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Abstract

Based on the results obtained in (Hucht 2017 J. Phys. A: Math. Theor. 50
065201), we show that the partition function of the anisotropic square lattice
Ising model on the L x M rectangle, with open boundary conditions in both
directions, is given by the determinant of an M /2 x M /2 Hankel matrix, that
equivalently can be written as the Pfaffian of a skew-symmetric M x M Toeplitz
matrix. The M — 1 independent matrix elements of both matrices are Fourier
coefficients of a certain symbol function, which is given by the ratio of two
characteristic polynomials. These polynomials are associated to the different
directions of the system, encode the respective boundary conditions, and are
directly related through the symmetry of the considered Ising model under
exchange of the two directions. The results can be generalized to other boundary
conditions and are well suited for the analysis of finite-size scaling functions in

PR

the critical scaling limit using Szegd’s theorem.

Keywords: Hankel matrix, Toeplitz matrix, exact solution, open boundary
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1. Introduction

The anisotropic two-dimensional Ising model [1] on the L X M square lattice is one of the
best investigated models in statistical mechanics. In the thermodynamic limit L, M — oo, it
has a continuous phase transition, from a disordered high-temperature phase to an ordered
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low-temperature phase, at a critical temperature 7. After the exact solution of the periodic
case by Onsager and Kaufman [2, 3], many authors have contributed to the knowledge about
this model under various aspects, such as different boundary conditions (BCs) or surface effects
[4-6].

Until some years ago, exact solutions for arbitrary temperatures were only known for sys-
tems with periodic or antiperiodic BCs in at least one direction, as then a Fourier transform
along this translationally invariant direction could be used to diagonalize the problem in the
corresponding direction. The remaining direction could be handled afterwards with a transfer
matrix method, involving a 2 x 2 transfer matrix, taking into account arbitrary BCs, or even
line disorder [4].

This changed in 2016, when Baxter [7, 8] and Hucht [9-11] independently presented exact
results for the Ising model on the rectangle, with open BCs in both directions, expressing the
partition function as M x M and M /2 x M /2 determinants, respectively. While Baxter used
Kaufman’s spinor method [3] below T and focused on the thermodynamic limit [7], where
he exactly calculated the corner contributions to the free energy conjectured in [12], Hucht
utilized the dimer method of McCoy ef al [4, 13—16], combined with Schur reductions and a
block transfer matrix formulation of Molinari [17], and derived closed expressions for finite
systems at arbitrary temperatures. The resulting transfer matrices directly correspond to the
spinor method matrices, bridging the gap between these so far rather unrelated methods.

Near the critical temperature 7', the direction-dependent bulk correlation length of ther-
mal fluctuations &, (T) diverges according to &(T > T.) ~ &(T/T. — 1)™%, where § = <>, ]
denotes the directions corresponding to L and M, fg are interaction-dependent metric factors,
and the correlation length critical exponent is v = 1 in the two-dimensional Ising model'. If
&;”i(T) is of the order of (or larger as) the respective system size L or M, interesting finite-size
effects such as the critical Casimir effect emerge, which describes interactions of the system
boundaries mediated by long-range critical fluctuations [18, 19] in close analogy to the quan-
tum electrodynamical Casimir effect [20, 21]. These finite-size effects can be described [22] by
universal finite-size scaling functions of the form ©1(xy, p), with temperature scaling variable
xy = (T/T. — M/ fg)l/ ¥ and generalized aspect ratio p = (L/&5)/(M/ 53), that only depend
on the bulk and surface universality classes of the model [23, 24], as well as on the BCs. They
have been calculated exactly for many cases, albeit mostly in strip geometry, where the aspect
ratio p of the system goes to zero [25—31]. The theoretical results from exact calculations, field
theory and Monte Carlo simulations [28—42] were shown to be in excellent agreement with
experiments [43-50] for various bulk and surface universality classes.

Directly at the critical point, exact methods or conformal field theory [51-55] can be used to
get exact expressions for the Casimir amplitude Ac(p) for arbitrary p. This has been done for
periodic [56, 57] as well as for open BCs [58, 59]. Using conformal maps, these results can be
used to investigate fluctuation-induced forces between colloids in critical suspensions both in
theory [60—68] and experiment [69—77]. At arbitrary aspect ratios and temperatures, however,
the finite-size scaling functions must be derived from the exact solution of the finite system
with the correct BCs. For the Ising model, this has been done only in a few cases, namely for
the torus with periodic BCs in both directions [22, 78, 79], for the cylinder with open or fixed
at the boundaries in one direction [78, 80], and for the open rectangle considered here [11].

In this work, the calculations of [9] are substantially simplified by (i) the use of elliptic
functions [5], (ii) a simplified normalization of the eigenvectors of the relevant M x M transfer
matrices, (iii) a transformation to Hankel and Toeplitz matrices, and (iv) a representation of

I The relation ‘>~ denoted ‘asymptotically equal’ in the respective limit, and = denotes a definition.
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Figure 1. The anisotropic square lattice Ising model on the L x M rectangle (black),
together with its dual lattice (red) and with the relevant couplings (see text). The transfer
matrix 7 (1.6) propagates as indicated.

the sums over transfer matrix eigenvalues through a complex contour integral, having (v) a
remarkably simple integrand given by the ratio of two very simple characteristic polynomials
(CPs), each representing one direction of the two-dimensional Ising model. The preceding
publication [9] will be denoted I in the following.

1.1. The model

This work focuses on the anisotropic square lattice Ising model on the L x M open rectangle,
shown in figure 1. Our aim is to calculate the partition function

L1 M L M-1
7 = trexp (KHZ Z ComOi41m + /Ciz Z Ug,ma/g,mH) , (1.1

(=1 m=1 (=1 m=1

with reduced couplings Ko = ﬁJ‘S in direction § = <>, i, where the trace is over all 2:M config-

urations of the LM spins oy,, = £1. We assume open BCs both in horizontal (L) and in vertical
(M) directions, and we assume even M. The starting point of this work is the matrix product
representation (1.29) of the well known Pfaffian representation by McCoy et al [4, 14], derived
in [9] using a Schur reduction as well as a block transfer matrix formula by Molinari [17]. We
follow the notation of [9], with a few clarifying minor modifications. Therefore, we define the
dual

1—a
= 1.2
=11, (1.2)
of some quantity a, as well as the quite useful abbreviations?
+ —1
ay = % (1.3)

2 Subscripts a. are consequently used in this manner, while superscripts a* may have different meanings.
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introduced in (1.20), fulfilling (a*)* = a = a, + a_. The reduced couplings K° are rewritten
using the weights z and ¢ according to

¢=tanh K, 1= (tanh KH)* = ¢ 2K, (1.4)

The partition function Z of the considered anisotropic Ising model with open BCs in both
directions is invariant under exchange of the two directions <+ and i, where both the system
dimensions and the coupling constants are exchanged according to the swap transformation

S (L M; K7, KY = SI(L,M; K7, KN = (M, L; K, K9, (1.5)

such that Z = S[Z]. The swap transformation is an involution, as S[S[a]] = a. We now
summarize the required results from reference [9].

1.2. Starting point

In equations (27)—(29) of [9] we showed that the square of the partition function (1.1) is pro-
portional to the determinant of a matrix product of the form (e,| 75 |e,), with real hyperbolic
2 x 2 block transfer matrix 75 propagating in horizontal direction. In this work, we will use
a ‘Wick rotated’ version of 75 according to® 7 =T ’TZIT, with matrix Z = <(1) ?) ®1,
leading to the complex orthogonal block transfer matrix

(1.6)

— {T+ —iT_]

iT. T,

which fulfills 7! = 7. Note that 7" is not unitary. The two real symmetric M x M matrices
T, were given in (I.30) and can be simplified to

t*
2+ — 1
z
t 2 1 2 -
TJr = _T . . . + (t4z4 +1z)1, (1.7a)
1
1 2417
C
z* —t%
-2, &
t_z_ )
T =-— 1.7b
5 (1.7b)
¥ =2t
_1 1
t z*

3 AT and AT denote the transpose and the conjugate transpose of A, respectively.
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using the dual couplings z* and #* (the matrix C will be utilized later). They are related via the
transfer matrix T = T4 + T_ according to (1.3),

1
Ti:E(Tﬁ:T’I) & TH=T,+T_, (1.8)

from which directly follows that 7~ can be block diagonalized through a rotation by 7 /4,

(1.9

’R%ITTIR_% = {T 0 ]

0 T!
cos# sin 6

—sin 6 cos 0
open BCs in horizontal direction are represented through the boundary state

with block rotation matrix Ry = ® 1, for details see chapter 5 in [9]. The

1
o) = 51 i8).  {eofea) =1, (1.10)
where |e,) is a two element block vector, with the M x M matrices

1 1
: S= . (L1

Together with the constant
2\ 4
Zy=(1-D)% () : (1.12)
—z
the square of the partition function (1.1) then reads
7? = 75 det (e,|T"|e,), (1.13)

see also [7, (2.35)]. Defining the projectors

1
SiEE(IiS), (1.14)
the argument of the determinant in (1.13) becomes
L b e [TE 0 ] et e
(€| T |eo) = (ST iS7| 0 T ST iST) (1.15a)
=STTEST+S T LS =M™M, (1.15b)
with the matrix
M=x(T28" +TH287), (1.16)
as STS™ = 0. In the following we will determine the eigenvalues Aus A+ and common

eigenvectors X, = (x), of T and T, which fulfill
TX, = N\, ToX, = As X, (1.17)
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where p = 1,..., M.

1.3. The Onsager dispersion relation

The next step in the calculation of the partition function (1.1) is the determination of the eigen-
values Ay , as zeroes of the characteristic polynomial (CP) of the tridiagonal matrix T from
(1.7a), which will lead to the Onsager dispersion relation. As we will discuss several CPs in
the following, we first define the CP P,(x) of an arbitrary M x M matrix A, with eigenvalues
(@), = a, € C,tobe

M
Py(x) = det(xl — A) = [ [ (x — ). (1.18)
pn=1

such that P,(x) is a polynomial of degree M in the indeterminate x € C.
Using the well known recursion formula for tridiagonal matrices (see, e.g., [17]), in [9] we
derived*

M
Pa, () =detr 1T =[O = Ar (1.19a)
n=1
M
= (557) (1), (1.19b)

where A4 € C. We point out the obvious similarity between equations (1.13) and (1.19b),
which will become clearer later. The vertically propagating 2 x 2 transfer matrix

t+Z+—>\+

2———  —1 2 -1 2 -1

Q= t 7 :<§+ O):( C‘iw O) (1.20)
1 0

has the eigenvalues (! with modulus one?, such that the nth power of Q reads

o ! (sin([n+l]<,0) — sin(n) ) (1.21)

~ sin @ sin(ny) —sin([n — 1]p)

Here and in the following, we express the horizontal and vertical eigenvalues (A, ¢) through
the introduced angles (7, ) according to

A=¢", A4+ = cosh 7, A_ = sinh 7, (1.22a)

¢ =¢", ¢y = cos @, ¢ =isin ¢. (1.22b)
Equation (1.20) is the point in the calculation where the famous Onsager dispersion relation

A +tz.(=tyzy <& coshy+t_z_coso=r1rz4 (1.23)

between the eigenvalues A and ( enters the stage, which plays the key role in the exact solution
of the square lattice Ising model [2]. It relates the two ‘good’ variables A and ¢ for propagation
in <> (L) and J (M) direction, respectively. As pointed out by Baxter [5, chapter 15.10], a

4 The sign change in the definition w.r.t. (1.9) has no effect for even M.
5¢*! were denoted ¢* in (1.42).
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parametrization of relation (1.23) using elliptic functions considerably simplifies the analysis.
This parametrization is introduced in the next chapter, and we return to the CPs in section 3.1.

2. Elliptic parametrization

The key idea behind the elliptic parametrization of the Onsager dispersion relation (1.23) is
(1) to substitute the coupling constants (z,7) through new constants (k,n), where k is
temperature-like and 7 encodes the coupling anisotropy, and (ii) to introduce a complex vari-
able u that simultaneously parametrizes the quantities ¢ = ((x) and A = A(u) in such a way
that (1.23) is always fulfilled®. We recapitulate the parametrization of (1.23) through the
Jacobi elliptic functions sn(u, k), cn(u, k) and dn(u, k) [81-83], with elliptic modulus &, by
first defining the Jacobi amplitude

¢ = am(u, k) 2.1

as the inverse function of the elliptic integral of the first kind
¢
u=F(d, k)= / (1 — K sin”6)~'/2d0, (2.2)
0

for {¢p, u, k} € R. Consequently, the Jacobi elliptic functions are given by

sn(u, k) = sin ¢, cn(u, k) =cos ¢, dn(u, k)= % = +1/1 — k2 sin® ¢, (2.3)

and fulfill the sum of squares identities
sn’(u, k) + en’(u, k) = k% sn’(u, k) + dn(u, k) = 1. (2.4)

As common, we suppress the modulus k if possible and write, e.g., snu instead of sn(u, k). We
follow Glashier’s notation [83, (22.2.10)] and define all sixteen Jacobi elliptic functions

where p,q,r € {s,c,d,n}, 2.5)

including the four trivial ones, ssu = ccu =ddu = nnu = 1.

The Jacobi elliptic functions are double periodic and meromorphic in the complex #-plane,
that is they are analytic up to simple poles. The common quarter-periodicity rectangle has the
corners

{us, e, ug, un} = {0, K, K + iK', iK'}, (2.6)

see figure 2, where we utilized the graphical interpretation from [83, (22.4)] and associate the
denomination {s, ¢, d, n} with the four vertices of the quarter-periodicity rectangle. Eventually,
the quarter periods K and K’ are the complete elliptic integrals of the first kind,

KEF(g,k), K’EF(g,k’), 2.7)

6 Imagine the simpler case of a circle x> + y* = r? being trigonometrically parametrized, with x(u) = r cos u, y(u) =
rsinu and complex parameter u.



J. Phys. A: Math. Theor. 54 (2021) 375201

A Hucht

-K 0 K
' o‘ ° X ’{4 L£2 o‘ 4K
K i g K
K2} ¢ Gl . 1K'12
’7: Niso
N
S Us Uy
=Y 0 N Ug i Ug 0
-K'12- 2.9, . k2
—K'E o ° eoe ° o 1K'
| |
-K 0 K
R(u)

Figure2. Structure of the complex elliptic u-plane for M = 4, paramagnetic temperature
k = 0.95, and anisotropy n = %nisn. The eigenvalues ), translate to the points u,, (red),
while the swap-transformed points i, (blue) represent the eigenvalues ¢, and lie point-
symmetric w.r.t. the point 7;,, (green) from (2.15). The corners (2.6) of the quarter-
periodicity rectangle are shown in black. The additional elgenvaluei )\” at positions
it, = u, + iK' (C.5) and the corresponding eigenvalues (! ., are shown in light colors.

cf (2.2), with complementary modulus k’ fulfilling k* + k' > = 1. This elliptic parametrization
will lead to substantial simplifications of the results from [9], as it firstly eliminates the sign
ambiguities of the square roots and secondly introduces certain functions of the parameter u
that substantially simplify the expressions.

2.1. Coupling constants parametrization

There are several possible ways to setup an elliptic parametrization of the Onsager disper-
sion relation (1.23): one could set k = k=z_ /t— such that 0 < k < 1 holds in the ordered
phase. This choice is usually used in the literature [7, 84]. However, we will argue that many
expressions become considerably simpler if we instead use the modulus

k= —, (2.8)

being the reciprocal of k. It obeys 0 < k < 1 in the disordered phase 7 > T and k > 1 in the
ordered phase T < T, similar to the reduced inverse temperature 3/3.. Note that K becomes
complex for k > 1, and we can replace it with its real part, K — R(K) = K + iK', in the
complex analysis in order to keep an un-tilted quarter-periodicity rectangle.

The anisotropy parameter 7 can be introduced in several ways, too. We choose the definition

1
sn(2n) = o (2.9)
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such that 7 is a purely imaginary point in the u-plane, with 0 < J(n) < K’/2. This leads to the
identities

snndnn . 1

= ——, ty = 2n), t_ = —ns(2n), 2.10
rony + =ics(2n) - ns(21) (2.10a)
snncnmn i 1

=k , 4+ = —ds(2ny), = —ns(2n). 2.10b

z idny 2 = ds@n) 2= o ns(2n) ( )

For the dual couplings we find the corresponding expressions

t 1
[*+ _ _ti — Cl’l(277), = 7 = iSIl(Z’I]), (2.11a)
* i+ * 1 .
Vd + — _? e dn(zn)’ 7_ = Z— = lk Sn(zn), (2.11b)

which implies that we can express ¢, z, t* and z* through the Jacobi amplitude (2.1),

. 1
= elam@n, t= —itan {2 am(277)] , (2.12a)

- . 1
z=¢e ™™D = _jtan {5 am(2ﬁ)} , (2.12b)
where u denotes the swap transform (1.5) of a point « in the complex u-plane,

u— =S = %iK' —u. (2.13)

From (2.2) and the ¢* identity (2.12a) we conclude that
2n = F(—i log t*, k) = iK' — F(—i log z,k). (2.14)

Note that in the isotropic case t* = z the point 7 lies symmetrically at

1
Tiso = ZIK/ = 7:iiso, (215)

as S(Miso) = Miso- Therefore, the transformation (2.13) is a point reflection of the complex u-
plane at the point n;,.

2.2. Eigenvalues parametrization

The relation of the eigenvalues A\ and ¢ (1.22) to u is also ambiguous. We follow the literature
[5, 7, 84] and define

1 i
o — e 7 = VEsn(u F 1), (2.16)
such that
1 _
A=¢) = C:ewzw (2.17)

~ ksn(u+ n)sn(u —n)’ sn(u—1n)

The real and positive eigenvalues A, correspond to values u,, on the real axis (for A, > 1) as
well as on the line J(u,,) = iK' (for A, < 1). With this definition of A, the constants u,, and X,

9
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from (2.6) and (A.1) fulfill \, = A(1,) and represent the upper and lower bound of the spectrum
of T and T~! both above and below T'.. In appendix A we give a subset of the large number of
identities which can be derived using elliptic functions identities [81, 83]. Especially, we see
from (A.11) that the eigenvalues A and ¢ are exchanged under the transformation S according
o S[(A, O = (G, A).

Besides the corners of the quarter-periodicity rectangle (2.6), and the eigenvalues u,,, where
the CP (1.19) is zero, there are four other important points in the complex u-plane, namely the
positions of the simple poles and simple zeroes of A(x) and ((u). Because the Jacobi sn u has
a simple zero at u = 0 and a simple pole at u = iK’, we find

Up 00,000 = 1], UNS0,cr00 = FIK' — 1), (2.18a)
U000 = —1), W00 = —iK + 1. (2.18b)

These four points will be used later in the analysis of the complex structure of the relevant
integrals.

While K and K’ are the quarter periods of the Jacobi elliptic functions (2.3), all relevant
parameters and variables of the considered system, such as ¢, z, A, (, can be written as mero-
morphic functions of 2u and 27, see (2.12), (A.16), and (A.17). They are therefore double
periodic functions with quarter periods K /2 and K'/2 and half periods K and K’, and can be
depicted on the periodicity rectangle going from —K — iK' to K + iK', as shown in figure 2.

Finally, we remark that the CP zeroes show up in pairs (u,,, —,,), lying symmetrically with
respect to the imaginary axis, see figure 2. The reason for this symmetry is the meromorphicity
of the Jacobi elliptic functions, and consequently of A(x) and ((«) from (2.17), in combination
with the fact that both A and ( are real for purely imaginary u. Therefore, A and ¢ transform
according to f(u) = f(—u) under conjugation. This symmetry is sometimes called para-even
in the literature, and —u is denoted the para-conjugate of u [85, 6.29]. We could restore the
usual symmetry along the real axis f(u) = f (@), valid for meromorphic functions f(u) that
are real for real u, by rotating the complex plane by 90° using the Jacobi imaginary transform
[83, section 22.6(iv)]. This would however break the simple relation to the Jacobi amplitude
introduced in the next section. Alternatively, one could also replace u by iu in all expressions
as done in [5], but we will keep the present definition.

2.3. The Jacobi amplitudes w and 0

It turns out in the next chapter that the Jacobi amplitude w of 2u, as well as its imaginary swap
transform 6,

w = amCu), 0 =iam(Q2u), (2.19)

with 7 from (2.13), will play quite important roles in the following’. They satisfy the identities

1 1
sn(2u) = sin w, sn(2u) = A sinh 0 = % ns(2u), (2.20a)
cn(2u) = cos w, cn(2i) = cosh 0 = ids(Zu), (2.20b)
dn(2u) = — coth 6 = ics(2u), dn(2u) =1 cot w = icsCu), (2.20¢)

7 Note that Mathematica [86] can correctly handle the complex Jacobi amplitude only since version 12.1.

10
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as well as

tan lw :snudnu, ot _ (ksgucnu)il, 2.21)
2 cnu idnu

and fulfill the symmetric relation
ik sin w sinh 6§ = 1. (2.22)

In summary, we have defined a double periodic complex manifold with the topology of a
torus as originally proposed by Baxter [5], to describe the two-dimensional Ising model on
the rectangle. This complex manifold will be called the u-plane and is sketched in figure 2.
The aspect ratio of the torus is temperature-dependent and is encoded in the elliptic modulus
k, while the coupling anisotropy is described by a point 7 on the torus. The M eigenvalues A,
and ¢, correspond to points u,, and i, respectively, on the torus. With this set of definitions,
we now can return to the CP from section 1.3.

3. Results

3.1. Characteristic polynomials

The CP Py (A1) of the matrix T4 was defined in chapter 6 of [9]. It was used to characterize
the spectrum of T and to derive the finite-size scaling limit in [11]. For the transfer matrix
T with eigenvalues Ay ,, equation (1.19b) can be simplified to

fiz_ -1z .
Ho COS DTN GhMy)| (3.1)
Z_ sin ¢

M
Pr O = (1= 1)(55) {cos(Mcp) .

cf (1.45), where the angle®  is given by the Onsager dispersion relation (1.23). Using the ellip-
tic parametrization from the last section, and especially the Jacobi amplitude w from (2.19),
we find, using (2.10) and (A.17), the surprisingly simple expressions

*2 .z M :
Py, O\ =(1—1 )(T) [cos(Mp) — es(2u) sin(M)] (3.22)

B o (tz\Msin(Mp — w)
—(1—1 )( > ) (3.2b)

sin(—w)

as cs(2u) = cotw by (2.20c). Here, A\ and ¢ depend on u according to (2.17), (A.11a), or
(A.16) and (A.17). As a consequence, the eigenvalues A, of T fulfill the simple condition
My, = w,. These simplifications demonstrate the power of the elliptic parametrization in the
chosen form, and the introduced Jacobi amplitude w (2.19) turns out to be a phase shift in
-space, describing the open BCs in J direction.

Due to the linear CP identity

M
Peaip(cx+b) =[] (cx+ b — ca, — b) = M Py(x), (3.3)

p=l

8 For the correct determination of the sign of ¢ without elliptic parametrization, see chapter 6 in [9].

1
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we can rewrite (3.2b) in terms of the new variable

1 2
X =2(¢; + 1) = 4cos? <2<p> = ﬁ(t+z+ +tz-—Ayp), 3.4)

eliminating the factor (#_z_ /2)", and find the corresponding CP

w2, sin(My — w)

Py = (1 — ) A (3.5)
sin(—w)

Comparing (3.4) and (1.7a), we see that P, () is the CP of the matrix C, which therefore has

the eigenvalues x,.

3.2. Common eigenvectors

With the help of the introduced elliptic parametrization, the matrix x of orthonormal common
eigenvectors’ of T+, T and C, defined in (1.17) and originally given in (I.50), can be consid-
erably simplified, too. Using the projectors S* from (1.14), we can split X into an even part x*
and an odd part x~ according to x* = xS¥, such that x = xt + x~ and x* = £x*8S, i.e, x"
(x7) contains the symmetric (skew-symmetric) parts of the eigenvectors. We get

o 1 pt {e; (vts) <05 (5) } , (3.60)

2 cos (590/,,) p=1,m odd

. . m M

o1 [;% (-vivs) sin (504) ] , (3.6b)

V2 sin (3¢,) =1, m odd

where m runs over the odd integers between —M and M. The angle ¢ is defined through
e -9 = iz cn_u, G.7
cny

with 0 from (2.19), cf (2.21) and (A.12c¢), and fulfills

e ¥ = —i(* = —tan (%g@) , (3.8)

see also (D.3b). Using the CP Py n (A4) from (3.2), or alternatively P, (x) from (3.5), the diago-
nal normalization matrix D can be substantially simplified from the expression given in (I1.50),
with the result

otz \M-1 1
D), = —— 3.9
®), = -—(5") o0 (3.99)
t 1
- 3.9b
z P0G (-0

Here we used a relation between the normalization of the eigenvectors of a tridiagonal matrix
and the derivative P’ of its CP [87, chapter 7.9]. With these simplifications and the diagonal
eigenvalue matrix (A),, = \,, we can rewrite (1.16) as

M= AY2xt 4+ A 2%, (3.10)

9 The eigenvectors X, are row vectors in X, i.e., X, = (X),,.

12
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and the partition function (1.13) becomes Z = Z, det M. Inserting the definition of x* into
(3.10), we get the result

V= ot (bu i) cos (3¢,)
cos (zgpu)
M

>

(L V=0 +L’117i7ﬂ) sin ( 2 90/1)

+e? ]
SIH(ZSO/I) pu=1,modd

: 3.11)

such that (1.15) becomes M'M = W' DW.

As shown in [9], the matrix W is a generalized Vandermonde matrix, such that a change
of the base leaves the value of the determinant invariant. Hence we can transform from the
trigonometric base to the simpler power base and get the corresponding matrix

M

W= [ey(m)(mu—oﬁw) Xé(m—l)} , (3.12)
p=1,m odd

with the Heaviside step function H, where we have used the variable y introduced in (3.4), and

factored out the exponential for m < 0 and moved it to the diagonal matrix

F = {5 o b y— 9,‘+u,,)} (3.13)

pr= 1

such that det W = det F det W. As det F = ¢ 5 by (3.7), (D.1a) and (D.3b), the resulting
squared partition function now reads

7? = 73 t7F det(W' DW). (3.14)

Up to here, the calculation was similar to [9], with one major difference: the occurrence of
the terms 1/P5(x,,) in the diagonal matrix D (3.9b) will enable us to use a relation between
CPs, their associated Vandermonde matrices and certain Hankel matrices.

3.3. Hankelization

The next significant simplification is obtained by utilizing a generalization of the well known
relation of the CP P,(x) and the related Vandermonde matrix

Ve = [x]]

to a certain Hankel matrix H, [88, 89], also known as ‘Vandermonde factorization of a Hankel
matrix’. Let

M  M-1
p=1, j=0

(3.15)

M M
Pe) = [[r—x0 =D bux", (3.16)
=1 n=0
where by, = 1 by construction, as well as
D, = [ Oy }M H,' = [biy] (3.17)
Rl PPEE
then
V. DV, = H,, det’ V, det D, = 1. (3.18)

13
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While H, !is upper anti-triangular, Hy itself is lower anti-triangular, e.g. for M = 4,

by by by 1 00 0 1
by by 1 0 00 1 b
-1 2 b3 _ Y
Ho=lu 1 0 ol & W= o 1 b bl (3.19)
1 0 0 O 1 bs bg by

with' b, = 37 X171 /P (x,).
A direct computation (see appendix B) shows that a similar identity holds for the generalized
Vandermonde matrix W (3.12) in conjunction with D from (3.9b), namely

WDW = {ﬁos Sgﬂ (3.20)
1 2
with the M /2 x M /2 Hankel matrices
A 0 71
. £ ALyt
Hy = 7% X;ﬁf] (3.21)
=1 () i,j=0

Note that (3.20) is block lower anti-triangular similar to H, in (3.19), as H, = 0. The important
consequence of this result is the generalized determinant identity

det(W'DW) = de® W det D = de® H, (3.22)

which leads to the surprising result that the Ising partition function can be mapped to a Hankel
determinant. Inserting the simplifications from above, and defining H = 2iz_H;, we can draw
the square root in (3.14) and get the compact exact expression for the partition function of the
square lattice Ising model on the rectangle,

LM

2 2
Z=27 detH, Z =r377 (—) , (3.232)
7_

where the M /2 x M /2 Hankel matrix H = [h; J_H]M/ has the matrix elements

M
2it* el n=0utvp
L= Z > X (3.23b)
P (X/:)
withn = 1,...,M — 1. This expression represents a significant simplification with respect to

the result from [9]. However, in the next section we will proceed further by rewriting the sum
over /. as a complex contour integral, inserting the known formula for P, () from (3.5).

3.4. Contour integral representation

The matrix elements /4, of the Hankel matrix H (3.23b) can be evaluated using complex con-
tour integration, and the CP P, () plays a crucial role in this calculation. In principle we use

10 A5 a side note, both b, = Su-am(X) and b, = (—1)"sy,, , (x) are Schur polynomials.

14
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Cauchy’s residual theorem and calculate the sum over p in h, as a contour integral over a
suitable contour C around the points %, in the complex u-plane,

1 [2irelr 0 0 log Py(x) Bxd
— au

o 3.24
i fo PLoo x  Ou (3-242)
1 2.[* Ly—0+
_ 1 % ir'e v X, (3.24b)
2ri Jo o Py(X) ou

where, most importantly, the derivative P’X () cancels out.

While the CP P, () has two sets of zeroes u,, and it,, corresponding to the eigenvalues A,
and )\; I cf (C.5), the contour C only encloses the zeroes u,,, see figure 2. We can easily remove
the additional zeroes i1, by employing a factorization analog to (C.2),

1_*2

Py(x) = [1— ™M) [1 4 7' Mem)] (3.25)

2i sin w
As the first (second) bracket vanishes at u,, (it,), we can drop the additional zeroes it,, by
replacing the last term with its value at the zeroes u,,, where My — w = 0, to get

1 elr—0+y ) a1 Ox
n = Tm %W 1_ sin wX ! a du. (326)
cl—

In the next step we use (3.8), (A.19b) and (A.20) to eliminate ) and sin w. Furthermore, we
can move the zeroes of the numerator to the line J(u) = %K’ without changing the integral by
adding one to the numerator, such that the numerator 1 — /7% = S[1 — e!™¥~%)] is precisely
the swap transform (1.5) of the denominator, with the result

1 1— el
:—f; " qu, (3.27)
27 Je1 u

Due to the CP property (3.3) and the Vandermonde property of (3.11), the determinant of
(3.26) is invariant under a translation x — x + c. This freedom is used in (3.27), as x was
defined in (3.4) in order to obey x = 2 cot(%w) sin .

The resulting integrand is shown in figure 3. At the four points {uo s, Yoo 00s Uso.0> 40,0} (2.18)
(black dots), the pole orders'! {n + 1 —M,n+ 1+ L —M,n+ 1+ L,n+ 1} are positive for
certain n € {1,...,M — 1}. As the additional zeroes at it, are removed, we can deform and
simplify the integration contour C to the four straight lines (green), which pairwise enclose
the CP zeroes (yellow), or equivalently, the four points (2.18) (black dots). Due to the double
periodic complex plane, the integration paths at 9i(u) = £K add up to zero. Note that in the
ordered phase below 7. the smallest real zero u; reaches £K and becomes complex, such
that the integration contour has to be modified as indicated. In figure 4 the complex torus is
depicted.

Summarizing the last steps, we have found an extremely compact representation for the par-

tition function of the anisotropic square lattice Ising model on the rectangle as the determinant
M/2-1

of a Hankel matrix H = [hi+j+1] ij=0

1 1 —eb? oy
Z =17 det H, hy=— ¢ ——— X" —~du, 3.28
Lae 2mi fcl ~ ey X gy (3:28)

1 p-fold poles (zeroes) have pole order n (—n).

15
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M=6,L=5k=06,n=09,n=1 M=6,L=5k=1/06,n=09,n=1
0 K

K

Figure 3. Complex structure of the integrand (3.27) for M =6, L =5, n =1 and
anisotropy 17 = 0.97;,, above (k = 0.6, left) and below (k~' = 0.6, right) the critical
point. Yellow: M zeroes of the denominator, i.e., eigenvalues A\, of T, and their para-
conjugate. Pink: L zeroes of the numerator and their para-conjugate. Black: multiple
zeroes/poles from (2.18a), with pole order {—4, 1,7,2} from top to bottom in this case.
Green: possible integration paths. The contour lines are at constant modulus, with a
dashed gray line at 1, and light (dark) gray lines at powers of 2 below (above) 1. The
complex phase is color coded, being {white, red, black, blue} at {1,i,—1, —i}, such
that white turns to red (blue) at zeroes (poles) under ccw. rotation. Note that K becomes
complex for k > 1.

Figure 4. Complex structure of the integrand (3.27) from figure 3 (left), mapped onto
a torus. These pictures might (or might not) be helpful to better understand the setup.
Left: the upper circle is the real axis, with the odd zeroes of the denominator (yellow),
the outer circle has J(u) = —K'/2, with the even zeroes of the numerator (pink), and
the black point in front is at —7. The remaining zeroes are inside and at the bottom.
Right: the top circle is the imaginary axis Y9i(u) = 0, the front ring is the real axis. This
representation corresponds to the original directions of the Ising model: the J direction
goes along the 2M denominator zeroes (yellow) from front to back, the <+ direction goes
along the 2L numerator zeroes (pink) from left to right, see also table 1.
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with constant Z; from (3.23a). The h, are Fourier coefficients (in the y base) of a so-called
symbol function with Fisher—Hartwig type singularities [90, 91] (see below), which is given
by the ratio of two CPs. These polynomials are associated with the two directions as well as
the corresponding BCs. As the considered system is invariant under an exchange of the two
directions, the two CPs are directly related by the symmetry (1.5) of the underlying square
lattice Ising model.

Note that the L zeroes v, of the numerator 1 — /7~ correspond to the L eigenvalues of
a hypothetical L x L transfer matrix T propagating in vertical direction, which would have
been used in an alternative rotated setup. Only in the isotropic square system, where L = M
and K = K7, these zeroes coincide with the swap-transformed zeroes, v, = S(uy,) = i,,.
Unfortunately, we were not able to simplify the integral (3.28) in this symmetric case.

—0

3.5. From Hankel to Toeplitz

The Hankel matrix (3.27) can be further transformed using the identities derived by Basor and
Ehrhardt [92]. Using theorem 2.3, the symbols a and b, as well as the notation T'y(a), Hy(a)
and H)y[b] from [92], the determinant of H, with elements (3.27), corresponds to the Hankel
moment determinant det Hy,[b] and can be transformed to the symmetric Toeplitz plus Hankel
determinant det(7'y(a) + Hy(a)), with the symbol

s 1—el=? Oy
J— — -
aQ =B = e g, (3.29)
and with the Fourier components [92, equation (3)]
1 . .
Un=a = — jf a(@y e 9 g (3.30a)
27 Je Ou
_ 1 fl_ehecn @ du (3.30b)
2 Jol —eiMe-w) > gy '

Note that (3.29) transforms to its reciprocal, S[a(¢)] = 1/a(¢), under exchange of the two
directions. The advantage of this representation is the occurrence of the simpler Fourier base
¢™", which eliminates the poles in the integrand stemming from { — oo at the points #q 0o = 7
and up ., = iK' — 1, provided L < M (as n > 0). We can therefore simplify the integration
contour to a curve around the two remaining poles at u..o = —n and ugy = —iK’ + 7. How-
ever, for arbitrary L and M the pole order of the integrand (3.30b) at the four points (2.18) is
{-n+2—-M,—n+L— M,n+ L,n} and can be positive in all four cases, such that all four
points must be enclosed by the contour.

Finally, from chapter 3 of [92] we borrow a clever transformation from the symmetric
Toeplitz plus Hankel representation to a skew-symmetric M x M Toeplitz matrix T, with the
result
M-1

T XM: 2it* elu—0u (1 ) . [( ) ] (331a)
= ——— cot| =, | sin|(i — j)p, 3la
2 s g, <27 "
1 1 — elr—0 1 o . 87 M—1

such that the Pfaffian of T fulfills Pf T = det H, and therefore
Z =27, PfT. (3.31¢)

17
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As before, the integration contour C can be freely deformed as long as it enclosed all zeroes
u,, or, alternatively, the four points (2.18).

4. Discussion

In this work, we showed that the partition function of the anisotropic square lattice Ising model
on the L x M rectangle with open BCs in both directions is given by the determinant of an
M /2 x M /2 Hankel matrix H, which equivalently can be written as the Pfaffian of a skew-
symmetric M x M Toeplitz matrix T. The M — 1 independent matrix elements of H or T are
Fourier coefficients of a symbol function (3.29), which is given by the ratio of two CPs. These
polynomials are associated to the two directions (+,]) of the system, encode the respective
BCs, and are directly related through the symmetry of the square lattice Ising model under
exchange of the two directions.

In the framework of the square lattice Ising model, Toeplitz matrices and determinants are
well known in the context of bulk spatial correlation functions (oo ) [4, 90, 93], eventually
leading to the spontaneous magnetization for > + m? — oo. Surprisingly, they now also appear
in the exact expressions for the partition function Z of finite systems.

The considered anisotropic Ising model with open BCs in both directions is invariant under
exchange of the two directions <+ and i, such that both the system dimensions and the cou-

pling constants are exchanged according to L S M and £ S KCt, see table 1. This swap
transformation S (1.5) leads to the mapping of z and 7 to their respective duals, (z, f) |£> (r, 7z,
as well as to the exchange of the eigenvalues and angles according to A EN (o EN i and

0<% iw. In the complex u-plane, it corresponds to a point reflection (u, n)lﬁ}(f{, 7n) of the com-
plex torus at the point 7, = 4liK’ from (2.15). The elliptic modulus k, however, is invariant
under this transformation. This symmetry must not be confused with the related duality trans-
formation D : (z,1*) — D[(z,t")] = (t,z") of the bulk system, which maps a low-temperature
system with spins oy, at k > 1 to a high-temperature system with the plaquette spins &, at
ki k=k'<1,see figure 1. Note that in systems with boundaries, this transform is known
to change the BCs, e.g., from open to fixed.

Table 1. Overview over the quantities used in this work. The transformation S (1.5)
maps between the two directions of the model. The right columns show the relation of
our notation to the work of Baxter [7], where the transfer matrix propagated vertically.

Direction “ ) 17 «~ [7]
Number of sites L M M N
Reduced coupling Ko Kt H H'
Weights (z,1) (r*,z%) (t*,u*) (u, 1)
Transfer matrix T Q 'A% —
Eigenvalues A ¢ A z
Angles 5 ip — —
Boundary angles 0 iw — —
Characteristic polynomial | 1 —ef=0 [ — eiMe—w) — [7,(3.2D)]
Elliptic variables (u,m) (@, 1) (r,v/2) (7, 7/2)
Elliptic modulus k k!

J(CP zeroes) 0,K") +K'/2 — —

18
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During the present calculation, it was tried to find a representation of the partition function
Z that is formally symmetric under the exchange of the two directions, mediated by the trans-
formation S. While the symbol function a(¢) from (3.29) already fulfills S[a({)] = 1/a((),

the transformation S exchanges the system dimensions L <% M and therefore changes the
dimensions of the involved matrices, such that, e.g., a representation using (M + L) x (M + L)
dimensional matrices might be necessary for a unified description.

The obtained results might possibly be rewritten using elliptic product identities, as done by
Baxter [7] in the thermodynamic limit. The ultimate goal would be to use elliptic determinant
evaluations as done successfully by Iorgov and Lisovyy [84], which might lead to a closed
product representation of the partition function.

We expect that our results can be extended to other BCs by using the corresponding CPs,
these generalizations are left for future work.

From the Toeplitz determinant representation of the partition function, it is rather straight-
forward to derive the (anisotropic) scaling limit L, M — oo, T — T at fixed scaling variables
xy = (T/T. — 1)(M/§(i,)1/” andp = (L/&,")/(M/gg) using Szegd’s theorem [93-95]. This task
will be addressed in a forthcoming work.
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Appendix A. Useful elliptic identities

In this appendix we will list identities arising from the elliptic parametrization. We also sim-
plify expressions given in chapter 6 of [9]. Following McCoy and Wu [16] (who used alil , oé‘ b
and Torgov and Lisovyy [84] (who used o', 5*!), we introduce abbreviations for products and
ratios of z and ¢, however we again utilize Glashier’s notation (2.6) and define the constants

1
b ) (A.1)

with \pA\s = AcA\g = 1. This leads to the identities

A And

=14+ XNk, dn’np="2" =14+ Mk (A2)

snzn = \k L, cnzn =

Furthermore, We list relations to the primary reduced couplings K° from (1.1),
r=exp(—2K%), 1y =cosh2kh), 1. = —sinh(2Kh), (A.3a)
z = tanh K%, 74 = coth(2K*), 7_ = —csch(2K), (A.3b)

19



J. Phys. A: Math. Theor. 54 (2021) 375201 A Hucht

whereas for the dual couplings z*, * the directions <+ and J are to be exchanged,
7F=exp(—2K), <z =cosh(2K*"), z° = —sinh(2K*"), (A.3¢c)
= tanh K, . = coth(2kh), -~ = —csch(2K). (A.3d)
Defining the dual primary reduced couplings K0 via
exp(—Zl@s) = tanh K°, (A.4)
we conclude from (2.12) that the following simple relations hold between K¢ and 7,
2iK" = am(2n), 2K = am(27)), (A.5)

such that the Jacobi amplitude (2.1) represents a direct connection between the physical
reduced couplings K and the parameter 7, and (2.14) can be written using the elliptic integral
of the first kind, cf (2.2),

2n = FQIiK*, k) = iK' — FQIiK*, k). (A.6)

We now turn to the eigenvalues A and (. Defining the abbreviation

ksn2nyY — 1
O = /g h= [ RS =1 (A7)

ksn?2u —ksn?yp

we can express the four roots from chapter 6 of [9] as meromorphic functions of «, eliminating
the ambiguous signs of the square roots,

Vn — A = O, n)m VA — A= 0, n)sn—” (A.82)
d
Ve = X = 0, n)— VAa— = 0. n)ﬁ (A.8)

Note that we have used the trivial elliptic functionnn u = 1 in order to illustrate the systematics.
Using (2.13) we can derive analog expressions for ¢,

VG —C = o — mi - ETT = ol o= sni (A.92)
d
Ve —C = 0, mz‘;—;, Vi —C = QG 7)) d“i (A.9b)

where we defined

1 Z* t*

G=21,  G=—— =2, b=, (A.10)
't t z
in analogy to (A.1). From (A.8a) and (A.9a) we further derive
_ l—kzsnzusnzn’ _ 1—k2~sn2ﬁsniﬁ’ (A.11a)
k(sn?u — sn?n) k(sn? it — sn2 7))
which can be expressed using (1.2),
(ksn® u)* (ksn? ir)*
N= e A.l11b
&sep C T TGty (A110)
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Inserting the elliptic expressions (A.8) into (I1.46) we find

qn @ YA —AWA-A Q*(u,m) cnu dnu
2 NYEE 2y Mtz cnndnny’

cos = YA = AA X Q%) nnusnu
2 2z 2iy/Mz nnpsnp’

fan £ = LVA = AVA = A Tanysnnenudnu
2 ivVAM—AA—X innusnucnpdny’

while (1.47) at the eigenvalues A, become

ein Moy \/;\/As — XV A — Ay _ ﬁ Q*(u,,m) snu, dnu/,,’
2 AV 2 \/Aut-X,— snn dnny

+ cos Moy _ 1 VA= A/ Ae = My 1 Q*uum) nnuy,cnu,

2 Vi 2t 2ii/A A, nny cnp

Moy, :it\/)\s — N/ Aa— A _ snuy, dnu,
2 VA= A/ A — A, nnugenuy,

tan

We additionally list the identities

_z_isin p = —i\/An “ AV = AV A — M — A
2\

= \/>‘s,+ - >\+\/>\d,+ — At

O*u,n)nnu snu cny dnu

2\ nmnnsnncnndnn’

as well as

V27 i sin % = Mas — M. 2tz cos % = Vs~ Ar.

Using the addition theorem [81, (2.4.22)]

cn(u —v) —en(u +v) ldn(u —v) —dn(u + v)

k =k -
snusnv dn(u —v) +dn(u+v)  ken(u—v)+ cen(u + v)

we derive the important identities

en(2u) +cen(2n)  1dn(2u) + dn(2n)

A=¢ =— _ ,
dn(2u) — dn(2n) k cn(2u) — cn(2n)
Ay = cosh y = — kCH(2u)d121(2u) + cn(2277)dn(277)
dn®(2u) — dn“(2n)
A — sinh o — SN0 + enadnCu)

dn’(2u) — dn’(2n)
and, by the swap transformation (2.13),
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B dsu) +ds(2n)  cs(2u) + cs(2n)

(= =~ @ — o) dsu) — ds@n)’ (A.172)
B o dsQu)cs(2u) + ds(2n)cs(2n)
(4 =cos p = es2(2u) — cs2(2n) , (A.17b)
i sin g 3502 + dsCrpes) Ao

cs2(2u) — cs2(2n) ’

which express the eigenvalues A and ¢ as functions of 2u.
‘We now turn to derivatives. From (2.16) and

en(u £ mdn(utn)

sn(u + 1) kA-[sn(2u) Fsn2)]  (A.18)

2 log sn(u £ 1) =
Ju

we see that the derivatives of ¢ and  w.r.t. u become

10 1 i

“9 _ksn@mA_ = — sinh y = — 0¥ (A.192)

2 Ou zZ_ sin w

10y ) . sinh

Il A 2N =1t = A.l

> ksn(2u) A t_ sin 1Sinh 0 (A.19b)
from which other identities, such as

0 i 0 2_4

T sinw=rg 0¥ IX_X 7% (A.20)

Op sinh ~ Ju sin w

are easily calculated.

In the ordered phase where k > 1, the angle ¢, becomes complex [9, chapter 6], leading to
a complex value of u;. The correct mapping from the eigenvalues A, to the elliptic variable u,,,
respecting this behavior and being valid at arbitrary temperatures, can be expressed using the
inverse Jacobi dn, see (A.8),

B N —
u, = dn"" [dnn ﬁ] , (A21)

While it is tempting to utilize the simpler relation (2.19)

1
u/l, - EF(MQD/I,, k)a (A.22)

it will not give correct results for even 1 and below T, because the elliptic integral F' does not
have the correct branch cut positions for these cases.

Appendix B. A block Hankel matrix identity

Let Vg« be the generalized 1 x B block Vandermonde matrix with M x N blocks

B-1
= [Gb fo]b:o’

LBl M N-1
]b:O; p=1n=0 — (B.1)

Vex = [8Z Xu
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with

V, = [xZ]iJ:L[:;;, G= [5#,,g#]le/:1. (B.2)

As an example, for M =4, B =3 and N = 3 we have

2 20 2 2 2.2
Loz 27|91 q1v1 171 | 97 giT1 giTq

2 2 2 2 2,.2
1z 75|92 G2 Go3 | g5 G5T2 G55

Vyo = . (B.3)

2 2| 2 2 2.2
1 x3 73|93 9373 g373|95 G373 G373

2 2| 2 2 2.2
1 x4y 7|94 9aTy gay|gs 9iTs 91Ty

Furthermore, let D be an arbitrary M x M diagonal matrix. Then, the B x B block Hankel
matrix with N x N blocks

B—1 N-1
gx = [Z d/l a+b nz—&-n] [VTDGa—H;V]ah o (B.4)

n=1 a,b=0; m,n=0

trivially fulfills the identity
Hex =V, DVjar. (B.5)

Note that the upper left block (Hgx)oo = V. DV, is free of g, and is therefore a usual
Vandermonde product in x,. Consequently, if the matrix D is set to the diagonal matrix Dy
with the reciprocal first derivatives of the CP P,(x) from (3.17),

M
[ O } , (B.6)

D= |
Px (‘x#) =1

and if additionally M > 2N, then (Hg )0 vanishes identically. For B =2 and N = M /2, this
leads to equation (3.20).

Appendix C. More characteristic polynomials

In[11] we used the finite-size scaling limit of P | to locate the zeroes in the complex plane and
to perform the corresponding Cauchy integrals. We had to distinguish between even and odd
zeroes and defined an alternating counting polynomial from Py, . Now we will demonstrate
that it is much easier to analyze the complex structure of the system by using the CP of the
transfer matrix T instead of T,. While it is possible but cumbersome to derive the CP of T,
with eigenvalues A,

M
Px(V) =detM —T) = [T (A = A (C.1)

from scratch analogously to (1.19a), cf [9], we instead proceed in a much simpler way and
derive it directly from (3.2): using (1.3), we first factorize the right-hand side of (1.19a),

A=)\ =), 1
Py () = H(A+— H)—H( 2(’0)( ) 2 _ = AP, (€2
1
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as A, + = A4, and, cf (1.35),
Py(0) =det(—T) =det T =1. (C.3)
Employing the trigonometric factorization identity

sin(Mp —w) sin (%[Mcp — w]) cos (%[Mgo — w])

sin(—w) sin (—1w) cos (—1w) €4
as well as the identities
AAw) =1, @) = —p(u),  w(@) +w(u) =,
1 1
cot {Ew(u)] = tan {Ew(u)] , (C.5)

with inversion transform u — it = u + iK', we see that Px(\) and Px(\~") are given by the
remarkably simple formulas

Pyx(\N)=(1— t*)(—t_z_)\)% {cos (;M<p> — cot (;w> sin (;M<p>] (C.6a)

u sin (%[Mgo — w])

=0 =) (~tz. N7 — : (C.6b)
sin (—Ew)
Lz AT e
—U—t(— R ) e (C.6¢)
PO Hh=0- t*)(—r,z,xl)% {cos (%Ms@) + tan (%w) sin (%Ms@)] (C.6d)
g 1\ 4 cos (3 [Mp — w])
=0 —r)(-r_z\7") cos (— 1) (C.6e)
otz \T1 g eMew
_(L—U(—A<> e (C.6f)

The additional factor (—\)/? in Px()) follows from (C.3) in the known limits A — {0, 0o},
see (2.18). Utilizing a factorization similar to (C.2), the CP of T_ can also be derived,

M
PO =] =0

n=1
— ﬁ ()\ - >\/1)(_>\_l - >\/1)
e 200 -2
1
= Z—MIPA(A)PA(—A*‘). (C.7)
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Finally, from (3.25) and Liouville’s theorem [5, 15.3] we derived the CPs

1 — eitp—w) M

P = (1 - i ST L) (€3)

sn(u + uy,)’

pn=l1

- 14 i) M
PCH=(0-1 )WH kesn(n + w,)sn(u + u,,). (C.9)
p=1

Appendix D. Some product identities

Using the CPs (3.2), (C.6) and (C.7), we have the following identities (remember that M is
even): the determinants are given by

M
det T= ][N\ =Pr0) =1, (D.1a)
pn=lI
M . M
det T_ = [ Me =P @) = (1 — ) —— (D.1b)
122 — 1 _ t*2 ’
n=1
M .
_ _ o (2 \Msin(Mpy o — Wiy o)
det T, = El Mt = Pr (0) = (1 —t )( ] ) e (D.1¢)

with (2.18) and

[(iAn)* 1,
Uy, o =sn"" % uy 0=K+ E11(’. (D.2)

Furthermore, we have the following product identities for the Jacobi elliptic functions

M
[]v= ™% =1 —mxr (D.3a)
snn

pn=lI

M
[]ve s =, (D.3b)
e cnn

M

d
IT vir d“”” =1+ M. (D.3¢)
p=1 i

For products over A, we find the identities

M

TT O = A0 = PaCw) = (1 = 1)z M), (D.42)
pn=lI

M M

[T 0= A0 =Pa00) = = )1z 2%, (D.4b)
p=1
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M

[T = A0 = Pa) = (1 = )z A% (1 - M2, (D.4c)
pn=lI

M M

[T« =20 =Paa) = (1 =) (~r-z- 2% (1+MA_Z'),  (DAd)
n=1

and for products over ¢, we derive

M
. Pu -t —1
= /1 4+ M\ ", D.5
Ll sin 55" = GV 1+ M (D50
Y %) 1-r
wo_ —1
E Cos 7 = 2M—\/E 1 - M)\sny, s (D5b)

M 1 +M>\d _Z:l M M
[T tan % =P e =] (D.5¢)
pn=l1 A/ 1-— M)\sq,Z:l pn=lI pn=1

Finally, from the factorization
(tzisin ) =(thzr — A ) =272 =Ny — Ay —Ay),  (D.6)

as \s 4 = t4z4 +t_z_and A\ = t4z4 —t_z_, we deduce the closed form expression

M M
[Tz isin)” =TT v = M) = M) = Pa, O OPx, (Aag)
pn=lI pn=lI
2M
= -2 (55) (1 —MAS") (1 +M’\“">. (D.7)
2 zZ- Z-
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