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Abstract The �-term in Einstein’s equations is a funda-
mental building block of the ‘concordance’ �CDM model
of cosmology. Even though the model is not free of funda-
mental problems, they have not been circumvented by any
alternative dark energy proposal either. Here we stick to the
�-term, but we contend that it can be a ‘running quantity’ in
quantum field theory (QFT) in curved space time. A plethora
of phenomenological works have shown that this option can
be highly competitive with the�CDM with a rigid cosmolog-
ical term. The, so-called, ‘running vacuum models’ (RVM’s)
are characterized by the vacuum energy density, ρvac, being a
series of (even) powers of the Hubble parameter and its time
derivatives. Such theoretical form has been motivated by gen-
eral renormalization group arguments, which look plausible.
Here we dwell further upon the origin of the RVM structure
within QFT in FLRW spacetime. We compute the renormal-
ized energy-momentum tensor with the help of the adiabatic
regularization procedure and find that it leads essentially to
the RVM form. This means thatρvac(H) evolves as a constant
term plus dynamical componentsO(H2) andO(H4), the lat-
ter being relevant for the early universe only. However, the
renormalized ρvac(H) does not carry dangerous terms pro-
portional to the quartic power of the masses (∼ m4) of the
fields, these terms being a well-known source of exceedingly
large contributions. At present, ρvac(H) is dominated by the
additive constant term accompanied by a mild dynamical
component ∼ νH2 (|ν| � 1), which mimics quintessence.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 Energy-momentum tensor for non-minimally cou-

pled scalar field . . . . . . . . . . . . . . . . . . . . .

a e-mail: cristian.moreno@fqa.ub.edu
b e-mail: sola@fqa.ub.edu (corresponding author)

3 Quantum fluctuations and adiabatic vacuum . . . . . .

4 Adiabatic regularization of the energy-momentum tensor

4.1 Relating different renormalization scales through
the ARP . . . . . . . . . . . . . . . . . . . . . .

4.2 Computing the adiabatic orders and the regular-
ized ZPE . . . . . . . . . . . . . . . . . . . . . .

4.3 Particular cases: ZPE with minimal coupling
and in Minkowski spacetime . . . . . . . . . . .

5 Renormalization of the ZPE in the FLRW background

5.1 Renormalized ZPE off-shell . . . . . . . . . . .

6 Renormalized vacuum energy density . . . . . . . . .

6.1 Vacuum energy density at different scales. Absence
of ∼ m4 terms. . . . . . . . . . . . . . . . . . .

6.2 Equivalent approach: subtracting the Minkowskian
contribution . . . . . . . . . . . . . . . . . . . .

7 Running vacuum connection . . . . . . . . . . . . . .

7.1 RVM in the current universe . . . . . . . . . . .

7.2 Implications for the early universe: RVM-inflation

8 Discussion and conclusions . . . . . . . . . . . . . .

A Conventions and geometrical quantities . . . . . . . .

B Combining adiabatic and dimensional regularization .

B.1 Useful formulas . . . . . . . . . . . . . . . . . .

B.2 Dimensionally regularized ZPE in FLRW spacetime

B.3 Counterterms . . . . . . . . . . . . . . . . . . .

B.4 Renormalized ZPE and absence of ∼ m4 con-
tributions . . . . . . . . . . . . . . . . . . . . .

C Identification of the vacuum energy density. . . . . . .

C.1 More geometric structures for vacuum in curved
spacetime . . . . . . . . . . . . . . . . . . . . .

C.2 Generalized form of the RVM . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . .

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8238-6&domain=pdf
http://orcid.org/0000-0002-5295-8275
mailto:cristian.moreno@fqa.ub.edu
mailto:sola@fqa.ub.edu


  692 Page 2 of 23 Eur. Phys. J. C           (2020) 80:692 

1 Introduction

The cosmological constant (CC) term, �, in Einstein’s equa-
tions has been for some three decades a fundamental build-
ing block of the ‘concordance’ or standard �CDM model of
cosmology [1,2]. The model, however, was phenomenologi-
cally favored only as of the time � became a physically mea-
sured quantity some twenty years ago [3,4]. Nowadays �, or
more precisely the associated current cosmological param-
eter �0

� = ρ�/ρ0
c became a precision quantity [5,6]. Here

ρ� = �/(8πGN ) is the (vacuum) energy density induced
by �, GN is Newton’s constant and ρ0

c = 3H2
0 /(8πGN ) is

the current critical density. The accurate knowledge of �0
�

around 0.7 is an important observational achievement, but
it does not mean that we fully understand its nature and
origin at a fundamental level. The cosmological constant
problem [7,8] is a preeminent example of a fundamental
theoretical conundrum, which actually affects all forms of
dark energy (DE) [9–13]. The abstruse theoretical problems,
though, are not the only nagging ones afflicting the concor-
dance model. In practice the �CDM appears to be currently
in tension with some important measurements, most signif-
icantly the discordant values of the current Hubble param-
eter H0 obtained independently from measurements of the
local and the early universe [14]. Whether these tensions
are the result of as yet unknown systematic errors is not
known, but there remains perfectly upright the possibility
that a deviation from the �CDM model could provide an
explanation for such discrepancies [15]. As it has been shown
in the literature, models mimicking a time-evolving � (and
hence a dynamical vacuum energy density ρ�) could help
in alleviating these problems, see e.g. [16–27] and [28–
40].

In this paper, we would like to further dwell upon the the-
oretical possibility of having a dynamical vacuum energy
density (VED), ρvac, in the framework of quantum field
theory (QFT) in curved spacetime [41–44]. Above all we
wish to focus on the dynamics associated to the running
vacuum model (RVM) [45–48]; for a review, see [49–
53] and references therein. For related studies, see e.g.
[54–57] and [58–62], some of them extending the subject to
the context of supersymmetric theories [68–70] and also to
supergravity [71]. More recently the matter has also been
addressed successfully in the framework of the effective
action of string theories [72–74]. Here, however, we aim
at the computation of the VED in QFT in a curved back-
ground, specifically in the spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric. We proceed by renor-
malizing the energy-momentum tensor using the adiabatic
regularization prescription (ARP) [41,42]. This renormal-
ization method is based on the WKB approximation of the
field modes in the expanding universe. We perform the cal-

culation in two ways, one through a modified form of the
ARP [61] and the second (presented in one appendix) involv-
ing dimensional regularization (DR). The common result is
that the properly renormalized VED, obtained upon inclu-
sion of the renormalized value of ρ� at a given scale, does
not contain the unwanted contributions proportional to the
fourth power of the particle masses (∼ m4) and hence it
is free from large induced corrections to the VED. This
is tantamount to subtracting the Minkowskian contribution
from the curved spacetime result, as we show. In addi-
tion, we find that the final expression for the VED adopts
the RVM form for the current universe, namely it con-
tains not only the usual constant term but also one that
evolves with the square of the Hubble rate (∼ νH2, with
|ν| � 1). The latter represents only a mild (dynamical)
correction to the constant contribution and it can mimic
quintessence or phantom DE depending on the sign of
ν.

The structure of the article is as follows. In Sect. 2 we
define our framework, which consists of a neutral scalar field
non-minimally coupled to gravity, and compute the clas-
sical energy-momentum tensor (EMT). In Sects. 3 and 4
we address the quantum fluctuations in the adiabatic vac-
uum through the WKB expansion of the field modes in
the FLRW background. We discuss the adiabatic regular-
ization of the EMT. In Sect. 5 we proceed to renormalize
the EMT in the FLRW context using the adiabatic prescrip-
tion, which is then needed in Sect. 6 to extract the pre-
cise form of ρvac from the renormalized zero-point energy
(ZPE) up to terms of adiabatic order 4, which in our case
means up to O(H4). We show that the relation between
values of the VED at different scales is free from quartic
powers of the masses. We also demonstrate that our renor-
malization procedure gives the same result as subtracting
the Minkowskian contribution from the curved spacetime
result. In Sect. 7, we provide the connection of the com-
puted VED in this work with the running vacuum model
(RVM), which had been derived before from the general
point of view of the renormalization group in curved space-
time. The final discussion and a summary of the conclu-
sions is presented in Sect. 8. Three appendices at the end
furnish complementary material. Specifically, Appendix A
defines our conventions and collects some useful formulas.
Appendix B reconsiders the main parts of the renormalization
of the EMT using dimensional regularization and the stan-
dard counterterm procedure, starting of course from the same
WKB expansion of the field modes. Finally, Appendix C dis-
cusses alternative identifications of the VED leading to gen-
eralized forms of the RVM which had already been antici-
pated from the renormalization group approach in previous
works.
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2 Energy-momentum tensor for non-minimally coupled
scalar field

The gravitational field equations read 1

Rμν − 1

2
Rgμν + �gμν = 8πGNT

matter
μν , (2.1)

where Tmatter
μν is the EMT of matter. They can conveniently

be rewritten as

1

8πGN
Gμν + ρ�gμν = Tmatter

μν , (2.2)

where ρ� ≡ �/(8πGN ) is the VED associated to �. The
latter contributes a term T�

μν ≡ −ρ�gμν to the total EMT.
However, in general, there will be also other contributions to
the total VED, in particular those associated to the quantum
fluctuations of the fields, and also to their classical ground
state energy (if it is nonvanishing). For simplicity we will
suppose that there is only one (matter) field contribution to
the EMT on the right hand side of (2.2) in the form of a real
scalar field, φ, and such contribution will be denoted T φ

μν .

Hence the total EMT reads T tot
μν = T�

μν +T φ
μν . We neglect the

incoherent matter contributions (e.g. from dust and radiation)
for the kind of QFT considerations made in this study, as they
can be added without altering the QFT aspects.

Suppose that the scalar field is non-minimally coupled to
gravity and that it does not couple to itself 2. The part of the
action involving φ, then, reads

S[φ]= −
∫

d4x
√−g

(
1

2
gμν∂νφ∂μφ+1

2
(m2+ξ R)φ2

)
,

(2.3)

where ξ is the non-minimal coupling of φ to gravity. In
the special case ξ = 1/6, the massless (m = 0) action
is conformally invariant, i.e. symmetric under simultane-
ous local Weyl rescalings of the metric and the scalar field:
gμν → e2α(x)gμν and φ → e−α(x)φ, for any local spacetime
function α(x). However, we will keep ξ general since our
scalar field will be massive.

In general, the non-minimal coupling ξ is needed for
renormalization since it is generated by loop effects even if it
is absent in the classical action [41]. However, ξ is not needed
for the renormalization of the action in the present case since
the scalar field is free as a quantum field, its interaction being
only with the classical geometric/gravitational background –
see the aforementioned footnote on this page. More details

1 A list of geometric quantities of interest here are shown in the
Appendix A, where we also define our conventions.
2 We will not consider a possible contribution from a classical potential
for φ in our analysis, which in general should also involve quantum
corrections and hence leading to an effective potential. Here we wish
to concentrate mainly on the zero-point energy of the quantum fields,
which in itself is already rather cumbersome.

are put forward in Appendix B, where an explicit counterterm
renormalization procedure is employed. However, by keep-
ing ξ �= 0 we can provide more general results, which will be
particularly useful for the connection of our calculations with
the RVM framework in Sect.7. In addition, the presence of
a non-minimal coupling is expected in a variety of contexts
of extended gravity theories [63–65]. For instance, f (R)

gravity is equivalent to scalar-tensor theory, and also to Ein-
stein theory coupled to an ideal fluid [66]. The non-minimal
coupling is crucially involved in models of Higgs-induced
inflation [67]. Furthermore, higher order and non-minimally
coupled terms can be transformed, by means of a conformal
transformation, into Einstein gravity plus one or more scalar
fields minimally coupled to curvature. These are only a few
examples in QFT, see e.g. [65] and references therein. Let
us also mention that non-minimal coupling of dilaton fields
to curvature are also common in the context of the effective
action of string theory at low energies – see Sect. 7.2 for an
interesting connection of the RVM with strings.

The field φ obeys the Klein–Gordon (KG) equation

(� − m2 − ξ R)φ = 0 , (2.4)

where �φ = gμν∇μ∇νφ = (−g)−1/2∂μ

(√−g gμν∂νφ
)
. In

the case of general non-minimal coupling ξ , the EMT can be
computed upon straightforward calculation:

Tμν(φ) = − 2√−g

δSφ

δgμν
= (1 − 2ξ)∂μφ∂νφ

+
(

2ξ − 1

2

)
gμν∂

σ φ∂σ φ

− 2ξφ∇μ∇νφ + 2ξgμνφ�φ + ξGμνφ
2 − 1

2
m2gμνφ

2.

(2.5)

In the following, we are going to consider the spatially flat
FLRW metric in the conformal frame. Introducing the con-
formal time, η, we have ds2 = a2(η)ημνdxμdxν , with
ημν = diag(−1,+1,+1,+1) the Minkowski metric. We
will denote the derivative with respect to the conformal time
by ′ ≡ d/dη. The corresponding Hubble rate is H(η) ≡
a′/a. Since dt = adη, the usual Hubble rate with respect to
the cosmic time, H(t) = ȧ/a (with ˙ ≡ d/dt), is related to
the former through H(η) = aH(t). We will present most of
our calculations in terms of the conformal time, but at the
end it will be useful to express the VED in terms of the usual
Hubble rate H(t), as this will ease the comparison with the
RVM results in the literature.

Because our metric is conformally flat, gμν = a2(η)ημν ,
we have the inverse gμν = a−2(η)ημν and

√−g = a4(η),
and as a result the action (2.3) can be rewritten

S[φ] = 1

2

∫
dη d3x a2 (

φ′2 − (∇φ)2 − a2(m2 + ξ R)φ2) .

(2.6)

123
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If we perform the field redefinition φ = ϕ/a and disregard
total derivatives, the previous action becomes the following
functional of ϕ:

S[ϕ] = 1

2

∫
dηd3x

{
ϕ′2 − (∇ϕ)2 − a2

[
m2 +

(
ξ − 1

6

)
R

]
ϕ2

}
,

(2.7)

where we have used (cf. Appendix A) R = 6a′′/a3. The
above field redefinition enables us to have a simpler field
equation for ϕ as if we were in Minkowski space (with con-
formal time) and an effective time-dependent mass different
from that in (2.4). Computing δS[ϕ]/δϕ = 0 from (2.7) we
find:

(�̃ − m2
eff(η))ϕ = 0 ,

m2
eff(η) ≡ a2(η)

[
m2 +

(
ξ − 1

6

)
R(η)

]
, (2.8)

where �̃ϕ ≡ ημν∂μ∂νϕ = −ϕ′′ + ∇2ϕ is the Minkowskian
box operator acting on ϕ in conformal coordinates xμ =
(η, x). The above equation for ϕ is, of course, equivalent to
(2.4) for the original field φ, as one can check by computing
the curved spacetime box operator in the conformal metric.

3 Quantum fluctuations and adiabatic vacuum

Let us now move from classical to quantum field theory.
We can take into account the quantum fluctuations of the
field φ by considering the expansion of the field around its
background (or classical mean field) value φb:

φ(η, x) = φb(η) + δφ(η, x). (3.1)

We identify the vacuum expectation value (VEV) of the field
with the background value, that is to say, 〈0|φ(η, x)|0〉 =
φb(η), whereas we assume zero VEV for the fluctuation:
〈0|δφ|0〉 = 0 (as it will become evident from the mode
expansion in terms of creation and annihilation operators
to be discussed below). We will define the vacuum state to
which we are referring to with more precision below.

Given the above field decomposition into a classical plus
fluctuating part, the corresponding EMT decomposes itself

as 〈T φ
μν〉 = 〈T φb

μν 〉+ 〈T δφ
μν 〉, where 〈T φb

μν 〉 = T φb
μν is the contri-

bution from the classical or background part, whereas 〈T δφ
μν 〉

is the contribution from the quantum fluctuations. The 00-
component of the latter is connected with the zero-point
energy (ZPE) density of the scalar field in the FLRW back-
ground. Thus, the total vacuum contribution to the EMT reads

〈T vac
μν 〉 = T�

μν + 〈T δφ
μν 〉 = −ρ�gμν + 〈T δφ

μν 〉 .

(3.2)

The above equation says that the total vacuum EMT is made
out of the contributions from the cosmological term and of
the quantum fluctuations of the field. We will use later on
a renormalized version of this equation and extract a rela-
tion satisfied by the renormalized VED. Notice that we use
the notation ρ� = �/(8πGN ) to denote a parameter in the
Einstein-Hilbert action. This is not yet the physical vacuum
energy density, ρvac, which we are aiming at. The latter is
obtained from the 00-component of the l.h.s. of Eq. (3.2) –
see Sec. 6 for its precise definition and Appendix C for an
extended discussion. In this respect, let us note that in the
introduction we have denoted the physical quantity in the
conventional form ρ�, but this should not be confused with
the more precise notations used hereafter.

The field (3.1) obeys the curved spacetime KG equation
(2.4) independently by the classical and quantum parts. Sim-
ilarly, ϕ and δϕ obey separately the Minkowskian KG equa-
tion (2.8). Let us concentrate on the fluctuation δϕ. We can
decompose it in Fourier frequency modes hk(η):

δϕ(η, x)= 1

(2π)3/2

∫
d3k

[
Ake

ik·xhk(η)+A†
ke

−ik·xh∗
k(η)

]
.

(3.3)

Since φ = ϕ/a, the expansion of δφ is, of course, the same
as that of (3.3) but divided by the scale factor a. Here Ak

and A†
k are the (time-independent) annihilation and creation

operators. Their commutation relations are the usual ones

[Ak, A
′†
k ] = δ(k − k′), [Ak, A

′
k] = 0. (3.4)

Notice that Ak and hk have mass dimensions −3/2 and −1/2
in natural units, respectively. Upon substituting the Fourier
expansion (3.3) in (�̃ − m2

eff(η))δϕ = 0 we find that the
frequency modes of the fluctuations satisfy the (linear) dif-
ferential equation

h′′
k + �2

khk = 0,

�2
k(η) ≡ k2 + m2

eff(η) = ω2
k (m) + a2 (ξ − 1/6)R , (3.5)

with ω2
k (m) ≡ k2 + a2m2. As we can see, hk depends only

on the modulus k ≡ |k| of the momentum. Because �k(η)

is a nontrivial function of the conformal time, the modes
cannot be found in a simple form. However, one can gener-
ate an approximate solution from a recursive self-consistent
iteration based on the phase integral ansatz

hk(η) = 1√
2Wk(η)

exp

(
i
∫ η

Wk(η̃)dη̃

)
. (3.6)

The latter is normalized through the Wronskian condition
h′
kh

∗
k −hkh

∗′
k = i , which insures that the standard equal-time

commutation relations between the field operator ϕ and its
canonical momentum, πϕ = ϕ′, are preserved. The function
Wk in the above ansatz is solution of the differential equation

123
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obtained from inserting (3.6) into (3.5):

W 2
k = �2

k − 1

2

W ′′
k

Wk
+ 3

4

(
W ′

k

Wk

)2

. (3.7)

Although this equation is non-linear, it can be solved using
the WKB approximation. Taking into account that the WKB
solution is valid for large k (i.e. for short wave lengths, as
e.g. in geometrical Optics) the function �k is slowly varying
for weak fields. This motivates a notion of vacuum called the
adiabatic vacuum [79]. Rather than formulating it as the state
without particles, we can at least say it is a state essentially
empty of high frequency modes. Indeed, particles with defi-
nite frequencies cannot be strictly defined in a curved back-
ground, since �k(η) is a function of time. Nonetheless a Fock
space interpretation is still possible, and the adiabatic vacuum
can be formally defined as the quantum state which is annihi-
lated by all the operators Ak of the above Fourier expansion,
see [41–44] for details. Our VEV’s actually refer to that adia-
batic vacuum. In such conditions, the minimal excited state is
hk 
 eikη/

√
2k, with k 
 �k , and hence one can maintain an

approximate particle interpretation of the quantized fields in a
curved background provided the geometry is slowly varying.
However, in general, the physical interpretation of the modes
(3.5) with time varying frequencies must be sought in terms
of field observables rather than in particle language. In prac-
tice, the adiabatic vacuum approximation assumes both short
wavelengths and weak (or at least non strong) gravitational
fields, such that the effective frequencies �k are slowly vary-
ing functions of time around the Minkowskian values defined
through the masses and momenta. Therefore both m2

e f f and

�2
k remain safely positive in our domain of study. Simple esti-

mates show that this is so for the most accessible part of the
cosmic history, starting from the radiation-dominated epoch
(where R = 0) until the present time and into the future,
in which R ∼ H2 is very small as compared to the usual
particle masses (squared). We emphasize that in all cases,
including the situation with the stronger gravitational fields
in the inflationary epoch (see Sect. 7.2 for further discussion),
a more physical interpretation of the vacuum effects of the
expanding universe can be achieved by computing the renor-
malized EMT in the FLRW background. The first thing to do
in order to carry out this task in an efficient way in our case
is to (adiabatically) regularize the EMT.

4 Adiabatic regularization of the energy-momentum
tensor

For an adiabatic (slowly varying) �k , we can use Eq. (3.7)
as a recurrence relation to generate an (asymptotic) series
solution. In the gravitational context, such WKB approxima-
tion is organized through adiabatic orders and constitutes the

basis for the adiabatic regularization procedure (ARP)3. The
quantities that are taken to be of adiabatic order 0 are: k2 and
a. Of adiabatic order 1 are: a′ and H. Of adiabatic order 2:
a′′, a′2,H′ and H2. Each additional derivative increases the
adiabatic order by one unit. Therefore, the solution of the
“effective frequency” Wk is found from a WKB-type asymp-
totic expansion in powers of the adiabatic order:

Wk = ω
(0)
k + ω

(2)
k + ω

(4)
k . . . , (4.1)

where each ω
( j)
k is an adiabatic correction of order j . In this

way we obtain an adiabatic expansion of the mode functions
hk in powers of even order adiabatic terms (0, 2, 4, ...), such
as a, a′′ ∝ R, ω′2, ω′′, ω′′2, R2 etc. The non-appearance
of odd adiabatic orders is justified by arguments of general
covariance, which forbid tensors of odd adiabatic order in
the field equations.

4.1 Relating different renormalization scales through the
ARP

We start by defining the first term ω
(0)
k of the above WKB

expansion and compute its first two derivatives:

ω
(0)
k ≡ ωk =

√
k2 + a2M2, ω′

k = a2HM2

ωk
,

ω′′
k = 2a2H2 M

2

ωk
+ a2H′ M2

ωk
− a4H2 M

4

ω3
k

. (4.2)

Notice that in this approach the WKB expansion is performed
off-shell, i.e. we use the arbitrary mass scale M instead of
the original massm (both being parameters of adiabatic order
zero). In this fashion the ARP can be formulated in such a
way that we can relate the adiabatically renormalized theory
at two scales [61]. The mass scale M can play a role similar to
the scale μ in DR, but it can be given a more physical mean-
ing. When M is fixed at the physical mass of the quantized
field (M = m) we expect to obtain the renormalized theory
on-shell. By keeping the M-dependence we can subtract the
EMT at such value, thus obtaining the renormalized theory at
M . In the subtraction procedure, the divergences will be can-
celled and the quadratic mass differences �2 ≡ m2−M2 will
appear in the correction terms relating the theory at the two
renormalization scales. These differences must be reckoned
as being of adiabatic order 2 since they appear in the WKB
expansion together with other terms of the same adiabatic
order [61]. For � = 0 we recover M = m and corresponds
to the usual ARP (where one renormalizes the theory only
at the scale of the particle mass) [41,42]. We will use this

3 The ARP was first introduced for minimally coupled (massive) scalar
fields in [75–78] and subsequently generalized for arbitrary couplings
[79]. For a review, see e.g. the classic books [41,42]. The method has
been applied to related studies of QFT in curved backgrounds [58,59,
61] and has also been extended for spin one-half fields in [80–83].
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procedure to explore the behavior of the VED throughout the
cosmological evolution. The masses m could be associated
to fields of the Standard Model of particle physics, but as
we shall see it will be convenient to consider also the heavy
fields of some Grand Unified Theory (GUT) and explore the
behavior in the low energy domain M2 � m2. Needless to
say, for the sake of simplicity, we model here all particles in
terms of (real) scalar fields.

We can see from Eq. (4.2) that the expansion in terms
of an even number of derivatives of ωk (hence of even adi-
abatic order) is equivalent to an expansion in even powers
of H and odd powers of H′ (notice e.g. that H2 and H′ are
homogeneous), as in both cases it involves an even number
of derivatives of the scale factor. In this way the expansion
is compatible with general covariance, as indicated above.
For the current universe, the powers H2 and H′ are suffi-
cient for the phenomenological description, as it is obvious
from the fact that R = (6/a2)(H2 +H′), whereas the higher
powers bring corrections which can be important in the early
universe.

4.2 Computing the adiabatic orders and the regularized
ZPE

To obtain the different orders, we start with the initial solution
Wk ≈ ω

(0)
k indicated in Eq. (4.2). For a = 1 this would yield

the standard Minkowski space modes. But since a = a(η)

we have to find a better approximation. Introducing that ini-
tial solution on the RHS of (3.7) and expanding it in powers
of ω−1

k we may collect the new terms up to adiabatic order

2 to find ω
(2)
k . Next we iterate the procedure by introduc-

ing Wk ≈ ω
(0)
k + ω

(2)
k on the RHS of the same equation,

expand again in ω−1
k and collect the terms of adiabatic order

4, etc. Since this mathematical procedure implies an expan-
sion in powers of ω−1

k ∼ 1/k ∼ λ (i.e. a short wavelength
expansion) it is obvious that the UV divergent terms of the
ARP are the ones containing the first lowest powers of 1/ωk ,
and hence are concentrated in the first adiabatic orders, whilst
the higher adiabatic orders represent finite contributions [75–
79]. The result is intuitive: for any given physical quantity, the
UV divergences are concentrated in the first adiabatic orders
whereas the higher orders must decay sufficiently quick at
high momentum so as to make the corresponding integrals
convergent and yielding a suppressed contribution. Although
not involved in our calculation, if we take the electric cur-
rent, for instance, the divergences are concentrated up to 3rd
order, since here one has to include a vector potential with
adiabatic order 1. In contrast, for the main quantity at stake
in our case, the EMT, its regularization implies to work up
to 4th adiabatic order, as we shall show in detail below -
cf. Eq. (4.9). Upon renormalization, we will obtain a finite
expression for the EMT.

Using (4.2) and working out the second and fourth order
adiabatic terms of (4.1), one finds

ω
(2)
k =a2�2

2ωk
+ a2R

2ωk
(ξ − 1/6) − ω′′

k

4ω2
k

+ 3ω′2
k

8ω3
k

,

ω
(4)
k = − 1

2ωk

(
ω

(2)
k

)2 + ω
(2)
k ω′′

k

4ω3
k

− ω
(2)′′
k

4ω2
k

− 3ω
(2)
k ω′2

k

4ω4
k

+ 3ω′
kω

(2)′
k

4ω3
k

.

(4.3)

We are now ready to compute the energy density associated
to the quantum vacuum fluctuations in curved spacetime with
FLRW metric. We start from the EMT given in Eq. (2.5) with
φ decomposed as in (3.1). However, we are interested just on
the fluctuating part, and select the quadratic fluctuations in δφ

only since, as previously indicated, we have zero VEV for the
fluctuation itself. This follows from (3.3) and the definition
of adiabatic vacuum, implying that the crossed terms ∝ 〈δφ〉
vanish. For the 00-component, related to the energy density
of the vacuum fluctuations, we find

〈T δφ
00 〉 =

〈
1

2

(
δφ′)2 +

(
1

2
− 2ξ

) ∑
i

∂iδφ∂iδφ + 6ξHδφδφ′

− 2ξδφ
∑
i

∂i iδφ + 3ξH2δφ2 + a2m2

2
(δφ)2

〉
.

(4.4)

To clarify the notation, notice that
(
δφ′)2 ≡ (δ∂0φ)2 =

(∂0δφ)2. We may now substitute the Fourier expansion of
δφ = δϕ/a, as given in (3.3), into Eq. (4.4) and apply the
commutation relations (3.4). After symmetrizing the opera-
tor field product δφδφ′ with respect to the creation and anni-
hilation operators, we end up with the following expression
in terms of the amplitudes of the Fourier modes of the scalar
field:

〈T δφ
00 〉 = 1

4π2a2

∫
dkk2

[∣∣h′
k

∣∣2 + (ω2
k + a2�2) |hk |2

+
(

ξ − 1

6

) (−6H2 |hk |2 + 6H (
h′
kh

∗
k + h∗′

k hk
))]

,

(4.5)

where we have integrated
∫ d3k

(2π)3 (...) over solid angles and
expressed the final integration in terms of k = |k|. The differ-
ent terms of the above integral should be expanded up to 4th
order in adiabatic expansion using the WKB approximations
(4.3):

|hk |2 = 1

2Wk
= 1

2ωk
− ω

(2)
k

2ω2
k

− ω
(4)
k

2ω2
k
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+ 1

2ωk

(
ω

(2)
k

ωk

)2

+ · · · (4.6)

|h′
k |2 =

(
W ′

k

)2

8W 3
k

+ Wk

2
= ωk

2
+ ω

(2)
k

2
+ ω

(4)
k

2

+ 1

8ωk

(
ω′
k

ωk

)2
(

1 − 3
ω

(2)
k

ωk

)
+ ω′

kω
(2)′
k

4ω3
k

+ · · ·

(4.7)

h′
kh

∗
k + h∗′

k hk = − W ′
k

2W 2
k

= − ω′
k

2ω2
k

(
1 − 2ω

(2)
k

ωk

)
− ω

(2)′
k

2ω2
k

+ · · · (4.8)

Upon substituting the above WKB expansions in (4.5) and
using the relations (4.3) and (4.2), the result can be phrased
as follows after a significant amount of algebra:

〈T δφ
00 〉 = 1

8π2a2

∫
dkk2

[
2ωk + a4M4H2

4ω5
k

−a4M4

16ω7
k

(2H′′H − H′2 + 8H′H2 + 4H4)

+ 7a6M6

8ω9
k

(H′H2 + 2H4) − 105a8M8H4

64ω11
k

+
(

ξ − 1

6

)(
−6H2

ωk
− 6a2M2H2

ω3
k

+a2M2

2ω5
k

(6H′′H − 3H′2 + 12H′H2)

−a4M4

8ω7
k

(120H′H2 + 210H4) + 105a6M6H4

4ω9
k

)

+
(

ξ − 1

6

)2
(

− 1

4ω3
k

(72H′′H − 36H′2 − 108H4)

+54a2M2

ω5
k

(H′H2 + H4)

)]

+ 1

8π2a2

∫
dkk2

[
a2�2

ωk
− a4�4

4ω3
k

+ a4H2M2�2

2ω5
k

−5

8

a6H2M4�2

ω7
k

+
(

ξ − 1

6

)(
−3a2�2H2

ω3
k

+ 9a4M2�2H2

ω5
k

)]
+ · · · ,

(4.9)

Let us note the presence of the �-dependent terms in the last
two rows, which contribute at second (�2) and fourth (�4)
adiabatic order.

4.3 Particular cases: ZPE with minimal coupling and in
Minkowski spacetime

As a particular case of the cumbersome expression obtained
above, let us consider what is left when the non-minimal

coupling to gravity is absent (ξ = 0). Let us also fix the
scale M at the physical mass of the particle (M = m), so that
the �-terms vanish. Finally, let us project the UV-divergent
terms of orderH2 and neglect those of higher adiabatic order.
It is then easy to check that Eq. (4.9) boils down to the very
simple expression

〈T δφ
00 〉

∣∣∣
M=m

= 1

8π2a2

∫
dkk2

(
2ωk(m) + H2

ωk(m)
+ a2m2H2

ω3
k (m)

)
,

(4.10)

where we recall that ωk(m) ≡ √
k2 + a2m2. Formula (4.10)

is in agreement with previous results found in the literature
for ξ = 0, in the O(H2) approximation [75–77] – see also
[55–57,68,69]. Notice that k is the comoving momentum,
whereas the physical momentum is k̃ = k/a. Defining the

physical energy mode ω̃k(m) =
√
k̃2 + m2, and keeping in

mind that H = aH , we can re-express the above result as

〈T δφ
00 〉

∣∣∣
M=m

= a2 1

4π2

∫
dk̃k̃2

[
ω̃k(m) + H2

2ω̃k(m)

(
1 + m2

ω̃2
k (m)

)]
.

(4.11)

The dependence on the scale factor can be eliminated as soon
as we write T00 = −ρvacg00 = a2ρvac and rephrase the above
result in terms of ρvac. The last quantity can be thought of as
representing the VED associated to the quantum fluctuations,
i.e. the aforementioned ZPE. We will, however, come back
to this point later on. At the moment we note that with this
interpretation we can retrieve also the very particular situa-
tion of Minkowskian spacetime, as indicated above. Setting
a = 1 (hence H = 0) the previous expression maximally
simplifies to

〈T δφ
00 〉

∣∣∣
Minkowski

= 1

4π2

∫
dkk2ωk =

∫
d3k

(2π)3

1

2
h̄ ωk ,

(4.12)

where the last integral is just the well-known ZPE of the
quantum field φ in flat spacetime [49–51,84], as it should be
expected (in natural units, h̄ = 1). In what follows, unless
stated otherwise, we will continue using comoving momenta,
as it will ease the presentation. The previous formulas corre-
spond to simpler situations, but as we have seen the ZPE in
FLRW spacetime is much more complicated, and Eq. (4.9)
constitutes a WKB approximation to it up to 4th adiabatic
order. Of course, all the above forms of ZPE are UV divergent
and require renormalization.
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5 Renormalization of the ZPE in the FLRW
background

Let us consider the ZPE part of the EMT, as given by Eq. (4.9).
We can split it into two parts as follows:

〈T δφ
00 〉(M) = 〈T δφ

00 〉Div(M) + 〈T δφ
00 〉Non−Div(M), (5.1)

where

〈T δφ
00 〉Div(M) = 1

8π2a2∫
dkk2

[
2ωk + a2�2

ωk
− a4�4

4ω3
k

−
(

ξ − 1

6

)
6H2

(
1

ωk
+ a2M2

ω3
k

+ a2�2

2ω3
k

)

−
(

ξ − 1

6

)2 9

ω3
k

(2H′′H − H′2 − 3H4)

]

(5.2)

is the UV-divergent contribution, which involves ωk =√
k2 + a2M2 and the powers 1/ωn

k up to n = 3.
The terms in (4.9) which are not in (5.2) are the ones which

are finite (as they involve powers of 1/ωk higher than 3), and
constitute the 〈T δφ

00 〉Non−Div(M) part of (5.1). Computing the
(manifestly convergent) integrals with the help of Eq. (B.2)
(for ε = 0) in Appendix B, the final result reads

〈T δφ
00 〉Non−Div(M)

= m2H2

96π2 − 1

960π2a2

(
2H′′H − H′2 − 2H4

)

+ 1

16π2a2

(
ξ − 1

6

) (
2H′′H − H′2 − 3H4

)

+ 9

4π2a2

(
ξ − 1

6

)2

(H′H2 + H4)

+
(

ξ − 1

6

)
3�2H2

8π2 + . . .

(5.3)

where the dots in the last expression correspond to higher
adiabatic orders. Let us now take a closer look to the diver-
gent part of the ZPE, Eq. (5.2). Since the complete adiabatic
series is an asymptotic series representation of Eq. (4.4), there
is some arbitrariness in the way of choosing the leading adia-
batic order because, independently of our choice, such series
does not really converge and only serves as an approximation,
which is obtained after one cuts the series at some particular
order. There is, however, a minimum number of steps to do
in order to obtain a meaningful result. To start with, let us
set the arbitrary scale M to the on-shell mass value of the
quantized scalar field, M = m, hence � = 0 (cf. Sect. 4.1).

In such a case, the divergent part (5.2) reduces to

〈T δφ
00 〉Div(m)

= 1

8π2a2

∫
dkk2

[
2ωk(m)

−
(

ξ − 1

6

)
6H2

(
1

ωk(m)
+ a2m2

ω3
k (m)

)

−
(

ξ − 1

6

)2 9

ω3
k (m)

(2H′′H − H′2 − 3H4)

]
.

(5.4)

Again, (5.4) is a bare integral, formally divergent and does
not depend on any renormalization scale. The prescription we
are going to follow in order to renormalize the ZPE (and, in
general, the EMT) is somehow reminiscent of the momentum
subtraction scheme, although is certainly different in many
respects. In the latter the renormalized Green’s functions and
running couplings are obtained by subtracting their values at
a renormalization point p2 = M2 (space-like in our metric,
which becomes an Euclidean point after Wick rotation) or at
the time-like one p2 = −M2 (depending on the kinematical
region involved) [85,86]. Since for vacuum diagrams we do
not have external momenta, here, instead, we renormalize the
ZPE by subtracting the terms that appear up to 4th adiabatic
order at the arbitrary mass scale M . This suffices to eliminate
the divergent terms through the ARP, as it is amply discussed
in the literature [41–43].

5.1 Renormalized ZPE off-shell

In view of the previous considerations, we will define the
renormalized ZPE in curved spacetime at the scale M as
follows:

〈T δφ
00 〉Ren(M) = 〈T δφ

00 〉(m) − 〈T δφ
00 〉(0−4)(M)

= 〈T δφ
00 〉Div(m) − 〈T δφ

00 〉Div(M)

−
(

ξ − 1

6

)
3�2H2

8π2 + · · · , (5.5)

where we have used the fact that 〈T δφ
00 〉Non−Div(m) −

〈T δφ
00 〉(0−4)

Non−Div(M) yields precisely the last term of (5.5), as
it follows immediately from Eq. (5.3). In these expressions,
(0 − 4) indicates the expansion up to fourth adiabatic order
and the dots in (5.5) denote finite terms of higher adiabatic
order. Using now Eq. (5.4), we arrive at the result

〈T δφ
00 〉Ren(M)

= 1

8π2a2

∫
dkk2

[
2ωk(m) − a2�2

ωk(M)

+ a4�4

4ω3
k (M)

− 2ωk(M)

]
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−
(

ξ − 1

6

)
6H2 1

8π2a2

∫
dkk2

[
− 1

ωk(M)
− a2M2

ω3
k (M)

− a2�2

2ω3
k (M)

+ 1

ωk(m)
+ a2m2

ω3
k (m)

]

−
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
8π2a2

∫
dkk2

[
1

ω3
k (m)

− 1

ω3
k (M)

]

−
(

ξ − 1

6

)
3�2H2

8π2 + · · · (5.6)

For better clarity, we will henceforth distinguish explicitly
between the off-shell energy mode ωk(M) = √

k2 + a2M2

(formerly denoted just as ωk) and the on-shell one ωk(m) =√
k2 + a2m2. On using simple manipulations, such as e.g.

ωk (m) − ωk (M) = (ωk (m) − ωk (M))
ωk (m) + ωk (M)

ωk (m) + ωk (M)

= a2�2

ωk (m) + ωk (M)
,

2(ωk (m) − ωk (M)) − a2�2

ωk (M)
+ a4�4

4ω3
k (M)

= �6a6 ωk (m) + 3ωk (M)

4ω3
k (M)(ωk (m) + ωk (M))3

,

(5.7)

etc. one can work out the renormalized result (5.6) into the
following convenient form

〈T δφ
00 〉Ren(M)

= �6

8π2

∫ ∞

0
dkk2a4

[
ωk(m) + 3ωk(M)

4ω3
k (M)(ωk(m) + ωk(M))3

]

−
(

ξ − 1

6

)
3a2H2

4π2

∫ ∞

0
dk

[
�2m2

2ωk(m) (ωk(m) + ωk(m))2

+ �2M2

2ωk(M) (ωk(m) + ωk(M))2

− �2m2

2ωk(M)ωk(m) (ωk(m) + ωk(M))

− m4

ω3
k (m)

+ M4

2ω3
k (M)

+ M2m2

2ω3
k (M)

]

−
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
8π2

∫ ∞

0
dk

k2

ω3
k (m)ω3

k (M)[ −k2�2

ωk(m) + ωk(M)
+ M2ωk(M) − m2ωk(m)

]

−
(

ξ − 1

6

)
3�2H2

8π2 + · · · ,

(5.8)

in which all the integrals are seen to be manifestly convergent
since the power counting for all of them leads to ∼ ∫

dkk−3

in the UV region. The calculation of some of these convergent
integrals can be a bit cumbersome, as not all of them can be
dealt directly with Eq. (B.2). Owing to various cancellations,
however, the final result can be cast in a rather compact form:

〈T δφ
00 〉Ren(M)

= a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)

−
(

ξ − 1

6

)
3H2

16π2

(
m2 − M2 − m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a2 ln

m2

M2 + · · ·

(5.9)

We have checked this result with the help of Mathematica
[87]. The obtained expression vanishes for M = m, which
was already obvious from (5.6) or (5.8), since the integrand
is proportional to various powers of � and to expressions
that cancel in that limit. This is also clear from the definition
itself, Eq. (5.5).

However, it should be emphasized that the vanishing result
in the M = m limit occurs only because we have computed
the on-shell value 〈T δφ

μν 〉Ren(m) also up to adiabatic order

4 in Eq. (5.9). In general one can compute 〈T δφ
μν 〉Ren(m) up

to any desired adiabatic order, keeping however in mind the
asymptotic character of the WKB series. But in all cases the
subtracted term in Eq. (5.5) at the arbitrary scale M is always
to be computed to adiabatic order 4, as this suffices to cancel
all the existing divergences. Beyond 4th order one always
obtains finite, subleading, corrections. These higher order
finite effects satisfy the Appelquist–Carazzone decoupling
theorem [88] since they become suppressed for large values
of the physical mass m of the quantum field. In our study,
however, we do not track these finite, subleading, contribu-
tions, but of course they are there and provide a nonvanishing
on-shell value of the renormalized EMT as defined by (5.5) .

Noteworthy, the final renormalized ZPE in curved space-
time (5.9), although it is perfectly finite, still carries at this
point quartic powers of the masses.

We have explicitly checked that the above direct subtrac-
tion procedure gives the same result as the conventional DR
technique applied to the divergent integrals of (5.2), see
Appendix B for a summary of that alternative calculation.
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Of course, the DR is used here only as an auxiliary tool
to regularize the UV divergences by tracking the poles up
to adiabatic order four, but we do not mean at all to renor-
malize the calculation through the minimal subtraction (MS)
scheme [85,86]. In fact, as we have demonstrated, the above
result can be fully obtained without any use of DR, if it is not
desired. The truly guiding renormalization principle here is
the one based on the ARP relating different scales, with or
without the auxiliary use of DR in the intermediate steps.

6 Renormalized vacuum energy density

We remind the reader that in order to make possible the
renormalization program in the context of QFT in curved
spacetime, we need to count on the higher derivative (HD)
terms in the classical effective action of vacuum [41], in
addition to the usual Einstein-Hilbert (EH) term with a cos-
mological constant, �. In four dimensions, the HD part is
composed of the O(R2) terms, i.e. the squares of the cur-
vature and Ricci tensors: R2 and RμνRμν . No more HD
terms are needed in our case since the one associated to the
square of the Riemann tensor, Rμνρσ Rμνρσ , is not indepen-
dent owing to the topological nature of the Euler’s density in
4 dimensions, which involves all these HD terms together:
E = Rμνρσ Rμνρσ −4RμνRμν +R2. Moreover the square of
the Weyl tensor,C2 = Rμνρσ Rμνρσ −2RμνRμν +(1/3) R2,
exactly vanishes for conformally flat spacetimes such as
FLRW. The full action, therefore, boils down to the relevant
EH+HD terms mentioned above plus the matter part (con-
sisting here of the scalar field φ only) with a non-minimal
coupling to gravity, Eq. (2.3). Variation of the action with
respect to the metric provides the modified Einstein’s equa-
tions, which become extended as compared to their original
form (2.2) as follows:

1

8πGN (M)
Gμν + ρ�(M)gμν + a1(M)H (1)

μν

= T φb
μν + 〈T δφ

μν 〉Ren(M) , (6.1)

where we use renormalized quantities and hence we have
indicated explicitly the dependence of the parameters and
of the EMT on the subtraction point M . The background
part does not depend on it. The higher order tensor H (1)

μν

is obtained by functionally differentiating R2 with respect
to the metric (see Appendix A). A further simplification is
possible here since the corresponding term associated to the
functional differentiation of the square of the Ricci tensor,
called H (2)

μν , is not necessary since it is not independent of

H (1)
μν for FLRW spacetimes [41]. This follows from the afore-

mentioned properties of the Euler density and the Weyl tensor
for conformally flat spacetimes. The higher order tensor H (1)

μν

is indeed to be included in the extended field equations since

it is anyway generated by the quantum fluctuations and is
therefore indispensable for the renormalizability of the the-
ory. The fact that Eq. (6.1) has been written with all couplings
defined at some arbitrary mass scale M is because we have
shown that the EMT used in our calculation is the renormal-
ized one at that scale following the ARP. However, in the
Appendix B we offer an alternative approach based on the
more conventional counterterm procedure, starting from the
bare parameters of the action.

Baring in mind that we wish to relate the theory at dif-
ferent renormalization points4, let us subtract the modified
Einstein’s equations (6.1) at the two scales M and M0. The
classical (background) contribution T φb

μν cancels in the differ-
ence, since as noted it does not depend on the renormalization
scale, and we find

〈T δφ
μν 〉Ren(M) − 〈T δφ

μν 〉Ren(M0) = fG−1
N

(m, M, M0)Gμν

+ fρ�(m, M, M0)gμν + fa1(m, M, M0)H
(1)
μν , (6.2)

where we have introduced the subtracted parameters

fX (m, M, M0) ≡ X (M) − X (M0) (6.3)

for the various couplings involved X = G−1
N /(8π), ρλ, a1.

(For simplicity, we denote fG−1
N /8π

just as fG−1
N

). Using now
the tensor pattern shown by the generalized field equations
(6.1), and taking into account that we know the expres-
sion for the final renormalized form of the EMT within
the ARP, namely Eq (5.9), we can derive by compari-
son the renormalization shift (or ‘running’) undergone by
the couplings G−1

N , ρ� and a1 in (6.2) between the two
scales M and M0. Such identification is possible since
we know the explicit expressions for G00 and H (1)

00 –
see Appendix A. The former is proportional to H2 (adi-
abatic order 2) and the latter to a linear combination of
terms of adiabatic order 4 involving H and its derivatives
– cf. Eqs. (A.2), (A.3) and (A.5). The remaining term of
(5.9) – the first one on its r.h.s – is of adiabatic order
zero; it is associated to the running of ρ� and determines
fρ�(m, M, M0). Explicitly, setting μ = ν = 0 we find the
results

fG−1
N

(m, M, M0)

=
(

ξ − 1

6

)
1

16π2

[
M2 − M2

0 − m2 ln
M2

M2
0

]
, (6.4)

fρ�(m, M, M0)

4 Renormalization theory is concerned with the relations of renormal-
ized couplings, operators and Green’s functions at different renormal-
ization points. It is not our intention to compute any of these quantities
from first principles, in particular the VED. Ultimately this is an input
from experiment at a given scale, and once it is given one can predict
its value at another scale.

123



Eur. Phys. J. C           (2020) 80:692 Page 11 of 23   692 

= 1

128π2

(
M4 − M4

0 − 4m2(M2 − M2
0 ) + 2m4 ln

M2

M2
0

)
,

(6.5)

and

fa1(m, M, M0) = 1

32π2

(
ξ − 1

6

)2

ln
M2

M2
0

. (6.6)

6.1 Vacuum energy density at different scales. Absence of
∼ m4 terms.

Following our discussion in Sect. 4.2, let us provisionally
define the vacuum state as that one satisfying pvac = −ρvac

and T vac
μν = −ρvacgμν . We will further discuss the signifi-

cance of this identification in Appendix C. Equating the last
expression to Eq. (3.2), and taking the 00-component of the
equality (keeping also in mind that g00 = −a2(η) in the
conformal frame), we obtain

ρvac(M) = ρ�(M) + 〈T δφ
00 〉Ren(M)

a2 . (6.7)

Notice that we have included the dependence on the renor-
malization point since we are using the renormalized theory
at that scale. The above equation says that the total VED at
an arbitrary scale M is the sum of the renormalized contri-
butions from the cosmological term plus that of the quantum
fluctuations of the scalar field at that scale (i.e. the renormal-
ized ZPE). Subtracting the renormalized result at two scales,
M and M0, and using (6.2), we find:

ρvac(M) − ρvac(M0)

= ρ�(M) − ρ�(M0) + 〈T δφ
00 〉Ren(M) − 〈T δφ

00 〉Ren(M0)

a2

= fρ� (m, M, M0)

+
fG−1

N
(m, M, M0)G00 + fρ� (m, M, M0)g00 + fa1 (m, M, M0)H

(1)
00

a2

=
fG−1

N
(m, M, M0)

a2 G00 + fa1 (m, M, M0)

a2 H (1)
00

= 3H2

a2 fG−1
N

(m, M, M0)

− 18

a4

(H′2 − 2H′′H + 3H4) fa1 (m, M, M0) , (6.8)

where the term fρ�(m, M, M0) has cancelled, and we

have used the expressions for G00 and H (1)
00 given in the

Appendix A. From equations (6.4) and (6.6), we finally

obtain

ρvac(M)

= ρvac(M0) + 3

16π2

(
ξ − 1

6

)
H2

[
M2 − M2

0 − m2 ln
M2

M2
0

]

− 9

16π2

(
ξ − 1

6

)2 (
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)
ln

M2

M2
0

,

(6.9)

where, in addition, we have used Eq. (A.5) to re-express the
final result in terms of the ordinary Hubble function in cosmic
time (H = H/a) since it will be useful for further considera-
tions. The result (6.9) is the value of the VED at the scale M
once we know its value at another scale M0, i.e. it expresses
the ‘running’ of the VED. Only in the case of conformally
invariant fields (ξ = 1/6) the result would be the same at
all scales, if the VED would receive only contributions from
scalar fields. But in general, this is not the case since one has
to add the contribution from fermions and vector boson fields,
which we do not consider here, so in general the total VED
appears a running quantity with the expansion. The running
is slow for small H , as it depends on terms of the formO(H2)

times a mass scale squared, and on O(H4) contributions, but
not on quartic mass scales.

6.2 Equivalent approach: subtracting the Minkowskian
contribution

It cannot be overstated that the above result (6.9) is free from
quartic powers of the masses. These would still be present
if we had subtracted just the ZPE part at different scales
without including the renormalized ρ�. This is obvious from
Eq.(5.9), where we can see that the problem actually stems
from Minkowskian spacetime, see [49–51] for a discussion.
The renormalized ZPE in flat spacetime is obtained from
Eq.(5.9) in the limit a = 1 (which implies that H and all
its derivatives are zero). Only the first term of it remains,
although it is the one carrying the mentioned quartic powers.
This term vanishes for M = m since the renormalized on-
shell value was computed only up to fourth adiabatic order.
As previously emphasized (cf. Sect. 5.1), this does not mean
that the exact renormalized ZPE vanishes on-shell, of course.
One still has to add the higher order adiabatic terms, but they
are finite and subleading since they decouple for larger and
larger values of the physical mass m (i.e. they satisfy the
decoupling theorem [88]), and we have not tracked them
explicitly. Our main aim here was to pick out just the leading
contributions to the renormalized ZPE up to 4th adiabatic
order.

Because we compute the total VED, defined as the sum of
the renormalized value of ρ� and the renormalized ZPE, the
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difference of VED values at two scales is free from the quartic
powers of mass scales. Of course this is possible owing to the
renormalized form for the ZPE that we have used, Eq. (5.5),
which involves a subtraction of the on-shell value at another
arbitrary mass scale. In the Appendix B, we provide an alter-
native calculation leading to the same result (6.9) and further
comments on this fact.

The above observations suggests that we can recover the
expression (6.9) for the VED by performing an analogy with
the Casimir effect; that is to say, we may compute the expres-
sion for 〈T δφ

00 〉 in Minkowskian spacetime and substract it
from its equivalent in curved spacetime. One should expect
that the result appears only mildly evolving with the cosmic
evolution through a function of the Hubble rate (which is the
key term providing the departure of the FLRW background
from Minkowskian spacetime) [49–51]. In fact, the subtrac-
tion of the Minkowskian spacetime result has been argued
from different perspectives [55–57,68,69]. In the Minkowski
limit, the subtraction of scales in Eq. (6.2) leaves only the
term fρ�(m, M, M0)gμν = fρ�(m, M, M0)ημν on its r.h.s.
Taking the 00-component (with η00 = −1 in our conven-
tions), we find

〈T δφ
00 〉Mink

Ren (M) − 〈T δφ
00 〉Mink

Ren (M0) = − fρ�(m, M, M0) .

(6.10)

Following the above proposal, we define now the physical
VED in the expanding universe as the outcome of subtracting
the Minkowskian ZPE from its value in FLRW spacetime:

ρvac(M) ≡〈T δφ
00 〉Ren(M)

a2 −
[

〈T δφ
00 〉Ren(M)

a2

]Mink

=〈T δφ
00 〉Ren(M)

a2 − 〈T δφ
00 〉Mink

Ren (M) .

(6.11)

Thus, inserting equations (6.2) and (6.10) in the above rela-
tion and recalling again that g00 = −a2, we are led to

ρvac(M) = 〈T δφ
00 〉Ren(M0)

a2 − 〈T δφ
00 〉Mink

Ren (M0)

+ fρ�(m, M, M0)

a2 g00 +
fG−1

N
(m, M, M0)

a2 G00

+ fa1(m, M, M0)

a2 H (1)
00 + fρ�(m, M, M0)

= ρvac(M0) + 3H2

a2 fG−1
N

(m, M, M0)

−18

a4

(
H′2 − 2H′′H + 3H4

)
fa1(m, M, M0) .

(6.12)

The result is indeed the same as in Eq. (6.8), and hence we
end up once more with the formula (6.9) for the total VED
after we cast H and its derivatives in terms of the ordinary
Hubble rate, H . In other words, we can reach again the same

relation between the values of VED at two different scales,
which does not involve ∼ m4 contributions.

Remember that the divergences associated to our calcula-
tion are of course of UV type, hence short-distance effects.
The leading effects of this kind are similar to the ones of
QFT in Minkowski spacetime and therefore are indepen-
dent from the possible boundary effects of the cosmological
spacetime. We have just seen that an alternative way to renor-
malize the energy-momentum tensor is precisely to subtract
the Minkowskian contribution following the adiabatic regu-
larization procedure up to fourth order. Furthermore, if one
takes into account only wavelengths under the horizon (i.e.
for k̃2 � H2, with k̃ = k/a the physical momentum defined
in Sect. 4.3), the situation remains as in the Minkowskian
spacetime, namely the integrals with low inverse powers of
the function ωk = √

k2 + a2M2, corresponding to the low-
est adiabatic orders, are still divergent in the UV. The short-
distance region where the UV effects are encountered is of
course contained within the horizon. The presence of a causal
horizon can only produce long distance effects, and therefore
they can be related with IR (infrared) divergences. The IR
behavior of gravity theories can indeed be nontrivial in some
cases but we do not address these aspects in our work as they
are out of its scope. However, if we would consider effects
of this kind in our momentum integrals they would rather be
related with the lower limits of integration, which should be
of order H , since the (apparent) horizon is of order 1/H (in
fact, it is exactly so in the spatially flat case, which we are
considering) and the effects that could produce are sublead-
ing. To see this, take for instance the simple cases analyzed in
Sect. 4.3, say Eq. (4.11). Since the physical momenta satisfy
k̃2 � m2 in the IR, the contribution from these integrals in
the IR region provides powers of H higher than H2 involv-
ing also masses, e.g. mH3, H5/m etc. Similar terms carry-
ing suppressed powers would appear if the more complete
expression (4.9) would be used. The presence of odd powers
of H is not surprising since we have put boundaries to an
otherwise covariant integration.

7 Running vacuum connection

As previously remarked in a footnote, the result we were
aiming at and which is represented now by Eq. (6.9) does not
provide the calculated value of the vacuum energy density at
a given scale, e.g. it says nothing on the value of ρvac(M0)

and hence it has no implication on the cosmological constant
problem mentioned in the Introduction. That is to say, it has
no bearing on it if such problem is meant to be the compu-
tation of the value itself of the VED at some point in the
history of the universe. However, our result can be useful to
explore the ‘running’ of the VED when we move from one
scale to another. In other words, if ρvac is known at some
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scale M0, we can use the obtained relation to compute the
value of ρvac at another scale M . Such connection of values
from one renormalization point to another is what we have
been calling “running” of the VED, and in fact it was sug-
gested long ago from the point of view of the renormalization
group in curved spacetime from different perspectives [45–
48] – for a review of the running vacuum model (RVM), see
[49–53] and references therein. Interestingly enough, it can
provide also a framework for the possible time variation of
the so-called fundamental constants of nature [89–91].

Let us mention that different extensions of gravity can
mimic the effective behavior of the running vacuum model.
This is a fact confirmed in a variety of contexts. For instance,
in the context of Brans-Dicke Theory with a cosmological
term, it has been shown that a kind of RVM behavior emerges
when one tries to rewrite the theory in a GR-like picture
[92,93]. This turns out to be phenomenologically very favor-
able, as it has been recently demonstrated from detailed anal-
yses where the model has been confronted with a large and
updated set of cosmological observations [25,27]. Another
potentially interesting example can be found in gravity theo-
ries with torsion, see e.g. [94] and references therein. Since
the torsion scalar T differs only by a total derivative with
respect to the Ricci scalar, the EH action with R replaced
by T is equivalent to GR. One may generalize the action
structure through the replacement T → T + f (T ), with
f (T ) a function of the torsion scalar. This is characteristic
of teleparallel gravity theories [94]. Since T = −6H2 in
the FLRW background, by an appropriate choice of f (T )

one may, in principle, mimic the RVM as well. In Sect. 7.2
we discuss another example, in this case in the context of
the low-energy effective action of string theory, which also
behaves as the RVM.

Let us now come back to the obtained expression for
the VDE. In order to illustrate a possible interpretation of
Eq. (6.9) along the lines of the RVM, let us assume that we
define the renormalized VED at some Grand Unified The-
ory (GUT) scale M0 = MX , where typically MX ∼ 1016

GeV is associated also with the inflationary scale. It is natu-
ral to assume that the fundamental parameters of cosmology,
such as e.g. ρvac, are primarily defined at that scale, which
appeared from the very beginning in the history of the uni-
verse. By choosing a GUT scale we also insure that most
matter fields can be active degrees of freedom to some extent.

7.1 RVM in the current universe

Let ρvac(MX ) be the value of the VED at the GUT scale
M0 = MX . Despite the fact that ρvac(MX ) is unknown, it
can be related to the current value of the VED, ρ0

vac, through
the relation ρvac(M = H0) = ρ0

vac, in which we choose the
second scale M at today’s numerical value of the Hubble
parameter, H0. This quantity can be used as an estimate for

the energy scale of the background gravitational field asso-
ciated to the FLRW universe at present. Notice that this is
precisely the kind of association originally made in the afore-
mentioned references on the RVM [49–51]. Therefore, from
(6.9) applied to the current universe, we find the connection
between the vacuum densities at the two points:

ρ0
vac = ρvac(MX ) + 3

16π2

(
1

6
− ξ

)
H2

0

[
M2

X + m2 ln
H2

0

M2
X

]

(7.1)

where we have neglected all terms of order O(H4) (which
include also Ḣ2, H Ḧ and H2 Ḣ ) for the present universe
(H = H0). This equation can be used to find out the unknown
value of ρvac(MX ), and can be conveniently written as

ρvac(MX ) = ρ0
vac − 3νeff

8π
H2

0 M2
P , (7.2)

where we have defined the ‘running parameter’ for the VED:

νeff = 1

2π

(
1

6
− ξ

)
M2

X

M2
P

(
1 + m2

M2
X

ln
H2

0

M2
X

)
. (7.3)

For the particular value ξ = 0 and m2/M2
X � 1, the above

parameter boils down to νeff 
 1
12π

M2
X

M2
P

� 1. Under similar

conditions, but for ξ �= 0, the sign of νeff depends entirely on
the value of ξ (if only a scalar field would contribute). As we
can see, by keeping ξ �= 0 we can provide a discussion within
a more general class of theories and also carrying potential
phenomenological consequences. At the same time it allows
to confirm the expected fact that for ξ = 1/6 there are no
corrections to the vacuum energy density from scalars since
we are then in the conformal limit of QFT. Ultimately, the
final sign of νeff has to be determined by fitting the model to
data. As indicated in Sect. 6.1, this would not automatically
determine the sign of ξ , though, since other contributions
(e.g. from fermion fields) should be added in our calcula-
tion, which we leave for an independent study. However, we
understand that the basic facts derived from the renormaliza-
tion procedure followed here should also hold in the general
case.

Remarkably, for general ξ the structure obtained for νeff

is very close to that obtained within the RVM approach, see
[49–51]. In such context, it defines the coefficient of the
one-loop β-function for the renormalization group equation
of ρvac. The presence of the additional logarithmic piece
ln H2

0 /M2
X appears in the direct QFT calculation employed

here, but it does not make any difference in practice since it
is constant and νeff must be fitted directly to the observations
as an effective coefficient. In our case we have simplified the
theoretical calculation by considering just the contribution
from one single scalar field to νeff . We expect it to be small,
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i.e. |νeff | � 1, owing to the ratio M2
X/M2

P ∼ 10−6. How-
ever the final value could be much larger since νeff depends
on ξ and also on the multiplicity and nature (fermion/boson)
of the fields involved, so we cannot predict νeff with pre-
cision on mere theoretical grounds. It must be confronted
against observations. Notice that the standard model parti-
cles make no significant contribution, since for all of them
m2/M2

X � 1. Only particles near or of order of the GUT
scale may contribute significantly. The accurate determina-
tion of νeff can only be obtained by fitting the RVM to the
overall cosmological data, as it has been done in detail e.g. in
[22–24], where it has been found to be positive and of order
10−3.

Substituting (7.2) into Eq. (6.9) and limiting ourselves
once more to the late universe (where all terms of O(H4)

can be neglected), we can estimate the VED near our time by
taking M of order of the energy scale defined by the numer-
ical value of H around the current epoch:

ρvac(H) = ρ0
vac − 3νeff

8π
H2

0 M2
P + 3νeff(H)

8π
H2 M2

P , (7.4)

where

νeff(H) = 1

2π

(
1

6
− ξ

)
M2

X

M2
P

(
1 + m2

M2
X

ln
H2

M2
X

)
. (7.5)

Mind that the last expression depends on H whereas (7.3)
is constant. However, being the time evolution of νeff(H)

logarithmic, and for values of H not very far away from H0,
we can approximate νeff(H) by (7.3). Then, equation (7.4)
may be cast in the more compact form

ρvac(H) 
 ρ0
vac + 3νeff

8π
(H2 − H2

0 ) M2
P

= ρ0
vac + 3νeff

8πGN
(H2 − H2

0 ) , (7.6)

which matches the exact canonical form of the RVM for-
mula [49–51]. Let us note that such approximation holds
reasonably well even if we explore the CMB epoch since the
departure of νeff(H) from νeff is less than 8% (for m 
 MX )
or much less if m � MX .

As we can see from Eq.(7.6), for νeff > 0 the vacuum
can be conceived as decaying into matter since the vacuum
energy density is larger in the past (where H > H0), whereas
if νeff < 0 the opposit occurs. The former situation, however,
is more natural from a thermodynamical point of view, for if
the vacuum decays into matter one can show that the Second
Law of Thermodynamics is satisfied by the general RVM, see
[101] for a detailed discussion. Moreover, for νeff > 0 the
RVM effectively behaves as quintessence since the vacuum
energy density decreases with time. One may also interpret
here that GN is changing with time owing to vacuum decay.
Both possibilities have been discussed within the RVM in
Refs. [89–91]. Recall that we expect |νeff | � 1 from the

theoretical structure (7.5) and, remarkably enough, we con-
firm it from the phenomenological fits [22–24], whereby
we do not observe dramatic deviations from the standard
�CDM model. But the fact that the fitting results point to
νeff = +O(10−3) suggests that the effects are not neces-
sarily negligible and in fact they can be helpful to cure or
alleviate some of the existing tensions in the context of the
�CDM model, as actually shown in the aforementioned ref-
erences and also in the framework of alternative cosmological
models which also mimic the RVM behavior [25–27].

The above equation for the VDE is the one which has been
used to fit the value of νeff (assumed constant) in a variety of
works, such as e.g. [22–24]. As a matter of fact, such works
have considered a more general form as well, in which a term
proportional to Ḣ is also present in the running equation for
the VED. Such term can appear under conditions that are
discussed in Appendix C.

7.2 Implications for the early universe: RVM-inflation

So far we have elaborated on the VED expression (6.9) in the
low energy regime, in which we can neglect theO(H4) terms
of the form Ḣ2, H Ḧ and H2 Ḣ . In such regime we know that
the VDE can be put in the alternative form (7.6), which fits
in with the traditional RVM structure of the vacuum evolu-
tion and represents a small dynamical departure with respect
to the �CDM since |νeff | � 1. Rephrased in this fashion
we can see that the obtained VED around our time repre-
sents a small variation with respect to the current value of
the vacuum energy density, ρ0

vac. While the previous discus-
sion obviously applies to the current universe only, since we
have neglected the O(H4) terms on the r.h.s. of Eq. (6.9),
we should emphasize that these terms can play a significant
role in the early universe. They are generated from the func-
tional differentiation of the R2-term in the higher derivative
part of the vacuum action (cf. Appendix A), and therefore
they play a similar role as in the case of Starobinsky’s infla-
tion [95–97]. Notice that even though all the terms of the
form Ḣ2, H Ḧ and H2 Ḣ in Eq. (6.9) are denoted here as
being of O(H4), none of them is really proportional to H4.
As a result, they all vanish for H strictly constant. In fact,
Starobinsky’s inflation is not triggered by an early epoch in
which H =const. but by one in which H decreases at con-
stant rate Ḣ =const, see e.g. [52] for a summarized discus-
sion focusing on these well-known facts. The corresponding
inflation period is characterized by a final phase with rapid
oscillations of the gravitational field, which is when the uni-
verse leaves the inflationary phase and enters the radiation
epoch after a reheating period. Prior to the oscillatory phase,
hence within the inflationary period, H decreases fast and Ḣ
remains approximately constant (thence Ḧ 
 0) [52]. It fol-
lows that the dominant terms in Eq. (6.9) among the O(H4)

ones are Ḣ2 and −6H2 Ḣ , both being positive (Ḣ < 0). Fur-
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thermore, since M0 
 MX is a higher scale (typically a GUT
scale) where the couplings are defined and M is some scale
below it, the log term is negative. Finally, taking into account
the overall minus sign in that expression (irrespective of the
value of ξ ) we conclude that the leading contribution from
the O(H4) terms in the relevant period is positive. After the
inflation period is accomplished we know that the universe
enters the radiation epoch, where R = 0. Henceforth these
terms become irrelevant for the driving of the cosmic expan-
sion. We conclude that in all of the relevant situations of the
cosmic history, whether in the early universe or the late uni-
verse, the formula (6.9) provides a well-defined and positive
expression for the evolution of the vacuum energy density.

All that said, there are features of the RVM in the very
early universe which our analysis (strictly based on QFT)
could not be sensitive to, and hence we would like to com-
ment on them here. These features are connected with string
theory contributions. In contrast to the Starobinsky form of
the higher order terms mentioned above (all of which vanish
for H =const.), the effective generation of terms propor-
tional to H4 in the early universe is perfectly possible from
string-inspired mechanisms, see [72–74], in which the ∼ H4

power is generated in the early u‘niverse from the vacuum
average of the (anomalous) gravitational Chern–Simons term
∼ MPα′b(x)Rμνρσ (x) R̃μνρσ (x), which is characteristic of
the bosonic part of the low-energy effective action of the
string gravitational multiplet. Here b(x) is the Kalb–Ramond
axion field and α′ is the slope parameter (Ms = √

1/α′ being
the string scale). An effective metastable vacuum is conceiv-
able in this context since such state can be sustained until the
universe transits into the radiation phase, and this occurs only
after the gravitational anomalies are cancelled. This must
indeed happen because matter (relativistic and nonrelativistic
particles) cannot coexist with gravitational anomalies. These
can actually be cancelled by the chiral anomalies of matter
itself, see [72–74] for details. Before such thing occurs, a
metastable de Sitter period remains temporally active and
can bring about inflation through the (anomaly-generated)
H4 term. The type of inflation produced by the H4-term
— and, in general, by higher order (even) powers of H — is
characteristic of RVM-inflation. The latter follows a different
pattern as compared to Starobinsky’s inflation, but graceful
exit is still granted – see [98–101] for details and particularly
[52] for a comparison with Starobinsky’s inflation5.

It seems clear that the presence of the higher powers of
the Hubble rate in the early universe can be very important
from different perspectives. For example, as noted in [72,
73], they could help eschewing the possible trouble of string
theories with the ‘swampland’ criteria on the impossibility to

5 A detailed study of H4-induced (and, in general, H2n-induced) infla-
tion and related considerations concerning cosmological horizons and
entropy can be found in [101].

construct metastable de Sitter vacua in the string framework
[102–104], which if so it would forbid the existence of de
Sitter solutions in a low energy effective theory of quantum
gravity. The existence of the H4- terms does not depend on
picking out a particular potential for the scalar field since,
as we should recall here, no potential has been introduced at
any time in our framework nor in that of [72–74]. Thus, the
RVM string inflation approach could provide a loophole to
the swampland no-go criterion applied to fundamental scalar
fields. But, of course, to fully establish it requires of a detailed
investigation in the context of string-induced RVM [72–74],
which is certainly not the subject of the present paper. What
is phenomenologically relevant, though, is that once these
terms are available they can be used to build up a generalized
form of VED, which reads as follows:

ρ�(H) = 3

8πGN

(
c0 + νH2 + α

H4

H2
I

)
, (7.7)

in which c0 is a constant of dimension +2 in natural units,
closely related to �; HI is a dimension +1 scale related
to inflation; and ν and α are dimensionless coefficients, the
former being obviously related to νeff from the previous sec-
tion. Such extended expression for the VED involving both
∼ H2 and ∼ H4 terms can produce successful inflation with
graceful exit in the early universe [52,98–101] and leaves
an effective form of dynamical VED for the present universe
behaving as (7.6). Remarkably, that form has been positively
confronted with the data [16–26].

From our direct QFT calculation, we have seen that the
∼ H2 terms indeed apear (see also Appendix C for a more
general case) whereas the higher order terms that we have
obtained are more along the Starobinsky inflationary line.
However, we cannot exclude the presence of the ∼ H4 string-
induced effective contributions, as discussed in [72–74].
Being these contributions nonvanishing for H = HI =const.
and taking into account that the Starobinsky-like higher order
terms just vanish in such regime, it is reasonable to expect
that for large values of HI the ∼ H4 terms (if available from
string-induced origin) prove to be the dominant terms at the
inflationary scale. If so, this could change dramatically our
picture of inflation into a more RVM-like one.

8 Discussion and conclusions

We have devoted this paper to investigate the possible dynam-
ics of vacuum in the context of quantum field theory in the
expanding universe, and more specifically in FLRW space-
time. The quantum field theoretical context is well-known
[41–44] but the difficulties are still of formidable magnitude.
This is obviously so since we know that in this kind of busi-
ness sooner or later we have to face a huge stumbling block on
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our way, which is the cosmological constant problem [7,8].
Such mystery is perhaps the greatest conceptual challenge
faced by theoretical physics ever, owing to the mind bog-
gling discrepancy existing between the measured value of
the vacuum energy density (VED) and the typically predicted
one by our most cherished QFT’s, say quantum chromody-
namics and specially the electroweak standard model, both
being essential parts of what we call the standard model of
particle physics, which in itself is a highly successful theory
of the fundamental interactions. Even though tackling such
problems may require the concepts and the sophisticated the-
oretical tools underlying quantum gravity and string theory
[8], difficulties appear indeed in all fronts, and string the-
ory might not be an exception. Indeed, as of some time we
known that string theories somehow abhor de Sitter space, as
‘swampland’ conjectures point to the impossibility to con-
struct metastable de Sitter vacua in such theories [102–104].
We remain simply agnostic about these problems but, if true,
they add up more trouble to the list of conundrums that fun-
damental physics has to face when addressing the physics
of vacuum in an expanding universe. In the meantime, we
expect that some sort of provisional result should perhaps be
possible within the – much more pedestrian – semiclassical
QFT approach, in which quantum matter fields interact with
an external gravitational field.

Specifically, in this work we have reconsidered the calcu-
lation of the renormalized energy-momentum tensor (EMT)
of a real quantum scalar field non-minimally coupled to the
FLRW background. We have performed the calculation fol-
lowing two lines of approach based on adiabatic regulariza-
tion and renormalization of the EMT. In both cases we started
from the WKB expansion of the field modes in the FLRW
spacetime. Then we defined an appropriately renormalized
EMT by performing a substraction of its on-shell value (i.e.
the value defined at the mass m of the quantized field) at
an arbitrary renormalization point M . The resulting EMT
becomes finite because we subtract the first four adiabatic
orders (the only ones that can be divergent). Since the renor-
malized EMT becomes a function of the arbitrary scale M ,
we can compare the renormalized result at different epochs of
the cosmic history characterized by different energy scales.
In one of the approaches (presented in the main text) we
have shown by direct calculation that the renormalized EMT
defined in that way is finite. In another approach (left for
Appendix B) we use dimensional regularization to subtract
the poles of the low adiabatic orders. Here we use the more
conventional method based on cancelling the poles using
the counterterms associated to the fundamental parameters
ρ�,G−1

N and a1 (the coefficient of R2). The two approaches
concur to the same renormalized result. The next important
point is the extraction of the VED from the renormalized
EMT, which is composed not only of the zero-point energy
part (involving the quantum fluctuations of the scalar field)

but also of ρ�(M), the renormalized value of ρ� at the scale
M . Remarkably, the sum of these two quantities is free from
quartic terms ∼ m4, which are usually responsible for the
exceedingly large contributions to the VED and the corre-
sponding need for fine-tuning.

We have also shown that the renormalized VED obtained
from this QFT calculation takes on approximately the usual
form of the running vacuum models (RVM’s) [49–51], in
which ρvac = ρvac(H) appears in the manner of an additive
constant plus a series of powers of H (the Hubble rate) and
its time derivatives. Originally, the RVM approach was moti-
vated from general considerations involving the renormal-
ization group in QFT in curved spacetime (cf. [49–51] and
references therein). At the end of the day, we have been able
to show that the RVM form of the VED for the current uni-
verse can be achieved from direct calculations of QFT in the
FLRW spacetime. In it, all the terms made out of powers of
H (and its time derivatives) are of even adiabatic order. This
means that all these powers effectively carry an even num-
ber of time derivatives of the scale factor, which is essential
to preserve the general covariance of the action. The low-
est order dynamical component of the VED is just ∼ ν H2,
where the dimensionless coefficient ν is naturally predicted
to be small (|ν| � 1), but must ultimately be determined
experimentally by confronting the model to the cosmologi-
cal data. That term is nevertheless sufficient to describe the
dynamics of the vacuum in the current universe, while the
higher order components can play a role in the early uni-
verse, and in particular for describing inflation. In fact, in
previous works the model has been phenomenologically fit-
ted to a large wealth of cosmological data and the running
parameter ν has been found to be positive and in the ballpark
of ∼ 10−3 [16–24]. Let us finally mention that even though
our QFT calculation has been simplified by the use of a sin-
gle (real) quantum scalar field, further investigations will be
needed to generalize these results for multiple fields, involv-
ing scalar as well as vector and fermionic components. Up
to computational details, however, we expect that the main
results of the renormalization program presented here should
be maintained.
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A Conventions and geometrical quantities

We use natural units, therefore h̄ = c = 1 and GN = 1/MP ,
where MP is the Planck mass. As for the conventions on geo-
metrical quantities used throughout this work, they read as
follows: signature of the metric gμν , (−,+,+,+); Riemann
tensor, Rλ

μνσ = ∂ν �λ
μσ +�

ρ
μσ �λ

ρν − (ν ↔ σ); Ricci ten-
sor, Rμν = Rλ

μλν ; and Ricci scalar, R = gμνRμν . Overall,
these correspond to the (+,+,+) conventions in the clas-
sification by Misner–Thorn–Wheeler [105]. As usual, the
Einstein tensor is defined through Gμν = Rμν − 1

2 Rgμν

and the Einstein field equations read Gμν + �gμν =
8πGN Tμν . The Christoffel symbols associated to the con-
formally flat metric ds2 = a2(η)ημνdxμdxν , with ημν =
diag(−1,+1,+1,+1), are the following:

�0
00 = H, �0

i j = Hδi j , �i
j0 = Hδij . (A.1)

Recalling that the relation between the Hubble rate in con-
formal and cosmic times is H = aH , the Ricci scalar and
the nonvanishing components of the curvature tensors are
alternatively given by

R = 6
a′′

a3 = 6

a2 (H′ + H2) = 6

(
ȧ2

a2 + ä

a

)

= 6(2H2 + Ḣ) (A.2)

and

R00 = −3H′ = −3a2(H2 + Ḣ) ,

G00 = 3H2 = 3a2H2 . (A.3)

We remind the reader that primes indicate differentiation
with respect to conformal time and dots differentiation with
respect to cosmic time. We also need the higher order cur-
vature tensor (of adiabatic order 4) obtained by functionally
differentiating the R2-term in the higher derivative vacuum
action:

H (1)
μν = 1√−g

δ

δgμν

∫
d4x

√−gR2 = −2∇μ∇ν R + 2gμν�R

−1

2
gμν R

2 + 2RRμν . (A.4)

Its 00-component in the conformally flat metric reads

H (1)
00 = −18

a2

(
H′2 − 2H′′H + 3H4

)

= −18a2
(
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)
. (A.5)

B Combining adiabatic and dimensional regularization

In this appendix, we sketch the calculation of the regular-
ized EMT by using dimensional regularization (DR). Let us
nonetheless emphasize that while we will use minimal sub-
traction of poles as a regularization procedure, we do not
intend to renormalize the theory with this prescription. If we
would do that the renormalized vacuum energy would still
exhibit the unwanted ∼ m4 contributions. In the following,
we show that after the ARP has been performed, the diver-
gent integrals appearing in the intermediate calculations can
be regularized through DR and then we can recover exactly
the same result (6.9) for the renormalized VED.

B.1 Useful formulas

For our purposes it will suffice to focus on integrals of the
form

I3(n, Q) ≡
∫

d3k

(2π)3

1

ωn
k (Q)

= 1

2π2

∫
dkk2 1

ωn
k (Q)

= 1

2π2

∫
dkk2 1

(k2 + Q2)n/2 , (B.1)

where k ≡ |k| and Q is an arbitrary energy scale. If we
generalize it to N dimensions,

IN (n, Q) ≡
∫

dNk

(2π)N

1

(k2 + Q2)n/2

= 1

(4π)N/2

�
( n−N

2

)
�

( n
2

)
(

1

Q2

) n−N
2

= 1

(4π)n/2

�
( n−N

2

)
�

( n
2

)
(
Q2

4π

) N−n
2

= 1

(4π)n/2

�
( n−3

2 + ε
)

�
( n

2

)
(
Q2

4π

) 3−n
2

(
Q2

4πμ2

)−ε

.

(B.2)

where in the last step we have set N = 3 − 2ε. Notice that
the scale μ has been introduced for dimensional purposes
only and has no obvious physical meaning. It could have
equally well been inserted in the original integral in the form
dNk → μ2εdNk to insure that the integration measure has
the same dimension as d3k. Poles appear for n ≤ 3 in the
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integral (B.1) and then we can use relations such as

�(ε)

(4π)−ε
= 1

ε
− γE + ln(4π) + O(ε) ,

�(−1 + ε)

(4π)−ε
= −1

ε
− 1 + γE − ln(4π) + O(ε) , (B.3)

which parameterize the divergent behavior of Euler’s � func-
tion near the origin and near −1, respectively, where γE
is Euler’s constant. Similar expressions can be generated
to parameterize the divergent behavior of � around other
negative integers using the well-known functional relation
�(x + 1) = x �(x).

B.2 Dimensionally regularized ZPE in FLRW spacetime

Next we summarize how to obtain the same expression for
the renormalized VED as the one we have found in Sect. 6.1,
but now using DR in the intermediate steps to regularize the
divergent integrals. Our common starting point is Eq. (5.1),

〈T δφ
00 〉(M) = 〈T δφ

00 〉Div(M) + 〈T δφ
00 〉Non−Div(M), (B.4)

where the divergent and non-divergent contributions are the
same ones as in equations (5.2) and (5.3), respectively. The
order of adiabaticity of these expressions, therefore is the
same as in the calculation presented in the main text, and we
shall take this fact for granted hereafter. We should remind
the reader that in these expressions the WKB expansion of
the modes has been performed off-shell, i.e. at an arbitrary
mass scale M which is generally different from the physical
mass, m. However, at this point we take a different route for
the rest of the calculation, namely we compute the divergent
parts with the help of the DR formula (B.2). Next we expand
in ε before taking the limit ε → 0 and leave only the ε

dependence at the poles located at ε = 0 (i.e. N = 3). The
final result is

〈T δφ
00 〉Div(M)

= −M4a2

64π2

[
1

ε
+ 3

2
− γE + ln 4π + ln

μ2

M2

]

− 3M2H2

16π2

(
ξ − 1

6

)[
1

ε
− 1 − γE + ln 4π + ln

μ2

M2

]

− 9

16π2a2

(
ξ − 1

6

)2

(2H′′ − H′2 − 3H4)

[
1

ε
− γE + ln 4π + ln

μ2

M2

]

− �2a2M2

32π2

[
1

ε
+ 1 − γE + ln 4π + ln

μ2

M2

]
− �4a2

64π2[
1

ε
− γE + ln 4π + ln

μ2

M2

]

−
(

ξ − 1

6

)
3�2H2

16π2

[
1

ε
− γE + ln 4π + ln

μ2

M2

]

(B.5)

This equation can be conveniently split into a UV-divergent
part involving the poles at ε = 0 and a finite part. Defining

Dε = 1

ε
− γE + ln 4π (B.6)

and recalling that �2 = m2 − M2, we obtain

〈T δφ
00 〉Div(M) = −m4a2

64π2 Dε − 3m2H2

16π2

(
ξ − 1

6

)
Dε

− 9

16π2a2

(
ξ − 1

6

)2
(2H′′ − H′2 − 3H4)Dε

+〈T δφ
00 〉FR(M) . (B.7)

The UV-divergent part, in the first line, depends only on the
physical mass of the particle,m, whereas the finite remainder
(denoted with the label FR) depends both on the mass and
on the renormalization point M :

〈T δφ
00 〉FR(M)

= −M4a2

64π2

[
3

2
+ ln

μ2

M2

]
− 3M2H2

16π2

(
ξ − 1

6

)

[
−1 + ln

μ2

M2

]

−�2a2M2

32π2

[
1 + ln

μ2

M2

]
− �4a2

64π2 ln
μ2

M2

−
(

ξ − 1

6

)
3�2H2

16π2 ln
μ2

M2

− 9

16π2a2

(
ξ − 1

6

)2

(2H′′H − H′2 − 3H4) ln
μ2

M2

(B.8)

= a2

128π2

(
M4 − 4m2M2 − 2m4 ln

μ2

M2

)

+ 3

16π2

(
ξ − 1

6

)
H2

(
M2 − m2 ln

μ2

M2

)

− 9

16π2a2

(
ξ − 1

6

)2

(2H′′H − H′2 − 3H4) ln
μ2

M2 ,

(B.9)

where in the second equality we have used once more
�2 = m2 − M2. At this stage, the DR procedure carries
a dependence on the artificial mass scale μ. However, in our
case μ will play no role since we are not just aiming at a con-
ventional renormalization based on minimal subtraction, so
μ serves only as an auxiliary variable which will eventually
disappear from the renormalized result. We should empha-
size that the relevant renormalization scale in our calculation
is not μ but M . Dimensional regularization is used here only
as a technique to display explicitly the divergences of the
EMT and to enable their subtraction with the conventional
counterterm procedure.
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B.3 Counterterms

While the calculation can be fully carried out without any use
of DR, provided one defines a properly subtracted EMT from
the beginning with the ARP (cf. Sect. 5), we follow now the
more conventional approach. Thus we remove the unphysical
divergences of the EMT by generating counterterms from
the coupling constants present in the extended gravitational
action with the HD terms. The modified Einstein’s equations
read formally as in Eq. (6.1) but carrying the bare couplings,
i.e. couplings which are formally UV-divergent and scale
independent:

1

8πGN
Gμν + ρ�gμν + a1H

(1)
μν = 〈T δφ

μν 〉 + T φb
μν . (B.10)

We will focus on the 00-component of this equation since we
are interested in the ZPE.

Following the standard renormalization procedure, we
split each of the bare couplings on the l.h.s of the above
equation into the renormalized term (which depends on the
renormalization point M), and a counterterm (which does not
depend on M):

G−1
N = G−1

N (M) + δG−1
N ,

ρ� = ρ�(M) + δρ�,

a1 = a1(M) + δa1.

(B.11)

We define the counterterms such that we can subtract the
universal terms γE and 4π of the DR procedure alongside
with the poles, as it is conventional in the modified MS (or
MS) [85,86]. That is why we have defined the quantity Dε in
Eq. (B.6). As we can see, three ‘primitive divergences’ appear
in the unrenormalized form of the EMT, which are propor-
tional to ∼ m4, ∼ m2(ξ − 1/6) and (ξ − 1/6)2, respectively.
These can be cancelled by the corresponding counterterms
generated from the bare couplings in Eq. (B.11), i.e. the coun-
terterms can now be precisely used to cancel the three diver-
gent quantities proportional to Dε in Eq. (B.7). Using the
00-components of the geometric tensors given in Appendix
A, they are readily found to be

δG−1
N = −m2

2π

(
ξ − 1

6

)
Dε ,

δρ� = + m4

64π2 Dε ,

δa1 = − 1

32π2

(
ξ − 1

6

)2

Dε .

(B.12)

We confirm that they depend on the physical mass m and
not on the renormalization point M . The renormalized Ein-
stein equation resulting from cancelling the poles with the
counterterms take on the same form as in Eq. (6.1), in which
the couplings are now the renormalized ones and explicitly

depend on the mass scale M . The 00-component reads

1

8πGN (M)
G00 + ρ�(M)g00 + a1(M)H (1)

00

= 〈˜T δφ
00 〉(M) + T φb

00 , (B.13)

where the tilded quantity

〈˜T δφ
00 〉(M) = 〈T δφ

00 〉FR(M) + 〈T δφ
00 〉Non−Div(M) . (B.14)

is the finite part left of the EMT (B.4) after removing the
poles. Being finite we might be tempted to call it (provi-
sionally) the renormalized ZPE, but in fact is not our final
renormalized expression. Some further insight on it can be
achieved by considering the term labelled FR, which is given
by (B.8). If we apply the limit a = 1 (so that H and all its
derivatives vanish) and project the result on-shell (M = m,
hence � = 0), the whole expression (B.8) or (B.9) shrinks
to just one of the equivalent forms

〈T δφ
00 〉FR(m)

∣∣∣
Minkowski

= − m4

64π2

[
3

2
+ ln

μ2

m2

]

= m4

128π2

[
−3 − 2 ln

μ2

m2

]

= m4

64π2

[
ln

m2

μ2 − 3

2

]
. (B.15)

This is nothing but the standard (one-loop) ZPE in flat space-
time, namely it is the renormalized form of the UV-divergent
integral (4.12) within the MS. As we can see, Eq. (B.15)
brings a explicit dependence on μ and above all it grows
as the quartic power of the mass of the field. Because the
total VED is the sum of (B.15) plus the renormalized ρ� –
cf. Eq. (3.2) – we are led to face a huge contribution from the
quartic term ∼ m4 (for virtually every known particle, except
a very light neutrino), which amounts to a large fine-tuning
between these two quantities. This is odd, in fact unaccept-
able. As discussed in detail in [49–51], the flat space formula
carries indeed the core of the cosmological constant problem
[7] and the curved spacetime calculation just inherits it at
this point, but it does not aggravate it further. Thus, not sur-
prisingly the subtraction of this part leaves a well-behaved
result (cf. Secc. 6.2). However, let us continue with our renor-
malization procedure and evade this conundrum within the
present context.

B.4 Renormalized ZPE and absence of ∼ m4 contributions

The problem stems from the tilded definition of the renor-
malized EMT given in (B.14), which is just a variant of
the MS-renormalized one, although carrying off-shell �2-
corrections. However, a well-defined expression can be
obtained if we call back anew our definition of renormal-
ized EMT as in Eq. (5.5) of the main text. The prescription
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amounts to take the on-shell value (at the physical mass m)
and subtract from it the terms up to 4th adiabatic order at
some arbitrary mass scale M . This provides automatically
an overall finite result, as we have proven in the main text
without using DR. Taking into account that in this alternative
procedure we have already removed the poles appearing in
the intermediate steps with the help of DR, it suffices to per-
form the aforementioned subtraction directly with the finite
expression (B.14):

〈T δφ
00 〉Ren(M)

= 〈˜T δφ
00 〉(m) − 〈˜T δφ

00 〉(M)

= 〈T δφ
00 〉FR(m) − 〈T δφ

00 〉FR(M) + 〈T δφ
00 〉Non−div(m)

−〈T δφ
00 〉Non−div(M)

= 〈T δφ
00 〉FR(m) − 〈T δφ

00 〉FR(M) −
(

ξ − 1

6

)
3�2H2

8π2 + · · ·
(B.16)

Upon some simple rearrangements, it finally yields

〈T δφ
00 〉Ren(M)

= a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)

−
(

ξ − 1

6

)
3H2

16π2

(
m2 − M2 − m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)
16π2a2 ln

m2

M2 + · · ·
(B.17)

The μ-dependence has cancelled at this point, and as we
can see this equation turns out to be exactly the same one
as in Eq.(5.9). Therefore, from this point onwards we can
reproduce the same renormalized VED (6.9), just starting
from (6.7) and subtracting its value at the two scales M and
M0. Once more the result is that the VED at the scale M
can be related with its value at another scale M0 without
receiving any contribution from the quartic values of the mass
scales or of the mass of the particle. Thus, on using this
renormalization procedure we can get rid of the dependence
on the quartic powers of the masses as well as on the spurious
DR parameter μ.

The lesson we can learn is the following. While the mere
MS renormalization of the VED (based on using DR together
with the subtraction of the poles by the counterterms) leaves
a result which is explicitly dependent both on the artifical
DR scale μ and on the quartic powers of the masses [58,59],
the extended ARP technique [61] allows to relate the renor-
malized quantities at different scales. With detailed calcu-
lations, which we have presented here through two differ-
ent approaches (one of them not using DR at all), we have
shown that we can avert the mentioned problems associated

to a mere removal of the poles by the counterterms. The
common final result emerging from the two procedures is
an expression for the running of the renormalized EMT in
a FLRW background as a function of the Hubble rate, thus
allowing to trace the VED evolution throughout the cosmic
history. The result we have obtained is indeed much closer
in spirit to the renormalization group approach of the RVM,
cf. [49–52] and references therein – particularly [45–48] –
in which such mild evolution of the vacuum energy den-
sity in terms of (even) powers of the Hubble rate was pre-
dicted on very general grounds. Here we have provided for
the first time a detailed account from explicit QFT calcula-
tions under an appropriate renormalization scheme leading to
a possible physical interpretation of the results. The outcome
is Eq. (6.9).

We should perhaps repeat once more that such relation is
not a prediction of the value of the CC and in general of the
VED, as this is out of the scope of renormalization theory.
Every renormalization calculation needs a set of renormal-
ization conditions. Behind these renormalization conditions
there is a set of physical (and hopefully known) inputs and
from these observational inputs we can predict other physi-
cal results. In the present instance, this means that given the
VED at one scale (entailing a physical input) we can predict
its value at another scale. What is, however, distinctive in the
kind of calculation we have presented here is the fact that
the connection between the renormalized values of the VED
at different points appears smooth enough, i.e. it does not
involve ∼ m4 terms, which are usually very large for ordi-
nary particle masses in the standard model of particle physics
(let alone in GUT’s) and this suggests that no fine tuning is
actually involved.

The unsatisfactory status of the m4 terms in cosmology
is very similar to the hierarchy problem associated to the
m2 terms in ordinary gauge theories [106], but even worse
in magnitude. In stark contrast to the usual situation, in the
approach we have outlined here we do not need to call for
special cancellations (fine-tuning) among the variousm4 con-
tributions from different particles, such as the Pauli sum rules
discussed in [107], nor to invoke the existence of emergent
scales or very small dimensionless parameters suppressing
the undesired effects, see e.g. [108–114] for a variety of con-
texts of this sort. The problem is fixed here automatically by
the renormalization process itself that we have used.

C Identification of the vacuum energy density.

In Minkowskian spacetime we know that the EMT of vac-
uum takes on the form T vac

μν = −ρvacημν , being the Lorentz
metric ημν the only geometric structure available in a flat
background to construct a Lorentz-invariant quantity which
can characterize the vacuum state. This allows us to identify
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the vacuum energy density (VED) from the general structure
of the vacuum EMT. It is natural to generalize this identifica-
tion by assuming that in curved spacetime the vacuum EMT
should take the form T vac

μν = −ρvacgμν , with gμν the general
background metric. We can formally motivate this result by
starting from the EH action with a cosmological term,

SEH = 1

16πGN

∫
d4x

√−g R −
∫

d4x
√−g ρvac . (C.1)

Varying the part involving the vacuum energy density (i.e.
the second term on the r.h.s, which we call S�) yields

δS� = −
∫

d4x δ
√−g ρvac

= −1

2

∫
d4x

√−g
(−ρvac gμν

)
δgμν

≡ −1

2

∫
d4x

√−g T vac
μν δgμν , (C.2)

which provides the identification T vac
μν = −ρvacgμν . This

is the line of approach that we have followed here. How-
ever, we should point out that such identification has some
ambiguities, which as we shall argue below should not alter
in a significant way the results that we have obtained and,
remarkably enough, lead to a generalized form of the RVM
which had actually been considered previously in the liter-
ature in different phenomenological formulations [16–21].
In this sense we believe this point deserves being mentioned
here, see also [55–57,68–70].

C.1 More geometric structures for vacuum in curved
spacetime

As we know, the vacuum effective action of QFT in the pres-
ence of gravity contains the higher derivative terms [41,42].
This is because in curved spacetime we have more geomet-
ric quantities to characterize the vacuum, and these structures
are actually necessary for implementing the renormalizabil-
ity of the semiclassical theory of quantized matter fields in
an external gravitational background, as we have just seen
in our discussion in Appendix B. By the same token one
might expect a more general relation between the VED and
the EMT, which we may schematize as follows:

T vac
μν = −ρvacgμν − α1Rgμν − α2Rμν + O(R2) , (C.3)

in which O(R2) stand for the higher derivative terms, and αi

are parameters of dimension +2 in natural units. For gμν =
ημν the previous ansatz just boils down to the flat spacetime
form mentioned above. To illustrate the possible impact of the
additional terms, let us first focus on the following specific
form for the renormalized energy-momentum tensor:

T vac
μν = −ρvacgμν + λ

16π2 M
2Gμν + O(R2) . (C.4)

Here, Gμν is Einstein’s tensor (cf. Appendix A). We restrict
hereafter our considerations to the late universe since we
wish to assess what is the possible impact of the new terms
on the parameters that can be directly fitted to observations.
The appearance of the mass scale M is necessary for dimen-
sional reasons. Furthermore, λ is an appropriately normal-
ized (dimensionless) parameter. On equating this expression
to Eq. (3.2) and considering the 00-component, we find a
generalized form of (6.7):

ρvac(M) = ρ�(M) + 〈T δφ
00 〉Ren(M)

a2 − 3λ

16π2 M
2H2 .

(C.5)

If we repeat the same steps that led us to Eq. (7.6), but keeping
the additional term in (C.5), we arrive at a very similar result
(7.3) for the VED, except that the effective running parameter
receives also a contribution from λ. Specifically, we find

νeff = 1

2π

M2
X

M2
P

[(
1

6
− ξ

)(
1 + m2

M2
X

ln
H2

0

M2
X

)
+ λ

]
.

(C.6)

Thus, formally the expression for the VED is the same,
except that the new term from (C.5) resulted in a new contri-
bution to the effective coefficient νeff , which in any case must
be fitted to the experiment irrespective of its inner theoretical
structure built up from different sectors.

C.2 Generalized form of the RVM

Let us finally consider the modification introduced by the
more general form (C.3). For convenience we first redefine
the (dimension +2) coefficients of that expression as αi =

λi
16π2 M

2 (i = 1, 2). Using the explicit form for R and R00

in the conformally flat metric as given in Appendix A, we
obtain after a straightforward calculation:

ρvac(H) = ρvac(MX ) + 3

8πGN

(
ν̃eff(H) H2 + ν̄ Ḣ

)
,

(C.7)

where

ν̃eff (H) = 1

2π

M2
X

M2
P

[(
1

6
− ξ

) (
1 + m2

M2
X

ln
H2

M2
X

)
+ 4λ1 + λ2

]
.

(C.8)

and

ν̄ = 2λ1 + λ2

2π

M2
X

M2
P

. (C.9)

We may neglect as before the log evolution of ν̃eff(H) and
approximate ν̃eff(H0) 
 ν̃eff . The coefficient ν̄ is dealt with
as constant here, but in general the dimensionless couplings
λi may also be dependent on the scale M , although we expect
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that the renormalization effects should be logarithmic; and,
therefore, following the same practice as with ν̃eff(H), we
have not considered these subleadig effects here for the sake
of a simpler presentation. We can easily verify that for λ1 =
λ/2 and λ2 = −λ the last two formulas reduce to (C.6)
and ν̄ = 0, respectively, since in that case (C.3) boils down
to (C.4). Finally, determining ρvac(MX ) from the boundary
condition ρvac(H0) = ρ0

vac, we can write down (C.7) in a
manifestly normalized way with respect to the current values:

ρvac(H) 
 ρ0
vac + 3ν̃eff

8πGN
(H2 − H2

0 ) + 3ν̄

8πGN
(Ḣ − Ḣ0) ,

(C.10)

in which H0 and Ḣ0 stand, of course, for the respective val-
ues of H and Ḣ at present. The above formula generalizes
Eq. (7.6) by including the additional coefficient ν̄, which
accompanies the new dynamical term ∼ Ḣ . We note that
several generalized forms of the RVM containing dynamical
terms beyond the canonical one H2 were studied under dif-
ferent phenomenological conditions, and fitted as well to the
data, in [16–21]. Here we have shown that these extended
forms of the RVM, which were confronted to observations
in the aforementioned references, can also appear as a result
of the QFT calculations in the FLRW background.
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