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The evolutionary pictures of tachyon field in modified loop cosmology have been investigated. We present 
the dynamical behavior of the tachyon field associated with an exponential potential and find that the 
pre-inflation dynamics are very similar in both modified loop cosmology and standard loop quantum 
cosmology. In addition, tachyonic inflation in modified loop cosmology models are discussed, and we 
find that the probability of inflation in modified loop cosmology is very closer to 1.
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1. Introduction

In the framework of general relativity, both big-bang and black-
hole singularities appear that pose some difficulties. To solve the 
problems associated with these singularities, one possible solution 
is modifying the theory of general relativity at the high-energy 
scale. Loop quantum gravity (LQG) is one of the main candidates of 
these theories [1–3]. Loop quantum cosmology (LQC) is a canoni-
cal quantization of homogeneous spacetimes based upon the tech-
niques used in LQG [4–7]. In the past twenty years, many mean-
ingful conclusions have been drawn on solving the singularities of 
the big bang and black holes within the LQC context [8]. In this 
scenario, many interesting results have been obtained, e.g., the re-
placement of the big bang by a big bounce [9–11], the avoidance 
of most singularities [12–20], and the more likely occurrence of 
inflation [21–28].

Although LQC has achieved much in inflation theory and sin-
gularity theory of the big bang, the relationship between LQC and 
LQG nevertheless remains to be further explored [29,30]. In this 
regard, how the various quantization ambiguities affect physical 
predictions needs to be investigated. Because of ambiguities in the 
quantization process, different effective Hamiltonians can result in 
a homogeneous spacetime in loop cosmology [31]. Yang and col-
leagues obtained two different effective Hamiltonians and found 
two variants of LQC [32]. Following Ref. [31], these two different 
LQC models are labeled as mLQC-I and mLQC-II, respectively. In 
the mLQC-I scenario, the extrinsic curvature in the Lorentzian term 
is directly described in term of holonomies, whereas in mLQC-
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II, the proportionality between the extrinsic curvature and the 
Ashtekar–Barbero connection is used before expressing it in terms 
of holonomies [31]. Recently, details of these two modified theories 
have been investigated in many studies [31,33–41]. Similar to the 
results in LQC, the big-bang singularity is replaced by a quantum 
bounce, and slow-roll inflation is an attractor in the modified loop 
cosmology [31,39]. Using a field described by chaotic and Starobin-
sky potentials and taking into account the kinetic energy dominat-
ing (KED) the field at the bounce, the evolution of the Universe 
can be divided into three different phases: bouncing, damping, and 
slow-roll inflation [39]. Moreover, the probability that the desired 
slow-roll inflation does not occur in LQC is smaller than the result 
for mLQC-I and larger than the one for mLQC-II [39].

In this work, we investigate the tachyonic inflation in modified 
loop cosmology. We discuss the evolution pictures of the field in 
Sec. 2 and investigate the tachyonic inflation theory in Sec. 3. To 
compare the differences in evolutionary behavior of the tachyon 
field in modified loop cosmology and LQC, all the calculations are 
based on modified loop cosmology and the LQC scenario in Sec. 2
and 3. In the last section, we present a short conclusion. In this 
work, we set G = h̄ = c = 1.

2. Evolution of the field in modified loop cosmology

We first provide an overview of the modified Friedmann dy-
namics for mLQC-II, mLQC-I, and LQC and then discuss the evolu-
tionary pictures for the background field. For a detailed discussion 
of these models, we refer the reader to [10,31,35]. We focus on a 
spatially flat Friedmann–Robertson–Walker Universe.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2.1. mLQC-II

The effective dynamics of mLQC-II is discussed in Ref. [31]. 
Here, we briefly introduce the main results of [31]. The Hamil-
tonian for mLQC-II reads

HII = HII
grav +HM

= − 3v

2πλ2γ 2
sin2

(
λb

2

)[
1 + γ 2 sin2

(
λb

2

)]
+HM , (1)

in which HM denotes the Hamiltonian of matter, v ≡ v0a3, v0

being the volume of a fiducial cell in the R3 spatial manifold, a
denotes the scale factor, and b ≡ γ H in the classical limit, where 
H ≡ ȧ/a gives the Hubble rate and γ denotes the Barbero–Immirzi 
parameter which is set to γ ≈ 0.2375 [42]. The dot denotes deriva-
tive with respect to cosmic time. The variables v and b satisfy 
the canonical relation {b, v} = 4πγ , and parameter λ is defined as 
λ ≡

√
4
√

3πγ �2
Pl . This effective Hamiltonian (1) yields the Hamil-

ton’s equations

v̇ = 3v sin(λb)

γ λ

[
1 + γ 2 − γ 2 cos(λb)

]
, (2)

ḃ = −6 sin2 (λb/2)

γ λ2

[
1 + γ 2 sin2

(
λb

2

)]
− 4πγ P , (3)

in which P ≡ −∂HM/∂v denotes the pressure of the field.
The modified Friedmann equation in mLQC-II [31] is

H2 = 16πρ

3

(
1 − ρ

ρ II
c

)

×
⎡
⎢⎣ 1 + 4γ 2(1 + γ 2)ρ/ρ II

c

1 + 2γ 2ρ/ρ II
c +

√
1 + 4γ 2(1 + γ 2)ρ/ρ II

c

⎤
⎥⎦ , (4)

in which ρ II
c = 4(1 + γ 2)ρc with critical energy density ρc =

3/(8πγ 2λ2) in LQC.

2.2. mLQC-I

The effective Hamiltonian and the modified Planck scale dy-
namics for mLQC-I is introduced in [35]. The effective Hamiltonian 
for mLQC-I reads

HI = HI
grav +HM

= 3v

8πλ2

[
sin2(λb) − (1 + γ 2) sin2(2λb)

4γ 2

]
+HM . (5)

Hamilton’s equations for v and b are

v̇ = 3v sin(2λb)

2γ λ

[
(1 + γ 2) cos(2λb) − γ 2

]
, (6)

ḃ = 3 sin2(λb)

2γ λ2

[
γ 2 sin2(λb) − cos2(λb)

]
− 4πγ P . (7)

Different from mLQC-I and LQC, the Friedmann equation in the 
contracting phase is different from that in the expanding phase. In 
the expanding phase, the Friedmann equation reads [35]

H2 = 8πρ

3

(
1 − ρ

ρ I
c

)[
1 + γ 2ρ/ρ I

c

(1 + γ 2)(1 +
√

1 − ρ/ρ I
c)

2

]
, (8)

in which ρ I
c = ρc/[4(1 + γ 2)], whereas in the contracting phase,
2

H2 = 8παρ	

3

(
1 − ρ

ρ I
c

)[
1 + ρ(1 − 2γ 2 +

√
1 − ρ/ρ I

c)

4γ 2ρ I
c(1 +

√
1 − ρ/ρ I

c)

]
, (9)

where α ≡ (1 − 5γ 2)/(1 + γ 2), and ρ	 = 3/[8παλ2(1 + γ 2)2].

2.3. LQC

In the LQC scenario, the effective Hamiltonian is given by [10]

HLQC = HLQC
grav +HM = −3v sin2(λb)

8πγ 2λ2
+HM , (10)

from which one obtains

v̇ = 3v

2λγ
sin(2λb), (11)

ḃ = −3 sin2(λb)

2γ λ2
− 4πγ P . (12)

The modified Friedmann equation in LQC is

H2 = 8π

3
ρ

(
1 − ρ

ρc

)
. (13)

Note that, the same modified Friedmann equation is obtained 
while one considers the reduced phase space quantization in LQC, 
the only difference is the energy density includes two ingredients, 
the inflaton and the contribution from dust clock [43]. The detail 
of reduced phase space quantization, please see [43–46] and refer-
ences therein.

2.4. Tachyon field

We next consider the tachyon field. Tachyon-field inflation was 
introduced by Sen [47,48] and also studied in the LQC scenario 
[49–54] with a Hamiltonian of the field given by

Hm = v
√

V (φ)2 + v−2π2
φ , (14)

in which V (φ) denotes the potential of the field φ, and πφ is the 
momentum of φ, which satisfy

φ̇ = ∂Hm

∂πφ

= vπφ√
V 2 + v−2π2

φ

, (15)

π̇φ = −∂Hm

∂φ
= − v V V ′√

V 2 + v−2π2
φ

. (16)

The energy density and pressure of the tachyon field read

ρ = V√
1 − φ̇

, P = −V
√

1 − φ̇2. (17)

It is easy to show that the equation for matter conservation ρ̇ +
3H(ρ + P ) = 0 still holds in modified loop cosmology [31,35]. The 
equation of motion of the field is

φ̈

1 − φ̇2
+ 3Hφ̇ + V ′

V
= 0, (18)

in which prime denotes the derivative with respect to field φ. The 
evolutionary picture for a tachyon with different potentials in the 
LQC scenario has been discussed in many papers [49–54]. In this 
work, we focused on the exponential potential

V = βe−αφ, (19)

with constant parameters α and β; α has dimensions of mass. 
One always obtains the value of α from observational data, i.e., 
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Fig. 1. Comparison of the three models. The initial time is chosen at t0 = 10 and vmLQC−I
0 = 184.6142, vmLQC−II

0 = 5732.9373, vLQC
0 = 811.7614. Three black dashed lines are 

the results obtained from GR. The blue dashed line is proportional to eH(t)t , with the Hubble parameter H(t) of mLQC-I. At the bounce point, ρB/ρ A
c = 10−3, aB = 1 for three 

effective theories, and ρB → ∞, aB → 0 for GR.
the best-fit data from Planck 2018 [55] yielded α = 5.66 × 10−3

[54]. Nevertheless, just as in [50], tachyon-field-sufficient inflation 
favors a smaller parameter α in the LQC scenario. In this work, 
we consider α = 10−3 and β = ρ A

c , with A = I, II for mLQC-I and 
mLQC-II, and β = ρc for LQC.

Next, we focus on the numerical solutions of the considering 
models. During the numerical analysis, one should monitore the 
validity of the Hamiltonian constraint C = 16πHA ≈ 0. Also, the 
numerical errors should be negligible [35,56]. While the Hamil-
tonian constraint is satisfied initially, it is satisfied at any other 
moment, since it is conserved Ċ ≈ 0 [35]. In this case, we first 
use the effective Hamiltonian constraint C = 16πHA ≈ 0 to fig-
ure out the relationship between trigonometric function terms and 
v, φ, πφ , and then substitute the trigonometric function terms in 
the Hamilton’s equations with v, φ, πφ to ensure that the Hamilton 
constraint conditions are met in the solution process. In this case, 
we just need to solve equations v̇ = f (v, φ, πφ), φ̇ = g(v, φ, πφ)

and π̇φ = h(v, φ, πφ), in which f (v, φ, πφ), g(v, φ, πφ), h(v, φ, πφ)

are determined by the Hamilton’s equations and the relationship 
between trigonometric function terms and v, φ, πφ for each model. 
Note that, this method is likely reduced phase space analysis which 
is generally performed using relational clocks [43–46]. This method 
is adopted in this work during the numerical analysis, and the nu-
merical errors can be negligible.

To see the differences between the three models. We performed 
numerical simulations with initial conditions aB = 1, H B = 0, and 
V (φB) = 10−3ρB , in which subscript “B” signifies values at the 
bounce point. The results (Fig. 1) elicit several conclusions:

1. The Hubble parameter H = 0 at time t = 0, at which the 
quantum bounce occurs. As for LQC, there is a super-inflation 
stage in which both the Hubble parameter and scale fac-
tor increase. The Universe is asymmetric with respect to the 
3

bounce in mLQC-I and is symmetric in mLQC-II and LQC, in 
clear accordance with the scale factor and energy density. 
In the contracting phase, the scale factor is proportional to 
eH(t)t in mLQC-I model, in which H(t) is the Hubble param-
eter. While t < −5.6745, the Hubble parameter is almost a 
constant, H � −0.4170, the Universe enter a exponential ex-
pansion phase. Since the quantum geometry effects lead to an 
emergent cosmological constant (more detail analysis, please 
see Ref. [35,57]). Identical results were presented in [31], in 
which the Universe is filled with a scalar field. After the 
bounce, the Universe enters a GR dominates area very quickly 
for each interesting model, as shown in the first and second 
figures in Fig. 1.

2. For the equation of state (EoS),

ω = P

ρ
= −1 + φ̇2. (20)

Here, ω is approximately zero in the super-inflation stage, 
then decreases to −1, and subsequently increases ultimately 
to 0 again. The duration for which ω = −1 depends on the 
model. Moreover, the duration for which ω = −1 in mLQC-II 
is longest, followed by LQC; mLQC-I yields the shortest dura-
tion.

Above, we briefly discussed the evolutionary pictures for mod-
ified loop cosmology and found that the EoS enters a stage for 
which ω = −1 for each model. We next investigate the tachyonic 
inflation in modified loop cosmology.

3. Inflation theory

As shown in Ref. [54], the probability of a tachyonic inflation 
in the LQC scenario is very close to 1 for a field with an expo-
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Table 1
Quantities involved in the evolution of the background field. The symbol “–” signify that a value does not exist.

F B tSI
end NSI tDA

end NDA tSL
end NSL

mLQC-II 10−2 0.1634 0.2224 2.7864 1.7657 2.2597 × 104 4.2237 × 103

10−3 0.1633 0.2223 9.2118 2.5694 7.0070 × 103 4.0534 × 102

1.6315 × 10−4 0.1633 0.2223 25.1710 3.2644 2.7074 × 103 60.0021
10−4 0.1633 0.2223 33.9579 3.4803 2.0753 × 103 35.0992

mLQC-I 10−2 0.7195 0.2290 0.5383 1.8121 4.7924 × 103 2.1790 × 102

2.9156 × 10−3 0.7194 0.2289 25.1398 2.2961 2.7078 × 103 60.0002
10−3 0.7194 2289 50.3078 2.8112 1.5025 × 103 18.1830
10−4 0.7194 0.2289 – – – –

LQC 10−2 0.3561 0.2311 5.8625 1.7733 1.0881 × 104 9.7851 × 102

10−3 0.3564 0.2310 20.2870 2.6227 3.3023 × 103 89.4650
6.8965 × 10−4 0.3564 0.2310 25.1769 2.7751 2.7075 × 103 60.0050
10−4 0.3564 0.2310 – – – –
nential potential and is easier to undergo enough e-foldings while 
the potential energy dominates at the bounce point. In this work, 
we consider simply a KED case at the bounce point. To discuss the 
tachyonic inflation in modified loop cosmology, we first introduce 
the ratio between V (φB) and ρB setting

F B = V (φB)

ρB
, (21)

with ρB = ρA
c for mLQC-I and mLQC-II, and ρB = ρc for LQC, as 

mentioned before; then F B = e−αφB . In considering just a KED 
case, we take F B ∈ (0, 10−2]. Note that F B 
= 0 because V (φB) 
= 0, 
as given by Eq. (17). For the initial conditions chosen, we obtained 
interesting numerical results from our models.

For a KED case, three different phases appear between the 
quantum bounce and re-heating: super-inflation (SI), damping 
(DA), and slow-roll inflation (SL). We calculated the e-folding num-
ber N during these three different phases and is defined as

N ≡ ln

(
aend

ai

)
, (22)

in which the subscript “i (end)” denotes the value of the scale fac-
tor at the start (end) of the specific phase.

We next introduce definitions of the start (end) times for the 
three different phases. Obviously, for the SI phase, the start time 
begins at the bounce and ends when H = Hmax; we denote the 
variables � during this phase as �SI. For the DA phase, the start 
time begins at the time that H = Hmax, and ends when the Hub-
ble parameter |εH | = 0.1 for the first time after the bounce. The 
Hubble parameter is defined as

εH = − Ḣ

H2
. (23)

We denote the variables � during this phase as �DA. During the 
SL phase, the EoS holds its value ω = −1 initially, but increases 
slightly. We consider the SL phase to end when the EoS increases 
to −1/3 and begins when |εH | = 0.1. We denote the variables �
during this phase by �SL. Obviously, tSI

end = tDA
i and tDA

end = tSL
i .

Setting v B = 1 at the bounce point, the initial conditions only 
depend on the values of F B . The kinetic energy at the bounce 
point is a function of F B , and φ̇B =

√
1 − F 2

B . For a KED case, 
F B ∈ (0, 10−2], and hence φ̇B ∈ (0, 10−4]. However, just as Table 1
shows, when F B < 10−4, the number of e-foldings is insufficient, 
and therefore we just consider F B ∈ [10−4, 10−2] in this work.

The results of the numerical analysis are presented in Table 1. 
For each model, the duration of SI phase does not depend on the 
initial condition, and the e-folding number is almost the same for 
the all initial conditions considered. This result is the same as 
4

for a scalar-field inflation in the LQC scenario [58,59]. Nonethe-
less, the duration of this phase depends on the model; mLQC-I 
has the longest duration, LQC the second, and mLQC-II the short-
est. For the same initial conditions, the time derivative of H for 
the mLQC-II scenario is larger than that for LQC and mLQC-I; i.e., 
ḢmLQC−II

B � 31.3422, ḢLQC
B � 5.1460, but ḢmLQC−I

B � 1.2807.
The duration of the DA phase increases whereas F B decreases. 

We consider this phase to start when the Hubble parameter 
reaches its maximum value. This is different from that for infla-
tion driven by a scalar field in which this phase starts when the 
kinetic energy equals the potential energy [39]. During this phase, 
the kinetic energy decreases suddenly, and the Universe soon en-
ters into an accelerating phase. The EoS changes its value rapidly 
from ∼ −10−6 to −1 and resembles a step function during this 
phase (see Fig. 1).

SL phase occurs at time tSL
i when |εH | = 0.1 for the first time 

after the bounce, and ends when ω = −1/3 after tSL
i . During 

SL phase, the energy is dominated by the potential energy, and 
φ̇2 ≈ 0; hence, ω � −1. In this work, the assumption that slow 
roll starts when |εH | = 0.1 does not violate the condition ω � −1. 
For example, ωA(tSL

i ) ≤ −0.9326 for F B = 10−2, and ωA(tSL
i ) de-

creases while F B decrease. In contrast, when SL phase ends, the 
condition |εH | < 1 no longer holds. Indeed, the Hubble parameter 
|εH (tSL

end)| � 1 for all models and all initial conditions considered. 
Considering the two definitions for the end of SL phase, one be-
ing |εH (tSL

end)| = 1 and the other being ω(tSL
end) = −1/3, we find 

that the relative error between the two is always less than 10−5. 
The duration of SL phase depends on the model and the initial 
conditions. For all models, choosing a large F B makes it easier to 
generate a sufficient number of e-foldings. Under the same con-
ditions, the e-folding number of mLQC-II is larger than that for 
mLQC-I and LQC. The relative errors between two definitions for 
the end of SL phase remained similar in Table 1.

From Table 1, one obtains the probability of SL phase for mod-
ified loop cosmology. Next, we calculate the probability for tachy-
onic inflation following [24,39,54]. We first consider the mLQC-II 
model. The Liouville measure of a phase space � with quadruplet 
variables (v, b; φ, πφ) is dμL = dvdbdφdπφ . The modified Fried-
mann equation (4) implies that the variables (v, b; φ, πφ) must lie 
on a constraint surface �̄ defined by HII � 0. In contrast, the phase 
space � is isomorphic to a two-dimensional gauge-fixed surface �̂
of �̄ [24,39]. The Liouville measure dμ̂ when pulled back to the 
surface with constant b = ba is

dμ̂ = πφdvdφ, (24)

in which πφ = v

√
9γ 4 sin8

(
1
2 λba

)
+18γ 2 sin6

(
1
2 λba

)
+9 sin4

(
1
2 λba

)
4π2γ 4λ4 − V (φ)2

is a solution of the effective Hamiltonian CII = 16πHII � 0. Ob-
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viously, the value of dμ̂ depends on the choice of ba , which can 
always be chosen arbitrarily. Nonetheless, there is a preferred value 
in loop cosmology, specifically, the choice of b(t) at the quantum 
bounce [24,39], i.e., λba = λbB . However, if {v(t), φ(t)} is a solution 
to Eq. (24), {cv(t), φ(t)} (with constant c) is also a solution. In this 
case, one can fix v = v B = 1 in the integrals [24]. Then Eq. (24)
becomes

dμ̂ =
√(

ρ II
c
)2 − V (φ)2dφ. (25)

Note that, different from Eq. (25) of Ref. [54] in which dμ̂ ∝ ρc , 
the Liouville measure in mLQC-II is proportional to ρ II

c . Therefore, 
the probability for the desired SL phase is

P mLQC−II
N≥60 �

∫
I(E)

√(
ρ II

c
)2 − V (φ)2dφ∫ φmax

φmin

√(
ρ II

c
)2 − V (φ)2dφ

=
∫ 1

1.6151×10−4

√
1 − F 2

BdF B∫ 1
0

√
1 − F 2

BdF B

= 0.999794. (26)

In the mLQC-I scenario, following a similar analysis, one obtains 
probability P mLQC−I

N≥60 � 0.996288. For the LQC scenario, accord-

ing to Eq. (25) of Ref. [54], the probability is P L Q C
N≥60 � 0.999122. 

Obviously, P mLQC−II
N≥60 > P LQC

N≥60 > P mLQC−I
N≥60 . Therefore, tachyonic in-

flation is very favorable in modified loop cosmology models. 
This result is similar to that for an inflation driven by a scalar 
field with a quadratic potential, in which P mLQC−I(not realized)

> P LQC(not realized) > P mLQC−II(not realized) [39].

4. Conclusions

In this work, we investigated the evolutionary pictures of 
tachyon field in modified loop cosmology. We consider two modi-
fied loop cosmology, mLQC-I and mLQC-II, and the LQC model has 
also been discussed. The Universe is asymmetric in mLQC-I un-
like the mLQC-II and LQC, which are symmetric with respect to 
the bounce. The quantum bounce occurs for all considering mod-
els when the energy density approaches its maximum value of ρA

c . 
After the quantum bounce, the Universe enters a SI stage, and then 
enters a DA phase. The SL happens for a suitable initial condition, 
during which ω = −1. After the SI phase, the EoS increases to 0
very quickly, and the field acts as cosmic dark matter. The evo-
lutionary images in the cosmology scenario of modified loops are 
almost similar to those of the LQC scenario.

In the LQC scenario, the probability of obtaining tachyonic infla-
tion with at least 60 e-folds is very close to 1 [54]. In this work, we 
investigated tachyonic inflation in modified loop cosmology. The 
duration of each of the three phases depends on the initial condi-
tions and modified model, it being easier to achieve enough e-folds 
for larger F B (see Table 1). Moreover, we found that the probabil-
ity of slow-roll inflation in modified loop cosmology is very close 
to 1. Note that the probability of tachyonic inflation does not de-
pend on β (see Eq. (26)) but instead depends on α. As argued in 
Ref. [50], for tachyonic inflation in the LQC scenario, a sufficient 
inflation favors a smaller α. A smaller α yields a larger probabil-
ity of a desired slow-roll inflation, i.e., P LQC(α = 10−3) � 0.999122
> P LQC(α = 5.66 × 10−3) = 0.999007. Because the dynamical be-
haviors of modified loop cosmology and LQC are similar, the same 
result is easily established, that being, in modified loop cosmol-
ogy a smaller α gives a larger probability for the desired slow-roll 
inflation.
5
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