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Abstract

This thesis is devoted to the study of string theory in AdSs and its
applications to recent developments in string theory. The difficulties
associated with formulating a consistent string theory in AdS3 and
its underlying SL(2, R) WZW model are explained. We describe how
these difficulties can be overcome by assuming that the SL(2, R) WZW
model contains spectral flow symmetry. The existence of spectral flow
symmetry in the fully quantum treatment is proved by a calculation
of the one-loop string partition function. We consider Euclidean AdS3
with the time direction periodically identified, and compute the torus
partition function in this background. The string spectrum can be
reproduced by viewing the one-loop calculation as the free energy of a
gas of strings, thus providing a rigorous proof of the results based on
spectral flow arguments.

Next, we turn to spacetimes that are quotients of AdSs3, which
include the BTZ black hole and conical spaces. Strings propagating in
the conical space are described by taking an orbifold of strings in AdSs.
We show that the twisted states of these orbifolds can be obtained by
fractional spectral flow. We show that the shift in the ground state
energy usually associated with orbifold twists is absent in this case,
and offer a unified framework in which to view spectral flow.

Lastly, we consider the RNS superstrings in AdSs x S% x M,
where M may be K3 or 7%, based on supersymmetric extensions of
SL(2,R) and SU(2) WZW models. We construct the physical states

and calculate the spectrum. A subsector of this theory describes strings
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propagating in the six dimensional plane wave obtained by the Penrose
limit of AdS3 x S3 x M. We reproduce the plane wave spectrum by
taking J and the radius to infinity. We show that the plane wave
spectrum actually coincides with the large J spectrum at fixed radius,
i.e. in AdSs x S3. Relation to some recent topics of interest such as
the Frolov-Tseytlin string and strings with critical tension or in zero

radius AdS are discussed.

v



Contents

1. Introduction .
1.1. Time-dependent backgrounds
1.2. Relation to black hole physics
1.3. AdS/CFT
1.4. Outline .
. Geometry of AdSS3 and WZW models .
. Algebraic construction of bosonic strings on AdSs

=W N

. Partition function on thermal AdS5
4.1. Thermal AdS3 . .
4.2. Computation of the partltlon funotlon on thermal Ang.
5. Derivation of the spectrum from the partition function
5.1. The free energy
5.2. Qualitative analysis . S
5.3. A precise evaluation of the T-integral
5.4. The density of long string states
. Orbifolds of AdSs

6.1. Introduction

(o))

6.2. Zn quotient e

6.3. Twisted states and spectral flow

6.4. Invariant subspace

6.5. Thermal partition function

6.6. Bound on ¢

6.7. Discussion .
7. Strings in Plane Wave and AdS’ X S

7.1. Introduction .

7.2. SU(2) WZW model :

7.3. Superstrings on AdS3 x S x ./\/l Co
8. Penrose limit of AdSs; x S® with NS background
9. Nambu action near the origin of AdSs x S*
10. The plane wave spectrum

10.1. Short strings Coe

10.2. Long strings and the “missing” chiral primaries
11. The decomposition of the Hilbert space in the Penrose limit
12. When the radius is small .
13. Discussion
Appendix A. The spectral flow number violation rule

© 00 N = =

11

16
22
23
24
29
29
30
35
42
47
47
49
50
o1
52
95
o6
59
59
62
64
68
71
76
76
81
82
84
36
92



To my parents

Vi



Acknowledgements

First and foremost, I thank my parents for giving me the oppor-
tunity and encouragement to pursue graduate study in physics. They
gave up a very comfortable life in Korea and moved to the United
States, the sole reason being so that I may have a chance to study
with the most talented people in the world. Many heartfelt thanks to
all of my extended family in US and Korea, for their encouragement
and financial support over the years.

I am very grateful to my advisors, first Juan Maldacena and then
Shiraz Minwalla, for their encouragement, support, and innumerable
insights throughout my study. It is truly an honor to have had such
brilliant minds as advisors. I would like to thank the wonderful pro-
fessors here, especially Cumrun Vafa, Andy Strominger, Sidney Cole-
man, Lene Hau, John Doyle, Gary Feldman, and Arthur Jaffe, for all
the things I learned from them. Thanks also goes to the staff at the
Harvard Physics department, especially Nancy Partridge, Rob Meyer,
Dayle Maynard, and Jan Ragusa, for all the help they’ve given me. I
thank all the graduate students I've met during my time here, with
extra special thanks going to my office mates Matt, Ruth, Dave, and
Dan.

I thank my first physics teacher, Mr. Van der Voort of Parsippany
High School, for introducing me to the fascinating subject of physics
and encouraging me to pursue it further.

Finally, I thank Minkyung, the most wonderful and caring person
I've ever known, for putting up with my short comings throughout our
relationship. She has made me a better person (but there is still a
lot of room to go, I'm afraid), and I pray that I will be of help in her

pursuit of her dreams.

Vil



1. Introduction

The subject of this thesis is string theory on the three-dimensional
Anti-de Sitter space, AdSs, and also on spacetimes that are obtained
as deformations of AdSs3. The reasons for studying string theory on
AdS3 are many, each of central importance. In this Introduction we
will explain what those reasons are, and also put them in context of
string theory in general.

The two biggest achievements of 20th century physics are quantum
mechanics and general relativity. Quantum mechanics governs the
behavior of atoms and elementary particles, while general relativity is
the framework in which to describe massive objects such as planets
and galaxies. Each theory in its own region of validity is fantastically
successful in explaining the observed phenomena.

However, attempts to unite quantum mechanics and general rel-
ativity into a single theory have been met with very little success.
The tools of quantum field theory—which deftly unified quantum me-
chanics and special relativity—proved to be inept at doing the same for
quantum mechanics and general relativity. Extracting sensible, finite
answers to results of scattering experiments involving gravitons, the
quanta of gravitational field, proved to be out of reach. Since grav-
ity couples to all forms of matter and energy, this state of affairs was
clearly not satisfactory, even though in practice the effects of gravity
are so weak that corrections due to gravitons are completely negligible
in all scattering processes involving elementary particles.

Currently, the leading candidate for a unified theory of gravity
and quantum mechanics is string theory. The elementary object in

this theory is a string, which traces out a 2-dimensional worldsheet in
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spacetime!. Among the massless excitations of the string is a spin-2
multiplet, which describes the graviton. The graviton appears very
naturally in string theory, and is described in a manner similar to the
gauge field. So, as far as string theory is concerned, gauge theory of
elementary particles and gravity are two sectors in its Hilbert space.
We have just described how string theory contains gauge theory
and gravity. However, this is not sufficient to claim that string theory
is the ultimate physical theory. String theory must also overcome the
divergences associated with graviton interaction. The reason is that
divergences in a physical theory signal “new physics”, some degrees of
freedom at a smaller length scale, that the theory is not equipped to
describe. So, if we found that string theory did not give us finite am-
plitudes for graviton scattering we would have to conclude that there
was some other theory that would supersede string theory. Happily,
infinities that arise in interactions built out of a 1-dimensional world-
line, described by conventional quantum field theory, were found to
disappear due to the extra dimension of the string. So string ampli-
tudes are finite, a requirement that must be satisfied by any theory
claiming to be a theory that describes everything in our universe.
Since string theory represents a significant departure from con-

ventional quantum field theory, we should be ready to encounter some

1 What follows is a “traditional” understanding of string theory. Recent
developments have indicated that in addition to the 2-dimensional string,
there are higher dimensional “branes” present in string theory, and a string
does not have a claim to be any more fundamental than the branes. How-
ever, we will in this Introduction consider the string to be truly fundamen-
tal, as many distinct features of string theory can be understood from this

viewpoint.



peculiarities as we dive deeper into string theory. One of these pe-
culiarities is that strings cannot propagate in arbitrary spacetime. In
order for a spacetime to be a vacuum of string theory, it must sat-
isfy the requirement of Weyl invariance?. The resulting theory on the
string worldsheet is then a conformal field theory (CFT). In fact, even
the dimension of spacetime is determined by the string itself, and we
are not free to arbitrarily add or subtract dimensions without spoiling
some consistency of string theory. For the special case of perturbative
string theory in flat Minkowski space, the dimension must be ten3.

If we wish to consider spacetimes that are more complicated than
the flat Minkowski space, or for phenomological reasons we wish to

consider a spacetime of the form
My x X (1.1)

where My is a four-dimensional Minkowski space, we can consider
some of the spatial dimensions to curve into a closed manifold X.
Again, string theory does not allow X to be arbitrary. Simple examples
of allowed X are products of circles (toroidal compactification), and in
more complicated situations X can be a Calabi-Yau manifold, which
are important because they give rise to supersymmetry in M.

Even though spacetimes such as (1.1) are extremely important
because of their immediate application to the present day universe,
they leave out an important class of spacetimes—namely, spacetimes
in which the time direction is embedded non-trivially. This is our first

reason for studying string theory on AdSs.

2 One of the equations in demanding Weyl invariance turns out to be
nothing other than Einstein equations. In this way string theory reproduces
the field equations of general relativity.

3 Again, this statement is made in the context of traditional string theory.
Recent results from non-perturbative aspects of string theory suggest that

in fact the most symmetric vacuum has eleven dimensions [1].
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1.1. Time-dependent backgrounds

If string theory is the correct ultimate theory, it must be capable
of describing cosmological models and the physics of early universe in
particular. Such spacetimes are expected to be extremely curved in
the time direction as well as the spatial ones*. Thus, we should learn
how to do string physics in time-dependent backgrounds. Before we
can tackle the extremely complicated cosmological scenarios, we should
search for a relative simple example of a time-dependent spacetime.

But as we already mentioned, not any spacetime we can think of is
a suitable vacuum of string theory. So we have the complicated task of
finding a time-dependent spacetime that also satisfies the requirement
of Weyl invariance. This immediately leads to AdSs, which has a non-
trivial coefficient of dt? in the metric, as the leading candidate. This
is because, as we will explain in the next secion, the worldsheet theory
of a string propagating in AdSs belongs to a class of theories known as
a Wess-Zumino-Witten (WZW) model®. Tt is a fundamental result of
WZW models that they are conformally invariant, i.e. they are CFT’s.
Hence Weyl invariance is satisifed and AdSs is an acceptable string
vacuum.

Let us now turn to a discussion of some potential problems
we might come across in trying to formulate string theory in time-
dependent backgrounds. The immediate problem we are faced with
is that of unitarity. To explain this, let us consider strings in ten di-

mensional Minkowski space. The string worldsheet, parametrized by

4 1t is also possible that the early universe underwent a discontinuous
process, for example through tachyon condensation.
® Actually, AdSs without any flux is not described by a WZW model.

We will explain this point in the next section.
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(o,7), is mapped to spacetime by the fields X#(o,7). Then we per-
form canonical quantization whereby each field is expanded in terms

of Fourier modes

o o\ 12 1 /ot at
XH — pH P 2 2 B — | IZm _m 1.9
veigrmlpei(G) (), 0

m##0
where the complex coordinates z, Z are defined by

z=041T
) . (1.3)
Z=0—1T,
denoting the holomorphic (left-moving) and anti-holomorphic (right-
moving) coordinates on the string, respectively. The canonical com-
mutation relations give
[z, p"] = ™"
(1.4)
o, ] =m0,
where n*" is the Minkowski (mostly plus) metric. The first relation is
familiar from quantization of point particles, while the second relation
represents the higher modes on the string. The important point is that
the commutator of oscillators along the time direction has a negative
sign, and such oscillators will create states with negative norm. When
we consider a more complicated background, we replace n*¥ with g"”
but the argument proceeds in a similar manner and we again find that
there are states with negative norm.
So it appears that the CFT spectrum is not unitary. How can
we be certain that the resulting string spectrum is unitary? In flat

space, it is well understood how the ghosts (negative-norm states)
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are eliminated. Among the many ways to understand this, the most

intuitive one involves the use of lightcone coordinates

X+ = \%(XO + X1) . (1.5)
After gauge fixing, details of which can be found in [2], the independent
degrees of freedom are identified with the eight transverse fields X?,
t = 2,...9, which have the correct sign in the canonical commutation
relations (1.4) and do not create ghosts. Unitarity is then proved by
showing that the Hilbert space obtained in the lightcone gauge is the
same as obtained in other quantization schemes. This is the statement
of the no-ghost theorem in flat space.
It is clear that the lightcone quantization will not work when the
time direction is curved. Hence, we will have to resort to the so-called
covariant quantization in AdSs3, where first we construct the Hilbert

space as the Fock space of all oscillators, and then eliminate the ghosts

via the Virasoro constraints

(Lo — 1)|physical) =

0
(1.6)
L,|physical) =0 ,n > 1,

which is a consequence of worldsheet reparametrization invariance. It
is an important test of string theory that (1.6) are sufficient to remove
all ghosts from the physical spectrum.

Another important challenge we face in time-dependent back-
grounds is that the CFT will be non-compact. Much of the powerful
tools that are useful in understanding compact CFT’s become difficult
to handle for non-compact CFT’s. This is why, despite being a WZW
model, the CFT of strings in AdS3 remained a difficult problem for a

long time.



1.2. Relation to black hole physics

The next reason for studying string theory on AdSj is its intri-
cate relation to black hole physics. As we shall see, AdS3 shows up
repeatedly in discussion of black holes.

The first connection between AdSs and black holes is that a black
hole can be obtained by taking a quotient of AdSs3. This is the famous
BTZ black hole [3]. In taking a quotient, there can be singular points
corresponding to the fixed points of the identification. A string can
propagate freely in regions where there are no fixed points, or it can
be attached to such points, giving rise to the “twisted” states. This
describes what is known as the orbifold. So, by taking an orbifold
of string theory on AdSs we obtain string theory on the BTZ black
hole—example of an exact description of strings propagating in a black
hole background!

Another relation between string theory on AdSs and black holes
is that by taking a coset of the worldsheet CFT on AdSs, one finds
a theory describing a two-dimensional black hole [4]. This black hole
has a Euclidean metric and looks like a semi-infinite cigar, and was
the first example of a black hole in string theory.

AdSj3 also appears in string theory computation of black hole en-
tropy, an important topic that any theory claiming to be a quantum
theory of gravity must address. As it turns out, every black hole
whose entropy has been counted in string theory so far has in its near-
horizon geometry an AdS3 factor [5]. For example, in the famous
five-dimensional Strominger-Vafa black hole [6], which was the setting

for the first entropy computation, the near-horizon geometry is locally

AdSs x 8% x M., (1.7)
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where M is T* or K3. Brown-Henneaux showed that quantum grav-
ity on AdS3 is a conformal field theory [7], and the cetral charge of
this conformal field theory determines the entropy through Cardy’s
formula. As shown in [8], this is sufficient to reproduce the entropy of
the blackhole. This is a satisfying result since the black hole’s entropy
is coming from the degrees of freedom near the horizon, even though

exactly what those degrees of freedom are remains to be understood.

1.5. AdS/CFT

Finally, we come to the important topic of AdS/CFT correspon-
dence [9,10,11,12], which is a duality between string theory on AdS

and a conformal field theory in one lower dimension®

. For many ap-
plications of this duality the CFT can be thought of as living on the
boundary of AdS. The most important case in terms of applications to
everyday physics we observe at present is the AdS5/CFTy correspon-
dence, in which the CFT}, is the Yang-Mills theory in four dimensions
with four supersymmetries. This theory is expected to yield much in-
sight into physics of four-dimensional gauge theories, which has QCD
as an important example.

However, string theory on AdSs remains unsolved due to the pres-
ence of Ramond-Ramond (R-R) flux. Solving for the string spectrum
in AdSs appears to be beyond our grasp at this point and the low

energy supergravity (which only describes the massless string excita-

tions) approximation has been used for most part.

6 That gravity in a D dimensional spacetime can be described by a D —1
dimensional theory without gravity goes by the name “holographic principle”
[13]. Although AdS/CFT correspondence so far is the only explicit example,
it is believed that the holographic principle holds in general.
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This is where AdS3 comes in. As the only example of AdS that
has been solved exactly, it can serve as a guide in understanding the
more complicated cases. In particular, AdS3/CFT5 can be studied in a
string theoretic setting without making approximations. Additionally,
a distinguishing feature of AdSs/CFT; is that two dimensional CFT’s
have an infinite dimensional conformal symmetry, allowing for more

analytic control of the theory. This has led to a better understanding
of the AdS3/CFT; duality [14,15] than others”.

1.4. Outline

This thesis will be focused on many of the issues address above. It
is organized as follows. In Section 2, we explain the geometric features
of AdS3 needed for our discussion. We also explain why string propa-
gation in AdSj3 is described by the SL(2, R) WZW model, paying close
attention to how current algebra gives rise to conformal symmetry. In
Section 3 we explain the unitarity problem in AdS3 and how it is re-
solved by the proposal of Maldacena and Ooguri [16]. The presence
of long strings in the spectrum is also discussed. Sections 4 and 5
constitute a string theoretic proof of the spectrum. The proof consists
of first computing the one-loop partition function on thermal AdSs,
and then checking that it agrees with the free energy of string states
in Lorentzian AdS3. Due to the non-compact nature of the underly-
ing CFT, some features not seen in compact CFT’s are present in the
partition function. We give physical interpretations of these features

and explain how they are appropriate for AdSs.

T It is interesting to note that actually, the aforemonetioned work by
Brown and Henneaux [7] was the first to propose a duality between quan-
tum gravity in AdSs and a 2-dimensional CFT, an insight gained precisely

because of the infinite dimensional conformal symmetry.
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In Section 6, we describe the general solutions of three-dimensional
gravity with negative cosmological constant, which are also solutions of
string theory. Besides AdSs3, they are the BTZ black hole and conical
spaces. String theory in the conical space is constructed as an orbifold
of AdSs.

Finally, the last topic is the relationship between string theory
on AdSs x S? and its plane wave limit. In Section 7 we consider the
supersymmetric strings in AdSs x S3. Section 8 through 11 explain in
detail how strings in the plane wave emerge in the double scaling limit.
We conclude in section 12 and 13 with attempts to understand what

the plane wave might teach us about AdS x S in other dimensions.
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2. Geometry of AdS; and WZW models

In this Chapter we explain the geometry of AdS3, and also explain
why string theory on AdS3 is described by a WZW model.
AdSj3 is the hyperboloid

R?=X?+ X, - X} - X3 (2.1)
embedded in R??2, with metric
ds* = —dX?, —dX? +dX? +dX2, (2.2)

which makes manifest the SO(2,2) = SL(2,R) x SL(2, R) isometry.

A convenient solution to (2.1) is

X_1= Rcostcoshp
Xo = Rsintcoshp

(2.3)
X1 = Rcos¢sinhp
X9 = Rsin¢sinhp,
which gives for the metric
ds®> = R?(— cosh? pdt? + dp? + sinh? pd¢?) . (2.4)

This coordinate system is called the global coordinates in AdS3, be-
cause by setting p > 0 and 27 > t > 0 it covers the entire hyperboloid®.

As the way it stands, there is a closed time like curve generated by

8 In addition to the global coordinates, there is another popular choice
known as the Poincare coordinates. However, this coordinate system only
covers a patch of the AdS3 described by (2.4), and in addition contains a

coordinate horizon.
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t — t+ 27. We will always consider the universal covering of the
hyperboloid by unwrapping the ¢ coordinate so that —oo < t < oc.
Suppose we wish to consider string theory on some spacetime

whose metric is g,,,,. The Polyakov action is

1
4o/

S = / drdo/ =77 g, 0. X" 0y X" (2.5)

where 7, is the worldsheet metric. We might at first take this to be
our starting point for string theory on AdS3, with the metric given in
(2.4). However, as we have already emphasized in the Introduction,
requirements for an acceptable string vacuum are rather stringent and
as it turns out (2.5) will not work. The correct procedure is to turn on
some NS-NS two-form field B. It is not obvious how this comes about,
so let us explain this.

For the following discussion, it will be convenient to normalize the
coordinates so that R = 1. Now consider the matrix

X+ XT Xo—Xo
g = <—X0—X2 X_l—X1> ) (26)

which is an element of SL(2,R). As a group manifold, SL(2, R) is
identified with AdSs. The metric on SL(2, R)

dt* = tr(dg~'dg) , (2.7)

coincides with (2.4). There is a natural action one can write down
when the target space is a group manifold. It is the nonlinear sigma

model action

S~ /d'rda tr(0g~0,9) , (2.8)

12



which is however not conformally invariant (the action (2.8) essentially
reproduces (2.5)). Witten studied the beta function of (2.8) and found
that upon the addition of the Wess-Zumino term

ik

Pwz =5 [ tr(g™ dg A g™ dg A g™ dg) (2.9)

where the integral is over a three-dimensional surface whose bound-
ary is the string worldsheet, the resulting action posesses conformal
symmetry [17].

The quantity £ that appears in the above expression is known as
the level or grade of the WZW model. Since the overall action has a
factor of k in front we interpret it as being proportional to R2. The
level is quantized for compact groups, in order to ensure that under a
large coordinate transformation (i.e. a transformation not connected to
the identity) the action only changes by S — S 4 27i. This condition
is necessary for the path integral to be well defined. For non-compact
groups such as SL(2, R), k need not be quantized.

Locally, the Wess-Zumino term is a total derivative, so it can be
written as a two-dimensional integral over the worldsheet coordinates.
In terms of the target space variables the total action then can be

written

1
Ao/

S /deU\/—’y (’y“bgw + ie“bBW) 0o XHOp X", (2.10)

revealing that in addition to the metric there is an antisymmetric field
present. So in order to satisfy conformal invariance we must have some
B field present. The reason why we know it is a NS-NS field is that
fields from the Ramond sector do not couple to the string worldsheet.

The presence of NS-NS B field in this background will have a

profound impact on the string spectrum. The most drastic effect is
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the possibility of having “long strings” [18,19]. We will discuss this in
more detail when we consider the representations of ﬁ(Z, R).

How does the WZW model automatically satisfy conformal invari-
ance? The reason is the underlying current algebra. The WZW action
is invariant under the action of independent left and right action by
group elements?. This implies the existence of two sets of conserved
currents

K% = tr(t*0gg™ 1)

_ _ (2.11)
K® = tr(t**g~'0g)
where we have switched to the complex coordinates introduced in (1.3),
and t* are the generators of SL(2, R). This notation is a very useful
reminder of the fact that the equation of motion simply forces K and
K? to be holomorphic and anti-holomorphic, respectively.
Let us focus our attention on the holomorphic sector. We can

introduce the modes of the current by the Laurent expansion

a K
K%z)=)_ el (2.12)
nes

which satisfy the §E(2, R) current algebra

(KL K, | =—2K) . + kmbpin

n
(K3, K] = +K,, ., (2.13)
k
(K3, K2 = —§m5m+n .
The zero modes represent the integral of currents, i.e. they are con-

served charges. It is convenient to choose a basis in which

KJ %(E + L)
(2.14)

_ 1
K = 5(E—L)

9 The addition of the Wess-Zumino term is what makes this possible.

14



where E and L represent the energy and angular momentum in AdSs3,
respectively.

The current algebra is the key property of WZW models. We can
construct the operators

L, — 1 i N KE K2 (2.15)
n k_Qm:_OO‘ a mTtn—m ° :

where 7,4, is the metric on SL(2, R) with signature (4,+,—). The
generators (2.15) obey the Virasoro algebra

Loy L] = (1 — 1) Loin + 1—02(7723 — ) o —n (2.16)
with central charge "
3
- 2.17
= (2.17)
and also
[Ln, K} = —mK)_,, . (2.18)

The Virasoro algebra is the algebra of conformal symmetry. Hence the

presence of current algebra implies, via (2.15), conformal symmetry.
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3. Algebraic construction of bosonic strings on AdS3

We now focus on the SL(2, R) WZW model, which is the world-
sheet CFT of string theory in AdS3. Since the model possesses two
copies of 5@(2, R) symmetry (one on the left and one on the right), the
Hilbert space is a sum of products of §z(2, R) representations. The
question is which representations appear.

Representations of current algebra can be constructed by consider-
ing representations of the global algebra, generated by the zero modes
of the currents K, to be the primary states annhiliated by K .,
(note that (2.18) implies that K§ generate a multiplet with the same
Ly eigenvalue). Then K, _, can be applied to these states, generating
the representation of the current algebra. Hence, the first problem is
to find the right representations of SL(2,R). In [16], the following
was proposed, based on an analysis of the point particle limit. The
representations of SL(2, R) that appear are D, and Cy, o, where Dy is

the discrete lowest weight representation
Dy={ll,n) :n=00+1,0+2,...}, (3.1)

with K |¢,¢) = 0. The representation is labeled by the value of the

quadratic Casimir
1 o
(U5 Ky + K Kif) = (K32 ) 1) =~ = Dltn) . (32

and n which is the eigenvalue of K, related to the spacetime energy
by (2.14). The representation is unitary for real ¢ greater than zero
[20]. However, we need that the wavefunctions are square integrable,
and this requires ¢ > 1/2.

Cy,« is the continuous representation
Cro ={ll,n,0) :n=0a,atl,at2 ...}, (3.3)

16



where without loss of generality a may be restricted to 0 < a < 1.
Unitarity requires ¢ = 1/2 + is with s real [20]. This gives for the

quadratic Casimir

<%( TKy + Ky K - (K3)2> 16,n,a) = G +52> [l,n,a) . (3.4)

Now starting with the above representations of SL(2, R), repre-
sentations of §I}(2, R) are generated by applying K., . The resulting

representations are denoted

A

Dy, Cra. (3.5)

However, we will now explain that based on these representations alone
the resulting string theory would be fatally flawed.

The issue is unitarity, which we explained in the Introduction.
The no ghost theorem for AdSs [21,22,23,24,25,26,27,28] restricts the
value of ¢ in the discrete representations to be less than k/2. Let us
look at the consequence of this restriction, by considering string theory

on

AdSs x X . (3.6)

We assume that the CFT on X is unitary, and that it has the right
central charge to form, together with AdS3, a critical string theory.
The Virasoro operators are given by the sum of the Virasoro operators
for each CFT, L,, = L3I + L. Consider a state in the discrete
representation of SL(2, R) WZW model, tensored with a state from X

with conformal weight A. The combined state is labeled as

|¢,n,N,h) , (3.7)
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where N is the levell? of the 5@(2, R) descendent, i.e. the conformal

weight of (3.7) is
0l —1)
k—2

By the Virasoro condition (1.6) this must equal one, otherwise the

Lo=— +N+h. (3.8)

state is not physical. But note that this means there is an upper
bound to how large N can be, which follows directly from the upper
bound on /. Since N is related to the mass of the string state, we are
forced to conclude that the tower of string excitations abruptly comes
to an end. This sounds very unphysical—for example, it is hard to see
how modular invariance, a key requirement of string theory, would be
maintained.

There is an additional problem, which was only realized fairly re-
cently. We mentioned that the background we are considering has the
NS-NS B field turned on. The effect of this field is to expand the
string, while the tension wants to contract the string. Since in AdS3
the volume and area grow at the same rate asymptotically, these two
effects almost completely cancel, and long strings can freely propagate
far from the origin of AdSs [18,19]. So, we expect to find in the Hilbert
space of string theory on AdSs states in the continuous representation
of §z(2, R). The problem is that all the states in Cy, are tachyonic,
which can easily be seen using (1.6). When we consider the super-
strings, such states get projected out and there would not be any long
strings in the spectrum.

Maldacena and Ooguri proposed a solution [16] that solved both
of these problems. Their suggestion was that (3.5) are not the only
representations of §E(2, R) that appear in the Hilbert space. There are

10" Not to be confused with k that appears in the WZW action, which is

also called a level.
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additional representations that are generated by the action of spectral

flow

. k
K;HKizK;—TwWO

K= K= Ko 39
K, — K, =K, .
and the resulting transformation on the Virasoro generators
Em:Lm+wK§—§w%mo. (3.10)

For each integer valued spectral flow, we generate the representations
75;” and CA’E"’O( from ﬁg and CA’&O[, respectively.

We return to (3.6) and see how this proposal overcomes the diffi-
culties explained above. First, consider a state in the spectral flowed

discrete representation ZA)E“,
10,7, N, w, h) (3.11)

Let us denote this state by |€2). Taking into account the spectral flow

relations (3.9) and (3.10), the Virasoro constraints are

QOUKD:(igf;)+Num}ﬁp+h1>szo

Ln|Q) = (5L —wK3 + LX) =0, m>1.
(3.12)

For discrete representations, n = (+ q, with ¢ an integer. Using this

relation with the first equation in (3.12), £ is determined to be

=1 e (Ve Jutw 1) L
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where N is the level measured by Lo, related to N by N = N —wq. We
impose the level matching condition Ly = Lo, and find the spacetime

energy (2.14)

E:1+2w+q+q+\/1+4(k2) <Nw+h—%w(w+1)—1) :
(3.14)
Note that the energy is discrete, even though ¢ took on continuous
values in the SL(2, R) WZW model.
Spectral flow by —1 gives the charge conjugated representations,

A

ﬁZ’w:_l = D} /54> Where the subscript minus (plus) indicates that it
is a lowest (highest) weight representation. In all the discrete repre-

sentations the SL(2, R) spin must be in the range

1 k—1
el = 3.15
5 <t<—5— (3.15)

which is more restrictive than what is allowed by the no-ghost theo-
rem. In the context of string theory on AdSs, these representations
correspond to the short strings that are trapped inside AdSs.

For states coming from the continuous representations, we can
proceed in a similar manner to obtain their spectrum. The difference

in this case is that ¢ and 7 are not related. The result is

kw 1 /2s2+ 1
E=—+4+— 2
va (55

+J\7+J§7+h+i‘z—2>. (3.16)
2 w

Note that this time the level is measured by Lg. The spectrum is
continous and s represents the momentum of the string in the radial
direction of AdS3. These are the long strings that can approach arbi-

trarily close to the boundary.
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In conclusion, we may summarize the Hilbert space of SL(2, R)
WZW model by

Hsr = Ope— oo

B ) L )
/ dt Dy @ D) | & / al / da C), @ C),
1 1R 0 ’ ’

2

Y

fuy

(3.17)
and the string Hilbert space is obtained via the Virasoro constraints.
With this spectrum the fictitious upper bound on the excitation level of
the string is removed, as it can be shown from (3.14) and (3.16) that
when a short string saturates the bound, it turns into a long string
[16]. Also, there are now continuous representations that survive the

projection.
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4. Partition function on thermal AdS;

In the previous section we described the current algebra approach
to string theory on AdSs3. We have seen how the proposal of Maldacena
and Ooguri [16] to include spectral flowed representations of §E(2, R)
produces a very sensible spectrum, which included states correspond-
ing to long strings as well as the short strings. The seemingly arbitrary
upper bound on the mass of the string was removed, thus recovering
the infinite tower of masses on expects from string theory.

However, the existence of spectral flow as a symmetry of the
SL(2, R) WZW model was inferred on the basis of classical and semi-
classical analysis. It is crucial to check in an independent manner the
details that become important at finite values of k, where the intuition
gained from semi-classical reasonings can break down. For example,
the restriction on the SL(2, R) spin (3.15) becomes trivial in the semi-
classical limit, and we would like to derive this result from a fully
quantum treatment.

In this and the next sections we verify the results of previous sec-
tion by an explicit calculation of the one-loop string partition function.
As shown in [15], the Euclidean black hole background is equivalent
to the thermal AdS5; background. So we will consider string theory
on AdS3 at a finite temperature, which is described by strings moving
on a FEuclidean AdSs background with the Euclidean time identified.
The calculation of the partition function for this geometry is a minor
variation on the calculation of Gawedzki in [29]. From this we can read
off the spectrum of the theory in Lorentzian signature by interpreting
the result as the free energy of a gas of strings.

This section is devoted to the calculation of the one-loop par-
tition function on thermal AdSs3. First we explain the relation be-

tween various useful coordinate systems. Then we consider thermal
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AdSs = Hs3/Z and show how the identification of Euclidean time in
the global coordinates translates into particular boundary conditions
for the target space fields. The partition function is then calculated

by an explicit evaluation of the functional integral following [29].

4.1. Thermal AdS5
The natural metric on Hj is given by

L

2 _
ds-y2

(dy* + dwdw), (4.1)

which is the Euclidean continuation of the Poincare metric on AdSs.

By the coordinate transformation

w = tanh pe' ¥
w = taﬂil ,Oet_w (42)
e
~ coshp

we obtain the cylindrical coordinates on Euclidean AdSs,

d 2
% = cosh? pdt? + dp® + sinh? pdf?. (4.3)

For the purpose of calculating the partition function, however, it is

convenient to use coordinates in which the metric reads [29]

0%2 = dp? + (dv + vdo)(dv + vdg), (4.4)

which corresponds to the parametrization of H3 as

g= (ed)(lf‘”‘z) f’¢) (4.5)

(% €
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The coordinate transformation from (4.3) to (4.4) is
v = sinh pe®
# = sinh pe ™ (4.6)
¢ =t —logcoshp .

Thermal AdSs5 is given by the identification

t+i0 ~t+i0+ 5, (4.7)

A

where 3 represents the temperature 7' and the imaginary chemical

potential iy for the angular momentum,

- 1
B=B+ind =7 +it . (4.8)

The corresponding identifications in the coordinates (4.4) are

v ~ petth
T ~ pe HP (4.9)
p~o+0,
which is a consistent symmetry of the WZW action,
k - _ _
S == /dzz (090 + (v + Dgv)(Ov + Ov)) . (4.10)
7

4.2. Computation of the partition function on thermal AdSs.

We consider a conformal field theory on a worldsheet torus with
modular parameter 7 (z ~ z + 27 ~ z 4+ 27n7). The two-dimensional
conformal field theory on the worldsheet is the sum of three parts: the
conformal field theory on Hjs, the internal conformal field theory on
M, and the (b, c) ghosts. First we start with the computation of the

partition function for the conformal field theory describing the three
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dimensions of thermal AdS3 and then we will multiply the result by
the partition function of the ghosts and the internal conformal field
theory.

Due to the identification (4.9), the string coordinates now satisfy

the following boundary conditions

$(z +2m) = ¢(2) + fn
d(z 4 277) = ¢(2) + Bm

(Z =+ 27r) — U(Z)ein,uﬁ (411)
v(z +277) = U(Z)eimuﬁ '

The thermal circle is non-contractible and therefore we get two integers
(n,m) characterizing topologically nontrivial embeddings of the world-
sheet in spacetime. In order to implement these boundary conditions

it is convenient to define new fields (/E, ¥ such that they are periodic:

¢ = (;B + 6fn,m(z7 2)
(4.12)
v = @exp(iﬂﬁfn,m(z72)) ’

with
7

fom(2,2) = pp [2(nT —m) — Z(nT —m)] . (4.13)

When we substitute this into the action (4.10), we get

2 ) 1 AWk
g = kb \nT—m12+E/d2z <|a¢2+ '<8+—Unm+8¢> v ) :
47Ty T 219 7
(4.14)
where '
[/ . _

Un,m(T) = %(ﬁ — 1ufB)(nT —m). (4.15)

We are interested in the functional integral
Z(B, ;1) = / D¢DvDve™ " | (4.16)
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This integral is evaluated as explained in [29]. We can first do the

integral over 9, v which is quadratic, giving the determinant

—2

1 .
det [0+ — U pm + 0B| . (4.17)
27'2

We calculate the gg dependence on the determinants by realizing that
we can view (4.17) as an inverse of two fermion determinants. We can
then remove 45 from the determinants by a chiral gauge transformation

and using the formulas for chiral anomalies. The result is

-2

—2
1 A 2 1

det |0+ —U, . + 00| = er @209 qotlo+ —1,
2’7’2 ’ 2 ’

T2

(4.18)

The remaining integral over ) gives the usual result for a free boson,
except that k& — k — 2 due to (4.18). The functional integral for the

thermal AdS3 partition function then gives

Z(ﬁ)ﬂ) T) -

87r\/7_2 nz: | sin( WUnm)|

e—kﬁ2|m—n7‘| /47r7‘2+27r(ImUn7m)2/7‘2

X T2, (1 — e27mirT)(1 — e2mirT+2miln.m ) (1 — 2mirT—2miln,m ) |2

SRR gy
2m\/Ta o [01(7, Un,m) |2 ,

(4.19)

where ¥ is the elliptic theta function and ¢ = e?™". The factor

B(k —2)2 comes from the length of the circle in the ¢ direction. This

—kB%|m—nt|?/drTo+ 27 (ImU,, ,n)? /T2

partition function is explicitly modular invariant after summing over
(n,m). In Appendix B of [16], there was a puzzle about the apparent
lack of modular invariance of the SL(2, R) partition functions with
J?3 insertions. Here we have found that, if we introduce the twist by

considering the physical set-up of thermal AdSs, the result (4.19) turns
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out to be manifestly modular invariant. This resolves the puzzle raised
in [16].

We also need to include the contribution of the (b, c) ghosts and
the internal CFT. Partition function of the latter will be of the form

Zum = (q9)” % D(h,h)g"q", (4.20)
h,h

where D(h,h) is the degeneracy at left-moving weight h and right-
moving weight h, and ¢;,; the central charge of the internal CFT.
Modular invariance requires that h —h € Z, a fact which will be useful

in the next section. Vanishing of the total conformal anomaly gives
CsL(2,R) t Cint = 26 . (4.21)

We can calculate now the total contribution to the ground state
energy. We found a ground state energy of —3/24 in (4.19), the
ghosts contribute with 2/24 and the internal CFT with —c;,¢/24 =
(csr2,r) —26)/24. Using cgr(2,r) = 3+ %, we find the overall factor

(qq)~(Hem)/24 = A2 (= am) (4.22)

Note that ¢;,; > 0, k > 2, and (4.21) imply that there will always be

a tachyon in the bosonic theory.

(n,m) (0,m)

Fig. 1 : The sum over n is traded for the sum

over copies of the fundamental domain.
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After multiplying (4.19) by the (b, ¢) ghosts and the internal CF'T
partition functions, we should integrate the resulting expression over
the fundamental domain F; of the modular parameter 7. The com-
putation is much facilitated by the trick invented in [30,31] to trade
the sum over n in (4.19) for the sum over copies of the fundamental
domain. See Figure 1. This is possible since (n,m) transforms as a
doublet under the modular group SL(2,7). If (n,m) # (0,0), it can
be mapped by an SL(2,7) transformation to (0,m), m > 0. The
SL(2,7) transformation also maps the fundamental domain into the
strip Im 7 > 0, |Re 7| < 1/2. On the other hand, (n,m) = (0,0) is
invariant under the SL(2,7) transformation, and the corresponding
term still has to be integrated over the fundamental domain Fj,. This
term represents the zero temperature contribution to the cosmologi-
cal constant, or the zero temperature vacuum energy. In addition to
the usual tachyon divergence of bosonic string theory at large 73, it
is also divergent due to the sin~' factor in (4.19); this divergence can
be interpreted as coming from the infinite volume of AdS3. Since the
temperature dependence of this term is trivial we will ignore it from
now on. The final result then is that we fix n = 0 in (4.19) and we in-
tegrate over the entire strip shown in Figure 1. The one-loop partition

function of bosonic string theory on Hs/Z x M is then

% > dT 1/2 47T7'2 1 S
Z(ﬁaﬂ) / 3/2 /1/2 4(k_2))

_ e (k 2)TTL ﬁ /471—7—2

SR A= Isinh(mf/2)P 429

1 — e27rzn7'

||:j

1 _ emﬁ+27r7,n7')(1 —e mﬁ+2ﬂ'zn7’)



5. Derivation of the spectrum from the partition function

In this section we show how to extract the spectrum of Lorentzian
string theory on AdS3 from the one-loop partition function. First we
present a qualitative analysis, which is then followed by a precise cal-
culation. During the course of this investigation we will find a rather
novel phenomenon—singularities in the interior of the one-loop moduli
space. We explain how this is due to the presence of long strings. We
regulate the divergences and find a physical interpretation for how the
different parts of the spectrum arise from this calculation. Further-
more, we show how the one-loop result contains information about the

SL(2, R) and Liouville reflection amplitudes.

5.1. The free energy

The one-loop partition function (4.23) can be interpreted as the
single particle contribution to the thermal free energy, Z (3, u) = —3F.
To this each string state makes a contribution ! log(1 — e~ A(E+mL)),
where E and L are the energy and the angular momentum of the state.

The total free energy is the sum over all such factors:

1 .
F(ﬁv :U/) = 5 Z 10g <1 — e_B(Est”ng‘f'lNLstrmg))

stringe™

- (5.1)
= Y f(mB,mpu),
m=1
where
1 :
f(/B, IU/) — Z e_B(Estring+ZuLstring) . (5.2)
stringeH

Here 'H is the physical Hilbert space of single string states. In both
(4.23) and (5.1), we have the sums over functions of (mg, mu). It is

therefore sufficient to compare the m = 1 terms in these expressions.
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In other words, we want to verify that Egiying and Lgiring extracted

from the identification,

FBw) = > 5 o= B(Batring+inLotring)

stanGH
—_ o 1/2 _
) 2 / d’T / 47T7’2 1 m) ZD(h7ﬁ)qhq_h
1/2 h,h
28 /47”_2 1 — 627Tin7 2

oo
|smh 3/2)|2 1] 1 — ef+2minT) (] — g=f+2minT)

(5.3)
agree with the string spectrum reviewed in Section 3. We will see that
the sum over the Hilbert space breaks up into a sum over the discrete
states and an integral over the continuous states, with the correct
expressions for the energies. Since the one-loop calculation presented
here is independent of the assumptions made in [16] about strings in

Lorentzian AdS3, we can regard this as a derivation of the spectrum

starting from the well-defined Euclidean path integral.

5.2. Qualitative analysis

In this subsection we will analyze (5.3) in a qualitative way and
explain where the different contributions to the spectrum come from.
To keep the notation simple, we set © = 0 in this subsection, leaving
the exact computation for the next subsection.

As expected, in (5.3) there is an exponential divergence as 7o —
oo, coming from the tachyon. This is just as in the flat space case,
where (mass)? < 0 of the tachyon causes its contribution to be weighted

with a positive exponential. We will disregard this divergence!!.

11 A skeptical reader could think that we are really doing the superstring

partition function (the fermions included in the internal CFT, etc.). Then
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However, rather unexpectedly, the expression above has additional
divergences at finite values of 7. In string theory one might naively
expect that divergences come only from the corners of the fundamental
domain in the 7-plane, but in this case the divergence is coming from
points in the interior of the fundamental domain. Overcoming the
initial panic, one realizes that these divergences are related to the
presence of long strings. In fact, as with any other string divergence,
it can be interpreted as an IR effect. This divergence is due to the fact
that long strings feel a flat potential as they go to infinity and become
free. This causes their contribution to the free energy to be weighed

by an infinite volume factor!2. To see this, note that near the pole (see

Figure 2)
T = Tpole + €, (5.4)
where
r .0
Tpole = E + Z% ) (55)

we can expand the partition function and replace 7 in all terms by its

value at the pole, except in the one term that has the pole.

the tachyon divergence will disappear but one would still find the diver-
gences that we discuss below. Of course, the one-loop partition function is
non-vanishing even in the supersymmetric case since the thermal boundary

conditions break supersymmetry.

12 One can avoid the appearance of these infinities by considering the free

energy density. However, then the short strings would not be visible.
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x T2 =p/4m
X X X T2 =p/6m
X X X T2 = B/8T[
T1==1/2 T1=1/2

Fig. 2: Poles in the 7 plane, shown for w =1 to 4.

If we integrate (5.3) near the pole, i.e. in the region
€ < |T— Tpote] € 1, (5.6)

we find that it diverges as log € with coefficient

1 k 1 - = 1
—wﬁS exp [_ﬁ <§w + E(N-Fh-i‘N—i- h—2+ m)) (57)

2mir , ~

(N+h—N—h)

We now sum over r, with |r/w| < 1/2, since these are the ones corre-

sponding to the poles in the strip'®. This sum constrains N+h—N-—h

to be an integer multiple of w, and it introduces an additional factor of

13 1f some poles are on the boundaries of the strip, 71 = £1/2, then we

only count them once, since the right and left boundaries of the strip are
identified.
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w in (5.7). The log divergence in 7-integral can therefore be expressed

as

6
where E(s) is the energy spectrum given by (3.16). Note that the

1 O
F(Bun) ~ loge [ dse PP o (5.3)
0

s-integral and the sum over r we mentioned above give the factor
v/w/3 needed to match the prefactor in (5.7) to that in (5.8). This
reproduces the expected contribution from the long strings in the left
hand side of (5.3). The logarithmic divergence should be interpreted
as a volume factor due to the fact that the long string can be at any
radial position. In the next subsections, we will see more precisely that
it is indeed associated to the infinite volume in spacetime by relating
€ to a long distance cutoff.

Now we would like to calculate the short string spectrum. Since
the long string spectrum gives a divergent result, while the short string
spectrum gives a finite one, it might appear at first that extracting
the contributions due to the short strings from a divergent expression
such as (5.3) will be problematic. Fortunately we can get around
this difficulty since the temperature dependence of the long string free
energy is different from that of the short string free energy. In the
next subsection we will explain how to do this precisely and reproduce
the short string spectrum which agrees with [16]. One of the more
puzzling aspects of the short string spectrum found there is the cutoff
1/2 < £ < (k—1)/2 in the value of the SL(2,R) spin /. In the
remainder of this section we will explain in a qualitative way how this
cutoff arises by doing the calculation for large k.

If we were to evaluate the right hand side of (5.3) naively (and
incorrectly), we would expand the integrand in powers of ¢ = €277

and then perform the 7 integral. If we did this, we would obtain the
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short string spectrum with w = 0 and no upper bound on the value
of /. However this expansion is not correct. How we can expand the

integrand in (5.3) depends on the value of 75. When we cross the poles

at 7o = %, a different expansion should be used for the denominator:
Z eq(/6’—1—27rzw7') Ty > ﬁ
1— 65+27T“"T 27 qw )’
- (5.9)
) <72 - L) '
2mw
g=0
When 73 is in the range
p s
— < Ty < — 5.10
2n(w + 1) S 9rw (5.10)

the product over n in the first term in the denominator in (5.3) is
broken up into two factors, a product in 1 < n < w and a product in
w41 < n. The first factor is expanded in powers of e~ (F+27n7) apq
the second factor is expanded in powers of e#T27"7  Combining them
together with the terms coming from the expansion of the remaining

products in (5.3), we get an exponent of the form

— <% +q+ w) 06+ 2miT (Nw — %w(w + 1)> ; (5.11)

for some integers ¢ and INV,, (the first term —(3/2 comes from expanding
1/sinh(8/2) in (5.3)). There is a similar term for 7 — 7. We are then
to do the 7-integral of the form,

>t 1 B2k —2 ~
/ 3/2expl4ﬂ'7—2<1—m)—5172)_,6(1+q+q+2w)

1 _ - 1
+ 2miT (Nw +h— §w(w + 1)) — 2miT (Nw +h— §w(w + 1))] :
(5.12)
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over the region (5.10). The integral over 7y produces the level matching
condition . Now we evaluate the integral over 7 using the saddle point

approximation. We find that the saddle point is at

(k—2)8
27\ /1+4(k = 2)(Noy +h — 1 = Sw(w + 1))

(5.13)

Tsaddle =

and the integral gives

%e_BX, (5.14)

where the exponent X is equal to

1
1+q—|—q+2w+\/1+4(k2) <Nw+h—1—§w(w+1)) (5.15)

This is the correct form of the contributions due to the short strings
in the left hand side of (5.3). Moreover we obtain the bound on £
exactly, because Tgqqq1e has to be in the range (5.10) in order for the
saddle point approximation to give a non-zero result. By (5.13), this
condition is equivalent to the bound 1/2 < ¢ < (k — 1)/2 using the
physical state condition. (It is a bit surprising that we get all factors
precisely right from the saddle point approximation.) Notice then that
the cutoff in ¢ is associated to the fact that we expand the integrand
in (5.3) in different ways depending on the value of 7. The value of T
making the biggest contribution to the integral depends on the values

of N and h of the string state.

5.3. A precise evaluation of the T-integral

Now let us study the partition function (5.3) more systematically.
In this subsection, we go back to the general case with p # 0. From

what we saw in the previous subsection, we expect to find the discrete
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states from the integral over the range (5.10), and the continuous states

from the poles after a suitable regularization.

In order to evaluate the T-integral exactly, it is useful to introduce

a new variable c by

: 8
T = R (52g) [ e B G

Now suppose 7> is in the range,

— 0o

p g
27‘(‘('(1) n 1) < 1o < %, (517)

and expand the integrand in (5.3) as explained in the previous subsec-

tion. The right hand side of (5.3) becomes a sum of terms like

4 /OO % 1/2
_— dec ¢ / d7-2/ dry
Blk—2)i J_ T —-1/2
A 1 = _ 1
X exp [—ﬁ <q+w+§> —ﬁ<q+w+§)
+ 27071 (Ny + h — Ny — h) + 2ic3
2¢2 + 3
k—2

e

The integral over 7 gives a delta function enforcing N, +h = Ny, +h,

—27Ty <h+7z+Nw+Nw+

which is the level matching condition . Integrating over 75 in the range

(5.17) gives

— dec c
Bri J_ A2+1+(k-2)(Ny+h—-1-1ww+1))

2¢% + 3
2_22 —w(w+1)>

1 /oo exp{%cﬁ—ﬁ(q—l—w—l—%)—é(@—l—w—ké)]

X {—exp [—é <2Nw +2h — 2+
w

2% + 4 ]
+exp[—wi+1<2]\7w+2h—2+ k:—22_w(w+1)) },
(5.19)
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where we used the level matching condition.

Let us first look at the first term (the second line) in (5.19). We
note that the exponent can be expressed in the form of a complete
square if we set ¢ = s+ (k — 2)w. As it will become clear shortly,
it is natural to shift the contour of the c-integral from Im ¢ = 0 to
Im ¢ = 1(k — 2)w so that s becomes real. During this process the
contour crosses some poles in the integrand, picking up the residues of
the poles in the range 0 < Im ¢ < 3(k —2)w. See Figure 3. The poles

are located at

c2 1 1 k—2
=N, i 1) —1 2. (5.2
=2 wt+h 2w(w-|— ) +4(l<;—2)< Y (5.20)

Similarly, for the second exponential term (the third line) in (5.19) we
shift the contour to ¢ = s+ % (k — 2)(w + 1) with s real. This picks up
the poles at

2 1 1 k-2
— Ny+h—=w(w+1)—1
Giog) ~ Nethoguleth=ltams < =

(w+1)%. (5.21)

It is important to note that the residues of these poles have a sign
opposite to that of the residues of the poles obeying (5.20). So the

result is that we are left with only those poles in the range

k—2 k—2
5w < Ime < T(w—i— 1), (5.22)
with residues
I _y
—e 7, 5.23
3 (5.23)

where the exponent Y is

Bmﬂ%+ﬁ<1+%w+¢L+Mk—ﬂ<N@+h—l—%ww+&0>.
(5.24)
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This is the expected contribution of the short strings to the right hand
side of (5.3), and we see also that (5.22) translates into the correct

bound on 7 .

c-plane

c=s+i(k-2)(w+1)/2

T X c=s+i(k-2) w/2

i

Figure 3: Shifting the contour of integration picks up the pole residues

corresponding to the short string spectrum.

It remains to examine the resulting integral over s. Notice that
the term coming from just above the pole at 7 = B /2mw has a very
similar w dependence in the exponent as that coming from just below
the pole. In other words, we combine the first term of (5.19) with the
second term of an expression similar to (5.19) but with w — w—1 and

we find, after shifting the countours as above,

2mﬁ/ ds( -2) Z)

eXp{ Bq— b7 - ﬁ(§w+%(8?_12/4+Nw_1+h—1)>]
%+z’s—§w+$(Nw_1+h—1+52k+_12/4)

exp |~Bg— Bg— B (bw+ 2 (S + Ny +h-1))]

B —%-I—z's—%w—l—%(N +h—1+8+1/4)

X

(5.25)

38



Let us concentrate for now on the third line of this expression. We
first note that the sum of such terms over all states gives rise to the

log divergence. To see this, it is useful to notice that the combinations

N=quw+N,, N=quw+DN, (5.26)

that appear in the exponent of the third line of equation (5.25) are
the levels before spectral flow. Thus, for a given state |v), states of
the form (KJI?J)”W) all have the same value of N and N. Acting
with K@LK:SL on |1) does not change the exponent in (5.25), but it does
change the denominator by one. This implies that when we sum over

all the states of this type, we will find a divergent sum of the form

= 1
. 2
;A_n (5.27)

This divergence has the same origin as the divergence of the right hand
side of (5.3) at the pole 7o = 3/2mw. In fact, if we regularize the
T-integral by removing a small strip near the pole as |7 — Tpoe| > €,

we find an additional factor e™ "¢

in the sum. In the next subsection,
we will give the spacetime interpretation of this procedure. With this

regularization, the sum behaves as log e. More precisely we have

S d
—ngzoA_ne :logeJrﬂlogF(—A)—kO(e) (5.28)
where
1 k1 (s+; -
A——§+zs—1w+a<k_2+N+h—1). (5.29)

Here we have assumed that

N+h<N+h, (5.30)
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but it can be seen that the other case gives the same result.

Now we turn our attention to the second line of (5.25). In those
terms we have one less unit of spectral flow, as compared to the third
line in (5.25) that we analyzed above. In other words, now we will
have that (w—1)g+ N,_1 = N’. These states are in the spectral flow
image of Dj. Since we want to combine these states with the states
coming from the third line in (5.25) it is convenient to do spectral
flow one more time and think of these states as in the spectral flow
image of D, under w units of spectral flow. In this case we find that
g+ N’ = N where now N is the level of the D, representation before
spectral flow. From now on the discussion is very similar to what we
had above. The states with (KO_[_(})_)”W> all have the same energies
but they will contribute to the denominator of the second line in (5.25)
with

0.¢}

. d
nzzo Bt = loge — 5 logT'(B) + O(e) (5.31)
where
1 k1 (s2+: =
B_§+ZS_ZU}+E<I€—2 +N+h—1>, (5.32)

again assuming (5.30).
After we perform these two sums, we find that (5.25) can be writ-

ten in the form

% /OOO dsp(s) exp {—ﬁ <E(s) + Z%(J\Nf +h—N — 71))} (5.33)

with E(s) the energy of long strings (3.16) and p(s) the density of
states. We will later see that the physical momentum p of a long
string in the p direction is equal to p = 2s. The angular momentum

L=(N+h- N — h)/w is an integer since the states in (5.25) were
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obeying the level matching condition and the definition (5.26) ensures
that

N+h=N+h+wx (integer) . (5.34)
The density of states p(s) derived from this analysis is
1 1 d (2 —is+m)(: —is—m)
—2loge+ ———1 2 2 :
pls) = 5 2loget 5 o5 108 <F(§ +is + m)D(3 + is — m))
(5.35)
where .
1 i
m:_§w+ <Sk+4+N+h—1),
21 (5.36)
7 PR (e S S
m= ——w — :
4 w \ k—2

Note that, despite appearances to the contrary, (5.35) is actually sym-
metric under m < m since m — m = L is an integer. In the next
subsection we will show that this density of states (5.35) is what is ex-
pected from the spacetime meaning of the cutoff €. In going from (5.25)
to (5.33) we have states which could be interpreted as coming from the
spectral flow of the discrete representations Dj and D, , with the zero
modes essentially stripped off since they were explicitly summed over
n (5.28) and (5.31). This implies that the states we have in the end
belong to the continuous representation. Note also that the integral
over s in (5.33) has only half the range in (5.25). We rewrote it in
this way using the fact that the exponent is invariant under s — —s,
and that is the reason why we have four Gamma functions in (5.35).
In going from (5.25) to (5.33) we have also used that & = @d% in
(5.29) and similarly in (5.32). .
Combining eqns. (5.23) and (5.33), we have finally

F(B,1) == " D(h,h,N,N,w)

3
x [Z o~ B(E+inL) +/OO dsp(s)e—B(E(S)JriuL)
0

q,q

(5.37)
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which is the free energy due to the short strings and the long strings,

respectively.

5.4. The density of long string states

What remains to be shown is the interpretation of p(s) given by
(5.35) as the density of long string states. Whenever we have a contin-
uous spectrum the density of states may be calculated by first intro-
ducing a long distance cutoff which will make the spectrum discrete,
and then removing the cutoff. If the cutoff is related to the volume
of the system then the density of states will have a divergent part,
proportional to the volume and dependent only on the bulk physics,
and a finite part which encodes information about the scattering phase
shift and also has some dependence on the precise cutoff procedure. To
see this, let us consider a one-dimensional quantum mechanical model
on the half line, p > 0, with a potential V' (p). We assume that V(p)
vanishes sufficiently fast for large p, and that there is continuous spec-
trum above a certain energy level. To define the density of states, it
is convenient to introduce a long distance cutoff at large p so that the
spectrum becomes discrete. Let us first consider a cutoff by an infinite
wall at p = L. If L is sufficiently large, an energy eigenfunction v (p)

near the wall can be approximated by the plane wave
W(p) ~ e PP 4 e PP+id(p), (5.38)
where §(p) is the phase shift due to the original potential V' (p). Im-

posing Dirichlet boundary condition (L) = 0 at the wall, we have

oL + 8(p) = 2 (n + %) (5.39)

for some integer n. If L is sufficiently large, there is a unique solution

p = p(n) to this equation for a given n. As we remove the cutoff by
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sending . — o0, the spectrum of p becomes continuous. We then

define the density of states p(p) by

dn = p(p)dp . (5.40)

From (5.39), we obtain

o(p) = % <2L + j—i) | (5.41)

Thus the finite part of the density of states is given by the derivative
of the phase shift.

Instead of the infinite wall at p = L, we may consider a more
general potential V41 (p— L) which vanishes for p < L but rises steeply
for L < p to confine the particle. Let us denote by §,4:(p) the phase
shift due to scattering from V4 (p). We then obtain the condition on
the allowed values of momenta by matching these two wavefunctions

and their derivatives at p = L as

W(p) ~ e PP 4 eiPP+id(p)

~ A e—ip(p—L) 4+ eip(p—L)-}-i(Swall(p)} ’ (p ~ L) )
It follows that
pL +0(p) = —pL + Swan(p) + 270 . (5.43)

In the limit L — oo, the density of states given by dn = p(p)dp is then

o(p) = — <2L LB M) . (5.44)

When we have the infinite wall, the phase shift due to the wall is
independent of p (dywau = 7), and (5.44) reduces to (5.41).
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In order to apply this observation to our problem, it is useful to
first identify the origin of the logarithmic divergence in the one-loop
amplitude Z((, ) by examining the functional integral (4.16) near
the boundary of AdSs. In the cylindrical coordinates (4.3), the string
worldsheet action (4.10)for large p takes the form

1 .
S ~ k /d2z <8p8p + Ze2p\8(9 —it)]? 4 - > . (5.45)

v

Because of the factor e2?, the functional integral for large p restricts
(t,6) to be a harmonic map from the worldsheet to the target space.

Since (t,0) are coordinates on the torus,
0 — it ~ 0 — it + 2mn + iBm, (n,m integers) , (5.46)

the harmonic map from the torus to the torus is
0 — it = (2mw + ifm)o’ + (277 + iBn)o?

— {(27rw +iBm)T — (27r + ZﬁAn)] % (5.47)

— [(27rw -+ zBm)% — (27r + zﬁn)] i ,
227’2
where z = ol + 702 is the worldsheet coordinate and (r,w,n, m) are
integers. In particular, the map (0 — it) with (n,m) = (1,0) becomes
w-to-1 and holomorphic when 7 takes the special value

A

r 5
ole = — ) —— . 4
Tpol w+Z27TU} (5 8)

On the other hand, if 7 is not at one of these points, 9(f —it) cannot be

set to zero'*. This gives rise to an effective potential e?? for p, which

14 For any 7, we also have a trivial holomorphic map (t,0) = const. The
functional integral around such a map gives a result independent of 3 and

we can neglect it in the following discussion.
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keeps the worldsheet from growing towards the boundary. If 7 is near

Tpole

T = Tpole + €, (5.49)

the harmonic map (5.47) with (n,m) = (1,0) gives

800 — it)[2 ~ <2”2w2>2 e (5.50)
&)
Thus the action (5.45) generates the Liouville potential e2e?’. When
we computed the one-loop amplitude in sections 4.1 and 4.2, we regu-
larized the 7-integral by removing a small disk |7 — 7| < € around
cach of these special points. Near 7 = 7, this is equivalent to adding
the infinitesimal Liouville potential €2e2” to the worldsheet action. For
|7 — Tpote| > €, the worldsheet can never grow large enough and the
effect of the Liouville term is negligible. To be precise, the Gaussian
functional integral of (¢,6) shifts k& — (k — 2) as in (4.18) and the

effective action for p near 7 = 7,0 is

k—2 —
SLioum'lle = T d2Z (apap + 62€2P) . (551)

Therefore, we find that our choice of regularization in (5.28) and (5.31)
amounts to introducing the Liouville wall which prevents the longs
strings from going to very large values of p. By looking at the potential
in (5.51), we see that the effective length of the interval is L ~ loge.
The central charge of this Liouville theory is such that the e? term

has conformal weight one,

1\? 1
CLiouville = 1 + 6 (b + g) , b= . (552)
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The finite part of the density of states will be given through (5.44) by
d(s), the phase shift in the SL(2, R) model, and d,,4y(s), the corre-

sponding quantity in Liouville theory. The first one was calculated in
32,33],

O (r(; +is — m)D(L +is +7§1)F(2i8)1“(k”2)>  (553)

(3 —is—m)[(5 —is+m)[(2is)[(72£)

1
2 k—2

while the second one was obtained in [34,35]

['(2is)D(724) (5:54)

i(swall(s) = log (

(In order to compare with the expressions in [34,35] we use the value
of b given in (5.52) and note that the relevant values of a are @ =
(/2 + isb.) Using these two formulas we can check that indeed the
density of states (5.35) is given by (5.44). We can view this as an
independent calculation of (5.53) or as an overall consistency check.
Notice that the physical momentum p of a long string along the p
direction is p = 2s. This can be seen by comparing the energy of a
long string (3.16) with the energy expected from (5.51) with spacetime
momentum p along the radial direction, p = (k—2)wp. We have chosen
the variable s since it is conventional to denote by ¢ = 1/2 + is the

SL(2, R) spin of a continuous representation.
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6. Orbifolds of AdS;
6.1. Introduction

AdSs is a solution of General Relativity in three dimensions with

a negative cosmological constant, described by the action

1 2
S=— [ d&zv/—g (R + l_2> + surface terms . (6.1)

:27'('

This theory actually has a family of solutions labelled by two param-
eters M and J [36,3]

ds* = —N2dt? + N7 2dr® + r>(N®dt + do)? ,

r2 J?

2 _
N——M+l—2+4—r2, (6,2)
J
N® = -
212

What the resulting spacetimes look like depend on the values of the two
parameters. When M > 0 and M1 > |J|, these spacetimes correspond
to black holes. The second condition ensures that a horizon exists. The
constants are then identified with the mass and angular momentum
of the black hole, respectively. These spaces may be thought of as
excitations of the M = 0 case.

However, M = 0 is not the lowest energy state possible. It turns
out that by setting M = —1, the result is nothing but the familiar
AdSs.

For the spacetimes with —1 < M < 0 (and J = 0), a rescaling of
the coordinates brings the metric into the form

-1
2 ﬁ 2 ﬁ 2 2 7,2
ds® = 1+ B dt“+ [ 1+ 7 dr® + rede” | (6.3)

which is the same as AdSj5 (related to the coordinates we have been

using by the simple transformation r = [sinhp), but with a deficit
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angle 0 = 2m(1 — +/|M]) for ¢. Thus, these spaces correspond to AdSs
with conical singularities.

In fact, even the black holes corresponding to (6.2) with M > 0
are locally AdS3, and can be obtained from AdSs by a quotient. This
is consistent with the equations of motion resulting from (6.1), which
implies that the curvature is constant. The black hole solutions do not
have a curvature singularity, and differ from AdSs3 only by some global
identifications.

The solutions that are being discussed here are easily lifted to
solutions of string theory. By including a three form H (the field
strength of B), which must be proportional to the volume form in
three dimensions, these spaces provide a background in which it is
possible to describe string propagation via the SL(2, R) WZW model.
At the level of low energy effective action, (6.1) arises when one takes
the action for the massless fields of string theory g,., H, ¢ and sets
Huvo = €400, and ¢ = 0 [37].

In this section we study string propagation on the conical spaces.
For the special values of the opening angle 27r/N, where N is an in-
teger, the spaces may be obtained as a Zy orbifold of AdS3.1> The
singularity present is then just an orbifold singularity, and it is possible
to formulate a consistent string theory on this background given the
knowledge of string theory on AdSs.

It is interesting to note that the conical spaces we are considering
can be formed by adding mass to empty AdSs [38]. Relative to the
AdSs vacuum, an object of mass less than 1 would create a conical

singularity. One can imagine a process where a collision taking place

15 ¢ corresponds to rotation in X; — X5 plane in the covering space ds* =
—dX? | —dXZ+dX?+dX3, and is always a space-like killing vector, ensuring

causality in the resulting quotient space.
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inside of AdS3 leaves a lump of stable matter, not enough to produce
a black hole but distorting the geometry to what we are studying here.
This provides a controlled setting to study black hole formation, as in
[39].

Another reason for studying this theory is that one would like to
gain further insight into the spectral flow symmetry of the SL(2, R)
WZW model. From this study we will learn that on the conical spaces

spectral flow acts as a twist, in the orbifold sense.

6.2. Zn quotient

Taking string theory on AdSs as the starting point, the conical
spaces with opening angles 27 /N are obtained by taking a Zy orbifold.
Let us first note how spectral flow acts on this quotient space. The
effect of spectral flow is to take a solution of the WZW equation of

motion
9=9+(")g-(z7) (6.4)
and generate a new solution [16]

+

gr(at) — 2™ gy (zh), g (a7) =g (z7)e™™ 2. (6.5)

Under this operation, t — t + wr and ¢ — ¢ + wo. In regular AdSs
closure of the string worldsheet required that w be an integer, but now
we see that w only needs to be a multiple of 1/N.

When we spectral flow by a fractional amount the ﬁ(Q, R) cur-
rents obey twisted boundary conditions. Consider the nth twisted

sector:

K+(ZE+—|—27T) — K+(x+) e—27rin/N . K~ (IE++27T) — K_(x+) e271'z'n/N .
(6.6)
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Then the mode expansion is

Kt(z)= ) Krz"", K ()= )Y K;z "', (67)
reZ+n/N SEZ—n/N

-+ . .
where z = e'* . The commutation relations are

(K K] = =22 + kréys
(K}, K] = —gmémH .

Note that K3 are integrally moded, a condition preserved by the alge-
bra. There is a total of N sectors to consider, and in each sector K=
are quantized with different periodicity. We now turn to the first step
in taking an orbifold, which is to construct the twisted states. As we

will see, there will be a close connection to spectral flow.

6.3. Twisted states and spectral flow

Consider a state obtained by repeated applications of the raising

operators on a lowest weight state,
T3 T1ES ] a0 (6.9)
m; T’j Sk

If necessary, commutation relations may be used to change the order
in which the generators appear. However, in what follows the ordering
will be immaterial. The conformal weight of (6.9) lies —(>_ m;+Y_ 7+
3" sk ) above the ground state and K§ = £+ NT— N~ where N* (N7)
is the number of times K (K ) appears in the above expression. Also
note that the fractional part of the level is given by (NT — N7 )n/N.

If we take this state and spectral flow by w = —n/N, we find

that the new generators acting on it are integrally moded. Thus, one
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can think of this state as belonging to ﬁ;’w:n/N. To obtain a string
state in spacetime (including X’), we impose the Virasoro constraints
(1.6) and obtain the same expression for the energy that was found in
AdSs x X, (3.14). The discussion for the continuous states is similar
and once again we conclude that the energy is given by (3.16).
Normally, twisting the currents as in (6.6) gets rid of the zero
mode and the corresponding total charge Q* = % [ K +do vanishes.
This results in breaking of the gauge symmetry [40,41]. What we
have found here, in the case of AdS3, is that such twists are nothing
but fractional spectral flows. One might worry that there is still a
distinction between those states built with integrally moded K+ and
those states built with fractionally moded K*, in that the latter are
expected to have a different ground state energy. However, in the next
section we will show from the partition function calculation that this
does not happen. As such, by taking 15;, Alo‘/2 4is and their images
under fractional spectral flows, we automatically include the twisted
states. Of course, the integer-valued spectral flows are still allowed
and all the flowed sectors are treated in equal footing. In particular,
the form of the Virasoro constraints remains the same and so does
the expression for the energy and angular momentum. It is tempting
to think that even in the case of AdS3, spectral flow arises as a kind
of twisting of some underlying theory, possibly with ¢ noncompact.

But one probably needs a better understanding of the SL(2, R)/U(1)

parafermion theory [42] in order to pursue this idea.

6.4. Invariant subspace

Having constructed the twisted sectors, only the states that are
invariant under the identification ¢ ~ ¢ + 27 /N are to be retained in

the spectrum. There is a simple way to see what one should expect.
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If one considers the wave equation for a scalar field in the background
(6.3), the solution may be expressed as ¥ = > R(r,w, m)e~ witime,
Then single-valuedness of the wave function implies m = N X integer.
The effect of the projection, then, is to restrict the angular momentum
to be a multiple of V.

It is straightforward to see how this condition comes about. For
all the sectors that we have, we are to project on to the states invariant

under the operator
o 2mi(K§—K§)/N (6.10)

Therefore, the states that remain carry angular momentum that is a
multiple of N, Kg — IES’ = N X integer, for both the discrete and

continuous representations.

6.5. Thermal partition function

As in the case of AdS3, we can check that the spectrum derived
above agrees with what one gets by evaluating the finite temperature
partition function. The calculation was explained in detail in Chapter
4, so our focus will only be on the effects due to the conical singularity.

As before, we first transform to the coordinates that are well suited
for carrying out the path integral. We reproduce the transformation

here to make the identifications transparent:
v = sinh p €*?
v = sinh p e (6.11)
0 =t —logcoshp.

Under the identification ¢ ~ ¢ + 27/N, the fields are identified as
v~ ve?™/N and v ~ Be 2™/N_ We take the worldsheet to be a torus

with modular parameter 7. Then the boundary conditions are
v(z 4 21) = v(2)e¥™ N | y(z + 207) = v(2)e2™ /N (6.12)
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We will denote by Z,;, the path integral [ e~ DOIDvDT with the above
boundary conditions. We remind the reader that these boundary con-
ditions are in addition to those introduced by identifying the Euclidean
time t ~ t + [.

Let us first calculate Z,3. We can implement the right boundary

condition by setting

a

v(z) = Bexp (— s (7T~ 27)) , (6.13)

with @ periodic. Then U, ,, defined in eqn (4.15), picks up an addi-
tional term, Un,m — Un,m + a7 /N. With this change, we can repeat
the calculation that was done in Chapter 4, and obtain the partition
function as (4.19). Similarly, for 2y, all we need to do is twist along
the other direction of the torus, to obtain Un,m — _n’m + b/N and
once gain the partition function takes the same functional form. In

this way we obtain for the partition function of thermal AdSs/Z,
1
Z=< Z; Zap - (6.14)

To obtain the free energy of strings on AdSs3/Zn x M, we mul-
tiply (6.14) by the partition function of the CFT on M and the

reparametrization ghosts, and integrate 7 over the fundmental domain:

/ ZAdSsy 2y BB = —BF == ) log(1—e FF).  (6.15)
Fo physical
From this point on one can follow exactly the same steps as before
to reproduce the spectrum. We will explain some of the new features
that arise in the course of this computation.
As usual the sum over a represents the twisted sectors and the sum

over b serves as a projection down to the invariant states. Consider
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Z,0 and its expansion. From exp{2r(ImUy 1)?/72} and |sin(7Up 1)| 2

we obtain the additional factor

exp [271’7’2 (;—22 - %)] . (6.16)

A conformal field theory of 2 bosons with periodicity # has ground
state energy

(q@) 2@ 0= (6.17)

so we have reproduced what might have been the expected shift in
the ground state energy. However, this is not the end of story. The

oscillator terms are changed to

—2

H(l . eﬁ+27ri¢(n—a/N))(1 . e—ﬁ+2m"r(n—|—a/N)) : (618)
n=1
which has poles when 7 = m Earlier it was shown that the

location of the poles correspond to spectral flow parameters. So we
see that w is given by w = n — a/N with n being positive integers. It
will be explained shortly that w = —a/N arises from 79 above the first
pole at m The shift in the location of the poles also causes the
expansion of (6.18) to be slightly different from the AdSs3 case. One
finds the terms (compare to eqn. (5.18))

.. exp [2m (w(w +1) - ;—Z + %)] (6.19)

The extra terms on the right serve to cancel the shift in ground state
energy, (6.16), and we are left with the correct expression for the en-
ergy. Note that this cancellation is in agreement with what we found
in the previous section. What appears to be twisting is actually a

fractional spectral flow.
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To see that summing over b corresponds to a projection down to
the invariant states, take Z,; and its expansion. The only additional
change is the appearance of a new term

%ﬁMq—dq

5 (6.20)

exp [_
in every state. Hence, % > » Zap only includes the states with the cor-
rect condition on angular momentum. This shows that from (6.14) we
obtain the spectrum that agrees with what was found in the algebraic

analysis.

6.6. Bound on

In expanding the partition function, the presence of poles in the
oscillator terms meant that the range of 75 was broken up into

g g
27T(U}—|— 1) < To < % y (621)

and a different expansion was used in each interval. This gave rise to
the states with spectral flow by amount w. In the case of AdS3, this
included the sector with w = 0. But now that w is no longer limited

to be an integer, we need to re-examine the special case

B
o1(1 — a/N)

< Ty < 00. (6.22)

In this range, the energy is found to be

2a 1 [ a? a
E=1 G— 4+ [1+4(k—-2) (N 1= 2.
+q+q N—l—\/ + 4(k )< wth 2<N2 N>>
(6.23)

So we see that these states are in the sector flowed by w = —a/N.

Thus, the allowed values of spectral flow are w = n — a/N, including
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n = 0. We expect that these states will have a different range of ,
because the integral over 75 is broken up in a different way from all
the other states.'® Repeating the saddle point calculation as was done
earlier, £ is seen to satisfy

(k—=2)%+1 - k-1

—. 24
5 <l < 5 (6.24)

On the algebraic side, this change in the lower bound can be seen from

solving the physical state condition

é=§—7w+,/—..., (6.25)

with w = —a/N. The semi-classical limit (large k,h) of this bound

4h a
0<y/—<1—— 6.26
<y 7 < N (6.26)

which is consistent with the analysis of [43], extended to negative values

translates into

of w. In AdSj3, states with negative w automatically had negative
energy, but now we find that in the quotient space it is possible for

states with negative fractional spectral flow to have positive energy.

6.7. Discussion

We have formulated a description of strings moving on AdSs but
with an opening angle of 27/N for ¢. The twisted states arising
from the orbifold construction found a natural description as states
with fractional spectral flow. Specifically, we have shown that the
nth twisted sector is obtained by taking spectral flow with w = n/N.
Rather than thinking of the original states with integral w as being

16 That is to say, in the variable 1/712 these states occupy a strip of length
less than 27 /8.
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“untwisted” and fractional w as being “twisted”, we have proposed
that there is only one untwisted sector, namely those with w = 0, and
all the spectral flowed sectors should be thought of as being twisted.

We have also computed the thermal partition function on this
background and extracted the spectrum that agrees with the results
of the algebraic description. Despite the fact that there are states con-
structed by acting with fractionally-moded generators, it was shown
that this does not cause a change in the ground state energy.

The fact that twisted states may be obtained by spectral flow
means that we are also able to write down the corresponding vertex
operators, by bosonizing the K3 current [44,16]. Thus, unlike what
usually happens in orbifolds we have explicit formulas for the twisted
state vertex operators. Using these vertex operators we can compute
the long string scattering amplitude on AdSs/Zy.

One might wonder whether we can extend our analysis to the case
with rational values of the opening angle. Indeed, it is fairly simple to
generalize the algebraic construction given here, by first going to the
covering space in which ¢ has period 27 P and taking a Zg orbifold.
The resulting space would have an opening angle 2w P/Q). However, it
is not clear whether one can calculate the partition function with this
geometry, and that prevents us from concluding at present that such
descriptions are possible.

As already mentioned, an important application of AdS3 orb-
ifold is the BTZ black hole. The idea of generating twisted states
by fractional spectral flow was used in [45,46] to determine the string
spectrum in the BTZ background. The quotient involved in that cal-
culation is more complicated than what we considered here, and the
orbifold is an asymmetric one, meaning that a different identification

is made for the left and right. It is worth noting, however, that the
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asymmetry only manifests itself in having different fractional spectral
flow numbers on each side.

Lastly, it would be interesting to apply the conicals discussed here
to the study of closed string tachyon condensation. In many respects
AdSs/Zyn and C/Zy are similar, but they differ in one important
aspect: time does not decouple in AdS3/Zy. Extending the recent
results in tachyon condensation in C'/Zy [47,48,49] to AdSs/Zy would

represent a significant progress.
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7. Strings in Plane Wave and AdS x S
7.1. Introduction

As mentioned in the Introduction to this thesis, it has not been
possible to explore AdS/CFT correspondence to the extent one would
like because string backgrounds with R-R fields are difficult to solve.
Recently, however, Berenstein, Maldacena, and Nastase [50] showed
how to take AdS/CFT beyond the supergravity approximation. By
taking a limit of AdSs x S° in which the geometry becomes that of
a plane wave, one obtains a background that allows for exact string
quantization, in Green-Schwarz formalism [51]. The limiting procedure
involves taking the radius of AdSs x S° to infinity and is an example
of Penrose’s limit [52]. At the same time, on the CFT side one focuses
on those states with large conformal weight and R-charge: A,J — oo
as R?, but with finite A — J. In this way each AdS/CFT duality gives
rise to a plane wave/CFT duality, in which one may go beyond the
supergravity approximation. Specifically, BMN was able to reproduce,
from the CF'T point of view, some of the stringy excitations in the plane
wave. This represents remarkable progress towards establishing the
correspondence between a fully string theoretic description of gravity
on AdS and the CFT on the boundary.

Furthermore, it has been shown that some physical quantities of
interest may be computed perturbatively on both sides of the BMN
correspondence [53,54,55,56]. This differs from AdS/CFT, in which
the duality relates the weak coupling physics on one side to the strong
coupling physics on the other. This development has led to an intense
level of activity!” which has resulted in significant understanding of

both gauge theory and string field theory.

17" See, for example, [57,58,59,60,61,63,64,65], and [66,67,68,69] for reviews.
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For these reasons string theory on plane waves that arise as Pen-
rose limits of AdS x S has emerged as a topic of great importance.
However, the GS formulation of superstrings is technically cumber-
some and much insight would be gained from an example of an exact
CFT description of string propagation on a plane wave. Happily, such
an example exists: the plane wave obtained via the Penrose limit of
AdS3 x S with a purely NS-NS field strength®s.

Actually, the AdS3 x S2 plane wave with NS background is spe-
cial for another reason—string theory is solvable even before the Pen-
rose limit is taken! The CFT on the string worldsheet is given by the
SL(2,R) and SU(2) WZW models with the level of the current alge-
bras determined by the radius of AdS3 x S3. The solvability of string
theory on AdS3 x S? allows us to view string theory on the plane wave
as one of its subsectors. This is similar in spirit to how the N' = 4
SYM theory is studied in the ten dimensional BMN duality, in that one
does not in anyway change the theory while trying to study the cor-
respondence. Rather, one restricts focus onto a particular subclass of
operators, such as the (nearly) chiral operators, for which it is possible
to say something about the dual objects in the string side.

Our goal is to understand string theory on plane wave from the
viewpoint of the underlying supersymmetric SL(2, R) x SU(2) WZW
model. We begin with the superstring spectrum on AdSs x S3 x M at
arbitrary values of the level k and angular momentum J on S3. As we
take k, J — oo, we can “see” how the Hilbert space breaks apart, and

a subspace arising in this limit corresponds to the plane wave Hilbert

18 For earlier work on the AdS3 x S® plane wave, see [70,71,72,73,74,75].
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space. The spectral flow symmetry of the SL(2, R) WZW model once
again will play a key role in this discussion!?.

Moreover, since our treatment is fully string theoretic from the
start, or in other words valid for arbitrary values of the radius, we can
attempt to address the following important question: What can string
theory on plane waves tell us about string theory on AdS x S? Even
though it is believed that the former represents a great simplification
of the latter (the plane wave is, after all, just the first term in an R 2
expansion of AdS x §), we find some strong evidence that in fact some
aspects of string theory in the plane wave could be trusted away from
the strict R?> — oo limit. Specifically, we will show that the large
J spectrum of strings on AdS3 x S® with NS background at finite
R? coincides with the plane wave spectrum, found in [50,70,71,72].
This is rather surprising since the spacetime geometry in each case is
drastically different. Our result provides an explicit and compelling
evidence in support of some of the recent ideas [76,77,78,79,80] about
extrapolating the semiclassical relationship between energy and spins
in AdSs x S° down to the stringy regime.

The plan is as follows. We begin by reviewing in this section the
SU(2) WZW model, which is needed to describe the S3 part of the
target space. We will briefly describe the Hilbert space of the SU(2)
WZW model, in order to introduce notation and also because as we

will see, the analog of spectral flow (3.9), (3.10) in the SU(2) WZW

model will prove to be an useful tool in studying superstrings in the

19 Previous work on the plane wave limit of AdSs x S° either did not
address the issue of spectral flow, or discussed it as a symmetry of the WZW
model based on the extended Heisenberg group, i.e. after the Penrose limit

was taken.
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plane wave. Then we formulate superstrings in AdS5 x S3 x M, where
M may be T* or K3.

Section 8 explains the Penrose limit which takes AdSs; x S3 to
the plane wave, and in section 9 we study the semi-classical limit of
strings that will be relevant in the plane wave limit. We do this by
computing the Nambu action of a string near the origin of AdS3 and
moving with high angular momentum on a great circle of S3. This
is the six dimensional analog of the particle trajectory used by BMN
to obtain the ten dimensional plane wave from AdSs x S® [50]. The
resulting Nambu action displays the same behavior as what was shown
in [16]. Namely, new representations that do not obey the usual highest
weight conditions appear. These representations are obtained from the
usual representations by spectral flow, and it is shown that the amount
of spectral flow depends on the ratio of the angular momentum to
R?. Armed with this knowledge, in section 10 we obtain the exact
string spectrum on AdSs; x S3, valid for arbitrary values of R? and
J. The plane wave spectrum is reproduced by taking R?,.J — oo and
expanding to leading order. In section 11 we discuss the decoupling
of the Hilbert space in the Penrose limit. In section 12 we discuss
what happens when the radius of AdSs; x S3 is finite. Conclusions
are presented in section 13. In Appendix A we show how the spectral
flow number violation rule found in [81] can be understood in terms of

angular momentum conservation in the plane wave.

7.2. SU(2) WZW model

String theory on S is described by the SU(2) WZW model, and
its Hilbert space can be constructed in a manner similar to what we

described for SL(2, R). Again, we will restrict our attention to the
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holomorphic sector. Every statement we make regarding the holo-
morphic sector has an analogous statement for the anti-holomorphic
sector.

The action takes the same form as the SL(2, R) WZW model, but
now with g labelling an element of SU(2). The parametrization of the
SU(2) group manifold is very similar to what was used for SL(2, R).

The metric on S3 reads
ds® = cos® 0dyp* + df? + sin” Odp? . (7.1)

The symmetry of SU(2) WZW model is generated by two copies
of the @(2) current algebra at level &’

[T, T =208 )+ ' mbm
[ngv Jer:} = j:‘]n:%—l-n (72)
T80 T3] = b

and the Virasoro algebra given by the Sugawara form

O

1
L, = S I Al D .
M+2m§j oI —m (7.3)

The representations of the SU(2) WZW model are built from the famil-
iar SU(2) angular momentum representations D;. A state is labeled
as |j, m, M), with
: iG+1)
L M) =
0|jam7 > ( k' + 9

Jo13,m, M) = m|j,m, M) .

H@mmM> (7.4)

It will be convenient to choose our basis so that the zero modes of J3

and J3 are related to translation along ¢ direction in (7.1):

.0 -
ﬂ%:ﬁ+ﬁ. (7.5)
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The possible values of j that may appear are restricted to 0 < j < k’/2,
in half-integer steps [82]. The complete Hilbert space of SU(2) WZW
model is therefore

/ Dj & ﬁj . (76)

K
2

Hsu = @jzo

l cee
7.8. Superstrings on AdSs x S? x M

So far we have discussed the bosonic string theory. Our main in-
terest is in the supersymmetric case, and in this subsection we will de-
scribe the supersymmetric extension of WZW models. For simplicity,
we will limit our discussion to the SL(2, R) model; the corresponding
modifications for the SU(2) model is straightforward. Further details
on superstrings on group manifolds can be found in [83]. Superstrings
on AdSs; x 83 was also studied in [84], and the no-ghost theorem was
proved in [85,86].

To extend the above results to the case of superstrings in RNS
formalism, we need to introduce free worldsheet fermions y® which

together with the total current K¢ comprise the WZW supercurrent:
C*"=x"+0K", (7.7)

with 6 a holomorphic Grassmann variable. The OPE’s of K* and x“

are
K(2)Kb(w) ~ g(z T;V N Z'each_(cugw)
- ab . c
K (w) ~ ) (7.9
) ~ ET



This shows that K and x® do not form independent algebras. By
subtracting the fermionic contribution to the total current, we obtain

the bosonic current

k=K + %EachbXC : (7.9)

which have the OPE’s

ab Z'eab ¢(w
E(2)k"(w) ~ k;Q(zin + chzij ) (7.10)
B2 (w) ~ 0.

Hence the level of the bosonic WZW model is shifted from k to k£ + 2.
Similarly, for the supersymmetric SU(2) WZW model one introduces
three fermions (* which together with J* form the supercurrent. The
purely bosonic current j¢ is defined analogous to (7.9), and the level
of the bosonic part is shifted from k&’ to k¥’ — 2. The stress tensor and

the Virasoro supercurrent are given by

1 1 -q a
T = E(nabkakb_nabxaaxb)"i_ E((Sab] ]b_éabc aCb)
2 1 2 1
_ = u ak,b__acabc “ 5@ a-b__acabc '
G k(nbx 3k€bXXX>+k,<bC Sk,EbCCC

(7.11)
Criticality of superstring theory on AdS3 x S3 x M, where M is

K3 or T*, requires the central charge to satisfy

3(k+2) 3 3K -2 3

which relates the levels of the current algebras
kE=Fk. (7.13)

It is worthwhile to use variables commonly used when discussing
AdS/CFT duality. In deriving the AdS3/CFT, correspondence from
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D-branes, S-duality can be used to transform the D1-D5 system into an
NS1-NS5 system. Taking the near horizon limit, the level of SL(2, R)
WZW model is identified with @5, the number of 5 branes (for details
see [11], [87]). Hence the bosonic levels of the SL(2,R) and SU(2)
WZW models are (05 + 2 and ()5 — 2, respectively.

The supersymmetric generalization of spectral flow in SL(2, R)
WZW model was given in [88]. The spectral flow operation, given by
the action of what was referred to as the “twist field” in that work,
not only induces transformation on the §z(2, R) quantum numbers but
also on the CF'T describing the internal space. Physically, this coupling
between the SL(2, R) part and the internal CFT has its roots in the
fact that in order for the spacetime theory to admit supersymmetry,
one needs to pair x? with a fermion from the internal CFT and then
bosonize [14,89,90]. In the case of AdS3 x S3 x M the internal fermion
is identified with ¢3 and in the language of [88] every time the twist in
§E(2, R) is taken there is a corresponding twist in @(2)

Thinking of spectral flow as a twist is equivalent to the parafermion
decomposition SL(2,R) ~ SL(2,R)/U(1) x U(1l) and SU(2) =~
SU(2)/U(1) x U(1), in the following way. Introduce free bosons ¢

and 1), normalized such that

(0(2)0(z")) =log(z = 2") ,  (V(2)P(2)) = —log(z — =) . (7.14)

In terms of which k3 and j3 can be expressed as

k3 (2) = —i\/gﬁqb . iP(r) = —i\/gﬁw : (7.15)

Throughout this discussion k£ and k' stand for the bosonic SL(2, R)
and SU(2) levels, respectively. Then the bosonic SL(2, R) primary
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field ®y,5 is decomposed into a field of SL(2, R)/U(1) times a field in
U(1), where the U(1) is generated by ¢:

By = MV EOTIIVFoGIL/UA) (7.16)
Similarly, a bosonic SU(2) primary W, is written as

U = €MV B otimy/ 5oy SU/UQ) (7.17)

jmm

The fields q)ifﬁ/ U are @YUM parafermions, with weight

jmm

SL/U(1 l(l — 1) TL2
M@ ) = T (7.18)
o 7.18
L g SU/UMY _ jG+1)  m?
( jmm ) - k/+2 _ k/ )

so that (7.16) and (7.17) have the expected weights. Note that under
the shift n — n+wk/2 and m — m+wk’ /2, the weights of the primary
fields change to

h(Pins) —>—l(l_1) —nw — k:_w2
- ( 'k+_1)2 k:’42 | (7.19)
J\ w
A jmm) — g Tt

Spectral flow in the supersymmetric theory consists of the above shift

in n,m, plus an additional contribution from the fermions [88], which

gives
w I(1—-1 Qsw?
@) =~ -
GO o (7.20)
M m) = ! ]Qs + mw + 54w :

There is a similar relation on the anti-holomorphic side as well, with
the same w. Note that the parafermion formalism also provides a

convenient way of defining the vertex operators for states belonging
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to the spectral flowed representations [91,16,81]. The physical state
condition is (L, — ad,,0)|2) = 0 for n > 0, where a = 1 in the NS
sector and a = 0 in the R sector, as well as G,.|Q?) = 0 for » > 0. In
addition, the analogue of GSO projection is the requirement of mutual
locality with the supercharges that are constructed by bosonizing the

worldsheet fermions [88].

8. Penrose limit of AdSs x S® with NS background

In this section we explain the Penrose limit [52] of AdS3 x S? that
results in the plane wave geometry [50,92].

The six dimensional plane wave is obtained from AdS3 x S3 by
expanding around a particular class of geodesics. These geodesics cor-
respond to a particle near the center of AdS3 and moving with very
high angular momentum around a great circle of S3. For this purpose,

we begin with the spacetime metric

ds® = R?(— cosh? pdt?® 4+ dp? +sinh? pdp? + cos? 8dip? + df? +sin? 0dp?)

(8.1)
and introduce the coordinates
t = ,u:L”L
— 8.2)
ot (

Rescaling p = r/R, 0 = y/R, the metric is expanded around p =6 = 0
by taking the limit R — oco. This results in the six dimensional plane

wave

ds® = —2dwdz™ — p2(r® +y?)da T dat + dr? + r2de? + dy® + P de?
(8.3)
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String spectrum in this background with NS three form field
strength was found by quantizing the light cone action in [50,70,72].
For our purposes we will find it convenient to take the light cone Hamil-
tonian as given in [71], adapted to the conventions of this paper and
supersymmetrized,

N+ N+rM+ M -1

He.=p =p24+q+q + "

(8.4)

This applies to the NS-NS sector, and the last term needs to be ap-
propriately changed for the R sector. The quantities appearing in this
expression have the following physical interpretation. N is the total
level of excitations along the pp-wave. h™™ is the weight of the state
coming from the CFT on M. Finally, ¢ is the net number of times the
spacetime light cone energy raising and lowering operators have been
applied to the ground state. The ground state in question may or may
not be physical, i.e. we are referring to the ground state before the
GSO projection. We have chosen the letter ¢ to denote this number
because as we shall see the physical meaning of this quantity is the
same as the ¢ we used in labelling the current algebra representations,
see the remark below (3.12). There are corresponding contributions
from the anti-holomorphic side to (8.4), subject to the constraint that

the net momentum along the worldsheet vanishes,
N+h=N+h. (8.5)

The lightcone variables p~ and p™ are related to observables mea-

sured in the global coordinates (8.1) by

P =0+ = p(E —J)
J (8.6)

t =0, =2
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E is the spacetime energy and J is the angular momentum around the
1 direction in S3. Our choice of basis in labeling the SU(2) represen-
tations (7.4) corresponds to diagonalizing the action of rotation in 1,
hence J is given by J§ + J3.

The radius of AdS3 and S?3 is related to Q5 by R? = o/Qs, so the

second equation in (8.6) is equivalent to

J

o 8.7
pp" =0 (8.7)
Hence the string spectrum in the NS-NS sector is
Qs @5 oM, M
E—-J=24+q+q +7(N+N—1) 7(11 + h) (8.8)

with the condition (8.5).

We make a few comments about the brane charges. Note that ()1,
the number of 1branes, actually never appears in any of the formulas?®
But it should be kept in mind that ), is being taken to infinity as
well. As explained in [92], the plane wave limit can be described in
terms of the brane charges by taking @)1, Q5 — oo, with fixed Q1/Qs.
The scaling used to obtain the plane wave requires that finite energy
excitations of the resulting geometry have A, J — oo as v/Q1Q5, with
finite A — J. Since (1 x @5, this actually implies that A, J — oo
as 5 ~ k, the level of the current algebra. We could have seen this
directly from the fact that J/R? is held fixed as the limit R? — oo is
taken, but then it would not be clear that (), is scaled to infinity as
well. Also note that in the case of Q5 = 1, due to the aforementioned
shift in the level of the bosonic WZW model the bosonic SU(2) part
has a negative level. This is in conflict with the well-known result that
the SU(2) level must be a non-negative integer. We will return to the

issue of (J5 = 1 later.

20 This is a feature of the NS1-NS5 description [87].
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9. Nambu action near the origin of AdS; x S3

One of the things we want to understand is how the string spec-
trum on AdS3 x S3 x M reduces to (8.8) in the limit Qs5,J — oo. In
order to answer this question we must first understand how (8.8) takes
into account the spectral flow parameter w. In this section we explain
the physical significance of spectral flow in the plane wave.

The plane wave limit described above is essentially a semi-classical
expansion about AdS3 x S3, combined with the unusual procedure of
boosting to infinite (angular) momentum. Indeed, the large &k limit in
WZW models corresponds to the semi-classical limit, since the WZW
action is proportional to k. Motivated by these concerns we will con-
sider the Nambu action, upto quadratic order in the fields, of a string
moving moving near p ~ 6 ~ 0 of AdS3 x S3. When J is taken to
be large, of order (U5, the resulting action displays spectral asymmetry
which is then related to spectral flow [16].

The Nambu action is given by

§— 1 / drdo (/9] — ap B Do X 3y X*) (9.1)

2mal

with g the induced metric and B,,,, the NS-NS two form. The non-zero

components of the B field are
]‘ / ]‘ /
By = 1 Qscosh2p, By, = e Q5 cos 20 . (9.2)

We will consider a string located at small values of p and 8, and mov-
ing along the 1 direction. Since we will be interested in states with
fixed angular momentum around 1), we take as our classical solution

Y(r,0) = (7). This corresponds to a string collapsed to a point
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and rotating around a great circle?!. The components of the induced

metric g, = G0, X0, X" are, in the gauge t = T,

goo = &' Qs(—(1 + (X*)?) + 9o X0 X *

+ (1= (Y)?)(001)* + DY “DoY )
go1 = &' Q5(00 XN X+ IpY*01Y?)
g11 = ' Q5(01 X X+ Y0.Y?)

(9.3)

where X! 4+iX? = pe’®, and Y +iY? = fe’?. The coupling to B field

simplifies in this gauge to

Q

—2—; /dea(p231§b — 0200001 ) , (9.4)

where we have used the fact that ¢ has no dependence on o,

/deaﬁmp@lgp = /deJ@l(ﬁmpgo) =0. (9.5)
The resulting action (9.1) shows that v is a cyclic coordinate. Hence,
the conjugate momentum Jy, = % is constant and it is advan-

tageous to perform a Legendre transformation for . The resulting

Routhian,

R(X*. Y% Jo) =L — JoOo¢ , (9.6)

is then the Lagrangian that describes the dynamics of X and Y?,
while treating Jy as a constant of motion. The subscript 0 is added
to J here to indicate that it is the angular momentum of the ground

state, because we are discussing the point particle limit. Taking Jy to

21 The importance of studying such solutions were pointed out in [93,94].
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be large, of order (U5, the action for X* and Y* upto quadratic order

in the fields is found to be

s=20 [ g1 1\309\2 + 210 —iaep
o 2 A2
. (9.7)
——|aO<1>|2 + 5l —ia)ep

where A = Jy/Qs5, and X' +iX? =@, Y! +iY? = ©. We see that @
and O are two massless charged scalar fields on R x S!, coupled to a
constant gauge field A, = Ad, 1. As shown in [16], this implies that
if A is not an integer, the states of ® and © belong to the discrete
representations with spectral flow number w equal to the integer part
of A. Let us explain how this arises. The solution to the equation of

motion that follows from (9.7) is

iAo
o — ( T i(n—A)(1/A+0) b, —i(n—A)(T/A—U)) ¢
E a,,€ + Ope n— A
Z A)(r/A+o) (n—A)(r/A-0)) €7 .
’L n— ’T (oa d —1 \n— T —0 ) .
O = (c e +dye —
Canonical quantization gives for the commutation relations
f — A)S b, bl — A)s
Ap,y Ay, ~ (T n,m ny O] ™~ (N n,m
[ ]~ | ) [ ]~ ) 9.9)

enicl ] ~ (n = Ao, [dpdl] ~ (n— A)bpm .

T

Hence, for n > A, a,, is the creation operator while for n < A, a,
should be thought of as the creation operator. Similar comments apply

to the other sets of operators. The holomorphic currents constructed
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from ® and © are

K+ ~ _Z-Q5 Z ane—in(T/A—{—o)

K~ ~ iQs Z aiein(T/A—f—U)

+ oz —in(t/A+0) (910)
JT ~ —iQs Z Cne

J™ ~ iQs Zciem(T/Aw) '

Each current may be mode expanded and using (9.9) the vacuum obeys

n>A:  JHO =0, KF0)=0,
(9.11)
n>—A: JI0)=0, K|0)=0.

Notice that this is different from the familiar highest weight conditions,

+

which state that, for example, K, should annihilate the vacuum.

n

The highest weight conditions can be restored by the transformation

KT — Kkt gt _ gt

n nFw n nFw

(9.12)

with w an integer satisfying w < A < w + 1. With respect to K and
J, the states created from |0) fill out the conventional highest weight
representations. This shows that for Jy not a multiple of (5, the states
are in the discrete representations with spectral flow number equal to
the integer part of Jy/Qs.

On the other hand, when Jy /@5 is an integer, the SL(2, R) part of
the state is in the continuous representation with spectral flow number
Jo/Qs [16].

The fact that spectral flow is necessary when Jy is comparable to
(25 should not be too surprising. In fact, the role of spectral flow is

precisely to resolve the apparent conflict between the upper limit on
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SL(2,R) spin of the discrete representations (3.17) and the freedom
to have arbitrarily high angular momentum on S3. More generally, for
spacetimes of the form AdS3 x N, the analysis of [16] shows that the

amount of spectral flow is determined by ratio of the conformal weight
h coming from the operator of the N' CFT to the SL(2, R) level k,

4
w<\/?h<w+1. (9.13)

For the case at hand, we see that 4h can be approximated as JZ/k and
using k ~ Q5 this reproduces what we found above.

What is surprising, however, is that (9.7) and the arguments that
follow it imply that spectral flow should also be taken in the SU(2)
theory, with the same amount as the SL(2, R) part. To be sure, this
is not to suggest that the Hilbert space of SU(2) WZW model needs
to be enlarged to include spectral flowed representations, similar to
what was done in the case of SL(2, R) model. Whereas the §E(2, R)
representations generated by spectral flow are new and distinct from
the conventional representations, this is not true in the case of @(2)
representations. But as we explained supersymmetry requires that
spectral flow is taken in both WZW models. Due to the high number
of supersymmetries possible on this background?? it is not unreason-
able to think that this peculiar feature of the supersymmetric theory
manifests itself in the purely bosonic analysis presented here. Addi-
tionally, note that the action of spectral flow on the angular momentum

generator,

wk

J3 — I+ - (9.14)

22 String theory on AdSs x N generically has N = 2 spacetime supersym-
metry if N has an affine U(1) symmetry and the coset N'/U(1) admits a
N = 2 superconformal algebra. In the case N’ = S® x M, supersymmetry is
enhanced to N = 4 [89,90,95].
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has the right form to be useful in keeping track of states with J ~ k
while k is taken to infinity. This feature makes it worthwhile to intro-
duce spectral flow in the SU(2) WZW model?3. In the next section,
we will use this idea to obtain the large J spectrum of superstrings on

Ang X 53.

10. The plane wave spectrum

We now turn to explaining how the plane wave spectrum arises
from the exact AdSs x S2 results. The discussion will be limited to the
NS sector, as the R sector can be obtained by similar methods, with

the additional use of the spin fields.

10.1. Short strings

We start with the discrete w = 0 states, the holomorphic side of

which is labeled by the quantum numbers
6,7, N) @ |j,m, M) & ™M) . (10.1)

The notation in labeling the ﬁ(Z, R) x §(7(2) part of the state is the
same as what was used in section 2, and h™ is the conformal weight
coming from the CFT on M. In order for (10.1) to be physical, it

must satisfy

_é(f—l)+J(J+1)+N+M+hM:%, (10.2)

Qs Qs

Let us look for the ground state within a given j sector. First, we note

that the GSO projection [88] requires the lowest excitation number to

23 See [96] for an interesting application of spectral flow in the SU(2)
WZW model.
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be one half, so from (10.2) we find ¢ = j + 1. Next, we see that the
lowest value of energy (for fixed j) is obtained if this one half unit of

excitation comes from the action of Cfl /2 OF X_ 1. In the first case,

1 .
2
the ground state is

[7/2,7/2) @ (*1|J/2 = 1,0/2-1) ®10) (10.3)
and in the second,
X:%|J/2+1,J/2+1>®|J/2,J/2>®\O). (10.4)

Combining with an identical state in the anti-holomorphic side, we see
that there is a total of four states that carry angular momentum J and
energy E = J, i.e. the light cone vacuum.

We will not discuss the Ramond sector in detail, but in order to
complete the discussion of light cone ground states we briefly mention
how many are found in the Ramond sector. The number of light cone
ground states coming from the Ramond sector depends on whether
M is T* or K3. For T*#, there are two ground states in the R sector,
and one can construct the usual NS-NS, NS-R, R-NS, R-R sectors to
find a total of 16 ground states [97]. When the internal manifold is
K3, for the purposes of counting ground states we can think of T /Z
instead. Then, as explained in [72], the ground states in the NS-R and
R-NS sectors are projected out, and the 16 twisted sectors each give
a ground state in the R-R sector. Thus there are 24 ground states in
all, as expected.

The excited states of w = 0 representations are obtained from
the lowest weight of SL(2, R) and the highest weight of SU(2) by the
action of negatively moded generators. Physical states do not carry

excitations along the time direction. For example, in the SL(2, R)
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Hilbert space those states satisfying the Virasoro conditions can be

written
o N B B o n B B
IT o™ o)™ T )N (2,) N e = 0) (10.5)
r=1/2 n=0

which has the grade

N =) n(N+N,;)+> r(NF+N;) (10.6)
and n = { + qgy,, with

gsL = (N =N)+ > (N —N7). (10.7)

n

Similar relations hold for the SU(2) part. Now (10.2) is used to solve
for ¢, which then gives for the energy

E=1+qgs. +qsL

+\/(2j+1)2+2Q5(N+N+M+M+hM+BM—1),
(10.8)
with j related to J by J = 25 — qsu — ¢suy. Now we take the “Penrose
limit” @5, J — oo with J/Q5 fixed, and expanding to terms of order

one we find

E—J= 2+qSL+QSL+qSU+§sy+%(N+N+M+M+hM+BM—1) :

(10.9)
Note that the vacuum states considered above corresponds to sum of
the ¢’s totalling —2 and total grade equal to 1. That the lowest energy
state surviving the GSO projection in the NS sector has a half unit
of excitation is similar to what happens in flat space. The difference

in this case is that the various raising operators have different charges
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under F and J. Note also that the w = 0 continuous representations
are projected out from the physical spectrum, since for those repre-
sentations it is impossible to satisfy the physical state condition unless
N = 0. Hence the spectrum is free of tachyons.

Having understood the w = 0 states, we now turn to the spectral
flowed states. Consider a state in the spectral flowed representation of
§E(2, R) x 5(7(2), tensored with an operator on M,

w,£,7, N) @ |w, j,m, M) @ [h™M) . (10.10)

There is a similar state on the anti-holomorphic side. Using (7.20),

the physical state condition determines ? to be

20 =1— Qsw+

\/(23+Q5w+1)2+2Q5 (N+N+M+M-2w+hM+hM-1),

(10.11)
where we have used the second equation in (7.20) for the weight of the
SU(2) state. In this relation N and M are the grades measured by
Lo, not Lo, of the SL(2, R) and SU(2) model respectively. Now we
can use J = 25 + Qsw — gsy — sy to substitute for 5 in the expression

above, and the energy is given by
E =20+ Qsw+ qsr, + s, - (10.12)

This result is an exact formula for the energy of a string state in
AdS3 x S3 x M with angular momentum J around S3.

Taking the limit ()5, J — oo and expanding to terms of order one,

E—J=24qs.+ds. +qsv + qsu

+%(N+N+M+M—2w—1)+%(hM+BM).

J
(10.13)

79



The states with £ = J again have the form (10.3) or (10.4), but now
there is a slight difference due to spectral flow. For example, in the
spectral flowed analogue of (10.3), fermionic generator is given by C:’ir 1,
which has M = % + w after taking into account the shift in modirig
from spectral flow. This serves to cancel the extra term in (10.13)
compared to (10.9). As found in [88], the pattern of chiral states is
relatively simple. Once the w = 0 chiral states are identified, spectral
flow generates the chiral states with higher R-charge. In general a
state similar to (10.5) in a spectral flowed representation has N and
Gsr defined in the same manner as (10.6) and (10.7), respectively.

They are related to what appear above as

N = N — wqsr, ,
3 (10.14)
qdsrL. = 4sL -

In the semiclassical discussion of the previous section we saw that
the amount of spectral flow necessary is determined by the ratio Jy/Qs,
where J; is the angular momentum of the ground state, i.e. a state
in the zero grade of a @(2) representation. In the fully quantum
treatment, w is determined through the inequality % <l < %,
which becomes

o i+ Qw1
Q3
+Q1(N+J\7+M+M—2w+hM+BM —1) < (w+1)2.
i (10.15)
It should be remembered that N and M also depend on w, through
(10.14) and an analogous relation for M. In (10.15) we can think of
j + Qsw/2 as the highest weight of the SU(2) representation from

which the current algebra representation is constructed,

Jo=2j+ Qsw , (10.16)

and (10.15) reproduces the semiclassical result found previously.
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10.2. Long strings and the “missing” chiral primaries

Let us now discuss what happens when the inequality in (10.15)
is saturated, which in the semiclassical approximation corresponds to
Jo/Q5 becoming an integer. In this case we know from [16] that the
state belongs to a continuous representation of ﬁ(Q, R) with spectral
flow number w = Jy /@5, i.e. it is a long string in AdSs. Morever, the
energy of the solution changes smoothly in the transition from a short
string to a long string (and vice versa). The continuous representations
do not have highest or lowest weights and for this reason the spectral
flowed states are labelled by the eigenvalues of Ly. The plane wave

spectrum of the long strings is therefore

E—J= 2+%(N+J§7+M+J\l/[—2w—l)+%(hMJrBM) . (10.17)

Sometimes it is possible for a long string to have zero light cone
energy despite the fact that it is massive. If |0,w) denotes a state
with E = J then k|0, w) continues to have zero light cone energy be-
cause k;’s contribution to (10.17), proportional to N, vanishes. The
physical mechanism responsible for this phenomenon is the same as in
AdS53. Namely, the coupling to the NS three form cancels the grav-
itational attraction. In the context of plane waves supported by NS
field strengths it has already been observed that there are additional
zero modes in the spectrum [50,73,96], which can be understood as the
statement that states with special values of p™ — integer multiples
of 1/ua’ — do not feel the confining potential of the plane wave.

It is interesting to note that simplifying AdSs x S3 to the plane
wave makes more apparent the presence of long strings in the spectrum.
As we have just stated, some of the long strings correspond to chiral

primaries in the dual CF'T. It has been appreciated for a while now that
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there is a mismatch of chiral primaries in the AdSs/CFT5 correspon-
dence when considering the AdS3 with a purely NS background due to
the fact that AdSs with vanishing R-R fields corresponds to a “singu-
lar” CFT [98,88]. The mismatch arises when one tries to compare the
spectrum of chiral primary operators in the CFT to the spectrum of
chiral string states based on the discrete representations of §I}(2, R).
It was suggested in [98] that the chiral primaries that disappear when
all the R-R fields are set to zero might be found among the continuum.
We find explicitly that indeed there are chiral primaries belonging to

the continuous representations.

11. The decomposition of the Hilbert space in the Penrose
limit

We started with a unitary spectrum of string states in Ad.S3 x .53 x
M. This spectrum is obtained from the Hilbert space of the SL(2, R)
WZW model, tensored with the Hilbert spaces of the SU(2) model and
CFT on M, and imposing the Virasoro constraints. In obtaining the
results of previous section we have restricted our focus to a particular
subsector of this physical Hilbert space. We now address the question
of what happens to the remaining states in the Hilbert space. We find
that the ratios J/Qs5, J?/Qs determine where the state ends up.

As we take the limit R — oo, we expect that some of the states
become strings in flat space, some become strings in the plane wave,
and the rest with divergent £ — J. The spectra in flat space and plane
wave should form independent, unitary Hilbert spaces. Presumably,
this means that the states with divergent £ — J should also, but with
a different description. An example of such states would be those that

have high angular momentum along a different circle on S3. These
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states would be related to what we considered above by a global rota-
tion on the sphere.

We have found the states on the plane wave. Which states corre-
spond to strings in flat space? In any dimension, flat space is obtained

from plane wave when [50]
pa'pt << 1. (11.1)

But in our case, ua’pt = J/Qs5, and we know that the integer part
of J/Qs is related to the spectral flow parameter w in the large J, Q5
limit. Thus we conclude that the flat space spectrum comes from
the unflowed short strings in the original AdS3 theory. We can indeed
check that for J/Qs — 0, J?/Qs5 finite, the physical state condition for
w = 0 short strings (10.2) reproduces the mass formula of superstrings
in six flat dimensions times M, because the terms in Lg that involve
the quadratic Casimirs become p? as the space becomes flat [82].

It is important to note that even though we have just identified
the flat space spectrum as arising from the w = 0 sector of the original
theory, this does not mean that none of the w = 0 short strings remain
in the plane wave. Some of the states can still carry J ~ )5, and as
the limit Q5 — oo is taken we find the result (10.9). However, the
w = 0 plane wave states are generally farther from chiral than the
spectral flowed states.

If J2/Qs — 0, then (10.9) tells us that the string modes have
energy that diverges as /@Q5. Note, however, that even in this case
the supergravity modes (i.e. states at grade 1/2 for both the right and
left movers) remain, and they fall into the global SL(2, R) x SU(2)
multiplets.
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12. When the radius is small

An extremely interesting question one would like to address is
what we can learn about string theory on AdS x S from string theory
on plane waves. In the case of AdS3; x S and its plane wave limit, we
have a good understanding of both string theories, and we now turn
to this question.

But first, we’d like to stress a small point, which is that a priori
there are two distinct notions of “high curvature” one needs to keep in
mind. When one speaks of a highly curved plane wave, that actually
means

pa'pt >>1. (12.1)

In this case the string spectrum consists of highly spectral flowed
states. We see from (10.13) that this means the low lying string modes
become almost degenerate. This is similar to what happens in the
AdSs5 x S° plane wave.

Despite being “highly curved”, the highly curved plane wave still
involves taking the radii of AdS x S to infinity. Hence the GS super-
string in highly curved plane waves is still amenable to quantization.
The second, and more interesting, notion of “high curvature” is ob-
tained by dropping the R? — oo condition. Then clearly the geometry
cannot be thought of as a plane wave. Since it is only after the Penrose
limit is taken that the GS string can be solved, presently known results
about the plane wave of AdS x S are not expected to remain valid in
the case of small radius.

However, there have been some reasons to think that the plane
wave spectrum (8.8) might continue to correctly describe the large J
spectrum even outside the strict Q5 — oo limit. Authors of [92] studied

various aspects of string theory on the plane wave (8.3) from the point
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of view of the dual (M)®@195 /S5 o. CFT. One of the more interesting
things they found in that work was that after extrapolating (8.8) to
Q5 = 1, the result surprisingly agrees with the spectrum predicted
by the dual CFT at the orbifold point?*. Since the CFT spectrum is
believed to be reliable for arbitrary ()5, whereas the string spectrum
was found under the assumption that Q5 is taken to infinity, this hints
that perhaps (8.8) is true even when the spacetime geometry does not
correspond to a plane wave. There have also been some work along this
line for the AdSs x S° plane wave [78,79], but with some differences,
which we will discuss in the last section.

We can answer this question directly for the AdSs; x S3 case since
we worked out the string spectrum that is valid for all values of @s.
Our results apply equally to small )5, when we should think of the
geometry as AdS3 x S% x M with the first two factors being highly
curved. Thus, we can take (10.11), (10.12) and expanding for arbitrary
fixed )5, large w, we find that, in fact, the large J spectrum is again
given by (10.13). We conclude that the plane wave spectrum is actually
the large J spectrum of strings on AdS3 x S3 x M, for arbitrary values
of the radius.

Actually, there are two special cases where the worldsheet de-
scription we have given so far could break down. These special cases
occur for )5 = 1 or 2, whereby due to the shift in the level of the
bosonic WZW models the SU(2) model acquires a negative or zero
level. However, the problem is not serious for the Q5 = 2 case as we
can understand it to mean that only the fermionic fields are present

on the worldsheet for the S part of the target space. The Q5 = 1

24 TIn fact, the NS ()5 = 1 is the only case where a perfect agreement was
found. Matching of the spectra in general requires g2 corrections and on the

CFT side involves moving away from the orbifold point in the moduli space.
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case truly presents us with a difficulty since it is not clear how to make
sense of the SU(2) WZW model at level —1 as a physical theory. It
is not known at present how to describe the ()5 = 1 model, but ar-
guments were presented in [98] to suggest that it is a sensible (albeit
very special) system. We’d like to argue that the result (10.13) is valid
even for the (J5 = 1 case even though our starting point was not suited
to describe it. For one, it would be rather unusual for the expression
(10.13) to be true for Q5 = 2,3, ... 00 and not be true for Q5 = 1 when
nothing special happens as we try to set Q5 = 1. More importantly,
the dual CFT is well defined at ()5 = 1 and its prediction for the string
spectrum [92] matches perfectly with (10.13). Perhaps Q5 = 1 actu-
ally represents the zero radius limit of AdS3, thus providing the reason
behind perfect agreement with the symmetric orbifold. The orbifold
point of the CF'T corresponds to the free theory (analogous to setting
gym =0 in AdS5/CFTy), whose dual string theory would apparently
be formulated on zero radius AdSs3. We will return to this issue in the

Discussion.

13. Discussion

The two main objectives of this investigation have been

(a) To provide a CFT description of strings in a plane wave back-
ground, giving the necessary framework for a detailed study of
BMN correspondence using the powerful tools of CFT.

(b) To investigate the relationship between string theory on AdS x S
and string theory on plane waves, using the solvable AdS3; x S3
case as a model.

We offer some comments on each of these issues.
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It is worth emphasizing that we are now positioned to take ad-
vantage of the CFT techniques to study string interactions in the
AdS3 x S3 plane wave. This is in stark constrast to the much studied
case of the ten dimensional plane wave that arises from AdSs x S°,
where the RNS description of strings is lacking and interactions can
only be studied using string field theory. In fact, correlation functions
in AdSs have already been calculated [81], so together with the corre-
lation functions of SU(2) WZW model it should be possible to obtain
scattering amplitudes in the plane wave by appropriately taking the
large J, @5 limit. This should prove to be an useful area for study.

In regards to the AdS3 correlation functions, we show in Appendix
A that the spectral flow number violation rule found in [81] can be
understood as the conservation of angular momentum in the plane
wave.

Additionally, one expects that the map between the CFT oper-
ators and plane wave string states is easier to establish than the ten
dimensional case, owing to the fact that the AdS3/CFTy duality is
highly constrained by the infinite dimensional conformal symmetry.
Thus, it becomes a technically simpler problem to study the BMN
correspondence in situations where many interacting string modes are
involved.

The other main point of this paper is that we have actually com-
pared string theory on AdSs x S? to string theory on the plane wave.
We have found that the plane wave spectrum, which one might have
thought to be the result of some simplification of the AdSs x S spec-
trum that occurs in the limit Q)5,J — oo, actually is the result of
J — 00 only.

Recently it has been conjectured by Frolov and Tseytlin [76,77,80]

that the semi-classical formula for the energy of strings carrying spins
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in multiple directions in AdSs x S® continues to hold true at small
values of the radius, provided that the spins take very large values®®.
Based on the findings of this paper, we feel strongly that their conjec-
ture is true. Furthermore, if the relationship between string theory on
AdSs x S? and its plane wave limit applies to other AdS x S spaces, it
suggests that the string spectrum on the plane wave limit of AdS5 x S°
[51,50] is in reality the large J string spectrum on AdSs x S°.

Before leaving the subject of the Frolov-Tseytlin solution, let us

note a curious fact. Frolov and Tseytlin found that the solution car-

rying two non-zero equal spins in S° has the energy

E= \/(zJ)2 + (% . (13.1)

This bears striking resemblance to the energy of a low-lying short string

state in AdS; x S° with the single spin

R2
E~[J? 4, (13.2)
(8%

where ¢ is a number of order 1. Other than the difference in the power
of R?/a’, which could be explained by the fact that the role of N in
AdS5/CFTy is played by both Q1Q5 and /Q1Qs in AdS;/CFTs [92],
the two expressions are almost identical. It should be kept in mind
that (13.1) is a classical result whereas (13.2) is a quantum one. It
is not clear if Frolov-Tseytlin solution has an interpretation as giving
arise to a simpler spacetime geometry in a manner similar to BMN.
However, as we have seen, strings with large J in AdS3 x S? have

a simple description even though it is only after the radius is taken

25 See [99] for a discussion regarding the supersymmetry of the spinning

strings.
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to be large as well that they can be viewed as moving in the plane
wave. At any rate, it would be extremely interesting to understand
why these two expressions are so similar. Perhaps studying strings on
AdS3 x S x S x S [100], which makes multi-spin solutions possible,
along the lines of this work will shed light on this issue?®.

Another topic of interest has been pursued recently?’, involving
strings in the critical tension limit and the possibility of defining string
theory in the zero radius limit of AdS. The hope is to take the
A — 0, N — oo limit of AdS/CFT at its face value and establish a
duality between string theory in the zero radius AdS and a free field
theory. We should mention from the start, however, that the approach
has been to send R?/a/ to zero in the classical Hamiltonian and then
quantize the resulting (simpler) theory. This by no means assures us
that we will find the same results when we take the same limit in the
quantum theory. Another point to keep in mind is that when the ra-
dius of the spacetime is comparable to the string scale, it is not clear
whether one can even assign a definitive value to the radius.

Now we focus on the AdS3 x S example and try to address this
issue. Strictly speaking, one must set ()5 = 0 to study the zero radius
AdS53. In this case we do not know how to make sense of the worldsheet
theory. However, as stated above we do not believe that one should
insist on being able to set R?/a’ exactly to zero in the quantum treat-
ment. For the time being, we will be content with considering R? ~ o/,
which is still a nontrivial case. It is perhaps useful to recast the large J

expansion of the exact energy formula using the radius of curvature in

26 The author would like to thank A. Adams for this point.
2T Gee, for example, [78,79,101,102,103,104,105).
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string units (we ignore the internal space M for this discussion, whose

contribution is suppressed anyway):

2

S (N N+ M+ M—2w-1).

(13.3)

We should note that the last terms in parantheses is what gives this

E—J=24qsr+qsr +qsu +qsu +

expression its stringy nature. If for some reason (such as simply taking
the “tensionless” limit R%/a/ = 0 while continuing to trust (13.3)) they
were absent, what remains would resemble a field theory spectrum. It
might seem at first that the last terms would be negligible for large
J, finite R?/a’. But in fact this is not the case, because the excited
string modes generically have level of order o’J/R? due to spectral
flow. The only way in which the last terms in (13.3) disappear is in
strict R%2/a/J = 0 case?®. When that happens the spectrum can be

schematically written

Hj. ~ Z a'a, (13.4)
all modes
which looks like a free field theory?®. This suggests that the theory
with R?/a’ = 0 (whatever its proper description might be) is not
continuously connected to the R?> ~ o' cases at finite J.

In a related topic, authors of [78], [79] found evidence that the
string spectrum on the plane wave limit of AdSs x S° may be extrap-
olated down to finite J after setting gs to zero, which has the effect
of reducing the spectrum to the form (13.4). The agreement with the

28 Note that the combination R? /o' J is the square root of the coupling
constant )" identified in the BMN limit of AdSs x S® [53,55].
29 However, not all information about string excitation numbers seems to

be lost since the Lo = L constraint still needs to be imposed.
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SYM prediction (which was done in [79] for conformal weights upto
10) as well as considerations of this paper lend support to the claim
that in fact the entire string spectrum on AdSs x S° reduces to (13.4)
at gs = 0.

There have also been some work on computing R~2 corrections
to the plane wave spectrum as a way of approximating the AdS x S
spectrum [106,107,71]. The results of this paper might be useful as a
guide in checking higher order calculations. It is important to note,
however, that in computing corrections to the plane wave one does not
have the freedom to choose R? and J independently. The advantage
we had in the SL(2, R) x SU(2) model was being able to vary )5 and
J in an independent manner.

In conclusion, strings in AdSs; x S3 and its plane wave or its large
J limit seem to be very useful models to study and it is hoped that

they will lead to a better understanding of the more complicated plane
wave/CFT and AdS/CFT dualities.
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Appendix A. The spectral flow number violation rule

In [81] it was found that the N-point function of vertex operators

with spectral flow numbers w;, viewed as describing the interaction

of i = 2,..., N incoming strings and ¢ = 1 outgoing string, vanishes
unless??

N

i=2

This result was derived using representation theory of ﬁ(Q, R) alge-
bra, irrespective of what the spacetime consists of besides AdS3, and
does not rely on any particular physical picture.

We now show that when considering the plane wave limit of
AdS3 x S§3 x M, (A.1) can be understood as enforcing the conser-
vation of J. In order to find a non-zero correlation function the J;
must satisfy

Jo=> Ji. (A.2)

i=2

We now divide both sides of this equation by Q)5 and identify w; as
the integer part of J;/Q5 (see the footnote below and also note that
we are in the J, Q5 — oo regime). On the RHS, there will be N — 1
terms, each of the form w; + A; where 0 < A, < 1. The sum of A;’s
will therefore be less than N — 1. Hence the spectral flow numbers will
satisfy (A.1).

30 The discrete states are taken to be in the ground states of their repre-

sentations, i.e. n; = 4;.
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