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Abstract

This thesis is devoted to the study of string theory in AdS3 and its

applications to recent developments in string theory. The difficulties

associated with formulating a consistent string theory in AdS3 and

its underlying SL(2, R) WZW model are explained. We describe how

these difficulties can be overcome by assuming that the SL(2, R) WZW

model contains spectral flow symmetry. The existence of spectral flow

symmetry in the fully quantum treatment is proved by a calculation

of the one-loop string partition function. We consider Euclidean AdS3

with the time direction periodically identified, and compute the torus

partition function in this background. The string spectrum can be

reproduced by viewing the one-loop calculation as the free energy of a

gas of strings, thus providing a rigorous proof of the results based on

spectral flow arguments.

Next, we turn to spacetimes that are quotients of AdS3, which

include the BTZ black hole and conical spaces. Strings propagating in

the conical space are described by taking an orbifold of strings in AdS3.

We show that the twisted states of these orbifolds can be obtained by

fractional spectral flow. We show that the shift in the ground state

energy usually associated with orbifold twists is absent in this case,

and offer a unified framework in which to view spectral flow.

Lastly, we consider the RNS superstrings in AdS3 × S3 × M,

where M may be K3 or T 4, based on supersymmetric extensions of

SL(2, R) and SU(2) WZW models. We construct the physical states

and calculate the spectrum. A subsector of this theory describes strings
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propagating in the six dimensional plane wave obtained by the Penrose

limit of AdS3 × S3 ×M. We reproduce the plane wave spectrum by

taking J and the radius to infinity. We show that the plane wave

spectrum actually coincides with the large J spectrum at fixed radius,

i.e. in AdS3 × S3. Relation to some recent topics of interest such as

the Frolov-Tseytlin string and strings with critical tension or in zero

radius AdS are discussed.
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1. Introduction

The subject of this thesis is string theory on the three-dimensional

Anti-de Sitter space, AdS3, and also on spacetimes that are obtained

as deformations of AdS3. The reasons for studying string theory on

AdS3 are many, each of central importance. In this Introduction we

will explain what those reasons are, and also put them in context of

string theory in general.

The two biggest achievements of 20th century physics are quantum

mechanics and general relativity. Quantum mechanics governs the

behavior of atoms and elementary particles, while general relativity is

the framework in which to describe massive objects such as planets

and galaxies. Each theory in its own region of validity is fantastically

successful in explaining the observed phenomena.

However, attempts to unite quantum mechanics and general rel-

ativity into a single theory have been met with very little success.

The tools of quantum field theory–which deftly unified quantum me-

chanics and special relativity–proved to be inept at doing the same for

quantum mechanics and general relativity. Extracting sensible, finite

answers to results of scattering experiments involving gravitons, the

quanta of gravitational field, proved to be out of reach. Since grav-

ity couples to all forms of matter and energy, this state of affairs was

clearly not satisfactory, even though in practice the effects of gravity

are so weak that corrections due to gravitons are completely negligible

in all scattering processes involving elementary particles.

Currently, the leading candidate for a unified theory of gravity

and quantum mechanics is string theory. The elementary object in

this theory is a string, which traces out a 2-dimensional worldsheet in
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spacetime1. Among the massless excitations of the string is a spin-2

multiplet, which describes the graviton. The graviton appears very

naturally in string theory, and is described in a manner similar to the

gauge field. So, as far as string theory is concerned, gauge theory of

elementary particles and gravity are two sectors in its Hilbert space.

We have just described how string theory contains gauge theory

and gravity. However, this is not sufficient to claim that string theory

is the ultimate physical theory. String theory must also overcome the

divergences associated with graviton interaction. The reason is that

divergences in a physical theory signal “new physics”, some degrees of

freedom at a smaller length scale, that the theory is not equipped to

describe. So, if we found that string theory did not give us finite am-

plitudes for graviton scattering we would have to conclude that there

was some other theory that would supersede string theory. Happily,

infinities that arise in interactions built out of a 1-dimensional world-

line, described by conventional quantum field theory, were found to

disappear due to the extra dimension of the string. So string ampli-

tudes are finite, a requirement that must be satisfied by any theory

claiming to be a theory that describes everything in our universe.

Since string theory represents a significant departure from con-

ventional quantum field theory, we should be ready to encounter some

1 What follows is a “traditional” understanding of string theory. Recent

developments have indicated that in addition to the 2-dimensional string,

there are higher dimensional “branes” present in string theory, and a string

does not have a claim to be any more fundamental than the branes. How-

ever, we will in this Introduction consider the string to be truly fundamen-

tal, as many distinct features of string theory can be understood from this

viewpoint.
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peculiarities as we dive deeper into string theory. One of these pe-

culiarities is that strings cannot propagate in arbitrary spacetime. In

order for a spacetime to be a vacuum of string theory, it must sat-

isfy the requirement of Weyl invariance2. The resulting theory on the

string worldsheet is then a conformal field theory (CFT). In fact, even

the dimension of spacetime is determined by the string itself, and we

are not free to arbitrarily add or subtract dimensions without spoiling

some consistency of string theory. For the special case of perturbative

string theory in flat Minkowski space, the dimension must be ten3.

If we wish to consider spacetimes that are more complicated than

the flat Minkowski space, or for phenomological reasons we wish to

consider a spacetime of the form

M4 ×X (1.1)

where M4 is a four-dimensional Minkowski space, we can consider

some of the spatial dimensions to curve into a closed manifold X.

Again, string theory does not allowX to be arbitrary. Simple examples

of allowed X are products of circles (toroidal compactification), and in

more complicated situations X can be a Calabi-Yau manifold, which

are important because they give rise to supersymmetry in M4.

Even though spacetimes such as (1.1) are extremely important

because of their immediate application to the present day universe,

they leave out an important class of spacetimes—namely, spacetimes

in which the time direction is embedded non-trivially. This is our first

reason for studying string theory on AdS3.

2 One of the equations in demanding Weyl invariance turns out to be

nothing other than Einstein equations. In this way string theory reproduces

the field equations of general relativity.
3 Again, this statement is made in the context of traditional string theory.

Recent results from non-perturbative aspects of string theory suggest that

in fact the most symmetric vacuum has eleven dimensions [1].
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1.1. Time-dependent backgrounds

If string theory is the correct ultimate theory, it must be capable

of describing cosmological models and the physics of early universe in

particular. Such spacetimes are expected to be extremely curved in

the time direction as well as the spatial ones4. Thus, we should learn

how to do string physics in time-dependent backgrounds. Before we

can tackle the extremely complicated cosmological scenarios, we should

search for a relative simple example of a time-dependent spacetime.

But as we already mentioned, not any spacetime we can think of is

a suitable vacuum of string theory. So we have the complicated task of

finding a time-dependent spacetime that also satisfies the requirement

of Weyl invariance. This immediately leads to AdS3, which has a non-

trivial coefficient of dt2 in the metric, as the leading candidate. This

is because, as we will explain in the next secion, the worldsheet theory

of a string propagating in AdS3 belongs to a class of theories known as

a Wess-Zumino-Witten (WZW) model5. It is a fundamental result of

WZW models that they are conformally invariant, i.e. they are CFT’s.

Hence Weyl invariance is satisifed and AdS3 is an acceptable string

vacuum.

Let us now turn to a discussion of some potential problems

we might come across in trying to formulate string theory in time-

dependent backgrounds. The immediate problem we are faced with

is that of unitarity. To explain this, let us consider strings in ten di-

mensional Minkowski space. The string worldsheet, parametrized by

4 It is also possible that the early universe underwent a discontinuous

process, for example through tachyon condensation.
5 Actually, AdS3 without any flux is not described by a WZW model.

We will explain this point in the next section.
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(σ, τ), is mapped to spacetime by the fields Xµ(σ, τ). Then we per-

form canonical quantization whereby each field is expanded in terms

of Fourier modes

Xµ = xµ − i
α′

2
pµ ln |z|2 + i

(
α′

2

)1/2 ∑

m6=0

1

m

(
αµm
zm

+
α̃µm
z̄m

)
, (1.2)

where the complex coordinates z, z̄ are defined by

z = σ + iτ

z̄ = σ − iτ ,
(1.3)

denoting the holomorphic (left-moving) and anti-holomorphic (right-

moving) coordinates on the string, respectively. The canonical com-

mutation relations give

[xµ, pν ] = iηµν

[αµm, α
ν
n] = mηµνδm,−n ,

(1.4)

where ηµν is the Minkowski (mostly plus) metric. The first relation is

familiar from quantization of point particles, while the second relation

represents the higher modes on the string. The important point is that

the commutator of oscillators along the time direction has a negative

sign, and such oscillators will create states with negative norm. When

we consider a more complicated background, we replace ηµν with gµν

but the argument proceeds in a similar manner and we again find that

there are states with negative norm.

So it appears that the CFT spectrum is not unitary. How can

we be certain that the resulting string spectrum is unitary? In flat

space, it is well understood how the ghosts (negative-norm states)

5



are eliminated. Among the many ways to understand this, the most

intuitive one involves the use of lightcone coordinates

X± =
1√
2
(X0 ±X1) . (1.5)

After gauge fixing, details of which can be found in [2], the independent

degrees of freedom are identified with the eight transverse fields X i,

i = 2, . . . 9, which have the correct sign in the canonical commutation

relations (1.4) and do not create ghosts. Unitarity is then proved by

showing that the Hilbert space obtained in the lightcone gauge is the

same as obtained in other quantization schemes. This is the statement

of the no-ghost theorem in flat space.

It is clear that the lightcone quantization will not work when the

time direction is curved. Hence, we will have to resort to the so-called

covariant quantization in AdS3, where first we construct the Hilbert

space as the Fock space of all oscillators, and then eliminate the ghosts

via the Virasoro constraints

(L0 − 1)|physical〉 = 0

Ln|physical〉 = 0 , n ≥ 1 ,
(1.6)

which is a consequence of worldsheet reparametrization invariance. It

is an important test of string theory that (1.6) are sufficient to remove

all ghosts from the physical spectrum.

Another important challenge we face in time-dependent back-

grounds is that the CFT will be non-compact. Much of the powerful

tools that are useful in understanding compact CFT’s become difficult

to handle for non-compact CFT’s. This is why, despite being a WZW

model, the CFT of strings in AdS3 remained a difficult problem for a

long time.
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1.2. Relation to black hole physics

The next reason for studying string theory on AdS3 is its intri-

cate relation to black hole physics. As we shall see, AdS3 shows up

repeatedly in discussion of black holes.

The first connection between AdS3 and black holes is that a black

hole can be obtained by taking a quotient of AdS3. This is the famous

BTZ black hole [3]. In taking a quotient, there can be singular points

corresponding to the fixed points of the identification. A string can

propagate freely in regions where there are no fixed points, or it can

be attached to such points, giving rise to the “twisted” states. This

describes what is known as the orbifold. So, by taking an orbifold

of string theory on AdS3 we obtain string theory on the BTZ black

hole—example of an exact description of strings propagating in a black

hole background!

Another relation between string theory on AdS3 and black holes

is that by taking a coset of the worldsheet CFT on AdS3, one finds

a theory describing a two-dimensional black hole [4]. This black hole

has a Euclidean metric and looks like a semi-infinite cigar, and was

the first example of a black hole in string theory.

AdS3 also appears in string theory computation of black hole en-

tropy, an important topic that any theory claiming to be a quantum

theory of gravity must address. As it turns out, every black hole

whose entropy has been counted in string theory so far has in its near-

horizon geometry an AdS3 factor [5]. For example, in the famous

five-dimensional Strominger-Vafa black hole [6], which was the setting

for the first entropy computation, the near-horizon geometry is locally

AdS3 × S3 ×M , (1.7)
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where M is T 4 or K3. Brown-Henneaux showed that quantum grav-

ity on AdS3 is a conformal field theory [7], and the cetral charge of

this conformal field theory determines the entropy through Cardy’s

formula. As shown in [8], this is sufficient to reproduce the entropy of

the blackhole. This is a satisfying result since the black hole’s entropy

is coming from the degrees of freedom near the horizon, even though

exactly what those degrees of freedom are remains to be understood.

1.3. AdS/CFT

Finally, we come to the important topic of AdS/CFT correspon-

dence [9,10,11,12], which is a duality between string theory on AdS

and a conformal field theory in one lower dimension6. For many ap-

plications of this duality the CFT can be thought of as living on the

boundary of AdS. The most important case in terms of applications to

everyday physics we observe at present is the AdS5/CFT4 correspon-

dence, in which the CFT4 is the Yang-Mills theory in four dimensions

with four supersymmetries. This theory is expected to yield much in-

sight into physics of four-dimensional gauge theories, which has QCD

as an important example.

However, string theory on AdS5 remains unsolved due to the pres-

ence of Ramond-Ramond (R-R) flux. Solving for the string spectrum

in AdS5 appears to be beyond our grasp at this point and the low

energy supergravity (which only describes the massless string excita-

tions) approximation has been used for most part.

6 That gravity in a D dimensional spacetime can be described by a D−1

dimensional theory without gravity goes by the name “holographic principle”

[13]. Although AdS/CFT correspondence so far is the only explicit example,

it is believed that the holographic principle holds in general.
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This is where AdS3 comes in. As the only example of AdS that

has been solved exactly, it can serve as a guide in understanding the

more complicated cases. In particular, AdS3/CFT2 can be studied in a

string theoretic setting without making approximations. Additionally,

a distinguishing feature of AdS3/CFT2 is that two dimensional CFT’s

have an infinite dimensional conformal symmetry, allowing for more

analytic control of the theory. This has led to a better understanding

of the AdS3/CFT2 duality [14,15] than others7.

1.4. Outline

This thesis will be focused on many of the issues address above. It

is organized as follows. In Section 2, we explain the geometric features

of AdS3 needed for our discussion. We also explain why string propa-

gation in AdS3 is described by the SL(2, R) WZW model, paying close

attention to how current algebra gives rise to conformal symmetry. In

Section 3 we explain the unitarity problem in AdS3 and how it is re-

solved by the proposal of Maldacena and Ooguri [16]. The presence

of long strings in the spectrum is also discussed. Sections 4 and 5

constitute a string theoretic proof of the spectrum. The proof consists

of first computing the one-loop partition function on thermal AdS3,

and then checking that it agrees with the free energy of string states

in Lorentzian AdS3. Due to the non-compact nature of the underly-

ing CFT, some features not seen in compact CFT’s are present in the

partition function. We give physical interpretations of these features

and explain how they are appropriate for AdS3.

7 It is interesting to note that actually, the aforemonetioned work by

Brown and Henneaux [7] was the first to propose a duality between quan-

tum gravity in AdS3 and a 2-dimensional CFT, an insight gained precisely

because of the infinite dimensional conformal symmetry.
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In Section 6, we describe the general solutions of three-dimensional

gravity with negative cosmological constant, which are also solutions of

string theory. Besides AdS3, they are the BTZ black hole and conical

spaces. String theory in the conical space is constructed as an orbifold

of AdS3.

Finally, the last topic is the relationship between string theory

on AdS3 × S3 and its plane wave limit. In Section 7 we consider the

supersymmetric strings in AdS3 ×S3. Section 8 through 11 explain in

detail how strings in the plane wave emerge in the double scaling limit.

We conclude in section 12 and 13 with attempts to understand what

the plane wave might teach us about AdS × S in other dimensions.
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2. Geometry of AdS3 and WZW models

In this Chapter we explain the geometry of AdS3, and also explain

why string theory on AdS3 is described by a WZW model.

AdS3 is the hyperboloid

R2 = X2
−1 +X2

0 −X2
1 −X2

2 (2.1)

embedded in R2,2, with metric

ds2 = −dX2
−1 − dX2

0 + dX2
1 + dX2

2 , (2.2)

which makes manifest the SO(2, 2) ∼= SL(2, R) × SL(2, R) isometry.

A convenient solution to (2.1) is

X−1 = R cos t cosh ρ

X0 = R sin t cosh ρ

X1 = R cosφ sinh ρ

X2 = R sinφ sinh ρ ,

(2.3)

which gives for the metric

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2) . (2.4)

This coordinate system is called the global coordinates in AdS3, be-

cause by setting ρ ≥ 0 and 2π > t > 0 it covers the entire hyperboloid8.

As the way it stands, there is a closed time like curve generated by

8 In addition to the global coordinates, there is another popular choice

known as the Poincare coordinates. However, this coordinate system only

covers a patch of the AdS3 described by (2.4), and in addition contains a

coordinate horizon.
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t → t + 2π. We will always consider the universal covering of the

hyperboloid by unwrapping the t coordinate so that −∞ < t <∞.

Suppose we wish to consider string theory on some spacetime

whose metric is gµν . The Polyakov action is

S = − 1

4πα′

∫
dτdσ

√−γγabgµν∂aXµ∂bX
ν , (2.5)

where γab is the worldsheet metric. We might at first take this to be

our starting point for string theory on AdS3, with the metric given in

(2.4). However, as we have already emphasized in the Introduction,

requirements for an acceptable string vacuum are rather stringent and

as it turns out (2.5) will not work. The correct procedure is to turn on

some NS-NS two-form field B. It is not obvious how this comes about,

so let us explain this.

For the following discussion, it will be convenient to normalize the

coordinates so that R = 1. Now consider the matrix

g =

(
X−1 +X1 X0 −X2

−X0 −X2 X−1 −X1

)
, (2.6)

which is an element of SL(2, R). As a group manifold, SL(2, R) is

identified with AdS3. The metric on SL(2, R)

dt2 = tr(dg−1dg) , (2.7)

coincides with (2.4). There is a natural action one can write down

when the target space is a group manifold. It is the nonlinear sigma

model action

S ∼
∫
dτdσ tr(∂µg−1∂µg) , (2.8)
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which is however not conformally invariant (the action (2.8) essentially

reproduces (2.5)). Witten studied the beta function of (2.8) and found

that upon the addition of the Wess-Zumino term

ΓWZ =
ik

12π

∫
tr(g−1dg ∧ g−1dg ∧ g−1dg) , (2.9)

where the integral is over a three-dimensional surface whose bound-

ary is the string worldsheet, the resulting action posesses conformal

symmetry [17].

The quantity k that appears in the above expression is known as

the level or grade of the WZW model. Since the overall action has a

factor of k in front we interpret it as being proportional to R2. The

level is quantized for compact groups, in order to ensure that under a

large coordinate transformation (i.e. a transformation not connected to

the identity) the action only changes by S → S + 2πi. This condition

is necessary for the path integral to be well defined. For non-compact

groups such as SL(2, R), k need not be quantized.

Locally, the Wess-Zumino term is a total derivative, so it can be

written as a two-dimensional integral over the worldsheet coordinates.

In terms of the target space variables the total action then can be

written

S =
1

4πα′

∫
dτdσ

√−γ
(
γabgµν + iεabBµν

)
∂aX

µ∂bX
ν , (2.10)

revealing that in addition to the metric there is an antisymmetric field

present. So in order to satisfy conformal invariance we must have some

B field present. The reason why we know it is a NS-NS field is that

fields from the Ramond sector do not couple to the string worldsheet.

The presence of NS-NS B field in this background will have a

profound impact on the string spectrum. The most drastic effect is
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the possibility of having “long strings” [18,19]. We will discuss this in

more detail when we consider the representations of ŜL(2, R).

How does the WZW model automatically satisfy conformal invari-

ance? The reason is the underlying current algebra. The WZW action

is invariant under the action of independent left and right action by

group elements9. This implies the existence of two sets of conserved

currents
Ka = tr(ta∂gg−1)

K̄a = tr(t∗ag−1∂̄g)
(2.11)

where we have switched to the complex coordinates introduced in (1.3),

and ta are the generators of SL(2, R). This notation is a very useful

reminder of the fact that the equation of motion simply forces Ka and

K̄b to be holomorphic and anti-holomorphic, respectively.

Let us focus our attention on the holomorphic sector. We can

introduce the modes of the current by the Laurent expansion

Ka(z) =
∑

n∈Z

Ka
n

zn+1
, (2.12)

which satisfy the ŜL(2, R) current algebra

[
K+
m,K

−
n

]
= −2K3

m+n + kmδm+n

[
K3
m,K

±
n

]
= ±K±

m+n

[
K3
m,K

3
n

]
= −k

2
mδm+n .

(2.13)

The zero modes represent the integral of currents, i.e. they are con-

served charges. It is convenient to choose a basis in which

K3
0 =

1

2
(E + L)

K̄3
0 =

1

2
(E − L)

(2.14)

9 The addition of the Wess-Zumino term is what makes this possible.
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where E and L represent the energy and angular momentum in AdS3,

respectively.

The current algebra is the key property of WZW models. We can

construct the operators

Ln =
1

k − 2

∞∑

m=−∞

: ηabK
a
mK

b
n−m : , (2.15)

where ηab is the metric on SL(2, R) with signature (+,+,−). The

generators (2.15) obey the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm,−n (2.16)

with central charge

c =
3k

k − 2
, (2.17)

and also

[Ln,K
a
m] = −mKa

n+m . (2.18)

The Virasoro algebra is the algebra of conformal symmetry. Hence the

presence of current algebra implies, via (2.15), conformal symmetry.
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3. Algebraic construction of bosonic strings on AdS3

We now focus on the SL(2, R) WZW model, which is the world-

sheet CFT of string theory in AdS3. Since the model possesses two

copies of ŜL(2, R) symmetry (one on the left and one on the right), the

Hilbert space is a sum of products of ŜL(2, R) representations. The

question is which representations appear.

Representations of current algebra can be constructed by consider-

ing representations of the global algebra, generated by the zero modes

of the currents Ka
0 , to be the primary states annhiliated by Ka

m>0

(note that (2.18) implies that Ka
0 generate a multiplet with the same

L0 eigenvalue). Then Ka
m<0 can be applied to these states, generating

the representation of the current algebra. Hence, the first problem is

to find the right representations of SL(2, R). In [16], the following

was proposed, based on an analysis of the point particle limit. The

representations of SL(2, R) that appear are D` and C`,α, where D` is

the discrete lowest weight representation

D` = {|`, n〉 : n = `, ` + 1, ` + 2, . . .} , (3.1)

with K−
0 |`, `〉 = 0. The representation is labeled by the value of the

quadratic Casimir

(
1

2
(K+

0 K
−
0 +K−

0 K
+
0 ) − (K3

0 )2
)
|`, n〉 = −`(` − 1)|`, n〉 , (3.2)

and n which is the eigenvalue of K3
0 , related to the spacetime energy

by (2.14). The representation is unitary for real ` greater than zero

[20]. However, we need that the wavefunctions are square integrable,

and this requires ` > 1/2.

C`,α is the continuous representation

C`,α = {|`, n, α〉 : n = α,α ± 1, α ± 2, . . .} , (3.3)
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where without loss of generality α may be restricted to 0 ≤ α < 1.

Unitarity requires ` = 1/2 + is with s real [20]. This gives for the

quadratic Casimir

(
1

2
(K+

0 K
−
0 +K−

0 K
+
0 ) − (K3

0 )2
)
|`, n, α〉 =

(
1

4
+ s2

)
|`, n, α〉 . (3.4)

Now starting with the above representations of SL(2, R), repre-

sentations of ŜL(2, R) are generated by applying Ka
m<0. The resulting

representations are denoted

D̂` , Ĉ`,α . (3.5)

However, we will now explain that based on these representations alone

the resulting string theory would be fatally flawed.

The issue is unitarity, which we explained in the Introduction.

The no ghost theorem for AdS3 [21,22,23,24,25,26,27,28] restricts the

value of ` in the discrete representations to be less than k/2. Let us

look at the consequence of this restriction, by considering string theory

on

AdS3 × X . (3.6)

We assume that the CFT on X is unitary, and that it has the right

central charge to form, together with AdS3, a critical string theory.

The Virasoro operators are given by the sum of the Virasoro operators

for each CFT, Lm = LSLm + LX
m. Consider a state in the discrete

representation of SL(2, R) WZW model, tensored with a state from X
with conformal weight h. The combined state is labeled as

|`, n,N, h〉 , (3.7)
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where N is the level10 of the ŜL(2, R) descendent, i.e. the conformal

weight of (3.7) is

L0 = −`(` − 1)

k − 2
+N + h . (3.8)

By the Virasoro condition (1.6) this must equal one, otherwise the

state is not physical. But note that this means there is an upper

bound to how large N can be, which follows directly from the upper

bound on `. Since N is related to the mass of the string state, we are

forced to conclude that the tower of string excitations abruptly comes

to an end. This sounds very unphysical—for example, it is hard to see

how modular invariance, a key requirement of string theory, would be

maintained.

There is an additional problem, which was only realized fairly re-

cently. We mentioned that the background we are considering has the

NS-NS B field turned on. The effect of this field is to expand the

string, while the tension wants to contract the string. Since in AdS3

the volume and area grow at the same rate asymptotically, these two

effects almost completely cancel, and long strings can freely propagate

far from the origin of AdS3 [18,19]. So, we expect to find in the Hilbert

space of string theory on AdS3 states in the continuous representation

of ŜL(2, R). The problem is that all the states in Ĉ`,α are tachyonic,

which can easily be seen using (1.6). When we consider the super-

strings, such states get projected out and there would not be any long

strings in the spectrum.

Maldacena and Ooguri proposed a solution [16] that solved both

of these problems. Their suggestion was that (3.5) are not the only

representations of ŜL(2, R) that appear in the Hilbert space. There are

10 Not to be confused with k that appears in the WZW action, which is

also called a level.
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additional representations that are generated by the action of spectral

flow

K3
m → K̃3

m = K3
m − k

2
wδm,0

K+
m → K̃+

m = K+
m+w

K−
m → K̃−

m = K−
m−w ,

(3.9)

and the resulting transformation on the Virasoro generators

L̃m = Lm + wK3
m − k

4
w2δm,0 . (3.10)

For each integer valued spectral flow, we generate the representations

D̂w
` and Ĉw`,α from D̂` and Ĉ`,α, respectively.

We return to (3.6) and see how this proposal overcomes the diffi-

culties explained above. First, consider a state in the spectral flowed

discrete representation D̂w
` ,

|˜̀, ñ, Ñ , w, h〉 (3.11)

Let us denote this state by |Ω〉. Taking into account the spectral flow

relations (3.9) and (3.10), the Virasoro constraints are

(L0 − 1)|Ω〉 =

(
−

˜̀(˜̀− 1)

k − 2
+ Ñ − wñ− kw2

4
+ h− 1

)
|Ω〉 = 0

Lm|Ω〉 = (L̃SLm − wK̃3
m + LX

m)|Ω〉 = 0 , m ≥ 1 .

(3.12)

For discrete representations, ñ = ˜̀+ q, with q an integer. Using this

relation with the first equation in (3.12), ˜̀ is determined to be

˜̀=
1

2
− k − 2

2
w +

√
1

4
+ (k − 2)

(
N + h− 1

2
w(w + 1) − 1

)
, (3.13)
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where N is the level measured by L0, related to Ñ by N = Ñ−wq. We

impose the level matching condition L0 = L̄0, and find the spacetime

energy (2.14)

E = 1 + 2w + q + q̄ +

√
1 + 4(k − 2)

(
Nw + h− 1

2
w(w + 1) − 1

)
.

(3.14)

Note that the energy is discrete, even though ` took on continuous

values in the SL(2, R) WZW model.

Spectral flow by −1 gives the charge conjugated representations,

D̂+,w=−1
` = D̂−

k/2−`, where the subscript minus (plus) indicates that it

is a lowest (highest) weight representation. In all the discrete repre-

sentations the SL(2, R) spin must be in the range

1

2
< ` <

k − 1

2
, (3.15)

which is more restrictive than what is allowed by the no-ghost theo-

rem. In the context of string theory on AdS3, these representations

correspond to the short strings that are trapped inside AdS3.

For states coming from the continuous representations, we can

proceed in a similar manner to obtain their spectrum. The difference

in this case is that ˜̀ and ñ are not related. The result is

E =
kw

2
+

1

w

(
2s2 + 1

2

k − 2
+ Ñ + ˜̄N + h+ h̄− 2

)
. (3.16)

Note that this time the level is measured by L̃0. The spectrum is

continous and s represents the momentum of the string in the radial

direction of AdS3. These are the long strings that can approach arbi-

trarily close to the boundary.
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In conclusion, we may summarize the Hilbert space of SL(2, R)

WZW model by

HSL = ⊕∞
w=−∞[(∫ k−1

2

1
2

d` D̂w
` ⊗ D̂w

`

)
⊕
(∫

1
2+iR

d`

∫ 1

0

dα Ĉw`,α ⊗ Ĉw`,α

)]
,

(3.17)

and the string Hilbert space is obtained via the Virasoro constraints.

With this spectrum the fictitious upper bound on the excitation level of

the string is removed, as it can be shown from (3.14) and (3.16) that

when a short string saturates the bound, it turns into a long string

[16]. Also, there are now continuous representations that survive the

projection.
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4. Partition function on thermal AdS3

In the previous section we described the current algebra approach

to string theory on AdS3. We have seen how the proposal of Maldacena

and Ooguri [16] to include spectral flowed representations of ŜL(2, R)

produces a very sensible spectrum, which included states correspond-

ing to long strings as well as the short strings. The seemingly arbitrary

upper bound on the mass of the string was removed, thus recovering

the infinite tower of masses on expects from string theory.

However, the existence of spectral flow as a symmetry of the

SL(2, R) WZW model was inferred on the basis of classical and semi-

classical analysis. It is crucial to check in an independent manner the

details that become important at finite values of k, where the intuition

gained from semi-classical reasonings can break down. For example,

the restriction on the SL(2, R) spin (3.15) becomes trivial in the semi-

classical limit, and we would like to derive this result from a fully

quantum treatment.

In this and the next sections we verify the results of previous sec-

tion by an explicit calculation of the one-loop string partition function.

As shown in [15], the Euclidean black hole background is equivalent

to the thermal AdS3 background. So we will consider string theory

on AdS3 at a finite temperature, which is described by strings moving

on a Euclidean AdS3 background with the Euclidean time identified.

The calculation of the partition function for this geometry is a minor

variation on the calculation of Gawedzki in [29]. From this we can read

off the spectrum of the theory in Lorentzian signature by interpreting

the result as the free energy of a gas of strings.

This section is devoted to the calculation of the one-loop par-

tition function on thermal AdS3. First we explain the relation be-

tween various useful coordinate systems. Then we consider thermal
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AdS3 = H3/Z and show how the identification of Euclidean time in

the global coordinates translates into particular boundary conditions

for the target space fields. The partition function is then calculated

by an explicit evaluation of the functional integral following [29].

4.1. Thermal AdS3

The natural metric on H3 is given by

ds2 =
k

y2
(dy2 + dwdw̄), (4.1)

which is the Euclidean continuation of the Poincare metric on AdS3.

By the coordinate transformation

w = tanh ρet+iθ

w̄ = tanh ρet−iθ

y =
et

cosh ρ

(4.2)

we obtain the cylindrical coordinates on Euclidean AdS3,

ds2

k
= cosh2 ρdt2 + dρ2 + sinh2 ρdθ2. (4.3)

For the purpose of calculating the partition function, however, it is

convenient to use coordinates in which the metric reads [29]

ds2

k
= dφ2 + (dv + vdφ)(dv̄ + v̄dφ), (4.4)

which corresponds to the parametrization of H3 as

g =

(
eφ(1 + |v|2) v

v̄ e−φ

)
(4.5)
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The coordinate transformation from (4.3) to (4.4) is

v = sinh ρeiθ

v̄ = sinh ρe−iθ

φ = t− log cosh ρ .

(4.6)

Thermal AdS3 is given by the identification

t+ iθ ∼ t+ iθ + β̂ , (4.7)

where β̂ represents the temperature T and the imaginary chemical

potential iµ for the angular momentum,

β̂ = β + iµβ =
1

T
+ i

µ

T
. (4.8)

The corresponding identifications in the coordinates (4.4) are

v ∼ veiµβ

v̄ ∼ v̄e−iµβ

φ ∼ φ+ β ,

(4.9)

which is a consistent symmetry of the WZW action,

S =
k

π

∫
d2z

(
∂φ∂̄φ+ (∂v̄ + ∂φv̄)(∂̄v + ∂̄φv)

)
. (4.10)

4.2. Computation of the partition function on thermal AdS3.

We consider a conformal field theory on a worldsheet torus with

modular parameter τ (z ∼ z + 2π ∼ z + 2πτ). The two-dimensional

conformal field theory on the worldsheet is the sum of three parts: the

conformal field theory on H3, the internal conformal field theory on

M, and the (b, c) ghosts. First we start with the computation of the

partition function for the conformal field theory describing the three
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dimensions of thermal AdS3 and then we will multiply the result by

the partition function of the ghosts and the internal conformal field

theory.

Due to the identification (4.9), the string coordinates now satisfy

the following boundary conditions

φ(z + 2π) = φ(z) + βn

φ(z + 2πτ) = φ(z) + βm

v(z + 2π) = v(z)einµβ

v(z + 2πτ) = v(z)eimµβ .

(4.11)

The thermal circle is non-contractible and therefore we get two integers

(n,m) characterizing topologically nontrivial embeddings of the world-

sheet in spacetime. In order to implement these boundary conditions

it is convenient to define new fields φ̂, v̂ such that they are periodic:

φ = φ̂+ βfn,m(z, z̄)

v = v̂ exp(iµβfn,m(z, z̄)) ,
(4.12)

with

fn,m(z, z̄) =
i

4πτ2
[z(nτ̄ −m) − z̄(nτ −m)] . (4.13)

When we substitute this into the action (4.10), we get

S =
kβ2

4πτ2
|nτ −m|2 +

k

π

∫
d2z

(
|∂φ̂|2 +

∣∣∣∣
(
∂ +

1

2τ2
Un,m + ∂φ̂

)
ˆ̄v

∣∣∣∣
2
)
,

(4.14)

where

Un,m(τ) =
i

2π
(β − iµβ)(nτ̄ −m). (4.15)

We are interested in the functional integral

Z(β, µ; τ) =

∫
DφDvDv̄e−S . (4.16)
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This integral is evaluated as explained in [29]. We can first do the

integral over v̂, ˆ̄v which is quadratic, giving the determinant

det

∣∣∣∣∂ +
1

2τ2
Un,m + ∂φ̂

∣∣∣∣
−2

. (4.17)

We calculate the φ̂ dependence on the determinants by realizing that

we can view (4.17) as an inverse of two fermion determinants. We can

then remove φ̂ from the determinants by a chiral gauge transformation

and using the formulas for chiral anomalies. The result is

det

∣∣∣∣∂ +
1

2τ2
Un,m + ∂φ̂

∣∣∣∣
−2

= e
2
π

∫
d2z∂φ̂∂̄φ̂ det

∣∣∣∣∂ +
1

2τ2
Un,m

∣∣∣∣
−2

.

(4.18)

The remaining integral over φ̂ gives the usual result for a free boson,

except that k → k − 2 due to (4.18). The functional integral for the

thermal AdS3 partition function then gives

Z(β,µ; τ) =
β(k − 2)

1
2

8π
√
τ2

∑

n,m

1

| sin(πUn,m)|2

× e−kβ
2|m−nτ |2/4πτ2+2π(ImUn,m)2/τ2

|∏∞
r=1(1 − e2πirτ )(1 − e2πirτ+2πiUn,m)(1 − e2πirτ−2πiUn,m)|2

=
β(k − 2)

1
2

2π
√
τ2

(qq̄)−
3
24

∑

n,m

e−kβ
2|m−nτ |2/4πτ2+2π(ImUn,m)2/τ2

|ϑ1(τ, Un,m)|2 ,

(4.19)

where ϑ1 is the elliptic theta function and q = e2πiτ . The factor

β(k − 2)
1
2 comes from the length of the circle in the φ direction. This

partition function is explicitly modular invariant after summing over

(n,m). In Appendix B of [16], there was a puzzle about the apparent

lack of modular invariance of the SL(2, R) partition functions with

J3 insertions. Here we have found that, if we introduce the twist by

considering the physical set-up of thermal AdS3, the result (4.19) turns
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out to be manifestly modular invariant. This resolves the puzzle raised

in [16].

We also need to include the contribution of the (b, c) ghosts and

the internal CFT. Partition function of the latter will be of the form

ZM = (qq̄)−
cint
24

∑

h,h̄

D(h, h̄)qhq̄h̄, (4.20)

where D(h, h̄) is the degeneracy at left-moving weight h and right-

moving weight h̄, and cint the central charge of the internal CFT.

Modular invariance requires that h− h̄ ∈ Z, a fact which will be useful

in the next section. Vanishing of the total conformal anomaly gives

cSL(2,R) + cint = 26 . (4.21)

We can calculate now the total contribution to the ground state

energy. We found a ground state energy of −3/24 in (4.19), the

ghosts contribute with 2/24 and the internal CFT with −cint/24 =

(cSL(2,R)−26)/24. Using cSL(2,R) = 3+ 6
k−2 , we find the overall factor

(qq̄)−(1+cint)/24 = e4πτ2(1− 1
4(k−2)

) . (4.22)

Note that cint ≥ 0, k > 2, and (4.21) imply that there will always be

a tachyon in the bosonic theory.

Σ Σ
(0,m)(n,m)

Fig. 1 : The sum over n is traded for the sum

over copies of the fundamental domain.
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After multiplying (4.19) by the (b, c) ghosts and the internal CFT

partition functions, we should integrate the resulting expression over

the fundamental domain F0 of the modular parameter τ . The com-

putation is much facilitated by the trick invented in [30,31] to trade

the sum over n in (4.19) for the sum over copies of the fundamental

domain. See Figure 1. This is possible since (n,m) transforms as a

doublet under the modular group SL(2, Z). If (n,m) 6= (0, 0), it can

be mapped by an SL(2, Z) transformation to (0,m), m > 0. The

SL(2, Z) transformation also maps the fundamental domain into the

strip Im τ ≥ 0, |Re τ | ≤ 1/2. On the other hand, (n,m) = (0, 0) is

invariant under the SL(2, Z) transformation, and the corresponding

term still has to be integrated over the fundamental domain F0. This

term represents the zero temperature contribution to the cosmologi-

cal constant, or the zero temperature vacuum energy. In addition to

the usual tachyon divergence of bosonic string theory at large τ2, it

is also divergent due to the sin−1 factor in (4.19); this divergence can

be interpreted as coming from the infinite volume of AdS3. Since the

temperature dependence of this term is trivial we will ignore it from

now on. The final result then is that we fix n = 0 in (4.19) and we in-

tegrate over the entire strip shown in Figure 1. The one-loop partition

function of bosonic string theory on H3/Z ×M is then

Z(β, µ) =
β(k − 2)

1
2

8π

∫ ∞

0

dτ2

τ
3/2
2

∫ 1/2

−1/2

dτ1e
4πτ2

(
1− 1

4(k−2)

)

×
∑

h,h̄

D(h, h̄)qhq̄h̄
∞∑

m=1

e−(k−2)m2β2/4πτ2

| sinh(mβ̂/2)|2

×
∣∣∣∣∣
∞∏

n=1

1 − e2πinτ

(1 − emβ̂+2πinτ )(1 − e−mβ̂+2πinτ )

∣∣∣∣∣

2

.

(4.23)
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5. Derivation of the spectrum from the partition function

In this section we show how to extract the spectrum of Lorentzian

string theory on AdS3 from the one-loop partition function. First we

present a qualitative analysis, which is then followed by a precise cal-

culation. During the course of this investigation we will find a rather

novel phenomenon–singularities in the interior of the one-loop moduli

space. We explain how this is due to the presence of long strings. We

regulate the divergences and find a physical interpretation for how the

different parts of the spectrum arise from this calculation. Further-

more, we show how the one-loop result contains information about the

SL(2, R) and Liouville reflection amplitudes.

5.1. The free energy

The one-loop partition function (4.23) can be interpreted as the

single particle contribution to the thermal free energy, Z(β, µ) = −βF .

To this each string state makes a contribution β−1 log(1−e−β(E+iµL)),

where E and L are the energy and the angular momentum of the state.

The total free energy is the sum over all such factors:

F (β, µ) =
1

β

∑

string∈H

log
(
1 − e−β(Estring+iµLstring)

)

=
∞∑

m=1

f(mβ,mµ) ,

(5.1)

where

f(β, µ) =
1

β

∑

string∈H

e−β(Estring+iµLstring) . (5.2)

Here H is the physical Hilbert space of single string states. In both

(4.23) and (5.1), we have the sums over functions of (mβ,mµ). It is

therefore sufficient to compare the m = 1 terms in these expressions.
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In other words, we want to verify that Estring and Lstring extracted

from the identification,

f(β, µ) =
∑

string∈H

1

β
e−β(Estring+iµLstring)

=
(k − 2)

1
2

8π

∫ ∞

0

dτ2

τ
3/2
2

∫ 1/2

−1/2

dτ1e
4πτ2

(
1− 1

4(k−2)

)∑

h,h̄

D(h, h̄)qhq̄h̄

× e−(k−2)β2/4πτ2

| sinh(β̂/2)|2

∣∣∣∣∣
∞∏

n=1

1 − e2πinτ

(1 − eβ̂+2πinτ )(1 − e−β̂+2πinτ )

∣∣∣∣∣

2

.

(5.3)

agree with the string spectrum reviewed in Section 3. We will see that

the sum over the Hilbert space breaks up into a sum over the discrete

states and an integral over the continuous states, with the correct

expressions for the energies. Since the one-loop calculation presented

here is independent of the assumptions made in [16] about strings in

Lorentzian AdS3, we can regard this as a derivation of the spectrum

starting from the well-defined Euclidean path integral.

5.2. Qualitative analysis

In this subsection we will analyze (5.3) in a qualitative way and

explain where the different contributions to the spectrum come from.

To keep the notation simple, we set µ = 0 in this subsection, leaving

the exact computation for the next subsection.

As expected, in (5.3) there is an exponential divergence as τ2 →
∞, coming from the tachyon. This is just as in the flat space case,

where (mass)2 < 0 of the tachyon causes its contribution to be weighted

with a positive exponential. We will disregard this divergence11.

11 A skeptical reader could think that we are really doing the superstring

partition function (the fermions included in the internal CFT, etc.). Then
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However, rather unexpectedly, the expression above has additional

divergences at finite values of τ . In string theory one might naively

expect that divergences come only from the corners of the fundamental

domain in the τ -plane, but in this case the divergence is coming from

points in the interior of the fundamental domain. Overcoming the

initial panic, one realizes that these divergences are related to the

presence of long strings. In fact, as with any other string divergence,

it can be interpreted as an IR effect. This divergence is due to the fact

that long strings feel a flat potential as they go to infinity and become

free. This causes their contribution to the free energy to be weighed

by an infinite volume factor12. To see this, note that near the pole (see

Figure 2)

τ = τpole + ε , (5.4)

where

τpole =
r

w
+ i

β

2πw
, (5.5)

we can expand the partition function and replace τ in all terms by its

value at the pole, except in the one term that has the pole.

the tachyon divergence will disappear but one would still find the diver-

gences that we discuss below. Of course, the one-loop partition function is

non-vanishing even in the supersymmetric case since the thermal boundary

conditions break supersymmetry.
12 One can avoid the appearance of these infinities by considering the free

energy density. However, then the short strings would not be visible.
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τ 1 =−1/2 τ 1 =1/2

τ 2 = β/4π

τ 2 = β/2π

τ 2 = β/6π
τ 2 = β/8π

Fig. 2: Poles in the τ plane, shown for w = 1 to 4.

If we integrate (5.3) near the pole, i.e. in the region

ε < |τ − τpole| � 1 , (5.6)

we find that it diverges as log ε with coefficient

1√
wβ3

exp

[
−β
(
k

2
w +

1

w
(Ñ + h+ ˜̄N + h̄− 2 +

1

2(k − 2)
)

)

+
2πir

w
(Ñ + h− ˜̄N − h̄)

]
.

(5.7)

We now sum over r, with |r/w| ≤ 1/2, since these are the ones corre-

sponding to the poles in the strip13. This sum constrains Ñ+h− ˜̄N−h̄
to be an integer multiple of w, and it introduces an additional factor of

13 If some poles are on the boundaries of the strip, τ1 = ±1/2, then we

only count them once, since the right and left boundaries of the strip are

identified.
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w in (5.7). The log divergence in τ -integral can therefore be expressed

as

f(β, µ) ∼ 1

β
log ε

∫ ∞

0

dse−βE(s) + · · · , (5.8)

where E(s) is the energy spectrum given by (3.16). Note that the

s-integral and the sum over r we mentioned above give the factor
√
w/β needed to match the prefactor in (5.7) to that in (5.8). This

reproduces the expected contribution from the long strings in the left

hand side of (5.3). The logarithmic divergence should be interpreted

as a volume factor due to the fact that the long string can be at any

radial position. In the next subsections, we will see more precisely that

it is indeed associated to the infinite volume in spacetime by relating

ε to a long distance cutoff.

Now we would like to calculate the short string spectrum. Since

the long string spectrum gives a divergent result, while the short string

spectrum gives a finite one, it might appear at first that extracting

the contributions due to the short strings from a divergent expression

such as (5.3) will be problematic. Fortunately we can get around

this difficulty since the temperature dependence of the long string free

energy is different from that of the short string free energy. In the

next subsection we will explain how to do this precisely and reproduce

the short string spectrum which agrees with [16]. One of the more

puzzling aspects of the short string spectrum found there is the cutoff

1/2 < ˜̀ < (k − 1)/2 in the value of the SL(2, R) spin ˜̀. In the

remainder of this section we will explain in a qualitative way how this

cutoff arises by doing the calculation for large k.

If we were to evaluate the right hand side of (5.3) naively (and

incorrectly), we would expand the integrand in powers of q = e2πiτ

and then perform the τ integral. If we did this, we would obtain the
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short string spectrum with w = 0 and no upper bound on the value

of ˜̀. However this expansion is not correct. How we can expand the

integrand in (5.3) depends on the value of τ2. When we cross the poles

at τ2 = β
2πw , a different expansion should be used for the denominator:

1

1 − eβ+2πiwτ
=

∞∑

q=0

eq(β+2πiwτ)

(
τ2 >

β

2πw

)
,

= −
∞∑

q=0

e−(q+1)(β+2πiwτ) ,

(
τ2 <

β

2πw

)
.

(5.9)

When τ2 is in the range

β

2π(w + 1)
< τ2 <

β

2πw
, (5.10)

the product over n in the first term in the denominator in (5.3) is

broken up into two factors, a product in 1 ≤ n ≤ w and a product in

w + 1 ≤ n. The first factor is expanded in powers of e−(β+2πinτ) and

the second factor is expanded in powers of eβ+2πinτ . Combining them

together with the terms coming from the expansion of the remaining

products in (5.3), we get an exponent of the form

−
(

1

2
+ q + w

)
β + 2πiτ

(
Nw − 1

2
w(w + 1)

)
, (5.11)

for some integers q and Nw (the first term −β/2 comes from expanding

1/ sinh(β/2) in (5.3)). There is a similar term for τ → τ̄ . We are then

to do the τ -integral of the form,

∫
d2τ

τ
3/2
2

exp

[
4πτ2

(
1 − 1

4(k − 2)

)
− β2(k − 2)

4πτ2
− β(1 + q + q̄ + 2w)

+ 2πiτ

(
Nw + h− 1

2
w(w + 1)

)
− 2πiτ̄

(
N̄w + h̄− 1

2
w(w + 1)

)]
,

(5.12)
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over the region (5.10). The integral over τ1 produces the level matching

condition . Now we evaluate the integral over τ2 using the saddle point

approximation. We find that the saddle point is at

τsaddle =
(k − 2)β

2π
√

1 + 4(k − 2)(Nw + h− 1 − 1
2w(w + 1))

(5.13)

and the integral gives
1

β
e−βX , (5.14)

where the exponent X is equal to

1 + q + q̄ + 2w +

√
1 + 4(k − 2)

(
Nw + h− 1 − 1

2
w(w + 1)

)
(5.15)

This is the correct form of the contributions due to the short strings

in the left hand side of (5.3). Moreover we obtain the bound on ˜̀

exactly, because τsaddle has to be in the range (5.10) in order for the

saddle point approximation to give a non-zero result. By (5.13), this

condition is equivalent to the bound 1/2 < ˜̀ < (k − 1)/2 using the

physical state condition. (It is a bit surprising that we get all factors

precisely right from the saddle point approximation.) Notice then that

the cutoff in ˜̀ is associated to the fact that we expand the integrand

in (5.3) in different ways depending on the value of τ . The value of τ

making the biggest contribution to the integral depends on the values

of N and h of the string state.

5.3. A precise evaluation of the τ -integral

Now let us study the partition function (5.3) more systematically.

In this subsection, we go back to the general case with µ 6= 0. From

what we saw in the previous subsection, we expect to find the discrete
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states from the integral over the range (5.10), and the continuous states

from the poles after a suitable regularization.

In order to evaluate the τ -integral exactly, it is useful to introduce

a new variable c by

e−(k−2) β2

4πτ2 = −8πi

β

(
τ2

k − 2

) 3
2
∫ ∞

−∞

dc c e−
4πτ2
k−2 c

2+2iβc . (5.16)

Now suppose τ2 is in the range,

β

2π(w + 1)
< τ2 <

β

2πw
, (5.17)

and expand the integrand in (5.3) as explained in the previous subsec-

tion. The right hand side of (5.3) becomes a sum of terms like

4

β(k − 2)i

∫ ∞

−∞

dc c

∫ β

2πw

β

2π(w+1)

dτ2

∫ 1/2

−1/2

dτ1

× exp

[
−β̂
(
q + w +

1

2

)
− ¯̂
β

(
q̄ + w +

1

2

)

+ 2πiτ1(Nw + h− N̄w − h̄) + 2icβ

−2πτ2

(
h+ h̄+Nw + N̄w +

2c2 + 1
2

k − 2
− w(w + 1) − 2

)]
.

(5.18)

The integral over τ1 gives a delta function enforcing Nw+h = N̄w+ h̄,

which is the level matching condition . Integrating over τ2 in the range

(5.17) gives

1

βπi

∫ ∞

−∞

dc c
exp

[
2icβ − β̂

(
q + w + 1

2

)
− ¯̂
β
(
q̄ + w + 1

2

)]

c2 + 1
4

+ (k − 2)
(
Nw + h− 1 − 1

2
w(w + 1)

)

×
{
− exp

[
− β

w

(
2Nw + 2h− 2 +

2c2 + 1
2

k − 2
− w(w + 1)

)]

+exp

[
− β

w + 1

(
2Nw + 2h− 2 +

2c2 + 1
2

k − 2
− w(w + 1)

)]}
,

(5.19)
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where we used the level matching condition.

Let us first look at the first term (the second line) in (5.19). We

note that the exponent can be expressed in the form of a complete

square if we set c = s + i
2 (k − 2)w. As it will become clear shortly,

it is natural to shift the contour of the c-integral from Im c = 0 to

Im c = 1
2 (k − 2)w so that s becomes real. During this process the

contour crosses some poles in the integrand, picking up the residues of

the poles in the range 0 < Im c < 1
2 (k− 2)w. See Figure 3. The poles

are located at

− c2

(k − 2)
= Nw + h− 1

2
w(w + 1) − 1 +

1

4(k − 2)
<
k − 2

4
w2. (5.20)

Similarly, for the second exponential term (the third line) in (5.19) we

shift the contour to c = s+ i
2 (k− 2)(w+ 1) with s real. This picks up

the poles at

− c2

(k − 2)
= Nw+h− 1

2
w(w+1)−1+

1

4(k − 2)
<
k − 2

4
(w+1)2. (5.21)

It is important to note that the residues of these poles have a sign

opposite to that of the residues of the poles obeying (5.20). So the

result is that we are left with only those poles in the range

k − 2

2
w < Im c <

k − 2

2
(w + 1), (5.22)

with residues
1

β
e−Y , (5.23)

where the exponent Y is

β̂q+
¯̂
βq̄+β

(
1 + 2w +

√
1 + 4(k − 2)

(
Nw + h− 1 − 1

2
w(w + 1)

))
.

(5.24)
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This is the expected contribution of the short strings to the right hand

side of (5.3), and we see also that (5.22) translates into the correct

bound on ˜̀ .

c-plane

c = s + i(k-2)(w+1)/2

c = s + i (k-2) w/2

Figure 3: Shifting the contour of integration picks up the pole residues

corresponding to the short string spectrum.

It remains to examine the resulting integral over s. Notice that

the term coming from just above the pole at τ = β̂/2πw has a very

similar w dependence in the exponent as that coming from just below

the pole. In other words, we combine the first term of (5.19) with the

second term of an expression similar to (5.19) but with w → w−1 and

we find, after shifting the countours as above,

1

2πiβ

∫ ∞

−∞

ds

(
2s

w(k − 2)
+ i

)

×




exp
[
−β̂q − ¯̂

βq̄ − β
(
k
2w + 2

w

(
s2+1/4
k−2 +Nw−1 + h− 1

))]

1
2 + is− k

4w + 1
w

(
Nw−1 + h− 1 + s2+1/4

k−2

)

−
exp

[
−β̂q − ¯̂

βq̄ − β
(
k
2w + 2

w

(
s2+1/4
k−2 +Nw + h− 1

))]

− 1
2 + is− k

4w + 1
w

(
Nw + h− 1 + s2+1/4

k−2

)


 .

(5.25)
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Let us concentrate for now on the third line of this expression. We

first note that the sum of such terms over all states gives rise to the

log divergence. To see this, it is useful to notice that the combinations

Ñ = qw +Nw ,
˜̄N = q̄w + N̄w (5.26)

that appear in the exponent of the third line of equation (5.25) are

the levels before spectral flow. Thus, for a given state |ψ〉, states of

the form (K̃+
0

˜̄K+
0 )n|ψ〉 all have the same value of Ñ and ˜̄N . Acting

with K̃+
0

˜̄K+
0 on |ψ〉 does not change the exponent in (5.25), but it does

change the denominator by one. This implies that when we sum over

all the states of this type, we will find a divergent sum of the form

∞∑

n=0

1

A− n
. (5.27)

This divergence has the same origin as the divergence of the right hand

side of (5.3) at the pole τpole = β̂/2πw. In fact, if we regularize the

τ -integral by removing a small strip near the pole as |τ − τpole| > ε,

we find an additional factor e−nε in the sum. In the next subsection,

we will give the spacetime interpretation of this procedure. With this

regularization, the sum behaves as log ε. More precisely we have

−
∞∑

n=0

1

A− n
e−nε = log ε+

d

dA
log Γ(−A) + O(ε) (5.28)

where

A = −1

2
+ is− k

4
w +

1

w

(
s2 + 1

4

k − 2
+ Ñ + h− 1

)
. (5.29)

Here we have assumed that

˜̄N + h̄ ≤ Ñ + h, (5.30)
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but it can be seen that the other case gives the same result.

Now we turn our attention to the second line of (5.25). In those

terms we have one less unit of spectral flow, as compared to the third

line in (5.25) that we analyzed above. In other words, now we will

have that (w− 1)q+Nw−1 = Ñ ′. These states are in the spectral flow

image of D+
` . Since we want to combine these states with the states

coming from the third line in (5.25) it is convenient to do spectral

flow one more time and think of these states as in the spectral flow

image of D−
` under w units of spectral flow. In this case we find that

q + Ñ ′ = Ñ where now Ñ is the level of the D−
` representation before

spectral flow. From now on the discussion is very similar to what we

had above. The states with (K̃−
0

˜̄K−
0 )n|ψ〉 all have the same energies

but they will contribute to the denominator of the second line in (5.25)

with
∞∑

n=0

1

B + n
e−nε = log ε− d

dB
log Γ(B) + O(ε) (5.31)

where

B =
1

2
+ is − k

4
w +

1

w

(
s2 + 1

4

k − 2
+ ˜̄N + h̄− 1

)
, (5.32)

again assuming (5.30).

After we perform these two sums, we find that (5.25) can be writ-

ten in the form

2

β

∫ ∞

0

dsρ(s) exp
[
−β
(
E(s) + i

µ

w
(Ñ + h− ˜̄N − h̄)

)]
(5.33)

with E(s) the energy of long strings (3.16) and ρ(s) the density of

states. We will later see that the physical momentum p of a long

string in the ρ direction is equal to p = 2s. The angular momentum

L = (Ñ + h − ˜̄N − h̄)/w is an integer since the states in (5.25) were
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obeying the level matching condition and the definition (5.26) ensures

that

Ñ + h = ¯̃N + h̄+ w × (integer) . (5.34)

The density of states ρ(s) derived from this analysis is

ρ(s) =
1

2π
2 log ε+

1

2πi

d

2ds
log

(
Γ( 1

2 − is+ ˜̄m)Γ( 1
2 − is− m̃)

Γ( 1
2 + is+ ˜̄m)Γ( 1

2 + is− m̃)

)
,

(5.35)

where

m̃ = − k

4
w +

1

w

(
s2 + 1

4

k − 2
+ Ñ + h− 1

)
,

˜̄m = − k

4
w +

1

w

(
s2 + 1

4

k − 2
+ ˜̄N + h̄− 1

)
.

(5.36)

Note that, despite appearances to the contrary, (5.35) is actually sym-

metric under m̃ ↔ ˜̄m since m̃ − ˜̄m = L is an integer. In the next

subsection we will show that this density of states (5.35) is what is ex-

pected from the spacetime meaning of the cutoff ε. In going from (5.25)

to (5.33) we have states which could be interpreted as coming from the

spectral flow of the discrete representations D+
` and D−

` , with the zero

modes essentially stripped off since they were explicitly summed over

in (5.28) and (5.31). This implies that the states we have in the end

belong to the continuous representation. Note also that the integral

over s in (5.33) has only half the range in (5.25). We rewrote it in

this way using the fact that the exponent is invariant under s → −s,
and that is the reason why we have four Gamma functions in (5.35).

In going from (5.25) to (5.33) we have also used that d
dA = 1

dA(s)
ds

d
ds in

(5.29) and similarly in (5.32).

Combining eqns. (5.23) and (5.33), we have finally

f(β, µ) =
1

β

∑
D(h, h̄, Ñ , ˜̄N,w)

×
[∑

q,q̄

e−β(E+iµL) +

∫ ∞

0

dsρ(s)e−β(E(s)+iµL)

] (5.37)
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which is the free energy due to the short strings and the long strings,

respectively.

5.4. The density of long string states

What remains to be shown is the interpretation of ρ(s) given by

(5.35) as the density of long string states. Whenever we have a contin-

uous spectrum the density of states may be calculated by first intro-

ducing a long distance cutoff which will make the spectrum discrete,

and then removing the cutoff. If the cutoff is related to the volume

of the system then the density of states will have a divergent part,

proportional to the volume and dependent only on the bulk physics,

and a finite part which encodes information about the scattering phase

shift and also has some dependence on the precise cutoff procedure. To

see this, let us consider a one-dimensional quantum mechanical model

on the half line, ρ > 0, with a potential V (ρ). We assume that V (ρ)

vanishes sufficiently fast for large ρ, and that there is continuous spec-

trum above a certain energy level. To define the density of states, it

is convenient to introduce a long distance cutoff at large ρ so that the

spectrum becomes discrete. Let us first consider a cutoff by an infinite

wall at ρ = L. If L is sufficiently large, an energy eigenfunction ψ(ρ)

near the wall can be approximated by the plane wave

ψ(ρ) ∼ e−ipρ + eipρ+iδ(p), (5.38)

where δ(p) is the phase shift due to the original potential V (ρ). Im-

posing Dirichlet boundary condition ψ(L) = 0 at the wall, we have

2pL+ δ(p) = 2π

(
n+

1

2

)
(5.39)

for some integer n. If L is sufficiently large, there is a unique solution

p = p(n) to this equation for a given n. As we remove the cutoff by
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sending L → ∞, the spectrum of p becomes continuous. We then

define the density of states ρ(p) by

dn = ρ(p)dp . (5.40)

From (5.39), we obtain

ρ(p) =
1

2π

(
2L+

dδ

dp

)
. (5.41)

Thus the finite part of the density of states is given by the derivative

of the phase shift.

Instead of the infinite wall at ρ = L, we may consider a more

general potential Vwall(ρ−L) which vanishes for ρ < L but rises steeply

for L < ρ to confine the particle. Let us denote by δwall(p) the phase

shift due to scattering from Vwall(ρ). We then obtain the condition on

the allowed values of momenta by matching these two wavefunctions

and their derivatives at ρ = L as

ψ(ρ) ∼ e−ipρ + eipρ+iδ(p)

∼ A
[
e−ip(ρ−L) + eip(ρ−L)+iδwall(p)

]
, (ρ ∼ L) .

(5.42)

It follows that

pL+ δ(p) = −pL + δwall(p) + 2πn . (5.43)

In the limit L→ ∞, the density of states given by dn = ρ(p)dp is then

ρ(p) =
1

2π

(
2L+

dδ

dp
− dδwall

dp

)
. (5.44)

When we have the infinite wall, the phase shift due to the wall is

independent of p (δwall = π), and (5.44) reduces to (5.41).
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In order to apply this observation to our problem, it is useful to

first identify the origin of the logarithmic divergence in the one-loop

amplitude Z(β, µ) by examining the functional integral (4.16) near

the boundary of AdS3. In the cylindrical coordinates (4.3), the string

worldsheet action (4.10)for large ρ takes the form

S ∼ k

π

∫
d2z

(
∂ρ∂̄ρ+

1

4
e2ρ|∂̄(θ − it)|2 + · · ·

)
. (5.45)

Because of the factor e2ρ, the functional integral for large ρ restricts

(t, θ) to be a harmonic map from the worldsheet to the target space.

Since (t, θ) are coordinates on the torus,

θ − it ∼ θ − it+ 2πn+ iβ̂m, (n,m integers) , (5.46)

the harmonic map from the torus to the torus is

θ − it = (2πw + iβ̂m)σ1 + (2πr + iβ̂n)σ2

=
[
(2πw + iβ̂m)τ − (2πr + iβ̂n)

] z̄

2iτ2

−
[
(2πw + iβ̂m)τ̄ − (2πr + iβ̂n)

] z

2iτ2
,

(5.47)

where z = σ1 + τσ2 is the worldsheet coordinate and (r, w, n,m) are

integers. In particular, the map (θ − it) with (n,m) = (1, 0) becomes

w-to-1 and holomorphic when τ takes the special value

τpole =
r

w
+ i

β̂

2πw
. (5.48)

On the other hand, if τ is not at one of these points, ∂̄(θ−it) cannot be

set to zero14. This gives rise to an effective potential e2ρ for ρ, which

14 For any τ , we also have a trivial holomorphic map (t, θ) = const. The

functional integral around such a map gives a result independent of β and

we can neglect it in the following discussion.
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keeps the worldsheet from growing towards the boundary. If τ is near

τpole

τ = τpole + ε , (5.49)

the harmonic map (5.47) with (n,m) = (1, 0) gives

|∂̄(θ − it)|2 ∼
(

2π2w2

β

)2

ε2 . (5.50)

Thus the action (5.45) generates the Liouville potential ε2e2ρ. When

we computed the one-loop amplitude in sections 4.1 and 4.2, we regu-

larized the τ -integral by removing a small disk |τ − τpole| < ε around

each of these special points. Near τ = τpole, this is equivalent to adding

the infinitesimal Liouville potential ε2e2ρ to the worldsheet action. For

|τ − τpole| � ε, the worldsheet can never grow large enough and the

effect of the Liouville term is negligible. To be precise, the Gaussian

functional integral of (t, θ) shifts k → (k − 2) as in (4.18) and the

effective action for ρ near τ = τpole is

SLiouville =
k − 2

π

∫
d2z

(
∂ρ∂̄ρ+ ε2e2ρ

)
. (5.51)

Therefore, we find that our choice of regularization in (5.28) and (5.31)

amounts to introducing the Liouville wall which prevents the longs

strings from going to very large values of ρ. By looking at the potential

in (5.51), we see that the effective length of the interval is L ∼ log ε.

The central charge of this Liouville theory is such that the e2ρ term

has conformal weight one,

cLiouville = 1 + 6

(
b+

1

b

)2

, b ≡ 1√
k − 2

. (5.52)
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The finite part of the density of states will be given through (5.44) by

δ(s), the phase shift in the SL(2, R) model, and δwall(s), the corre-

sponding quantity in Liouville theory. The first one was calculated in

[32,33],

iδ(s) = log

(
Γ( 1

2 + is− m̃)Γ( 1
2 + is+ ˜̄m)Γ(−2is)Γ( 2is

k−2 )

Γ( 1
2 − is − m̃)Γ( 1

2 − is + ˜̄m)Γ(2is)Γ(−2is
k−2 )

)
, (5.53)

while the second one was obtained in [34,35]

iδwall(s) = log

(
Γ(−2is)Γ( 2is

k−2 )

Γ(2is)Γ(−2is
k−2 )

)
. (5.54)

(In order to compare with the expressions in [34,35] we use the value

of b given in (5.52) and note that the relevant values of α are α =

Q/2 + isb.) Using these two formulas we can check that indeed the

density of states (5.35) is given by (5.44). We can view this as an

independent calculation of (5.53) or as an overall consistency check.

Notice that the physical momentum p of a long string along the ρ

direction is p = 2s. This can be seen by comparing the energy of a

long string (3.16) with the energy expected from (5.51) with spacetime

momentum p along the radial direction, p = (k−2)wρ̇. We have chosen

the variable s since it is conventional to denote by ` = 1/2 + is the

SL(2, R) spin of a continuous representation.
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6. Orbifolds of AdS3

6.1. Introduction

AdS3 is a solution of General Relativity in three dimensions with

a negative cosmological constant, described by the action

S =
1

2π

∫
d3x

√−g
(
R +

2

l2

)
+ surface terms . (6.1)

This theory actually has a family of solutions labelled by two param-

eters M and J [36,3]

ds2 = −N2dt2 +N−2dr2 + r2(Nφdt+ dφ)2 ,

N2 = −M +
r2

l2
+
J2

4r2
,

Nφ = − J

2r2
.

(6.2)

What the resulting spacetimes look like depend on the values of the two

parameters. When M > 0 and Ml > |J |, these spacetimes correspond

to black holes. The second condition ensures that a horizon exists. The

constants are then identified with the mass and angular momentum

of the black hole, respectively. These spaces may be thought of as

excitations of the M = 0 case.

However, M = 0 is not the lowest energy state possible. It turns

out that by setting M = −1, the result is nothing but the familiar

AdS3.

For the spacetimes with −1 < M < 0 (and J = 0), a rescaling of

the coordinates brings the metric into the form

ds2 = −
(

1 +
r2

l2

)
dt2 +

(
1 +

r2

l2

)−1

dr2 + r2dφ2 , (6.3)

which is the same as AdS3 (related to the coordinates we have been

using by the simple transformation r = l sinh ρ), but with a deficit
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angle δ = 2π(1−
√

|M |) for φ. Thus, these spaces correspond to AdS3

with conical singularities.

In fact, even the black holes corresponding to (6.2) with M > 0

are locally AdS3, and can be obtained from AdS3 by a quotient. This

is consistent with the equations of motion resulting from (6.1), which

implies that the curvature is constant. The black hole solutions do not

have a curvature singularity, and differ from AdS3 only by some global

identifications.

The solutions that are being discussed here are easily lifted to

solutions of string theory. By including a three form H (the field

strength of B), which must be proportional to the volume form in

three dimensions, these spaces provide a background in which it is

possible to describe string propagation via the SL(2, R) WZW model.

At the level of low energy effective action, (6.1) arises when one takes

the action for the massless fields of string theory gµν , H, φ and sets

Hµνσ = 2
l εµνσ, and φ = 0 [37].

In this section we study string propagation on the conical spaces.

For the special values of the opening angle 2π/N , where N is an in-

teger, the spaces may be obtained as a ZN orbifold of AdS3.
15 The

singularity present is then just an orbifold singularity, and it is possible

to formulate a consistent string theory on this background given the

knowledge of string theory on AdS3.

It is interesting to note that the conical spaces we are considering

can be formed by adding mass to empty AdS3 [38]. Relative to the

AdS3 vacuum, an object of mass less than 1 would create a conical

singularity. One can imagine a process where a collision taking place

15 φ corresponds to rotation in X1−X2 plane in the covering space ds2 =

−dX2

−1−dX2

0 +dX2

1 +dX2

2 , and is always a space-like killing vector, ensuring

causality in the resulting quotient space.
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inside of AdS3 leaves a lump of stable matter, not enough to produce

a black hole but distorting the geometry to what we are studying here.

This provides a controlled setting to study black hole formation, as in

[39].

Another reason for studying this theory is that one would like to

gain further insight into the spectral flow symmetry of the SL(2, R)

WZW model. From this study we will learn that on the conical spaces

spectral flow acts as a twist, in the orbifold sense.

6.2. ZN quotient

Taking string theory on AdS3 as the starting point, the conical

spaces with opening angles 2π/N are obtained by taking a ZN orbifold.

Let us first note how spectral flow acts on this quotient space. The

effect of spectral flow is to take a solution of the WZW equation of

motion

g = g+(x+)g−(x−) (6.4)

and generate a new solution [16]

g+(x+) → e
i
2wx

+σ2g+(x+) , g−(x−) → g−(x−)e
i
2wx

−σ2 . (6.5)

Under this operation, t → t + wτ and φ → φ + wσ. In regular AdS3

closure of the string worldsheet required that w be an integer, but now

we see that w only needs to be a multiple of 1/N .

When we spectral flow by a fractional amount the ŜL(2, R) cur-

rents obey twisted boundary conditions. Consider the nth twisted

sector:

K+(x++2π) = K+(x+) e−2πin/N , K−(x++2π) = K−(x+) e2πin/N .

(6.6)
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Then the mode expansion is

K+(z) =
∑

r∈Z+n/N

K+
r z

−r−1 , K−(z) =
∑

s∈Z−n/N

K−
s z

−s−1 , (6.7)

where z = eix
+

. The commutation relations are

[
K+
r ,K

−
s

]
= −2J3

r+s + krδr+s
[
K3
m,K

±
r

]
= ±J±

m+r

[
K3
m,K

3
l

]
= −k

2
mδm+l .

(6.8)

Note that K3
m are integrally moded, a condition preserved by the alge-

bra. There is a total of N sectors to consider, and in each sector K±

are quantized with different periodicity. We now turn to the first step

in taking an orbifold, which is to construct the twisted states. As we

will see, there will be a close connection to spectral flow.

6.3. Twisted states and spectral flow

Consider a state obtained by repeated applications of the raising

operators on a lowest weight state,

∏

mi

K3
mi

∏

rj

K+
rj

∏

sk

K−
sk
|`, `〉 . (6.9)

If necessary, commutation relations may be used to change the order

in which the generators appear. However, in what follows the ordering

will be immaterial. The conformal weight of (6.9) lies −(
∑
mi+

∑
rj+∑

sk) above the ground state and K3
0 = `+N+−N− where N+ (N−)

is the number of times K+ (K−) appears in the above expression. Also

note that the fractional part of the level is given by (N+ −N−)n/N .

If we take this state and spectral flow by w = −n/N , we find

that the new generators acting on it are integrally moded. Thus, one
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can think of this state as belonging to D̂+,w=n/N

j̃
. To obtain a string

state in spacetime (including X ), we impose the Virasoro constraints

(1.6) and obtain the same expression for the energy that was found in

AdS3 × X , (3.14). The discussion for the continuous states is similar

and once again we conclude that the energy is given by (3.16).

Normally, twisting the currents as in (6.6) gets rid of the zero

mode and the corresponding total charge Q± = 1
2π

∫
K±dσ vanishes.

This results in breaking of the gauge symmetry [40,41]. What we

have found here, in the case of AdS3, is that such twists are nothing

but fractional spectral flows. One might worry that there is still a

distinction between those states built with integrally moded K± and

those states built with fractionally moded K±, in that the latter are

expected to have a different ground state energy. However, in the next

section we will show from the partition function calculation that this

does not happen. As such, by taking D̂+
˜̀ , Ĉα1/2+is and their images

under fractional spectral flows, we automatically include the twisted

states. Of course, the integer-valued spectral flows are still allowed

and all the flowed sectors are treated in equal footing. In particular,

the form of the Virasoro constraints remains the same and so does

the expression for the energy and angular momentum. It is tempting

to think that even in the case of AdS3, spectral flow arises as a kind

of twisting of some underlying theory, possibly with φ noncompact.

But one probably needs a better understanding of the SL(2, R)/U(1)

parafermion theory [42] in order to pursue this idea.

6.4. Invariant subspace

Having constructed the twisted sectors, only the states that are

invariant under the identification φ ∼ φ + 2π/N are to be retained in

the spectrum. There is a simple way to see what one should expect.
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If one considers the wave equation for a scalar field in the background

(6.3), the solution may be expressed as Ψ =
∑
R(r, ω,m)e−iωt+imφ.

Then single-valuedness of the wave function implies m = N × integer.

The effect of the projection, then, is to restrict the angular momentum

to be a multiple of N .

It is straightforward to see how this condition comes about. For

all the sectors that we have, we are to project on to the states invariant

under the operator

e−2πi(K3
0−K̄

3
0)/N . (6.10)

Therefore, the states that remain carry angular momentum that is a

multiple of N , K3
0 − K̄3

0 = N × integer, for both the discrete and

continuous representations.

6.5. Thermal partition function

As in the case of AdS3, we can check that the spectrum derived

above agrees with what one gets by evaluating the finite temperature

partition function. The calculation was explained in detail in Chapter

4, so our focus will only be on the effects due to the conical singularity.

As before, we first transform to the coordinates that are well suited

for carrying out the path integral. We reproduce the transformation

here to make the identifications transparent:

v = sinh ρ eiφ

v̄ = sinh ρ e−iφ

θ = t− log cosh ρ .

(6.11)

Under the identification φ ∼ φ + 2π/N , the fields are identified as

v ∼ ve2πi/N and v̄ ∼ v̄e−2πi/N . We take the worldsheet to be a torus

with modular parameter τ . Then the boundary conditions are

v(z + 2π) = v(z)e2πia/N , v(z + 2πτ) = v(z)e2πib/N . (6.12)
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We will denote by Zab the path integral
∫
e−SDθDvDv̄ with the above

boundary conditions. We remind the reader that these boundary con-

ditions are in addition to those introduced by identifying the Euclidean

time t ∼ t+ β.

Let us first calculate Za0. We can implement the right boundary

condition by setting

v(z) = ṽ exp

(
− a

2Nτ2
(zτ̄ − z̄τ)

)
, (6.13)

with ṽ periodic. Then Ūn,m, defined in eqn (4.15), picks up an addi-

tional term, Ūn,m → Ūn,m + aτ̄/N . With this change, we can repeat

the calculation that was done in Chapter 4, and obtain the partition

function as (4.19). Similarly, for Z0b all we need to do is twist along

the other direction of the torus, to obtain Ūn,m → Ūn,m + b/N and

once gain the partition function takes the same functional form. In

this way we obtain for the partition function of thermal AdS3/ZN ,

Z =
1

N

∑

a,b

Zab . (6.14)

To obtain the free energy of strings on AdS3/ZN × M, we mul-

tiply (6.14) by the partition function of the CFT on M and the

reparametrization ghosts, and integrate τ over the fundmental domain:

∫

F0

ZAdS3/ZN
ZMZbc = −βF = −

∑

physical

log(1 − e−βE) . (6.15)

From this point on one can follow exactly the same steps as before

to reproduce the spectrum. We will explain some of the new features

that arise in the course of this computation.

As usual the sum over a represents the twisted sectors and the sum

over b serves as a projection down to the invariant states. Consider
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Za0 and its expansion. From exp{2π(ImU0,1)
2/τ2} and | sin(πU0,1)|−2

we obtain the additional factor

exp

[
2πτ2

(
a2

N2
− a

N

)]
. (6.16)

A conformal field theory of 2 bosons with periodicity θ has ground

state energy

(qq̄)−
1
2 (θ2−θ)− 1

12 , (6.17)

so we have reproduced what might have been the expected shift in

the ground state energy. However, this is not the end of story. The

oscillator terms are changed to

∣∣∣∣∣
∞∏

n=1

(1 − eβ+2πiτ(n−a/N))(1 − e−β+2πiτ(n+a/N))

∣∣∣∣∣

−2

, (6.18)

which has poles when τ2 = β
2π(n−a/N) . Earlier it was shown that the

location of the poles correspond to spectral flow parameters. So we

see that w is given by w = n− a/N with n being positive integers. It

will be explained shortly that w = −a/N arises from τ2 above the first

pole at β
2π(1−a/N) . The shift in the location of the poles also causes the

expansion of (6.18) to be slightly different from the AdS3 case. One

finds the terms (compare to eqn. (5.18))

. . . exp

[
2πτ2

(
w(w + 1) − a2

N2
+

a

N

)]
. . . (6.19)

The extra terms on the right serve to cancel the shift in ground state

energy, (6.16), and we are left with the correct expression for the en-

ergy. Note that this cancellation is in agreement with what we found

in the previous section. What appears to be twisting is actually a

fractional spectral flow.
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To see that summing over b corresponds to a projection down to

the invariant states, take Zab and its expansion. The only additional

change is the appearance of a new term

exp

[
−2πib(q − q̄)

N

]
(6.20)

in every state. Hence, 1
N

∑
bZab only includes the states with the cor-

rect condition on angular momentum. This shows that from (6.14) we

obtain the spectrum that agrees with what was found in the algebraic

analysis.

6.6. Bound on ˜̀

In expanding the partition function, the presence of poles in the

oscillator terms meant that the range of τ2 was broken up into

β

2π(w + 1)
< τ2 <

β

2πw
, (6.21)

and a different expansion was used in each interval. This gave rise to

the states with spectral flow by amount w. In the case of AdS3, this

included the sector with w = 0. But now that w is no longer limited

to be an integer, we need to re-examine the special case

β

2π(1 − a/N)
< τ2 <∞ . (6.22)

In this range, the energy is found to be

E = 1 + q+ q̄− 2a

N
+

√
1 + 4(k − 2)

(
Nw + h− 1 − 1

2

(
a2

N2
− a

N

))
.

(6.23)

So we see that these states are in the sector flowed by w = −a/N .

Thus, the allowed values of spectral flow are w = n − a/N , including
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n = 0. We expect that these states will have a different range of ˜̀,

because the integral over τ2 is broken up in a different way from all

the other states.16 Repeating the saddle point calculation as was done

earlier, ˜̀ is seen to satisfy

(k − 2) aN + 1

2
< ˜̀<

k − 1

2
. (6.24)

On the algebraic side, this change in the lower bound can be seen from

solving the physical state condition

˜̀=
1

2
− k − 2

2
w +

√
. . . , (6.25)

with w = −a/N . The semi-classical limit (large k, h) of this bound

translates into

0 <

√
4h

k
< 1 − a

N
, (6.26)

which is consistent with the analysis of [43], extended to negative values

of w. In AdS3, states with negative w automatically had negative

energy, but now we find that in the quotient space it is possible for

states with negative fractional spectral flow to have positive energy.

6.7. Discussion

We have formulated a description of strings moving on AdS3 but

with an opening angle of 2π/N for φ. The twisted states arising

from the orbifold construction found a natural description as states

with fractional spectral flow. Specifically, we have shown that the

nth twisted sector is obtained by taking spectral flow with w = n/N .

Rather than thinking of the original states with integral w as being

16 That is to say, in the variable 1/τ2 these states occupy a strip of length

less than 2π/β.
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“untwisted” and fractional w as being “twisted”, we have proposed

that there is only one untwisted sector, namely those with w = 0, and

all the spectral flowed sectors should be thought of as being twisted.

We have also computed the thermal partition function on this

background and extracted the spectrum that agrees with the results

of the algebraic description. Despite the fact that there are states con-

structed by acting with fractionally-moded generators, it was shown

that this does not cause a change in the ground state energy.

The fact that twisted states may be obtained by spectral flow

means that we are also able to write down the corresponding vertex

operators, by bosonizing the K3 current [44,16]. Thus, unlike what

usually happens in orbifolds we have explicit formulas for the twisted

state vertex operators. Using these vertex operators we can compute

the long string scattering amplitude on AdS3/ZN .

One might wonder whether we can extend our analysis to the case

with rational values of the opening angle. Indeed, it is fairly simple to

generalize the algebraic construction given here, by first going to the

covering space in which φ has period 2πP and taking a ZQ orbifold.

The resulting space would have an opening angle 2πP/Q. However, it

is not clear whether one can calculate the partition function with this

geometry, and that prevents us from concluding at present that such

descriptions are possible.

As already mentioned, an important application of AdS3 orb-

ifold is the BTZ black hole. The idea of generating twisted states

by fractional spectral flow was used in [45,46] to determine the string

spectrum in the BTZ background. The quotient involved in that cal-

culation is more complicated than what we considered here, and the

orbifold is an asymmetric one, meaning that a different identification

is made for the left and right. It is worth noting, however, that the
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asymmetry only manifests itself in having different fractional spectral

flow numbers on each side.

Lastly, it would be interesting to apply the conicals discussed here

to the study of closed string tachyon condensation. In many respects

AdS3/ZN and C/ZN are similar, but they differ in one important

aspect: time does not decouple in AdS3/ZN . Extending the recent

results in tachyon condensation in C/ZN [47,48,49] to AdS3/ZN would

represent a significant progress.
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7. Strings in Plane Wave and AdS × S

7.1. Introduction

As mentioned in the Introduction to this thesis, it has not been

possible to explore AdS/CFT correspondence to the extent one would

like because string backgrounds with R-R fields are difficult to solve.

Recently, however, Berenstein, Maldacena, and Nastase [50] showed

how to take AdS/CFT beyond the supergravity approximation. By

taking a limit of AdS5 × S5 in which the geometry becomes that of

a plane wave, one obtains a background that allows for exact string

quantization, in Green-Schwarz formalism [51]. The limiting procedure

involves taking the radius of AdS5 × S5 to infinity and is an example

of Penrose’s limit [52]. At the same time, on the CFT side one focuses

on those states with large conformal weight and R-charge: ∆, J → ∞
as R2, but with finite ∆−J . In this way each AdS/CFT duality gives

rise to a plane wave/CFT duality, in which one may go beyond the

supergravity approximation. Specifically, BMN was able to reproduce,

from the CFT point of view, some of the stringy excitations in the plane

wave. This represents remarkable progress towards establishing the

correspondence between a fully string theoretic description of gravity

on AdS and the CFT on the boundary.

Furthermore, it has been shown that some physical quantities of

interest may be computed perturbatively on both sides of the BMN

correspondence [53,54,55,56]. This differs from AdS/CFT, in which

the duality relates the weak coupling physics on one side to the strong

coupling physics on the other. This development has led to an intense

level of activity17 which has resulted in significant understanding of

both gauge theory and string field theory.

17 See, for example, [57,58,59,60,61,63,64,65], and [66,67,68,69] for reviews.
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For these reasons string theory on plane waves that arise as Pen-

rose limits of AdS × S has emerged as a topic of great importance.

However, the GS formulation of superstrings is technically cumber-

some and much insight would be gained from an example of an exact

CFT description of string propagation on a plane wave. Happily, such

an example exists: the plane wave obtained via the Penrose limit of

AdS3 × S3 with a purely NS-NS field strength18.

Actually, the AdS3 × S3 plane wave with NS background is spe-

cial for another reason–string theory is solvable even before the Pen-

rose limit is taken! The CFT on the string worldsheet is given by the

SL(2, R) and SU(2) WZW models with the level of the current alge-

bras determined by the radius of AdS3 × S3. The solvability of string

theory on AdS3×S3 allows us to view string theory on the plane wave

as one of its subsectors. This is similar in spirit to how the N = 4

SYM theory is studied in the ten dimensional BMN duality, in that one

does not in anyway change the theory while trying to study the cor-

respondence. Rather, one restricts focus onto a particular subclass of

operators, such as the (nearly) chiral operators, for which it is possible

to say something about the dual objects in the string side.

Our goal is to understand string theory on plane wave from the

viewpoint of the underlying supersymmetric SL(2, R) × SU(2) WZW

model. We begin with the superstring spectrum on AdS3 ×S3 ×M at

arbitrary values of the level k and angular momentum J on S3. As we

take k, J → ∞, we can “see” how the Hilbert space breaks apart, and

a subspace arising in this limit corresponds to the plane wave Hilbert

18 For earlier work on the AdS3 × S3 plane wave, see [70,71,72,73,74,75].
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space. The spectral flow symmetry of the SL(2, R) WZW model once

again will play a key role in this discussion19.

Moreover, since our treatment is fully string theoretic from the

start, or in other words valid for arbitrary values of the radius, we can

attempt to address the following important question: What can string

theory on plane waves tell us about string theory on AdS × S? Even

though it is believed that the former represents a great simplification

of the latter (the plane wave is, after all, just the first term in an R−2

expansion of AdS×S), we find some strong evidence that in fact some

aspects of string theory in the plane wave could be trusted away from

the strict R2 → ∞ limit. Specifically, we will show that the large

J spectrum of strings on AdS3 × S3 with NS background at finite

R2 coincides with the plane wave spectrum, found in [50,70,71,72].

This is rather surprising since the spacetime geometry in each case is

drastically different. Our result provides an explicit and compelling

evidence in support of some of the recent ideas [76,77,78,79,80] about

extrapolating the semiclassical relationship between energy and spins

in AdS5 × S5 down to the stringy regime.

The plan is as follows. We begin by reviewing in this section the

SU(2) WZW model, which is needed to describe the S3 part of the

target space. We will briefly describe the Hilbert space of the SU(2)

WZW model, in order to introduce notation and also because as we

will see, the analog of spectral flow (3.9), (3.10) in the SU(2) WZW

model will prove to be an useful tool in studying superstrings in the

19 Previous work on the plane wave limit of AdS3 × S3 either did not

address the issue of spectral flow, or discussed it as a symmetry of the WZW

model based on the extended Heisenberg group, i.e. after the Penrose limit

was taken.
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plane wave. Then we formulate superstrings in AdS3 ×S3×M, where

M may be T 4 or K3.

Section 8 explains the Penrose limit which takes AdS3 × S3 to

the plane wave, and in section 9 we study the semi-classical limit of

strings that will be relevant in the plane wave limit. We do this by

computing the Nambu action of a string near the origin of AdS3 and

moving with high angular momentum on a great circle of S3. This

is the six dimensional analog of the particle trajectory used by BMN

to obtain the ten dimensional plane wave from AdS5 × S5 [50]. The

resulting Nambu action displays the same behavior as what was shown

in [16]. Namely, new representations that do not obey the usual highest

weight conditions appear. These representations are obtained from the

usual representations by spectral flow, and it is shown that the amount

of spectral flow depends on the ratio of the angular momentum to

R2. Armed with this knowledge, in section 10 we obtain the exact

string spectrum on AdS3 × S3, valid for arbitrary values of R2 and

J . The plane wave spectrum is reproduced by taking R2, J → ∞ and

expanding to leading order. In section 11 we discuss the decoupling

of the Hilbert space in the Penrose limit. In section 12 we discuss

what happens when the radius of AdS3 × S3 is finite. Conclusions

are presented in section 13. In Appendix A we show how the spectral

flow number violation rule found in [81] can be understood in terms of

angular momentum conservation in the plane wave.

7.2. SU(2) WZW model

String theory on S3 is described by the SU(2) WZW model, and

its Hilbert space can be constructed in a manner similar to what we

described for SL(2, R). Again, we will restrict our attention to the
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holomorphic sector. Every statement we make regarding the holo-

morphic sector has an analogous statement for the anti-holomorphic

sector.

The action takes the same form as the SL(2, R) WZW model, but

now with g labelling an element of SU(2). The parametrization of the

SU(2) group manifold is very similar to what was used for SL(2, R).

The metric on S3 reads

ds2 = cos2 θdψ2 + dθ2 + sin2 θdϕ2 . (7.1)

The symmetry of SU(2) WZW model is generated by two copies

of the ŜU(2) current algebra at level k′

[
J+
m, J

−
n

]
= 2J3

m+n + k′mδm+n

[
J3
m, J

±
n

]
= ±J±

m+n

[
J3
m, J

3
n

]
=
k′

2
mδm+n ,

(7.2)

and the Virasoro algebra given by the Sugawara form

Ln =
1

k′ + 2

∞∑

m=−∞

: δabJ
a
mJ

b
n−m : . (7.3)

The representations of the SU(2) WZW model are built from the famil-

iar SU(2) angular momentum representations Dj . A state is labeled

as |j,m,M〉, with

L0|j,m,M〉 =

(
j(j + 1)

k′ + 2
+M

)
|j,m,M〉

J3
0 |j,m,M〉 = m|j,m,M〉 .

(7.4)

It will be convenient to choose our basis so that the zero modes of J3

and J̄3 are related to translation along ψ direction in (7.1):

−i ∂
∂ψ

= J3
0 + J̄3

0 . (7.5)
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The possible values of j that may appear are restricted to 0 ≤ j ≤ k′/2,

in half-integer steps [82]. The complete Hilbert space of SU(2) WZW

model is therefore

HSU = ⊕
j=0, 12 ,...

k′

2
D̂j ⊗ D̂j . (7.6)

7.3. Superstrings on AdS3 × S3 ×M

So far we have discussed the bosonic string theory. Our main in-

terest is in the supersymmetric case, and in this subsection we will de-

scribe the supersymmetric extension of WZW models. For simplicity,

we will limit our discussion to the SL(2, R) model; the corresponding

modifications for the SU(2) model is straightforward. Further details

on superstrings on group manifolds can be found in [83]. Superstrings

on AdS3 × S3 was also studied in [84], and the no-ghost theorem was

proved in [85,86].

To extend the above results to the case of superstrings in RNS

formalism, we need to introduce free worldsheet fermions χa which

together with the total current Ka comprise the WZW supercurrent:

Ca = χa + θKa , (7.7)

with θ a holomorphic Grassmann variable. The OPE’s of Ka and χa

are

Ka(z)Kb(w) ∼ k

2

ηab

(z − w)2
+
iεabcK

c(w)

z − w

Ka(z)χb(w) ∼ iεabcχ
c(w)

z − w

χa(z)χb(w) ∼ k

2

ηab

z − w
.

(7.8)
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This shows that Ka and χa do not form independent algebras. By

subtracting the fermionic contribution to the total current, we obtain

the bosonic current

ka = Ka +
i

k
εabcχ

bχc , (7.9)

which have the OPE’s

ka(z)kb(w) ∼ k + 2

2

ηab

(z − w)2
+
iεabck

c(w)

z − w

ka(z)χb(w) ∼ 0 .

(7.10)

Hence the level of the bosonic WZW model is shifted from k to k+ 2.

Similarly, for the supersymmetric SU(2) WZW model one introduces

three fermions ζa which together with Ja form the supercurrent. The

purely bosonic current ja is defined analogous to (7.9), and the level

of the bosonic part is shifted from k′ to k′ − 2. The stress tensor and

the Virasoro supercurrent are given by

T =
1

k
(ηabk

akb − ηabχ
a∂χb) +

1

k′
(δabj

ajb − δabζ
a∂ζb)

G =
2

k

(
ηabχ

akb − i

3k
εabcχ

aχbχc
)

+
2

k′

(
δabζ

ajb − i

3k′
εabcζ

aζbζc
)
.

(7.11)

Criticality of superstring theory on AdS3 × S3 ×M, where M is

K3 or T 4, requires the central charge to satisfy

3(k + 2)

k
+

3

2
+

3(k′ − 2)

k′
+

3

2
= 9 , (7.12)

which relates the levels of the current algebras

k = k′ . (7.13)

It is worthwhile to use variables commonly used when discussing

AdS/CFT duality. In deriving the AdS3/CFT2 correspondence from
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D-branes, S-duality can be used to transform the D1-D5 system into an

NS1-NS5 system. Taking the near horizon limit, the level of SL(2, R)

WZW model is identified with Q5, the number of 5 branes (for details

see [11], [87]). Hence the bosonic levels of the SL(2, R) and SU(2)

WZW models are Q5 + 2 and Q5 − 2, respectively.

The supersymmetric generalization of spectral flow in SL(2, R)

WZW model was given in [88]. The spectral flow operation, given by

the action of what was referred to as the “twist field” in that work,

not only induces transformation on the ŜL(2, R) quantum numbers but

also on the CFT describing the internal space. Physically, this coupling

between the SL(2, R) part and the internal CFT has its roots in the

fact that in order for the spacetime theory to admit supersymmetry,

one needs to pair χ3 with a fermion from the internal CFT and then

bosonize [14,89,90]. In the case of AdS3×S3×M the internal fermion

is identified with ζ3 and in the language of [88] every time the twist in

ŜL(2, R) is taken there is a corresponding twist in ŜU(2).

Thinking of spectral flow as a twist is equivalent to the parafermion

decomposition SL(2, R) ' SL(2, R)/U(1) × U(1) and SU(2) '
SU(2)/U(1) × U(1), in the following way. Introduce free bosons φ

and ψ, normalized such that

〈φ(z)φ(z′)〉 = log(z − z′) , 〈ψ(z)ψ(z′)〉 = − log(z − z′) . (7.14)

In terms of which k3
0 and j30 can be expressed as

k3(z) = −i
√
k

2
∂φ , j3(z) = −i

√
k′

2
∂ψ . (7.15)

Throughout this discussion k and k′ stand for the bosonic SL(2, R)

and SU(2) levels, respectively. Then the bosonic SL(2, R) primary
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field Φlnn̄ is decomposed into a field of SL(2, R)/U(1) times a field in

U(1), where the U(1) is generated by φ:

Φlnn̄ = ein
√

2
k
φ+in̄

√
2
k
φΦ

SL/U(1)
lnn̄ . (7.16)

Similarly, a bosonic SU(2) primary Ψjmm̄ is written as

Ψjmm̄ = eim
√

2
k′
φ+im̄

√
2
k′
φΨ

SU/U(1)
jmm̄ . (7.17)

The fields Φ
SL/U(1)
lnn̄ are Ψ

SU/U(1)
jmm̄ parafermions, with weight

h(Φ
SL/U(1)
lnn̄ ) = − l(l − 1)

k − 2
+
n2

k
,

h(Ψ
SU/U(1)
jmm̄ ) =

j(j + 1)

k′ + 2
− m2

k′
,

(7.18)

so that (7.16) and (7.17) have the expected weights. Note that under

the shift n→ n+wk/2 andm→ m+wk′/2, the weights of the primary

fields change to

h(Φlnn̄) → − l(l − 1)

k − 2
− nw − kw2

4
,

h(Ψjmm̄) → j(j + 1)

k′ + 2
+mw +

k′w2

4
.

(7.19)

Spectral flow in the supersymmetric theory consists of the above shift

in n,m, plus an additional contribution from the fermions [88], which

gives

h(Φwlnn̄) = − l(l − 1)

Q5
− nw − Q5w

2

4
,

h(Ψw
jmm̄) =

j(j + 1)

Q5
+mw +

Q5w
2

4
.

(7.20)

There is a similar relation on the anti-holomorphic side as well, with

the same w. Note that the parafermion formalism also provides a

convenient way of defining the vertex operators for states belonging
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to the spectral flowed representations [91,16,81]. The physical state

condition is (Ln − aδn,0)|Ω〉 = 0 for n ≥ 0, where a = 1
2 in the NS

sector and a = 0 in the R sector, as well as Gr|Ω〉 = 0 for r ≥ 0. In

addition, the analogue of GSO projection is the requirement of mutual

locality with the supercharges that are constructed by bosonizing the

worldsheet fermions [88].

8. Penrose limit of AdS3 × S3 with NS background

In this section we explain the Penrose limit [52] of AdS3×S3 that

results in the plane wave geometry [50,92].

The six dimensional plane wave is obtained from AdS3 × S3 by

expanding around a particular class of geodesics. These geodesics cor-

respond to a particle near the center of AdS3 and moving with very

high angular momentum around a great circle of S3. For this purpose,

we begin with the spacetime metric

ds2 = R2(− cosh2 ρdt2 +dρ2 +sinh2 ρdφ2 +cos2 θdψ2 +dθ2 +sin2 θdϕ2)

(8.1)

and introduce the coordinates

t = µx+

ψ = µx+ − x−

µR2
.

(8.2)

Rescaling ρ = r/R, θ = y/R, the metric is expanded around ρ = θ = 0

by taking the limit R → ∞. This results in the six dimensional plane

wave

ds2 = −2dx+dx− − µ2(r2 + y2)dx+dx+ + dr2 + r2dφ2 + dy2 + y2dϕ2 .

(8.3)
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String spectrum in this background with NS three form field

strength was found by quantizing the light cone action in [50,70,72].

For our purposes we will find it convenient to take the light cone Hamil-

tonian as given in [71], adapted to the conventions of this paper and

supersymmetrized,

Hlc = p− = µ(2 + q + q̄) +
N + N̄ + hM + h̄M − 1

p+α′
. (8.4)

This applies to the NS-NS sector, and the last term needs to be ap-

propriately changed for the R sector. The quantities appearing in this

expression have the following physical interpretation. N is the total

level of excitations along the pp-wave. hM is the weight of the state

coming from the CFT on M. Finally, q is the net number of times the

spacetime light cone energy raising and lowering operators have been

applied to the ground state. The ground state in question may or may

not be physical, i.e. we are referring to the ground state before the

GSO projection. We have chosen the letter q to denote this number

because as we shall see the physical meaning of this quantity is the

same as the q we used in labelling the current algebra representations,

see the remark below (3.12). There are corresponding contributions

from the anti-holomorphic side to (8.4), subject to the constraint that

the net momentum along the worldsheet vanishes,

N + h = N̄ + h̄ . (8.5)

The lightcone variables p− and p+ are related to observables mea-

sured in the global coordinates (8.1) by

p− = i∂x+ = µ(E − J)

p+ = i∂x− =
J

µR2
.

(8.6)
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E is the spacetime energy and J is the angular momentum around the

ψ direction in S3. Our choice of basis in labeling the SU(2) represen-

tations (7.4) corresponds to diagonalizing the action of rotation in ψ,

hence J is given by J3
0 + J̄3

0 .

The radius of AdS3 and S3 is related to Q5 by R2 = α′Q5, so the

second equation in (8.6) is equivalent to

µp+α′ =
J

Q5
. (8.7)

Hence the string spectrum in the NS-NS sector is

E − J = 2 + q + q̄ +
Q5

J
(N + N̄ − 1) +

Q5

J
(hM + h̄M) , (8.8)

with the condition (8.5).

We make a few comments about the brane charges. Note that Q1,

the number of 1branes, actually never appears in any of the formulas20.

But it should be kept in mind that Q1 is being taken to infinity as

well. As explained in [92], the plane wave limit can be described in

terms of the brane charges by taking Q1, Q5 → ∞, with fixed Q1/Q5.

The scaling used to obtain the plane wave requires that finite energy

excitations of the resulting geometry have ∆, J → ∞ as
√
Q1Q5, with

finite ∆ − J . Since Q1 ∝ Q5, this actually implies that ∆, J → ∞
as Q5 ∼ k, the level of the current algebra. We could have seen this

directly from the fact that J/R2 is held fixed as the limit R2 → ∞ is

taken, but then it would not be clear that Q1 is scaled to infinity as

well. Also note that in the case of Q5 = 1, due to the aforementioned

shift in the level of the bosonic WZW model the bosonic SU(2) part

has a negative level. This is in conflict with the well-known result that

the SU(2) level must be a non-negative integer. We will return to the

issue of Q5 = 1 later.

20 This is a feature of the NS1-NS5 description [87].
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9. Nambu action near the origin of AdS3 × S3

One of the things we want to understand is how the string spec-

trum on AdS3 × S3 ×M reduces to (8.8) in the limit Q5, J → ∞. In

order to answer this question we must first understand how (8.8) takes

into account the spectral flow parameter w. In this section we explain

the physical significance of spectral flow in the plane wave.

The plane wave limit described above is essentially a semi-classical

expansion about AdS3 × S3, combined with the unusual procedure of

boosting to infinite (angular) momentum. Indeed, the large k limit in

WZW models corresponds to the semi-classical limit, since the WZW

action is proportional to k. Motivated by these concerns we will con-

sider the Nambu action, upto quadratic order in the fields, of a string

moving moving near ρ ∼ θ ∼ 0 of AdS3 × S3. When J is taken to

be large, of order Q5, the resulting action displays spectral asymmetry

which is then related to spectral flow [16].

The Nambu action is given by

S =
1

2πα′

∫
dτdσ(

√
|g| − εabBµν∂aX

µ∂bX
ν) (9.1)

with g the induced metric and Bµν the NS-NS two form. The non-zero

components of the B field are

Btφ =
1

4
α′Q5 cosh 2ρ , Bψϕ =

1

4
α′Q5 cos 2θ . (9.2)

We will consider a string located at small values of ρ and θ, and mov-

ing along the ψ direction. Since we will be interested in states with

fixed angular momentum around ψ, we take as our classical solution

ψ(τ, σ) = ψ(τ). This corresponds to a string collapsed to a point
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and rotating around a great circle21. The components of the induced

metric gab = Gµν∂aX
µ∂bX

ν are, in the gauge t = τ ,

g00 = α′Q5(−(1 + (Xa)2) + ∂0X
a∂0X

a

+ (1 − (Y a)2)(∂0ψ)2 + ∂0Y
a∂0Y

a)

g01 = α′Q5(∂0X
a∂1X

a + ∂0Y
a∂1Y

a)

g11 = α′Q5(∂1X
a∂1X

a + ∂1Y
a∂1Y

a) ,

(9.3)

where X1 + iX2 = ρeiφ, and Y 1 + iY 2 = θeiϕ. The coupling to B field

simplifies in this gauge to

−Q5

2π

∫
dτdσ(ρ2∂1φ− θ2∂0ψ∂1ϕ) , (9.4)

where we have used the fact that ψ has no dependence on σ,

∫
dτdσ∂0ψ∂1ϕ =

∫
dτdσ∂1(∂0ψϕ) = 0 . (9.5)

The resulting action (9.1) shows that ψ is a cyclic coordinate. Hence,

the conjugate momentum J0 = ∂L
∂(∂0ψ) is constant and it is advan-

tageous to perform a Legendre transformation for ψ. The resulting

Routhian,

R(Xa, Y a;J0) = L− J0∂0ψ , (9.6)

is then the Lagrangian that describes the dynamics of Xa and Y a,

while treating J0 as a constant of motion. The subscript 0 is added

to J here to indicate that it is the angular momentum of the ground

state, because we are discussing the point particle limit. Taking J0 to

21 The importance of studying such solutions were pointed out in [93,94].
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be large, of order Q5, the action for Xa and Y a upto quadratic order

in the fields is found to be

S =
J0

2π

∫
d2σ

[
1 − 1

2
|∂0Θ|2 +

1

2

1

A2
|(∂1 − iA)Θ|2

−1

2
|∂0Φ|2 +

1

2

1

A2
|(∂1 − iA)Φ|2

]
,

(9.7)

where A = J0/Q5, and X1 + iX2 = Φ, Y 1 + iY 2 = Θ. We see that Φ

and Θ are two massless charged scalar fields on R × S1, coupled to a

constant gauge field Aa = Aδa,1. As shown in [16], this implies that

if A is not an integer, the states of Φ and Θ belong to the discrete

representations with spectral flow number w equal to the integer part

of A. Let us explain how this arises. The solution to the equation of

motion that follows from (9.7) is

Φ =
∑

n

(
a†nei(n−A)(τ/A+σ) + bne

−i(n−A)(τ/A−σ)
) eiAσ

n−A

Θ =
∑

n

(
c†nei(n−A)(τ/A+σ) + dne

−i(n−A)(τ/A−σ)
) eiAσ

n− A
.

(9.8)

Canonical quantization gives for the commutation relations

[an, a
†
m] ∼ (n−A)δn,m , [bn, b

†
m] ∼ (n− A)δn,m

[cn, c
†
m] ∼ (n−A)δn,m , [dn, d

†
m] ∼ (n−A)δn,m .

(9.9)

Hence, for n > A, a
†
n is the creation operator while for n < A, an

should be thought of as the creation operator. Similar comments apply

to the other sets of operators. The holomorphic currents constructed
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from Φ and Θ are

K+ ∼ −iQ5

∑

n

ane
−in(τ/A+σ)

K− ∼ iQ5

∑

n

a†nein(τ/A+σ)

J+ ∼ −iQ5

∑

n

cne
−in(τ/A+σ)

J− ∼ iQ5

∑

n

c†nein(τ/A+σ) .

(9.10)

Each current may be mode expanded and using (9.9) the vacuum obeys

n > A : J+
n |0〉 = 0 , K+

n |0〉 = 0 ,

n > −A : J−
n |0〉 = 0 , K−

n |0〉 = 0 .
(9.11)

Notice that this is different from the familiar highest weight conditions,

which state that, for example, K+
n>0 should annihilate the vacuum.

The highest weight conditions can be restored by the transformation

K±
n = K̃±

n∓w , J±
n = J̃±

n∓w , (9.12)

with w an integer satisfying w < A < w + 1. With respect to K̃ and

J̃ , the states created from |0〉 fill out the conventional highest weight

representations. This shows that for J0 not a multiple of Q5, the states

are in the discrete representations with spectral flow number equal to

the integer part of J0/Q5.

On the other hand, when J0/Q5 is an integer, the SL(2, R) part of

the state is in the continuous representation with spectral flow number

J0/Q5 [16].

The fact that spectral flow is necessary when J0 is comparable to

Q5 should not be too surprising. In fact, the role of spectral flow is

precisely to resolve the apparent conflict between the upper limit on
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SL(2, R) spin of the discrete representations (3.17) and the freedom

to have arbitrarily high angular momentum on S3. More generally, for

spacetimes of the form AdS3 ×N , the analysis of [16] shows that the

amount of spectral flow is determined by ratio of the conformal weight

h coming from the operator of the N CFT to the SL(2, R) level k,

w <

√
4h

k
< w + 1 . (9.13)

For the case at hand, we see that 4h can be approximated as J2
0 /k and

using k ∼ Q5 this reproduces what we found above.

What is surprising, however, is that (9.7) and the arguments that

follow it imply that spectral flow should also be taken in the SU(2)

theory, with the same amount as the SL(2, R) part. To be sure, this

is not to suggest that the Hilbert space of SU(2) WZW model needs

to be enlarged to include spectral flowed representations, similar to

what was done in the case of SL(2, R) model. Whereas the ŜL(2, R)

representations generated by spectral flow are new and distinct from

the conventional representations, this is not true in the case of ŜU(2)

representations. But as we explained supersymmetry requires that

spectral flow is taken in both WZW models. Due to the high number

of supersymmetries possible on this background22 it is not unreason-

able to think that this peculiar feature of the supersymmetric theory

manifests itself in the purely bosonic analysis presented here. Addi-

tionally, note that the action of spectral flow on the angular momentum

generator,

J3
0 → J3

0 +
wk

2
, (9.14)

22 String theory on AdS3×N generically has N = 2 spacetime supersym-

metry if N has an affine U(1) symmetry and the coset N/U(1) admits a

N = 2 superconformal algebra. In the case N = S3
×M, supersymmetry is

enhanced to N = 4 [89,90,95].
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has the right form to be useful in keeping track of states with J ∼ k

while k is taken to infinity. This feature makes it worthwhile to intro-

duce spectral flow in the SU(2) WZW model23. In the next section,

we will use this idea to obtain the large J spectrum of superstrings on

AdS3 × S3.

10. The plane wave spectrum

We now turn to explaining how the plane wave spectrum arises

from the exact AdS3×S3 results. The discussion will be limited to the

NS sector, as the R sector can be obtained by similar methods, with

the additional use of the spin fields.

10.1. Short strings

We start with the discrete w = 0 states, the holomorphic side of

which is labeled by the quantum numbers

|`, n,N〉 ⊗ |j,m,M〉 ⊗ |hM〉 . (10.1)

The notation in labeling the ŜL(2, R)× ŜU(2) part of the state is the

same as what was used in section 2, and hM is the conformal weight

coming from the CFT on M. In order for (10.1) to be physical, it

must satisfy

−`(` − 1)

Q5
+
j(j + 1)

Q5
+N +M + hM =

1

2
. (10.2)

Let us look for the ground state within a given j sector. First, we note

that the GSO projection [88] requires the lowest excitation number to

23 See [96] for an interesting application of spectral flow in the SU(2)

WZW model.
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be one half, so from (10.2) we find ` = j + 1. Next, we see that the

lowest value of energy (for fixed j) is obtained if this one half unit of

excitation comes from the action of ζ+
−1/2 or χ−

− 1
2

. In the first case,

the ground state is

|J/2, J/2〉 ⊗ ζ+
− 1

2

|J/2 − 1, J/2 − 1〉 ⊗ |0〉 , (10.3)

and in the second,

χ−
− 1

2

|J/2 + 1, J/2 + 1〉 ⊗ |J/2, J/2〉 ⊗ |0〉 . (10.4)

Combining with an identical state in the anti-holomorphic side, we see

that there is a total of four states that carry angular momentum J and

energy E = J , i.e. the light cone vacuum.

We will not discuss the Ramond sector in detail, but in order to

complete the discussion of light cone ground states we briefly mention

how many are found in the Ramond sector. The number of light cone

ground states coming from the Ramond sector depends on whether

M is T 4 or K3. For T 4, there are two ground states in the R sector,

and one can construct the usual NS-NS, NS-R, R-NS, R-R sectors to

find a total of 16 ground states [97]. When the internal manifold is

K3, for the purposes of counting ground states we can think of T 4/Z2

instead. Then, as explained in [72], the ground states in the NS-R and

R-NS sectors are projected out, and the 16 twisted sectors each give

a ground state in the R-R sector. Thus there are 24 ground states in

all, as expected.

The excited states of w = 0 representations are obtained from

the lowest weight of SL(2, R) and the highest weight of SU(2) by the

action of negatively moded generators. Physical states do not carry

excitations along the time direction. For example, in the SL(2, R)
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Hilbert space those states satisfying the Virasoro conditions can be

written

∞∏

r=1/2

(χ+
−r)

N+
r (χ−

−r)
N−

r

∞∏

n=0

(k+
−n)

N+
n (k−−n)

N−

n |`, n = `〉 , (10.5)

which has the grade

N =
∑

n

n(N+
n +N−

n ) +
∑

r

r(N+
r +N−

r ) (10.6)

and n = `+ qSL, with

qSL =
∑

n

(N+
n −N−

n ) +
∑

r

(N+
r −N−

r ) . (10.7)

Similar relations hold for the SU(2) part. Now (10.2) is used to solve

for `, which then gives for the energy

E = 1 + qSL + q̄SL

+
√

(2j + 1)2 + 2Q5(N + N̄ +M + M̄ + hM + h̄M − 1) ,

(10.8)

with j related to J by J = 2j− qSU − q̄SU . Now we take the “Penrose

limit” Q5, J → ∞ with J/Q5 fixed, and expanding to terms of order

one we find

E−J = 2+qSL+q̄SL+qSU+q̄SU+
Q5

J
(N+N̄+M+M̄+hM+h̄M−1) .

(10.9)

Note that the vacuum states considered above corresponds to sum of

the q’s totalling −2 and total grade equal to 1. That the lowest energy

state surviving the GSO projection in the NS sector has a half unit

of excitation is similar to what happens in flat space. The difference

in this case is that the various raising operators have different charges

78



under E and J . Note also that the w = 0 continuous representations

are projected out from the physical spectrum, since for those repre-

sentations it is impossible to satisfy the physical state condition unless

N = 0. Hence the spectrum is free of tachyons.

Having understood the w = 0 states, we now turn to the spectral

flowed states. Consider a state in the spectral flowed representation of

ŜL(2, R) × ŜU(2), tensored with an operator on M,

|w, ˜̀, ñ, N〉 ⊗ |w, j̃, m̃,M〉 ⊗ |hM〉 . (10.10)

There is a similar state on the anti-holomorphic side. Using (7.20),

the physical state condition determines ˜̀ to be

2˜̀= 1 −Q5w+
√

(2j̃ +Q5w + 1)2 + 2Q5

(
N + N̄ +M + M̄ − 2w + hM + h̄M − 1

)
,

(10.11)

where we have used the second equation in (7.20) for the weight of the

SU(2) state. In this relation N and M are the grades measured by

L0, not L̃0, of the SL(2, R) and SU(2) model respectively. Now we

can use J = 2j̃+Q5w−qSU − q̄SU to substitute for j̃ in the expression

above, and the energy is given by

E = 2˜̀+Q5w + qSL + q̄SL . (10.12)

This result is an exact formula for the energy of a string state in

AdS3 × S3 ×M with angular momentum J around S3.

Taking the limit Q5, J → ∞ and expanding to terms of order one,

E − J = 2 + qSL + q̄SL + qSU + q̄SU

+
Q5

J
(N + N̄ +M + M̄ − 2w − 1) +

Q5

J
(hM + h̄M) .

(10.13)
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The states with E = J again have the form (10.3) or (10.4), but now

there is a slight difference due to spectral flow. For example, in the

spectral flowed analogue of (10.3), fermionic generator is given by ζ̃+
− 1

2

,

which has M = 1
2 + w after taking into account the shift in moding

from spectral flow. This serves to cancel the extra term in (10.13)

compared to (10.9). As found in [88], the pattern of chiral states is

relatively simple. Once the w = 0 chiral states are identified, spectral

flow generates the chiral states with higher R-charge. In general a

state similar to (10.5) in a spectral flowed representation has Ñ and

q̃SL defined in the same manner as (10.6) and (10.7), respectively.

They are related to what appear above as

N = Ñ − wq̃SL ,

qSL = q̃SL .
(10.14)

In the semiclassical discussion of the previous section we saw that

the amount of spectral flow necessary is determined by the ratio J0/Q5,

where J0 is the angular momentum of the ground state, i.e. a state

in the zero grade of a ŜU(2) representation. In the fully quantum

treatment, w is determined through the inequality 1
2 < ˜̀ < Q5+1

2 ,

which becomes

w2 <
(2j̃ +Q5w + 1)2

Q2
5

+
2

Q5
(N + N̄ +M + M̄ − 2w + hM + h̄M − 1) < (w + 1)2 .

(10.15)

It should be remembered that N and M also depend on w, through

(10.14) and an analogous relation for M . In (10.15) we can think of

j̃ + Q5w/2 as the highest weight of the SU(2) representation from

which the current algebra representation is constructed,

J0 = 2j̃ +Q5w , (10.16)

and (10.15) reproduces the semiclassical result found previously.

80



10.2. Long strings and the “missing” chiral primaries

Let us now discuss what happens when the inequality in (10.15)

is saturated, which in the semiclassical approximation corresponds to

J0/Q5 becoming an integer. In this case we know from [16] that the

state belongs to a continuous representation of ŜL(2, R) with spectral

flow number w = J0/Q5, i.e. it is a long string in AdS3. Morever, the

energy of the solution changes smoothly in the transition from a short

string to a long string (and vice versa). The continuous representations

do not have highest or lowest weights and for this reason the spectral

flowed states are labelled by the eigenvalues of L̃0. The plane wave

spectrum of the long strings is therefore

E−J = 2+
Q5

J
(Ñ + ˜̄N +M̃ + ˜̄M −2w−1)+

Q5

J
(hM + h̄M) . (10.17)

Sometimes it is possible for a long string to have zero light cone

energy despite the fact that it is massive. If |0, w〉 denotes a state

with E = J then k+
w |0, w〉 continues to have zero light cone energy be-

cause k+
w ’s contribution to (10.17), proportional to Ñ , vanishes. The

physical mechanism responsible for this phenomenon is the same as in

AdS3. Namely, the coupling to the NS three form cancels the grav-

itational attraction. In the context of plane waves supported by NS

field strengths it has already been observed that there are additional

zero modes in the spectrum [50,73,96], which can be understood as the

statement that states with special values of p+ — integer multiples

of 1/µα′ — do not feel the confining potential of the plane wave.

It is interesting to note that simplifying AdS3 × S3 to the plane

wave makes more apparent the presence of long strings in the spectrum.

As we have just stated, some of the long strings correspond to chiral

primaries in the dual CFT. It has been appreciated for a while now that
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there is a mismatch of chiral primaries in the AdS3/CFT2 correspon-

dence when considering the AdS3 with a purely NS background due to

the fact that AdS3 with vanishing R-R fields corresponds to a “singu-

lar” CFT [98,88]. The mismatch arises when one tries to compare the

spectrum of chiral primary operators in the CFT to the spectrum of

chiral string states based on the discrete representations of ŜL(2, R).

It was suggested in [98] that the chiral primaries that disappear when

all the R-R fields are set to zero might be found among the continuum.

We find explicitly that indeed there are chiral primaries belonging to

the continuous representations.

11. The decomposition of the Hilbert space in the Penrose

limit

We started with a unitary spectrum of string states in AdS3×S3×
M. This spectrum is obtained from the Hilbert space of the SL(2, R)

WZW model, tensored with the Hilbert spaces of the SU(2) model and

CFT on M, and imposing the Virasoro constraints. In obtaining the

results of previous section we have restricted our focus to a particular

subsector of this physical Hilbert space. We now address the question

of what happens to the remaining states in the Hilbert space. We find

that the ratios J/Q5, J
2/Q5 determine where the state ends up.

As we take the limit R → ∞, we expect that some of the states

become strings in flat space, some become strings in the plane wave,

and the rest with divergent E−J . The spectra in flat space and plane

wave should form independent, unitary Hilbert spaces. Presumably,

this means that the states with divergent E − J should also, but with

a different description. An example of such states would be those that

have high angular momentum along a different circle on S3. These
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states would be related to what we considered above by a global rota-

tion on the sphere.

We have found the states on the plane wave. Which states corre-

spond to strings in flat space? In any dimension, flat space is obtained

from plane wave when [50]

µα′p+ << 1 . (11.1)

But in our case, µα′p+ = J/Q5, and we know that the integer part

of J/Q5 is related to the spectral flow parameter w in the large J,Q5

limit. Thus we conclude that the flat space spectrum comes from

the unflowed short strings in the original AdS3 theory. We can indeed

check that for J/Q5 → 0, J2/Q5 finite, the physical state condition for

w = 0 short strings (10.2) reproduces the mass formula of superstrings

in six flat dimensions times M, because the terms in L0 that involve

the quadratic Casimirs become p2 as the space becomes flat [82].

It is important to note that even though we have just identified

the flat space spectrum as arising from the w = 0 sector of the original

theory, this does not mean that none of the w = 0 short strings remain

in the plane wave. Some of the states can still carry J ∼ Q5, and as

the limit Q5 → ∞ is taken we find the result (10.9). However, the

w = 0 plane wave states are generally farther from chiral than the

spectral flowed states.

If J2/Q5 → 0, then (10.9) tells us that the string modes have

energy that diverges as
√
Q5. Note, however, that even in this case

the supergravity modes (i.e. states at grade 1/2 for both the right and

left movers) remain, and they fall into the global SL(2, R) × SU(2)

multiplets.
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12. When the radius is small

An extremely interesting question one would like to address is

what we can learn about string theory on AdS × S from string theory

on plane waves. In the case of AdS3 × S3 and its plane wave limit, we

have a good understanding of both string theories, and we now turn

to this question.

But first, we’d like to stress a small point, which is that a priori

there are two distinct notions of “high curvature” one needs to keep in

mind. When one speaks of a highly curved plane wave, that actually

means

µα′p+ >> 1 . (12.1)

In this case the string spectrum consists of highly spectral flowed

states. We see from (10.13) that this means the low lying string modes

become almost degenerate. This is similar to what happens in the

AdS5 × S5 plane wave.

Despite being “highly curved”, the highly curved plane wave still

involves taking the radii of AdS × S to infinity. Hence the GS super-

string in highly curved plane waves is still amenable to quantization.

The second, and more interesting, notion of “high curvature” is ob-

tained by dropping the R2 → ∞ condition. Then clearly the geometry

cannot be thought of as a plane wave. Since it is only after the Penrose

limit is taken that the GS string can be solved, presently known results

about the plane wave of AdS × S are not expected to remain valid in

the case of small radius.

However, there have been some reasons to think that the plane

wave spectrum (8.8) might continue to correctly describe the large J

spectrum even outside the strictQ5 → ∞ limit. Authors of [92] studied

various aspects of string theory on the plane wave (8.3) from the point
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of view of the dual (M)Q1Q5/SQ1Q5
CFT. One of the more interesting

things they found in that work was that after extrapolating (8.8) to

Q5 = 1, the result surprisingly agrees with the spectrum predicted

by the dual CFT at the orbifold point24. Since the CFT spectrum is

believed to be reliable for arbitrary Q5, whereas the string spectrum

was found under the assumption that Q5 is taken to infinity, this hints

that perhaps (8.8) is true even when the spacetime geometry does not

correspond to a plane wave. There have also been some work along this

line for the AdS5 × S5 plane wave [78,79], but with some differences,

which we will discuss in the last section.

We can answer this question directly for the AdS3 ×S3 case since

we worked out the string spectrum that is valid for all values of Q5.

Our results apply equally to small Q5, when we should think of the

geometry as AdS3 × S3 × M with the first two factors being highly

curved. Thus, we can take (10.11), (10.12) and expanding for arbitrary

fixed Q5, large w, we find that, in fact, the large J spectrum is again

given by (10.13). We conclude that the plane wave spectrum is actually

the large J spectrum of strings on AdS3×S3×M, for arbitrary values

of the radius.

Actually, there are two special cases where the worldsheet de-

scription we have given so far could break down. These special cases

occur for Q5 = 1 or 2, whereby due to the shift in the level of the

bosonic WZW models the SU(2) model acquires a negative or zero

level. However, the problem is not serious for the Q5 = 2 case as we

can understand it to mean that only the fermionic fields are present

on the worldsheet for the S3 part of the target space. The Q5 = 1

24 In fact, the NS Q5 = 1 is the only case where a perfect agreement was

found. Matching of the spectra in general requires g2

s corrections and on the

CFT side involves moving away from the orbifold point in the moduli space.
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case truly presents us with a difficulty since it is not clear how to make

sense of the SU(2) WZW model at level −1 as a physical theory. It

is not known at present how to describe the Q5 = 1 model, but ar-

guments were presented in [98] to suggest that it is a sensible (albeit

very special) system. We’d like to argue that the result (10.13) is valid

even for the Q5 = 1 case even though our starting point was not suited

to describe it. For one, it would be rather unusual for the expression

(10.13) to be true for Q5 = 2, 3, . . .∞ and not be true for Q5 = 1 when

nothing special happens as we try to set Q5 = 1. More importantly,

the dual CFT is well defined at Q5 = 1 and its prediction for the string

spectrum [92] matches perfectly with (10.13). Perhaps Q5 = 1 actu-

ally represents the zero radius limit of AdS3, thus providing the reason

behind perfect agreement with the symmetric orbifold. The orbifold

point of the CFT corresponds to the free theory (analogous to setting

gYM = 0 in AdS5/CFT4), whose dual string theory would apparently

be formulated on zero radius AdS3. We will return to this issue in the

Discussion.

13. Discussion

The two main objectives of this investigation have been

(a) To provide a CFT description of strings in a plane wave back-

ground, giving the necessary framework for a detailed study of

BMN correspondence using the powerful tools of CFT.

(b) To investigate the relationship between string theory on AdS × S

and string theory on plane waves, using the solvable AdS3 × S3

case as a model.

We offer some comments on each of these issues.
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It is worth emphasizing that we are now positioned to take ad-

vantage of the CFT techniques to study string interactions in the

AdS3 × S3 plane wave. This is in stark constrast to the much studied

case of the ten dimensional plane wave that arises from AdS5 × S5,

where the RNS description of strings is lacking and interactions can

only be studied using string field theory. In fact, correlation functions

in AdS3 have already been calculated [81], so together with the corre-

lation functions of SU(2) WZW model it should be possible to obtain

scattering amplitudes in the plane wave by appropriately taking the

large J , Q5 limit. This should prove to be an useful area for study.

In regards to the AdS3 correlation functions, we show in Appendix

A that the spectral flow number violation rule found in [81] can be

understood as the conservation of angular momentum in the plane

wave.

Additionally, one expects that the map between the CFT oper-

ators and plane wave string states is easier to establish than the ten

dimensional case, owing to the fact that the AdS3/CFT2 duality is

highly constrained by the infinite dimensional conformal symmetry.

Thus, it becomes a technically simpler problem to study the BMN

correspondence in situations where many interacting string modes are

involved.

The other main point of this paper is that we have actually com-

pared string theory on AdS3 × S3 to string theory on the plane wave.

We have found that the plane wave spectrum, which one might have

thought to be the result of some simplification of the AdS3 × S3 spec-

trum that occurs in the limit Q5, J → ∞, actually is the result of

J → ∞ only.

Recently it has been conjectured by Frolov and Tseytlin [76,77,80]

that the semi-classical formula for the energy of strings carrying spins
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in multiple directions in AdS5 × S5 continues to hold true at small

values of the radius, provided that the spins take very large values25.

Based on the findings of this paper, we feel strongly that their conjec-

ture is true. Furthermore, if the relationship between string theory on

AdS3 ×S3 and its plane wave limit applies to other AdS×S spaces, it

suggests that the string spectrum on the plane wave limit of AdS5×S5

[51,50] is in reality the large J string spectrum on AdS5 × S5.

Before leaving the subject of the Frolov-Tseytlin solution, let us

note a curious fact. Frolov and Tseytlin found that the solution car-

rying two non-zero equal spins in S5 has the energy

E =

√
(2J)2 +

R4

α′2
. (13.1)

This bears striking resemblance to the energy of a low-lying short string

state in AdS3 × S3 with the single spin

E ∼
√
J2 + c

R2

α′
, (13.2)

where c is a number of order 1. Other than the difference in the power

of R2/α′, which could be explained by the fact that the role of N in

AdS5/CFT4 is played by both Q1Q5 and
√
Q1Q5 in AdS3/CFT2 [92],

the two expressions are almost identical. It should be kept in mind

that (13.1) is a classical result whereas (13.2) is a quantum one. It

is not clear if Frolov-Tseytlin solution has an interpretation as giving

arise to a simpler spacetime geometry in a manner similar to BMN.

However, as we have seen, strings with large J in AdS3 × S3 have

a simple description even though it is only after the radius is taken

25 See [99] for a discussion regarding the supersymmetry of the spinning

strings.
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to be large as well that they can be viewed as moving in the plane

wave. At any rate, it would be extremely interesting to understand

why these two expressions are so similar. Perhaps studying strings on

AdS3 ×S3 ×S3 ×S1 [100], which makes multi-spin solutions possible,

along the lines of this work will shed light on this issue26.

Another topic of interest has been pursued recently27, involving

strings in the critical tension limit and the possibility of defining string

theory in the zero radius limit of AdS. The hope is to take the

λ → 0, N → ∞ limit of AdS/CFT at its face value and establish a

duality between string theory in the zero radius AdS and a free field

theory. We should mention from the start, however, that the approach

has been to send R2/α′ to zero in the classical Hamiltonian and then

quantize the resulting (simpler) theory. This by no means assures us

that we will find the same results when we take the same limit in the

quantum theory. Another point to keep in mind is that when the ra-

dius of the spacetime is comparable to the string scale, it is not clear

whether one can even assign a definitive value to the radius.

Now we focus on the AdS3 × S3 example and try to address this

issue. Strictly speaking, one must set Q5 = 0 to study the zero radius

AdS3. In this case we do not know how to make sense of the worldsheet

theory. However, as stated above we do not believe that one should

insist on being able to set R2/α′ exactly to zero in the quantum treat-

ment. For the time being, we will be content with considering R2 ∼ α′,

which is still a nontrivial case. It is perhaps useful to recast the large J

expansion of the exact energy formula using the radius of curvature in

26 The author would like to thank A. Adams for this point.
27 See, for example, [78,79,101,102,103,104,105].
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string units (we ignore the internal space M for this discussion, whose

contribution is suppressed anyway):

E−J = 2+ qSL+ q̄SL+ qSU + q̄SU +
R2

α′J
(N + N̄ +M + M̄ −2w−1) .

(13.3)

We should note that the last terms in parantheses is what gives this

expression its stringy nature. If for some reason (such as simply taking

the “tensionless” limit R2/α′ = 0 while continuing to trust (13.3)) they

were absent, what remains would resemble a field theory spectrum. It

might seem at first that the last terms would be negligible for large

J , finite R2/α′. But in fact this is not the case, because the excited

string modes generically have level of order α′J/R2 due to spectral

flow. The only way in which the last terms in (13.3) disappear is in

strict R2/α′J = 0 case28. When that happens the spectrum can be

schematically written

Hlc ∼
∑

all modes

a†a , (13.4)

which looks like a free field theory29. This suggests that the theory

with R2/α′ = 0 (whatever its proper description might be) is not

continuously connected to the R2 ∼ α′ cases at finite J .

In a related topic, authors of [78], [79] found evidence that the

string spectrum on the plane wave limit of AdS5 × S5 may be extrap-

olated down to finite J after setting gs to zero, which has the effect

of reducing the spectrum to the form (13.4). The agreement with the

28 Note that the combination R2/α′J is the square root of the coupling

constant λ′ identified in the BMN limit of AdS5 × S5 [53,55].
29 However, not all information about string excitation numbers seems to

be lost since the L0 = L̄0 constraint still needs to be imposed.
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SYM prediction (which was done in [79] for conformal weights upto

10) as well as considerations of this paper lend support to the claim

that in fact the entire string spectrum on AdS5 ×S5 reduces to (13.4)

at gs = 0.

There have also been some work on computing R−2 corrections

to the plane wave spectrum as a way of approximating the AdS × S

spectrum [106,107,71]. The results of this paper might be useful as a

guide in checking higher order calculations. It is important to note,

however, that in computing corrections to the plane wave one does not

have the freedom to choose R2 and J independently. The advantage

we had in the SL(2, R)× SU(2) model was being able to vary Q5 and

J in an independent manner.

In conclusion, strings in AdS3 ×S3 and its plane wave or its large

J limit seem to be very useful models to study and it is hoped that

they will lead to a better understanding of the more complicated plane

wave/CFT and AdS/CFT dualities.
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Appendix A. The spectral flow number violation rule

In [81] it was found that the N -point function of vertex operators

with spectral flow numbers wi, viewed as describing the interaction

of i = 2, . . . , N incoming strings and i = 1 outgoing string, vanishes

unless30

w1 ≤
N∑

i=2

wi +N − 2 . (A.1)

This result was derived using representation theory of ŜL(2, R) alge-

bra, irrespective of what the spacetime consists of besides AdS3, and

does not rely on any particular physical picture.

We now show that when considering the plane wave limit of

AdS3 × S3 × M, (A.1) can be understood as enforcing the conser-

vation of J . In order to find a non-zero correlation function the Ji

must satisfy

J1 =
N∑

i=2

Ji . (A.2)

We now divide both sides of this equation by Q5 and identify wi as

the integer part of Ji/Q5 (see the footnote below and also note that

we are in the J,Q5 → ∞ regime). On the RHS, there will be N − 1

terms, each of the form wi + ∆i where 0 ≤ ∆i < 1. The sum of ∆i’s

will therefore be less than N −1. Hence the spectral flow numbers will

satisfy (A.1).

30 The discrete states are taken to be in the ground states of their repre-

sentations, i.e. ñi = ˜̀
i.
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