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Abstract
Based on the results obtained in (Hucht 2017 J. Phys. A: Math. Theor. 50
065201), we show that the partition function of the anisotropic square lattice
Ising model on the L × M rectangle, with open boundary conditions in both
directions, is given by the determinant of an M/2 × M/2 Hankel matrix, that
equivalently can be written as the Pfaffian of a skew-symmetric M × M Toeplitz
matrix. The M − 1 independent matrix elements of both matrices are Fourier
coefficients of a certain symbol function, which is given by the ratio of two
characteristic polynomials. These polynomials are associated to the different
directions of the system, encode the respective boundary conditions, and are
directly related through the symmetry of the considered Ising model under
exchange of the two directions. The results can be generalized to other boundary
conditions and are well suited for the analysis of finite-size scaling functions in
the critical scaling limit using Szegő’s theorem.

Keywords: Hankel matrix, Toeplitz matrix, exact solution, open boundary
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1. Introduction

The anisotropic two-dimensional Ising model [1] on the L × M square lattice is one of the
best investigated models in statistical mechanics. In the thermodynamic limit L, M →∞, it
has a continuous phase transition, from a disordered high-temperature phase to an ordered
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low-temperature phase, at a critical temperature Tc. After the exact solution of the periodic
case by Onsager and Kaufman [2, 3], many authors have contributed to the knowledge about
this model under various aspects, such as different boundary conditions (BCs) or surface effects
[4–6].

Until some years ago, exact solutions for arbitrary temperatures were only known for sys-
tems with periodic or antiperiodic BCs in at least one direction, as then a Fourier transform
along this translationally invariant direction could be used to diagonalize the problem in the
corresponding direction. The remaining direction could be handled afterwards with a transfer
matrix method, involving a 2 × 2 transfer matrix, taking into account arbitrary BCs, or even
line disorder [4].

This changed in 2016, when Baxter [7, 8] and Hucht [9–11] independently presented exact
results for the Ising model on the rectangle, with open BCs in both directions, expressing the
partition function as M × M and M/2 × M/2 determinants, respectively. While Baxter used
Kaufman’s spinor method [3] below Tc and focused on the thermodynamic limit [7], where
he exactly calculated the corner contributions to the free energy conjectured in [12], Hucht
utilized the dimer method of McCoy et al [4, 13–16], combined with Schur reductions and a
block transfer matrix formulation of Molinari [17], and derived closed expressions for finite
systems at arbitrary temperatures. The resulting transfer matrices directly correspond to the
spinor method matrices, bridging the gap between these so far rather unrelated methods.

Near the critical temperature Tc, the direction-dependent bulk correlation length of ther-
mal fluctuations ξδ∞(T) diverges according to ξδ∞(T > Tc) � ξδ0(T/Tc − 1)−ν , where δ =↔, �
denotes the directions corresponding to L and M, ξδ0 are interaction-dependent metric factors,
and the correlation length critical exponent is ν = 1 in the two-dimensional Ising model1. If
ξ
↔,�
∞ (T) is of the order of (or larger as) the respective system size L or M, interesting finite-size

effects such as the critical Casimir effect emerge, which describes interactions of the system
boundaries mediated by long-range critical fluctuations [18, 19] in close analogy to the quan-
tum electrodynamical Casimir effect [20, 21]. These finite-size effects can be described [22] by
universal finite-size scaling functions of the form Θ�(x�, ρ), with temperature scaling variable

x� ≡ (T/Tc − 1)(M/ξ
�
0)1/ν and generalized aspect ratio ρ ≡ (L/ξ↔0 )/(M/ξ

�
0), that only depend

on the bulk and surface universality classes of the model [23, 24], as well as on the BCs. They
have been calculated exactly for many cases, albeit mostly in strip geometry, where the aspect
ratio ρ of the system goes to zero [25–31]. The theoretical results from exact calculations, field
theory and Monte Carlo simulations [28–42] were shown to be in excellent agreement with
experiments [43–50] for various bulk and surface universality classes.

Directly at the critical point, exact methods or conformal field theory [51–55] can be used to
get exact expressions for the Casimir amplitude ΔC(ρ) for arbitrary ρ. This has been done for
periodic [56, 57] as well as for open BCs [58, 59]. Using conformal maps, these results can be
used to investigate fluctuation-induced forces between colloids in critical suspensions both in
theory [60–68] and experiment [69–77]. At arbitrary aspect ratios and temperatures, however,
the finite-size scaling functions must be derived from the exact solution of the finite system
with the correct BCs. For the Ising model, this has been done only in a few cases, namely for
the torus with periodic BCs in both directions [22, 78, 79], for the cylinder with open or fixed
at the boundaries in one direction [78, 80], and for the open rectangle considered here [11].

In this work, the calculations of [9] are substantially simplified by (i) the use of elliptic
functions [5], (ii) a simplified normalization of the eigenvectors of the relevant M × M transfer
matrices, (iii) a transformation to Hankel and Toeplitz matrices, and (iv) a representation of

1 The relation ‘�’ denoted ‘asymptotically equal’ in the respective limit, and ≡ denotes a definition.
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Figure 1. The anisotropic square lattice Ising model on the L × M rectangle (black),
together with its dual lattice (red) and with the relevant couplings (see text). The transfer
matrix T (1.6) propagates as indicated.

the sums over transfer matrix eigenvalues through a complex contour integral, having (v) a
remarkably simple integrand given by the ratio of two very simple characteristic polynomials
(CPs), each representing one direction of the two-dimensional Ising model. The preceding
publication [9] will be denoted I in the following.

1.1. The model

This work focuses on the anisotropic square lattice Ising model on the L × M open rectangle,
shown in figure 1. Our aim is to calculate the partition function

Z = tr exp

(
K↔

L−1∑
�=1

M∑
m=1

σ�,mσ�+1,m +K�
L∑

�=1

M−1∑
m=1

σ�,mσ�,m+1

)
, (1.1)

with reduced couplingsKδ = βJδ in direction δ =↔, �, where the trace is over all 2LM config-
urations of the LM spins σ�,m = ±1. We assume open BCs both in horizontal (L) and in vertical
(M) directions, and we assume even M. The starting point of this work is the matrix product
representation (I.29) of the well known Pfaffian representation by McCoy et al [4, 14], derived
in [9] using a Schur reduction as well as a block transfer matrix formula by Molinari [17]. We
follow the notation of [9], with a few clarifying minor modifications. Therefore, we define the
dual

a∗ ≡ 1 − a
1 + a

(1.2)

of some quantity a, as well as the quite useful abbreviations2

a± ≡ a ± a−1

2
(1.3)

2 Subscripts a± are consequently used in this manner, while superscripts a± may have different meanings.
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introduced in (I.20), fulfilling (a∗)∗ = a = a+ + a−. The reduced couplings Kδ are rewritten
using the weights z and t according to

z ≡ tanh K↔, t ≡ (tanh K�)∗ = e−2K�
. (1.4)

The partition function Z of the considered anisotropic Ising model with open BCs in both
directions is invariant under exchange of the two directions ↔ and �, where both the system
dimensions and the coupling constants are exchanged according to the swap transformation

S : (L, M;K↔,K�) 	→ S[(L, M;K↔,K�)] = (M, L;K�,K↔), (1.5)

such that Z = S[Z]. The swap transformation is an involution, as S[S[a]] = a. We now
summarize the required results from reference [9].

1.2. Starting point

In equations (27)–(29) of [9] we showed that the square of the partition function (1.1) is pro-
portional to the determinant of a matrix product of the form 〈e2|T L

2 |e2〉, with real hyperbolic
2 × 2 block transfer matrix T2 propagating in horizontal direction. In this work, we will use

a ‘Wick rotated’ version of T2 according to3 T ≡ I T2 I †, with matrix I ≡
(

1 0
0 i

)
⊗ 1,

leading to the complex orthogonal block transfer matrix

T ≡
[

T+ −iT−
iT− T+

]
, (1.6)

which fulfills T −1 = T 
. Note that T is not unitary. The two real symmetric M × M matrices
T± were given in (I.30) and can be simplified to

T+ = − t−z−
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 +
t∗

z∗
1

1 2
. . .

. . .
. . .

. . .
. . . 2 1

1 2 + t∗z∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C

+ (t+z+ + t−z−)1, (1.7a)

(1.7b)

3 A
 and A† denote the transpose and the conjugate transpose of A, respectively.
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using the dual couplings z∗ and t∗ (the matrix C will be utilized later). They are related via the
transfer matrix T = T+ + T− according to (1.3),

T± =
1
2

(
T ± T−1

)
⇔ T±1 = T+ ± T−, (1.8)

from which directly follows that T can be block diagonalized through a rotation by π/4,

R π
4
I†T I R− π

4
=

[
T 0
0 T−1

]
, (1.9)

with block rotation matrix Rθ ≡
(

cos θ sin θ
− sin θ cos θ

)
⊗ 1, for details see chapter 5 in [9]. The

open BCs in horizontal direction are represented through the boundary state

|eo〉 ≡
1√
2
|1 iS〉, 〈eo|eo〉 = 1, (1.10)

where |eo〉 is a two element block vector, with the M × M matrices

(1.11)

Together with the constant

Z0 ≡ (1 − z2)
M
2

(
2

−z−

) LM
2

, (1.12)

the square of the partition function (1.1) then reads

Z2 = Z2
0 det 〈eo|T L|eo〉, (1.13)

see also [7, (2.35)]. Defining the projectors

S± ≡ 1
2

(1 ± S) , (1.14)

the argument of the determinant in (1.13) becomes

〈eo|T L|eo〉 = 〈S+ iS−|
[

TL 0
0 T−L

]
|S+ iS−〉 (1.15a)

= S+ TL S+ + S− T−L S− = M
M, (1.15b)

with the matrix

M ≡ x
(

TL/2 S+ + T−L/2 S−
)

, (1.16)

as S+S− = 0. In the following we will determine the eigenvalues λμ,λ±,μ and common
eigenvectors�xμ = (x)μ of T and T±, which fulfill

T�xμ = λμ�xμ, T±�xμ = λ±,μ�xμ, (1.17)

5



J. Phys. A: Math. Theor. 54 (2021) 375201 A Hucht

where μ = 1, . . . , M.

1.3. The Onsager dispersion relation

The next step in the calculation of the partition function (1.1) is the determination of the eigen-
values λ+,μ as zeroes of the characteristic polynomial (CP) of the tridiagonal matrix T+ from
(1.7a), which will lead to the Onsager dispersion relation. As we will discuss several CPs in
the following, we first define the CP Pa(x) of an arbitrary M × M matrix A, with eigenvalues
(a)μ = aμ ∈ C, to be

Pa(x) ≡ det(x1 − A) =
M∏

μ=1

(x − aμ), (1.18)

such that Pa(x) is a polynomial of degree M in the indeterminate x ∈ C.
Using the well known recursion formula for tridiagonal matrices (see, e.g., [17]), in [9] we

derived4

Pλ+ (λ+) = det(λ+1 − T+) =
M∏

μ=1

(λ+ − λ+,μ) (1.19a)

=
( t−z−

2

)M

〈 1/z∗ −t∗ |QM | z∗ t∗ 〉, (1.19b)

where λ+ ∈ C. We point out the obvious similarity between equations (1.13) and (1.19b),
which will become clearer later. The vertically propagating 2 × 2 transfer matrix

Q ≡

⎛
⎝2

t+z+ − λ+

t−z−
−1

1 0

⎞
⎠ =

(
2ζ+ −1

1 0

)
=

(
2 cos ϕ −1

1 0

)
(1.20)

has the eigenvalues ζ±1 with modulus one5, such that the nth power of Q reads

Qn =
1

sin ϕ

(
sin([n + 1]ϕ) − sin(nϕ)

sin(nϕ) − sin([n − 1]ϕ)

)
. (1.21)

Here and in the following, we express the horizontal and vertical eigenvalues (λ, ζ) through
the introduced angles (γ,ϕ) according to

λ = eγ , λ+ = cosh γ, λ− = sinh γ, (1.22a)

ζ = eiϕ, ζ+ = cos ϕ, ζ− = i sin ϕ. (1.22b)

Equation (1.20) is the point in the calculation where the famous Onsager dispersion relation

λ+ + t−z−ζ+ = t+z+ ⇔ cosh γ + t−z− cos ϕ = t+z+ (1.23)

between the eigenvalues λ and ζ enters the stage, which plays the key role in the exact solution
of the square lattice Ising model [2]. It relates the two ‘good’ variables λ and ζ for propagation
in ↔ (L) and � (M) direction, respectively. As pointed out by Baxter [5, chapter 15.10], a

4 The sign change in the definition w.r.t. (I.9) has no effect for even M.
5 ζ±1 were denoted q± in (I.42).
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parametrization of relation (1.23) using elliptic functions considerably simplifies the analysis.
This parametrization is introduced in the next chapter, and we return to the CPs in section 3.1.

2. Elliptic parametrization

The key idea behind the elliptic parametrization of the Onsager dispersion relation (1.23) is
(i) to substitute the coupling constants (z, t) through new constants (k, η), where k is
temperature-like and η encodes the coupling anisotropy, and (ii) to introduce a complex vari-
able u that simultaneously parametrizes the quantities ζ = ζ(u) and λ = λ(u) in such a way
that (1.23) is always fulfilled6. We recapitulate the parametrization of (1.23) through the
Jacobi elliptic functions sn(u, k), cn(u, k) and dn(u, k) [81–83], with elliptic modulus k, by
first defining the Jacobi amplitude

φ ≡ am(u, k) (2.1)

as the inverse function of the elliptic integral of the first kind

u = F(φ, k) ≡
∫ φ

0
(1 − k2 sin2 θ)−1/2dθ, (2.2)

for {φ, u, k} ∈ R. Consequently, the Jacobi elliptic functions are given by

sn(u, k) ≡ sin φ, cn(u, k) ≡ cos φ, dn(u, k) ≡ ∂φ

∂u
= ±

√
1 − k2 sin2 φ, (2.3)

and fulfill the sum of squares identities

sn2(u, k) + cn2(u, k) = k2 sn2(u, k) + dn2(u, k) = 1. (2.4)

As common, we suppress the modulus k if possible and write, e.g., sn u instead of sn(u, k). We
follow Glashier’s notation [83, (22.2.10)] and define all sixteen Jacobi elliptic functions

pq u ≡ pr u
qr u

=
1

qp u
, where p, q, r ∈ {s, c, d, n}, (2.5)

including the four trivial ones, ss u = cc u = dd u = nn u = 1.
The Jacobi elliptic functions are double periodic and meromorphic in the complex u-plane,

that is they are analytic up to simple poles. The common quarter-periodicity rectangle has the
corners

{us, uc, ud, un} ≡ {0, K, K + iK′, iK′}, (2.6)

see figure 2, where we utilized the graphical interpretation from [83, (22.4)] and associate the
denomination {s, c, d, n}with the four vertices of the quarter-periodicity rectangle. Eventually,
the quarter periods K and K′ are the complete elliptic integrals of the first kind,

K ≡ F
(π

2
, k
)

, K′ ≡ F
(π

2
, k′
)

, (2.7)

6 Imagine the simpler case of a circle x2 + y2 = r2 being trigonometrically parametrized, with x(u) = r cos u, y(u) =
r sin u and complex parameter u.
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Figure 2. Structure of the complex elliptic u-plane for M = 4, paramagnetic temperature
k = 0.95, and anisotropy η = 3

4ηiso. The eigenvalues λμ translate to the points uμ (red),
while the swap-transformed points ũμ (blue) represent the eigenvalues ζμ and lie point-
symmetric w.r.t. the point ηiso (green) from (2.15). The corners (2.6) of the quarter-
periodicity rectangle are shown in black. The additional eigenvalues λ−1

μ at positions
ǔμ ≡ uμ + iK′ (C.5) and the corresponding eigenvalues ζ−1

μ are shown in light colors.

cf (2.2), with complementary modulus k′ fulfilling k2 + k′2 = 1. This elliptic parametrization
will lead to substantial simplifications of the results from [9], as it firstly eliminates the sign
ambiguities of the square roots and secondly introduces certain functions of the parameter u
that substantially simplify the expressions.

2.1. Coupling constants parametrization

There are several possible ways to setup an elliptic parametrization of the Onsager disper-
sion relation (1.23): one could set k = k̂ ≡ z−/t− such that 0 � k̂ < 1 holds in the ordered
phase. This choice is usually used in the literature [7, 84]. However, we will argue that many
expressions become considerably simpler if we instead use the modulus

k ≡ t−
z−

, (2.8)

being the reciprocal of k̂. It obeys 0 � k < 1 in the disordered phase T > Tc and k > 1 in the
ordered phase T < Tc, similar to the reduced inverse temperature β/βc. Note that K becomes
complex for k > 1, and we can replace it with its real part, K 	→ R(K) = K + iK′, in the
complex analysis in order to keep an un-tilted quarter-periodicity rectangle.

The anisotropy parameter η can be introduced in several ways, too. We choose the definition

sn(2η) ≡ 1
it−

, (2.9)

8
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such that η is a purely imaginary point in the u-plane, with 0 � I(η) � K′/2. This leads to the
identities

t =
sn η dn η

i cn η
, t+ = i cs(2η), t− =

1
i

ns(2η), (2.10a)

z = k
sn η cn η

i dn η
, z+ =

i
k

ds(2η), z− =
1
ik

ns(2η). (2.10b)

For the dual couplings we find the corresponding expressions

t∗+ = − t+
t−

= cn(2η), t∗− =
1
t−

= i sn(2η), (2.11a)

z∗+ = − z+
z−

= dn(2η), z∗− =
1
z−

= ik sn(2η), (2.11b)

which implies that we can express t, z, t∗ and z∗ through the Jacobi amplitude (2.1),

t∗ = ei am (2η), t = −i tan

[
1
2

am(2η)

]
, (2.12a)

z = ei am (2η̃), z∗ = −i tan

[
1
2

am(2η̃)

]
, (2.12b)

where ũ denotes the swap transform (1.5) of a point u in the complex u-plane,

u 	→ ũ ≡ S(u) =
1
2

iK′ − u. (2.13)

From (2.2) and the t∗ identity (2.12a) we conclude that

2η = F(−i log t∗, k) = iK′ − F(−i log z, k). (2.14)

Note that in the isotropic case t∗ = z the point η lies symmetrically at

ηiso ≡ 1
4

iK′ = η̃iso, (2.15)

as S(ηiso) = ηiso. Therefore, the transformation (2.13) is a point reflection of the complex u-
plane at the point ηiso.

2.2. Eigenvalues parametrization

The relation of the eigenvalues λ and ζ (1.22) to u is also ambiguous. We follow the literature
[5, 7, 84] and define

1√
λζ±1

= e−
γ±iϕ

2 ≡
√

k sn(u ∓ η), (2.16)

such that

λ = eγ =
1

k sn(u + η)sn(u − η)
, ζ = eiϕ =

sn(u + η)
sn(u − η)

. (2.17)

The real and positive eigenvalues λμ correspond to values uμ on the real axis (for λμ > 1) as
well as on the line I(uμ) = iK′ (for λμ < 1). With this definition of λ, the constants up and λp

9
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from (2.6) and (A.1) fulfill λp = λ(up) and represent the upper and lower bound of the spectrum
of T and T−1 both above and below Tc. In appendix A we give a subset of the large number of
identities which can be derived using elliptic functions identities [81, 83]. Especially, we see
from (A.11) that the eigenvalues λ and ζ are exchanged under the transformation S according
to S[(λ, ζ)] = (ζ,λ).

Besides the corners of the quarter-periodicity rectangle (2.6), and the eigenvalues uμ, where
the CP (1.19) is zero, there are four other important points in the complex u-plane, namely the
positions of the simple poles and simple zeroes of λ(u) and ζ(u). Because the Jacobi sn u has
a simple zero at u = 0 and a simple pole at u = iK′, we find

uλ→∞,ζ→∞ = +η, uλ→0,ζ→∞ = +iK′ − η, (2.18a)

uλ→∞,ζ→0 = −η, uλ→0,ζ→0 = −iK′ + η. (2.18b)

These four points will be used later in the analysis of the complex structure of the relevant
integrals.

While K and K′ are the quarter periods of the Jacobi elliptic functions (2.3), all relevant
parameters and variables of the considered system, such as t, z,λ, ζ, can be written as mero-
morphic functions of 2u and 2η, see (2.12), (A.16), and (A.17). They are therefore double
periodic functions with quarter periods K/2 and K′/2 and half periods K and K′, and can be
depicted on the periodicity rectangle going from −K − iK′ to K + iK′, as shown in figure 2.

Finally, we remark that the CP zeroes show up in pairs (uμ,−ūμ), lying symmetrically with
respect to the imaginary axis, see figure 2. The reason for this symmetry is the meromorphicity
of the Jacobi elliptic functions, and consequently of λ(u) and ζ(u) from (2.17), in combination
with the fact that both λ and ζ are real for purely imaginary u. Therefore, λ and ζ transform
according to f (u) = f (−u) under conjugation. This symmetry is sometimes called para-even
in the literature, and −ū is denoted the para-conjugate of u [85, 6.29]. We could restore the
usual symmetry along the real axis f (u) = f (u), valid for meromorphic functions f (u) that
are real for real u, by rotating the complex plane by 90◦ using the Jacobi imaginary transform
[83, section 22.6(iv)]. This would however break the simple relation to the Jacobi amplitude
introduced in the next section. Alternatively, one could also replace u by iu in all expressions
as done in [5], but we will keep the present definition.

2.3. The Jacobi amplitudes ω and θ

It turns out in the next chapter that the Jacobi amplitude ω of 2u, as well as its imaginary swap
transform θ,

ω ≡ am(2u), θ ≡ i am(2ũ), (2.19)

with ũ from (2.13), will play quite important roles in the following7. They satisfy the identities

sn(2u) = sin ω, sn(2ũ) =
1
i

sinh θ = −1
k

ns(2u), (2.20a)

cn(2u) = cos ω, cn(2ũ) = cosh θ =
i
k

ds(2u), (2.20b)

dn(2u) = − coth θ = i cs(2ũ), dn(2ũ) = i cot ω = i cs(2u), (2.20c)

7 Note that Mathematica [86] can correctly handle the complex Jacobi amplitude only since version 12.1.

10
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as well as

tan

(
1
2
ω

)
=

sn u dn u
cn u

, e±θ =
(

k
sn u cn u

i dn u

)±1
, (2.21)

and fulfill the symmetric relation

ik sin ω sinh θ = 1. (2.22)

In summary, we have defined a double periodic complex manifold with the topology of a
torus as originally proposed by Baxter [5], to describe the two-dimensional Ising model on
the rectangle. This complex manifold will be called the u-plane and is sketched in figure 2.
The aspect ratio of the torus is temperature-dependent and is encoded in the elliptic modulus
k, while the coupling anisotropy is described by a point η on the torus. The M eigenvalues λμ

and ζμ correspond to points uμ and ũμ, respectively, on the torus. With this set of definitions,
we now can return to the CP from section 1.3.

3. Results

3.1. Characteristic polynomials

The CP Pλ+ (λ+) of the matrix T+ was defined in chapter 6 of [9]. It was used to characterize
the spectrum of T+ and to derive the finite-size scaling limit in [11]. For the transfer matrix
T+ with eigenvalues λ+,μ, equation (1.19b) can be simplified to

Pλ+ (λ+) = (1 − t∗2)
( t−z−

2

)M
[

cos(Mϕ) +
t+z− cos ϕ− t−z+

z− sin ϕ
sin(Mϕ)

]
, (3.1)

cf (I.45), where the angle8 ϕ is given by the Onsager dispersion relation (1.23). Using the ellip-
tic parametrization from the last section, and especially the Jacobi amplitude ω from (2.19),
we find, using (2.10) and (A.17), the surprisingly simple expressions

Pλ+ (λ+) = (1 − t∗2)
( t−z−

2

)M

[cos(Mϕ) − cs(2u) sin(Mϕ)] (3.2a)

= (1 − t∗2)
( t−z−

2

)M sin(Mϕ− ω)
sin(−ω)

, (3.2b)

as cs(2u) = cotω by (2.20c). Here, λ+ and ϕ depend on u according to (2.17), (A.11a), or
(A.16) and (A.17). As a consequence, the eigenvalues λ+,μ of T+ fulfill the simple condition
Mϕμ = ωμ. These simplifications demonstrate the power of the elliptic parametrization in the
chosen form, and the introduced Jacobi amplitude ω (2.19) turns out to be a phase shift in
ϕ-space, describing the open BCs in � direction.

Due to the linear CP identity

Pca+b(cx + b) =
M∏

μ=1

(cx + b − caμ − b) = cMPa(x), (3.3)

8 For the correct determination of the sign of ϕ without elliptic parametrization, see chapter 6 in [9].
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we can rewrite (3.2b) in terms of the new variable

χ ≡ 2(ζ+ + 1) = 4 cos2

(
1
2
ϕ

)
=

2
t−z−

(t+z+ + t−z− − λ+), (3.4)

eliminating the factor (t−z−/2)M, and find the corresponding CP

Pχ(χ) = (1 − t∗2)
sin(Mϕ− ω)

sin(−ω)
. (3.5)

Comparing (3.4) and (1.7a), we see that Pχ(χ) is the CP of the matrix C, which therefore has
the eigenvalues χμ.

3.2. Common eigenvectors

With the help of the introduced elliptic parametrization, the matrix x of orthonormal common
eigenvectors9 of T±, T and C, defined in (1.17) and originally given in (I.50), can be consid-
erably simplified, too. Using the projectors S± from (1.14), we can split x into an even part x+

and an odd part x− according to x± ≡ xS±, such that x = x+ + x− and x± = ±x±S, i.e., x+

(x−) contains the symmetric (skew-symmetric) parts of the eigenvectors. We get

x+ =
1√
2

D
1
2

[
e−

1
2

(
θμ−ψμ+

iπ
2

)
cos

(
m
2 ϕμ

)
cos

(
1
2ϕμ

) ]M

μ=1, m odd

, (3.6a)

x− =
1√
2

D
1
2

[
e+

1
2

(
θμ−ψμ+

iπ
2

)
sin

(
m
2 ϕμ

)
sin

(
1
2ϕμ

) ]M

μ=1, m odd

, (3.6b)

where m runs over the odd integers between −M and M. The angle ψ is defined through

e
1
2 (θ−ψ) ≡

√
iz

cn u
cn η

, (3.7)

with θ from (2.19), cf (2.21) and (A.12c), and fulfills

e−ψ = −iζ∗ = − tan

(
1
2
ϕ

)
, (3.8)

see also (D.3b). Using the CP Pλ+ (λ+) from (3.2), or alternatively Pχ(χ) from (3.5), the diago-
nal normalization matrix D can be substantially simplified from the expression given in (I.50),
with the result

(D)μμ = − t∗

z−

( t−z−
2

)M−1 1
P′
λ+

(λ+,μ)
(3.9a)

=
t∗

z−

1
P′
χ(χμ)

. (3.9b)

Here we used a relation between the normalization of the eigenvectors of a tridiagonal matrix
and the derivative P′ of its CP [87, chapter 7.9]. With these simplifications and the diagonal
eigenvalue matrix (Λ)μμ = λμ, we can rewrite (1.16) as

M = ΛL/2 x+ +Λ−L/2 x−, (3.10)

9 The eigenvectors �xμ are row vectors in x, i.e., �xμ = (x)μ.

12
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and the partition function (1.13) becomes Z = Z0 det M. Inserting the definition of x± into
(3.10), we get the result

Ŵ ≡ 1√
2

[
e

1
2

(
Lγμ−θμ+ψμ− iπ

2

)
cos

(
m
2 ϕμ

)
cos

(
1
2ϕμ

)
+ e−

1
2

(
Lγμ−θμ+ψμ− iπ

2

)
sin

(
m
2 ϕμ

)
sin

(
1
2ϕμ

) ]M

μ=1, m odd

, (3.11)

such that (1.15) becomes M
M = Ŵ
DŴ.
As shown in [9], the matrix Ŵ is a generalized Vandermonde matrix, such that a change

of the base leaves the value of the determinant invariant. Hence we can transform from the
trigonometric base to the simpler power base and get the corresponding matrix

W ≡
[

eH(m)(Lγμ−θμ+ψμ) χ
1
2 (|m|−1)
μ

]M

μ=1, m odd

, (3.12)

with the Heaviside step function H, where we have used the variable χ introduced in (3.4), and
factored out the exponential for m < 0 and moved it to the diagonal matrix

F ≡
[
δμν e−

1
2 (Lγμ−θμ+ψμ)

]M

μ,ν=1
, (3.13)

such that det Ŵ = det F det W. As det F = t−
L
2 by (3.7), (D.1a) and (D.3b), the resulting

squared partition function now reads

Z2 = Z2
0 t−L det(W
DW). (3.14)

Up to here, the calculation was similar to [9], with one major difference: the occurrence of
the terms 1/Pχ

′(χμ) in the diagonal matrix D (3.9b) will enable us to use a relation between
CPs, their associated Vandermonde matrices and certain Hankel matrices.

3.3. Hankelization

The next significant simplification is obtained by utilizing a generalization of the well known
relation of the CP Px(x) and the related Vandermonde matrix

Vx ≡
[
x j
μ

]M M−1

μ=1, j=0
(3.15)

to a certain Hankel matrix Hx [88, 89], also known as ‘Vandermonde factorization of a Hankel
matrix’. Let

Px(x) =
M∏

μ=1

(x − xμ) =
M∑

n=0

bnxn, (3.16)

where bM = 1 by construction, as well as

Dx ≡
[

δμν
P′

x(xμ)

]M

μ,ν=1

, H−1
x ≡

[
bi+ j+1

]M−1

i, j=0
, (3.17)

then

V

x DxVx = Hx, det2 Vx det Dx = 1. (3.18)
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While H−1
x is upper anti-triangular, Hx itself is lower anti-triangular, e.g. for M = 4,

H−1
x =

⎛
⎜⎜⎝

b1 b2 b3 1
b2 b3 1 0
b3 1 0 0
1 0 0 0

⎞
⎟⎟⎠ ⇒ Hx =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 b̃5

0 1 b̃5 b̃6

1 b̃5 b̃6 b̃7

⎞
⎟⎟⎠ , (3.19)

with10 b̃n =
∑

μ xn−1
μ /P′

x(xμ).
A direct computation (see appendix B) shows that a similar identity holds for the generalized

Vandermonde matrix W (3.12) in conjunction with D from (3.9b), namely

W
DW =

[
0 SĤ1

Ĥ1S Ĥ2

]
(3.20)

with the M/2 × M/2 Hankel matrices

ĤΔ ≡
[

M∑
μ=1

t∗

z−

eΔ(Lγμ−θμ+ψμ)

P′
χ(χμ)

χi+ j
μ

]M
2 −1

i, j=0

. (3.21)

Note that (3.20) is block lower anti-triangular similar to Hx in (3.19), as Ĥ0 = 0. The important
consequence of this result is the generalized determinant identity

det(W
DW) = det2 W det D = det2 Ĥ1, (3.22)

which leads to the surprising result that the Ising partition function can be mapped to a Hankel
determinant. Inserting the simplifications from above, and defining H ≡ 2iz−Ĥ1, we can draw
the square root in (3.14) and get the compact exact expression for the partition function of the
square lattice Ising model on the rectangle,

Z = Z1 det H, Z1 ≡ t−
L
2 z

M
2

(
− 2

z−

) LM
2

, (3.23a)

where the M/2 × M/2 Hankel matrix H =
[
hi+ j+1

]M/2−1

i, j=0
has the matrix elements

hn ≡
M∑

μ=1

2it∗ eLγμ−θμ+ψμ

P′
χ(χμ)

χn−1
μ , (3.23b)

with n = 1, . . . , M − 1. This expression represents a significant simplification with respect to
the result from [9]. However, in the next section we will proceed further by rewriting the sum
over μ as a complex contour integral, inserting the known formula for Pχ(χ) from (3.5).

3.4. Contour integral representation

The matrix elements hn of the Hankel matrix H (3.23b) can be evaluated using complex con-
tour integration, and the CP Pχ(χ) plays a crucial role in this calculation. In principle we use

10 As a side note, both b̃n = s(n−M)(x) and bn = (−1)ns1M−n (x) are Schur polynomials.
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Cauchy’s residual theorem and calculate the sum over μ in hn as a contour integral over a
suitable contour C around the points uμ in the complex u-plane,

hn =
1

2πi

∮
C

2it∗ eLγ−θ+ψ

P′
χ(χ)

χn−1 ∂ log Pχ(χ)
∂χ

∂χ

∂u
du (3.24a)

=
1

2πi

∮
C

2it∗ eLγ−θ+ψ

Pχ(χ)
χn−1 ∂χ

∂u
du, (3.24b)

where, most importantly, the derivative P′
χ(χ) cancels out.

While the CP Pχ(χ) has two sets of zeroes uμ and ǔμ corresponding to the eigenvalues λμ

and λ−1
μ , cf (C.5), the contour C only encloses the zeroes uμ, see figure 2. We can easily remove

the additional zeroes ǔμ by employing a factorization analog to (C.2),

Pχ(χ) =
1 − t∗2

2i sin ω

[
1 − ei(Mϕ−ω)

] [
1 + e−i(Mϕ−ω)

]
. (3.25)

As the first (second) bracket vanishes at uμ (ǔμ), we can drop the additional zeroes ǔμ by
replacing the last term with its value at the zeroes uμ, where Mϕ− ω = 0, to get

hn =
1

2πi

∮
C

eLγ−θ+ψ

1 − ei(Mϕ−ω)
t− sin ω χn−1 ∂χ

∂u
du. (3.26)

In the next step we use (3.8), (A.19b) and (A.20) to eliminate ψ and sinω. Furthermore, we
can move the zeroes of the numerator to the line I(u) = 1

2 K′ without changing the integral by
adding one to the numerator, such that the numerator 1 − eLγ−θ = S[1 − ei(Mϕ−ω)] is precisely
the swap transform (1.5) of the denominator, with the result

hn =
1

2πi

∮
C

1 − eLγ−θ

1 − ei(Mϕ−ω)
χn ∂γ

∂u
du. (3.27)

Due to the CP property (3.3) and the Vandermonde property of (3.11), the determinant of
(3.26) is invariant under a translation χ 	→ χ+ c. This freedom is used in (3.27), as χ was
defined in (3.4) in order to obey χ = 2 cot( 1

2ϕ) sin ϕ.
The resulting integrand is shown in figure 3. At the four points {u0,∞, u∞,∞, u∞,0, u0,0} (2.18)

(black dots), the pole orders11 {n + 1 − M, n + 1 + L − M, n + 1 + L, n + 1} are positive for
certain n ∈ {1, . . . , M − 1}. As the additional zeroes at ǔμ are removed, we can deform and
simplify the integration contour C to the four straight lines (green), which pairwise enclose
the CP zeroes (yellow), or equivalently, the four points (2.18) (black dots). Due to the double
periodic complex plane, the integration paths at R(u) = ±K add up to zero. Note that in the
ordered phase below Tc the smallest real zero u1 reaches ±K and becomes complex, such
that the integration contour has to be modified as indicated. In figure 4 the complex torus is
depicted.

Summarizing the last steps, we have found an extremely compact representation for the par-
tition function of the anisotropic square lattice Ising model on the rectangle as the determinant

of a Hankel matrix H =
[
hi+ j+1

]M/2−1

i, j=0
,

Z = Z1 det H, hn =
1

2πi

∮
C

1 − eLγ−θ

1 − ei(Mϕ−ω)
χn ∂γ

∂u
du, (3.28)

11 n-fold poles (zeroes) have pole order n (−n).
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Figure 3. Complex structure of the integrand (3.27) for M = 6, L = 5, n = 1 and
anisotropy η = 0.9ηiso, above (k = 0.6, left) and below (k−1 = 0.6, right) the critical
point. Yellow: M zeroes of the denominator, i.e., eigenvalues λμ of T, and their para-
conjugate. Pink: L zeroes of the numerator and their para-conjugate. Black: multiple
zeroes/poles from (2.18a), with pole order {−4, 1, 7, 2} from top to bottom in this case.
Green: possible integration paths. The contour lines are at constant modulus, with a
dashed gray line at 1, and light (dark) gray lines at powers of 2 below (above) 1. The
complex phase is color coded, being {white, red, black, blue} at {1, i,−1,−i}, such
that white turns to red (blue) at zeroes (poles) under ccw. rotation. Note that K becomes
complex for k > 1.

Figure 4. Complex structure of the integrand (3.27) from figure 3 (left), mapped onto
a torus. These pictures might (or might not) be helpful to better understand the setup.
Left: the upper circle is the real axis, with the odd zeroes of the denominator (yellow),
the outer circle has I(u) = −K′/2, with the even zeroes of the numerator (pink), and
the black point in front is at −η. The remaining zeroes are inside and at the bottom.
Right: the top circle is the imaginary axis R(u) = 0, the front ring is the real axis. This
representation corresponds to the original directions of the Ising model: the � direction
goes along the 2M denominator zeroes (yellow) from front to back, the ↔ direction goes
along the 2L numerator zeroes (pink) from left to right, see also table 1.
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with constant Z1 from (3.23a). The hn are Fourier coefficients (in the χ base) of a so-called
symbol function with Fisher–Hartwig type singularities [90, 91] (see below), which is given
by the ratio of two CPs. These polynomials are associated with the two directions as well as
the corresponding BCs. As the considered system is invariant under an exchange of the two
directions, the two CPs are directly related by the symmetry (1.5) of the underlying square
lattice Ising model.

Note that the L zeroes v� of the numerator 1 − eLγ−θ correspond to the L eigenvalues of
a hypothetical L × L transfer matrix T̃ propagating in vertical direction, which would have
been used in an alternative rotated setup. Only in the isotropic square system, where L = M
and K↔ = K�, these zeroes coincide with the swap-transformed zeroes, v� = S(uμ) = ũμ.
Unfortunately, we were not able to simplify the integral (3.28) in this symmetric case.

3.5. From Hankel to Toeplitz

The Hankel matrix (3.27) can be further transformed using the identities derived by Basor and
Ehrhardt [92]. Using theorem 2.3, the symbols a and b, as well as the notation TM(a), HM(a)
and HM[b] from [92], the determinant of H, with elements (3.27), corresponds to the Hankel
moment determinant det HM[b] and can be transformed to the symmetric Toeplitz plus Hankel
determinant det(TM(a) + HM(a)), with the symbol

a(ζ) = e−ψ b(ζ+) =
1 − eLγ−θ

1 − ei(Mϕ−ω)

∂γ

i∂ϕ
, (3.29)

and with the Fourier components [92, equation (3)]

an = a−n =
1

2π

∮
C

a(eiϕ) e−inϕ ∂ϕ

∂u
du (3.30a)

=
1

2πi

∮
C

1 − eLγ−θ

1 − ei(Mϕ−ω)
ζ−n ∂γ

∂u
du. (3.30b)

Note that (3.29) transforms to its reciprocal, S[a(ζ)] = 1/a(ζ), under exchange of the two
directions. The advantage of this representation is the occurrence of the simpler Fourier base
ζ−n, which eliminates the poles in the integrand stemming from ζ →∞ at the points u∞,∞ = η
and u0,∞ = iK′ − η, provided L < M (as n � 0). We can therefore simplify the integration
contour to a curve around the two remaining poles at u∞,0 = −η and u0,0 = −iK′ + η. How-
ever, for arbitrary L and M the pole order of the integrand (3.30b) at the four points (2.18) is
{−n + 2 − M,−n + L − M, n + L, n} and can be positive in all four cases, such that all four
points must be enclosed by the contour.

Finally, from chapter 3 of [92] we borrow a clever transformation from the symmetric
Toeplitz plus Hankel representation to a skew-symmetric M × M Toeplitz matrix T̂, with the
result

T̂ =

[
M∑

μ=1

2it∗ eLγμ−θμ

P′
χ(χμ) sin ϕμ

cot

(
1
2
ϕμ

)
sin
[
(i − j)ϕμ

]]M−1

i, j=0

(3.31a)

=

[
1
πi

∮
C

1 − eLγ−θ

1 − ei(Mϕ−ω)
cot

(
1
2
ϕ

)
sin[(i − j)ϕ]

∂γ

∂u
du

]M−1

i, j=0

, (3.31b)

such that the Pfaffian of T̂ fulfills Pf T̂ = det H, and therefore

Z = Z1 Pf T̂. (3.31c)
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As before, the integration contour C can be freely deformed as long as it enclosed all zeroes
uμ or, alternatively, the four points (2.18).

4. Discussion

In this work, we showed that the partition function of the anisotropic square lattice Ising model
on the L × M rectangle with open BCs in both directions is given by the determinant of an
M/2 × M/2 Hankel matrix H, which equivalently can be written as the Pfaffian of a skew-
symmetric M × M Toeplitz matrix T̂. The M − 1 independent matrix elements of H or T̂ are
Fourier coefficients of a symbol function (3.29), which is given by the ratio of two CPs. These
polynomials are associated to the two directions (↔, �) of the system, encode the respective
BCs, and are directly related through the symmetry of the square lattice Ising model under
exchange of the two directions.

In the framework of the square lattice Ising model, Toeplitz matrices and determinants are
well known in the context of bulk spatial correlation functions 〈σ0,0σ�,m〉 [4, 90, 93], eventually
leading to the spontaneous magnetization for �2 + m2 →∞. Surprisingly, they now also appear
in the exact expressions for the partition function Z of finite systems.

The considered anisotropic Ising model with open BCs in both directions is invariant under
exchange of the two directions ↔ and �, such that both the system dimensions and the cou-

pling constants are exchanged according to L
S←→M and K↔ S←→K�, see table 1. This swap

transformation S (1.5) leads to the mapping of z and t to their respective duals, (z, t)
S	→(t∗, z∗),

as well as to the exchange of the eigenvalues and angles according to λ
S←→ ζ, γ

S←→ iϕ and

θ
S←→ iω. In the complex u-plane, it corresponds to a point reflection (u, η)

S	→(ũ, η̃) of the com-
plex torus at the point ηiso = 1

4 iK′ from (2.15). The elliptic modulus k, however, is invariant
under this transformation. This symmetry must not be confused with the related duality trans-
formation D : (z, t∗) 	→ D[(z, t∗)] = (t, z∗) of the bulk system, which maps a low-temperature
system with spins σ�,m at k > 1 to a high-temperature system with the plaquette spins σ̃�,m at
k 	→ k̃ = k−1 < 1, see figure 1. Note that in systems with boundaries, this transform is known
to change the BCs, e.g., from open to fixed.

Table 1. Overview over the quantities used in this work. The transformation S (1.5)
maps between the two directions of the model. The right columns show the relation of
our notation to the work of Baxter [7], where the transfer matrix propagated vertically.
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During the present calculation, it was tried to find a representation of the partition function
Z that is formally symmetric under the exchange of the two directions, mediated by the trans-
formation S. While the symbol function a(ζ) from (3.29) already fulfills S[a(ζ)] = 1/a(ζ),

the transformation S exchanges the system dimensions L
S←→M and therefore changes the

dimensions of the involved matrices, such that, e.g., a representation using (M + L) × (M + L)
dimensional matrices might be necessary for a unified description.

The obtained results might possibly be rewritten using elliptic product identities, as done by
Baxter [7] in the thermodynamic limit. The ultimate goal would be to use elliptic determinant
evaluations as done successfully by Iorgov and Lisovyy [84], which might lead to a closed
product representation of the partition function.

We expect that our results can be extended to other BCs by using the corresponding CPs,
these generalizations are left for future work.

From the Toeplitz determinant representation of the partition function, it is rather straight-
forward to derive the (anisotropic) scaling limit L, M →∞, T → Tc at fixed scaling variables
x� ≡ (T/Tc − 1)(M/ξ

�
0)1/ν and ρ ≡ (L/ξ↔0 )/(M/ξ

�
0) using Szegő’s theorem [93–95]. This task

will be addressed in a forthcoming work.
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Appendix A. Useful elliptic identities

In this appendix we will list identities arising from the elliptic parametrization. We also sim-
plify expressions given in chapter 6 of [9]. Following McCoy and Wu [16] (who usedα±1

1 ,α±1
2 )

and Iorgov and Lisovyy [84] (who used α±1, β±1), we introduce abbreviations for products and
ratios of z and t, however we again utilize Glashier’s notation (2.6) and define the constants

λn ≡ tz, λs ≡
1
tz

, λc ≡
t
z

, λd ≡ z
t
, (A.1)

with λnλs = λcλd = 1. This leads to the identities

sn2 η = −λnk−1, cn2 η =
λnλn,−

tt−
= 1 + λnk−1, dn2 η =

λnλn,−
zz−

= 1 + λnk. (A.2)

Furthermore, We list relations to the primary reduced couplings Kδ from (1.1),

t = exp(−2K�), t+ = cosh(2K�), t− = − sinh(2K�), (A.3a)

z = tanh K↔, z+ = coth(2K↔), z− = −csch(2K↔), (A.3b)
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whereas for the dual couplings z∗, t∗ the directions ↔ and � are to be exchanged,

z∗ = exp(−2K↔), z∗+ = cosh(2K↔), z∗− = − sinh(2K↔), (A.3c)

t∗ = tanh K�, t∗+ = coth(2K�), t∗− = −csch(2K�). (A.3d)

Defining the dual primary reduced couplings K̃δ via

exp(−2K̃δ) = tanh Kδ , (A.4)

we conclude from (2.12) that the following simple relations hold between K̃δ and η,

2iK̃� = am(2η), 2iK̃↔ = am(2η̃), (A.5)

such that the Jacobi amplitude (2.1) represents a direct connection between the physical
reduced couplings Kδ and the parameter η, and (2.14) can be written using the elliptic integral
of the first kind, cf (2.2),

2η = F(2iK̃�, k) = iK′ − F(2iK̃↔, k). (A.6)

We now turn to the eigenvalues λ and ζ. Defining the abbreviation

Q(u, η) ≡
√
λn − λ =

√
(k sn2 η)2 − 1

k sn2 u − k sn2 η
, (A.7)

we can express the four roots from chapter 6 of [9] as meromorphic functions of u, eliminating
the ambiguous signs of the square roots,√

λn − λ = Q(u, η)
nn u
nn η

,
√
λs − λ = Q(u, η)

sn u
sn η

, (A.8a)

√
λc − λ = Q(u, η)

cn u
cn η

,
√
λd − λ = Q(u, η)

dn u
dnη

. (A.8b)

Note that we have used the trivial elliptic function nn u ≡ 1 in order to illustrate the systematics.
Using (2.13) we can derive analog expressions for ζ ,√

ζn − ζ = Q(ũ, η̃)
nn ũ
nn η̃

,
√
ζs − ζ = Q(ũ, η̃)

sn ũ
sn η̃

, (A.9a)

√
ζc − ζ = Q(ũ, η̃)

cn ũ
cn η̃

,
√
ζd − ζ = Q(ũ, η̃)

dn ũ
dn η̃

, (A.9b)

where we defined

ζn ≡ z∗t∗, ζs ≡
1

z∗t∗
, ζc ≡

z∗

t∗
, ζd ≡ t∗

z∗
, (A.10)

in analogy to (A.1). From (A.8a) and (A.9a) we further derive

λ =
1 − k2 sn2 u sn2 η

k(sn2 u − sn2 η)
, ζ =

1 − k2 sn2 ũ sn2η̃

k(sn2 ũ − sn2 η̃)
, (A.11a)

which can be expressed using (1.2),

λ∗ = − (k sn2 u)∗

(k sn2 η)∗
, ζ∗ = − (k sn2 ũ)∗

(k sn2 η̃)∗
. (A.11b)
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Inserting the elliptic expressions (A.8) into (I.46) we find

sin
ϕ

2
= −

√
λc − λ

√
λd − λ

2
√
λt−z−

= − Q2(u, η)
2
√
λt−z−

cn u
cn η

dn u
dn η

, (A.12a)

cos
ϕ

2
=

√
λn − λ

√
λs − λ

2i
√
λt−z−

=
Q2(u, η)

2i
√
λt−z−

nn u
nn η

sn u
sn η

, (A.12b)

tan
ϕ

2
=

1
i

√
λc − λ

√
λd − λ√

λn − λ
√
λs − λ

=
1
i

nn η
nn u

sn η
sn u

cn u
cnη

dn u
dn η

, (A.12c)

while (I.47) at the eigenvalues λμ become

± sin
Mϕμ

2
=

√
t

√
λs − λμ

√
λd − λμ

2
√
λμt−λμ,−

=

√
t

2
Q2(uμ, η)√
λμt−λμ,−

sn uμ

sn η
dn uμ

dn η
, (A.13a)

± cos
Mϕμ

2
=

1√
t

√
λn − λμ

√
λc − λμ

2i
√
λμt−λμ,−

=
1

2i
√

t
Q2(uμ, η)√
λμt−λμ,−

nn uμ

nn η
cn uμ

cn η
, (A.13b)

tan
Mϕμ

2
= it

√
λs − λμ

√
λd − λμ√

λn − λμ

√
λc − λμ

=
sn uμ dn uμ

nn uμ cn uμ
. (A.13c)

We additionally list the identities

t−z−i sin ϕ = − 1
2λ

√
λn − λ

√
λs − λ

√
λc − λ

√
λd − λ (A.14a)

=
√
λs,+ − λ+

√
λd,+ − λ+ (A.14b)

= −Q4(u, η)
2λ

nn u
nn η

sn u
sn η

cn u
cn η

dn u
dn η

, (A.14c)

as well as√
2t−z− i sin

ϕ

2
=
√
λd,+ − λ+,

√
2t−z− cos

ϕ

2
=
√
λs,+ − λ+. (A.14d)

Using the addition theorem [81, (2.4.22)]

k sn u sn v = k
cn(u − v) − cn(u + v)
dn(u − v) + dn(u + v)

=
1
k

dn(u − v) − dn(u + v)
cn(u − v) + cn(u + v)

(A.15)

we derive the important identities

λ = eγ = −k
cn(2u) + cn(2η)
dn(2u) − dn(2η)

= −1
k

dn(2u) + dn(2η)
cn(2u) − cn(2η)

, (A.16a)

λ+ = cosh γ = −k
cn(2u)dn(2u) + cn(2η)dn(2η)

dn2(2u) − dn2(2η)
, (A.16b)

λ− = sinh γ = −k
cn(2u)dn(2η) + cn(2η)dn(2u)

dn2(2u) − dn2(2η)
, (A.16c)

and, by the swap transformation (2.13),
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ζ = eiϕ = −ds(2u) + ds(2η)
cs(2u) − cs(2η)

= − cs(2u) + cs(2η)
ds(2u) − ds(2η)

, (A.17a)

ζ+ = cos ϕ = −ds(2u)cs(2u) + ds(2η)cs(2η)
cs2(2u) − cs2(2η)

, (A.17b)

ζ− = i sin ϕ = −ds(2u)cs(2η) + ds(2η)cs(2u)
cs2(2u) − cs2(2η)

, (A.17c)

which express the eigenvalues λ and ζ as functions of 2u.
We now turn to derivatives. From (2.16) and

∂

∂u
log sn(u ± η) =

cn(u ± η)dn(u ± η)
sn(u ± η)

= kλ−[sn(2u) ∓ sn(2η)] (A.18)

we see that the derivatives of ϕ and γ w.r.t. u become

1
2
∂ϕ

∂u
= ik sn(2η)λ− =

1
z−

sinh γ = − sin ϕ

sin ω
, (A.19a)

1
2
∂γ

∂u
= −k sn(2u)λ− = t− sin ϕ = i

sinh γ

sinh θ
, (A.19b)

from which other identities, such as

∂γ

∂ϕ
= −t− sin ω = t−z−

sin ϕ

sinh γ
,

∂χ

∂u
=

χ2 − 4
sin ω

, (A.20)

are easily calculated.
In the ordered phase where k > 1, the angle ϕ1 becomes complex [9, chapter 6], leading to

a complex value of u1. The correct mapping from the eigenvalues λμ to the elliptic variable uμ,
respecting this behavior and being valid at arbitrary temperatures, can be expressed using the
inverse Jacobi dn, see (A.8),

uμ = dn(−1)

[
dn η

√
λd − λμ√
λn − λμ

]
. (A.21)

While it is tempting to utilize the simpler relation (2.19)

uμ =
1
2

F(Mϕμ, k), (A.22)

it will not give correct results for even μ and below Tc, because the elliptic integral F does not
have the correct branch cut positions for these cases.

Appendix B. A block Hankel matrix identity

Let Vg,x be the generalized 1 × B block Vandermonde matrix with M × N blocks

Vg,x ≡
[
gb
μ xn

μ

]B−1 M N−1

b=0; μ=1, n=0
=
[
Gb Vx

]B−1

b=0
, (B.1)
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with

Vx ≡
[
xn
μ

]M N−1

μ=1, n=0
, G ≡

[
δμν gμ

]M

μ,ν=1
. (B.2)

As an example, for M = 4, B = 3 and N = 3 we have

(B.3)

Furthermore, let D be an arbitrary M × M diagonal matrix. Then, the B × B block Hankel
matrix with N × N blocks

Hg,x ≡
[

M∑
μ=1

dμga+b
μ xm+n

μ

]B−1 N−1

a,b=0; m,n=0

=
[
V


x D Ga+b Vx
]B−1

a,b=0
(B.4)

trivially fulfills the identity

Hg,x = V

g,xDVg,x. (B.5)

Note that the upper left block (Hg,x)0,0 = V

x D Vx is free of gμ and is therefore a usual

Vandermonde product in xμ. Consequently, if the matrix D is set to the diagonal matrix Dx

with the reciprocal first derivatives of the CP Px(x) from (3.17),

Dx ≡
[

δμν
P′

x(xμ)

]M

μ,ν=1

, (B.6)

and if additionally M � 2N, then (Hg,x)0,0 vanishes identically. For B = 2 and N = M/2, this
leads to equation (3.20).

Appendix C. More characteristic polynomials

In [11] we used the finite-size scaling limit of Pλ+ to locate the zeroes in the complex plane and
to perform the corresponding Cauchy integrals. We had to distinguish between even and odd
zeroes and defined an alternating counting polynomial from Pλ+ . Now we will demonstrate
that it is much easier to analyze the complex structure of the system by using the CP of the
transfer matrix T instead of T+. While it is possible but cumbersome to derive the CP of T,
with eigenvalues λμ,

Pλ(λ) ≡ det(λ1 − T) =
M∏

μ=1

(λ− λμ) (C.1)

from scratch analogously to (1.19a), cf [9], we instead proceed in a much simpler way and
derive it directly from (3.2): using (1.3), we first factorize the right-hand side of (1.19a),

Pλ+ (λ+) =
M∏

μ=1

(λ+ − λμ,+) =
M∏

μ=1

(λ− λμ)(λ−1 − λμ)
2(0 − λμ)

=
1

2Mt
Pλ(λ)Pλ(λ−1), (C.2)
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as λμ,+ = λ+.μ and, cf (I.35),

Pλ(0) = det(−T) = det T = t. (C.3)

Employing the trigonometric factorization identity

sin (Mϕ − ω)
sin(−ω)

=
sin

(
1
2 [Mϕ− ω]

)
sin

(
− 1

2ω
) cos

(
1
2 [Mϕ− ω]

)
cos

(
− 1

2ω
) (C.4)

as well as the identities

λ(ǔ)λ(u) = 1, ϕ(ǔ) = −ϕ(u), ω(ǔ) + ω(u) = π,

cot

[
1
2
ω(ǔ)

]
= tan

[
1
2
ω(u)

]
, (C.5)

with inversion transform u 	→ ǔ ≡ u + iK′, we see that Pλ(λ) and Pλ(λ−1) are given by the
remarkably simple formulas

Pλ(λ) = (1 − t∗)(−t−z−λ)
M
2

[
cos

(
1
2

Mϕ

)
− cot

(
1
2
ω

)
sin

(
1
2

Mϕ

)]
(C.6a)

= (1 − t∗)(−t−z−λ)
M
2

sin
(

1
2 [Mϕ− ω]

)
sin

(
− 1

2ω
) (C.6b)

= (1 − t∗)

(
− t−z−λ

ζ

)M
2 1 − ei(Mϕ−ω)

1 − e−iω
, (C.6c)

Pλ(λ−1) = (1 − t∗)
(
−t−z−λ

−1
)M

2

[
cos

(
1
2

Mϕ

)
+ tan

(
1
2
ω

)
sin

(
1
2

Mϕ

)]
(C.6d)

= (1 − t∗)
(
−t−z−λ

−1
)M

2
cos

(
1
2 [Mϕ− ω]

)
cos

(
− 1

2ω
) (C.6e)

= (1 − t∗)

(
− t−z−

λζ

)M
2 1 + ei(Mϕ−ω)

1 + e−iω
. (C.6f)

The additional factor (−λ)M/2 in Pλ(λ) follows from (C.3) in the known limits λ→ {0,∞},
see (2.18). Utilizing a factorization similar to (C.2), the CP of T− can also be derived,

Pλ− (λ−) =
M∏

μ=1

(λ− − λμ,−)

=

M∏
μ=1

(λ− λμ)(−λ−1 − λμ)
2(0 − λμ)

=
1

2Mt
Pλ(λ)Pλ(−λ−1). (C.7)
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Finally, from (3.25) and Liouville’s theorem [5, 15.3] we derived the CPs

Pζ(ζ) = (1 − t∗)
1 − ei(Mϕ−ω)

1 − e−iω

M∏
μ=1

sn(η + uμ)
sn(u + uμ)

, (C.8)

Pζ(ζ−1) = (1 − t∗)
1 + e−i(Mϕ−ω)

1 + eiω

M∏
μ=1

k sn(η + uμ)sn(u + uμ). (C.9)

Appendix D. Some product identities

Using the CPs (3.2), (C.6) and (C.7), we have the following identities (remember that M is
even): the determinants are given by

det T =

M∏
μ=1

λμ = Pλ(0) = t, (D.1a)

det T− =

M∏
μ=1

λμ,− = Pλ− (0) = (1 − t∗2)

(
iz−

1 − t∗2

)M

, (D.1b)

det T+ =
M∏

μ=1

λμ,+ = Pλ+ (0) = (1 − t∗2)
( t−z−

2

)M sin(Mϕλ+→0 − ωλ+→0)

sin(−ωλ+→0)
, (D.1c)

with (2.18) and

uλ+→0 = sn(−1)

√
(iλn)∗

ik
, uλ−→0 = K +

1
2

iK′. (D.2)

Furthermore, we have the following product identities for the Jacobi elliptic functions

M∏
μ=1

√
−tz

sn uμ

sn η
=
√

1 − Mλs,−z−1
− , (D.3a)

M∏
μ=1

√
iz

cn uμ

cn η
= 1, (D.3b)

M∏
μ=1

√
it

dn uμ

dn η
=
√

1 + Mλd,−z−1
− . (D.3c)

For products over λμ we find the identities

M∏
μ=1

(λn − λμ) = Pλ(λn) = (1 − t∗)(t−z−λn)
M
2 , (D.4a)

M∏
μ=1

(λc − λμ) = Pλ(λc) = (1 − t∗)(−t−z−λc)
M
2 , (D.4b)
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M∏
μ=1

(λs − λμ) = Pλ(λs) = (1 − t∗)(t−z−λs)
M
2
(
1 − Mλs ,−z−1

−
)

, (D.4c)

M∏
μ=1

(λd − λμ) = Pλ(λd) = (1 − t∗)(−t−z−λd)
M
2
(
1 + Mλd,−z−1

−
)

, (D.4d)

and for products over ζμ we derive

M∏
μ=1

sin
ϕμ

2
=

1 − t∗

(2i)M
√

t

√
1 + Mλd,−z−1

− , (D.5a)

M∏
μ=1

cos
ϕμ

2
=

1 − t∗

2M
√

t

√
1 − Mλs ,−z−1

− , (D.5b)

M∏
μ=1

tan
ϕμ

2
= (−1)M/2

√
1 + Mλd,−z−1

−√
1 − Mλs,−z−1

−

=

M∏
μ=1

e−θμ =

M∏
μ=1

e−ψμ. (D.5c)

Finally, from the factorization

(t−z−i sin ϕ)2 = (t+z+ − λ+)2 − t2
−z2

− = (λs,+ − λ+)(λd,+ − λ+), (D.6)

as λs,+ = t+z+ + t−z− and λd,+ = t+z+ − t−z−, we deduce the closed form expression

M∏
μ=1

(t−z−i sin ϕμ)2 =

M∏
μ=1

(λs,+ − λμ,+)(λd,+ − λμ,+) = Pλ+ (λs,+)Pλ+ (λd,+)

= (1 − t∗2)2
( t−z−

2

)2M
(

1 − M
λs,−
z−

)(
1 + M

λd,−
z−

)
. (D.7)
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