second way is to question the calculation of the evolution

operator and try to get a better understanding of the fundamental quantum mechanics.

Both approaches have been tried. There are a number of proposals that try to repair

unitarity. One we shall be investigating is to look to the theory of unitary dilations.

In this theory we have an auxiliary inner product space (which may be indefinite, such

spaces are called Krein Spaces). The general idea is that the Hilbert space on which

we have assumed the quantum theory in being played out is actually only a subspace of

a larger Krein space. Ordinarily the degrees of freedom not represented by the Hilbert

space are inaccessible to observations. To do this we restrict the form of observables on

the total Krien spaces. However the evolution operator is a unitary operator between

the relevant Krien spaces, though not considered as (the projection of) the operator on

the Hilbert space. In effect the extra degrees of freedom allow somewhere for parts of

the wavefunction to hide from view. The total evolution is unitary, at the expense of

introducing indefinite inner product spaces into the discussion. The idea of a unitary

dilation is motivated by the simple geometric observation that any linear transformation

of the real line is the projection of an orthogonal transformation (called an orthogonal

dilation of the original mapping) in a larger (possibly indefinite) inner product space. To

see this, note that any linear contraction on the line may be regarded as the projection
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of a rotation in the plane: the contraction in length along the x-axis, say, being balanced

by a growth in the y-component. Similarly, a linear dilation on the line may be regarded

as the projection of a Lorentz boost in two dimensional Minkowski space. The cost

of introducing indefinite inner product spaces may be too high; that is as yet unclear.

However there is a nice analogy with the Klien paradox. The probabilities one calculates

in this case may become negative, on account of the spacetime signature. The problem

is not however with the treatment of spacetime, but rather a signal that a further level

of quantization is required to understand the system of fields one is working with. It

seems reasonable that the necessity of introducing a Krein space may well be signalling

a similar situation. The problem is universal in that it is not due to the details of any

particular field, so the negative probabilities will come from the indefinite signature of

the inner product space rather than from the spacetime. It might be noted that a burst

of particle production has been suggested by Hawking to prevent a CTC region from

occurring. In a sense then the Unitary Dilation Proposal seems to be well suited to

account for the possibility.

The other route one might try is to re-calculate the evolution using different quantum

mechanical tools. The various quantization procedures we have at present all give the

same answers under normal situations. It is interesting to find out whether one or other

is unusually well suited to discuss CTC models. If it proves to be the case then perhaps

we will have a better understanding of quantum theory in situations that are beyond

experiment. In particular, if one method were favoured over the others that might be

the one to think about when trying to construct quantum gravity.

We will be investigating the CTC models within the formalism of the Quantum Initial

Value Problem (QIVP). This is not in itself a quantization procedure, but with operator

ordering conventions we are able to press home the analysis of a number of CTC model

spacetimes and compare our answers with those obtained using path integral techniques.

The idea is to investigate the quantum theory by setting up an operator-valued initial

data set and trying to find an evolution that obeys the operator version of the equations

of motion. We adopt this approach as it does not presuppose the solutions will obey

the Canonical Commutation (Anti-Commutation) Relations (CCR’s/CAR’s). This is in

contrast with many quantization procedures which automatically guarantees that they
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are preserved (and often require the existence of quantities that are not well-defined in

our models). We say that the QIVP is well-posed if an initial data set defined to the

past of the nonchronal region and satisfying the CCR/CAR’s is evolved in such a way

that the solution to the future of the nonchronal region also forms a representation of

the CCR/CAR’s. As we shall see this more general setting allows us to consider systems

where unitarity is not necessarily preserved.

We shall be considering a number of simple CTC model spacetimes, of a type in-

troduced by Politzer, these comprise of a number of discrete spatial positions and a

continuous timelike coordinate that has been subject to appropriate identification, to

produce some CTC’s, and investigate a simple linear field. In this case the evolution is

unitary, and in agreement with the path integral. More interestingly, the treatment of

the interacting version of the model using the QIVP formalism yields different results

from that obtained from the path integral. We suggest that this is due to the inclusion

of too large a set of paths in the path integral method that has been proposed.

In one particular model we study, consisting of two spatial points we discover that

the QIVP technique leads to a unitary evolution whereas the path integral does not.

It has been suggested that the non-unitary of the S-matrix is not the physically rele-

vant quantity, so it’s non-uniqueness is unimportant. Instead it is the superscattering

operator, mapping initial to final density matrices that one should be computing. We

shall be examining a system where the evolution rule cannot be transcribed into the lan-

guage of a superscattering operator with the usual properties, in particular the positive

definiteness of the evolved density matrix is violated; this leads to negative probabilities.

One of the motivating factors in studying the quantum theory for CTC models is to

try to see if quantum mechanics resolves the classical ambiguities present in the initial

value problem. Using a coherent states approach we will show that the quantum theory

is well-defined in these models, and investigate the classical limit. For certain coupling

strengths the classical non-uniqueness is resolved unambiguously within the quantum

theory. However, matters are not always so straightforward. There seem to be other

coupling strengths were no classical limit is physically relevant. Perhaps more interesting

still are those situations where a classical limit does exist, but does not correspond to
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a solution to the classical equations of motion and boundary conditions. In a sense the

classical solution is a superposition of modes that achieve consistency only after a finite

number of traversals of the CTC.

One suggestion that has been discussed is that CTC models may induce, possibly

unlimited, particle production. We will examine a lattice model spacetime with a unitary

S-matrix where this is indeed the case. This model is loosely based about Thirring’s

Model, with suitable CTC identifications. It is interesting to compare lattice model

calculations with the analogous arguments for the continuum. A suitable limit of the

lattice model and the treatment of the continuum limit yield identical results, this gives

us some confidence in supposing that the conclusions from the consideration of our rather

simplified CTC models can be taken over to a more realistic setting.

This dissertation has ten chapters and one appendix. In Chap. 2 we discuss internal

symmetry transformations, explaining how to use dimensional reduction to exhibit some

underlying symmetry of Einstein’s equations. In this chapter we also give a construction

of the Poincaré and Bergmann metrics, which naturally arise from consideration of pure

Einstein theory and Einstein-Maxwell theory respectively. This construction will be

the starting point for our new proof of the Bunting/Mazur result. The Double Ehlers’

transformation for the superstring and N = 4 supergravity theories is derived in Chap. 2,

this will be important later in our discussions on black hole superstring uniqueness

theorems.

In Chap. 3 we present a number of important exact solutions that we shall be study-

ing. In particular we will be meeting the C-metric and Ernst solution. We shall also

be looking at the Weyl coordinate system, investigating some exact solutions derived

by considering an internal symmetry transformation. Later on we will be exploiting

elliptic function theory to write the C-metric and Ernst solution in terms of coordinates

that will be highly advantageous to us in Chap. 4. In addition there is an appendix to

Chap. 3 that quickly reviews the properties of the Jacobi elliptic functions we shall need

and sets out our conventions.

In Chap. 4 we prove the uniqueness of the Ernst solution and C-metric by exploiting

the theory of Riemann surfaces and elliptic functions. We also present a new proof of
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the positivity of the divergence required in that proof using the complex hyperboloid

construction of the Bergmann metric from Chap. 2. The absence of a proof of this result

was the reason why the Kerr-Newman black hole uniqueness theorem remained unproved

for many years. Finally we discuss the issue of black hole monopole pair creation and

explain how our uniqueness theorem has a bearing on that problem.

Chap. 5 is devoted to extending the black hole uniqueness theorems to the static,

axisymmetric, and axion-free, truncation of superstring theory. We introduce the Stringy

C-metric and Stringy Ernst solution. These provide the basis for a set of new instantons

that mediate black hole pair production in that theory. By using what we have learnt

from Chap. 2 and Chap. 4 we then establish the uniqueness of these solutions.

Suitably truncated String theory and Kaluza-Klein theory are both examples of dila-

ton gravity. Starting from the effective Lagrangian for dilaton gravity we will find in

Chap. 6 new bounds on the ADM mass of the spacetime in terms of the dilaton and

electromagnetic charges. This is the anti-gravity bound and is derived by generalizing

the proof of the positive mass theorem given by Penrose, Sorkin and Woolgar.

In Chap. 7 we investigate the cosmic string-like solutions to flat space dilaton elec-

trodynamics. We also present solutions representing other topological defects, such as

domain walls and Dirac monopoles.

Part II of this dissertation is concerned with the problems of CTC’s, and in particular

the properties of quantum fields in chronology violating spacetimes. In Chap. 8 we

attempt to provide a possible mechanism whereby the loss of unitary that has been

noted by various authors may be repaired. This is the Unitary Dilation Proposal. We

also put another proposal made by Anderson on a more rigorous footing and comment

on an operational problem that arises.

Chap. 9 is where we discuss the Quantum Initial Value Problem for a class of fields in

specific chronology violating spacetimes. We mention the classical non-uniqueness of the

problem and how quantum theory (at least with specific operator ordering) can remove

this ambiguity. A large section is dedicated to the classical limit of our quantum theory

and reveal some rather interesting results. Throughout we will be comparing our answers

with those obtained using path integral methods and noting that the methods do not
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agree. We therefore deduce that the path integral approach needs some modification in

these CTC spacetimes; as the current methods do not provide solutions to the quantum

field equations.

In Chap. 10 we perform a calculation of the particle creation due to the presence of

a system of CTC’s. The calculation yields an ultraviolet divergence in the total particle

number and therefore a divergence in the stress energy tensor. This is in support of the

Chronology Protection Conjecture. We also compare the results of the QIVP and path

integral methods and find that for this model the results do agree, in contrast with the

models in Chap. 9.

Finally we include one appendix, where we derive a few formulae that are necessary

for the dimensional reduction calculations in a number of the chapters in Part I.



Part I

BLACK HOLES AND DILATONS



2. INTERNAL SYMMETRY TRANSFORMATIONS

2.1 Introduction

One striking aspect of vacuum General Relativity is its underlying simplicity. Looked

at from the point of view of trying to propose a generally covariant action functional it

is hard to imagine how a more simple theory describing the gravitational field by the

curvature of spacetime might be constructed. A very natural extension to pure gravity

is obtained when we consider the gravitational field to have sources that are described

by a harmonic mapping Lagrangian. If we postulate the existence of a Killing vector

field then Einstein-Maxwell theory naturally falls into this form when we consider the

process of dimensional reduction.

In this chapter we will be studying a number of harmonic mappings and exploiting

their symmetries. We begin in Sect. 2.2 by investigating the dimensional reduction of

pure gravity. This leads us to the SL(2,R)/SO(2) σ-model found by Geroch [5]. The

generalization to include an electromagnetic field is treated in Sect. 2.3; the construction

presented there yields an SU(1, 2)/S (U(1) × U(2)) σ-model. The target space metrics

for these theories are the Poincaré and Bergmann metrics respectively. A geometrical

construction of these is presented in Sect. 2.4. The construction presented there will be

important in establishing a new proof of the Bunting and Mazur result [6, 7, 8].

Having established the relationship between linear transformations in an auxiliary

complex space and internal symmetries of the fields arising from the dimensional re-

duction procedure, we derive the Ehlers’ transformation appropriate to vacuum General

Relativity [9] in Sect. 2.5, and in the section following the transformations we find for its

electromagnetic extension. This includes a derivation of the Harrison transformation [10]

which will be important in subsequent chapters. We will show how the Harrison and
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Ehlers’ transformations are 1-parameter subgroups of a larger eight dimensional group of

transformations mapping new solutions from old [11], however various gauge and obvious

scaling symmetries are included and these hold no interest for our investigations.

Superstring theory is a theory that has been very popular as a possible approach

to unifying General Relativity and Quantum Theory. In Sect. 2.7 we applying similar

techniques to those employed for pure gravity and Einstein-Maxwell theory to derive

some internal symmetry transformations for a particular truncation of this theory. The

N = 4 Supergravity theory has the same possible truncation, so our result is also valid

in that theory. The particular form of the effective action after performing a dimensional

reduction is highly reminiscent of what we find for pure gravity. In particular this allows

us to use an Ehlers’ transformation, or more precisely a Double Ehlers’ Transformation,

as the effective Lagrangian consists of two copies of what we find for pure gravity. Later

in Chap. 5 we will use this fact to prove black hole uniqueness results in the Superstring

theory.

2.2 Pure Gravity

In this section we investigate the effective Lagrangian arising from pure gravity after a

dimensional reduction on a Killing vector field K = ∂/∂t. Our starting point is to write

the metric in the form

g = −V (dt+ A) ⊗ (dt+ A) + V −1γijdx
i ⊗ dxj (2.2.1)

and introduce the twist 1-form ω associated with the vector field K. We set

ω = ∗(k ∧ dk) , (2.2.2)

so that k = −V (dt+ A). Let us define H = dA. We write H rather than F here so

as not to cause notational difficulties when we come to look at the analogous arguments
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in the presence of an electromagnetic field. We therefore have

H = d

(
k

iKk

)
(2.2.3)

and
∗ω

iKk
= k ∧ H . (2.2.4)

Note also that iKH = 0 from Eq. (2.2.3) and the equation LKk = 0. Thus,

∗ (ω ∧ ∗ω)

(iKk)2 = ∗ (∗ (k ∧ H) ∧ k ∧ H)

= ∗ (iK∗H ∧ k ∧ H)

= − (iKk)∗ (H ∧ ∗H) . (2.2.5)

In index notation, and in terms of the three metric γij this result states:

2ωiωjγ
ij

V 2
= HijHklγ

ikγjl. (2.2.6)

We may now calculate dω:

dω = −∗δ (k ∧ dk)

= ∗LKdk + ∗ (k ∧ δdk)

= 2 ∗ (k ∧ R(k)) , (2.2.7)

where R(k) is the Ricci 1-form associated with k. For pure gravity Rab = 0 and hence

(at least locally) we may introduce a twist potential, ω defined by ω = dω.

We are now in a position to dimensionally reduce the Lagrangian density on the

Killing vector K. Eq. (A.31) of Appendix A gives the appropriate expression involving
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H and V . We find after a suitable transcription of notation that

L =
√
|γ|
(

3R− 1

2
γij
[∇iV∇jV + ∇iω∇jω

V 2

])
, (2.2.8)

in which a total divergence has been discarded. We recognize this as a harmonic mapping

(or sigma model) Lagrangian

L =
√

|γ|
(

3R− 2γijGAB
∂φA

∂xi
∂φB

∂xj

)
,

(
φA
)

=

(
V

ω

)
, (2.2.9)

with

G = GABdφA ⊗ dφB =
dV ⊗ dV + dω ⊗ dω

4V 2
. (2.2.10)

The metric G is the metric on the target space of the harmonic map. This target space

is the half-plane V > 0. It is advantageous to define a complex coordinate ǫ = V + iω,

and use a Möbius transformation to map the half-plane to the unit disc:

ξ =
1 + ǫ

1 − ǫ
. (2.2.11)

The metric G now takes the form

G = GABdφA ⊗ dφB =
dξ ⊗

S
dξ

(1 − |ξ|2)2 . (2.2.12)

Here we write ⊗
S

for the symmetrized tensor product. This metric can be recognized

as the Poincaré metric on the unit disc. We shall give a geometrical construction of the

Poincaré metric in Sect. 2.4, which will be a guide for how to treat more complicated

harmonic maps that arise when we investigate other theories we will be interested in

that couple to certain matter fields.

2.3 Einstein-Maxwell Theory

In this section we look at the dimensional reduction of the Einstein-Maxwell Lagrangian

on a Killing vector K = ∂/∂t. In units where Newton’s constant is taken to be unity,
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the Lagrangian density is given by

L =
√

|g|
(
R− FabF

ab
)
. (2.3.1)

The field F being derived from a vector potential: F = dA. We will be assuming that

the Maxwell field obeys the appropriate symmetry condition: LKF = 0. The exactness

of F implies that

diKF = 0. (2.3.2)

It is now convenient to introduce the electric and magnetic fields by

E = −iKF and B = iK∗F . (2.3.3)

Notice that iKE = iKB = 0 as a consequence of the general result (iK)2 = 0. The

electromagnetic field tensor may be decomposed in terms of the electric and magnetic

fields as follows:

F =
−k ∧ E − ∗ (k ∧ B)

iKk
. (2.3.4)

The Lagrangian for the electromagnetic interaction, proportional to FabF
ab, may be

written in terms of the E and B fields,

1
2
FabF

ab = ∗ (F ∧ ∗F )

=
∗ (E ∧ ∗E − B ∧ ∗B)

iKk

=
|B|2 − |E|2

V
. (2.3.5)

Two of Maxwell’s equations, namely the ones involving the divergence of B and the curl

of E arise not from the Lagrangian, but rather from the exactness of F . In order to find
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these equations we evaluate iK∗dF = 0:

iK∗dF = iK

[
∗

(
d

(
k

iKk

)
∧ E

)
− δ

(
k ∧

(
B

iKk

))]

= (iKk) δ

(
B

iKk

)
− iEω

iKk
(2.3.6)

or in vector notation

∇.
(

B

V

)
+

ω.E

V 2
= 0 . (2.3.7)

This equation is a constraint on the fields. We also notice that dF = 0 implies together

with the symmetry condition, that iKdF = −diKF = −dE = 0 and hence that locally

we may write E = dΦ. In order to progress we will also need to know about the

divergence of ω/V 2. Firstly observe that

d

(
k

iKk

)
= iKC (2.3.8)

for some 3-form C. This follows from the fact that when we apply iK to the 2-form on

the left hand side we get zero (as previously mentioned in the last section). Decomposing

the left hand side into ‘electric’ and ‘magnetic’ parts we see that the ‘electric’ part is

zero. This leads to

−∇.
( ω

V 2

)
= δ

( ω

V 2

)
= ∗

[
d

(
k

iKk

)
∧ d

(
k

iKk

)]

= ∗(iKC ∧ iKC)

= ∗iK(C ∧ iKC) = 0, (2.3.9)

as the last equation involves the inner product of a 5-form, which automatically vanishes.

The constraint equation may therefore be written as a divergence:

∇.
(

B

V
− ωΦ

V 2

)
= 0 . (2.3.10)
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In order to impose the constraint we need to make use of a Legendre transformation.

To this end we introduce a Lagrangian multiplier, Ψ. After discarding total divergences

the Lagrangian to vary is given by

L =
√

|g|
(
R + 2

[ |∇Φ|2 − B2

V
+

2B.∇Ψ

V
− ω.(Φ∇Ψ − Ψ∇Φ)

V 2

])
. (2.3.11)

Varying with respect to B we conclude that B = ∇Ψ and performing the dimensional

reduction to three dimensions we find

L =
√
γ

(
3R− 2

[ |∇V |2 + ωiω
i

4 V 2
− |∇Φ|2 + |∇Ψ|2

V
− ω.(Φ∇Ψ − Ψ∇Φ)

V 2

])
. (2.3.12)

All indices in the above equation are raised and lowered using γij and its inverse.

As in the case of pure gravity we try to introduce a twist potential by examining dω.

Eq. (2.2.7) and Einstein’s equation in the presence of an electromagnetic field yield

dω = 16π∗ (k ∧ T (k)) (2.3.13)

where the stress-energy 1-form associated with k, denoted T (k), is given by

T (k) =
1

4π

(
∗(iKF ∧ ∗F ) − 1

2
∗(F ∧ ∗F )k

)
. (2.3.14)

Substituting Eq. (2.3.14) into (2.3.13), we find

dω = 4∗ (k ∧ ∗ (iKF ∧ ∗F ))

= 4iKF ∧ iK∗F

= −4 E ∧ B . (2.3.15)

It then follows that

d(ω + 2(ΦdΨ − ΨdΦ)) = 0, (2.3.16)
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and we may locally introduce a potential, ω, with dω = ω + 2(ΦdΨ − ΨdΦ). It turns

out to be highly useful to combine the two potentials, Φ and Ψ into a single complex

potential, ψ = Φ + iΨ. Using this complex potential we have

iω = idω − ψdψ + ψdψ . (2.3.17)

We are now in a position to define the Ernst potential [12], ǫ by, ǫ = V − |ψ|2 + iω.

Then clearly

dǫ+ 2ψdψ = dV + iω . (2.3.18)

Substituting this into Eq. (2.3.12) we get

L =
√

|γ|
(

3R− 2

[ |∇ǫ+ 2ψ∇ψ|2
4V 2

− |∇ψ|2
V

+
iω.(ψ∇ψ − ψ∇ψ)

V 2

])

=
√

|γ|
(

3R− 2

[ |∇ǫ+ 2ψ∇ψ|2
4V 2

− |∇ψ|2
V

])
(2.3.19)

=
√

|γ|
(

3R− 2γijGAB
∂φA

∂xi
∂φB

∂xj

) (
φA
)

=

(
ǫ

ψ

)
. (2.3.20)

with the harmonic mapping target space metric GAB given by

G = GABdφA ⊗ dφB =

(
dǫ+ 2ψdψ

)
⊗

S

(
dǫ+ 2ψdψ

)

4V 2
− dψ ⊗

S
dψ

V
. (2.3.21)

This metric is conveniently written in terms of new variables with

ξ =
1 + ǫ

1 − ǫ
; η =

2ψ

1 − ǫ
. (2.3.22)

The metric G then takes the form

G =
(1 − |η|2)dξ ⊗

S
dξ + (1 − |ξ|2)dη ⊗

S
dη + ξηdξ⊗

S
dη + ξηdξ ⊗

S
dη

(1 − |ξ|2 − |η|2)2 . (2.3.23)

This is the Bergmann metric, and is the natural generalization of the Poincaré metric
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in higher dimensions, as we shall see in the following sections there is an interesting

SU(1, 2) action preserving this metric. With these transformations we will be able to

generate new solutions from old, in both the pure gravity and Einstein-Maxwell theories.

2.4 The Poincaré and Bergmann Metrics

The Poincaré and Bergmann metrics have simple geometrical constructions. The Poincaré

metric is the natural metric to put on the unit disc, as its isometries are precisely those

Möbius maps that leave the unit disc invariant. Our starting point is the vector space

C
n+1. For the Poincaré metric, n = 1, whilst for the Bergmann metric n = 2. We will

be using complex coordinates z0, z1, ..., zn. Let us write

η =




−1

1

1
. . .

1




(2.4.1)

and define an indefinite inner product using 〈w, z〉 = w†ηz. We therefore have ds = ‖dz‖.
This metric induces a metric on the hyperboloid defined by

‖z‖2 = −1. (2.4.2)

Fig. 2.1 shows how we may project from any point on the hyperboloid to a point on

the unit disc (or ball if n ≥ 2). In the diagram each point on the hyperboloid corresponds

to a circle, as two points differing by a phase are projected to the same point on the disc.

The disc sits in the space at z0 = 1, touching at the lowest point on the hyperboloid

given by Eq. (2.4.2).
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z

v

0

Hyperboloid ‖z‖2 = −1

The unit disc resides as a

cross section of the light cone

�
�

�*

�

Fig. 2.1: Construction of the projection mapping from the hyperboloid

‖z‖2 = −1 to the unit disc. The induced metric on the disc from

this construction is the Poincaré metric, or in higher dimensions

the Bergmann metric.

We will find it convenient to write




z0

z1
...

zn




= reit




1

v1

...

vn



, r−2 = 1 − v†v. (2.4.3)

Using 2dr = (dv†v + v†dv)r3, we quickly establish that

ds2 = dz†ηdz = − [dt+ A]2 + r2dv†dv + r4dv†vv†dv, (2.4.4)

and

A =
i

2
r2
(
v†dv − dv†v

)
. (2.4.5)
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We also notice that dt+ A may be written as

dt+ A =
i

2

(
dz†ηz − z†ηdz

)
. (2.4.6)

Hence we find that the metric can then be expressed as

ds2 = − [dt+ A]2 + gaḃdv
advḃ. (2.4.7)

We call gaḃ the Bergmann metric for n = 2, or the Poincaré metric for n = 1. We remark

in passing that these metrics are Kähler, and one may define the symplectic 2-form Ω

by

Ω = −i
(
r2dv† ∧ dv + r4dv†v ∧ v†dv

)
. (2.4.8)

A simple calculation then shows,

dΩ = 0. (2.4.9)

As with all Kähler metrics we may derive the metric and symplectic 2-form from a

Kähler potential, K, where in this case

K = log r (2.4.10)

with

ds2 = 2dv†
(
∂2K

∂v∂v†

)
dv (2.4.11)

and

Ω = 2iddK, (2.4.12)

where d and d are the exterior derivatives with respect to holomorphic and anti-

holomorphic coordinates respectively.

We will now proceed to investigate the isometries of the hyperboloid with this metric,

acting with elements of U(1, n). We see that if g ∈ U(1, n) (so that g†ηg = η) then we

will have that

dt+ A 7→ i

2

(
dz†g†ηgz − z†g†ηgdz

)
=
i

2

(
dz†ηz − z†ηdz

)
= dt+ A. (2.4.13)
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So the elements of U(1, n) will generate isometries of the Bergmann or Poincaré

metric. When we project onto the domain v†v < 1 we get isometries from the elements

of SU(1, n), as a mere change of phase gives rise to the same isometry of the Bergmann

metric, it just generates a translation of the t-coordinate. The group of isometries acts

transitively on the domain, and hence we draw the conclusion that the curvature must

be constant. It is useful to look at the stabilizer of some point, for simplicity (and

without loss of generality) we take the origin. We observe that if

g




1

0
...

0




= reit




1

0
...

0



, g ∈ SU(1, n), (2.4.14)

then g ∈ S(U(1)×U(n)), so we may identify the domain with the (symmetric) space of

left cosets SU(1, n)/S (U(1) × U(n)).

In this section we have seen how to construct the Bergmann metric in terms of a

suitable projection and an auxiliary complex vector space. The electrovac system can

be expressed in this language by defining

z =




1 − ǫ

1 + ǫ

2ψ


 (2.4.15)

with the Lagrangian written as

L =
√
γ

(
3R− 2

‖ (∇z)⊥ ‖2

‖z‖2

)
. (2.4.16)

We have defined the orthogonal component of ∇z as (∇z)⊥ = ∇z−〈z,∇z〉z/‖z‖2. It is

clear that there is much symmetry in this system and we will be exploiting this fact in

the next few sections as well as in Sect. 4.5 when we present a new proof of the relevant

divergence identity vital for the construction of black hole uniqueness results.
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2.5 The Ehlers’ Transformation (Pure Gravity)

In Sect. 2.2 we found that the metric on the target space of the harmonic mapping for

pure gravity reduced on a timelike Killing vector K took the form

G = GABdφA ⊗ dφB =
dξ ⊗

S
dξ

(1 − |ξ|2)2 . (2.5.1)

We may apply the isometries that we found in the previous section and re-interpret in

terms of the twist and ‘Newtonian’ potentials. As we have seen the Poincaré metric has a

natural interpretation in terms of an SU(1, 1)/S(U(1)×U(1)) harmonic mapping system.

This space is isomorphic to SL(2,R)/SO(2) which was first noticed by Geroch [5]. We

may act with an element A ∈ SU(1, 1) by means of the transformation

reit

(
1 − ǫ

1 + ǫ

)
7→ reitA

(
1 − ǫ

1 + ǫ

)
. (2.5.2)

There are two obvious isometries, a scaling of the Killing vector,

ǫ 7→ eθǫ (2.5.3)

which corresponds to the boost A,

A =

(
cosh θ sinh θ

sinh θ cosh θ

)
, (2.5.4)

and a gauge transformation of the twist potential:

ǫ 7→ ǫ+ it (2.5.5)

corresponding to the U(1, 1) matrix

B =

(
1 − it/2 −it/2
it/2 1 + it/2

)
. (2.5.6)
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The remaining degree of freedom is usefully expressed by considering the action of

(
1 − it/2 it/2

−it/2 1 + it/2

)
, (2.5.7)

this gives rise to the Ehlers’ transformation [9]:

ǫ 7→ ǫ

1 + itǫ
. (2.5.8)

These maps allow us to generate new solutions to Einstein’s equations from previously

known solutions when that solution possesses a Killing vector. In the case of pure gravity

there is a one-parameter set of new solutions that can be derived in this way, SU(1, 1) is

a three-dimensional Lie group but as we have seen, gauge transformations of the scalar

potential and a rescaling of the Killing vector account for two of these degrees of freedom.

2.6 The Transformations for Einstein-Maxwell Theory

The Lie group SU(1, 2) is defined to be the set of all matrices

SU(1, 2) = {B ∈ GL(3,C) | B†ηB = η, det B = 1} (2.6.1)

where

η =




−1 0 0

0 1 0

0 0 1


 , (2.6.2)

with a group structure derived by using the standard matrix multiplication.

It is highly useful to define the involutive automorphism σ : SU(1, 2) → SU(1, 2) by

σ(A) = ηAη. We are already aware of some of the isometries of the Bergmann metric,
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for instance we may add a constant to the twist potential:

ǫ 7→ ǫ+ it,

ψ 7→ ψ, (2.6.3)

where t is real. This transformation corresponds to the matrix

A =




1 − it/2 −it/2 0

it/2 1 + it/2 0

0 0 1


 . (2.6.4)

with action defined by

r′eit
′




1

ξ′

η′


 = reitA




1

ξ

η


 . (2.6.5)

The matrix σ(A) generalizes the Ehlers’ transformation:

ǫ 7→ ǫ

1 + itǫ
,

ψ 7→ ψ

1 + itǫ
. (2.6.6)

Another obvious isometry of the Bergmann metric results from making gauge transfor-

mations to the electric and magnetic potentials:

ǫ 7→ ǫ− 2βψ − |β|2, (2.6.7)

ψ 7→ ψ + β. (2.6.8)
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This arises from considering the SU(1, 2)-matrix

B =




1 + |β|2/2 |β|2/2 β

−|β|2/2 1 − |β|2/2 −β
β β 1


 , β ∈ C. (2.6.9)

The matrix σ(B) gives rise to the Harrison transformation [10]:

ǫ 7→ Λ−1ǫ,

ψ 7→ Λ−1(ψ + βǫ),

Λ = 1 − 2βψ − |β|2ǫ. (2.6.10)

Finally to complete a set of eight generators for the group consider the combined rescaling

of the Killing vector and electromagnetic duality rotation:

ǫ 7→ |α|2ǫ,

ψ 7→ αψ α ∈ C. (2.6.11)

which corresponds to the matrix

C =




(α−1 + α) /2 (α−1 − α) /2 0

(α−1 − α) /2 (α−1 + α) /2 0

0 0 1


 . (2.6.12)

The matrix σ(C) corresponds to a redefinition of the parameter α and hence does not

give rise to any new transformations.
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2.7 The N = 4 Supergravity and Superstring Theories

Let us now turn to a truncated theory arising from the bosonic sector of the N = 4

Supergravity and Superstring Theories. These theories possesses a dilaton with coupling

parameter equal to unity, as well as electric and magnetic potentials. For simplicity

we will restrict attention to the static truncation of the harmonic map. The N = 4

theory possesses an axionic field, and six U(1) gauge fields that combined have an SO(6)

invariance. Together with a suitable duality rotation it is possible to reduce the theory

to one with just two U(1) gauge fields, one purely electric, the other purely magnetic. At

this point the axion decouples and can be consistently set equal to zero. What remains

can be written in terms of an effective single electromagnetic field (with both electric

and magnetic parts), see Gibbons [13] for further details. The Lagrangian density can

then be written:

L =
√

|g|
(
R− 2|∇φ|2 − e−2φFabF

ab
)
. (2.7.1)

After a dimensional reduction on a spacelike axial Killing vector field m = ∂/∂ϕ it takes

the form:

L =
√
γ

(
3R − 2

( |∇X|2
4X2

+ |∇φ|2 +
e−2φ|∇ψe|2

X
+
e2φ|∇ψm|2

X

))
(2.7.2)

where

g = Xdϕ⊗ dϕ +X−1γijdx
i ⊗ dxj , (2.7.3)

dψe = −imF , (2.7.4)

dψm = e−2φim∗F , (2.7.5)

3R is the Ricci scalar of the metric γij and the metric γij has been used to perform

the contractions in Eq. (2.7.2). The Hodge dual in Eq. (2.7.5) is that from the four-

dimensional metric (2.7.3). In order to derive Eq. (2.7.2) we have needed to perform a

Legendre transform, which has the effect of changing the sign of the |∇ψm|2 term from

what one might have näıvely expected. The justification for this follows in a similar
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manner to the derivation of Eq. (2.3.12). We now define new coordinates

X+ = X1/2eφ and X− = X1/2e−φ. (2.7.6)

Together with the electrostatic potentials ψ+ =
√

2ψe and ψ− =
√

2ψm. The metric on

the target space of the harmonic map is given by

GABdφA ⊗ dφB =
dX+ ⊗ dX+ + dψ+ ⊗ dψ+

X2
+

+
dX− ⊗ dX− + dψ− ⊗ dψ−

X2
−

. (2.7.7)

We remark that this precisely takes the form of two copies of the Lagrangian for pure

gravity. We will be exploiting this fact in Chap. 5 in relation to the Black Hole Unique-

ness Theorems. For the moment we merely note that we can perform independent

Ehlers’ transformations to both X+ and X− to derive new solutions.

2.7.1 The Double Ehlers’ Transformation

Performing independent Ehlers’ transformations to the system yield the following:

X 7→ X

[1 + β2 (Xe2φ + ψ2
+)] [1 + γ2 (Xe−2φ + ψ2

−)]
; (2.7.8)

e2φ 7→ e2φ
1 + γ2

(
Xe−2φ + ψ2

−
)

1 + β2 (Xe2φ + ψ2
+)

; (2.7.9)

ψ+ 7→ ψ+ + β
(
Xe2φ + ψ2

+

)

1 + β2 (Xe2φ + ψ2
+)

; (2.7.10)

ψ− 7→ ψ− + γ
(
Xe−2φ + ψ2

−
)

1 + γ2 (Xe−2φ + ψ2
−)

. (2.7.11)

For the transformation from a vacuum solution we have the slightly simpler form:

X 7→ X

(1 + β2X) (1 + γ2X)
; (2.7.12)
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e2φ 7→ 1 + γ2X

1 + β2X
; (2.7.13)

ψ+ 7→ βX

1 + β2X
; (2.7.14)

ψ− 7→ γX

1 + γ2X
. (2.7.15)

In particular if we apply this to Minkowski space we generate the Stringy Melvin Uni-

verse:

g =
(
1 + β2r2 sin2 θ

) (
1 + γ2r2 sin2 θ

) (
−dt⊗ dt+ dr ⊗ dr + r2dθ ⊗ dθ

)

+
r2 sin2 θdϕ⊗ dϕ(

1 + β2r2 sin2 θ
) (

1 + γ2r2 sin2 θ
) ; (2.7.16)

e2φ =
1 + γ2r2 sin2 θ

1 + β2r2 sin2 θ
; (2.7.17)

A = −
√

2γr cos θdt+
βr2 sin2 θdϕ√

2
(
1 + β2r2 sin2 θ

) . (2.7.18)

This solution represents the stringy generalization of Melvin’s Universe. Whereas in

Melvin’s universe the electric and magnetic fields can be transformed into one another by

a simple duality rotation without affecting the metric (meaning often that we need only

consider a purely magnetic or electric universe), the stringy universe of necessity involves

both electric and magnetic fields. These fields are parallel and provide a repulsive force

to counterbalance the attractive force of the spin zero dilaton and spin two graviton

fields. The Stringy Melvin Universe will be important to us as it will model a strong

electromagnetic field in string theory and we will be considering the mediation of the

pair production of suitable black hole monopoles by such fields in Chap. 5.



3. WEYL COORDINATES, THE C-METRIC AND THE ERNST

SOLUTION

The mathematics of the axisymmetric stationary Einstein theory has some remarkable

and rather unexpected results. In particular it has an interesting relationship to New-

tonian gravity. To understand this relationship it is advantageous to use a particular

coordinate system, known as Weyl coordinates. The representation of familiar vacuum

solutions can be re-interpreted in terms of the associated Newtonian systems. Doing so

may shed new light on the solution, as the superposition principle that is inherent in

Newtonian gravity finds a translation into the vacuum axisymmetric stationary Einstein

theory. In this chapter we will be interested in a number of exact solutions. Starting

from the interpretation of the Schwarzschild solution and Rindler space, we can con-

struct a solution representing an accelerating black hole. This is the vacuum C-metric.

Allied to this is a charged version in the Einstein-Maxwell system. We will be discussing

its form in Sect. 3.2. The C-metric and more especially a derivative of it, the Ernst

solution will be important for the consideration of the quantum gravity process of black

hole monopole pair creation. It is therefore important to understand a little about these

solutions. In Sect. 3.3 we discuss the derivation of the Ernst solution in terms of the

Harrison transform introduced in Chap. 2. The other important exact solution for our

discussion is Melvin’s Magnetic Universe, this solution represents a uniform magnetic

field in Einstein-Maxwell theory. It is the energy in the magnetic field that can give rise

to the black hole monopole pair creation process.

In Sects. 3.4 and 3.5 we make use of elliptic function theory to write the Ernst solution

and C-metric in terms of new coordinates that are highly advantageous to the problem

of finding black hole uniqueness theorems for these solutions. Appendix 3.A provides

some introductory material on the functions we shall be using, and concisely sets out
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our conventions. It turns out that the use of elliptic functions is extraordinarily useful

in describing these solutions, the complexity of some of the expressions given in terms

of these function can be deceptive, and often arises from taking the real or imaginary

parts of simple analytic functions. In Sect. 3.6 we prove some awkward technical lemmas

to help us understand the relationship between the parameters of the solutions when

represented in terms of elliptic functions and those quantities that are easily determined

by examining the asymptotic behaviour, or the behaviour close to the axis of symmetry.

3.1 Weyl Coordinates and the Vacuum C-metric

In this section we will review a number of features of axisymmetric static vacuum so-

lutions to Einstein’s equations. With these premises, Einstein’s equations take on a

particularly pleasing form. We start by writing the metric as follows:

g = −e2Udt⊗ dt+ e−2U
(
e2γ
(
dx1 ⊗ dx1 + dx2 ⊗ dx2

)
+ ρ2dx3 ⊗ dx3

)
. (3.1.1)

The spacetime possesses Killing vectors K = ∂/∂t and m = ∂/∂x3. Proceeding to

compute the Einstein equations, we find

(2)∇2ρ = 0, (3.1.2)

(2) ∇.
(
ρ (2)∇U

)
= 0 (3.1.3)

and

−D2ρ+ 2DρDγ − 2ρ(DU)2 = 0, (3.1.4)

where

(2)∇ =

(
∂

∂x1
,
∂

∂x2

)
, (3.1.5)

and

D =
∂

∂x1
+ i

∂

∂x2
. (3.1.6)
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The quantity ρ is the norm of the Killing bivector:

ρ2 = −‖k ∧ m‖2, (3.1.7)

where

k = e2Udt and m = e−2Uρ2dx3. (3.1.8)

Anticipating the results of Sects. 4.2 and 4.3 there is a considerable simplification if

we take x1 = ρ and x2 = z, where z is the harmonic conjugate to ρ with respect to the

metric

dx1 ⊗ dx1 + dx2 ⊗ dx2. (3.1.9)

The Einstein equations now become

(3)∇2U ≡ 1

ρ

∂

∂ρ

(
ρ
∂U

∂ρ

)
+
∂2U

∂z2
= 0, (3.1.10)

i.e., Laplace’s equation in cylindrical polar coordinates in R3. The equations for γ reduce

to

∂γ

∂ρ
= ρ

[(
∂U

∂ρ

)2

−
(
∂U

∂z

)2
]
, (3.1.11)

∂γ

∂z
= 2ρ

∂U

∂ρ

∂U

∂z
. (3.1.12)

The integrability condition for γ is automatically satisfied whenever (3)∇2U = 0. We

note that it is not entirely trivial to assume that ρ and z provide a good coordinate

system for the solution, in Sect. 4.3 we will show the validity of this procedure under

suitable conditions (and also in the presence of an electromagnetic field).

Einstein’s equations are non-linear and we cannot simply add up solutions of the

equations to get new ones. However as Laplace’s equation is linear we may superpose

solutions in exactly the same way as for Newtonian gravity. In the present case we need

to solve a linear equation. The non-linearity of Einstein’s equations manifests itself in
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Eq. (3.1.11) and (3.1.12). However, we may solve in principle for γ by quadrature.

It is interesting to see what various known solutions to Einstein’s equations look like

in the Weyl formulation. The Schwarzschild solution turns out to be represented by the

potential due to a uniform rod lying along the axis between two points z1 and z2, of

mass per unit length of 1/2, i.e.,

U = 1
2
log(R2 − (z − z2)) − 1

2
log(R1 − (z − z1)), (3.1.13)

where

R 2
i = ρ2 + (z − zi)

2 for i = 1, 2. (3.1.14)

We may look on the solution as the linear superposition of two semi-infinite line

masses of linear density 1/2 and −1/2. The Rindler spacetime is just flat space written

in terms of accelerating coordinates. In this formulation the spacetime is that derived

from considering the potential from a single semi-infinite line mass of density 1/2.

Bonnor [14] shows that another vacuum solution with which we will be concerned for

much of this present chapter has a simple interpretation in terms of such rods. A finite

rod is to be interpreted as a particle/black hole, a semi-infinite line mass as a source at

infinity responsible for causing an acceleration. We may superpose the two solutions.

Let

e2U =
c2(RS − (z − zS))(RA − (z − zA))

RN − (z − zN )
(3.1.15)

with

zS < zN < zA . (3.1.16)

The segment [zS, zN ] represents a spherical particle, zA determines the acceleration.

The solution has a nodal singularity on the axis, we may eliminate the singularity from

one section of the axis by a suitable choice of c. We cannot eliminate the singularity from

both sections of the axis simultaneously. If we leave the conical singularity between the

finite rod and the semi-infinite line mass we speak of a cosmic strut, the semi-infinite rod

pushing the particle along. The other option is to leave the conical singularity between

the particle and infinity, in this case one says that we have a cosmic string pulling
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the particle along. These characterizations give a physical interpretation to the nodal

singularity and suggest they are responsible for the particle’s acceleration.

In the analytically extended version of the solution, we have two such particles either

connected by a cosmic spring – the particles accelerate towards each other until a critical

moment when they start to recede, or they have a pair of cosmic strings that bring the

particles to a halt and then begin to accelerate them away from one another.

The solution we have been describing is called the Vacuum C-metric, we will have

more to say about its electromagnetic generalization later. In particular we will be

concerned with giving a new physical motivating force for the acceleration.

We may apply the methods of the previous chapter to generalize the Weyl system to

include any number of positive or negative energy scalar fields. The Lagrangian density

after a dimensional reduction on the timelike Killing vector yields

L =
√
γ

(
3R − 2γijGAB

∂ψA

∂xi
∂ψB

∂xj

)
. (3.1.17)

where

γijdx
i ⊗ dxj = e2γ

(
dx1 ⊗ dx1 + dx2 ⊗ dx2

)
+ ρ2dx3 ⊗ dx3, (3.1.18)

(
ψA
)

=




U

φ1

...

φn




, (3.1.19)

(GAB) =




1

±1
. . .

±1




, (3.1.20)

where the diagonal element is +1 if the appropriate scalar has positive energy and −1

if it has negative energy.
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The Einstein equations for this system are:

(3)∇2ψA = 0 (3.1.21)

and

∂γ

∂ρ
= ρGAB

[
∂ψA

∂ρ

∂ψB

∂ρ
− ∂ψA

∂z

∂ψB

∂z

]
, (3.1.22)

∂γ

∂z
= 2ρGAB

∂ψA

∂ρ

∂ψB

∂z
. (3.1.23)

Again the integrability condition is satisfied whenever Eq. (3.1.21) holds. In Sect. 4.4

we will demonstrate that the integrability condition is always satisfied for a general

harmonic mapping system. Any isometry of Rn+1 with the appropriate flat metric,

GAB, gives rise to new solutions of the system.

One can, for instance, use a boost to add a negative energy scalar field to any of the

solutions that we have been discussing.

As we have seen there are many ways of generating new solutions of Einstein’s equa-

tions from existing solutions, one can add together Weyl solutions and use isometries of

the target spaces of harmonic mapping Lagrangians to provide an enormous number of

new solutions.

3.2 The Charged C-metric

The Vacuum C-metric has a history going back as far as 1918 [15], its electromagnetic

generalization was discovered in 1970 by Kinnersley and Walker [16]. It is to be noted

however that this generalization is not simply a Harrison Transformation on the timelike

Killing vector as is the case for charging up the Schwarzschild solution to get the Riessner-

Nordstrøm black hole. Later, in Sect. 3.3 we will be applying the Harrison transform to

the charged C-metric but using the angular Killing vector – This is Ernst’s solution. To
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begin with we describe the solution determined by Kinnersley and Walker:

g = r2

(
dx⊗ dx

G(x)
− dy ⊗ dy

G(y)
+G(x)dα⊗ dα +G(y)dt⊗ dt

)
(3.2.1)

with

Ar = (x− y)−1, (3.2.2)

G(x) = 1 − x2 − 2m̃x3 − g̃2x4, (3.2.3)

m̃ = mA and g̃ = gA. (3.2.4)

The case g = 0 is the vacuum solution discussed in the previous section. If we

take the limit A → 0, we discover that the solution reduces to the Riessner-Nordstrøm

solution where m and g are the mass and charge of the black hole. We remark that m is

not the ADM mass (unless A = 0). The ADM mass is zero, as the ADM 4-momentum

is invariant under boosts and rotations and therefore must be zero. The quantity A

is the acceleration of the world-line r = 0 when m and g are zero. We conclude that

the C-metric represents an accelerating black hole. The charged C-metric has a nodal

singularity, we will eliminate the singularity representing the cosmic string, thus leaving

the cosmic strut intact.

Let us label the roots of the quartic equation G(x) = 0 as xi in descending order (we

are considering the case when we have four real roots) x4 < x3 < x2 < 0 < x1. We shall

restrict attention to the following ranges for the coordinates.

x ∈ [x2, x1] (3.2.5)

y ∈ [x3, x2] (3.2.6)

φ ∈ [ 0, 2π) (3.2.7)
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t ∈ (−∞,∞) (3.2.8)

where φ is defined by

φ =
G′(x2)

2
α. (3.2.9)

The range of φ has been chosen to eliminate the cosmic string.

y

x4 x3 x2 x1

x

Fig. 3.1: The graph of quartic function y = G(x)

This means that 0 < r < ∞, the singularity as r → 0 corresponds to y → −∞
whilst r → ∞ corresponds to the point x = x2, y = x2. There are two horizons that

interest us: a black hole event horizon at y = x3 and an acceleration horizon at y = x2.

In addition there is an inner horizon at y = x4. With these choices the cosmic strut

appears as the section of the axis x = x1, x3 < y < x2.

From the metric we may read off the norm of the Killing bivector, ρ, for the C-metric:

ρ = r2
√
−G(x)G(y). (3.2.10)

We have imposed the condition that G(x) = 0 have four real roots, this condition defines

a region in the parameter space (m̃, g̃) shown in Fig. 3.3.
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Domain of Outer Communication

x2 x1

y

x

x3

x2

Point at infinity Acceleration Horizon

Black Hole Event Horizon

Axis
Axis

r = ∞

H
H

Hj

-

�

�
�

��

�
�

��*

Fig. 3.2: The Horizon Structure of the C-metric

It is a simple matter now to determine the Ernst potentials derived from the angular

Killing vector for the C-metric. They are presented below:

ǫ = −r2G(x) − g̃2

A2
(x− x2)

2, (3.2.11)

ψ = −i g̃
A

(x− x2). (3.2.12)

(3.2.13)

3.3 Melvin’s Magnetic Universe and The Ernst Solution

In this section we look at the result of performing a Harrison transformation Eq. (2.6.10)

on Minkowski space and on the C-metric. We will be applying the transformation derived
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0
m̃

g̃

1
2
√

3

1
3

√
2
3

1
3
√

3

54 em2=1+36eg2−(1−12eg2)
3/2

54 em2=1+36eg2+(1−12eg2)
3/2

G(x) = 0 has exactly four

real solutions in this region

H
H

H
H

H
H

Hj

Fig. 3.3: The Parameter space for m̃, g̃

from consideration of the angular Killing vector ∂/∂φ.

Let us write Minkowski space in terms of cylindrical polar coordinates, thus

g = −dt̃ ⊗ dt̃+ dr ⊗ dr + r2dφ⊗ dφ + dx⊗ dx. (3.3.1)

The Ernst potentials derived from the angular Killing vector are

ǫ = −r2, (3.3.2)

ψ = 0. (3.3.3)
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Performing the Harrison transformation gives the new Ernst Potentials:

ǫ 7→ −r2
(
1 + 1

4
B2

0r
2
)−1

, (3.3.4)

ψ 7→ − i

2
B0r

2
(
1 + 1

4
B2

0r
2
)−1

, (3.3.5)

and hence the new metric is

g = Λ2(−dt̃⊗ dt̃+ dr ⊗ dr + dx⊗ dx) + r2Λ−2dφ⊗ dφ, (3.3.6)

Λ = 1 + 1
4
B2

0r
2. (3.3.7)

The electromagnetic field is given by

F = d

(
B0r

2dφ

2
(
1 + 1

4
B2

0r
2
)
)

=
B0rdr ∧ dφ
(
1 + 1

4
B2

0r
2
)2 , (3.3.8)

This solution is Melvin’s Magnetic Universe [17]. The Melvin solution represents a

uniform tube of magnetic lines of flux in stable equilibrium with gravity. The transverse

magnetic pressure balancing the attractive gravitational force.

We now proceed to apply the Harrison transformation to the C-metric, the new Ernst

potentials are easily derived:

ǫ = −Λ−1

(
r2G(x) +

g̃2

A2
(x− x2)

2

)
, (3.3.9)

ψ = −iΛ−1

(
g̃

A
(x− x2) +

B

2

(
r2G(x) +

g̃2

A2
(x− x2)

2

))
, (3.3.10)

with

Λ =

(
1 +

Bg̃

2A
(x− x2)

)2

+
1

4
B2r2G(x). (3.3.11)
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The metric and electromagnetic field tensor are transformed into (Ernst [18]):

g = Λ2r2

(
dx⊗ dx

G(x)
− dy ⊗ dy

G(y)
+G(y)dt⊗ dt

)
+ r2G(x)Λ−2dα⊗ dα,

(3.3.12)

F = idψ ∧ dα. (3.3.13)

The great advantage of performing a Harrison Transformation to the C-metric is

that it allows us to eliminate the nodal singularity from the entire axis. We do this by

carefully choosing the parameter B, it turns out that the condition to be achieve this is

given by: (
1

Λ2

dG(x)

dx

)∣∣∣∣
x=x2

+

(
1

Λ2

dG(x)

dx

)∣∣∣∣
x=x1

= 0. (3.3.14)

In the limit mA, gA, gB ≪ 1 this equation reduces to Newton’s Second Law,

gB = mA (3.3.15)

The Ernst Solution represents a black hole monopole undergoing a uniform acceleration

due to the presence of a cosmological magnetic field. This solution has an electric

counterpart, obtained by performing a duality transformation to the solution.

3.4 The Ernst Solution in terms of Elliptic Functions

In this section we will draw on the properties of elliptic functions. For a brief summary

of all the results we will need and to establish our conventions, see Appendix 3.A.

As we remarked previously the norm of the Killing bivector, ρ for the C-metric (and

Ernst solution) is simply given by:

ρ = r2
√

−G(x)G(y) , (3.4.1)
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where

Ar = (x− y)−1, (3.4.2)

G(x) = 1 − x2 − 2m̃x3 − g̃2x4, (3.4.3)

m̃ = mA, g̃ = gA. (3.4.4)

The induced metric on the two-dimensional space of orbits of the group action generated

by the symmetries from the Killing vectors, MII has the form

g
II

=
dx⊗ dx

G(x)
− dy ⊗ dy

G(y)
. (3.4.5)

We may calculate z, the harmonic conjugate to ρ, from the Cauchy-Riemann equations:

√
G(x)

∂ρ

∂x
=
√
−G(y)

∂z

∂y
,

√
−G(y)

∂ρ

∂y
= −

√
G(x)

∂z

∂x
. (3.4.6)

This leads to

z =
1

2
r2(G(x) +G(y)) +

1

2
g2(x+ y)2 +

m

A
(x+ y) + constant. (3.4.7)

We shall denote by zA, zN and zS the images of the acceleration horizon, and the north

and south poles of event horizon. It is also useful to define

k2 =
zN − zS
zA − zS

=
(x1 − x2) (x3 − x4)

(x1 − x3) (x2 − x4)
. (3.4.8)

The quantity k turns out to be the modulus of many of the elliptic functions we shall

be using. We will transform coordinates so that

χ

M
=

∫ x

x2

dt√
G(t)

, and
η

M
=

∫ x2

y

dt√
−G(t)

. (3.4.9)
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Domain of Outer Communication

f(ζ)

f(ζ)

f(−ζ)

f(−ζ)

Fig. 3.4: Using Schwarz reflection to extend the analytic function f .

The value of M is given by

M2 = e1 − e3 (3.4.10)

where ei = ℘(ωi), the Weierstrass ℘-function being formed with the invariants g2 and g3

of G given by

g2 =
1 − 12g̃2

12
, (3.4.11)

g3 =
1 + 36g̃2 − 54m̃2

216
. (3.4.12)

Letting ζ = χ + iη we have that f(ζ) = z(ζ) − iρ(ζ) is an analytic function defined on

MII, the (two-dimensional section of) the domain of outer communication which in the

present case is a rectangle in the complex ζ-plane. We now use Schwarz reflection in the

boundaries (where ρ = 0). See Fig. 3.4.

On each rectangle f(ζ) takes the value indicated (and by the permanence of func-

tional relations under analytic continuation they apply everywhere). We may pro-
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ceed to reflect in the new boundaries, what we find is that f(ζ) = f(ζ + 2K) and

f(ζ) = f(ζ + 2iK ′) where

K

M
=

∫ x1

x2

dt√
G(t)

and
K ′

M
=

∫ x2

x3

dt√
−G(t)

(3.4.13)

and hence f is an even doubly periodic meromorphic function, i.e., a map between two

compact Riemann surfaces, namely a torus, T and the Riemann sphere C∞.

Applying the Valency theorem, we deduce that f is exactly n-1 for some n (and

n ≥ 2 as the sphere and torus are not homeomorphic). We can find n by examining

the pre-image of infinity, f−1{∞} = {0}. We must work out the multiplicity, a simple

calculation tells us:

f(ζ) =
2L2

ζ2
+O(1) (3.4.14)

with M = AL. There is a second order pole at ζ = 0. Therefore f : T → C∞ is exactly

2-1. Clearly f restricted to MII, f |MII
: MII → {z − iρ|ρ > 0} is 1-1.

As the map f is a doubly periodic even meromorphic function, another application

of the Valency theorem shows that any analytic map : T → C∞ can be expressed in

terms of the Weierstrass ℘-function and its derivative. Our map is especially simple

f(ζ) = 2L2(℘Ω(ζ) + α), α some real constant, (3.4.15)

Ω = 2KZ + 2iK ′
Z. (3.4.16)

Without loss of generality we set α = 0. The critical points of ℘Ω(ζ) are the four corners

of MII where ℘′
Ω(0) = ∞ and ℘′

Ω(K) = ℘′
Ω(iK ′) = ℘′

Ω(K + iK ′) = 0, this follows from

the observation that the mapping fails to be conformal at these points, or alternatively

by noticing it as a particular property of the ℘-function. We remark that ℘′
Ω(ζ) is

exactly 3-1 and we have three points where ℘′
Ω(ζ) = 0 and three (coincident) points

where ℘′
Ω(ζ) = ∞. Hence we have found all the critical points of the map. Except at

the critical points, the function f |MII
is invertible and (ρ, z) provide a coordinate system

for the domain.
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We now write the solution in terms of the coordinates (χ, η), after defining κ = G′(x2)

and

q =
κg̃

AM2
=
κg̃L

M3
(3.4.17)

we have

√
G(x) =

−G′(x2)℘
′(χ/M)

4
(
℘(χ/M) − 1

24
G′′(x2)

)2 =
κ snχ cnχ dnχ

2M (cn2 χ+D sn2 χ)2 (3.4.18)

x− x2 =
G′(x2)

4
(
℘(χ/M) − 1

24
G′′(x2)

) =
κ sn2 χ

4M2 (cn2 χ+D sn2 χ)
(3.4.19)

and
√
−G(y) =

κ sn η cn η dn η

2M (1 −D sn2 η)2 (3.4.20)

y − x2 =
−κ sn2 η

4M2 (1 −D sn2 η)
(3.4.21)

for the constant D = (1 + k′2)/3 −G′′(x2)/24M2.

The metric takes the form

g = −V dt⊗ dt+Xdφ⊗ dφ+ Σ (dχ⊗ dχ+ dη ⊗ dη) (3.4.22)

where

X =
4L2(1 −D sn2 η)2 sn2 χ cn2 χ dn2 χ

Λ2 (cn2 χ +D sn2 χ)2 (sn2 χ + sn2 η cn2 χ)2 (3.4.23)

V =
4Λ2L2 (cn2 χ+D sn2 χ)

2
sn2 η cn2 η dn2 η

(sn2 χ + sn2 η cn2 χ)2 (1 −D sn2 η)2 (3.4.24)

Σ =
16Λ2L2 (cn2 η +D sn2 η)

2
(1 −D sn2 η)2

κ2 (sn2 χ+ sn2 η cn2 χ)2 (3.4.25)

Λ =

(
1 +

B0q sn2 χ

8(cn2 χ+D sn2 χ)

)2

+
B0

2L2 (1 −D sn2 η)
2
sn2 χ cn2 χ dn2 χ

(cn2 χ+D sn2 χ)2 (sn2 χ+ sn2 η cn2 χ)2 (3.4.26)

ρ =
4L2 snχ cnχ dnχ sn η cn η dn η

(sn2 χ+ sn2 η cn2 χ)2 (3.4.27)

and

z − iρ = 2L2℘(χ+ iη). (3.4.28)
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We have written B0 for the Harrison transformation parameter above and reserve B for

the magnetic potential. The ℘-function is with respect to the lattice 2KZ + 2iK ′Z, so

that 2L2 = zA − zS. In addition the magnetic field is given by

F = dB ∧ dφ (3.4.29)

with

B =
1

Λ

(
q sn2 χ

4(cn2 χ +D sn2 χ)
+

2B0L
2 (1 −D sn2 η)

2
sn2 χ cn2 χ dn2 χ

(cn2 χ+D sn2 χ)2 (sn2 χ + sn2 η cn2 χ)2

+
B0q

2 sn4 χ

32 (cn2 χ+D sn2 χ)2

)
. (3.4.30)

We will need to investigate the behaviour of X, B and ρ near the axis χ = 0, we find

X = O(χ2) (3.4.31)

B = O(χ2) (3.4.32)

and

ρ =
4L2 cn η dn η

sn3 η
χ+O

(
χ3
)
. (3.4.33)

Near the other axis χ = K we discover, setting u = K − χ,

X = O(u2), (3.4.34)

B =
2

B0 + 8D/q
+O(u2) (3.4.35)

and

ρ = 4L2k′2 sn η cn η dn η u+O
(
u3
)
. (3.4.36)
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Near infinity, setting χ = R−1/2 sin θ and η = R−1/2 cos θ, we have

X =
4

B0
4L2 sin2 θ

1

R
+ +O

(
1

R2

)
(3.4.37)

and

B =
2

B0
− 2

B0
3L2 sin2 θ

1

R
+O

(
1

R2

)
. (3.4.38)

Finally we find that ρ behaves as

ρ = 4L2 sin θ cos θR +O

(
1

R

)
. (3.4.39)

3.5 The C-metric in terms of Elliptic Functions

As a special case of the previous section we set the cosmological magnetic field B0 to

zero. Doing so leads to a different behaviour near infinity. We find that

X = O
(
χ2
)

(3.5.1)

B = O
(
χ2
)

(3.5.2)

close to the axis χ = 0. Near the other axis u = 0 with u = K − χ,

X = O
(
u2
)

(3.5.3)

B =
q

4D
+O

(
u2
)

(3.5.4)

whilst near infinity the behaviour is quite different from that of the Ernst Solution, and

we have

X = 4L2 sin2 θ R +O(1) (3.5.5)
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B =
q

4 sin2 θ

1

R
+O

(
1

R2

)
(3.5.6)

We will therefore need to impose different boundary conditions to prove the uniqueness

of this solution. This will be done in Subsect. 4.6.2.

3.6 Determination of the Parameters of the Ernst Solution

We now present a couple of technical lemmas that will enable us to determine the

parameters m̃ and g̃ from an Ernst solution by looking closely at its behaviour on the

axis and as one goes off towards infinity. This is important for our discussion of the

uniqueness theorems in the next chapter. Given a candidate spacetime we need to find

an Ernst solution that coincides asymptotically (and to the right order) on the axis and

off towards infinity. In addition to complete the uniqueness result we need to have both

solutions defined on a common domain. This means that the quantity k defined by

Eq. (3.4.8) must be the same for each solution. If we can find such an Ernst solution

then we may use a divergence identity to prove uniqueness in a similar way as one does to

show the uniqueness of solutions to Laplace’s equation, only here the divergence identity

is rather more complicated.

The boundary conditions we will need determine B0 directly. The quantities L and

q/D may be regarded as given. In addition, as we have just remarked we may assume

knowledge of k the modulus of the elliptic functions.

We break the proof into two lemmas. Firstly we prove that the parameters D and k

uniquely determine m̃ and g̃.

Lemma. Given the modulus k ∈ (0, 1) and D ∈ [0, k′], where k′ is the complementary

modulus there exist values of m̃ and g̃ such that

g(χ) =
κ snχ cnχ dnχ

2M(cn2 χ+D sn2 χ)2
=
√
G(x) =

√
1 − x2 − 2m̃x3 − g̃2x4 (3.6.1)

where
dx√
G(x)

=
dχ

M
, (3.6.2)
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the values of M and κ being determined from D and k.

Proof: To begin with we investigate the turning points of g(χ) for χ ∈ [K/2, K]. We

therefore differentiate:

2M

κ

dg(χ)

dχ
=

cn2 χ dn2 χ

(cn2 χ +D sn2 χ)2
− sn2 χ dn2 χ

(cn2 χ +D sn2 χ)2

− k2 sn2 χ cn2 χ

(cn2 χ+D sn2 χ)2
− 4(D − 1) sn2 χ cn2 χ dn2 χ

(cn2 χ +D sn2 χ)3
. (3.6.3)

Setting this equal to zero we find that

D =
3 sn2 χ0 cn2 χ0 dn2 χ0 + cn4 χ0 dn2 χ0 − k2 sn2 χ0 cn4 χ0

3 sn2 χ0 cn2 χ0 dn2 χ0 + sn4 χ0 dn2 χ0 + k2 sn4 χ0 cn2 χ0

. (3.6.4)

We shall now prove that D ∈ [0, k′] is in one to one correspondence with the values

χ0 ∈ [K/2, K]. On this region sn2 χ0 varies monotonically from 1/(1 + k′) to unity. We

make the substitutions:

sn2 χ0 = S (3.6.5)

cn2 χ0 = 1 − S (3.6.6)

dn2 χ0 = 1 − k2S (3.6.7)

Note that D(S = 1/(1 + k′)) = k′ and D(S = 1) = 0. We now prove that D(S) is

monotonic decreasing:

dD

dS
= − h(k, S)

S2 [3 − 2(1 + k2)S + k2S2]2
(3.6.8)
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where the function h(k, S) is defined by

h(k, S) = 3 − 4(1 + k2)S + 2(2k4 + k2 + 2)S2 − 4k2(1 + k2)S3 + 3k4S4

= (1 − k2S2)2 + 2[1 − (1 + k2)S + k2S2]2 + 2(1 − k2)2S2 ≥ 0 (3.6.9)

with equality if and only if S = 1 and k = 1. This establishes the strict monotonicity.

Hence we may write χ0 = χ0(D). Next we calculate M2 by using G′′(0) = −2, i.e.,

2
d2 log g(χ)

dχ2

∣∣∣∣
χ=χ0

= − 2

M2
. (3.6.10)

This equation can be written (on eliminating D) as

√
snχ0 cnχ0 dnχ0

d2

dχ2
0

(
1√

snχ0 cnχ0 dnχ0

)
=

1

2M2
(3.6.11)

in terms of the variable S introduced earlier we have,

1

M2
=

(1 − k2S2)2 + 2[1 − (1 + k2)S + k2S2]2 + 2(1 − k2)2S2

2S(1 − S)(1 − k2S)
(3.6.12)

The function M2 is monotonically decreasing on S ∈ [1/(1+k′), 1] i.e., on χ0 ∈ [K/2, K]

with M2(1) = 0 and

M2
max

=
1

1 + k′2
. (3.6.13)

The derivative with respect to S of M2 is given by

dM2

dS
=

6(1 − k2S2)(k′2 + k2(1 − S)2)(1 − S(1 + k′))(1 − S(1 − k′))

((1 − k2S2)2 + 2[1 − (1 + k2)S + k2S2]2 + 2(1 − k2)2S2)2 ≥ 0. (3.6.14)

We have equality only when χ0 = K/2.

Having found χ0 and M2 we may read off κ by noting that G(0) = 1, thus

κ =
2M(cn2 χ0 +D sn2 χ0)

2

snχ0 cnχ0 dnχ0

. (3.6.15)
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We may now go on to find the value of g̃. We use the relation (3.A.7) that

1 − 12g̃2 = 1
2
M4

[
(ǫ1 − ǫ2)

2 + (ǫ2 − ǫ3)
2 + (ǫ3 − ǫ1)

2
]

= M4(1 − k2 + k4)

= M4(1 − k′2 + k′4). (3.6.16)

We have already seen that M2 ≤ 1/(1 + k′2). Hence the RHS of Eq. (3.6.16) is bounded

above by

1 − 3k′2

(1 + k′2)2
≤ 1. (3.6.17)

That is to say the value g̃ is uniquely determined. We now make use of the discriminant

expression (3.A.8) to write

(ǫ1 − ǫ2)
2(ǫ2 − ǫ3)

2(ǫ3 − ǫ1)
2

((ǫ1 − ǫ2)2 + (ǫ2 − ǫ3)2 + (ǫ3 − ǫ1)2)3 =
g2

3 − 27g3
2

54g2
3

(3.6.18)

i.e.,
54k4k′4

(1 + k4 + k′4)3
=

(1 − 12g̃2)3 − (1 + 36g̃2 − 54m̃2)2

(1 − 12g̃2)3
. (3.6.19)

This determines m̃. Observe that the LHS takes values between [0, 1] attaining its upper

bound only when k2 = 1/2. We take

54m̃2 = 1 + 36g̃2 −
[
1 − 54k4k′4

(1 + k4 + k′4)3

]1/2

(1 − 12g̃2)3/2 (3.6.20)

for k2 ≤ 1/2 and

54m̃2 = 1 + 36g̃2 +

[
1 − 54k4k′4

(1 + k4 + k′4)3

]1/2

(1 − 12g̃2)3/2 (3.6.21)

when k2 ≥ 1/2. This is because when k → 0 our solutions lie on the line given by

Eq. (3.6.20) while when k → 1 they satisfy Eq. (3.6.21). Continuity then determines

which solution to take as we increase k from zero to one. �

Thus it suffices to find D from the quantities directly read off from the boundary
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conditions. These being L and q/D. For the next Lemma it is useful to define

∆ =
q

DL
=

κg̃

M3D
(3.6.22)

which we may assume is given.

Lemma. Given the modulus k and the quantity ∆2 defined by

∆2(D) =
κ2g̃2

M6D2
, (3.6.23)

we can invert to give D = D(∆2) provided

∆2 ≥ 16(1 + 3k′2 + k′4)

(1 + k′)2
. (3.6.24)

Proof: Firstly we show that

∆2(k′) =
16(1 + 3k′2 + k′4)

(1 + k′)2
(3.6.25)

rising monotonically to infinity. To see that ∆2 is increasing on S ∈ [1/(1 + k′), 1], we

examine its derivative. We find

d∆2

dS
=

64(1 − (1 − k′)S)((1 + k′)S − 1)f(k, S)h(k, S)

S2(1 − S)2 (1 − k2S2 + 2k′2S)3 (1 − S2 + k′2 + (1 + k2) (1 − S)2)3 (3.6.26)

where we have defined

f(k, S) = −3 +
(
16 − 20k2

)
S +

(
36 − 36k2 + 28k4

)
S2

+
(
8 + 48k2 + 44k4 − 8k6

)
S3 +

(
−4 − 12k2 − 50k4 − 44k6 − 4k8

)
S4

+
(
8k2 + 36k6 + 24k8

)
S5 +

(
−4k4 + 4k6 − 20k8

)
S6 + 4k8S7 − k8S8.

(3.6.27)
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We may write f(k, S) in an explicitly non-negative form for S, k ∈ [0, 1],

f(k, S) = 1 + 2
(
1 − S + 5k′2S

)2
+ 2

(
2 + 11k2 + 11k′2k2

)
S2

+ 4
(
18k2 + 5k4 + 2k′6

)
S3(1 − S)5

+
(
4k2k′6 + 24k′4 + 12k′2 + 256k2k′2

+96k4k′2 + 28k2 + 318k4
)
S4(1 − S)4

+
(
440k2k′2 + 220k4k′2 + 8k8 + 460k4 + 64

)
S5(1 − S)3

+
(
28 + 28k′2 + 560k′2k2 + 232k′2k4 + 364k4 + 28k8

)
S6(1 − S)2

+
(
24 + 216k′2k2 + 100k4k′2 + 128k4 + 20k8

)
S7(1 − S)

+
(
1 + 3k′8 + 28k2k′2 + 28k2

)
S8 ≥ 0. (3.6.28)

Thus we have proved that the derivative of ∆2 is non-negative on the required domain

and as it is clearly non-constant the derivative has isolated zeros (being analytic in S),

therefore we may conclude that k and the value of ∆2 in the range [∆2(k′),∞) uniquely

determine the mass and charge parameters, m̃ and g̃ for a suitable Ernst solution. Hav-

ing done so we may then construct M which in turn determines the acceleration from the

relation A = M/L. Thus we have one constraint on the range of the parameters repre-

senting the Ernst solution when we write it in terms of the elliptic functions introduced,

namely

∆2 ≥ 16 (1 + 3k′2 + k′4)

(1 + k′)2 . (3.6.29)

It remains an open question whether there exists other solutions to the Einstein-Maxwell

system that behave asymptotically like the Ernst solutions that violate this condition

which have no naked singularities or other serious defects.



3. Weyl Coordinates, the C-metric and the Ernst Solution 57

3.A Appendix: Elliptic Integrals and Functions

In the next chapter we will be presenting a black hole uniqueness theorem for the Ernst

Solution. It turns out that Elliptic integrals and the Weierstrass and Jacobi elliptic

functions provide a valuable tool in establishing that result. We will be describing the

solution in terms of new coordinates related to our previous ones by elliptic functions. In

this appendix we will establish our conventions and collect together most of the general

mathematical results concerning these functions which we will be using. These results

are predominantly taken from Whittaker and Watson [19], where proofs may be found.

Just as the sine and cosine functions can be regarded as functions on a circle, when

we have a doubly periodic function we may form the quotient of C by its period set. Let

us call the period set Ω. When we quotient C by the lattice Ω we produce with a torus.

In general two different lattices produce conformally inequivalent tori. For our purposes

we will only need to consider lattices of the form 2ω1Z + 2ω3Z, where ω1 is real and ω3

is purely imaginary.

The Valency Theorem states that a non-constant analytic function between two

compact Riemann Surfaces is exactly n-1 for some n, which we call its valency. We

shall be applying this result when one of the compact Riemann surfaces is the Riemann

Sphere and the other one is of these tori.

The first function we will need is the Weierstrass ℘-function, this is a doubly periodic

meromorphic function with a second order pole at the origin, defined by

℘Ω(ζ) =
1

ζ2
+

∑

ω∈Ω\{0}

(
1

(ζ − ω)2
− 1

ω2

)
. (3.A.1)

We will define ω2 = ω1 + ω3 and ei = ℘(ωi). The ℘-function obeys the differential

equation:

℘′(ζ)2 = 4(℘(ζ)− e1)(℘(ζ) − e2)(℘(ζ) − e3). (3.A.2)

This is easily established by noting that the ratio of the LHS and the RHS has no

poles and is therefore, by the Valency Theorem, constant, the constant is determined by



3. Weyl Coordinates, the C-metric and the Ernst Solution 58

examining what happens as ζ → 0. Looking at this limit we see

e1 + e2 + e3 = 0. (3.A.3)

The differential equation is then given by

℘′(ζ)2 = 4℘(ζ)3 − g2℘(ζ) − g3. (3.A.4)

We will call g2 and g3 the invariants of the ℘-function. Note that

e1e2 + e2e3 + e3e1 = −1
4
g2 and (3.A.5)

e1e2e3 = 1
4
g3. (3.A.6)

Therefore

(e1 − e2)
2 + (e2 − e3)

2 + (e3 − e1)
2 = 3

2
g2 (3.A.7)

and

(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2 =

g2
3 − 27g3

2

16
. (3.A.8)

Integrating the differential equation we find the elliptic integral

ζ =

∫ ∞

z

dt√
4t3 − g2t− g3

(3.A.9)

has the solution z = ℘(ζ). We also point out that the Weierstrass ℘-function has the

scaling property:

℘(Mζ ;MΩ) = M−2℘(ζ ; Ω). (3.A.10)

The invariants of ℘ for MΩ being g′2 = M−4g2, g
′
3 = M−6g3.

We may evaluate elliptic integrals of the form

∫ x

x0

dt√
f(t)

(3.A.11)
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for any quartic f(t) = a0t
4 + 4a1t

3 + 6a2t
2 + 4a3t + a4 with a root x0, in terms of an

appropriate ℘ function. The invariants of which are given by

g2 = a0a4 − 4a1a3 + 3a2
2 (3.A.12)

g3 = a0a2a4 + 2a1a2a3 − a2
3 − a0a3

2 − a1
2a4. (3.A.13)

The result being:

x− x0 =
f ′(x0)

4
(
℘(ζ) − 1

24
f ′′(x0)

) (3.A.14)

and
√
f(x) =

−f ′(x0)℘
′(ζ)

4
(
℘(ζ) − 1

24
f ′′(x0)

)2 . (3.A.15)

The Weierstrass function will be extremely useful in what follows. It is also highly

useful to define the Jacobi elliptic functions that in some sense generalize the trigono-

metric functions.

sn ζ =

√
e1 − e3

℘(ζ/M) − e3
, (3.A.16)

cn ζ =

√
℘(ζ/M) − e1
℘(ζ/M) − e3

, (3.A.17)

dn ζ =

√
℘(ζ/M) − e2
℘(ζ/M) − e3

, (3.A.18)

(3.A.19)

with M =
√
e1 − e3. These functions obey certain algebraic and differential identities.

We introduce the modulus , k defined by

k2 =
e2 − e3
e1 − e3

(3.A.20)
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and the complementary modulus, k′ defined by k′2 = 1 − k2. For the situation we will

be considering the modulus will be real-valued and in the range [0, 1]. The algebraic

identities we need are

cn2 ζ = 1 − sn2 ζ, (3.A.21)

dn2 ζ = 1 − k2 sn2 ζ. (3.A.22)

Whilst the derivatives are given by

d

dζ
sn ζ = cn ζ dn ζ, (3.A.23)

d

dζ
cn ζ = − sn ζ dn ζ, (3.A.24)

d

dζ
dn ζ = −k2 sn ζ cn ζ. (3.A.25)

The functions sn ζ and cn ζ are periodic with periods 4K whilst that of dn ζ has period

2K where

K =

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

. (3.A.26)

It is useful to define the analogous quantity associated with the complementary modulus,

namely:

K ′ =

∫ 1

0

dt√
(1 − t2)(1 − k′2t2)

. (3.A.27)

After rescaling so that ǫi = ei/M
2 we find that

ǫ1 =
1

3
(1 + k′2), (3.A.28)

ǫ2 =
1

3
(k2 − k′2), (3.A.29)

ǫ3 = −1

3
(1 + k2). (3.A.30)
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The Jacobi functions obey the addition rules:

sn(ζ + C) =
sn ζ cnC dnC + snC cn ζ dn ζ

1 − k2 sn2 ζ sn2C
, (3.A.31)

cn(ζ + C) =
cn ζ cnC − sn ζ snC dn ζ dnC

1 − k2 sn2 ζ sn2C
, (3.A.32)

dn(ζ + C) =
dn ζ dnC − k2 sn ζ snC cn ζ cnC

1 − k2 sn2 ζ sn2C
. (3.A.33)

In particular when C = K we can use snK = 1, cnK = 0, dnK = k′ together with

sn 0 = 0, cn 0 = dn 0 = 1 and the fact that sn ζ is an odd function of ζ whilst both cn ζ

and dn ζ are even to deduce

sn(K − ζ) =
cn ζ

dn ζ
, (3.A.34)

cn(K − ζ) =
k′ sn ζ

dn ζ
, (3.A.35)

dn(K − ζ) =
k′

dn ζ
. (3.A.36)

Although these formulae are valid for all complex values of ζ it will be convenient to write

ζ = χ + iη and to be able to decompose the elliptic functions into real and imaginary

parts in terms of functions of χ and η. The addition formulae allow us to do this provided

we know the values of the functions evaluated on a purely imaginary argument. For this

we use Jacobi’s imaginary transform:

sn iη = i
sn η

cn η
, (3.A.37)

cn iη =
1

cn η
, (3.A.38)
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dn iη =
dn η

cn η
, (3.A.39)

where importantly the elliptic functions on the RHS of each of the above equations is

with modulus k′. For brevity we will always regard the elliptic functions as being with

modulus k unless the argument is η when it should be understood that the modulus is k′.

This should not cause confusion in what follows as we will be doing few manipulations

involving Jacobi elliptic functions with respect to the complementary modulus.

We will need to expand sn ζ , cn ζ and dn ζ for small values of the argument. We find

sn ζ = ζ − 1

6
(1 + k2)ζ3 +O

(
ζ5
)
, (3.A.40)

cn ζ = 1 − 1

2
ζ2 +O

(
ζ4
)
, (3.A.41)

dn ζ = 1 − 1

2
k2ζ2 +O

(
ζ4
)
. (3.A.42)

Finally we note that the ℘-function with ω1 = K and ω3 = iK ′ may be expressed in

terms of the Jacobi functions by

℘(ζ) = −1 + k2

3
+

1

sn2 ζ
=

cn2 ζ + 1
3
(1 + k′2) sn2 ζ

sn2 ζ
. (3.A.43)



4. BLACK HOLE UNIQUENESS THEOREMS FOR THE ERNST

SOLUTION AND C-METRIC

The question of black hole uniqueness was finally settled in 1983 when Bunting [6] and

Mazur [7] independently completed the proof of uniqueness of Kerr-Newman solution

which represents a rotating black hole in an asymptotically flat spacetime. Carter had

given a thorough treatment of the result leaving aside the final step in his review article

[21] some years earlier. Recently it has become of interest to study spacetimes that are

not asymptotically flat. In particular the asymptotically Melvin solutions are of some

theoretical importance as the Melvin solution models a cosmological magnetic field.

If we adopt a path integral approach to Euclidean quantum gravity, we might con-

sider semi-classical processes mediated by instantons: i.e., exact regular solutions to the

classical equations of motion. These solutions are expected to dominate the path integral

under certain circumstances and give us an insight into some non-perturbative aspects

of the full quantum theory. In this chapter we will be investigating the uniqueness of the

C-metric and Ernst solution that we discussed in Chap. 3. It is important to ascertain

the uniqueness of the saddle point in the path integral. Our results will prove that there

is only one saddle point that contributes to the path integral and we may draw the con-

clusion that it will give the dominant contribution. This removes one possible objection

to the argument that topology change is an essential feature of quantum gravity.

The uniqueness theorems we will be presenting for the C-metric and Ernst solutions

are schematically identical to the proof of the uniqueness theorem for the Kerr-Newman

black hole. However, the devil is in the details. The most difficult complication arises

because of the presence of another horizon: the acceleration horizon. The boundary

conditions are then given on five distinct regions: two horizons, two sections of the axis

and at infinity. Infinity will be represented as a single point on the boundary after
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a suitable transformation of coordinates. The other portions of the boundary form a

rectangle. The fact that not all rectangles are conformally homeomorphic will be the

major complicating factor. Contrast this situation with what happens in the Kerr-

Newman uniqueness theorem. In this case there are four parts to the boundary, this

is represented by a semi-infinite rectangle, the non-existent fourth side mathematically

describes arbitrarily large distances. By a simple scale and an appropriate translation

any two such rectangles may be made to coincide.

The uniqueness theorems work by comparing two solutions defined on the same

domain, and this is why it is important that the two domains should be conformally

homeomorphic, one then uses a suitable divergence identity to prove uniqueness. Estab-

lishing a suitable expression with a positive divergence was the obstacle that prevented

the uniqueness theorem for the Einstein-Maxwell theory from being proved soon after the

corresponding result was proved in Einstein’s theory. In Sect. 4.5 we will present a new

proof of the positivity of the divergence, tackling the problem with the understanding

we gained from Sect. 2.4.

We will be making extended use of the theory of Riemann surfaces in our deliber-

ations. Riemann surface theory is a valuable asset when it comes to investigating the

introduction of Weyl coordinates, a necessary step in the theorem. We have already seen

in Chap. 3 how effective the application of Riemann surface theory and elliptic function

theory was to the description of the C-metric and Ernst solution. We will be making

use of these functions once again when it comes to presenting the appropriate boundary

conditions to cause the vanishing of the boundary integral arising from applying Stokes’

theorem to the divergence identity that we have established.

Our investigations begin in Sect. 4.1 with a summary of the hypotheses that we

shall be assuming about any candidate spacetime, and the field equations they satisfy.

In Sect. 4.2 we present a detailed derivation of the Generalized Papapetrou Theorem

allowing us to introduce t and φ coordinates associated the Killing vectors corresponding

to invariance under time translations and axial symmetry. This is most efficiently done

by making good use of the algebra of differential forms.

Having found two ‘standard’ coordinates we introduce Weyl coordinates in Sect. 4.3,
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verifying the fact that the field equations demand that ρ, the norm of the Killing bivector,

is harmonic on the two dimensional orbit space. In this section we make use of Riemann

surface theory and apply the Riemann Mapping Theorem to do most of the hard work.

The following section, Sect. 4.4, shows how one of the metric functions, specifically

the conformal factor on the orbit space present after introducing Weyl coordinates,

is uniquely determined (subject to an asymptotic boundary condition determining an

overall scale) once all the other fields have been found. The remaining field equations

being independent of the conformal factor.

Our new proof of the positivity of the relevant divergence for the Einstein-Maxwell

theory is presented in Sect. 4.5. It exploits the derivation of the Bergmann metric as

an induced metric from a complex manifold ultimately arising from the embedding of a

hyperboloid in C3 with a Minkowskian metric.

To complete the uniqueness proofs we provide the relevant boundary conditions that

will make the boundary integral derived in the previous section vanish. These conditions

are spelt out in Sect. 4.6.

In Sect. 4.7 we discuss the relevance of our result to the semi-classical process of black

hole monopole pair creation. As we have mentioned the uniqueness of the instantons

that might mediate such a process is an important issue. Finally we summarize our

progress and draw some conclusions in Sect. 4.8.

4.1 Hypotheses

In this section we set down in detail the hypotheses will be assuming in order to es-

tablish our uniqueness result. The main differences with the Kerr-Newman black hole

uniqueness theorem occur in the boundary conditions and the overall horizon structure

we will be assuming. It turns out that the different horizon structure makes proving a

uniqueness result much more difficult and necessitates the use of elliptic functions and

integrals.

Below we present the hypotheses we will be using for the rest of this chapter:

• Axisymmetry: There exists a Killing vector m such that Lmg = 0, and LmF = 0
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which generates a one-parameter group of isometries whose orbits are closed space-

like curves.

• Stationarity: There exists a Killing vector K such that LKg = 0, and LKF = 0

which generates a one-parameter group of isometries which acts freely and whose

orbits near infinity are timelike curves.

• Commutivity: [K,m] = 0.

• Source-free Maxwell equations dF = 0 and δF = 0 together with the Einstein

equations Rab = 8πTab where

Tab =
1

4π

(
FacFb

c − 1

4
gabFcdF

cd

)
. (4.1.1)

• The domain of outer communication is connected and simply-connected.

• The solution has the same horizon structure as the Ernst Solution.

• For the Ernst solution uniqueness result we assume the solution is asymptotically

Melvin’s Magnetic Universe, whereas we assume asymptotic flatness when we come

to prove the uniqueness of the C-metric.

• Boundary conditions (See Sect. 4.6).

4.2 The Generalized Papapetrou Theorem

Following Carter [20, 21], we shall prove that there exist coordinates t and φ defined

globally on the domain of outer communication so that the metric takes a diagonal form

with the Killing vectors K = ∂/∂t and m = ∂/∂φ. In addition we will prove that

the electromagnetic field tensor can be derived from a vector potential satisfying the

appropriate circularity and invariance conditions.
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Our starting point is to make the remark that for a Killing vector K, the Laplacian

−(δd + dδ) acting on k, reduces to δdk = 2 R(k). Here R(k) = RabK
aeb is the Ricci

form with respect to k. We calculate

δ(k ∧ dk) = −LK(dk) − k ∧ δdk

= −2 k ∧ R(k) . (4.2.1)

Hence

δ(k ∧ m ∧ dk) = Lm(k ∧ dk) + m ∧ δ(k ∧ dk)

= 2 k ∧ m ∧ R(k) . (4.2.2)

Now the energy-momentum form of the electromagnetic field with respect to k is given

by the formula:

T (k) =
1

4π

(
∗(iKF ∧ ∗F ) − 1

2
∗(F ∧ ∗F )k

)
. (4.2.3)

We shall observe how Maxwell’s equations, dF = 0 and δF = 0, imply the conservation

equation, δT (k) = 0:

4πδT (k) = −∗diKF ∧ ∗F − 1

2
δ (k ∧ ∗ (F ∧ ∗F ))

= −∗diKF ∧ ∗F +
1

2
[LK∗ (F ∧ ∗F ) + k ∧ δ∗ (F ∧ ∗F )]

= −∗ (LKF ∧ ∗F ) +
1

2
∗LK (F ∧ ∗F ) = 0. (4.2.4)
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Let us now calculate k ∧ m ∧ F . Using LKF = LmF = 0 and δF = 0 we have

δ(k ∧ m ∧ F ) = −LK(m ∧ F ) − k ∧ δ(m ∧ F )

= k ∧ LmF + k ∧ m ∧ δF = 0. (4.2.5)

Hence k ∧ m ∧ F = cη, for some constant c and η the volume form. The boundary

condition that m → 0 as one approaches the axis requires c = 0, thus proving

k ∧ m ∧ F = 0. (4.2.6)

Another way to express this is iKim∗F = 0. We will also need to examine the analogous

quantity iKimF . We have

diKimF = LKimF − iKLmF + iKimdF = 0. (4.2.7)

Using the axis-boundary condition again we see that

iKimF = 0. (4.2.8)

Now use the fact that k ∧ m ∧ T (k) = −∗iKim∗T (k), but

4π imiK∗T (k) = im(−iKF ∧ iK∗F )

= iKimF ∧ iK∗F − iKF ∧ iKim∗F = 0. (4.2.9)

That is to say k ∧ m ∧ T (k) = 0. Einstein’s equation, then proves from Eq. (4.2.2)

that k ∧ m ∧ dk = ckη and k ∧ m ∧ dm = cmη. The constants ck and cm are then

seen be zero by another application of the boundary condition for m on the axis. Let
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us proceed to define 1-forms α and β by the following:

α = im

(
k ∧ m

ρ2

)

β = −iK
(

k ∧ m

ρ2

)

(4.2.10)

where

ρ2 = iKim(k ∧ m). (4.2.11)

As before, ρ is the norm of the Killing bivector. Notice that by construction we have

LKα = Lmα = 0,

LKβ = Lmβ = 0, (4.2.12)

and also that

iKα = 1, imα = 0,

iKβ = 0, imβ = 1. (4.2.13)

Together these imply

iKdα = imdα = iKdβ = imdβ = 0. (4.2.14)

The integrability conditions we have established may be rewritten as

k ∧ m ∧ dα = 0 and k ∧ m ∧ dβ = 0. (4.2.15)
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Evaluating

iKim(k ∧ m ∧ dα) and iKim(k ∧ m ∧ dβ) (4.2.16)

we find

ρ2dα = 0 and ρ2dβ = 0. (4.2.17)

Thus we may write

α = dt and β = dφ (4.2.18)

in the Domain of Outer Communication, which we have assumed is simply-connected.

Summarizing, we have shown the existence of coordinates t and φ satisfying:

k ∧ m ∧ dt = 0, iKdt = 1, imdt = 0,

k ∧ m ∧ dφ = 0, iKdφ = 0, imdφ = 1. (4.2.19)

Turning to the electromagnetic field, Eq. (4.2.6) implies that F takes the form

F = α ∧ γ + β ∧ ǫ. (4.2.20)

Making the replacements:

γ 7→ γ − iKγ α − imγ β,

ǫ 7→ ǫ − iKǫ α − imǫ β, (4.2.21)

we see that F changes to

F 7→ F + (−imγ + iKǫ)α ∧ β. (4.2.22)

However, Eq. (4.2.8) implies

iKimF = −imγ + iKǫ = 0. (4.2.23)
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Thus, we may assume without loss of generality that

iKγ = 0, imγ = 0,

iKǫ = 0, imǫ = 0. (4.2.24)

Maxwell’s equation dF = 0 and the invariance of F under the action of the isometries

generated by the Killing vectors reduce to the pair of equations:

diKF = 0, and dimF = 0. (4.2.25)

Hence we may introduce electrostatic potentials according to

iKF = γ = −dΦ, (4.2.26)

imF = ǫ = −dΨ. (4.2.27)

with the potential function Φ for the electric field and Ψ for the magnetic field. It is

now a simple matter to define an electromagnetic vector potential A with F = dA by

setting

A = Φα + Ψβ. (4.2.28)

It is now straightforward to verify that this vector potential satisfies the circularity and

invariance conditions:

k ∧ m ∧ A = 0 and LKA = LmA = 0. (4.2.29)

In the next section we will look at how to find a set of coordinates that cover the

entire Domain of Outer Communication. This involves using the t and φ coordinates

we have just found together with the quantity ρ and its harmonic conjugate which shall

denote by z.
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4.3 Global Coordinates on the Domain of Outer Communication

In contrast to Carter’s proof of the uniqueness for the Kerr-Newman black hole we will

be exploiting the theory of Riemann surfaces to justify the introduction of Weyl coordi-

nates on the Domain of Outer Communication. Previously this step in the uniqueness

theorems has been done using Morse theory, however results in Morse theory rely heavily

on complex variable methods and one should not be too surprised that the application

of Riemann surface theory can successfully be used to prove the result we need. We have

already seen how useful Riemann surface theory is when we discussed the C-metric and

Ernst solution in Sects. 3.4 and 3.5.

Recall that in Sect. 3.1 we looked at Weyl solutions and introduced the (ρ, z) coordi-

nate system. At the time we merely stated that these quantities provided a coordinate

system. In the following sections we will take a more critical look at this introduction,

and establish a set of globally defined coordinates that will be useful in establishing the

uniqueness theorem we are going to prove.

There is a natural induced two-dimensional metric on the space of orbits of the two-

parameter isometry group generated by the Killing vectors K and m. Define MII as the

space of generic orbits (i.e., two-dimensional orbits) of the isometry group acting on the

Domain of Outer Communication. We remark that the fixed point set of the isometry

group generated by ∂/∂φ is a closed subset of the spacetime. We call this set the axis .

Notice too that MII is open, connected and non-empty. It is contained in the Hausdorff

topological space consisting of all orbits of the isometry group acting on the spacetime.

It is therefore non-compact (a compact subset of a Hausdorff space is closed, but if MII

were both open and closed then it must be equal to the entire Hausdorff space, as the

space of all orbits is connected, and therefore the axis would have to be empty which is

not the case). Let the induced metric on MII be written

g̃
II

= g̃
IIαβdx

α ⊗ dxβ . (4.3.1)

Since any two-dimensional metric is conformally flat, we can introduce orthonormal
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1-forms E1,E2 such that

g̃
II

= Σg
II

= Σ(E1 ⊗ E1 + E2 ⊗ E2) (4.3.2)

and Σ(p) 6= 0 for p ∈ MII and where g
II

is flat. Take p a base point in MII. Since

(MII, gII
) is flat and simply connected, its holonomy is trivial, and we may parallely

transport the 1-forms E1 and E2 to all other points in MII using

dEα = 0. (4.3.3)

Now, as the fundamental group π1(MII) = {11} we deduce that there exists scalars u, v

such that

E1 = du and E2 = dv. (4.3.4)

Combining u and v into a complex quantity ζ = u+ iv we see that we have a complex-

valued function on the manifold MII, which need not be injective. However if q ∈ MII

then there is an open neighbourhood U of q such that ζ |U : U → ζ(U) is one to one and

hence MII is a Riemann surface.

The quantities u and v do not necessarily constitute a coordinate system for the

space MII as the map ζ on MII fails to be injective in general. However we will show

that ρ and its harmonic conjugate are better behaved in this respect.

Let us consider the Einstein field equation for ρ. We will assume the metric has been

put in the form

g = −V dt⊗ dt+W (dφ⊗ dt+ dt⊗ dφ) +Xdφ⊗ dφ+ g̃
II
. (4.3.5)

Explicitly we have ρ2 = XV +W 2. Define

(hAB) =

(
−V W

W X

)
and

(
hAB

)
=

1

ρ2

(
−X W

W V

)
, (4.3.6)
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then ρ2 = − det (hAB). Using Eq. (A.30) we find

4RABh
AB = − 1

2ρ
∇α
(
ρhAB∇αhAB

)
= −1

ρ
∇2ρ, (4.3.7)

where A and B refer to the t and φ coordinates whilst the covariant derivatives are with

respect to the induced metric on the orbit space. Defining

Eα = Ftα and Bα = Fφα (4.3.8)

we have

4Rtt = 2E.E + 1
2
V F 2, (4.3.9)

4Rtφ = 2E.B − 1
2
WF 2, (4.3.10)

4Rφφ = 2B.B − 1
2
XF 2, (4.3.11)

where we have set

F 2 = 2(−XE.E + 2WE.B + VB.B)ρ−2. (4.3.12)

Evaluating

−1

ρ
∇2ρ =

1

ρ2

(
−4RttX + 2 4RtφW + 4RφφV

)
= 0. (4.3.13)

So we have shown that ρ is harmonic. Now any harmonic map may be written as the

real or imaginary part of an analytic function, we therefore choose to write

f(ζ) = z(ζ) − iρ(ζ); f analytic, (4.3.14)

so that z(ζ) is determined up to a constant by integrating the Cauchy-Riemann equa-

tions.

We are now in a position to apply the Riemann Mapping Theorem:
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The Riemann Mapping Theorem. Any simply-connected Riemann Surface is con-

formally homeomorphic to either

(i) The Riemann Sphere C∞,

(ii) The complex plane C or

(iii) The unit disc ∆.

We remarked earlier that MII is not compact, so MII in not conformally homeomor-

phic to the Riemann Sphere. It is easy to see that MII is not conformally homeomorphic

to C either. For suppose it were, consider the function

φ(ζ) =
1

f(ζ) − i
, (4.3.15)

as ρ > 0 on MII this is a bounded entire function and hence by Liouville’s theorem φ

(and hence f) must be constant. So we are led to

MII
∼= ∆. (4.3.16)

We may assume from now on that ζ takes values on the unit disc, ∆. Next we make

use of the asymptotically Melvin nature of the spacetime (the following also holds for

asymptotically flat solutions):

In coordinates where the point at infinity has a neighbourhood conformally homeo-

morphic to the half-disc, with the point at infinity its centre, the function f should have

a simple pole.

This follows easily by expanding the Melvin solution near infinity. We therefore map

the unit disc to the lower half-plane by means of a Möbius transformation, we will be

able to extend f to the real axis, where it takes purely real values. Next we apply

Schwarz reflection in this axis to analytically extend the map to the entire Riemann

Sphere. Having defined f on the Riemann Sphere allows us to make use of the Valency

Theorem.
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We consider the pre-image of infinity to work out the valency of the map, we have

already remarked that f only has a simple pole and so by an application of the Valency

Theorem the map f must be univalent, i.e., injective. Hence we have established that

the coordinates (ρ, z) provide a diffeomorphism from MII to the space ρ > 0, and may

indeed be employed as a coordinate system for the spacetime:

g = −V dt⊗ dt+W (dφ⊗ dt+ dt⊗ dφ) +Xdφ⊗ dφ+ Σ(dρ⊗ dρ+ dz ⊗ dz)

(4.3.17)

A = Φdt+ Ψdφ. (4.3.18)

4.4 Determination of the Conformal Factor

We will show in this section that the conformal factor Σ decouples from the other

equations, and for a general harmonic mapping of the type we are discussing can be

found through quadrature, provided the harmonic mapping equations are themselves

satisfied. In order to see this we make the dimensional reduction from three dimensions

to two. We suppose that we have already made a dimensional reduction from four

dimensions to three by exploiting the angular Killing vector, introducing Ernst potentials

appropriately. The effective Lagrangian then takes the form:

L =
√
|γ|
(

3R− 2γijGAB
∂φA

∂xi
∂φB

∂xj

)
. (4.4.1)

where the three metric is given by:

γ = −ρ2dt⊗ dt+ Σ (dρ⊗ dρ+ dz ⊗ dz) . (4.4.2)
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Performing the dimensional reduction on the Killing vector ∂/∂t, using ∇2ρ = 0 and

dropping a total divergence we find the effective Lagrangian is

L =
√
g

II
gαβ

II

(
1

Σ

∂Σ

∂xα
∂ρ

∂xβ
− 2ρGAB

∂φA

∂xα
∂φB

∂xβ

)
. (4.4.3)

We have also discarded a term proportional to the Gauss curvature of the two dimen-

sional metric. This term makes no contribution to the Einstein equations (the two

dimensional Einstein tensor being trivial) nor does it contribute to the harmonic map-

ping equations. The Einstein equations, derived from variations with respect to the

metric g
II

are easily derived:

1

Σ

∂Σ

∂z
= 4ρGAB

∂φA

∂z

∂φB

∂ρ
, (4.4.4)

1

Σ

∂Σ

∂ρ
= 2ρGAB

(
∂φA

∂ρ

∂φB

∂ρ
− ∂φA

∂z

∂φB

∂z

)
. (4.4.5)

Variations with respect to the φA yield the harmonic mapping equation:

∇.
(
ρGAB∇φB

)
− ρ

2

∂GBC

∂φA
∇φB.∇φC = 0. (4.4.6)

This equation can be re-written as

∇.
(
ρGAB∇φB

)
− ρΓDACGBD∇φB.∇φC = 0. (4.4.7)

where ΓDAC is the Christoffel symbol derived from the metric G on the target space.
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Multiplying Eq. (4.4.6) by ∂φA/∂z leads to

∂

∂z
(ρGAB)

[
∂φA

∂ρ

∂φB

∂ρ
− ∂φA

∂z

∂φB

∂z

]
= 2

∂

∂ρ
(ρGAB)

∂φA

∂z

∂φB

∂ρ

+ 2ρGAB

[
∂2φB

∂ρ2
+
∂2φB

∂z2

]
∂φA

∂z
. (4.4.8)

It is now a simple matter to calculate the integrability condition for Σ:

1

2

(
∂

∂z

∂

∂ρ
log Σ − ∂

∂ρ

∂

∂z
log Σ

)
=

∂

∂z
(ρGAB)

[
∂φA

∂ρ

∂φB

∂ρ
− ∂φA

∂z

∂φB

∂z

]

− 2
∂

∂ρ
(ρGAB)

∂φA

∂z

∂φB

∂ρ

− 2ρGAB

[
∂2φB

∂ρ2
+
∂2φB

∂z2

]
∂φA

∂z
= 0. (4.4.9)

We have shown that Σ may be found once the harmonic mapping problem is solved.

Finally we remark that the overall scale of Σ is determined by the asymptotic conditions.

4.5 The Divergence Identity.

In this section we give a new proof of the positivity of the electromagnetic general-

ization of Robinson’s identity. This result proved rather elusive when the uniqueness

theorems were first developed, being unsolved for nearly ten years, and Carter believed

that only through an understanding of the underlying structure could progress be made.

In contrast to the proofs given by Bunting and Mazur we do not lean too heavily on the

sigma-model formalism but rather use the complex variable embedding of a hyperboloid

in complex Minkowski space given in Sect. 2.4.

Recall that in that section the Poincaré and Bergmann metrics were given by the

projection of complex rays in Cn with metric

〈u, v〉 = u†ηv. (4.5.1)
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With the parameterization given by Eq. (2.4.15), the electromagnetic Lagrangian takes

the form

L =
‖(∇z)⊥‖2

‖z‖2
. (4.5.2)

We are using cylindrical polar coordinates in R3 for the gradient operator above and

have denoted the component of a quantity A orthogonal to z by A⊥ where

A⊥ = A− 〈z, A〉z
‖z‖2

. (4.5.3)

It should be noticed that there is some gauge freedom in the above Lagrangian; specif-

ically the Lagrangian is unchanged if we multiply z by an arbitrary complex function.

This just corresponds to the construction of the Bergmann metric as a projection. The

Lagrangian gives rise to the following equation of motion:

∇(∇z)⊥ =

( −1

‖z‖2

)(
‖(∇z)⊥‖2 + 〈z,∇z〉(∇z)⊥

)
(4.5.4)

This implies the expression:

(∇2z)⊥ = 0. i.e., ∇2z =

(
1

‖z‖2

)
〈z,∇2z〉z. (4.5.5)

As yet we have not made use of our gauge freedom. To begin with we shall use the

freedom we have to normalize z so that ‖z‖2 = −1. In addition we still have the

freedom to multiply z by an arbitrary phase. At any point we can exploit this freedom

to set 〈z,∇z〉 = 0. However, its derivative will not vanish in general. The normalization

we have imposed implies ∇2‖z‖2 = 0. Consequently we have,

〈z,∇2z〉 + 〈∇2z, z〉 = −2‖∇z‖2 = −2‖(∇z)⊥‖2. (4.5.6)

The last equality coming from the phase gauge condition. Henceforth we will always be

imposing these two conditions and therefore ∇z = (∇z)⊥.
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The divergence identity comes from examining the Laplacian of

S = −‖z1 ∧ z2‖2, (4.5.7)

where we have extended the inner product to the exterior algebra in the standard man-

ner. The fields z1 and z2 are assumed to obey both the field equation and the gauge

conditions. We might notice that S is invariant under arbitrary changes in phase of z1

and z2. For the moment we point out that the imposition of our phase gauge condition

merely serves to make our calculations simpler: the expansion of S does not depend on

the parallel component of ∇z.

Before we perform the calculation we make the useful observation,

‖z1 ∧ z2‖2 = 1 − |〈z1, z2〉|2

= −‖z⊥2
1 ‖2 ≤ 0. (4.5.8)

Where z⊥2
1 is orthogonal to z2 and being orthogonal to a timelike vector is spacelike.

Evaluating ∇2S we find,

∇2S = −〈∇2z1 ∧ z2 + 2∇z1 ∧∇z2 + z1 ∧ ∇2z2, z1 ∧ z2〉

− 〈z1 ∧ z2,∇2z1 ∧ z2 + 2∇z1 ∧ ∇z2 + z1 ∧ ∇2z2〉

− 2‖∇(z1 ∧ z2)‖2. (4.5.9)



4. Black Hole Uniqueness Theorems for The Ernst Solution and C-metric 81

Making use of Eq. (4.5.5) we find

∇2S = −2‖z1 ∧ z2‖2(‖∇z1‖2 + ‖∇z2‖2) − 2‖∇(z1 ∧ z2)‖2

− 2〈∇z1 ∧ ∇z2, z1 ∧ z2〉 − 2〈z1 ∧ z2,∇z1 ∧ ∇z2〉

= 2|〈z1,∇z2〉 + 〈∇z1, z2〉|2

+2|〈z1, z2〉|2(‖∇z1‖2 + ‖∇z2‖2)

+2〈z1, z2〉〈∇z2,∇z1〉 + 2〈z2, z1〉〈∇z1,∇z2〉. (4.5.10)

Next we define Ω = ∇(z1 ∧ z2) and evaluate the norm of the following quantities,

〈z1,Ω〉 = −(∇z2 + 〈z1, z2〉∇z1 + 〈z1,∇z2〉z1) (4.5.11)

and

〈z2,Ω〉 = ∇z1 + 〈z2, z1〉∇z2 + 〈z2,∇z1〉z2. (4.5.12)

Notice that by construction each is spacelike, being orthogonal to the timelike vectors

z1 and z2 respectively. We find that

‖〈z1,Ω〉‖2 + ‖〈z2,Ω〉‖2 =
(
1 + |〈z1, z2〉|2

) (
‖∇z1‖2 + ‖∇z2‖2

)

+ |〈z1,∇z2〉|2 + |〈z2,∇z1〉|2

+ 2〈z1, z2〉〈∇z2,∇z1〉 + 2〈z2, z1〉〈∇z1,∇z2〉. (4.5.13)
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Hence

∇2S = ‖〈z1,Ω〉‖2 + ‖〈z2,Ω〉‖2 + |∇〈z1, z2〉|2

+
(
|〈z1, z2〉|2 − 1

) (
‖∇z1‖2 + ‖∇z2‖2

)

+ 〈∇z1, z2〉〈z1,∇z2〉 + 〈∇z2, z1〉〈z2,∇z1〉. (4.5.14)

It only remains to notice that

|〈∇z1, z2〉〈z1,∇z2〉 + 〈∇z2, z1〉〈z2,∇z1〉| ≤ 2|〈∇z1, z2〉| |〈z1,∇z2〉|

≤ 2‖z⊥2
1 ‖ ‖z⊥1

2 ‖ ‖∇z1‖ ‖∇z2‖

≤
(
|〈z1, z2〉|2 − 1

) (
‖∇z1‖2 + ‖∇z2‖2

)
.

(4.5.15)

We have made use of the Cauchy-Schwarz inequality on the positive-definite subspaces

orthogonal to z1 and to z2 together with the AM-GM inequality. Putting all this together

we have therefore shown that

∇2S ≥ 0. (4.5.16)

We have equality if and only if ‖z1 ∧ z2‖ is constant. In particular if z1 and z2 agree up

to a phase anywhere then the constant is zero.

Returning to the problem at hand we use the Ernst parameterization

z =
1

2
√
X




1 − ǫ

1 + ǫ

2ψ


 (4.5.17)

with the Ernst potentials derived from the angular Killing vector.

ǫ = −X − |ψ|2 + iY, (4.5.18)
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ψ = E + iB. (4.5.19)

The condition ‖z1 ∧ z2‖ = 0 becomes

X̂2 + 2(X1 +X2)
(
Ê2 + B̂2

)
+
(
Ê2 + B̂2

)2

+
(
Ŷ + 2E1B2 − 2B1E2

)2

4X1X2
= 0. (4.5.20)

where we have used the abbreviation Â = A2 − A1. Accordingly X1 = X2, Y1 = Y2,

E1 = E2 and B1 = B2, which is to say the solution is unique.

We will make use of the positivity of the 3-dimensional Laplacian of S in exactly

the same way we use Green’s identity to prove the uniqueness of solutions to Laplace’s

equation. It is convenient to express the 3-dimensional Laplacian in terms of the two

dimensional metric on the space MII. As the angular coordinate is ignorable we have

then that

∇.(ρ∇S) ≥ 0. (4.5.21)

Integrating over MII and applying Stokes’ theorem

∫

∂MII

ρ∗dS ≥ 0, (4.5.22)

with equality if and only if S is constant.

4.6 Boundary Conditions

In this section we present appropriate boundary condition that will be sufficient to make

∫

∂MII

ρ∗dS = 0. (4.6.1)

The boundary conditions for the Ernst solution and the C-metric are presented

seperately due to their different behaviour near infinity. Provided then that a candidate

solution obeys these conditions and the horizon structure coincides with that of the
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C-metric, we may deduce that our candidate solution is described mathematically by

either an appropriate Ernst Solution or C-metric.

Having introduced Weyl coordinates to describe the candidate solution we may eval-

uate k the modulus of the elliptic functions by Eq. (3.4.8) from which we can construct K

and K ′ by Eqs. (3.A.26) and (3.A.27). We may then use Eq. (3.4.15) with 2L2 = zA−zS
to relate (χ, η) to the coordinates (ρ, z) that we may assume the candidate spacetime

metric is expressed with respect to. Once we have expressed the solution with respect

to these new coordinates we may use the analysis in Sect. 3.6 to select an appropriate

Ernst Solution to act as the other solution in the uniqueness proof. The vanishing of the

boundary integral will then allow us to conclude that the two solutions are identical.

In these coordinates the integral expression becomes

∫

∂MII

ρ

(
dχ

∂

∂η
− dη

∂

∂χ

)
S = 0, (4.6.2)

where from the last section:

S =
X̂2 + 2(X1 +X2)(Ê

2 + B̂2) + (Ê2 + B̂2)2 + (Ŷ + 2E1B2 − 2B1E2)
2

4X1X2

. (4.6.3)

4.6.1 Boundary Conditions for the Ernst Solution Uniqueness Theorem

We will impose boundary conditions to make the integrand vanish. On the axis χ = 0

we impose

1

X

∂X

∂χ
=

2

χ
+O(1); (4.6.4)

∂X

∂η
= O

(
χ1/2

)
; (4.6.5)

B = O
(
χ3/2

)
; (4.6.6)

∂B

∂χ
= O

(
χ1/2

)
; (4.6.7)
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∂B

∂η
= O

(
χ1/2

)
; (4.6.8)

E = O
(
χ3/2

)
; (4.6.9)

∂E

∂χ
= O

(
χ3/2

)
; (4.6.10)

∂E

∂η
= O

(
χ1/2

)
; (4.6.11)

Y = O
(
χ5/2

)
; (4.6.12)

∂Y

∂χ
+ 2

(
E
∂B

∂χ
− B

∂E

∂χ

)
= O

(
χ3/2

)
; (4.6.13)

∂Y

∂η
+ 2

(
E
∂B

∂η
− B

∂E

∂η

)
= O

(
χ1/2

)
. (4.6.14)

On the other axis we insist

1

X

∂X

∂u
=

2

u
+O(1); (4.6.15)

∂X

∂η
= O

(
u1/2

)
; (4.6.16)

B =
2

B0 + 8D/q
+O

(
u3/2

)
; (4.6.17)

∂B

∂u
= O

(
u1/2

)
; (4.6.18)

∂B

∂η
= O

(
u1/2

)
; (4.6.19)

E = O
(
u3/2

)
; (4.6.20)

∂E

∂u
= O

(
u1/2

)
; (4.6.21)

∂E

∂η
= O

(
u1/2

)
; (4.6.22)

Y = O
(
u5/2

)
(4.6.23)
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∂Y

∂u
+ 2

(
E
∂B

∂u
− B

∂E

∂u

)
= O

(
u3/2

)
; (4.6.24)

∂Y

∂η
+ 2

(
E
∂B

∂η
− B

∂E

∂η

)
= O

(
u1/2

)
. (4.6.25)

with u = K − χ. The condition on the fields as one approaches infinity is given by

X =
4

B0
4L2 sin2 θ

1

R
+O

(
1

R2

)
; (4.6.26)

1

X

∂X

∂R
= − 1

R
+O

(
1

R2

)
; (4.6.27)

∂X

∂θ
= O

(
1

R

)
; (4.6.28)

B =
2

B0

− 2

B0
3L2 sin2 θ

1

R
+O

(
1

R2

)
; (4.6.29)

∂B

∂R
=

2

B0
3L2 sin2 θ

1

R2
+O

(
1

R3

)
; (4.6.30)

∂B

∂θ
= O

(
1

R

)
; (4.6.31)

E = O

(
1

R2

)
; (4.6.32)

∂E

∂R
= O

(
1

R3

)
; (4.6.33)

∂E

∂θ
= O

(
1

R

)
; (4.6.34)

∂Y

∂R
+ 2

(
E
∂B

∂R
−B

∂E

∂R

)
= O

(
1

R4

)
; (4.6.35)

∂Y

∂θ
+ 2

(
E
∂B

∂θ
−B

∂E

∂θ

)
= O

(
1

R

)
. (4.6.36)

Near infinity we have set χ = R−1/2 sin θ and η = R−1/2 cos θ.

The boundary conditions on the horizons are particularly simple, we require the fields
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(X, Y,E,B) to be regular and that X > 0 except where the axis and horizon meet. As

X > 0 on this section of the boundary S will be well-behaved and hence

∫ K

0

ρ dχ
∂S

∂η
= 0 (4.6.37)

as a result of ρ = 0.

4.6.2 Boundary Conditions for the C-metric Uniqueness Theorem

The boundary conditions will need to impose for the C-metric uniqueness result differ

from those we required for the Ernst solution (with B0 = 0) only in the condition at

infinity. We require

X = 4L2 sin2 θ R +O(1); (4.6.38)

1

X

∂X

∂R
=

1

R
+O

(
1

R2

)
; (4.6.39)

∂X

∂θ
= O (R) ; (4.6.40)

B = O

(
1

R

)
; (4.6.41)

∂B

∂R
= O

(
1

R2

)
; (4.6.42)

∂B

∂θ
= O

(
1

R

)
; (4.6.43)

E = O

(
1

R2

)
; (4.6.44)

∂E

∂R
= O

(
1

R3

)
; (4.6.45)

∂E

∂θ
= O

(
1

R

)
; (4.6.46)
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∂Y

∂R
+ 2

(
E
∂B

∂R
− B

∂E

∂R

)
= O

(
1

R4

)
; (4.6.47)

∂Y

∂θ
+ 2

(
E
∂B

∂θ
− B

∂E

∂θ

)
= O

(
1

R

)
. (4.6.48)

These condition are sufficient to cause the appropriate boundary integral to vanish

and allow us to deduce the uniqueness of the C-metric. We might remark that the nodal

singularity that runs along one or both parts of the axis in this solution causes us no

problem once we pass to the space of orbits MII. Strictly we need to require that the

range of the angular coordinate of our C-metric solution be chosen match that of our

candidate solution at some point on the axis. The same remark may be made for the

Ernst solution uniqueness theorem proved in the previous subsection.

4.7 Black Hole Monopole Pair Creation

We have concerned ourselves with the C-metric and its generalizations to include an

external magnetic field. This solution has been of much recent interest. The path

integral approach to Euclidean quantum gravity relies on the evaluation of amplitudes

in the form ∫
DgDAe−S[g,A]. (4.7.1)

Here we set ~ = 1. The path integral goes from the initial state to the final state over

all possible paths. The quantity S is the classical action. We cannot perform such

integrals. Indeed, it is highly non-trivial to even give meaning to the measures involved

in its definition. However, abandoning any pretense at mathematical rigour, we say

that the dominant contribution to such an integral is given by analogy with Laplace’s

method: We look for solutions which satisfy the classical variational principle:

δS = 0, (4.7.2)

i.e., classical Riemannian solutions to the theory. In the real process, the Riemannian

section is joined onto a Lorentzian section at a moment of time symmetry where all the
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momenta vanish. The solution tunnels from the imaginary time formulation to the real

time solution. Thus black hole monopoles may be pair created by starting from a suitably

strong electromagnetic field as represented by the Melvin solution Eq. (3.3.6). We need

a Riemannian solution to Einstein’s equations that might represent this process. The

Ernst solution can be Wick rotated (t 7→ it) to provide just such a solution, this is The

Melvin-Ernst Instanton (Gibbons [22], Garfinkle and Strominger [23]). The solution will

however acquire a nodal singularity unless we give the t-coordinate a periodicity given

by 2π divided by the surface gravity of the horizons. In general the surface gravity of

each horizon is different.

The requirement that the two surface gravities be equal reflects the fact that the heat-

bath any accelerating observer sees must be in thermal equilibrium with the Hawking

radiation from the black hole. In a sense then, it is an extra quantum mechanical

condition on the stability of the classical solution, if the temperatures of the acceleration

horizon and the black hole horizon where different we would not expect the solution to

remain in an equilibrium state. This condition puts a restriction on the polynomial G,

G′(x2) +G′(x3) = 0. (4.7.3)

This may be satisfied if

m = g, (4.7.4)

and hence

G(x) = 1 − x2(1 + m̃x)2. (4.7.5)

This solution has topology S2 × S2 \ {pt}, the topology of the t = constant sections is

S2 × S1 \ {pt} in comparison that of the Melvin solution is R4.

The quantization of charge now quantizes the mass, typical monopole masses can only

be created with extreme magnetic fields, fields for which the Einstein-Maxwell theory

is not appropriate to describe. However, the lesson to be learnt from this solution is

that topology change must be taken into account in any reasonable theory of quantum

gravity, as it is inconsistent not to do so.
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4.8 Summary and Conclusion

We have studied the problem of extending the black hole uniqueness proofs to cover

accelerating black holes as represented by the C-metric. In addition, we have consid-

ered the case where the acceleration has a physical motivating force in the form of a

cosmological magnetic field; this situation being modelled by the Ernst Solution. By

understanding these solutions to Einstein-Maxwell theory we have constructed a new

set of coordinates that turn out to be intimately connected with the theory of elliptic

functions and integrals. At first sight this appears to be a troublesome complication,

however the elliptic functions are naturally defined on a one-parameter set of rectangles

that in some sense are as natural as defining trigonometric functions on a range of 0 to

2π. The uniqueness proof makes good use of these standard rectangles and ultimately

the divergence integral that finishes off the proof is over the boundary of one of them.

We also showed how the use of Riemann surface theory assists us to prove the va-

lidity of introducing Weyl coordinates in the Domain of Outer Communication. We are

fortunate in that the Riemann Mapping Theorem for Riemann surfaces does much of

the hard work. We also made good use of the Valency Theorem for compact Riemann

surfaces, this allowed us to avoid using the Morse theory that is often employed to prove

this step in the uniqueness theorems.

After showing how to determine the conformal factor for the induced two-dimensional

metric for any sigma-model, we presented a new proof of the positivity of the divergence

required to finish off the uniqueness results. This made use of the construction of the

Bergmann metric from Sect. 2.4. It contrasts in style with both existing proofs due to

Bunting [6] and Mazur [7]. Given the original difficulty of establishing the result (it was

unproved for almost a decade) it is pleasing to present a new proof tackling the problem

from a new angle.

We then discussed the boundary conditions required to make the appropriate bound-

ary integral vanish. Fortunately the boundary conditions are as good as one could hope.

They are able to distinguish between different Ernst solutions (as the must!) and yet

they are not too restrictive. The asymptotically Melvin nature of these solutions we

consider uniquely determines the cosmological magnetic field parameter, B0 at infinity.
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The condition on the axis determine what we have called D/q. The boundary condi-

tions place no other consistency requirements. The known parameters then determine

the other parameters: mass, m, charge g and acceleration A for the solution.

Finally we discussed the semi-classical process of black hole monopole pair creation.

The uniqueness theorems we have established in the chapter foils a possible objection

to the interpretation of these instantons as mediating a topology changing semi-classical

process. By showing that the instanton is unique we rule out the possibility that the

dominant contribution to the path integral be given by another exact solution. Had

another solution existed we would have needed to ask which classical action were largest

and possibly which contour we would have to take. The latter question being particularly

difficult to formulate rigorously.



5. SUPERSTRING BLACK HOLE UNIQUENESS THEOREMS

5.1 Introduction

We now extend the black hole uniqueness theorems to the Superstring and N = 4

Supergravity theories. In order to make progress we will need to impose staticity rather

than merely stationarity of the solutions, and naturally require the invariance of the

dilaton under the action of the isometries generated by the Killing vectors. In addition

we will only consider the case where the axionic field has been set equal to zero. This

is consistent if we assume the electric and magnetic components are actually derived

from two separate U(1) gauge fields. The essential point to notice in our proof is that

the effective Lagrangian in such a theory (2.7.2) is equal to that of two copies of that

which we find for pure gravity. We will need to verify that the Weyl coordinate system

may be introduced as before and then make use of Robinson’s identity to establish the

uniqueness result.

Firstly we will establish the uniqueness of a class of black holes obtained by perform-

ing the Double Ehlers’ transform of Sect. 2.7.1 to a spherically symmetric solution found

by Gibbons [13]. These solutions are asymptotically Melvin’s Stringy Universe, it thus

generalizes the result of Hiscock [24] for the Einstein-Maxwell theory. We could equally

apply the theory to asymptotically flat solutions but one might feel that the uniqueness

of such solutions should be proved under less stringent hypotheses, in particular we note

that Masood-ul-Alam has already proved the uniqueness of an asymptotically flat black

hole solution in these theories [25].

Secondly, we return to the Ernst solution and the C-metric, or rather their stringy

variants and proceed to prove a theorem establishing their uniqueness. The solutions

found here represent a generalization of those discussed by Dowker et al. [26], and reduce
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to them when the Double Ehlers’ transform has equal parameters. It might be noted

that they do not agree with those previously proposed by Ross [27].

In Sect. 5.2 we introduce the spherically symmetric solution in string theory that is

the analogue of the Riessner-Nordstrøm black hole. We then perform a double Ehlers’

transform to generate a new solution that will be the object of our uniqueness theorem.

In the following section, Sect. 5.3, we carefully state the hypotheses we need to prove

the theorem and justify the introduction of Weyl coordinates by proving that the norm

of the Killing bivector is a harmonic function on the relevant orbit space.

In Sect. 5.4 we explain how Robinson’s identity for the pure gravity can be exploited

to give us a tool for establishing a uniqueness theorem in string theory and N = 4

supergravity subject to the hypotheses laid out in Sect. 5.3. We then complete the proof

of our theorem by presenting sufficient boundary conditions to make the appropriate

boundary integral vanish. These conditions are laid out in Sect. 5.5.

Having demonstrated how we may establish a uniqueness theorem in these theories

we go on to apply our methods to the Stringy C-metric and Stringy Ernst solution.

The Stringy C-metric is that found by Dowker et al. [26]. We apply the double Ehlers’

transformation to derive the Stringy Ernst solution. As in Chap. 3 and Chap. 4 we

transform coordinates to ones which have a strong relationship to the elliptic functions

and integrals that we used in the last chapter. This is set out in Sect. 5.6. Then in

Sect. 5.7 we write down the relevant boundary conditions to complete the uniqueness

theorem for these solutions. Finally in the conclusion, Sect. 5.8, we make a few comments

on the difficulties in generalizing the result.

5.2 The Class of Solutions

Our starting point is the spherically symmetric solution found by Gibbons [13]:

g = −
(

1 − 2M

R

)
dt⊗ dt+

(
1 − 2M

R

)−1

dr ⊗ dr + r

(
r − Q2

M

)
dΩ2. (5.2.1)
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The electromagnetic field and dilaton are given by

A =
Q

r
dt, (5.2.2)

e2φ = 1 − Q2

Mr
(5.2.3)

where we write φ for the dilaton field and ϕ for the angular coordinate.

Now apply the Double Ehlers’ Transformation associated with the angular Killing

vector ∂/∂ϕ. The transformations are given by Eqs. (2.7.8) to (2.7.11).

The solution given above, Eqs. (5.2.1) to (5.2.2) have potentials:

X = r

(
r − Q2

M

)
sin2 θ, (5.2.4)

ψ+ = 0, (5.2.5)

ψ− =
√

2Q cos θ, (5.2.6)

together with (5.2.3). In consequence it is a simple matter to write down the transformed

metric and fields:

g = ΛΘ

(
−
(

1 − 2M

r

)
dt⊗ dt+

(
1 − 2M

r

)−1

dr ⊗ dr + r

(
r − Q2

M

)
dθ ⊗ dθ

)

+
r

ΛΘ

(
r − Q2

M

)
sin2 θdϕ⊗ dϕ, (5.2.7)

where

Λ = 1 + β2

(
r − Q2

M

)2

sin2 θ and Θ = 1 + γ2r2 sin2 θ. (5.2.8)
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The new dilaton and potentials are given by

e2φ =

(
1 − Q2

M

)
Θ

Λ
, (5.2.9)

ψ+ =
β

Λ

(
r − Q2

M

)2

sin2 θ, (5.2.10)

ψ− =
1

Θ

[√
2Q cos θ + γ

(
r2 sin2 θ + 2Q2 cos2 θ

)]
. (5.2.11)

5.3 The Hypotheses

Just as we did for the Einstein-Maxwell theory we will list the hypotheses we will need

to prove our uniqueness theorems:

• Axisymmetry: There exists a Killing vector m such that Lmg = 0, LmF = 0 and

Lmφ = 0 which generates a one-parameter group of isometries whose orbits are

closed spacelike curves.

• Staticity: There exists a hypersurface orthogonal Killing vector field K such that

LKg = 0, LKF = 0 and LKφ which generates a one-parameter group of isometries

which acts freely and whose orbits near infinity are timelike curves.

• Commutivity: [K,m] = 0.

• Source-free Maxwell equations dF = 0 and δ
(
e−2φF

)
= 0 together with the

Einstein equations Rab = 2∇aφ∇bφ+ 8πe−2φT
(F )
ab where

T
(F )
ab =

1

4π

(
FacFb

c − 1

4
gabFcdF

cd

)
. (5.3.1)

• The domain of outer communication is connected and simply-connected.

• The solution contains a single black hole.
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• The solution is asymptotically the Stringy Melvin Universe.

• Boundary conditions (See section 5.5).

We remark that the Generalized Papapetrou theorem of Sect. 4.2 goes through with

a few very minor changes to take account of the modified Einstein and Maxwell relations.

In particular the invariance of the dilaton field under the symmetries reads

iKdφ = 0 and imdφ = 0. (5.3.2)

Accordingly it does not contribute to T (k), which only changes by a factor of e−2φ. In

addition the Staticity condition means that the cross term in the metric vanishes, i.e.,

W = 0.

The next step is to introduce Weyl coordinates. We repeat the calculation that ρ is

a harmonic function on the space of orbits. Explicitly we have ρ2 = XV . Defining as

before

(hAB) =

(
−V 0

0 X

)
and

(
hAB

)
=

1

ρ2

(
−X 0

0 V

)
, (5.3.3)

we need to calculate

4RABh
AB = − 1

2ρ
∇α
(
ρhAB∇αhAB

)
= −1

ρ
∇2ρ. (5.3.4)

Again A and B refer to the t and ϕ coordinates whilst the covariant derivatives are with

respect to the induced metric on the two-dimensional orbit space. Defining

Eα = Ftα and Bα = Fϕα (5.3.5)

we have

4Rtt = e−2φ
(
2E.E + 1

2
V F 2

)
, (5.3.6)

4Rϕϕ = e−2φ
(
2B.B − 1

2
XF 2

)
. (5.3.7)
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where

F 2 = 2(−XE.E + VB.B)ρ−2. (5.3.8)

Notice that the invariance of φ means that ∂φ/∂t = 0 and ∂φ/∂ϕ = 0, and that therefore

∇Aφ∇Bφ makes no contribution to 4RAB. The result is

−1

ρ
∇2ρ =

1

ρ2

(
−4RttX + 4RϕϕV

)
= 0. (5.3.9)

Thus ρ is harmonic and we may go on to introduce its harmonic conjugate in just the

same manner as we did in the previous chapter.

5.4 The Divergence Identity

We recall at this point our discussion in Sect. 2.7 and in particular that the effective

two dimensional Lagrangian arising from string theory and N = 4 Supergravity takes

the form

L = ρ
√

|γ|
[ |∇X+|2 + |∇ψ+|2

X2
+

+
|∇X−|2 + |∇ψ−|2

X2
−

]
(5.4.1)

where

X2
+ = Xe2φ and X2

− = Xe−2φ. (5.4.2)

Each term in the above Lagrangian is a copy of the Lagrangian for pure gravity and in

consequence we may thus use Robinson’s identity [28],

∇.
(
ρ∇
(
X̂+

2
+ ψ̂+

2

X
(1)
+ X

(2)
+

+
X̂−

2
+ ψ̂−

2

X
(1)
− X

(2)
−

))

= F (X
(1)
+ , X

(2)
+ , ψ

(1)
+ , ψ

(2)
+ ) + F (X

(1)
− , X

(2)
− , ψ

(1)
− , ψ

(2)
− ) ≥ 0, (5.4.3)
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where F (X(1), X(2), Y (1), Y (2)) is defined by

F (X(1), X(2), Y (1), Y (2)) =
ρ

X(1)X(2)

[
Ŷ∇Y (1)

X(1)
+
X(1)∇X(2)

X(2)
−∇X(1)

]2

+
ρ

X(1)X(2)

[
Ŷ∇Y (2)

X(2)
− X(2)∇X(1)

X(1)
+ ∇X(2)

]2

+
ρ

2X(1)X(2)

[(∇Y (2)

X(2)
− ∇Y (1)

X(1)

)
(X(1) +X(2)) −

(∇X(2)

X(2)
+

∇X(1)

X(1)

)
Ŷ

]2

+
ρ

2X(1)X(2)

[(∇Y (2)

X(2)
+

∇Y (1)

X(1)

)
X̂ −

(∇X(2)

X(2)
+

∇X(1)

X(1)

)
Ŷ

]2

. (5.4.4)

As before we have defined Â = A2 − A1 etc. It is now evident that we may use

this divergence identity to provide us with the key tool in establishing a black hole

uniqueness theorem. To complete the proof we will want to change coordinates, and

impose suitable boundary conditions to make the relevant boundary integral vanish.

We make the change of coordinates:

ρ = r sin θ, (5.4.5)

z = r cos θ. (5.4.6)

The value of r runs from M to infinity (we adjust the additive constant to z to make

the horizon run from −M ≤ z ≤ M). The overall scaling of ρ and z is made such that

asymptotically r becomes the radial coordinate of the Stringy Melvin Universe, i.e.,

g ∼ Aρ4(−dt⊗ dt+ dρ⊗ dρ+ dz ⊗ dz) +
1

Aρ2
dϕ⊗ dϕ. (5.4.7)

with ϕ taking values in [0, 2π). It is worth remarking that we cannot rescale the coor-

dinates and parameters and retain this form whilst leaving the range of ϕ unchanged,
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except for the trivial instance of multiplying the coordinates by −1.

The two dimensional domain we work on is the semi-infinite rectangle, r > M and

−π/2 ≤ θ ≤ π/2, and the boundary integral we require to vanish is given by

∫
r cos θ

(
rdθ

∂

∂r
− dr

r

∂

∂θ

)(
X̂+

2
+ ψ̂2

+

X
(1)
+ X

(2)
+

+
X̂−

2
+ ψ̂2

−

X
(1)
− X

(2)
−

)
= 0. (5.4.8)

5.5 Boundary Conditions

We now need to impose suitable boundary conditions to make the boundary integral

vanish. The following prove to be sufficient. At infinity we require

X+ =
1

β2 sin θ

1

r
+O

(
1

r2

)
; (5.5.1)

1

X+

∂X+

∂r
= −1

r
+O

(
1

r2

)
; (5.5.2)

ψ+ =
1

β
− 1

β3 sin2 θ

1

r2
+O

(
1

r3

)
; (5.5.3)

∂ψ+

∂r
=

2

β3 sin2 θ

1

r3
+O

(
1

r4

)
; (5.5.4)

X− =
1

γ2 sin θ

1

r
+O

(
1

r2

)
; (5.5.5)

1

X−

∂X−
∂r

= −1

r
+O

(
1

r2

)
; (5.5.6)

ψ− =
1

γ
− 1 +

√
2γQ cos θ

γ3 sin2 θ

1

r2
+O

(
1

r3

)
; (5.5.7)

∂ψ−
∂r

=
2
(
1 +

√
2γQ cos θ

)

γ3 sin2 θ

1

r3
+O

(
1

r4

)
. (5.5.8)
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On the axes we require (setting µ = sin θ)

1

X+

∂X+

∂µ
=

−µ
1 − µ2

+O(1); (5.5.9)

∂X+

∂r
= O

((
1 − µ2

)1/2)
; (5.5.10)

ψ+ = O(1 − µ2); (5.5.11)

∂ψ+

∂µ
= O(1); (5.5.12)

∂ψ+

∂r
= O(1 − µ2); (5.5.13)

1

X−

∂X−
∂µ

=
−µ

1 − µ2
+O(1); (5.5.14)

∂X−
∂r

= O
((

1 − µ2
)1/2)

; (5.5.15)

ψ− =
(
√

2µ+ 2γQ)Q

1 + 2γ2Q2
+O(1 − µ2); (5.5.16)

∂ψ−
∂µ

= O(1); (5.5.17)

∂ψ−
∂r

= O(1 − µ2); (5.5.18)

where the boundaries correspond to µ = ±1. On the horizon we require regularity of

X+, X−, ψ+ and ψ−. These conditions are sufficient to make the boundary integral

vanish and hence establish our uniqueness result.

5.6 Uniqueness Theorems for the Stringy C-metric and Stringy-Ernst

Solution

In Chap. 4 we proved the uniqueness of both the C-metric and the Ernst solution. In this

section we exploit the techniques developed there together with the string uniqueness

formalism we have just been using to show that given any Stringy C-metric or Stringy

Ernst solution then the boundary conditions uniquely specify the solution. Our philos-
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ophy here is slightly less ambitious than for Einstein-Maxwell theory; in the latter case

we took the position that any candidate solution that resembled the Ernst solution at

infinity was indeed an Ernst solution provided one of the quantities determined on the

boundary was greater than a critical value. Here we assume we have an Ernst solution

that does satisfy the boundary conditions and prove that no other solution can have the

same boundary conditions.

Our starting point is the Dilaton C-metric found by Dowker et al. [26],

g =
1

A2(x− y)2

[
F (x)G(y)dt⊗ dt+

F (y)dx⊗ dx

G(y)
− F (x)dy ⊗ dy

G(y)

+ F (y)G(x)dϕ⊗ dϕ

]
, (5.6.1)

where

e−2φ =
F (y)

F (x)
, (5.6.2)

A =

√
r+r−

2
(x− x2)dϕ, (5.6.3)

F (ξ) = 1 + r−Aξ , (5.6.4)

G(ξ) = 1 − ξ2 − r+Aξ
3. (5.6.5)

We have labelled the roots of G(x) as x3 < x2 < x1 with x1 > 0. The quantity x4

corresponds to setting F (x) = 0, for which we assume x4 < x3 so as to represent an

inner horizon for the black hole.

It is advantageous to represent this solution in terms of the Jacobi elliptic functions.

We transform to new coordinates using

χ

M
=

∫ x

x2

dξ√
F (ξ)G(ξ)

and
η

M
=

∫ x2

y

dξ√
−F (ξ)G(ξ)

. (5.6.6)
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with M =
√
e1 − e3 where ei = ℘(ωi) and ωi being a half period as we had in Ap-

pendix 3.A. The appropriate invariants of the ℘-function are given by

g2 =
1 + 3A2r2

− − 9A2r+r−
12

, (5.6.7)

g3 =
2 − 27A2r2

+ − 18A2r2
− + 27A2r+r− + 27A4r+r

3
−

432
. (5.6.8)

Writing the metric as

g = −V dt⊗ dt+Xdφ⊗ dφ+ Σ (dχ⊗ dχ + dη ⊗ dη) , (5.6.9)

we find:

X =
4L2 (1 −D sn2 η) (1 − E sn2 η) sn2 χ cn2 χ dn2 χ

(cn2 χ+D sn2 χ) (cn2 η + E sn2 η) (sn2 χ+ sn2 η cn2 χ)2 ; (5.6.10)

V =
4L2 (cn2 χ +D sn2 χ) (cn2 χ+ E sn2 χ) sn2 η cn2 η dn2 η

(1 −D sn2 η) (1 −E sn2 η) (sn2 χ + sn2 η cn2 χ)2 ; (5.6.11)

Σ =
16H2L2 (cn2 χ+D sn2 χ) (cn2 χ+ E sn2 χ) (1 −D sn2 η)

2
(1 −E sn2 η)

κ2 (sn2 χ+ sn2 η cn2 χ)2 .

(5.6.12)

We have written M = AL together with

κ =
d(F (ξ)G(ξ))

dξ

∣∣∣∣
ξ=x2

, D =
1 + k′2

3
− 1

24M2

d2(F (ξ)G(ξ))

dξ2

∣∣∣∣
ξ=x2

(5.6.13)

and

E = D +
r−Aκ

4M2H
, H = 1 + Ar−x2. (5.6.14)

As before the quantity ρ is given by

ρ =
4L2 snχ cnχ dnχ sn η cn η dn η

(sn2 χ + sn2 η cn2 χ)2 . (5.6.15)
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Thus once again we have z − iρ = 2L2℘(χ + iη). The dilaton and vector potential are

given by the expressions

e−2φ =
(cn2 χ +D sn2 χ) (1 − E sn2 η)

(cn2 χ+ E sn2 χ) (1 −D sn2 χ)
; (5.6.16)

A =
QD sn2 χdϕ

4 (cn2 χ+D sn2 χ)
; Q =

κ
√
r+r−√

2A3L2D
. (5.6.17)

Performing the transformations Eqs. (2.7.8) to (2.7.11) we arrive at the metric of interest.

The new metric and fields we have derived are:

X =
4L2 (1 −D sn2 η) (1 − E sn2 η) sn2 χ cn2 χ dn2 χ

ΛΘ (cn2 χ+D sn2 χ) (cn2 η + E sn2 η) (sn2 χ+ sn2 η cn2 χ)2 ; (5.6.18)

V =
4L2ΛΘ (cn2 χ+D sn2 χ) (cn2 χ+ E sn2 χ) sn2 η cn2 η dn2 η

(1 −D sn2 η) (1 −E sn2 η) (sn2 χ + sn2 η cn2 χ)2 ; (5.6.19)

Σ =
16H2L2ΛΘ (cn2 χ+D sn2 χ) (cn2 χ + E sn2 χ) (1 −D sn2 η)

2
(1 −E sn2 η)

κ2 (sn2 χ+ sn2 η cn2 χ)2 ;

(5.6.20)

with

Λ = 1 + β2

{
4L2 sn2 χ cn2 χ dn2 χ (1 −D sn2 η)

2

(cn2 χ+D sn2 χ)2 (sn2 χ+ sn2 η cn2 χ)2 +
Q2D2 sn4 χ

16 (cn2 χ+D sn2 χ)

}
;

(5.6.21)

Θ = 1 +
4γ2L2 sn2 χ cn2 χ dn2 χ (1 − E sn2 η)

2

(cn2 χ+ E sn2 χ)2 (sn2 χ+ sn2 η cn2 χ)2 . (5.6.22)

The dilaton is given by

e−2φ =
Λ (cn2 χ+D sn2 χ) (1 −E sn2 η)

Θ (cn2 χ+ E sn2 χ) (1 −D sn2 χ)
. (5.6.23)
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We record the values of the quantities X± and the potentials ψ±:

X+ =
2L snχ cnχ dnχ (1 −D sn2 η)

Λ (cn2 χ+D sn2 χ) (sn2 χ + sn2 η cn2 χ)
; (5.6.24)

X− =
2L snχ cnχ dnχ (1 −E sn2 η)

Θ (cn2 χ+ E sn2 χ) (sn2 χ+ sn2 η cn2 χ)
; (5.6.25)

ψ+ =
1

Λ

{
QD sn2 χ

4 (cn2 χ+D sn2 χ)

+β

[
4L2 sn2 χ cn2 χ dn2 χ (1 −D sn2 η)

2

(cn2 χ+D sn2 χ)2 (sn2 χ+ sn2 η cn2 χ)2 +
Q2D2 sn4 χ

16 (cn2 χ+D sn2 χ)

]}
; (5.6.26)

ψ− =
4γL2 sn2 χ cn2 χ dn2 χ (1 − E sn2 η)

2

Θ (cn2 χ+ E sn2 χ)2 (sn2 χ + sn2 η cn2 χ)2 . (5.6.27)

We will be interested in the behaviour of the fields as one takes the limits χ → 0,

u → 0 with u = K − χ and R → ∞. The appropriate boundary conditions we need to

make the boundary integral vanish are presented in the next section.

5.7 Boundary Conditions for the Stringy Ernst Solution and C-Metric

In order to complete the proof of the uniqueness for the Stringy Ernst solution and

Stringy C-metric it only remains to write down a set of boundary conditions that will

make the boundary integral vanish. It is fairly simple to verify that the conditions given

in the following two subsections are sufficient for this purpose.

5.7.1 Boundary Conditions for the Stringy Ernst Solution Uniqueness Theorem

To start with we will require all the fields to be regular (and in addition for X+ and

X− to not vanish) as one approaches the acceleration and event horizons. Near the axis
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χ = 0 we demand

1

X+

∂X+

∂χ
=

1

χ
+O(1); (5.7.1)

∂X+

∂η
= O (χ) ; (5.7.2)

ψ+ = O
(
χ2
)
; (5.7.3)

∂ψ+

∂χ
= O (χ) ; (5.7.4)

∂ψ+

∂η
= O (χ) ; (5.7.5)

1

X−

∂X−
∂χ

=
1

χ
+O(1); (5.7.6)

∂X−
∂η

= O (χ) ; (5.7.7)

ψ− = O
(
χ2
)
; (5.7.8)

∂ψ−
∂χ

= O (χ) ; (5.7.9)

∂ψ−
∂η

= O (χ) . (5.7.10)

For the other axis we will require

1

X+

∂X+

∂u
=

1

u
+O(1); (5.7.11)

∂X+

∂η
= O (u) ; (5.7.12)

ψ+ =
Q (4 + βQ)

16 + β2Q2
+O

(
u2
)
; (5.7.13)

∂ψ+

∂u
= O

(
u2
)
; (5.7.14)

∂ψ+

∂η
= O (u) ; (5.7.15)
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1

X−

∂X−
∂u

=
1

u
+O(1); (5.7.16)

∂X−
∂η

= O (u) ; (5.7.17)

ψ− = O
(
u2
)
; (5.7.18)

∂ψ−
∂u

= O (u) ; (5.7.19)

∂ψ−
∂η

= O (u) . (5.7.20)

Whilst as R → ∞ with χ = R−1/2 sin θ and η = R−1/2 cos θ we will demand

X+ =
1

2β2L sin θ

1

R1/2
+O

(
1

R3/2

)
; (5.7.21)

1

X+

∂X+

∂R
= − 1

2R
+O

(
1

R2

)
; (5.7.22)

∂X+

∂θ
= O

(
1

R1/2

)
; (5.7.23)

ψ+ =
1

β
− 1

4β3L2 sin2 θ

1

R
+O

(
1

R2

)
; (5.7.24)

∂ψ+

∂R
=

1

4β3L2 sin2 θ

1

R2
+O

(
1

R3

)
; (5.7.25)

∂ψ+

∂θ
= O

(
1

R

)
; (5.7.26)

X− =
1

2γ2L sin θ

1

R
+O

(
1

R2

)
; (5.7.27)

1

X−

∂X−
∂R

= − 1

2R
+O

(
1

R2

)
; (5.7.28)

∂X−
∂θ

= O

(
1

R1/2

)
; (5.7.29)

ψ− =
1

γ
− 1

4γ3L2 sin2 θ

1

R
+O

(
1

R2

)
; (5.7.30)
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∂ψ−
∂R

=
1

4
√

2γ3L2 sin2 θ

1

R2
+O

(
1

R3

)
; (5.7.31)

∂ψ−
∂θ

= O

(
1

R1/2

)
. (5.7.32)

These boundary conditions are sufficient to establish the uniqueness of the Stringy Ernst

solutions. For good measure we also present the boundary conditions for the Stringy

C-metric problem.

5.7.2 Boundary Conditions for the Stringy C-Metric Uniqueness Theorem

The appropriate conditions are as follows. Near χ = 0 we will insist

1

X+

∂X+

∂χ
=

1

χ
+O(1); (5.7.33)

∂X+

∂η
= O (χ) ; (5.7.34)

ψ+ = O
(
χ2
)
; (5.7.35)

∂ψ+

∂χ
= O (χ) ; (5.7.36)

∂ψ+

∂η
= O (χ) ; (5.7.37)

1

X−

∂X−
∂χ

=
1

χ
+O(1); (5.7.38)

∂X−
∂η

= O (χ) ; (5.7.39)

ψ− = O
(
χ2
)
; (5.7.40)

∂ψ−
∂χ

= O (χ) ; (5.7.41)

∂ψ−
∂η

= O (χ) . (5.7.42)
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For the other axis we will require

1

X+

∂X+

∂u
=

1

u
+O(1); (5.7.43)

∂X+

∂η
= O (u) ; (5.7.44)

ψ+ =
Q

2
√

2
+O

(
u2
)
; (5.7.45)

∂ψ+

∂u
= O (u) ; (5.7.46)

∂ψ+

∂η
= O (u) ; (5.7.47)

1

X−

∂X−
∂u

=
1

u
+O(1); (5.7.48)

∂X−
∂η

= O (u) ; (5.7.49)

ψ− = O
(
u2
)
; (5.7.50)

∂ψ−
∂u

= O (u) ; (5.7.51)

∂ψ−
∂η

= O (u) . (5.7.52)

Whilst as R → ∞ with χ = R−1/2 sin θ and η = R−1/2 cos θ we will demand

X+ = 2L sin θ R1/2 +O (1) ; (5.7.53)

1

X+

∂X+

∂R
=

1

2R
+O

(
1

R2

)
; (5.7.54)

∂X+

∂θ
= O

(
R1/2

)
; (5.7.55)

ψ+ =
QD sin2 θ

2
√

2

1

R
+O

(
1

R2

)
; (5.7.56)
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∂ψ+

∂R
= −QD sin2 θ

2
√

2

1

R2
+O

(
1

R3

)
; (5.7.57)

∂ψ+

∂θ
= O

(
1

R

)
; (5.7.58)

X− = 2L sin θ R1/2 +O (1) ; (5.7.59)

1

X−

∂X−
∂R

=
1

2R
+O

(
1

R2

)
; (5.7.60)

∂X−
∂θ

= O
(
R1/2

)
; (5.7.61)

ψ− = O

(
1

R2

)
; (5.7.62)

∂ψ−
∂R

= O

(
1

R3

)
; (5.7.63)

∂ψ−
∂θ

= O

(
1

R

)
. (5.7.64)

5.8 Conclusion

We have been able to prove the uniqueness of two classes of asymptotically Melvin

black holes. We would hope that the formalism developed in this chapter to prove the

uniqueness of our class of black holes could be used to prove the uniqueness of other

classes of static solutions in these theories. We would also like to have a formalism that

incorporates the possibility of rotation and includes the axionic field, however it seems

likely that such an extension would not be straightforward. The crux of the uniqueness

proof is the establishing of the positivity of a suitable divergence. It turned out that

for the static truncation of string theory that we considered the Lagrangian split into

two separate copies of that for pure gravity. Consequently we could simply add together

two copies of the relevant divergence identity (Robinson’s identity) to furnish us with an

expression that we could use in our black hole uniqueness investigations. If we include

rotation or an axionic field the Lagrangian will not decompose so easily, and we would

need to deal with it as a whole. This is problematical as the target space of the harmonic

map possesses (at least) two timelike directions. Unfortunately this prohibits a simple
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application of the Mazur construction or a suitable analogue of the new construction

presented in Sect. 4.5. It seems that Bunting’s approach may be the best way forward

under these circumstances relying, as it does, more heavily on the negative curvature

of the target space metric than on its particular form as an SU(1, 2)/S (U(1) × U(2))

symmetric space harmonic mapping system.



6. ANTI-GRAVITY BOUNDS

6.1 Introduction

In theories of gravity in four spacetime dimensions in which, in addition to the graviton,

there are additional massless boson fields of spin zero and spin one the long range inverse

square law attraction produced by the graviton and scalar or pseudo-scalar particles can

to some extent be compensated by the long range repulsion produced by the spin one

vector fields. However if one insists that there are no naked singularities and that the

sources, if there are any, satisfy appropriate conditions, one typically finds that the

repulsive forces can at best exactly compensate the attractive forces to produce a state

of equipoise; they can never overwhelm the attractive forces altogether.

This phenomenon is sometimes referred to as anti-gravity and it arises in various

theories, including supergravity and Kaluza-Klein theories. It is possible to investigate

anti-gravity using some ideas from supersymmetry and supergravity even though the

theories one may be interested in are not necessarily supergravity theories. Using a

generalization [29] of Witten’s proof of the positive mass theorem [30] it is possible to

show that the absence of systems which are repulsive is a general phenomenon because

the total mass of an isolated system is bounded below, in suitable units, by the magnitude

of any of its central charges. A state of anti-gravity may occur if this bound is attained.

In supersymmetric theories this state is typically supersymmetric.

In this chapter we place what seem to be different limits on the ADM mass M ,

scalar charge Σ and electromagnetics charges Q and P of an isolated system which also

guarantees that it attracts at large distances from a different view-point. The idea is

to adapt the technique exploited by Penrose, Sorkin and Woolgar to prove a version

of the Positive Mass Theorem [31]. These authors establish a close link between the
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attractive properties of an isolated source (i.e., positivity of the total ADM mass M)

and the non-negativity of the Ricci tensor Rab of the four dimensional spacetime metric

gab contracted with the tangent vector of a null geodesic. The non-negativity of the

Ricci tensor is sufficient to establish a focussing property of null geodesics which plays

an essential rôle in the proof.

The strategy to be adopted here is to consider not null geodesics but rather the

timelike paths of particles of mass m, scalar charge gm and electric charge sm, in a

background metric gab, scalar field φ and vector field A. These timelike paths may be

regarded as the projection of null geodesics moving in a suitable auxiliary five dimen-

sional metric gAB, A = 1, 2, 3, 4, 5 of signature + + + − + with Killing field ∂/∂x5. It

then turns out that as long as the Ricci tensor, 5RAB of the auxiliary five dimensional

metric 5gAB is non-negative when contracted with a null five-vector V A then the total

mass M , scalar charge Σ and electric charge Q must satisfy the anti-gravity bound

M − gΣ ≥ s|Q| . (6.1.1)

The result for a magnetic charge is given by considering the duality transformation:

φ 7→ −φ and F 7→ e−2φ
∗F . (6.1.2)

This has the effect of swapping the electric and magnetic charges, and reversing the sign

of Σ; hence the anti-gravity bound is given by

M + gΣ ≥ s|P |. (6.1.3)

The non-negative Ricci condition, which is the five dimensional null convergence condi-

tion used by Hawking and Ellis [32], will be satisfied as long as:

g2 ≤ 3 ; s2 ≥ 2(g2 − 1) ; s2 ≤ 1 + g2 . (6.1.4)
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Thus if 0 ≤ g2 ≤ 1 it suffices that

0 ≤ s ≤
√

1 + g2 , (6.1.5)

if 1 ≤ g2 ≤ 3 it suffices that

√
2(g2 − 1) ≤ s ≤

√
1 + g2 (6.1.6)

while if g2 > 3 the non-negative Ricci condition will not in general be satisfied.

The structure of this chapter is as follows: In Sect. 6.2 we present the Lagrangian,

ansatz and field equations for the class of theories including dilaton we will be studying.

We identify some Nöther currents and comment on the electrodynamics of the system

in terms of effective permittivities and permeabilities. In the next section, Sect. 6.3, we

embed our four dimensional spacetime in an auxiliary five dimensional spacetime, and

use Hamilton-Jacobi methods to solve for the null geodesics. We mirror the arguments of

Penrose, Sorkin and Woolgar and establish our new inequality subject to the conditions

set forth in Sect. 6.4 and 6.5. In Sect. 6.6 we compare our new inequality with the

spherically symmetric black hole solutions in these theories, whilst in Sect. 6.7 we make

the comparison with the analogues of the Papapetrou-Majumdar solutions that saturate

our new bound. Before drawing our conclusions in Sect. 6.9 we contrast our anti-gravity

bound with that previously discovered by Scherk. This is done in Sect. 6.8.

The new inequality Eq. (6.1.1) is the same as that obtained using the spinorial

technique for pure Einstein-Maxwell theory but differs from it if there are scalar fields.

Recall that in the absence of scalar fields (i.e., if g = 0) and in the absence of sources

then the Bogomol’nyi bound [29] is

M ≥
√
Q2 + P 2 (6.1.7)

and saturation implies that the background is supersymmetric in that it admits Killing

spinors when thought of as a solution of the N = 2 supergravity theory.

If sources are present then, as pointed out by Sparling and Moreschi [33] a straight-
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forward modification of the spinorial argument shows that if the sources have a local

energy density T4 4 to charge density |J4| bounded by

T4 4/|J4| ≥ s (6.1.8)

with 0 ≤ s ≤ 1 then

M ≥ s
√
Q2 + P 2 . (6.1.9)

If on the other hand the scalar fields are present but we stick to the case that there

are no sources, i.e., if g 6= 0 then the spinorial technique [29] gives the bound

M ≥
√
Q2 + P 2

√
1 + g2

. (6.1.10)

Finally if sources are present which satisfy

T4 4/|J4| ≥ segφ (6.1.11)

then the spinorial argument yields (6.1.9) as long as:

0 ≤ s ≤ 1√
1 + g2

. (6.1.12)

It seems clear therefore that since Eq. (6.1.1) and Eq. (6.1.10) do not coincide our

new inequality is giving us some independent information from that provided by the

spinorial method.

6.2 The Four Dimensional Field Equations

We shall consider theories, possibly with sources, whose field equations are derivable

from an action of the form

∫ √−g d4x
(
R− e−2gφFabF

ab − 2gab∇aφ∇bφ
)

(6.2.1)
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where F = dA and g is a dimensionless constant which takes different values for different

theories. For example g =
√

3 for standard Kaluza-Klein theory, g = 1/
√

3 corresponds

to dimensionally reduced Einstein-Maxwell theory from five to four dimensions [29],

and g = 1 corresponds to a truncation of N = 4 supergravity theory and is related to

superstring theory. Of course g = 0 corresponds to Einstein-Maxwell theory. Note that

we are using signature + + +−. An isolated system has mass M defined in the usual

way and electric charge Q, magnetic charge P and scalar charge Σ defined by

A ∼ Q

r
dt+ P cos θdϕ , (6.2.2)

φ ∼ Σ

r
. (6.2.3)

Two such systems with masses M1 and M2, scalar charges Σ1 and Σ2, electric charges

Q1 and Q2 and magnetic charges P1 and P2 will experience a net attraction of

(M1M2 + Σ1Σ2 −Q1Q2 − P1P2)
1

r2
. (6.2.4)

The field equations obtained from varying the action are (with appropriate additional

sources Tab, J and Ja )

Rab = 2e−2gφ

(
FacFb

c − 1

4
gabFcdF

cd

)
+ 2∇aφ∇bφ

+ 2

(
Tab −

1

2
gabTc

c

)
, (6.2.5)

∇a

(
e−2gφFb

a
)

= Jb (6.2.6)

and

∇a(∇aφ+ ge−2gφF abAb) = ∇2φ+
g

2
e−2gφFabF

ab = J . (6.2.7)

The quantities e−2gφF ab and (∇aφ+ge−2gφF abAb) are, in the absence of the additional
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sources, the conserved Nöther currents associated with the transformations

A 7→ A + δA (6.2.8)

and

φ 7→ φ+ δφ, (6.2.9)

A 7→ Aegδφ (6.2.10)

respectively.

From the point of view of the Maxwell field the dilaton field behaves as a dielectric

constant

ǫ = e−2gφ (6.2.11)

and magnetic permeability

µ = e2gφ. (6.2.12)

Note that the product ǫµ is unity so the local speed of light is still one, which is consistent

with local Lorentz invariance. However now because empty space behaves in the presence

of a dilaton field a little like a material medium one must distinguish the electric field

strength Ei = F4i from the divergence-free electric displacement Di = ǫEi = e−2gφEi

and divergence-free magnetic induction Bi = 1
2
ǫijkF

jk from the magnetic field strength

Hi = µ−1Bi = 1
2
e−2gφǫijkF

jk. The contribution of the Maxwell field to the local energy

density is thus given by:

1
2
(E.D + B.H) . (6.2.13)

We will be investigating flat space dilaton-electrodynamics solutions in Chap. 7.
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6.3 The Five Dimensional Metric

Let us now consider the metric defined on M5 = R × M4, where M4 is the physical

spacetime manifold.

g(5) = e2ν(dx5 + sA) ⊗ (dx5 + sA) + e2χgabdx
α ⊗ dxβ (6.3.1)

where ν and χ are scalar fields to be specified later.

Thus the five dimensional metric is a twisted warped product. Note that in contrast

to the standard Kaulza-Klein approach we are not identifying the fifth coordinate x5.

Moreover, we will insist that e2ν and e2χ never vanish so that both the five dimensional

metric gAB and the four dimensional metric gab are regular outside any event horizons.

In this way we exclude possible counter-examples involving metrics which while regular

in five dimensions are not regular as four dimensional metrics [34, 35].

Geodesics of the five dimensional metric may be found by consideration of the La-

grangian density

L = 1
2
gABẋ

AẋB (6.3.2)

where dot denotes d/dλ and λ is any parameter along the geodesic. We will find it

convenient to use standard Hamilton-Jacobi theory to investigate the relationship be-

tween the geodesics and the Hamilton-Jacobi function S. We may write down momenta

conjugate to the coordinates xA and construct a Hamiltonian density. Set

pA =
∂L
∂ẋA

= gABẋ
B (6.3.3)

and

H(xA, pB) = 1
2
gABpApB . (6.3.4)

The coordinates (xA, pB) are local coordinates on phase space, i.e., the cotangent bundle

T ∗(M5). We find the Hamilton-Jacobi equation for this system by replacing the conju-

gate momenta with the gradient of some scalar S, the resulting quantity is set equal to

a constant as H is a first integral of the motion (it is zero for null geodesics and negative
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for timelike ones). Let this constant be −m2. We have

H(xA,∇BS) = −1
2
m2, (6.3.5)

i.e.,

gAB
∂S
∂xA

∂S
∂xB

= −m2 . (6.3.6)

Any solution of Eq. (6.3.6) gives rise to a set of geodesics by setting

pA = ∇AS (6.3.7)

to be the tangent vector field to the geodesics, furthermore if m > 0 then

dS
dλ

= ∇AS
dxA

dλ
= −m2. (6.3.8)

Thus showing locally the Hamilton-Jacobi function S to be proportional to the proper

time measured along the family of geodesics from some spacelike hypersurface. Con-

versely one may start from a spacelike hypersurface and construct a family of surfaces

by propagating the initial surface a given distance along the geodesics defined by the

surface normal. This should really be regarded as a construction in the total space of

the cotangent bundle (i.e., in phase space) as we can lift geodesics from the manifold

without concerning ourselves with the possibility that the family of geodesics may inter-

sect. The relation to phase space is rather interesting in this respect. A congruence of

geodesics is lifted to a four dimensional Lagrangian submanifold in phase space which is

the natural place to consider the geodesics, the projection onto the manifold may result

in geodesics with intersections and our surfaces of constant S may be contain caustics.

Indeed, the formation of caustics plays an essential rôle in the proof of our result.

For the null case (m = 0) we have no notion of proper time, so we take any affine pa-

rameter. Notice that Eq. (6.3.6) is now invariant under any diffeomorphism, f : R → R,

which corresponds to changing the affine parameterization. Since x5 is ignorable we have

the result

p5 =
∂S
∂x5

= ǫ constant. (6.3.9)
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The Hamilton-Jacobi function then takes the form:

S = ǫx5 + S (6.3.10)

we find that S satisfies the four dimensional Hamilton-Jacobi equation

gab
(
∂S

∂xa
− sǫAa

)(
∂S

∂xb
− sǫAb

)
= −ǫ2e2(χ−ν) (6.3.11)

while Eq. (6.3.3) with Eq. (6.3.6) becomes

dx5

dλ
= ǫe−2ν − se−2χgab

(
∂S

∂xa
− sǫAa

)
Ab (6.3.12)

and
dxa

dλ
= gabe−2χ

(
∂S

∂xb
− sǫAb

)
. (6.3.13)

The interpretation of these equations is that the projection of null geodesics into four

dimensions gives the world line of a particle of mass

m = ǫ (6.3.14)

and charge

q = sǫ (6.3.15)

with a coupling to the scalar field (χ− ν).

If one now considers a four-metric gab which, in a quasi-Cartesian coordinate system,

to order 1/r is given by

g ∼ −
(

1 − 2M

r

)
dt⊗ dt+

(
1 +

2M

r

)
(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) , (6.3.16)

r2 = x2 + y2 + z2. (6.3.17)

with (again to order 1/r)
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A ∼ Q

r
dt+ P cos θdϕ (6.3.18)

and

χ ∼ χ0

r
, ν ∼ ν0

r
. (6.3.19)

Notice that the magnetic component to the vector potential is of order 1/r if we transform

to a quasi-cartesian coordinate system.

We wish to solve the Hamilton-Jacobi equation (6.3.6) at large impact parameter for

a light ray in the five dimensional metric, one readily finds that the solution (upto an

overall scale is given by)

S = −t+ x5 cos γ + z sin γ + 2M̂cosec γ log

(
r + z

b

)
+ E (6.3.20)

where the coordinates have been chosen so that the tangent vector to the null geodesic

is asymptotic to K,

K =
∂

∂t
+ sin γ

∂

∂z
+ cos γ

∂

∂x5
(6.3.21)

with sin γ 6= 0. The impact parameter, b, is given by

b2 = x2 + y2 (6.3.22)

and E is small in the sense that ∂bE , ∂zE , ∂tE , ∂5E = O(1/b), KE = O(1/b2). The value

of M̂ is given by

2M̂ = 2M − cos2 γ(M + χ0 − ν0) + sQ cos γ . (6.3.23)

Let us calculate τ the ‘time of flight’ as defined by Penrose, Sorkin and Woolgar.

We are interested in the Shapiro time delay/advance at large impact parameter. One

evaluates the change in S along a finite section of the geodesic from z0 to z1 say, at

impact parameter b. We are only interested in the dependence on b and so one subtracts

off a similar contribution at a fixed (large) value of the impact parameter, which we

will call b0. Letting z0 and z1 tend to the initial and final endpoints of the geodesic (so
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z0 → −∞ and z1 → ∞ if sin γ > 0 whilst if sin γ < 0, z0 → ∞ and z1 → −∞) one finds

τ = −4M̂ |cosec γ| log

(
b

b0

)
+O(1) , (6.3.24)

where O(1) signifies bounded as b → ∞. The conclusion is that for M̂ < 0 the time of

flight can be made arbitrarily large by venturing to large enough impact parameter. In

other words, there exist a fastest null curve ζ , in the sense that it minimizes τ .

On the other hand the theorem proved in [31] shows, provided that any singularities

are inside event horizons, that ζ may be taken to be geodesic, and more especially it

lies on the boundary of the causal future of some point on the appropriate generator of

past null infinity, I−. This theorem implies that it cannot have any conjugate points

as no geodesic with conjugate points can stay on the boundary of the causal future

of some point for more than a finite affine length. We conclude that M̂ ≥ 0, for

all sin γ 6= 0, provided that every null geodesic develops conjugate points (and hence

gives a contradiction to the construction of such a fastest geodesic). The property

that every null geodesic develops conjugate points is implied by the null convergence

condition in the following sections, together with an appeal to the genericity condition,

V[A
5RB]CD[EVF ]V

CV D 6= 0 somewhere on every null geodesic with tangent vector V A [32].

The purpose of this condition is to force a congruence of null rays to start to converge,

i.e., the expansion can be made negative and hence by Raychaudhuri’s equation for

null geodesics we can conclude the existence of conjugate points if we assume the non-

negativity of the Ricci tensor. In this chapter we shall be considering spacetimes that

obey the genericity condition. The null convergence condition guarantees the existence

of conjugate points and has been employed particularly in relationship to the singularity

theorems of Penrose, Hawking and others. We shall relate the quantities χ and ν as

follows:

ν = −2χ , (6.3.25)

3ν = −2gφ (6.3.26)

in order that we shall have a non-negative Ricci tensor. By looking at the inequality
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M̂ ≥ 0 when we take the limits γ → 0, π one establishes

M − gΣ ≥ |sQ| . (6.3.27)

6.4 The Five Dimensional Ricci Tensor

In what follows we shall use an orthonormal frame

EA =
(
E5, eχea

)
(6.4.1)

where ea is an orthonormal frame with respect to the metric gab. We shall denote by

5 the E5 component and by a the component with respect to ea. In an orthonormal

frame and with such an understanding the components of the five dimensional Ricci

tensor 5RAB of the metric gAB are given by Eqs. (A.23) to (A.25):

5Rab = 4Rab − 2∇a∇bχ− gab∇2χ+ 2∇aχ∇bχ

− 2gab∇cχ∇cχ−∇aν∇bν −∇a∇bν + ∇aν∇bχ+ ∇aχ∇bν − gab∇cχ∇cν

− s2

2
e2ν−2χFacFb

c , (6.4.2)

5R5a =
1

2
se−2ν−2χ∇b

(
e3νFa

b
)
, (6.4.3)

5R55 =
s2

4
e2ν−4χFabF

ab − e−2χ
(
∇2ν + ∇aν∇aν + 2∇aχ∇aν

)
, (6.4.4)

If one compares Eqs. (6.4.2) to (6.4.4) with the field equations (6.2.5) to (6.2.7) it

becomes clear that a good choice (and possibly the only choice, if one is to eliminate the

second derivatives over whose sign one would otherwise have no control) is

3ν = −2gφ , (6.4.5)
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ν + 2χ = 0 . (6.4.6)

This gives

M − gΣ ≥ s|Q| . (6.4.7)

Given these choices for ν and χ the components of the five dimensional Ricci tensor

are given by

5Ra5 =
1

2
se−νJa , (6.4.8)

5R55 = e4νFabF
ab

(
s2

4
− g2

3

)
+

2g

3
eνJ, (6.4.9)

and

5Rab = 2

(
1 − g2

3

)
∇aφ∇bφ+ 2e3ν

(
FacFb

c − 1

4
gabFcdF

cd

)

− s2

2
e3νFacFb

c +
g2

6
e3νgabFcdF

cd + 2

(
Tab −

1

2
gabTc

c

)
. (6.4.10)

As a check we note that the standard five dimensional theory without additional

sources corresponds to the values

g2 = 3 (6.4.11)

and

s = 2 . (6.4.12)

In this case we have

5RAB = 0 . (6.4.13)

6.5 The Null Convergence Condition in Five Dimensions

We must now calculate

5RAB
dxA

dλ

dxB

dλ
(6.5.1)

and find under what conditions it is non-negative. The lightlike vector V A = dxA/dλ

has components

V = V5E
5 + Vae

a (6.5.2)
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so that

(V5)
2 = −e−2χgabVaVb . (6.5.3)

Consequently we have

5RABV
AV B = 2e2ν

(
1 − g2

3

)
(V a∇aφ)2

+ eν(V5)
2

[(
1 − g2 +

s2

2

)
B.H + (1 + g2 − s2)E.D

]

+ 2e2ν
(
Tab −

1

2
gabTc

c

)
V aV b +

2

3
(V5)

2eνgJ + sV5V
aJa (6.5.4)

where we define

Eb =
e−χV a

|V5|
Fab , (6.5.5)

Ba =
1

2
ǫabcd

e−χV b

|V5|
F cd . (6.5.6)

and

D = ǫE = e−2gφE , (6.5.7)

H = µ−1B = e−2gφB . (6.5.8)

Hence, Eq. (6.5.1) will be non-negative provided we impose the conditions,

s2 ≤ 1 + g2 and s2 ≥ 2(g2 − 1) , (6.5.9)

and the sources satisfy

J ≥ 0 , (6.5.10)
(
Tab −

1

2
gabTc

c

)
V̂ aV̂ b ≥ egφ

∣∣∣∣∣
sV̂ aJa

2

∣∣∣∣∣ . (6.5.11)
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Here V̂ is a unit timelike vector in four dimensions. These conditions are sufficient for

the theorem to hold, though all we require is the non-negativity of the right hand side

of Eq. (6.5.4). We remark that Eq. (6.5.11) relates the gravitating energy (in the sense

that it is the source for the Ricci tensor and hence it appears as the appropriate density

in the Poisson equation in the Newtonian limit) to the local energy density of the vector

field, and should be compared to Eq. (6.1.11) which is the appropriate condition for the

spinorial technique to apply. We might remark that for a pressure-free fluid the two

equations (6.1.11) and (6.5.11) coincide.

6.6 Comparison with Black Hole Solutions

It is interesting to compare our inequalities with the explicit spherically symmetric

solutions of the field equations.

The four-metric is given by

g = −
(
1 − r+

r

)(
1 − r−

r

)(1−g2)/(1+g2)

dt⊗ dt

+
(
1 − r+

r

)−1 (
1 − r−

r

)(g2−1)/(1+g2)

dr ⊗ dr + r2
(
1 − r−

r

)2g2/(1+g2)

dΩ2 (6.6.1)

where

dΩ2 = dθ ⊗ dθ + sin2 θdφ⊗ dφ (6.6.2)

with dilaton field

eφ =
(
1 − r−

r

)g/(1+g2)

(6.6.3)

and Maxwell field

F = e2gφ
(
1 − r−

r

)−2g2/(1+g2) Qdt ∧ dr

r2
. (6.6.4)

We have

M =
1

2

(
r+ + r−

1 − g2

1 + g2

)
, (6.6.5)

|Q| =

√
r+r−√
1 + g2

(6.6.6)
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and

Σ = − gr−
1 + g2

. (6.6.7)

Whence

M − gΣ = 1
2
(r+ + r−) ≥ √

r+r− =
√

1 + g2|Q| (6.6.8)

which is consistent with our general result. Note however that in obtaining Eq. (6.6.8)

for this example we have not needed to restrict the coupling constant g to be less than
√

3. Thus it seems that while g2 ≤ 3 is a sufficient condition for the validity of our

inequality Eq. (6.1.1) it may not be a necessary condition. This opens up the possibility

that one might be able to extend our proof beyond the the case g2 ≤ 3 by using some

other judiciously chosen metric.

6.7 The Extreme Case

Let us consider the analogues of Papapetrou-Majumdar solution in the theory we have

been considering. Gibbons [13] has found the appropriate form of the metric:

g = −H−2/(1+g2)dt⊗ dt+H2/(1+g2) (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) , (6.7.1)

with H a harmonic function in Euclidean space with Cartesian coordinates x, y and z.

The dilaton and vector potential are given by

eφ = H−g/(1+g2) (6.7.2)

and

A =
dt

H
√

1 + g2
(6.7.3)

We wish to relate this solution to a five dimensional metric:

g(5) = Hα

(
du+

sdt

H
√

1 + g2

)
⊗
(

du+
sdt

H
√

1 + g2

)

+Hβ
(
−H−2/(1+g2)dt⊗ dt+H2/(1+g2) (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz)

)
.(6.7.4)
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We write u = x5 − t in Eq. (6.7.4), as the gauge potential in Eq. (6.7.3) does not

conform to our usual gauge choice. We demand H(x) → 1 as |x| → ∞ as a condition in

order to have an asymptotically flat solution in standard quasi-Cartesian coordinates.

The choice of α, β and s will be made in such a way that the resulting five dimensional

metric possesses a lightlike Killing vector ∂/∂t. We are therefore led to the conditions:

s =
√

1 + g2 , (6.7.5)

α− β =
2g2

1 + g2
. (6.7.6)

On the other hand, comparing Eq. (6.7.4) with our general ansatz for the metric we

write

Hα = e2ν = e−4gφ/3 = H4g2/3(1+g2) . (6.7.7)

Hence from Eq. (6.7.6) we deduce that

α + 2β = 0 , (6.7.8)

which is a necessary relationship if we are to eliminate second order derivatives of the

dilaton from the expansion of the Ricci tensor in Sect. 6.4, and hence to impose the null

convergence condition on the Ricci tensor. The lightlike Killing vectorK has components

Ka = Hα−1∇au , (6.7.9)

and hence is hypersurface orthogonal. The relevant hypersurfaces being those of constant

u.

We now wish to show that Eq. (6.7.1) saturates the bound, in the sense that M̂ → 0

as γ → 0. Consider the case γ = 0 exactly. The corresponding null geodesics are

null generators of the null surface u = constant. The associated exact solution of the

Hamilton-Jacobi equation is given (upto scalar multiplication and the addition of a



6. Anti-gravity Bounds 128

constant) by

S = u = −t+ x5, (6.7.10)

independent of the value of the impact parameter. If this is compared with the γ → 0

limit of Eq. (6.3.20), one concludes that (6.7.1) is a solution that saturates the bound,

i.e., M̂ = 0 with γ = 0 so that

M − gΣ = −sQ . (6.7.11)

Equation (6.7.11) may also be shown by direct computation. Set

H = 1 +

n∑

i=1

µi
|x − xi|

, (6.7.12)

representing n isolated black holes of ‘strengths’ (µi)
n
i=1 at locations (xi)

n
i=1 in equilib-

rium. One calculates the mass, scalar and electric charges:

M =
1

1 + g2

n∑

i=1

µi , (6.7.13)

Q =
−1√
1 + g2

n∑

i=1

µi (6.7.14)

and

Σ =
−g

1 + g2

n∑

i=1

µi . (6.7.15)

Together with s =
√

1 + g2, we verify that Eq. (6.7.11) is indeed satisfied.

6.8 An Analogue of Scherk’s Anti-gravity Condition

We have found the result that

M − gΣ ≥ s|Q|. (6.8.1)
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By considering the duality transformation in these theories we find in addition

M + gΣ ≥ s|P |. (6.8.2)

Squaring and adding we have

M2 + g2Σ2 − 1
2
s2(Q2 + P 2) ≥ 0. (6.8.3)

For g = 1 we recover Scherk’s anti-gravity condition [36]:

M2 + Σ2 −Q2 − P 2 ≥ 0. (6.8.4)

The other two special cases correspond to dimensionally reduced Einstein-Maxwell the-

ory (g = 1/
√

3) and standard five to four dimensional Kaluza-Klein (g =
√

3) theory.

They give the conditions

M2 +
1

3
Σ2 − 2

3
(Q2 + P 2) ≥ 0, g =

1√
3
; (6.8.5)

and

M2 + 3Σ2 − 2(Q2 + P 2) ≥ 0, g =
√

3. (6.8.6)

To get an idea of the bound Eq. (6.8.3) we can draw an ellipse in the M − Σ plane at

constant Q2 + P 2, and compare with the circle given by Eq. (6.8.4). Fig. 6.1 show the

allowable regions defined by the anti-gravity and Scherk bounds for g < 1 and g > 1.

We may see the bounds Eqs. (6.8.1) and (6.8.2) simultaneously satisfied by looking

at the multi-black hole solutions in the g = 1 theory given by [13]:

g = − 1

H1H2

dt⊗ dt+H1H2 (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) (6.8.7)
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M M

Σ Σ

g < 1 g > 1

Fig. 6.1: The anti-gravity bound defines an ellipse in the M − Σ plane

whereas the Scherk bound is a circle. In addition the condition

M ± gΣ ≥ 0 means any solution must lie in the coloured regions

indicated.

and

e2σ =
H1

H2

; (6.8.8)

−iKF = dH1; (6.8.9)

e−2φiK∗F = dH2; (6.8.10)

where

H1 = 1 +

n∑

i=1

µi
|x − xi|

and H2 = 1 +

n∑

i=1

νi
|x − xi|

, (6.8.11)

and K = ∂/∂t. We require that none of the electric nor magnetic strengths vanish, i.e.,
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µi, νi 6= 0. The mass and charges are then given by

M =
1

2

n∑

i=1

(µi + νi); (6.8.12)

Σ =
1

2

n∑

i=1

(νi − µi); (6.8.13)

Q =
1√
2

n∑

i=1

µi; (6.8.14)

P =
1√
2

n∑

i=1

νi. (6.8.15)

Using g = 1 and s =
√

2 we see that Eqs. (6.8.1) and (6.8.2) both hold.

6.9 Summary and Conclusion

In this chapter we have considered four dimensional spacetimes, Maxwell field A and

dilaton field φ with associated five dimensional metric:

g(5) = e−4gφ/3
(
dx5 + sA

)
⊗
(
dx5 + sA

)
+ e2gφ/3gabdx

a ⊗ dxb (6.9.1)

where g and s are dimensionless constants. Assuming that any singularities are contained

within an event horizon and that the five dimensional Ricci tensor 5RAB obeys the non-

negative Ricci condition:

5RABV
AV B ≥ 0 (6.9.2)

for all null five-vectors V A, we have shown that the mass, electric and scalar charges

satisfy the relationship:

M − gΣ ≥ s|Q| . (6.9.3)

If we impose the Einstein equations and the equations of motion for the dilaton and

Maxwell fields arising from the Lagrangian Eq. (6.2.1), we find that Eq. (6.9.2) may be
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satisfied provided the additional sources J , Ja and Tab obey

J ≥ 0 , (6.9.4)

(
Tab −

1

2
gabTc

c

)
V̂ aV̂ b ≥ egφ

∣∣∣∣∣
sV̂ aJa

2

∣∣∣∣∣ (6.9.5)

for all timelike unit four-vectors V̂ a and the quantities s and g satisfy the following:

2(g2 − 1) ≤ s2 ≤ 1 + g2, (6.9.6)

for which we require g ≤
√

3.

Our proof is valid in the full non-linear theory but it is illuminating to see how it

follows almost trivially in the linearized theory. In De Donder gauge linear theory gives

−1

2
∇C∇ChAB = 5RAB (6.9.7)

where gAB = ηAB+hAB. If the metric is independent of t and x5 we have from Eq. (6.9.7)

near infinity

hAB =
h0
AB

r
+O

(
1

r2

)
(6.9.8)

where

h0
AB =

1

2π

∫

R3

5RAB dx
3 . (6.9.9)

At the linear level the null convergence condition on 5RAB implies that h0
AB is non-

negative when contracted with any constant lightlike vector. Because

(
h0
AB

)
=




(
2M +

2gΣ

3

)
11

2M − 2gΣ

3
sQ

sQ
−4gΣ

3




(6.9.10)

where the order of rows and columns in Eq. (6.9.10) is (i, 4, 5), inequality Eq. (6.9.3)
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follows by considering the five-vector (V A) = (0, 1,±1). If the metric is independent of

x5 but depends on time t we expect the same conclusion to follow from linear theory.

However we need not check this point explicitly since our stronger non-linear argument

does not require the metric to be time-independent.



7. DILATON VORTEX SOLUTIONS IN FLAT SPACE

7.1 Introduction

There has been considerable interest recently in 4-dimensional Dilaton-Einstein-Maxwell

and Dilaton-Einstein-Yang-Mills theory. In the abelian case single and multi static and

stationary black hole solutions with electric and magnetic charges have been extensively

studied. Another class of interesting solutions describe magnetic fields with or without

black holes. For Einstein-Maxwell theory these are based on the Melvin solution, which

we discussed in Sect. 3.3. This represents a sort of super-massive cosmic string [37, 38].

The Melvin solution may be generalized to include a coupling to the dilaton [39]. Re-

cently Maki and Shiraishi [40] have obtained some interesting time-dependent solutions

with a dilaton potential.

In this chapter, in order to gain some physical insight into dilaton-electrodynamics

and its non-abelian generalization, we will study the simpler flat-space version in which

the effects of gravity are ignored. The action is

∫
d4x

(
−e−2gφFabF

ab − 2ηab∇aφ∇bφ
)

(7.1.1)

where ηab = diag(−1,+1,+1,+1) and the dimensionful quantity g in the action can be

changed by a suitable rescaling of the variables and so its numerical value (as long as

it does not vanish) has no physical significance in the purely classical theory which we

study here, henceforth we will put g = 1. The field F may be abelian or non-abelian.

In the latter case there remains, again in the classical theory, sufficient freedom to scale

the Yang-Mills connection A so that F = dA + A ∧ A . Note that had we taken the

above limit of the gravitational Lagrangian expressed in string conformal gauge (i.e., in

terms of the metric e2φgab) we would have obtained a different action from Eq. (7.1.1).
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The flat space version Eq. (7.1.1) has been studied by Lavrelashvili and Maison [41]

and also by Bizon [42] who have obtained sphaleron type solutions in which the Yang-

Mills field is confined by the attractive forces exerted by the dilaton which replaces the

attractive forces due to gravity in the Bartnik-McKinnon solution [43]. In the abelian

case it is easy to obtain the general static spherically symmetric purely magnetic solution

representing a Dirac monopole coupled to the dilaton. Bizon has pointed out a special

case of the spherically symmetric Dirac monopoles may be generalized to give multi-

Dirac-monopole solutions. These are Bogomol’nyi type solutions and may be regarded

as a limiting case of the multi black hole solutions as we shall show in section 7.4. It is

also completely straightforward to obtain plane wave solutions in which the dilaton and

the photon are travelling parallel to one another.

In Sect. 7.2 we discuss the properties of dilaton electrodynamics and interpret the

dilaton field as effectively polarizing the vacuum. We will give some examples illustrat-

ing this interpretation from the gravitational theory and the Higgs field for the BPS

monopole. We will write down the field equations in Sect. 7.3 and by making an appro-

priate ansatz derive some cosmic string-like solutions. We will also exhibit a solution

that may be regarded as a domain wall in this theory. In the following section, Sect. 7.4,

we will investigate the Bogomol’nyi and spherically symmetric monopole solutions. We

will show that the Bogomol’nyi solutions can be derived by a limiting procedure from the

gravitational black hole solutions. Finally, in Sect. 7.5 we investigate how the solutions

we have found alter when we suppose the dilaton is massive. We do this by understand-

ing the relevant field equations qualitively and verify our assertions numerically.

7.2 Permeabilities and Permittivities

It follows immediately from Eq. (7.1.1) that the equations of motion for the field F in

the presence of the dilaton field are those for a medium in which the electric permittivity

ǫ is given by

ǫ = e−2φ (7.2.1)
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and the magnetic permeability µ is given by

µ = e2φ. (7.2.2)

The product ǫµ is unity and so the velocity of light remains one everywhere. With this

interpretation we have that regions of spacetime for which φ < 0 are diamagnetic while

regions with φ > 0 are paramagnetic. One does not usually encounter permittivities

ǫ which are less than unity. In the non-abelian theory eφ plays the rôle of spacetime

dependent gauge coupling constant and in string perturbation theory its expectation

value plays the rôle of a variable coupling constant. Thus weak coupling corresponds to

a diamagnetic phase and strong coupling to a paramagnetic phase. The action (7.1.1)

is invariant under the simultaneous change of the sign of the dilaton field φ and the

replacement of the Maxwell field F by e−2φ
∗F . This symmetry therefore interchanges

the weak and the strong coupling phases.

The field equation derived from the varying of φ in the static case is

∇2φ = −e−2φ
(
B2 − E2

)
, (7.2.3)

where E and B have their usual meaning. It follows from Eq. (7.2.3) that φ can have no

minimum in a purely magnetic field and no maximum in a purely electric field. Thus if φ

is taken to be zero at infinity then magnetic regions tend to be paramagnetically polarized

(µ > 1) and electric regions tend to be dielectrically polarized (µ < 1). Intuitively

magnetic flux (
∫

B.dS) tends to get self-trapped in strong coupling domains and electric

flux (
∫

D.dS) in weak coupling domains, where D = ǫE is the electric displacement and

(for later use) H = µ−1B is the magnetic induction. These observations are borne out

by the particular solutions mentioned above. Thus for the Maison-Lavrelashvili-Bizon

sphalerons µ has a maximum at the centre and decreases monotonically to unity at

infinity. For electrically charged black hole solutions µ decreases monotonically inwards

from unity at infinity. The appropriate solution is given by:

g = −
(
1 − r+

r

)
dt⊗ dt+

(
1 − r+

r

)−1

dr ⊗ dr + r2
(
1 − r−

r

)
dΩ2 (7.2.4)
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where

dΩ2 = dθ ⊗ dθ + sin2 θdφ⊗ dφ (7.2.5)

with dilaton field

e2φ = 1 − r−
r

(7.2.6)

and Maxwell field

F = e2φ
(
1 − r−

r

) √
r+r−dt ∧ dr√

2 r2
. (7.2.7)

In the extreme case φ becomes infinitely large and negative as one approaches the hori-

zon. From the string point of view the infinitely long throat is a weak coupling region.

In the magnetically charged case the opposite is true. There is a parallel here with

monopoles in Yang-Mills theory and vortices in the abelian Higgs theory. In the case

of SU(2) Yang-Mills theory with the Higgs field in the adjoint representation one may

take the components of the Higgs field as a triplet of permittivities. The parallel is not

completely precise but it is the case for the ’t Hooft-Polyakov monopole that the associ-

ated permeabilities monotonically increase as one moves radially inwards. As a special

case of this we notice that the BPS monopole has a Higgs field which can be written as

φa =

(
α cothαr − 1

r

)
xa

r
. (7.2.8)

Similarly for the Nileson-Olesen vortex one may think of the magnetic flux as being

confined inside a core of high permeability where the Higgs field has a smaller magnitude

than it does at infinity. We shall see similar features arising for dilaton electrodynamics.

The paramagnetic behaviour described above and the existence of the dilaton-Melvin

solution strongly suggest that there may be non-singular static cosmic string type solu-

tions in which a finite amount of flux is trapped. This is indeed the case, as we shall

show in the next section.

7.3 Dilaton Cosmic Strings and Domain Walls

In the static case the dilatonic Maxwell equations are readily seen to be satisfied if the

magnetic induction H = (0, 0, H), where H is a constant so long as the dilaton satisfies
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the two-dimensional Liouville equation:

∇2φ = −H2e2φ . (7.3.1)

Following Liouville [44], the general solution of Eq. (7.3.1) is

µ = e2φ =
4f ′(ζ)g′(ζ)

H2
(
1 + f(ζ)g(ζ)

)2 , (7.3.2)

where f and g are locally holomorphic functions and ζ = x+ iy. If φ is real then

g
(
ζ
)
/f(ζ) (7.3.3)

must be a real valued holomorphic function of ζ and hence constant (by, for instance,

the Open Mapping Theorem). With no loss of generality this constant may be taken to

be unity and therefore the solution we require is

µ = e2φ =
4 |f ′(ζ)|2

H2
(
1 + |f(ζ)|2

)2 . (7.3.4)

Note that f and 1/f give the same solution φ. We remark that Eq. (7.3.1) is precisely

the equation one finds when one calculates the Gauss curvature of a sphere of radius

H−1 where the metric is written in a conformally flat form with conformal factor e2φ.

The function f then just corresponds to the freedom to make complex diffeomorphisms.

Choosing different functions f gives different types of solution. For example choosing

f(ζ) = ζ gives a cylindrically symmetric solution with finite total magnetic flux:

Φ =

∫

R2

B.dS =
4π

H
. (7.3.5)

This solution may be obtained as limit of the dilaton-Melvin solution.

The magnetic contribution to the total energy per unit length of our solution is

1
2
ΦH = 2π which is independent of the magnetic field H . The dilaton however con-
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tributes a logarithmically divergent energy per unit length because of its logarithmic

dependence on the radius. In this respect our solution resembles a global rather than

a local string. However it should be pointed out that the solution, in common with its

gravitational version, breaks neither electromagnetic gauge invariance nor any compact

internal symmetry.

In addition to the single string solution there are multi string solutions. Choosing a

rational function of Brouwer degree k, with the ratio of two polynomials of order p and

q, gives a solution with finite total magnetic flux

Φ = k
4π

H
. (7.3.6)

Note that the permeability decreases to zero as (x2 + y2)−(|p−q|+1) at infinity. Thus

the weak coupling region at infinity is strongly diamagnetic and confines the magnetic

flux Φ. The multi-string solutions are not axisymmetric. In flat-space Maxwell theory

the only regular solution is the uniform magnetic field which is necessarily axisymmetric.

When gravity is included this goes over into the Melvin solution which is also has axial

symmetry. If one insists that the metric be boost-invariant then the axisymmetry and

hence uniqueness, follow by a version of Birkhoff’s theorem [45]. However the proof

given in [45] does not go through in the presence of a scalar field. This suggests that

there may exist static non-axisymmetric multi-dilaton-Melvin solutions.

Another interesting solution arises if we take f(ζ) = exp(ζ) then

µ = e2φ =
1

H2

1

cosh2 x
. (7.3.7)

This solution describes a sheet or membrane confining an amount of flux per unit length

of 2/H . It may be thought of as a sort of domain wall separating two weak coupling

domains.
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7.4 Monopoles and Bogomol’nyi Solutions

In this section we shall consider a general static magnetic solution. Since

∇× H = 0 , (7.4.1)

we may locally introduce a magnetic potential χ by

H = ∇χ . (7.4.2)

If we make the ansatz

e−φ = χ (7.4.3)

then all the equations will be satisfied if in addition

∇2eφ = 0 . (7.4.4)

In addition to these Bogomol’nyi solutions it is easy to find the general spherically

symmetric monopole solution. If one insists that φ does not blow up at finite non-zero

radius or at infinity one finds that

eφ =
1

α
sinh

[
αP

(
1

r
+

1

b

)]
(7.4.5)

and

B =
P

r3
r, (7.4.6)

where the constant of integration b is chosen so that φ = 0 at infinity and P is the

total magnetic charge. Just as in the case of magnetic black holes and ’t Hooft-Polyakov

monopoles we find that the magnetic permeability increases monotonically inwards. The

Bogomol’nyi solution (7.4.4) is obtained from the general solution Eqs. (7.4.5) and (7.4.6)

by letting α go to zero.
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7.4.1 The limit of the gravitational multi black hole solution

The solutions (7.4.4) are the same as those mentioned by Bizon and may be obtained

from the multi black hole solutions by a limiting procedure. To see this we start from

the duality transformed solution, Eqs. (6.7.1) to (6.7.3) to obtain

g = −F−2/(1+g2)dt⊗ dt+ F 2/(1+g2) (dx⊗ dx+ dy ⊗ dy + dz ⊗ dz) , (7.4.7)

with F a harmonic function in Euclidean space with Cartesian coordinates x, y and z.

The dilaton and Maxwell field are given by

egΦ = egΦ0F g2/(1+g2) (7.4.8)

and

F = e2gΦe−gΦ0

√
1 + g2

2(1 − g2)
ǫijk∇kF

(1−g2)/(1+g2)dxi ∧ dxj . (7.4.9)

Here the tensor ǫijk is that associated with the standard Euclidean metric on R3. The

dilaton fields are related by φ = gΦ. Thus

H = −
√

1 + g2

1 − g2
egΦ0∇F (1−g2)/(1+g2). (7.4.10)

We take

F =
1√
g χ

with ∇2χ−1 = 0, (7.4.11)

and

egΦ0 =
√
g. (7.4.12)

Now take the limit g → ∞. This gives us the flat space solution Eqs. (7.4.2) to (7.4.4).

7.5 Massive Dilatons

It is widely believed by string theorists that the dilaton acquires a mass due to non-

perturbative effects connected with the breaking of supersymmetry. It is therefore of
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interest to ask what the effect of a mass term for the field φ might have on our solutions.

In this section we shall simply add in a mass term ‘by hand’; specifically we will add

to the Lagrangian in Eq. (7.1.1) a term −1
2
m2φ2. One checks that the work above goes

through as long as one replaces ∇2 by ∇2 − m2 in Eqs. (7.2.3) and (7.3.1). However

the solution Eq. (7.3.2) is no longer valid and it seems the new version of (7.3.1) is

not easily expressed as an analytical solution. We therefore analyse this system using

qualitive arguments and some numerical work. The circularly symmetric solutions may

be treated by regarding the radial coordinate r as a fictitious time variable. The equation

for φ becomes that of a particle subject to a time dependent frictional force and moving

in a potential U(φ) defined by

U(φ) = −1
2
m2φ2 + 1

2
H2e2φ . (7.5.1)

φ

V
m2/(2eH2) < 1

m2/(2eH2) > 1

Fig. 7.1: Graph of the potential function V = U(φ) given by Eq. (7.5.1)

Regularity at the origin implies that the radial derivative of φ vanishes there. A

solution exists for each value of φ at the origin. If m = 0 one has those solutions given
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in Sect. 7.3 in which φ decreases monotonically to minus infinity at infinity as

φ ∼ −2 log r. (7.5.2)

For non-vanishing mass m the behaviour depends on the ratio m2/(2eH2) where e

is the base of natural logarithms. Fig. 7.1 shows the graph of the potential for two

different values of this parameter. If 0 < m2/(2eH2) < 1 the potential U(φ) is a

monotonic increasing function of φ and for all values of φ(0), φ decreases monotonically

with r and tends to minus infinity at infinity

φ ∼ −c exp(mr) (7.5.3)

where c is a positive constant. The behaviour is illustrated by the graph drawn with the

coloured line in Fig. 7.1.

However if m2/(2eH2) is greater than unity then the potential U(φ) has a local

minimum and maximum (as illustrated by the graph drawn with the solid line). The

behaviour of the solutions depends upon φ(0). If φ(0) is positive and sufficiently large

then φ decreases monotonically to minus infinity as before. However if φ(0) lies in a

finite interval bounded below by the smaller solution x of the equation:

x =
H2

m2
e2x (7.5.4)

then the solutions oscillate about the minimum with an amplitude which decreases

to zero as r tends to infinity. Fig. 7.2 illustrates a numerical solution to the modified

potential problem that exhibits this behaviour. Finally if φ(0) < x the solutions decrease

monotonically to minus infinity.

Thus for given magnetic field H there always exist solutions with finite total flux.

If however the mass is large enough, one has solutions in which φ tends to a minimum

value, dependent upon H , of the potential U(φ).

We may repeat these calculations for the monopole solutions of Sect. 7.4 in the case
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r

φ

I





For the initial range of values I, the

dilaton is confined at large distances

Fig. 7.2: Solutions for the dilaton field φ(r) in the massive case.

of a massive dilaton. Doing so we find that the qualitative behaviour of the dilaton is

very similar to that in the massless case.

One might imagine a cosmological scenario in which the dilaton is initially massless

at some high temperature and acquires a mass during a cosmological phase transition

at a lower temperature. If cosmic strings of the type we have described confining a

finite flux were initially present and the mass were large enough it seems from our

calculations that provided φ(0) took suitable values the flux would become unconfined.

If this were true it might have important consequences for magnetic monopoles. If flux

was confined by strings at early times then one might expect magnetic monopoles, of

the sort described in Sect. 7.4, to be found at the ends of flux tubes. These flux tubes

should pull the monopoles together and cause their rapid annihilation. At late times

magnetic fields would become unconfined. In this way one might have a natural solution

to the monopole problem. Clearly more work needs to be done to establish whether this

picture is really viable.

It is interesting to note that dilaton electrodynamics with an effective mass term

has already been invoked [46] to account for a possible primordial magnetic field. It

would be interesting to investigate the relation between that work and the monopoles
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and vortices that we have been discussing.



Part II

TIME MACHINES AND UNITARITY



8. RESTORATION OF UNITARITY IN CHRONOLOGY

VIOLATING SPACETIMES

8.1 Introduction

Various studies [47, 48, 49] of perturbative interacting quantum field theory in the pres-

ence of a compact region of closed timelike curves (CTC’s) have concluded that the

evolution from initial states in the far past of the CTC’s to final states in their far future

fails to be unitary, in contrast with the situation for free fields [47, 50, 51]. The same

conclusion has also been reached non-perturbatively for a model quantum field theory

[52]. This presents many problems for the usual Hilbert space framework of quantum

theory: as we describe in Sect. 8.2, the Schrödinger and Heisenberg pictures are inequiv-

alent and ambiguities arise in assigning probabilities to events occurring before [48], or

spacelike separated from [53], the region of non-unitary evolution.

The main reaction to these difficulties has been to abandon the Hilbert space formu-

lation in favour of a sum over histories approach such as the generalized quantum me-

chanics of Gell-Mann and Hartle (see, e.g., [54]). In particular, Hartle [55] has addressed

the issue of non-unitary evolutions in generalized quantum mechanics. Nonetheless, it

is of interest to see if the Hilbert space approach can be ‘repaired’ by restoring unitar-

ity. Anderson [56] has proposed that this be done as follows. Suppose a non-unitary

evolution operator X is defined on a Hilbert space H with inner product 〈· | ·〉. We

assume that X is bounded with bounded inverse. Anderson defines a new inner product

〈· | ·〉′ on H by 〈ψ |ϕ〉′ = 〈X−1ψ |X−1ϕ〉, and denotes H equipped with the new inner

product as H′. Regarded as a map from H to H′, X is clearly unitary. The essence of

Anderson’s proposal is to restore unitarity by regarding X in this way. Of course, one

also needs to be able to represent observables as self-adjoint operators on both Hilbert



8. Restoration of Unitarity in Chronology Violating Spacetimes 148

spaces; Anderson has shown how this may be done by establishing a correspondence (de-

pending on the evolution) between self-adjoint operators on H and those on H′. When

only one non-unitary evolution is considered, this proposal is equivalent to remaining in

the Hilbert space H and replacing X by UX = (XX∗)−1/2X, i.e., the unitary part of X

in the sense of the polar decomposition [57].

A curious feature of Anderson’s proposal emerges when one considers the composition

of two or more consecutive periods of non-unitary evolution [58]. If an evolution Y is

followed by X, one might expect that the combined evolution would be represented by

the composition of the unitary parts, i.e., UXUY . However, this does not generally agree

with the unitary part of the composition, UXY , and so there would be an ambiguity

depending on whether one thought of the full evolution as a one-stage or two-stage

process. Anderson’s response to this is to argue that the second evolution should be

treated in a different way, essentially (as we show in Sect. 8.3) by replacing X by the

unitary part of X(Y Y ∗)1/2. This removes the ambiguity mentioned above, but has the

undesirable feature that the treatment of the second evolution depends on the first. In

Sect. 8.3, we will show that this leads to an operational problem for observers living in

a universe containing CTC regions.

It is therefore prudent to seek other means by which unitarity can be restored. We will

be investigating a method of unitarity restoration using the mathematical technique of

unitary dilations. This is motivated by the simple geometric observation that any linear

transformation of the real line is the projection of an orthogonal transformation (called

an orthogonal dilation of the original mapping) in a larger (possibly indefinite) inner

product space. To see this, note that any linear contraction on the line may be regarded

as the projection of a rotation in the plane: the contraction in length along the x-axis,

say, being balanced by a growth in the y-component. Similarly, a linear dilation on the

line may be regarded as the projection of a Lorentz boost in two dimensional Minkowski

space. This observation may be extended to operators on Hilbert spaces: it was shown

by Sz.-Nagy [59] that any contraction (i.e., an operator X such that ‖Xψ‖ ≤ ‖ψ‖ for all

ψ) has a unitary dilation acting on a larger Hilbert space. The theory was subsequently

extended to non-contractive operators by Davis [60] at the cost of introducing indefinite

inner product spaces.
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Put concisely, starting with a non-unitary evolution X, we pass to a unitary dilation

ofX, mapping between enlarged inner product spaces whose inner product may (possibly

generically) be indefinite. The signature of the inner product is determined by the

operator norm ‖X‖ of X: if ‖X‖ ≤ 1, the enlarged inner product spaces are Hilbert

spaces, whilst for ‖X‖ > 1, they are indefinite inner product spaces (Krein spaces).

Within the context of the unitary dilation proposal, it is therefore important to determine

‖X‖ for any given CTC evolution operator.

Essentially, the unitary dilation proposal performs the minimal book-keeping re-

quired to restore unitarity by asserting the presence of a hidden component of the wave-

function, which is naturally associated with the CTC region. These ‘extra dimensions’

are not accessible to experiments conducted outside the CTC region, but provide some-

where for particles to hide from view, whilst maintaining global unitarity. We will see

that our proposal thereby circumvents the problems associated with non-unitary evolu-

tions mentioned above.

Of course, it is a moot point whether or not one should require a unitary evolution of

quantum fields in the presence of CTC’s; one might prefer a more radical approach such

as that advocated by Hartle [55], in Chap. 9 we will be investigating the Quantum Field

Theory directly within the formalism of the Quantum Initial Value Problem. However

for the moment our philosophy is to determine the extent to which the conventional

formalism of quantum theory can be repaired.

We shall begin in Sect. 8.2 by describing the implications of non-unitarity for the

Hilbert space formulation of quantum mechanics and then give a rigorous description of

Anderson’s proposal in Sect. 8.3, where we also note the operational problem mentioned

above. In Sect. 8.4, we introduce the unitary dilaton proposal for unitarity restoration,

and show how composition may be treated within this context in Sect. 8.5. In Sect. 8.6,

we conclude by discussing the physical significance of our proposal. There are two

appendices: Appendix 8.A contains the proof of two results required in the text, whilst

Appendix 8.B describes yet another proposal for unitarity restoration based on tensor

products. However, this proposal (in contrast to that advocated by Anderson, and the

unitary dilation proposal) fails to remove the ambiguity noted by Jacobson [53].
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8.2 Non-Unitary Quantum Mechanics

As we mentioned previously, a non-unitary evolution raises many problems for the stan-

dard formalism and interpretation of quantum theory, some of which we now discuss.

Firstly, the usual equivalence of the Schrödinger and Heisenberg pictures is lost.

Given an evolution X of states and an observable A, we would naturally define the

evolved observable A′ so that for all initial states ψ, the expectation value of A′ in state

ψ equals the expectation of A in the evolved state Xψ. Explicitly, we require

〈ψ |A′ψ〉
〈ψ |ψ〉 =

〈Xψ |AXψ〉
〈Xψ |Xψ〉 (8.2.1)

for all ψ in the Hilbert space H. If X is unitary up to a scale (i.e., X∗X = XX∗ = λ11,

λ ∈ R+), then Eq. (8.2.1) is uniquely solved by the Heisenberg evolution A′ = X−1AX.

On the other hand, if X is not unitary up to scale, then there is no operator A′ satisfy-

ing (8.2.1) unless A is a scalar multiple of the identity.

Proof: Defining f(ψ) to equal the RHS of (8.2.1), and taking ψ and ϕ to be any

orthonormal vectors, we note that linearity of A′ entails

f(ψ) + f(ϕ) = f(ψ + ϕ) + f(ψ − ϕ), (8.2.2)

whilst linearity of A implies

f(ψ)‖Xψ‖2 + f(ϕ)‖Xϕ‖2 =
1

2

{
f(ψ + ϕ)‖X(ψ + ϕ)‖2

+ f(ψ − ϕ)‖X(ψ − ϕ)‖2
}
. (8.2.3)

Multiplying ϕ by a phase to ensure that 〈Xψ | Xϕ〉 is imaginary (and hence that

‖X(ψ ± ϕ)‖2 = ‖Xψ‖2 + ‖Xϕ‖2), we combine these relations to obtain

(f(ψ) − f(ϕ))(‖Xψ‖2 − ‖Xϕ‖2) = 0, (8.2.4)
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which is clearly insensitive to the phase of ϕ and therefore holds for all orthonormal vec-

tors ψ and ϕ. If X is not unitary up to scale, we choose ϕ and ψ so that ‖Xψ‖ 6= ‖Xϕ‖.
Thus f(ψ) = f(ϕ) = F for some F . It follows that f(χ) = F for all χ orthogonal

to span {ψ, ϕ} (because ‖Xχ‖ cannot equal both ‖Xψ‖ and ‖Xϕ‖) and hence for all

χ ∈ H. Thus we have proved that A is a scalar multiple of the identity. �

We have seen how the conventional equivalence of the Schrödinger and Heisenberg

pictures is radically broken. If there are evolved states, there are no evolved operators,

and vice versa. In addition, the Heisenberg picture places restrictions on the class of

allowed observables. In order to preserve the canonical commutation relations, we take

the evolution to be A 7→ X−1AX; however, we also want to preserve self-adjointness

of observables under evolution. Combining these two requirements, we conclude that A

must commute with XX∗ and therefore with (XX∗)1/2 – the non-unitary part of the

evolution in the sense of the polar decomposition. Thus, the claim attributed to Dirac

[61] that ‘Heisenberg mechanics is the good mechanics’ carries the price of a restricted

class of observables when the evolution is non-unitary.

A second problem with non-unitary evolutions, noted by Jacobson [53] (see also

Hartle’s elaboration [55]) is that one cannot assign unambiguous values to expectation

values of operators localized in regions spacelike separated from the CTC region. Let R
be a compact region spacelike separated from the CTC’s, and which is contained in two

spacelike hypersurfaces σ+ and σ−, such that σ− passes to the past of the CTC’s and

σ+ to their future. If A is an observable which is localized within R, one can measure

its expectation value with respect to the wavefunction on either spacelike surface. In

order for these values to agree, Eq. (8.2.1) must hold with A′ = A. If X is unitary

up to scale, this is satisfied by any observable which commutes with X – in particular

by all observables localized in R. However, if X is not unitary up to scale, our argu-

ments above show that there is no observable (other than multiples of the identity) for

which unambiguous expectation values may be calculated. Jacobson concludes that a

breakdown of unitarity implies a breakdown of causality.

Thirdly, Friedman, Papastamatiou and Simon [48] have pointed out related problems

with the assignment of probabilities for events occurring before the region of CTC’s.
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They consider a microscopic system which interacts momentarily with a measuring de-

vice before the CTC region and which is decoupled from it thereafter. The microscopic

system passes through the CTC region, whilst the measuring device does not. However,

the probability that a certain outcome is observed on the measuring device depends on

whether it is observed before or after the microscopic system passes through the CTC’s.

This is at variance with the Copenhagen interpretation of quantum theory.

8.3 The Anderson Proposal

We begin by giving a rigorous description of Anderson’s proposal [56]. Let H be a

Hilbert space with inner product 〈· | ·〉 and suppose that the non-unitary evolution

operator X : H → H is bounded with bounded inverse. We now define a quadratic form

on H by

q(ψ, ϕ) = 〈X−1ψ |X−1ϕ〉, (8.3.1)

which (because (X−1)∗X−1 is positive and X and X−1 are bounded) defines a positive

definite inner product on H whose associated norm is complete. Replacing 〈· | ·〉 by

this inner product, we obtain a new Hilbert space which we denote by H′. Because H′

coincides with H as a vector space, there is an identification mapping ı : H → H′ which

maps ψ ∈ H to ψ ∈ H′. The inner product of H′ is

〈ψ |ϕ〉′ = 〈X−1ı−1ψ |X−1ı−1ϕ〉, (8.3.2)

for ψ, ϕ ∈ H′. The identification mapping is present because X−1 is not, strictly speak-

ing, defined on H′. As a minor abuse of notation, one can omit these mappings provided

that one takes care of which inner product and adjoint are used in any manipulations.

This is the approach adopted by Anderson. The advantage of writing in the identifica-

tions is that one cannot lose track of the domain or range of any operator, and adjoints

automatically take care of themselves.

From Eq. (8.3.2), it is clear that ıX : H → H′ (i.e., ‘X regarded as a map from H
to H′’) is unitary – the non-unitarity of X is cancelled by that of ı. Anderson therefore
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adopts ıX as the correct unitary evolution: in the Schrödinger picture, an initial state

ψ ∈ H is evolved unitarily to ıXψ ∈ H′.

The next component in Anderson’s proposal concerns observables. Given an observ-

able (e.g., momentum or position) represented as a self-adjoint operator A on H, one

needs to know how this observable is represented on H′ in order to evolve expectation

values in the Schrödinger picture. At first, one might imagine that A should be carried

over directly using the identification mapping to form A′ = ıAı−1. However, this idea

fails because ıAı−1 is not self-adjoint in H′ unless A commutes with XX∗: an unaccept-

able restriction on the class of observables. Instead, Anderson proposes that A′ should

be defined by

A′ = ıRXAR
−1
X ı−1 (8.3.3)

where RX = (XX∗)1/2 is self-adjoint and positive on H. The operator ıRX is easily seen

to be unitary as the unitarity of ıX implies ı∗ı = (XX∗)−1, and it then follows that A′

is self-adjoint on H′. With this definition, the expectation value of A in a (normalized)

state ψ evolves as

〈ψ |Aψ〉 7→ 〈ıXψ |A′ıXψ〉′ = 〈ıXψ | ıRXAR
−1
X Xψ〉

= 〈R−1
X Xψ |AR−1

X Xψ〉

= 〈UXψ |AUXψ〉, (8.3.4)

where UX = R−1
X X is the unitary part of X in the sense of the polar decomposition [57].

So far, it appears that Anderson’s proposal is equivalent to Schrödinger picture evo-

lution using UX in the original Hilbert space, or Heisenberg evolution A 7→ U−1
X AUX .

However, one must be careful with this statement when one considers the composition

of two consecutive periods of evolution, say Y followed by X. We take both operators

to be maps of H to itself, as required by Anderson [58, 62]. Proceeding näıvely, we

encounter the following problem: taking the unitary parts and composing, we obtain

UXUY , whilst composing and taking the unitary part (i.e., considering the evolution as
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a whole, rather than as a two stage process) we find UXY . For consistency, we would

require that these evolutions should be equal up to a complex phase λ. As we will

demonstrate in Appendix 8.A, this is possible if and only if X∗X commutes with Y Y ∗

and λ = 1. Composition would therefore fail in general.

In response to this, Anderson has proposed that composition be treated as fol-

lows [58]. Suppose Y : H → H is the first non-unitary evolution, and apply Anderson’s

proposal to form a Hilbert space H′ and an identification map  : H → H′ so that Y

is unitary. The next step is to form the ‘push-forward’ X ′ of the operator XRY to H′,

which is defined by

X ′ = RY (XRY )R−1
Y −1 = RYX−1. (8.3.5)

X ′ is decomposed asRX′UX′ in H′, and UX′ is ‘pulled back’ to H as ŨX′ = R−1
Y −1UX′RY .

Anderson states that the correct composition law is to form the product ŨX′UY . In fact,

we can simplify this slightly, because

ŨX′ = R−1
Y −1UX′RY = UR−1

Y −1X′RY
= UXRY

(8.3.6)

where we have used the fact that UV XW = V UXW if V and W are unitary. Thus

we can eliminate H′ from the discussion, and the composition rule is essentially to

replace the second evolution by UXRY
rather than UX . This is certainly consistent: for

UXRY
= UXY U−1

Y
= UXY U

−1
Y , and so UXRY

UY = UXY .

However, although this prescription is consistent, it has the drawback that one must

know about the first non-unitary evolution in order to treat the second correctly (i.e.,

one must use UXRY
rather than UX). More generally, it is easy to see that, given n

consecutive evolutions X1, . . . , Xn, one should replace each Xr by UXrRXr−1...X2X1
for

r ≥ 1, so one needs to know about all previous evolutions at each step.

This gives rise to the following operational problem: suppose two observers, A and

B live in a universe with two isolated compact CTC regions corresponding to evolutions

Y and X respectively. Suppose that A knows about both evolutions, but B only knows

about X. Thus, according to Anderson’s proposal, A replaces these evolutions by UY

and UXRY
respectively. But B replaces X by UX , which differs from UXRY

unless X∗X
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commutes with Y Y ∗ (as a corollary of the Theorem in Appendix 8.A). The two observers

treat the second evolution in different ways and will therefore compute different values

for expectation values of physical observables in the final state. This shows that, in

Anderson’s proposal, it is necessary to know about all non-unitary evolutions in one’s

past in order to treat non-unitary evolutions in one’s future correctly.

For completeness, let us see how this composition law appears in the formulation of

Anderson’s proposal in which one modifies the Hilbert space inner product. Again we

start with the evolution Y , and form the identification map  : H → H′. In addition, we

can treat the combined evolution Z = XY using Anderson’s proposal to form a Hilbert

space H′′ and identification map k : H → H′′, such that kZ is unitary. The wavefunction

is evolved from H to H′ using Y , and from H to H′′ using kZ. Thus it evolves from

H′ to H′′ under kZ(Y )−1 = ıX−1, where ı = k−1 is clearly the identification mapping

between H′ and H′′. This evolution, which is forced upon us by the requirement that the

wavefunction be evolved consistently, is exactly what arises from Anderson’s proposal

applied to the operator X−1 in H′. One might expect that observables would be

transformed from H′ to H′′ using the rule (8.3.3) applied to this evolution. However, we

will now show that this is not the case.

An observable A on H is represented as the self-adjoint operator A′ = RYAR
−1
Y −1

on H′, and by A′′ = kRZAR
−1
Z k−1 on H′′. Thus, the transformation between A′ and A′′

is

A′′ = kRZR
−1
Y −1A′RYR

−1
Z k−1. (8.3.7)

Let us note that this is not the transformation law which follows from a näıve application

of Anderson’s proposal to X−1 in H′, which would be of form

A′′ = ıRWA
′R−1

W ı−1 (8.3.8)

with W = X−1. Indeed, the expression (8.3.7) cannot generally be put into this form

for any W . For suppose that there exists some W such that Eqs. (8.3.7) and (8.3.8) are

equivalent for all self-adjoint A′. Then RW = λRZR
−1
Y −1 for some λ ∈ C which may be

re-written as −1RW (−1)∗ = λRZRY using the unitarity of RY . The LHS is self-adjoint,

so the lemma in Appendix 8.A entails that ZZ∗ and Y Y ∗ must commute, which is a
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non-trivial condition on X and Y when both are non-unitary. Hence in general, the

transformation (8.3.7) is not of the form (8.3.8).

Thus, for consistency to be maintained, the transformation rule for observables be-

tween H′ and H′′ takes a different form from that which holds between H and H′ or H′′.

This is a highly undesirable feature of Anderson’s proposal. We now look at an alterna-

tive method of unitarity restoration that does not suffer from this drawback, however it

pays the price of introducing indefinite (Krein) inner product spaces.

8.4 The Unitary Dilation Proposal

We begin by describing the theory of unitary dilations [59, 60, 63]. Let H1, . . . ,H4 be

Hilbert spaces and let X be a bounded operator from H1 to H2. Then an operator X̂

from H1 ⊕ H3 to H2 ⊕ H4 is called a dilation of X if X = PH2X̂|H1 where PH2 is the

orthogonal projection onto H2. In block matrix form, X̂ takes form

X̂ =


 X P

Q R


 . (8.4.1)

Given X : H1 → H2, we may construct a unitary dilation of X as follows. Firstly,

its departure from unitarity may be quantified with the operators M1 = 11 −XX∗ and

M2 = 11 − X∗X. As a consequence of the spectral theorem, we have the intertwining

relations

X∗f(M1) = f(M2)X
∗; Xf(M2) = f(M1)X (8.4.2)

for any continuous Borel function f . The closures of the images of M1 and M2 are

denoted M1 and M2 respectively.

We now define Ki = Hi ⊕ Mi for i = 1, 2, equipped with the (possibly indefinite)

inner product [·, ·]Ki
given by




 ϕ

Φ


 ,


 ψ

Ψ






Ki

= 〈ϕ |ψ〉 + 〈Φ |sgnMiΨ〉, (8.4.3)
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where the inner products on the right are taken in H and sgnMi = |Mi|−1Mi where

|Mi| = (M∗
iMi)

1/2. It is easy to show that sgnMi is positive if ‖X‖ ≤ 1, in which case

[·, ·]Ki
is positive definite; however, for ‖X‖ > 1, the inner products above are indefinite,

and K1 and K2 are Krein spaces (for details on the theory of operators in indefinite inner

product spaces, see the monographs [64, 65]). It is important to remember that the Ki

also have a positive definite inner product from their original definition as a direct sum

of Hilbert spaces. Thus a bounded linear operator A from K1 to K2 has two adjoints:

the Hilbert space adjoint A∗, and the Krein space adjoint, which we denote A†. It is a

simple exercise to show that A† is given by

A† = J1A
∗J2, (8.4.4)

where the operators Ji defined on Ki are unitary involutions given by Ji = 11Hi
⊕sgn (Mi).

Next, we define a dilation X̂ : K1 → K2 of X by

X̂ =


 X −sgn (M1)|M1|1/2

|M2|1/2 X∗|M1


 , (8.4.5)

which has adjoint X̂† given by Eq. (8.4.4) as

X̂† =


 X∗ sgn (M2)|M2|1/2

−|M1|1/2 sgn (M1)X|M2sgn (M2)


 . (8.4.6)

It is then just a simple matter of computation using the intertwining relations to show

that X̂†X̂ = 11K1 and X̂X̂† = 11K2. X̂ is therefore a unitary dilation of X.

The construction we have given is not unique in providing a unitary dilation. For

suppose that N1 and N2 are Krein spaces, and that Ui : Mi → Ni are unitary (with

respect to the indefinite inner products). Then

X̃ =


 11 0

0 U2


 X̂


 11 0

0 U †
1


 (8.4.7)
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is also a unitary dilation of X, mapping between H ⊕ N1 and H ⊕ N2. Because this

just amounts to a redefinition of the auxiliary spaces, it carries no additional physical

significance. One may show that all other unitary dilations of X require the addition of

larger auxiliary spaces than the Mi (for example, one could dilate X̂ further). Thus X̂

is the minimal unitary dilation of X up to unitary equivalence of the above form.

Having described the general theory, let us now apply it to the case of interest. For

simplicity, we assume that the Hilbert spaces of initial and final states are identical, so

H1 = H2 = H. We also assume that the evolution operator X is bounded with bounded

inverse. If the initial hypersurface contains regions which are causally separate from the

CTC region, we assume that X has been normalized to be unitary on states localized in

such regions. We point out that such exterior regions may not exist – even if the CTC

region is itself compact. Consider, for example, a spacetime that is asymptotically (the

universal cover of) anti-de Sitter space. In such a spacetime, hypersurfaces sufficiently

far to the future and far to the past of the CTC region will be entirely contained within

the CTC region’s light cone and there will be no exterior region on which to set up our

normalization. We may normalize the evolution operator on hypersurfaces for which an

exterior region may be identified and extend arbitrarily to those surfaces where no such

region exists. Indeed, it is entirely possible that every point in spacetime is contained in

the light cone of the CTC region; in this case we give up any attempt to find a ‘physical’

normalization for the evolution operator.

The spaces M1 and M2 are defined as above. Note that we have the polar decom-

position X = (XX∗)1/2U , where U is a unitary operator because X is invertible. As a

consequence of the intertwining relations, we have

UM2 = M1U (8.4.8)

and hence that M1 = UM2. Thus the Mi are isomorphic as Hilbert spaces. Moreover,

U is also unitary with respect to the indefinite inner products on the auxiliary spaces

M1 and M2, which follows from the identity Usgn (M2) = sgn (M1)U . We can therefore

use the freedom provided by Eq. (8.4.7) to arrange that the same auxiliary space is used

both before and after the evolution.
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The Unitary Dilation Proposal is the following. Given a non-unitary evolution X,

there exists an (indefinite) auxiliary space M (isomorphic to the Mi) and a unitary

dilation X̃ : K → K of X, where K = H ⊕ M. We regard this as describing the full

physics of the situation: on K, the evolution is unitary, whilst its restriction to the

original Hilbert space H yields the non-unitary operator X. The auxiliary space M
represents degrees of freedom localized within the CTC region, not directly accessible

to experiments outside. However indirectly, we can infer their presence by analysing X.

Observables are defined as follows. Given any self-adjoint operator A on H, we define

the corresponding observable on K:

Ã =


 A 0

0 0


 . (8.4.9)

The form of Ã is chosen to prevent the internal degrees of freedom being probed from

outside.

Let us point out that many features of this proposal can only be determined in the

context of a particular evolution X and therefore a particular CTC spacetime. There are,

however, various model independent features of our proposal, which we discuss below.

Predictability Because the initial state involves degrees of freedom not present on the

initial hypersurface (i.e., the component of the wavefunction in M), it is clear that – as

far as physical measurements are concerned – there is some loss of predictability in the

final state. This problem can be circumvented by the requirement that the initial state

should have no component in M. However at an operational level this may not be the

case.

Expectation Values Let us examine the evolution of the expectation value of Ã. On

the premise that the initial state has no component in M and takes the vector form
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(ψ, 0)T , the initial expectation value of Ã is




 ψ

0


 , Ã


 ψ

0





K2



 ψ

0


 ,


 ψ

0





K2

=
〈ψ |Aψ〉
〈ψ |ψ〉 , (8.4.10)

i.e., the expectation value of A in state ψ. After evolution, the expectation value is


X̃


 ψ

0


 , ÃX̃


 ψ

0






K2
X̃


 ψ

0


 , X̃


 ψ

0





K2

=
〈Xψ |AXψ〉

〈ψ |ψ〉 . (8.4.11)

It is important to note that both denominators are equal to ‖ψ‖2 (because the full

evolution is unitary) – this removes many of the problems encountered in Sect. 8.2.

In particular, let us return to the problem noted by Jacobson [53], writing R for

the region spacelike separated from the CTC region, and taking X to be the evolution

from states on σ− to states on σ+. We assume (as in [53]) that X acts as the identity

on HR, the subspace of states supported in R. Any local observable associated with

R should vanish on the orthogonal complement of HR in H: accordingly, it follows

that X∗AX = A, and hence that the expectation value is independent of the choice

of hypersurface (σ+ or σ−) on which it is computed. Thus Jacobson’s ambiguity is

avoided for all local observables associated with regions spacelike separated from the

causality-violating region. More generally, it is avoided for all observables A such that

A = X∗AX. This is satisfied if the image of A is contained in U = kerM1 ∩ kerM2 ⊆ H
and A commutes with the restriction X|U of X to U .

In addition, the breakdown of the Copenhagen interpretation noted in [48] is avoided

as a direct consequence of the unitarity of X̃.

Time Reversal Let us suppose the existence of an antiunitary involution T (i.e., an
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antilinear involution obeying 〈Tψ | Tϕ〉 = 〈ϕ | ψ〉) on H implementing time reversal.

The time reverse Xrev of X is given by Xrev = TXT−1; X is said to be time reversible

if Xrev = X−1. We would like to understand how the time reversal properties of X̂ are

related to those of X. For convenience we will work in terms of X̂; the discussion may

be rephrased in terms of X̃ by inserting suitable unitary operators between the Mi and

M. With these definitions it is then a simple matter to check that TMi = Mrev
i .

First, we must define the time reversal of X̂. The natural definition is

(X̂)rev =


 T 0

0 T |M2


 X̂


 T−1 0

0 (T |M1)
−1


 , (8.4.12)

which entails that time reversal and dilation commute in the sense that (X̂)rev = X̂rev.

However, because dilation and inversion do not commute (i.e., (X̂)−1 6= X̂−1) unless X

is unitary, we find that a time reversible evolution X does not generally yield a time

reversible dilation:

(X̂)rev = X̂rev = X̂−1 6= (X̂)−1. (8.4.13)

Thus if X is non-unitary and time reversible, then X̂ is not time reversible. On the

other hand, suppose that X̂ is time reversible. Then X̂rev = X̂∗ from which it follows

that X would obey the modified reversal property Xrev = X∗. It would be interesting to

determine, for concrete CTC models, whether X obeys the usual time reversal property

Xrev = X−1 or the modified property Xrev = X∗ (of course it might not obey either

property).

To summarize this section, we have seen how unitarity can be restored using the

method of unitary dilations, thereby removing the problems associated with non-unitary

evolutions. Any observable on H defines an observable in this proposal.

8.5 Composition

We have described how a single non-unitary evolution may be dilated to a unitary

evolution between enlarged inner product spaces. In what sense does our proposal

respect the composition of two (or more) non-unitary evolutions?
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Let us consider two evolutions X and Y on H and their composition XY . We define

the Mi and Mi as before and introduce N1 = 11− Y Y ∗, N2 = 11− Y ∗Y and Ni = ImNi

to be the closure of the image of Ni for i = 1, 2. As before, we can construct dilations

X̂ and Ŷ . However, because X̂ : H⊕M1 → H⊕M2 and Ŷ : H⊕N1 → H⊕N2, it is

not immediately apparent how the dilations may be composed. The solution is to dilate

both X̂ and Ŷ further, as follows: Y̌ : H⊕M1 ⊕N1 → H⊕M1 ⊕N2 is given by

Y̌ =




Y 0 −sgnN1|N1|1/2

0 11M1 0

|N2|1/2 0 Y ∗|N1


 , (8.5.1)

and X̌ : H⊕M1 ⊕N2 → H⊕M2 ⊕N2 is given by

X̌ =




X −sgnM1|M1|1/2 0

|M2|1/2 X∗|M1 0

0 0 11N2


 . (8.5.2)

The product X̌Y̌ is given by

X̌Y̌ =




XY −sgnM1|M1|1/2 −XsgnN1|N1|1/2

|M2|1/2Y X∗|M1 −|M2|1/2sgnN1|N1|1/2

|N2|1/2 0 Y ∗|N1


 , (8.5.3)

and is a unitary dilation of XY , mapping from H⊕M1 ⊕N1 to H⊕M2 ⊕N2.

This state of affairs is quite natural: we have argued that each CTC region carries

with it its own auxiliary space (isomorphic to the Mi and the Ni); one would therefore

expect that the combined evolution should be associated with the direct sum of these

auxiliary spaces. However, in order to show how our proposal respects composition,

we need to show how the product X̌Y̌ is related to the dilation X̂Y arising from the

prescription (8.4.5). To this end, we introduce P1 = 11 −XY Y ∗X∗, P2 = 11 − Y ∗X∗XY
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and Pi = ImPi. Note that

P1 = M1 +XN1X
∗ and P2 = N2 + Y ∗M2Y. (8.5.4)

Now let

Q1 =


 |M1|1/2

|N1|1/2X


 and Q2 =


 |M2|1/2Y

|N2|1/2


 , (8.5.5)

and define Ui (i = 1, 2) on Im |Pi|1/2 ⊆ Pi by Ui = Qi|Pi|−1/2. The Ui are easily seen to

be isometries (with respect to the appropriate inner products) from their domains into

Mi ⊕ Ni such that Qi|ImPi
= Ui|Pi|1/2. Provided that Qi = QiImPi is orthocomple-

mented in Mi ⊕Ni (in the indefinite inner product), we may then verify that

PH⊕Q2X̌Y̌ |H⊕Q1 =


 11 0

0 U2




 XY −sgnP1|P1|1/2

|P2|1/2 (XY )∗|P1




 11 0

0 U †
1


 , (8.5.6)

where PH⊕Q2 is the orthogonal projection onto H ⊕ Q2. Thus X̌Y̌ is a dilation of an

operator isometrically equivalent to X̂Y . The isometries act non-trivially only on the

auxiliary spaces and have no physical significance. The extra dimensions introduced

by the dilation are also to be expected because the combined evolution Z = XY may

be factorized in many different ways; hence the two individual evolutions carry more

information than their combination.

The assumption that the Qi are orthocomplemented is easily verified if the operators

Ui are bounded, for in this case, they may be extended to unitary operators on the

whole of Pi. Then Qi is the unitary image of a Krein space and is orthocomplemented

by Theorem VI.3.8 in [64]. We note that U1 is bounded if there exists K such that

‖P1ψ‖ < ǫ only if ‖M1ψ‖ + ‖N1Xψ‖ < Kǫ for all sufficiently small ǫ > 0. Similarly, U2

is bounded if ‖P1ψ‖ < ǫ only if ‖M2Y ψ‖ + ‖N2ψ‖ < Kǫ for all sufficiently small ǫ > 0.

As a particular instance of the above, we consider the case where Y is unitary. The

Ni therefore vanish and the Ni are trivial; in addition, P1 = M1 and P2 = Y ∗M2Y . The
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operator Y̌ is

Y̌ =


 Y 0

0 11M1


 (8.5.7)

and X̌ = X̂. The combined evolution is thus

X̌Y̌ = X̂


 Y 0

0 11M1


 (8.5.8)

which is unitarily equivalent to X̂Y in the sense that

X̂


 Y 0

0 11M1


 =


 11 0

0 Y


 X̂Y . (8.5.9)

We emphasize that the first factor on the RHS has no physical significance and is merely

concerned with mapping the auxiliary spaces P2 to M2 in a natural way.

To conclude this section, we make three comments. Firstly, note that if A be-

longs to the class of observables which avoid the Jacobson ambiguity for each CTC

region individually, then it also avoids this ambiguity for the combined evolution; for if

A = X∗AX = Y ∗AY , then certainly A = Y ∗X∗AXY . Thus there is no ‘multiple Jacob-

son ambiguity’. Secondly, in this proposal one does not need to know the past history

of the universe in order to evolve forward from any given time, because the auxiliary

degrees of freedom associated with one CTC region are essentially passive ‘spectators’

during the evolution associated with any other such region. This is in contrast with the

composition rule proposed by Anderson [58]. Thirdly, one might ask [62] what would

happen if the non-unitary evolution was continuous rather than occurring in discrete

steps. This question could be tackled using a suitable generalization of the theory of

unitary dilations of semi-groups discussed by Davies [66].
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8.6 Conclusion

We have examined Anderson’s proposal [56] for restoring unitarity to quantum evolution

in CTC spacetimes, and noted an operational problem arising when one considers the

composition of two or more non-unitary evolutions. Instead, we have investigated a new

method for the restoration of unitarity, based on the theory of unitary dilations, which

respects composition under certain reasonable conditions. Because unitarity is restored

on the full inner product space, problems associated with non-unitary evolutions such

as Jacobson’s ambiguity are avoided.

Our philosophy here has been to regard the non-unitarity of X as a signal that the

full physics (and a unitary evolution) is being played out on a larger state space than

is observed. This bears some resemblance to the situation in special relativity, where

time dilation signals that one must pass to spacetime (and an indefinite metric) in order

to restore an orthogonal transformation between reference frames. (Indeed, the Lorentz

boost in two dimensional Minkowski space is precisely an orthogonal dilation of the time

dilation effect).

For the case of interest, the physical picture is that the auxiliary space M corresponds

to degrees of freedom within the CTC region. Non-unitarity of the evolution signals

that a particle cannot pass through the CTC region unscathed: part of the initial state

becomes trapped in the auxiliary space corresponding to the CTC’s. A similar conclusion

is espoused by three of the authors of [67].

In the case in which X has norm less than or equal to unity (so that the full space K
has a positive definite inner product), this effect has a relatively simple interpretation.

Namely, there is a non-zero probability that an incident particle will never emerge from

the CTC region. To see how this can occur, we note that computations of the propa-

gator (see particularly [52]) proceed by requiring consistency of the evolution round the

CTC’s. It seems that part of the incident state becomes trapped in order to achieve this

consistency.

On the other hand, perturbative calculations in λφ4 theory by Boulware [47] suggest

that ‖X‖ could well exceed unity. In this case, K is an indefinite Krein space, and it
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would apparently be possible that the ‘probability’ of the particle escaping from the CTC

region could be greater than one. In principle, one might try to avoid this by seeking

natural positive definite subspaces of the initial and final Krein spaces. The obvious

choice would be to take the initial Hilbert space to be H and the final Hilbert space

to be the image of H under X̃. However, this may lead to some problems in defining

observables on the final Hilbert space. If one decides to face the problem directly (which

seems preferable), one would be forced to conclude that CTCs are incompatible with

the twin requirements of unitarity and a Hilbert space structure. The initial and final

state spaces would naturally be Krein spaces. This would not be entirely unexpected:

studies of quantum mechanics on the ‘spinning cone’ spacetime [68] have concluded that

the inner product becomes indefinite precisely inside the region of CTC’s. ‘Probabilities’

greater than unity would denote the breakdown of the theory in a manner analogous

to the Klein paradox (see the extensive discussion in the monograph of Fulling [69]) in

which strong electrostatic fields force the Klein-Gordon inner product to be indefinite.

In our case, it is the geometry of spacetime which leads us to an indefinite inner product.

We expect that particle creation would occur in this case, as it does in the usual Klein

paradox.

The Klein paradox can be resolved by treating the electromagnetic field as a dy-

namic field, rather than as a fixed external field. Particles are created in a burst as the

field collapses (unless it is maintained by some external agency). In our case it seems

reasonable that, in the context of a full quantum theory of gravity, a burst of particle

creation occurs and the CTC region collapses. This is essentially the content of Hawk-

ing’s Chronology Protection Conjecture [70]. Thus the emergence of Krein spaces in our

proposal may be interpreted as a signal for the instability of the CTC spacetime.

Finally, our treatment has been entirely in terms of states and operators; it would be

interesting to see how it translates into density matrices and the language of generalized

quantum mechanics [54].

8.A Proof of Theorem

In this appendix, we prove the following two results:
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Theorem Suppose X and Y are bounded with bounded inverses. Then UXY = λUXUY

if and only if X∗X commutes with Y Y ∗ and λ = 1.

Proof: Starting with the sufficiency, we note that Z = (X∗)−1(X∗X)1/2(Y Y ∗)−1/2X−1 is

positive and squares to give (XY Y ∗X∗)−1 (using the commutation property). It follows

that Z is equal to the unique positive square root of (XY Y ∗X∗)−1 and hence that

UXY = (XY Y ∗X∗)−1/2XY = (X∗)−1(X∗X)1/2(Y Y ∗)−1/2Y. (8.A.1)

Using the fact that (X∗)−1(X∗X)1/2 = UX , we have proved sufficiency.

To demonstrate necessity, we note that UXY = λUXUY only if

X∗(XY Y ∗X∗)−1/2X = λ(X∗X)1/2(Y Y ∗)−1/2. (8.A.2)

It follows that the RHS must be self-adjoint and positive. We now apply the following

Lemma:

Lemma Suppose that A and B are bounded with bounded inverses and self-adjoint, and

suppose that αAB is self-adjoint and positive for some α ∈ C, α 6= 0. Then α ∈ R and

A and B commute.

Proof: Because αAB is self-adjoint, we have

αAB = αBA. (8.A.3)

Now note that

α(αAB − z)−1 = α(αBA− z)−1

= αB(αAB − zα/α)−1B−1. (8.A.4)

Because αAB has non-empty spectrum on the positive real axis and because the resolvent

(αAB − z)−1 is an analytic operator valued function of z in C \ R
+, we conclude that
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α/α must be real and positive. Accordingly, α ∈ R and Eq. (8.A.3) implies that A and

B commute. �

In our case, this implies that λ = ±1 and that X∗X commutes with Y Y ∗. Moreover,

because the two square roots on the RHS of Eq. (8.A.2) are positive and commute, we

conclude that λ = 1 in order that the RHS be positive. �

8.B An Alternative Method to Restore Unitarity

Here, we consider another possible method for the restoration of unitarity which, how-

ever, suffers from problems related to Jacobson’s ambiguity. Instead of focussing on

direct sums of Hilbert spaces, this proposal uses tensor products and always maintains

a positive definite inner product. We start with X : H → H, bounded with bounded

inverse and non-unitary as before, and define a new Hilbert space HX = (11 ⊗ X)Σ,

where Σ ⊆ H ⊗ H is the closure of the space of finite linear combinations of terms of

form ψ⊗ψ for ψ ∈ H. Similarly, we define HX−1 = (11⊗X−1)Σ. Now define the operator

X̃ = X ⊗X−1 restricted to HX . Clearly, X̃(ψ ⊗Xψ) = ϕ⊗X−1ϕ where ϕ = Xψ, and

so X̃ : HX → HX−1 . Moreover,

〈X̃(ψ ⊗Xψ) |X̃(ϕ⊗Xϕ)〉 = 〈Xψ ⊗ ψ |Xϕ⊗ ϕ〉

= 〈Xψ |Xϕ〉〈ψ |ϕ〉

= 〈ψ ⊗Xψ |ϕ⊗Xϕ〉 (8.B.1)

and therefore X̃ is a unitary operator from HX to HX−1 .

Let us examine the structure of this proposal in more detail. First, there is a natural

transposition operation T on H ⊗ H: T (ϕ ⊗ ψ) = ψ ⊗ ϕ. It is easy to see that X̃

is the restriction of T to HX : hence all the information about X is encoded into the
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definition of HX . We will want to know whether we have lost any information in this

process. Suppose HX = HY for two distinct operators X and Y . Then 11 ⊗ Z is a

bounded invertible linear map (though not necessarily unitary) of Σ onto itself, where

Z = X−1Y . Because T restricts to the identity on Σ, we require ψ ⊗ Zψ = Zψ ⊗ ψ for

each ψ ∈ H. Taking an inner product with ϕ⊗ ψ for some ϕ, we obtain

〈ϕ |ψ〉〈ψ |Zψ〉 = 〈ϕ |Zψ〉〈ψ |ψ〉. (8.B.2)

Because ϕ is arbitrary, ψ is therefore an eigenvector of Z. But ψ was also arbitrary and

therefore Z = λ11 for some constant λ ∈ C\{0}. Thus Y = λX, so this construction

loses exactly one scalar degree of freedom. Effectively, we have lost the (scalar) operator

norm ‖X‖ of X, but no other information.

We have therefore restored unitarity at the price of introducing a second Hilbert

space and correlations between the two. The evolution on the large space is unitary.

This fits well with the picture of acausal interaction between the initial space and the

CTC region in its future. The physical interpretation is as follows: the ‘time machine’

contains a copy of the external universe, which evolves backwards in time, starting with

the final state of the quantum fields and ending with their initial state. It is impossible

to prepare the initial state of the CTC region independently from the initial state of the

exterior quantum fields.

However, problems arise when observables are defined. Here, observables on the

initial space are naturally defined to be self-adjoint operators on H ⊗ H with HX as

an invariant subspace (observables on the final space would have HX−1 invariant). An

operator of form A ⊗ B maps HX to itself only if B = XAX−1; combining this with

the requirement of self-adjointness, one finds that A must commute with X∗X and its

powers. Thus this proposal places restrictions on the class of allowed observables.

The requirement that HX be an invariant subspace for all observables was adopted

so that our space of initial states is invariant under the unitary groups generated by

observables (e.g. translations). If we relax this, and define observables to be self-adjoint

operators on H⊗H, it appears that A⊗ 11 corresponds naturally to the operator A on

H. However, this suffers from the ambiguity pointed out by Jacobson [53].



9. THE QUANTUM INITIAL VALUE PROBLEM FOR CTC

MODELS

9.1 Introduction

Spacetimes containing closed timelike curves (CTC’s) provide an intriguing environment

for the formulation of both classical and quantum physics. Because the present is influ-

enced by both the past and the future, neither existence nor uniqueness is guaranteed a

priori for solutions to initial value problems for particles and fields on such spacetimes;

these issues underlie many of the apparent paradoxes associated with time travel. In this

chapter, we attempt to gain insight into the initial value problem for a class of nonlinear

differential equations (which may be regarded as toy field theories) on ‘spacetimes’ of a

type introduced by Politzer [52]. These spacetimes are defined by taking the Cartesian

product of a number of discrete points (representing space) with the real line (time) and

then imposing certain identifications to introduce CTC’s. The simple nature of these

models removes many technical problems and allows us to pursue the analysis to its end.

Previous studies of classical initial value problems on chronology violating spacetimes

have mostly focussed on linear fields [71, 72, 73, 49, 51] and billiard ball models [73, 74,

75, 76]. Deutsch [77] has also studied examples of classical computational networks with

chronology violating components. For linear fields, it turns out that one can formulate

a well posed initial value problem under certain conditions. Friedman and Morris [71,

72] have rigorously proved existence and partial uniqueness results for massless fields

propagating on a class of smooth static wormhole spacetimes with data specified at past

null infinity. In addition, they have conjectured that the initial value problem is well

posed for asymptotically flat spacetimes with a compact nonchronal region whose past

and future regions are globally hyperbolic whenever the problem is well posed in the
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geometric optics limit. It is much easier to prove existence and uniqueness for linear

fields on certain non-smooth chronology violating spacetimes [49, 51].

In the billiard ball case, Echeverria et al. [74] and (for similar and more elaborate

systems) Novikov [75] have shown that the initial value problem is often ill posed in the

sense that the evolution is not unique; moreover, Rama and Sen [76] have given similar

examples in which there appears to be no global self-consistent solution for certain initial

data.

One would expect that nonlinear fields should interpolate between the behaviour

exhibited by linear fields on one hand and billiard balls (as representing a strongly

non-linear interaction) on the other. We will show that this is indeed the case for our

class of models: we prove that the initial value problem is well posed for arbitrary data

specified before the nonchronal region in both the linear and weakly nonlinear case, but

uniqueness (though not existence) fails in the strongly nonlinear regime. In addition to

these analytical results, we give an explicit example to demonstrate the lack of uniqueness

for a particular value of ‘coupling strength’. We also show that the evolution from the

past of the nonchronal region to its future preserves the symplectic structure.

The loss of uniqueness for interacting systems on chronology violating spacetimes

entails that classical physics loses its predictive power. Various authors have expressed

the hope that quantum dynamics on such spacetimes might be better behaved than

its classical counterpart, with attention focussing on spacetimes possessing both initial

and final chronal regions. Friedman et al. [50] considered linear quantum fields and

showed that, provided the classical initial value problem is well posed, the quantum

evolution between spacelike surfaces in the initial and final chronal regions is unitary;

a conclusion borne out by Boulware [47] in a Gott space example (see also [52, 49, 51]

for related results). However, the situation is very different for interacting fields. Both

Boulware [47] and Friedman et al. [48] found that the S-matrix between the initial and

final chronal regions fails to be unitary in perturbative λφ4 theory. Politzer also obtained

similar perturbative results in quantum mechanics [49] and also some nonperturbative

results in exactly soluble models [52] in which nonunitarity also arises. It is also worth

pointing out that some interacting systems do have unitary quantum theories [49]. In
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Chap. 10 we will be focussing on the issue of particle creation in a lattice spacetime as a

model of a local interacting quantum theory with a Thirring-type interaction. It turns

out that this system is one of those that has a unitary quantum theory.

The breakdown of unitarity raises many problems for the probability interpreta-

tion of quantum theory; in particular, ambiguities arise in assigning probabilities to

the outcomes of measurements conducted before [48] or spacelike separated from [53]

the nonchronal region. There have been various reactions to these problems. Firstly,

Hartle [55] has discussed how nonunitary evolutions can be accommodated within the

framework of generalized quantum mechanics, and a similar proposal has also been ad-

vanced by Friedman et al. [48]. A second approach has been to ‘repair’ the theory by

modifying the evolution to yield a unitary theory [56, 3]. This was our approach in

Chap. 8. Thirdly, Hawking [78] has argued that one should expect loss of quantum

coherence in the presence of CTC’s and that the evolution should be specified by means

of a superscattering operator (i.e., a linear mapping from initial to final density matri-

ces) which moreover would not factorize into a unitary S-matrix and its adjoint. From

this viewpoint, the quantity computed using the usual rules for the S-matrix is not

the physically relevant quantity and its nonunitarity is irrelevant. Rather, one should

compute the matrix elements of the superscattering operator. Deutsch [77] has also ad-

vocated a density matrix formalism in the context of quantum computational networks

(see also [52]). However, this prescription turns out to be nonlinear in the initial density

matrix [79].

For the most part, the quantization method employed in discussions of chronology

violation has been based on path integrals in which one sums over all consistent trajec-

tories or field configurations. We follow an operator approach based on the Quantum

Initial Value Problem (QIVP). Namely, we seek operator valued solutions to the equa-

tion of motion and any consistency conditions arising from the CTC’s, with initial data

specified before the nonchronal region and forming a representation of the canonical

(anti)commutation relations. If there exists a unique solution with this initial data, and

the evolved data to the future of the nonchronal region also represents the commutation

relations, then we say that the QIVP is well posed.
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We will show that the QIVP is well posed for all linear models in our class of interest

with both Bose and Fermi statistics. The corresponding quantum theory is unitary and

agrees with that derived by path integral methods. In the interacting case, we prove

the remarkable fact that (with normal ordering) the QIVP always has a unique solution

and describe how this solution may be constructed. To obtain more specific results,

we consider the cases in which ‘space’ consists of either 2 or 3 points. In the 2-point

model, we find that the unique solution to the QIVP satisfies the CCR/CAR’s to the

future of the nonchronal region (so the QIVP is well posed) and that in consequence

the resulting quantum theory is unitary . This contrasts strongly with the corresponding

path integral result (generalizing that of Politzer [52]) in which the evolution is found

to be nonunitary. In consequence, and because the path integral also employs normal

ordering, we conclude that the self-consistent path integral evolution does not generally

correspond to a solution of the equation of motion. Given the different starting points

of the two approaches this is not entirely surprising.

In the 3-point model, we show that the QIVP is ill posed for both Bose and Fermi

statistics because the evolved data does not satisfy the CCR/CAR’s to the future of

the nonchronal region. The corresponding quantum theory is therefore not unitary. We

then discuss the nature of this evolution in the fermionic case in order to determine

whether or not it can be described by means of a superscattering operator. To do this

it is necessary to translate our results from the Heisenberg picture to the Schrödinger

picture. Although there is no unique translation prescription (as a consequence of the

violation of the CAR’s), we are nonetheless able to show that no Schrödinger picture

evolution consistent with the QIVP solution can factorize into the product of an operator

and its adjoint, lending support to one element of Hawking’s position [78]. However,

it also transpires that no such Schrödinger picture evolution can be described by a

superscattering matrix as it must either increase the trace of density matrices or map

them to non-positive operators. In this sense, the loss of unitarity in our model is much

more radical than envisaged by Hawking.

We also study the classical limit of our quantum theory. One might imagine that this

limit would fail when the classical theory is non-unique; however, this is not the case. It

appears that there are bands of ‘coupling strength’ for which the limit does exist even
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when there are many classical solutions. Within the convergence bands, our quantum

theory resolves the classical non-uniqueness. We will examine some numerical evidence

to exemplify this behaviour. These bands continue to appear as the coupling strength is

increased indefinitely, though they become narrower. In addition to these bands where

the classical limit picks out a unique classical solution, there are other values of the

coupling strength where the classical limit exists but does not correspond to a solution of

the classical equations, rather these solutions correspond to the superposition of solutions

that obey the CTC boundary conditions only after a finite number of traversals around

the CTC region. We shall call these winding number N trajectories, where N is the

number of times the quantum particle must traverse the wormhole in order to achieve

consistency. In addition to this sort of behaviour there are other values of the coupling

strength for which it is arguable that no classical solution is physically relevant.

We also consider the effect of altering the operator ordering used and find that the

solutions to the QIVP can become non-unique for large quantum numbers and non-

normal operator ordering. We study a 1-parameter family of operator orderings for the

3-point model and show that the resulting quantum theories are all nonunitary.

This chapter is structured as follows. We describe first our class of chronology vi-

olating models in Sect. 9.2 and then study the classical initial value problem for both

linear and nonlinear fields in Sect. 9.3. Next, in Sect. 9.4 we discuss the quantum initial

value problem for our models in the absence of CTC’s and demonstrate its equivalence

with canonical quantization. This serves to fix our notation and definitions for Sect. 9.5

in which we uniquely solve the QIVP with CTC’s present, and discuss the 2- and 3-

point models, showing that the CCR/CAR’s are violated in the 3-point case. This

nonunitary evolution is investigated in Sect. 9.6 and is shown not to be described by a

superscattering operator. Sect. 9.7 treats the classical limit, whilst Sect. 9.8 contains a

brief discussion of the effect of operator ordering on our results. In Sect. 9.9, we review

the self-consistent path integral formalism, extending and in one instance correcting the

treatment given by Politzer [52]. We use this formalism to compute the general (uni-

tary) evolution for the free models, obtaining agreement with the QIVP. For the 2- and

3-point interacting models we show that the QIVP and path integral differ. We com-

ment on this and other issues in the Conclusion (Sect. 9.10). There are five Appendices.
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Appendix 9.A reproduces our treatment of the free classical evolution using the methods

of Goldwirth et al. [51], whilst Appendix 9.B gives a derivation of the quantum evolu-

tion of the free models using the formalism of Politzer [52], rather than the more direct

method employed in the text. In Appendix 9.C, we present the details of a calculation

which shows that the CCR/CAR’s are violated in the 3-point interacting model and in

Appendices 9.D and 9.E we prove some rigorous elementary estimates on the Poisson

distribution which are technicalities necessary for our discussion of the classical limit

together with an analysis of two iterative sequences important in our deliberations.

9.2 A Class of Chronology Violating Models

In this section, we describe a class of nonlinear differential equations on ‘spacetimes’

in which ‘space’ consists of finitely many discrete points. By making identifications in

these spacetimes, we introduce CTC’s and obtain spacetime models generalizing that

studied by Politzer [52]. These identifications are implemented in the field theory by

imposing certain boundary conditions which place constraints on the theory.

Let S be a finite collection of points S = {zα | α = 1, . . . , s} for some s ≥ 2, and

define spacetime to be the Cartesian product S × R. We define H to be the Hilbert

space of complex-valued functions on S with inner product 〈f | g〉 =
∑

z∈S f(z)g(z).

This space has vectors vα as an orthonormal basis, where we define vα(zβ) = δαβ. With

respect to this basis, we may write functions in H as s-dimensional complex vectors, so

that 〈f |g〉 = f †g = fαgα, where we sum over the repeated index.

We will study model field theories derived from Lagrangians of form

L =
i

2
(ψ†ψ̇ − ψ̇†ψ) − ψ†Wψ − λ

2
(ψ†ψ)2, (9.2.1)

where ψ(t) ∈ H, W is a self-adjoint positive operator on H and λ ∈ R
+. The corre-

sponding field equation is

ψ̇ = −iWψ − iλ(ψ†ψ)ψ, (9.2.2)
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which conserves the quantity ψ†ψ, and therefore reduces to the linear equation

ψ̇ = −iWψ − iλψ†(0)ψ(0)ψ, (9.2.3)

once the initial data ψ(0) is specified. Thus the unique solution to Eq. (9.2.2) with this

data is

ψ(t) = e−iλtψ
†(0)ψ(0)e−iWtψ(0). (9.2.4)

The configuration space variables ψα have conjugate momenta iψ†
α (näıvely, one

might expect the momenta to be 1
2
iψ†

α. However, the Lagrangian (9.2.1) is a second class

constrained system and the correct momenta may be obtained using Dirac brackets [80].)

and Eq. (9.2.2) may be written in the Hamiltonian form

ψ̇α =
∂h

∂(iψ†
α)
, (9.2.5)

with Hamiltonian

h(ψ, iψ†) = ψ†
αWαβψβ +

λ

2
ψ†
αψ

†
βψβψα. (9.2.6)

To introduce CTC’s we partition S into two subsets S1 and S2 containing s1 and s2

elements respectively, with s1+s2 = s and s2 ≤ s1, and make pointwise identifications of

S2 ×{T+} with S2 ×{0−} and S2 ×{T−} with S2 ×{0+} for some T > 0. This idealises

wormholes linking the lower surface of S2 at t = 0 with the upper surface of S2 at t = T ,

and the upper surface of S2 at t = 0 with the lower surface of S2 at t = T . Note that

0− and 0+ (and correspondingly T− and T+) are regarded as distinct topological points

for this purpose.

The partition of S induces a partition of the basis vectors vα into the sets e1, . . . , es1

and f1, . . . , fs2 whose respective spans are denoted H1 and H2. Clearly, we have that

dim H2 ≤ dim H1. We will also write the projection of ψ ∈ H onto Hi (i = 1, 2) as ψi.

In the classical field theory, the identifications are implemented by the imposition of the

boundary conditions

ψ2(T
−) = Aψ2(0

+) and ψ2(T
+) = Bψ2(0

−), (9.2.7)
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where A and B are unitary maps of H2 to itself, corresponding to the evolution through

the wormholes (cf. Goldwirth et al. [51] ). Politzer [52] takes A = B = 11. The rôle of

these boundary conditions is simply to ensure that the evolution around the wormholes

is consistent. We require ψ1(t) to be everywhere continuous, although ψ̇1(t) may be

discontinuous at t = 0, T . Thus (9.2.2) is suspended at these points.

Except in the special cases in which S consists either of 2 points or 3 points arranged

in a ring, the interaction term in (9.2.1) is not a nearest neighbour interaction and is

therefore rather unsatisfactory as a model field theory. We will therefore restrict our

discussion of specific interacting models to these cases. In Chap. 10 we will discuss a

lattice Thirring model and its continuum limit, this is a model of a local field theory.

The results presented in that chapter lend support to the idea that knowledge about

such point spacetime models carries over (at least for the simple interacting models we

have been discussing) to the continuum limit.

9.3 The Classical Initial Value Problem

In this section, we examine the behaviour of the classical field equation (9.2.2) subject

to the CTC boundary conditions (9.2.7). For a generic class of W and T , we show that

the free field initial value problem is well posed for data specified before the nonchronal

region. We then examine the nonlinear theory and show that (generically) solutions

exist for all initial data specified before the nonchronal region; moreover, this solution

is unique in the case of ‘weak coupling’, but fails to be unique for ‘strong coupling’.

To define the class of generic W and T , we decompose the operator e−iWT (which

implements the free evolution between t = 0+ and t = T−) in the block form

e−iWT =


 P Q

R S


 , (9.3.1)

with respect to the decomposition H = H1 ⊕ H2. The generic case is defined to be the

case in which the norm ‖S‖ of S is strictly less than unity. (Note that ‖S‖ ≤ 1 because

e−iWT is unitary.) Equivalently, we require that Q should be an injection from H2 into
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H1 so that Q has a left inverse K, (i.e., such that KQ = 11|H2) which is uniquely specified

if we require it to annihilate the orthogonal complement of ImQ. This requirement is

the reason for our restriction that dim H2 ≤ dim H1: otherwise, Q would necessarily have

nontrivial kernel. The generic case corresponds to the situation expected in physically

realistic field theories in which wavepackets spread out so that some proportion of any

wave emerging from the wormhole at t = 0+ manages to avoid reentering it at t = T−.

9.3.1 Free Case

We show now that, in the generic case with λ = 0, the equation of motion (9.2.2) with

boundary conditions (9.2.7) constitutes a well posed initial value problem for arbitrary

data ψ ∈ H specified at t = 0− (and therefore for any t < 0). In fact, we will only need

the weaker condition that A− S be invertible on H2.

The evolution between t = 0+ and t = T− is given simply by the operator e−iWT ;

accordingly, given data at t = 0−, the problem reduces to the study of the evolution

between t = 0− and t = 0+. Because ψ1(t) is required to be continuous at t = 0, it

remains to determine ψ2(0
+) in terms of ψ(0−). The only constraint on ψ2(0

+) is that the

CTC boundary conditions be satisfied, i.e., that ψ2(T
−) = Aψ2(0

+). From Eq. (9.3.1)

we have ψ2(T
−) = Rψ1(0)+Sψ2(0

+) so, provided A−S is invertible, ψ2(0
+) is uniquely

specified as

ψ2(0
+) = (A− S)−1Rψ1(0). (9.3.2)

For 0 < t < T , the solution is thus

ψ(t) = e−iWt


 ψ1(0)

(A− S)−1Rψ1(0)


 , (9.3.3)

and in particular, we obtain

ψ1(T ) = Mψ1(0), (9.3.4)

where the matrix M is

M = P +Q(A− S)−1R. (9.3.5)
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The matrix M is unitary, as we now show. Let ψ ∈ H1 and use the unitarity of e−iWT

to compute

‖ψ‖2 + ‖(A− S)−1Rψ‖2 =

∥∥∥∥∥∥
e−iWT


 ψ

(A− S)−1Rψ



∥∥∥∥∥∥

2

= ‖(P +Q(A− S)−1R)ψ‖2 + ‖(11 + S(A− S)−1)Rψ‖2

= ‖Mψ‖2 + ‖A(A− S)−1Rψ‖2. (9.3.6)

By unitarity of A, we now have ‖Mψ‖2 = ‖ψ‖2 and conclude that M is unitary.

Thus we have shown that there is a unique classical solution for each choice of initial

data at t = 0− and that the full classical evolution from t = 0− to t = T+ is

ψ(T+) =


 M 0

0 B


ψ(0−). (9.3.7)

Moreover, the solution is clearly continuous in the initial data, so we conclude that this

initial value problem is well posed for data specified in the past of the CTC region on

surfaces of constant t.

The situation is different for data specified between t = 0+ and t = T−. Here, the

initial value problem is well posed only for a subclass of data satisfying certain consis-

tency requirements. For example, data specified at t = 0+ must obey Eq. (9.3.2). This

phenomenon has been noted before in various situations [73, 51, 81]; it arises because

the CTC’s introduce constraints on the dynamics and has important implications for

the quantum theory. Note that one may nonetheless specify the data at any given point

freely: it is always possible to choose the remaining initial data so as to satisfy the con-

sistency requirements. Thus our system has a ‘benignity’ property analogous to those

discussed in [73, 81]. Related to this phenomenon is the fact that the classical evolution

is nonunitary between t = 0− and 0+ and between t = T− and T+. To see this, take any

initial data with ψ1(0) = 0: at t = 0−, the initial data has norm ‖ψ2(0
−)‖; for 0 < t < T

the solution vanishes identically; and finally, at t = T+, the solution again has norm
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‖ψ2(0
−)‖.

Finally, it is instructive to see how this classical evolution may be derived using the

path integral methods of Goldwirth et al. [51]. This is described in Appendix 9.A.

9.3.2 Interacting Case

We now consider the full interacting classical field theory in the generic case. We will

show: (i) there exists at least one solution for arbitrary initial data; (ii) there is a weak

coupling regime in which there is a unique solution; and (iii) there is a strong coupling

regime in which there exist many distinct solutions for each choice of initial data.

In the absence of CTC boundary conditions, the solution is given by (9.2.4). We write

a = ψ1(0) and b = ψ2(0
+) and implement the CTC boundary conditions by requiring b

to satisfy

Ab = e−iλT (a†a+b†b)(Ra+ Sb), (9.3.8)

for given a.

To study the solutions to this equation, we first note that it implies ‖b‖ = ‖Ra+Sb‖
and hence, by the unitarity of e−iWT , that ‖a‖ = ‖Pa+Qb‖. In the generic case (in which

Q has left inverse K, which will be uniquely determined if we require K to annihilate

the subspace orthogonal to ImQ) any solution b must therefore take the form

b = K(U − P )a, (9.3.9)

for some unitary U on H1. Substituting back into Eq. (9.3.8), and rearranging, we find

that b solves (9.3.8) if and only if

KUa = Kf(U)a, (9.3.10)

where f(U) = P +Q(Aeiη(U) − S)−1R and

η(U) = λTa†
{
11 + (U − P )†K†K(U − P )

}
a. (9.3.11)
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Because η(U) is real-valued, f(U) is a unitary operator on H2.

Clearly, any solution to the fixed point equation U = f(U) necessarily yields a solu-

tion to Eq. (9.3.8); moreover, any such U must take the form U(z) = P +Q(zA−S)−1R

for some z on the unit circle. (Note that this expression is always well-defined because

‖S‖ < 1.) Thus the problem of existence reduces to finding fixed points of the equation

z = eiη(U(z)) on the unit circle. Now

η(U(z)) = λT
(
‖a‖2 + ‖(zA− S)−1Ra‖2

)
, (9.3.12)

which is a continuous single-valued function from the unit circle to the real line; thus

eiη(U(z)) is a mapping of the unit circle to itself with vanishing Brouwer degree. Accord-

ingly, for each choice of initial data a ∈ H1 there exists at least one fixed point of f and

thus at least one solution to Eq. (9.3.8), so we have proved the claim (i) above.

To establish claim (ii), we write the RHS of Eq. (9.3.8) as Ag(b) where g : H2 → H2

and consider the fixed point problem b = g(b) on the ball B = {b ∈ H2 | ‖b‖ ≤ r0‖a‖},

where r0 = ‖K‖(1+‖P‖). This ball contains all solutions to Eq. (9.3.8) as a consequence

of Eq. (9.3.9). For any b1, b2 in B, we have

‖g(b1) − g(b2)‖ =
∥∥∥
(
1 − eiλT (‖b1‖2−‖b2‖2)

)
(Ra+ Sb1)

+eiλT (‖b1‖2−‖b2‖2)S(b1 − b2)
∥∥∥

≤
(
c0λT‖a‖2 + ‖S‖

)
‖b1 − b2‖, (9.3.13)

in which we have used the elementary estimates |1 − eiα| = 2| sinα/2| ≤ |α| and

|‖b1‖ − ‖b2‖| ≤ ‖b1 − b2‖, and c0 = 2r0(‖R‖ + ‖S‖r0) is a positive real constant de-

pending only on P,Q,R and S. In the generic case, for λT‖a‖2 < c−1
0 (1 − ‖S‖) (i.e.,

weak coupling), g|B is a strict contraction (which need not map B to itself) and standard

contraction mapping arguments now imply that there can be at most one fixed point in

B. Putting this together with (i) and using the fact that all fixed points of g must lie in
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B, we have proved (ii).

Finally, to prove (iii) we note that if λT‖Ra‖2 ≫ 1 (i.e., strong coupling) then the

fixed point problem z = eiη(U(z)) described above has many solutions on the unit circle;

moreover, because Ra 6= 0, these solutions must correspond to distinct values of b and

hence of ψ1(T ).

−π 0 π
θ

y = ζ(θ)

y = θ/µ

y = (θ + 2π)/µ

Fig. 9.1: Graphical solution of Eq. (9.3.14) for µ = 0.5 showing that there

is a unique solution of the classical solution for this coupling

strength.

In Figs. 9.1 and 9.2, we explicitly show how non-uniqueness arises in a model with

two spatial points and P = −Q = R = S = 1/
√

2 with A = 11. For this model the

classical solutions are in one-to-one correspondence with the solutions of the fixed point

equation z = eiη(U(z)) on the unit circle, because K and U(z) are scalars. Writing z = eiθ,

this becomes

ζ(θ) = (θ + 2kπ)/µ, (9.3.14)
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−π 0 π
θ

y = ζ(θ)

y = θ/µ

y = (θ + 2π)/µ

y = (θ + 4π)/µ

y = (θ + 6π)/µ

Fig. 9.2: Graphical solution of Eq. (9.3.14) for µ = 3.0 showing that there

are 7 solutions for this coupling strength.

for k ∈ Z where ζ(θ) is defined by the expression

ζ(θ) = 1 +
∣∣∣
√

2eiθ − 1
∣∣∣
−2

(9.3.15)

and we have written µ = λT |a|2 for the ‘coupling strength’. The fixed point equation

may be solved graphically by plotting (9.3.14) and (9.3.15) on the same diagram, for

−π < θ ≤ π and looking for intersections. Fig. 9.1 shows the appropriate plots for

µ = 0.5, from which it is clear that there is a unique solution, whilst Fig. 9.2 corresponds

to the case µ = 3.0 where there are seven solutions. The iteration of the map illustrated

by the red lines turns out to be important for our discussion of the classical limit to the

model. We will return to these diagrams when we discuss this point in detail in Sect. 9.7.

In order to get an idea of how the number of classical solutions varies with the
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−π

0

π

µ

θ

2 4 6 8

Fig. 9.3: Diagram showing the fixed points of the classical equations plotted

against the coupling strength.

coupling strength µ, we may plot a diagram of µ against θ, where θ solves the fixed

point equation, Eq. (9.3.14). It can be seen from Fig. 9.3 that for small values, i.e., less

than approximately π(2 −
√

2)/2 ≈ 0.9202 there is a unique classical solution. As µ

increases there are an increasing number of fixed point solutions.

9.3.3 Preservation of the Symplectic Structure

Except at t = 0 and T , the classical dynamics is generated by the Hamiltonian h, and

therefore preserves the symplectic structure on phase space in the initial and final chronal

regions. Owing to the CTC boundary conditions, it is not clear that the evolution from

initial to final chronal regions also preserves the symplectic structure. Here, we express

the classical evolution in phase space language and prove that the evolution from initial

to final chronal regions is implemented by a symplectic transformation.
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The classical phase space is Γ = Cs with symplectic structure given by the 2-form

Ω = −idψ† ∧ dψ = −idψα ∧ dψα. In the usual way, functions on Γ are regarded

as functions of independent variables ψ and ψ†. A symplectic transformation ξ is a

diffeomorphism of Γ which preserves Ω, i.e., ξ∗Ω = Ω, where ξ∗Ω is the pull-back of Ω

by ξ. This is equivalent (see e.g., §40 in [82]) to the Dirac bracket relation

{f ◦ ξ, g ◦ ξ}D,x = {f, g}D,ξ(x) , (9.3.16)

where the Dirac bracket of two functions on Γ is defined by

{f, g}D,x =

(
∂f

∂ψγ

∂g

∂iψγ
− ∂g

∂ψγ

∂f

∂iψγ

)∣∣∣∣∣
x

. (9.3.17)

Under a Hamiltonian evolution the symplectic structure is preserved by virtue of

Hamilton’s equations: dΩ/dt = d2h = 0. Corresponding to the field decomposition

ψ = (ψ1, ψ2), we have Γ = Γ1 × Γ2, and associated natural projections πk : Γ → Γk.

Then Ω can be expressed as

Ω = π∗
1Ω1 + π∗

2Ω2, (9.3.18)

where, for k = 1, 2, Ωk = −idψ†
k ∧ dψk is the symplectic form on Γk. Any unitary

matrix U on H2 defines a corresponding natural symplectic transformation of Γ2, which

we denote χU . In addition, for t ∈ R, τt = exp tIdh is the evolution generated by the

Hamiltonian h, where I is the canonical isomorphism between 1-forms and vector fields

on Γ specified by Ω(Iω, ·) = ω(·). We have τ ∗t Ω = Ω for all t.

With these definitions, the diffeomorphism η implementing evolution from t = 0− to

t = T+ is η = (κ, χB), where B is the unitary matrix appearing in the CTC boundary

conditions and κ is a mapping from an open set U ⊂ Γ1 into Γ1 defined as follows. First,

we define a differentiable map σ : U → Γ as a solution to the equations

π1 ◦ σ = 111, π2 ◦ τT ◦ σ = χA ◦ π2 ◦ σ, (9.3.19)
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which express the classical consistency requirement Eq. (9.3.8). Then κ is defined by

κ = π1 ◦ τT ◦ σ. (9.3.20)

In general, there will be many possible choices for κ reflecting the non-uniqueness of the

classical evolution. For any such choice, the relation κ∗Ω1 = Ω1 can be proved using

the composition rule (f ◦ g)∗ = g∗f ∗ as

κ∗Ω1 = σ∗τ ∗Tπ
∗
1Ω1

= σ∗τ ∗T (Ω − π∗
2Ω2)

= σ∗Ω − σ∗τ ∗Tπ
∗
2Ω2

= σ∗(π∗
1Ω1 + π∗

2Ω2) − σ∗π∗
2χ

∗
AΩ2

= Ω1. (9.3.21)

Thus, because χ∗
BΩ2 = Ω2, we conclude that η = (κ, χB) preserves Ω.

In terms of Dirac brackets, writing ψ(T+) = η(ψ, iψ†), we have proved

{
ψα(T

+), ψβ(T
+)
}
D

= 0, (9.3.22)

and
{
ψα(T

+), ψβ(T
+)
}
D

= −iδαβ . (9.3.23)

Note that the evolution between t = 0− and t = 0+ (and similarly between t = T−

and t = T+) is not symplectic in general.
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9.4 The Quantum Initial Value Problem In the Absence of CTC’s

In order to prepare for our discussion of chronology violating models, it is useful to show

how a study of the QIVP reproduces the results of canonical quantization for Eq. (9.2.2)

in the absence of CTC’s. We first discuss the case of Fermi statistics to avoid the

operator domain technicalities of the bosonic case.

The canonical approach starts by identifying the classical canonical coordinates ψα

and iψ†
α and the classical Hamiltonian h(ψα, iψ

†
α) defined in Eq. (9.2.6). A Hilbert

space F is then constructed on which bounded operators Ψ1, . . . ,Ψs represent the CAR’s

for s degrees of freedom – that is, {Ψα,Ψβ} = 0 and {Ψα,Ψ
†
β} = δαβ for all α, β.

The quantized (normal ordered) Hamiltonian H is defined as a (bounded) self-adjoint

operator on F by substituting Ψα for ψα in the RHS of Eq. (9.2.6) using its literal

ordering. The quantum evolution generated by H evolves a general operator A from

time 0 to t by

A(t) = eiHtAe−iHt, (9.4.1)

and the evolved operator therefore satisfies the Heisenberg equation of motion

Ȧ(t) = i[H,A(t)]. (9.4.2)

Thus, by virtue of the CAR’s, Ψα(t) = eiHtΨαe
−iHt solves the original equation of mo-

tion (9.2.2) as an operator differential equation with initial data Ψα(0) = Ψα. Moreover,

the CAR’s are necessarily preserved by this evolution.

It is possible to reproduce these results from a slightly different angle, namely by

treating Eq. (9.2.2) as an operator differential equation and considering the Quantum

Initial Value Problem (QIVP). Given initial data Ψα representing the CAR’s, we say

that the QIVP is well posed if there exists a unique operator-valued solution Ψα(t) to

Eq. (9.2.2) with Ψα(0) = Ψα and the evolution preserves the CAR’s. To show that this

is indeed the case, we note that for arbitrary initial data given as bounded operators on

F, Eq. (9.2.2) has the unique solution

Ψα(t) = e−iλtΨ
†
γΨγ
(
e−iWt

)
αβ

Ψβ. (9.4.3)
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The proof of uniqueness closely parallels the analogous argument for the classical dif-

ferential equation. One may check that this evolution preserves the CAR’s either by

explicit computation or by noting that the above solution must agree (by uniqueness)

with that obtained from the canonical approach. Thus the QIVP for Eq. (9.2.2) is well

posed in the fermionic case.

Of course, it is not usually advantageous to consider the QIVP directly because it is

rare that the equation of motion may be solved in closed form for general operator-valued

initial data. However, for the chronology violating models considered here, it will not

always be possible to assume that the initial data is a representation of the canonical

(anti)commutation relations and therefore the canonical method is no longer guaranteed

to yield solutions to the equation of motion Eq. (9.2.2). In these situations, we must

therefore employ the more general setting of the QIVP.

In the bosonic case, of necessity we encounter unbounded operators and therefore

must proceed more carefully. We now describe the technicalities required in order to

generalize the foregoing to this case.1

Definition Let D be dense in Hilbert space F, and let Ψ1(t), . . . ,Ψs(t) be closed operator-

valued functions on R such that D is a core for each Ψα(t) and is invariant under the

Ψα(t) and Ψ†
α(t). Then the Ψα(t) are said to be a solution to Eq. (9.2.2) on D if each

Ψα(t) is strongly differentiable with respect to t on D with derivative

−iWαβΨβ(t) − iλΨ†
γ(t)Ψγ(t)Ψα(t). (9.4.4)

Note that this definition extends that used above for the bounded case.

DefinitionThe closed operators Ψ1, . . . ,Ψs are said to represent the CCR’s on F if they

1 An algebraic subspace D of F contained in D(A) is a core for a closed operator A if A is the

closure of its restriction to D. A densely defined operator A is essentially self-adjoint if its closure is

self-adjoint, and an operator-valued function A(t) is strongly differentiable with respect to t on D with

derivative B(t) if D is contained in D(B(t)) and D(A(τ)) for all τ in some neighbourhood of t and

‖(ǫ−1(A(t + ǫ) − A(t)) − B(t))f‖ → 0 as ǫ → 0 for all f ∈ D.
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have a common dense domain X invariant under both the Ψα and the Ψ†
α with

[Ψα,Ψβ]f = [Ψ†
α,Ψ

†
β]f = 0 (9.4.5)

and

[Ψα,Ψ
†
β]f = δαβf (9.4.6)

for all f ∈ X and such that Ψ†
αΨα (summing over the repeated index) is decomposable

on X . That is, there exists a projection-valued measure2 PΩ on R such that X contains

D0 =
⋃
µ≥0 P[−µ,µ]F and Ψ†

αΨαf =
∫

R
µ dPµf for all f ∈ X .

The reason for the technical requirement of decomposability is that it guarantees [83]

that all such representations of the CCR’s are equivalent up to unitary equivalence and

multiplicity (i.e., the conclusion of von Neumann’s theorem holds).

The canonical quantization of Eq. (9.2.2) proceeds as follows. Suppose that operators

Ψα represent the CCR’s on Hilbert space F with dense invariant domain X , and let

D0 ⊂ X be defined as above. The quantum Hamiltonian may be defined on D0 by

substituting the operators Ψα into the RHS of Eq. (9.2.6) to yield an essentially self-

adjoint operator whose closure is denoted by H . Moreover, D0 is easily seen to be

invariant under eiHt for t ∈ R. Thus, the evolved operators Ψα(t) defined by

Ψα(t) = eiHtΨαe
−iHt (9.4.7)

are strongly differentiable with respect to t on D0 with derivative ieiHt[H,Ψα]e
−iHt and

the CCR’s may then be used (on D0) to conclude that the Ψα(t) solve Eq. (9.2.2) on D0

in the sense defined above.

As in the fermionic case, we may reproduce these results by studying the QIVP. The

situation for general initial data is summarized by the following:

Proposition Let F be a Hilbert space and D ⊆ F be dense. Suppose further that Ψα,

(α = 1, . . . , s) are closed (possibly unbounded) operators on F such that

2 For a treatment of projection-valued measures and unbounded operators see [57]
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(i) D is a core for each Ψα and a domain of essential self-adjointness for Ψ†
γΨγ

(ii) D is invariant under Ψα, Ψ†
α and e−iλtΨ

†
γΨγ for all t ∈ R.

Then the operators Ψα(t) defined as the closure of e−iλtΨ
†
γΨγ
(
e−iWt

)
αβ

Ψβ on D constitute

the unique solution to Eq. (9.2.2) on D with initial data Ψα.

An immediate corollary of this is that if the Ψα represent the CCR’s on F and the

domain D0 is defined as above, then the QIVP for Eq. (9.2.2) is well posed on D0.

9.5 The Quantum Initial Value Problem for Chronology Violating

Models

9.5.1 General Formalism

We now analyse the quantum initial value problem for Eq. (9.2.2) in the presence

of CTC’s, beginning with the case of the CAR’s. Suppose that the operators Ψα

(α = 1, . . . , s) provide a representation of the CAR’s on Hilbert space F. We spec-

ify these operators as the initial data for the QIVP at time t = 0−. Writing Ψ1 and

Ψ2 to denote those operators associated with S1 and S2 respectively, we therefore seek

operators Ψ2(0
+) such that the evolution between t = 0+ and T− obeys the consistency

requirement Ψ2(T
−) = AΨ2(0

+). Denoting Ψ1 = a, Ψ2(0
+) = b we therefore require b

to satisfy

Ab = e−iλT (a†a+b†b) (Ra+ Sb) . (9.5.1)

Remarkably, and in contrast to the situation for the classical theory, it turns out that

this specifies b uniquely in the generic case as we now show.

We first construct a solution to Eq. (9.5.1) and then prove its uniqueness. For z ∈ C,

let N(z) be the matrix-valued function of z defined by N(z) = (zA − S)−1R, which is

analytic in an open neighbourhood of the unit circle in the generic case. Then for any

unitary operator V on Hilbert space K, we may use the (Dunford) functional calculus

(see e.g., pp. 556-577 of [84]) to define N(V ) as a matrix of bounded operators on K.
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Using this notation, Eq. (9.5.1) may be rewritten in the form

b = N(eiλT (a†a+b†b))a. (9.5.2)

Next, let Fr be the eigenspace of a†a with eigenvalue r and decompose F =
⊕

r Fr. We

emphasize that a†a is not the total particle number on S at t = 0−, but rather the

particle number on S1. Thus, for example, F0 is not 1-dimensional, but consists of all

states at t = 0− with no S1-particles. We now define unitary operators Ur on the Fr by

the recurrence relation

Ur+1 = exp iλTa†
(
11 +N(Ur)

†N(Ur)
)
a, (9.5.3)

with U0 = 11. Denoting U =
⊕

r Ur, it is easy to see that Eq. (9.5.1) is solved by

b = N(U)a, (9.5.4)

by comparing with Eq. (9.5.2) and using the fact that each component of a maps Fr+1

to Fr and annihilates F0.

We now prove that (9.5.4) is the unique solution to Eq. (9.5.1). Suppose that

b = (b1, . . . , bs2)
T solve Eq. (9.5.1), and write U = eiλT (a†a+b†b). Because N(U) is a

matrix of bounded operators, Eq. (9.5.2) implies that b annihilate F0. Accordingly, U

leaves F0 invariant and U |F0 = 11. Now suppose inductively that U leaves Fr invariant

for some r ≥ 0. Provided that r is not the largest eigenvalue of a†a, Eq. (9.5.2) and its

adjoint imply that b maps Fr+1 to Fr and b† maps Fr to Fr+1. Accordingly a†a+ b†b and

thus U leave Fr+1 invariant. Hence by induction, we find that each Fr is an invariant

subspace for U , so we may write U =
⊕

r Ur with each Ur unitary on Fr. It is then easy

to see that the Ur must satisfy the recurrence relation (9.5.3) with U0 = U |F0 = 11. We

have therefore completed the proof of uniqueness.

Finally, we note that this solution is representation independent in the following

sense. Suppose that Ψα form a Fock representation of the CAR’s, and let b be the unique

solution to Eq. (9.5.1) on F. By the Jordan–Wigner theorem (see e.g., [85]), an arbitrary
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representation Ψ′
α on F′ takes the form Ψ′

α = U−1(Ψα ⊗ 11)U , where U : F′ → F ⊗ N is

unitary and N is an auxiliary Hilbert space. Then the unique solution to the analogue

of Eq. (9.5.1) on F′ is b′i = U−1(bi ⊗ 11)U .

In the CCR case, certain domain questions must be addressed. We suppose that the

Ψα are a representation of the CCR’s on F with common invariant domain X and define

D0 ⊂ X as in Sect. 9.4. An important property of this domain is that Fr ⊂ D0 for all r,

where Fr is again defined as the eigenspace of a†a with eigenvalue r. Then it is easy to

see that the same construction as used in the CAR case yields a solution to Eq. (9.5.1)

on D0; moreover, one may show that it is the unique solution such that D0 is a core for

each bi, and is independent of representation in the same sense as in the CAR case.

Once the unique solution to Eq. (9.5.1) has been obtained (for either CAR’s or

CCR’s) we may substitute back to find

a(T ) = e−iλT (a†a+b†b) (Pa+Qb) , (9.5.5)

and check to see whether or not this evolution preserves the CCR/CAR’s and is therefore

unitary. We will analyse various cases of this problem in the following subsections.

9.5.2 Free Fields

Here λ = 0 and Eq. (9.5.2) immediately yields the unique solution

b = (A− S)−1Ra. (9.5.6)

Substituting, we find that the evolution is given by

Ψ1(T ) = MΨ1(0)

Ψ2(T
+) = BΨ2(0

−), (9.5.7)
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where M = P +Q(A−S)−1R is unitary. Note that one obtains the same result for both

Bose and Fermi statistics. This evolution is easily seen to preserve the CCR/CAR’s;

there is therefore a unitary X on F such that

Ψα(T
+) = X†Ψα(0

−)X. (9.5.8)

An interesting feature of the above is that the operators bi are linearly dependent on

the ai. Thus the components of Ψ(0+) do not form a representation of the CCR/CAR’s

for s1 + s2 degrees of freedom. In effect the system is reduced to only s1 degrees of free-

dom, reflecting the fact that the CTC’s place s2 constraints on the system. Accordingly,

the evolution between t = 0− and t = 0+ is nonunitary, although unitarity is restored

at t = T+. In addition, we see that it is not legitimate to employ canonical methods to

evolve the quantum field in the nonchronal region (if one intends to solve the equation

of motion Eq. (9.2.2)) because the data at t = 0+ does not obey the CCR/CAR’s.

As a final check on our result in this case, and on the loss of degrees of freedom,

let us quantize by the familiar method of obtaining classical mode solutions. Let ei(t)

(respectively, fj(t)) be the classical solution to the free equation of motion with initial

data ei(0
−) = ei (fj(0

−) = fj) where the basis vectors ei and fj were defined in Sect. 9.2.

We write the quantum field Ψ(t) as

Ψ(t) = aiei(t) + bjfj(t), (9.5.9)

where the ai and bj form a representation of the CCR/CAR’s on Hilbert space F. The

components Ψα of the field are obtained by taking the inner product with vα. The time

evolution of the ai and bi is defined by re-expressing the field as

Ψ(t) = ai(t)ei + bj(t)fj, (9.5.10)

which leads quickly to the above unitary evolution from 0− to T+ using the results of

Sect. 9.3. In the nonchronal region, however, fj(t) vanishes and so Ψ(t) = aiei(t) and

the reduction to s1 degrees of freedom is explicit.



9. The Quantum Initial Value Problem for CTC Models 194

9.5.3 Interacting Fields

Here, we consider three simple examples. Model 1 is a system with two spatial points

and yields a unitary theory for both Fermi and Bose statistics. Model 2 is a system with

three spatial points. We study this theory for Fermi statistics and show that the resulting

theory is not unitary . For simplicity we work in the appropriate Fock representations

and take A and B to be the identity.

Model 1 Our set of spatial points is S = {z1, z2}, and Si = {zi} for i = 1, 2. Thus W

is a 2 × 2 matrix and P,Q,R, S are scalars.

Fermi statistics The Hilbert space F for two fermionic degrees of freedom is isomorphic

to C2 ⊗ C2. The unique solution to Eq. (9.5.1) is

b = (1 − S)−1Ra, (9.5.11)

as is easily verified using the fact that eiκa
†aa = a. Substituting back, we obtain

a(T ) =
(
P +Q(1 − S)−1R

)
a, (9.5.12)

which is identical to the unitary free evolution obtained in the previous subsection. This

contrasts with the generically nonunitary evolution obtained by Politzer [52] for this

model using the self-consistent path integral – see Sect. 9.9.

Bose Statistics Here, F = ℓ2 ⊗ ℓ2 (where ℓ2 is the Hilbert space of square summable

sequences) and the unique solution to Eq. (9.5.1) takes the form

b = f(a†a)a, (9.5.13)

where f : N → C is defined by f(n) = 〈n |b |n+ 1〉, thus

f(n+ 1) = (eiλT (n+1)(1+|f(n)|2) − S)−1R, (9.5.14)

with f(0) = (1 − S)−1R.
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Thus the evolution of a is given by

a(T ) = e−iλTa
†(1+|f(a†a)|2)a

(
P +Qf(a†a)

)
a

= e−ig(a
†a)
(
P +Q(eig(a

†a) − S)−1R
)
a, (9.5.15)

where g is a real-valued function on N defined by g(0) = 0 and g(n) = λTn(1+|f(n−1)|2)
for n ≥ 1. This may be rewritten as

a(T ) = X†aX, (9.5.16)

with X = e−ih(a†a) and h(n) defined by h(0) = 0 and

e−ih(n+1) = e−ih(n)e−ig(n)
[
P +Q

(
eig(n) − S

)−1
R
]
. (9.5.17)

The left hand side is always of unit modulus, so h(n) is real-valued and the operator X

is unitary. Thus the evolution from t = 0− to t = T+ is again unitary. We note that

this theory agrees with the corresponding free theory on F1 (though the theories differ

on Fr for r ≥ 2).

Model 2 In this example, our set of spatial points S = {z1, z2, z3}, is partitioned into

S1 = {z1, z2} and S2 = {z3}. The matrix W is now a 3× 3 self-adjoint, positive matrix,

and the block decomposition of e−iWT yields a 2 × 2 matrix P , a 2-dimensional column

vector Q = (Q1, Q2)
T , a 2-dimensional row vector R = (R1, R2) and a scalar S.

Fermi statistics The Fock space is F = C2 ⊗ C2 ⊗ C2. Given operators a1 and a2 at

t = 0, we seek an operator b such that

b = e−iλT (a†a+b†b) (Ra + Sb) . (9.5.18)

Using the results above, the unique solution to this equation is

b = (eiλTa
†a − S)−1Ra, (9.5.19)
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as may easily be checked by decomposing F = F0 ⊕ F1 ⊕ F2 with Fr the eigenspace of

a†a with eigenvalue r.

Substituting, we find that


 a1(T )

a2(T )


 = e−iλT (a†a+b†b)

[
P +Q(eiλTa

†a − S)−1R
]

 a1

a2


 . (9.5.20)

In Appendix 9.C, we show that

〈0 |(ai(T )aj(T ) + ai(T )aj(T ))a†2a
†
1 |0〉 =

−e−iλTF detP

(
2Q1Q2 |Q2|2 − |Q1|2

|Q2|2 − |Q1|2 −2Q2Q1

)

ij

, (9.5.21)

where

F =
1

S

[
1

eiλT − S
− e−iλα(S)T

1 − S

]
+
e−iλα(S)T − 1

1 − |S|2 , (9.5.22)

and α(S) is defined by

α(S) =
‖R‖2

|1 − S|2 =
1 − |S|2
|1 − S|2 . (9.5.23)

Thus, except in the free case or for very carefully tuned parameters the CAR’s are

necessarily violated and the evolution is therefore nonunitary. Note that the coefficient

of F in Eq. (9.5.21) vanishes for all T if and only if W is block diagonal with respect

to the decomposition H = H1 ⊕ H2 (in which case |S| = 1 and we are no longer in the

generic case).

We point out that a(T ) = Ma on the space F1 and a(T ) = Na on the space F2 where

the unitary matrix M = P + Q(1 − S)−1R and N is also a 2 × 2 unitary matrix given

by N = (P +Q(eiλT − S)−1R)U , where U is another 2 × 2 unitary defined by

Ua|F2 = e−iλT (a†a+b†b)a|F2 , (9.5.24)

(which makes sense because the exponential preserves F1). The precise form of N will

not concern us; however, we note that M 6= eiθN for any θ, because a1(T ) and a2(T )
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fail to anticommute.

Bose statistics The Fock space is ℓ2 ⊗ ℓ2 ⊗ ℓ2 and the unique solution to Eq. (9.5.1) is

b = f(d†d, c†c)c, (9.5.25)

where we make the (special) unitary transformation:

(
c

d

)
=

1

‖R‖

(
R1 R2

−R2 R1

)(
a1

a2

)
(9.5.26)

and f(m,n) satisfies

f(m,n+ 1) =
(
eiλT [m+(n+1)(1+|f(m,n)|2)] − S

)−1

‖R‖, (9.5.27)

with f(m, 0) = (eiλTm − S)−1‖R‖. Substituting back to determine ai(T ), we show in

Appendix 9.C that

〈0 |(ai(T )aj(T ) − aj(T )ai(T ))d†c† |0〉 = −Fe−iλT‖R‖2 detP

(
0 −1

1 0

)

ij

, (9.5.28)

with F given by Eq. (9.5.22). This should be compared with Eq. (9.5.21). Thus the

evolution fails to be unitary on F2.

9.6 Discussion of the Nonunitary Evolution

In the previous section, we showed that Model 2 was subject to a nonunitary evolution for

both Bose and Fermi statistics. In this section, we discuss this evolution in more depth in

the fermionic case. Recall that the Fock space F is 8-dimensional, and that the operators

Ψα(0
−) (α = 1, 2, 3) represent the CAR’s for three degrees of freedom on F. Writing

Ψ1,i for the operators associated with points in S1, and Ψ2 for the operator associated

with the single element of S2, we write Ψ1,i(0
−) = ai for i = 1, 2. The Heisenberg

evolution Ψα(0
−) 7→ Ψα(T

+) is such that Ψ1,i(T
+) = ai(T ) and Ψ2(T

+) = Ψ2(T
−). Our
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principal results in this section are, firstly, that the Heisenberg picture evolution cannot

be expressed in either of the forms

Ψα(T
+) = X−1Ψα(0

−)X, (9.6.1)

or

Ψα(T
+) = X†Ψα(0

−)X, (9.6.2)

for some operatorX on F; secondly, that the Heisenberg picture evolution does not admit

an equivalent Schrödinger picture description in terms of a superscattering operator. In

addition, we will discuss the problem of extending the evolution from that of the Ψα(0
−)

to arbitrary operators on F.

Firstly, then, we show that the Heisenberg picture evolution cannot be expressed

in either of the forms Eq. (9.6.1) or (9.6.2). The form Eq. (9.6.1) is clearly impossible

because it would entail {a1(T ), a2(T )} = 0, and we may dispose of Eq. (9.6.2) as follows.

The explicit form of the ai(T ) given above shows that any such operator X would

necessarily preserve the subspaces F0,F1 and F2 of F; moreover, because

a(T )|F1 = Ma|F1 , (9.6.3)

where M is unitary, we conclude that X|F1 is unitary up to scale. Then it suffices to

note that

{a1(T ), a2(T )}|11〉 = X†(a1XX
†a2

+a2XX
†a1)X |11〉 (9.6.4)

which vanishes because X preserves F2 and X|F1 is unitary up to scale. Accordingly, we

cannot cast the evolution into either of the special forms Eq. (9.6.1) or (9.6.2).

Secondly, we show that the Heisenberg picture evolution cannot be described by a

superscattering operator. Recall that a superscattering operator on the state space of a
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(separable) Hilbert space F is a linear mapping $ of the trace class operators T (F) on

F such that if ρ ∈ T (F) is a positive operator (For our purposes, a ‘positive operator’

means one which is non-negative definite) of unit trace, then $ρ is also a positive element

of T (F) with unit trace. Thus, $ is a linear mapping of density matrices to density

matrices, which need not preserve purity. If a superscattering operator $ describes the

Schrödinger picture evolution of a system, then the Heisenberg picture evolution is given

by the linear mapping $′ of the bounded operators L(F) on F, defined by

Tr ρ($′Z) = Tr ($ρ)Z, (9.6.5)

for all ρ ∈ T (F) and Z ∈ L(F). In fact, $′ is the dual mapping to $ under the natural

identification of L(F) with the dual space of T (F).

The dual mapping $′ possesses three easily established properties: (i) $′11 = 11; (ii)

($′Z)† = $′(Z†) for all Z; and (iii) $′ is positive in the sense that $′Z is a positive

operator whenever Z is. If one writes the superscattering operator using the index

notation (e.g., [78])

($ρ)AB = $ABC
DρCD, (9.6.6)

then $′ may be written as

($′Z)DC = $ABC
DZB

A. (9.6.7)

Returning to our case of interest, we now show that there is no superscattering

operator $ for which the Heisenberg evolution can be written as

Ψα(T
+) = $′Ψα(0

−). (9.6.8)

Define Z = α11 + a†w + wa† for some w ∈ C
2. We will write the reduced (four

dimensional) Fock space F′ = F′
0 ⊗ F′

1 ⊗ F′
2 for the space built up using the a† operators

(i.e., Fr
∼= F′

r ⊗ C2). We remark that b evolves trivially on account of the boundary

condition B = 11. In what follows it is useful to define the two component row vector
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|1〉 = a† |0〉 and the anti-hermitian matrix

J =

(
0 −1

1 0

)
. (9.6.9)

Notice that we have that

a 7→ a(T ) =





0 on F′
0

Ma on F′
1

Na on F′
2.

(9.6.10)

Thus,

$′Z |0〉 = α |0〉+ |1〉u (9.6.11)

$′Z |1〉 = u† |0〉 + α |1〉 + (Jv)T |11〉 (9.6.12)

$′Z |11〉 = |1〉Jv + α |11〉. (9.6.13)

Where u = M †w and v = N †w. We investigate the condition for the evolution to

be positive definite. To do this we examine the eigenvalues of the matrix of $′Z with

respect to the basis {|0〉, |1〉, |11〉}:




α u1 u2 0

u1 α 0 −v2

u2 0 α v1

0 −v2 v1 α



. (9.6.14)

The eigenvalues µ obey the equation,

(µ− α)4 − (µ− α)2(u†u+ v†v) + |u†v|2 = 0. (9.6.15)

Using the unitarity of M and N we find that

µ = α±
√
‖w‖2 ± ∆, (9.6.16)
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where ∆2 = ‖w‖4 − |w†MN−1w|2. The two ± signs are independent. We notice that

Z is positive definite (corresponding to substituting M = N = 11) when α > ‖w‖. The

evolved operator is positive definite whenever α >
√
‖w‖2 + ∆.

Clearly then, as we have shown that M and N are not proportional we can find

w ∈ C2 such that |w†MN−1w| < ‖w‖2, and hence have ∆ > 0. Choosing α so that

‖w‖ < α <
√

‖w‖2 + ∆ (9.6.17)

gives a positive definite operator Z whose image under the dual of the superscattering

operator, $′, fails to be. Accordingly $′ violates property (iii) above and therefore cannot

be the dual of a superscattering operator.

Next, we consider the Heisenberg evolution itself in more detail. It is worth point-

ing out that we have not by any means obtained the full Heisenberg picture evolu-

tion; at present we know the evolution of only a 3-dimensional subspace (spanned by

the Ψα(0
−)) of the 64-dimensional space L(F) of linear operators on the 8-dimensional

Hilbert space F. Owing to our results above, various natural strategies for extending this

evolution to the whole of L(F) are denied to us: the evolution cannot be extended as a

∗-homomorphism (i.e., mapping any polynomial in the Ψα(0
−) to the corresponding poly-

nomial in the Ψα(T
+)) because the CAR’s are violated; we cannot write Z 7→ X−1ZX

or Z 7→ X†ZX because of our observations above, nor can we write Z 7→ $′Z for some

superscattering operator $.

It therefore seems that there is no natural extension of our evolution to L(F). As

a concrete illustration of this type of behaviour, let us consider an example with one

fermionic degree of freedom. Define the operator a on C2 by

a =


 0 1

0 0


 , (9.6.18)

and suppose an evolution is given such that 11 7→ 11, a 7→ µa and a† 7→ µa†, where

0 ≤ µ < 1. It turns out that there are at least two choices for the evolution of a†a

consistent with a superscattering operator description. The first is that a†a 7→ a†a,
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corresponding to a superscattering operator $ with action

$


 α β

β 1 − α


 =


 α µβ

µβ 1 − α


 , (9.6.19)

on the state space of C2, whilst the second is a†a 7→ aa† and corresponds to the super-

scattering operator £ with action

£


 α β

β 1 − α


 =


 1 − α µβ

µβ α


 . (9.6.20)

To conclude this section, we note that the failure of positivity which showed the

nonexistence of a superscattering operator can be traded for a loss of the trace preserving

property: by allowing 11 7→ κ11 for κ ≥
√

2, any positive Z of the form discussed above

is mapped to a positive operator. One might therefore attempt to extend this in some

way to a positive evolution on the whole of L(F) (which can be done if the evolution

on 11, ai(0), ai(0)† is completely positive – see Theorem 1.2.3 in Arveson [86]) thereby

obtaining (by duality) a Schrödinger picture evolution possessing all the properties of a

superscattering matrix except the preservation of trace. Rather than allowing individual

probabilities to be negative with total probability equal to unity, we would now have

positive probabilities with a total in excess of unity. It would be tempting to rescale

this total to remove this problem, but that would amount to rescaling ai(T ), for which

there is no obvious justification.

9.7 The Classical Limit

With the normal ordering used above, we have shown that the quantum theory is

uniquely determined in the generic case for all values of the coupling constant λ. On the

other hand, we have also seen that the classical theory fails to be unique in the strong

coupling regime. It is therefore interesting to determine the extent to which the classical

theory may be regarded as a limit of the quantum theory.
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We consider Model 1 with Bose statistics. Reintroducing the units of action by

replacing a and b by
√

~ a and
√

~ b respectively, the consistency requirement Eq. (9.5.1)

becomes

b = e−i~λT (a†a+b†b) (Ra+ Sb) , (9.7.1)

in which a and a† obey the CCR’s [a, a†] = 1. The unique solution to this is given by

b = f(~λT ; a†a)a, where

f(ν;n+ 1) = (eiν(n+1)(1+|f(ν;n)|2) − S)−1R, (9.7.2)

with f(ν; 0) = (1 − S)−1R for all ν.

The classical limit is found by taking the expectation of the relevant quantum me-

chanical operator in an appropriately defined coherent state, then letting ~ → 0, [87].

We shall form the coherent state associated with the classical quantity ψcl by writing

|ψcl〉 = e−|ψcl|2/2~

∞∑

n=0

1√
n!

(
ψcl√

~

)n
|n〉 = e−|x|2/2

∞∑

n=0

xn√
n!

|n〉, (9.7.3)

where

|n〉 =

(
a†
)n

√
n!

|0〉 and x =
ψcl√

~
. (9.7.4)

Let us write χ = |x|. The classical limit of a function G = g
(
a†a
)
a is then easily found

to be

〈ψcl |G |ψcl〉 = xe−χ
2

∞∑

n=0

χ2n

n!
g(n). (9.7.5)

Notice that if we set γ = χ2 then we may interpret this as the expectation of a function

in the Poisson distribution with parameter γ. Observe that from Eq. (9.7.5) we have

that

〈ψcl |Ψ1(0) |ψcl〉 =
√

~〈ψcl |a |ψcl〉 = ψcl for all ~. (9.7.6)

In order to understand the evolution of Ψ(t) between t = 0 and T we will need to use

the iterative scheme Eq. (9.7.2). We recast this into a map on the circle, by setting

f(ν;n) = (ζn − S)−1R, (9.7.7)
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so that we have

ζn = exp

{
iµ

(
n

χ2

)(
1 +

|R|2
|ζn−1 − S|2

)}
, µ = λT |ψcl|2. (9.7.8)

Now let us investigate the limiting procedure ~ → 0, or equivalently, χ → ∞. As

we noted previously the expectation of some function can be interpreted in terms of a

Poisson distribution with mean and variance χ2. In the limit as χ→ ∞ the distribution

becomes Normal. To show this we write n = χ2 + yχ. Then we have

Prob(N ∈ [n, n+ 1)) =
e−χ

2
χ2n

n!
. (9.7.9)

Using Stirling’s approximation and ∆y = 1/χ, we find

log Prob(N ∈ [n, n+ 1)) = −y2/2 − log
√

2π + log ∆y +O
(
χ−1
)
, (9.7.10)

so that

Prob(N ∈ [A,B]) =

∫ yB

yA

e−y
2/2 dy√
2π

+O

(
1

χ

)
, (9.7.11)

with yA = (A− χ2)/χ etc. The integrand on LHS of Eq. (9.7.11) is a standard N(0, 1)

probability distribution. The important point to notice is that for any expectation value

of a bounded function, the dominant contribution to the final value comes from a band

around y = 0 of a width proportional to some multiple of the standard deviation. In

terms of the original Poisson distribution then, the dominant contribution arises from

those terms centred on n = χ2 and of a width proportional to χ.

The limit as a Normal distribution provides a useful picture of what is happening.

However it seems preferable when considering the expectation value of functions that

do not have a well defined continuum limit to work with the Poisson distribution itself.

In appendix 9.D we provide some elementary bounds on the probabilities associated

with the regions away from the central band about n = χ2. If we wish to evaluate the

expectation value of a function which is uniformly bounded g(n, x) < C then given ǫ > 0
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there exists α > 0 such that (for all sufficiently large χ) we have that

∣∣∣∣∣∣

∞∑

0

e−χ
2
χ2n

n!
g(n, x) −

χ2+αχ∑

χ2−αχ

e−χ
2
χ2n

n!
g(n, x)

∣∣∣∣∣∣
< ǫ. (9.7.12)

In order to evaluate 〈ψcl |Ψ2(0
+) |ψcl〉 and the other analogues of the quantum system

we return to the iterative scheme given by Eq. (9.7.8). In terms of the variable y it reads;

ζn = exp

{
iµ

(
1 +

y

χ

)(
1 +

|R|2
|ζn−1 − S|2

)}
, (9.7.13)

where we are only going to be interested in −α < y < α, and large values of χ (this

means we are interested in a large number of iterates, specifically 2αχ of them). Clearly

for large χ the iterative scheme may be regarded as a perturbation on the χ-independent

iterative relation

zn+1 = exp

{
iµ

(
1 +

|R|2
|zn − S|2

)}
. (9.7.14)

It seems therefore that the behaviour of Eq. (9.7.14) is crucial. We begin the iteration

by setting

zχ2−αχ = ζχ2−αχ . (9.7.15)

In Appendix 9.E we prove the following theorem:

Theorem. Suppose we have an sequence of complex values defined by wn = fx (wn−1;n)

where

fx(z;n) = exp

{
iµ

(
1 − α

χ
+

n

χ2

)(
1 +

R2

|z − S|2
)}

(9.7.16)

and a further iterative sequence zn = f (zn−1) with

f(z) = exp

{
iµ

(
1 +

R2

|z − S|2
)}

. (9.7.17)

Furthermore, let us suppose w0 = z0. If zn tends to a stable limit cycle {Z0, . . . , ZN−1}
as n→ ∞, then given ǫ > 0, there exists X such that for all χ > X,

|zn − wn| < ǫ for all n < 2αχ. (9.7.18)
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−π π 3π 5π 7π

θ

9π

Fig. 9.4: Graphical representation of the iteration scheme. Notice that

there cannot be any exceptional orbits.

Provided that the iteration scheme defined by the zn has a limit cycle then the

expectation of the ζn sequence is governed by that of the zn. There is one final subtlety:

by defining wn = ζn+χ2−αχ, we make the initial condition z0 = w0 depend on χ. We may

now make use of the fact that g(θ) has negative Schwarzian derivative, i.e.,

DS g(θ) =
g′′′(θ)

g′(θ)
− 3

2

[
g′′(θ)

g′(θ)

]2

< 0 (9.7.19)

where

eig(θ) = f(eiθ). (9.7.20)

A result due to Singer (see, for example Proposition 4.2 in [88]) says that every stable

(i.e., attractor) limit cycle which is non-exceptional arises from considering the orbits of
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the critical points. We shall regard θ as running from −π to (2k+ 1)π, for some integer

k chosen so that g([−π, (2k + 1)π]) ⊆ [−π, (2k + 1)π], see Fig. 9.4. As all maxima, and

all minima are mapped to the same value after a single iteration it is clear that there

are at most two such cycles.

Let us now consider the exceptional orbits. The exceptional orbits (if they exist) for

an iteration g defined on [−π, (2k + 1)π] are defined to be either

• A fixed point α of g, where g is increasing on [α, (2k + 1)π] and g(θ) < θ for all

θ ∈ (α, (2k + 1)π)

• A fixed point α of g, where g is decreasing on [−π, α] and g(θ) > θ for all

θ ∈ (−π, α)

• A cycle {β, g(β)}, where β < g(β) with g decreasing on [−π, β] and [g(β), (2k+1)π],

and g2(θ) > θ for all θ ∈ (−π, β).

In particular, the first pair and the last one are mutually exclusive.

As g is not monotonic between −π and the first fixed point and is decreasing as we

approach θ = (2k + 1)π, we conclude that none of the cases can arise. There can thus

be at most two stable periodic orbits; frequently there will be only be one, in which case

the set of points outside its basin of attraction has Lesbegue measure zero, see [88].

Let us now suppose that there is a single attractive orbit. It’s basin of attraction is

dense, so given any starting point for the iteration w0 = ζχ2−αχ we can find a value of z0

arbitrarily close for which its iterates converge to the limit cycle. This will prove to be

sufficient to show that the classical limit exists. Put another way if it should turn out

that for any particular value of χ the initial condition z0 = w0(χ) leads to an unstable

orbit (e.g., we might by very carefully tuning of the parameters hit an unstable fixed

point), then we may increase χ slightly. As w0(χ) is continuous in χ and is nowhere

constant, it follows that this results in a small change in z0. Using the fact that the basin

of attraction of the limit cycle is dense, we can arrange matters so that the perturbed

starting condition once again leads to the stable orbit.

Next we introduce a lemma:
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Lemma. If g(nr) is a convergent subsequence of g(n) converging to g then

lim
χ→∞

∞∑

r=0

e−χ
2
χ2nr

nr!
g(nr) = lim

χ→∞
g

∞∑

r=0

e−χ
2
χ2nr

nr!
. (9.7.21)

Proof: As g(nr) converges to g we know that given ǫ > 0 there exists R such that for all

r > R we have |g(nr) − g| < ǫ/2.

We also know that the g(nr) are bounded. So we have |g(nr) − g| < G for all r.

Consider then ∣∣∣∣∣
R∑

r=0

e−χ
2
χ2nr

nr!
(g(nr) − g)

∣∣∣∣∣ < G

∣∣∣∣∣
R∑

r=0

e−χ
2
χ2nr

nr!

∣∣∣∣∣ (9.7.22)

but the RHS is a finite sum of terms that tend to zero as χ→ ∞ so there exists χ0 such

that for all χ > χ0 the RHS of Eq. (9.7.22) is less than ǫ/2. Note too that

∣∣∣∣∣
∞∑

r=R+1

e−χ
2
χ2nr

nr!
(g(nr) − g)

∣∣∣∣∣ <
ǫ

2

∞∑

r=R+1

e−χ
2
χ2nr

nr!
≤ ǫ

2
. (9.7.23)

Putting the two together and using the triangle inequality completes the proof. �

As a special case of this suppose g(n) is a sequence of iterates converging to a periodic

orbit of length N , let G0, . . . , GN−1 be the limit cycle, so that g(Nr + k) converges to

Gk. Then

lim
χ→∞

∞∑

r=0

e−χ
2
χ2(Nr+k)

(Nr + k)!
g(Nr + k) = lim

χ→∞
Gk

N

N−1∑

s=0

ω−sk
N eχ

2(ωs
N−1) =

Gk

N
(9.7.24)

where we have written ωN = e2πi/N . We may therefore establish that if the g(nr) form

an iteration sequence converging to a limit cycle the classical limit is given by

1

N

N−1∑

k=0

Gk, (9.7.25)

i.e., the arithmetic mean of the limit cycle.
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Let us apply our results to work out the classical limit of 〈ψcl |Ψ2(0
+) |ψcl〉. We shall

suppose the iteration scheme Eq. (9.7.14) for zn converges to a limit cycle Z0, . . . , ZN−1.

It is clear then that f(n) converges to a cycle F0, . . . , FN−1 where

Fk = (Zk − S)−1R. (9.7.26)

Thus,

〈ψcl |Ψ2(0
+) |ψcl〉 =

√
~〈ψcl |b |ψcl〉 →

1

N

N−1∑

k=0

(Zk − S)−1Rψcl. (9.7.27)

The evolution of the a-operators is perhaps more significant. We find

〈ψcl |Ψ1(T ) |ψcl〉 =
√

~〈ψcl |a(T ) |ψcl〉 →
1

N

N−1∑

k=0

Z−1
k (P +Q(Zk − S)−1R)ψcl. (9.7.28)

We may interpret Eqs. (9.7.27) and (9.7.28) as being the linear superposition of solutions

that do not themselves satisfy the CTC boundary conditions (unless N = 1). Instead the

quantum theory yields a classical limit that corresponds to the superposition of solutions

that only obey the boundary conditions after a finite number of traversals around the

CTC. We will call such a solution a winding number N trajectory . The possibility of

winding numbers greater than one is a surprising and fascinating result of our analysis.

So far we have restricted our attention to the case where there has been a periodic

limit cycle. There are values of the coupling strength where no such cycle exists. In

this case the iterative scheme does not appear to give us a well-defined classical limit,

though the system is not easily treated using analytical techniques. Numerical studies

seem to support our interpretation, but are not wholly conclusive.

In order to understand the behaviour of our system as we vary the coupling strength

it is useful to plot a bifurcation diagram. Fig. 9.5 shows the bifurcation diagram for

P = −Q = R = S = 1/
√

2. Its classical counterpart, Fig. 9.3 has been superposed

in red. We notice that for the quantum system there are bands of unique solutions

corresponding to a classical solution, as well as period doubling points where the classical
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Fig. 9.5: Bifurcation Diagram relevant for the Classical limit.

limits becomes a superposition of states together with a band where there appear to be

chaotic orbits. These we have suggested correspond to no classical limit.

To understand the diagram we make a few observations. In Fig. 9.1 and Fig. 9.2 we

plot the iterative function y = ζ(θ) from Eq. (9.3.15) and the line y = (θ + 2πk)/µ, for

k ∈ Z. The points of intersection correspond to possible classical solutions. We see that

in the quantum theory it is the iterates of µζ that are important.

We observe that ζ(θ) can have at most two attractive fixed points. The attractors can

only exist on points on the curve where the gradient is less than 1/µ. The two regions

being centred around θ = π (and −π) and around θ = 0. Taking µ from zero we see

that the blue line is initially vertical and there is an attractor at θ = 0. As µ increases

there is a unique fixed point which turns out to always be an attractor (see Fig 9.1) until

we reach the first critical value. At this point new fixed points (i.e., classical solutions)

occur however they generally do not lie in an attractor region and are repellors. In
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Fig. 9.2 we see how the quantum theory picks out a unique classical solution from seven

possibilities by selecting the one that is an attractor.

Increasing µ further (i.e., decreasing the slope of the blue line) will cause the fixed

point attractor to become a point of tangency of the line to the curve. Immediately

after there are no attractive fixed points as indicated on the bifurcation diagram. We

have a band of what appears to be chaotic orbits (though they might be periodic with

long periods). A classical limit resumes when we have a fixed attractor of an Nth

iterate giving the winding number N trajectories described previously. After some period

undoublings we find a unique attractor and a unique classical solution obeying the

classical equations.

We point out that as µ increases the range of values where an attractor can lie

becomes ever smaller. In this way we notice that the values where there is a unique

classical solution picked out by the quantum theory occur in bands that become narrower

as µ increases, i.e., as the coupling becomes stronger. Finally we note that the behaviour

we have been describing is heavily dependent on the operator ordering we have employed,

as we shall show in the next section.

9.8 Operator Ordering

So far, we have worked with a single choice of operator ordering, namely the literal

ordering of Eq. (9.2.2) which corresponds to normal ordering of the quantized Hamil-

tonian. In this section, we briefly discuss the effect of allowing alternative orderings in

which Eq. (9.2.2) is ordered as

ψ̇ = −iWψ − iαλ(ψ†ψ)ψ − i(1 − α)λψ(ψ†ψ), (9.8.1)

for α ∈ [0, 1]. The foregoing treatment is the case α = 1.

Consider Model 1 for Bose statistics. The analogue of Eq. (9.5.1) is

b = e−iαλT (a†a+b†b)(Ra+ Sb)e−i(1−α)λT (a†a+b†b), (9.8.2)
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(we have set A = 11 for simplicity). Making the ansatz b = f(a†a)a, we find that f

satisfies

f(0) = (R + Sf(0)) e−iλT (1−α)(1+|f(0)|2), (9.8.3)

and

f(n+ 1) = e−iλT (n+1)α(1+|f(n)|2) (R + Sf(n+ 1)) e−iλT (n+2)(1−α)(1+|f(n+1)|2), (9.8.4)

for n ≥ 0. The case α = 1 was treated in Sect. 9.5 and uniquely determines f(n+ 1) in

terms of f(n) for each n. However, the case α = 0 is rather different and is described by

f(n) = e−iλT~(n+1)(1+|f(n)|2) (R + Sf(n)) , (9.8.5)

where we have written ~ explicitly. It is easy to recast this into the form of the classical

consistency requirement Eq. (9.3.8) and it follows that f(n) is uniquely determined for

small quantum numbers n~ ≪ (λT )−1 but not for n~ ≫ (λT )−1, i.e., classical non-

uniqueness re-emerges at high quantum numbers. There are therefore many functions

f(n) solving Eq. (9.8.5), each one of which corresponds to a different ‘branch’ of the

quantum theory. Most of these branches do not possess a classical limit. However, in

contrast to the situation for normal ordering, every classical solution will arise as the

classical limit of some branch of the quantum theory.

It would be interesting if the nonunitarity of Model 2 could be removed by a suitable

ordering prescription. In Appendix 9.C, we investigate this for orderings of form (9.8.1)

with the ansatz b = f(d†d, c†c)c with c and d given by Eq. (9.5.26). For all 0 ≤ α ≤ 1,

we find that the (anti)commutation relations are violated for generic values of the pa-

rameters.



9. The Quantum Initial Value Problem for CTC Models 213

9.9 Self-Consistent Path Integral

9.9.1 General Formalism

In this section, we compare the results obtained from the QIVP with those obtained using

the self-consistent path integral developed by Thorne and collaborators [73, 74, 89] and

employed by Politzer [52]. To establish our notation, we briefly review the quantization

of our system by path integral methods in the absence of CTC’s. Starting with the

bosonic case, it is convenient to use the holomorphic representation (see, e.g., [90]) in

which the Hilbert space F is the space of analytic functions f(c1, . . . , cs) with inner

product

〈f |g〉 =

∫
Dc†Dc e−c†cf(c†)g(c†), (9.9.1)

where we write c† to denote (c1, . . . , cs) and the measure is

Dc†Dc =
∏

j

dcjdcj
2πi

. (9.9.2)

The Hilbert space F carries a (Fock) representation of the CCR’s in which c†j acts as

multiplication by cj and cj as ∂/∂cj . Operators on F are described by their kernels:

(Af)(c†) =

∫
Dc′†Dc′ e−c′†c′A(c†; c′)f(c′

†
). (9.9.3)

In particular, if K is a s × s matrix, then the mapping f(c†) 7→ f(c†K) has kernel

exp c†Kc′.

Starting with the (normal ordered) quantized bosonic Hamiltonian H on F, one may

obtain the kernel for U = e−iHt in the form

Ut(c
†; c′) =

∫ ∏

t′

Dγ(t′)†Dγ(t′) exp

{
1

2
(γ†(t)γ(t) + γ†(0)γ(0)) + iS[γ]

}
, (9.9.4)

where the action functional S[γ] is defined in terms of the classical Hamiltonian (9.2.6)
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by

S[γ] =

∫ t

0

(
i

2
(γ(t′)†γ̇(t′) − γ̇(t′)†γ(t′)) −H(γ(t′), iγ(t′)†)

)
dt′, (9.9.5)

and the paths γ(t′) are subject to the boundary conditions γ†(t) = c† and γ(0) = c′.

In the free case, for example, one may evaluate the path integral explicitly to give

Ut(c
†; c′) = exp c†e−iWtc′. (9.9.6)

One may develop the path integral treatment for Fermi statistics in a parallel fash-

ion [90] by replacing the integration variables by Grassmann numbers and DcDc† by

Berezin measure. Again, the resulting kernel has the action of e−iHt on F, where H is

now the fermionic normal ordered quantized Hamiltonian.

A natural generalization of this to enable the treatment of chronology violating sys-

tems is the self-consistent path integral [52, 73, 74, 89]. Instead of integrating over all

field configurations with γ(0) = c′ and γ†(T ) = c† to form the kernel UT (c†, c′), the self-

consistent path integral prescription requires that one should restrict the class of field

configurations to those obeying the self-consistency requirements imposed by any CTC’s

present (here, the boundary conditions (9.2.7)). To implement this, we first decompose

F = F1 ⊗ F2, where F1 is the space of analytic functions in variables a1, . . . , as1, and

F2 is the space of analytic functions in b1, . . . , bs2. The (self-consistent) evolution kernel

from t = 0− to t = T+ can then be written in the form

X(a†, b†; a′, b′) = N eb
†Bb′ŨT (a†; a′). (9.9.7)

Here, N is a normalization constant and the factor eb
†Bb′ implements the boundary

condition ψ2(T
+) = Bψ2(0

−) while ŨT is given by the same path integral as UT but

taken over all field configurations with γ(0) = (a′, b′), γ†(T ) = (a, Ab′)† for any b′. As

noted by Politzer [52], ŨT (a†; a′) may be obtained from UT (a†, b†; a′, b′) by setting b = Ab′

and integrating over all possibilities in the Hilbert space measure of F2, that is,

ŨT (a†; a′) =

∫
Db†Db e−b†bUT (a†, b†A†; a′, b), (9.9.8)
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which may be rewritten in the form

ŨT (a†; a′) =

∫
Db†Db

∫
Dc†Dc e−b†b−c†ceb†A†cUT (a†, c†; a′, b). (9.9.9)

Thus, by expanding eb
†A†c as

eb
†A†c =

s2∏

i=1

∞∑

ni=0

(A†c)ni
i (b†i )

ni

ni!
, (9.9.10)

we obtain the matrix element 〈m | ŨT |m′〉 in the form

〈m | ŨT |m′〉 =
∑

n

〈m; ñ |UT |m′;n〉, (9.9.11)

where the vector |m〉 ∈ F1 is the function
∏

i(mi!)
−1/2ai

mi , and the vector | ñ〉 ∈ F2 is

the function
∏

i(ni!)
−1/2(A†b)i

ni
. We refer to Eq. (9.9.11), which is a generalization of

the expression given by Politzer [52] as the partial trace definition of the self-consistent

path integral.

The fermionic case follows a similar pattern, when one replaces the integration vari-

ables by Grassmann numbers and uses Berezin measure; the main difference lies in the

partial trace definition. Starting from the analogue of (9.9.9), we expand eb
†A†c as

eb
†A†c =

s2∏

i=1

(
1 + b†i (A

†c)i

)

=
∑

n

(−1)n
∏

i

(A†c)ni
i (b†i )

ni, (9.9.12)

where n =
∑

i ni, and therefore obtain

〈m | ŨT |m′〉 =
∑

n

(−1)n〈m; ñ |UT |m′;n〉, (9.9.13)
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under the assumption that the Grassmann number b†i commutes with the kernel of

UT (a†, c†; a′, b), which holds if H conserves particle number (as it does in our case of

interest). The factor of (−1)n was omitted by Politzer [52]; it arises because terms

of the form b†i (A
†c)i coming from eb

†A†c must be rearranged in order to move the b†i ’s

into the ket and the (A†c)i’s into the bra of the matrix element 〈m; ñ |UT |m′;n〉. In

Appendix 9.B, we will see how, for free fields, these factors ensure that the evolution

computed from (9.9.13) agrees with that obtained directly from the path integral, and

also with that obtained from the QIVP.

9.9.2 Free Fields

Whilst one can use the partial trace definition to compute the quantum evolution X for

free fields (see Appendix 9.B), it is easier to evaluate the path integral directly, using

the fact that the kernel of the free evolution is given by

UT (c†; c′) = exp c†e−iWT c′. (9.9.14)

Writing e−iWT in the block form (9.3.1) as above, we obtain

ŨT (a†; a′) =

∫
Db†Db exp

{
−b†(11 − A†S)b+ a†Pa′

+a†Qb+ b†A†Ra′
}
, (9.9.15)

which may be evaluated to give

ŨT (a†; a′) = (det(11 − A†S))−1 exp a†Ma′, (9.9.16)

where M = (P+Q(A−S)−1R). In the generic case, the convergence of the path integral

is guaranteed because ‖A†S‖ < 1 and so 11 − A†S has positive hermitian part.

Noting that V (a†; a′) = exp a†Ma′ is the unitary kernel, because M is unitary, we
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conclude that the unitary kernel obtained from the self-consistent path integral is

X(a†, b†; a′, b′) = exp
{
a†Ma′ + b†Bb′

}
, (9.9.17)

whose corresponding operator X acts on annihilation operators ai and bi according to

X†aiX = Mijaj , X†biX = Bijbj . (9.9.18)

Moreover, the normalization constant is given by N = det(11 −A†S).

In the fermionic case, the path integral may be evaluated explicitly to obtain a

unitary evolution with the action (9.9.18) on annihilation operators and normalization

constant N = det(11 − A†S)−1.

Thus in both cases, we have obtained agreement with the QIVP evolution. More-

over, we have given a general proof of the unitarity of free field evolution using the

self-consistent path integral; previously this had only been established in a particular

case [52].

9.9.3 An Interacting Model

We study Model 1 of Sect. 9.5 for both Bose and Fermi statistics, employing the partial

trace definition, and choosing the normalization constant so that 〈0; 0 | X | 0; 0〉 = 1,

which is reasonable because the Hamiltonian H is particle-number preserving. In the

fermionic case, we obtain

〈0 | ŨT |0〉 = 〈00 |e−iHT |00〉 − 〈01 |e−iHT |01〉

= 1 − S

〈1 | ŨT |1〉 = 〈10 |e−iHT |10〉 − 〈11 |e−iHT |11〉

= P − (PS − RQ)e−iλT , (9.9.19)
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from which it follows that the evolution from t = 0− to t = T+ is given by

〈m;n |X |m′;n′〉 = δnn′δmm′f(m), (9.9.20)

where

f(m) =





1 m = 0

P − (PS − RQ)e−iλT

1 − S
m = 1.

(9.9.21)

Thus X is nonunitary in general, which is essentially the result obtained by Politzer [52]

in special cases, modulo some changes of sign owing to the factors of (−1)n discussed

above. Except when λT/(2π) ∈ Z this differs from the unitary evolution obtained from

the QIVP.

In the bosonic case, we have

〈m | ŨT |m′〉 =

∞∑

n=0

e−iλT (m+n)(m+n−1)/2

(m!n!)1/2
〈00 |(Ra+ Sb)n(Pa+Qb)m |m′n〉, (9.9.22)

and therefore conclude that 〈mn |X |m′n′〉 = δmm′δnn′f(m) with f(0) = 1 and

f(m) =

∞∑

n=0

e−iλT (m+n)(m+n−1)/2

n∑

r=r0

(
n
r

)(
m

n− r

)
(RQ)n−rPm+r−nSr

∑

n

Sne−iλTn(n−1)/2

, (9.9.23)

with r0 = max{n−m, 0}. One may show that X fails to be unitary in general. Again,

it clearly differs from the unitary evolution obtained from the QIVP.

9.10 Conclusion

We have analysed in detail the classical and quantum behaviour of a class of nonlinear

chronology violating systems. Classically, we found that unique solutions exist for all

choices of initial data in the linear and weak-coupling regimes, whilst the solutions

become non-unique in the strong-coupling regime. This confirms the expectation that
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the behaviour of nonlinear fields interpolates between that of classical linear fields and

hard-sphere mechanics. Quantum mechanically, we have shown that one can make sense

of the quantum initial value problem for chronology violating systems; moreover, (at

least with a natural choice of operator ordering) the quantum dynamics is unique for

all values of the coupling constant. We have also exhibited examples in which this

evolution does not preserve the (anti)commutation relations; it seems highly likely that

this is the general situation. Moreover, the nonunitary evolution cannot be described

by a superscattering operator – the loss of unitarity is more radical than previously

thought, e.g., by Hawking [78].

We have also compared our quantum evolution with that computed using the self-

consistent path integral, and found that they do not agree. This is not surprising,

because the equivalence of these approaches for non-chronology violating systems relies

on the existence of a foliation by Cauchy surfaces and there is no a priori reason to expect

the equivalence to persist in the presence of CTC’s. In this regard it is interesting that

the QIVP and self-consistent path integral are nonetheless equivalent for linear fields. To

some extent, it is a matter of taste which approach one prefers. For the models considered

the QIVP approach has two main advantages. Firstly, we have found circumstances (e.g.,

Model 1 in Sect. 9.5.3) in which one obtains a unitary theory from the QIVP but not

from the path integral. Secondly, the effect of the CTC’s in our models is to introduce

constraints which lead to a nontrivial geometric structure in the classical phase space.

This might lead one to suspect that the quantization of this system requires more than

just a restriction of the class of allowed histories, and that the path integral measure

should also be modified (a similar comment has also been made in [56]). A hint of this

appears in the treatment of linear fields, in which the propagator obtained from the self-

consistent path integral must be rescaled by a factor of det(11 − A†S)±1. It is plausible

that in the linear case, the required modification to the path integral measure reduces

to rescaling by this constant factor, but that for the nonlinear case the modification is

nontrivial. At present it is not clear exactly how the path integral should be modified; on

the other hand it is clear that the QIVP does correctly implement the CTC constraints

and remains close to the spirit of the classical treatment. In Sect. 9.5 we noted that there

was an effective reduction in the number of degrees of freedom between times where the
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CTC is in existence. It seems likely that the class of paths one needs to sum over in a

path integral approach must be altered to take greater account of this phenomenon.

The relationship between the unique quantum theory and the non-unique classical

theory is intriguing. We have seen that there exist ranges of the coupling strength in

which the quantum theory has a classical limit which selects precisely one of the many

classical solutions, other ranges in which no classical limit exists and still other ranges

where a classical limit exists but does not correspond to any of the classical solutions.

Finally, it is curious that the classical symplectic structure can be preserved for

systems which do not preserve the quantum commutation relations. It is tempting to

wonder whether there is a way of quantizing these models so that unitarity is preserved.

Our uniqueness result for the QIVP rules this out within a Hilbert space context (at least

with normal operator ordering) but it is possible that the situation might be different

for the QIVP on an indefinite (Krein) inner product space in which irreducible non-

Fock representations of the CCR’s exist for even a single degree of freedom [91]. The

motivation for studying Krein spaces would be that the loss of physical degrees of freedom

in the nonchronal region might be equivalent to the addition of unphysical states with

negative norm-squared.

9.A Path Integral Approach to the Free Classical Evolution

In this Appendix, we show how the classical evolution derived in Sect. 9.3.1 may be

reproduced using a method due to Goldwirth et al. [51] and based on path integrals.

(Goldwirth et al. regarded the classical wave equation as the first quantization of an

underlying particle mechanics.) The central idea is to sum the propagators for all pos-

sible trajectories through the CTC region. We will use this method to determine the

propagator between t = 0− and t = T+, essentially repeating the calculation of [51] in

our (slightly simpler) notation.

The block matrix decomposition Eq. (9.3.1) suggests that we break the problem into

four parts, evaluating the propagators from Si at t = 0− to Sj at t = T+ separately for
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each i, j = 1, 2. Note that a particle on S2 at t = 0− must enter the wormhole there

and re-emerge on S2 at t = T+. Thus the S2 → S2 propagator equals B, whilst that

for S2 → S1 vanishes. In addition, the propagator S1 → S2 also vanishes by the time

reverse of this argument. It remains to compute the propagator for S1 → S1. In this

case, there are countably many possible trajectories. The particle can either go directly

to S1 with propagator P , or it can enter the CTC region to arrive at S2 at t = T−

(propagator R), pass through the wormhole to S2 at t = 0+ (propagator A−1), execute n

circuits of the CTC’s (propagator (A−1S)n) and finally travel from S2 at t = 0+ to S1 at

t = T+ (propagator Q). The combined propagator for this trajectory is Q(A−1S)nA−1R;

summing over all possible winding numbers and the direct trajectory, we obtain the total

propagator

M = P +Q

( ∞∑

n=0

(A−1S)n

)
A−1R

= P +Q(A− S)−1R, (9.A.1)

which agrees with the result obtained in Sect. 9.3.1.

9.B Partial Trace Formalism for Free Fields

In this Appendix, we derive the evolution operator for free field models in the presence

of CTC’s using the partial trace formulation of the self-consistent path integral.

We consider a general free theory whose Fock space is built using creation operators

a†1, . . . , a
†
s1

and b†1, . . . , b
†
s2

, acting on vacuum |0; 0〉. The ai and bi obey the CCR/CAR’s.
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The basis elements are written3

|m;n〉 =

s1∏

i=1

(mi!)
−1/2(a†i )

mi

s2∏

i=1

(ni!)
−1/2(b†i )

ni |0; 0〉, (9.B.1)

and we write m =
∑
mi, n =

∑
ni etc. It will also be convenient to define an alternative

basis |m; ñ〉 by

|m; ñ〉 =
s1∏

i=1

(mi!)
−1/2(a†i )

mi

s2∏

i=1

(ñi!)
−1/2((A†b)†i )

eni |0; 0〉. (9.B.2)

Suppose the evolution U on Fock space is unitary and such that

a(T ) = U †aU = Pa+Qb

b(T ) = U †bU = Ra + Sb, (9.B.3)

where the matrix 
 P Q

R S


 (9.B.4)

is unitary. Note that this entails that U preserves the total particle number
∑
a†a+

∑
b†b.

We now specialize to the bosonic case. From Sect. 9.9.1, the evolution operator X

has matrix elements given by

〈m;n |X |m′;n′〉 = Nbδnn′

∑

n′

〈m; ñ′ |U |m′;n′〉, (9.B.5)

where Nb is a normalization constant, chosen to ensure that 〈0 |X |0〉 = 1 (as it should

be for any free theory). This allows us to evaluate Nb explicitly, because the matrix

3 We note in passing that the basis used in Eq. (2) of Ref. [52] for fermionic systems is not properly

anticommuting.
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element 〈0; ñ |U |0;n〉 is

〈0; ñ |U |0;n〉 = 〈0; 0 |
∏

i

(A†b)eni
i

(ñi!)1/2
U |0;n〉 = 〈0; 0 |U

∏

i

(A†b(T ))eni
i

(ñi!)1/2
|0;n〉, (9.B.6)

and is therefore equal to the coefficient of
∏

i x
ni
i in the expansion of

∏
i(
∑

j(A
†S)ijxj)

ni.

Here we have used the fact that U preserves the vacuum. The generating function for

these coefficients, G(x1, . . . , xs2), can be found in §66 of [92], and is given by

G(x1, . . . , xs2) =
(−1)s2(x1x2 . . . xs2)

−1

det(A†S − diag (x−1
1 , x−1

2 , . . . , x−1
s2

))
. (9.B.7)

The sum over all n of these matrix elements is obtained simply by evaluating the gen-

erating function with all xi equal to unity. Thus we obtain

Nb = det(11 −A†S). (9.B.8)

Next, we claim that

X−1aX = Ma, (9.B.9)

whereM = P+Q(A−S)−1R is unitary. Together with the trivial evolutionX−1bX = Bb,

this shows that X is unitary. Moreover, this is the free evolution derived in various ways

in the body of the previous sections.

To establish (9.B.9), we first note that

∑

n

〈m; ñ |Ub |m′;n〉 =
∑

n

〈m; ñ |(A†b)U |m′;n〉

=
∑

n

〈m; ñ |UA†(Ra + Sb) |m′;n〉, (9.B.10)

where the first step follows by relabelling the sum over ni. Collecting terms in the bi
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and rearranging, we have

∑

n

〈m; ñ |Ub |m′;n〉 =
∑

n

〈m; ñ |U(A− S)−1Ra |m′;n〉, (9.B.11)

and hence

∑

n

〈m; ñ |aU |m′;n〉 =
∑

n

〈m; ñ |U(Pa +Qb) |m′;n〉

=
∑

n

〈m; ñ |UMa |m′;n〉, (9.B.12)

where M = P +Q(A− S)−1R. Thus we have aX = XMa as required.

In the fermionic case, we define the operator X by

〈m;n |X |m′;n′〉 = Nfδnn′

∑

n′

(−1)n
′〈m; ñ′ |U |m′;n′〉, (9.B.13)

where Nf is chosen to ensure that 〈0 |X | 0〉 = 1. The factor of (−1)n
′

is necessary in

order to obtain agreement with the canonical theory. To see this, note that the first

step in (9.B.10) is not valid in the fermionic case, due to the anticommutation relations

satisfied by the ai and bi and the definition (9.B.1). Instead, the corresponding result is

∑

n

(−1)n(m+m′)〈m; ñ |Ub |m′;n〉 =
∑

n

(−1)n(m+m′)〈m; ñ |(A†b)U |m′;n〉, (9.B.14)

in which the factors of (−1)m and (−1)m
′

arise from anticommuting bi past the string

of creation operators for | m〉 and | m′〉 respectively. We may replace (−1)n(m+m′) by

(−1)n because U preserves the total particle number and therefore the summands can

be nonzero only when m′ = m+ 1.

Exactly analogous arguments to those for the bosonic case then show that Eq. (9.B.9)

holds, and that X is unitary. Thus we have obtained agreement with the canonical

theory.
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The constant Nf is easily evaluated once it has been expressed in the form

N−1
f = 〈0; 0 |

[∧
s2(11 −A†S)bs2 . . . b1

]
b†1 . . . b

†
s2 |0; 0〉, (9.B.15)

for then one may use the exterior algebra definition of the determinant to conclude that

Nf =
[
det(11 − A†S)

]−1
. (9.B.16)

To establish Eq. (9.B.15), we write its RHS as N−1 and expand the exterior power to

obtain

N−1 =
∑

n

〈0; 0 |(−1)nc
(ns2 )
s2 . . . c

(n1)
1 b†1 . . . b

†
s2 |0; 0〉, (9.B.17)

where c
(ni)
i is defined to be equal to bi if ni = 0 or (A†Sb)i if ni = 1. Next, move the

leftmost c
(ni)
i with ni = 0 rightwards using the anticommutation relations until it sits

next to b†i , at which point the bib
†
i combination may be removed by a further application

of the CAR’s. Repeating the process until all c
(0)
i ’s have been removed, one eventually

finds

N−1 =
∑

n

(−1)n〈0; 0 |(A†Sb)ni
i |0;n〉, (9.B.18)

which is easily shown to be equal to
∑

n
(−1)n〈0; ñ |U |0;n〉 = N−1

f , thus verifying our

claim.

9.C Violation of CCR/CAR’s in the 3-Point Model

In this appendix we present the details of the calculation leading to Eqs. (9.5.21)

and (9.5.28) and the statements made at the end of Sect. 9.8. We consider the 1-

parameter family of operator orderings labelled by α ∈ [0, 1] discussed in Sect. 9.8 for

which

Ψ(t) = e−iλTαΨ(0)†Ψ(0)
(
e−iWTΨ(0)

)
e−iλT (1−α)Ψ(0)†Ψ(0), (9.C.1)
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and consider Bose and Fermi statistics simultaneously, seeking solutions of the form

b = f(d†d, c†c)c where

(
c

d

)
= UR

(
a1

a2

)
with UR =

1

‖R‖

(
R1 R2

−R2 R1

)
(9.C.2)

obey the same commutation relations as a1 and a2. We remark that the norm of R can

be regarded as the operator norm of a linear map or as the C2 norm of a vector quantity

(as they coincide).

Applying b to elements of form (d†)mc† | 0〉, we obtain the consistency requirement

(from b(T ) = b(0)):

f(m, 0) = (‖R‖ + Sf(m, 0)) e−iλT [m+(1−α)(1+|f(m,0)|2)], (9.C.3)

and applying b to elements of form (d†)m(c†)n+2 |0〉 for m,n ≥ 0, we obtain the recursion

relation

f(m,n+ 1) = (‖R‖ + Sf(m,n+ 1)) e−iλT [m+α(n+1)(1+|f(m,n)|2)+(1−α)(n+2)(1+|f(m,n+1)|2)].

(9.C.4)

These equations have solutions. To see this take the norm of both sides of Eq. (9.C.4).

We find that we may write

f(m,n+ 1) =
S + eiθn+1

‖R‖ . (9.C.5)

If we now substitute back we have

eiθn+1 =
1 + Seiθn+1

1 + Se−iθn+1
e−iλT [m+α(n+1)(1+|f(m,n)|2)+(1−α)(n+2)(1+|f(m,n+1)|2)] (9.C.6)

Now notice that

Re

(
1 + Seiθ

1 + Se−iθ

)
≥ 0 (9.C.7)

because |S| < 1 and hence this map from the circle to the circle is of Brouwer degree
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zero. So too is the mapping that gives the phase in Eq. (9.C.4). Hence there exists a

solution to (9.C.4) as any map from the circle to the circle of Brouwer degree zero has

a fixed point.

We now compute the (anti)commutation quantities

(mf)ij = 〈0 |(ai(T )aj(T ) + aj(T )ai(T )) d†c† |0〉 for Fermions, (9.C.8)

and

(mb)ij = 〈0 |(ai(T )aj(T ) − aj(T )ai(T )) d†c† |0〉 for Bosons. (9.C.9)

We shall define the matrices

J =

(
0 −1

1 0

)
K =

(
0 1

1 0

)
(9.C.10)

and use the unitarity of e−iWT to deduce

PR† = −SQ, (9.C.11)

P TQ = −SRT (9.C.12)

together with ‖Q‖ = ‖R‖. We will also need to define the unitary matrices

UR =
1

‖R‖

(
R

−RJ

)
and U =

(
e−iλT |f(0,0)|2 0

0 1

)
. (9.C.13)

The vector space of antisymmetric matrices is one dimensional and spanned by the ma-

trix J , this immediately leads to the results AJAT = (detA)J and A−AT = −Tr (AJ)J

for any 2 × 2 complex matrix A. Geometrically J is a rotation by π/2 and therefore

for any vector x ∈ C2 we have xTJx = 0. As a special case of the first relation we find

URJ = JUR.
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We will need to compute quantities of the form

m = e−iω〈0 |uTa e−iλTc†|f(d†d,c†c)|2c vTa d†c† |0〉

= e−iω〈0 |uTU †
RUURa v

Ta d†c† |0〉 (9.C.14)

with ω = λT [1 + (1 − α)(|f(1, 0)|2 + 2)]. For Fermions we find this is

m = −e−iωuTU †
RUURJv = −e−iωuTU †

RUJURv (9.C.15)

whilst for Bosons we have

m = e−iωuTU †
RUKURv. (9.C.16)

Let us define M by

〈0 |Ma = 〈0 |(Pa+Qb) = 〈0 |
(
P +

QRf(0, 0)

‖R‖

)
a (9.C.17)

Using the unitarity of e−iWT , i.e., Eq. (9.C.11) we see

M =
(
11 − s0QQ

†)P, s0 =
f(0, 0)

S‖R‖
. (9.C.18)

Similarly, let N be defined by

N =
(
11 − s1QQ

†)P, s1 =
f(1, 0)

S‖R‖ . (9.C.19)

It will be useful to evaluate the quantity we shall call PR = PU †
R:

PR =
1

‖R‖ (PR† PJRT ) . (9.C.20)

Now observe that PJRT = −PJP TQ/S = − detP JQ/S. This calculation together
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with Eq. (9.C.11) gives

PR =
−1

‖R‖ (SQ detP JQ/S ) . (9.C.21)

Fermionic case: We are now in a position to evaluate the matrix mf .

uTmfv = e−iω〈0 |uTMae−iλTc
†|f(d†d,c†c)|2c vTNad†c† |0〉

+ e−iω〈0 |vTMae−iλTc
†|f(d†d,c†c)|2c uTNad†c† |0〉

= −uT e−iω
[(

11 − s0QQ
†)PRUJP T

R

(
11 − s1QQ

T
)

−
(
11 − s1QQ

†)PRJUP T
R

(
11 − s0QQ

T
)]
v. (9.C.22)

It is useful to calculate W = PRUJP
T
R .

W =
1

‖R‖2
(SQ detP JQ/S )

(
detP e−iλT |f(0,0)|2Q†J/S

SQT

)

=
detP

‖R‖2

(
QQ†Je−iλT |f(0,0)|2 + JQQT

)
. (9.C.23)

Note that

WQQT = detP JQQTQQT = detP JQQT , (9.C.24)

QQ†W = detP e−iλT |f(0,0)|2QQ†J, (9.C.25)

QQ†WQQT = 0. (9.C.26)

The matrix mf is given by

mf = −e−iω
[
W +W T − s0

(
QQ†W +W TQQT

)
− s1

(
QQTW +W TQQ†)] . (9.C.27)
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Finally we find

mf = − detP e−iωF
(
QQ†J − JQQT

)

= − detP e−iωF

(
2Q1Q2 |Q2|2 − |Q1|2

|Q2|2 − |Q1|2 −2Q2Q1

)
(9.C.28)

where we have defined

F =
e−iλT |f(0,0)|2 − 1

‖R‖2
+
f(1, 0) − f(0, 0)e−iλT |f(0,0)|2

S‖R‖ . (9.C.29)

Bosonic case: We now present the analogous calculation for the Bosonic system. The

matrix mb is clearly antisymmetric and therefore mb = −Tr (mbJ) J . We have

mb = e−iω
[(

11 − s0QQ
†)PRUKP T

R

(
11 − s1QQ

T
)

−
(
11 − s1QQ

†)PRKUP T
R

(
11 − s0QQ

T
)]
. (9.C.30)

Let X = PRUKP
T
R , so that

X =
1

‖R‖2
(SQ detP JQ/S )

(
− detP e−iλT |f(0,0)|2Q†J/S

SQT

)

=
1

‖R‖2
detP

(
JQQT −QQ†Je−iλT |f(0,0)|2

)
. (9.C.31)

Therefore,

QQ†X = − detP e−iλT |f(0,0)|2QQ†J, (9.C.32)

XQQT = detP JQQT , (9.C.33)

QQ†XQQT = 0. (9.C.34)



9. The Quantum Initial Value Problem for CTC Models 231

Now

mb = e−iω
[
X −XT − s0

(
QQ†X −XTQQ

)
− s1

(
XQQT −QQ†XT

)]

= −e−iω Tr
(
XJ − s0QQ

†XJ − s1XQQ
TJ
)
J. (9.C.35)

Evaluating the traces:

Tr (XJ) = detP
(
e−iλT |f(0,0)|2 − 1

)
, (9.C.36)

Tr
(
QQ†XJ

)
= detP ‖R‖2e−iλT |f(0,0)|2 , (9.C.37)

Tr
(
XQQTJ

)
= − detP ‖R‖2. (9.C.38)

Thus we find

mb = −e−iω detP F‖R‖2J, (9.C.39)

where F is given by Eq. (9.C.29).

Finally, one should also check that the expression for F , i.e., Eq. (9.C.29) does not

vanish. For λT ≪ 1, one may prove this by perturbing about the free solution to obtain

f(0, 0) and f(1, 0) to second order in λT if S 6∈ R. If S is real, one needs to go to third

order.

9.D Estimates on the Poisson Distribution

In this appendix we place some estimates on the Poisson distribution introduced in

Sect. 9.7. We shall prove that in the limit we are interested in (corresponding to the

classical limit ~ → 0) contributions coming from all but a central band around the mean

of the distribution have a vanishingly small effect in the classical limit.

To start with we write the probability distribution as Pn and use Stirling’s approxi-

mation:

Pn =
e−χ

2
χ2n

n!
≤ 1√

2π

χ2nen−χ
2

nn+1/2
. (9.D.1)
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We set n = χ2 + γχ with γ > 0 to obtain

Pn ≤ 1√
2π

(1 + γ/χ)−(χ2+γχ)eγχ

χ
√

1 + γ/χ
, (9.D.2)

where we restrict γ to run from α > 1 to χ/2. Using the inequality

log(1 + γ/χ) ≥ γ/χ− γ2/2χ2, (9.D.3)

leads to

−(χ2 + γχ) log(1 + γ/χ) ≤ −γχ− γ2/2 + γ3/2χ ≤ −γχ− γ2/4. (9.D.4)

thus,

Pn ≤ 1√
2π

e−γ
2/4

χ
√

1 + γ/χ
≤ 1√

2π

e−γ/4

χ
. (9.D.5)

Hence

χ2/2−1∑

γχ=αχ

Pn ≤ 1√
2π

e−α/4

χ (1 − e−1/4χ)
≤ 1

3

√
8

π
e−α/4. when χ >

1

2
. (9.D.6)

Importantly this result is independent of χ. Next we examine the behaviour of Pn for

n ≥ χ2/2 and show that the probability can be made arbitrarily small be taking χ

sufficiently large enough. We set n = 3χ2/2 +m, then

Pn =
e−χ

2
(χ2)

3χ2/2

(3χ2/2)!

(
χ2

3χ2/2 + 1

)
· · ·
(

χ2

3χ2/2 +m

)

≤ e−χ
2
(χ2)

3χ2/2

(3χ2/2)!

(
2

3

)m
, (9.D.7)

and hence,
∞∑

m=0

P3χ2/2+m ≤ 3e−χ
2
χ3χ2

(3χ2/2)!
. (9.D.8)



9. The Quantum Initial Value Problem for CTC Models 233

Notice that as χ→ ∞ the RHS of Eq. (9.D.8) tends to zero.

So far we have shown that by choosing χ and α sufficiently large enough we can

make the Prob(N > χ2 + αχ) arbitrarily small (where α > 1 is independent of χ). We

now proceed to prove the same is true for Prob(N < χ2 − αχ). Firstly we consider

n = χ2 − γχ for α ≤ γ ≤ 1/2. We have

Pn ≤ 1√
2π

(1 − γ/χ)−(χ2−γχ)e−γχ

χ
√

1 − γ/χ
. (9.D.9)

Now we use the inequality

− log(1 − γ/χ) ≤ γ/χ+ γ2/2χ2 + γ3(8 log 2 − 5)/χ3 (9.D.10)

for 0 ≤ γ/χ ≤ 1/2. This inequality comes from noticing that the LHS of Eq. (9.D.10) is

increasing and by considering the power series expansion. Evaluating

−(χ2 − γχ) log(1 − γ/χ) ≤ γχ− γ2/2 + (16 log 2 − 11)γ3/2χ ≤ γχ− βγ2 (9.D.11)

where β = (13 − 16 log 2)/4 > 0. Therefore,

Pn ≤ 1√
π

e−βγ
2

χ
≤ 1√

π

e−βγ

χ
. (9.D.12)

and hence

χ2/2∑

γχ=αχ

Pn ≤ 1√
π

e−βα

χ(1 − e−β/χ)
≤ 4

3
√
π

e−βα

β
when χ > 2β. (9.D.13)

Again this is independent of χ, provided for instance χ > 1. We now need to take care

of the remaining terms where 0 ≤ n < χ2/2. As Pn is increasing on this range we have

Pn ≤ e−χ
2
χχ

2

(χ2/2)!
. (9.D.14)
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Therefore
χ2/2−1∑

n=0

Pn ≤ e−χ
2
χχ

2+2

2(χ2/2)!
. (9.D.15)

Notice that the RHS tends to zero as χ → ∞. In summary then, given ǫ > 0 we can

find α > 1 such that

max

{
1

3

√
8

π
e−α/4,

4

3
√
π

e−βα

β

}
<
ǫ

4
, (9.D.16)

then for all χ > max{χ0, 1} where

max

{
3e−χ

2
0χ

3χ2
0

0

(3χ2
0/2)!

,
e−χ

2
0χ

χ2
0+2

0

2(χ2
0/2)!

}
<
ǫ

4
(9.D.17)

we will have Prob(N 6∈ [χ2 − αχ, χ2 + αχ]) < ǫ, proving our result.

9.E Analysis of the Iteration Sequence

We present here the detailed analysis of the statement made in Sect. 9.7 concerning the

validity of replacing one sequence of eigenvalues defined by Eq. (9.7.8) by those defined

by Eq. (9.7.14). To summarize rigorously our approach we state and prove the following

theorem.

Theorem. Suppose we have an sequence of complex values defined by wn = fx (wn−1;n)

where

fx(z;n) = exp

{
iµ

(
1 − α

χ
+

n

χ2

)(
1 +

R2

|z − S|2
)}

(9.E.1)

and a further iterative sequence zn = f (zn−1) with

f(z) = exp

{
iµ

(
1 +

R2

|z − S|2
)}

. (9.E.2)

Furthermore, let us suppose w0 = z0. If zn tends to a stable limit cycle {Z0, . . . , ZN−1}
as n→ ∞, then given ǫ > 0, there exists X such that for all χ > X,

|zn − wn| < ǫ for all n < 2αχ. (9.E.3)
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Proof: We must make some bounds on the difference between the iterative schemes. It

will be necessary to consider the N -th iteratives of fx and f . As the limit cycle consists

of some attractor fixed points of fN . To start with we shall need an estimate of how

much of an error we make by using f rather than fx with the same starting point,

therefore calculate

|fx(z) − f(z)| = 2 sin

{
µ

2

(
n

χ2
− α

χ

)(
1 +

R2

|z − S|2
)}

≤ 2αµ

1 − |S|
1

χ
=
A

χ
. (9.E.4)

We have made use of the condition n < 2αχ in deriving Eq. (9.E.4). Let us now bound

the derivative of fx with respect to z. Notice that fx is not analytic, and the derivative is

that in the tangential direction on the circle. We find that these derivatives are uniformly

bounded:

|f ′
x(z)| ≤

∣∣∣∣
(−2µSR2

|z − S|4
)(

1 − α

χ
+

n

χ2

)∣∣∣∣ ≤ 2µ (1 + |S|) |S|
(1 − |S|)3

(
1 +

α

χ

)

≤ 8µ

(1 − |S|)3
= B, (9.E.5)

assuming χ > α. We may now make use of the complex mean value theorem to show

|fnx (z) − fn(z)| ≤ B
∣∣fn−1
x (z) − fn−1(z)

∣∣ + A

χ

≤ A(1 −Bn)

1 − B

1

χ
. (9.E.6)

It is now expedient to introduce the N -th iterates: F (z) = fN(z) and Fx(z) = fNx (z).
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We will need to examine F ′
x(z). Notice that

F ′
x(z) =

N−1∏

k=0

f ′
x

(
fkx (z)

)
. (9.E.7)

Let us now introduce h = 1/χ. It will be useful to differentiate F ′
x(z) with respect to h:

∣∣∣∣
∂F ′

x(z)

∂h

∣∣∣∣ ≤ 2NµBN−1α|S|(1 + |S|)
(1 − |S|)3

(
1 +

4µ

1 − |S|

)

≤ αNBN

(
1 +

4µ

1 − |S|

)
= C. (9.E.8)

We know that since {Z0, . . . , ZN−1} is a limit cycle that for each k = 0, . . . , N − 1 we

have FR(zk) → Zk as R → ∞. We also know that the derivative F ′(Zk) (actually

independent of k) is less than unity in magnitude because the cycle is an attractor. Let

us now define K = [1 + |F ′(Zk)|]/2, require

χ >
2C

1 −K
(9.E.9)

and let ∆ be the intersection of the unit circle with the disc around Zk of radius

δ = min{δ0, ǫ/2}, where for all z with |z − Zk| < δ0 we have |F ′(z)| < K. It now

follows by an application of the mean value theorem (regarding F ′
x(z) as a function of

h) that for any c ∈ ∆,

|F ′
x(c)| ≤ |F ′(c)| + C

χ
< K +

C

χ
<

1 +K

2
= K ′ < 1. (9.E.10)

As a consequence we find this entails

|Fx(v1) − Fx(v2)| ≤ K ′ |v1 − v2| for all v1, v2 ∈ ∆. (9.E.11)

We are now in a position to prove the result. It is necessary to use the fact that



9. The Quantum Initial Value Problem for CTC Models 237

FR(zk) → Zk as R → ∞, so there exists R0 such that for all R > R0 − 1

|zNR+k − Zk| < δ(1 −K ′)/6. (9.E.12)

we shall choose χ sufficiently large so that

|zn − wn| < δ(1 −K ′)/6 for R ≤ R0 + 1 (9.E.13)

and n = NR + k. We can achieve Eq. (9.E.13) by letting

χ >
6A
(
1 − B(R0+2)N

)

δ(1 −B)(1 −K ′)
(9.E.14)

and using Eq. (9.E.6). Next we inductively assume each wNR+k is in ∆ for all R ≥ R0−1.

The conditions above with R = R0 − 1 implies that the induction starts, since

∣∣wN(R0−1)+k − Zk
∣∣ ≤

∣∣wN(R0−1)+k − zN(R0−1)+k

∣∣ +
∣∣zN(R0−1)+k − Zk

∣∣

≤ δ(1 −K ′)/3 < δ, (9.E.15)

and therefore wN(R0−1)+k ∈ ∆. Next we notice that Eq. (9.E.11) entails

|wn+N − wn| ≤ K ′ |wn − wn−N | for n > NR0. (9.E.16)

As a consequence,

|wNR+k − wn−N | <
1

1 −K ′ |wn − wn−N |

<
1

1 −K ′ (|wn − zn| + |zn − Zk| + |Zk − zn−N | + |zn−N − wn−N |)

< 2δ/3, (9.E.17)
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we have set n = NR0 + k in the above. We may now verify the inductive hypothesis:

|wNR+k − Zk| ≤ |wNR+k − wn−N | + |wn−N − zn−N | + |zn−N − Zk|

< 2δ/3 + δ(1 −K ′)/3 < δ, (9.E.18)

i.e., wNR+k ∈ ∆. Finally we establish

|wNR+k − zNR+k| ≤ |wNR+k − Zk| + |zNR+k − Zk| < ǫ. (9.E.19)

Therefore, for all n < 2αχ we have found that, provided χ is sufficiently large,

|zn − wn| < ǫ. (9.E.20)



10. CHRONOLOGY VIOLATION IN A MASSLESS THIRRING

MODEL

Chronology violating spacetimes provide us with an arena whereby we may compare

different formalisms of quantum mechanics. As we have seen in Chap. 9 path integral

methods and operator differential equation approaches yield inequivalent evolutions. In

order to study the quantum theory further we will be looking at a two dimensional

lattice spacetime model with a massless two component spinor field obeying a Thirring-

type interaction. In contrast to the continuum model of this system, we shall not be

working from a Lagrangian, but rather postulate the field equations directly. Naturally

the Thirring model has a well-defined Lagrangian, but this does not easily translate to

the lattice model we discuss here.

We shall be trying to answer a few questions that arise from the QIVP of Chap. 9.

It is interesting to determine to what extent, if any, the results of the self-consistent

path integral and QIVP formalisms differ in a concrete model. Furthermore, we shall

investigate the question of particle creation in this model. It has been argued [70] that

one finds an infinite amount of particle creation when CTC’s form, thereby rendering

doubtful the underlying assumptions taken in the calculation. One should probably re-

gard such a result as an inconsistency of the quantum CTC model. It will also be of

interest to see how closely the lattice spacetime model discussed here resembles its con-

tinuum limit. In the previous chapter we considered some rather simplified spacetimes,

consisting of the Cartesian product of a finite number of points, representing space, and

a line with suitable identifications representing time and the CTC’s.

The structure of the chapter is as follows. In the next section we describe the

‘Baby Thirring Model’, a simplified version Thirring’s model [93, 94, 95, 96] that we

shall be working with. In Sect. 10.2 we explain how the system of CTC’s effectively
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acts as a permutation on the incoming particles. Sect. 10.3 is devoted to presenting

the unitary S-matrix for the system even in the presence of the chronology violating

region. In Sect. 10.4 we go through the computation of the evolution operator in the

partial trace approach to the self-consistent path integral, and find it coincides with that

found directly from elementary considerations within the QIVP approach. We begin to

discuss the issue of particle production in Sect. 10.5 completing the calculation for the

non-interacting lattice model in Sect. 10.6, with the operator ordering we will impose,

the interaction plays no rôle in the calculation. Finally, in Sect. 10.7, we compare our

results with the analogous computation for the continuum limit of the model we have

been discussing. We discover the same ultraviolet divergence as for the lattice model

and we draw our conclusions.

10.1 The Baby Thirring Model

We shall work on a lattice spacetime Z2 and implement a chronology violating region by

identifying n + 1 points labelled −n/2 . . . n/2 with points a distance m away vertically

(i.e., in the time direction). If n is even the lattice points take integer coordinates, but if n

is odd we work with a lattice comprising integer plus one half values. Denoting t0 = n/2

and t1 = m + n/2 we make the identification such that the points with coordinates

(x, t) = (s, t−0 ) are identified with (s, t+1 ) and the identification of (s, t+0 ) with (s, t−1 )

where −n/2 ≤ s ≤ n/2. Later we will be investigating the continuum Thirring Model

directly. The purpose of this somewhat curious labelling of the lattice is so that the

lightlike coordinates t+ x and t− x intersect the boundary of the CTC identifications,

as illustrated in Fig. 10.1.

The approach we adopt is to assume the quantum theory is described as a QIVP.

This means that we shall not need to concern ourselves with any renormalization. Given

an initial data set we propagate that solution according to the evolution presented below.

As we have not dealt with problems of renormalization care must be taken in regarding

this theory as the standard Thirring model applied to a lattice. This is not a problem

though as our results are illustrative of the techniques of the QIVP formalism and not

of the Thirring model itself. So what we are actually considering is a ‘Baby Thirring
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Fig. 10.1: Diagram of Time Machine identifications on a Lattice Model

Spacetime with parameters (n,m) = (4, 3).

f7 f6 f5 f4 f3 f2 f1 f0 g0 g1 g2 g3 g4 g5 g6 g7

g′0 g′1 g′2 g′3 g′4 g′5 g′6 g′7 f ′
7 f ′

6 f ′
5 f ′

4 f ′
3 f ′

2 f ′
1 f ′

0

t = t0

t = t1

Model’ simplified to illustrate the important features due to the presence of CTC’s and

not the complexities of renormalization.

The fundamental quantum field is a two-component massless spinor ψ = (ψ1, ψ2).

We shall impose the following evolution rule:

ψ1(x, t+ 1) = ψ1(x− 1, t) exp iλ
(
|ψ2(x, t)|2 + |ψ2(x+ 1, t)|2

)

ψ2(x, t+ 1) = ψ2(x+ 1, t) exp iλ
(
|ψ1(x, t)|2 + |ψ1(x− 1, t)|2

)
(10.1.1)

This rule has a nice graphical interpretation: ψ1 particles move rightwards (at the ‘speed

of light’) picking up a phase from every ψ2 they encounter, whilst ψ2 particles move

leftwards picking up phases from encounters with ψ1’s.
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The general solution to these equations is

ψ1(x, t) = f(v) exp iλ
u∑

−∞
|g(u′)|2

ψ2(x, t) = g(u) exp iλ

v∑

−∞
|f(v′)|2 (10.1.2)

where f and g are arbitrary functions, and u = t+ x, v = t− x.

10.2 The Permutation of Rays

As shown in Fig. 10.1, rays travelling in our model spacetime fall into four classes,

those that never intersect the time machine, those that are pushed forward by the

time machine (e.g., f0, . . . , f4) and two classes which travel backwards in time, and loop

around a number of times, depending on the precise ray this can happen q times (e.g., f5)

or q+1 times (f6, f7), where q is some integer. The time machine acts as a permutation

on the incoming rays. In order to make this permutation explicit we define a quotient

and remainder as follows:

n = qm+R, R ∈ [0, m− 1]. (10.2.1)

Define σ : s 7→ s′ by

σ(s) = s′ =





s+ (q + 1)m s ∈ [0, R]

s+ qm s ∈ [R + 1, m− 1]

s−m s ∈ [m,n +m]

s otherwise.

(10.2.2)
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The time machine permutation of the right-moving rays is then given by

f ′(s) =





f(s′) eiλ(QL+M0) s ∈ [0, R]

f(s′) eiλ(QL+M1) s ∈ [R + 1, m− 1]

f(s′) eiλ(QL+M2) s ∈ [m,n +m]

f(s′) eiλQL otherwise.

(10.2.3)

We have set

M0 = −
n∑

r=0

:g†(r)g(r) : + (2q + 1)

(q+1)m−1∑

r=n+1

:g†(r)g(r) : + 2(q + 1)
n+m∑

r=(q+1)m

:g†(r)g(r) : , (10.2.4)

M1 = −
n∑

r=0

:g†(r)g(r) : + 2q

(q+1)m−1∑

r=n+1

:g†(r)g(r) : + (2q + 1)

n+m∑

r=(q+1)m

:g†(r)g(r) : (10.2.5)

and

M2 = −
n+m∑

r=n+1

:g†(r)g(r) : . (10.2.6)

For completeness, the corresponding result for the left-moving particles is seen to be

g′(s) =





g(s′) eiλ(QR+L0) s ∈ [0, R]

g(s′) eiλ(QR+L1) s ∈ [R + 1, m− 1]

g(s′) eiλ(QR+L2) s ∈ [m,n +m]

g(s′) eiλQR otherwise,

(10.2.7)

where now,

L0 = −
n∑

r=0

:f †(r)f(r) : + (2q+ 1)

(q+1)m−1∑

r=n+1

:f †(r)f(r) : + 2(q+ 1)

n+m∑

r=(q+1)m

:f †(r)f(r) : , (10.2.8)

L1 = −
n∑

r=0

:f †(r)f(r) : + 2q

(q+1)m−1∑

r=n+1

:f †(r)f(r) : + (2q + 1)

n+m∑

r=(q+1)m

:f †(r)f(r) : (10.2.9)

and

L2 = −
n+m∑

r=n+1

:f †(r)f(r) : . (10.2.10)



10. Chronology Violation in a Massless Thirring Model 244

10.3 The S-Matrix

In contrast to the 3-point model we discussed in Chap. 9, our lattice Thirring model has

a well-defined S-matrix. This is easily calculated and is given by

S = V eiλW , (10.3.1)

where

W = QLQR −
∑

0≤s≤n
n+1≤t≤n+m

[
:f †(s)f(s)g†(t)g(t) :+:g†(s)g(s)f †(t)f(t) :

]

+ 2q
∑

n+1≤s≤n+m
n+1≤t≤n+m

:f †(s)f(s)g†(t)g(t) :

+
∑

(q+1)m≤s≤n+m
n+1≤t≤n+m

[
:f †(s)f(s)g†(t)g(t) :+:g†(s)g(s)f †(t)f(t) :

]
, (10.3.2)

V implements the free case: V †f(s)V = f(s′) and

QR =
∞∑

−∞
:f(s)†f(s) : , QL =

∞∑

−∞
:g(s)†g(s) : (10.3.3)

are in the absence of the time machine the conserved left and right charges. The impor-

tant point to notice is that even in the presence of the time machine the far past to far

future evolution is unitary.

10.4 Comparison with the Path Integral

We may compare the results of the QIVP formalism to that of the self-consistent path

integral . In order to calculate the evolution operator between t−0 and t+1 we will need to
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work out the evolution between these times when there are no identifications. We note

that

ψ1(x, t0) = f(n/2 − x) exp iλ

n/2+x∑

s=−∞
:g†(s)g(s) : , (10.4.1)

ψ2(x, t0) = g(n/2 + x) exp iλ

n/2−x∑

s=−∞
:f †(s)f(s) : . (10.4.2)

The evolved fields are

ψ1(x, t1) = f(n/2 +m− x) exp iλ

n/2+m+x∑

s=−∞
:g†(s)g(s) : , (10.4.3)

ψ2(x, t1) = g(n/2 +m+ x) exp iλ

n/2+m−x∑

s=−∞
:f †(s)f(s) : . (10.4.4)

Now define a Fock space at t = t0 using annihilation operators ai(x) = ψi(x, t0). We

write the basis vectors as |m,n〉, where m describes the a1 degrees of freedom, and n

those of a2. We therefore have

ψ1(x, t1) = a1(x−m) exp iλ

n/2+m∑

s=n/2+1−m
:g†(x+ s)g(x+ s) : , (10.4.5)

ψ2(x, t1) = a2(x+m) exp iλ

n/2−1+m∑

s=n/2−m
:f †(x+ s)f(x+ s) : . (10.4.6)

This evolution is implemented by the unitary propagator

U = T exp iλ

∞∑

x=−∞

{
a†1(x)a1(x)

2m∑

s=1

a†2(x+ s)a2(x+ s)

}
(10.4.7)
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so that ψ(x, t1) = U †ψ(x, t0)U . Here T is a translation operator with the action

T †a1(x)T = a1(x−m); T †a2(x)T = a2(x+m). (10.4.8)

The matrix elements of U are therefore given by

〈m;n |U |m′;n′〉 = 〈m;n |T |m′;n′〉 exp iλ

∞∑

i=∞

{
m′
i

2m∑

j=1

n′
i+j

}

=

( ∞∏

k=−∞
δmkm

′
k−m

δn′
knk−m

)
exp iλ

∞∑

i=∞

{
m′
i

2m∑

j=1

n′
i+j

}
. (10.4.9)

Next we trace over those states that obey the CTC boundary condition ai(t0) = ai(t1):

Tr 〈m;n |U |m′;n′〉 =
∑

n′
−n/2

∑

m′
−n/2

∑

n′
−n/2+1

∑

m′
−n/2+1

· · ·
∑

n′
n/2

∑

m′
n/2




n/2∏

i=−n/2
δmim

′
i
δnin

′
i



( ∞∏

k=−∞
δmkm

′
k−m

δn′
knk−m

)
exp iλ

∞∑

i=∞

{
m′
i

2m∑

j=1

n′
i+j

}
.(10.4.10)

This has the effect of setting

m′
i = m[(i+n/2) modm]−m−n/2 − n/2 ≤ i ≤ m+ n/2, (10.4.11)

n′
i = nm+n/2−[(n/2−i)modm] −m− n/2 ≤ i ≤ n/2. (10.4.12)
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The final step is to implement the boundary conditions ai(t
−
0 ) = ai(t

+
1 ). Thus we find

〈m;n |X |m′;n′〉 =




m+n/2∏

i=−n/2
δm

α(i)
m′

i
δn

β(i)
n′

i




 ∏

k 6∈[−n/2,m+n/2]

δmk+mm
′
k
δn′

knk−m




× exp iλ

∞∑

i=−∞

{
m′
i

2m∑

j=1

n′
i+j

}
, (10.4.13)

where we have defined

α(x) = m+ n/2 − σ−1(n/2 − x), (10.4.14)

β(x) = σ−1(x+ n/2) − n/2 −m (10.4.15)

and the values of m′
i and n′

i are given by Eqs. (10.4.11) and (10.4.12) in the appropriate

ranges when one evaluates the sum. This result coincides with the QIVP formulation.

To evaluate these matrix elements in this formalism we use the graphical form of the

evolution rule. That is to say we trace the paths of particles passing through the time

machine adjusting its phase by a factor dependent on those rays it crosses. Put another

way, the evolution Eq. (10.4.13) is a solution to the operator valued equations of motion.

This contrasts with what we found in Chap. 9 when we discussed the 2- and 3-point

models.

10.5 The Field Expansion

So far we have concerned ourselves with the question of whether not our model has a

unitary quantum theory and the comparison of the QIVP approach to the self-consistent

path integral formalism. We now go on to look at another question: that of possible

particle creation due to the CTC identifications we have made. To this end we begin
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with the IN and OUT fields described in accordance with the standard decomposition,

f(s) =
1√
2π

∫ π

−π
e−ish

(
a

IN
(h)θ(h) + b†

IN
(−h)θ(−h)

)
dh ; (10.5.1)

a
IN

(k)θ(k) + b†
IN

(−k)θ(−k) =
1√
2π

∞∑

−∞
eiskf(s); (10.5.2)

g(s) =
1√
2π

∫ π

−π
e−ish

(
a

IN
(−h)θ(h) + b†

IN
(h)θ(−h)

)
dh ; (10.5.3)

a
IN

(k)θ(−k) + b†
IN

(−k)θ(k) =
1√
2π

∞∑

−∞
e−iskg(s); (10.5.4)

a
IN

(−k)θ(k) + b†
IN

(k)θ(−k) =
1√
2π

∞∑

−∞
eiskg(s); (10.5.5)

a
IN

(−k)θ(−k) + b†
IN

(k)θ(k) =
1√
2π

∞∑

−∞
e−iskf(s) . (10.5.6)

The a†
IN

(k) operator creating a quantum of momentum k in the IN state. The b†
IN

(k)

operator creates the corresponding anti-particle. For right-movers, k > 0,

a
OUT

(k) =
1√
2π

∞∑

−∞
eiskf ′(s) (10.5.7)

= a
IN

(k)eiλQL +
1√
2π

{
R∑

s=0

eisk
(
f(s+ (q + 1)m)eiλM0 − f(s)

)

+
m−R−2∑

s=0

ei(s+R+1)k
(
f(s+ n + 1)eiλM1 − f(s+R + 1)

)

+
n∑

s=0

ei(s+m)k
(
f(s)eiλM2 − f(s+m)

)
}
eiλQL (10.5.8)

and the analogous statement for left-movers:

a
OUT

(−k) =
1√
2π

∞∑

−∞
eiskg′(s) (10.5.9)
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= a
IN

(−k)eiλQR +
1√
2π

{
R∑

s=0

eisk
(
g(s+ (q + 1)m)eiλL0 − g(s)

)

+
m−R−2∑

s=0

ei(s+R+1)k
(
g(s+ n + 1)eiλL1 − g(s+R + 1)

)

+
n∑

s=0

ei(s+m)k
(
g(s)eiλL2 − g(s+m)

)
}
eiλQR. (10.5.10)

In this equation (and those subsequent) it may be that R = m − 1 in which case the

summation from 0 to m− R− 2 is defined to be zero.

We may expand the corresponding OUT annihilation and creation operators in terms

of the IN state, for k > 0,

a
OUT

(k)e−iλQL |0〉 =
1

2π

∫ π

0

{
R∑

s=0

eisk
(
ei(s+(q+1)m)h − eish

)

+

m−R−2∑

s=0

ei(s+R+1)k
(
ei(s+n+1)h − ei(s+R+1)h

)

+
n∑

s=0

ei(s+m)k
(
eish − ei(s+m)h

)
}
dh b†

IN
(h) |0〉 (10.5.11)

and the left-moving particles obey

a
OUT

(−k)e−iλQR |0〉 =
1

2π

∫ π

0

{
R∑

s=0

eisk
(
ei(s+(q+1)m)h − eish

)

+

m−R−2∑

s=0

ei(s+R+1)k
(
ei(s+n+1)h − ei(s+R+1)h

)

+

n∑

s=0

ei(s+m)k
(
eish − ei(s+m)h

)
}
dh b†

IN
(−h) |0〉. (10.5.12)
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It is useful for us to define the following function:

G(h, k) =

R∑

s=0

eisk
(
ei(s+(q+1)m)h − eish

)

+

m−R−2∑

s=0

ei(s+R+1)k
(
ei(s+n+1)h − ei(s+R+1)h

)

+

n∑

s=0

ei(s+m)k
(
eish − ei(s+m)h

)
. (10.5.13)

Then the expected total particle number of a
OUT

-particles produced from the vacuum

IN-state, i.e., the particle creation due to the system of CTC’s is given by

N =

∫ π

−π
〈0 |a†

OUT
(k)a

OUT
(k) |0〉 dk . (10.5.14)

=
1

2π2

∫ π

0

dk

∫ π

0

dh |G(h, k)|2 . (10.5.15)

In the next section we will perform this calculation.

10.6 Non Interacting Lattice Model Calculation

To calculate N , the total particle number, we have initially to find the modulus squared

of G(h, k). To do this it is advantageous to define new variables,

ρ = m(h + k), ρθ = mh, R + 1 = mr (10.6.1)

and

σ = m(2π − h− k), σφ = m(π − h). (10.6.2)
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After performing the sum over s in Eq. (10.5.13), we may use the reciprocity relation:

G(h, k) = G(k, h) to expand the exponentials as

4 sin2 ρ

2m
|G(h, k)|2 = I1(ρ, θ) + I1(ρ, 1 − θ). (10.6.3)

We will also need the result

4 sin2 σ

2m
|G(π − h, π − k)|2 = I2(σ, φ) + I2(σ, 1 − φ) (10.6.4)

where we have defined

I1(ρ, θ) = 2 cos(θ − r)ρ− 4 cos θρ+ 2 cos(θ + q + r)ρ

+ 2 cos((q + 2)θ − 1)ρ− 2 cos((q + 2)θ + r − 1)ρ+ 2 cos(qθ + 1)ρ− 2 cos(qθ + r)ρ

+ 2 cos((q + 1)θ + r)ρ− 4 cos(q + 1)θρ+ 2 cos((q + 1)θ + r − 1)ρ

+ 4 − cos(1 − r)ρ− cos rρ− cos(q + r)ρ− cos(q + r + 1)ρ (10.6.5)

and

I2(σ, φ) = (−1)m [2 cos(φ− r)σ − 4 cosφσ + 2 cos(φ+ q + r)σ]

+ (−1)qm [2 cos((q + 2)φ− 1)σ − 2 cos((q + 2)φ+ r − 1)σ

+ 2 cos(qφ+ 1)σ − 2 cos(qφ+ r)σ]

+ (−1)(q+1)m [2 cos((q + 1)φ+ r)σ − 4 cos(q + 1)φσ + 2 cos((q + 1)φ+ r − 1)σ]

+ 4 − cos(1 − r)σ − cos rσ − cos(q + r)σ − cos(q + r + 1)σ . (10.6.6)

The region of integration in the (h, k) space is divided into two triangular regions

with 0 ≤ ρ ≤ mπ, 0 ≤ θ ≤ 1 and 0 ≤ σ ≤ mπ, 0 ≤ φ ≤ 1. Writing ρ and θ as
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integration variables in place of σ and φ in the second of these integrals one finds that

the expression for N is then given by

N =
1

2π2m2

∫ mπ

0

ρ dρ

sin2(ρ/2m)
J(ρ) (10.6.7)

where we define

J(ρ) =
1

2

∫ 1

0

dθ (I1(ρ, θ) + I2(ρ, θ)) . (10.6.8)

Evaluating the integral J(ρ), we end up with (q 6= 0),

J(ρ) =
(1 + (−1)m)

ρ
[sin(1 − r)ρ+ sin rρ− 2 sin ρ+ sin(q + r + 1)ρ− sin(q + r)ρ]

+
(1 + (−1)qm)

ρ

[
sin(q + 1)ρ

q + 2
+

sin ρ

q + 2
− sin(q + r + 1)ρ

q + 2
− sin(1 − r)ρ

q + 2

+
sin(q + 1)ρ

q
− sin ρ

q
− sin(q + r)ρ

q
+

sin rρ

q

]

+

(
1 + (−1)(q+1)m

)

ρ

[
sin(q + r + 1)ρ

q + 1
− sin rρ

q + 1

− 2
sin(q + 1)ρ

q + 1
+

sin(q + r)ρ

q + 1
+

sin(1 − r)ρ

q + 1

]

+ 4 − cos(1 − r)ρ− cos rρ− cos(q + r)ρ− cos(q + r + 1)ρ . (10.6.9)

Using sin x ≤ x for x ≥ 0, we may put a lower bound on N :

N ≥ 1

2π2

∫ mπ

0

dρ

ρ
J(ρ) . (10.6.10)

We shall define the coefficients αi, βi and γj by

J(ρ) =
∑

i

βi
sinαiρ− αiρ

ρ
+
∑

j

(1 − cos γjρ) (10.6.11)

where we have used the fact that
∑
αiβi = 0. This integral is seen to be convergent.
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After an integration by parts we find

N ≥ 1

2π2

∫ mπ

0

(∑

i

αiβi
cosαiρ− 1

ρ
+
∑

j

1 − cos γjρ

ρ

)
dρ . (10.6.12)

The integral may now be expressed in terms of the Cosine Integral. We use the result

that (see, for instance, Arfken [97])

∫ x

0

1 − cos t

t
dt = γ + log x− Ci(x) . (10.6.13)

The quantity γ is the Euler-Mascheroni constant, and Ci(x) is the Cosine integral defined

by

Ci(x) = −
∫ ∞

x

cos t dt

t
. (10.6.14)

Finally we have the result

N ≥ 1

2π2

(
−
∑

αi 6=0

βi [αi logαi + Ci(αimπ)]

+ 4γ + 4 logm+
∑

γj 6=0

[log γjπ − Ci(γjmπ)]


 . (10.6.15)

The right hand side diverges as (2 logm)/π2 as m becomes large. This demonstrates

that as we approach the continuum limit we should expect an ultraviolet divergence in

the total particle creation. This is significant as it implies that the stress-energy tensor

will also diverge (if we only knew that the total particle number were infinite, we might

be saved from a physical catastrophe if the distribution of momenta was such that it

was suitably skewed towards low momenta. We take the opportunity at the point to

mention that the restriction that q 6= 0 is actually superfluous, the result holds also for

q = 0. This may be checked explicitly or by taking a suitable limit as q → 0 (neglecting

at this point in the calculation that q is supposed to be integral).
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10.7 The Continuum Massless Thirring Model

In this section we tackle the question of particle creation in the continuum version of the

massless Thirring Model we have been working with. As we may notice from the lattice

model it turns out that the interaction plays no part in the creation rate (with normal

ordering). This would appear to be due to the very special nature of the interaction

in Thirring’s Model. Left-movers only interact with right-movers and vice versa the

form of the interaction such that it brings about an altering of the phase of the particle

concerned.

In an analogous manner to the discrete example we have just examined we define the

time machine by making identifications of (s, t−0 ) with (s, t+1 ) and of (s, t+0 ) with (s, t−1 )

where −n/2 ≤ s ≤ n/2 where t0 = n/2 and t1 = n/2 +m. The quotient and remainder

are defined by

n = (q + r)m (10.7.1)

with q an integer and r ∈ [0, 1). The permutation that the identifications induce on the

right moving rays is given by

f ′(s) =





f(s+ (q + 1)m) eiλ(QL+M0) s ∈ [0, rm]

f(s+ qm) eiλ(QL+M1) s ∈ (rm,m)

f(s−m) eiλ(QL+M2) s ∈ [m,n+m]

f(s) eiλQL otherwise.

(10.7.2)

where

M0 = −
∫ n

0

:g†(r)g(r) : dr + (2q + 1)

∫ (q+1)m

n

:g†(r)g(r) : dr + 2(q + 1)

∫ n+m

(q+1)m

:g†(r)g(r) : dr,

(10.7.3)

M1 = −
∫ n

0

:g†(r)g(r) : dr+ 2q

∫ (q+1)m

n

:g†(r)g(r) : dr+ (2q+ 1)

∫ n+m

(q+1)m

:g†(r)g(r) : dr, (10.7.4)

M2 = −
∫ n+m

n

:g†(r)g(r) : dr (10.7.5)

and

QL =

∫ ∞

−∞
:g†(r)g(r) : dr. (10.7.6)
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The corresponding result for the left-moving particles is readily seen to be

g′(s) =





g(s+ (q + 1)m) eiλ(QR+L0) s ∈ [0, rm]

g(s+ qm) eiλ(QR+L1) s ∈ (rm,m)

g(s−m) eiλ(QR+L2) s ∈ [m,n +m]

g(s) eiλQR otherwise,

(10.7.7)

where now,

L0 = −
∫ n

0

:f †(r)f(r) : dr + (2q + 1)

∫ (q+1)m

n

:f †(r)f(r) : dr + 2(q + 1)

∫ n+m

(q+1)m

:f †(r)f(r) : dr,

(10.7.8)

L1 = −
∫ n

0

:f †(r)f(r) : dr+ 2q

∫ (q+1)m

n

:f †(r)f(r) : dr+ (2q+ 1)

∫ n+m

(q+1)m

:f †(r)f(r) : dr, (10.7.9)

L2 = −
∫ n+m

n

:f †(r)f(r) : dr (10.7.10)

and

QR =

∫ ∞

−∞
:f †(r)f(r) : dr. (10.7.11)

The S-Matrix for this system, S = V eiλW is then given by direct analogy of Eq. (10.3.2).

W = QLQR −
∫ n

0

ds

∫ n+m

n

dt
[
:f †(s)f(s)g†(t)g(t) :+:g†(s)g(s)f †(t)f(t) :

]

+ 2q

∫ n+m

n

ds

∫ n+m

n

dt :f †(s)f(s)g†(t)g(t) :

+

∫ n+m

(q+1)m

ds

∫ n+m

n

dt
[
:f †(s)f(s)g†(t)g(t) :+:g†(s)g(s)f †(t)f(t) :

]
(10.7.12)

and V again implements the free case: V †f(s)V = f(s′). We remark that this too is a

unitary evolution from the IN region to the OUT region.

The f and g fields are expanded in terms of annihilation and creation operators by

f(s) =
1√
2π

∫ ∞

−∞
e−ish

(
a

IN
(h)θ(h) + b†

IN
(−h)θ(−h)

)
dh ; (10.7.13)
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a
IN

(k)θ(k) + b†
IN

(−k)θ(−k) =
1√
2π

∫ ∞

−∞
eiskf(s) ds ; (10.7.14)

g(s) =
1√
2π

∫ ∞

−∞
e−ish

(
a

IN
(−h)θ(h) + b†

IN
(h)θ(−h)

)
dh (10.7.15)

and

a
IN

(k)θ(−k) + b†
IN

(−k)θ(k) =
1√
2π

∫ ∞

−∞
e−iskf(s) ds . (10.7.16)

Proceeding as before, we form expressions for the right-movers in the OUT region,

i.e., for k > 0,

a
OUT

(k) = a
IN

(k) +
1√
2π

∫ rm

0

eisk (f(s+ (q + 1)m) − f(s)) ds

+
1√
2π

∫ m

rm

eisk (f(s+ qm) − f(s)) ds +
1√
2π

∫ n+m

m

eisk (f(s−m) − f(s)) ds .

(10.7.17)

Similarly for the left-movers:

a
OUT

(−k) = a
IN

(−k) +
1√
2π

∫ rm

0

eisk (g(s+ (q + 1)m) − g(s)) ds

+
1√
2π

∫ m

rm

eisk (g(s+ qm) − g(s)) ds +
1√
2π

∫ n+m

m

eisk (g(s−m) − g(s)) ds .

(10.7.18)

Now define the function

G(h, k) =

∫ rm

0

(
ei(q+1)mh − 1

)
eis(h+k) ds +

∫ m

rm

(
eiqmh − 1

)
eis(h+k) ds

+

∫ n+m

m

(
e−imh − 1

)
eis(h+k) ds . (10.7.19)
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With this definition we have

a
OUT

(k) |0〉 =
1

2π

∫ ∞

0

dhG(h, k)b†
IN

(h) |0〉, (10.7.20)

a
OUT

(−k) |0〉 =
1

2π

∫ ∞

0

dhG(h, k)b†
IN

(−h) |0〉 (10.7.21)

and

N =
1

2π2

∫ ∞

0

dh

∫ ∞

0

dk |G(h, k)|2 . (10.7.22)

We now proceed to calculate N . We find that

ρ2

m2
|G(h, k)|2 = I1(ρ, θ) + I1(ρ, 1 − θ), (10.7.23)

using the definitions in Eqs. (10.6.1) and (10.6.5). Define

K(ρ) =

∫ 1

0

I1(ρ, θ) dθ, (10.7.24)

so that

K(ρ) =
2

ρ
[sin(1 − r)ρ+ sin rρ− 2 sin ρ+ sin(q + r + 1)ρ− sin(q + r)ρ]

+
2

ρ

[
sin(q + 1)ρ

q + 2
+

sin ρ

q + 2
− sin(q + r + 1)ρ

q + 2
− sin(1 − r)ρ

q + 2

+
sin(q + 1)ρ

q
− sin ρ

q
− sin(q + r)ρ

q
+

sin rρ

q

]

+
2

ρ

[
sin(q + r + 1)ρ

q + 1
− sin rρ

q + 1
− 2

sin(q + 1)ρ

q + 1
+

sin(q + r)ρ

q + 1
+

sin(1 − r)ρ

q + 1

]

+ 4 − cos(1 − r)ρ− cos rρ− cos(q + r)ρ− cos(q + r + 1)ρ . (10.7.25)

As before we write this equation in terms of coefficients αi, βi and γj,

K(ρ) =
∑

i

βi
sinαiρ− αiρ

ρ
+
∑

j

(1 − cos γjρ) . (10.7.26)
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The expected total particle number in the OUT region is then given by the Λ → ∞

limit of

N =
1

2π2

∫ Λ

0

dρ

ρ
K(ρ) (10.7.27)

=
1

2π2

(
−
∑

αi 6=0

βi [αi logαi + Ci(αiΛ)]

+ 4γ + 4 log Λ +
∑

γj 6=0

[log γjπ − Ci(γjΛ)]




∼ 2

π2
log Λ. (10.7.28)

Thus we find that the continuum system is actually the limit of the lattice model,

at least in respect to the calculations of the S-Matrix and particle creation. This is

reassuring, as we have studied lattice and point-space spacetimes in order to gain some

insight into more realistic systems. For the continuum we have found the same ultraviolet

divergence of the momentum distribution as for the lattice calculation. This behaviour

lends support to Hawking’s Chronology Protection Conjecture [70], and suggests that

the back-reaction on the metric, and hence on the causal structure is important. One

might hope that in a physical spacetime, that at the point when the spacetime is about

to develop a causality violating region, the back-reaction would be sufficient to prevent

this happening, or that an event horizon would form so that any attempt to probe the

causality violating region would be unsuccessful.
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A. DIMENSIONAL REDUCTION FORMULAE

In this appendix we derive some useful formulae which we need periodically throughout

the main text. The dimensional reduction from four to three dimensions in our discussion

of internal symmetries and solution generating techniques, and from four to two for our

analysis of the black hole uniqueness result we discussed together with the dimensional

reduction from five to four dimensions when we looked at applying the techniques of

Penrose, Sorkin and Woolgar [31] can all be examined in the general scenario of a

reduction from D dimensions to n which we present here.

Our starting point is the D-dimensional metric

g(D) = e2ν
(
dxD + A

)
⊗
(
dxD + A

)
+ e2χηabE

a ⊗ Eb, (A.1)

where ∂/∂xD is a Killing vector, and A has no component in the xD direction. The

norm of the Killing vector, e2ν is here written as expressly positive; this turns out to

be an unnecessary restriction and our final formulae are valid under the substitution

ν 7→ ν + iπ/2. Let us define ω = eχE and ωD = eνβ with β = dxD + A. Here, the

vector E is a vector of orthonormal 1-forms with respect to the (D − 1)-dimensional

metric ηab, whilst {ωD,ω i} is an orthonormal basis with respect to the D-dimensional

metric g(D).

The torsion-free condition on the covariant derivative of the (D − 1)-metric implies

DE = 0 i.e., dE + Γ ∧ E = 0. (A.2)

Where Γ is the SO(s,D− 1− s) Lie algebra valued connection 1-form for the metric ηab
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of signature s. Similarly the torsion-free condition on the D-metric derivative implies:

(
dω

dωD

)
+

(
Γ +B c

−c T 0

)
∧
(

ω

ωD

)
= 0. (A.3)

We now try to find B and c with BT = −B. We have

dωD = dν ∧ ωD + eνdA. (A.4)

Let us define F = dA = 1
2
E T ∧ FE and set dν = v TE . Then we may write

dωD =

(
−v TωD +

1

2
eνE TF

)
∧ E . (A.5)

We also have, dωD = c T eχ ∧ E . Therefore let

c T = −v T e−χωD +
1

2
eν−χE TF, (A.6)

i.e.,

c = −v e−χωD − 1

2
eν−χFE . (A.7)

In addition one has from Eq. (A.3),

eχdχ ∧ E + eχB ∧ E + c ∧ ωD = 0. (A.8)

It is useful to find to coefficients of dχ with respect to the (D − 1)-dimensional basis,

E . Let us then define dχ = X TE ,

(
B − EX T +XE T +

1

2
eν−2χωDF

)
∧ E = 0. (A.9)

Hence we may determine the matrix valued 1-form B:

B = EX T −XE T − 1

2
eν−2χωDF. (A.10)
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We are now in a position to relate the curvature 2-forms of the respective metrics,

DΩ =

(
D−1Ω +DB +B ∧B − c ∧ c T Dc +B ∧ c

−Dc T − c T ∧ B 0

)
. (A.11)

We proceed to evaluate this in terms of the derivatives of B and c. Using

DB = −DX ∧ E T − E ∧DX T − 1

2
D
(
eν−2χF

)
∧ ωD

+
1

2
eν−2χFv Tω ∧ E − 1

4
e2ν−2χFE T ∧ FE (A.12)

and

B ∧ B = X E T ∧XE T + EX T ∧ EX T − EX TX ∧ E T +
1

2
eν−2χXE TF ∧ ωD

− 1

2
eν−2χEX TF ∧ ωD − 1

2
eν−2χFXE T ∧ ωD +

1

2
eν−2χFEX T ∧ ωD (A.13)

together with the formulae

c ∧ c T =
1

2
eν−2χvE TF ∧ ωD +

1

2
eν−2χFE vT ∧ ωD − 1

4
e2ν−2χFE ∧ E TF (A.14)

and,

Dc = −D
(
e−χv

)
∧ωD−1

2
D
(
eν−χF

)
∧E +v v T e−χωD∧E −1

2
eν−χvE TF∧E . (A.15)

Finally we need to calculate the quantity

B ∧ c = e−χXE Tv ∧ ωD +
1

2
eν−χX E T ∧ FE − e−χEX Tv ∧ ωD

− 1

2
eν−χEX TFE − 1

4
e2ν−3χF 2E ∧ ωD. (A.16)
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We may now unravel the Riemann tensor, after some careful book-keeping, we find

1

2
DRa

bABωA ∧ ωB =
1

2
D−1Ra

bcdE
c ∧ Ed − δacDdDbχEc ∧ Ed − ηbdDcD

aχEc ∧ Ed

− 1

2
Dc

(
eν−2χF a

b

)
Ec ∧ ωD +

1

2
eν−2χF a

bDdχωD ∧ Ed − 1

4
e2ν−2χF a

bFcdE
c ∧ Ed

+ δacDbχDdχEc ∧ Ed − δacηbd (Dχ)2
Ec ∧ Ed − 1

2
eν−2χδacDdχF

d
bE

c ∧ ωD

+ ηbdD
aχDcχEc ∧ Ed +

1

2
eν−2χDaχFcbE

c ∧ ωD − 1

2
eν−2χDbχF

a
dω

D ∧ Ed

+
1

2
eν−2χF acDcχηbdω

D ∧ Ed +
1

4
e2ν−2χF a

cFdbE
c ∧ Ed

− 1

2
eν−2χFcbD

aνEc ∧ ωD − 1

2
eν−2χF a

cDbνE
c ∧ ωD, (A.17)

and also

1

2
DRa

DABωA ∧ ωB = −Dc

(
e−χDaν

)
Ec ∧ ωD + e−χDaνDdνω

D ∧ Ed

− 1

2
eν−χDaνFcdE

c ∧ Ed − 1

2
Dc

(
eν−χF a

d

)
Ec ∧ Ed

− e−χδacDdχD
dνEc ∧ ωD − 1

2
eν−χδacDbχF

b
dE

c ∧ Ed + e−χDaχDcνE
c ∧ ωD

+
1

4
e2ν−3χF a

bF
b
dω

D ∧ Ed +
1

2
eν−χDaχFcdE

c ∧ Ed. (A.18)

Let us now pick out the components of the Riemann tensor (in the β,Ea coordinate
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system), we find

DRa
bcd = e−2χ

[
D−1Ra

bcd − δac∇d∇bχ+ δad∇c∇bχ− ηbd∇c∇aχ + ηbc∇d∇aχ

+ δac∇bχ∇dχ− δad∇bχ∇cχ− δacηbd (∇χ)2 + δadηbc (∇χ)2

+ ηbd∇aχ∇cχ− ηbc∇aχ∇dχ− 1

2
e2ν−2χF a

bFcd

+
1

4
e2ν−2χF a

cFdb −
1

4
e2ν−2χF a

dFcb

]
, (A.19)

with

DRa
bDd = eν−2χ∇d (eν−χF a

b) + e2ν−3χδad∇cχF
c
b − e2ν−3χ∇aχFdb − e2ν−3χ∇bχF

a
d

+ e2ν−3χηbd∇cχF
ac + e2ν−3χ∇aνFdb + e2ν−3χ∇bνF

a
d , (A.20)

DRa
Dcd = e2ν−3χ∇aχFcd −

1

2
eν−2χ∇c

(
eν−χF a

d

)
+

1

2
eν−2χ∇d

(
eν−χF a

c

)

− 1

2
e2ν−3χδac∇bχF

b
d +

1

2
e2ν−3χδad∇bχF

b
c − e2ν−3χ∇aνFcd . (A.21)

and

DRa
DcD = −e2ν−χ∇c (e

−χ∇aν) − e2ν−2χ∇aν∇cν − e2ν−2χδac∇dχ∇dν

+ e2ν−2χ∇aχ∇cν −
1

4
e4ν−4χF abFbc . (A.22)

Thus the Ricci tensors may be evaluated easily, the results of the contraction are pre-
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sented below:

DRbd = e−2χ
(
D−1Rbd

)
− (D − 3)e−2χ∇b∇dχ− e−2χηbd∇2χ+ (D − 3)e−2χ∇bχ∇dχ

− (D − 3)e−2χηbd (∇χ)2 − e−2χ∇b∇dν + e−2χ∇bν∇dχ− e−2χ∇bν∇dν

− e−2χηbd∇cχ∇cν + e−2χ∇bχ∇dν −
1

2
e2ν−4χF c

bFcd . (A.23)

The cross term is

DRDd =
1

2
e−ν−(D−2)χ∇a

(
e3ν+(D−5)χF a

d

)
(A.24)

and the RDD component is given by

DRDD =
1

4
e4ν−4χFabF

ab − e2ν−2χ
(
∇2ν + (∇ν)2 + (D − 3)∇aχ∇aν

)
. (A.25)

A particularly useful result for our consideration of dimensional reduction from four

to three or from five to four dimensions is the relationship between the Ricci scalars;

one finds

DR = e−2χ
[
D−1R − (D − 2)(D − 3) (∇χ)2 − 1

4
e2ν−2χFabF

ab

− 2
(
(D − 2)∇2χ+ ∇2ν + (∇ν)2 + (D − 3)∇aχ∇aν

) ]
. (A.26)

Now that we have been able to relate the Ricci tensors and scalars during the di-

mensional reduction from D to D − 1 dimensions we can go on to apply the procedure

repeatedly to derive the dimensional reduction from D to n dimensions on a sequence

of Killing vectors of the higher dimensional metric. There are important uses of di-

mensional reduction where we weaken this condition (in particular it implies that the

topology of the fibred space consists of products of R and S1), however we will not be

needing a more general reduction scheme in our discussions. We therefore consider the
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metric

g(D) = hAB
(
dxA + AA

)
⊗
(
dxB + AB

)
+ e2χηabE

a ⊗ Eb . (A.27)

With nothing depending on the xA coordinates. Here, the metric ηabE
a ⊗ Eb is n-

dimensional. Diagonalizing hAB, we may use the results just established to successively

reduce the dimension. One finds that, after much algebra, the Ricci tensor and scalar

are given by the following expressions:

DRbd = e−2χ (nRbd) + (D − 2)e−χ∇b∇de
−χ − 1

4
e−2χ∇b

(
e2χhAB

)
∇d

(
e−2χhAB

)

− 1

2
hAB∇b∇d

(
e−2χhAB

)
− 1√

|h|
ηbde

−nχ∇a
(√

|h| enχe−2χ∇aχ
)

− 1

2
e−4χhABF

A
abF

B a
d , (A.28)

DRAb =
1

2
√
|h|

e−nχeχ∇a

(√
|h| enχe−4χhABF

B a
b

)
(A.29)

and

DRAB = − 1

2
√
|h|

hACe
−nχ∇a

(√
|h| enχe−2χhCD∇ahBD

)

+
1

4
e−4χhAChBDF

C
abF

Dab . (A.30)

Finally the Ricci Scalar is given by:

DR = e−2χ (nR) + (D − 2)e−χ∇2e−χ − 1

4
e−2χ∇a

(
e2χhAB

)
∇a

(
e−2χhAB

)

− 1

2
hAB∇2

(
e−2χhAB

)
− n√

|h|
e−nχ∇a

(√
|h| enχe−2χ∇aχ

)

− 1

2
√
|h|

e−nχ∇a
(√

|h| enχe−2χhAB∇ahAB

)
− 1

4
e−4χhABF

A
abF

B ab . (A.31)
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with h = det (hAB).
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