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ABSTRACT: This thesis presents results pertaining to scattering ampli-
tudes in Conformal Higher Spin (CHS) theory, most of which was published
in [1–3].
CHS theory contains Maxwell theory, Conformal Gravity and generalises them
for higher spin. After briefly introducing the general field of Higher Spins, we
therefore discuss Conformal Gravity as a warm up. Since it is a 4-derivative
theory, it contains more on-shell states than just the usual 2-derivative Einstein
Gravitons. Some of these states are found to be admissible for scattering and
lead to finite expressions for amplitudes. We compute three point tree-level am-
plitudes scattering all possible states. We give a formula which captures these
amplitudes using twistor spinors.
We then define CHS theory and its symmetries. We descirbe how it is obtained as
the logarithmically divergent part of the partition function for a free scalar cou-
pled to general spin background sources. We characterise its scattering states and
proceed to present a series of amplitude computations.
We first compute four-point amplitudes for an external scalar interacting with the
full tower of CHS fields. These amplitudes need a natural prescription for sum-
ming over that infinite tower of fields. Doing so in a way that is compatible with
CHS symmetry leads to vanishing amplitudes.
We then present similar amplitudes in pure CHS theory where the external legs
are 2-derivative spin 1 and 2 CHS modes. Once again, these amplitudes are triv-
ial. As the theory is conformal, it has a natural description in the language of
twistor-spinors and we give a formula for three-point tree level amplitudes of all
states, including those which are not associated with 2 derivative equations of
motion.
Finally we look at the theory in curved spacetime, where its quadratic sector is
non-diagonal. We compute some of these terms and their contributions to the
conformal anomaly c-coefficient.
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Chapter 1

Introduction

The importance of the role which Symmetry has played in the development of
Theoretical Physics is hard to overstate. Describing any physical system is a task
made easier by the presence of symmetry. 1 But the role of Physics is not just to
describe the Universe, it is also to understand it. In this endeavour, Symmetries
have been a beacon guiding our way for the last century. As an example, it has
led us to write down the Standard Model Lagrangian - a theory symmetric under
SU(3) × SU(2) × U(1). Remarkably, this was done long before its gauge bosons -
which are direct representations of that very symmetry group - were detected.

A natural concept which arises from understanding the symmetry of the
Universe is spin. As we will see, spin is nothing but a classification of possi-
ble quantum mechanical wave equations which are consistent with the global
symmetries of the Universe. In this thesis, we will be concerned with higher spin
theories. These contain fields of all possible spins as well as infinite dimensional
symmetry algebras.

This seems a fairly natural thing to do - after all if symmetry is so important,
why not look for theories with as much of it as possible? For this reason, one
might want to promote the space-time symmetry used to build the higher spin
algebra to also be conformal . The result of this is the theory of Conformal Higher
Spins (CHS) [4, 5], which will be the main focus of this thesis.

There are, of course, many more reasons to study this theory - from its im-
proved UV finiteness, its important role in the AdS/CFT correspondence to the

1It is a fact well-understood by all Physics students that computations are significantly less
painful when cows are taken to be spherical - and preferably in a vacuum.
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alluring possibility of vanishing conformal anomalies. There are also many dif-
ficulties and obstructions, as the definition of consistent higher spin interacting
theories is not a trivial task.

In this thesis, we will begin by giving an overview of the field of Higher Spin
Theory. This will by no means be complete or extensive, but it should be able to
motivate the interest in these theories, provide some context, and give the inter-
ested reader relevant references. The rest of the thesis will focus on building the
knowledge required to present the work done by the author - most of which was
published in [1–3].

For most of this paper we will assume d = 4, though we may comment on
more general dimensions at times. We focus on this case not only for the usual
natural reason, but also because 4 dimensions appears to be special for CHS the-
ory - for instance its lower spin truncation is given by Conformal Gravity and
Maxwell theory. In what follows, we will take the signature of the Minkowski
metric to be (−,+,+,+). Any non-standard notation used is introduced in Ap-
pendix A.1.

1.1 Higher Spin Theories

We begin with an introduction to the topic of Higher Spin theories. We will
outline how they arise from basic considerations, the theoretical difficulties they
face, and give an impression of how these theories are built. Later on, this will
allow us to place them in the context of AdS/CFT, and eventually make ground
with the specific theory of Conformal Higher Spins.

1.1.1 Spin and wave equations

Spin is one of the most fundamental properties that fields can have. Let us
highlight how it naturally arises in Quantum Field Theory as a consequence of
marrying Special Relativity with Quantum Mechanics - a more comprehensive
description can be found in [6–8] . The former stipulates that Physics is the same
in all inertial frames, while the latter describes microscopic physics as a Hilbert
Space with states whose time evolution is described by a wave equation. Merg-
ing these concepts, we have a Hilbert space H, which contains states |ψ〉 and we
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can define new states by simply going to a new inertial frame, |ψ′〉 ≡ U(L)|ψ〉.
Here, L is an element of the isometry group of the spacetime, and U is a repre-
sentation of that group. In a flat spacetime, isometries are spacetime translations,
spatial rotations and boosts, which form the Poincaré group, ISO(3,1). Among the
U(L) are Heisenberg picture wave operators, since they contain time translation
transformations. One is then led to classify all irreducible unitary representa-
tions of ISO(3,1), and associate a wave equation with each one. This is called the
Bargmann-Wigner programme [9].

This classification was done by Wigner [10]. One starts with the Poincaré
algebra spanned by the Lorentz generators Mµν and the translation generators
Pµ, which satisfy the algebra:

i[Mµν, Mρσ] = ηνρMµσ − ηµρMνσ + ηµσ Mνρ − ηνσ Mµρ (1.1)

i[Pµ, Mρσ] = ηµρPσ − ηµσPρ (1.2)

i[Pµ, Pν] = 0 (1.3)

Since Pm commutes with itself, it is particularly interesting to consider the op-
erator PµPµ. This is a Casimir operator, meaning that it commutes with all the
generators of the algebra, and it leads us to express the states in a momentum
eigenbasis:

Pµ|ψp,σ〉 = pµ|ψp,σ〉 , (1.4)

where σ defines other possible quantum numbers the state could have. The states
are then classified in terms of a real number, m, which is related to the eigenvalue
of our Casimir, p2. There are three distinct cases:

• p2 = m2: corresponding to particles with negative masses. These states are
unphysical and we will ignore them.

• p2 = 0: corresponding to massless particles.

• p2 = −m2: corresponding to massive particles.

One must then find the maximal subgroup of ISO(3, 1) which leaves this eigen-
basis invariant. This is done most easily by going to a convenient frame; we
summarise the results:

• For massive states, we go to the frame where pµ = (m, 0, 0, 0). The little
group is SO(3).
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• For massless states, we go to the frame where pµ = (p, 0, 0, p). For physical
states 2 , the little group is SO(2).

Finally, we need to write down the irreducible representations of SO(3) and SO(2).
These are labelled by a single integer, often called spin 3 . A field in the spin s
representation of SO(3) can be written as a totally symmetric tensor φi1...is , with
vanishing traces: φi3...is i

i = 0 where ij = (1, 2, 3). For irreducible representations
of SO(2), this is exactly the same except that the indices would only run in (1, 2).

We have a classification of all the (physical) representations of the Poincaré
group. The task is to associate each of them with a covariant relativistic differen-
tial equation. We will sketch how this is done for the massive case, and state the
result for the massless case as it is more subtle.

For a spin s massive representation, the first step is to write down a symmet-
ric traceless tensor of SO(3, 1), φµ1...µs . We then write the equation:

(�−m2)φµ1,...,µs
= 0 , (1.5)

which when translated to momentum space assigns the particle’s mass, ie. it
determines the value of the quadratic Casimir operator. Next, we impose the
transversality condition:

∂µ1
φµ1...µs = 0 . (1.6)

When translated to momentum space, this equation ensures that only the spatial
components of φµ1...µs are non-trivial in the rest frame. This restricts our sym-
metric traceless tensors of SO(3, 1) to symmetric tensors of SO(3). Finally, the
SO(3, 1) traceless condition becomes restricted to SO(3) tracelessness.

Massless tensors are more subtle, so we refer the reader to the reviews [7, 8]
for details. We simply state the equation for free massless particles of spin s,

2The massless case is slightly subtle. It turns out that the little group for the massless case is
actually ISO(2).One then needs to repeat the procedure we started with ISO(3, 1). Studying the
Casimir of ISO(2) leads once again to two separate cases. One case leads to an SO(2) little group.
The other depends on a continuous parameter, often called “continuous spin” which we do not
observe in Physics.

3In d dimensions, the little groups of massive and massless particles are given by SO(d− 1) and
SO(d− 2) respectively. Since the representations of SO(n) are characterised by [ n

2 ] integers, for
d > 4 more numbers are necessary. Still, the term spin is kept to refer to symmetric representations
- which can be described by only one number - in analogy with the d = 4 case.
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known as the Fronsdal equations [11]:

Fµ1...µs
≡ �ϕµ1...µs

− ∂(µ1
∂ν ϕµ2...µs)ν

+ ∂(µ1
∂µ2

ϕµ3...µs)ν
ν = 0 . (1.7)

where the fields satsify a slightly unusual double tracelessness condition:

ϕµ1...µs−4ν
ν

ρ
ρ = 0 (1.8)

It is appropriate to note at this point that these equations reduce to the Maxwell
equations for the case of s = 1 and the Einstein equations perturbed around flat
space for s = 2. These equations are invariant under “generalised linearised
diffeomorphisms”, which is to say under the variation:

δhµ1...µs
= ∂(µ1

εµ2...µs)
, (1.9)

with the added condition that the gauge parameter be traceless:

εµ1...µs−2µ
µ = 0 . (1.10)

This has been a lightning review of the concept of spin and its relevance in the
Bargman-Wigner program. We should remark that this applies to free theories
only. In order to introduce interactions, in general one wants to write down a
Lagrangian leading to the equations obtained this way and deform it.
The takeaway here is that the concept of spin arises naturally when considering
QFT and investigating the role of spacetime isometries. As such, classifying and
understanding theories of arbitrary spin is an important avenue of research.

1.1.2 Why no Higher Spin?

Despite this assertion, theories with fields higher than 2 were not studied for
a long time - it is only relatively recently that there is considerable interest in the
field. Why?

The main reason is that there are a number of no-go theorems which prohibit
interacting massless Higher Spin theories from existing. A comprehensive review
of these can be found in [12]. We merely give here a quick description of these
theorems, and comment on how they can be circumvented.
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van Dam-Veltman-Zakharov (vDVZ) discontinuity

Most of the interest in HS theory is concentrated on massless particles, but let
us briefly comment on massive theories first. Massive hadrons of higher spins are
observed experimentally, though they are bound states. Fundamental massive
particles are problematic due to the so-called vDVZ discontinuity [13–15]. In
general, massive theories of spin s fields have more degrees of freedom than their
massless counterpart. For example, in the case of spin 2, the massive graviton has
5 degrees of freedom, while its massless cousin has only 2. We therefore expect,
in the limit of m → 0, that the massive theory will have some of its polarizations
decouple so that we obtain the correct massless limit.
When the theories are interacting, this is not necessarily observed to be the case,
ie. the massless limit is wrong. For the case of spin 2, this may be attributed to
the way that the theory is linearised [16] but the issue remains for massive higher
spin fields.

Weinberg Low Energy Theorem

This theorem [17] gives a powerful formula from quite general considera-
tions. Start with a generic amplitude containing N particles of spin si and exter-
nal momentum pi for i = (1, . . . , N). Furthermore, the amplitude has an external
massless particle of spin s and momentum q. By looking at the limit q → 0 and
demanding that it is invariant under the variation (1.9), we can obtain the con-
straint:

N

∑
i=1

g(s)i pµ1
i . . . pµs−1

i = 0 , (1.11)

where g(s)i designates the parameter of the minimal coupling cubic vertex be-
tween one particle of spin s, and two particles of spin si.
In particular, if we take the case of s = 2, and use momentum conservation, we
obtain the necessity that

g(2)i = g(2)j ∀ i, j (1.12)

which is also known as the weak equivalence principle: it implies that gravity
has the same minimal coupling strength to all types of matter.
On its own, this is not prohibitive for higher spin particles, but it has dire impli-
cations when combined with Aragone-Deser Obstruction.
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Minimal Coupling arguments

Here we highlight certain arguments that prevent HS particles from hav-
ing minimal coupling to gravity in flat space. The first argument comes from
Weinberg-Witten theorem [18] and its generalisation by Porrati [19]. These re-
spectively forbid the existence of Lorentz and gauge invariant stress energy ten-
sors for massless particles of spin s > 1 and any particles of spin s > 2 to couple
to gravitons in flat space.
There are also the Aragone-Deser arguments [20, 21]. These start from the idea
that minimal coupling is done by replacing partial derivatives with covariant
derivatives. The latter famously do not commute, and when one checks gauge
invariance of Higher Spin actions, ie. invariance under the covariant form of
(1.9), curvature terms will arise which cannot be compensated for.
Finally, in [22], Metsaev gave an important bound for cubic vertices involving HS
particles. For a vertex involving particles of spin s1, s2, s3, then if s1 ≤ s2 ≤ s3, the
number of derivatives in the vertex, n, is bound by:

s3 + s2 − s1 ≤ n ≤ s3 + s2 + s1 (1.13)

which means that if there is at least one HS particle of spin s > 2, the number of
derivatives is greater than 2, ie. there can be no minimal coupling to gravity.

Porrati Arguments

This argument, [19], combines the low energy and minimal coupling argu-
ments . First we notice that in nature, matter is known to couple minimally to
gravity. But when combined with the weak equivalence principle, this means
that the graviton coupling constant g(2)i is non zero for any particles coupled to
our system. In other words, any higher spin particles interacting with lower spin
particles in our system must be minimally coupled to gravity.
However, as we said, many arguments exist prohibiting that very coupling. The
conclusion is that higher spin particles cannot be coupled to any lower spin par-
ticles at all.

Coleman-Mandula

Finally we mention the famous Coleman-Mandula theorem [23] (see also [24]
for the case of supersymmetry). This theorem looks at scattering amplitudes of
fields with finite numbers of types of fields and limits the types of symmetries
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that are possible. It finds that the most general symmetries an interacting theory
can have are:

• Poincaré symmetry

• A SUSY or superconformal extension of Poincaré

• An internal symmetry group (ie. in direct product with the rest of the sym-
metries).

This precludes interacting theories from having symmetries of the type (1.9).

1.1.3 Ways around

We now list and comment on the various ways that one can get around these
theorems. As usual, one simply needs to evaluate the assumptions made on those
arguments, and exploit them. Here we simply list and briefly comment on the
holes in the no-go theorems. For a more exhaustive list as well as more details,
we refer the reader to [12].

• Finite Particle number: This applies to the Coleman-Mandula theorem in
particular. The assumption of finite number of fields is not a good one in
HS theories, as they always need to contain infinite sets of fields to be con-
sistent, as we shall shortly see.

• Flat-Space: Many of these arguments rely on the S-matrix of flat space. In
the presence of a non-vanishing cosmological constant Λ, these arguments
no longer apply as the definition of an S-matrix is either altered or ambigu-
ous (depending on the sign of Λ). In AdS for example, higher spin theories
may therefore have non-trivial interactions.

• Lorentz covariance: Many of the arguments we have made assume a mani-
fest Lorentz covariant approach which allows them to make guesses on the
form of certain terms. However, light-cone approaches (see [25] ) exist.

• Unitarity The arguments above assume that the theory has 2-derivatives
and is Unitary. As such, higher derivative theories can escape them.

1.1.4 Interacting Massless Higher Spin Theories

Among the ways of avoiding the no-go theorems, perhaps the most success-
ful has been to go to AdS space where the S-matrix becomes ill defined, and most
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of the theorems are circumvented. This yielded to the successful creation of con-
sistent cubic vertices for HS particles in AdS space in cubic vertices [26]. Later,
Vasiliev developed a fully interacting and consistent theory of massless higher
spins, [27–30]4. The construction was first done in 4 dimensions but generalised
to higher dimensions in [34, 35].

In this subsection, we aim to highlight a few features of Vasiliev theory and
discuss some of the ideas behind it, without going into too much technical detail.
We will do so somewhat heuristically and highlight how everything generalises
in the literature at the end. This subsection is mainly based on the notes [33].

One natural starting point for understanding the construction of Vasiliev
theory is to consider spin 2, and look at the frame-like formulation of Einstein
Gravity. This means understanding Einstein gravity as a theory of gauged iso-
morphisms. The idea is simple: we make the isometries of the space-time local,
associate a gauge field to each of the generators then attempt to write down a
gauge invariant equation of motion reproducing Einstein gravity that we know
and love.

In this section, we will introduce the formulation before sketching how one
can generalise it to obtain a simple theory of interacting massless higher spins.
Finally, we will highlight features of Vasiliev theory, its current state in the field
as well as open problems.

Spin 2

If we are in D ≡ d + 1 dimensional space-time, one starts with the einbein
field and the spin connection ea

µ and wab
µ

5 and turn them into one-form gauge
fields

ea = ea
µdxµ (1.14)

wab = wab
µ dxµ (1.15)

with a, b ∈ (0, . . . , D − 1). The gauge fields wab are associated with the Lorentz
boost generators Mab while ea are associated with the translation generators Pa.

4The reader may also see [8, 31–33] for reviews.
5In this chapter only, we use Greek indices (µ, ν, . . .) as space-time indices and Latin indices

(a, b, . . .) as frame indices. From Chapter 2 onwards, we will always use Latin indices as spacetime
indices.
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Their representations in the SO(D − 1, 1) algebra are given via the following
Young diagrams:

ea ∈ SO(D−1,1)
, wab ∈

SO(D−1,1)

. (1.16)

Roughly speaking, ea contains information about metric fluctuations (ie. it con-
tains the degrees of freedom of the spin 2 Fronsdal field ϕµν) while wab contains
redundant information that can be used to gauge torsion away. This will be fixed
later, when we introduce an equation of motion for our spin 2 theory.

Next, we need to write down an algebra for the generators. There are several
possibilities, each of them corresponding to a different background isometry. The
most relevant for us, as hinted by the previous section, is the one corresponding
to an AdSD background, see (A.16) - (A.17) 6.

The two generators can be grouped into the algebra of SO(D − 1, 2) as in
appendix A.2. Consequently, we can consider the single gauge field W:

W2 = wABTAB = eaPa + wabMab (1.17)

where (A, B) = (0, 1, . . . , D + 1). These generators are in the adjoint representa-
tion of SO(D− 1, 2) which is a two row one column Young diagram:

wAB ∈
SO(D−1,2)

(1.18)

Finally, we can form a curvature from W and write down a flatness condition
for it:

dW2 + W2 ∧W2 = 0 (1.19)

which is invariant under the gauge variation:

δW2 = dε2 + [W2, ε2] (1.20)

6In principle, one could also consider a Minkowski or de-Sitter (dS) isometries correspond-
ing to the algebra ISO(D − 1, 1) and SO(D, 1) respectively, but we focus on AdS to avoid no-go
theorems, and because of its relation to CFTs.
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where ε2 = εaPa + εabMab contains the local gauge parameters associated with
local Lorentz transformations and local translation. Two pieces of information are
contained within (1.19). The first one is a constraint on the torsion tensor, which
allows us to solve for wab in terms of ea as we discussed earlier:

Ta = dea + wa
b ∧ eb = 0 . (1.21)

The second condition constrains the Riemann curvature to be that of the AdS
background, as expected.

Higher Spins

The development of an interacting higher spin theory in AdSD follows the
same general steps but uses higher rank symmetric gauge fields. The correct
system of fields to write down is:

ea1...as−1

wa1...as−1,b1

...

wa1...as−1,b1...bs−1

where the symmetry properties of these fields can be read off their SO(D− 1, 1)
Young Tableaux:

ea1...as−1
∈ . . .

SO(D−1,1)

︷ ︸︸ ︷s− 1

, wa1...as−1,b1...br ∈
. . . . . .

. . .
SO(D−1,1)︸ ︷︷ ︸

r

︷ ︸︸ ︷s− 1

Similarly to the spin 2 case, the field ea1...as contains the information carried by the
spin s Fronsdal field, as well as extra degrees of freedom which are removed by
fixing the rest of the gauge fields.

Once again, all these gauge fields can be combined into one field of the
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SO(D− 1, 2) algebra, wA1...As−1,B1...Bs−1 belonging to the two- row Young diagram:

wA1...As−1,B1...Bs−1 ∈
. . .

. . .
SO(D−1,2)

︷ ︸︸ ︷s− 1

A crucial point is that each of these fields are associated to a generator TA1...As−1,B1...Bs−1

in the same representation. All fields are then combined into one master-field, W:

W ≡ ∑
s=2

wA1...As−1,B1...Bs−1,T
A1...As−1,B1...Bs−1 (1.22)

These newfangled generators have a Lie bracket determined by the SO(D−
1, 2) algebra. This allows us to say something important about the general struc-
ture of higher spins algebras. Using the schematic notation of Ts to denote the
generator associated with spin s fields, the commutator between two generators
of spin is given by: 7

[Ts, Ts′ ] ∼ Ts+s′−2 + Ts+s′−4 + . . . T|s−s′|−2 (1.23)

If we consider this expression for s = s′ = 3, we see that T4 must be included in
the algebra. This in turn implies the existence of T5 and T6, and so on. So one can
see that as soon as a field of spin s > 2 is included in the spectrum, one must nec-
essarily include an infinite tower of spin. There two such algebras: one containing
all integer of spin s ≥ 1 and its truncation to all even spins.

Finally, we can impose a curvature equation, analogous to the flatness equa-
tion (1.19):

dW + W ∧W = 0 (1.24)

which is invariant under δW = dε+ [W, ε]. We have thus obtained a set of gauge-
invariant linear equations for higher spin fields. Note that a linearisation of (1.24)
yields relations between the various fields ea1...as−1 and wa1...as−1,b1 much in the
same way that the flatness condition (1.19) gave us (1.21) for spin 2 case.

7This can be gleaned from considering the product of two-row Young tableaux and restricting
to terms with the correct symmetries for example, see [36]. Later we give a slightly different
heuristic explanation from the perspective of CFTs.
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Vasiliev Theory

The steps outlined above are roughly those followed in the construction of
interactive massless higher spins by Vasiliev. The actual construction has a few
more ingredients. First, it involves another master field, included for the theory
to contain a scalar particle. Second, the higher spin algebra must be realised.
This can be done in terms of auxiliary oscillators. Finally, the space of oscillators
is actually doubled, a trick necessary to include consistent interactions. These
steps are beyond the scope of this thesis, so we refer the reader to the reviews
[31–33, 37]. We end this section by summarising and highlighting some of the
features of these interacting Massless higher spin theories.

• In 4 dimensions, these theories necessarily include an infinite number of
fields, each of which appears only once. There exists a consistent truncation
where only fields of even spins feature.

• These theories are defined in AdS space-times and therefore contain one
parameter: Λ, the curvature of the space.

• The interactions involving higher spin fields include higher derivatives.
This means they are non-analytic in the curvature of spacetime. To illus-
trate this, we remember the result of [22] used earlier and write a generic
cubic vertex with s1 ≤ s2 ≤ s3:

Ls1s2s3
= Λ

s1−s2−s3−d/2+3
2 ∂−s1+s2+s3 hs1

hs2
hs3

+ . . . (1.25)

where the dots represent terms with more derivatives and lower powers
of the compensating Λ. We see that if any higher spin fields are involved,
negative powers of Λ will be present. This is a manifestation of the earlier
no-go theorems - such interactions could not exist in flat space.

• This construction is done at the level of the equations of motion only. So far,
no known Lagrangian form exists 8. This is major obstruction to quantizing
the theory.

• String theory also boasts an infinite spectrum of particles states. Those have
masses arranged in Regge trajectories and parametrised by the constant α′.
It is expected 9 that the tensionless limit of String theory, if it exists, could

8A few proposals have been made, see [38] or [39] for more recent work.
9See, for example, [31].
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be described by a higher spin theory. The idea is that the large amount of
symmetry present in String Theory would actually a broken phase of an
even larger Higher Spin symmetry group.

1.2 AdS/CFT

AdS/CFT plays an important role in the field of Higher Spin Theories, and
is a major reason for the current interest [40–42]10 .

This correspondence, states that specific gravity theories in d+ 1 dimensions
in an AdS background are dual to Conformal Field Theories (CFTs) living on the
d−dimensional boundary of the AdS space.
The most famous correspondence exists between type IIB superstring theory in
the AdS5 × S5 background as dual to N = 4 Super Yang-Mills in 4 dimensions.
When we say that the two theories are equivalent, several things are meant:

• The isometries of the global symmetry group on the gravity side is the same
as the (bosonic) symmetry group of the CFT side. For instance, we’ve men-
tioned before that the isometry group of AdSd+1 is SO(d, 2). This is also
exactly the conformal algebra in d dimensions, see Appendix A.2.

• There is a dictionary that can match observables and objects from one theory
to another (eg. fields in AdS correspond to certain operators on the CFT
side).

• There is a relation between the partition functions of the gravity theory and
that of the CFT, Zbulk ∼ ZCFT once certain identifications have been made.
In particular, at the boundary, we have the relation:

Zbulk[φ0] = 〈e
∫
Oφ0〉CFT , (1.26)

where φ0 designates the boundary value of the fields of the bulk gravity
theory, while O are the operators which are dual to those fields (ie. they act
as sources on the boundary).

As we saw, Vasiliev theory naturally prefers to live in backgrounds like AdS.
Furthermore, it necessarily contains gravity, since there is no consistent trunca-
tion of the Higher Spin algebras which excludes spin 2 fields. A natural question

10We cite [43–45] as an incomplete list of reviews and introductions to the topic.
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is the whether there is a duality between Vasiliev theory and some CFT. This was
answered in the positive in [46]. There, it was found that there is a duality be-
tween Free O(N)/U(N) vector models and Vasiliev theory. Let us introduce the
vector model briefly, and sketch how it is related to Vasiliev theory.

1.2.1 Free O(N)/U(N) vector model

As the name implies, the vector model corresponds to a theory of N scalar
fields in the vector representation of a global O(N) or U(N) group. Since it is
more general, we will focus on the latter case which requires the scalars to be
complex. In d dimensions, the action of the theory is then simply:

SCFT,0 =
∫

ddx ∂µφ∗i ∂µφi (1.27)

where i = 1 . . . N correspond to the group index. The equation of motion is then:

�φ = 0 . (1.28)

This theory is indeed invariant under the unitary transformations φi → Ui
jφj.

However, it also benefits from many more symmetries, including conformal sym-
metries. To see this, we seek currents which are conserved on the equations of
motion. In this section we focus on currents which are bilinear in φi. This is
because they have a clearer interpretation in the context of AdS/CFT, as will be
explained later. The first one is given by:

Jµ
1 = iξ

(
φi∂µφ∗i − φ∗i ∂µφi

)
(1.29)

where we have included the infinitesimal gauge parameter ξ for reasons that will
soon be obvious, and the subscript 1 reflects the fact that the current contains 1
derivative.
Noether’s theorem implies that this conserved current is due to a continuous
symmetry of the action. The infinitesimal symmetry in question is: 11

δ1φi = iξφi , (1.30)

11Following Noether’s theorem, the conserved current allows us to find the symmetry from
whence it arises, by constructing a conserved charge, Q1 ≡

∫
dd−1x J0. The charge then generates

the symmetry via δφ = [Q1, φ].
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which is simply generated by the operator T1 ≡ i1. 12

Looking at (1.29), it is possible to see that there exist more conserved cur-
rents containing higher derivatives. For instance, given the traceless energy-
momentum tensor:

Tµν = 2∂(µφ∗∂ν)φ− 1
2 ηµν∂ρφ∗∂ρφ− 1

2 φ∗∂µ∂νφ− 1
2 φ∂µ∂νφ∗ (1.31)

Tµ
µ = ∂µTµν = 0 (1.32)

we can construct a conserved current with the conformal Killing vector ξµ:

Jµ
2 ≡ Tµνξν , ∂µ Jµ

2 = 0 , (1.33)

with:
∂(µξν) +

2
d

ηµν∂ρξρ = 0 . (1.34)

This current actually arises due to the conformal invariance of the free scalar ac-
tion. Infinitesimally, the symmetries act as:

δ2φi = ξµ∂µφi (1.35)

and are generated by Pµ, Mµν, D, Kµ, the generators of the conformal algebra. In
fact these can be arranged into one generator of the SO(d − 2, 2) algebra, MAB

with A, B ∈ (−1, 0, . . . , d− 1) - See Appendix A.2 for details . This generator is
antisymmetric, which means its representation in Young diagram is:

MAB ∈
SO(D−1,2)

(1.36)

At this point, one can see how to extend this procedure. We can keep build-
ing a tower of traceless conserved currents with s derivatives. Schematically,
these look like (see [47, 48]):

Jµ1...µs ∼ is

(
∑
k

∂(µ1...µk φ∗i ∂µk+1...µs) φi

)
− traces (1.37)

12Note that exponentiating this generator allows one to see that this symmetry corresponds to
the global U(1) phase shift φ→ eiξφ.
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Jµ
µµ3...µs = 0 = ∂µ Jµµ2...µs . (1.38)

Then, given the rank s− 1 Killing tensors satisfying:

∂(µ1ξµ2...µs) +
s− 1

d + 2s− 4
η(µ1µ2 ∂µ ξµ3...µs)µ = 0 , (1.39)

we get a conserved current Jµ
s ≡ Jµµ2...µs ξµ2...µs

, which gives rise to symmetries of
the form

δsφi = ξµ1...µs−1∂µ1
. . . ∂µs−1

φi . (1.40)

These are generated by order s− 1 differential operators.

As it turns out, these operators can be classified into two-row Young Dia-
grams of length s − 1, just like the ones we saw in the construction of massless
higher spin algebras earlier.

This opens up another avenue to illustrate the infinite dimensionality of
these algebras. Indeed, the action of the spin 2 generators is linear in partial
derivatives. One can see that a commutators of these two operators must be at
most linear in derivatives as well (the second order term vanishes by antisym-
metry). However as soon as we include operators of order 2, their commutators
generate operators of order 3, and so on.

We conclude this subsection by pointing out that we could have take real
scalar fields with a global O(N) algebra instead. The discussion would have
stayed the same, except that we would have only had currents of even order
in derivatives, ie. generators of even spin.

1.2.2 Relation between vector model and Vasiliev theory

Having introduced some features of both Vasiliev theory and vector models,
we can notice some similarities. Most glaring at this point is the manifestation
of the same higher spin algebra - namely the one spanned by generator in the
two-row Young tableaux SO(d, 2) tensors. Beyond that, the duality between the
two models has been made more precise, let us list how.

• There is a duality between the fields of the bulk Vasiliev theory, and primary
single-trace U(N) invariant operators of the free vector model. Here single
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trace implies that there is only one sum over N 13. This pertains to our
currents Jµ1...µs which , by virtue of being conserved, then match to massless
fields in the bulk. Those are precisely the ones we have in the “maximal”
Vasiliev theory, containing all integer spins.

• There is an additional single-trace invariant operator, J0 ≡ φiφ
i. This corre-

sponds to a scalar field in the bulk, though it is not massless. Instead, it has
the mass of a conformally-coupled scalar, m2 = −2d(d− 2)Λ.

• If the vector model has O(N) symmetry instead, the same discussion ap-
plies, but the dual theory is the “minimal” Vasiliev theory containing only
even spins.

• Correlation functions of the single-trace operators in the vector model cor-
respond to Witten diagrams in AdSd+1. Expressions for such correlation
functions can be found in [49–52]. Three-point functions were used to re-
construct cubic vertices in for a certain class of Vasiliev theory in [53].

• The dimensionless coupling of the bulk higher spin theories correspond to
gv ∼ 1

N1/2 . That is to say, we can write the bulk theory’s partition function
as:

Zbulk =
∫

Dφ e−NSbulk , (1.41)

where N plays the role of the coupling (ie. Sbulk has no N dependence ).

• One-loop checks of this duality exist. From (1.41), the effective action for
the bulk theory can be written as:

Γbulk ≡ − log Zbulk = NS + Γ1 +
1
N

Γ2 + . . . (1.42)

where the first term subsumes classical contributions to the partition func-
tion, while the other terms are quantum corrections. In the free CFT, the cor-
responding quantity one can explicitly compute is the free energy FCFT ≡
− log ZCFT and find that it is strictly proportional to N. Together with the
expectation that Zbulk ∼ ZCFT, this implies that the quantum contributions
in the bulk theory should all vanish. Explicit computations for a free mass-
less higher spin theory, or a Vasiliev theory in the bulk have shown that
Γ1 = 0 indeed [54, 55] 14.

13Multi-trace operators correspond to multi-particle states in the bulk theory.
14For a summary discussing quantum corrections in higher spin theories see [56]. For compu-

tations in more general higher spin theories see [57].
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1.3 Conformal Higher Spin Theories

We are now led to an interesting observation. There actually exists a higher
spin theory living on the boundary - even though that boundary is flat.
Indeed, on the CFT side, we can introduce new fields, hµ1...µs

which enter in the
action via:

SCFT =
∫

ddx φ∗� φ−∑
s

1
s!

Jµ1...µs hµ1...µs
. (1.43)

These “shadow” fields have dimension 2− s and act as sources for our conserved
operators. Following the AdS/CFT relation between partition functions, these
fields also have the interpretation as the Dirichlet boundary conditions for the
bulk higher spin fields φs:

∫
Dφs e−Sbulk

∣∣∣∣∣
φs(z=0)=hs

= 〈e−SCFT〉CFT (1.44)

It turns out that performing these integrals allows us to define a theory of Con-
formal Higher Spins (CHS). As these theories are the main subject of this thesis,
we will introduce them in more detail in Chapter 3. For now we just state some
of the attractive features that motivate studying the theory.

CHS theory is a fully interacting higher spin theory that can be realised in
flat space - it avoids no-go theorems by having higher derivative kinetic terms
and being non-unitary. This last fact is of course problematic if one wants to
quantize the theory, but it also inherits nice UV properties as a result. What’s
more, due to the AdS/CFT relation we sketched above, one can use CHS theory
to better understand massless higher spins in AdS. Finally, the theory is rife with
non-trivial cancellations due to its large symmetry group. This will be a one of
the focal points of this thesis.

1.4 Thesis Outline

The spin 2 truncation of CHS theory is given by the relatively well under-
stood theory of Conformal Gravity. This will be the focus of Chapter 2, where
we will introduce the theory, and study its scattering amplitudes. In effect, Con-
formal Gravity will be used as a toy-model to study some of the features of CHS
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theory and its amplitudes: it will allow us to study some of the peculiarities of
higher derivative on-shell states, and look at the question of defining a scattering
amplitudes for higher derivative theory. We will also cover some of the work
presented in [3] and introduce the twistor formalism which allows us to write
down a formula capturing all possible tree level 3-point scattering amplitudes in
the theory.

Chapter 3 will be our introduction to CHS theory. There, we will look at
CHS symmetry by studying the maximal symmetry of the Laplace operator. We
will then show how to induce the full CHS theory by looking at the logarithmic
divergence of a scalar field coupled to background CHS fields through traceless
bilinear currents. Next, we explicitly compute the relevant sectors of the theory in
preparation for amplitude computations. Finally, we will categorise the on-shell
scattering states by generalising the twistor formulation of Conformal Gravity in-
troduced the previous chapter.

Chapter 4 will contain the bulk of the computation done in [1]. That is to say,
we’ll be looking at scattering scalar fields coupled to CHS theory, and observing
some interesting cancellations. This will give us the opportunity to observe first-
hand the action of the large symmetry group on observables. We will also discuss
1-loop amplitudes in this context.

Chapter 5 pertains mainly to [2], which looks at tree-level scattering in pure
CHS theory. Once again, non-trivial cancellations will be observed. We will also
briefly discuss the latter half of [3], that is to say look at a twistor formula captur-
ing all scattering amplitudes of the theory, including higher derivative modes.

Chapter 6 moves the discussion to curved space, where we present some pre-
viously unpublished results. More precisely, we discuss how in curved spaces,
the CHS symmetry is deformed to become nonlinear, which introduces some
non-diagonal terms in the action. We compute these deformations, which allow
us to infer the form of these non-diagonal terms, and compute some new non-
diagonal contributions to the theory’s conformal anomaly.

Finally, Chapter 7 will be the conclusion. There, we will summarise the re-
sults presented here and give some parting remarks regarding the outlook of the
field.
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The appendices found at the end are split as follows. Appendix A will give
some conventions and explain the notation, and include general background ex-
positions that are not immediately tied to the main topics of the thesis.
Appendix B includes some useful tools and introduction to the formalisms that
we make use of.
Finally, C is reserved for more technically involved computational details of the
later sections.
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Chapter 2

Conformal Gravity

Einstein’s action for gravity (with a cosmological constant) is both remarkable
and elegant:

SE =
∫ √

|g| (R− 2Λ) . (2.1)

Despite its importance and successes, we know that it is inconsistent at the quan-
tum level. In particular, its UV properties are problematic as in d > 2 dimensions
it is non-renormalisable.

One is then led to look for alternatives. One such possibility is to look for
theories that are described by curvature invariants, like Einstein gravity, but po-
tentially with higher derivatives. For instance with the addition of RabRab or R2 to
(2.1). As it turns out, adding these terms makes the theory renormalisable [58],15.

The cost for studying higher derivative theories, is that they are non unitary
in general. Despite this, they remain very interesting. One such theory of particu-
lar interest is Conformal Gravity, also known as Weyl Gravity. It boasts conformal
invariance which means it has close ties with the action of twistor string theory,
as explored in [60]. It has soft UV properties and is renormalisable [58]. There has
also been some phenomenological interest in the theory, though when it is consid-
ered in conjunction with Einstein gravity, [61]. Furthermore, in [62], it is shown
that at the classical level, Weyl gravity contains classical information of Einstein
gravity. More precisely, by studying Conformal gravity in AdS and picking the
correct boundary conditions, at the classical level is equivalent to Einstein Grav-
ity. 16.

15For a review on adding quadratic curvature terms to Einstein gravity, see [59].
16Note that including interactions with matter problematic, as the ghost modes of conformal

gravity may then lead to problems despite the boundary conditions, as claimed in [63].
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For us, one final reason to study it is that Conformal Gravity provides the low-
spin truncation of Conformal Higher Spin theories. In some sense, the conformal
group is the maximal bosonic spacetime group of symmetry for a given dimen-
sion, and Conformal Gravity is the gauging of that group [64]. As such, it is
a relatively well understood cornerstone between the rest of CHS and its large
symmetry group. In particular, we will later be able to generalise straightfor-
wardly certain results we obtain in this chapter to the case of CHS theory.

Much of this chapter is closely based on the parts of [3] which deal with Con-
formal Gravity; we will proceed as follows. Our first section in this chapter will
focus on a toy scalar model to see how one might approach theories of higher
derivatives. We will then introduce the action of conformal gravity, comment on
its symmetries and its propagating degrees of freedom. Finally, we will compute
some of its scattering amplitudes and make some remarks on the structures that
appear.

2.1 Higher Derivative Scalar Models

In this section, we will be studying the higher derivative scalar action

L1 = −1
2

ϕ�2ϕ (2.2)

as well as an interactive extension. In this simple model, some of the features and
peculiarities of higher derivative theories can already be explored.

The first comment one should make is about the propagator of (2.2) which
goes as D̃F ∼ k−4 instead of the usual k−2 behaviour. This is a boon for renor-
malisability: the superficial degree of divergence of an interacting version of the
theory will be drastically improved. However this is also an issue, since the the-
ory becomes non-unitary, which will be the topic of the first subsection. There,
we will briefly (and incompletely) comment on the unitarity of higher derivative
theories. We will then go through the process of trying to define the theory’s
“scattering amplitudes”. In order to do so, we will first explore the option of
expressing it as an ordinary derivative theory, before redefining what we mean
by a scattering amplitude. Finally, we will give a few quick examples of such
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amplitudes in an interacting version of the model.

2.1.1 Unitarity

When doing canonical analysis on a theory of the likes of (2.2), we find that
it is non-unitary. Indeed, Ostrogradsky showed - under some assumptions - that
the Hamiltonian of such theories will contain a term linear in at least one of the
canonical momenta: H ∼ PiQj + . . .. This allows it to reach arbitrarily low ener-
gies for large negative values of the canonical momentum Pi [65]. This reflects the
presence of “ghosts”, ie. degrees of freedom which carry negative energy. This
is disastrous for a theory: if any interactions are present, it becomes entropically
favored to produce these ghosts and the system is unstable.

The theories we study in this thesis are non-unitary. While we make no
claims to the contrary, it is interesting to note that not all higher derivative theo-
ries are non-unitary. We quickly mention here some of the ideas on this subject in
the literature.

First of all, Ostrogradsky’s theorem assumes that the theory is non-degenerate,
meaning that the higher time derivative can be expressed as a function of canon-
ical momenta. Degenerate theories (such as f (R) theories) can thus avoid the
instability. This is related to the fact that they are actually related to 2nd deriva-
tive theories by field redefinitions, making them stable (see eg. [66]).
A different possibility is to make a system stable by adding appropriate con-
straints to it, see [63].
Another avenue is to consider alternative quantisations of these higher-derivative
theories, see [67–71].
More recently, complexification of higher derivative theories as a means to restore
unitarity has been considered [72].
Finally, in [73–75], the mechanism by which certain higher derivative theories be-
come unitary is explored, namely when these are considered as non-analytical
Wick rotations of their Euclidean versions.

2.1.2 Relation to Ordinary Derivative theory

Let us attempt to highlight one of the ways one can approach higher deriva-
tive theories - namely the attempt to define our higher derivative theory as a
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simple limit of a theory with 2 derivatives.
The motivation for trying this is as follows: the Lagrangian (2.2) can be seen as
the ε→ 0 limit of:

L2 = −1
2

ϕ(�+ ε2)�ϕ . (2.3)

In (2.2) and (2.3), the scalar field has mass dimension [ϕ] = 0 which means that
ε has mass dimension [ε] = 1. Now, we notice that the propagator goes as
D̃F ∼ 1

k2(k2−ε2)
which can be separated D̃F ∼ − 1

ε2

(
1
k2 − 1

k2−ε2

)
. This seems to

indicate that we can express L2 - and consequently L1 - as a 2-derivative theory
of two different fields. The fact that both of these fractions have opposite sign
indicates that one of these fields will be ghost-like.

Let us see how that is done. We introduce the auxiliary field ϕ′ with mass
dimension [ϕ′] = 1 and write:

L′2 = −ε2 1
2

ϕ�ϕ− εϕ′�ϕ +
1
2

ε2(ϕ′)2 . (2.4)

The algebraic equation for ϕ′ is

ϕ′ = ε−1�ϕ , (2.5)

which upon substitution in (2.4) gives us (2.3), so the two actions are equivalent.
Now we can diagonalise L′2 through the field redefinitions:

ϕ→ ε−1 (α + β) ϕ′ → −β , (2.6)

where α and β are scalar fields of dimension [α] = [β] = 1. We then obtain:

L′2 → −
1
2

α�α +
1
2

β
(
�+ ε2

)
β . (2.7)

We have thus obtained an action for a massive and massless 2-derivative scalar
field. What’s more, notice that one of the two fields has the wrong sign for the
kinetic term, and is therefore ghost-like, as expected 17.

This treatment highlights an important fact: going back to L1 requires taking
the limit ε → 0. This limit clearly does not commute with the redefinition (2.6);
in other words, the original theory (2.2) and the diagonal theory (2.7) are not an-

17One could explore the option of Wick rotating one of the fields, ie. β → iβ, but introducing
interactions is then problematic, and this will in general not be enough to restore unitarity.
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alytically connected.18 Actually, considering the case of vector fields or higher
spin fields is even more troublesome, as the inclusion of a mass term necessar-
ily breaks some gauge invariance resulting in mismatching number of degrees
of freedom. As was studied in [77], one could simply keep the form of (2.4), ie.
formulate higher derivative theories as an ordinary theory along with some aux-
iliary fields to be integrated out later, without diagonalising. However, for the
purposes of computing on-shell amplitudes scattering ghost modes, this analysis
is problematic.
Instead, we will stick with the Lagrangian (2.2), and modify the way we compute
scattering amplitudes.

2.1.3 Solution to equations of motion

Loosely speaking, scattering amplitudes correspond to taking well-separated
free states of the theory, and bringing them closer so that they may interact. Before
properly defining that, let us first study the free solutions to our particular theory.

The equation of motion for (2.2) is simply �2ϕ = 0. A basis for the solutions
is given by:

ϕ0 = (A + (n · x)B) eik·x k2 = 0 , (2.8)

where A parametrises typical plane-wave modes which also satisfy the 2 deriva-
tive equation �ϕ0 = 0, while B parametrise growing “ ghost” modes, first found
for the Pais-Uhlenbeck 4-derivative oscillator [78]. Here, na corresponds to a vec-
tor such that n · k 6= 0, though the particular form of na does not matter. Indeed,
(2.8) is merely a basis for solutions of the equation of motion - a full solution in-
cludes an integration over arbitrary wave modes. As such, different choices of na

do not correspond to different solutions, since a complete solution corresponds
to arbitrary linear combinations of (2.8) [60, 76].

The fact that the ghost modes grow uncontrollably near the boundary is a
manifestation of the lack of unitarity we were talking about in the previous sec-
tion. Still, we would like to consider the formal object of a scattering amplitude of
these modes. Clearly, the usual LSZ prescription isn’t enough for that. One pos-
sibility is to modify it. One could repackage (2.8) by writing ϕ0 = exp(iN(k) · x),

18See [76] for a treatment of this limit.
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with N(k)a ≡ ka + α na representing a “shifted” momentum. The expressions are
then identical after Taylor expanding to first order in α. This allows us to use
LSZ with a crucial difference: a typical scattering momentum space amplitude
looks like A(p1, . . . pn)δ

(4)(∑i p2
i ) . Here the amplitude will instead be replaced

by Ã(N(p1), . . . N(pn))δ
(4)(∑i N(pi)

2). Upon Taylor expanding, the coefficient
of ∑k εk would give the scattering amplitude with growing modes on the corre-
sponding legs and non-growing modes on the others. Note that in general, such
amplitudes may not follow momentum conservation since they will be propor-
tional to derivatives of the momentum conserving delta function 19.

In general, this approach is rather messy. Furthermore when we generalise
this discussion to the case of conformal gravitons, some of the subtleties arising
from gauge invariance are harder to see. In conformal field theory or in AdS
where the notion of “asymptotic states” is not well defined, the prescription is
ambiguous. As such, we won’t pursue this idea further. Instead, we will choose
to study the on-shell effective action, which is well defined.

2.1.4 On-shell action

The “on-shell effective action” is a useful object which is equivalent to the
theory’s S-matrix for typical fields [79,80]. What’s more, it remains a well-defined
object for higher-derivative studies, so we will be employing it in our computa-
tions. First, let us introduce it heuristically using a generic model for a theory of
field(s) Φ. We start with the action

S[Φ] =
∫

ddx (L0[Φ] + Lint[Φ]) (2.9)

L0[Φ0] = ΦDkinΦ . (2.10)

where Dkin is an invertible kinetic operator and Lint contains the interactions. We
denote the solutions of the free equations of motion Φ0, and the solutions of the
full equations of motion Φcl:

δL0
δΦ

∣∣∣∣∣
Φ=Φ0

= 0 ,
δ (L0 + Lint)

δΦ

∣∣∣∣∣
Φ=Φcl

= 0 . (2.11)

19Alternatively, this can be seen by rewriting the x-dependence of (2.8) in terms of derivative
with respect to the momentum, which when integrated by parts may spoil momentum conserva-
tion.
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It is possible to parametrise the latter solutions by the former:

Φcl = Φ0 + D−1
kin

δLint
δΦ

∣∣∣∣∣
Φ=Φcl(Φ0)

, (2.12)

here, D−1
kin is the inverse operator of Dkin defined by its green function, G, via

D−1
kinΨ(x) ≡

∫
dy G(x− y)Ψ(y). This equation is implicitly solved iteratively or-

der by order in Φ0

In this language, the generating function for the connected S-matrix is given
by:

S [Φ0] = W[J]

∣∣∣∣∣
J=φ0Dkin

(2.13)

Since this corresponds to amputating legs, and multiplying the amplitude with
the free solutions. This is equivalent to the LSZ reduction formula for the usual
setup, but does not require us to define asymptotic states.
It turns out that the following relation holds:

e
i
h̄S [Φ0] '

∫
DΦ e

i
h̄ S[Φcl+Φ] (2.14)

where the integration is over fields that decrease at infinity and “'” means that
the expression holds up to some boundary terms which we will ignore in our
discussion 20.
Expanding this expression in orders of h̄ leads us to the conclusion that the tree-
level S-matrix of the theory is simply given by the multi-linear part of the on-shell action
parametrised by the free fields, Φ0

21. In other words,

S tree[Φ0] ' S[Φcl] (2.15)

20These boundary terms arise due to the fact that Φ0 do not decrease sufficiently fast at infinity
and there is therefore an ambiguity between different equivalent actions if one integrates by parts.
In the end, including these modifications will only change the overall constant of the amplitude,
but not the steps of the computation [79, 80].

21Actually, it turns out that there is a relationship between the full S-matrix and the effective

action: S [Φ0] = Γ[Φ∗] where Φ∗ is the solution to the “quantum equation of motion”, δΓ[Φ]
δΦ

∣∣∣∣∣
Φ∗

=

0. For our purposes, the tree-level relation will be enough.
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2.1.5 Examples: 3 and 4-point amplitudes

Let us illustrate this with the example of our higher derivative scalar along
with the interaction Lagrangian:

L0 = −1
2

ϕ�2ϕ Lint = −
g
3!

ϕ3 − λ

4!
ϕ4 (2.16)

The free fields satisfy:
�2ϕ0 = 0 , (2.17)

while the classical fields ϕcl satisfy:

�2ϕcl = −g
2

(
ϕcl
)2
− λ

3!

(
ϕcl
)3

. (2.18)

These can be expanded in an infinite series of the free fields:

ϕcl = ϕ0 −
g
2
�−2 (ϕ0)

2 +
g2

2
ϕ0�

−2 (ϕ0)
2 − λ

3!
�−2 (ϕ0)

3 +O(ϕ4
0) . (2.19)

Now, following (2.15), we can easily see that the 3-point amplitude is can be ob-
tained from:

S tree
3 [ϕ0] '

∫
d4x

(
ϕcl�2ϕcl − g

3!

(
ϕcl
)3
) ∣∣∣∣∣

ϕ3
0

=
∫

d4x
g
3!

(ϕ0)
3 (2.20)

where the last line is obtained after properly taking the boundary term into ac-
count.

In order to obtain the amplitude, one needs to label the legs by subbing ϕ0 =

∑3
i εiφ0,i and look at the coefficient of ε1ε2ε3. After plugging in the plane wave

solution (2.8), the different terms give us the amplitudes of various ghost and
plane-wave modes. For instance, the term corresponding to scattering 3 plane-
wave modes would give us A(p1, p2, p3) = g. This matches what one would have
obtained by using the usual Feynman rules and computing the diagram:

(2.21)
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and amputated the external legs. What about the 4-point amplitude? The rele-
vant part of the on-shell action is:

S tree
4 [ϕ0] '

∫
d4x

g2

4
ϕ2

0 �
−2 (ϕ0)

2 − λ

4!
(ϕ0)

4 (2.22)

The first term corresponds to the usual exchange diagrams and will lead to the
s, t, u channels, while the second term is a contact diagram.

k
= g2

2 k−4 = λ

To summarise, we have studied a simple scalar higher-derivative model. Its
non-unitarity is apparent already at the level of equations of motion, and we have
thus adopted the rather formal approach of studying its on-shell equations of
motion. In the case where we use the plane-wave solutions, this gives us a well-
defined amplitude, like the LSZ formula would. As such, we can say that those
solutions are admissible, and safely use them in scattering computations [2, 81].
What this model didn’t display was the interplay between higher derivatives
and gauge symmetry, as well as the presence of interactions containing deriva-
tives. When studying models of fields with spin s > 0, these features become
important. This leads to finding more admissible states, which must be carefully
defined, as we will see next section.

2.2 Conformal Gravity

We are now ready to introduce the main topic of this chapter. The conformal
gravity action in 4 dimensions is given by:

SW =
∫ √

|g|CabcdCabcd (2.23)

where Cabcd is the Weyl tensor, defined in appendix A.3. Being quadratic in cur-
vature, it has the soft UV properties alluded to before, and it is also the unique
quadratic curvature action which is invariant under conformal transformations:
gab(x)→ O(x)gab(x)22.

22Note that this is no longer true if it is added to the Einstein action (2.1).
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For most of this chapter, we can instead use a slightly different formulation of the
action:

SCG =
∫ √

|g|
(

R2
ab −

1
3

R2
)

. (2.24)

Indeed, the Gauss-Bonnet term:

G =
∫ √

|g|
(

RabcdRabcd − 4RabRab + R2
)

(2.25)

is a topological invariant, which implies the equivalence of (2.23) and (2.24) up to
boundary terms.

Let us now study the theory’s equations of motion in order to characterise
its scattering states.

2.2.1 Equations of Motion

The equations of motion arising from (2.23) are:

1√
|g|

δLW
δgab

≡ Bab = 0 , (2.26)

where Bab is the Bach tensor (see appendix (A.32)), which can be written as

Bab =

(
DcDd +

1
2

Rcd
)

Wacdb . (2.27)

Note that it is a tensor of 4th order in derivatives. Completely analogously to the
case we saw last section, certain solutions of 2-derivative equations solve (2.26).
Indeed, for an Einstein manifold satisfying Rab = gab α, with α a constant, we can
see that (2.27) vanishes.

In this chapter we will be interested in solutions which are perturbed around
flat space. To this end, let us chose the metric to be

gab = ηab + hab (2.28)

Infinitesimal diffeomorphisms and metric rescaling transformations are then given
by:

δεhab = ∂aεb + ∂bεa , (2.29)
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δαhab = ηabα . (2.30)

Taking this into account, we write the equations of motions, which can be ob-
tained by looking at the linear perturbation of the Bach tensor:

B(1)
ab ∝ �2hab + ∂aVb + ∂bVa −

1
2

ηab∂cVc = 0 , (2.31)

where we defined:
Va ≡

1
3

∂a
bchbc −�∂bhba , . (2.32)

As an aside, one can indeed compare this to the linearised Einstein equations,

G(1)ab ∝ ∂abhc
c − ∂a

chbc − ∂b
chac + ∂c

chab = 0 (2.33)

and explicitly show that (2.33) is contained in (2.31) 23. This will become clearer
by picking a gauge.

The next step is to give the solutions to (2.31). This approach will explicitly
allow us to see how many degrees of freedom our theory carries. The discussion
will follow along the lines of section 2.1.3, except that here the presence of gauge
symmetries (2.29)-(2.30) complicates things. As such, we will first have to pick a
gauge, then solve the equations of motion.

We first pick a traceless gauge, ha
a = 0 using the algebraic gauge variation

(2.30). This modifies (2.29) to become:

δhab = ∂aεb + ∂bεa −
1
2

ηab ∂cεc , (2.34)

meaning we must fix this gauge freedom to define propagating solutions of (2.26).

2.2.2 Fixing the gauge

Conformal Gauge

This subsection will follow along the lines of the analysis presented in of [82].
We pick what we will call the “conformal gauge”:

Va = 0 (2.35)

23In other words, it is possible to add a suitable linear combination of (2.33) and its derivatives
to (2.31) to make the LHS vanish.
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where Va was defined in (2.32). The reason for this choice is that the equations of
motion (2.26) now reduce to simply: 24

�2hab = 0 . (2.36)

Similarly to the scalar case, this has the solution:

hab(x) = (Aab + Bab(n · x)) eik·x , k2 = 0 , (2.37)

where once again, n · k 6= 0 , Aab and Bab are symmetric traceless polarization
tensors. They are further constrained by (2.35):

(n · k)Bcbkb − 1
4 ikakb Aabkc = 0 . (2.38)

At this stage, we note that we haven’t fully fixed the gauge. The equations of
motion are left unchanged by the shift:

δhab = ∂aξb + ∂bξa −
1
2

ηab∂cξc , (2.39)

so long as �2ξa = 0. This ξa is of the form:

ξa(x) = (ua + va(n · x)) eik·x . (2.40)

where ua and va are just constant vectors. Combining (2.40) and (2.37), we see
that the polarization tensors are fixed up to the transformations:

δAab = iuakb + iubka − 1
2 igabuckc + vanb + vbna − 1

2 gabvcnc (2.41)

δBab = ivakb + ivbka − 1
2 igabvckc . (2.42)

Let us pause and count degrees of freedom. We started with the 2× 10− 2 = 18
degrees of freedom of the traceless tensors Aab and Bab. The condition (2.38) re-
moves 4 of those, and the choice of ua and va will allow us to remove 2× 4 = 8
more. So in total we have 18− 12 = 6 physical degrees of freedom. This matches
the counting done in [83, 84].

One question remains: what type of fields do these degrees of freedom cor-

24As a quick aside, we mention that using the diffeomorphism invariance of Einstein gravity,
one may pick the gauge V′a ≡ ∂bhba − 1

2 ∂ahb
b = 0, which reduces (2.33) to �hab = 0. This makes

manifest our earlier assertion: though this graviton is not traceless, it clearly solves eq. (2.36).
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respond to? In order to answer that, it is most convenient to go to a particular
basis, and fix the remnant gauge. Then, it becomes useful to switch to a helic-
ity basis, so that each degree of freedom is associated with a particle of definite
helicity. This is done in appendix C.1. In the end, we can show that Aab can be
decomposed into 4 helicity modes: ±2 and ±1, while Bab contains 2 modes of
helicity ±2. So it seems we have recovered the usual Einstein oscillatory modes
of helicity ±2 and gained four more of helicity ±2 and ±1, only two of which are
growing.

At this stage, one might be tempted to draw the conclusion that the helicity
±1 ghost modes correspond to valid scattering states, and move on to computing
amplitudes. However, one needs to be more careful: it turns out that this decom-
position is not gauge-invariant. Let us see this explicitly in a different gauge.

TT gauge

We now choose the traceless transverse (TT) gauge:

∂ahab = 0 ha
a = 0 (2.43)

Once again this leads to the equations of motion (2.36) except that this time the
conditions on the polarization tensor are

ka Bab = 0 , i ka Aab + na Bab = 0 . (2.44)

which accounts for 8 conditions. Once again, there is some residual gauge left, of
the form (2.39), but this time ξa must also satisfy

�ξa +
1
2

∂abξb = 0 , (2.45)

in order to preserve (2.43). In terms of the polarization tensors, this translates to
a variation parametrised by a single constant vector ua:

δAab = i
(

uakb + ubka −
2
5

ηabu · k
)
− i u · k

5 n · k (kanb + kbna) , (2.46)

δBab =
2
5

u · k
n · k kakb .

The DoF counting gives the same result: 2× 9− 2× 4− 4 = 6.
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The remnant gauge fixing is done explicitly in Appendix C.1, and one finds
that the decomposition is different: we still have two sets of spin ±2 helicities,
one oscillatory and one growing, but this time the spin 1 modes are mixed: they
have a purely oscillatory part and a growing part. In other words, it is possible
to isolate the helicity ±1 modes contained in ηab in a generic frame as:

hab ∼
(
(1− 2i n · x)S(±)

ab + (1 + 2i n · x)S̃ab

)
eik·x , (2.47)

where Sab and S̃ab are constant matrices of helicity ±1 which depend only on ka

and na.

This may seem worrying, but it is actually somewhat expected: the field hab

is not a gauge-invariant quantity, so there is no reason that its helicity decompo-
sition should be as well. This seems problematic for the our study of amplitudes:
which modes are oscillatory and suitable for scattering, and which modes are not?

To answer this question, we must look at the gauge-invariant quantity asso-
ciated with hab, namely the linearised curvature 25. If we pick, say, the conformal
gauge and compute C(1)

abcd using the relevant solution for hab, it splits into a purely
oscillatory part and a growing part:

C(1)
abcd = Mabcd + xeNabcde .

Crucially, we find that the helicity ±1 modes are only contained within Mabcd

while the growing part, Nabcde is solely composed of the growing helicity ±2
ghosts. Since this is a gauge-invariant statement, we can now definitively say
that there are two states of admissible modes: the two-derivative Einstein gravi-
tons and the helicity ±1 modes.

2.2.3 Two-derivative formulation of Conformal Gravity

Another perspective comes from reformulating the theory as a 2-derivative
theory, much like we did for the scalar field in section 2.1.2. We start with the
modified action (2.24). One way to reduce it to a two-derivative theory is to sim-

25Note that only the curvature Ca
bcd is invariant under conformal transformations, while for

instance Cabcd is not. However, at the linearised level and around flat-space C(1)a
bcd = ηaeC(1)

ebcd =

. . ., so C(1)
abcd is a gauge invariant quantity.
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ply introduce an auxiliary tensor ϕab and rewrite the action as

L̂W = −
√
|g|
(

ϕabRab −
1
2

ϕa
aR +

1
4

ϕab ϕab − 1
4

ϕa
a ϕb

b

)
(2.48)

which leads back to (2.24) upon integration of ϕab. It turns out to be more il-
luminating to build Weyl gravity as a gauged theory of the conformal group
SO(2, 4) [85], to get [77]:

L′W = −
√
|g|
[

ϕabĜab +
1
4(ϕab ϕab − ϕa

a ϕb
b) +

1
4 FabFab

]
. (2.49)

with:

Ĝab ≡ Rab −
1
2

gabR + D(abb) +
1
2

babb − gab(Dcbc − 1
4bcbc) (2.50)

Fab = ∂abb − ∂bba , (2.51)

where Da is the covariant derivative with respect to gab. Here, ϕab and ba are
the gauge fields associated to special conformal transformations and dilatation
respectively. This action has the usual Weyl invariance of the metric, but is also
invariant under:

δϕab = 2D(aζb) + 2b(aζb) − gabbcζc , δba = ∂aλ− ζa . (2.52)

Already, we can see that the field ba has a Stuckelberg-type symmetry and can be
fully gauged away. This brings L′W into the form of L̂W , in (2.48), thus ensuring
that we are dealing with an equivalent action. However an interesting observa-
tion can be made by picking a different gauge. If we linearise the action around
a flat background like in the previous section, we find the equations of motion to
be:

ϕab = −2(Ĝab − 1
3 gabĜc

c) = −2(Rab − 1
6 gabR)− 2∂(abb) + ... , (2.53)

∆2ϕab + ... = 0 , (2.54)

∂aFab + ∂a ϕab − ∂b ϕcc + ... = 0 . (2.55)

where the dots indicate terms of higher orders in the fields, ∆2 is the linearized
Einstein operator: Gab = 1

2 ∆2hab + O(h2) , so that ∆2 = −�+ · · · ( see appendix
A.3 for the relevant linearised curvatures). We then use the Weyl and diffeomor-
phism invariance of the theory, as well as (2.52) to fix the TT gauge on hab and the
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harmonic gauge on ϕab:

∂ahab = 0 , ha
a = 0 ; ∂a ϕab =

1
2

∂b ϕc
c , (2.56)

Plugging this in (2.53)-(2.55) and taking traces and derivatives of those, we get
the extra conditions:

�hab = ϕab + 2∂(abb) ; �ϕab = 0 , ϕa
a + 2∂aba = 0 ; �ba = 0 , (2.57)

Finally, on-shell it is possible to use the remnant gauge invariance of ϕab to fix
ϕa

a = 0 much like in the usual treatment of Einstein perturbations (see eg. [86]).
This then sets ∂aba = 0.

From these equations, we see that the field ϕab describes a massless purely
oscillating field while ba is a massless vector. As for hab, it satisfies �2hab = 0
so it can be expanded in terms of an oscillatory and growing part, like in (2.37).
However, the growing part is related to the ξ gauge-invariant combination of
ϕab + 2∂(abb). Overall, this means that we have 2 + 2 + 2 = 6 DoFs, as predicted.
The admissible states are contained by the oscillatory part of hab and ba.

The attractive feature of this representation is that the action is that it gives a
nice off-shell and non-linear separation of the theory’s degrees of freedom. This
allows us to predict what certain 3-point amplitudes will look like. Indeed, we
can see that the “mixed” scattering consisting of amplitudes A(b, h, h) of two Ein-
stein gravitons and one massless vector field ba will vanish - regardless of helic-
ity. Furthermore, A(b, b, h) will correspond to the cubic amplitudes obtained in
Einstein-Maxwell theory: the only possible contributions will come from the lin-
earisation of the term

√
|g|FabFcd gacgbd.

It remains to be seen whether similar arguments may be extended to the mixed
amplitudes of 4-points and higher.

2.3 3-point amplitudes in Conformal Gravity.

We would now like to compute scattering amplitudes in the theory. It is
known that at tree-level scattering amplitudes of Conformal Gravity with Ein-
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stein modes on the external legs are all trivial, [1,2, 62,81,87] 26 , but the question
of the helicity ±1 modes remain. We will compute these, and focus on three-
point functions as they are considerably simpler due to the absence of any inter-
nal propagators on internal legs 27.

When we fully fixed a gauge earlier, we had to choose a particular frame.
However, when we have to consider several on-shell momenta and correspond-
ing polarization tensors at once, this becomes clunky. Furthermore, it can be
shown that three point amplitudes for massless theories are trivial for real mo-
menta - we will have to look at complexified momenta. Since we are in d = 4
and computing the scattering of massive states, we are therefore naturally led to
employ the spinor helicity formalism (see appendix B.1 for a brief review). In
the next subsection, we translate the earlier results for polarization tensors and
linearised curvatures to the spinor helicity language. This will then be used to
compute the scattering amplitudes and express them in a convenient way.

2.3.1 Polarization Data in Spinor Helicity Formalism

In 4 dimensions, the Weyl tensor decomposes into a self-dual (SD) and anti
self-dual sector (ASD). The spinor helicity formalism makes this manifest:

Cabcd = εα̇β̇εγ̇δ̇ Ψαβγδ + εαβεγδ Ψ̃α̇β̇γ̇δ̇ (2.58)

where above, we understand that the equality means after translating to the lan-
guage of SL(2, C) spinor indices. Hence, Ψ̃ and Ψ are the SD and ASD Weyl
tensors respectively.

The free equations of motion are relatively simple:

∂αα̇ ∂ββ̇ Ψ̃α̇β̇γ̇δ̇ = 0 , ∂αα̇ ∂ββ̇ Ψαβγδ = 0 , (2.59)

where we now understand Ψ̃ and Ψ to mean the linearised curvatures. Guided by

26 In particular, amplitudes scattering the Einstein modes in flat space were computed in
[88] where they started with the twistor string theory description of [60]. This is related to
non-minimal supergravity which includes coupling to a dimension 0 scalar via, schematically
φ�2φ + (1 + k φ + ...)C2 + .... The tree-level amplitudes then receives only contributions from the
scalar exchange, implying that the pure Conformal Gravity amplitude is trivial.

27In the language of the on-shell action, this statement can be translated as “absence of non
local operators like �−2”.
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the previous section, in order to solve these, we write :

hab = εab eik·x . (2.60)

We now seek the various εαα̇ββ̇ which can solve these equations. To do so, we

introduce the auxiliary spinors aα, ãα̇, which must satisfy [ãλ̃], 〈aλ〉 6= 0. This
condition actually fixes the auxiliary spinors up to a scale. In fact, we will impose
the normalisations:

〈a λ〉 = 1 = [ã λ̃] (2.61)

which fixes ã and a to have little group weight −1 and +1 respectively.

Finally, we are able to write down solutions to (2.59), expecting to get the
same spectrum that we derived in the covariant formalism before. Indeed, the
most obvious solutions are the usual Einstein helicity ±2 modes:

ε
(−2)
αα̇ββ̇

= κ λαλβ ãα̇ ãβ̇ , ε
(+2)
αα̇ββ̇

= κ λ̃α̇λ̃β̇ aαaβ , (2.62)

where κ is a constant of proportionality. One can straightforwardly show that the
linearised curvature tensors obtained using these polarizations are:

Ψ(−2)
αβγδ = κ λαλβλγλδ ei k·x , Ψ̃(+2)

α̇β̇γ̇δ̇
= κ λ̃α̇λ̃β̇λ̃γ̇λ̃δ̇ ei k·x . (2.63)

From this one can see that κ must have conformal dimension [κ] = −1. 28 This
actually arises because these objects are the familiar Einstein linearised curvature:
they satisfy the linearised Einstein equations:

∂αα̇ Ψ̃α̇β̇γ̇δ̇ = 0 , ∂αα̇ Ψαβγδ = 0 , (2.64)

which are lower in derivatives. Note that this dimensionful constant is not intrin-
sic to Conformal Gravity, it is merely introduced by selecting lower derivative
solutions. In [62], where it is shown explicitly how to obtain classical Einstein
solutions from Weyl solutions, the constant κ is explicitly related to Newton’s
constant: κ =

√
8πGN. Note that above the dependence of the auxiliary spinors

drops out - they play the role of pure gauge in this sector of the theory. Further-

28This can be seen as follows. Momentum spinors have mass dimension [λ] = [λ̃] = 1
2 by

definition. Since the metric in spinor coordinates is given by ds2 = εαβεα̇β̇dxαα̇dxββ̇ meaning that

the Levi-Civita symbols scale with weight 1
2 . Finally, the Weyl tensor has weight [C] = +2, so that

[Ψ̃] = [Ψ] = +1 Under a rescaling with weight +1.

48



more, these linearised curvatures satisfy the linearised Einstein equations (2.64).

Next, we express the helicity ±1 modes through the polarization tensors:

ε
(−1)
αα̇ββ̇

= λ(αaβ) ãα̇ ãβ̇ , ε
(+1)
αα̇ββ̇

= λ̃(α̇ ãβ̇) aαaβ . (2.65)

these, in turn, give rise to the following linearised curvatures:

Ψ(−1)
αβγδ = a(αλβλγλδ) ei k·x , Ψ̃(+1)

α̇β̇γ̇δ̇
= ã(α̇λ̃β̇λ̃γ̇λ̃δ̇) ei k·x , (2.66)

where we note that the auxiliary spinors do not vanish - they are not pure gauge
here.

Finally, there is one other type of polarization tensor that solves (2.59): these
are the growing helicity ±2 modes. Introducing a further set of auxiliary spinor
β, β̃ normalised as a, ã:

〈β λ〉 = 1 = [β̃ λ̃] , (2.67)

we write:

ε
(−2)
αα̇ββ̇

= β̃γ̇xγ̇(αλβ) ãα̇ ãβ̇ , ε
(+2)
αα̇ββ̇

= βγxγ(α̇λ̃β̇) aαaβ , (2.68)

which lead to the growing curvatures:

Ψg(+2)
αβγδ = λ(αλβλγ xδ)

α̇ β̃α̇ ei k·x , Ψ̃g(−2)
α̇β̇γ̇δ̇

= λ̃(α̇λ̃β̇λ̃γ̇ xδ̇)
αβα ei k·x . (2.69)

This concludes the list of independent polarization tensors, and their associated
linearised curvatures which solve eq. (2.59). Writing these down so far required
us to make correct guesses using our understanding of the types of solutions
from the covariant formalism, but we will soon see a way to derive them more
inductively from the twistor formalism.

2.3.2 Relation to double copy description

We now address, as an aside, the relation between the formulation above,
and a possible double copy description of Conformal Gravity. More precisely,
in [89], is shown certain “non-minimal” conformal gravities can have their am-
plitudes constructed from the tensor product of kinematic operators from two
different spin 1 gauge theories [90,91]. These gauge theories are Yang-Mills, and
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a higher derivative version of it, whose kinematic term schematically looks like
(DF)2.

On the gravity side, we note that “non-minimal” conformal gravity is dif-
ferent from the one we study (it contains additional scalars whose couplings to
the graviton is controlled by arbitrary functions cf. [4, 60, 92–94]) but at the lin-
earised level the two are identical. This translates to the fact that we can see a
manifestation of this double copy in the polarization data of our theory. Indeed,
the Yang-Mills polarization tensors are simply given by:

ε
(−1)
αα̇ = λα ãα̇ , ε

(+1)
αα̇ = λ̃α̇ aα . (2.70)

One can then simply see that taking a symmetric product of these polarization
tensors lead to the Einstein polarizations - eg. ε

(−2)
αα̇ββ̇

= ε
(−1)
αȧ ε

(−1)
ββ̇

. Taking a closer
look at the four-derivative theory considered in [89], its equations of motion are:

�∂a Fab = 0 , (2.71)

which is clearly solved by the gluons (2.70). Once again, there exist more solu-
tions: there are helicity ±1 growing modes: Ag

a ∼ (n · x)Ba εi k·x, which are non-
admissible states. There is also an oscillatory scalar mode, whose polarization is
given by :

e(0)αα̇ = aα ãα̇ . (2.72)

One can see that taking symmetric products of these spin 0 modes with the ear-
lier modes (2.70), we can recover the Conformal Gravity helicity ±1 oscillatory
polarizations (2.65).

2.3.3 Conformal Gravity 3-Point amplitudes

We now have all the ingredients to compute the 3-point function. Taking the
definition of (2.15), to compute a particular amplitude, all we need is to simply
compute the cubic part of the action and plug in the appropriate solutions (2.65)
and (2.62).

We first note that 3-point functions have a constraint: only MHV or MHV
amplitudes can be non vanishing - that is to say amplitudes involving the scat-
tering of two positive and one negative helicity particles or two negative and one
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positive. Furthermore, due to 3-point special kinematics one can show that MHV
(respectively MHV ) amplitudes must be a function of only dotted (undotted)
spinors [95, 96]. Below, we will focus on MHV, knowing that MHV amplitudes
can easily be obtained via conjugation (ie. swapping angle and square brackets).

We now state the results of computing the MHV on-shell cubic action using
the various external legs polarizations.

3 Einstein Gravitons

A3(1
−, 2+, 3+) = 0 . (2.73)

The amplitude is trivial. This is a known result and a nice sanity check. [1, 2, 62,
81, 87].

1 spin 1 ghost and 2 gravitons

A3(a1, 2+, 3+) = κ2 [2 3]5

[1 2] [3 1]
δ(4)
( 3

∑
i=1

λiλ̃i

)
= 0 . (2.74)

The second equality is implied by crossing symmetry: it can be seen that
A3(a1, 2+, 3+) = −A3(a1, 3+, 2+) implying that it actually vanishes.

2 spin 1 ghost and 2 gravitons

A3(a1, ã2, 3+) = κ
[2 3]4 〈a1 1〉 [ã2 2]

[1 2]2
δ(4)
( 3

∑
i=1

λiλ̃i

)
. (2.75)

This is the first amplitude which is truly non-vanishing. In fact, it is further sim-
plified when we impose the normalisations (2.61):

A3(a1, ã2, 3+) = κ
[2 3]4

[1 2]2
δ(4)
( 3

∑
i=1

λiλ̃i

)
. (2.76)

The kinematics of this amplitude match what is expected for the scattering of
particles of helicity (−1,+1,+2) from [96]. Furthermore,2.76 is proportional to
an Einstein-Maxwell scattering amplitude, as we predicted in section 2.2.3.
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Other amplitudes

Other amplitudes involving admissible states are found to vanish. We could,
formally, compute other “amplitudes” using the modes of (2.68). Generically,
these amplitudes were computed in [88] in the context of twistor-string theory.
We note that there exists a degenerate configuration leading to a perfectly finite
expression, namely when we scatter one growing ghost and two Einstein modes:

A3(β̃1, 2+, 3+) = κ2 [1 β̃1]
[2 3]6

[1 2]2 [3 1]2
δ(4)
( 3

∑
i=1

λiλ̃i

)
. (2.77)

This amplitude was first found in [97]. Despite the existence of this amplitude,
the growing ghosts are still unphysical: should they be included in the set of ad-
missible scattering states they will lead to amplitudes which aren’t well defined,
even if a few degenerate finite configurations exist.

Finally, we note that it is possible to obtain the MHV analogue of (2.76) by
simple conjugation:

A3(a1, ã2, 3+) = κ
〈2 3〉4

〈1 2〉2
δ(4)
( 3

∑
i=1

λiλ̃i

)
. (2.78)

2.4 Twistor-spinor representation and Scattering For-

mula

In the previous section, we successfully computed amplitudes involving any
external states. However, the computation of each of those amplitudes requires
the evaluation of the on-shell action where we have fixed the polarization tensors
to have the correct form by hand. One could ask whether it is possible to obtain a
compact expression, which depends on some generalised notion of polarization
tensors, and which captures all the amplitudes we’ve computed above.

As it turns out, there is such a formula, and it can be obtained by enhancing
the spinor-helicity formalism and using “twistor-spinors” 29.

29 This is similar to the way one can use spinor helicity to describe massive states by including
indices of the little group [98–100].
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The usefulness of the twistor formalism ultimately descends from the fact
that conformal symmetry acts linearly in twistor space. In other words, there is a
connection, known as the Cartan connection (or local twistor connection), which
acts covariantly on sectinos of the local twistor bundle [101–103]. Consequently,
it is a natural language to study any conformally invariant field theory, and as
such the results we will obtain for CG in this way will later naturally generalise
to CHS theory.

First we will see how one can repackage the linearised Bach equations (2.59)
by introducing a twistor-spinor object, before showing how to obtain the various
on-shell states that we had before. Finally we will reach the convenient formula
eqs. (2.117) and (2.118).

2.4.1 Twistor-Spinors and Lower Derivative formulation

We now introduce twistor indices, A, B, C which are equivalent to spinor
indices of SL(4, C) [104,105]. We split the four values of these twistor indices into
SL(2, C) spinor indices of opposite chirality according to:

TA(x) =

(
t̃α̇(x)
tα(x)

)
, SA(x) =

(
s̃α̇(x)
sα(x)

)
. (2.79)

A “twistor-spinor” object is then a tensor carrying both twistor indices and spinor
indices. It follows the constraint that its traces vanish:

TAβ =

(
t̃α̇β

tα
β

)
, tα

α = 0 . (2.80)

As we said before, there is a Cartan connection which acts covariantly on these
tensors. It is given by:

Dαα̇ = Dαα̇ +Aαα̇ , (2.81)

where Dαα̇ is the usual Levi-Civita connection and A is a 1-form which takes
values in the (complexified) conformal algebra sl(4, C). This “potential” is given
by:

(Aαα̇)
B

C =

(
0 δγ

α δ
β̇
α̇

−Pαα̇βγ̇ 0

)
, (2.82)
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where Pαα̇γβ̇ is the Schouten tensor given in terms of the trace free Ricci curvature
Φαβα̇γ̇ and the scalar curvature Λ:

Pαα̇βγ̇ ≡ Φαβα̇γ̇ −Λ εαβ εα̇γ̇ . (2.83)

The action of the connection on a twistor object can be deduced according to

Dαα̇TB = Dαα̇TB + (Aαα̇)
B

C TC , Dαα̇SB = Dαα̇SB + (Aαα̇)B
C SC , (2.84)

and the fact that it follows the Leibniz rule [105].

Conformal Gravity can be described as a gauging of conformal symmetry - it
is for this reason that the language of twistors is appropriate here: twistor indices
are in spinorial representations of the Conformal Group. Furthermore, the Cartan
connection is conformally invariant (unlike the Levi-Civita connection). This can
be seen by showing that the curvature built from this connections:

[Dαα̇, Dββ̇] = (Fαα̇ββ̇)
C

D =

(
εαβ Ψ̃α̇β̇δ̇

γ̇ 0

(εβα∇γ
ρ̇Ψ̃α̇β̇δ̇ρ̇ + εβ̇α̇∇δ̇

ρΨαβγρ) εβ̇α̇ Ψαβγ
δ

)
.

(2.85)
is covariant with respect to conformal transformations [106]. Note that this prop-
erty will extend to the case of CHS theory, which is also conformally invariant.

Another reason to use twistors is that they allow us to reduce the second-
order spinor equations (2.59) into first-order ones on a twistor-tensor [107, 108].
To see this, we consider the following twistor-spinor:

ΓAβγδ =

(
γα̇βγδ

Ψα
βγδ

)
, ΓAβγδ = ΓA(βγδ) . (2.86)

Enforcing the tracelessness condition of (2.80), we obtain:

Ψα
αγδ = 0 ⇒ Ψαβγδ = Ψ(αβγδ) . (2.87)

We will consider ΓAβγδ to be a field living in flat Minkowski space. We then use
the Cartan connection of (2.81) to impose a Maxwell-like equation of motion on
it:

Dββ̇ ΓAβγδ = 0 . (2.88)
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which, in flat space, gives us the system of equations:

∂ββ̇ γα̇βγδ = 0 , ∂ββ̇ Ψα
βγδ − γβ̇α

γδ = 0 . (2.89)

The latter equation is an algebraic equation for γβ̇α
γδ, which can be substituted

back into the first to obtain:

∂αα̇ ∂ββ̇ Ψαβγδ = 0 , (2.90)

as in (2.59). A conjugate operator can be introduced to obtain the positive helicity
sector:

Γ̃A
β̇γ̇δ̇ =

(
Ψ̃α̇

β̇γ̇δ̇

γ̃αβ̇γ̇δ̇

)
, Ψ̃α̇

α̇γ̇δ̇ = 0 , (2.91)

with the same equation of motion:

Dββ̇ Γ̃A
β̇γ̇δ̇ =

 ∂ββ̇Ψ̃α̇
β̇γ̇δ̇ − γ̃βα̇

γ̇δ̇

∂ββ̇γ̃αβ̇γ̇δ̇

 = 0 . (2.92)

Once again, these lead back to (2.59). In spirit, this procedure is similar to the one
we highlighted in section 2.2.3 for the covariant formalism.

2.4.2 Momentum eigenstates

We will now go to momentum state and find solutions of equations (2.88)
and (2.92). Focusing first on the negative helicity sector, we can write

ΓAβγδ = BA λβ λγ λδ ei k·x , (2.93)

where, once again, λα and λ̃α̇ are the spinors related to the null momentum ka.
One can show that λβ λγ λδ ei k·x corresponds to a helicity −3

2 Rarita Schwinger
field - the helicity can be easily counted from little group scaling. Since ΓAβγδ

solves the linearised ASD Bach equations, it must contain a helicity −2 state,
meaning that BA = (B̃α̇, Bα) is a helicity lowering operator. Furthermore, since
the curvature has mass dimension [Cabcd] = [Ψαβγδ] = 2 and using (2.89), we can
determine that its components have mass dimensions:

[B̃α̇] =
1
2

, [Bα] = −1
2

, (2.94)
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There exists a further condition on our twistor-spinor. Indeed, from its twistor-
space construction, one finds that it needs to satisfy (see [60, 87]):

CA ΓAβγδ = 0 . (2.95)

where CA is a differential operator on the on-shell momenta:

CA ≡
(
−i

∂

∂λ̃α̇

, λα

)
. (2.96)

If we make the assumptions

∂Bα

∂λ̃β̇

= 0 ,
∂

∂xββ̇
λ̃α̇B̃α̇ = 0 , (2.97)

the constraint (2.95) becomes a simple PDE in on-shell momentum space:

∂B̃α̇

∂λ̃α̇

+ i λα Bα = 0 . (2.98)

equations (2.97) then become:

∂B̃α̇

∂λ̃α̇

+ i λα Bα = 0 . (2.99)

The solution in terms of B̃α̇ is:

B̃α̇ =
∂B
∂λ̃α̇
− i

2
λ̃α̇λα Bα . (2.100)

This means that there are three degrees of freedom, carried by the spinors: {B, Bα}.
This is exactly what we expected from the negative helicity sector of the theory.
We now need to construct three distinct solutions for {B, Bα}, which obey the
equations of motion.

Let us start by finding the Einstein modes. As stated before, these satisfy
the reduced equation ∂αα̇Ψαβγδ = 0. As before, this introduces the dimension
−1 parameter, κ =

√
8πGN

30. The Einstein solution has helicity −2, we must
have that Ba ∝ λα. Furthermore, since Bα has mass dimension −1

2 , we can fix

30 Note that technically there exists another dimensionful parameter: Conformal Gravity, be-
ing conformally invariant, does not distinguish between Minkowski and (A)dS. This means that
when selecting Einstein solutions, we should also consider Λ, the cosmological constant. How-
ever, the value of this constant is Λ = 0 for a Minkowski background.
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Bα = κ λα. On the other hand, B has dimension +1, but there are no combinations
of available parameters that allow us to reach that. We must therefore set B = 0.
This concludes our search for the first solution:

Einstein: {B, Bα} =
{

0, κ λα} , BA = κ

(
0

λα

)
, (2.101)

which gives us the same linearised curvature as in (2.63).

Ψ(−2)
αβγδ = κ λαλβλγλδ ei k·x . (2.102)

We now look for the helicity −1 modes. As before, we introduce a spinor aα such
that 〈aλ〉 6= 0 which has mass dimension −1

2 . Once again balancing dimensions
leads us to write the solution:

Spin-1: {B, Bα} =
{

0, aα} , BA =

(
− i

2 λ̃α̇ 〈a λ〉
aα

)
. (2.103)

which leads to the linearised curvature of (2.104):

Ψ(−1)
αβγδ = a(αλβλγλδ) ei k·x (2.104)

From our earlier analysis, we know that this concludes the hunt for oscillatory
solutions. For completeness, we include the final solution. This one necessitates
the presence of another spinor β̃α̇ with mass dimension +1

2 . We then have the
growing solution:

Growing: {B, Bα} =
{
[λ̃ β̃], xαβ̇ β̃β̇

}
, BA =

(
β̃α̇ − i

2〈λ|x|β̃] λ̃α̇

xαβ̇ β̃β̇

)
,

(2.105)
which yields the solution of (2.69):

Ψg(−2)
αβγδ = λ(αλβλγ xδ)

α̇ β̃α̇ ei k·x , (2.106)

We can now construct the positive helicity sector in very much the same way. We
introduce the twistor spinor

Γ̃A
β̇γ̇δ̇ = AA λ̃β̇λ̃γ̇λ̃δ̇ εi k·x , AA = (Ãα̇, Aα) . (2.107)

where AA is a helicity raising operator. Once again the field obeys a geometric
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constraint:
C̃A Γ̃A

β̇γ̇δ̇ = 0 , C̃A ≡
(

λ̃α̇, −i
∂

∂λα

)
. (2.108)

Making similar assumptions to (2.99), we get the condition

i λ̃α̇ Ãα̇ +
∂Aα

∂λα
= 0 , (2.109)

which are solved by:

Aα =
∂Ã
∂λα − i

λα

2
λ̃α̇ Ãα̇ . (2.110)

Once again, there are three degrees of freedom contained in {Ã, Ãα̇}. The mass
dimensions of these fields are then :

[Ãα̇] = −1
2

, [Aα] =
1
2

, [Ã] = 1 . (2.111)

We introduce conjugate versions of the auxiliary spinors aα, β̃ȧ with the following
dimensions:

[βα] =
1
2

, [ãα̇] = −1
2

, (2.112)

This allows us to finally find the conjugate versions of eqs. (2.101), (2.103) and (2.105):

Einstein: {Ã, Ãα̇} =
{

0, κ λ̃α̇
}

, AA = κ

(
λ̃α̇

0

)
, (2.113)

Spin-1: {Ã, Ãα̇} =
{

0, ãα̇
}

, AA =

(
ãα̇

− i
2 λα [ã λ̃]

)
. (2.114)

Growing: {Ã, Ãα̇} =
{
〈λ β〉, xγα̇βγ

}
, AA =

(
xγα̇βγ

βα − i
2 〈β|x|λ̃] λα

)
.

(2.115)
which lead to the linearised curvatures:

Ψ̃(+2)
α̇β̇γ̇δ̇

= κ λ̃α̇λ̃β̇λ̃γ̇λ̃δ̇ ei k·x , Ψ̃(+1)
α̇β̇γ̇δ̇

= ã(α̇λ̃β̇λ̃γ̇λ̃δ̇) ei k·x , (2.116)

Ψ̃g(+2)
α̇β̇γ̇δ̇

= λ̃(α̇λ̃β̇λ̃γ̇ xα
δ̇)βα ei k·x .

Once again, we re-iterate that the auxiliary spinors aα, ãα̇, βα, β̃α̇ do not contain
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additional data, as the conditions:

〈a λ〉 6= 0 , 〈β λ〉 6= 0 , [ã λ̃] 6= 0 , [β̃ λ̃] 6= 0 ,

restrict them up to a scale. In general, we simply fix the normalisations (2.61) and
(2.94).

This concludes our reformulation of the equations of motion and polariza-
tion states in terms of twistor spinors. With all the ingredients in place, we can
write down the three-point amplitudes.

2.4.3 Twistor formula for three-point amplitude

Now that we have a way to encode all types of external polarization states,
we would like a formula that describes the three point amplitudes we computed
earlier. We expect it to explicitly depend on the twistor-valued objects AA, BA

and their conjugates, as well as on-shell momenta. Furthermore since we know
that the only-non vanishing amplitudes are either MHV or MHV, we can deduce
that they will involve either two AA twistors and one BA, or just one AA and two
BA twistors respectively.

Such a formula can indeed be derived from the twistor formulation of Con-
formal gravity [87, 109, 110]. Here we write the result for MHV amplitudes:

A3 =
[

A2 · C̃3

(
B1 · A3

[2 3]4

[1 2] [3 1]2
)
+ A3 · C̃2

(
B1 · A2

[2 3]4

[1 2]2 [3 1]

)]
δ(4)
( 3

∑
i=1

λiλ̃i

)
.

(2.117)
Here, C̃ is defined by (2.108) and acts on everything to its right - including the
delta function. Plugging in the various solutions for AA and BA gives us the
same result as the previous amplitudes eqs. (2.75) and (2.76).

The helicity conjugate formula for obtaining MHV amplitudes is given by

A3 =
[

B2 · C3

(
A1 · B3

〈2 3〉4

〈1 2〉 〈3 1〉2
)
+ B3 · C2

(
A1 · B3

〈2 3〉4

〈1 2〉2 〈3 1〉

)]
δ(4)
( 3

∑
i=1

λiλ̃i

)
,

(2.118)
where again, CA

i is defined in (2.96) and acts on everything to its right.
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One thing to note is that (2.118) is valid for any scattering states, including
growing ones. Once again, those will be ill-defined in general, although some de-
generate configurations may be finite. In order to actually compute them, we
need to change any x-dependence in the polarization modes in terms of mo-
mentum derivatives. For instance, for MHV growing modes, we would re-write
(2.105) as:

Bg
A →

 β̃α̇ +
β̃β̇

2 λ̃α̇
∂

∂λ̃β̇

−i β̃β̇
∂

∂kαβ̇

 . (2.119)

In particular, this formula recovers the strange amplitude of (2.77).

2.4.4 Scattering in an AdS background

We finish this chapter by taking a look at what the amplitudes we computed
would look like for non-vanishing cosmological constant Λ 6= 0.

For dS spacetimes, where Λ > 0, the notion of a scattering amplitude is am-
biguous (cf. [111–113]). We will instead look at AdS4 where a tree-level scattering
amplitude can also be defined in terms of a multi-linear piece of the on-shell
action, where the solutions obey particular boundary conditions 31. Since we are
computing amplitudes in a conformally invariant theory, they are related (at tree-
level) to amplitudes of half of Minkowski spacetime [114]. This means that AdS
amplitudes are the same as the flat-space ones up to boundary conditions.
Indeed, though Minkowski and AdS are related, they have a distinct boundary.
In particular, boundary terms that we drop when using (2.24) instead of (2.23)
cannot be ignored in AdS.

Furthermore, we must modify our notion of admissible states in AdS. In-
deed, in Minkowski we declared that only states leading to amplitudes that do
not violate conservation of momentum were physical. However, in AdS, full
momentum conservation is usually broken since there is no global space-like
Killing vector. Instead, AdS amplitudes have momentum conservation in the
directions parallel to the AdS boundary, while transverse momenta have a singu-
larity (cf. [113–116]). So in AdS, we will relax our notion of admissible states to
mean the ones which lead to an on-shell action with momentum conservation up

31At tree-level, one can relate such AdS amplitudes to the in-in formalism of dS by analytic
continuation [113].
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to AdS isometries.

Another difference we hinted at earlier will come during the analysis of
polarization states. In section 2.4.2 we made use of the fact that we only had
one non-zero dimensionful quantity. This leads to slightly different polarization
states.

Let us introduce the AdS4 metric: 32

δs2 =
δxαα̇ δxαα̇

(1 + Λ x2)2 , (2.120)

The utility of using these coordinates (2.120) is that the flat Λ→ 0 limit is smooth.
In these coordinates, the boundary of AdS4 is given by the 3-sphere satisfying
1+Λx2 = 0 in the affine Minkowski space charted by xαȧ. If we take the flat limit,
this hypersurface approaches the conformal boundary of Minkowski space, I .

Here, the linearised Bach equations are just the covariant form of (2.59):

Dαα̇Dββ̇Ψαβγδ = 0 = Dαα̇Dββ̇Ψ̃α̇β̇γ̇δ̇ . (2.121)

where Dαα̇ is now the Levi-Civita connection of (2.120).
These equations can be obtained - as before - by introducing the Cartan connec-
tion and using it to impose an equation on twistor spinors. In AdS4, is is given
by:

Dαα̇ = Dαα̇ + (Aαα̇)
B

C = Dαα̇ +

(
0 δγ

α δ
β̇
α̇

Λ εαβ εα̇γ̇ 0

)
, (2.122)

and we imposeDββ̇ΓAβγδ = D
ββ̇Γ̃A

β̇γ̇δ̇ = 0 . It is useful to rewrite these equations
in affine Minkowski coordinates (cf. [106]). For the negative helicity sector one
finds

∂ββ̇γα̇βγδ +
2 Λ

1 + Λ x2

(
xβ

α̇ γβ̇
βγδ − xββ̇ γα̇βγδ

)
= 0 , (2.123)

∂ββ̇Ψα
βγδ −

2 Λ

1 + Λ x2 xββ̇ Ψα
βγδ =

γβ̇α
γδ

1 + Λ x2 , (2.124)

32This unusual form of the AdS4 metric is obtained by the analytic continuation Λ→ −Λ of the
standard S4 metric, and a rescaling of coordinates to take into account the fact that |Λ| = 3R−2

instead of 1
4 R−2 in terms of the radius R of the sphere.
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where the positive helicity sector is found by conjugation.

Once again, we wish to find the independent solutions of the twistor-spinor

ΓAβγδ = BA λβλγλδ ei k·x , (2.125)

ie. the different solutions for the helicity lowering operator BA. The Einstein
and spin 1 mode can be found by deforming the flat space solutions eqs. (2.101)
and (2.103) respectively to give:

Einstein: BA = κ

(
2Λ xβα̇ λβ

λα

)
. (2.126)

(2.103)

Spin-1: BA =

(
i
2 λ̃α̇ 〈λ a〉 −Λ xβα̇ aβ

aα

)
, (2.127)

where aα is the same auxiliary spinor. The other spin 2 modes are a little different,
and cannot be found by deforming the flat space (2.105) modes. Instead, solving
the equations of motion (2.123) and (2.124), we find:

Spin-2: BA = Λ κ

(
xβ

α̇ λβ
i
2 x2 λα

)
. (2.128)

The physical interpretation of this last mode is different in AdS: on the boundary,
we have that x2 = −1/Λ, so saying that it is growing is erroneous - despite the
quadratic dependence on x. What is more, the curvature associated with it is fi-
nite 33.
This can be taken as further indication that the flat space limit is singular - other-
wise, the spin 2 modes (2.128) would have the flat-space growing modes (2.106)
as a limit.

Using this basis of AdS states, one should now be able to consider the “scat-
tering” amplitude. This analysis has yet to be done, but one can conjecture that
the flat-space amplitudes of (2.117) and (2.118) still hold up - up to some con-
tributions coming from the boundary. This claim is made in light of [62, 118]
which indicates that if one takes Neumann boundary conditions of CG on AdS,
we should get an amplitude proportional to Einstein Gravity amplitudes, with

33These spin 2 modes together with (2.127) correspond to the partially-massless graviton which
only has scalar gauge invariance [117].
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an overall factor of Λ.

By interpreting the x-dependence in the polarization twistors (2.126) as mo-
mentum derivatives, we get that Einstein polarizations are encoded by:

AA = κ

(
λ̃α̇

−2i Λ ∂
∂λα

)
, BA = κ

(
−2i Λ ∂

∂λ̃α̇

λα

)
. (2.129)

These can then be plugged into the amplitude formulae (2.117) and (2.118). For
the MHV case, one gets:

AΛ
3 (1

−, 2+, 3+) = −2i Λ κ3

[(
[2 3]− 2Λ

〈
∂

∂λ3

∂

∂λ2

〉)
[2 3]5

[1 2]2 [3 1]2

+

(
[3 2]− 2Λ

〈
∂

∂λ2

∂

∂λ3

〉)
[2 3]5

[1 2]2 [3 1]2

]
δ(4)
( 3

∑
i=1

λiλ̃i

)
, (2.130)

where we’ve made all derivative operators explicit. Note that since the square
brackets contain only dotted spinors, these derivatives act solely on the delta
function. Introducing the notation:〈

∂

∂λ3

∂

∂λ2

〉
=

[3 2]
2

∂

∂Kαα̇

∂

∂Kαα̇
, Kαα̇ ≡ (λ1 λ̃1 + λ2 λ̃2 + λ3 λ̃3)

αα̇ , (2.131)

and the “momentum wave operator”:

�K ≡
∂

∂Kαα̇

∂

∂Kαα̇
, (2.132)

we can rewrite (2.130) in the compact form:

AΛ
3 (1

−, 2+, 3+) = −4i Λ κ3 [2 3]6

[1 2]2 [3 1]2
(1 + Λ�K) δ(4)

( 3

∑
i=1

λiλ̃i

)
. (2.133)

Two remarks are in order. The first is that this amplitude is exactly proportional
to the Einstein Gravity MHV three-point amplitude. The second is that momen-
tum conservation is broken by the operator (1 + Λ�K). The second term breaks
momentum conservation, but this is as expected for an AdS amplitude.

The takeaway from this is that when tree-level Conformal Gravity ampli-
tudes vanish in flat-space they do so by being zero times the corresponding Ein-
stein Gravity amplitude, as one might expect from the fact that both theories are
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related.
More precisely, the statement is that a rescaled version of (2.133):

i AΛ
3 (1

−, 2+, 3+)

4 κ2 Λ
=

[2 3]6

[1 2]2 [3 1]2
(1 + Λ�K) δ(4)

( 3

∑
i=1

λiλ̃i

)
, (2.134)

gives exactly the MHV bulk contribution of Einstein Gravity in AdS4 [119, 120].
This ignores boundary contributions, but in the flat-space limit these contribu-
tions decouple, while the bulk terms have a smooth limit [121]. For complete-
ness, we include the corresponding formula for MHV amplitude, which can be
obtained by simply conjugating (2.133) :

AΛ
3 (1

+, 2−, 3−) = −4i Λ κ3 〈2 3〉6

〈1 2〉2 〈3 1〉2
(1 + Λ�K) δ(4)

( 3

∑
i=1

λiλ̃i

)
. (2.135)
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Chapter 3

Conformal Higher Spin Theory

This chapter is dedicated to introducing Conformal Higher Spin Theory [2, 4, 5,
77, 81, 122–136]. The idea is simple: to write down a conformally-invariant ac-
tion for fields of arbitrary spins. This was first done at the free level by Fradkin
and Tseytlin in [4]. Later , it was studied at the cubic level by Fradkin and Linet-
sky [122] 34. Finally, Segal introduced a consistent fully interacting action in [5].

Let us give a taster of the free action. We will focus on the case of d = 4,
although much of what we say has a generalisation for generic d. The quadratic
action of Conformal Higher Spins can be written simply [4] :

S2,CHS =
ns
2

∞

∑
s=0

∫
ddx ha(s)P

a(s),b(s)hb(s) , (3.1)

where ns are numerical constants, ha(s) is the spin s CHS field, and Pa(s),b(s) is an
operator of order 2s in partial derivatives which is traceless and transverse:

Pa(s),b(s) = Pb(s),a(s) , ∂a1
Pa1a(s−1),b(s) = 0 = ηa1a2

Pa1a2a(s−2),b(s) . (3.2)

This action is invariant under:

δ ha1···as
= ∂(a1

εa2···as)
+ η(a1a2

αa3···as)
, (3.3)

which are generalisations of diffeomorphisms and Weyl rescalings respectively.

As it turns out, it is possible to extend this theory to be fully interacting
(much like Conformal Gravity). This theory is rife with interesting features and

34See [123] for a supersymmetric generalisation.
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questions. For one, it is the gauge theory of an infinite dimensional algebra
[34, 137] . Each generator is associated with a conformal killing tensor - the ones
we mentioned in Section 1.2. This means that CHS fields therefore have a close
relation with massless higher spin fields via AdS/CFT: they are those fields re-
stricted to the conformal boundary, with a Dirichlet condition. Another point of
view is that the conformal fields are the sources for the higher derivative scalar
currents.

As we will explain later this chapter, the fully interacting CHS theory can be
obtained by integrating out the scalar fields in flat space, and keep the logarith-
mically divergent term. We thus obtain a local action which schematically looks
like:

S[h] ∼ log det
(
∂2 + ∑

s
hs Js

)∣∣∣
log Λ

∼∑
s

∫
d4x
(

hs∂
2shs + ∂s1+s2+s3−2hs1

hs2
hs3

+ ∂s1+s2+s3+s4−4hs1
hs2

hs3
hs4

+ ...
)

.

(3.4)

An important point about this theory is that each term has a definite derivative
structure. This can be understood by dimensional analysis: the free scalar fields
have mass dimension [φ] = 1 (in d = 4), so that the currents Js have dimension
2 + s. This means that the CHS fields have the “shadow dimension” [hs] = 2− s.
Since CHS theory has no dimensionful parameter and is local, this implies the
derivative structure of (3.4). This definiteness in the action leads to tremendous
simplifications later on.

The large symmetry group of the theory appears to be related to hidden sim-
plicity in the theory. We will explore this in the following chapters, but we briefly
mention that many observables seem to non-trivially vanish. For instance, the
contribution to the free theory’s 1-loop partition function in flat space is non-
trivial, but when summing all the contributions, it vanishes [55]. This mecha-
nism seems to imply the vanishing of the conformal anomaly’s a and c-coefficient
[55,57,127,134,135]. In the context of AdS/CFT, this agrees with the vanishing of
massless higher spin 1-loop partition function [57].

Crucially, this vanishing requires one to properly define how the sum over
infinite spin contributions is taken. In other words, one needs to introduce a regu-
larisation which is consistent with the underlying CHS symmetry of the theory. It
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turns out that tree-level amplitudes vanish after summation. These computations
(first done in [1,2], and the later part of [3].) will be the subject of Chapters 4 and 5.

In this chapter, we will first start by studying the action of the free U(N)
scalar field, and its full symmetries. This will allow us to discover the full CHS
algebra. Then, we will see how one can obtain a (unique) local action invariant
under this symmetry by integrating out those scalars and looking at the loga-
rithmic divergence, as in (3.4). The resulting action contains Maxwell theory and
Conformal Gravity as a lower spin truncation, which we will verify perturba-
tively. Finally, we will explicitly compute certain sectors of this action, which will
be relevant for use in later chapters.

3.1 Inducing Global CHS symmetry from a U(N) scalar

In this section we will be “inducing” the CHS action of [5]. Much of the
discussion is based on the references [126, 138]. Let us start with a theory of N
free complex scalars:

Sfree[φ] =
∫

d4x φ∗i �φi , i = 1, . . . , N , (3.5)

We will find it useful to express this in the operator formalism:

Sfree[φ] = 〈φ| P̂
2 |φ〉 , (3.6)

where φi(x) = 〈x|φ〉 and P̂a = i ∂a and the sum over i is implied by the bra-ket
inner product. Now we look for the most generic transformations which leave
(3.6) invariant. They are simply given by:

δ |φ〉 = Ô−1 |φ〉 , (3.7)

where the operator Ô is generated by the Hermtian generators:

Ô = e
1
2(Â+iÊ) . (3.8)

In order to leave (3.6) invariant, they must satisfy:

P̂2 Â = −Â† P̂2 , P̂2 Ê = Ê† P̂2 . (3.9)
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This is trivially satisfied for transformations of the form: 35

Ê = R̂ P̂2 , R̂ = −R̂† (3.10)

In conclusion, we must consider symmetries generated by Â and Ê satisfying
(3.9) modulo the trivial ones (3.10).

In order to study this we go to the Wigner representation reviewed in B.2.
The idea is to associate with any operator M̂ a symbol m(x, p) which takes values
in position space and is a polynomial in powers of momentum. Operator action
is replaced by the “Moyal star-product”, (cf (B.11)) . The transformation (3.7) then
takes the form:

δφ(x) = (e(x, p) + i a(x, p)) ∗ φ(x) (3.11)

= e−
i
2 ∂x2
·∂p (e(x1, p) + i a(x1, p)) φ(x2)

∣∣∣
x1=x2=x

p=0

, (3.12)

where e and a are the symbol associated with Ê and Â respectively. The condi-
tions (3.9) and (3.10) then become:

p · ∂x e− (p2 + ∂2
x)a = 0 , (3.13)

defined up to:

(e, a) ∼ (e, a) +
(
(p2 + ∂2

x) r , p · ∂x r
)

. (3.14)

The algebra is then determined by the Moyal commutator:[ (
e1 , a1

)
, (e2 , a2)

]
=
(
[ e1

?, e2 ]− [ a1
?, a2 ] , [ e1

?, a2 ] + [ a1
?, e2 ]

)
. (3.15)

This is actually the global CHS algebra. In particular, one can check that it con-
tains the conformal algebra (given in (A.13)- (A.15)) realised by (3.15) and :

Pa = (pa, 0) , Mab = (x[a pb], 0) , Ka = (xa x · p, xa) , D = (x · p, 1) ,
(3.16)

which is the maximal finite subalgebra. Among other generators, we can find

35This is related to “Zilch symmetries”. Indeed, the action is trivially invariant under δφi =

Cij δS
δφJ

for Cij = −Cji.
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hypertranslations
Pa1...ar

≡ p{a1
...par} , (3.17)

where {...} indicates the subtraction of all traces. These will play an important
role in constraining amplitudes later on.

We now turn our attention towards gauging this global symmetry. As such,
we will add a generic operator Ĥ to (3.6), so that

S[φ, h] = 〈φ| Ĝ |φ〉 , Ĝ ≡ P̂2 − Ĥ , (3.18)

where we pre-emptively wrote down the dependence on h, the Weyl symbol of
Ĥ. We now ask what are the most general symmetries of this action, with the un-
derstanding that the operator Ĥ itself will vary, reminiscent of the usual Noether
coupling procedure. The variation is given by (cf. (3.19)):

δ |φ〉 = Ô−1 |φ〉 , δĜ = Ô†ĜÔ , (3.19)

which leaves the action invariant as long as, infinitesimally:

δÊĤ =
i
2
[
Ĝ, Ê

]
δÂĤ =

1
2
{

Ĝ, Â
}

. (3.20)

Next, we notice that we can re-write the coupling in (3.18) as a trace:

Sint = 〈φ| Ĥ |φ〉 = Tr
[
|φ〉〈φ|Ĥ

]
. (3.21)

By finding the Weyl symbol of the operator |φ〉〈φ|, and using the trace identities
derived in Appendix B.2, one can express the interaction (3.21) as (see (B.20) and
(B.21)):

Sint[φ, h] =
∫

ddx J(x, ∂u)h(x, u)

∣∣∣∣∣
u=0

(3.22)

where the J(x, u) is the traceful current generator given by:

J(x, u) = φ∗i (x +
i
2

u) φi(x− i
2

u) . (3.23)
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Expanding this in terms of components, we can write

Sint[φ, h] =
∞

∑
s=0

1
s!

∫
ddx Ja(s)h

a(s) (3.24)

Ja(s) =

(
i
2

)s s

∑
n=0

(−1)n
(

s
n

)
∂a(n)φ

∗
i ∂a(s−n)φi . (3.25)

The gauge invariance expressed in (3.20) now becomes, in terms of Weyl symbols:

δe h(x, u) = (u · ∂x) e(x, u)− i
2

[
h(x, u) ?, e(x, u)

]
, (3.26)

δa h(x, u) =
(

u2 − 1
4

∂2
x

)
e(x, u)− 1

2

{
h(x, u) ?, a(x, u)

}
. (3.27)

Expanding this in terms of components reveals that the transformations are simi-
lar to those generated by ε and α in (3.3) - though the latter is modified: δaha(s) ∼
ηα(2)aa(s−2) + ks aa(s) where ks is some numerical constant.

So, to recap, we are studying a set of N complex scalars coupled to a general
background field, and we found that its action is given by:

S =
∫

ddx

(
φ∗i �φi −

∞

∑
s=0

1
s!
Ja(s)h

a(s)

)
(3.28)

The equations of motion are simply �φi ≈ 0 where “≈ ” is used to designate
equations which hold on-shell. One can easily check that the current generator
satisfies the on-shell relations:

(u · ∂x)J(x, u) ≈ 0 ,
(

∂2
u +

1
4
�
)
J(x, u) ≈ 0 , (3.29)

which relates to the fact that (3.28) invariant on-shell under the field-independent
part of transformations (3.26) and (3.27). This becomes an off-shell invariance
when we consider the full transformations of CHS fields (3.26) and (3.27) accom-
panied by (3.12).

The second equation in (3.29) looks almost like an on-shell tracelessness con-
dition, which is reminiscent of the traceless conserved currents we mentioned in
the context of AdS/CFT in section 1.2. Furthermore, we saw that the confor-
mal algebra was a subgroup of the CHS global algebra, which further indicates
that we should be able to relate the currents generated by J(x, u) to traceless-
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conserved currents.

This can indeed be done by introducing the d-dimensional projector Πd(u, ∂x)

(cf [126]):

Πd(u, ∂x) =
∞

∑
n=0

1
n! (−u · ∂u − d−5

2 )n

(u2 ∂2
x − (u · ∂x)

2

16

)n
, (3.30)

where (q)n = Γ(q+n)
Γ(q) is the Pochhammer symbol. We can then define a new set

of currents J(x, u) = Πd(u, ∂x)J(x, u), where the operator Πd(u, ∂x) ensures that
on-shell:

(u · ∂x)J(x, u) ≈ 0 , ∂2
u J(x, u) ≈ 0 , (3.31)

ie. it projects tensors onto their totally symmetric traceless transverse part. This
leads us to define the “undressed” CHS fields, (henceforth just CHS fields) via the
generating function h(x, u) ≡ Π−1

d (u, ∂x)h(x, u). From now on we will consider
S[φ, h] whose gauge symmetry is expressed in terms of ε(x, u) and α(x, u), which
are related to e(x, u)a(x, u) via:

e(x, u) = Πd+2(∂u, ∂x) ε(x, u) + (∂x · ∂u) Πd+2(∂u, ∂x)
1

2(d− 1) + 4 u · ∂u
α(x, u) ,

a(x, u) = Πd+4(∂u, ∂x) α(x, u) . (3.32)

In this basis, the statement is now that the action is invariant on-shell under the
field independent parts of the CHS transformation: 36

δεh(x, u) = (u · ∂x)ε(x, u) , δαh(x, u) = u2α(x, u) , (3.33)

When expressed in terms of components, this corresponds exactly to (3.3). Finally,
we write the action of the scalar coupled to the undressed fields φi:

S[φ, h] = φ∗i �φi −
∞

∑
s=0

1
s!

∫
ddx Ja(s) ha(s) . (3.34)

where the currents are traceless and conserved on-shell.37 Explicitly, they are

36For off-shell invariance, one needs to take (3.12),(3.26) and (3.27) and relate them to the pa-
rameters α and ε via (3.32).

37Note that these are the same currents mentioned earlier in Section 1.2.1.
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given by:

Ja(s)(x) = is 2s s! s!
(2s)!

s

∑
k=0

(s
k)(

s+k−1
2
s ) G(k)

a(s) , (3.35)

G(k)
a(s) =

[
(∂− ∂′)a(k)(∂ + ∂′)a(s−k)φi(x) φ∗i (x′)

]
x=x′

. (3.36)

3.2 CHS action as an effective action

We’ve now seen how to couple a general U(N) scalar field to an arbitrary-
background, as well as study the action of the symmetry. Now we will look at
how to actually define the CHS action.
We note at this stage that in [5] Segal originally defined his action in rather more
formal term, by taking the trace of the positive eigenspace of the operator Ĥ. For
us, it turns out to be operationally much simpler to obtain the theory as an in-
duced effective action.

More precisely, CHS action is obtained by regularising (3.34) then integrating
out the scalars φi. The coefficient of the logarithmic divergent term - which exists
only for even dimensions - is then the only coefficient which is invariant under
the CHS symmetries. This is closely related to the fact that the conformal anomaly
of a theory is itself Weyl invariant. To see this, consider the partition function of
some theory in a background h. If we introduce an energy cut-off Λ, and integrate
out the other fields, we get, (for even dimensions) :

Z[h] ∼ Z f in[h] + log(Λ)ad/2[h] + ∑
n 6=d/2

Λd−2nan[h] , (3.37)

where an are known as Seeley coefficients. Since the regulator sets a maximum
scale in the theory, any scale transformations must vary Λ as well. As such, if
Z[h] is classically scale invariant, only ad/2[h] can be scale invariant. 38 More
generally, in [126] it is shown that the coefficient of the logarithmic term is the
only one which is invariant under the full CHS symmetry generated by Ê and Â.
Furthermore, in that paper one can find the expression for the Seeley coefficient
ad/2, ie. for SCHS.

38Indeed, Z f in[h] must vary to compensate the variation of log Λ, while an[h] must vary to

compensate the transformation of Λd−2n.
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In fact, while in Chapter 4 we use some of the functional expressions given
in [126] - which were obtained using heat kernel methods, for Chapter 5 we will
want to use more explicit expressions whose spin structure is apparent and which
are in a gauge-fixed form, ready for computing amplitudes. We will now see how
to get such explicit expressions.

3.3 Structure of the CHS action

In this section, we compute certain terms of the CHS action through Feyn-
man diagram techniques. The action (3.34) contains no self-interactions between
the scalars. As such, when we integrate them out, the partition function is 1-loop
finite. Diagrammatically, this means that we can represent Z[h] as:

ΓCHS[h] ∼ + hs × + × × hs2
hs1 + . . .

∣∣∣∣∣
log Λ

∼ S0,CHS[h] + S1,CHS[h] + S2,CHS[h] + . . . (3.38)

where the complex scalars run in the loop, and the × represent insertions CHS
fields of arbitrary spins. By computing the logarithmic divergence of each of these
individual terms, we can compute explicitly certain sectors of the CHS action.
One way to do this is to think of the various diagrams terms in (3.38) as the
coefficients of the coinciding-point limit of the correlators 〈Js1

(x1)...Jsn
(xn)〉

∣∣
xi→x.

This can be done by using differential regularisation (see for example [139] ).
Instead, we will use dimensional regularisation by going to d = 4− ε dimensions.
The logarithmic divergence then appears as a 1/ε pole. More precisely, we get the
CHS action as:

ΓCHS[h] =
N

(4 π)2 ε
SCHS[h] + finite . (3.39)

Note that in doing so, the action comes with the coupling constant N, which is
the number of scalars running in the loop. For large N, we can use perturbation
theory.
The usefulness of this method is that we can pick out exactly which sectors of the
CHS action we want by simply computing the loops with the relevant number of
CHS field insertions. Furthermore, great simplification arises when we take those
fields to be already in the TT gauge.
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3.3.1 Lower Spin Sector

Before we compute the diagrams in (3.38), let us look more closely at the
lower spin (s = 0, 1, 2) truncation of CHS theory. As we’ve claimed before, it is
equivalent to the action of of a conformal scalar + Maxwell vectors + Conformal
gravity. More precisely, we obtain the same action but in a different basis of fields.
We start with the lower spin currents of (3.36) which are given by:

J = φi φ∗i , Ja =
i
2 (φ

∗
i ∂aφi − φi ∂aφ∗i ),

Jab =
1
3

[
∂aφ∗i ∂bφi + ∂bφ∗i ∂aφi − 1

2(φ
∗
i ∂a∂bφi + φi ∂a∂bφ∗i )

]
.

(3.40)

Assuming that the fields ha and hab are transverse and traceless (which is true on
the shell of φi), the scalar-CHS action takes the form:

L = ∂aφ∗i ∂aφi + h0φ∗i φi + ihaφ∗i ∂aφi +
1
2

hab∂aφ∗i ∂bφi (3.41)

where we’ve integrated by parts. This action must be compared with the more
familiar U(1) and Weyl invariant action of a scalar conformally coupled to the
metric gab = ηab + h′ab and the vector field h′a:

I =
∫

d4x
√
|g|
[
− gab(∂a − i

2 h′a)φ
∗
i (∂b +

i
2 h′b)φi + (h′0 − 1

6 R)φ∗i φi

]
. (3.42)

The two actions (3.41) and (3.42) are related by a non-linear field redefinition:

h′0 = h0 +
1
4 haha + 1

96(∂chab∂chab + 2hab�hab + 2∂chab∂ahcb) + ... , (3.43)

h′a = ha +
1
2 habhb + 1

4 habhbchc + ... , h′ab =
1
2 hab +

1
4 hachc

b − 1
16 ηabhcdhcd + ... ,

so in particular we can see that the scalar CHS field h0 subsumes many of the
standard higher point couplings, like the vector scalar hahah2

0 vertex.

It is known that if one integrates out the scalars φi in (3.42), the coefficient of
the logarithmic divergence is N times the action [140]: 39

S[h′0, h′1, h′2] =
∫

d4x
√
|g|
(

h′20 − 1
24 F′abF′ab + 1

60CabcdCabcd
)

, (3.44)

where F′ab = ∂ah′b − ∂bh′a and C is the Weyl tensor for gab. One can obtain knowl-
edge of the lower-spin vertex structure in CHS theory in the basis of the fields hs

39This is the bosonic sector of N = 1 conformal supergravity where h′0 is the auxiliary field.
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by using (3.44). For example, the vector scalar sector is given by:

S[h0, h1] =
∫

d4x
[
(h0 +

1
4 haha)2 − 1

24 FabFab
]

. (3.45)

If we studied the scattering of particles of spin 1, this sector of the action would
not contribute: the scalar h0 has an algebraic equation of motion h0 = −1

4 haha +

. . . where the dots are contributions of higher spins. Diagrammatically it implies
that the 4 point contact term is exactly cancelled by the exchange of an h0 parti-
cle. This means that we can already expect any non-trivial contributions to such
amplitudes to come from CHS exchanges. We now compute the vertices that will
be used for later chapters.

3.3.2 Quadratic Sector

We will now compute the quartic part of the CHS action, ie. S2,CHS from
the schematic expression (3.38). This will help us compute scattering amplitudes
later down the line, and we will want to do so using the TT gauge; this gauge
can be set using the linearised symmetries (3.3). 40 Using this, we can “integrate
by parts” the interactions in (3.34) easily. The result is that the momentum space
vertex which multiplies hs(p′ − p)φ∗(−p′)φ(p) is given by:

Va(s)(p) = 1
s! pa1

. . . pas
. (3.46)

Computing the relevant loop diagram with two CHS fields insertions:

h(p)s h(−p)s

k

k + p

(3.47)

we find that

S2,CHS[h] =
∞

∑
s=0

1
2s (2s+1)!

∫
d4x ha(s)�

s ha(s) . (3.48)

40Note that massless higher spins - whose free sector is given by the Fronsdal action - do not
have the algebraic part of the symmetry in (3.3), so one cannot make the field traceless off-shell.
This is one of the reasons computations in CHS theory are simpler.
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which is the expected TT gauge form of (3.1) with the constant

ns =
1

2s−1(2s + 1)!
. (3.49)

Inverting this, the momentum space propagator is then given by

Da(s)
b(s)(p) = 1

ns

1
(p2)s P

a1···as
b1···bs

(p) , (3.50)

where P is the TT projector ( see Appendix A.4 for its explicit form).

Note that this matches the expression obtained in d dimensions in [126] in
terms of generating functions (see A.1):

S2,CHS[h] = N
∫

dd p G(X, Y) h(p, u1) h(−p, u2)
∣∣∣
ui=0

. (3.51)

Here G(X, Y) is an operator on u1, u2 defined by:

G(X, Y) =
∞

∑
s=0

Γ( d−3
2 )

24s Γ(s + d−3
2 ) Γ(s + d−1

2 )
C( d−3

2 )
s

( X√
Y

)
Y

s
2 , (3.52)

where C(λ)
s (z) is the Gegenbauer polynomial and X and Y are given by:

X = p2 ∂u1
· ∂u2
− p · ∂u1

p · ∂u2
,

Y =
[
(p · ∂u1

)2 − p2 ∂2
u1

] [
(p · ∂u2

)2 − p2 ∂2
u2

]
. (3.53)

If we take this expression in the TT gauge, (3.52) simplifies drastically, since the
operator Y always contains traces or divergences, we can drop any monomial
containing Y. If we go to d = 4 the Gegenbauer polynomial further simplifies to
a Legendre polynomial, and finally we obtain

G(X, Y) =
∞

∑
s=0

Γ(1
2)

23s Γ(s + 3
2)

Xs

s!
+O(Y) . (3.54)

which leads to (3.48) when plugged in (3.51).
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3.3.3 Cubic Sector

Next, the cubic hs1
hs2

hs3
term is given by the UV divergent term in the dia-

gram:

h(p2)s2
h(p1)s1

k− p2

k k− p1 − p2

h(−p1 − p2)s3

(3.55)

Note that each spin s vertex comes with s derivatives. Since the action (3.34)
has parity invariance, this implies that the sum of the spins s1 + s2 + s3 must be
even. In Chapter 5, we will be interested in computing CHS scattering ampli-
tudes where we have on-shell lower spin particles on the external legs. As such,
we will need to compute cubic vertices with h0, ha, hab on the external legs, and
we can make the simplification that �ha = 0 = �hab. As explained in Chapter 2
there are more admissible scattering states for the spin 2 fields, but we shall treat
those differently. Here we write down the relevant vertices, while the details of
the loop-diagram computation will be given in Appendix C.2

Firstly, one can check by dimensional analysis that the 0-0-s vertices are all
trivial. Indeed, the fields have mass dimension [hs] = 2− s, and the relevant dia-
gram (4.55) implies there are s derivatives in the vertex. It is easy to check that it
is impossible to write down a local 0-0-s vertex without a dimensionful parame-
ter - which the theory lacks.

Next, we give the 1-1-s vertex. As we said, it is non-zero only for even s and
the relevant interaction term is found to be:

S3[h1, h1, hs] =
(−1)s/2

(s+2)!

∫
d4x
[
∂c(s)hahahc(s) − 2ha ∂a

c(s−1) hb hbc(s−1)

− ∂c(s−2)
d ha∂dhbhabc(s−2) − s

2 ∂c(s−2)�hahbhabc(s−2) − s
2 ∂c(s−2)ha�hbhabc(s−2)

]
,

(3.56)

We now give the 2-2-s vertex in momentum space. It is defined by
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Va1,a2,b1b2,c(s) = Va1a2,b1b2,c(s)(p1, p2) + Va1a2,b1b2,c(s)(p2, p1), with: 41

Va1a2,b1b2,c(s)(p1, p2) =
1

8 (s+4)!

[
− ∑
6=a′,b 6=b′

ηab p2a′ p1b′ (p1)c(s)

+ 2 ∑
a 6=a′

p2a′ p1b1
p1b2

ηac1
p1c2

. . . p1cs
− 2 ∑

b 6=b′
p1b′ p2a1

p2a2
ηbc1

p1c2
. . . p1cs

]
− p1·p2

16 (s+4)!

{
2(ηa1b1

ηa2b2
+ ηa1b2

ηa2b1
) (p1)c(s)

− 4( p1b1
ηa1b2

ηa2c1
− p2a1

ηa2b1
ηb2c1

+ sym a1,2, b1,2) p1c2
· · · p1cs

+
[
6 (ηa1c1

ηa2c2
+ ηa1c2

ηa2c1
) p1b1

p1b2
+ 6 (ηb1c1

ηb2c2
+ ηb1c2

ηb2c1
) p2a1

p2a2

− ∑
a 6=a′,b 6=b′

4 (ηac1
ηbc2

+ ηac2
ηbc1

) p2a′ p1b′
]

p1c3
· · · p1cs

}
+ (p1·p2)

2

8 (s+4)!

{
∑

a 6=a′,b 6=b′
(ηac1

ηbc2
ηa′b′ + ηac2

ηbc1
ηa′b′) p1c3

· · · p1cs

− (p1b1
ηa1c1

ηa2c2
ηb2c3

− p2a1
ηa2c1

ηb1c2
ηb2c3

+ sym c1,2,3) p1c4
· · · p1cs

}
− (p1·p2)

3

32 (s+4)! (ηa1c1
ηa2c2

ηb1c3
ηb2c4

+ sym c1,2,3,4) p1c5
. . . p1cs

,

(3.57)

where sym ci,j,... means that one is to add the terms required to make the expres-
sion symmetric in the indices (ci, cj, . . .).

Next, the 1-0-s vertex appearing in front of ha(p1) h0(p2) hc(s)(−p1 − p2) is:

Va,c(s)(p1, p2) =
2

(s+1)! ηac1
pc2
· · · pcs

. (3.58)

Here p can be either p1 or p2 since the vertex is symmetric under p1 ↔ p2 and s
must be odd. Next, keeping the same momentum assignment, the 2-0-s vertex is:

Va1a2,c(s)(p1, p2) =
1

(s+2)!

[
− (ηa1c1

p1 a2
+ ηa2c1

p1 a1
) p1 c2

. . . p1 cs

− 1
2 p1 · p2 (ηa1c1

ηa2c2
+ ηa2c2

ηa1c1
) p1 c3

. . . p1 cs

]
.

(3.59)

41Note that this vertex is not appropriate for the s = 2 case, since the relevant diagram has more
symmetry, which needs to be taken into account.
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For the 1-2-s vertex multiplying ha1a2
(p1) hb(p2) hc(s)(−p1 − p2), we get:

Va1a2,b,c(s)(p1, p2) =
1

(s+3)!

{
(ηa1b p2a2

+ ηa2b p2a1
)p1c(s)

+ (−ηa1c1
p2a2

p1b − ηa2c1
p2a1

p1b + 2ηbc1
p2a1

p2a2
) p1c2

. . . p1cs

− (p1 · p2)
[
(ηa1bηa2c1

+ ηa1c1
ηa2b) p1c2

. . . p1cs

+
(
(ηa1c1

ηbc2
+ ηa1c2

ηbc1
) p2a2

− (ηa1c1
ηa2c2

+ ηa2c1
ηa1c2

) p1b

+ (ηa2c1
ηbc2

+ ηa2c2
ηbc1

) p2a1

)
p1c3

. . . p1cs

]
+ 1

3(p1 · p2)
2(ηa1c1

ηa2c2
ηbc3

+ sym c1,2,3) p1c3
. . . p1cs

}
.

(3.60)

Finally, the lower spin vertices are:

S3[h1, h1, h0] = 1
2

∫
d4x hahah0

S3[h1, h1, h2] = 1
24

∫
d4x
[
∂cha ∂σhahcσ − 2∂cha ∂a hb hbc + ∂ρha∂ρhbhab + 2ha �hbhab

]
S3[h0, h2, h2] = 1

48

∫
d4x h0

(
∂chab∂chab + 2∂chab∂ahcb) . (3.61)

which can all be obtained by expanding the standard scalar Maxwell-Weyl action
(3.44), performing the field redefinition (3.43) and imposing the TT gauge.

3.3.4 Quartic Sector

We can extend this to the quartic contact terms from computing the diver-
gence of the diagram:

hs1
hs2

hs3
hs4 (3.62)

to obtain contact terms. For s1 = s2 = s3 = s4 = 1, one gets:

S4[h1, h1, h1, h1] =
1
16

∫
d4x(haha)2 . (3.63)
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This is in agreement with (3.45). In fact, other contact vertices, such as the 1122
or 2222 vertex can be obtained by expanding the action (3.44) and performing the
field redefinitions (3.43).

3.4 Twistor Formulation of CHS theory

In this section, we will give some details on how one can represent (the free
sector of) CHS theory using the twistor-spinor formalism we introduced for Con-
formal Gravity in Section 2.4.

To do this, we will look at the “linearised spin s Weyl tensors” in the spinor-
helicity formalism, which are just higher spin analogues of the gauge-invariant Ψ
and Ψ̃ curvatures of Conformal Gravity. Indeed, due to the conformal symmetry
of CHS theory, a spin s Weyl tensor can be decomposed into an anti-self dual and
self-dual sector:

Ca(s)b(s) = εα̇1 β̇1
· · · εα̇s β̇s

Ψα(s)β(s) + εα1β1
· · · εαsβs

Ψ̃α̇(s)β̇(s) , (3.64)

In terms of these, the equations of motion generalise (2.59):

∂α(s)α̇(s) Ψα(s)β(s) = 0 , ∂β(s)β̇(s) Ψ̃α̇(s)β̇(s) = 0 . (3.65)

As with Conformal Gravity, we will now aim to count and classify the different
solutions to these equations, in order to determine which states are oscillatory (ie.
admissible for scattering) and which are growing.

3.4.1 Spectrum of CHS theory

If we focus on the ASD sector, the most obvious solution of (3.65) solves
the 2-derivative equation (ie. one derivative in spinor-helicity formalism) and is
given by the helicity s state:

Ψ(−s)
α(s)β(s) = κs λα(s) λβ(s) ei k·x , (3.66)

where as in section 2.3.1, we have introduced a constant κs of mass dimension s−
1 by selecting solutions which satisfy lower a derivative equation. These are the
modes we have been assuming in the earlier sections of this chapter as “on-shell”
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states. However, as for Conformal Gravity, there are more. There are solutions
given in terms of the helicity +1 spinor aα satisfying 〈a λ〉 = 1. This gives us
another s− 1 states::

Ψ(−h)
α(s)β(s) = κh a(α(s−h) λα(h) λβ(s) ) ei k·x , h = 1, . . . , s− 1 , (3.67)

When adding the positive helicity modes, this means that there are a total of
2s helicity states which are purely oscillatory, and can be scattered, as we will
see in Section 5.4. In order to match the degree of freedom counting of, for eg.
[83, 84], we need to find another s(s− 1) states. These will be solutions featuring
polynomial growth in x. Introducing the helicity +1 spinors β̃α̇ (which again
satisfy a normalisation condition [β̃λ̃] = 1), the state with the highest polynomial
growth which satisfies (3.65) is given by:

Ψg(−s)
α(s)β(s) = λ(β(s) λα1

xα(s−1) )
α̇(s−1) β̃α̇(s−1) ei k·x . (3.68)

There are more modes of helicity −s which solve the solution with lesser growth.
They are given by:

Ψg(−s)
α(s)β(s) = κlλ(β(s) λα(l) xα(s−l) )

α̇(s−2) β̃α̇(s−l) ei k·x , (3.69)

for 1 ≤ l ≤ s− 1, so there are a total of s− 1 helicity −s modes. This argument
can be repeated for helicities −h with 2 ≤ h < s; these correspond to the num-
ber of ways that one can partition the s undotted spinor indices α(s) among the
spinors λα, aα and xα

α̇ β̃α̇. Overall, there are a total of ∑s
h=2(h− 1) = s(s−1)

2 grow-
ing negative helicity modes, as expected.

To sum up, the CHS spin s fields contain many states with helicities ±h
where h ranges over 1 ≤ h ≤ s. For a given helicity h there is exactly one ad-
missible oscillatory state, and h− 1 growing modes.

3.4.2 Twistor formulation of the free fields

We now proceed similarly to Section 2.4, introducing twistor objects which
encompass all the scattering states we just described. 42

For the spin s fields, we introduce the negative chirality twistor-spinor

42This is done in more detail in refs. [81, 129].
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ΓA(s−1) β(s+1). It obeys the equation:

Dββ̇ ΓA(s−1) β(s+1) = 0 , (3.70)

whereDββ̇ is the Cartan connection we introduced in (2.81) taken on a Minkowski
background. Once again, the component of Γ with only negative helcities is iden-
tified with Ψ:

Γα(s−1) β(s+1) ≡ Ψα(s−1)β(s+1) , (3.71)

The equations (3.70) are then equivalent to the system:

∂ββ̇Ψα(s−1)
βγ(s) − Γβ̇α(s−1)

γ(s) = 0 ,

∂ββ̇Γα(s−2)
α̇βγ(s) − Γβ̇α(s−2)

α̇γ(s) = 0 ,
... (3.72)

∂ββ̇Γα
α̇(s−2)βγ(s) − Γβ̇α

α̇(s−2)γ(s) = 0 ,

∂ββ̇Γα̇(s−1)βγ(s) = 0 ,

in analogy with eqs. (2.86)–(2.89). By plugging the top equation into the one
below and so on, this is equivalent to the equation for Ψ in (3.65). To solve this,
we use a generalisation of the helicity lowering operator of (2.93) to write:

ΓA(s−1) β(s+1) = BA(s−1) λβ(s+1) ei k·x . (3.73)

Again, one inherits a condition from the underlying twistor geometry:

CA1 ΓA1 A(s−2) β(s+1) = 0 , (3.74)

where CA ≡
(
−i ∂

∂λ̃α̇
, λα

)
was originally defined in (2.96). Again, with some mild

assumptions similar to (2.97), (3.74) becomes:

∂

∂λ̃α̇1

Bα̇1 A(s−2) + i λα1
Bα1

A(s−2) = 0 . (3.75)

Since this equation holds for all values of the s− 2 twistor indices, this constrains
BA(s−1) to be fully determined by the set of negative helicity spinors:

BA(s−1) ↔
{

B, Bα, Bα(2), . . . , Bα(s−1)
}

, (3.76)
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of which there are s(s+1)
2 , as expected. The ASD Weyl curvature is encoded in the

highest rank spinor (cf. (3.71),(3.73)):

Ψα(s)β(s) = B(α(s−1) λαs)
λβ(s) ei k·x , (3.77)

The other components are then given by:

Bα̇(k)
α(s−k−1) =

k

∑
|I|=0

(
− i

2

)|I|
λβ I

λ̃(α̇I

∂k−|I|Bβ Iα(s−k−1)

∂λ̃α̇k−I)
, (3.78)

for k = 0, . . . , s− 1. From (3.66),(3.67), we expect s different solutions for Bα(s−1).
They are given by:

Bα(s−1)
h = κh a(α(s−h) λα(h−1)) , Ψ(−h)

α(s)β(s) = κh a(α(s−h) λα(h) λβ(s) ) ei k·x , (3.79)

with h = 1, . . . , s.

This generalises readily to the positive helicity sector, where we have the
twistor-spinor:

Γ̃B
α̇(s+1) = AB(s−1) λ̃α̇(s+1) ei k·x , Dαα̇Γ̃B(s−1)

α̇(s+1) = 0 , (3.80)

following the constraint:

i λ̃β̇1
Aβ̇1B(s−2) +

∂

∂λβ1

Aβ1

B(s−2) = 0 . (3.81)

The spinors AB(s−1) are then determined in terms of the spinors:

AB(s−1) ↔
{

Ã, Ãβ̇, Ãβ̇(2), . . . , Ãβ̇(s−1)
}

, (3.82)

through:

Aβ(k)
β̇(s−k−1) =

k

∑
|I|=0

(
− i

2

)|I|
λ̃α̇I

λ(β I

∂k−|I| Ãα̇I β̇(s−k−1)

∂λβk−I)
. (3.83)

The oscillatory states are then given by:

Ãβ̇(s−1)
h = κh ã(β̇(s−h) λ̃β̇(h−1)) , Ψ̃(h)

α̇(s)β̇(s)
= κh ã(α̇(s−h) λ̃α̇(h) λ̃β̇(s) ) ei k·x , (3.84)
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with h = 1, . . . , s. The usefulness of introducing this formalism will reveal itself
in In Chapter 5. There, we will give a formula generalising (2.117) and (2.118) for
the tree-level three point amplitudes in terms of the twistor-spinors introduced
here.
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Chapter 4

Scalar Amplitudes in CHS theory

Having introduced CHS theory and its symmetries, we now turn our attention
to a first series of computations. One of the interesting aspects of Higher Spin
theories in general is that they involve an infinite set of fields. This means that
certain observables include infinite sums over spins - which must be regularised
properly to have meaning. The sums were originally defined in [55], following
[54, 57, 127, 128, 134, 135, 141]. One concrete example of such a sum is in 2 → 2
scattering amplitudes: the exchange particle can be of any spin, so we must sum
over all diagrams.

hs
∑∞

s=0

(4.1)

This is analogous to the infinite spin exchanges in the Veneziano amplitude for
example. Such as sum was computed for the case of flat space massless higher
spins in [138].43

In this section, we will compute amplitudes of scalars in a fully interacting
CHS background in 4 dimensions. One way of introducing this is start with N + 1
complex scalars ΦA = (φi, ϕ). We then proceed to integrate out the N scalars φi

and look at the coefficient of log Λ . This will be simply given by N times the CHS
action as well as one remaining scalar-CHS coupling given by (3.34) except that
the current is built from the ϕ scalar. Since there are no self-interactions among

43 As stated in section 1.1, it is unclear whether these theories are well-defined in flat space.
See [25, 142] for some evidence that one can define those theories there. CHS theory on the other
hand definitely exists in flat space [5].
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the scalars, integrating out φi does not affect the remaining ϕ sector of the original
action. Schematically, the action will look like:

S[ϕ, h] =
∫

d4x
[

ϕ∗�ϕ−∑
s

1
s!

hs Js(ϕ)
]
+ ΓCHS[h] , (4.2)

where, ΓCHS[h] is the effective action which includes includes a factor or N, and
contains the quadratic CHS action S2,CHS given by (3.1), as well as higher order
vertices. Again, here N plays the role of the inverse coupling constant: if we
rescale the fields hs → N−1/2hs, equation (4.2) will look like:

S[ϕ, h] =
∫

d4x
[

ϕ∗�ϕ+∑
s

ns
2

hsPs,s hs−
1√
N

∑
s

1
s!

hs Js(ϕ)+ NO
(
(hs/
√

N)3
) ]

.

(4.3)
Naturally, we will consider the large N limit, so that perturbation theory is valid.

4.1 Scalar scattering tree-level amplitude

Given the action (4.3), we can now start to compute scattering amplitudes of
the scalars ϕ. Since the only interaction between scalars and CHS fields is given
by a ϕ−ϕ−hs vertex, the first non-trivial diagram of interest will simply be the
exchange (4.1) where the solid line represents the scalar ϕ while the dashed line
represents a CHS propagator.

4.1.1 Spin s Exchange

We first compute an individual term in (4.1), for a generic spin s exchange.
We start with the vertex given in (3.48) (where we understand that the currents
are bilinear in the single scalar ϕ), and look at the correlation function:

〈Sint[ϕ, h] Sint[ϕ, h] 〉0

=
∞

∑
s=0

∫ d4p

(2π)4
1

(s!)2 Ja(s)(p)
〈

ha(s)(p) hb(s)(−p)
〉

0
Jb(s)(−p) , (4.4)

where the subscript 0 means keeping tree level diagrams only, keeping ϕ on the
external legs and Ja(s)(p) are the Fourier transformed (on-shell traceless con-
served) currents. Using the definition of the CHS propagator, (3.50), we have:

86



〈
ha(s)(p) hb(s)(−p)

〉
0
=

1
N

Da(s)
b(s)(p) =

1
nsN

P b(s)
a(s) (p)(
p2
)s , (4.5)

where ns =
1

2s−1(2s+1)!
(cf. (3.49) ) and P b(s)

a(s) = δ
(b1
(a1

. . . δ
bs)
as)

+ . . . is the projector on

totally symmetric traceless transverse space (see Appendix A.4 for its full form).
Here we can simply ignore the terms subsumed in the dots. Indeed, they are
contracted with currents Ja(s) which are traceless and transverse on-shell. Since
the external scalar legs are on shell, any other terms in the propagator will vanish
from these contractions.

If we rewrite (4.4) in terms of the spin sum:

〈Sint[φ, h] Sint[φ, h] 〉0 = N−1
∞

∑
s=0

1
ns
As , (4.6)

where the spin s contribution is given by:

As =
1

2 s!

∫ d4p

(2π)4 Ja(s)(p)
1

(p2)s Ja(s)(−p) . (4.7)

We can express this in terms of the traceful current generators J(x, u) of (3.25) by
using the projector Π4 from (3.30): 44

As =
1

2 s!

∫ d4p

(2π)4
1

(p2)s (∂u1
· ∂u2

)s Π4(u1, i p) J(p, u1) J(−p, u2)
∣∣∣
ui=0

.(4.8)

Rewriting the currents J(p, u):

J(p, u) =
∫

d4x ϕ∗(x + i
2 u) ϕ(x− i

2 u) e−i x·p

=
∫ d4k d4`

(2π)8 ϕ∗(k) ϕ(`) eu· k+`
2 (2π)4 δ(4)(p + k− `) , (4.9)

the spin s contribution becomes:

As =
1
2

∫ d4k1 d4`1 d4k2 d4`2

(2π)16 (2π)4 δ(4)(k1 + k2 − `1 − `2)

× ϕ∗(k1) ϕ(`1) ϕ∗(k2) ϕ(`2) As(k1, k2, `1, `2) , (4.10)

44In the TT gauge, the dressed and undressed formalism are equivalent, see Appendix C.3.
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where As is the spin s contribution to the momentum space 4-point amplitude
(since it is the coefficient of four on-shell fields, see Section 2.1). It is therefore
given by:

A(s)
4 (k1, k2, `1, `2) =

1

2 (p2)s

(∂u1
· ∂u2

)s

s!
Π4(u1, i p) e

1
2 [u1·(k1+`1)+u2·(k2+`2)]

∣∣∣
ui=0

.

(4.11)
Using the explicit form of Π4, (3.30), and using the Mandelstam variables (s, t, u),
we find the t channel to be:

A(s)
t (s, t, u) =

1
2(−4)s (−t)

[s/2]

∑
n=0

1

22n n! (s− 2n)! (−s + 1
2)n

(
s− u

s+ u

)s−2n

= − t

2(−8)s (1
2)s

Ps

(
s− u

s+ u

)
, (4.12)

where Ps(z) is the Legendre polynomial. Its appearance is related to the d = 4
description of the CHS kinetic term we gave in (3.51) and (3.52).

We note that the amplitude is manifestly scale covariant, a reflection of the
underlying conformal invariance of CHS theory. The total summed amplitude is
then:

At(s, t, u) = N−1
∞

∑
s=0

1
ns

A(s)
t (s, t, u) = N−1 1

2
F
(
− s− u

s+ u

)
, (4.13)

F(z) ≡
∞

∑
s=0

1

23s ns (
1
2)s

Ps(z) . (4.14)

Using the expression for ns, this becomes:

F(z) =
∞

∑
s=0

(
s +

1
2

)
Ps(z) . (4.15)

This sum diverges in general, and it therefore needs to be regularised.

4.1.2 Summing over spins

When an infinite sum such as (4.15) presents itself, it needs to be carefully
defined in a way that is consistent with the underlying symmetry of the theory.
This will guide us later, but for now, let us proceed by introducing a new cut-off
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prescription. We will use the parameter w ≡ e−ε with ε infinitesimal and then
define (4.15) as the w→ 1 limit:

F(z) = lim
w→1

F(z, w) , F(z, w) ≡
∞

∑
s=0

(
s +

1
2

)
ws Ps(z) . (4.16)

It is useful to rewrite F(z, w) as :

F(z, w) = w1/2 d
dw

(
w1/2

∞

∑
s=0

ws Ps(z)
)

, (4.17)

and use the fact that the right hand side features the generating function for Leg-
endre polynomials:

∞

∑
s=0

ws Ps(z) = (1− 2zw + w2)−1/2 . (4.18)

This allows us to analytically continue F(z, w):

Freg(z, w) =
1
2

1− w2

(1− 2z w + w2)
3
2

. (4.19)

Notice that Freg(z, 1) happens to vanish for z 6= 1, while for z = 1 , we get

Freg(1, w) =
1
2

1 + w

(1− w)2 , (4.20)

which diverges for w → 1. In other words, Freg(z) is to be taken as a distribution
with support at z = 1. In fact, it is proportional to the Dirac delta function. This
can be seen by looking at (4.19) and changing variables z = x + w, ε2 = 1− w2.
We then get Freg(x, ε) = ε2

2(x2+ε2)
3
2

. As a result, we have the more familiar form:

Freg(z) = limε→0 Freg(x, ε) = δ(4)(x). In other words :

Freg
4 (z) = δ(4)(z− 1) . (4.21)

The regularisation used above is the same as in [55, 128, 135] for the computation
of higher spin partition functions. 45 We also note that this prescription works in
arbitrary d [1].

45 There, for the case of CHS theory in d dimensions, the sum ∑∞
s=0 fd(s) is replaced by

∑∞
s=0 e−ε(s+αd) fd(s) where αd = d−3

2 . One then takes the limit ε→ 0 and all 1
εn poles are dropped.
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Another way to regularise this sum is to use the integral representation:

Ps(z) =
1
π

∫ π

0
dx
(

z +
√

z2 − 1 cos x
)s

, (4.22)

of the Legendre Polynomial. Performing the sum over the integrand first, we get:

∞

∑
s=0

(
s +

1
2
) (

z +
√

z2 − 1 cos x
)s

=
z + 1 +

√
z2 − 1 cos x

2 (z− 1 +
√

z2 − 1 cos x)2
. (4.23)

where we used analytical continuation, since for x ∈ [0, π] the integrand is always
divergent for some values of z. The regularised function is now given by:

Freg(z) =
1
π

∫ π

0
dx

z + 1 +
√

z2 − 1 cos x

2 (z− 1 +
√

z2 − 1 cos x)2
= δ(z− 1) , (4.24)

recovering the result of (4.21).

4.1.3 Total Amplitude

We are now ready to write out explicit results. For the case of ϕ ϕ → ϕ∗ ϕ∗

scattering, the total amplitude contains t and u channels which sum to ( cf (4.13)
and (4.21), (4.24) ):

Aϕ ϕ→ ϕ∗ ϕ∗ =
1

4N

[
δ
(s
t

)
+ δ

( s
u

)]
. (4.25)

This amplitude looks strange, but we can use kinematics to show that it actually
vanishes for all physical momenta. First, we go to the centre of mass frame, for
which ~p1 + ~p2 = 0 = ~p3 + ~p4. We then introduce the angle θ via cos θ =

~p1·~p3
|~p1||~p3|

.

Since all the particles are massless, we have Ei = |~pi| which means that:46

s

t
= − 1

sin2 θ
2

,
s

u
= − 1

cos2 θ
2

. (4.26)

We can therefore conclude that for real θ, the arguments of the delta functions in
(4.25) are never zero, so the amplitude actually vanishes:

Aϕϕ→ϕ∗ϕ∗ = 0 . (4.27)

46Note that this is ill defined in the collinear limit pa
1 = αpa

2, but that limit requires complex
momenta, so its physical interpretation is unclear.
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Next, we look at ϕ ϕ∗ → ϕ ϕ∗ scattering. It has s and t channel contribu-
tions:

Aϕϕ∗→ϕϕ∗ =
1

4N

[
δ
(u
t

)
+ δ

(u
s

)]
=

1
4N

[
δ
(

cot2 θ
2

)
+ δ

(
cos2 θ

2

) ]
. (4.28)

The delta functions are only zero for the single value θ = π, so omitting that
point:

Aϕϕ∗→ϕϕ∗ = 0 . (4.29)

As a final remark, note that had we considered a real scalar in the original ac-
tion (4.3) instead of a complex one, we would only have had a coupling between
even currents and even spin CHS fields. This would modify the computation to
include only even terms in (5.25) and would have lead to (4.24) and lead to:

A(R)
ϕϕ→ϕϕ =

1
8N

[
δ
(u
t

)
+ δ

(s
t

)
+ δ

(u
s

)
+ δ

( t
s

)
+ δ

( t
u

)
+ δ

( s
u

)]
(4.30)

=
1

8N

[
δ
(

cot2 θ
2

)
+ δ

(
csc2 θ

2

)
+ δ

(
cos2 θ

2

)
+ δ

(
sin2 θ

2

)
+ δ

(
tan2 θ

2

)
+ δ

(
sec2 θ

2

) ]
.

which includes s, t and u channel contributions. Once again this amplitude is
non-zero only for θ = 0, π and thus excluding these points we get:

A(R)
ϕϕ→ϕϕ = 0 . (4.31)

Overall, we see that while each individual spin s contribution to the diagram (4.1)
is non trivial, the sum appears to be vanishing - after our particular regularisation
scheme. We will now argue that this is implied by global CHS symmetry.

4.2 Global CHS symmetry and amplitude constraint

We have just observed the vanishing of an a priori non-trivial amplitude,
which seemed to depend on our regularisation. As mentioned before, said regu-
larisation should be selected to be compatible with the symmetries of the theory.47

The regularisation introduced in (4.16) can be obtained by simply introduc-
ing the factor w in the quadratic CHS action in the following way (see (3.51) -

47This is analogous to the following scenario. Consider compactifying a 5d theory to 4d on a
circle. One obtains an infinite sum over Kaluza-Klein modes, which are only manifestly Lorentz
covariant in 4 dimensions. However, requiring that the modes have 5d Lorentz symmetry will
put constrains on the infinite sum that will ensure results from 5d can be recovered.
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(3.52)):

Sreg
CHS,2[h; w] =

∫
d4p G(w−1 X, w−2 Y) h(p, u1) h(−p, u2)

∣∣∣
ui=0

. (4.32)

We then ask that this regularised action still be invariant under the global CHS
symmetries introduced in Section 3.1. Let us see how it acts on the correlators
of massless scalar fields. Note we will assume here that theory is anomaly free,
which seems to be implied by other work in the literature (cf. [55,57,127,134,135,
143]). We defer a more in-depth discussion of anomalies to Chapter 6.

To do this, we will show that the vanishing of the amplitude is actually im-
plied by the existence of hypertranslations (cf. eq. (3.17)):

δϕ(x) = εa(r) ∂a(r)ϕ(x) . (4.33)

where we will take εa(r) to be a constant parameter. Note that any traces it con-
tains parametrise the trivial parts of the global symmetry which vanish on-shell;
as such we will ignore them. We further refine this parameter to be proportional
to y{ar . . . yar} = ya1 . . . yar − traces, where ya play the role of auxiliary vectors.
This implies that the action is also invariant under:

δϕ(x) = (ey·∂x − e−y·∂x)ϕ(x) = ϕ(x + y)− ϕ(x− y) . (4.34)

This invariance applied to scalar four point functions yields:

〈ϕ(x1 + y) ϕ(x2) ϕ(x3) ϕ(x4)〉+ 〈ϕ(x1) ϕ(x2 + y) ϕ(x3) ϕ(x4)〉
+ 〈ϕ(x1) ϕ(x2) ϕ(x3 + y) ϕ(x4)〉+ 〈ϕ(x1) ϕ(x2) ϕ(x3) ϕ(x4 + y)〉
− (y↔ −y) = 0 , (4.35)

which is in momentum space:

sin(p12 · y) sin(p13 · y) sin(p14 · y) 〈ϕ(p1) ϕ(p2) ϕ(p3) ϕ(p4)〉 = 0 , (4.36)

where pij =
1
2(pi + pj), and we have used trigonometric identities and momen-

tum conservation, p1 + p2 + p3 + p4 = 0.

We now further refine our choice and pick ya to be:

ya = d1 pa
12 + d2 pa

13 + d3 pa
14 , (4.37)
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where di are constants. Plugging this in (C.4), this yields:

sin(1
4 d1 s) sin(1

4 d2 t) sin(1
4 d3 u) A(R)

4 (ϕϕ→ ϕϕ) = 0 , (4.38)

where we used the on-shell condition p2
i = 0. Since the constants di are arbitrary,

this is equivalent to s t u A(R)
ϕϕ→ϕϕ = 0, whose solution is given by the following

distribution:

A(R)
ϕϕ→ϕϕ = k1(t, u) δ(s) + k2(u, s) δ(t) + k3(s, t) δ(u) , (4.39)

where ki are unfixed functions. Next, since conformal symmetry is contained
within the full CHS symmetry group, we expect the amplitude to be invariant
under a rescaling of momenta by a constant λ:

A(R)
ϕϕ→ϕϕ(λ

2 s, λ2 t, λ2 u) = A(R)
ϕϕ→ϕϕ(s, t, u) . (4.40)

This implies that ki must be homogeneous functions of degree 1, to compensate.
Finally we use crossing symmetry, which implies that ki(x, y) = k(x, y). We are
scattering massless particles we means that we have s+ t+ u = 0 which further
simplifies the form of k. For instance in the first term of (4.39), we have :

k(t, u)δ(s) = k(t,−t− s)δ(s) = k(t)δ(s) , (4.41)

since the functions are homogeneous of degree 1. We can posit that k is simply
a linear function, but this is trivial in (4.41) after using crossing symmetry. The
only choice is then k(t, u) ∼ |t|δ(s). Writing this in manifestly crossing-symmetric
way:

A(R)
ϕϕ→ϕϕ(s, t, u) = f

[
(|t|+ |u|) δ(s) + (|u|+ |s|) δ(t) + (|s|+ |t|) δ(u)

]
, (4.42)

where f is an arbitrary overall constant. This form is actually equivalent to the
amplitude we computed in (5.42), since we can write |t|δ(s) = δ( st) for example.
So once again, we conclude that the amplitude vanishes everywhere except for a
measure 0 domain in momentum space.

Finally, we remark that this argument applies at loop-level so long as the
symmetry is anomaly-free. Furthermore, it should be no different in the case of
complex scalars, whose amplitude also vanishes as we’ve seen.
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We conclude that the prescription of our sum over spins is compatible with
the CHS symmetry, which seems to constrain the amplitude to vanish. Next, we
look at the 1-loop computation to see if it can bolster our claim that this vanishing
holds at loop level.

4.3 One-loop Amplitudes

Let us compute the UV divergent part of the four point scalar amplitudes.
This is similar to computing the 1-loop correction to the 4 scalar amplitude in
Scalar-QED, except that we also have fields of spin s > 1 which can run on inter-
nal propagators. In Scalar QED, there is a logarithmic divergence, and we expect
the same here. The question is whether after a regularised sum over spins such a
divergence could cancel.

If we integrate out the CHS fields hs in the action (4.3), the only possible log-
arithmic UV divergent local term is proportional to

∫
d4x (ϕ∗ϕ)2, since the theory

has no other dimensionful parameter. This is the term we will compute. Actually,
since this term involves no derivatives, we can compute it by simply considering
the external ϕ to have zero momenta. The result should still be gauge indepen-
dent as this simply corresponds to a particular point in an on-shell amplitude. Let
us now write down the diagrams which contribute to the four-point amplitude.

Box diagram

k k
k

k

hs

hs′

↓↑

→

←

Figure 4.1: Box diagram with vanishing external momenta

The first contribution is given by the box diagram, Fig. 4.1. Since external
momenta are taken to vanish, only the internal momentum ka runs in the loop.
Furthermore, recall that the CHS propagators are proportional to the TT propa-
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gators, P a(s)
b(s) (k) , which satisfy:

ka1
P a1···as

b1···bs
(k) = 0 = ηa1a2

P a1···as
b1···bs

(k) . (4.43)

For terms with s, s′ 6= 0, there will be factors of ka on the numerator coming from
the higher derivative coupling in (3.48), and they will necessarily vanish. The
only non-trivial term comes from the case s = s′ = 0, for which the CHS fields
are “non-propagating”, since they have no derivatives in their kinetic terms. The
result is given by:

A(1)
Box =

(
1

2N

)2

I(Λ) . (4.44)

where I(Λ) is the standard UV divergent loop integral:

I(Λ) =
∫ Λ d4k

(k2)2 . (4.45)

CHS bubble diagram

The next diagram that would appear in Scalar QED (in fact the only con-
tributing diagram) is the bubble diagram shown in Fig. 4.2. In CHS theory, we

Figure 4.2: Bubble diagram in scalar QED

only have cubic couplings between the CHS fields and the scalars, so at first sight
it looks like such a diagram cannot appear. However, it turns out to be the same
as the non-1PI diagrams shown in Fig. 4.3, where the h0 lines are shrunk to a
point. Indeed, since the spin 0 CHS field is non-dynamical, the usual considera-

h0 h0

hs

hs′

h0 h0

hs

Figure 4.3: Diagrams contributing to (φ∗φ)2

tions that we apply to the separation between 1-PI and non-1PI diagrams do not
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apply. These diagrams do have a contribution, which we’ll compute explicitly in
section 4.4.

Charge renormalisation diagrams

The next diagrams are the ones that would provide a contribution to the
cubic coupling (3.48), shown in Fig. (4.4). Similarly to the box diagrams, the only

hs h0 hs′

hs

h0

Figure 4.4: Charge renormalisation diagrams

non-trivial terms must have CHS fields of spins s = s′ = 0 running in the loops.
The first diagram yields a contribution given by:

A(1)
charge ren. =

(
1

2N

)2

I(Λ) . (4.46)

As for the second diagram, it vanishes; indeed there is no (h0)
3 vertex in the CHS

action. This is because h0 has mass dimension [h0] = 2 which means such a vertex
would have to be non-local.

Scalar bubble diagram

The remaining contribution that exists is given by the non 1-PI diagram in
Fig 4.5. Its contribution is found to be simply:

h0 h0

Figure 4.5: Non 1-PI diagram with scalar loop

A(1)
scalar bubble =

(
1

2N

)2

I(Λ) , (4.47)

4.3.1 Equivalent approach: integrating out h0 first

We close this set of computations by highlighting an equivalent approach.
The CHS fields h0 in CHS theory can be taken to be auxiliary since it obeys purely
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algebraic equations of motion. Doing so introduces new interaction vertices be-
tween the remaining CHS fields and the scalars ϕ. One can see that since the
algebraic equation for h0 is of the form:

h0 ∼ ϕ∗ϕ +O(h2
s≥1) . (4.48)

The second term in this equation implies that upon integrating h0 out, we will
introduce new quartic and higher order vertices in the CHS fields. However,
these terms don’t contribute to our 1-loop computation, so we can safely ignore
them. The first term is more interesting. First of all, it introduces a quartic self-
interaction vertex (ϕ∗ϕ)2. These are exactly equivalent to the diagrams of Fig.
4.1, 4.4 and 4.5 where the internal propagators carry spin 0. Integrating out h0

is then like shrinking those propagators to a point, such that we compute the di-
agrams of Fig. 4.6. Finally, there will be new interactions between the scalars

Figure 4.6: One-loop diagrams with (φ∗φ)2 vertices (broken or open lines indicate
the origin of these diagrams in relation to diagrams in Figs. 4.1, 4.4, 4.5).

and other CHS fields. In particular, there are vertices of the form h2(ϕ∗ϕ) and
h2(ϕ∗ϕ)2, shown in Fig 4.7. These give new diagrams shown in Fig. 4.8 which

hs

hs′

hs hs′

Figure 4.7: Higher order contact vertices

hs

hs′

hs

Figure 4.8: One-loop diagrams with h2 φ2 and h2 φ4 vertices

are equivalent to the diagram (4.3) where the spin 0 propagators are shrunk to a
point.
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In this approach, the contributions to the 1-loop logarithmic divergence are
then split into two categories: the ones that arise due to a ϕ-loop such as Fig 4.6,
and the ones involving hs loops as in Fig. 4.8 48. As such we can rewrite the
amplitude as:

A(1)
tot = A(1)

φ−loop + A(1)
hs−loop . (4.49)

The scalar contributions can be computed to sum to (cf (4.44),(4.46) and (4.47)):

A(1)
φ−loop = 3

(
1

2N

)2

I(Λ) . (4.50)

We note that had we included Nϕ external scalars instead of just one, this would
only have changed (4.47) to become rescaled by a factor of Nϕ, so this alone could
not lead the amplitude to vanish. This implies that the scalar loops make CHS
symmetry anomalous.

One can therefore ask what would happen if we made ϕ into background
fields only, in which case the only contribution to the computation would come
from A(1)

hs−loop. This amplitude could indeed vanish after a regularised sum over
spins. Let us address this now.

4.4 Computing the UV divergence of the one-loop CHS

effective action in h0 background

We now go back to the diagram of Fig. 4.3 (or those in 4.8). Remembering
that the external legs have zero momentum, we find the contribution to be :

cCHS

(
1

2N

)2

I(Λ)
∫

d4x (φ∗ φ)2 , (4.51)

where cCHS is a coefficient encoding infinitely many contributions from all possi-
ble loops. Another way of writing this is that the one-loop effective action of the
theory in an external h0 background is (cf. (3.39)):

Γdiv[ h0] = cCHS I(Λ)
∫

d4x (h0)
2 . (4.52)

48Those may involve ghost contributions as we’ll later see.
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As noted before, the CHS action is totally fixed and schematically looks like
SCHS = N

∫
d4x(h2

0 + F2
ab + C2

abcd + ....). As such, if we turn on a spin 2 back-
ground in (4.52), we expect to find the same coefficient cCHS log Λ in front of a
the linearised square Weyl tensor term (Cabcd)

2. In other words, cCHS should be
the same as the c-coefficient of the conformal anomaly of CHS theory. The logic
for this is as follows. We expect the effective action to be invariant under the
full global CHS symmetry. The logarithmic divergence is local, and the only lo-
cal such theory is CHS theory itself. As such, we expect the coefficient in front
of h2

0 log Λ to be the same as the one in front of C2
abcd log Λ, ie. the conformal

anomaly coefficient.

Let us see if evaluating this yields the same result. In order to compute cCHS

we split it into a “physical” and a ghost contribution:

cCHS = cph
CHS + cgh

CHS . (4.53)

4.4.1 Physical field loop contribution

We first compute diagrams which only include CHS fields running in the
loops and two h0 insertions. In what follows, we will use the linearised CHS
symmetry (3.3) to pick the TT gauge: pa1

h(p)a1...as = 0 = ηa1a2
h(p)a1...as . The

contributions are given by the two diagrams of Fig. 4.9. These diagrams involve

h0 h0

hs

hs′

h0

h0

hs

Figure 4.9: CHS effective action in h0 background

two types of vertices: h0hshs′ and h0
2hs

2. In momentum space, these are given by:

h0

hs

hs

= N h0(0) Ts(k, ∂u1
, ∂u2

) hs(k, u1) hs(−k, u2)
∣∣
ui=0 , (4.54)
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h0

h0

hs

hs

= N (h0(0))
2 Qs(k, ∂u1

, ∂u2
) hs(k, u1) hs(−k, u2)

∣∣
ui=0 . (4.55)

where Ts and Qs are (see Appendix C.3 ):

Ts(k, ∂u1
, ∂u2

) = ts (k
2)s−1

(
∂u1
· ∂u2

)s
+ ...

Qs(k, ∂u1
, ∂u2

) = qs (k
2)s−2

(
∂u1
· ∂u2

)s
+ ... . (4.56)

Above, the dots mean terms that include traces or divergences of the field, so
they drop out in the TT gauge. This explains why we do not need to consider di-
agrams with vertices of the form h0

2hshs′ with s 6= s′, since those would involve
a trace or divergence contraction.

Using (4.56), the diagrams in 4.9 are given by

I1 =
1
4

(
1

N ns

)2 ∫
d4k

N Ts(k, ∂u1
, ∂u2

) N Ts(k, ∂v1
, ∂v2

)Ps(k, u1, v1)Ps(k, u2, v2)

(k2)2s

∣∣∣∣∣
ui=vi=0

,

I2 =
1
4

1
N ns

∫
d4k

N Qs(k, ∂u1
, ∂u2

)Ps(k, u1, u2)

(k2)s

∣∣∣∣∣
ui=0

, (4.57)

for the left and right diagrams of 4.9 respectively. There, we’ve used the propa-
gator (4.5). Expanding in the auxiliary variables and contracting accordingly, one
finds:

I1 = 1
4(2s + 1)

(
ts
ns

)2
I(Λ) , I2 = 1

4 (2s + 1) qs
ns

I(Λ) . (4.58)

where the fator of (2s+ 1) comes from the trace of the TT projector. The constants
ts and qs can be obtained from expanding the CHS action explicitly. This can be
read off from (C.31) to yield:

ts
ns

= −4
(

s + 1
2

)
, s ≥ 1 ; qs

ns
= 8

(
s + 1

2

) (
s− 1

2

)
, s ≥ 2 .

(4.59)
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Finally, this leads to

cph
CHS = 23

∞

∑
s=1

(
s + 1

2

)3
+ 22

∞

∑
s=2

(
s + 1

2

)2 (
s− 1

2

)
. (4.60)

The sum in this expression is divergent, and therefore needs an appropriate reg-
ularisation.

4.4.2 Ghost loop contribution

We next compute the contribution arising from ghosts that appear after gauge-
fixing the action. Since we are looking at the theory in a constant h0 background,
we consider the classical CHS action at quadratic order spins strictly greater than
0. In other words, we look at the part of the CHS action of the form:

SCHS =
∫

d4x 〈h|K(h0)|h〉 , (4.61)

where K is an h0-dependent kinetic operator, and 〈·|·〉 stands for the contraction
of indices - see Appendix A.1. This action is invariant under:49

δε,α h = u · ∂x ε +
[
u2 − h0F (∂u, ∂x)

]
α , (4.62)

where F (∂u, ∂x) = Πd(∂u, ∂x)Π−1
d+4(∂u, ∂x), and we will pick the gauge parame-

ters to be traceless and double traceless respectively, ie. (∂2
uε = 0 = (∂2

u)
2α).

We now show explicitly how the TT gauge is fixed using (4.62). First, we fix the
trace using α. Since this part of the transformation is algebraic, it does not intro-
duce a ghost. The remaining symmetry becomes:

δε h = T(h0, ε) = PT [u · ∂x − h0 G(∂u, ∂x)] ε , (4.63)

PT is the traceless projector and the precise form of G(∂u, ∂x) is given in Appendix
C.4. We then use (4.63) to impose transversality. This gives rise to a non-trivial
Jacobian factor in the partition function, which can be represented by a ghost
contribution. The relevant computations are done in Appendix C.4 and we give
here the main results. This contribution is found to be:

Sgh =
∫

d4x 〈c̄|Kgh(h0)|c〉 , (4.64)

49This is obtained by looking at the field-independent transformation of (3.33), and adding the
contribution from h0 that comes from “undressing ” (3.26) and (3.27)
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Kgh(h0) = ∂x · ∂u
δT(h0, ε)

δε
= ∂x · ∂u PT [u · ∂− h0 G(∂u, ∂x)] . (4.65)

In (4.64), it is possible to perform shift each spin s ghost fields once in order to
remove all h0 dependence, as done in Appendix C.4. The conclusion is then that
CHS ghosts do not couple to h0 and therefore:

cgh
CHS = 0 . (4.66)

Summing over spins

Finally, from (4.52) and (4.53), the total contribution to cCHS is found by
adding (4.60) and (4.66) and yields: (4.60),(4.66))

cCHS = −5 + 4
∞

∑
s=0

[
3
(

s + 1
2

)3
−
(

s + 1
2

)2
]

. (4.67)

As mentioned earlier, this is expected to be related to the c-coefficient of the con-
formal anomaly, which was found to vanish in [57,127,135] (see also [143]) when
the sum is regularised with the cut-off e−(s+

1
2 ) ε. Using this cut-off in (4.67), we

find its finite part to be:

cCHS| f in = −407
80

, (4.68)

which is not the expected result of 0. The meaning of this remains unclear. A
possibility is that there exists some other contribution one must take into account.
An indication of that can be obtained from the fact that the spin s contribution to
the anomaly coefficients in [55,57,127] are 6th order polynomials in s, while, (4.67)
is only of cubic order. What’s more, each spin s contribution to the logarithmic
divergent coefficient of h2

0 and C2
abcd respectively might not match - we only expect

the whole sum to match at the end.
Another possibility is that the process of regularising the sum over spins does
not commute with the limit of taking the momentum of carried by the external
particles to 0. As such, it might be that keeping h0 non-constant yields a different
result 50.

50Something similar happens in [135] where in AdS, for massless higher spins, one obtains a
consistent result after performing the sum first, and then sending then removing the UV cut-off.
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4.4.3 Conclusions

In this chapter we have computed amplitudes of scalar fields coupled to CHS
theory. In particular, the four point ϕ amplitude involves a spin s exchange, and
one must therefore regularise an infinite sum over spins. Doing so in a way that is
consistent with the underlying global symmetry group leads to trivial scattering
amplitude. We have given evidence that the very same global symmetry implies
the vanishing of these amplitudes.

We then looked at the one-loop computation. It was found that two types
of diagrams contributed: some involving loops of scalar fields ϕ and others in-
volving a loop of CHS fields. The former are non vanishing, and in fact appear to
depend on the number of scalars. This does not violate the aforementioned sym-
metry arguments; it merely implies that the CHS symmetry is made anomalous
by scalar loops. Focusing on the CHS loops instead, we expected it to be the same
as the conformal anomaly of CHS theory, and to vanish after a summation over
all spins. This does not appear to be the case, implying that the relation between
the coefficient cCHS and the conformal anomaly of CHS theory is to be clarified.

In the next chapter, we will compute amplitudes of the CHS fields them-
selves, with the lower spin particles (Maxwell and Conformal Gravitons) on ex-
ternal legs, though only at tree-level. We will observe a similar action of the CHS
global algebra.
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Chapter 5

Scattering in CHS theory

In this chapter we will be looking at scattering amplitudes in pure CHS theory,
in two main parts. The first part, Sections 5.1 - 5.3, will follow the main analysis
of [2]. We will make use of the vertices derived in Chapter 3 in order to compute
four-point amplitudes where the external legs have 2-derivative lower spin ex-
ternal modes. Note that since the CHS scalar h0 is non-propagating, we exclude
it from the scattering states. Given this, the external particles will follow the on-
shell relation p2

i = 0 and we will be in the TT gauge. Introducing the relevant
notation, we will want to compute the following process

p1

p2

p3

p4

=
1

2

3

4
+

1

2

3

4
+

1

2

3

4
+ (5.1)

There, the blue lines correspond to internal propagators with a priori arbitrary
spins. For a scattering of helicities and momenta (λ1, p1), (λ2, p2)→ (λ3, p3), (λ4, p4),
we will assume the centre-of-mass frame for which the momenta and the Maxwell
polarizations are: 51

p1 = (ω, 0, 0, ω), ε1(p1) = − 1√
2
λ1 (0, 1, i λ1, 0)

p2 = (ω, 0, 0,−ω), ε2(p2) = − 1√
2
λ2 (0,−1, i λ2, 0)

p3 = (ω, ω sin θ, 0, ω cos θ), [ε3(p3)]
∗ = − 1√

2
λ3 (0, cos θ,−i λ3,− sin θ)

p4 = (ω,−ω sin θ, 0,−ω cos θ), [ε4(p4)]
∗ = − 1√

2
λ4 (0,− cos θ,−i λ4, sin θ)

(5.2)

51Note that for the Einstein helicity 2 states, we have εab = εaεb. Also note that if the above,
the states particles 1 and 2 are in-going and particles 3 and 4 are outgoing - this is why we list the
conjugate polarization tensors [ε3,4]

∗, see [144, 145].

104



Here, the Mandelstam variables are:

s = −(p1 + p2)
2 = 4ω2, t = −(p1 − p3)

2 = −2ω2 (1− cos θ),

u = −(p1 − p4)
2 = −2ω2 (1 + cos θ) , s+ t+ u = 0 . (5.3)

We will first compute all relevant four point amplitudes, which involves having
to sum over an infinite number of exchanges. As in Chapter 4, we will have to
regularise this, and we see that it will lead to vanishing 4-point amplitudes.

The second part of this chapter will be covered in Section 5.4, whre we will
present the work done in the latter part of [3]. There, we will look at three point
amplitudes where the external legs are any admissible scattering states in the the-
ory by using the twistor-spinor formulation introduced in Section 3.4. The result
will not only show more evidence that the 2-derivative states are trivial in CHS
theory, but also that there exist non-vanishing finite amplitudes. Furthermore,
we will look at the formula for scattering states on AdS, which will enable us to
further discuss the relation between CHS theory and massless higher spin theo-
ries.

5.1 11→ 11 Amplitude

We open by computing an amplitude with only the spin 1 states on the ex-
ternal legs. As we saw earlier in (3.45), the only quadratic contact term for the
vector CHS fields is exactly cancelled by the h0 exchange diagram. What is more,
the 1− 1− s vertices only exist for odd s. As such, the total amplitude is given
by the exchange diagrams in (5.1) with odd spin propagators. Using the vertex
(3.56) 52

Va,b,c(s)(p, q) = 1
(s+2)!

{
ηab
[1

2 (p)c(s) +
1
2 (q)c(s)

]
− 1

2 ηac1
pb pc2

. . . pcs
+ 1

2 ηbc1
qa pc2

. . . pcs
− 1

2 ηbc1
qaqc2

. . . qcs
+ 1

2 ηac1
pbqc2

. . . qcs

− 1
2 ηac1

ηbc2
pc3

. . . pcs
p · q− 1

2 ηac1
ηbc2

qc3
. . . qcs

p · q
}

.

(5.4)

52The momentum assignment is such that p = p1 and q = p2 in the s channel etc. We also
enforce p2 = q2 = 0.
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Next, the TT propagator is given by (cf. (3.49),(3.50)):

Da(s)
b(s)(p) = 2s−1(2s+1)!

(p2)s P a(s)
b(s) (p) , (5.5)

where P a(s)
b(s) is the TT propagator, see Appendix A.4. Putting everything together,

the different channels are given by: 53

A(s)
s = 2 V(p1, p2) · D(p1 + p2) · 2 V(p3, p4) · ε1 ε2 ε∗3 ε∗4,

A(s)
t = 2 V(p1, p3) · D(p1 − p3) · 2 V(p2, p4) · ε1 ε2 ε∗3 ε∗4,

A(s)
u = 2 V(p1, p4) · D(p1 − p4) · 2 V(p2, p3) · ε1 ε2 ε∗3 ε∗4 ,

(5.6)

Computing these amplitudes, one finds that only MHV or MHV amplitudes are
non-zero, as expected. Explicitly, they take the form: 54

±± → ±± : A(s)
s = 0, A(s)

t = ks
(s
t

)s Ps
( t
s

)
, A(s)

u = ks
( s
u

)s Ps
(u
s

)
,

±∓ → ±∓ : A(s)
s = ks

(u
s

)s Ps
( s
u

)
, A(s)

t = ks
(u
t

)s Ps
( t
u

)
, A(s)

u = 0 ,

(5.7)

where ks are constants to be computed and Ps are polynomials. Since the theory
is scale invariant and since ha has mass dimension [ha] = 1, the amplitude should
only be a function of Mandelstam variables. This explains the form of (5.7): each
amplitude has a momentum factor coming from the internal propagator (t−s for
the t-channel for example), which must be compensated. As such, Ps(x) are poly-
nomials of degree s− 2. Normalising them with P2 = 1 and Ps>2(−1) = 1, we
compute explicitly:

P2(x) = 1, P4(x) = 28 + 42 x + 15 x2,

P6(x) = 495 + 1320 x + 1260 x2 + 504 x3 + 70 x4,

P8(x) = 8008 + 30030 x + 45045 x2 + 34320 x3 + 13860 x4 + 2772 x5 + 210 x6,

P10(x) = 125970 + 604656 x + 1225224 x2 + 1361360 x3 + 900900 x4 + 360360 x5

+ 84084 x6 + 10296 x7 + 495 x8 ,

(5.8)

53Here the factors of 2 arise due to the exchange symmetry of the 2 spin 1 fields, ie. because an
interacting term of the form φn gives rise to a factor of n! in Feynman diagrams.

54 The fact that the s-channel vanishes in the same helicity configuration may be due to the
fact that helicity is conserved in 3-point vertices, making that channel trivial. This happens for
gravitational interactions, cf. [146].
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with the coefficients ks:

k2 = 5
12 , k4 = 1

20 , k6 = 13
840 , k8 = 17

2520 , k10 = 7
1980 . (5.9)

These expressions were computed explicitly up to s = 10, which allows one to
generalise for higher spin (a derivation for this is given in Appendix C.6):

Ps(x) = xs−2 P(4,0)
s−2

( x+2
x
)

, (5.10)

ks = 2 (2 s+1)
(s−1) s (s+1) (s+2) , (5.11)

where P(a,b)
n (x) are Jacobi polynomials. One can compare this to the results of the

previous chapter. In particular, the scalar exchange (4.15) can be expressed as:

A(s)
s ϕϕ∗→ϕϕ∗

= (s +
1
2
) P(0,0)

s (−1− 2x) , x = t
s , (5.12)

where P(0,0)
s (z) = Ps(z) is just the Legendre polynomial. One could also consider

adding the current coupling (4.3) and computing mixed scalar-vector amplitude
to find:

A(s)
s ϕϕ∗→11

= Vϕϕ∗s(p1, p2) · D
(s)(p1 + p2) · 2 V(p3, p4) · ε

∗
3 ε∗4 , (5.13)

where Vϕϕ∗s(p1, p2) is simply the spin s vertex coming from the interaction in
(3.34). One finds that the ±± amplitudes are trivial, while the ±∓ helicity pre-
serving ones are written as:

A(s)
s ϕϕ∗→±1∓1

= ks
t u

s2 Qs
( t
s

)
, (5.14)

where again, Qs are homogeneous polynomials of order s − 2 normalised by
Qs(−1) = 1. Once again, we can find a general s expression for these:

Qs(x) = 2
s (s−1) P(2,2)

s−2 (−1− 2 x) , ks = s + 1
2 , (5.15)

5.1.1 Spin summation

It is time to sum over spins. For simplicity we will look at the ±± → ±±
amplitudes, but the discussion generalises to the helicity preserving ±∓ → ±∓
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case. The total amplitude is:

±± → ±± : A(s) = ks

[(s
t

)s Ps

( t
s

)
+
( s
u

)s Ps

(u
s

)]
. (5.16)

Since we are scattering massless particles, u = −s− t allowing us to write the
expression in terms of the single variable x ≡ t

s :

A(s) = σs(x) + σs(−1− x), σs(x) ≡ ks x−s Ps(x) . (5.17)

As before, we must introduce a regularisation on the function σ(x) to perform
the sum. We do this via the introduction of the parameter z and define:

σ(x) ≡ lim
z→1

σ(x; z) , σ(x; z) ≡
∞

∑
s=2,4,6,...

σs(x) zs−2 . (5.18)

Stripping away the numerical constant ks, let us study the sum over all s > 2 of
the similar function:

K(x; z) ≡
∞

∑
s=2

x−s Ps(x) zs−2 . (5.19)

Using the generating function form of the Jacobi polynomials P(4,0)
s−2 (cf. [147] ), we

can write:

K(x; z) = 16
x2

[√
z2 − 2z(x+2)

x + 1
]−1[√z2 − 2z(x+2)

x + 1− z + 1
]−4 . (5.20)

Finally, using the separated form of ks (cf. (5.11)):

ks =
1

s+2 −
1

s+1 +
1

s−1 −
1
s , (5.21)

we can perform the sum by multiplying (5.20) by various powers of z, integrating
over that, and dividing again by a power of z. For instance, from (5.19)

z−4
∫ z

0
dz′ z′3K(x; z′) =

∞

∑
s=2

1
s + 2

x−s Ps(x) zs−2 . (5.22)

In order to restrict the sum to only even spins, we simply look at the combination
1
2 (K(x; z) + K(x;−z)). Overall, the z→ 1 limit is finite and simple:

σ(x) = x(x + 1) log x+1
x − x− 1

2 . (5.23)
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One can check that σ(x) = −σ(−1− x) , so that the overall summed amplitude
is zero:

A(x) =
∞

∑
s=2,4,6,...

A(s)(x) = σ(x) + σ(−1− x) = 0 . (5.24)

Note that here we made the assumption that σ(x) is defined for any x via analyt-
ical continuation. Actually, it is real in the interval x ∈ [−∞,−1] ∪ [0, ∞] but the
argument in (5.17) is x = t

s = −1
2 (1− cos θ) ∈ [−1, 0]. One can then consider

adding an infinitesimal imaginary part, in which case we find that the amplitude
vanishes again, A(x + i 0±) = 0 (approaching zero from either side).

At the special kinematic points x = −1 and x = 0, one may expect some
non-trivial delta function contributions (similar to what we observed in Chapter
4.). In Appendix C.5, we show explicitly that this is not the case for x = −1 with
an independent check.

5.2 General structure of CHS exchange amplitudes

At this stage, it is useful to pause and make an important remark. The ap-
pearance of Jacobi polynomials in expressions (5.10), (5.12) and (5.15) is actually
related to the partial wave expansion of the amplitudes studied by Jacob and
Wick in [148] (see also [149, 150]).

There, they show that for a helicity λ1, λ2 → λ3, λ4 transition amplitudes
in the c.o.m. frame, one can use the completeness of states relation to express a
generic scattering amplitude as a sum over states with mass M =

√
s and spin J:

A{λi}(s, θ) = R{λi}(θ) ∑
J≥M

(J + 1
2)F

(J)
{λi}

(s) P(|λ−µ|,|λ+µ|)
J−M (cos θ) , (5.25)

λ = λ1 − λ2, µ = λ3 − λ4, M = max(|λ|, |µ|) , (5.26)

R{λi}(θ) =
(

cos θ
2

)|λ+µ| ( sin θ
2

)|λ−µ|
=
(
− u

s

) 1
2 |λ+µ| (− t

s

) 1
2 |λ−µ| , (5.27)

where {λi} = (λ1, λ2; λ3, λ4) and the angle θ is defined via cos θ = 1 + 2 t
s . The

appearance of the Jacobi polynomial P(a,b)
k in (5.25) comes from the expression for

spherical d-functions:

dJ
λµ(θ) =

√
(J+M)!(J−M)!
(J+N)!(J−N)! R{λi}(θ) P(|λ−µ|,|λ+µ|)

J−M (cos θ) , . (5.28)
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where N = min(|λ|, |µ|). Let us now turn our attention to the case where we
scatter massless particles of a scale invariant theory. The dependence on F (J)

{λi}
can be inferred from the dimensions ∆i of the scattering states:

F (J)
{λi}

(s) = F(J)
{λi}

s∆ , ∆ ≡ 1
2
(4−

4

∑
i=1

∆i) , (5.29)

where F(J)
{λi}

are numerical coefficients related to the dynamics of the theory in

question.55

The key point is that the spin J term in (5.25) will have the same structure
as the s-channel diagram of a CHS amplitude with a spin s = J particle on the
internal line. This comes from the fact that a massive particle with mass m2 = s is
described by a symmetric field field φa1...aJ

satisfying (−�+ m2)φa1...aJ
= 0 which

is traceless and transverse (on-shell) (so it has 2J + 1 degrees of freedom). This is
exactly what we have in our CHS diagrams, the only difference being the overall
s dependence that arises due to the higher derivatives in the propagator, but this
can be controlled by the scale invariance (cf. (5.29)).

Now, the analysis above only applies to the s-channel: since we picked s to
be the c.o.m. it will appear in the propagator of the exchanged CHS field. One
can relabel the variables to obtain the other contributions, as we will soon see.

We also note that this identification does not appear to work massless higher
spin exchanges discussed in [142] since the theory lacks the algebraic part of CHS
symmetry allowing to render the spin s propagator traceless.

We now see how (5.25) can be related to the cases (5.7),(5.12),(5.14). For the
ϕϕ∗ → ϕϕ∗ amplitude, λi = 0, λ = µ = 0, M = 0, leading to the s channel spin
J exchange:

A(J)
s 0,0;0,0(s, cos θ) = (J + 1

2)F(J)
0,0;0,0 P(0,0)

J (cos θ) . (5.30)

This matches (5.12) for the identification J = s so long as:

F(s)
0,0;0,0 = 1 . (5.31)

55For instance, we just considered scattering the dimension 1 vector fields ha and scalars ϕ, for
which ∆ = 0.
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Next, for ϕϕ∗ → ±∓ (cf. (5.13),(5.14)), we have λ = λ1 = λ2 = 0, λ3 = −λ4 =

±1, µ = M = ±2, yielding

A(J)
s 0,0;±1,∓1(s, cos θ) = (J + 1

2)F(J)
0,0;±1,∓1

u t

s2 P(2,2)
J−2 (cos θ) . (5.32)

This matches (5.25),(5.29) for even J and

F(s)
0,0;±∓ =

2
s (s− 1)

. (5.33)

Finally, for the vector scatterings ±1±1→ ±1±1, there are contributions coming
from the t and u channels, which can be obtained by relabelling the states and
Mandelstam variables. The t-channel of ”X”-particles X1 + X3 → X4 + X2 is
the same as the s-channel effective ”Y”-particles Y1 + Y2 → Y3 + Y4. So for the
exchange in question, for Y particles we have λ1 = −λ2 = ±1, λ3 = −λ4 =

±1, λ = µ = 2, M = 2 allowing us to write (cf. (5.25),(5.29) ):

A(J)
s±1,∓1;∓1,±1 = (J + 1

2)F(J)
±1,∓1;∓1,±1

u2
Y

s2
Y

P(0,4)
J−2 (cos θY), cos θY = −1− 2

uY
sY

.

(5.34)

We can then go to the kinematics of the X particles by relabelling: sY → t, tY → u,
uY → s. The t-channel is then given by:

A(J)
t±1,±1;±1,±1(t, cos θ) = (J + 1

2)F(J)
±1,±1;±1,±1

s2

t2
P(0,4)

J−2 (−1− 2
s

t
) . (5.35)

This matches the results (5.7),(5.10),(5.11) with J = s and the choice:

F(s)
±1,±1;±1,±1 =

ks

s + 1
2

=
4

(s− 1) s (s + 1) (s + 2)
. (5.36)

This can be seen by making use of the identity:

(s
t

)s ( t
s

)s−2 P(4,0)
s−2

(
1 + 2

s

t

)
=

s2

t2
P(0,4)

s−2
(
− 1− 2

s

t

)
, (5.37)

Following our three examples (5.31),(5.33) and (5.36), one may make a conjecture
on the dependence of the functions F(J)

{λi}
in (5.29) on J to be:

F(s)
{λi}

= kλ,µ
(s−M)!
(s + N)!

, N = min(|λ|, |µ|), M = max(|λ|, |µ|) . (5.38)
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This leads to the correct expression for F(s)
{0} , F(s)

0,0;±∓ and F(s)
{±1} from (5.10), (5.33)

and (5.36) respectively provided kλ,µ = 1. We will find that the ansatz (5.38)
applies to the other cases we study.

5.3 Scattering amplitudes with conformal gravitons

We now study amplitudes which scatter conformal gravitons. Here, follow-
ing [2], we study only amplitudes scattering the 2-derivative “Einstein” modes,
the computation for the other states, in particular the oscillating helicity±1 modes
remains to be done.

5.3.1 22→ 22 scattering

In order to discuss the full amplitude, we focus on the exchange diagrams
which have higher spin fields on the internal line - ie. even spins with s ≥ 4.
Following the analysis from above, we expect the t-channel exchange or same-
helicity particles to be (cf. (5.25),(5.29) ), for J > 4:

A(J)
t±2,±2;±2,±2(t, cos θ) = (J + 1

2)F(J)
±2,±2;±2,±2 t

2 s4

t4
P(0,8)

J−4 (−1− 2
s

t
) . (5.39)

where the factor of t2 factor arises due to the fact that the field hab has mass di-
mension 0. The total spin J = s exchange should then be as in (5.16) (cf. (5.10))
:

±2± 2→ ±2± 2 : A(s) = ks s
2 [(s

t

)s−2 Ps
( t
s

)
+
( s
u

)s−2 Ps
(u
s

)]
, (5.40)

Ps(x) = xs−2 P(8,0)
s−4

( x+2
x
)

. (5.41)

Furthermore, if (5.38) stays valid for all F(J)
{λi}

, we can expect

ks = k 2s+1
(s−3)(s−2)(s−1)s(s+1)(s+2)(s+3)(s+4) , (5.42)

where k is some numerical factor independent of s.

It turns out that explicit computation for several (even) s agrees with this for
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the value:
k = 9

8 . (5.43)

The derivation of (5.40)–(5.43) can be performed along the lines of the correspond-
ing one for the 11→ 11 scattering, described in Appendix C.6. The same analysis
can be carried out for the helicity-preserving ±2∓ 2→ ±2∓ 2 amplitude.

Summing all these exchange amplitudes we find:

∞

∑
s=4,6,...

A(s)(x) = s2[σ(x) + σ(−1− x)
]

, x ≡ t

s
, (5.44)

σ(x) = lim
z→1

∞

∑
s=4,6,...

ks x2−s Ps(x) zs−4 . (5.45)

by following the same steps as (5.17)–(5.23). Again, using the generating function
representation of Jacobi polynomial, one is led to the form:

σ(x) = 1
4320

[
60 (x + 1)3 x3 log x+1

x − 60 x5 − 150 x4 − 110 x3 − 15 x2 + 3 x− 1
]

.
(5.46)

Remarkably, this function satisfies:

σ(x) + σ(−1− x) = 0 , (5.47)

indicating that the t and u-channel contributions involving higher spin exchanges
cancel against each other.

Next, we must compute the low spin s < 4 contributions, as well as the
contact term appearing in (5.1). The results following from the exchange of a h0

field are:

± 2± 2→ ±2± 2 : A(0)
s = s2

4608 , A(0)
t = t2 u4

512 s4 , A(0)
u = t4 u2

512 s4 ,

± 2∓ 2→ ±2∓ 2 : A(0)
s = 0, A(0)

t = t2 u4

512 s4 , A(0)
u = (s+3t)2 u4

4608 s4 .

(5.48)

The spin 2 exchange, which uses the vertex (3.57)) yields:

± 2± 2→ ±2± 2 : A(2)
s = s2+6 s t+6 t2

23040 , A(2)
t = u2(2 s4−10 s3 t+33 s2 t2−24 s t3+3 t4)

7680 s4 ,

A(2)
u = t2 (2 s4−10 s3 u+33 s2 u2−24 s u3+3 u4)

7680 s4 , (5.49)
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± 2∓ 2→ ±2∓ 2 : A(2)
s = 0, A(2)

t = u4 (2 s2+2 s t+3 t2)

7680 s4 , A(2)
u = u4 (10 s2+18 s u+9 u2)

23040 s4 .

Finally, the contact term diagrams give:

± 2± 2→ ±2± 2 : A(cont) = − s6−s5 t+26 s4 t2+63 s3 t3+54 s2 t4+27 s t5+9 t6

1920 s4 ,

± 2∓ 2→ ±2∓ 2 : A(cont) = −u4 (s2+3 s t+9 t2)

1920 s4 .

(5.50)

As anticipated, for all helicity configurations, the sum of these contributions van-
ishes:

[A(0)
s + A(0)

t + A(0)
u ] + [A(2)

s + A(2)
t ] + A(2)

u + A(cont) = 0 . (5.51)

This is in fact equivalent to the fact that amplitudes in conformal gravity are triv-
ial, as alluded to in Chapter 2. Indeed, going back to the lower spin truncation of
the CHS action of Chapter 3, we saw that it was equivalent to the scalar-Maxwell-
Weyl action (3.44) after the field redefinition (3.43). Said field redefinition will not
affect the amplitude: it simply repackages the h0h2

ab interaction into another 2222
contact term.

Let us note a similarity in the structure of (5.44) and (5.23). This suggests
that for higher spin jj→ jj scattering one may be able to guess the expression
for σ(x) and then check that the coefficients in its expansion in a suitable set of
Jacobi polynomials reproduces the ks prefactor. Similar ideas have been exploited
in [151].

5.3.2 11→ 22 scattering

We now consider mixed amplitudes involving spin 2 and spin 1 fields. Among
these, the amplitudes involving an odd number of vectors vanish identically 56.
As such, we consider the 11→ 22 exchange. Starting with the helicity preserving
±1∓ 1 → ±2∓ 2 amplitude, for the s-channel, the higher spin s ≥ 4 exchanges,
one finds:

A(s)
s ±1,∓1;±2,∓2 = ks s

t u3

s4 P(6,2)
s−4 (−1− 2 t

s) , (5.52)

ks = (s + 1
2)F(s)
±1,±1;±2,∓2 = 3

2
2s+1

(s−3)(s−2)(s−1)s(s+1)(s+2) , (5.53)

56Indeed, if one vertex has external legs of spin 2 and 1, the exchange helicity must be odd,
implying the other two external legs must be 2 and 1 as well.
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with λ = 2, µ = 4, M = 4, N = 2. Once again, the expression of ks is consistent
with (5.38). For the t-channel, the exchange particle must have odd spin, and the
expression is therefore of the form:

A(s)
s ±1,∓1;±2,∓2 = k′s s

u3

st2 P(6,0)
s−4 (−1− 2 s

t) , (5.54)

k′s =
2s+1

(s−2)(s−1)s(s+1)(s+2)(s+3) . (5.55)

There is no u-channel contribution. Summing the s-channel and t-channel, one
finds:

As>2 =
u3

s2 Ā(
t

s
) , Ā(x) = x S(x) + x−2 T(x−1) , (5.56)

S(x) ≡
∞

∑
s=4,6,8,...

ks P(6,2)
s−4 (−1− 2 x) , T(x) ≡

∞

∑
s=3,5,7,...

k′s P(6,0)
s−4 (−1− 2 x) .

(5.57)

In the interval −1 < x < 0, the functions S(x) and T(x) are given by:

S(x) = − x3+5x2+13x−3
96(x+1)5 − x log(−x)

8(x+1)6 , T(x) = − (x−1)(x2+8x+1)
96(x+1)5 − x2 log(−x)

8(x+1)6 ,

(5.58)

so that finally, Ā = − 1
96 (x+1) . The total amplitude is then:

As>2 = − 1
96

u3

s2
1

t
s+1 = 1

96
u2

s . (5.59)

Next, one must add the lower spin exchanges, and the contact diagram arising
from the 1122 vertex57. The spin 0 exchange vanishes, as the 110 vertex (3.61)
vanishes for (±,∓) helicities. Similarly, the spin 2 exchange is trivial. The spin 1
exchange has non-trivial contributions for the t and u-channels:

±1∓ 1→ ±2∓ 2 : A(1)
t = u3 (2s+t)

192 s3 , A(1)
u = t u2 (s−t)

192 s3 . (5.60)

The 1122 vertex is found to give:

±1∓ 1→ ±2∓ 2 : A(cont) = − 1
96

tu3

s3 . (5.61)

57This is just given by the graviton-Maxwell coupling up to field redefinitions, see Section 3.3.4
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Once again, remarkably the sum of contrbutions (5.59), (5.60) and (5.61) is found
to vanish:

±1∓ 1→ ±2∓ 2 : As>2 +
[
A(1)
t + A(1)

u

]
+ A(cont) = 0 . (5.62)

Next, we attack the ±1± 1 → ±2± 2 amplitude. For the t-channel, it is of the
form:

±1± 1→ ±2± 2 : A(s)
t = ks

s3

t2 P(0,6)
s−3 (−1− 2 s

t), A(s)
u = ks

s3

u2 P(0,6)
s−3 (−1− 2 s

u) ,

ks = − 2s+1
(s−2)(s−1)s(s+1)(s+2)(s+3) , s = 3, 5, 7, ... . (5.63)

Here one can notice that ks = −k′s (cf. (5.55)). Combined with the fact that
P(0,6)

s−3 (−1− 2x) = P(6,0)
s−3 (1+ 2x), we can use the expression for T(x) of (5.57),(5.58)

to find that the sum of the t and u-channels vanishes:

x2 T(−1− x) + ( x
1+x )

2 T(− 1
1+x ) = 0 . (5.64)

Considering the lower spin exchanges and the contact term, one finds the follow-
ing non-vanishing contributions:

±1± 1→ ±2± 2 : A(0)
s = − s

128 , A(1)
t = u2 (s2−6 s t+2t2)

128 s3 , A(1)
u = t2 (s2−6 s u+2u2)

128 s3 ,

A(cont) = − t u (t2+3 t u+u2)

32 s3 , (5.65)

which also sum up to zero:

A(0)
s + [A(1)

t + A(1)
t ] + A(cont) = 0 , (5.66)

5.3.3 Conclusion and Global Symmetry

In conclusion, the 11→11, 22→22 and 11→22 amplitudes all vanish. A nat-
ural conjecture is then that CHS tree-level amplitudes (of 2-derivative states) all
vanish. In Appendix C.5, we show that this is true for four point amplitudes at
the special kinematic point of backward scattering, where u = 0, if we use the
expressions (5.25),(5.29),(5.38).

These vanishings are related to the action of the global CHS symmetry, as we
saw in Chapter 4. Let us sketch how this works on the 11→11 amplitudes. The
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global CHS symmetry acts on the vector fields as:

δha = ∑
k

[
εab(k)∂b(k)h0 + εb(k)∂b(k)h

a] (5.67)

When acting on the amplitude, this variation will give a term that corresponds
to the 01 → 11 amplitude, which we argued vanishes due to parity symmetry
considerations. As for the second term in (5.67), it is of the same form as that
acting on the scalar ϕ, (4.33), so one may repeat the arguments used there, (ie.
pick εa(k) to be proportional to ya1

. . . yak
. As such, the symmetry constrains the

amplitude to vanish. Similar arguments apply to the spin 2 case.

5.4 3-point amplitudes of CHS theory

In Section 3.4, we introduced twistor-spinors describing on-shell states of the
theory. It is possible to derive formulae for the on-shell action of CHS theory in
this formalism (ie. obtain tree-level amplitudes). The advantage of this is that
it forgoes the computation of Feynman diagrams, and it conveniently allows us
to scatter any states of the theory, not just the 2-derivative ones. We will state
the formula for 3-point amplitudes here, in generalisation of the discussion in
Chapter 2. The amplitudes must be MHV or MHV, and the spin of the external
legs have the following constraint:

s1 ≥ s2, s3 , s1 ≤ s2 + s3 . (5.68)

The formula for 3-point MHV scattering is:58

M3 ∼ N
(s)

[
(s2 − 1)!
(s1 − s3)!

A
BK(AJ
2 C̃3 BK

(
B1 AI

A
AI−J)

3
[2 3]s1+2

[1 2]s1−s2+1 [3 1]s2

)

+(−1)s2+s3−s1
(s3 − 1)!
(s1 − s2)!

A
BK(AI−J−K
3 C̃2 BK

(
B1 AI

A
AJ+K)

2
[2 3]s1+2

[1 2]s3 [3 1]s1−s3+1

)]
,

(5.69)

where the spinor objects AA, BA are defined in (3.75)–(3.79) and (3.81)–(3.84), CA

is the operator defined in (2.96). Here, the spin s1 particle has negative helicity,
while the other two carry the positive helicities. Also, I, J, K are multi-twistor

58See Appendix C of [3] for a derivation
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indices satisfying:

|I| = s1 − 1 , |J| = s1 − s3 , |K| = s2 + s3 − s1 − 1 , (5.70)

and the constants N (s) are defined by:

N (s) ≡ 1
(s2 + s3 − s1 − 1)!

(5.71)

The first result that this formula yields is that :

M3(−s1, s2, s3) = 0 , (5.72)

which is to say that scattering amplitudes involving only the maximal helicity,
2-derivative modes vanish. This is in agreement with our earlier conjecture.

Much like the case of Conformal Gravity, one can easily check that this triv-
iality does not extend to all modes. Indeed, while scattering the helicity hs1

mode
for the spin s1 external leg yields:

M3(−hs1
, s2, s3) = 0 , ∀ hs1

= 2, . . . , s1 , (5.73)

scattering a helicity hs1
= 1 mode is non-zero:

M3(−1s1
, s2, s3) = κs2

κs3
K [2 3]s2+s3+1

[1 2]s3−s2+1 [3 1]s2−s3+1 δ(4)
(

3

∑
i=1

λiλ̃i

)
. (5.74)

where we defined the numerical factor:

K ≡ N (s)
( 1

2 i

)s1−1[
(−1)s1−s3

(s2 − 1)!
(s1 − s3)!

+ (−1)s2
(s3 − 1)!
(s1 − s2)!

]
. (5.75)

Here once again, κs are parameters of dimension s− 1 that arise from picking so-
lutions that are solved by lower derivative equations.

We close this chapter by making a few comments. It is possible to generalise
the AdS arguments presented earlier in Section 2.4.4 and obtain a version of the
formula (5.69) for AdS. In particular, for the scattering of the maximal helicity
modes, one gets, for the MHV amplitude:
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MΛ
3 (−s1, s2, s3) = Λs1−1 κs1

κs2
κs3

n(s) [2 3]s1+s2+s3

[1 2]s1−s2+s3 [3 1]s1+s2−s3

× (1 + Λ�K)
s2+s3−s1−1 δ(4)

( 3

∑
i=1

λiλ̃i

)
, (5.76)

with:

n(s) ≡
(

1 + (−1)s2+s3−s1
) (−2 i)s1−1

(s2 + s3 − s1 − 1)!
(s1 − s2 + s3 − 1)! (s1 + s2 − s3 − 1)!

(s1 − s2)! (s1 − s3)!
.

(5.77)
As suggested earlier, this is proportional to the 3-point 2-derivative scattering am-
plitude. Furthermore, there is an overall factor of Λs1 , which leads the vanishing
of the expression in the flat-space limit. So this suggests, that like for Conformal
Gravity, it is possible to obtain the classical data of massless higher spin theories
by taking the correct boundary conditions of CHS theory in AdS (cf. [62, 87]).
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Chapter 6

Conformal Anomaly in CHS Theory

In this chapter we look more closely at the question of conformal anomalies in
CHS theory. We aim to give some exposition into the current state of affairs, as
well as present some previously unpublished work on the contribution of mixed
terms.

As we said, the phenomenon of cancellation upon performing infinite sums
in CHS theory seems to extend to anomaly coefficients. For instance, the a and
c-coefficient of its conformal anomaly vanish (again, after regularising the infi-
nite sum over spin contributions) [127]. In that paper, several assumptions are
made.59 In particular it requires that there are no contributions coming from
possible off-diagonal terms in the CHS action. However, in [130], it was sug-
gested that such non-diagonal quadratic terms proportional to the curvature of
the spacetime existed. These terms need to be accounted for on their own, and in-
deed, in [131], the mixed term of spin 1 and 3 was computed, and it was found to
contribute non-trivially to the c-coefficient. Since then, [143] has given evidence
an independent check for a new value of the c-coefficient - which also vanishes
after summation.

Here, we will review this and propose an alternative approach that allows
us to compute mixed contributions up to spin 5. To do so, we first introduce the
curved space version of the scalar-CHS action, and show that it implies a mod-
ification to the global CHS symmetries. By fixing this modification, we see that
the existence of non-diagonal quadratic terms are implied (away from flat space),
and we compute them on the basis of gauge invariance. Finally, this allows us to

59A discussion of these assumptions can be found in [152], where the results of [127] are ob-
tained using holographic techniques. We also discuss this in Section 6.2
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compute new contributions to the anomaly c-coefficient.

6.1 Curved Space Scalar-CHS action symmetry

So far, we’ve only introduced CHS theory on a flat background. Our starting
point was the action (3.34) (with N = 1, for convenience):

S f lat =
∫

d4x φ∗�φ−∑
s

1
s!

∫
ddx Ja1···as ha1···as

. (6.1)

where we assumed that there is only one scalar (i.e. N = 1). With the linearised
symmetries (3.3):

δ ha1···as
= ∂(a1

εa2···as)
+ η(a1a2

αa3···as)
. (6.2)

In a general curved spacetime, we consider the action of a conformally coupled
complex scalar with the current coupling

Scurved =
∫

d4x
√

g φ∗
(

D2 − R/6
)

φ−∑
s

1
s!
Ja(s)h

a(s) (6.3)

where Ja are the curved space (on-shell) traceless currents of the theory. The
currents are such that (6.3) has conformal invariance, i.e. is invariant under:

δgab = −2w gab δφ = −w φ δh(a(s) = 2(s− 1)w ha(s) . (6.4)

We also require that they have the correct flat space limit, ie. J a(s) → Ja(s). It was
observed in [131], that starting at spin 3, the currents Ja(s) are no longer necessar-
ily conserved on-shell if we impose conformal invariance first.
This has important implications: (6.3) can no longer be invariant under the curved-
space version of (6.2) alone. Instead, we need to supplement these variations to
compensate for the obstruction of the current being conserved.
These modifications carry over to the full CHS theory, after integrating out φ

and in particular, they imply that the latter must contain non-diagonal quadratic
terms. In principle, these mixed terms can contribute to the c-coefficient of CHS
anomaly.
Schematically, the currents contain s derivatives, so they look like:

Js ∼ Ds(φφ∗) + Ds−2(Rφφ∗) + . . . , (6.5)

121



where R stands for a Riemann tensor or its contractions. One then only needs
to make an ansatz by writing all possible terms that appear on the RHS with an
arbitrary coefficient. These coefficients can then be uniquely fixed by requiring
that Ja(s) be Hermitian, on-shell traceless, have the correct Weyl scaling (6.4) and
have the correct flat-space limit, (3.35).

Once we know the form of the current, we can compute its divergence on-
shell. It turns out that for s > 2, this is non vanishing. This is precisely the
obstruction to (6.3) being invariant under δhs = Dεs−2. Luckily, we find that we
can express this divergence in terms of currents of lower spins. Schematically this
looks like:

D · Js ∼ D(RJs−2) + D3(RJs−4) + D(R2 Js−4) + . . . (6.6)

Once we work out this form exactly, it is possible to modify the variations of the
lower spin CHS fields to compensate. This means that schematically, we need:

δhs = δ(s)hs + δ(s+2)hs + δ(s+4)hs + . . . (6.7)

δ(s)hs = Dεs−1 + g2αs−2 (6.8)

δ(s+2p)hs =
(

DRp + D3Rp−1 + . . . + D2p−1R
)

εs+2p−1 (6.9)

Knowing the precise form of these gauge variations is important as it will al-
low us to fix the CHS action without directly inducing it. Indeed, in general
the diagonal spin s quadratic terms will not be invariant on their own, but only
when added to a mixed term. Keeping terms proportional to the gauge parameter
εs+2p−1:

∫
dd x

δLs,s

δhs
δ(s+2p)hs = −

∫
dd x

(
δLs,s+2

δhs+2
δ(s+2p)hs+2 + . . . +

δLs,s+2p

δhs+2p
δ(s+2p)h(s+2p)

)
(6.10)

This equation allow us to fix the non-diagonal terms Ls,s+2p of the quadratic ac-
tion (while the diagonal terms are invariant on their own under the “normal”
part of the symmetry, δ(s)hs).
These modified gauge variations were found for spin 3. In the following section,
we will focus on the spin 4 case as an illustrative example, though the computa-
tion has been performed up to spin 5.
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6.1.1 Curved space spin 4 current

The computations required here are intensive and require the use of a com-
puter. We use the xTras add-on to the xAct tensor manipulation package [153,
154].

We can simplify matters by assuming a Ricci-flat background, Rab = 0. As
will be explained later, this is sufficient for our goal of calculating the c-coefficient
of the anomaly.
Before we start the computation, let us note that we can fix the algebraic part of
the gauge variation to take make the CHS fields traceless, which means explicitly:

δ(4)habcd = D(aεbcd) − 3
8

g(abDeε
cd)e (6.11)

δ(2)hab = D(aεb) − 1
4

gabDcεc (6.12)

εab
b = 0 (6.13)

The calculation proceeds as outlined above. We simply state the solution for the
spin 0, 2 and spin 4 current thus obtained:

J0 =φ∗φ (6.14)

J ab =1
3 Daφ∗Dbφ− 1

12 gabDcφ∗Dcφ− 1
6 φ∗Dabφ + h.c. (6.15)

J abcd = 9
35 Dabφ∗Dcdφ− 9

70 gabDc
eφ
∗Ddeφ + 1

140 gabCc
e
d

f φ∗De f φ

+ 3
280 gabgcdDe f φ∗De f φ− 8

35 Daφ∗Dbcdφ + 3
35 gabDeφ∗Dcd

eφ

+ 1
70 φ∗Dabcdφ + h.c. (6.16)

Where above, it is implicit that one must symmetrise over the free indices with
the usual weight.
The next step is to look at the divergences of these currents. The spin 2 current is
conserved on-shell:

DaJ
ab ≈ 0 (6.17)

where we remind the reader that “≈” indicates equality on equations of motion.
For the spin 4 current, one can show that

DaJ
abcd ≈ 1

30Cbed f Cc
ea f DaJ0 +

1
30Cb

f aeC
ced f DaJ0 − 1

240 gcdCae f gCae f gDbJ0
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− 1
2Cc

a
d

eDbJ ae + 3
14J

aeDbCc
a

d
e +

1
2Cc

a
d

eDeJ ba

+ 1
2Cc

e
d

aDeJ ba − 3
14 gcdCb

ae f D fJ ae (6.18)

where again, one needs to symmetrise over the free indices on the RHS, and Cabcd

is the Weyl curvature tensor60. In order to obtain this form, we made use of
Dimensionally-Dependent Identities (DDIs) - see Appendix B.3.

A short calculation shows that can compensate for the RHS of (6.18) by sup-
plementing the gauge variations in the following way:

δ(4)h0 = − 1
360Ca

e
b

f Cced f Ddεabc + 1
360Ca

de f εabcD f Cbdce (6.19)

δ(4)hab = 1
48CadbeDcεcde + 5

168 εcdeDeCacbd +
1

42CbcdeDeεa
cd

+ 1
42CacdeDeεb

cd . (6.20)

Note that these expressions exhibit the expected behaviour that they vanish in
flat-space. We also note that δ(4)ha

a = 0 so that (6.20) does not break our traceless
gauge.

These modified gauge variations imply that the S00 and S22 actions are no
longer invariant on their own. This means that the full action needs to be supple-
mented by the non-diagonal terms S02, S04, S24 which will be able to compensate.

6.1.2 Computing new non-diagonal CHS terms.

In order to compute a non-diagonal term Sss′ , we will simply write down all
possible terms which can appear in it. This is possible since the theory is confor-
mal and there are no dimensionful parameters, which allows us to determine that
Sss′ will contain exactly s + s′ derivatives. As we’ve said, we can then fix these
terms by making sure that the variation of this new term cancels the variation of
the usual quadratic terms, in this case S22 and S00.

S02

The simplest case is S02. In principle this sector is relevant since varying it
as in (6.19) - (6.20) might contribute to cancelling variations from S00 and S22.
However, this term is trivial for the following reason: in general, Sss′ must vanish

60In a Ricci-flat spacetime Cabcd = Rabcd
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in the flat-space limit, i.e. in a Ricci-flat space, it must contain at least one factor of
the Weyl curvature. Furthermore, dimensionally, the action contains exactly two
derivatives. However, there is no non-trivial way to contract the tensors Cabcd, hab

and h0 together, so this action is vanishes.

S04

This term is the first non-trivial correction we obtain. However, it is not very
interesting for us as it cannot give new contributions to the Weyl anomaly, since
h0 is actually non-dynamical and can be integrated out from the start, providing
corrections only to the S44 sector and higher order vertices.
We state the result here for completeness, but save the details of the calculation
for the next section.

S04 = 1
180 h0 hbde f Ca

e
c

f Cabcd (6.21)

S24

Computing this sector of the action is computationally challenging. Indeed,
the action contains 6 derivatives, which means that the following schematic terms
are allowed:

S24 ∼ h4 D4(Ch2) + h4 D2(C2h2) + h4 C3h2 (6.22)

Out of these, only terms with one Weyl curvatures and without derivatives acting
on it can contribute to the anomaly, as will be explained in Section 6.2. As such,
we can split the action into an ”anomalous” part, S24,an ∼ h4CD4h2, and the
”rest”, S24,re. Explicitly, the ansatz for S24,an is

S24,an = k1 ha
e f gCabcdDbd f ghce + k2 hac

e f CabcdDbd
g

ghe f + k3 ha
e f gCabcdDde f ghbc

+ k4 hac
e f CabcdDd f

g
ghbe + k5 hac

e f CabcdDe f
g

ghbd (6.23)

while S24,re is too long to write here. Our goal will then to fix the constants
{k1, k2, k3, k4, k5}.
The other relevant part of the full action here will be S22, which can be computed
by expanding the Weyl action (and using (3.48) as normalisation in the flat-space
limit). We then fix the constants in (6.23) by using

δ(S24,an + S24,re)

δ(0)h4

+
δS22

δ(4)h2

= 0 (6.24)
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This equation is solved by systematically symmetrising derivatives, using pro-
jections of the Weyl tensor and its derivatives on the relevant Young tableaux as
well as including DDIS. The final result for the ”anomalous” part of the action is:

S24,An = − 1
1680 hac

e f CabcdDbd
g

ghe f +
1

1260 hac
e f CabcdDd f

g
ghbe− 1

5040 hac
e f CabcdDe f

g
ghbd

(6.25)

6.2 Contribution to the conformal anomaly

Let us now compute the contribution that the new non diagonal terms may
have to the conformal anomaly.
The conformal anomaly of the theory is computed by looking at the logarithmic
divergence of the partition function. In d = 4 it looks like [155]:

Γ = − log ZCHS = − 1

16π2 log Λ
∫ √

g b4 (6.26)

b4 = −a R?R? + c C2 (6.27)

where b4 is called a Seeley coefficent and R?R? ≡ C2 − 2RabRab + 2
3 R2 is pro-

portional to the Euler number density. Since we are interested in computing the
c-coefficient, it suffices to choose a Ricci-flat background where b4 = (c− a)C2.
One can further note, as in [131], that in a conformally-flat Einstein background,
b4 = −aR?R? and furthermore all non-diagonal terms drop out. Therefore, mixed
terms can only contribute to the c-coefficient.

To compute the coefficient, we follow the steps in [131], namely we com-
pute the log divergence in (6.26). To be more precise, we only compute the terms
which can be proportional to C2. Using the newly found S04 and S24 sector, we
see that the only relevant diagram is the one given in Figure 6.1. There, we have
two insertions of the Sss′ vertex, and the only terms linear in the Weyl tensor are
relevant. Note that this justifies the comments made in Section 6.1.2 - we imme-
diately see that only S24,an can contribute.

This observation leads to an important simplification. The flat-space kinetic
action, Sss contains 2s derivatives. Meanwhile, the diagonal Sss′ “vertex” linear
in Weyl curvature contains s + s′ − 2 derivatives. This means that diagram 6.1 is
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Figure 6.1: Contribution from Ss′s to the conformal anomaly

superficially only logarithmically divergent, for any spins involved. If we include
any part of Sss which is not part of the flat limit, we will have a finite integral. As
such, we can simply take the flat-space kinetic terms (3.48). Furthermore, since
we only care about that divergence, we can set any external momentum to 0. We
can therefore easily write down the relevant terms:

− log ZCHS =
n2n4

2

∫ ddk

(2φ)d V24(k)abcd,a′b′ V24(k)
e f gh,e′ f ′P(k)

abcd,
e f ghP(k)

a′b′,
e′ f ′

(k2)6

∣∣∣∣∣
log Λ

(6.28)

whereP(k)a(s)
b(s) correspond to the spin s symmetric TT propagators, while V24(k)

a(4),b(2)

is the vertex which comes from Fourier transforming S24. The factor of 1/2 is a
symmetry factor while n2 = 240 and n4 = 2903040 are normalisation coefficients
from the propagators, see (3.49).

This is a straightforward integral which can be done using the tricks in Ap-
pendix B.3. Note that if we use dimensional regularisation with d = 4− ε, the
logarithmic divergence appears instead as a pole in −1

ε , similar to Chapter 3.
We now write the results obtained for the first few off-diagonal contributions:

c02 = 0 c13 =
98
75

c24 =
972
35

c35 =
1936

9
, (6.29)

the first two of these values having first been obtained in [131].

Let us put these results in context. In [127], the a and c-coefficients of the
anomaly were computed. In particular, the spin s contribution to the c-coefficient
was found to be:

cs =
1

720
νs

(
4− 42νs + 29ν2

s

)
. (6.30)
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A few assumptions were made to obtain this result. First of all, it was assumed
that we can factorise the spin s kinetic operator into a product of s 2nd order
Lichnerowicz-type operators in Ricci-flat spacetimes. In [156], it was shown that
there exist obstructions to that factorisation of the form ∼ DR + . . .. However, it
was noted in [131], these obstructions cannot contribute to the c-coefficient.

The second assumption, which we mentioned at the opening of this chapter,
was that the kinetic operator is diagonal in spin. Since this is not true, the mixed
contribution we have computed must be added to those given in (6.30).

There exists another value for cs in the literature

c′s ≡
1

360
νs

(
−4− 17νs + 14ν2

s

)
, (6.31)

which was found by computing it on a conically deformed-sphere, where fewer
assumptions need to be made [143]. This value is expected to be the correct one:
it matches the AdS5 massless higher spins results [135], which are related to the
CHS anomaly via AdS/CFT [54, 134].

A natural expectation is then that the mixed contributions we computed ac-
count for the difference between (6.30) and (6.31). This does not appear to be the
case - at least naively. Indeed, if we compare our results with the first few values
for cs and c′s:

c1 =
1

10
c2 =

199
30

c3 =
919
15

c4 = 299 c5 =
6211

6
(6.32)

c′1 =
1

10
c′2 =

199
30

c′3 =
904
15

c′4 = 291 c′5 =
6043

6
, (6.33)

it is not obvious how one should combine our values of css′ to account for the
discrepancy. It is possible that the contribution from a general mixed term css′

can be non-trivially mixed with cs.
61 One way to highlight this difficulty comes

from the fact that in [127], it was found somewhat unexpectedly that cs is a cubic
polynomial in νs, whereas on general grounds, it was simply expected to be a
polynomial of order 6 in s. The same is true of cs′ . This seems to come from the
particular SO(3, 1) representation of the fields. However, from (6.29), this does
not appear to be the case for mixed contributions.

61For instance one might perform a field redefinition to diagonalise the curved CHS action, thus
confirming the assumption of [127], but one would have to compute a non-trivial Jacobian.
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Both results values (6.30) and (6.31) have the important property that they
vanish under the natural regularisation we looked at in Chapter 4, ie.

∞

∑
s=0

e−(s+1/2)ε cs

∣∣∣∣∣
f in

= 0 =
∞

∑
s=0

e(s+1/2)ε c′s

∣∣∣∣∣
f in

, (6.34)

where we are taking the ε→ 0 limit and dropping poles. The fact that both func-
tions vanish under this regularisation implies that the mixed term contribution
should as well (especially if it is found to account for the difference). Once again,
this raises the question of how one should re-sum mixed contributions to com-
bine them with cs - specifically, how one should sum there under the regulator
e−(s+1/2)ε.

In order to say more, it would be very helpful if we could obtain a closed
formula for mixed contributions. At present, this seems difficult, although our
current approach does highlight a simplification: we can show that anomaly con-
tributions are controlled by only one type of term. Indeed, in the computation
of the diagram 6.1, we noticed that the propagators can be taken to be the flat
space TT propagators (cf. (3.49), (3.50)). Furthermore, we saw that in general the
vertices that are relevant Vss′ will come from the part of the action with only one
Weyl tensor and no derivatives acting on it, Sss′,an. But it is even simpler than
that: since those vertices are contracted with TT propagators, we can restrict to
the TT part of Sss′,an. This implies that only one type of term can contribute; for
s > s′, then we have:

Ls s−2,an

∣∣∣∣∣
TT

= ksha(s−2)bcC d e
b c D

b1... b[ s
2 ]

deb1... b[ s
2 ]

ha(s−2) (6.35)

Ls s−p,an

∣∣∣∣∣
TT

= 0 p > 2 . (6.36)

The last equality holds true because there are no non-trivial contractions. As such,
there is only one coefficient, ks, that seems to control the conformal anomaly. A
streamlined version of the analysis used here might yet provide an expression for
generic values of s.
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Chapter 7

Conclusion

Let us summarise this thesis and make some parting comments. Chapter 1 pro-
vided some context and motivation for the work presented. We opened by giving
a basic introduction to massless higher spin theory and then related it to CHS the-
ory via AdS/CFT.

Chapter 2 focused Conformal Gravity, as a prelude to CHS theory. This gave
us the opportunity to talk about higher derivative theories and to give a gener-
alised notion of scattering states.
Notably, out of the 6 degrees of freedom contained in the theory, we found that
there were 4 admissible states, the two usual “Einstein modes” but also some he-
licity ±1 states that lead to perfectly well-defined amplitudes.
We introduced the fact that conformal field theories find a natural description in
the language of twistors. This led to a compact formula for three-point scattering
of any states. Indeed, this formula matched explicit results computed from usual
covariant methods.
This result has remarkable interesting features. First of all, it shows that scat-
tering amplitudes containing only Einstein modes vanish in an interesting way:
they are given by Einstein Gravity amplitudes times the cosmological constant,
which is related to the results of [62]. This was obtained by extending the formula
to AdS spacetime - a generalisation which can readily be done since Minkowski
and AdS are conformal to each other and the theory is conformally invariant.
Furthermore, we observed that not all amplitudes are zero. Indeed, scattering
helicity ±1 modes gives results which are proportional to Einstein-Maxwell am-
plitudes.

In Chapter 3 we introduced CHS theories. We described how the infinite
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CHS algebra arises, and how the theory can be obtained as the logarithmically
divergent part of the 1-loop effective action of free scalars coupled to a general
higher spin background. We determined certain parts of the action in prepara-
tion for later computations.
Following the logic of the previous chapter, we also characterised the various
scattering states which arise as a result of CHS theory being higher in deriva-
tives. Finally, we gave a twistor-spinor description for these states.

Chapter 4 pertained to the computation of scattering amplitudes of scalars
coupled to CHS theory. This allowed us to illustrate an interesting aspect of
higher spin theories: their observables involve infinite sums over spins which
must be regularised. Remarkably, we saw that picking a regularisation scheme
which is compatible with the underlying symmetry of the theory led to a vanish-
ing of these amplitudes. We showed how this was due to the action of the large
global symmetry group. We also pushed this computation to the 1-loop level
but found a non-zero contribution. An argument was made that this contribu-
tion might have been expected to be the same as the c-coefficient of the confor-
mal anomaly of CHS theory, but the latter is expected to vanish. The conclusion
remained unclear though the resolution likely lies in the definition of the sum-
mation over spins: the regularisation procedure may not commute with certain
simplifying limits that we used.

Chapter 5 contained another set of amplitude computations, this time in
pure CHS theory. We first focused on four-point scattering Einstein states and
Maxwell modes, and were once again faced with the task of summing an infi-
nite set of diagrams. The same result emerged: all the amplitudes we computed
ended up vanishing upon summation, once again due to the global symmetry
group.
We also generalised the discussion of Conformal Gravity for three-point func-
tions, ie. we used the twistor-spinor formulation of scattering states in CHS the-
ory to give an expression for all scattering three-point amplitudes. The same pat-
tern emerged; the scattering amplitudes involving only two-derivative modes
vanish in flat space. In AdS we saw that they were given by massless higher spin
amplitudes times powers of the cosmological constant. We also observed that
some of the amplitudes containing non-standard modes are not zero.

Chapter 6 looked at CHS theory in curved spacetimes. The action has a
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more complicated form there, due to the fact that the gauge symmetry is affected
by the presence of curvature. This leads to the existence of non-diagonal terms in
the quadratic sector of the theory which may contribute to the c-coefficient of the
CHS conformal anomaly. We computed the modification to the gauge invariance,
and used that to deduce the relevant off-diagonal terms up to spin 5. These off-
diagonal contributions do not seem to be able to account for a discrepancy which
exists in the literature between two different expressions for c, though this once
again could be due to the exact definition of the sum over spins. One would need
to obtain a closed expression for the off-diagonal contribution to the c-coefficient
from any spin. This remains out of reach as the computation is technically diffi-
cult, though we were able to highlight some simplifying structure in the form of
the contributing terms.

The main message is that we are starting to understand how to perform clas-
sical and quantum computations in CHS theory. This is important as this theory
appears to be intimately connected to massless higher spins. Furthermore, evi-
dence points to the fact that its conformal anomaly vanishes meaning that it is
well defined at the quantum level. Following the work presented here, there are
many directions one could take.
In particular, our 1-loop computations have been somewhat inconclusive. In the
context of infinite sums, some of the assumptions we have made should be re-
laxed as they may not be valid.
Another topic one could pursue is the computation of four-point functions of
higher derivative modes. In the covariant formalism, this should be doable at the
level of Conformal Gravity, though it may be difficult for general CHS theory. In-
deed, the presence of a propagator in the CHS theory complicates things. On the
other hand, the twistor approach lends itself nicely to this type of computation.
The theory being conformal, one should also be able to generalise this to AdS,
which would allow us to further clarify the relationship between CHS theories
and massless higher spin theories.
Finally, our discussions of the action of the global CHS symmetry on scattering
amplitudes has been rather ad-hoc. Indeed, we just picked out very particular
generators of the algebra to explain some surprising results following amplitude
computations. A promising direction would therefore lie in analysing the im-
plications of this algebra in more generality - this could lead to some powerful
statements about the theory’s triviality.

It would be interesting if one could understand its role in constraining gen-
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eral symmetries in a more general way.

133



134



Acknowledgements

To say that the work presented here would not have been possible without

the help and support of many would be an understatement. Here, I would like to

thank these brave souls, for whom I am deeply grateful.

I would like to start with those whose direct contributions to my research

have been essential. Chief among them is my supervisor, Arkady Tseytlin, who

has been the driving force behind every aspect of my work, and a constant source

of guidance. Next are my collaborators who, in turn, have influenced me greatly.

First was Euihun Joung, who showed me the ropes of this field with remark-

able patience. Then came Matteo Beccaria whose effervescent energy reinvigo-

rated my research at a time when mine was waning - and somehow did so solely

via email correspondence. Finally Tim Adamo, who had helped me with conta-

gious passion and optimism as a floundering MSc student, entered the scene and

helped me once more, as a still-floundering PhD student.

Just as important are those who have supported me in all aspects of my life,

from the little things to the great ones. I can, of course, never thank my parents

Irène and Guy-Franck enough. They not only gave my worldline a starting point,

but they have consistently pushed me forward and have been the providers of ev-

ery possible source of support I could need. The same goes for Lucie, who has

always been proud of her big brother - and makes him just as proud. Likewise, I

am grateful to the rest of my family without whom I wouldn’t be the same per-

son.

I must also thank my friends, within Imperial College and without for indulging

me in my fancies, and generally providing a fixed point of comfort and laugh-

ter over the tumult of these past few years. From the board game sessions to

the many discussions about physics, politics and avian ferociousness, I wouldn’t

change a thing.

Gaining a partner in crime was the best thing to happen to me while in Cam-

135



bridge. Ostensibly my better half, she has been my prime source of confidence

and my inspiration ab ovo. One might wonder why she continues to indulge my

nonsense – though such questions are dangerous and best avoided. Lousy jokes

notwithstanding, I am grateful that she has always rooted for me. Ending this

waffling monologue, Sam this thesis is dedicated to you.

136



Bibliography

[1] E. Joung, S. Nakach, and A. A. Tseytlin, Scalar scattering via conformal higher
spin exchange, JHEP 02 (2016) 125, [arXiv:1512.08896].

[2] M. Beccaria, S. Nakach, and A. A. Tseytlin, On triviality of S-matrix in
conformal higher spin theory, JHEP 09 (2016) 034, [arXiv:1607.06379].

[3] T. Adamo, S. Nakach, and A. A. Tseytlin, Scattering of conformal higher spin
fields, arXiv:1805.00394.

[4] E. S. Fradkin and A. A. Tseytlin, Conformal supergravity, Phys.Rept. 119
(1985) 233–362.

[5] A. Y. Segal, Conformal higher spin theory, Nucl.Phys. B664 (2003) 59–130,
[hep-th/0207212].

[6] S. Weinberg, The quantum theory of fields. Vol.1, Foundations. Cambridge
University Press, Cambridge, 1995.

[7] X. Bekaert and N. Boulanger, The Unitary representations of the Poincare
group in any spacetime dimension, hep-th/0611263.

[8] R. Rahman and M. Taronna, From Higher Spins to Strings: A Primer,
arXiv:1512.07932.

[9] V. Bargmann and E. P. Wigner, Group Theoretical Discussion of Relativistic
Wave Equations, Proc. Nat. Acad. Sci. 34 (1948) 211.

[10] E. P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group,
Annals Math. 40 (1939) 149–204. [Reprint: Nucl. Phys. Proc.
Suppl.6,9(1989)].

[11] C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D18 (1978) 3624.

137

http://arxiv.org/abs/1512.08896
http://arxiv.org/abs/1607.06379
http://arxiv.org/abs/1805.00394
http://arxiv.org/abs/hep-th/0207212
http://arxiv.org/abs/hep-th/0611263
http://arxiv.org/abs/1512.07932


[12] X. Bekaert, N. Boulanger, and P. Sundell, How higher-spin gravity surpasses
the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84
(2012) 987–1009, [arXiv:1007.0435].

[13] H. van Dam and M. J. G. Veltman, Massive and massless Yang-Mills and
gravitational fields, Nucl. Phys. B22 (1970) 397–411.

[14] V. I. Zakharov, Linearized Gravitation Theory and the Graviton Mass, Soviet
Journal of Experimental and Theoretical Physics Letters 12 (1970) 312.

[15] Y. Iwasaki, Consistency condition for propagators, Phys. Rev. D2 (1970)
2255–2256.

[16] M. Porrati, Fully covariant van Dam-Veltman-Zakharov discontinuity, and
absence thereof, Phys. Lett. B534 (2002) 209–215, [hep-th/0203014].

[17] S. Weinberg, Photons and gravitons in s-matrix theory: Derivation of charge
conservation and equality of gravitational and inertial mass, Phys. Rev. 135
(Aug, 1964) B1049–B1056.

[18] S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. 96B
(1980) 59–62.

[19] M. Porrati, Universal Limits on Massless High-Spin Particles, Phys. Rev. D78
(2008) 065016, [arXiv:0804.4672].

[20] C. Aragone and S. Deser, Consistency Problems of Hypergravity, Phys. Lett.
B86 (1979) 161.

[21] C. Aragone and H. La Roche, Massless Second Order Tetradic Spin 3 Fields
and Higher Helicity Bosons, Nuovo Cim. A72 (1982) 149.

[22] R. R. Metsaev, Cubic interaction vertices of massive and massless higher spin
fields, Nucl.Phys. B759 (2006) 147–201, [hep-th/0512342].

[23] S. R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys.
Rev. 159 (1967) 1251–1256.

[24] R. Haag, J. T. Lopuszanski, and M. Sohnius, All Possible Generators of
Supersymmetries of the s Matrix, Nucl. Phys. B88 (1975) 257. [,257(1974)].

[25] D. Ponomarev and E. D. Skvortsov, Light-Front Higher-Spin Theories in Flat
Space, arXiv:1609.04655.

138

http://arxiv.org/abs/1007.0435
http://arxiv.org/abs/hep-th/0203014
http://arxiv.org/abs/0804.4672
http://arxiv.org/abs/hep-th/0512342
http://arxiv.org/abs/1609.04655


[26] E. S. Fradkin and M. A. Vasiliev, On the Gravitational Interaction of Massless
Higher Spin Fields, Phys.Lett. B189 (1987) 89–95.

[27] M. A. Vasiliev, Consistent equation for interacting gauge fields of all spins in
(3+1)-dimensions, Phys. Lett. B243 (1990) 378–382.

[28] M. A. Vasiliev, More on equations of motion for interacting massless fields of all
spins in (3+1)-dimensions, Phys.Lett. B285 (1992) 225–234.

[29] M. A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions,
and two-dimensions, Int.J.Mod.Phys. D5 (1996) 763–797, [hep-th/9611024].

[30] M. A. Vasiliev, Higher spin gauge theories: Star product and AdS space,
hep-th/9910096.

[31] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. Vasiliev, Nonlinear higher spin
theories in various dimensions, hep-th/0503128.

[32] V. Didenko and E. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975.

[33] S. Giombi, TASI Lectures on the Higher Spin - CFT duality,
arXiv:1607.02967.

[34] M. A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in
(A)dS(d), Phys. Lett. B567 (2003) 139–151, [hep-th/0304049].

[35] M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch.Phys. 52
(2004) 702–717, [hep-th/0401177].

[36] X. Bekaert, Higher spin algebras as higher symmetries, Ann. U. Craiova Phys.
16 (2006), no. II 58–65, [arXiv:0704.0898].

[37] C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New
Exact Solutions, arXiv:0807.0406.

[38] N. Boulanger and P. Sundell, An action principle for Vasiliev’s
four-dimensional higher-spin gravity, J. Phys. A44 (2011) 495402,
[arXiv:1102.2219].

[39] R. Bonezzi, N. Boulanger, E. Sezgin, and P. Sundell,
Frobenius–Chern–Simons gauge theory, J. Phys. A50 (2017), no. 5 055401,
[arXiv:1607.00726].

139

http://arxiv.org/abs/hep-th/9611024
http://arxiv.org/abs/hep-th/9910096
http://arxiv.org/abs/hep-th/0503128
http://arxiv.org/abs/1401.2975
http://arxiv.org/abs/1607.02967
http://arxiv.org/abs/hep-th/0304049
http://arxiv.org/abs/hep-th/0401177
http://arxiv.org/abs/0704.0898
http://arxiv.org/abs/0807.0406
http://arxiv.org/abs/1102.2219
http://arxiv.org/abs/1607.00726


[40] J. M. Maldacena, The Large N limit of superconformal field theories and
supergravity, Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200].
[Adv. Theor. Math. Phys.2,231(1998)].

[41] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2
(1998) 253–291, [hep-th/9802150].

[42] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from
noncritical string theory, Phys.Lett. B428 (1998) 105–114, [hep-th/9802109].

[43] H. Nastase, Introduction to AdS-CFT, arXiv:0712.0689.

[44] J. Polchinski, Introduction to Gauge/Gravity Duality, in Proceedings,
Theoretical Advanced Study Institute in Elementary Particle Physics (TASI
2010). String Theory and Its Applications: From meV to the Planck Scale:
Boulder, Colorado, USA, June 1-25, 2010, pp. 3–46, 2010. arXiv:1010.6134.

[45] M. Ammon and J. Erdmenger, Gauge/Gravity Duality: Foundations and
Applications. Cambridge University Press, 2015.

[46] I. R. Klebanov and A. M. Polyakov, AdS dual of the critical O(N) vector
model, Phys. Lett. B550 (2002) 213–219, [hep-th/0210114].

[47] N. S. Craigie, V. K. Dobrev, and I. T. Todorov, Conformally Covariant
Composite Operators in Quantum Chromodynamics, Annals Phys. 159 (1985)
411–444.

[48] D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl.
Phys. B541 (1999) 323–368, [hep-th/9808004].

[49] V. E. Didenko and E. D. Skvortsov, Exact higher-spin symmetry in CFT: all
correlators in unbroken Vasiliev theory, JHEP 04 (2013) 158,
[arXiv:1210.7963].

[50] S. Giombi, S. Prakash, and X. Yin, A Note on CFT Correlators in Three
Dimensions, JHEP 07 (2013) 105, [arXiv:1104.4317].

[51] S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP
1104 (2011) 086, [arXiv:1004.3736].

[52] S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The
Three-Point Functions, JHEP 1009 (2010) 115, [arXiv:0912.3462].

140

http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/0712.0689
http://arxiv.org/abs/1010.6134
http://arxiv.org/abs/hep-th/0210114
http://arxiv.org/abs/hep-th/9808004
http://arxiv.org/abs/1210.7963
http://arxiv.org/abs/1104.4317
http://arxiv.org/abs/1004.3736
http://arxiv.org/abs/0912.3462


[53] C. Sleight and M. Taronna, Higher Spin Interactions from Conformal Field
Theory: The Complete Cubic Couplings, Phys. Rev. Lett. 116 (2016), no. 18
181602, [arXiv:1603.00022].

[54] S. Giombi and I. R. Klebanov, One Loop Tests of Higher Spin AdS/CFT, JHEP
1312 (2013) 068, [arXiv:1308.2337].

[55] M. Beccaria and A. Tseytlin, On higher spin partition functions, J.Phys. A48
(2015), no. 27 275401, [arXiv:1503.08143].

[56] S. Giombi, I. R. Klebanov, and Z. M. Tan, The ABC of Higher-Spin AdS/CFT,
Universe 4 (2018), no. 1 18, [arXiv:1608.07611].

[57] M. Beccaria and A. A. Tseytlin, Higher spins in AdS5 at one loop: vacuum
energy, boundary conformal anomalies and AdS/CFT, JHEP 1411 (2014) 114,
[arXiv:1410.3273].

[58] K. S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev.
D16 (1977) 953–969.

[59] A. Salvio, Quadratic Gravity, arXiv:1804.09944.

[60] N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory,
JHEP 08 (2004) 009, [hep-th/0406051].

[61] C. Caprini, P. Hölscher, and D. J. Schwarz, Astrophysical Gravitational Waves
in Conformal Gravity, arXiv:1804.01876.

[62] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632.

[63] T.-j. Chen, M. Fasiello, E. A. Lim, and A. J. Tolley, Higher derivative theories
with constraints: Exorcising Ostrogradski’s Ghost, JCAP 1302 (2013) 042,
[arXiv:1209.0583].

[64] M. Kaku, P. K. Townsend, and P. Van Nieuwenhuizen, Gauge theory of the
conformal and superconformal group, Physics Letters B 69 (Aug., 1977)
304–308.

[65] M. Ostrogradsky, Mém. de l’acad. de st. pétersbourg, Sc. math. et phys. 4 tome
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Graduate texts in contemporary physics. Springer, New York, NY, 1997.

[158] T. Adamo, Lectures on twistor theory, PoS Modave2017 (2018) 003,
[arXiv:1712.02196].

[159] H. Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927) 1.

[160] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys.
Rev. 40 (1932) 749–760.

[161] J. E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Phil.
Soc. 45 (1949) 99–124.

[162] P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and
E. Yudovina, Introduction to representation theory, ArXiv e-prints (Jan., 2009)
[arXiv:0901.0827].

[163] R. Metsaev, BRST invariant effective action of shadow fields, conformal fields,
and AdS/CFT, Theor.Math.Phys. 181 (2014), no. 3 1548–1565,
[arXiv:1407.2601].

148

http://arxiv.org/abs/1710.03779
http://arxiv.org/abs/1308.3493
http://arxiv.org/abs/hep-th/9308075
http://arxiv.org/abs/1404.7452
http://arxiv.org/abs/1712.02196
http://arxiv.org/abs/0901.0827
http://arxiv.org/abs/1407.2601


Appendix A

Definitions and Background

A.1 Conventions

Index Conventions

Indices are symmetrised with a weight:

A(a1...as) =
1
s!
(

Aa1...as + (permutations)
)

(A.1)

Sometimes, it is convenient to subsume many symmetric indices into one. The
notation for this is:

Aa(s) ≡ A(a1...as) (A.2)

We will also sometimes want to condense the notation, by using repeated indices.
When that is the case, one is simply to symmetrise over all repeated indices on
the same level. For example:

∂a Aa(s−1) ≡ ∂(a1 Aa2...as) , ηb(2)Bb(s−2) ≡ η(b1b2
Bb3...bs)

. (A.3)

Often time, when we simply want to refer to the “spin s” tensor, we make use of
the short hand notation:

fs ∼ fa1...as
. (A.4)

Generating functions

We will often make use of generating functions to collect fields of all spins
into one object for example. A generating function f (x, u) with the auxiliary vari-
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able u is defined as:

f (x, u) ≡
∞

∑
s=0

fs(x, u) =
∞

∑
s=0

1
s!

fa1...as
ua1 . . . uas . (A.5)

In this language, traces and divergences can be easily represented as ∂2
u and ∂u∂x

respectively:

∂2
u f (x, u) = ∑∞

s=2
1

(s−2)! fa1...as−2b
b ua1 . . . uas−2 (A.6)

(∂u · ∂x) f (x, u) = ∑∞
s=1 ∂b fba2...as

ua1 . . . uas (A.7)

Contractions can be written in terms of generating functions:

f (x, u)g(x∂u)
∣∣∣
u=0

=
∞

∑
s=0

1
s!

fa(s)g
a(s) . (A.8)

We will sometimes write this using “bra-ket”-like notation, 〈 f |g〉 = ∑∞
s=0

1
s! fa(s)g

a(s).

Derivative notation

The d’Alembertian operator � is given by

� ≡ ∂a∂a . (A.9)

It is often useful to use the multi-index partial derivative notation:

∂a1...ap
b1...bq

≡ ∂a1 . . . ∂ap ∂b1
. . . ∂bq

(A.10)

In fact, we extend this notation for covariant derivatives as well, where one must
explicitly symmetrise over indices:

Da1...ap
b1...bq

≡ ga1c1 . . . gapcp D(c1
. . . Dcp

Db1
. . . Dbq)

(A.11)
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A.2 Algebras

Lorentz Algebra

Algebra of SO(D− p, p) is spanned by MAB following:

i[MAB, MCD] = ηBC MAD − ηAC MBD + ηAD MBC − ηBD MAC (A.12)

where A, B = ((−p + 1), . . . , D) and

ηAB =


−1 for A = B ≤ 0

1 for A = B > 0
0 otherwise.

is the metric preserved by SO(D− p, p).

Poincaré Algebra

Meanwhile, the inhomogeneous group ISO(D − p, p) is spanned by MAB

and PA satisfying:

i[MAB, MCD] = ηBC MAD − ηAC MBD + ηAD MBC − ηBD MAC (A.13)

i[PA, MBC] = ηABPB − ηACPB (A.14)

i[PA, PB] = 0 (A.15)

Isometries of AdSd+1

The isometry algebra of d + 1-dimensional AdS space is given by SO(d, 2).
It is spanned by the generators MAB which satisfy the algebra (A.12) where A, B
take on the d + 2 possible values (−1, 0, . . . , d). These generators can be restricted
to ones spanning only d + 1 values by isolating the “ −1” direction and writing
write M−1,a ≡ lPa where a ∈ (0, . . . , d) and l is some real constant. The algebra is
then:

i[Mab, Mcd] = ηbcMad − ηacMbd + ηadMbc − ηbdMac (A.16)

i[Pa, Mbc] = ηabPc − ηacPb (A.17)

i[Pa, Pb] = −
1

l2 Mab (A.18)

where ηab is the metric preserved by SO(d, 1).
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Conformal Algebra

Conformal transformations can be introduced as diffeomorphisms which
rescale the metric. If we are in d-dimensional Lorentzian space, so that a, b ∈
(0, . . . , d− 1), this means:

gab(x + ε) = Cgab(x) (A.19)

where the metric has signature (−1, 1, . . . , 1). Expanding this expression and tak-
ing its trace, we obtain the conformal Killing equation:

∂(aεb) − 2
d

gab∂cεc = 0 (A.20)

The action of such a diffeomorphism on a scalar field φ induces an infinitesimal
transformation:

δφ = εa∂aφ (A.21)

By solving (A.20), we can find the different generators which enact the transfor-
mations (A.21). These are, explicitly [157]:

Pa = i∂a (A.22)

Mab = i(x(a∂b)) (A.23)

D = −ixa∂a (A.24)

Ka = −i(2xaxb∂b − x2∂a) (A.25)

These generators satisfy the same algebra as (A.13)- (A.15) supplemented with:

[D, Pa] = iPa [D, Ka] = −iKa (A.26)

[Ka, Pb] = 2i(ηabD−Mab) [Kc, Mab] = i(ηcaKb − ηcbKa) (A.27)

It turns out that this algebra is that of SO(d− 1, 2). Indeed, if we set:

M̃ab ≡ Mab M̃−1a ≡ 1
2
(Pa − Ka) (A.28)

M̃−10 ≡ D M̃0a ≡ 1
2
(Pa + Ka) (A.29)

then we have defined M̃AB with A, B ∈ (−1, 0, . . . , d− 1) which satisfy (A.12) for
the case of SO(d− 1, 2).
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A.3 Curvatures and identities

The Weyl tensor is defined by:

Cabcd = Rabcd +
1

(d− 2)

(
Radgbc − Racgbd + Rbcgad − Rbdgac

)
(A.30)

+
1

(d− 2)(d− 1)
R
(

gacgbd − gadgbc
)

(A.31)

It has the same symmetries as the Riemann tensor and is defined such that it is
traceless: Ca

abc = Ca
bac = 0.

The Bach tensor is defined by by the variation of the Conformal Gravity
action. In 4 dimensions it is given by:

Bab = −1
4

1√−g
δ

δ
g
ab

∫
d4x CabcdCabcd

= RcdCa
c
b

d − RacRb
c +

1
4 gabRcdRcd + 1

3 RabR− 1
12 gabR2

− 1
6 DabR + 1

2 Dc
cRab − 1

12 gabDc
cR (A.32)

One can check that it is traceless Ba
a = 0, and it can be expressed in in the more

compact form:

Bab =

(
DcDd +

1
2

Rcd
)

Cacdb (A.33)

Linearizations

We write down the first order expansions for the following curvature ten-
sors:

Rab = −1
2 ∂abhc

c + ∂(a
chb)c − 1

2 ∂c
chab +O(h

2) (A.34)

R = ∂abhab − ∂b
bha

a +O(h
2) (A.35)

Gab = −1
2 ∂abhc

c + ∂(a
chb)c − 1

2 ∂c
chab − 1

2 ηab∂cdhcd + 1
2 ηab∂d

dhc
c +O(h

2)
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A.4 TT projector

The Traceless transverse projector, Pα(s)
β(s) , is built out of products of Pα

β =

δα
β −

pα pβ

p2 . The rank s projector is:

Pν(s)
µ(s) =

[ s
2 ]

∑
l=0

as,l Mν(s−2l)
µ(s−2l) Nν(2l)

µ(2l) , as,l =
(−1)ls! Γ(s− l + 1

2)

22l(s− 2l)! l! Γ(s + 1
2)

(A.36)

where :

Mν(p)
µ(p) = P (ν1

µ1
. . .Pνp)

µp
(A.37)

Nν(2q)
µ(2q) = P(µ1µ2

. . .Pµq−1µq)
P (ν1ν2 . . .Pνq−1νq) (A.38)

For example, the first few projectors are given by

Pα1α2
β1β2

= Pα1
(β1
Pα2

β2)
− 1

3 P
α1α2Pβ1β2

,

Pα1α2α3α4
β1β2β3β4

= P (α1
(β1

Pα2
β2

Pα3
β3
Pα4)

β4)
− 6

7 P(α1α2P(β1β2
Pα3

β3
Pα4)

β4)
+ 3

35 P
(α1α2Pα3α4)P(β1β2

Pβ3β4)
.

One can check explicitly that the trace of the TT projector, P a(s)
a(s) = 2s + 1. In

fact this is the dimension of symmetric representation of SO(3) - which are the
same as traceless transverse representations of SO(4), see the discussion below
(1.6).
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Appendix B

Tools and formalism

B.1 Spinor Helicity

Here we give a quick introduction to the formalism used in Section 2.3. We
use the conventions of [158].

The formalism uses the fact SL(2, C) is the double cover of SO(3, 1). Indeed,
we can simply map from a vector valued in SO(3, 1) to a bispinor of SL(2, C)

using the usual van der Waerden matrices:

pαα̇ = σ
µ
αα̇ pµ =

(
−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

)
. (B.1)

The determinant of the bispinor is related to the norm of the vector:

p2 = −(p0)2 + (p1)2 + (p2)2 + (p3)2 = −det(pαα̇) (B.2)

If that vector is null, the rank of the matrix is reduced. This means it can be
expressed in terms of two spinors:

kαα̇ = λαλ̃α̇ . (B.3)

These bispinors are defined up to a scale:

λ̃α̇ → tλ̃α̇ , λα → t−1λα (B.4)

The power of this scaling is called the little group weight.
At this stage, it bears mentioning the “helicity” in “spinor helicity”. SL(2, C) is
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isomorphic to SU(2)× SU(2). This is why we use dotted and undotted spinors,
they correspond to different SU(2) factors. Furthermore, the representations of
SU(2) are labelled by positive half-integers. As such they account for the notion
of positive and negative helicity helicities of SO(3, 1). Namely, in these conven-
tions, dotted indices carry positive helicity while undotted ones carry negative
helicity. More precisely, one can determine the helicity of an object by simply
looking at its little group weight.

Raising and lowering is done via:

λ̃β̇ = λ̃α̇εα̇β̇ , λβ = λα εαβ

Writing the dotted and undotted spinors as square and angle bracket spinors
respectively:

λ̃ȧ ≡ [λ|ȧλ̃ȧ ≡ |λ]ȧ , λa ≡ 〈λ|a , λa ≡ |λ〉a , (B.5)

and we write the contractions:

[λ̃|α̇|β̃]α̇ ≡ [λ̃β̃] , 〈λ|a|β〉α ≡ 〈λβ〉 . (B.6)

From the antisymmetry of εab,εȧḃ we get:

〈ij〉 = −〈ji〉 , [ij] = −[ji] , 〈λλ〉 = [λ̃λ̃] = 0 . (B.7)

B.2 Wigner quantization

In this appendix, we give a brief introduction to the methods of Weyl/Wigner
quantization. For a slightly more in-depth and general review, see for example
Appendix A of [138] of [126] 62.
The main idea is to use maps between symmetric operators and functions of an
auxiliary variable. To do so, first introduce the Weyl map, which associates the

62For the original works, see [159–161].
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operator F̂ to the Fourier-transformed function F

F̂ =
∫ ddk ddy

(2π)d F (k, y)ei(k·X̂−y·P̂) , (B.8)

with:

F (k, y) =
∫ ddx dd p

(2π)d f (x, p) ei(k·x−y·p) , (B.9)

and f (x, p) can interpreted as generating functions defined in Appendix A.1. One
can show that there exists an inverse map, called the Wigner map, which goes
back from f (x, p) to the operator F̂ defined via:

f (x, p) =
∫

ddq 〈x− q/2| F̂ |x + q/2〉 eiq·p . (B.10)

We call the function f (x, p) the “Weyl symbol ” of F̂, and we can use these maps
to switch between both descriptions.

In this formalism, one needs to define a product, ?, between Weyl symbols,
which is equivalent to operator action. This is done by computing the pull back
of this operator action and is known as the “Moyal star product”. Explicitly, the
symbol of F̂Ĝ is f ? g with:

f (x, p) ? g(x, p) = exp
[ i

2
(∂x1
· ∂p2
− ∂x2

· ∂p1
)
]

f (x1, p1)g(x2, p2)

∣∣∣∣∣
xi=x,pi=p

.

(B.11)
In the language of Weyl symbols (anti)-commutators of operators are translated
to their Moyal counterparts:

[ f ?, g ] ≡ f ? g− g ? p , { f ?, g } ≡ f ? g + g ? p . (B.12)

Finally, the trace of an operator takes a simple form in Weyl symbol formalism.
Indeed, one can show: 63

Tr
[
F̂
]
≡ 〈x|F̂|x〉 =

∫ ddx dd p

(2π)d f (x, p) . (B.13)

63Here one needs to make use of the standard relation 〈x|ei y·P̂|p〉 =
∫ dd p

(2π)d eiy·p and the Baker-

Campbell-Hausdorff formula on (B.8) .
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In particular, the trace of two operators simplifies:

Tr
[
F̂Ĝ
]
=
∫ ddx dd p

(2π)d f (x, p) ? g(x, p) (B.14)

=
∫ ddx dd p

(2π)d f (x, p) g(x, p) , (B.15)

where we get to the second line by using the fact that all the higher terms in the
start product are total derivatives. Finally, consider the “p-Fourier transformed”
function f̂ :

f̂ (x, u) =
∫ dd p

(2π)d f (x, p) ei u·p , (B.16)

Now consider the contraction:

f̂ (x,−i∂u) g(x, u)

∣∣∣∣∣
u=0

=
∫ dd p

(2π)d f (x, p) e∂u·pg(x, u)

∣∣∣∣∣
u=0

, (B.17)

=
∫ dd p

(2π)d f (x, p) g(x, p) , (B.18)

where in the last line used that g(x, u) is just a generating function defined, as
defined in Appendix A.1. So in conclusion, we see that a trace can be written as
the simple contraction:

Tr
[
F̂Ĝ
]
=
∫

ddx f̂ (x,−i∂u) g(x, u)

∣∣∣∣∣
u=0

(B.19)

In particular, in section 3.1, we have the bra and ket vectors associated with
the scalar fields, φi(x) ≡ 〈x|φ〉. We consider the operator |φ〉〈φ| (summation over
the index i is implied), whose associated symbol is found to be:

ρ(x, p) =
∫

ddu 〈x− u/2|φ〉〈φ|x + u/2〉 eiu·p

=
∫

ddu φ∗i (x− u/2) φi(x + u/2) e−iu·p . (B.20)

This defines the Fourier transform ρ̂(x, u) ≡ φ∗i (x − u/2) φi(x + u/2). For con-
venience, we define the set of traceful currents J(x, u) ≡ ρ̂(x,−i u), which allows
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us to write, using (B.19):

Tr
[
|φ〉〈φ|Ĥ

]
=
∫

ddx J(x, ∂u) h(x, u)

∣∣∣∣∣
u=0

. (B.21)

B.3 Identities

B.3.1 Symmetrisation of Derivatives

When performing the exercise of exhaustively listing all possible terms of a
given form, it becomes extremely useful to systematically symmetrize all covari-
ant derivatives. Indeed, since anticommuting two derivatives yields a curvature
tensor, symmetrising all derivatives greatly helps in identifying inequivalent ten-
sor contractions. This process is used continuously in the computations of Section
6.1.2.

B.3.2 Dimensionally-Dependent Identities (DDIS)

When one writes down all possible forms of a tensorial expressions, it turns
out that some of them may be related to each other in particular dimensions.
Indeed, in d dimensions, it is obvious that Aa1b1...bkak ≡ g[a1b1 . . . gbkak] vanishes for
d < 2k. Then given any tensorial expression with k free indices, Tb1...bk , we can
simply contract it with Aa1b1...bkak to obtain an identity.
In practice, it is also useful to compute contractions of these identities. This is
implemented using the xTras package [154]. For example, the identity:

CacdeCb
cde =

1
4 gabCcde f Ccde f , (B.22)

which is valid only in 4-dimensions, can be found this way.

B.3.3 Generalised Bianchi identities

When dealing with derivatives acting on curvature tensors, there exist multi-
term symmetries coming from Bianchi identities. These can simply be enforced
by projecting expressions of Weyl tensors and their derivatives on the corre-
sponding Weyl Tableau.
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For instance, the Weyl tensor Cabcd can be projected on its young tableau
a c
b d

by successively symmetrising indices in the same row and anti-symmetrising in-
dices in the same column with a particular normalisation (see e.g. [154] [162]).
The result for this case is64:

P
a c
b d Cabcd =

2
3

Cacbd +
1
3

Cabcd −
1
3

Cadbc (B.23)

Doing this is useful because this makes the Bianchi identity C[abc]d = 0 manifest.

In general, if we are given the an expression containing D(a1...ak)
Cbcde, we can

obtain the corresponding generalised Bianchi identities by projecting it on the

Young Tableau:
b d a1 . . . ak
c e

B.3.4 Standard Loop Integrals

Here we introduce some useful identities for dealing with the standard loop
integral in the paper. First we have the Feynman parametrisation:

1
A1 . . . An

= (n− 1)!
∫
[0,1]n

dnx
δ(x1 + · · ·+ xn − 1)
(x1A1 + · · ·+ xn An)

n . (B.24)

Next, the following integral can be obtained just from Lorentz invariance, in d = 4
dimensions

Ia1...as
s =

∫
ddk f (k2)ka1 . . . kas = As g(a1a2 . . . gas−1as)

∫
ddk (k2)s/2 f (k2) (B.25)

As =
(s− 1)!!

2s/2( l
2 + 1)!

(B.26)

for even s - the integral vanishes for odd s. Above we used the double factorial,
defined as s!! ≡ s(s− 2)(s− 4) . . ..
Finally, we use the following integral for dimensional regularisation:

∫ ddk

(2π)d
(k2)a

(k2 + M2)b =
Γ(b− a− d/2)Γ(a + d/2)

(4π)d/2Γ(b)Γ(d/2)
(M2)d/2+a−b , (B.27)

64We use the manifestly antisymmetric convention.
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Appendix C

Computational Details

C.1 Helicity structure of conformal graviton modes

In this appendix, we will fill in some of the computational details of 2.2.2. To
do so, we will go to the frame where the momentum is in the 3 direction: ka =

(ω, 0, 0, ω) and choose na to be the unit time-like vector na = (1, 0, 0, 0). Since our
goal is to discern the helicity of the propagating modes, we first introduce the
helicity basis. We then proceed to fix the remnant part of the gauge both in the
conformal and TT gauges, and in each case express the result in the helicity basis.

Helicity Basis

Helicity is given by the behaviour of under rotations in the plane transverse
to momentum. Since we picked ka to be in the 3 direction, this means that we
look at how tensors M behave under R M RT, where R is given by:

R =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 .

To this end, we introduce the helicity basis tensors:

T±± =


0 0 0 0
0 1 ±i 0
0 ±i −1 0
0 0 0 0

 , T± =


0 1 ±i 0
1 0 0 0
±i 0 0 0
0 0 0 0

 , T̃± =


0 0 0 0
0 0 0 1
0 0 0 ±i
0 1 ±i 0

 .

161



which are chosen to satisfy:

RT±±RT = e±2iθT±± , RT±RT = e±iθT± , RT̃±RT = e±iθ T̃± ,

meaning that T± and T̃± span helicity ±1 tensors and T±± helicity ±2 tensors.

Conformal Gauge

In the conformal gauge, one needs to fix the residual transformations (2.41)
and (2.42). One possible choice, made in [82] is to fix:

A11 + A22 = 0 B11 + B22 = 0 A03 = 0 A13 = 0

B23 = 0 B03 = 0 B13 = 0 B23 = 0 (C.1)

Given those, the conditions (2.38) impose:

A00 = 0 B00 = 0 B01 = 0 B02 = 0 (C.2)

Finally, we have the 6 DoFs left are arranged as:

Aab =


0 A01 A02 0

A01 A11 A12 0
A02 A12 −A11 0
0 0 0 0

 , Bab =


0 0 0 0
0 B11 B12 0
0 B12 −B11 0
0 0 0 0

 (C.3)

In the helicity basis, these become

Aab =
(

A++T++ + A−−T−−
)ab

+
(

A+T+ + A−T−
)ab

,

Bab =
(

B++T++ + B−−T−−
)ab

, (C.4)

So we see that the oscillatory part of the field contains spin 1 and spin 2
modes, while the growing part is purely helicity 2.

TT gauge

We repeat the analysis for the TT gauge. This time, only 4 conditions can be
fixed from (2.46). In this frame, one can show that these conditions can be fixed:

B00 = 0 , A00 = 0 (C.5)

A01 + A13 = 0 , A02 + A23 = 0 (C.6)
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The gauge conditions 2.43 then give use the following relations:

A22 = −A11 B00 = 0 B01 = −2iwA01 B02 = −2iwA02

B03 = 0 B13 = −2iwA01 B22 = −B11 B23 = −2iwA02

So that the polarization tensors become

Aab ∝


0 A01 A02 0

A01 A11 A12 −A01

A02 A12 −A11 −A02

0 −A01 −A02 0

 , Bab ∝


0 −2iwA01 −2iwA02 0

−2iwA01 B11 B12 −2iwA01

−2iwA02 B12 −B11 −2iwA02

0 −2iwA01 −2iwA02 0


In the helicity basis, this becomes:

Aab =
(

A++T++ + A−−T−−
)ab

+
(

A+(T+ − T̃+) + A−(T− − T̃−)
)ab

,

Bab =
(

B++T++ + B−−T−−
)ab
− 2iω

(
A+(T+ + T̃+) + A−(T− + T̃−)

)ab
.

(C.7)

So we see that in this gauge, there are oscillatory and growing spin 2 modes,
while the spin 1 modes seem to be split between both. The conclusion is that the
helicity decomposition of hab is gauge-dependent.

We note here for completeness, that it is possible to fix the remnant part of
the conformal gauge such that ka Aab = kaBab = 0, which leads to having the
helicity 1 becoming purely growing.

C.2 Vertices in CHS action from scalar loop integrals

In this Appendix, we fill in the details of the loop computations done in
Section 3.3.

Quadratic Sector

To determine the quadratic sector of the CHS action, we need to compute
the UV divergence of the loop diagram (3.46). For spin s insertions, it is given by
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h̃a(s)(p)h̃b(s)(−p)I(p)a(s),b(s) with:

I(p)a(s),b(s) ≡
∫ ddk

(2π)d

N(k, p)a(s)b(s)

k2 (k + p)2

=
∫ 1

0
dx
∫ ddk

(2π)d

N(k, p)a(s)b(s)

[(k + x p)2 + x(1− x) p2]2

=
∫ 1

0
dx
∫ ddk

(2π)d

N(k− x p, p)a(s)b(s)

(k2 + M2)2 , M2 = x(1− x) p2 ,

(C.8)

where the numerator can be read off from (3.46) to be
N(k, p)a(s)b(s) = 1

(s!)2 ka1
kb1

. . . kas
kbs

. Remembering that this amplitude will be

contracted with CHS fields (carrying momentum p) which are in the TT gauge,
we can write the shifted numerator to be:

Na(s)b(s)(k− px, p)↔ 1
(s!)2 ka1

kb1
. . . kas

kbs
, (C.9)

where↔ means equivalence under contraction with spin s symmetric TT fields.
Finally, using Lorentz covariance of the integral Ia(s),b(s)(p), the numerator be-
comes:

Na(s)b(s)(k− px, p)↔→ 1
(s!)2

1
2s(s+1)

(k2)s ηa1b1
· · · ηasbs

. (C.10)

Finally, performing the integral, we can get the quadratic action (cf. (3.39)):

SS2[hs] =
(−1)s

2s Γ(2s+2)

∫ d4p

(2π)4 ha(s)(p)(p2)s ha(s)(−p) , (C.11)

which is just the momentum space version of (3.48).

Cubic Sector

Next, we must compute diagrams of the form (4.55). The corresponding
integral is given by:

Ia,b,c(s)(p1, p2) =
1
2!

1
s!

∫ ddk

(2π)d

ka(k + p1)b(k + p1 + p2)c(s)

k2(k + p1)
2(k + p1 + p2)

2 . (C.12)
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Using Feynman parametrisation (B.24) and shifting the loop momentum k we
obtain:

Ia,b,c(s)(p1, p2) =
1

2 s!

∫ ddk

(2π)d

kakc(s)(k + p1)b

k2(k + p1)
2(k + p1 + p2)

2

=
1
s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

kakc(s)(k + p1)b

[(k + xp1 + y(p1 + p2))
2 + M2]3

↔ 1
s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

(k− yp2)a(k− xp1)c(s)(k + (1− x− y)p1)b

(k2 + M2)3 ,

(C.13)

M2 = x(1− x)p2
1 + y(1− y)(p1 + p2)

2 − 2xyp1 · (p1 + p2) , (C.14)

where once again, we make use of the fact that this is to be contracted with sym-
metric TT fields. Here, we separate terms of different order in k and use Lorentz
covariance and integrate over x and y (cf. (B.25) and (B.27)). The resulting pole
part is:

Ia,b,c(s)(p1, p2)

∣∣∣∣∣
1

4π
2

ε

= 1
2(s+2)!

{
ηab(p1)c(s) − ηac1

p1b p1c2
. . . p1cs

+ ηbc1
p2a p1c2

. . . p1cs

− ηac1
ηbc2

p1c3
. . . p1cs

[
p1 · p2 +

s
2 (p2

1 + p2
2)
]}

.

(C.15)

There is actually another integral contributing at the same level, with the loop
running in reverse. As such, the full 1− 1− s vertex is given by:

Va,b,c(s)(p1, p2) = Ia,b,c(s)(p1, p2) + Ib,a,c(s)(p2, p1)

∣∣∣∣∣
1

4π
2

ε

. (C.16)

This indeed yields the vertex given in (3.56) (when translated to position space).
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The 2− 2− s vertex is computed through the integral

Ia1a2,b1b2,c(s) =
1
2!

1

(2!)2
1
s!

∫ ddk

(2π)d

ka1
ka2

(k + p1)b1
(k + p1)b2

(k + p1 + p2)c(s)

k2(k + p1)
2(k + p1 + p2)

2

↔ 1
4 s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

ka1
ka2

kc(s)(k + p1)b1
(k + p1)b2

[(k + xp1 + y(p1 + p2))
2 + M2]3

↔ 1
4 s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

Na1a2,b1b2,c(s)(p1, p2, k; x, y)

(k2 + M2)3 ,

(C.17)

where M2 is the same as in (C.14) and

Na1a2,b1b2,c(s) = (k− yp2)a1
(k− yp2)a2

(k− xp1)c(s)[k + (1− x− y)p1]b1
[k + (1− x− y)p1]b2

Here, the UV pole gets contributions from terms which are of order k2, k4, k6 and
k8 in the numerator - terms with higher powers of k will lead to traces of the spin
s field, and can be discarded. Once again, adding the diagram with the opposite
loop orientation, one can get the vertex (3.57)

Finally, we look at vertices involving the CHS scalar h0, which is non propa-
gating (since it has no derivatives in its kinetic term). The relevant loop diagram
is given by:

Ia,c(s)(p) =
4
s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

(k− yp)a(k + xp)c(s)

(k2 + M2)3 . (C.18)

This yields the vertex given in (3.58). Next, for 2− 0− s, the diagram is:

Va1a2,c(s) =
1
s!

∫ ddk

(2π)d

ka1
ka2

kc(s)

k2(k + p1)
2(k + p1 + p2)

2

→ 2
s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

ka1
ka2

kc(s)

[(k + xp1 + y(p1 + p2))
2 + M2]3

→ 2
s!

∫ 1

0
dx
∫ 1−x

0
dy
∫ ddk

(2π)d

(k− yp)a1
(k− yp)a2

(k + xp)c(s)

(k2 + M2)3 ,

(C.19)

where M2 is as in (C.14). This leads to the vertex (3.59). The final computation,
for the 1− 2− s vertex is follows along the same lines and leads to (3.60).
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Quartic vertices

For the quartic vertices, one needs to compute diagrams of the form (4.57).
For the 1111 diagram, the relevant integral is

1
4! × 6× 3!

∫ 1

0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz
∫ ddk

(2π)d
kakbkckσ

(k2 + M2)4

↔ 1
16π2ε

1
48 (ηabηcσ + ηacηbσ + ηaσηνc).

(C.20)

which gives the vertex (4.57) when contracted with hµ1µ2
(p1)hν1ν2

(p2)hρ(s) and
translated to position space . As explained in 3.3.4, the others can simply be ob-
tained by expanding Scalar-Maxwell-Weyl action and performing the right field
redefinitions.

C.3 Cubic and quartic vertices in the CHS action in-

volving constant h0 field

Here we provide details as they were originally presented in [1], for compu-
tations done in Section 4.3. In [126], the CHS action is computed via heat kernel
techniques. This was done for the dressed fields h which are related to h(x, u) via
h(x, u) = Πd(u, ∂x)h(x, u) where Πd was defined in (3.30) which we rewrite for
convenience:

Πd(u, ∂x) =
∞

∑
n=0

1
n! (−u · ∂u − d−5

2 )n

(u2 ∂2
x − (u · ∂x)

2

16

)n
, (C.21)

Two observations are in order. First, one can check explicitly that the scalar CHS
field is the same in both bases, h0(x) = h0(x). Above, one can see that if h(x, u) are
in the TT gauge, only the n = 0 term survives, and both dressed and undressed
fields are equivalent. As such, while we continue to use h in this appendix to
make ground with [126], they are actually interchangeable.

Schematically, the partition for a complex operator in a background of CHS
fields h is expanded as:

Tr
[

e−t( p̂2+ĥ)
]
=

∞

∑
n=0

tn−2 an[h] , (C.22)
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As explained in Section 3.2, in d = 4 the local action is proportional to the loga-
rithmically divergent term

SCHS[h] ∝ a2[h] . (C.23)

Since h0 is constant, let us separate its dressed cousin from the other fields by
writing:

h(x, u) = h0(x) + h′(x, u) . (C.24)

Using the fact that h0 is constant, we can re-expand (C.22) as a power series in h0

first, and find (by matching powers of t ):

an[h] =
∞

∑
m=0

(−1)m

m!
(h0)

m an−m[h
′] . (C.25)

In particular,

a2[h] = a2[h
′]− h0 a1[h

′] +
1
2
(h0)

2 a0[h
′] +O(h3

0) . (C.26)

Expressions for these heat kernel coefficients were given, up to quadratic order,
in [126]:

a2+m[h] =
∫ d4x

(4π)2

√
π
8

(
1
2 ∂2

x12

)m
Um+ 1

2

(
(∂x12
· ∂u12

)2 − ∂2
x12

∂2
u12

)
× h(x1, u1) h(x2, u2)

∣∣∣
x1=x2=x
u1=u2=0

+O(h3) , (C.27)

a1−m[h] =
∫ d4x

(4π)2

[
δm,1 +

(
1
4 ∂2

u

)m
h(x, u)

∣∣∣
u=0

+
√

π
8 Vm(∂x12

, ∂u12
) h(x1, u1) h(x2, u2)

∣∣∣
x1=x2=x
u1=u2=0

+O(h3)
]

,(C.28)

where

Vm(∂x, ∂u) =
(

1
4 ∂2

u

)m+1
∑∞

k=0
( 1

8 ∂2
x ∂2

u)
k

Γ(k+m+2) Uk+ 1
2

(
(∂x · ∂u)

2
)

, (C.29)

Uν(z) =
(√

z
2

)−ν
Jν

(√
z

2

)
= ∑∞

m=0
1

m! Γ(ν+m+1) 2ν

(
− z

16

)m . (C.30)

As a result, in momentum space and in the TT gauge, the CHS action with con-
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stant h0 is given by:

L̃CHS[h] ∝
∞

∑
s=0

[
1− 4

p2

(
s +

1
2

)
h̃0(0) +

8

p4

(
s +

1
2

)(
s− 1

2

) (
h̃0(0)

)2
+O

(
h̃3

0

) ]

×

(
p2
)s

h̃s(p, ∂u) h̃s(−p, u)

23s Γ(s + 3
2)

+O
(
h̃′3
)

, (C.31)

In this expression, the non-local terms with negative powers of p2 should be
dropped.

C.4 Gauge fixing and ghost action

Here we fill in some details for Section 4.4.2, namely we compute the ac-
tion of the ghost which arises after fixing the TT gauge.65 In this appendix, we
will use the dressed field formalism, as the action of the CHS symmetry on it
is simpler, cf. (3.26), (3.27). As mentioned in Appendix C.3, in any gauge we
have that h0(x) = h0(x) and in the TT gauge, both bases are equivalent, ie.
h(x, u)|

TT
= h(x, u)|

TT
.

We are interested in keeping the h0 field as a background field, while the
others will be integrated over. The part of the CHS gauge symmetry (3.26) and
(3.27) which is independent of the (non-background) fields is then:

δ h(x, u) = u · ∂x e(x, u) +
(

u2 − 1
4 ∂2

x + h0

)
a(x, u) , (C.32)

where we take the fields h are doubly traceless while a and e are traceless. We
first use a to gauge away the trace of h . We thus impose ∂2

u(h+ δh) = 0 to get
the relation:

a(x, u) = − 1
2(2 + u · ∂u)

∂x · ∂u e(x, u) , (C.33)

where we note that the operator u · ∂u on the denominator simply counts the
degree in u of everything to its right. The field now transforms with the remnant
symmetry, δh ≡ T(h0, e) where:

T(h0, e)(x, u) = PT

(
u · ∂x +

1
4 ∂2

x − h0

2(2 + u · ∂u)
∂u · ∂x

)
e(x, u) , (C.34)

65For details on fixing a different gauge, and the ghost action which comes with it, see [163].
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where PT ≡ 1− u2(∂u)
2

4(s−2)+2d+u2(∂u)
2 defines the projector onto symmetric traceless

spaces in d dimensions.

We now use this remnant gauge to impose transversality. Following the
usual Faddeev-Popov procedure, this is accompanied by the appearance of a
ghost action:

Sgh =
∫

d4x
〈
c̄
∣∣ ∂x · ∂u

δT(h0, e)
δ e

∣∣ c
〉

=
∫

d4x
∞

∑
s=0

〈
c̄s
∣∣ ∂x · ∂u PT

(
u · ∂x

∣∣cs
〉
+

1
4 ∂2

x − h0

2(s + 3)
∂u · ∂x

∣∣cs+2
〉)

.(C.35)

where c(x, u) and c̄(x, U0 are the generating functions for the ghosts and anti-
ghosts and 〈a|b〉 are contractions, see Appendix A.1. From the fact that e is trace-
less, it follows that the ghost and anti-ghosts are both traceless as well.

We can proceed by decomposing the spin s ghost into TT components, as:

cs(x, u) = PT

s

∑
r=0

(u · ∂x)
s−r cs,r(x, u) , ∂2

u cs,r = 0 = ∂x · ∂u cs,r .

(C.36)
Plugging this into (C.35), one can see that the first two comopnents cs+2,s+2 and
cs+2,s+1 of cs+2 will drop out due to the presence of two divergence factors (∂u ·
∂x). One obtains:

Sgh =
∫

d4x
∞

∑
s=0

s

∑
r=0

〈
c̄s
∣∣ ∂x · ∂u PT (u · ∂x)

s+1−r
(∣∣cs,r

〉
+ ks,r

(1
4 ∂2

x − h0
)
∂2

x
∣∣cs+2,r

〉)
, (C.37)

with:
ks,r =

(s− r + 2)(s + r− 3)
4(s + 2)(s + 3)

. (C.38)

This form of the ghost action allows us to see explicitly that it is possible to rede-
fine away the h0 dependence, by simply making the field redefinition:

c′s,r = cs,r + ks,r
(1

4 ∂2
x − h0

)
∂2

x cs+2,r . (C.39)

For a fixed value of r, one can view this as an infinite dimensional matrix act-
ing on a matrix of ghost fields arranged by spin: (c0,r , c1,r , . . .)T. The form of
(C.39) tells us that this “matrix” is the identity matrix plus some upper triangular
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components. The Jacobian of such a matrix can be seen to be simply 1. As such,
this shift of coordinates can be done without re-introducing any h0-dependence,
meaning the ghosts don’t couple to h0.

C.5 Triviality of 4-point amplitude for a special kinet-

matic point

In this appendix, we focus on the kinetmatic point u = 0, which corresponds
to backwards scattering (θ = π), to support our conjecture that the tree level
amplitudes are trivial. For simplicity, we look at ++→ ++ higher spin exchange
diagrams, assuming that the lower spin contributions cancel against each other,
as we observe in Sections 5.1 - 5.3.

C.5.1 11→ 11 scattering

Let us first check the results of section 5.1.1. Using the fact that at the special
kinematic point, s = −t, the amplitude sum is given by:

∞

∑
s=2,4,...

A(s)
∣∣∣
u→0

=
∞

∑
s=2,4,...

2 s+1
2 (s−1) s (s+1) (s+2) + limγ→∞ ∑∞

s=2,4,... ks γs Ps(0) , (C.40)

where the first term comes from the t-channel and, in the second term we used
γ ≡ s

u which diverges at the special kinetmatic point. The first sum can easily be
performed to find:

∞

∑
s=2,4,...

2 s+1
2 (s−1) s (s+1) (s+2) =

1
8 (C.41)

Using (5.10) and (5.11) we get:

cs Ps(0) =
Γ(2s+2)

2
[

Γ(s+3)
]2 . (C.42)

This can be summed to give Hypergeometric functions whose limit yields:

lim
γ→∞

∞

∑
s=2,4,...

ks γs Ps(0) = −
1
8

(C.43)

so that the amplitude is indeed zero at this point.
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C.5.2 j j→ j j scattering

Let us first make a gues for the jj → jjscattering amplitude by using the ex-
pected structure for the J ≥ 2j exchange amplitude (5.25),(5.29),(5.38).

The amplitude will be given by a t and u-channel contribution where the
exchange particle has even spin. From (5.17),(5.24) and (5.44),(5.47), we get:

A = s2j−2[σ(x) + σ(−1− x)
]

, x =
t

s
, (C.44)

σ(x) =
2

x2

∞

∑
s=0,2,4,...

(s + 2j + 1
2)

s!
(s+4j)! P(4j,0)

s
( x+2

x
)

. (C.45)

We must now study the x → −1 limit of this expression. For the first term, we
simply find:

σ(−1) =
∞

∑
s=0,2,4,..

(2s + 4j + 1) s!
(s+4j)!

= 1
4 (2j−1)2 Γ(4j−2)

.
(C.46)

For the second term, one needs to use the expansion for the Jacobi polynomials:

P(4j,0)
s

( x+2
x
)∣∣∣

x→0
=

1
xs

4s+2j
√

π

(s + 2j)!
s!

Γ(s + 2j + 1
2)

Γ(s + 4j + 1)
+ · · · . (C.47)

Plugging this in (C.45), we find that it exactly cancels the contributions given by
(C.46), confirming that the amplitude vanishes for this amplitude at the special
kinematic point.

C.6 Deriving the 11→11 amplitude for a generic spin

s exchange

The 1-1-s vertices in (5.4),(C.15) can be written:

Va,b,c(s)(p, q) = 1
(s+2)! q

c3 . . . qcsV̂a,b,c1c2(p, q) , bo (C.48)

V̂a,b,c1c2(p, q) = ηabqc1qc2 − ηc1aqbqc2 + ηc1b paqc2 −
[
p · q + s

2(p2 + q2)
]
ηac1ηbc2 ,

(C.49)

172



where symmetrisation over c1, ..., cs is assumed. Using an auxiliary vector uc, we
contract all the c indices to define:

Va,b(p, q, u) = 1
2(s+2)! (q · u)

s−2V̂a,b(p, q, u) , (C.50)

V̂a,b(p, q, u) = ηab(q · u)2 − (uaqb − ub pa) q · u +−
[
p · q + s

2(p2 + q2)
]
uaub .

In the amplitude, these vertices are contrcated with the TT projector coming from
the propagator (cf. (5.5)). The projector can be written as:

P (s)(∂u1
, ∂u2

, k) =
1

(s!)2

[s/2]

∑
l=0

as,l Hl
1Hl

2Gs−2l , (C.51)

as,l = (−1)l s! Γ(s−l+ 1
2 )

22l l! (s−2l)! Γ(s+ 1
2 )

, G = ∂u1
· ∂u2
−

(∂u1
·k)(∂u2

·k)

k2 , Hi = ∂2
ui
−

(∂ui
·k)(∂ui

·k)

k2 .

So for the s channel +− → +− exchange amplitude, we would have to compute:

P (s)(∂u1
, ∂u2

, p1 + p2)Va1,a2(p1, p2, u1)Vb1,b2(p3, p4, u2)
∣∣∣
ui=0

. (C.52)

In order to compute (C.52), we will need to see how the operators G, H1, H2 com-
mute with the u-dependence of the vertices. We introduce the operators:

W1 = p4 · ∂u1
+ 1

2(p1 + p2) · ∂u1
, W2 = p2 · ∂u2

− 1
2(p1 + p2) · ∂u2

,

Z1 = −1
2(p1 + p2) · ∂u1

, Z2 = p4 · ∂u2
− 1

2(p1 + p2) · ∂u2
, (C.53)

which allows us to write the commutation relations:

[
G, (u1 · p2)(u2 · p4)

]
= t̃+ (p2 · u1)W2 + (p4 · u2)W1 ,[

H1, (u1 · p2)
2] = s̃+ (p2 · u1)Z1 ,

[
H2, (p4 · u2)

2] = s̃+ (p4 · u2)Z2 (C.54)[
Z1, (p2 · u1)

]
= s̃ ,

[
Z2, (p4 · u2)

]
= s̃ ,

[
W1, (p2 · u1)

]
= t̃ ,

[
W2, (p4 · u2)

]
= t̃

where s̃ ≡ s
4 and t̃ ≡ 1

2

(
t+ s

2

)
. This can be used to compute (C.52), but in gen-

eral we need to commute many of these operators with powers of (u1 · p2) and
(u2 · p4). In order to get the resulting combinatorial coefficient, one can use the
generating function:

T (s) =
∞

∑
j=0

(t1t2)
j T (s)

j =
[ s

2 ]

∑
l=0

as,l t̃
s−2l s̃2l[1 + t̃−1(t1W1 + t2W2 + t1t2G)

]s−2l
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×
[
1 + s̃−1(t1Z1 + t2

1H1)
]l[1 + s̃−1(t2Z2 + t2

2H2)
]l .

(C.55)

Here, the coefficients T (s)
j will contain j powers of ∂u1

and ∂u2
, allowing us to

explicitly compute (C.52), with the correct numerical prefactor. Not forgetting
the multiplicative factor of s−s coming from the propagator, we find:

A(s)
s +,−;+,− = ks x−2 P(4,0)

s−2
( x+2

x
)

, ks = 2(2s + 1) (s−2)!
(s+2)! , x = s

u , (C.56)

which agrees with (5.10),(5.11). This procedure can be extended for other scatter-
ing amplitudes like 22→ 22, where one simply needs to use the correct vertices.
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