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Abstract

The study of de Sitter Reissner-Nordstrøm black holes allows us to uncover a
Weak Gravity Conjecture in de Sitter space. It states that for a given mass m there
should be a state with a charge q bigger than a minimal value qmin(m, l), depending
on the mass and the de Sitter radius l, in Planck units. This reproduces the well
known flat space-time result q > m/

√
2 in the large radius limit (large l). In the

highly curved de Sitter space (small l) qmin behaves as
√
ml. Finally, we discuss the

case of backgrounds from gauged R-symmetry in N = 1 supergravity. This talk is
based on 2006.12512 [1].
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1 Introduction

One of the swampland conjectures [2], the Weak Gravity Conjecture (WGC) [3],
states that for a U(1) gauge symmetry with gauge coupling g, there is a least
one state that has a charge q bigger than its mass m, measured in Planck units,
8πG = κ2 = 1:

m <
√

2gq . (1.1)

This has a consequence that all black holes are able to decay without leaving rem-
nants [3].

On the other hand, present cosmological observations seem to indicate a non-
vanishing positive vacuum energy. Thepossible identification of the latter with a
cosmological constant is theoretically challenging since as today attempts to con-
struct de Sitter solutions in string theory have all failed (see for example [4, 5]). A
conjecture stating that such a space-time is absent in a consistent theory of gravity
has been put forward [6]. It is based on arguments which may not hold at the
string quantum level [7]. For a description of the observable Universe, de Sitter
space could arise as an ”approximate” background of some consistent string theory
vacua.

Our aims is to find how the WGC is modified in the presence of a positive vacuum
energy such that in the limit of flat space-time one recovers (1.1). Some authors
have considered the WGC in de Sitter [8,9], but as their constraint does not involve
mass of WGC-states and it is clear if there is any obscure way in which they connect
to (1.1). We live in a universe with a non-vanishing vacuum energy and daily use
flat space-time laws having an impressive good agreement with experiments. This
can be taken as a strong indication that when the vacuum energy is taken to be
negligible, flat space-time laws such as (1.1) should be recovered.

We will use the de Sitter Reissner-Nordstrøm black hole extremal solutions, as
discussed by [11] in order to derive our conjecture in de Sitter background (dS-
WGC).

2 The relevant parameters of the problem

The line element in the de Sitter Reissner-Nordstrøm black hole [10] in Schwarzschild
coordinates (t, r, θ, φ) reads:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) (2.1)

with f(r) is given by:

f(r) = 1− 2Gm

r
+
Gg2q2

4πr2
− Λ

3
r2 , (2.2)

where G is the Newton constant, Λ is the cosmological constant, g is the U(1) gauge
coupling, gq is the black hole charge and m its mass (~ = c = 1). This is solution
of the equations of motion from the four-dimensional Einstein–Maxwell action

S =

∫
d4x
√
−g
[

1

16πG
(R− 2Λ) +

1

4g2
FµνFµν

]
(2.3)

where Fµν is the electromagnetic field strength tensor with , R is the Ricci scalar.
It appears to be more convenient to use the quantities M,Q, l with dimension

of length:

Gm =
κ2m

8π
= M ,

Gg2q2

4π
=
κ2g2q2

32π2
= Q2 , Λ =

3

l2
, (2.4)
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where κ2 = 8πG is the gravitational coupling, then:

f(r) = 1− 2M

r
+
Q2

r2
− r2

l2
. (2.5)

It is useful to note that
M2

Q2
=
κ2

2

m2

g2q2
(2.6)

is the ratio constrained by the WGC.
The case with both electric Q and magnetic Qm charges is obtained through the

substitution Q2 → Q2 +Q2
m with

Q2
m = q2mg

2
m , g2m =

4π2

g2
, (2.7)

where gm is the gauge coupling and qm is the charge in the dual magnetic theory .

3 Reissner-Nordstrøm with Λ = 0 and Q 6= 0

case

We start by the case of Λ = 0 and Q 6= 0 and briefly review a nowadays very well
known result.

The metric has two horizons given by the locus of the zeros of

f(r) = 1− 2M

r
+
Q2

r2
. (3.1)

They correspond to the (inner) Cauchy horizon r− and (outer) event horizon r+,
with:

r− = M

(
1−

√
1− Q2

M2

)
, r+ = M

(
1 +

√
1− Q2

M2

)
. (3.2)

The cancellation amounts to an equilibrium between the different terms in f(r). The
repulsive electromagnetic energy density gives rise to the positive Q2 term while the
attractive gravitational interaction leads to the negative −2M . For Q2 < M2,
balancing against each other the two interactions, leads splitting the space-time
patch described by the Schwarzschild coordinates into three regions: 0 < r < r−,
r− < r < r+ and r+ < r. We thus have three cases:

� For Q2 < M2, balancing against each other the two interactions splits the
space-time patch, described by the Schwarzschild coordinates t, r, into three
regions: 0 < r < r−, r− < r < r+ and r+ < r. We note that t is space-like in
the region r− < r < r+ and time-like outside.

� Q2 = M2, the two horizons are degenerate, the black hole temperature van-
ishes thus the black hole is extremal. This can be seen as the point where the
gravitational attraction and electric repulsion have the same strength.

� Q2 > M2, there is no horizon as the two roots r± are complex. The metric
(4.1) exhibits a naked singularity at the origin r = 0.

One then can see that imposing Q2 > M2 insures that the repulsive electro-
magnetic interaction is stronger than the attractive gravity and charged states
that can not be black holes, because of the Weak Cosmic Censorship, are
present in the theory.
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This reproduces the Q2 > M2 condition giving the ”Weak Gravity Conjecture”.
In an asymptotically flat space-time, it allows extremal charged black holes to decay
and avoids the presence of remnants when black holes decay and evaporate through
Hawking radiation. However, it can also be obtained by other ways, for instance by
computing the Newton force between two charged massive particles and compare it
to their repulsive interaction.

4 Schwarzschild black hole in de Sitter space-

time

In Schwarzschild coordinates (t, r, θ, φ), the line element takes the form:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) (4.1)

where:

f(r) = 1− 2M

r
− r2

l2
, (4.2)

thus the locus of the apparent horizons are obtained by solving:

P0(r) ≡ −l2rf(r) = r3 − rl2 + 2Ml2 ≡ (r − r−−)(r − r+)(r − rC) = 0 . (4.3)

The sum of the roots vanishes and their product is negative. Therefore, one of
the roots, we denote as r−−, is negative. It plays no role in the following analysis
and the range of its values will not be discussed. The other two are either both real
and positive, in which case we choose them such as r+ ≤ rC , or both complex. The
real values of r+ and rC will describe the location of the event and cosmological
horizons, respectively. They are given by:

r−− = − ei
π
3 l4/3√

3 (−
√

27M +
√

27M2 − l2 )1/3
− e−i

π
3 l2/3 (−

√
27M +

√
27M2 − l2 )1/3√

3
(4.4)

r+ = − e−i
π
3 l4/3√

3 (−
√

27M +
√

27M2 − l2 )1/3
− ei

π
3 l2/3 (−

√
27M +

√
27M2 − l2 )1/3√

3
(4.5)

rC =
l4/3√

3 (−
√

27M +
√

27M2 − l2 )1/3
+
l2/3 (−

√
27M +

√
27M2 − l2 )1/3√

3
. (4.6)

Figure 1 shows the dependence of r+ and rC as one varies of M/l = mG/l in the
region where they take real values, M2 ≤ l2/27. In fact, one can discuss the three
cases:

� M2 < l2

27 , where the two roots, r+ < rC , are positive. One has a black hole
with two horizons, the event horizon at r+ and the cosmological horizon at rC
. They define a region 0 < r < r+ where coordinate t becomes space-like.

� The extremal case: M2 = l2

27 , the two horizons are degenerate. As the two
horizons approach each other, one obtains a Nariai black hole and new co-
ordinates have to be used in order to describe it. When they coincide, the
black hole temperature vanishes. The attractive effect of the mass is exactly
balanced by the repulsive effect of the cosmological constant.

� M2 > l2

27 , there is no real positive root. One observes that f(r) is negative
and that the curvature blows up at r = 0. There is a naked singularity, a very
massive black hole seems to have absorbed the local de Sitter patch [13]. This
is again the situation which is not allowed by the Weak Cosmic Conjecture.
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Figure 1: The positive roots of P0(r): the red curve corresponds to the cosmolog-
ical horizon and the dashed green one to the event horizon. As M approaches its
maximal allowed value M = l√

27
, the two roots coincide. This corresponds to a

neutral Nariai black hole.

5 Charged Q 6= 0 black hole in de Sitter Λ 6= 0:

We turn now to the case of interest here: Reissner-Nordstrøm black holes in de
Sitter background l2 > 0 and look for the loci of the horizons, r−−, r−, r+ and rC
where:

f(r) = 1− 2M

r
+
Q2

r2
− r2

l2
= 0 . (5.1)

In order to understand the nature and values of the latter as we vary the parameters
M,Q, l in (5.1), we study are roots of the quartic polynomial:

P (r) ≡ −r2f(r) = l−2r4 − r2 + 2Mr −Q2 . (5.2)

The product of the four roots is negative, given by −Q2 < 0. Thus two roots are real
with opposite signs while the other two are either real of the same sign or complex
conjugate. This depends on the sign of the discriminant ∆:

∆ =
16

l6

(
−27

l2
(Ml)4 +

(
l2 + 36Q2

)
(Ml)2 −Q2

(
l2 + 4Q2

)2)
. (5.3)

We choose r−− < 0 to be the negative’s root, and one to be the positive real one.
For the other two roots, we have three possibilities:

1. ∆ < 0, It is easy to see that two roots are complex and conjugate, one is
positive: there is therefore only one r− = r∗+ (or r− > 0 and rC = r∗+ complex).
There is only one horizon.

2. ∆ > 0, we choose to order the positive roots such as that 0 < r− < r+ < rC .
Then r− and r+ are the inner and outer horizons, respectively. The (inner)
Cauchy is probably unstable and addition of matter at the classical or quantum
level. The outer horizon is the event horizon of the Reissner-Nordstrøm black
hole and r = rC surface is the cosmological horizon of the de Sitter space.

3. ∆ = 0, two horizons coincide r− = r+ or r+ = rC and we are left with two
apparent horizons.
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These three cases are obtained by varying the value of the the parameter M2l2.
In fact, ∆ is a quadratic polynomial of M2l2. Considering its discriminant:

δ =
256

(
l2 − 12Q2

)3
l14

(5.4)

we can see that the roots of ∆ are given by:

M2
−(l, Q2) =

1

54l

[
l(l2 + 36Q2)−

(
l2 − 12Q2

)3/2]
,

M2
+(l, Q2) =

1

54l

[
l(l2 + 36Q2) +

(
l2 − 12Q2

)3/2]
, (5.5)

and ∆ is positive between and negative outside these roots (for l2 ≥ 12Q2).
The horizon locus r−, r+ and rC split the local patch of de Sitter in four regions:

� Region I: 0 < r ≤ r− where the repulsion of the electromagnetic interac-
tion due to the charge Q, with a little help from the cosmological constant,
dominates the gravitational attraction due to the mass M .

� Region II: r− ≤ r ≤ r+ corresponds to the interior of the black hole as r− and
r+ are the Cauchy and event horizons, respectively. The gravity attraction, as
seen from the negative term −2M/r, is the dominant interaction here.

� Region III: r+ ≤ r ≤ rC where t is time-like (f(r) > 0) as the constant term
in f(r) ∼ 1 + · · · is dominant.

� Region IV: r > rC where the coordinate t is space-like (f(r) < 0) due to the
term r2/l2 becoming dominant, f(r) ∼ −r2. The cosmological constant leads
to a repulsive interaction that rules over all the other interactions.

We have seen that (5.5) defines extreme values of the mass M such that separate
regions with different numbers of apparent horizons. It is helpful for the following
discussion to define the notation Q± for the charges where for given fixed M :

M2
−(l, Q2

−) = M2 , M2
+(l, Q2

+) = M2 , (5.6)

where, for convenience, we have chosen Q positive.
We have plotted in Fig. 2 the functions M2

± in the plane (mass, charge) of the
black hole normalized as M2/l2 versus Q2/l2. For fixed M , we can separate the
different cases:

1. M2 <
l2

27
: Q+ does not exist (see the lower horizontal blue line in Fig. 2). As

Q↗:

� (Q < Q− ; M > M−(l, Q2)): r− ↗, r+ ↘ and rC ↗ thus the black hole
interior measured in Schwarzschild coordinates shrinks, r+ → r−. This
continues till a critical value is reached when Q = Q− where two horizons
degenerate r− = r+ (Approaching this region, the (t, r) coordinates are
no more appropriate to measure distances, but this is not relevant for our
discussion).

� (Q > Q− ; M2 < M2
−(l, Q2)), we have only two regions separated by

a (cosmological) horizon. The repulsive electromagnetic interaction is
strong enough to forbid the presence of a black hole event horizon.
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Figure 2: The blue filled region corresponds to the range of M2/l2 and Q2/l2

allowing the black hole to possessing three horizons. The solid red curve cor-
responds to the maximal mass for given charge, M2 = M2

+(l, Q+), where two
roots are degenerate r+ = rC . The solid green curve represents the minimal mass
M2 = M2

−(l, Q−), where r− = r+ describing cold extremal black holes. The
green filled area corresponds to the region allowed by the de Sitter Weak Gravity
Conjecture (dS-WGC) for the (mass, charge) parameters.

2.
l2

27
≤ M2 ≤ 2l2

27
: one has Q+ < Q− and between [Q+, Q−] one has M ∈

[M−(l, Q),M+(l, Q)] thus three horizons (see the red middle horizontal line
within the blue area in Fig. 2). Let’s vary Q:

• Q↘, r− ↘, r+ ↗ and rC ↘. Q→ Q+ till Q = Q+ where r+ = rC . The
region III shrinks until it disappears for Q < Q+ then, as shown in the
red area of Fig. 2 the remaining horizon r− separates two regions (I) from
the merged (II+III+IV) region. The repulsive electrical energy density is
too weak to forbid the black hole from eating the de Sitter space-time.

� Q ↗, r− ↗, r+ ↘ and rC ↗. We start with Q → Q−, and when we
reach Q = Q− we have r+ = r−. For Q > Q− (see in Fig. 2 the green
area), the region II disappears and the horizon rC separates the merged
(I+II+III) regions from region (IV) where t is space-like. The repulsive
electromagnetic interaction is strong enough to forbid the presence of a
black hole event horizon.

3. M2 =
2l2

27
: as Q2 → l2/12, r− → r+ → rC → l/

√
6 correspond to the

triple degenerate horizon. Here, the repulsive effects of the electric charge but
mainly the cosmological constant are exactly balancing the attractive gravity,
and overcome it for Q > l/

√
12 (see Fig. 2).
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4. M2 >
2l2

27
: there is no more black hole, only one apparent horizon remains,

on the left or the right of l/
√

6 depending of (Q,M) (see in Fig. 2 the upper
horizontal green line). We can write:

M =

√
2

27
l + δM , Q2 =

l2

12
+

√
2

3
δQ2 , (5.7)

then δM > δQ2/l, describes a giant black hole that swallowed the de Sitter
patch (red area in Fig. 2). For δM < δQ2/l, the electromagnetic energy density
and a cosmological constant lead to a repulsive force everywhere horizon and
there is no black hole (green area in Fig. 2). For δM = δQ2/l, the attractive
and repulsive forces are balanced.

We identify here the dS-WGC as the requirement that the repulsive interaction
can be strong enough to forbid the appearance of black hole horizons. This leads
to:

1. Small charge: Q2 ≤ l2

12

(
g2q2 ≤ πl2

3G

)
and M2 ≤ 2

27
l2
(
m2 ≤ 2

27G2
l2
)

:

M2 < M2
−(l, Q2) =

1

54l

[
l(l2 + 36Q2)−

(
l2 − 12Q2

)3/2]
⇐⇒ m2 <

1

54G2l

[
9Gl

π
g2q2 + l3 −

(
l2 − 3G

π
g2q2

)3/2
]

(5.8)

2. Large charge: Q2 ≥ l2

12

(
g2q2 ≥ πl2

3G

)
:

M2 <
3

2

1

l2

(
Q2 +

5

36
l2
)2

⇐⇒ m <
5

12
√

6

l

G
+

√
3

2

g2q2

4πl
. (5.9)

5.1 Small and large curvature limits of the dS-WGC:

The purpose of the choice of this dS-WGC is that it will provide a continuation of
the flat space-time WGC. This can be seen by taking the limit l → ∞, the sfirst
condition in (5.9) is then empty, while the second reads

M2 < Q2− Q
4

l2
−2

Q6

l4
+O(1/l6) ⇐⇒ m2 <

g2q2

4πG
− g4q4

16π2l2
− Gg6q6

32π3l4
+O

(
1

l6

)
(5.10)

where we recognize the well-known WGC in flat space:

gq >
√

4πGm (l→∞) , (5.11)

and in the corrections due to the presence of a small positive cosmological constant
can be written as:

Q2 > M2 +
M4

l2
+O(1/l4) ⇒ gq >

√
4πGm

(
1 +

G2m2

2l2
+ · · ·

)
. (5.12)

In the strong curvature limit, l → 0, the first condition (5.8) is empty and the
second condition reads

Q2 >

√
2

3
lM − 5

36
l2 ⇒ Q >

(
2

3

)1/4√
lM (1 +O(l)) , (5.13)
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which is independent of the Newton constant at leading order:

gq >

(
32π2

3

)1/4√
lm (l→ 0) , (5.14)

since the factors of G drop, to be compared with (5.11).

5.2 Magnetic black hole in de Sitter

Another possible de Sitter WGC was proposed in [9]. This is based on the condition
that given a U(1) gauge theory, the size of the minimally charged monopole should
lie in between the event and cosmological horizons. This size is of order 1/Λm,
with Λm the cut-off of the theory, while the monopole mass is Λm/g with g the
gauge coupling. The magnetic Reissner-Nordstrøm black hole associated with this
monopole has a metric (4.1):

f(r) = 1− 2Λm
g2r

+
q2m
g2r2

− r2

l2
, (5.15)

where qm is the magnetic charge (see (2.7)). The monopole charge was taken to
vanish in [9], qm = 0. The condition on the size of the monopole lies is required to
satisfy:

f(
1

Λm
) = 1 +

Λ2
m

g2
(q2m − 2)− 1

Λ2
ml

2
≥ 0 . (5.16)

This can be written as:

(2− q2m)l2

g2
Λ4
m − l2Λ2

m + 1 ≤ 0 . (5.17)

which means that the discriminant of the quadratic polynomial in Λ2
m is positive:

g ≥
2
√

(2− q2m)

l
−−−→
qm=1

g ≥ 2

l
, (5.18)

for the minimal charge. Note that the extremal case, g = 2
l corresponds to a

magnetic monopole with a mass Mm = l/
√

8 and size o 1/Λm = l/
√

2 = rC .
Comparing with [9], we see that their condition looks like (5.18) but with a√

2. More important, it makes an implicit assumption about the mass dependence
through the de Sitter radius. In fact, the values of (M2

m, Q
2
m) = (l2/8, l2/4) are in

the region described by the condition (5.9) and our stronger conditions (5.8) and
(5.9) insure that the condition (5.18) is satisfied.

6 The U(1) R-symmetry case:

In N = 1 supergravity, a de Sitter background can be obtained after gauging a
U(1)R [14] gauge R-symmetry through a positive contribution from Fayet-Iliopoulos
D-term. A minimal toy model is given in [15] where pure supergravity is coupled
to one vector multiplet gauging the R-symmetry. It was shown in [16] that the dual
theory is a supergravity theory with deformed supersymmetry, i.e. with a magnetic
Fayet-Iliopoulos term [16].

Since both a cosmological constant Λ and a charge qR of the fermions (gravitino
and gaugino) result from the unique gauging of the R-symmetry, there are not
independent [16] (using κ = 1):

Λ = 2q23/2 ⇒ q23/2 =
3

2l2
and Q2

3/2 =
3

64π2l2
, (6.1)
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here q3/2 stands fo the physical R-charge of the gravitino: q3/2 = qg. This is dual to

a minimal magnetic charge q̃3/2 = 2π/q3/2, i.e. Q̃2
3/2/l

2 = 1/(8q23/2l
2) = 1/12, the

limiting value in Fig. 2. The gravitino (and gaugino) mass term in the Lagrangian
vanishes as in this simplest model the superpotential is zero. These lead to:

Q2
3/2

l2
=

3

64π2l4
⇒

{Q2
3/2

l2
−−−−→
l→+∞

0;
Q2

3/2

l2
−−→
l→0

∞
}
, (6.2)

therefore taking all positive values on the horizontal axis of Fig. 2.
Let’s suppose that the gravitino, if it plays the role of the dS-WGC state. Its

maximal squared-mass is then (5.9) and (5.8) for small and large l, respectively.
The two formulae overlap for l =

√
3/4π , i.e. Λ = 4π, Q2

3/2 = l2/12 = 1/16π and

M2
3/2 = 1/18π. This reads:

� For l ∈ ] 0,
√

3/4π ], l M2
3/2 ∈ [ 1/18π,+∞ [ and the maximal squared-mass

goes as 1/l6 for small l.

� For l ∈ [
√

3/
√

4π,+∞ [, the maximal squared-mass M2
3/2 = M2

3/2−(l, Q2
3/2) ∈

] 0, 1/18π ] behaves as 1/l2 for large l, a behaviour reminiscent of the m2
3/2M

2
Pl

to the vacuum energy in N = 1 supergravity.

If the gravitino is instead the dS-WGC-state of the magnetic theory, then:

Λm
g2
≤
√

2

27
l and

1

g2
=

2

3
l2 ⇒ Λm ≤ l/

√
6 = rC , (6.3)

which can also be written:

Λm ≤ (rCMPl) MPl ⇔ Λm ≤
MPl√

2Λ
MPl . (6.4)

Here rC stands now for the cosmological horizon in the magnetic dual theory,
We introduce now charged chiral multiplets with scalars φi having physical R-

charges qi. This allows for a D-term potential:

VD =
1

2

(∑
i

qi|φi|2 + 2q3/2

)2

, (6.5)

The scalar masses mi of φi read:

m2
i = 2qiq3/2 , (6.6)

which implies:

Q2
i =

q2i
32π2

; M2
i =

m2
i

64π2
=
qiq3/2

32π2
. (6.7)

One can add a simple quadratic superpotential W : W = µ
2φ

2
0 or W = µφ+φ− for

some fields φ0,+,−, where µ is a mass parameter. Then q0 = q3/2 or q+ + q− = 2q3/2,
giving:

Q2
0 = Q2

3/2 = M2
0 (6.8)

and

Q+ +Q− = 2Q3/2 ; M2
± = Q±Q3/2 + µ2 (6.9)

It is obvious that (6.8) can not provide a dS-WGC state while (6.9) has two extrema:

{Q± = 2Q3/2, Q∓ = 0} ; {M2
± = 2Q2

3/2 + µ2, M2
∓ = µ2}, (6.10)
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which to be a dS-WGC state require

Q2
3/2 ≤

1

32π
: l ≥

√
3

2π
⇒ µ2 <

16π3l4 − 2

√
(4π2l4−9)3

l8
l2 + 27π

864π3l2
,

Q2
3/2 ≥

1

16π
: l ≤

√
3

4π
⇒ µ2 <

27

512π4l6
− 1

64π2l2
+

25l2

864
, (6.11)

from (5.8) and (5.9), respectively. The maximally charged fermion has the sea mass
and charge as the gravitino discussed above and is therefore subject to the same
constraints.

7 Conclusions

If the the swampland program and the Weak Gravity Conjecture have to be applied
in real world, then they should begged approximation in the presence of a small non-
vanishing vacuum energy as our Universe falls in this class. How does the Weak
Gravity Conjecture (WGC) get modified by a positive vacuum energy, for instance
a cosmological constant? This the question raised and answered in [1].

We have discussed the simplest case of de Sitter spacetime and obtained explicit
form for the dS-WGC. We have checked that the well known flat space-time limit
is reproduced when the vacuum energy is taken to be negligible. We have only
scratched the surface of explicit checks of this conjecture in quantum gravity theories
as explicit examples of de Sitter vacua in supergravity are difficult to construct,
not to say totally absent in string theory. In the future, it will be interesting to
understand the application of our conjecture for cosmological models.
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