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Abstract. We discuss the general matrix elements of the squeezing operator between number 
eigenstates of a harmonic oscillator (which may also represent a quantized mode of the 
electromagnetic radiation). These matrix elements have first been used by Popov and Perelomov 
(1969) long ago, in their thorough analysis of the parametric excitation of harmonic oscillators. 
They expressed the matrix elements in terms of transcendental functions, the associated Legendre 
functions. In the present paper we will show that these matrix elements can also be derived in an 
different form, expressed by the classical Gegenbauer polynomials. This new expression makes it 
possible to determine coherent and incoherent superpositions of these matrix elements in closed 
analytic forms. As an application, we describe multiphoton transitions in the system “charged 
particle + electromagnetic radiation”, induced by a (strong) coherent field or by a black-body 
radiation component (with a Planck-Bose photon number distribution). The exact results are 
compared with the semi-classical ones. We will show that in case of interaction with a thermal 
field, the semi-classical result (with a Gaussian stochastic field amplitude) yields an acceptable 
approximation only in the Rayleigh-Jeans limit, however, in the Wien limit it completely fails. 

1. Introduction 

The „non-classical states of light”, in particular, „squeezed light” have been a subject of intensive 
theoretical and experimental research for many decades (Stoler 1970, 1971, Yuen 1976, Walls 1979, 
Loudon and Knight 1987, Dodonov 2002, Dodonov and Man’ko 2003, Andersen et al 2016), and have 
become standard subjects in any textbooks on quantum optics (Scully and Zubairy 1997, Loudon 2000, 
Schleich 2001). The phenomenon „squeezing of the amplitudes” (of a mechanical oscillator, or of a 
component of electromagnetic radiation) often appears in parametric processes (Husimi 1953, Louisell, 
Yariv and Siegman 1961, Mollow and Glauber 1967, Popov and Perelomov 1969, Malkin, Man’ko and 
Trifonov 1970, Milburn and Walls 1983, Kiss, Janszky and Ádám 1994, Dodonov 2003, Fedorov et al 
2008, Straupe et al 2011). Concerning the  oscillatory behaviour of the photon number distribution in 
highly-squeezed coherent states, see Wheeler (1985), Schleich and Wheeler (1987), Schleich, Walls and 
Wheeler (1988), Schleich (2001). The squeezing operator is the generator of the Bogoljubov 
transformation, which has played an important role in the theory of superconductivity (Bogoljubov 1958, 
Valatin 1958). The quantum dynamics of charged particles in time-varying external (electro)magnetic 
fields also shows interesting phenomena, related to non-classical states of linear oscillators (Malkin, 
Man’ko and Trifonov 1970, Varró 1984, Varró and Ehlotzky 1985, 1987, Dodonov 2018, Dodonov and 
Horovits 2021). Recently the interest in entangled states is more pronounced then in nonclassical pure 
states. Anyway, undoubtely, the „classic non-classical states” are the squeezed coherent states, which 
have been the ones most extensively studied in the last decades. It is lesser known by the quantum optics 
community that such states of the radiation field naturally appear as exact stationary solutions in the 
simplest (and most fundamental) system of quantum electrodynamics, namely in the interaction of a free 
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electron with a quantized radiation field (see Berson 1969, Fedorov and Kazakov 1973, Bergou and Varró 
1981a-b, Gazazyan and Sherman 1989, Varró 2021a). In the theory of intereactions of strong laser 
radiation with electrons such exact solutions of the Schrödinger or Dirac equations are of outstanding 
importance in treating the multiphoton processes non-perturbatively (though the laser field is mostly 
taken as an external field).  

Our motivation for the present study has been to calculate the coherent and incoherent 
superposition of multiphoton transition amplitudes, which we have derived in the frame of non-relativistic 
quantum electrodynamics, for considering high-order harmonic generation (Varró 2021a). In the non-
perturbative treatment of such processes one neccesarily encounters  matrix elements between photon 
number eigenstates of the displacement and squeezing operators (which are standard objects in quantum 
optics). It is very remarkable that, though the photon number distributions of squeezed coherent states 
(Hermite polynomials), or displaced number states (Laguerre polynomials) have long been known, the 
matrix elements Smn=<m|S|n> of the squeezing operator alone have not been published in a classical 
polynomial form. More precisely, Smn has been expressed by Bargmann (1947) in his paper on the 
irreducible representation of the Lorentz group, in terms of hypergeometric functions (see also Sannikov 
1965). In the context of parametric processes, Popov and Perelomov (1969) and Malkin, Man’ko and 
Trifonov (1970) derived a form of Smn, expressed in terms of associated Legendre functions. Later Smn has 
been related also to Jacobi polynomials (see, in particular, the very thorough recent studies of Wünsche 
2017a-b), however a compact, classical polynomial expression has not been derived (see also Tanabe 
1973, Rashid 1975, Satyanarayana 1985 and Mendaš and Popovi  1995). Recently we have derived a 
compact classical polynomial expression, in term of Gegenbauer polynomials (Varró 2021b), and the 
larger part of the present paper will be devoted to the derivation and the main properties of the matrix 
element Smn of the squeezing operator. 

In Section 2 we summarize the main steps of the derivation of the Gegenbauer polynomial 
expression of the matrix elements of the squeezing operator between photon number eigenstates. In order 
to have the paper self-contained, we have included an Appendix which contains all the necessary details 
of this derivation. We shall also present some numerical illustrations to display the main fetures of the 
photon number distribution in a squeezed number state. In Section 3 we apply the new formula for the 
matrix elements for calculating the coherent and incoheren superpositions of multiphoton squeezing 
transitions.   
 
2. The matrix elements of the squeezing operator between photon number eigenstates. 

In the present section we summarize the basic steps of the calculation of the matrix elements  

between the number eigenstates of the squeezing operator, nSmS nm )(,  ! , where 

])()(exp[)( 2
2
12

2
1 aaS "# $!    ,     )exp()( $

"
# $! KKS    ,   %  ie||! ,                                        (1) 

with 2
2
1 )( #

# ! aK  and 2
2
1 )(aK !$ . Here a  and #a  are the photon absorption and emission operators, 

respectively. (In a more general context, they are the quantum amplitudes associated to the decrease and 

increase by 1 of the excitation index of the system, like a mechanical linear oscillator.) The a  and #a   

satisfy the commutation relation Iaaaaaa !$! ### ],[ , where I  is the unit operator of the complex 

Hilbert space H , which models the system. The effects of a  and #a  on the Fock states n  (which are 

the photon number eigenstates, satisfying the eigenvalue equation nnnaa !# ) are expressed by 
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equations  1$! nnna  and 11 ##!# nnna . For the ground state 00
 

!a , where 0
 

 is the zero 

vector of H . The Fock states n  form a complete orthogonal set ( nmnm ,&! ) in H . By introducing 

)(4
1

0 aaaaK ## #! , we have the closed set of generators of a special Lie algebra of the )1,1(SU  group, 

having the commutation relations '' '! KKK ],[ 0 , and 02],[ KKK !#$ . In Appendix A we summarize 

some basic properties of this group, on the basis of which we derive the normally ordered form of )( S . 

The details of the derivations are presented in Appendix A, in the present section we just outline the basic 
steps, leading to the final result.  
According to Eq. (A.5), the normal form of )( S  becomes   
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By consecutively applying the relation 2)1(2 $$! nnnna , we have the finite sum  
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as the right-hand factor in the scalar product nSmS nm )(,  ! . Similarly, the left-hand factor becomes 

also a finite sum, running up to ]2/[m . The operator in the middle of the normal form in Eq. (2) results in 

a multiplication for any k  by a number, namely, kkkaa )](exp[)](exp[ 2
1

2
1

2
1

2
1 #$!#$ # )) . Owing to 

the orthogonality of the Fock states, the scalar product, as a double sum, reduces to a single sum, as is 
shown in Eqs. (A.7) and (A.8) for nm +  and  nm , , respectively. Only those matrix elements are non-

vanishing in which m  and n   have the same parity, so )(2
1 nm $  must be an integer. The finite sums in 

Eqs. (A.7) and (A.8) are expressed by hypergeometric functions in Eqs. (A.9) and (A.10). Here we 
display the result in the case nm + , 

-
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where ||sinh 2  $!z  and ||cosh)2/exp(  ) ! . A similar expression comes out in the other case nm , , 

as is shown in Eq. (A.10). This formula has been first published by Bargmann (1947), who used the 
analytic function representation in the Fock-Bargmann space. It was rederived by Popov and Perelomov 

(1969), by performing the scalar products in the 2L  representation, and using generating functions.   
The crucial step in our derivation is that now we apply formula 8.962.1 of Gradshteyn and Ryzhik 

(2000), to connect the hypergeometric functions with the Jacobi polynomials )()2/1,(
2/ xPn
$4 , and 

)()2/1,(
2/)1( xP n

#
$
4 , where 0)(2

1 +$! nm4 , and 2/n  and 2/)1( $n  are integers (corresponding to even or odd 

n , respectively). This is shown in Eqs. (A.11) and (A.12) in the Appendix. The problem with these 
expressions is that they contain different Jacobi polynomials with different parameters, depending on the 
parity. This means that the functional forms of the matrix elements are not the same for even-even and 
odd-odd transitions. Fortunately, we can get rid off this severe assymmetry by using the formulas 22.5.22 
and 22.5.21 of Abramowitz and Stegun (1970) in Eqs. (A.11) and (A.12), to be applied for the even-even 
and odd-odd transitions, respectively. These formulas, Eqs. (A.13a-b), connect the Jacobi polynomials of 

the type )2/1,( '4
kP  with the Gegenbauer polynomials 2

1#4
nC . In this way we receive a unifying formula (in 

the sub-case nm + ), valid for both even and odd indeces, as is expressed in Eq. (A.14). A similar 



29th annual International Laser Physics Workshop (LPHYS'21)
Journal of Physics: Conference Series 2249 (2022) 012013

IOP Publishing
doi:10.1088/1742-6596/2249/1/012013

4

 

 

 

unifying formula (which is also valid for both even and odd paritys) results in the other sub-case nm ,  as 
is shown in Eq. (A.15). Some additional details of the calculation are explained in Appendix A. On the 
basis of these considerations, the final result can be summarized in the form 
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The formulas  in Eq. (5) and Eq. (6) are valid for both even-even and odd-odd transitions, so they are 

valid in the whole Hilbert space 4/34/1 HHH 7! . The order 8  of the Gegenbauer polynomials )(xCn
8  

in Eqs. (7) and (8)  satisfy the condition 2/1$98 , and this means that the matrix elements are expressed 
by the classical orthogonal polynomials.  

In the simplest special case, when nm ! , the Gegenbauer polynomials reduce to the  Legendre 

polynomials, according to the relation )()(2
1

xPxC nn !  (see e.g. Gradshteyn and Ryzhik (2000)), i.e. 

)()( xPxnSn n! ,  rx cosh/1! ,   || !r       ( nm ! ).                                                                      (7) 

In the general case the new formulas for the matrix elements nSmSmn )( ! , Eqs. (5) and (6), can be 

brought to another equivalent form, expressed in terms of the associated Legendre functions )(xP8
: . By 

using the formula 11.4 (10) of Erdélyi (1953), the Gegenbauer polynomials can be interrelated with the 
associated Legendre functions, 
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where ||cosh/1  !x  and )(2
1 nml #! .The transition probability then has the compact form  
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where ),min( nmn !< , ),max( nmn !9 , rx cosh/1!  (see  Popov and Perelomov (1969), Malkin, Man’ko 

and Trifonov (1970)). The result in Eq. (10) directly shows the symmerty of the transition probalbilities 

with respect to the interchange of n  and m . Besides, the matrix elements nSmSmn )( !  are formally 

related to the representation of spatial rotations (see e.g. Aronson, Malkin and Man’ko (1974), Witschel 

(1975)). By introducing the non-normalized spherical harmonics ),( %=k
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Eqs. (8) and (9) can be summarized in a compact formula for the general matrix elements of the 
squeezing operator. On the basis of Eqs. (8), (9) and (11), we have 
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where 2/0 5D << , ,...2,1,0!l , llllk ,1,...,1, $#$$! . In the special case 0!n , the order equals to 

2/mlk !! , and we encounter with the well-known special formula for spherical harmonics, 
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By multiplying this with Dcos  we receive  the photon number distribution amplitude of a squeezed 

vacuum state 0)( S . We note that, in contrast to our Gegenbauer polynomial expressions, Eqs. (5) and 

(6), in the other equivalent formulas, given by Eqs. (8), (9) and (12), the degree )(2
1 nml #!  of the 

functions is a combination of the initial and final indeces, n  and m , respectively. This circumstance 
would severely complicate the calculation for building up the coherent and incoherent superpositions, to 
be discussed in Section 3. 
 In the rest of the present section we illustrate some main features of the photon number 
distribution of a squeezed number state, determined by the Gegenbauer distribution corresponding to Eqs. 
(5) and (6). Figure 1 shows the distribution for the lowest n -values with different parities.
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Figure 1. Shows the photon number distributions 2|)(|)( nSmnpm  ! , according to Eqs. (5-6), for the lowest 

n -values with different parities. In both cases 5.1|| !E r , and the squeezing parameter 48.4e !! rs . (a): 

)0(mp  for a squeezed vacuum state 0)( S , in which only even photon number states are occupied; km 2!  (i.e. 

,...4,2,0!m ). This distribution is determined by Eq. (13). The expectation value of the dimensionless energy is 

03.52cosh5.02/1 !!## raa . (b): )1(mp  for a squeezed one-photon state 1)( S , in which only odd photon 

number states are occupied; 12 #! km  (i.e. ,...5,3,1!m ). The expectation value of the dimensionless energy is 

1.152cosh5.1 !r . For a better comparison with (a), in (b) we have plotted )1(4 mpF . 

 

In Fig. 2 the photon number distribution )5(mp  for a squeezed 5-photon  state 5)( S  have been plotted, 

for 5.1|| !E r . In this case 1cosh/ 2 <rn , and it is justified to use the asymptotic formula 8.936 in 

Gradshteyn and Ryzhik (2000), 
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Figure 2. Shows the photon number distributions )5(mp , according to Eqs. (5) and (6). In both cases 5.1|| !E r , 

48.4e !! rs  and 82.0tanh2 !r . (a): the exact )5(mp  distribution for a squeezed 5-photon  state 5)( S , with 

average energy is 4.552cosh5.5 !r . (b): the approximate )5(mp  for the same squeezed 5-photon  state. The 

discrete point are connected for a better visibility of the shape of the distribution Here 5.20tanh22 !rn  large, but 

the parameter 9.0)tanh1( 2 !$ rn  is smaller than unity; the distribution is result of that the largely stretched state 

(in ’coordinate representation’) is swept by the narrow original wavefunctions )(xmI , whose main contribution 

comes around the points mt  of Eq. (15).   

 
Fig. 2 (b) has been plotted by using the approximate formula, Eq. (15), for a comparison. The agreement 
with Fig. 2(a) is quite good. It is very remarkable, that the approcimation in Eq. (15), is derived from the 
exact expressions Eqs. (5) and (6), which are the result of an exclusively abstract, algebraic procedure. 

So, we would even say, that we ’did not know at the beginning that wave functions in 2L  exist, at all.’ 
Still, we find that a quite faithful „coarse-grained picture” of the modulus square of the wave function has 
been created from the photon number distribution. We note that Popov and Perelomov (1969) have also 
found this approximation (see their note at the very end of their paper), however they a priori calculated 

the matrix element in the 2L  coordinate representation. 
 

In Fig. 3 the characteristic quantum oscillations are nicely seen in this parameter regime 1cosh/ 2 99rn . 
Such oscillation have also been analysed in details by Popov and Perelomov (1969). 
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Figure 3.  Shows the photon number distribution 2|30|)30( Smpm !  for a squeezed 30-photon state 

30)( S , with 1|| !E r . The discrete point are connected for a better visibiliti of the shape of the 

distribution. In this regime the quantum oscillations are nicely seen. 
 

3. Coherent and incoherent superposition of the matrix elements of squeezing transitions. 

 In the present Section we determine the coherent and incoherent superpositions of the matrix 
elements of the squeezing operator, on the basis of the newly found Gegenbauer polynomial expressions 
in Eqs. (5) and (6). First we note that in the semi-classical description, when the photon field is 

considered as an external field tF Ksin0 , for a free electron in a Volkov state (see e.g. Varró 2021a), the 

oscillating phase factor ]2sin)4/(exp[ tUi p KK"$ appears, which comes from the 2A -interaction. pU  is 

the ponderomotive energy of the electron which is proportional to the intensity of the (laser) field. So, in 
the semiclassical approximation this factor contributes to the double-photon emission and absorption 
processes by the Fourier components, governed by the Bessel functions, 
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The corresponding coherent superposition of the transition amplitudes can be calculated on the basis of 
the generating formula for the Gegenbauer polynomials (see Gradshteyn and Ryzhik 2000), 
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In Eq. (17) 4  and M  are the (optionally highly-excited) initial and final coherent states, which represent 

the laser field, and the argument of the Bessel function can be related to average photon number, which is 
connected to the classical intensity. For a correct probability interpretation of this expression, the initial 
and final coherent states can be considered as von Neumann lattice coherent states (Neumann 1932), as is 
explained in our recent works in Gombköt! et al (2016, 2020),  Földi et al (2021) and Varró (2021a). By 
comparing Eq. (17)  and the Bessel function amplitudes in Eq.  (16), we see that if M4 ! , the 

semiclassical result reproduces the result obtained with the quatized description of the field excitations. 
However, in the quantal description there is always a chance for 4  and M  being different, which 

expresses the effect of the back-reaction of the electron. So, according to the exact result, Eq. (17), if this 
back-reaction is not negligible, then the emission (absorption) probability distribution of the k2 -order 
processe can be qualitatively different from the semi-classical one. 
 
 In the case of the interaction with a spectral  component of black-body radiation, or with some 
chaotic radiation, in the semi-classical description we use an averaging with respect to the field 

amplitude. In case of a Gaussian distribution we need the average of )(2 zJ n  in Eq. (16). We have 
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where 0I  is the average intensity of the field, and )(
2
1 zQ

k$  is a Legendre function of second kind (here it 

is a so-called toroidal function, see Gradshteyn and Ryzhik, 2000). For the absorption processes we 
receive the same expression. 
We have also calculated the incoheren superpositions of the Gegenbauer amplitudes in Eqs. (5), by using 
Planck-Bose weights, 
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p ##

!
1)1(

,   
1

1
/ $

!
Tkh Be

n
8

,                                         (19) 

where Bk  is the Boltzmann constant, and T  is the absolute temperature of the black-body radiation. For 

k2 -order emission processes we have the result 
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)(2
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nn
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#! ,    #2,1,0!k .        (20) 

For k2 -order absorptions we have recived the average probability 
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sin)1(
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)(2

2
1

2

2

2

zQb
nn
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l
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n $
#
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! #
!$*

D5

D
 ,     
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1
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nn
z

#
#! ,    #2,1,0!l .       (21) 

In Eqs. (20) and (21) r22 tanhsin !D . The semi-classical result, Eq. (18), approximates quite well the 

exact quantum result, calculated on the basis of Eqs. (5) and (6), if the prefactors Tkhll Bb
/e 8L$!  are close 

to unity, i.e. if 1/ <<Tkh B8 , which just corresponds to the Rayleigh-Jeans limit of the Planck 

distribution. In the opposite case, in the Wien-limit, when 1/ 99Tkh B8 , the two expressions are 

quatitatively different. 
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4. Summary 

In Section 2 (and in the Appendix) we have proved that matrix elements of the squeezing operator 
(Bogoliubov transformation) can be expressed in terms of the classical Gegenbauer polynomials. On the 
basis of this new formula, we have given few illustrative examples for the photon number distribution of a 
squeezed number state. This new expression makes it possible to determine coherent and incoherent 
superpositions of these matrix elements in closed analytic forms. In Section 3 we have described 
multiphoton transitions in the system “charged particle + electromagnetic radiation”, induced by a 
(strong) coherent field or by a spectral component of black-body radiation. The exact results have been 
compared with the semi-classical ones (the latter are based on non-perturbative matrix elements with c-
number radiation fields). It has been found that in the case of interaction with a thermal field, the semi-
classical result (calculated with a c-number, Gaussian stochastic field amplitude) yields an acceptable 

approximation only in the Rayleigh-Jeans limit (h8/kT<<1). It has been explicitely shown that in the 

Wien limit (h8/kT>>1) the semiclassical formula for the multiphoton absorption and emission 
probabilities cannot even ’mimic’ its quantum counterpart, because it has a differen functional form. 
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Appendix A.  Algebraic derivation of the matrix elements of the squeezing operator between photon 
number eigenstates.

In the present Appendix A we give the details of the calculation of the matrix elements  between 

the number eigenstates of the unitary squeezing operator, nSmS nm )(,  ! , where  

])()(exp[)( 2
2
12

2
1 aaS "# $!    ,   )exp()( $

"
# $! KKS    ,   %  ie||! ,                                          (A.1) 

with 2
2
1 )( #

# ! aK  and 2
2
1 )(aK !$ . By introducing )(4

1
0 aaaaK ## #! , we have the closed set of 

generators of a special Lie algebra of the )1,1(SU  group, having the commutation relations 

'' '! KKK ],[ 0 , and 02],[ KKK !#$ . The Casimir operator )(ˆ
2
12

02 #$$# #$! KKKKKC  commutes 

with all the generators, hence it is proportional with the unit operator, IC ˆ)1(2 $! PP , where P  is called 

the Bargmann index. In the special case under discussion, we have IC ˆ)16/3(2 $! , which yields 4/1!P  

or 4/3!P . For 4/1!P , the states n  with even n  form a basis of the unitary irreducible representation 

space of the group )1,1(SU , and the states n  with odd n  form a basis corresponding to 4/3!P . In the 

‘even representation space’ kkkK 2)4/1(20 #!  ( ,...2,1,0!k ), and in the ‘odd representation space’ 

12)4/3(120 ##!# lllK  ( ,...2,1,0!l ). Each equation can be written in the form 88 I8I !0K , 

where ,...2,1,0!$P8 . Of course, the complete Hilbert space is the direct sum of these sub-spaces, 

4/34/1 HHH 7! . In the present and in similar contexts, the properties of the )1,1(SU  group have been 

used by Popov and Perelomov (1969), Malkin, Man’ko and Trifonov (1970), Gilmore (1974), Perelomov 
(1977), Kelemen (1975), Witschel (1975), Fisher, Nieto and Sandberg (1984) or Schumaker and Caves 
(1985), Wünsche (1999, 2003, 2017a-b).  
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Since neither the commutation relations, nor the parameters depend on the Bargmann index, the 
ordering (factorization) of )( S  can be performed in any concrete representation, of course. Perhaps the 
simplest way to derive the normal (and anti-normal) form of )( S  is to use the ‘spinor representation’ of 
the generators (see e.g. Gilmore (1974), Fisher, Nieto and Sandberg (1984) or Schumaker and Caves 
(1985)). It is an easy matter to check that the following 22F  matrices  
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satisfy the same commutation rules as #K  and $K  and 0K , respectively, thus #$Q , $Q  and 33
1Q also 

form an )1,1(SU  algebra . The ordering can be performed by expanding the exponential expressions of 
the 22F  matrix representants (which are also 22F  matrices), and comparing the parameters of the 
original exponential expression with the parameters of the new exponential factors. From this we can 
determine the coefficients of )( #$Q , $Q  and 32

1Q  in the new exponential factors, and these coefficients 

must be identified with that of #K  and $K  and 0K  in the normal (anti-normal) form. In the ‘spinor 
representation’ we have 
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)exp()exp()exp(
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)

(
(((

(
(

()( KKK .      (A.3) 

By equating the components of the right hand sides, 
2/e||cosh ) ! ,  i.e. ||coshlog2  ) ! ,     ||coshe||sinhe 2/  (( )% $!$!$ i , i.e. ||tanhe  ( %i! , 

||coshe||sinhe 2/  (( )% ;!;!$ $i ,  i.e. "$ $!$!; ( ( % ||tanhe i .                                                    (A.4) 
Thus, the normal form of )( S  becomes   

)exp()exp()exp()exp()( 0 $
"

#$
"

# $$!$! KKKKKS ()(   .                                                              (A.5) 

On the basis of (A.4), the new parameters are determinedto be ||coshlog2  ) ! ,   ||tanhe  ( %i! . We 
note that the anti-normal form can also be obtained similarly, 

)exp()exp()exp()exp()(ˆ
0 #$

"
$

"
# $!$! KKKKKS ()(   .                                                                (A.6) 

With the help of the normal form in (A.5) the calculation of the matrix element nSm )(  is 

now straightforward. The effect of )exp( 2
2
1 a"$(  on n  yields a finite sum, in which the highest power 

of "$(  is ]2/[n , where ][x  denotes the integer part of x  (i.e. the smallest integer, which is larger of 
equal to x ). The factor in the middle of the expression in (A.5) is diagonal, i.e. 

kkkK )])(2/(exp[)exp( 2
1

0 #$!$ ))  for any k . The factor #"
# ! ))(exp()exp( 2

2
1 maKm ((  on the 

left  yields also a finite sum, in which the highest power of (  is ]2/[m . The scalar product of the two 

sums terminates at the smaller maximum summation index ])2/[],2/min([ nm . Any term like 

naam kl )()( 22#  is proportional to lknmlknm 22,22 #$!#$ & , thus, only those matrix elements are 

non-vanishing in which m  and n   have the same parity, and this means that their difference nm $  must 
be an even number, 42!$ nm , where 4  is an integer. By taking all these considerations into account, a 
straightforward calculation leads to the explicit result, 
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These expressions (A.7) and (A.8) are equivalent to the ones derived long ago by Husimi (1953), who 

used two-variable generating functions of mnS , and the 2L  representation (Hermite functions) for the 
oscillator basis states (see also Popov and Perelomov 1969). For a real (  Eq. (A.7) reduces to the 
equation (27) in Kelemen’s (1975) paper. See also Tanabe (1973), Rashid (1975), Satyanarayana (1985) 
and Mendaš and Popovi  (1995). 

Explicit form of the matrix elements of the squeezing operator between photon number eigenstates, 

expressed in terms of Gegenbauer polynomials. 
Now, our task is to express the finite sums (A.7) and (A.8) in terms of known functions, which 

makes it possible to perform the analytic calculations shown in the main text. Let us consider the sum on 
the right hand side of (A.3), which refers to the sub-case nm + . We observe that the first factorial in the 
denominator can be expressed as 

R S
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"!  $"  ,                          

where we have introduced the Pochhammer’s symbol ka)( , which can also be expressed in terms of the 
gamma functions (Abramowitz and Stegun, 1970). Besides, from the explicit form of the factorials, one 
can show 
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These manipulations allow us to bring into consideration the hypergeometric series );;,( zcbaF , which 
may be used to represent orthogonal polynomials, 

k

k k

kk z
ck

ba
z

cc

bbaa
z

c

ba
zcbaF +

,

"

" 
$$ 
  

 
$
$

 "
0

2

)(!

)()(

21)1(

)1()1(

1
1);;,( ! .                                                        

In our formula (A.7) this series terminates when the summation index takes on the value ]2/[nk "  (and 

in (A.8) the sum terminates at ]2/[mk " ). The expressions (A.3)  and (A.4) for the matrix elements can 
then be brought to the equivalent forms, expressed in terms of the hypergeometric functions, 
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where ||sinhe|| 22 0. / !"!"z , and )(2
1 nm !"-  in (A.9) and ||)(2

1 -3 "!" mn in (A.10) are non-

negative integers.  It can be seen that Equations (A.9) and (A.10) go over into each other if we exchange 

n  and m , take the complex conjugate of the resulting expression, and multiply this by 2/)()1( nm!! . Thus, 
it is enough to detail the forthcoming derivation only for one of these equations, e.g. (A.9). In addition we 
note that Eqs. (A.9) and (A.10) are equivalent to equations (10.28a-b) of Bargmann (1947) (see also 
Sciarrino and Toller (1967)). 

Consider the transitions between even photon number states, i.e., assume that kn 2"  where 
!2,1,0"k (and qm 2"  with !2,1,0"q ). Then, on the right hand side of equation (A.9) we have 

);1;,( zkkF  !!! -5 , where 2/1!"5  and qknm !"!" )(2
1-  is the same non-negative integer, as 

has been defined above. We apply the formula 8.962.1 of Gradshteyn and Ryzhik (2000), p. 990, which 
gives the connection between the Jacobi polynomials and the hypergeometric functions, 
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where )(),( xPk
5-  is a Jacobi polynomial of degree 2/nk " , and 2/1!"5  in the present case. The 

argument of the Jacobi polynomial can simply be expressed as )1/()1( zzx ! " , where ||sinh 2 0!"z . 
By taking this connection (*) into account in Equation (A.9), we receive 
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( nm 1 , even m  and even 01n ).                                                                                                           
Consider now the transitions between odd photon number states, i.e., assume that 12  " kn  where 

!2,1,0"k (and 12  " qm  with !2,1,0"q ). We take into account that the hypergeometric functions are 
symmetric in the first two parameters; );;,();;,( zcabFzcbaF " . Then, on the right hand side of equation 

(A.5) we have );1;,( zkkF  6!!! -5 , but now 2/1 "65 . As before, we again apply the same formula 
8.962.1 of Gradshteyn and Ryzhik (2000), denoted by (*) above, for the connection of the Jacobi 
polynomials and the hypergeometric functions, and receive 
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( nm 1 , odd m  and odd 11n ).                                                                                                               

The argument of the Jacobi polynomial is )1/()1( zzx ! "  (where ||sinh 2 0!"z ), and the other 

parameters have been defined in (A.4); ||tanhe 07i
 " , and ||coshe 2/ 0/ " . 

Finally, we use the formulas 22.5.22 and 22.5.21 of Abramowitz and Stegun (1970) in Eq. (A.11) 
and Eq. (A.12), referring to the even-even and odd-odd transitions, respectively, 
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Here )(xCn
8  are the Gegenbauer polynomials (see e.g. Gradshteyn and Ryzhik (2000)). Inserting the first 

and the second equations of  (A.13a) in Eqs. (A.11) and (A.12), respectively, and taking (A.13b) into 
account, we receive a unifying formula (in the sub-case nm 1 ), valid for both even and odd indeces, 
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A similar unifying formula (which is also valid for both paritys) results in the other sub-case nm 4 ,  
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In deriving Equation (A.14) from Eqs. (A.11) and (A.12), we have also taken into account  the so-called 

doubling formula )()(2)2( 2
1122/1  ##"# !! xxx x9  of the gamma function (see e.g. Gradshteyn and 

Ryzhik 2000), and the explicit form of the parameter ||coshlog2 0/ " . According to the functional 

relation )()(2
1

xPxC nn " , if nm " , then, both in (A.14) and (A.15), the Gegenbauer polynomials reduce to 

the  Legendre polynomial )(xPn ,  

)()( xPxnSn n"0 ,  rx cosh/1" ,   ||0"r                                                                  ( nm " ).     (A.16) 
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We also note that, in contrast to Eqs. (A.11) and (A.12) being separately valid in the sub-spaces 4/1H  and 

4/3H , respectively, the unifying formulas (A.14) (and also (A.15)) are valid in the whole Hilbert space 

4/34/1 HHH :" . On “unifying formula” we mean that the functional form of the expressions are the 

same for both the 4/1H  (even) and the 4/3H  (odd) subspaces. This is not the case for Eqs. (A.11) and 

(A.12), because they contain different Jacobi polynomials )()2/1,(
2/ xPn
!- , and )()2/1,(

2/)1( xP n
 

!
-  with different 

parameters, respectively. 
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