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A B S T R A C T

Heavy-ion collision experiments create a high-temperature plasma that is charac-
terized by a deconfined state of quarks and gluons. It is described by the theory of
the strong interaction: Quantum Chromodynamics (QCD). At high energies, QCD
admits an effective kinetic description, which allows studying and simulating how
the initially far-from-equilibrium plasma reaches thermal equilibrium, where the
plasma can be described as a relativistic fluid. While many studies have focused
on this fluid phase, the nonequilibrium stages before a fluid picture becomes
applicable have recently received increased attention. In particular, they may be
experimentally studied using highly energetic particles called jets.

This thesis focuses on how jets are modified by the nonequilibrium quark-gluon
plasma. Its influence on their propagation is typically encoded in a single medium
function which is referred to as the dipole cross section. Its small distance behavior
is characterized by the jet quenching parameter q̂, and we obtain its numerical value
throughout the pre-equilibrium stage, finding values comparable in magnitude
to the earlier Glasma stage, with also a similar anisotropy. We also compute the
more general elastic collision kernel, obtained by Fourier transforming the dipole
cross section. We observe that its small distance behavior is suppressed during the
pre-fluid stages, implying a suppression of jet quenching during the initial stages.
This constitutes an important step to facilitate the understanding of jet-medium
interactions during the initial stages in heavy-ion collisions.

Additionally, this thesis improves our understanding of QCD equilibration in
heavy-ion collisions. QCD kinetic theory simulations are improved by employing a
more realistic (hard thermal loop) screening mechanism to incorporate medium
effects, which we compare with simpler screening mechanisms. While the effect
on isotropic systems is negligible, an expanding plasma realized in the initial
stages of heavy-ion collisions exhibits a significantly reduced maximum anisotropy
when using the improved screening prescription. We also quantify its effect on the
specific shear viscosity η/s, finding that its numerical value decreases when using
the improved screening prescription. Moreover, we investigate the gluon splitting
rates used as input for kinetic theory simulations, which are typically obtained
using an isotropic model for the collision kernel. Going beyond that approximation,
we find that the splitting rates obtained from the nonequilibrium anisotropic kernel
significantly differ from those used in QCD kinetic theory simulations, both in
magnitude and qualitative time evolution. We further identify a novel type of
attractor in this thesis, which can be observed in the ratio of the jet quenching
parameter, and is obtained by extrapolating to vanishing coupling. This weak
coupling limiting attractor is also identified in the pressure ratio. This improved
kinetic theory description and novel limiting attractors contribute towards a more
realistic modeling of the nonequilibrium QCD plasma and its equilibration and
hydrodynamization process during the initial stages.
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Z U S A M M E N FA S S U N G

In relativistischen Schwerionenkollisionen wird ein Hochtemperaturplasma er-
zeugt, das durch einen Zustand freier Quarks und Gluonen charakterisiert ist. Es
wird durch die Theorie der starken Wechselwirkung beschrieben, die Quantenchro-
modynamik (QCD). Bei hohen Energien erlaubt diese eine effektive kinetische
Beschreibung, die es ermöglicht, die Thermalisierung des anfänglich weit vom
Gleichgewicht entfernten Plasmas aus Quarks und Gluonen zu simulieren. In
der Nähe des Gleichgewichts kann das Plasma als eine relativistische Flüssigkeit
beschrieben werden. Diese hydrodynamische Beschreibung dient als Grundlage
vieler Studien zu Schwerionenkollisionen. Jedoch hat in letzter Zeit die vorherge-
hende Phase außerhalb des Gleichgewichts erhöhte Aufmerksamkeit erhalten, ins-
besondere, da sie möglicherweise experimentell mittels hochenergetischer Teilchen,
genannt Jets, untersucht werden kann.

Diese Arbeit beschäftigt sich mit der Frage, wie Jets durch das Plasma fern des
Gleichgewichts modifiziert werden. Diese Modifikation wird typischerweise durch
eine einzige Funktion des Mediums beschrieben, die Dipol-Wirkungsquerschnitt
genannt wird. Dessen Verhalten für kleine Entfernungen wird durch den Jet
Quenching Parameter q̂ beschrieben und wir berechnen dessen Werte in den frühen
Nicht-Gleichgewichtsphasen von Schwerionenkollisionen. Insbesondere finden wir,
dass dessen Werte in unseren Simulationen mit jenen Werten dieses Parameters ver-
gleichbar sind, die in der noch früheren Glasma Phase berechnet wurden, sowohl in
Größe als auch Richtungsabhängigkeit. Weiters extrahieren wir den allgemeineren
Kollisionskernel durch Fourier-Transformation des Dipol-Wirkungsquerschnitts.
Wir finden, dass dessen Werte bei kleinen Abständen kleiner sind als im thermi-
schen Gleichgewicht, was zu einer Unterdrückung von Jet Quenching während
der frühen Zeiten führt. Das Extrahieren dieser Größen stellt einen bedeutenden
Schritt dar, um die Beschreibung von Jet-Medium Wechselwirkungen in den frühen
Phasen von Schwerionenkollisionen besser zu verstehen.

Darüber hinaus verbessert diese Arbeit die zugrundeliegende kinetische Beschrei-
bung durch die Verwendung eines realistischeren Abschirmmechanismus (mittels
harter thermischer Schleifen), um die Effekte des Mediums zu berücksichtigen.
Diesen vergleichen wir mit einfacheren Abschirmmechanismen. Für isotrope Sys-
teme sind seine Effekte vernachlässigbar, wohingegen ein expandierendes Plasma,
das in den frühen Zeiten von Schwerionenkollisionen existiert, eine deutlich gerin-
gere Anisotropie aufweist, wenn man den verbesserten Abschirmmechanismus
verwendet. Wir quantifizieren diesen Effekt auch durch die Ermittlung der nu-
merischen Werte der spezifischen Viskosität η/s, deren Wert durch die verbesserte
Abschirmvorschrift verringert wird. Schließlich untersuchen wir die Spaltungsraten
von Gluonen, die in kinetischen QCD Simulationen auf Basis einer isotropen
Näherung verwendet werden. Wir stellen fest, dass sich die Spaltungsraten
unter Verwendung des anisotropen Nicht-Gleichgewichts-Kernels deutlich von den
genäherten Raten unterscheiden, und zwar sowohl in der Größe als auch im quali-

5



6

tativen Zeitverhalten. Weiters identifizieren wir einen neuartigen Attraktor, der für
das Verhältnis des Jet Quenching Parameters zwischen verschiedenen Richtungen
relevant ist, und über die Extrapolation zu verschwindenden Kopplungen erhalten
wird. Die Weiterentwicklung der kinetischen Theorie und diese neuartigen Attrak-
toren führen zu einem besseren Verständnis der Thermalisierung des Quark-Gluon
Plasmas in Schwerionenkollisionen.
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1
I N T R O D U C T I O N

1.1 the fundamental forces and the standard model

Physics aims to describe, explain, and predict phenomena encountered in nature
using mathematical models. The ultimate goal is to understand and answer
fundamental questions about our universe, e.g., what are the fundamental forces
of nature? or What forces bind together the matter we are made of? or Can we probe
nonequilibrium effects of the strong interaction using particle colliders?

Perhaps needless to say, tremendous effort has gone into answering these ques-
tions over the past centuries. With the exception of gravity, all fundamental
interactions are now conveniently combined in the Standard Model of particle physics.
It is arguably the most well-tested physical theory today and the cornerstone of
modern particle and collider physics, allowing predictions with astonishing preci-
sion and accuracy. Despite its compact mathematical formulation, which fits on a
simple coffee mug (available for purchase at the European Organization for Nuclear
Research (CERN)), it describes surprisingly complex dynamics and phenomena.

For instance, the Standard Model includes the electromagnetic force, perhaps
the most important fundamental force in our everyday lives. It is essential for
describing the stability of atoms1, molecules and solids, while also describing light,
electricity, and electromagnetic waves. In the Standard Model, it is neatly combined
with the weak interaction, which describes how the building blocks of atoms, the
protons and neutrons, decay.

The structure of the atomic nucleus itself is governed by the strong interaction,
the force that binds protons and neutrons together. This interaction describes how
protons and neutrons are not fundamental particles, but rather composed of even
tinier constituents, the quarks and gluons. This thesis focuses on the mathematical
theory of the strong interaction, quantum chromodynamics (QCD).

1.2 quantum chromodynamics and the quark-gluon plasma

QCD was formulated over 50 years ago [10], and lives within the mathematical
framework of quantum field theory, which combines special relativity with quan-
tum mechanics. The fundamental ingredients of QCD are quarks and gluons. They
have the important property that their interaction strength decreases for increasing

1 Atoms are important for everyday life despite being banned in Austria per its constitution ("Bun-
desverfassungsgesetz für ein atomfreies Österreich", https://www.ris.bka.gv.at/GeltendeFassung.
wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008058)
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Figure 1.1: Schematic overview of the initial stages in heavy-ion collisions and their respec-
tive effective description.

energies, a property called asymptotic freedom. Thus, at weak coupling—or large
energies—one may use perturbation theory to obtain properties of QCD. At lower
energies, quarks and gluons are confined in ordinary hadrons, such as protons
and neutrons making up most of the visible matter in the universe. For a QCD
plasma in thermal equilibrium, numerical tools such as Lattice QCD are available
and reveal a crossover phase transition between ordinary nuclear matter and a
phase of deconfined quarks and gluons at very high temperatures: the quark-gluon
plasma (QGP). This many-body system of quarks and gluons is also predicted to
exist shortly after the Big Bang and can be produced experimentally in relativistic
heavy-ion collision experiments. How a nonequilibrium QCD plasma equilibrates
has been the context of intensive study and remains an important research question
[11, 12]. Moreover, the theoretical and experimental study of this system in and out
of equilibrium and its thermalization processes reveals intriguing phenomena and
possesses also exciting interdisciplinary connections to other fields of physics, such
as condensed matter, cosmology, and ultracold quantum gases [13].

1.3 heavy-ion collisions and thermalization

As alluded to earlier, the equilibrium and nonequilibrium properties of the quark-
gluon plasma can be studied experimentally in relativistic heavy-ion collisions,
which are currently performed at the Relativistic Heavy Ion Collider (RHIC, soon to
be phased out to make room for the new Electron-Ion Collider (EIC)) at Brookhaven
National Laboratory, and at the Large Hadron Collider (LHC) at CERN. There,
heavy nuclei such as gold and lead are accelerated nearly to the speed of light
and brought to collision. Their decay products are then studied in the detectors,
similarly to the study of proton-proton collisions. These heavy-ion collisions create
a droplet of QCD matter that is initially far from equilibrium. Analyzing the
remnants of these collisions reveals that a deconfined state of matter is created,
where quarks and gluons are no longer bound into hadrons, the quark-gluon
plasma.

Currently, it is impossible to describe the time evolution of this out-of-equilibrium
system using (numerical) first-principle simulations of QCD. Real-time Lattice QCD
simulations, for example, suffer from the infamous sign problem [14–16], which
prevents real-time simulations or simulations at finite density. Instead, the out-
of-equilibrium QCD plasma is often described using a series of effective theories,
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which are depicted schematically in Fig. 1.1. At sufficiently high energies and
weak couplings, directly after the collision, the system is dominated by large
classical gluon fields and can be described within the Color Glass Condensate
[17]. The corresponding state (following a specific set of initial conditions) is
referred to as the Glasma, and its time evolution can be obtained using classical
statistical lattice simulations [18]. After a time of about 0.1 fm/c ≈ 3 × 10−25s, a
quasiparticle description becomes applicable with gluons initially remaining the
dominant degrees of freedom and the—still far from equilibrium—plasma can
be described as a weakly-interacting gas of quarks and gluons using an effective
kinetic theory [19, 20], where the time evolution of the system is dictated by a
Boltzmann equation

( ∂

∂t
+ v ⋅ ∇) f (p, x, t) = −C[ f ] (1.1)

for the particle distribution function f (p, x, t). Numerical implementations of this
QCD kinetic theory allow tracking the system’s time evolution towards equilibrium
and to the later hydrodynamic stage [21–26], and are also commonly extrapolated
to larger coupling values for phenomenological purposes [27–33].

Common QCD kinetic theory implementations [21–26] use a simple screening
approximation to include medium effects in the simulations, approximating inter-
nal medium resummed propagators by a simple Debye-like screened propagator.
Notably, this isotropic screening approximation neglects the effect of plasma in-
stabilities that are present in anisotropic systems [34–39], but might be dampened
by collisions [40, 41]. However, they have been shown not to have very dramatic
effects on the earliest stages [42, 43].

The nonequilibrium plasma hydrodynamizes when a hydrodynamic description
becomes applicable. This description using relativistic hydrodynamics [44–47] has
been successfully used to understand many experimentally observed collective
phenomena. For example, when off-central collisions lead to an initial almond-
shaped overlap region of the colliding nuclei, hydrodynamics predicts an elliptical-
shaped particle distribution observed in the detectors, known and observed as
elliptic flow [48]. Hydrodynamics is a macroscopic description where microscopic
properties only enter via effective transport parameters. As such, hydrodynamics is
applicable for both weakly and strongly coupled systems. However, it is typically
formulated as a (gradient) expansion around local thermal equilibrium, limiting
its applicability to systems close to equilibrium, while kinetic theory provides a
genuine description of the microscopic dynamics of the system valid also out of
equilibrium.

When the temperature of the fluid drops below a critical “freeze-out” tempera-
ture, the hydrodynamic evolution is stopped and the energy density is converted
back into hadrons which are then measured in the detectors (after a subsequent
stage of hadronic interactions) [48].

It should be noted that while hydrodynamics as an effective macroscopic theory
is applicable for all values of the coupling constant, kinetic theory and the Glasma
stage rely on a weak coupling picture. There is a parallel effort to investigate the
features of strongly coupled effective models of QCD, which can be achieved using
the holographic principle and the gauge/gravity duality [49–51]. There, one uses
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PQK
z xy

K' P'

Figure 1.2: Schematic sketch of jet modification when traversing the quark-gluon plasma
generated in a heavy-ion collision. Figure reused from [2].

the duality of a strongly coupled gauge theory to a weakly coupled gravitational
theory, e.g., the AdS/CFT correspondence allows to probe N = 4 supersymmetric
Yang-Mills (SYM), which is used as a model for QCD at large temperatures. Heavy-
ion collisions are studied in the dual gravitational theory by performing extensive
numerical simulations of shock wave collisions [52–55].

Despite their different setups, comparing kinetic theory and holographic models
of the pre-equilibrium stages reveals astonishing similarities [56, 57], such as the
approach to a hydrodynamic attractor [58]. This attractor refers to the property
that, for various initial conditions, the system’s time evolution follows a universal
curve characterized by a reduced number of parameters [59, 60]. These attractors
have been observed in various formulations of hydrodynamics [57, 61], kinetic
theory at weak couplings [22, 24, 26, 29, 62–66], and holographic models at strong
couplings [56, 57, 67, 68]. In particular, this identified universal behavior in certain
observables allows making predictions from the pre-hydrodynamic stages despite
incomplete information about the initial conditions [29, 31, 32]. The notion of
attractors in heavy-ion collisions and other theoretical setups has been the extensive
subject of recent studies [64–66, 69–75].

Recently, there has been an increased interest to also consider the pre-hydrody-
namic evolution and search for possible experimental observables of this stage
[27, 30, 76–78]. This is thought to be even more important for light ion collisions
and smaller collision systems which spend a larger fraction of their time before
hydrodynamics is applicable. In particular, the upcoming lighter ions collision
experiments, such as the planned oxygen-oxygen run at the LHC, will provide
an environment in which nonequilibrium effects become more important [79, 80],
making it now an ideal time to study nonequilibrium and pre-hydrodynamic effects
in heavy-ion collisions.

1.4 jet quenching

Experimentally accessible probes with potential contributions from the pre-hydro-
dynamic nonequilibrium stages are jets. They are observed as a collection of
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collimated particles with large momenta and are experimentally reconstructed
using jet clustering algorithms [81, 82].

Generally, they originate from a highly energetic parton (quark or gluon) created
in the initial collision, and, thus, interact with the QCD plasma during all stages of
its evolution. Hence, they may carry imprints of the nonequilibrium initial stages.
Experimental evidence suggests that jets lose energy while traversing the plasma,
which is referred to as jet quenching and is considered to be strong evidence for the
formation of the quark-gluon plasma.

Experimentally, jet observables are typically compared to a corresponding observ-
able measured in proton-proton collisions. For example, the nuclear modification
factor is obtained by normalizing the yields or cross sections measured in nuclear
collisions to their values in proton-proton collisions scaled by the number of binary
collisions. If it is equal to one, there are no nuclear effects, i.e., the observable can
be obtained as a superposition of proton-proton collisions, and is not modified by
the medium generated in heavy-ion collisions.

Jet energy loss and jet quenching are dominated by the process of inelastic gluon
emissions. Without going into much more detail (see Chapter 2), the probability for
medium-induced gluon radiation and the gluon spectrum depend on an effective
propagator in a potential given by the dipole cross section [83–88]

C(x) = ∫ d2q⊥(2π)2 C(q⊥) (1− eix⋅q⊥) . (1.2)

It depends on the elastic collision kernel C(q⊥) describing the probability per
time of a jet particle to receive a momentum kick with transverse momentum q⊥.
Different jet quenching formalisms [83–98] (see Ref. [99] for a comparison) differ
in how they approximate the propagator or dipole cross section. In the harmonic
oscillator approximation, the small distance (small-∣x∣) behavior of the dipole cross
section is encoded in the jet quenching parameter q̂,

C(x) = 1
4

q̂x2 +O(x4). (1.3)

This parameter has the physical interpretation of quantifying the transverse mo-
mentum broadening per unit time,

q̂ = d⟨p2⊥⟩
dt

= ∫ d2q⊥(2π)2 q2⊥C(q⊥). (1.4)

Importantly, all the medium information is contained in the dipole cross section
C(x) or, in the small-∣x∣ limit, in the jet quenching parameter q̂. They have been
calculated analytically for a weakly-coupled plasma using perturbative QCD in
thermal equilibrium at leading [100, 101] and next-to-leading order [102] in the
coupling. Further thermal results exist also for strongly coupled systems using
AdS/CFT [103–107], Lattice QCD [108], dimensionally reduced electrostatic QCD
[109, 110], and quasiparticle models [111–113]. There exist also extractions of the jet
quenching parameter q̂ from experimental data [114–117]. In thermal equilibrium,
the evolution of jets has been studied using kinetic theory [33, 118–120]. For the
radiation spectrum, formalisms have been developed to go beyond the small x
limit of the dipole cross section by expanding in logarithms [101, 121–124] or using
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Figure 1.3: Schematic evolution of the jet quenching parameter q̂: Its evolution has been
obtained in the early Glasma stage and in the later hydrodynamic stage. Figure
reused from [1].

the full kernel to obtain the gluon spectrum and splitting rate [97, 110, 125–129].
While these results have been obtained in equilibrium, there has been significant
theoretical progress towards describing jet quenching also in inhomogeneous,
anisotropic and flowing systems [130–139].

While many phenomenological models ignore or drastically simplify the time
evolution of the plasma during these initial stages [76, 114, 115, 117, 128, 140–151],
it has been argued that the pre-equilibrium evolution is important for the correct
description of experimental observables [76, 148]. In particular, the jet quenching
parameter q̂ has recently been extracted during the Glasma stage during the earliest
times of the nonequilibrium evolution [152–157], and its value was found to be
surprisingly large while other studies find q̂ should be negligible at early times to
be compatible with experimental data [76]. However, different treatments of jet
quenching during the initial stages reach partly different conclusions [76, 147, 148,
151]. This clearly highlights the need for a better theoretical understanding of jet
quenching during the initial stages.

Although numerical simulations of the equilibration process in heavy-ion col-
lisions using QCD kinetic theory have been performed [21–26], the value of the
jet quenching parameter q̂ or the form of the collision kernel C(q⊥) during the
pre-equilibrium stages have not been established, as is sketched in Fig. 1.3. This will
be the main focus of this thesis. We will discuss the extraction of the jet quenching
parameter q̂ in Chapter 4, and argue that its anisotropy ratio follows a novel type
of attractor, which is referred to as limiting attractor, in Chapter 5. Finally, we study
the more general collision kernel C(q⊥) in Chapter 7.

Another important topic of this thesis is the question of how to properly include
medium effects, both for obtaining the jet quenching parameter q̂ and for QCD
kinetic theory simulations. In the past, simple approximations have been used for
the medium-resummed matrix elements in the collision kernels. The effect of these
assumptions has never been fully studied and will be the topic of Chapter 6.
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1.5 guiding questions

This thesis aims to answer the following questions, which are grouped in two main
topics:

1. Improving our understanding of jet-medium interactions, particularly during
the initial stages

a) How can the jet quenching parameter q̂ be obtained in QCD kinetic
theory for a general, possibly anisotropic, distribution function f (p)?

b) What is the time evolution of the jet quenching parameter q̂(τ) dur-
ing the hydrodynamization process in heavy-ion collisions and is its
numerical value close to the large values reported during the Glasma
stage?

c) Do the jet quenching parameter or its directional values exhibit universal
dynamics? Does it follow a hydrodynamic attractor?

d) How different is the collision kernel C(q⊥) from its thermal and small-x
counterparts during the bottom-up evolution from its thermal coun-
terpart? Can we identify specific features from the anisotropic plasma
background?

2. Improving our understanding of QCD equilibration

a) What is the impact of typically employed simplified screening prescrip-
tions in QCD kinetic theory simulations, both on the jet quenching
parameter and the time evolution itself?

b) Do late-time attractors beyond the hydrodynamic attractors exist? For
which observables are they relevant?

c) How do the splitting rates obtained from the nonequilibrium anisotropic
collision kernel C(q⊥) compare to those employed in QCD kinetic theory
simulations using an isotropic approximation?

1.6 outline

This thesis is organized as follows. Chapter 2 starts with a discussion on how
an energetic parton loses energy in a quark-gluon plasma, and how different
energy loss formalisms depend on the collision kernel C(q⊥). The following
Chapter 3 contains an introduction to QCD kinetic theory, discusses all the relevant
ingredients, and how one might, in principle, derive it from QCD itself. It also
discusses how QCD thermalizes in isotropic and expanding systems and how the
QCD kinetic theory simulations employed in this thesis are performed.

Chapter 4 addresses Questions 1a, 1b and the parts of Question 2a regarding
q̂. It first discusses how the jet quenching parameter q̂ can be obtained in QCD
kinetic theory. Then q̂ is calculated using a scaled thermal distribution and an
effectively two-dimensional distribution as toy models to model features of the
bottom-up equilibration process. Chapter 4 concludes with obtaining the jet
quenching parameter q̂ during the hydrodynamization process between the Glasma
and hydrodynamic stage.
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The following Chapter 5 addresses Questions 1c and 2b. There, it is shown that
the ratio of the jet quenching parameters cannot be well described using the typical
hydrodynamic attractor time scale. Instead, the new concept of limiting attractors is
introduced.

Question 2a is addressed in Chapter 6, where the screening prescription is
discussed in more detail, in particular its gauge invariance. Additionally, numerical
studies using different screening prescriptions are performed, both in isotropic
and expanding systems. In this chapter, also the effects of different screening
prescriptions in the background evolution on the jet quenching parameter q̂ are
studied.

Finally, Chapter 7 is concerned with Questions 1d and 2c. First, the collision
kernel is obtained during the hydrodynamization process in heavy-ion collision.
Then, its Fourier transformed quantity, the dipole cross section, is computed and
used as input to calculate the splitting rates using a novel method employed here
for the first time.

A summary and conclusion are provided in Chapter 8.
In Appendix A, aspects of QCD and nonequilibrium quantum field theories are

discussed. Appendix B discusses numerical details on performing QCD kinetic
theory simulations. Appendix C describes the limits of the jet quenching parameter
q̂ for large jet energies or large transverse momentum cutoffs. In Appendix D,
numerical details on solving the anisotropic AMY rate equations are given. Finally,
Appendix E provides an overview of additional plots and results of QCD kinetic
theory simulations of the hydrodynamization process. Appendix F discusses
notational differences between this thesis and the publications this thesis is based
on.

1.7 conventions

During this thesis, we will adopt the usual convention of setting the fundamental
constants c = h̄ = 1, which simplifies our expressions and allows measuring every
dimensionful quantity in units of energy. Throughout this thesis, we will employ
the mostly-plus metric convention for the Minkowski metric ηµν, i.e.,

ηµν = ⎛⎜⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠ , (1.5)

such that the scalar product of two vectors Pµ = (P0, p) and Kµ = (K0, k) is P ⋅K =−P0K0 +p ⋅ k. Four-vectors in Minkowski space are denoted by uppercase letters,
e.g., P. Lowercase boldfaced letters, e.g., p, denote three-dimensional (or sometimes
also two-dimensional) Euclidean vectors, whose magnitude is given by lowercase
non-bold symbols, i.e., p = ∣p∣. For instance, a light-like P2 = 0 vector can be
represented as Pµ = (p, p).
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J E T E N E R G Y L O S S

In heavy-ion collisions, highly energetic particles are created, move through the
quark-gluon plasma and cascade into a series of lower energetic particles, which
then hadronize and are measured as jets in the detectors. Measuring their modi-
fication in the presence of a medium may yield insights into the nonequilibrium
properties of QCD. However, a first principle calculation of this process is diffi-
cult. From a perturbative point of view, the dominant process for energy loss is
inelastic gluon emission, where an energetic quark or gluon emits another gluon,
as depicted in Fig. 2.1. Therefore, jet energy loss is typically modeled as a sequence
of single gluon emissions, neglecting the interference of two subsequent emissions
for simplicity. In this chapter, we discuss how the rate of a jet particle emitting a
single gluon can be calculated. Although a jet is experimentally only well-defined
through jet clustering algorithms, we will often refer to the single energetic particle
we are considering as a jet.

2.1 how does an energetic gluon lose energy in a medium

In a vacuum, a 1 → 2 splitting process is kinematically forbidden. In a medium,
however, the quark in Fig. 2.1 can receive elastic momentum kicks (as depicted
by the gluon exchange lines) and be brought slightly off-shell, which opens the
phase space for a splitting process. Describing such a single-splitting process is
surprisingly complicated. To illustrate the physical picture, we will start by making
simple estimates for the relevant processes, which can be found, e.g., in the review
[158].

In the simplest case, the rate for gluon emission is proportional to the rate
of receiving a momentum kick Γel. This can be estimated using Eq. (1.4), q̂ =
d⟨p2⊥⟩

dt . Integrating this, we obtain that during a time interval Δt, a jet acquires the
transverse momentum Δp2⊥ ∼ m2 ∼ q̂Δt, where m is a typical momentum transfer
usually taken to be of the order of the screening mass. The rate Γel ∼ 1/Δt is then

Γel ∼ q̂
m2 . (2.1)

Assuming the emission process is triggered by these elastic collision, we obtain the
Bethe-Heitler rate

dΓBH

dz
∼ αsPg→g(z) q̂

m2 , (2.2)

23
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Figure 2.1: Inelastic gluon emission: A parton receives momentum kicks while traveling
through the quark-gluon plasma and emits a gluon.

where the splitting function is given by

Pg→g(z) = CA
1+ z4 + (1− z)4

z(1− z) ,
z≪17→ Psoft

g→g(z) ≈ 2CA

z
, (2.3)

where z is the energy fraction of the emitted gluon, which we approximated for the
case of soft gluon emissions z≪ 1. The constant CA = Nc is a group constant, see
Appendix A.1 and Eq. (A.7). The Bethe-Heitler rate is only relevant if the formation
time of the splitting process tform is much smaller than the rate at which the elastic
collisions occur that trigger the splitting process, i.e., tform ≪ 1/Γel. To begin with,
one may easily estimate the formation time by considering the time it takes for
the wave packet of the emitted gluon with size Δx⊥ ∼ 1/k⊥ not to overlap with
the mother gluon [159]. Taking the transverse velocity to be v⊥ = k⊥/k, we obtain
tform ∼ Δx⊥/v⊥ = k/k2⊥, where we can then use the definition of the jet quenching
parameter q̂ from Eq. (1.4) to arrive at

tform ∼√ω

q̂
, (2.4)

where ω = k is the energy of the emitted gluon (and, in general, the smallest
energy of all participating partons). Thus, the Bethe-Heitler rate is valid for emitted
energies

ω ≪ m4

q̂
. (2.5)

If this condition is not met, the individual emissions would overlap and one needs
to take quantum mechanical interference effects into account. This is known as
LPM suppression (first considered for QED in Refs. [160, 161], and obtained for
QCD in [83, 85–87]). The rate can then be estimated similarly as in Eq. (2.2), but
using the formation time (2.4),

dΓLPM

dz
∼ αsPsoft

g→g(z)√ q̂
ω

. (2.6)

For its treatment in QCD, slightly different formalisms have been developed by
different authors.1

1 Ref. [96] provides a convenient overview of how the different conventions and formalisms are related.
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2.2 amy rate equations

In the limit of an infinite and time-independent medium, the rates for (nearly
collinear) gluon emission or quark-antiquark creation were obtained by Arnold,
Moore, and Yaffe [19, 94], and are given by2

γ
q
qg(p; p′, k) = γ

q̄
q̄g(p; p′, k) = p′2 + p2

p′2 p2k3F n̂
q (p, p′, k), (2.7)

γ
g
qq̄(p; p′, k) = k2 + p′2

p′3 p3k3F n̂
q (k,−p′, p), (2.8)

γ
g
gg(p; p′, k) = p′4 + p4 + k4

p′3 p3k3 F n̂
g (p, p′, k), (2.9)

where

F n̂
s (p, p, k) = dsCsαs

2(2π)3 ∫ d2h(2π)2 2h ⋅ReFn̂
s (h; p′, p, k), (2.10)

where Cs is the quadratic Casimir group constant corresponding to species s, given
by Eq. (A.7). Furthermore, F is the solution to the integral equation

2h = iδE(h; p′, p, k)Fn̂
s (h; p′, p, k) +∫ d4Q(2π)4 2πδ(vn̂ ⋅Q)vµ

n̂vν
n̂g2⟪Aµ(Q)[Aν(Q)]∗⟫

×⎧⎪⎪⎨⎪⎪⎩(Cs − CA

2
)[Fn̂

s (h; p′, p, k) − Fn̂
s (h − kq⊥; p′, pk)]

+ CA

2
[Fn̂

s (h; p′, p, k) − Fn̂
s (h + p′q⊥; p′, p, k)]

+ CA

2
[Fn̂

s (h; p′, p, k) − Fn̂
s (h − pq⊥; p′, p, k)]⎫⎪⎪⎬⎪⎪⎭.

(2.11)

The vector h is a two-dimensional vector in the plane transverse to the direction of
the splitting particles, n̂. The double brackets ⟪Aµ(Q)[Aν(Q)]∗⟫ denote the mean
square fluctuations of the background gauge fields and is given by the (Fourier
transformed) Wightman correlator (A.32a). The energy difference δE is given by

δE(h; p′, p, k) = m2
eff,g

2k
+ m2

eff,s

2p
− m2

eff,s

2p′ + h2

2pkp′ , (2.12)

and can be obtained by taking the particle momenta in Fig. 2.1 to be

(P′)µ = (Ep′ , p′, p⊥ + k⊥, 0), Kµ = (Ek, p, k⊥, 0), Pµ = (Ep, p, p⊥, 0) (2.13)

for a splitting P′ → P + K. Enforcing momentum conservation and expanding

the energy for large p′ = p + k, Ep = √p2 + p2⊥ +m2
eff,s ≈ p + m2

eff,s+p2⊥
2p , which leads to

Eq. (2.12) when defining h = zk⊥ − (1− z)p⊥, where z = p/p′. The effective masses

2 With a slightly different convention of dΓ
dz = (2π)3

νg ∣p∣ γ (p; zp, (1− z)p).
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encode medium-dependent corrections to the dispersion relation of the particles
and are given explicitly in Eqs. (3.11) and (3.12) in Section 3.

The four-dimensional integral can be split into one part along the splitting and
temporal direction, and another part containing the transverse integral (along q⊥),

2h = iδE(h; p′, p, k)Fn̂
s (h; p′, p, k) +∫ d2q⊥(2π)2 C̄(q⊥)

× ⎧⎪⎪⎨⎪⎪⎩(Cs − CA

2
)[Fn̂(h; p′, p, k) − Fn̂

s (h − kq⊥; p′, pk)]
+ CA

2
[Fn̂

s (h; p′, p, k) − Fn̂
s (h + p′q⊥; p′, p, k)]

+ CA

2
[Fn̂

s (h; p′, p, k) − Fn̂
s (h − pq⊥; p′, p, k)]⎫⎪⎪⎬⎪⎪⎭,

(2.14)

where the function

C̄(q⊥) = C(q⊥)/CR = g2∫ dQ 0dQ ∥(2π)2 2πδ(vn̂ ⋅Q)vµ
n̂vn̂

ν⟪Aµ(Q)[Aν(Q)]∗⟫ (2.15)

is the collision kernel C(q⊥) stripped of its color factor CR and encodes the broad-
ening of hard particles during the splitting process. It can be represented as a
Wightman correlator of the gluon field generated by the hard particles moving
through the plasma. In an isotropic plasma, it can be evaluated analytically (see
Appendix A.5.4).

This integral equation (2.11) is typically solved by going to impact parameter
space, where the before-mentioned dipole cross section or potential C(x) naturally
appears (see Eq. (1.2)),

C̄(x) = ∫ d2q⊥(2π)2 (1− eix⋅q⊥)C̄(q⊥). (2.16)

We will discuss in Chapter 7 (and Appendix D) how to obtain the splitting rate
γ numerically for an anisotropic collision kernel C(q⊥). If the incoming particle
is highly energetic, only the small-∣x∣ behavior of this dipole cross section C(x) is
important, and the rate can be obtained by an expansion in logarithms [101, 121].

These rate equations are used to study jet quenching in the MARTINI framework
[141], and will be a fundamental ingredient for the effective kinetic description of
QCD [19], which we will introduce and discuss in the next Chapter 3.

2.3 medium-induced radiation spectrum in a finite medium

2.3.1 Energy spectrum

In a medium with finite length and also time varying properties, the spectrum is
usually written in a seemingly different form (see, e.g., [84, 96, 97]),

ω
d I
dω
= αszPs→g(z)[z(1− z)E]2 Re∫ ∞

0
dt1 ∫ ∞

t1

dt2 ∂x ⋅ ∂y {K(y, t2; x, t1) −Kvac(y, t2; x, t1)} ,

(2.17)
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where K is the Green’s function for a two-dimensional Schrödinger equation

i∂tψ(x, t) = (δE(px) − iΓ3(x, t))ψ(x, t), (2.18)

with initial condition K(x, t; y, t) = δ(2)(x − y). That this spectrum (2.17) is related
to the rates obtained in the previous section can be seen, e.g., that in the integral
equation (2.11) the energy difference δE from Eq. (2.12) appears as well. The
potential Γ3 is also reminiscent of the terms in the integral equation,

Γ3(x, t) = CA

2
C̄(x, t) + (Cs − CA

2
) C̄(zx, t) + CA

2
C̄ ((1− z)x, t) , (2.19)

where the function C̄(x, t), as in Eq. (2.16), is related to the collision kernel C̄(q⊥, t).
For highly-energetic partons, we have seen before in the qualitative discussion
that the LPM regime is that of relevance. There, the results depended crucially on
the jet quenching parameter q̂, which determines the small distance behavior (see
Eq. (1.3)) of this dipole cross section C(b, t), which we will discuss in more detail
in Section 7.2.1.

2.3.2 Medium-induced radiation spectrum differential in transverse momentum

One may also, instead of just giving the energy spectrum of emitted gluons, consider
explicitly gluons with different transverse momenta, i.e., become differential in k⊥.
Doing that for a general gluon energy fraction z becomes rather convoluted (see,
e.g., Ref. [162]), and we will stick to the case of soft emissions z≪ 1 here. In that
case, the spectrum can be written as (see, e.g., [92])

d I
dω d2k

= ᾱ

2πω3 Re∫ ∞
t0

dt2∫ t2

t0
dt1 ∫

x
e−ik⋅xP(x,∞; t2)∂x ⋅ ∂yK(x, t2; y, t1)y=0 − 8ᾱπ

k2ω
.

(2.20)

The functions P and K describe the broadening of the emitted gluon and the
splitting process, respectively. Again, the medium enters these quantities via the
dipole cross section C(x, t),

∂tP(x, t; t1) = −C(x, t)P(x, t; t1), (2.21)

(i∂t − ∂2
x

2ω
+ iC(x, t))K(x, t; y, t1) = iδ(2)(x − y)δ(t1 − t). (2.22)

Indeed, the equation for the Green’s function K here can be obtained by taking
the z ≪ 1 limit of the previous section and is the same function that appears in
Eq. (2.17). As discussed before, for a highly energetic jet, the small-∣x∣ behavior
of the dipole cross section is most important and can be expressed (to a first
approximation) as

C(x, t) = 1
4

q̂(t)x2 + . . . , (2.23)

where the parameter q̂ is the jet quenching parameter from Eq. (1.3) and (1.4).
Because this parameter characterizes the small distance behavior of the dipole
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cross section, it is an important ingredient for jet energy loss and jet quenching
calculations. This parameter will also be the central object of Chapter 4.

This quadratic approximation is also known as the harmonic approximation or
the harmonic oscillator approximation, because in the approximation (2.23), the two-
dimensional Schrödinger equation (2.18) (and Eq. (2.22)) reduces to that of a
(time-dependent) harmonic oscillator. This allows for an analytic solution. More
physically motivated, this approximation is also referred to as the multiple soft
scattering approximation, because the jet quenching parameter q̂ describes the mo-
mentum broadening due to many (soft) scatterings with the medium (see Eq. (1.4)).

We will further discuss this small distance behavior in more detail in Section 7.2.1.
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Q C D K I N E T I C T H E O RY

In this chapter, we discuss the assumptions and equations of the effective kinetic
theory description of QCD. We discuss how medium effects enter and how they are
typically approximated. In Section 3.4, we discuss how a kinetic description can
be derived from the underlying quantum field theory, and derive the expression
for the elastic scattering rate. We discuss how QCD kinetic theory has been used
to study QCD equilibration in Section 3.5. Finally, we conclude this chapter in
Section 3.6 by discussing and giving more details on how to perform numerical
simulations of QCD kinetic theory.

3.1 validity of qcd kinetic theory

At sufficiently weak coupling (which, in physical terms for QCD, means sufficiently
high energies), QCD admits an effective kinetic description, first formulated by
Arnold, Moore, and Yaffe [19]. Generally, a kinetic description is valid when the
mean free path between collisions (or interactions) is much larger than the duration
of a scattering/collision process, which is treated as instantaneous. Additionally,
the quantum mechanical wave packets corresponding to the particles must be well
describable by classical particles, meaning that the De Broglie wavelength must be
much smaller than the mean free path.

In the weak-coupling picture, this is the case: The extent of typical excitations
with momenta P ∼ T in a thermal system is ∼ 1/T, while the mean free path is
1/(g2T) for small-angle scatterings and 1/(g4T) for large angle scatterings. Since
the formation time for a gluon emission 1/(g2T) is of similar order as the mean free
path between small-angle scatterings, it is required to take the quantum mechanical
interference between different splitting processes into account, leading to the LPM
rate (2.6) with mean free path1 1/(g4T).

While the estimates in the previous paragraph were given for a plasma in thermal
equilibrium, the kinetic description is also valid out of equilibrium, given that
certain conditions are fulfilled [19]. We assume that all particle masses are negligible
with respect to thermal (or effective) masses ∼ gT, which should again be much
smaller than the momenta of “relevant” physical excitations, constituting a scale
separation between the “relevant” excitations and medium-dependent corrections
to dispersive relations or to the inverse Debye screening length. Further required
assumptions are that the distribution functions fs(t, p, x) do not vary significantly

1 This can be seen by using the simple estimate q̂ ∼ g4T3 (see later Chapter 4) in the LPM rate
dΓLPM /dz ∼ g2√q̂/ω from Eq. (2.6).
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over spacetime regions of the formation time tform of near-collinear processes (see
Eq. (2.4)) for the relevant excitations. Furthermore, the distribution functions
should not vary significantly with O(meff,s) ∼ gT changes in momentum, and the
distribution function should not be non-perturbatively large, fs ≪ 1/αs.

3.2 the equations of qcd kinetic theory

The Boltzmann equations for the effective kinetic theory description of QCD have
been formulated in Ref. [19], where all leading-order relevant scattering processes
are taken into account. While next-to-leading order (NLO) corrections have also
been obtained [20], this thesis focuses on the leading order description.

In a kinetic description, the fundamental quantity is the distribution function

fs(t, p, x) = (2π)3
νs

dNs

d3p d3x
, (3.1)

describing the number of particles Ns of species s per phase-space volume. It is
averaged over all νs spin and color states (νg = 2dA = 2(N2

c − 1) for gluons and
νq = 2dF = 2Nc for quarks/antiquarks). Equivalently, we may view the distribution
function fs(t, p, x) as the distribution function for a single species of a particular
color and spin state, which is identical for all νs degrees of freedom.

The distribution functions obey the coupled Boltzmann equations

( ∂

∂t
+ v ⋅ ∇) fs(t, p, x) = −C1↔2

s [ fa(t, p, x)] − C2↔2
s [ fa(t, p, x)], (3.2)

which describe how they change due to elastic (C2↔2) and inelastic (C1↔2) collisions.
The collision terms are local in space x and time t; therefore, their explicit space-time
dependence will be frequently omitted.

The inelastic collision term C1↔2 describes strict collinear splitting (where all
momenta are proportional to a unit vector n̂ = p̂ = p/p), and is given by

C1↔2
a [ fi(p)] = (2π)3

2p2νa
∑
bc
∫ ∞

0
dp′ dk′ δ(p − p′ − k′)γa

bc(p; p′, k′)
× { fa(p)(1± fb(p′p̂))(1± fc(k′p̂)) − fb(p′p̂) fc(k′p̂)(1± fa(p))}
+ (2π)3

p2νa
∑
bc
∫ ∞

0
dp′ dk δ(p + k − p′)γc

ab(p′; p, k)
× { fa(p) fb(kp̂)(1± fc(p′p̂)) − fc(p′p̂)(1± fa(kp̂))(1± fb(p))}.

(3.3)

The upper signs are to be used for gluons (bosons) and the lower signs for quarks
(fermions),

(1± fa(p)) = ⎧⎪⎪⎨⎪⎪⎩1+ fa(p), for gluons, i.e., a = g,

1− fa(p), for quarks, i.e., a = q, q̄
, (3.4)

representing Bose enhancement and Fermi blocking, respectively. The effective
splitting/joining rates γa

bc(p; p′, k) depend on the unit vector n̂ and interpolate
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between the Bethe-Heitler and LPM regime. They were already discussed in the
last Chapter 2.1, but are, for completeness, reiterated here. They are given by

γ
q
qg(p; p′, k) = γ

q̄
q̄g(p; p′, k) = p′2 + p2

p′2 p2k3F n̂
q (p, p′, k), (3.5a)

γ
g
qq̄(p; p′, k) = k2 + p′2

p′3 p3k3F n̂
q (k,−p′, p), (3.5b)

γ
g
gg(p; p′, k) = p′4 + p4 + k4

p′3 p3k3 F n̂
g (p, p′, k), (3.5c)

where

F n̂
s (p, p, k) = dsCsαs

2(2π)3 ∫ d2h(2π)2 2h ⋅ReFn̂
s (h; p′, p, k), (3.6)

and F is the solution to the integral equation

2h = iδE(h; p′, p, k)Fn̂
s (h; p′, p, k) +∫ d2q⊥(2π)2 C̄(q⊥)

× ⎧⎪⎪⎨⎪⎪⎩(Cs − CA

2
)[Fn̂(h; p′, p, k) − Fn̂

s (h − kq⊥; p′, pk)]
+ CA

2
[Fn̂

s (h; p′, p, k) − Fn̂
s (h + p′q⊥; p′, p, k)]

+ CA

2
[Fn̂

s (h; p′, p, k) − Fn̂
s (h − pq⊥; p′, p, k)]⎫⎪⎪⎬⎪⎪⎭.

(3.7)

The vector h is a two-dimensional vector in the plane transverse to the direction of
the splitting particles, n̂. The energy difference δE is given by

δE(h; p′, p, k) = m2
eff,g

2k
+ m2

eff,s

2p
− m2

eff,s

2p′ + h2

2pkp′ . (3.8)

The function C̄(q⊥) = C(q⊥)/CR is the collision kernel stripped of its color factor
and encodes the broadening of hard particles during the splitting process. It can be
represented as a Wightman correlator (see Eqs. (2.15), and Eq. (A.15) in Appendix
A for its definition) of the gluon field generated by the hard particles moving
through the plasma. With an isotropic screening approximation, it can be written
as the difference of the retarded transverse and longitudinal hard thermal loop
propagators evaluated at ω = q∥ = 0 (see Appendix A.5.4),

C̄(q⊥) = g2T∗ ( 1
q2⊥ − 1

q2⊥ +m2
D
) , (3.9)

with the infrared temperature T∗ given by

T∗ = ∑s νs
g2Cs
dA ∫ d3p(2π)3 f (p)(1± f (p))

m2
D

(3.10)
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and with the nonequilibrium Debye mass

m2
D = 2m2

eff,g = ∑
s

4νs
g2Cs

dA
∫ d3p(2π)32∣p∣ fs(p). (3.11)

The effective quark mass of flavor s is given by

m2
eff,s = 2g2CF∫ d3p(2π)22∣p∣ [2 fg(p) + fs(p) + f s̄(p)] . (3.12)

In equilibrium, they are given by

T∗ = T, m2
D = g2T2 (Nc

3
+ n f

6
) , m2

eff,s = N2
c − 1
Nc

g2T2 ( 1
12
+ n f

24
) . (3.13)

The splitting rates γa
bc are symmetric under the exchange of the outgoing particles

γa
bc(p; p′, k) = γa

cb(p; k, p′). (3.14)

The elastic collision term C2↔2 is given by

C2↔2
a [ fi(p)] = 1

4∣p∣νa
∑
bcd
∫

kp′k′ ∣Mab
cd(p, k; p′k′)∣2 (2π)4δ4(P +K − P′ −K′) (3.15)

×{ fa(p) fb(k) [1± fc(p′)] [1± fd(k′)] − fc(p′) fd(k′) [1± fa(p)] [1± fb(k)] }.
Again, the upper signs are to be used for gluons and the lower signs for quarks, as
stated in Eq. (3.4). The Lorentz-invariant integration measure is defined as

∫
k
∶= ∫ d3k(2π)32k

. (3.16)

At leading-order, the required matrix elements are listed in Table 3.1, where s, t,
and u are the usual Lorentz invariant Mandelstam variables, which are given in
terms of the incoming (P, K) and outgoing (P′, K′) momenta,

s = −(P +K)2, t = −(P′ − P)2, u = −(K′ − P)2. (3.17)

Recall that we use the mostly plus metric convention here, see Eq. (1.5). The
Mandelstam variables satisfy the usual relation (for massless particles)

s + t + u = 0. (3.18)

The matrix elements for the elastic collision term obey the symmetries

∣Mab
cd(p, k; p′, k′)∣2 = ∣Mab

dc(p, k; k′, p′)∣2 = ∣Mba
cd(k, p; p′, k′)∣2 = ∣Mcd

ab(p′, k′; p, k)∣2 ,

(3.19)

corresponding to switching the outgoing particles (c↔ d), the incoming particles
(a↔ b), or the incoming with the outgoing particles (ab) ↔ (cd).

In thermal equilibrium, both elastic and inelastic collision terms identically
vanish due to the detailed balance condition. This can be seen easily by including
the thermal distribution functions

f±(k; T) = 1
exp(k/T) ∓ 1

(3.20)

in the collision terms (3.3) and (3.15). The upper sign f+ denotes the Bose-Einstein
distribution (relevant for gluons) and f− the Fermi-Dirac distribution (relevant for
quarks and antiquarks). Note that this label in f± is chosen such that the statistical
factors in (3.4) become (1± f±(p)).
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ab↔ cd ∣Mab
cd∣2 /g4

q1q2 ↔ q1q2,

8 d2
FC2

F
dA
( s2+u2

t2 )q1q̄2 ↔ q1q̄2,
q̄1q2 ↔ q̄1q2,
q̄1q̄2 ↔ q̄1q̄2

q1q1 ↔ q1q1,
8 d2

FC2
F

dA
( s2+u2

t2 + s2+t2

u2 ) + 16dFCF (CF − CA
2 ) s2

tuq̄1q̄1 ↔ q̄1q̄1

q1q̄1 ↔ q1q̄1 8 d2
FC2

F
dA
( s2+u2

t2 + t2+u2

s2 ) + 16dFCF (CF − CA
2 ) u2

st

q1q̄1 ↔ q2q̄2 8 d2
FC2

F
dA
( t2+u2

s2 )
q1q̄1 ↔ gg 8dFC2

F (u
t + t

u) − 8dFCFCA ( t2+u2

s2 )
q1g↔ q1g, −8dFC2

F (u
s + s

u) + 8dFCFCA ( s2+u2

t2 )q̄1g↔ q̄1g

gg↔ gg 16dAC2
A (3− su

t2 − st
u2 − tu

s2 )
Table 3.1: Matrix elements for the elastic collision term (3.15) from [19]. Singly-underlined

denominators indicate infrared-sensitive contributions from soft-gluon exchange,
doubly-underlined denominators from soft-fermion exchange. The constants dF,
CF, dA, and CA are given in Eq. (A.7).
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3.3 medium effects : screening of soft modes

3.3.1 Where screening is needed

In the inelastic collision term, medium effects enter via the collision kernel C̄(q⊥),
opening up the phase space for the effective 1 → 2 splitting and 2 → 1 merging
processes.

For the elastic 2↔ 2 scattering processes2 entering the elastic collision term (3.15),
one needs to calculate the 2→ 2 scattering matrix elements up to the needed order
in perturbation theory, in our case up to leading order. However, it is a well-known
fact in thermal field theory that for a thermal medium, a naïve expansion in loops
is not sufficient, i.e., for instance, the leading order expressions need input from
an arbitrarily high number of loops. This happens when an internal propagator
becomes soft, in which case it has to be resummed using the hard thermal loop
effective theory [163–165], which has been applied to non-thermal media as well
[36, 37, 166, 167].

The most straightforward way to compute the scattering matrix elements with
medium effects included is to reevaluate the matrix elements and replace all
internal propagators with resummed hard thermal loop (HTL) propagators.3 This
is rather cumbersome,4 and Arnold, Moore, and Yaffe [19] propose a different,
leading-order equivalent, way to achieve the same effect. One simply needs to
replace the underlined terms in Table 3.1 by

(s − u)2
t2 → ∣Gµν(P − P′) (P + P′)µ(K +K′)ν∣2 , (3.21a)

u
t
→ 4Re[(P ⋅ Q)(K ⋅ Q)∗] + sQ ⋅Q∗∣Q ⋅Q∣2 , (3.21b)

where the first line is needed for soft-gluon exchanges and the second line is for
soft-quark exchanges. Here, Gµν(Q) denotes the retarded gluon propagator, andQ is defined as Qµ = Pµ − P′µ −Πµ

Ret(P − P′). We will discuss why the retarded
propagator needs to be used in more detail in Section 3.4. Note that when using
the vacuum propagator

G0
µν(Q) = ηµν

Q2 (3.22)

in Eq. (3.21a), the right-hand side reduces to the left-hand side, i.e., for no medium
modifications, we recover the vacuum case. We discuss the motivation for this
replacement and its validity in more detail in the following.

In this thesis, we mainly consider gluons, and in particular, we will only need
the prescription for soft-gluon exchange (3.21a). This can be motivated as follows:

2 This subsection follows the discussion in Ref. [4].
3 Throughout this thesis, we will keep using the phrase hard thermal loops even for systems out of

equilibrium, where other authors have used hard loops instead.
4 For instance, even for the vacuum case, where the gluon propagator is given by Eq. (3.22) instead of

the more complicated HTL propagator (A.41), Peskin and Schroeder note that the cross section for
“gluon-gluon scattering [...] is rather tedious to evaluate” [168].
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First, note that using relation (B.35) between the Mandelstam variables, we may
rewrite the gluon-gluon matrix element from Table 3.1 as

∣M∣2
4λ2dA

= 9+ (t − s)2
u2 + (s − u)2

t2 + (u − t)2
s2 . (3.23)

Using the symmetry of exchanging u and t (corresponding to the exchange of the
external particles with momenta p′ and k′), we may rewrite this to

∣M∣2
4λ2dA

= 9+ 2
(s − u)2

t2 + (u − t)2
s2 . (3.24)

At tree level, which is relevant for the leading-order matrix elements in Table 3.1,
only one internal propagator G appears. Medium corrections to its free form G0

are conventionally encoded in the self-energy (see Appendix A.3), and the full
propagator can be schematically written (when G−1

0 = Q2) as

G(Q) = 1
Q2 +Π(Q) . (3.25)

Thus, the self-energy introduces an effective mass meff. In a (thermal) medium,
this self-energy is proportional to the screening mass scale Π ∼ m2

D = O(g2T2) (see
Eq. (3.11)). Therefore, at leading order, medium effects are only relevant for soft
momenta Q ∼ O(gT).

Using the Mandelstam variables (3.17), it is easy to see that internal soft momenta
correspond to the case5 ∣t∣ = ∣Q2∣ ≪ s, where Qµ = (ω, q) = P′µ − Pµ. This implies
that both ω, q ≪ p, k (see Appendix B.7). Therefore, the small t behavior is the
region of interest for medium modifications, i.e., the region where

0 < −t≪ s ≈ −u. (3.26)

At leading order, the QCD 2↔ 2 scattering matrix elements are spin-independent
for soft momentum exchange (we show that explicitly in Appendix A.6 for elas-
tic quark-quark and gluon-gluon scattering). Therefore, medium effects can be
included as in a theory with fictitious scalar ‘quarks’, which can be regarded as
a generalization of scalar QED. For quark scattering in this fictitious scalar QCD,
the vertex factor is given by −igta(P +K)ν, where P and K are the momenta of the
in- and outgoing quark, g is the coupling constant and ta is a basis element of
the su(Nc) Lie algebra. There are no spinor factors for external legs, and thus the
squared amplitude (without color and coupling factors) is given by

∣M∣2 ∝ ∣(P + P′)µ(K +K′)νGµν(Q)∣2 , (3.27)

which precisely corresponds to the screening prescription (3.21a) (with color factors
reinstated such that for no screening the vacuum case is reproduced). In Ap-
pendix A.6, it is demonstrated that this simple argument using scalar QCD indeed
reproduces the leading order correct prescription for quark and gluon scattering
with soft-gluon exchange.

5 For the small u region, one may always use the symmetry t↔ u to rewrite the matrix element (3.24)
such that only the small t behavior needs to be regulated.



36 qcd kinetic theory

3.3.2 Debye-like screening

Equation (3.21a) is typically implemented in QCD kinetic theory implementations
[21–26, 169, 170] in a very simple approximation. Instead of using the (full) hard
thermal loop (HTL) propagator (Eq. (A.41) in Appendix A), one uses a simple
(isotropic) Debye-like screened propagator [169],

Gµν = ηµν

Q2
q2

q2 + ξ2
g m2

D
, (3.28)

which at the level of the matrix elements corresponds to replacing

(s − u)2
t2 → (s − u)2

t2
q4(q2 + ξ2

g m2
D)2 . (3.29)

The constant ξg = e5/6/√8 is chosen to approximate the HTL propagator in isotropic
systems [169], or—as we will see in Chapters 4 and 6—for longitudinal momentum
broadening. For the soft-fermion diagrams, a similar prescription with a different
constant ξq is used in the literature.

In Ref. [169], the value of ξg is obtained by writing the elastic collision term for
an isotropic distribution function as

C2↔2 = 1
29π5ν ∫ ∞

0
dk ∫ 2π

0
dφqp

×∫ k

−p
dω { f (p) f (k)(1+ f (p +ω))(1+ f (k −ω)) − f (p +ω) f (k −ω)(1+ f (p))(1+ f (k))}

×∫ min(2k−ω,2p+ω)
∣ω∣ dq ∫ 2π

0
dφqk

∣M∣2
p2 .

(3.30)

Since screening effects are only important for soft internal momenta, q, ω ≪ k, p,
we may expand the distribution functions for small ω. The first nonvanishing
term is quadratic in ω since the matrix element is even. Therefore, we can fix the
constant ξg by requiring [169] that in this limit

∫ ∞
−∞ dω ω2∫ ∞

∣ω∣ dq ∫ 2π

0
dφ (∣MHTL∣2 − ∣MDebye1∣2) = 0. (3.31)

This isotropic screening prescription neglects the effect of plasma instabilities
which would otherwise be present in anisotropic systems [34–38, 171]. However,
numerical evidence indicates that these instabilities do not play a dominant role
at the time scales of interest for kinetic theory simulations [42, 43] and when a
quasiparticle picture has become applicable [172–174].

In Chapter 4, we will see that this simple screening prescription does not accu-
rately describe both the longitudinal and transverse broadening of partons and in
Chapter 6, we will compare kinetic theory simulations using this simple Debye-like
screened matrix element to simulations where the HTL matrix element is used.
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3.4 how kinetic theory emerges from quantum field theory

Before going on to discuss QCD thermalization and how to perform QCD kinetic
theory simulations, let us discuss how the Boltzmann equation and, in particular,
the collision terms can be obtained from the underlying quantum field theory.

This procedure, in principle, is well understood [175, 176], but several compli-
cations arise when considering QCD. First, QCD is a gauge theory and one has
to deal with the redundancies that come from the gauge symmetry. Secondly, as
discussed before, 1→ 2 particle splittings (see Chapter 2) occur at a similar rate as
elastic collisions, and thus need to be included in a consistent kinetic description.
We will not consider these complications here in detail, and consider the more
easily accessible case of a scalar theory.

We will mainly follow the presentation laid out in Ref. [177] (similar presentations
with slightly different notation and conventions can be found, e.g., in Refs. [175,
176, 178–181]) and do not attempt to provide a very rigorous derivation here. This
section should be seen as motivating, which physical approximations are needed to
derive kinetic equations and, in particular, motivate why the internal propagators
in the matrix elements of the elastic collision terms are retarded ones. For this
chapter, we will need some of the formalism of nonequilibrium quantum field
theory briefly reviewed in Appendix A.

A typical technique to derive kinetic theory is to start from the Kadanoff-Baym
equations, perform a Wigner transform to phase space and then a gradient expan-
sion, keeping only the lowest-order terms in spatial gradients. Additionally, one
performs the quasiparticle approximation, and the Kadanoff-Baym ansatz [175,
178], where one identifies the Wightman functions with the phase-space distribu-
tion function and the spectral function. The quasiparticle approximation (taking
the width of the spectral function to be zero, effectively replacing it with a delta
function) means physically approximating the lifetime of the (quasi-)particles to be
infinite between collisions, which is needed for any kinetic description to be valid.
This implies that the particles are stable between collisions and can only change
their momentum state (without the inclusion of force terms in the Boltzmann
equation) or decay due to collisions encoded in the collision terms.

3.4.1 Kadanoff-Baym equations

Let us start by discussing the Kadanoff-Baym evolution equations for the propaga-
tor, and how these equations arise from the underlying quantum field theory. For
scalar field theory, let us start with the Lagrangian

L(X) − j(X)φ(X) = −1
2

∂µφ(X)∂µφ(X) − m2

2
φ2(X) −V(φ(X)) − j(X)φ(X), (3.32)

where we have included an external source term with the source j(X). One may
derive the equations of motion for the full propagator by first considering the
equations of motion (using ∂2 = ∂µ∂µ)

−m2φ(X) + ∂2φ(X) = ∂V
∂φ
+ j(X), (3.33)
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and taking the ensemble average ⟨. . . ⟩ (e.g., by using the path integral formalism,
see Eq. (A.10) in Appendix A). One then obtains

(∂2 −m2)(−iG(X, Y)) +∫ d4Z (−iΠ(X, Z))(−iG(Z, Y)) = δ(4)(X −Y), (3.34)

where the full propagator G(x, y) and self-energy Π(x, y) can be defined as the
functional derivatives

−iG(X, Y) = δ⟨φ(X)⟩
δj(Y) , iΠ(X, Y) = δ

δ⟨φ(Y)⟩ ⟨dV
dφ
(X)⟩ . (3.35)

Eq. (3.34) has the nice physical interpretation that the difference between the full
and free propagator is the self-energy Π (see Eq. (A.27) in Appendix A).

Eq. (3.34) can also be obtained on the Schwinger-Keldysh contour (see Appendix
A.2), and it is useful to decompose the full (time-ordered) propagator into the Wight-
man functions G< and G> (see Appendix A.2) and perform a similar decomposition
of the self-energy (see Eqs. (A.32c) and (A.29)),

G(X, Y) = Θ(X0 −Y0)G>(X, Y) +Θ(Y0 −X0)G<(X, Y), (3.36)

Π(X, Y) = −iΠδ(X)δ(4)(X −Y) +Θ(X0 −Y0)Π>(X, Y) +Θ(Y0 −X0)Π<(X, Y).
(3.37)

Inserting this decomposition into (3.34) and neglecting6 terms depending on the
initial time t0, we obtain the Kadanoff-Baym equations

(∂2
X −m2 −Πδ(X))G>(X, Y) = i∫ ∞

−∞ d4Z (ΠR(X, Z)G>(Z, Y) +Π>(X, Z)GA(Z, Y)) ,

(3.38a)(∂2
X −m2 −Πδ(X))G<(X, Y) = i∫ ∞

−∞ d4Z (ΠR(X, Z)G<(Z, Y) +Π<(X, Z)GA(Z, Y)) ,

(3.38b)(∂2
Y −m2 −Πδ(X))G>(X, Y) = i∫ ∞

−∞ d4Z (G>(X, Z)ΠA(Z, Y) +GR(X, Z)Π>(Z, Y)) ,

(3.38c)(∂2
Y −m2 −Πδ(X))G<(X, Y) = i∫ ∞

−∞ d4Z (G<(X, Z)ΠA(Z, Y) +GR(X, Z)Π<(Z, Y)) .

(3.38d)

These equations are exact, but only useful if we know the exact form of the
self-energies. In practice, truncating the self-energy at some point constitutes an
approximation here.

3.4.2 Wigner transform

The next step is to perform a Wigner transform

f (X, Y) ↦ f̃ (X̄, P), (3.39)

6 This is justified for initial times in the remote past [175, 177].
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which consists of a coordinate transformation to relative and central coordinates,

Sµ = Xµ −Yµ, X̄µ = Xµ +Yµ

2
, (3.40)

and then performing a Fourier transform with respect to the relative coordinate S,

f̃ (k, X̄) = ∫ d4S e−IK⋅S f (X(S, X̄), Y(S, X̄)) . (3.41)

Taking the difference of Eqs. (3.38a) and (3.38c) leads to expressions

∂2
X − ∂2

Y = 2∂S ⋅ ∂X̄, Πδ(X) −Πδ(Y) = −(S ⋅ ∂X̄)Πδ(X̄). (3.42)

Importantly, the Wigner transform of a general convolution such as those on the
right-hand side of Eqs. (3.38) is [181]

∫ d4Z A(X, Z)B(Z, Y) ↦ e
i
2 (∂A

X̄ ⋅∂B
P−∂A

P ⋅∂B
X̄)Ã(X̄, P)B̃(X̄, P)

= Ã(X̄, P)B̃(X̄, P) + i
2
{Ã(X̄, P), B̃(X̄, P)}PB + . . . ,

(3.43)

where {A, B}PB = ∂P A ⋅ ∂X̄B− ∂X̄ A ⋅ ∂PB denotes the Poisson bracket. The Boltzmann
equation is obtained by next expanding in gradients of ∂X̄. Using identities from
Appendix A.4, we obtain

(−2Kµ + ∂ReΠ̃(K, X̄)
∂Kµ

) ∂G̃>(K, X̄)
∂X̄µ

− ∂ReΠ̃(K, X̄)
∂X̄µ

∂G̃>(K, X̄)
∂Kµ−{Π̃>(K, X̄), ReG̃R(K, X̄)}PB = −(G̃>(K, X̄)Π̃<(K, X̄) − Π̃>(K, X̄)G̃<(K, X̄)) ,

(3.44)

where we have defined ReΠ̃(K, X̄) = Πδ(X̄) +ReΠ̃R(K, X̄).
3.4.3 Quasiparticle approximation

Using the quasiparticle approximation,

ρ̃(K, X̄) = 2πsign(K0)δ(−K2 −M2 −ReΠ̃(K, X̄))g(K) = 2πsign(K0)δ(K2
0 − E2

k)g(K),
(3.45)

we enforce the particles to be stable between collisions, which was one of the
requirements for kinetic theory listed in the beginning. With this approximation,
one may also neglect the Poisson bracket in Eq. (3.44) [177]. We have included here
an additional function g(Q), which is unity, g(Q) ≡ 1, in our case of scalar particles,
but for gluons reads g(Q) = −ηµνδab and for fermions g(Q) = /Q +m.

The distribution function is introduced via the Kadanoff-Baym ansatz [175, 178],

G̃<(K, X̄) = ρ̃(K, X̄)Ñ(K, X̄), G̃>(K, X̄) = ρ̃(K, X̄)[1+ Ñ(K, X̄)], (3.46)

which is true in thermal equilibrium when inserting the Bose-Einstein distribution
(3.20) [177], and is used as the definition of the distribution function out of equi-
librium. Together with the quasiparticle approximation, the off-shell distribution
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function Ñ(K, X̄) can be brought on-shell, using Ñ(K, X̄) = −(1+ Ñ(−K, X̄)) from
Eqs. (A.37) and (A.38)),

G̃<(K, X̄) = 2πδ(K2
0 − E2

k(X̄)) (Θ(K0) f (k, X̄) +Θ(−K0) (1+ f (−k, X))) , (3.47a)

G̃>(K, X̄) = 2πδ(K2
0 − E2

k(X̄)) (Θ(K0) (1+ f (k, X̄)) +Θ(−K0) f (−k, X̄)) , (3.47b)

with the on-shell distribution function

f (k, X̄) = Ñ(K0 = Ek, k, X̄). (3.48)

The splitting in Eq. (3.47) is done to enforce the K0 component in (3.48) to be always
positive.

We can then integrate Eq. (3.44) over (positive) K0 to bring the distribution
function on-shell and arrive at

(∂t̄ + k
Ek(X) ⋅ ∂x̄ − ∂x̄Ek(X̄) ⋅ ∂k) f (k, X̄)
= − 1

2Ek(X̄) ((1+ f (k, X̄))Π<E(k, X̄) −Π>E(k, X̄) f (k, X̄)) ,
(3.49)

which has the correct structure to compare with the Boltzmann equation (3.2). Note
that v = k/Ek. Here, we can identify the gain and loss term, where the loss term is
given by Π>E(k, X) and multiplied by the distribution function f (k, X̄). Here, the E
in Π>E(k, X) defines the on-shell self-energy, i.e.,

Π>E(k, X̄) = Π̃>(K0 = Ek, k, X̄). (3.50)

To recapitulate, the only approximations to arrive at this equation were the
gradient expansion and the quasiparticle approximation, together with setting the
initial time t0 in the remote past. Using this, we were able to derive a Boltzmann
equation for the distribution function f (k, X̄). The next step is to evaluate the
self-energies Π> and Π< in terms of the distribution function f (k, X̄), i.e., to write
it in terms of degrees of freedom for which we again may use the quasiparticle
approximation.

3.4.4 Decay rate

Let us focus here on the decay rate (or the loss term) given by Π>E. The gain term
can be obtained similarly by replacing >↔<.
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Cutting rule for the self-energy

For the self-energy Π̃
<>, there exists a convenient cutting rule (see [182, 183]),

Π̃>(K) = ∑
n

1
n!
⎛⎝ n∏

j=1
∫ d4Qj(2π)4⎞⎠(2π)4δ4(Q1 + ⋅ ⋅ ⋅ +Qn −K)

×Mar...r(P; Q1, . . . , Qn)Mar...r(−P;−Q1, . . . ,−Qn)× G̃>(Q1) . . . G̃>(Qn)
(3.51)

= ∑
n K

Q1

Q2

Qn

⋮ ⋮ , (3.52)

whereMar...r are fully retarded amplitudes, i.e. they represent a matrix element with
exactly one a-index in the r/a basis (see Appendix A.2). The sum runs over all the
propagators G̃>(Q1) . . . that are inserted between the two diagrams, or equivalently,
over all the lines that are cut and then replaced by G̃>(Q1) . . . . For particles with
spin or color, the additional indices are summed over (e.g., consider an index in
the amplitudeMar...r to belong to one momentum Qi; then the propagator with Qi
carries the same index and connects it to the corresponding index in the conjugate
amplitudeM∗

ar...r).

Self-energy for pure gluons

Let us now consider7 the gluon self-energy in a purely gluonic system, which
appears in the loss term in the Boltzmann equation (3.49), and use the cutting rule
to obtain it. For that, let us consider a specific term appearing in the self-energy for
pure gluons, the term where three internal lines are cut according to the cutting
rule (3.51),

δahησϵΠ>σϵ
ah(P) ∋ 1

6 ∫ d4Q1 d4Q2 d4Q3(2π)12 (3.53)

× G̃>αµ
gd(Q1)G̃>βν

eb(Q2)G̃>γρ
f c(Q3)(2π)4δ4(Q1 +Q2 +Q3 − P)

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ, a ν, b

ρ, c

µ, d
Q1

Q2

Q3

P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϵ, h β, e

γ, f

α, g
Q1

Q2

Q3

P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗

.

7 A similar discussion was included in my diploma thesis [184].
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The arrows denote (retarded) propagators in the r/a basis (see Appendix A.2).

Let us bring this expression into a more convenient form. With the Kadanoff-
Baym ansatz (3.46), and the quasiparticle approximation (3.45) with g(Q) = −ηµνδab
for gluons, the Wightman functions G̃> can be written using (3.47b) as

G̃>µν
ab(Q) = −2πηµνδab 1

2Eq
[δ(Q0 − Eq)(1+ f (q)) + δ(Q0 + Eq) f (−q)]. (3.54)

Due to rotational symmetry, Eq = E−q. Inserting this for the gluonic propagators
in (3.53), we can write the two diagrams as the squared amplitude, where we take∣M∣2 to be summed over all initial and final polarizations and colors.

∣M∣2 = ηαµηβνηγρησϵδahδgdδebδ f c

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ, a ν, b

ρ, c

µ, d
Q1

Q2

Q3

P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϵ, h β, e

γ, f

α, g
Q1

Q2

Q3

P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗

=
����������������������������������� Q1

Q2

Q3

P

�����������������������������������

2

, (3.55)

with the corresponding legs contracted and summed over all colors (and polariza-
tions).
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The Q0 integrals in (3.53) can now be performed, where for every D̃> the delta
function removes the Q0 integral and yields two terms according to (3.54),

1
6 ∫ d3q1 d3q2 d3q3(2π)92Eq12Eq22Eq3

(2π)4δ3(q1 +q2 +q3 − P) ∣M∣2
×{δ(Eq1 + Eq2 + Eq3 − Ep) [(1+ fq1)(1+ fq2)(1+ fq3)]+ δ(−Eq1 + Eq2 + Eq3 − Ep) [ f−q1(1+ fq2)(1+ fq3)]+ similar with q1 ↔ q2, q1 ↔ q3+ δ(−Eq1 − Eq2 + Eq3 − Ep) [ f−q1 f−q2(1+ fq3)]+ similar with q2 ↔ q3, q1 ↔ q3

δ(−Eq1 − Eq2 − Eq3 − Ep) [ f−q1 f−q2 f−q3] }

(3.56)

= 1
6 ∫ d3q1 d3q2 d3q3(2π)92Eq12Eq22Eq3

(2π)4 ∣M∣2
×{ δ4(Q1 +Q2 +Q3 − P)∣(Qi)0=Eqi

[(1+ fq1)(1+ fq2)(1+ fq3)]+ δ4(−Q1 +Q2 +Q3 − P)∣(Qi)0=Eqi
[ fq1(1+ fq2)(1+ fq3)]+ similar with q1 ↔ q2, q1 ↔ q3+ δ4(−Q1 −Q2 +Q3 − P)∣(Qi)0=Eqi
[ fq1 fq2(1+ fq3)]+ similar with q2 ↔ q3, q1 ↔ q3

δ4(−Q1 −Q2 −Q3 − P)∣(Qi)0=Eqi
[ fq1 fq2 fq3] }.

(3.57)

For particles with an (effective) mass, energy-momentum conservation can only
be fulfilled for the second delta function.

We thus obtain

δahησϵΠ>σϵ
ah(P) 3 lines= 1

2 ∫ d3q1 d3q2 d3q3(2π)92Eq12Eq22Eq3

(2π)4 ∣M∣2
× δ4(−Q1 +Q2 +Q3 − P)∣(Qi)0=Eqi

[ fq1(1+ fq2)(1+ fq3)] .
(3.58)

From the self-energy Π>, we can now easily obtain the decay rate of an excitation
with momentum P using the Boltzmann equation (3.49) with the normalization
1/(2Ep). Taking the trace over all colors and spins in Eq. (3.53) leads to the sum of
all νg excitations. Additionally, we only considered three cut propagators, which
corresponds to elastic processes (2 particles going in, 2 particles going out). Thus,
the elastic decay or scattering rate of a particle with momentum P is

Γel = 1
4pνa

∑
bcd
∫

kp′k′(2π)4δ4(P +K − P′ −K′) (3.59)

× ∣Mab
cd(p, k; p′, k′)∣2 fb(k) [1± fd(k′)] [1± fc(p′)] .

Here, we have used Ep = ∣p∣ = p, and generalized this equation to include also
quarks. Eq. (3.59) describes the decay rate or scattering rate of a particle of species
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a with momentum p due to elastic collisions p + k → p′ + k′. The sum is over all
possible scattering processes including particles b, c and d.

We will use this equation (3.59) in the next Chapter 4 as a starting point to obtain
the jet quenching parameter q̂.

3.4.5 Relation to the Boltzmann equation

Comparing with the elastic collision kernel in QCD kinetic theory, we recognize
that Eq. (3.59) constitutes exactly the contribution to the elastic collision kernel
Eq. (3.15) from the decay rate. The gain term can be computed in a similar way.

For the inelastic collision kernel (3.3), evaluating the self-energy using the tech-
niques from the previous sections is more complicated because one has to take
into account the physics of LPM suppression. However, using the radiation rate γ

from Section 2.2 as an effective vertex, we can use the cutting rule (3.51) with two
internal cut lines to arrive at (3.3), similar to the steps taken here.

3.5 what we know about qcd equilibration

As mentioned in the introduction, understanding and simulating how an equili-
brated quark-gluon plasma is formed in heavy-ion collisions is an active research
area. While for the very earliest times after the collision, classical statistical simula-
tions need to be performed [13], we will focus here on studies and considerations
using QCD kinetic theory, which can describe how an over-occupied system (pos-
sibly taken from an earlier classical statistical simulation) equilibrates. While
analytic and parametric estimates exist [38, 159, 185, 186], numerical studies have
been performed using QCD kinetic theory in isotropic systems [21, 22, 187], and
also including quarks and nonzero chemical potential [23–26]. A review on QCD
thermalization can be found, e.g., in [13, 158].

3.5.1 Thermalization of isotropic systems

For initially over-occupied systems (right panel of Fig. 3.1), where f ≫ 1, but still
f ≪ 1/αs for kinetic theory to be applicable, the initial energy is carried by a large
number of soft particles. There, the initial evolution quickly falls on top of a scaling
solution, which is referred to as a non-thermal fixed point,

f (t, p) = (Qt)α fS ((Qt)β p
Q
) . (3.60)

Conservation laws relate the exponents α and β. For instance, energy conservation

ε(t) = ∫ d3p(2π)3 p f (p) = const, (3.61)

implies the relation

α = 4β. (3.62)
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Figure 3.1: Thermalization of isotropic nonabelian plasmas at NLO for an under-occupied
(left) and over-occupied (right) initial condition. Figure from [187].

With a more rigorous analysis considering how the Boltzmann equation behaves at
the scaling solution, one obtains further α = −4/7, β = −1/7.

This self-similar evolution breaks down once the condition f ≫ 1 is no longer
satisfied. The thermalization time can be easily obtained by noting that we start
with an initial energy density ε ∼ Q4/αs, which leads to a final temperature T ∼
Qα
−1/4
s ≫ Q. The self-similar evolution ends, once the hard scale in the distribution

function Q(Qt)−β ∼ T, which leads to

ttherm. ∼ 1
α2

s T
. (3.63)

In this regime, classical statistical simulations and kinetic theory simulations
are both valid and detailed analysis between both approaches has shown their
equivalence [169].

For initially under-occupied systems (left panel of Fig. 3.1), the total energy is
concentrated at a small number f0 ≪ 1 of very hard particles of momentum Q,
such that T ≪ Q. These hard particles emit soft gluons which form a soft thermal
bath. After such a bath has formed, the remaining hard particles of momentum
Q thermalize by democratic splitting Q → Q/2+Q/2. The formation time tform of
such a splitting is given by Eq. (2.4), tform ∼ √ω/q̂. Since this scales with the energy
of the emitted gluon ω ∼ Q, the formation time is long and the splitting takes place
in the LPM regime. Taking the LPM rate from Eq. (2.6), the number of emitted
gluons above a frequency ω can be estimated to be (see also [98])

ΔN(ω) = ∫
ω

dω ′∫ t

0
dt′ dΓ

dω
∼ αst

√
q̂
ω

. (3.64)

If we assume that the system thermalizes once the first democratic splitting with
ω ≈ Q/2 has occurred, we can define the thermalization time when the number of
emitted gluons is of order unity, i.e., we consider ΔN(Q) ∼ 1 and take t ∼ ttherm..
We then obtain

ttherm. ∼ 1
αs

TSSRQ
q̂

. (3.65)
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Assuming8 q̂ ∼ α2
s T3, we obtain

ttherm. ∼ 1
α2

s T

√
Q
T

, (3.66)

3.5.2 Thermalization of expanding systems

In expanding and, thus, anisotropic systems, the appearance of plasma instabilities
[34–37, 133, 188–196] complicates the picture (see also the review [39]), but it has
been observed in classical simulations that they do not play a significant role at
least at the early times where these simulations are valid [42, 43]. We will, therefore,
not consider the effect of these plasma instabilities here.

How expanding systems thermalize has been worked out by Baier, Mueller,
Schiff, and Son about 25 years ago [185]. Starting from an overoccupied initial
condition f ∼ 1/λ which should be obtained from classical statistical simulations of
the earlier dynamics, quasiparticles and a kinetic description become applicable at
a time scale of around τ ∼ 1/Qs. At this time, the (hard) gluons have momenta of
order Qs. While the system is dominated by rapid expansion, the interaction of the
hard particles leads to the emission of soft gluons.

When the occupancy drops below 1/λ (star marker in Fig. 3.2), the plasma
becomes under-occupied and a classical description is no longer applicable. While
the anisotropy stays roughly constant, a soft bath is built by further branching,
which thermalizes first. A significant amount of the total energy is still carried by
the remaining small number of hard gluons, which, in the third stage, lose energy
through multiple hard branchings, until equilibrium is reached at a time that is
parametrically given by

τBMSS = α
−13/5
s /Qs. (3.67)

8 We will obtain a more precise expression for the jet quenching parameter q̂ in Chapter 4. For now, as a
simple estimate, we may take q̂ = ∫ d2q⊥ q2⊥dΓel /d2q⊥ , which for dimensional reasons is proportional
to T3 and we obtain a factor α2

s from the matrix elements for the scattering rate (3.59) from Table 3.1.
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A simple estimate for this thermalization time can be given following Ref. [21]
by noticing that the physical picture for thermalization is as in the under-occupied
isotropic case and taking the energy density to be as in a simple free streaming
expansion

ε(τ) ∼ Q3
s

αsτ
, T(τ) ∼ ( Q3

s
αsτ
)1/4

. (3.68)

Combining this with Eq. (3.66), we obtain

τtherm = 1
α2

s T(τtherm)
√

Qs

T(τtherm) = α
−13/5
s /Qs. (3.69)

The physical picture of bottom-up thermalization is quite robust and is also seen
in simulations solving the Boltzmann equation (3.2) in diffusion approximation
[197–199].

3.6 performing qcd kinetic theory simulations

This thesis relies heavily on QCD kinetic theory simulations. In this section, all
concepts needed for performing these numerical simulations are introduced. The
code used for the publications [1–3] is publicly available [170]. We will discuss
how the Boltzmann equation (3.2) is solved, what initial conditions are used, how
observables are calculated, and conclude with discussing discretization effects.

3.6.1 Symmetries of the distribution function

Throughout the thesis, we will consider the distribution function to be a function
of only three parameters: f (t, p, x) = f (τ, p, cos θp), i.e., the proper time τ, the
magnitude of the momentum p, and its angle to the beam axis θp, which we
motivate now.

1. First, we assume that the system is boost invariant [200], i.e., the distribution
function only depends on the rapidity difference f̃ (τ, p, y − η) for momenta P
and spacetime X,

Pµ = p(cosh y, v̂⊥, sinh y) = (p, p⊥, pz), (3.70a)

Xµ = (τ cosh η, x⊥, τ sinh η) = (t, x⊥, z). (3.70b)

A boost with rapidity η′ would shift y → y + η′, η → η + η′, thus leaving the
distribution function f invariant. It is then enough to consider the system at
z = η = 0.

2. Further, we assume homogeneity in the transverse plane, i.e., the distribution
function does not depend on x⊥. This is justified for large and homogeneous
colliding nuclei.

3. Additionally, we assume rotational symmetry around the beam axis, i.e., in
the transverse plane,

f (k, cos θk, φk + α) = f (k, cos θk, φk), ∀α ∈ [0, 2π), (3.71)
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which is justified by assuming that the initial particle production is isotropic,
with only the longitudinal expansion singling out one preferred direction.

4. Mirror symmetry around z = 0 in symmetric collisions,

f (k, cos θk, φk) = f (k,− cos θk, φk). (3.72)

With all these assumptions, at z = η = 0, the distribution function can be written as

f (t, p) = f (τ, p, pz) = f (τ, p, cos θp). (3.73)

Mathematically, we employ here a sloppy notation using the same symbol f for
f (τ, p, pz) = f (τ, p, cos θp). Additionally, the time argument will be sometimes
suppressed.

At nonzero z or spacetime rapidity η, the distribution function can be ob-
tained from f (τ, p, cos θp) by using (3.70), f̃ (τ, p, y) = f (τ, p, tanh y) and by boost-
invariance,

f̃ (τ, p, y − η) = f (τ, p, tanh(y − η)). (3.74)

Using these symmetries, the spatial derivative in the Boltzmann equation (3.2)
can be rewritten (at η = z = 0) to [200]

v ⋅ ∇x f (τ, p, z) = − pz

τ

∂

∂pz
f (τ, p, pz), (3.75)

and represents the effective longitudinal Bjorken expansion. Besides that, we will
sometimes also consider isotropic distribution functions f (p) without Bjorken
expansion, for which v ⋅ ∇x f (τ, p, z) = 0.

3.6.2 Boltzmann equation and initial condition

With the approximations mentioned in the previous section, the Boltzmann equation
(3.2) for a purely gluonic system is then given by

( ∂

∂τ
− pz

τ

∂

∂pz
) f (τ, p) = −C1↔2[ f (τ, p)] − C2↔2[ f (τ, p)], (3.76)

with the collision kernels C1↔2 and C2↔2 containing inelastic and elastic collisions
described in more detail in Section 3.2. For the spatial derivative, we have already
inserted the boost-invariant expansion term (3.75), which is not present for the
isotropic nonexpanding simulations also performed in this thesis. If present, this
expansion term accounts for the effective longitudinal Bjorken expansion of the
system.

As an initial condition, ideally, we would take at some time, e.g., τ0 = 1/Qs

[185], the full lattice configuration obtained in a classical statistical simulation
of the Glasma, extract a gluon distribution function (perhaps using the methods
discussed in Section 3.4, or as, e.g., done in Refs. [64, 201, 202]) and use this as
input for our kinetic theory simulation. While performing this matching seems
feasible in principle, for this thesis, we follow the approach and initial conditions
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ξ0 A
2 0.96789
4 2.05335
10 5.24171

Table 3.2: Parameter choices for the initial condition (3.77) for different anisotropy parame-
ters ξ0 that leave the initial energy density constant.

from Ref. [22], where a parameterization of the JIMWLK evolved (2+1D) Glasma
result from Ref. [203] is used,

f (p⊥, pz, τ=1/Qs) = 2A(ξ0)⟨pT⟩
λ pξ

exp
⎛⎝− 2p2

ξ

3⟨pT⟩2⎞⎠ , (3.77)

with pξ = √p2⊥ + (ξ0 pz)2 and ⟨pT⟩ = 1.8Qs. Different parameter choices for the
initial anisotropy parameter ξ0 and the normalization constant A are given in
Table 3.2, which are chosen to keep the initial energy density constant for varying
anisotropies. Here, the pz dependence is obtained by “de”-squeezing the transverse
momentum p⊥ →√p2⊥ + ξ2 p2

z . Recall that the ’t Hooft coupling λ is defined via

λ = g2Nc = 4πNc αs . (3.78)

To give results in physical units, one has to choose a value for the saturation
momentum Qs. For most of this thesis, we will not choose any particular value
and discuss the results in units of Qs. However, in Section 4.3 (which is based on
Ref. [1]), we will attempt to make a comparison to the value of the jet quenching
parameter q̂ during the Glasma stage, for which we need to choose a value of Qs.
There, the saturation momentum Qs is chosen to reproduce the energy density of
the Glasma in Ref. [153] at initial time Qsτ = 1 at the coupling λ = 10, which leads
to Qs = 1.4 GeV. Remarkably, the same value is also obtained in Ref. [204], where it
was found that precisely this value is needed for the EKT setup to be consistent
with the later hydrodynamic evolution. We will discuss this matching in more
detail in Section 4.1. Additionally, one could also proceed as in Ref. [157], where
coupling and saturation momentum Qs are related via the one-loop beta function
of QCD,

αs(Qs) = λ(Qs)
4πNc

= 1
33−3n f

12π ln Q2
s

Λ2
QCD

, (3.79)

to obtain for n f = 0 and Qs = 1.4 GeV approximately λ ≈ 11 for ΛQCD = 200 MeV,
thus leading to a value in the same ballpark. It should be emphasized, however,
that this matching is meant to serve as an estimate for which value of Qs to choose,
and is needed to provide numerical values in physical units.



50 qcd kinetic theory

3.6.3 Observables and Landau matching

We define the expectation value of an observable O(p, t) for a given distribution
function f (p, t) via

⟨O(t)⟩ = νg

n(t) ∫ d3p(2π)3 O(p, t) f (p, t), (3.80)

which is normalized by the particle number density

n(t) = νg ∫ d3p(2π)3 f (p, t), (3.81)

such that ⟨1⟩ = 1.
An important class of such observables are the components of the energy-

momentum tensor,

Tµν = νg ∫ d3p(2π)3 pµ pν∣p∣ f (p), (3.82)

whose diagonal entries correspond to the energy density ε = T00 = n⟨p⟩,
ε = νg ∫ d3p(2π)3 ∣p∣ f (p), (3.83)

transverse pressure PT = Txx = Tyy and longitudinal pressure PL = Tzz. Since QCD
kinetic theory is conformal, Tµν must be traceless, which leads to ε = 2PT + PL. For
an isotropic system, PL = PT = ε/3.

We will frequently compare the nonequilibrium system (described by the dis-
tribution function f (p, t)) to a corresponding thermal system. This comparison is
not unique. While a thermal system is uniquely identified by its temperature, for a
nonthermal system, temperature cannot be uniquely identified. A common way
to do that is to use the Landau matching prescription, where the energy density
ε is used to define an effective temperature Tε as the temperature of the thermal
system which has the same energy density as the nonthermal system,

Tε(t) = (30 ε(t)
νgπ2 )1/4

. (3.84)

Matching other quantities is also possible, and the best matching prescription
may depend on the observable. For instance, in Ref. [7], several matchings were
considered for the heavy-quark diffusion coefficient κ, and Landau matching (3.84)
provided the best results.

3.6.4 Time markers and time scales

As discussed above, for plasmas undergoing Bjorken expansion, thermalization
occurs in several stages according to the bottom-up picture. To better identify the
different stages in the results and plots, we introduce time markers that should
roughly correspond to the boundaries between the different stages, which we
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Figure 3.3: Pressure ratio in QCD kinetic theory simulations with Debye-like screened
matrix elements. The first-order hydrodynamic expression (3.86) is shown as a
red dotted curve and the ideal hydro expectation (unity) as a constant line.

can best see in Fig. 3.2. The star and circle markers are related to the occupancy⟨p f ⟩/⟨p⟩, with the star placed where it first drops below 1/λ and the circle placed
at its minimum value. Finally, the triangle marker is placed when the pressure
ratio PT/PL = 2, and corresponds to a system that has almost isotropized.

We will frequently rescale the time in units of the bottom-up thermalization
estimate (3.67),

τBMSS = α
−13/5
s /Qs = ( λ

4πNc
)−13/5 /Qs . (3.85a)

Additionally, we will also frequently use the relaxation time,

τR(τ) = 4πη/s
Tε(τ) , (3.85b)

which depends on the shear viscosity η over entropy density s, and the effective
temperature Tε defined in Eq. (3.84). It is the only time scale that appears in
first-order hydrodynamics. For instance, there the pressure ratio [46] is given by

PL

PT
= 1− 2

π

τ

τR
. (3.86)

Note that the dimensionless ratio η/s depends on the coupling λ. It has been
calculated from perturbative QCD [205, 206], but in practice, for using it in QCD
kinetic theory simulations, it is extracted numerically [23, 27, 28, 56]. We will
discuss how this ratio can be extracted in more detail in Chapter 6.

In Fig. 3.3, we show the pressure ratio obtained from QCD kinetic theory simu-
lations at various couplings and how it approaches the first order hydrodynamic
result (3.86). Additionally, we also show the ideal hydrodynamic estimate, where
PL = PT = ε/3. This shows that QCD kinetic theory approaches hydrodynamics at
late times. In fact, kinetic theory is more general than hydrodynamics, and the
hydrodynamic equations of motion can be obtained from kinetic theory [207, 208].
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Figure 3.4: Debye mass over its thermal value gTε during kinetic theory simulations of
expanding systems for different couplings. As a dotted line, we show the pmin
corrected Debye mass from Eq. (3.87).

3.6.5 Extrapolating EKT to large couplings

Although QCD kinetic theory is only valid at weak couplings, it is often extrap-
olated to larger values of the coupling, where no first-principle fully dynamical
simulation of QCD is possible. There, using the Boltzmann equations and QCD
kinetic theory should be viewed as a (mathematically well-defined) model for QCD
equilibration. Its study using these larger couplings may nevertheless provide
useful phenomenological insights into QCD equilibration and hydrodynamization
in heavy-ion collisions. Since the Debye mass mD is proportional to the coupling,
the naïve extrapolation λ →∞ leads to mD →∞, and thus the screened t-channel
small-angle-scattering terms in the matrix element (6.20a) vanish and only the
s-channel and constant parts remain. Therefore, at sufficiently large couplings,
differences in the screening prescription should become less important, albeit in a
regime outside of any theoretical control.

3.6.6 Numerical details and discretization artifacts

The implementation used in this thesis is based on Refs. [21, 22, 169] and is publicly
available [170]. The distribution function f (τ, p) is stored on a finite momentum
grid, with pmin ≤ p ≤ pmax. The collision kernels, which consist of several integrals,
are evaluated using Monte Carlo methods. The numerical algorithm is constructed
in such a way that energy and momentum are exactly conserved. More details on
the discretization and on how the collision kernels are evaluated can be found in
Appendix B.

Let us now focus on one aspect which is independent of the precise discretization
and evaluation of the collision kernels, which is having a nonzero pmin and finite
pmax. This will have the effect that any observable (3.80) will have discretization
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artifacts. For instance, even for a thermal distribution, the Debye mass mD obtained
from Eq. (3.11) for a nonzero pmin is given by [7]

m2
D(pmin) = 8λ(2π)2 ∫ ∞

pmin
dp p f+(p) = 2λT (TLi2 (e− pmin

T ) − pmin log (1− e−pmin/T))
π2 .

(3.87)

Moreover, if we simulate an expanding system, all characteristic timescales will
decrease; thus, discretization effects, and in particular pmin > 0 effects, will have
increased importance over time. This is demonstrated in Fig. 3.4, where the Debye
mass obtained from Eq. (3.11) over its thermal value gTε is plotted. At late times,
the ratio deviates significantly from unity. The dotted lines are the pmin corrected
expression for the Debye mass (3.87), and agree very well with the results from
the nonequilibrium simulation. This demonstrates that finite pmin effects are the
leading discretization effect for the Debye mass.

In Appendix B, we discuss in more detail the precise discretization used and
how the collision terms are evaluated, including the coordinate system used for the
integration in the elastic collision term.





4
M O M E N T U M B R O A D E N I N G O F J E T S

The most straightforward aspect of jet-medium interactions to study is jet momen-
tum broadening, in particular, characterized by the jet quenching parameter q̂ from
Eq. (1.4). The physical picture is that of a highly energetic parton (e.g., a quark for
a quark-jet) moving through the quark-gluon plasma and receiving (random) mo-
mentum kicks from the plasma constituents. This parameter is not only interesting
on its own but is also used as input to calculate jet energy loss by medium-induced
gluon emission in the harmonic approximation (see Eq. (1.3)). In this chapter, we
address how the jet quenching parameter q̂ can be obtained in a nonequilibrium
plasma of quarks and gluons. Results are presented for thermal equilibrium and
simple (toy) models (scaled thermal distributions and effectively two-dimensional
distributions). Finally, we conclude this chapter with the extraction of q̂ using QCD
kinetic theory simulations of the initial stages in heavy-ion collisions and compare
the extracted values with numerical simulations of the previous Glasma stage.

This chapter is based on Refs. [1, 2].

4.1 obtaining the jet quenching parameter in qcd kinetic theory

4.1.1 Relation of jet quenching parameter and scattering rate

Let us consider an energetic parton with a large but finite momentum p, which
should be much larger than all other relevant momentum scales in the plasma.
This plasma of quarks and gluons will be far from equilibrium during the initial
stages in heavy-ion collisions, so we generalize the definition (1.4) to account for
momentum broadening in different directions,

q̂ij(p) = ∫ d3q qiqj dΓel

d3q
, (4.1)

and, in particular, have also included the possibility of longitudinal momentum
broadening, i.e., broadening along the direction of the propagation of the jet.

For the total transverse momentum broadening coefficient q̂, we need to sum
over the directions perpendicular to the jet direction. If we consider the jet to be
moving in the x-direction, we obtain the usual jet quenching parameter

q̂ = q̂yy + q̂zz , (4.2)

55
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which measures the average transverse momentum transfer squared to the jet
parton per unit time. Additionally, we can also consider longitudinal momentum
broadening, i.e., momentum broadening in the direction of the jet,

q̂L = q̂xx. (4.3)

Let us recall the expression for the elastic scattering rate, Eq. (3.59), which was
derived in Section 3.4.4,

Γel = 1
4pνa

∑
bcd
∫

kp′k′(2π)4δ4(P +K − P′ −K′)
× ∣Mab

cd(p, k; p′, k′)∣2 fb(k) [1± fd(k′)] [1± fc(p′)] , (4.4)

and which we need as input for q̂ using Eq. (4.1). The sum is over all possible
scattering processes. It describes the rate of a particle of species a with momentum
p being scattered out of its momentum state due to elastic collisions p + k → p′ + k′.
The expression is completely symmetric under the exchange of the outgoing
particles p′ ↔ k′ and c↔ d, as it should be. However, including qiqj as in Eq. (4.1)
breaks this symmetry. Effectively, we need to choose with respect to which outgoing
particle we measure the transferred momentum. We choose here to define the
harder outgoing particle to be the jet particle and label it c with momentum p′,
which is consistent with other studies, e.g., [20, 101, 102, 118]. In particular, this
definition arises naturally if one thinks of q̂ as a diffusion coefficient (with small
momentum transfer), and amounts to defining

q = p′ −p. (4.5)

With this choice, we may relabel our momenta such that p′ > k′, which leads to
an additional factor of 2.1 This will lead to more matrix elements than those from
Table 3.1, since processes with the external outgoing particles switched are treated
symmetrically there. For instance, qg ↔ gq and qg ↔ qg have the same matrix
element in Ref. [19] while we need to explicitly distinguish them here. We will
discuss this new complication in more detail and list the required matrix elements
explicitly in Table 4.1 in Section 4.1.3.

We then arrive at

q̂ij = 1
2pνa

∑
bcd
∫ kp′k′

p′>k′
qiqj(2π)4δ4(P +K − P′ −K′)

× ∣Mab
cd(p, k; p′, k′)∣2 fb(k) [1± fd(k′)] [1± fc(p′)] . (4.6)

Due to the requirement that p′ > k′, if the jet energy p is large enough, we may set
f (p′) → 0.

1 We use the identity

∫
k′p′ g(k′, p′) = 2∫

k′p′ g(k′, p′)Θ(p′ − k′),
for symmetric functions g(p′, k′) = g(k′, p′).
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To simplify this integral, it is convenient to rewrite the integral measures in (4.6)
to

q̂ij = 1
2pνa

∑
bcd
∫ d4K d4P′ d4K′(2π)5 qi⊥qj⊥δ(4)(P +K − P′ −K′) ∣Mab

cd(p, k; p′, k′)∣2
× δ(K2)δ(P′2)δ(K′2)Θ(K0)Θ(P′0)Θ(K′0) f b(k) [1± f d(k′)]Θ(p′ − k′).

(4.7)

Using the delta function, we eliminate the K′ integral. For convenience, we will
keep writing K′ or k′ as a short notation for P +K − P′ or p + k − p′, respectively.
Similarly to Ref. [206], and in accordance with our discussion on how to introduce
q (see Eq. (4.5)), we define Qµ = (ω, q)µ as

Q = P′ − P ⇔ q = p′ −p = k −k′,
ω = p′ − p = k − k′. (4.8)

Note that unlike the external momenta P, K, P′ and K′, the transfer momentum Q is
not necessarily light-like, i.e., Q2 = q2 −ω2 ≥ 0. Then we have d4K d4P ′ = d4K d4Q
and thus

q̂ij = 1
2pνa

∑
bcd
∫ d4K d4Q(2π)5 qiqj ∣Mab

cd(p, k; p′, k′)∣2 f b(k) [1± f d(k′)]
×Θ(p′ − k′)Θ(K0)Θ(P0 +ω)Θ(K0 −ω)δ(K2)δ ((P +Q)2) δ ((K −Q)2) .

(4.9)

Using P2 = K2 = 0, P ⋅Q = −pω + pq cos θqp and K ⋅Q = −kω + kq cos θqk, where θqp is
the angle between p and q (and θqk between k and q), we can rewrite the last two
delta functions as

δ ((P +Q)2) δ ((K −Q)2)
= 1

4pkq2 δ(cos θqp − ω

q
− ω2 − q2

2pq
) δ(cos θqk − ω

q
+ ω2 − q2

2kq
) .

(4.10)

This fixes the angles between q and k, and between q and p. Additionally, the
integration region is restricted to

∣ω∣ < q, p > q −ω

2
, k > q +ω

2
. (4.11)

Subsequently performing the K0 integral yields

q̂ij = 1
16p2νa

∑
bcd
∫ d3k d3q dω(2π)5q2k2 qiqj ∣Mab

cd(p, k; p′, k′)∣2 f b(k) [1± f d(k −q)]
×Θ(p′ − k′)Θ (p − q −ω

2
)Θ (k − q +ω

2
)Θ(q − ∣ω∣)

× δ(cos θqp − ω

q
− ω2 − q2

2pq
) δ(cos θqk − ω

q
+ ω2 − q2

2kq
) .

(4.12)
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Figure 4.1: The integration frames. (Left:) ‘Lab frame’. The jet momentum p lies in the x − z
plane. (Center:) ‘p-frame’, obtained by rotating the ‘lab frame’ around the y-axis,
such that p points in the z direction. (Right:) ‘q-frame’. Here, q points in the z
direction and p lies in the x − z plane. Figure from [2].

4.1.2 Coordinate systems

We will now discuss how the integration variables and coordinate systems are
chosen to perform this integral. We use a different choice here than when evaluating
the elastic collision term in the kinetic theory simulations (see Appendix B.3). In
particular, since f (p) is stored on a grid in a specific coordinate system (let us call
it lab frame), we need to establish how the vectors k and k′ in the lab frame depend
on the integration variables. In the lab frame, we denote the vectors with lower
index 1,

p1 = p(sin θp, 0, cos θp), (4.13a)

q1 = q(sin θq cos φq, sin θq sin φq, cos θq), (4.13b)

k1 = k(sin θk cos φk, sin θk sin φk, cos θk). (4.13c)

In accordance with the discussion in Section 3.6.1, we assume azimuthal sym-
metry around the z-axis, so we can always rotate this frame such that p lies in the
x − z plane (effectively having the jet go into the x direction). For choosing the
integration frames, we follow Ref. [206] and use the jet momentum p as a distinct
direction. In this second frame (p-frame), denoted by a subscript 2, in which p
points in the z direction and that is obtained via a rotation of the lab frame around
the y-axis (see Fig. 4.1),

p2 = p(0, 0, 1), (4.14a)

q2 = q(sin θqp cos φpq, sin θqp sin φpq, cos θqp), (4.14b)

k2 = k(sin θpk cos φpk, sin θpk sin φpk, cos θpk). (4.14c)

Here, we perform the integral over q.
The k integral is then performed in a third frame, in which q points in the z

direction and p lies in the x − z plane. We call this the q-frame and denote it by a
subscript 3:

p3 = p(sin θqp, 0, cos θqp), (4.15a)

q3 = q(0, 0, 1), (4.15b)

k3 = k(sin θqk cos φqk, sin θqk sin φqk, cos θqk). (4.15c)
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The components of the vectors transform between the frames according to the
matrix relations

v2 = Av1, A = Ry(θp), (4.16a)

v3 = Bv2, B = Ry(θqp)Rz(φpq), (4.16b)

where Ry(α) and Rz(α) denote the matrices corresponding to a rotation with angle
α around the y- and z-axis, respectively. The transformation matrices read

A = ⎛⎜⎜⎝
cos θp 0 − sin θp

0 1 0
sin θp 0 cos θp

⎞⎟⎟⎠ , (4.17a)

B = ⎛⎜⎜⎝
cos θqp cos φpq cos θqp sin φpq − sin θqp− sin φpq cos φpq 0
cos φpq sin θqp sin θqp sin φpq cos θqp

⎞⎟⎟⎠ . (4.17b)

For the calculation of q̂ij we use the components qi⊥ of q in the p-frame,

q1 = (q2)1 = q sin θqp cos φpq, (4.18a)

q2 = (q2)2 = q sin θqp sin φpq, (4.18b)

q3 = (q2)3 = q cos θqp. (4.18c)

In this way, the components 1 and 2 are perpendicular to p and quantify the
momentum broadening transverse to the jet.

Having taken the Dirac delta functions in Eq. (4.6) into account, we choose φpq,
φqk, k, ω, and q as independent integration variables. Therefore, we need to express
all other quantities in terms of them. All other angles are then fixed. For example,
the on-shell conditions ∣k′∣2 = ∣k −q∣2 = (k −ω)2 and ∣k′ +q∣2 = (k′ +ω)2 lead to

cos θqk = ω

q
− ω2 − q2

2kq
, (4.19a)

cos θqp = ω

q
+ ω2 − q2

2pq
, (4.19b)

cos θk′q = ω

q
+ ω2 − q2

2k′q . (4.19c)

Next, we discuss how to express the angles θk and θk′ in terms of the integration
variables needed for evaluating the distribution functions f (k) and f (k′) in (4.6) in
the lab frame. From Eqs. (4.16a) and (4.16b), we obtain k1 = ATBTk3. From (k1)z
we can read off

cos θk = sin φqk sin φpq sin θqk sin θp (4.20a)− cos φqk sin θqk (cos φpq cos θqp sin θp + cos θp sin θqp)+ cos θqk (cos θp cos θqp − cos φpq sin θp sin θqp) ,

and a similar expression holds for cos θk′ ,
cos θk′ = sin φqk sin φpq sin θqk′ sin θp (4.20b)− cos φqk sin θqk′ (cos φpq cos θqp sin θp + cos θp sin θqp)+ cos θqk′ (cos θp cos θqp − cos φpq sin θp sin θqp) .
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The azimuthal angle is φqk′ = φqk because k′ = k −q and q points in the z direction
in the q-frame.

4.1.3 Formula for the jet quenching parameter for finite jet energy

We are now ready to give the formula for the components of q̂,

q̂ij = 1
29π5νa

∑
bcd
∫ 2π

0
dφpq ∫ 2π

0
dφqk ∫ ∞

0
dq ∫ q

max(−q,q−2p, q−2p
3 )dω ∫ p+2ω

q+ω
2

dk

× qiqj ∣Mab
cd∣2

p2 fb(k) (1± fd(k′)) .

(4.21)

Recall that νa = 2dR, where dR is the dimension of the representation of the jet
particle. The upper sign in Eq. (4.21) is to be used when the d particle is a boson
(gluon), and the lower sign if it is a fermion (quark), see Eq. (3.4). The components
qi of Eq. (4.21) in the p-frame read

q1 = q sin θqp cos φpq, (4.22a)

q2 = q sin θqp sin φpq, (4.22b)

q3 = q cos θqp. (4.22c)

Although we started with the collision term (3.15) with the same matrix elements,
our choice p′ > k′ breaks the symmetry of exchanging the outgoing particles,(abcd) ↔ (abdc) (see (3.19)). This implies that we have to distinguish between, for
example, ‘q1g↔ q1g’ and ‘q1g↔ gq1’, and thus require more matrix elements. Re-
call that they are conveniently given in terms of the Lorentz-invariant Mandelstam
variables s, t, and u (see Eq. (3.17)), which are defined with respect to the momenta
corresponding to the particles with labels a, b, c, d,

s = −(P +K)2, t = −(P′ − P)2, u = −(K′ − P)2. (4.23)

The additional matrix elements resulting from the reduced symmetry can be
obtained from Table 3.1 by relabeling p′ ↔ k′ and c↔ d, effectively switching

s → s, t → u, u → t. (4.24)

These resulting matrix elements are still symmetric under (abcd) ↔ (badc) and are
listed in Tab. 4.1. In the underlined terms, medium effects have to be included, as
we will discuss in Section 4.1.5.

The Mandelstam variables are given explicitly by

t = ω2 − q2, (4.25)

s = − t
2q2 ((p + p′)(k + k′) + q2 −√(4pp′ + t)(4k′k + t) cos φqk), (4.26)

u = t
2q2 ((p + p′)(k + k′) − q2 −√(4pp′ + t)(4k′k + t) cos φqk), (4.27)

with p′ = p +ω and k′ = k −ω. The expressions for s and u as in Eqs. (4.26) and
(4.27) can also be found in [206] and are similar to those used in the elastic collision
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ab↔ cd ∣Mab
cd∣2 /g4

q1q2 ↔ q1q2,

8 d2
FC2

F
dA
( s2+u2

t2 )q1q̄2 ↔ q1q̄2,
q̄1q2 ↔ q̄1q2,
q̄1q̄2 ↔ q̄1q̄2

q1q2 ↔ q2q1,

8 d2
FC2

F
dA
( s2+t2

u2 )q1q̄2 ↔ q̄2q1,
q̄1q2 ↔ q2q̄1,
q̄1q̄2 ↔ q̄2q̄1

q1q1 ↔ q1q1,
8 d2

FC2
F

dA
( s2+u2

t2 + s2+t2

u2 ) + 16dFCF (CF − CA
2 ) s2

tuq̄1q̄1 ↔ q̄1q̄1

q1q̄1 ↔ q1q̄1 8 d2
FC2

F
dA
( s2+u2

t2 + t2+u2

s2 ) + 16dFCF (CF − CA
2 ) u2

st

q1q̄1 ↔ q̄1q1 8 d2
FC2

F
dA
( s2+t2

u2 + u2+t2

s2 ) + 16dFCF (CF − CA
2 ) t2

su

q1q̄1 ↔ q2q̄2,
8 d2

FC2
F

dA
( t2+u2

s2 )q1q̄1 ↔ q̄2q2

q1q̄1 ↔ gg 8dFC2
F (u

t + t
u) − 8dFCFCA ( t2+u2

s2 )
q1g↔ q1g, −8dFC2

F (u
s + s

u) + 8dFCFCA ( s2+u2

t2 )q̄1g↔ q̄1g

q1g↔ gq1, −8dFC2
F ( t

s + s
t) + 8dFCFCA ( s2+t2

u2 )q̄1g↔ gq̄1

gg↔ gg 16dAC2
A (3− su

t2 − st
u2 − tu

s2 )
Table 4.1: Matrix elements for the jet quenching parameter q̂, obtained from the matrix

elements from Table 3.1 by breaking the symmetry of exchanging outgoing
particles. They are obtained by replacing c ↔ d and t ↔ u. Singly-underlined
denominators indicate infrared-sensitive contributions from soft gluon exchange
and double-underlined denominators from soft fermion exchange. The group
constants are given in Eq. (A.7). Table taken from [2].
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terms, Eqs. (B.15) and (B.16) (they only differ in the argument of the cosine). Note
that we defined the components q̂ij with respect to the jet direction. If the jet moves
perpendicular to the beam-axis z in the x-direction as in Fig. 1.2, then cos θp = 0,
and q̂yy = q̂22 is the momentum broadening in the y direction and q̂zz = q̂11 is the
momentum broadening in the beam direction, which sum to the usual q̂ = q̂11 + q̂22.
Longitudinal momentum broadening can be obtained from q̂L = q̂33. If we replace
q̂i q̂j by ω in (4.21), we obtain elastic (collisional) energy loss.

4.1.4 Symmetries of q̂ij

Let us now discuss the symmetries of the matrix q̂ij. For a spherically symmetric
distribution function f (k) = f (∣k∣), it is easy to see that

q̂12 = q̂13 = q̂23 = 0 , q̂11 = q̂22. (4.28)

For a phase space density that is azimuthally symmetric around the z-axis (beam
direction), i.e., f (k, cos θk), we also find that

q̂12 = q̂23 = 0 . (4.29)

For a jet moving in the x or beam direction, we additionally find

q̂13 = 0 , if cos θp = 0 or cos θp = 1 . (4.30)

The fact that q̂12 = q̂23 = 0 can be seen by rewriting the angular integrals∫ 2π
0 dφpq ∫ 2π

0 dφqk g(φpq, φqk) = ∫ π−π dφpq ∫ π−π dφqk g(φpq, φqk) and then splitting the
φpq integral into the integral from (−π, 0) and (0, π) to arrive at

∫ 2π

0
dφpq ∫ 2π

0
dφqk g(φpq, φqk) = ∫ π

0
dφpq ∫ π

−π
dφqk [g(−φpq,−φqk) + g(φpq, φqk)]

The angles θk and θk′ depend on the angles φqk and φpq, but are not changed by
simultaneously replacing φqk → −φqk and φpq → −φpq. In the matrix element, φqk
appears in s and u in the cosine argument, which is an even function. The only
change happens in q2 → −q2 in (4.22b), which results in q̂12 = q̂23 = 0.

To show that q̂13 = 0 for vp = 0, we consider the phase shift φpq → φpq +π which,
for cos θp = 0, changes cos θk → − cos θk. In our assumption (3.72), the distribution
function is symmetric around the z = 0 plane, thus f (k,− cos θk) = f (k, cos θk) and
thus this only results in q1 → −q1. Thus we obtain q̂13 = 0.

4.1.5 Medium screening effects

In Section 3.3, we have already discussed how medium effects enter the kinetic
theory description of QCD by effectively screening soft-momentum transfer in the
matrix elements.

Similarly, also for the jet quenching parameter q̂ screening becomes important
when the Mandelstam variable t becomes small s≫ t ∼ O(m2

D). This concerns the
underlined terms with inverse powers of t in the matrix elements listed in Tab. 4.1.
Because we enforced p′ > k′, we could only have ∣u∣ ≪ s when k ≫ p, which is
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highly suppressed by the fact that we are choosing p to be hard and k to be a
medium particle. Thus, unlike for the elastic collision term (3.15), we only need to
implement screening effects in terms with t in the denominator.

Similar as in Section 3.3, we include medium modifications by replacing the
singly underlined terms in the matrix elements in Tab. 4.1 by

M0 = (s − u)2
t2 → ∣GR(P − P′)µν(P + P′)µ(K +K′)ν∣2 ≡ Mscreen, (4.31)

where GR denotes the retarded gluon propagator in the HTL approximation. Recall
that the retarded propagator is needed because we started from the decay rate
(3.59), which includes the fully retarded amplitudes via the cutting rule (3.51), thus
the internal lines must be retarded propagators.

Furthermore, we will employ two different approximations, neglecting plasma
instabilities as in the elastic collision kernel: First, we will use the isotropic hard
thermal loop resummed gluon propagator, which we will refer to as isoHTL screen-
ing. In a second step, we further approximate and use the simple Debye-like
screening prescription already introduced before (see 3.3.2), but we will find that a
different screening parameter ξ⊥g is needed to account for the correct treatment of
transverse momentum broadening.

In any case, the singly underlined terms in Tab. 4.1 can be rewritten in terms of
the unscreened (vacuum) expression M0 using Eq.(3.18),

s2 + u2

t2 = 1
2
+ 1

2
M0,

su
t2 = 1

4
− 1

4
M0. (4.32)

Using the full isotropic HTL propagator (see Appendix A.5.2 for details), the
screened matrix element reads explicitly

MHTL = c2
1

A2 + B2 + c2
2

C2 +D2 − 2c1c2(AC + BD)(A2 + B2)(C2 +D2) , (4.33)

where A, B, C, D are obtained from the real and imaginary parts of the retarded
HTL self-energies and are explicitly given by

A = q2 +m2
D (1+ ω

2q
ln

q −ω

q +ω
) , B = −m2

Dω

2q
π, (4.34a)

C = q2 −ω2 + m2
D

2
(ω2

q2 +(ω2

q2 − 1) ω

2q
ln

q −ω

q +ω
) , D = πm2

Dω

4q
(1− ω2

q2 ) , (4.34b)

and

c1 = (2p +ω)(2k −ω), c2 = 4pk sin θqp sin θqk cos φqk. (4.35a)

Note that for isotropic distributions, the last term in Eq. (4.33) can be dropped
since it is proportional to cos φqk and will thus vanish in the angular integral needed
for q̂.

The doubly underlined terms in Tab. 4.1 correspond to soft fermionic exchange.
Here, we do not need to consider them explicitly because, as we will discuss in
Section 4.1.6, they are subleading in 1/p.
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Figure 4.2: Shown are the HTL sum rule result on the left-hand side of Eq. (4.38) as a
dashed curve and the values from the approximated expression on its right-
hand side with the parameter ξ given by (4.39) as a continuous line. The plot
shows that for Λ⊥ ≳ 4mD the screening approximation of the full HTL matrix
element provides accurate results. Figure taken from [2].

Next, we will consider the Debye-like screening prescription already mentioned
in Section 3.3.2,

MHTL → Mξ = (s − u)2
t2

q4(q2 + (ξ⊥g)2m2
D)2 . (4.36)

As explained in Section 3.3.2, this replacement can be justified when we are not
directly interested in the matrix element but in the (weighted) integral over it, as
in computations of q̂ or C2↔2. The Debye-like screened matrix element Mξ agrees
withMHTL at large q, but behaves differently in the small q region. It includes a
constant ξ⊥g that is fixed such that the integral over the Debye-like screened matrix
element matches the result of the full isotropic HTL matrix element. For transverse
momentum broadening, this integral needs to be taken in the high energy limit
p →∞, be weighted with q2⊥ and integrated over d2q⊥ to obtain q̂. Thus, similarly
as fixing ξg in the elastic collision kernel using Eq. (3.31), we fix ξ⊥g by requiring
that

∫ ∞
0

dq⊥ q3⊥∫ ∞
−∞ dω√

q2⊥ +ω2 ∫ 2π

0
dφqk (MHTL −Mξ) = 0. (4.37)

This matching is different than in the case needed for the time evolution (see
Section 3.3.2), where one is matching the longitudinal momentum transfer rather
than the transverse one (replace q3⊥ → ω2q⊥ in (4.37)), which leads to a different
value ξg ≠ ξ⊥g .

In the case considered here, we take both matrix elements in the limit p → ∞,
and additionally consider the soft limit ω ≪ k, q⊥ ≪ k. We then first integrate
over ω. ForMHTL this can, in the soft limit, be done analytically using a sum rule
[100], which is discussed in more detail in Appendix A.5.4. Then, the q⊥ integral is
performed up to a cutoff Λ⊥ to obtain the following condition

2
3

ln(1+ Λ2⊥
m2

D
) (4.38)

= 4 ln
Λ⊥

2 ξ⊥g mD
− Λ2⊥(ξ⊥g mD)2 −

(Λ4⊥ + 2Λ2⊥(ξ⊥g mD)2 + 4(ξ⊥g mD)4) ln Λ⊥
ξ⊥g mD+√Λ2⊥+(ξ⊥g mD)2(ξ⊥g mD)3√Λ2⊥ + (ξ⊥g mD)2
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where the left-hand side stems fromMHTL. Expanding both sides of the equation
for large cutoff Λ⊥ ≫ ξmD leads to

ξ⊥g = e1/3
2
= 0.6978 . . . . (4.39)

In Fig. 4.2 we demonstrate the agreement of both sides of Eq. (4.38) as a function of
the cutoff Λ⊥. For large momentum cutoffs Λ⊥ ≳ 4mD, the approximation seems to
work very well. We note that the value ξ⊥g in Eq. (4.39) entering the matrix element
in q̂ is slightly different from the one typically used obtained in section 3.3.2 for the
elastic collision kernel C2↔2, ξg.

This approximation will be investigated in Section 4.2 numerically by comparison
with the HTL-screened results. There, it is found that the largest differences occur
for a small cutoff Λ⊥ or a large coupling λ. For physically motivated values λ = 10
and Λ⊥ = T, the screening prescriptions differ by 30%, showing that the choice of
the screening prescription can be important for the evaluation of the jet quenching
parameter q̂.

4.1.6 Towards the limit p →∞: NLO terms in 1/p
In the derivation of q̂, we have considered the jet momentum p to be much larger
than all other momentum scales of the plasma. However, in the strict limit p →∞
the momentum diffusion coefficient q̂ exhibits a logarithmic divergence, unless
the exchanged momentum is limited by a cutoff. We will first, in this subsection,
discuss the limit of p being large, but not infinite. Then, in Section 4.1.7, we will
introduce a cutoff on q⊥ and take p → ∞. In the limit of large p, only the terms
su/t2 and (s2 + u2)/t2 in the matrix elements (Tab. 4.1) are ∼ p2 and thus contribute.

For example, let us consider the screened gluonic matrix element,

∣Mgg
gg∣2

p2 = 16dAC2
A

(2k −ω −√(2k −ω)2 − q2 cos φqk)2

(q2 + (ξ⊥g)2m2
D)2 (1+ ω

p
+O( 1

p2)) . (4.40)

Here, k is a medium momentum scale (the collision integral is proportional to
f (k)) and we can thus assume that k ≪ p even if formally k is integrated up to
infinity. Naïvely, one might assume that ω

p = O ( 1
p). However, p appears in the

boundaries of ω, (p > (q −ω)/2, see (4.11)), and, therefore, we need to carefully
consider the term ω/p. For positive ω we obtain ω < k ≪ p, such that it indeed
becomes negligible. However, for negative ω,

∣ω
p
∣ = −ω

p
< p − k

2p
= 1

2
− k

2p
, (4.41)

which does not vanish for p →∞. A more careful calculation (carried out explicitly
in Appendix C) shows that the leading large p contribution in Eq. (4.40) diverges
logarithmically ∼ ln p, whereas the O(ω/p) contribution becomes constant in p.
Thus, indeed, the leading behavior is obtained by considering the p≫ ω term(s) in
the matrix element.
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P P+QK-QK
Medium modifications

(screening)

Leading jet parton Outgoing jet parton

Plasma particle
(quark, gluon)

Figure 4.3: Feynman diagram for a t-channel gluon exchange process that dominates the
matrix element for the jet quenching parameter q̂ in the high-energy limit
p →∞. In the internal gluon propagator, medium effects should be included as
explained in Section 4.1.5. Figure reused from [2].

To summarize, for large jet energies Ejet = p, the jet quenching parameter is given
by

q̂(p≫ Tε) ≃ ap ln p + bp, (4.42)

where bp is a (yet undetermined) coefficient depending on the precise form of the
integrand. Here, Tε is the characteristic momentum scale of plasma particles, e.g.,
the temperature in thermal equilibrium. The coefficient ap for isotropic distributions
is derived explicitly in Appendix C as

ap/CR = CAg4

4π3 ∫ ∞
0

dk k2 fg(k) +∑
f

g4

8π3 ∫ ∞
0

dk k2 f f (k), (4.43)

where fg is the gluon distribution function and the subscript f in f f labels different
quark species.

4.1.7 Limit p →∞ with a momentum cutoff

We now introduce a cutoff Λ⊥ to restrict the maximum amount of transverse
momentum transfer in the scattering,

q2⊥ = q2 −ω2 < Λ2⊥. (4.44)

It is now possible to directly take the limit p →∞ in the matrix element without
any potential divergences (as is shown in Appendix C), which considerably simpli-
fies the calculation. In this limit, there is also a reduced number of matrix elements,
which are given explicitly in Tab. 4.2. Only t-channel gluon exchange diagrams
contribute, as depicted in Fig. 4.3. Apart from that, a few changes need to be made
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ab↔ cd limp→∞ ∣Mab
cd∣2/(p2g4)

q1qi ↔ q1qi,

4 d2
FC2

F
dA

M̃screen
q̄1qi ↔ q̄1qi,
q1q̄i ↔ q1q̄i,
q̄1q̄i ↔ q̄1q̄i

q1g↔ q1g,
4dFCFCAM̃screenq̄1g↔ q̄1g

gg↔ gg 4dAC2
AM̃screen

Table 4.2: The matrix elements for q̂ as in Tab. 4.1 in the limit p → ∞. Here M̃screen =
limp→∞ Mscreen/p2 denotes the appropriate screening terms M̃HTL or M̃ξ as
explained in Section 4.1.5 and Appendix A.5.2, and quark flavors are labeled by
the index i. Table taken from [2].

to the formula of q̂ presented in Section 4.1.3. In Eq. (4.21), we need to change the
integration limits to account for the transverse momentum cutoff condition (4.44),

q̂ij = 1
29π5νa

∑
bcd
∫ 2π

0
dφpq ∫ 2π

0
dφqk

×⎛⎝∫ Λ⊥
0

dq ∫ q

−q
dω +∫ ∞

Λ⊥ dq
⎡⎢⎢⎢⎢⎣∫

−√q2−Λ2⊥−q
dω +∫√

q2−Λ2⊥q dω

⎤⎥⎥⎥⎥⎦
⎞⎠

×∫ ∞
q+ω

2

dk qiqj lim
p→∞ ∣Mab

cd∣2
p2 fb(k) (1± fd(k′)) .

(4.45)

As before, the upper and lower signs in the term (1± fd) denote bosonic particles
(gluons) and fermionic particles (quarks), respectively, see Eq. (3.4).

In this limit, one needs to replace (4.19b) by cos θqp = ω/q (see Appendix C.2) and

the few nonvanishing matrix elements for limp→∞ ∣M∣2p2 are tabulated in Tab. 4.2. In
that limit, we do not need the explicit expressions (4.26) and (4.27) for s, u in terms
of our phase space integration variables. From the matrix elements in Tab. 4.2 and
(4.21), one naturally finds Casimir scaling

q̂gluon

CA
= q̂quark

CF
, (4.46)

i.e., the jet quenching parameter for a quark and gluon jet are equivalent up to
color factors.

The screened matrix element M̃screen in Tab. 4.2 is implemented as detailed in
Section 4.1.5. In the p →∞ limit, the isotropic HTL matrix element from Eq. (4.33)
becomes

M̃HTL = c̃2
1

A2 + B2 − c̃2
2

C2 +D2 + 2c̃1c̃2(AC + BD)(A2 + B2)(C2 +D2) , (4.47)
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with the parameters A, B, C, and D given by (4.34) and

c̃1 = lim
p→∞ c1

p
= 2(2k −ω), (4.48a)

c̃2 = lim
p→∞ c2

p
= 4k sin θqp sin θqk cos φqk. (4.48b)

Again, for isotropic systems, we do not need to include the last term in (4.47), since
it vanishes in the angular integral when calculating q̂ij.

For the Debye-like screening approximation, we obtain (c.f. (4.36))

M̃ξ = 4
(2k −ω −√(2k −ω)2 − q2 cos φqk)2

(q2 + (ξ⊥g)2m2
D)2 , (4.49)

with ξ⊥g = e1/3/2 as before.

4.1.8 Limiting behavior for large cutoff

The jet quenching parameter q̂ exhibits a logarithmic behavior when the cutoff Λ⊥
exceeds the typical hard momenta Tε of the plasma constituents.

q̂(Λ⊥ ≫ Tε) ≃ aΛ⊥ ln Λ⊥ + bΛ⊥ , (4.50)

with (see Appendix C)

aΛ⊥/CR = g4

π ∫ d3k(2π)3 ⎛⎝Nc fg(k) + 1
2
∑

f
f f (k)⎞⎠ . (4.51)

For isotropic distributions, it reads

aΛ⊥/CR ≃ CAg4

2π3 ∫ ∞
0

dk k2 fg(k) +∑
f

g4

4π3 ∫ ∞
0

dk k2 f f (k). (4.52)

This is the same logarithmic behavior as in Eq. (4.43), keeping in mind that now the
phase space is limited by Λ2⊥ rather than p, and thus ln p gets replaced by 2 ln Λ⊥.

For thermal equilibrium, this yields

q̂therm(Λ⊥ ≫ T) ≃ CR

π3 g4ζ(3)T3 (Nc + 3
4

n f) ln Λ⊥ + const, (4.53)

which is Eq. (C.39) in Appendix C.2.2 and agrees with Ref. [101], as we will later
discuss around Eq. (4.77a).

4.1.9 Interpreting the momentum cutoff

A peculiar feature of the jet quenching parameter q̂ is its dependence on a transverse
momentum cutoff Λ⊥. Let us discuss here briefly where this dependence comes
from and how to interpret this cutoff in physical terms.

In a kinetic picture, the reason for the cutoff is taking the jet momentum p →∞. In
this case, the jet particle can inject an unrestricted amount of transverse momentum
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into the collision, which leads to a logarithmic divergence. It has to be regulated
by introducing a cutoff Λ⊥, which restricts transverse momentum transfer q⊥ < Λ⊥.
Practically all analytic calculations that rely on quasiparticles or hard-thermal loop
frameworks, but even with different interaction potentials, need to employ this
cutoff.

A simple way of setting the cutoff is to use the relation between the coefficient
aΛ⊥ for large cutoff Λ⊥ and the coefficient ap for large (finite) jet energy p (see
Eqs. (4.43) and (4.52)). Requiring that the dynamics of jet quenching calculated with
a cutoff in the p →∞ approximation has the same leading logarithmic behavior as
a kinematically more accurate one with a finite p, we should choose the cutoff such
that

Λkin⊥ ∼ √pT, (4.54)

where p is the energy of the jet parton and T is an additional dimensionful scale
(e.g., the temperature in equilibrium). This kinematic cutoff Λkin⊥ is widely used in
the literature (see, e.g., [114, 115, 118, 120, 149, 209–211]).

While this is a straightforward result of our definition for q̂ in Eq. (1.4), it should
be kept in mind that this parameter only encodes the momentum diffusion due
to elastic 2↔ 2 scattering processes, and competing inelastic effects like splittings
or gluon emissions are neglected. For radiative energy loss calculations, one can
restrict the cutoff by considering the rate of momentum exchange processes and
comparing it with the ‘life-time’ of the leading parton under consideration. During
an LPM splitting process (see also the discussion in section 2.1), this corresponds to
the formation time tform, Eq. (2.4). Therefore, we are interested in the accumulated
transverse momentum until a splitting occurs. To calculate radiative energy loss of
the leading parton in the harmonic approximation, the jet quenching parameter q̂
naturally appears in the expansion of the interaction potential in position space,
Eq. (2.23). In this approximation, it is sufficient to use a momentum cutoff Λ⊥ of
the order of the typical total momentum transfer Q⊥ during the formation time
[96]. By definition, it is given by Q2⊥ ∼ q̂tform, where for a small medium with
length L < tform one should replace tform by L. The formation time of the splitting
p → p1 + p2 can be estimated as (tform)2 ∼ Ei/q̂, with Ei being the energy of the
emitted gluon, see Eq. (2.4). It has been argued [101, 121] that energy loss is
dominated by processes in which both daughters share a similar energy fraction
p1 ∼ p2 ∼ p, which enables us to use the leading-parton energy in the formation
time estimate. With the parametric relation q̂ ∼ g4T3, we obtain for a large medium
L > tform the expression

ΛLPM⊥ ∼ g (pT3)1/4. (4.55)

In order to present our results in a form that can be applied to different pictures of
energy loss, we generally give our results as functions of Λ⊥. In section 4.3.2, we
will use these cutoffs as a model to study the jet quenching parameter during the
initial stages in heavy-ion collisions.

In Chapter 7.2.1, we will discuss how to obtain the small distance behavior of
the dipole cross section C(∣x∣) in more detail, in particular without the need for a
cutoff.
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4.2 analytical results for the jet quenching parameter in special
cases

Let us now calculate the jet quenching parameter q̂ for some special cases. In
Section 4.2.1, we first review the derivation of q̂ for quark-gluon plasmas in thermal
equilibrium [100, 101] and compare the results with numerical evaluations of
Eq. (4.45). Additionally, an interpolation formula is provided that reproduces the
numerically obtained values of the quenching parameter in thermal equilibrium
q̂therm for different couplings and momentum cutoffs.

In Section 4.2.2, we then consider toy models for the bottom-up thermaliza-
tion process in heavy-ion collisions (see Section 3.5.2). First, an effectively two-
dimensional distribution is studied to model the large momentum-space anisotropy
encountered in the initial stages in heavy-ion collisions and then the thermal re-
sults of Section 4.2.1 are generalized to a scaled thermal distribution to model
over- and under-occupied systems that are typically encountered in the bottom-up
thermalization picture.

We also study the different contributions to q̂ that are linear or quadratic in the
distribution function by splitting the jet quenching parameter q̂ into its individual
components,

q̂ = q̂f + q̂ff. (4.56)

Similarly as in Ref. [212], we refer to q̂f as the classical and q̂ff as the Bose-enhanced
part of q̂.2

4.2.1 Thermal distribution

The equilibrium form of the particle distributions is given by Eq. (3.20),

f±(k; T) = 1
exp(k/T) ∓ 1

, (4.57)

where T is the plasma temperature. The upper signs f+ denote the Bose-Einstein
distribution and f− is the Fermi-Dirac distribution.

In thermal equilibrium, q̂ has already been calculated for the limiting cases of
small and large cutoffs Λ⊥ in [101, 102], which is briefly summarized here. In
Section 4.2.2, we will generalize this derivation to the case of a scaled thermal
distribution, which is obtained by rescaling a thermal distribution.

For evaluating q̂, we work in the p →∞ limit with a transverse momentum cutoff
Λ⊥, as discussed in Section 4.1.7. Since the distribution function is spherically
symmetric, one has q̂11 = q̂22 and we can restrict the discussion to the sum q̂ =
q̂11 + q̂22. Our starting point is Eq. (4.45), where we integrate over the modulus of
q = (q⊥, q3). For p →∞, we obtain q3 = ω and thus

q2 = q2⊥ +ω2. (4.58)

2 This Bose-enhanced term can also be considered to be a classical field contribution because it is
dominant in highly occupied systems f ≫ 1 that can be studied numerically using classical-statistical
simulations. This can be seen in the limit of λ → 0 with λ f held constant, in which only q̂ff survives.
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It will be useful to change the integration variables from (q, φpq, ω) to (q1, q2, ω),
which yields a factor q from the Jacobian,

∫ 2π

0
dφpq ∫ ∞

0
dq ∫ q

−q
dω Θ(Λ2⊥ +ω2 − q2) = ∫

q⊥<Λ⊥ d2q⊥ ∫ ∞
−∞ dω√

q2⊥ +ω2
. (4.59)

In the limit p → ∞, the matrix elements in Tab. 4.2 do not allow for identity-
changing processes, which means that the leading parton a and the outgoing parton
c are of the same type, a = c, and similarly b = d. Therefore, we can scale out the
Casimir factor of the jet CR, and the prefactors in front of M̃screen in Tab. 4.2 neatly
combine with 1/νa for the degrees of freedom of the jet particle to

Ξ+ = 2Nc, (4.60a)

Ξ− = 4n f
dFCF
dA

= 2n f , (4.60b)

for scattering off a gluon and off a quark/anti-quark, respectively, which leads to
Casimir scaling (see also Eq. (4.46)).

There are two limiting cases in which an analytic result for q̂ can be obtained:
for small and large momentum cutoffs. We discuss both cases in the following.

Small momentum cutoff

For small momentum cutoffs Λ⊥ ≪ T, the expression for q̂ in Eq. (4.45) with (4.59)
and the prefactors (4.60) becomes

q̂(Λ⊥) = CR∑± Ξ± g4

29π5∫ ∞
0

dk f±(k) (1± f±(k))∫ Λ⊥
0

d2q⊥ q2⊥∫ 2π

0
dφqk ∫ ∞

−∞dω M̃HTL√
q2⊥ +ω2

.

(4.61)

We have extended the lower boundary3 of the k-integral to 0 and approximated
f (k −ω) ≈ f (k). This is appropriate because large values of ω are suppressed by
the matrix element M̃HTL, as can be seen from Eq. (4.40).

The last two integrals can be evaluated analytically using a sum rule [100] as
discussed in Appendix A.5.4,

q̂(Λ⊥) = CRg4(2π)3 2∫
q⊥<Λ⊥

d2q⊥
2π

q2⊥ 1
q2⊥(q2⊥ +m2

D) ∑± Ξ±∫ ∞
0

dk k2 f±(k) (1± f±(k)) .

(4.62)

Note that until now we have only assumed spherical symmetry, but have not used
a specific form for the distribution function f (k). The thermal form of q̂ for a small
cutoff is then obtained by performing the integrals over the distribution function,

∫ ∞
0

dk k2 f±(k) = 2T3ζ±(3), (4.63a)

∫ ∞
0

dk k2 ( f±(k))2 = ±2T3(ζ±(2) − ζ±(3)), (4.63b)

3 The largest error of this approximation comes from the f 2+ term. It can by estimated by ∫ q+ω
2

0 k2 f 2+ <
q+ω

2 limk→0 (k2 f 2+), where the k2 factor stems from M̃HTL and we approximated the integral by

the maximum value of the integrand at k = 0. This yields the error estimate T2(q+ω)
2 , which for

q⊥ < Λ⊥ ≪ T is much smaller than the leading-order contribution ∫ ∞0 k2 f 2+ = 2T3(ζ(2) − ζ(3)) (see
Eq. (4.63)) for q, ω ≪ T.
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where ζ+(s) = ζ(s) is the Riemann Zeta function and ζ−(s) = (1− 21−s)ζ(s) denotes
its fermionic counterpart as in Ref. [101]. Using ζ(2) = π2/6, we obtain

q̂(Λ⊥) = ∫
q⊥<Λ⊥ d2q⊥ q2⊥ g2CRT(2π)2 m2

D

q2⊥(q2⊥ +m2
D) , (4.64)

from which we can read off the elastic scattering rate dΓel
d2q⊥ . This leads us to the

thermal form of q̂ for a small cutoff,4

q̂therm(Λ⊥ ≪ T) = g2

4π
CRTm2

D ln(1+ Λ2⊥
m2

D
) . (4.65)

For a thermal system, the terms containing ζ±(3) cancel for the total q̂, but are
important if one considers the Bose-enhanced part separately, as in (4.56). Splitting
off the Bose-enhanced term as in (4.56), we obtain

q̂therm
f (Λ⊥ ≪ T) = ζ(3) (12Nc + 9n f )CL, (4.66a)

q̂therm
ff (Λ⊥ ≪ T) = [2Nc(π2 − 6ζ(3)) + n f (π2 − 9ζ(3))]CL, (4.66b)

with CL = g4T3CR
24π3 ln(1+ Λ2⊥

m2
D
) and the thermal Debye mass given by Eq. (3.13).

Large momentum cutoff

For large momentum cutoffs, the jet quenching parameter has been calculated
in Ref. [101] for a thermal system. To later generalize this to a scaled thermal
distribution, we briefly review the derivation here. It relies on constructing an
interpolating formula for the elastic scattering rate

C(q⊥)(2π)2 = dΓel

d2q⊥ ≃ CR
g4T3F(q⊥/T)
q2⊥(q2⊥ +m2

D) , (4.67)

where the function F(q⊥/T) interpolates between the known limits of this quantity
(we will discuss both limits later in Chapter 7, see Eq. (7.23)) and can be calculated
in the approximation q ≫ mD. It is then split into gluonic (I+) and fermionic (I−)
contributions,5

F(q⊥/T) = 1
π2 (Ξ+ I+(q⊥/T) +Ξ− I−(q⊥/T)) . (4.68)

Following the notation in Ref. [101], we write these contributions to the collision
kernel in the limit p →∞ and q⊥ ≫ mD as

I± (q⊥
T
) =π2

T3 ∫ dqz

2π ∫ d3k(2π)3 2πδ(qz + ∣k −q∣ − k)(k − kz)2
k∣k −q∣ f±(k) [1± f±(k −q)] .

(4.69)

This formula follows directly from the t-channel matrix element in Tab. 4.1, i.e.,
su/t2, with t2 = q4⊥ being scaled out in (4.67) and s ≃ −u = 2p(k − kz).

4 This form is actually valid in general for any isotropic distribution f (k) with the replacement of
T → T∗ (see Eq. (3.10)) and the more generally evaluated Debye mass mD as in Eq. (3.11).

5 In principle, we could take Eq. (4.61) instead and relax the assumption of small momentum transfer,
i.e., keep f±(k)(1± f±(k −ω)). However, the strategy employed in Ref. [101] (scaling out this factor
F(q⊥/T) in (4.67)) allows us to evaluate the expression analytically in the large q⊥ limit, where the
matrix element does not need to be screened, and we can use the simpler form su/t2 instead.



4.2 analytical results for the jet quenching parameter in special cases 73

10−1 100

Λ⊥/T

10−4

10−3

10−2

q̂/
λ
2
T

3

HTL approximation effectλ =
10

λ =
0.5

λ = 0.05

limit (Λ⊥ Y T )

2 4 6 8 10
Λ⊥/T

0.00

0.02

0.04

0.06

0.08

0.10

q̂/
λ
2
T

3

shift

HTL

Debye-like

limit (Λ⊥ Q T )

improved (Λ⊥ Q T )

Figure 4.4: The coefficient q̂ for a quark jet in thermal equilibrium for different ’t Hooft
couplings λ = g2Nc and transverse momentum cutoffs Λ⊥, with (left:) small
Λ⊥ ≲ T (logarithmically scaled axis), and (right:) large Λ⊥ ≳ T. The dotted curve
labeled ‘limit (Λ⊥ ≪ T)’ shows the analytical limiting expression of (4.65), the
dash-dotted curve ‘limit (Λ⊥ ≫ T)’ illustrates (4.77a), and ‘improved (Λ⊥ ≫ T)’
denotes (4.78a). The small ‘+’-symbols show the numerical results with the
Debye-like screened matrix element (4.49), whereas the ‘×’-symbols show the
results with the full HTL matrix element (4.47). The curves that are not valid in
the respective limit are displayed with lighter color but are still shown because
(4.65) is often also used at large Λ⊥ as an approximation. Figures adapted
from [2].

As in (4.56) we can identify the contributions coming from the f and f 2 parts via

I±(q⊥/T) = If± + Iff±(q⊥/T), (4.70)

where If± will turn out to be a constant. To evaluate them, the thermal functions are
written as

f±(p) = ∞∑
m=1
(±1)m−1 e−mp/T. (4.71)

This can then be inserted into Eq. (4.69) to rewrite the equation as a double sum,

If± (q⊥
T
) = ∞∑

m=1
(±1)m−1 Im0(q⊥/T), (4.72)

Iff± (q⊥
T
) = ∞∑

m=1

∞∑
n=1
(±1)m+n−1 Imn(q⊥/T), (4.73)

with

Imn (q⊥
T
) =π2

T3 ∫ dqz

2π ∫ d3k(2π)3 2πδ(qz + ∣k −q∣ − k)(k − kz)2
k∣k −q∣ e−mk/Te−n∣k−q∣/T . (4.74)

In [101], I± was split in a similar way isolating the n = 0 term I±(∞), which is
exactly the constant If± = I±(∞) = ζ±(3). This is a consequence of the fact that for
large momentum transfer only the f part contributes, as discussed in Section 4.1.8.
In Ref. [101], the integrals in (4.74) are evaluated analytically,

Imn (q⊥
T
) = mn

2(m + n)3 (q⊥
T
)3

K2 (q⊥
T
√

mn) , (4.75)
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where Kν(z) is the modified Bessel function of the second kind. With that, we can
write the collision kernel in thermal equilibrium as the infinite double sum

C(q⊥) = 2CRg4T3

q2⊥(q2⊥ +m2
D)π2

q2⊥
T2

∞∑
m=1

∞∑
n=0
(Nc + n f (−1)m+n−1) mn

2(m + n)3 K2 (q⊥
T
√

mn) .

(4.76)

Performing the remaining integrals over q⊥ as in Ref. [101] leads to the following
expression for the jet quenching parameter q̂ for large cutoffs Λ⊥ ≫ T,

q̂therm(Λ⊥ ≫ T) = CR
g4T3

π2 ∑± Ξ±I±(Λ⊥), (4.77a)

I±(Λ⊥) = ζ±(3)
2π

ln(Λ⊥
mD
) +ΔI±, (4.77b)

ΔI± = ζ±(2) − ζ±(3)
2π

[ln( T
mD
) + 1

2
−γE + ln 2] − σ±

2π
, (4.77c)

σ+ = 0.386043817389949, (4.77d)

σ− = 0.011216764589789, (4.77e)

where γE is the Euler-Mascheroni constant, and σ± = ∑∞k=1
(±1)k−1

k3 ln[(k − 1)!].
This formula (4.77), as opposed to the one for small cutoffs (4.65), has the

(unphysical) feature that the logarithm ln T/mD becomes negative for mD ≥ T. Of
course, in perturbation theory at weak couplings, one has mD ∼ gT ≪ T. However,
to get an analytical expression that is well-behaved also for larger couplings, we
add a constant to the argument of the logarithm, which still preserves the leading
order accuracy at weak coupling. To be explicit, we replace 2 ln x → ln(1+ x2) in
both logarithms, and we will denote the resulting ‘improved’ analytic expressions
for q̂ by q̂im. Although the replacement does not change the result at leading order,
we will see that this choice of regularization significantly improves the agreement
with numerical evaluations of (4.21), as we will discuss in the next subsection.
Moreover, the Bose-enhanced part q̂ff of (4.56) is solely due to ΔI± in (4.77b). With
these replacements in the logarithm, the contribution q̂f has the same form as for
small momentum cutoffs (4.66a), q̂f(Λ⊥ ≪ T) = q̂f(Λ⊥ ≫ T).

With this procedure, the improved version of Eq. (4.77a) becomes

q̂therm
im (Λ⊥ ≫ T) = q̂therm

f (Λ⊥ ≪ T) + q̂therm
ff,im (4.78a)

with

q̂therm
ff,im = CRg4T3∑± Ξ± {ζ±(2) − ζ±(3)

4π3 [ln(1+ T2

m2
D
)+ 1− 2γE + 2 ln 2] − σ±

2π3} .

(4.78b)

Comparison with numerical results

Let us now compare the analytical small and large cutoff limits of q̂ given by
(4.65) and (4.77a) or the improved version (4.78a) to a numerical evaluation of q̂
using (4.45). For simplicity we consider a purely gluonic plasma, i.e., n f = 0. In
particular, we want to study how well these analytic formulae describe the full
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numerical evaluation of the q̂ integral, although being only valid for asymptotic
regions of the cutoff Λ⊥. We also want to compare the expressions using the full
HTL screened matrix element (isoHTL) (4.47) with the simpler Debye-like screened
matrix element (4.49) and study the impact of different screening approximations
on the jet quenching parameter q̂.

Fig. 4.4 shows q̂ for various momentum cutoffs Λ⊥ and different ’t Hooft cou-
plings λ = g2Nc. The prefactor λ2T3 is scaled out in the plots, leaving a nontrivial
coupling dependence that enters via the Debye mass mD in the logarithms orig-
inating from the matrix element. The curves show the analytic expressions for
small cutoffs (dotted, Eq. (4.65)), large cutoffs (dash-dotted, Eq. (4.77a)) and the
improved large-cutoff version (dashed, (4.78a)), while the numerical evaluation of
q̂ is depicted by crosses for the HTL matrix elements (4.47) and plus signs for the
Debye-like screened ones (4.49). In the left panel of Fig. 4.4, we observe that the
small-cutoff form of q̂ accurately agrees with the numerical evaluation using the
full HTL matrix element in the corresponding region Λ⊥ ≪ T, even for Λ⊥ → 0.
Note that the frequently employed form of q̂ in this limit with the approximation

ln(1+ Λ2⊥
m2

D
) → 2 ln Λ⊥

mD
(not shown in the figure) would become negative at too small

cutoffs Λ⊥ ∼ mD, and is, thus, not well behaved in the limit Λ⊥ → 0.
In the region Λ⊥ ≫ T (right panel of Fig. 4.4), we observe that for small couplings

λ ∼ 0.05 both analytic large-cutoff expressions agree very well with the numerical
values. However, they start to differ when increasing the coupling λ ≳ 0.5. This is
denoted as ‘shift’ in Fig. 4.4. We find that the values from the improved formula
(4.78a) are closer to the numerical values than from the original formula (4.77a),
i.e., the shift is smaller. However, for large couplings λ ∼ 10, the improved analytic
expression still seems to underestimate q̂, with the difference being a constant. This
is because the leading logarithmic behavior stems from the large q⊥ behavior of
the collision kernel (see Section 4.1.8 and Appendix C), whereas for the constant,
one requires the exact form of the collision kernel for all q⊥ (in particular also
for q⊥ ≈ T), where the form (4.76) and approximations used in evaluating the q⊥
integral over it [101] are only valid for small couplings.

Turning now to a comparison of the matrix elements, we observe in Fig. 4.4 that
for small values of the coupling λ ∼ 0.05 (left panel) as well as for large cutoffs
Λ⊥ ≫ T (right panel), the results with the Debye-like screening approximation (4.49)
agree well with the full HTL matrix element (4.47). However, they start deviating
with growing coupling at small cutoffs Λ⊥ ≲ T (left panel). To guide the eye, for
Λ⊥ = 0.3T this difference is denoted as ‘HTL approximation effect’. For Λ⊥ = T and
λ = 10 the deviation between the approximated and the HTL matrix elements is of
the order of 30%.

Interpolation formula for q̂ in thermal equilibrium

We have now verified that the analytic expressions (4.65) and (4.77a) describe q̂
only in certain limits and Eq. (4.77a) only holds for small couplings λ ≲ 0.5. For
phenomenological calculations, a general simple formula (or parametrization) for
q̂ in thermal equilibrium may be useful without the need to perform the high-
dimensional integral (4.21) numerically for the required value of the coupling λ

and transverse momentum cutoff Λ⊥. Thus, we construct an interpolation formula
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λ b̃ d̃ ẽ

0.5 0.0011944± 0.0000020 4.114± 0.013 −0.76919± 0.00058
1.0 0.0037772± 0.0000062 2.4910± 0.0029 −0.24707± 0.00041
1.5 0.007379± 0.000013 2.0956± 0.0018 0.03349± 0.00032
2.0 0.011905± 0.000021 1.9636± 0.0014 0.20498± 0.00029
2.5 0.017295± 0.000031 1.8987± 0.0012 0.32796± 0.00028
3.0 0.023563± 0.000042 1.8653± 0.0010 0.42226± 0.00026
3.5 0.030716± 0.000054 1.84570± 0.00096 0.49864± 0.00025
4.0 0.038770± 0.000067 1.83331± 0.00088 0.56271± 0.00024
4.5 0.047761± 0.000082 1.82484± 0.00080 0.61789± 0.00023
5.0 0.057714± 0.000099 1.81902± 0.00075 0.66626± 0.00022
5.5 0.06864± 0.00012 1.81444± 0.00071 0.70960± 0.00021
6.0 0.08061± 0.00014 1.81130± 0.00069 0.74868± 0.00020
6.5 0.09362± 0.00015 1.80845± 0.00067 0.78441± 0.00020
7.0 0.10772± 0.00017 1.80584± 0.00066 0.81733± 0.00020
7.5 0.12296± 0.00020 1.80380± 0.00065 0.84781± 0.00019
8.0 0.13933± 0.00022 1.80168± 0.00064 0.87635± 0.00019
8.5 0.15687± 0.00024 1.80026± 0.00064 0.90313± 0.00019
9.0 0.17562± 0.00026 1.79871± 0.00064 0.92836± 0.00019
9.5 0.19569± 0.00029 1.79776± 0.00063 0.95195± 0.00019
10.0 0.21701± 0.00031 1.79691± 0.00063 0.97442± 0.00019
10.5 0.23960± 0.00034 1.79628± 0.00063 0.99579± 0.00019
11.0 0.26361± 0.00036 1.79589± 0.00063 1.01605± 0.00019
11.5 0.28894± 0.00039 1.79532± 0.00063 1.03544± 0.00019
12.0 0.31570± 0.00042 1.79489± 0.00063 1.05399± 0.00019
12.5 0.34386± 0.00045 1.79432± 0.00062 1.07188± 0.00019
13.0 0.37349± 0.00048 1.79405± 0.00062 1.08902± 0.00019
13.5 0.40461± 0.00052 1.79343± 0.00062 1.10557± 0.00019
14.0 0.43722± 0.00054 1.79316± 0.00062 1.12149± 0.00019
14.5 0.47134± 0.00058 1.79241± 0.00062 1.13694± 0.00019
15.0 0.50704± 0.00061 1.79162± 0.00061 1.15192± 0.00019
15.5 0.54431± 0.00066 1.79053± 0.00061 1.16651± 0.00019
16.0 0.58324± 0.00070 1.78988± 0.00060 1.18054± 0.00020
16.5 0.62381± 0.00074 1.78933± 0.00060 1.19420± 0.00019
17.0 0.66613± 0.00078 1.78922± 0.00060 1.20734± 0.00019
17.5 0.71013± 0.00081 1.78864± 0.00059 1.22017± 0.00019
18.0 0.75590± 0.00085 1.78805± 0.00059 1.23280± 0.00019
18.5 0.80337± 0.00090 1.78734± 0.00058 1.24516± 0.00019
19.0 0.85257± 0.00094 1.78699± 0.00058 1.25721± 0.00019
19.5 0.90367± 0.00099 1.78674± 0.00058 1.26879± 0.00019
20.0 0.9565± 0.0010 1.78563± 0.00058 1.28029± 0.00019

Table 4.3: Fitted coefficients for the interpolation formula for q̂ in Eq. (4.81). The values
were obtained by numerically integrating (4.45) and the HTL-screened matrix
element (4.47), then numerically fitting the coefficient b̃ in the region Λ⊥ ≫ T,
and finally fitting d̃ and ẽ in the range 0.1T < Λ⊥ < 15T. Table from [2].



4.2 analytical results for the jet quenching parameter in special cases 77

10−1 100 101

Λ⊥/T

0.00

0.02

0.04

0.06

q̂/
λ
2
T

3

λ = 0.5

λ = 1

λ = 2

λ = 5

λ = 10

0.1 0.2 0.3 0.4
0

2

4

×10−3

0.6 0.7 0.8 0.9 1 1.5 2
Λ⊥/T

0.01

0.02

0.03

q̂/
λ
2
T

3

Exact

Λ⊥ Q T

Λ⊥ Y T

empirical fit

Figure 4.5: (Left:) The interpolation formula (4.81) for the jet quenching parameter q̂ with
the fitted coefficients listed in Tab. 4.3 is shown as continuous lines for different
couplings λ (color-coded). The numerical evaluation of Eq. (4.45) is shown as
crosses, the limiting expressions for soft (4.65) and hard cutoffs (4.77a) as dotted
and dashed curves. The inset shows the behavior at small momentum cutoffs.
(Right:) Focus on the interpolation region Λ⊥ ∼ T. For λ ≥ 1 we see very good
agreement with the numerical results. Plots adapted from [2].

that reproduces the analytical results in the limits Λ⊥ ≪ T and for Λ⊥ ≫ T and
agrees with our numerical evaluation.

From (4.65) and (4.77a) we know the behavior of q̂ for small Λ⊥ ≪ T and large
cutoffs Λ⊥ ≫ T. As discussed before, (4.77a) differs from the numerical evaluation
of q̂ by a constant shift for larger values of the coupling λ ≳ 0.5. Our strategy is to
find an empirical fit function that smoothly interpolates in between,

q̂emp

CRT3 = ⎧⎪⎪⎨⎪⎪⎩c̃ ln(1+Λ2⊥/m2
D) , for Λ⊥ ≪ T

ã ln(Λ⊥/mD) + b̃ , for Λ⊥ ≫ T .
(4.79)

The switching between those two cases will be done using a hyperbole tangent that
smears out a step function with width parameter d̃,

Θd̃(x) = 1+ tanh (d̃x)
2

, (4.80)

which approaches the usual step function for d̃ →∞.
This leads to the following form for the fit formula

q̂emp

CRT3 = c̃ ln(1+ Λ2⊥
m2

D
)Θd̃ (ẽ − ln

Λ⊥
T
) + (ã ln

Λ⊥
mD
+ b̃)Θd̃ (ln Λ⊥

T
− ẽ) . (4.81)

For the coefficients c̃ and ã, we use the prefactors of (4.65) and (4.77a), which have
the following values for a gluonic plasma:

c̃ = λ2

12πNc
, ã = λ2ζ(3)

π3Nc
. (4.82)

This leaves only three fit parameters: The constant b̃ encodes the linear shift in the
large Λ⊥/T region, while d̃ and ẽ describe the width and position of the switching
between the two limiting cases in (4.79). First, the coefficient b̃ is obtained, such
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that it correctly reproduces q̂ ≃ ã ln Λ⊥/mD + b̃ in the large Λ⊥/T region. Then, the
coefficients d̃ and ẽ are determined by fitting them to the numerical data.

The results for the remaining fit parameters in Eq. (4.81) are listed in Tab. 4.3
for the couplings λ = 0.5− 20. The resulting q̂ are shown in Fig. 4.5 as continuous
lines. For comparison, the numerically obtained values are included as crosses,
and the limiting expressions for hard and soft cutoffs, Eqs. (4.77a) and (4.65),
respectively, as dashed and dotted lines. Consistently with the construction of
the fit formula, its values are seen to agree well with the numerically evaluated q̂
in the left panel of Fig. 4.5 and in the inset showing the small cutoff behavior at
Λ⊥ ≪ T. The right panel of Fig. 4.5 shows the interpolation region Λ⊥ ∼ T. We find
a very good agreement with the numerics for λ ≥ 1, while for smaller couplings
λ ≲ 0.5 deviations grow in this region. Note that the fit formula provides a smooth
interpolating expression for q̂ with improved accuracy in this region as compared
to the previous limiting forms.

Thus, the expression (4.81) together with the coefficients in Tab. 4.3 can be used
to obtain q̂ in thermal equilibrium for any transverse momentum cutoff Λ⊥ and the
listed couplings λ in the weak coupling limit at leading-order.

4.2.2 Toy models for bottom-up thermalization

As toy models for the bottom-up thermalization process that we discussed in Section
3.5.2, we consider first an effectively two-dimensional distribution in Section 4.2.2.
Then, q̂ is computed analytically in Section 4.2.2 using an isotropic scaled thermal
distribution, which models key features of the over- and under-occupied bottom-up
stages.

Effectively two-dimensional distribution

As a toy model for the large anisotropies encountered at early times in the bottom-
up thermalization scenario, we consider an effectively two-dimensional system and
calculate the jet quenching parameter q̂ for that system. For that, we consider a
distribution function with vanishing kz momentum,

f (k) = B(kx, ky)δ(kz/Q), (4.83)

where B is (for the moment) an arbitrary function of kx and ky, and Q is an energy
scale. Due to its vanishing momentum in beam direction kz = 0, such a state is
similar in spirit to the Glasma, where the jet quenching parameter has also been
studied [152, 153, 155–157].

First, let us focus on the Bose-enhanced part q̂ff in kinetic theory. This agrees with
q̂ in a classical-statistical framework since there is no q̂f contribution in the classical
field limit. By inserting the two-dimensional distribution (4.83) into the q̂ integral
(4.21), we immediately find

q̂zz
ff = 0, (4.84)

due to its proportionality to ∫ (qz)2δ(kz)δ(k′z). Note that this is true regardless of
the precise form of the matrix element or screening prescription. Thus, a purely
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two-dimensional momentum distribution remains two-dimensional in the classical
field limit of kinetic theory.

Let us now consider a special case of (4.83) for which we may obtain an analytic
expression for the jet quenching parameter, where all particles have a specific
momentum k̃,

f (k) = A δ
⎛⎝k2

x + k2
y − k̃2

Q2

⎞⎠ δ(kz/Q) . (4.85)

First, note that we do not need to enforce a momentum cutoff q⊥ < Λ⊥, because
q̂ff is finite even for p →∞. Hence, we consider here the case where the transverse
momentum cutoff Λ⊥ is sufficiently large, at least Λ⊥ > 2k̃, as we will see below.

For q̂yy
ff we start with Eq. (4.12) and insert the special two-dimensional distribution

f (k) from (4.85), obtaining

q̂yy
ff = A2Q6

16p2ν ∫ d3k d3q dω(2π)5q2k2 qyqy ∣M(p, k; p′, k′)∣2
× δ(cos θqp − ω

q
− ω2 − q2

2pq
) δ(cos θqk − ω

q
+ ω2 − q2

2kq
)

× θ(p′ − k′)θ (p − q −ω

2
)Θ (k − q +ω

2
)Θ(q − ∣ω∣)

× δ(kz)δ(qz) δ(k2 − k̃2) δ ((k −q)2 − k̃2). (4.86)

We first integrate out kz and qz. Additionally, for p → ∞ we may drop the
theta functions containing p and p′. We then rewrite the delta functions as
δ ((k −q)2 − k̃2) = δ(ω2 − 2ωk̃) = 1

2k̃
(δ(ω) + δ(ω − 2k̃)), allowing us to integrate

over ω. The δ(ω − 2k) term vanishes because then the third step function becomes
Θ(−q/2) = 0. Integrating over ω then enforces ω = 0. Finally, in the large-p limit, the
first delta function can be simplified to δ(cos θqp) = qδ(qx), allowing us to perform
the qx integral as well. We then arrive at

q̂yy
ff = A2Q6

16p2ν ∫ dkx dky dqy(2π)5qyk2 (qy)2 ∣M(p, k; p′, k′)∣2 (4.87)

× δ(cos θqk − ∣qy∣
2k̃
)Θ(k̃ − ∣qy∣

2
) 1

4k̃2
δ(k − k̃),

where we have used δ(k2 − k̃2) = 1
2k̃

δ(k − k̃). Effectively, q is parallel to the y−axis
and k lies in the x − y plane with length k̃ and ky = ∣qy∣/2. For the matrix element
we need q = ∣qy∣, k = k̃ and φqk, which is the polar angle of k in a frame, in which
q points in the z direction and p lies in the x − z plane, see Section 4.1.2. In our
case, q is orthogonal to p, thus we perform the k integration in a frame, in which
q = qez3 , p = −pex3 . Since k must lie in the p −q plane, we obtain

φqk ∈ {0, π} . (4.88)

We get a factor 2 from the symmetry qy ↔ −qy and insert the gluonic matrix element
from Tab. 4.2 with the Debye-like screening approximation (4.49), and sum over
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the possible values of cos φqk, 1 and -1. Thus we obtain, for a momentum cutoff
Λ⊥ > 2k̃,

q̂yy
ff = dAC2

AA2g4Q6

26π5νk̃3 ∫ 2k̃

0
dq q
(2k̃ −√4k̃2 − q2)2 + (2k̃ +√4k̃2 − q2)2

(q2 + ξ2m2
D)2= dAC2

AA2g4Q6(2π)5νk̃3 ∫ 2k̃

0
dq q

8k̃2 − q2(q2 + ξ2m2
D)2 . (4.89)

The integral over q can be performed analytically, which yields

q̂yy
ff = dAC2

A A2g4

27π5dR k̃3
Q6
⎧⎪⎪⎨⎪⎪⎩4k̃2 ( 2

ξ2m2
D
− 1

4k̃2 + ξ2m2
D

)+ ln
ξ2m2

D

4k̃2 + ξ2m2
D

⎫⎪⎪⎬⎪⎪⎭, (4.90)

where m2
D = A g2Q3

π2 k̃
according to Eq. (3.11).

Indeed, in Section 4.3 we will observe that in the over-occupied and anisotropic
earliest stage of bottom-up thermalization one has q̂zz < q̂yy and that this is due to
q̂zz

ff < q̂yy
ff , which is consistent with the simple toy model presented here.

Scaled thermal distribution

Let us now study another aspect encountered during bottom-up thermalization:
over and under-occupied systems. For simplicity, we use an isotropic toy model
and consider a scaled thermal distribution, i.e., we scale the amplitude of the
thermal distribution (4.57) with N±. Here N+ denotes the scaling parameter of
the Bose-Einstein distribution and N− the scaling parameter of the Fermi-Dirac
distribution,

f±(k; T) = N±
exp(k/T) ∓ 1

. (4.91)

This allows us to easily generalize the results obtained in Section 4.2.1 for the jet
quenching parameter q̂ in a thermal medium. We start with q̂ given by Eq. (4.62).
Splitting the f and f f contributions and using the integrals (4.63) over thermal
distributions, we obtain for small cutoff

q̂(Λ⊥ ≪ T, N±) = g4T3CR

24π3 ln(1+ Λ2⊥
m2

D
) (4.92)

× (π2(2Nc(N+)2 + n f (N−)2) + ζ(3) [9n f N−(1−N−) − 12NcN+(N+ − 1)] ),
which generalizes the equilibrium (N± = 1) result in Eq. (4.65). Similarly, we can

generalize the large cutoff formula (4.77a) to

q̂(Λ⊥ ≫ T, N±) = CR
g4T3

π2 ∑± Ξ±I±(Λ⊥, N±), (4.93a)

I±(Λ⊥, N±) = N±ζ±(3)
2π

ln(Λ⊥
mD
) + (N±)2ΔI±, (4.93b)

with ΔI± given by Eq. (4.77c), which entirely determines q̂ff,

q̂ff(Λ⊥ ≫ T, N±) = CR
g4T3

π2 ∑± (N±)2 Ξ±ΔI±. (4.93c)
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Furthermore, similarly to our discussion for the thermal result in Section 4.2.1,
by replacing 2 ln(Λ⊥/mD) → ln(1+ (Λ⊥/mD)2) in (4.93b), we obtain an ‘improved’
formula valid for large cutoffs that is finite even at small Λ⊥ and generalizes
Eq. (4.78a). Then we can again split off the Bose-enhanced contribution as in (4.56),
q̂ = q̂f + q̂ff. We note that q̂f(Λ⊥) has the same form for small and large cutoffs,

q̂f(Λ⊥, N±) = ζ(3) (12N+Nc + 9n f N−)CL(Λ⊥) , (4.94a)

with, as before, CL(Λ⊥) = g4T3CR
24π3 ln(1+ Λ2⊥

m2
D
). Again, the Bose-enhanced terms differ

q̂ff(Λ⊥ ≪ T, N±) = [2Nc(N+)2(π2 − 6ζ(3)) + n f (N−)2(π2 − 9ζ(3))]CL(Λ⊥),
(4.94b)

q̂ff,im(Λ⊥ ≫ T, N±) = CRg4T3∑± Ξ±(N±)2 (4.94c)

×{ζ±(2) − ζ±(3)
4π3 [ln(1+ T2

m2
D
)+ 1− 2γE + 2 ln 2] − σ±

2π3} .

The Debye mass entering these expressions for the scaled thermal distributions is
given by (see Eq. (3.11))

m2
D = g2T2

3
(N+Nc + N−n f

2
) . (4.95)

Thus, mD scales with
√

λN±. The occupation of fermions N− cannot become large
due to Pauli blocking. For large gluon occupancies N+, this may pose a problem for
the validity of perturbation theory that requires mD ≪ T and that our arguments
and the derivations in [101] are based on. We can estimate the breakdown scale by
requiring mD ≪ T, which leads to

N+ ≪ 1
Nc
( 3

g2 − N−n f

2
) . (4.96)

This is, of course, in line with the usual limitations of perturbation theory, which
breaks down at nonperturbatively large occupation numbers f ≳ 1/g2.

Let us now compare these expressions with a numerical evaluation of q̂ using
Eq. (4.45). For a purely gluonic system, the individual contributions q̂f/λ and q̂ff
(from Eqs. (4.94)) depend only on the product λN+, and not on the coupling λ and
occupation N+ individually,6

q̂(Λ⊥, N+, λ) = λ ( q̂f

λ
)(Λ⊥, λN+) + q̂ff(Λ⊥, λN+). (4.97)

These contributions are plotted in Fig. 4.6 for small (left) and large (right) cutoffs
Λ⊥ = 0.2T and 10T, respectively, divided by the prefactor

q̂f ∼ λ(λN+)T3, q̂ff ∼ (λN+)2T3. (4.98)

6 The Debye mass entering the matrix element depends only on the product λN+ (see Eq. (3.11)). The
quantum part q̂f comes naturally with a factor N+ from the single distribution function and a factor
λ2 from the matrix element, and thus q̂f/λ is only a function of the product λN+. The classical wave
contribution q̂ff comes naturally with a prefactor λ2N2+.
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Figure 4.6: The individual components q̂f (green) and q̂ff (blue) as defined in (4.56) and
rescaled according to their parametric estimates in (4.98) as functions of their
only argument λN+ for Λ⊥/T = 0.2 (left) and Λ⊥/T = 10 (right). The isoHTL
screened results are shown with ‘×’-symbols, and the Debye-like screened
results are shown as ‘+’-symbols. The left panel shows the small-cutoff form
(4.94b) for q̂ff and Eq. (4.94a) for q̂f labeled as “Λ⊥ ≪ T”. The right panel
depicts both large-cutoff expressions (4.94a) for q̂f and (4.93c) for q̂ff labeled
“limit Λ⊥ ≫ T” and its improved version (4.94c) labeled as “improved Λ⊥ ≫ T”.
Figures adapted from [2].
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Figure 4.7: The jet quenching parameter q̂ for a scaled thermal distribution (4.91) as
a function of N+ for different couplings λ for cutoff Λ⊥/T = 0.2 (left) and
Λ⊥/T = 10 (right). As in Fig. 4.6, the isoHTL results are shown with ×-symbols,
and Debye-like screened results as +-symbols. In the left panel, the small-
cutoff form (4.92) is labeled as “Λ⊥ ≪ T”. The right panel shows both the
large-cutoff expression Eq. (4.93a) labeled as “limit Λ⊥ ≫ T” and the improved
version obtained by summing Eqs. (4.94a) and (4.94c) labeled as “improvement”.
Figures adapted from [2].
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We observe that their values deviate significantly from the simple estimates in
Eq. (4.98). This is a consequence of screening effects and the scaling of the Debye
mass. In particular, one finds for sufficiently small cutoffs Λ⊥ ≲ mD, T and large
occupancies that

q̂f

λ2N+T3 ∼ q̂ff

λ2N2+T3
∼ Λ2⊥

m2
D
∼ (λN+)−1 , (4.99)

which is visible in the left panel of Fig. 4.6 for sufficiently large λN+. Note that
for a sufficiently large λN+ ≫ 1 the effective kinetic theory description used here
ceases to be valid. Similarly to the equilibrium case discussed in Section 4.2.1 and
particularly in Fig. 4.4, the expression for small cutoffs (4.92) nicely agrees with the
numerical values in the small-cutoff asymptotic region, plotted in the left panel
of Fig. 4.6. In the right panel, for large cutoffs, we observe that the analytic form
for q̂f in Eq. (4.94a) remains a very good description coinciding with the numerical
values, whereas the analytic estimate for q̂ff in Eq. (4.93c) (and its improvement
Eq. (4.94c)) ceases to describe the data for nonperturbatively large occupancies
λN+ ≳ 1. This is expected from the condition (4.96), and we see sizable deviations
already at λN+ ≳ 0.1.

The full HTL screening and the Debye-like screening (4.49) nicely agree with
each other at large cutoffs for the whole λN+ range despite the aforementioned
limitations concerning q̂ff. On the other hand, for small cutoffs (left panel), the
Debye-like screening approximation shows large deviations from the full HTL
screening, albeit in the large λN+ region which should be taken with caution,
as discussed above. The resemblance to the thermal case here is, of course, no
coincidence since by setting N+ = 1, we recover the thermal results.

Recombining the contributions from q̂f and q̂ff, we show q̂ in Fig. 4.7 for the
couplings λ = 0.5, 1, 2, 5 and 10 as functions of the occupancy N+, for the small
cutoff Λ⊥/T = 0.2 in the left panel and the large cutoff Λ⊥/T = 10 in the right panel.
The values are shown scaled by the effective temperature Tε that represents the
temperature of a thermal system with the same energy density, Eq. (3.84),

Tε = (N+)1/4T. (4.100)

For comparison, also the analytic expectations are shown for small (4.92) and large
cutoffs (4.93) as well as its improved expression (4.94). Similarly as for q̂f and q̂ff,
we observe for q̂ in Fig. 4.7 that the small-cutoff expression agrees well with our
(HTL-)screened data points while the large-cutoff expressions describe the data
points until N+ ≲ 1/λ. Moreover, the improved formula for large cutoffs increases
the validity of the analytic result only to slightly larger occupancy N+. This plot
emphasizes the importance of screening effects that prevent the naïve scaling with
N+ or N2+. We, therefore, should be cautious when using such analytic expressions
to describe over-occupied systems with typical occupancies N+ ∼ 1/λ. Instead,
transport coefficients in such systems can be studied using classical-statistical
lattice simulations [152, 153, 157, 213]. In particular, it has been shown [213] that
nonperturbative corrections can be substantial.

Interestingly, as visible in Fig. 4.7, increasing the occupancy N+ does not appear
to drastically increase the value of the jet quenching parameter q̂. In particular, for
small cutoff Λ⊥/T = 0.2 visible in the left panel, we observe that the scaled q̂ in fact
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Figure 4.8: Jet quenching parameter q̂ for a scaled Bose-Einstein distribution (4.91) as a
function of its amplitude N+ for different momentum cutoffs Λ⊥ (numbers in
circle markers) and coupling λ = 10. Figure from [2].

decreases with increasing occupancy. Even for large cutoffs (right panel), increasing
the occupancy by several orders of magnitude only leads to a slight increase in the
jet quenching parameter. This behavior is due to a combination of two effects. The
first effect is that the increasing occupation number also increases the Debye mass
mD. Thus, a detailed understanding of screening effects is particularly important
for a quantitative analysis of q̂. The second effect comes from dividing the value of
q̂ by the third power of the effective temperature Tε ∼ N1/4+ , which increases with
the occupancy when the hard momentum scale T is kept fixed.

Fig. 4.8 provides an overview of the numerical values of q̂ for the phenomenolog-
ically relevant coupling λ = 10 in heavy-ion collisions. Different values of the cutoff
Λ⊥ are color-coded and written in the circle markers in the figure. We observe
the same behavior at small and large cutoffs that we have found in Fig. 4.7. This
involves a fast (power-law) decrease with growing occupancy N+ at small cutoffs
as q̂/(λ2T3

ε ) ∼ N−3/4+ , and a slow growth at high cutoffs. We additionally see how
q̂ interpolates smoothly between these two behaviors at small and large cutoffs.
From a physical point of view, this confirms the observation that for small cutoffs,
jet quenching in an over-occupied (isotropic) system similar to a scaled thermal
distribution may be strongly suppressed. However, as stated below Eq. (4.99),
these parameters may lie beyond the range of applicability of the original integral
formula for q̂, Eq. (4.21).

4.3 obtaining q̂ between glasma and hydrodynamics

Finally, let us consider the jet quenching parameter q̂ during a numerical simulation
of the bottom-up thermalization process in heavy-ion collisions. This subsection is
based on [1].

As already briefly discussed in the introduction, this is motivated by the large
values of q̂ reported during the Glasma stage [152–157], while other studies require
it to be negligible at these earliest times [76]. Importantly, different jet quenching
studies treat the earliest stages before hydrodynamics becomes applicable differ-
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from [1].
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ently [76, 147, 148, 151] with partly different conclusions, showing the need for a
better theoretical understanding of jet quenching during the initial stages.

The goal of this section is to obtain the jet quenching parameter q̂ between the
Glasma and hydrodynamic stage, as sketched in Fig. 4.9. To do that, the Boltzmann
equation (3.76)

−∂ fp

∂τ
+ pz

τ

∂ fp

∂pz
= C1↔2[ fp] + C2↔2[ fp] (4.101)

is solved to numerically obtain the distribution function f (p, t) throughout the
pre-equilibrium evolution, which is used as input for calculating the jet quenching
parameter via Eq. (4.45). The distribution function is initialized with the initial
conditions described in Section 3.6.2 with anisotropy parameters ξ0 ∈ {4, 10}. In the
elastic collision kernel, soft-gluon exchanges are regulated using the Debye-like
screening prescription as discussed in Section 3.3.2.
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parameter for a scaled thermal distribution with different scaling coefficients
N+ as a function of the transverse momentum cutoff Λ⊥. Figure from [2].

4.3.1 Results for a fixed momentum cutoff Λ⊥
We start by discussing the resulting jet quenching parameter q̂ at fixed transverse
momentum cutoffs Λ⊥ and later generalize this to more realistic models of evolving
(time-dependent) momentum cutoffs. As discussed in Section 4.1.4, the mixed
components q̂yz = q̂zy = 0 vanish due to symmetry arguments, so we need to
focus here only on the diagonal components q̂zz(τ) and q̂yy(τ). They are plotted
in Fig. 4.10 for a cutoff Λ⊥ = 3Qs for different couplings and initial anisotropy
parameters ξ0 = 10 (solid lines) and ξ0 = 4 (dashed lines). For these anisotropy
parameters, we find little sensitivity regarding varying the initial conditions, less
than 15% for the considered parameters, and observe qualitatively similar behavior
for different couplings.

To further study the evolution of q̂ii, Fig. 4.11 shows their values for different
cutoffs Λ⊥ for anisotropy parameter ξ0 = 10 and coupling λ = 2. Qualitatively
similar effects can also be found for other couplings, and λ = 2 is chosen for
illustrative purposes. The estimates for an energy-density matched (see Eq. (3.84))
thermal system q̂ii

therm = 1
2 q̂therm are also shown as dash-dotted lines and are

obtained by evaluating Eq. (4.45) with a thermal distribution. For that, the empirical
formula (4.81) from Section 4.2.1 is used with the pmin corrected Debye mass (3.87)
to account for discretization artifacts. The contribution from the Bose-enhanced
q̂ff term is shown separately as dotted lines. We observe that in general, the
order of magnitude of q̂ii follows the energy-density matched thermal values.
During the earliest stage of bottom-up thermalization, which is characterized by
overoccupation and extreme anisotropy and consists of the time before the star
markers, the results of q̂ are above the energy-density matched thermal ones.

In the next stage, and in particular, when minimum occupancy is reached
(marked by the circles), the values for large cutoffs Λ⊥ undershoot the thermal ones,
while those for a small cutoff overshoot them. This behavior can be understood by
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considering the scaled thermal distribution studied in the previous section 4.2.2.
The analytic expression for q̂ for a scaled thermal distribution, Eq. (4.93), is shown
for different occupancies in the right panel of Fig. 4.11. Similarly, as in the left
panel, when increasing the cutoff Λ⊥, the thermal q̂ first underpredicts the actual
under-occupied q̂, and this ordering reverses when the cutoff is increased. This
simple toy model for an under-occupied distribution, thus, provides an intuitive
explanation of the ordering of the thermal and nonthermal curves during the
under-occupied regime in the bottom-up evolution.

Finally, approaching thermal equilibrium (signaled by the triangle markers),
the values of q̂ii also approach the thermal expectation. An interested reader
might wonder why the thermal values seem to grow over time. This is because
we consider q̂(τ) at a fixed transverse momentum cutoff Λ⊥, but due to Bjorken
expansion, all scales in the plasma continuously decrease. Thus, effectively, the
cutoff increases and the rise observed in the jet quenching parameter comes from
this increase.

For almost the entire evolution we find that momentum broadening in the beam
direction is larger than transverse to it, q̂zz > q̂yy. This seems to be typical for
anisotropic systems with occupancies up to order unity, as has been found for
transport coefficients in the context of kinetic theory [131, 132]. It should be
emphasized that in our formulation, this ordering is a result of the anisotropic
under-occupied distribution and, thus, does not stem from the matrix element
for which an isotropic HTL screening prescription is used. It leads to a sizable
difference in the total momentum broadening in different directions. Moreover,
a low momentum cutoff can be associated with the momentum broadening of
the plasma constituents themselves. Thus the larger broadening in the z direction
for smaller Λ⊥ is consistent with the isotropization dynamics in the bottom-up
scenario. Remarkably, jet quenching studies in the Glasma [152, 153, 157] have
revealed a similar ordering q̂zz > q̂yy as we find for most of the evolution of q̂ in our
kinetic simulations, although for a different reason. There the enhancement of q̂zz

seems to stem primarily from a slight asymmetry between the chromo-magnetic
and -electric fields in the underlying classical-statistical description of the Glasma.

Interestingly, we find that for large cutoffs the ordering is reversed at early times
before the star marker, leading to q̂zz < q̂yy. This mainly stems from the Bose
enhancement of the over-occupied plasma phase at the beginning of the evolution.
To see this, consider the Bose-enhancement part q̂ff of q̂ shown in Fig. 4.10 separately
for the y and z directions. Note that q̂ff is finite in the limit Λ⊥ →∞, and the value
at Λ⊥ = 3Qs that is plotted is already close to that limit. While for the non-Bose
enhanced term q̂f, the anisotropy pz ≪ p⊥ leads to q̂zz

f > q̂yy
f , for the Bose-enhanced

term the effect is the opposite, q̂zz
ff < q̂yy

ff . This ordering can be understood from
studying the extremely anisotropic effectively two-dimensional distribution in
Section 4.2.2. There, we found that in the limit of extreme anisotropy (no particles
moving in the z direction), q̂zz

ff = 0, which explains the ordering q̂zz
ff < q̂yy

ff shown in
Fig. 4.11.

Finally, as in the previous sections, let us compare differently screened matrix
elements for the evaluation of the jet quenching parameter q̂. In Fig. 4.12, we show
the components q̂ii for both the isoHTL screened matrix element ((4.47), solid lines)
and the Debye-like screened matrix element ((4.49), dotted lines). We find that
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these two screening prescriptions only slightly differ at early times and for smaller
cutoffs (as expected).

Note, however, that in the matrix element in the elastic collision term of the
Boltzmann equation, always the Debye-like screened matrix element is used. We
will study the effects of using the isoHTL screening for the time evolution in
Chapter 6.

4.3.2 Results for realistic cutoff dependence

Kinematic and LPM cutoff

Until now, we have studied the jet quenching parameter q̂ using a fixed cutoff
Λ⊥. This is unphysical since during the plasma expansion all characteristic energy
scales decrease. To account for this, we choose cutoff models that depend on the
jet energy Ejet and effective plasma temperature Tε, introduced and motivated in
Section 4.1.9,

ΛLPM⊥ (Ejet, Tε) = ζLPMg × (EjetT3
ε )1/4, (4.102a)

Λkin⊥ (Ejet, Tε) = ζking × (EjetTε)1/2. (4.102b)

Recall that the first cutoff model ΛLPM⊥ is a rough estimate of the accumulated
transverse momentum during the formation time of a gluon emission during the
LPM regime. Variants of the kinematic cutoff model Λkin⊥ have been widely used in
the literature (see, e.g., [114, 115, 118, 120, 149, 209–211]) and take into account that
the plasma particles the jet scatters off have momentum k ∼ T. These arguments
only provide parametric estimates, so we have included a (so far unknown) pro-
portionality constant ζ ..., which will be determined by requiring that q̂ reproduces
some reference value. It should be emphasized here that q̂ is regarded as a medium
property relevant for a jet with an appropriate fixed energy Ejet and we do not
study the actual evolution of a jet.
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We do not expect any substantial differences between these two cutoff models
(4.102) since the dependence of q̂ on the cutoff is only logarithmic for large Λ⊥,

q̂ii(Λ⊥ ≫ Tε) ≃ ai
Λ⊥ ln

Λ⊥
Qs
+ bi

Λ⊥ . (4.103)

In practice, we fit the coefficients ai
Λ⊥ and bi

Λ⊥ to the large cutoff behavior of the
numerically obtained values for q̂. Although, as discussed in Section C.2.2, the
coefficients ai

Λ⊥ should be the same for different directions, we employ here a
more general parametrization, allowing for differences in different directions. The
resulting coefficients ay

Λ⊥ and az
Λ⊥ differ only slightly. The numerical values of

ai
Λ⊥/Q3

s and bi
Λ⊥/Q3

s as functions of Qsτ for λ = 0.5, 1, 2, 5 and 10 for the initial
conditions in Eq. (3.77) are publicly availabe in [214].

Matching the Glasma: Problems and strategy employed here

One of our goals is to make contact with the large q̂ values reported in the Glasma
[152, 153, 155, 157], and to assess whether these large values reported there are
plausible from a kinetic theory perspective. To achieve that, ideally, we would take
at some time, e.g., τ0 = 1/Qs, the full configuration obtained in a classical statistical
simulation of the Glasma, extract a gluon distribution function (as, e.g., done in
Ref. [201, 202]) and use this as input for our kinetic theory simulation. Performing
this matching seems feasible in principle but is very complicated in practice,
particularly because the Glasma simulations that are used to obtain values for the jet
quenching parameter q̂ in Refs. [153, 157] employ a boost-invariant approximation
(they are effectively 2+1D simulations). From that, we cannot immediately obtain
any information about the pz dependence of the gluon distribution function f (p, τ0),
which, physically, broadens due to plasma instabilities [35, 215, 216].

As discussed in Section 3.6.2, as a first step, a parameterization of the JIMWLK
evolved (2+1D) Glasma result from Ref. [203] is used, which we also use as initial
condition (3.77), similar to what is done in Ref. [22]. There, the pz dependence is

then obtained by “de-”squeezing the transverse momentum p⊥ →√p2⊥ + ξ2
0 p2

z . To
make a meaningful comparison to the Glasma results, the value of Qs is chosen
such that the energy density of the Glasma in Ref. [153] is reproduced at the initial
time Qsτ = 1 for coupling λ = 10. We allow for a different value of QGlasma

s in
Glasma simulations that might not correspond to the value of Qs we use due to
different definitions and conventions. For the Glasma simulation in Ref. [153],
QGlasma

s = 2 GeV and m/(g2µ) = 0.1 with 50 color sheets have been used, where g2µ

and QGlasma
s are related as in Ref. [217]. Performing the matching of the energy

density at Qsτ = 1 (which is an implicit equation requiring as input the energy
density εGlasma(τ) from Ref. [153]) yields a value of Qs = 1.4 GeV. Remarkably, this
is the same value as obtained in Ref. [204], where it was found that precisely this
value is needed for the EKT setup to be consistent with the later hydrodynamic
evolution. This shows the consistency of both approaches.

To summarize, the matching is performed both in the form of the distribution
function (parameterized and squeezed [22]) and the energy density.
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Figure 4.13: Evolution of q̂zz and q̂yy for the cutoff models in (4.102a) (solid) and (4.102b)
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Golay filter, while the original curves with estimated error bars are shown
transparently beneath. Thermal curves for the LPM cutoff model are included
for comparison. Figure adapted from [1].

Numerical results

We fix the values of the parameters ζ ... in Eq. (4.102) at the triangle marker close to
thermal equilibrium. At this time, where the temperature is Tε = 0.21Qs = 295 MeV
for a realistic coupling λ = 10. More concretely, we require the jet quenching
parameter q̂ to match the median value for q̂therm in the LBT parametrization of
Ref. [115] by the JETSCAPE collaboration in order to be close to a traditional
numerical estimate for a thermal distribution. For Ejet = 20 GeV, one finds the
numerical values ζLPM = 0.70 and ζkin = 0.16, whereas for Ejet = 100 GeV the values
ζLPM = 1.14 and ζkin = 0.40 are obtained. We will discuss different matching
conditions in the next subsection, which, importantly, do not significantly change
the results.

Fig. 4.13 shows the resulting q̂zz and q̂yy for the anisotropy parameter ξ0 = 10
and jet energy Ejet = 100 GeV. Both cutoff parametrizations of Eq. (4.102) are shown
for different values of the coupling λ (color-coded). We find that the evolution
of q̂ii is similar as for fixed cutoffs, with q̂zz > q̂yy for most of the nonequilibrium
evolution except for a short period of reversed ordering at the beginning for λ = 2.
In particular, longitudinal momentum broadening is more efficient than expected
from a thermal system, as indicated by the dashed thermal line for comparison,
which we only show for the LPM cutoff (4.102a). As anticipated, both cutoff models
lead to similar results, with the LPM cutoff yielding systematically larger values
than the kinematic cutoff model during the pre-hydrodynamic evolution. For λ = 10
they differ by less than 20%, while the variation of initial anisotropies has a much
smaller impact, as we have seen in Fig. 4.10.

This relatively mild sensitivity to the initial parameters and cutoff models enables
us to obtain results for q̂ throughout the pre-equilibrium stages, effectively extrap-
olating backward from a fit to a phenomenological extraction by the JETSCAPE
collaboration at the triangle time marker close to equilibrium. The results of this
procedure are shown in Fig. 4.14 for jet energies Ejet = 20 GeV and 100 GeV. Varia-
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Figure 4.14: Jet quenching parameter q̂ during the initial stages in heavy-ion collisions.
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Jet quenching parameter for different jet energies and varying cutoff models
(bands) and comparison to the Glasma results from [153]. (Right): Anisotropy
ratio q̂yy/q̂zz during the initial stages. Figures reused from Ref. [1].

tions in cutoff models and initial conditions are represented in the bands. With the
procedure described above to fix the cutoff, we find that the bands for different jet
energies almost overlap.

Additionally, the numerical results of the Glasma calculation of Ref. [153] are also
included in Fig. 4.14. We observe that at τ ∼ 0.2 fm/c, the jet quenching parameter
q̂ ≈ 4− 5 GeV2/fm, which is comparable (but not identical) to the values during the
Glasma regime at this time. It should be noted that we do not precisely match the
Glasma distribution function at our initialization time, and this matching should be
regarded as a crude estimate. In particular, a similar matching procedure employed
in Ref. [7] by the same authors leads to a much worse matching for a closely
related transport parameter, the heavy-quark diffusion coefficient κ. This shows that
the matching procedure here is perhaps too crude for a quantitative matching of
the transport coefficients. However, this does not change the message of Ref. [1]
that the seemingly large values of q̂ during the Glasma phase are plausible from a
kinetic theory perspective.

Finally, the right panel shows the ratio of the jet broadening coefficients q̂yy/q̂zz

for these times, showing a suppression of up to 20% between the Glasma and the
hydrodynamic regimes.

Note that the boundary between kinetic theory and hydrodynamics in Fig. 4.14
is—somewhat arbitrarily—chosen to be τ = 1 fm/c to give an estimate of where
typical hydrodynamic evolution is expected to be valid. The actual numerical
values shown in the plots are all obtained using kinetic theory, as discussed in
Section 3.6, and it should be noted that at late times QCD kinetic theory simulations
are indistinguishable from hydrodynamics (see Fig. 3.3).

Matching different cutoffs

A perhaps unsatisfying aspect of the previous discussion is that in order to present
numerical results, we were required to fix the proportionality constants introduced
in (4.102) to reproduce a reference value of the jet quenching parameter q̂. For
that, we chose to use the JETSCAPE result [115] obtained from Bayesian inference,
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because a convenient and simple parameterization is provided there. However, it is
an interesting question to which extent the results would change had we chosen
to fix the cutoff in a different way. Here, we explore matching to the values from
Ref. [116] for comparison, which are depicted in the left panel of Fig. 4.15. At
the matching temperature Tε = 295 MeV, their curves are consistent with the LBT
model employed in the previous matching but exhibit a larger spread. To quantify
the uncertainty in the extraction, we choose upper (q̂ = 2.5T3), central (q̂ = 2T3), and
lower (q̂ = 1.5T3) parts of the error band in the left panel of Fig. 4.15. While these
values are independent of the jet energy, we choose Ejet = 50 GeV for Eqs. (4.102)
to make a concrete comparison. The results (for the early times) are shown in
the right panel of Fig. 4.15, where we observe that the upper and central values
are compatible with the JETSCAPE parametrization and also consistent with the
Glasma values, whereas the lower bound yields slightly smaller values.

4.4 concluding remarks

In this chapter, we studied how the jet quenching parameter q̂ can be obtained
within QCD kinetic theory, both for finite jet energy and for the limit of an infi-
nite jet energy with a transverse momentum cutoff Λ⊥. We generalized earlier
analytic calculations of this parameter to toy models relevant to the bottom-up
thermalization process in heavy-ion collisions. In particular, we considered a
scaled thermal distribution to model an under-occupied stage, and an effectively
two-dimensional distribution, modeling the initial large anisotropy in heavy-ion
collisions. Comparing with numerical results, we found that different screening
prescriptions lead to different results for small couplings or cutoffs. In particular,
we investigated HTL and Debye-like screening in the matrix element needed for
the evaluation of q̂. Furthermore, we found that the previous analytic expressions,
which are derived in the weakly coupled limit, do not accurately describe the jet
quenching parameter when extrapolated to larger values of the coupling, for which
we provided a convenient parameterization.
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Finally, we went on to study the jet quenching parameter q̂ during the Glasma
and hydrodynamic phase at the early stages in heavy-ion collisions. We find that
the numerical results for the jet quenching parameter q̂ follow roughly Landau-
matched thermal estimates while exhibiting a sizable anisotropy q̂zz > q̂yy for
most of the pre-equilibrium evolution. This emphasizes the importance of going
beyond approximating q̂ with its equilibrium value, which seems to systematically
underestimate q̂ and is isotropic by construction.

The results of q̂ during the kinetic regime could be used in the future to extend
current frameworks that employ a hydrodynamic medium evolution to extract q̂
from experimental data [114–116]. Although based on scattering processes with
on-shell partons, the extracted values for q̂ can also enter jet evolution models in
order to include medium effects during the initial large virtuality phase [151].

The anisotropy q̂zz > q̂yy remains during most of the pre-hydrodynamic evolution
including the Glasma and kinetic stages, and, thus, may leave imprints on experi-
mental observables. In particular, it has been pointed out that such anisotropies
in the jet quenching parameter lead to jet hadron polarization [218], and may be
probed experimentally by studying spin-polarized and azimuthal jet observables
[219].

In Chapter 7, we will consider the collision kernel C(q⊥), which can be thought
of as a generalization of the jet quenching parameter, during the initial stages in
heavy-ion collisions.





5
L I M I T I N G AT T R A C T O R S I N H E AV Y- I O N C O L L I S I O N S

As discussed in the introduction, it has been found that the time evolution of the
nonequilibrium QCD plasma generated in heavy-ion collision quickly follows a
universal curve, the hydrodynamic attractor. This was first seen in the context of hy-
drodynamics, where the pressure anisotropy for various different initial conditions
quickly collapses on the universal hydrodynamic attractor curve. Moreover, it has
been found that a similar attractor exists for kinetic theory simulations at different
couplings, when the time is rescaled with the relaxation time τR from Eq. (3.85b),
τR = 4πη/s/T [27, 56]. However, as discussed in Section 3.5.2, there is another
time scale involved when studying the bottom-up equilibration in heavy-ion col-
lisions from kinetic theory. There, the equilibration time scales parametrically as
τBMSS ∼ α

−13/5
s . In this chapter, we discuss the relevance of these different time

scales for the pressure ratio, jet quenching parameter and the heavy-quark diffu-
sion coefficient, which is a related quantity describing the momentum diffusion of
heavy-quarks in the quark-gluon plasma.

This chapter is based on Ref. [3].

5.1 time scales and initial conditions

In Section 3.5.2, we discussed how, in a weak-coupling picture, the out-of-equilibrium
plasma created in heavy-ion collisions reaches equilibrium according to the bottom-
up hydrodynamization picture [185]. Within this picture, the time scale for thermal-
ization is given by the parametric estimate τBMSS from Eq. (3.67) (restated below),
while first-order hydrodynamics is governed by the time scale τR, which is related
to the shear viscosity over entropy ratio η/s (see Eq. (3.85b)),

τBMSS(λ) = α
−13/5
s /Qs, τR(λ, τ) = 4π η/s(λ)

Tε(τ) . (5.1)

Recall the relation for the coupling constant αs = λ/(4πNc). The numerical values
of1 η/s(λ) can be obtained by using a functional basis [206] or by the late-time
behavior of the pressure ratio (e.g., in [28]). We will discuss how to extract η/s in
more detail in Chapter 6. For now, the values from Ref. [56] are used (given for

1 In this thesis, only the ratio of the shear viscosity over entropy density η/s is considered, and this
ratio depends on the coupling λ.

95
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Figure 5.1: Pressure ratio as functions of τ/τBMSS (left) and τ/τR (right). The extrapolations
to vanishing and infinite coupling (the limiting attractors) are performed for
each value of τ as demonstrated in Fig. 5.2, and are denoted as thick dashed
lines. Figures from Ref. [3].

1 ≤ λ ≤ 10). For λ = 0.5 and λ = 20, the values used here have been extracted2 using
the methods described in Chapter 6,

η

s
(λ=0.5) = 80 ,

η

s
(λ=20) = 0.22 . (5.2)

The equilibration process is simulated using QCD kinetic theory, as already
employed in the previous Chapter 4. More details on the exact setup are detailed
in Section 3.6. For that, the Boltzmann equation (3.76)

( ∂

∂τ
− pz

τ

∂

∂pz
) f (τ, p) = −C1↔2[ f (τ, p)] − C2↔2[ f (τ, p)], (5.3)

is numerically solved to obtain the time evolution of the gluon distribution function
f (p, τ). Only gluons are considered, which are the dominant degrees of freedom for
equilibration and hydrodynamization. As initial conditions, we employ Eq. (3.77),
with ξ0 ∈ {4, 10}. In the plots, also the time markers introduced in Section 3.6.4
are added: The star marker is placed when the occupancy drops below unity, the
circle marker at minimum occupancy and the triangle marker at the time where
the pressure ratio PL/PT = 0.5.

5.2 limiting attractors in the pressure ratio

First, let us consider the pressure ratio PT/PL, obtained from the diagonal compo-
nents of the energy-momentum tensor Tµν from Eq. (3.82). Figure 5.1 shows the
pressure ratio in units of both time scales: in the left panel as a function of τ/τBMSS

and in the right panel as a function of τ/τR. We observe that for each coupling,
the curves from different initial conditions with ξ0 = 4 and 10 approach each other.
This collapse of curves for various different initial conditions for a single coupling
has already been extensively studied in the literature [58, 63, 64]. In the context of

2 The values used here slightly differ from the values extracted in Section 6.4.4. This is because the
current chapter is based on Ref. [3], which appeared earlier than Ref. [4], upon which Chapter 6 is
based, where η/s(λ = 0.5) ≈ 77 and η/s(λ = 20) ≈ 0.2 is found using a more rigorous analysis.
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this chapter, it will be more interesting to compare simulations at different values
of the coupling.

Let us start our discussion with the pressure ratio in the right panel of Fig. 5.1,
where the time is rescaled with the relaxation time τR. For sufficiently large
values of the coupling (consider λ ≥ 5), the curves become indistinguishable after
τ/τR ≳ 0.3. This serves as motivation to define a limiting attractor for large couplings,
which can be obtained by extrapolating λ →∞ linearly in 1/λ, i.e.,

PT

PL
(τ/τR) = a(τ/τR) + b(τ/τR) 1

λ
, (5.4)

where a and b are functions of the rescaled time τ/τR. We define the value of the
limiting large coupling (hydrodynamic) attractor as the value of the coefficient
a(τ/τR), which is shown as a light-blue dashed line in Fig. 5.1. How quickly
this hydrodynamic limiting attractor is approached, depends on the value of the
coupling. For large values λ ≥ 5, the approach occurs already close to the circle
markers. In contrast, for weaker couplings λ ≤ 2, we find that the hydrodynamic
limiting attractor is approached at a significantly later time, even after the triangle
marker.

In contrast to this, we show the pressure ratio plotted as a function of the time
variable rescaled with the bottom-up time scale τBMSS in the left panel of Fig. 5.1.
There, we observe a rather opposite picture, where the curves corresponding to
smaller couplings seem to approach each other, even when the system is still far
from equilibrium. Similarly as in the extrapolation to infinite coupling (5.4), we
define a limiting weak-coupling bottom-up attractor obtained by extrapolating to
vanishing coupling,

PT

PL
(τ/τBMSS) = a(τ/τBMSS) + b(τ/τBMSS) × λ, (5.5)
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with two different functions a and b of the rescaled time τ/τBMSS. Similarly, as
before, the coefficient a(τ/τBMSS) gives the numerical value of the bottom-up
limiting attractor and is shown as a green dash-dotted line in the figure.

We explicitly illustrate the extrapolation procedure that constructs the limiting
attractors visible in Fig. 5.2. The left panel shows for each coupling λ the corre-
sponding value of the pressure ratio PT/PL at a fixed rescaled time τ/τBMSS = 0.25.
Performing the linear fit from (5.5) allows extrapolating to the limiting value of
PT/PL for λ → 0. Similarly, for fixed τ/τR = 1, the Eq. (5.4) leading to the hy-
drodynamic limiting attractor is shown as a black dashed curve in Fig. 5.2. One
might argue that here a linear fit is performed using only a few points. To study
the bottom-up limiting attractor in more detail, several additional3 kinetic theory
simulations at weak couplings λ ∈ {0.25, 0.75, 1.5} were performed, and used to
obtain the bottom-up limiting attractor in the right panel of Fig. 5.2. There, we
observe that for λ ≤ 2, the values lie approximately on a straight line. The error bar
shown in the figure is an estimate of the fit uncertainty from a linear regression
procedure.

To summarize, we find that the pressure ratio at weak coupling between the circle
and the triangle markers is better described using the bottom-up limiting attractor,
while the hydrodynamic limiting attractor provides a better description for strong
couplings after the triangle marker. However, it should be noted that at sufficiently
late times, even for weak couplings, all curves converge to the hydrodynamic
attractor, which is required by the fact that hydrodynamics emerges from kinetic
theory close to equilibrium.

5.3 limiting attractors for transport coefficients of hard probes

Having identified these limiting attractors in the pressure ratio, we may wonder
about other quantities exhibiting similar behavior. In the context of this thesis,
it is natural to consider the jet quenching parameter q̂, which we have discussed
extensively in the previous Chapter 4. Additionally, we will also consider the
closely related heavy-quark diffusion coefficient.

5.3.1 Jet quenching parameter and heavy-quark diffusion coefficient

As discussed thoroughly in the previous Chapter 4, the jet quenching parameter q̂
quantifies the momentum broadening of jets, (see Eq. (1.4)),

q̂ = d⟨p2⊥⟩
dt

. (5.6)

For the derivation in the previous Chapter 4, we have taken the idealistic case of
a massless jet particle with momentum much larger than all plasma scales. On

3 These additional simulations were performed about two years after those used in Ref. [3]. They use
the same initial condition, but the improved adaptive time step employed in Ref. [4] and Chapter 6,
and better discretization parameters. It can be clearly seen that this leads to a slight systematic shift
in Fig. 5.2 (right panel) in the form that the newer runs with λ ∈ {0.25, 0.75, 1.5} lie slightly above
the straight-line fit, whereas the older results lie slightly below. Despite this small bias due to better
accuracy, these additional runs further corroborate the results of Ref. [3] presented in the present
chapter.
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Particle Momentum Mass d⟨Δp2
x⟩

dt
d⟨Δp2

y⟩
dt

d⟨Δp2
z⟩

dt

Jets
p →∞
p̂ = êx

m → 0 q̂xx = q̂L q̂yy q̂zz

Heavy quarks p → 0 m →∞ κT κT κz

Table 5.1: Comparison of momentum diffusion coefficients for jets and heavy quarks in an
idealized scenario. The top row shows the properties of an idealized jet particle
and corresponding transport coefficients q̂ii, while the bottom row lists properties
and transport coefficients for a heavy quark.

the other hand, we may also consider the opposite case: a heavy quark. It can be
modeled as a particle at rest (in the plasma rest frame) with a mass much larger
than all scales in the plasma. This heavy quark will receive momentum kicks from
the plasma, which leads to diffusive behavior. Physically, the momentum of the
heavy quark can then be modeled by the Langevin equation [220]

dpi

dt
= ξi(t) − ηD pi, ⟨ξi(t)ξ j(t′)⟩ = κiδijδ(t − t′). (5.7)

Here, ηD is a drag coefficient, and ξi(t) encodes random momentum kicks. The
heavy quark diffusion coefficient κ quantifies the mean squared momentum transfer
per time,

d⟨(Δp)2⟩
dt

= ∑
i

κi

rotational
symmetry= 3κ. (5.8)

In the Langevin equation (5.7), we have allowed for the possibility of having
different diffusion coefficients κi in different directions in an anisotropic plasma.

We compare the different definitions in these idealized scenarios in Table 5.1.
In principle, these coefficients can be thought of as the limits of a more general
transport coefficient which depends both on the mass and momentum of the
particle.

For the jet quenching parameter, we use Eq. (4.45), which can be written as

q̂ij = 1
4νg

lim
p→∞∫ kk′p′

q⊥<Λ⊥
qi⊥qj⊥(2π)4δ4(P +K − P′ −K′) ∣Mgg

gg∣2
p

f (k) (1+ f (k′)) . (5.9)

In a similar way, the heavy quark momentum diffusion coefficient κ can be obtained
via [220]

κi = 1
2M ∫kk′p′ (2π)3 δ3 (p +k −p′ −k′)2πδ (k′ − k) q2

i ∣Mg∣2 f (k)(1+ f (k′)). (5.10)

Here, M is the mass of the heavy quark and is considered to be much larger than
all other relevant scales. Similarly to the jet quenching parameter, p, p′ are the
incoming and outgoing heavy quark momenta, k, k′ are the incoming and outgoing
momenta of the plasma particles. The transferred momentum q2

i ∈ {q2
z , q2

T = q2
x = q2

y}
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distinguishes longitudinal or transverse momentum transfer, and will be used for
the longitudinal (κz) or transverse (κT) diffusion coefficient, respectively. With the
convention employed here (and also in Eqs. (5.7) and (5.8)), we obtain 3κ = 2κT + κz,
and the ratio κT/κz = 1 for an isotropic system. For the integration measure (3.16),
we use K0 = M for the heavy quark and k0 = ∣k∣ for plasma particles.

At leading order in the coupling and inverse heavy quark mass, κ is dominated
by the t-channel gluon exchange matrix element [220], which we use in an isotropic
approximation,

∣Mg∣2 = NcCRg416M2 k2(1+ cos2 θkk′)(q2 +m2
D)2 . (5.11)

More details on the formula and implementation can be found in Ref. [7].

5.3.2 Numerical results

We have identified limiting attractors in the pressure anisotropy ratio in the previous
section. Let us now consider anisotropy ratios of transport parameters of hard
probes, i.e., consider the ratio of the jet quenching parameter in y and z direction,
q̂yy/q̂zz, for a large transverse momentum cutoff in Eq. (4.6) and of the transverse
and longitudinal heavy-quark diffusion coefficient κT/κz in Eq. (5.10).

These ratios are presented in Fig. 5.3, with κT/κz in the left and q̂yy/q̂zz for cutoff
Λ⊥ = 5Qs in the right column, both for a wide range of couplings λ = 0.5 to 20.
The top row depicts them as functions of time scaled by the bottom-up time scale
τBMSS. There, we observe a remarkable qualitative similarity in the evolution of both
anisotropy ratios. We find that after the circle marker, the curves corresponding
to different couplings quickly approach each other, and even the curves for larger
couplings seem to approach this universal curve. As before, the extrapolation to
zero coupling according to Eq. (5.5) is shown as a light green curve. Note that
curves for weaker couplings approach this attractor earlier, and, in particular, at a
time when the system is still far from equilibrium.

For possibly later convenience, these bottom-up limiting attractor curves can be
fit to the simple form

Rq̂,κ(τ) = 1+ cq̂,κ
1 ln(1− e−cq̂,κ

2 τ/τBMSS) . (5.12)

For the jet quenching ratio Rq̂(τ) ≈ q̂yy/q̂zz, this yields cq̂
1 = 0.12 and cq̂

2 = 3.45 while
the ratio of the heavy quark diffusion coefficient Rκ(τ) ≈ κT/κz leads to cκ

1 = 0.093
and cκ

2 = 1.33. For both anisotropy ratios, the fits (5.12) are included in the top
panels of Fig. 5.3 as dash-dotted lines, labeled “λ → 0 fit”.

Note that the parametrization in Eq. (5.12) should be taken with caution. While
its advantage lies in its simplicity and small number of fit parameters, the approach
toward unity may not be captured completely by this simple ad hoc form. In
particular, upon closer inspection, we observe that it provides a more accurate
description for the bottom-up limiting attractor of the q̂ ratio but shows more
pronounced deviations for the κ ratio. Moreover, since the functional form can
become negative at early times while the q̂ and κ anisotropies are always positive in
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Figure 5.3: Ratios of transverse and longitudinal momentum broadening coefficients of
hard probes using different time scalings. Full and dashed lines correspond to
anisotropy parameters ξ0 = 10 and ξ0 = 4, respectively. The left column depicts
the ratio of the heavy quark diffusion κT/κz where additionally a Savitzky-Golay
filter [221] is applied to the curves to smoothen the data. Similarly, the right
column shows the ratio of jet quenching parameters q̂yy/q̂zz for fixed q⊥ cutoff
Λ⊥ = 5 Qs. In the top row, time is rescaled with τBMSS, and in the center row
with τR. The bottom row illustrates the extrapolation procedure to vanishing
coupling (empty square) or infinite coupling (black arrow), with the latter
performed on the three largest couplings including λ = 20 not shown in the
plots. Plots from Ref. [3].
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Figure 5.4: Additional examples for extrapolating to the bottom-up limiting attractor for
the ratio of the jet quenching parameters q̂yy/q̂zz. Shown are values for various
rescaled times τ/τBMSS for different couplings λ, including λ ∈ {0.25, 0.75, 1.5}.
In the different panels, I show different transverse momentum cutoffs Λ⊥.

kinetic theory, we may expect the fits to deviate substantially from the bottom-up
limiting attractors at very early times τ ≪ 0.01 τBMSS. Irrespective of the exact
parametrization, we emphasize that the bottom-up limiting attractors are well-
defined at early times.

In contrast, the hydrodynamic limiting attractors for these anisotropy ratios
seem to offer less predictive power. This is shown in the central panels of Fig. 5.3
where the ratios are depicted as functions of time scaled with τR. As before, the
hydrodynamic limiting attractors is obtained by extrapolating to λ → ∞ at fixed
τ/τR according to Eq. (5.4). The resulting attractors (light blue curves) predict a
ratio close to unity long before the system reaches isotropy signaled by the triangle
marker. Additionally, the functional form of this attractor is different from the
curves for finite couplings and is approached at much later times, even after the
triangle marker. Therefore, the bottom-up limiting attractors provide a much more
accurate description of these ratio observables for modeling the pre-equilibrium
behavior of hard probes.

The bottom panels demonstrate the validity of the fit forms (5.4) and (5.5) at
fixed times τ/τBMSS = 0.25 and τ/τR = 1 for the smallest and largest couplings,
respectively.

Furthermore, in Fig. 5.4, the extrapolation procedure for the bottom-up limiting
attractor is further demonstrated at various different times, including results for
a different cutoff Λ⊥ = 2Qs as well. For times between 0.001 ≤ τ/τBMSS ≤ 0.5, the
values of q̂yy/q̂zz are seen to fall nicely on a straight line, which demonstrates that
the extrapolation procedure and the bottom-up limiting attractor is well-defined
for these times. Remarkably, the extrapolation seems to work very well even at the
very early time τ/τBMSS = 0.001.

5.4 note on the time scales

One might wonder how different the time scales τBMSS and τR in Eq. (5.1) actually
are in practice. However, it is not straightforward to compare them since the bottom-
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up time scale τBMSS depends only on the coupling λ and is therefore constant in time,
while the kinetic relaxation time τR also includes the effective (Landau-matched
(3.84)) temperature, which decreases throughout the time evolution.

To facilitate comparing these time scales, we may try to express τR in terms of the
coupling λ. This can be done by utilizing the parametric estimate for the maximum
temperature obtained in the bottom-up picture [185], Tmax ∼ α

2/5
s and using the

shear viscosity over entropy density [206] η/s ∼ α−2
s (neglecting the logarithmic

dependence). In summary, we would then obtain

τR = 4πη/s
T

?∼ α
−12/5
s = τ

(2)
R , (5.13)

which is to be compared with τBMSS ∼ α
−13/5
s . Thus, these time scales seem to be very

similar. However, the limiting hydrodynamic attractor seems to work, especially
for larger couplings λ ≳ 5, where perturbative estimates such as those used in (5.13)
are questionable. Indeed, the values of η/s used when employing the rescaling
with the relaxation time (5.1) are extracted from numeric simulations and do not
follow the weakly coupling estimate η/s ∼ α−2

s . Thus, Eq. (5.13) does not accurately
represent the parametric dependence of τR on the coupling λ.

Numerically, it is, of course, straightforward to compare both time scales τBMSS

and τR in Eq. (5.1) directly. Their ratio is plotted in Fig. 5.5, with τR as solid lines
and τ

(2)
R as dotted lines. For small couplings λ ≲ 2, the kinetic relaxation time τR

is much smaller than the bottom-up thermalization estimate τBMSS for the entire
simulation, as visible in Fig. 5.5. In contrast, for larger values of λ, the relaxation
time is comparable to and even becomes larger than the bottom-up estimate. In
particular, both time scales are approximately identical at the triangle marker
(PT/PL = 2) for λ = 10. Comparing τ

(2)
R to τBMSS leads to the same ordering as τR,

but the timescales are more similar, as is already evident from their definition.
However, as discussed before, the time scale τ

(2)
R does not accurately describe the

time-varying τR in the region of interest (moderate to large couplings).
For weakly coupled systems, the observation that τBMSS ≫ τR is consistent with

the fact that the bottom-up picture dominates the equilibration process, which
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can also be seen by the emergence of the bottom-up limiting attractor for small
couplings. It can be understood by the fact that hydrodynamization is dominated by
its longest time scale. On the other hand, for larger couplings, we have τR ≳ τBMSS,
which is in line with the hydrodynamic limiting attractor becoming more dominant
for larger couplings. This provides a simple explanation for the observed behavior
in this chapter.

5.5 concluding remarks

In this chapter, we have focused on the universal features of a set of observables
during the bottom-up thermalization process. We have established the concept of
limiting attractors, which can be constructed according to Eqs. (5.4) and (5.5) by
extrapolating to vanishing or infinite coupling at fixed rescaled times. The bottom-
up (weak-coupling) limiting attractor can be obtained using the characteristic
bottom-up time scale τBMSS, while for the hydrodynamic (strong-coupling) limiting
attractor the relaxation time τR is used.

It should be noted that these two limiting attractors are not contradictory, but
should be rather thought of as complementary. For instance, certain observables
might be more sensitive to the hydrodynamic limiting attractor (for example the
pressure ratio), and others to the bottom-up limiting attractor (for instance the
hard probes transport coefficients ratios considered here). Perhaps surprisingly,
the often-used hydrodynamic (limiting) attractor seems not to be very useful for
the anisotropy ratios of the hard probe transport coefficients considered here, as it
predicts only very small deviations from unity while the ratios for finite couplings
differ from it both in shape and magnitude.

In this chapter, we consider a purely gluonic system, but the inclusion of quarks
would be straightforward. Although qualitative changes to the picture described
here would not be expected (because gluons are the dominant degree of freedom
during hydrodynamization), it would be important to study whether including
quarks enhances or diminishes these limiting attractors.

Furthermore, it would be interesting to perform a broader study to identify other
quantities and observables that are sensitive to the bottom-up limiting attractor.
This may open the possibility of identifying observables in which both attractors
are clearly visible, allowing a detailed study of the interplay of these two limiting
attractors.



6
I M P R O V I N G Q C D K I N E T I C T H E O RY S I M U L AT I O N S

In Chapter 3, we have introduced and discussed QCD kinetic theory [19], and
how medium-effects are included in the Boltzmann equations for the quark and
gluon distribution functions fs(p, t). These medium effects have been included in
a simple way, which we have referred to as Debye-like screening. In this chapter,
we discuss how to do better; by including the fully resummed hard thermal loop
propagator in the matrix elements of the elastic collision term. To quantify the
effects of these changes, we will study how the thermalization of QCD is affected
by this different screening choice. We will start by considering isotropic systems,
and conclude this section with simulations of Bjorken expanding systems now
using the full (isotropic) hard-thermal loop matrix element.

This chapter is based on Ref. [4].

6.1 recapitulate : debye-like screening in qcd kinetic theory

As already discussed in Section 3.3.2, medium-effects are included in QCD ki-
netic theory in the matrix elements for the elastic collision term using the simple
replacement (3.21a),

(s − u)2
t2 → ∣Gµν(P − P′) (P + P′)µ(K +K′)ν∣2 , (6.1)

where G is the retarded HTL propagator. In the Debye-like screening approxima-
tion, this propagator is approximated as (3.28)

Gµν = gµν

Q2
q2

q2 + ξ2
gm2

D
, (6.2)

effectively replacing

(s − u)2
t2 → (s − u)2

t2
q4(q2 + ξ2

gm2
D)2 (6.3)

in the underlined terms in Tab. 3.1. Note that, because of the symmetry in exchang-
ing the outgoing particles (exchanging u and t channel), the u channel divergences
that would require screening can always be mapped to a t channel divergence and
be screened via the replacement in Eq. (6.3).

In this chapter, we will discuss that other replacements, such as replacing su/t2,
are equally valid and use the full isotropic hard-thermal-loop propagator. We will
begin by considering this propagator in a general (isotropic linear) gauge.

105
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6.2 hard thermal loop propagator

6.2.1 Isotropic HTL gluon propagator in a linear gauge

While the HTL gluon propagator is gauge-dependent, calculating several physical
quantities has been shown to be gauge-independent [222–224]. In particular, in an
isotropic system, the HTL gluon self-energy can always be written in terms of two
functions Πa(Q) and Πb(Q).

In this section, we will discuss the most general form of the gluon propagator
with HTL self-energy corrections in a linear gauge that does not break the rotational
symmetry in the plasma rest frame. We will show that all gauge-dependent parts
of the propagator are proportional to the exchange momentum Q and will vanish
when contracted with the external momenta in Eq. (6.1), confirming that the
replacement (6.1) is gauge-independent.

The reason for restricting to not breaking the rotational symmetry is that this
leaves only two relevant directions for the self-energy: The plasma rest frame, which
is defined by the vector ñµ = (1, 0) and momentum of the propagating gluon Qµ.
This will allow for a 4-dimensional basis for the self-energy and propagator, as, e.g.,
in Ref. [225]. If we included another direction, we would need a higher-dimensional
basis, e.g., the one employed in Ref. [226].

In our case, any tensor quantity in this system can be constructed from ñµ, Qµ,
and the metric gµν. For simplicity, we construct our tensor basis with the vector nµ

that is orthogonal to Qµ,

nµ = Pµνñν, Pµν = gµν − QµQν

Q2 . (6.4)

In momentum space, we can represent any linear gauge condition [225, 227]
f µ Aµ = 0 by a general vector f µ(Q). If it further does not break rotational invariance
(which we assumed), we may decompose fµ into a part parallel and transverse to
Q,

fµ = a(Q)Qµ + b(Q)nµ, (6.5)

This general linear gauge includes the Lorenz (covariant) gauge, fµ = Qµ, and the
Coulomb gauge, where f0 = 0 and fi = qi, as well as the temporal axial gauge
f0 = Λ and fi = 0, where Λ is a constant scale needed for dimensional reasons. A
symmetric basis for the gluon propagator is given by [225]

Bµν = nµnν

n2 , Cµν = nµQν + nνQµ, (6.6a)

Eµν = QµQν

Q2 , Aµν = Pµν − Bµν. (6.6b)

The free propagator then reads [225, 227]

G0
µν = Pµν

Q2 − 1
feQ2 ( fcCµν + ( fb +Q2)Eµν) , (6.7)

with

fb = b2n2

ξ
, fc = ab

ξ
, fe = a2Q2

ξ
, (6.8)
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where ξ is the gauge-fixing parameter introduced in the Fadeev-Popov procedure
[225]. Including the self-energy (see (A.27)), we obtain the dressed propagator,

Gµν = Aµν

Q2 +Πa
+ Bµν

b̃(Q) − fc +Πc

b̃(Q)( fe +Πe)Cµν + Q2 +Πb + fb

b̃(Q)( fe +Πe)Eµν, (6.9)

with

b̃(Q) = Q2 +Πb + fb − n2Q2 ( fc +Πc)2
fe +Πe

, (6.10)

and where we have similarly decomposed the self-energy in the same tensor basis,

Πµν = Πa Aµν +ΠbBµν +ΠcCµν +ΠeEµν. (6.11)

The Ward identity forces the HTL self-energy to be transverse, QµΠµν = 0 (see, e.g.,
[177]). In that case, one finds that Πc = Πe = 0, which simplifies b̃(Q) = Q2 +Πb. All
dependence from the gauge choice is now in the parameters fb, fc, and fe, which
always appear together with factors of Qµ. A closer inspection reveals that all terms
proportional to Qµ or Qν yield zero when contracted with the external momenta in
Eq. (6.1). This follows from

Q ⋅ (P + P′) = (P′ − P) ⋅ (P + P′) = P′2 − P2 = 0, (6.12)

and similarly with P ↔ K. Therefore, the screening prescription in Eq. (6.1) is
gauge invariant for a general linear gauge.

6.2.2 IsoHTL screening

Let us now consider including the full isotropic HTL retarded propagator in Eq. (6.1)
for the gluonic matrix element,

∣MHTL∣2
16dAC2

Ag4
= 1

4
(9+ (t − u)2

s2 + 2 ∣GisoHTL
µν (P − P′)(P + P′)µ(K +K′)ν∣2 ). (6.13)

As before, we will refer to this screening prescription as isoHTL. Note that, as we
have discussed in Section 6.2.1, Eq. (6.13) is gauge invariant. We have already
considered a very similar contraction with the external momenta as in Eq. (6.13) for
obtaining the isoHTL screened matrix element for the jet quenching parameter in
Eq. (4.47). The steps to obtain the isoHTL screened matrix element here are almost
identical (see Appendix A.5.3), leading to

∣GisoHTL
µν (P − P′)(P + P′)µ(K +K′)ν∣2 = c2

1

A2 + B2 + c2
2

C2 +D2 − 2c1c2(AC + BD)(A2 + B2)(C2 +D2) ,
(6.14)

with A, B, C, D and c1 given by Eqs. (4.34) and (4.35), and the only difference being
c2, which now reads

c2 = 4pk sin θqp sin θqk cos(φqk − φqp). (6.15)

More details and a more elaborate discussion on the differences to the isoHTL
screening for the jet quenching parameter are discussed in Appendix A.5.3.
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Figure 6.1: Transverse (left) and longitudinal (right) jet quenching parameter in a thermal
plasma using both the Debye-like screening prescription with ξg = e5/6/√8
(usually employed in the elastic collision term) and the isoHTL screened Matrix
element. Figure taken from an upcoming publication [228].

6.2.3 Debye-like screening as an approximation to isoHTL

As already briefly discussed in Section 3.3.2, the Debye-like screening prescription
(6.3) can be understood as a simple approximation to the full isotropic HTL matrix
element (6.14), which we briefly reiterate here. In the original work [169], the
screening parameter ξg was chosen to reproduce (longitudinal) soft momentum
transfer in elastic collisions. This can be seen as follows: For isotropic distributions,
mimicking the steps to obtain the jet quenching parameter from Section 4.1, we
may write the collision kernel as [169]

C2↔2 = 1
29π5ν ∫ ∞

0
dk ∫ 2π

0
dφqp

×∫ k

−p
dω{ f (p) f (k)(1+ f (p +ω))(1+ f (k −ω)) − f (p +ω) f (k −ω)(1+ f (p))(1+ f (k))}

×∫ min(2k−ω,2p+ω)
∣ω∣ dq ∫ 2π

0
dφqk

∣M∣2
p2 .

(6.16)

Screening effects are only important for soft internal momenta, q, ω ≪ k, p. When
expanding the distribution functions for small ω, the first nonvanishing term is
quadratic in ω since the matrix element is even. One therefore requires that in this
limit

∫ ∞
−∞ dω ω2∫ ∞

∣ω∣ dq ∫ 2π

0
dφ (∣MHTL∣2 − ∣MDebye1∣2) = 0, (6.17)

which fixes the constant ξg = e5/6/√8 [169].
In Section 4.1.5, we have already seen that using the Debye-like screening pre-

scription for transverse momentum broadening, we obtain a different constant
ξ⊥g = e1/3/2. That is, to match transverse momentum broadening in Section 4.1.5
using (4.37), we needed to include q2⊥ in the matching, whereas here we include
ω2 in Eq. (6.17). For a highly energetic jet, we have qz = ω from (C.5), and, hence,
we match longitudinal broadening here, whereas in Section 4.1.5, we matched
transverse momentum broadening. Consequently, the Debye-like screening pre-
scription cannot simultaneously approximate both longitudinal and transverse
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momentum diffusion, even in isotropic systems, while the isoHTL prescription
can. Therefore, the isoHTL screening prescription is more general and should
be used when both processes are important. This is illustrated in Fig. 6.1, where
the transverse and longitudinal jet quenching parameter is plotted with both the
Debye-like screened matrix element (with screening constant ξg) and the isoHTL
screened matrix element. Also the analytic limits of q̂ from Eqs. (4.65) and (4.77a)
are shown, and the corresponding analytic form of q̂L from Ref. [20] valid for small
cutoffs. We observe that only the isoHTL-screened matrix element reproduces the
analytic limit in both transverse and longitudinal momentum broadening, whereas
the Debye-like screened matrix element can only reproduce one of them. In this
case, by choosing ξg, the longitudinal broadening is reproduced.

It should be emphasized, again, that both of these screening prescriptions neglect
the effect of plasma instabilities, which are generically seen to occur in anisotropic
systems [34–38, 131, 133, 171]. However, numerical evidence indicates that these
instabilities do not play a dominant role at the time scales of interest for kinetic
theory simulations [42, 43] and when a quasiparticle picture becomes applicable
[172–174].

6.2.4 Different Debye-like screening prescriptions

As discussed in Section 3.3, screening effects need only be included for ∣t∣ ≪ s ≈ −u,
where the screening prescription screens the divergencies for t → 0. However, in
this limit,

I1 = (s − u)2
4t2 , I2 = − su

t2 , I3 = s2

t2 , (6.18)

are equivalent up to O(∣t∣/s), in particular, I3/I1 = 1 +O(∣t∣/s) and I2/I1 = 1 +O(t2/s2).
Instead of screening the first term in (6.18), (s − u)2/(4t2), we can also apply the

screening prescription (6.3) to any of the other terms in (6.18). The gluonic matrix
element can be rewritten in several forms, where these terms appear explicitly,

∣M∣2
16dAC2

Ag4
= 1

4
(9+ 2

(s − u)2
t2 + (t − u)2

s2 ) (6.19a)

= 3− 2
su
t2 − tu

s2 (6.19b)

= 3+ 2
s2

t2 + 2
s
t
− tu

s2 . (6.19c)

These vacuum matrix elements (6.19) are equivalent because of the condition for
the Mandelstam variables (3.18), s + t + u = 0. To leading-order (or up to O(∣t∣/s)),
the expressions in (6.18) coincide, and we thus have a particular freedom of how
to implement the screening. The choice mentioned in Ref. [19] is to implement
the screening as in the scalar quark case, Eq. (3.27), which makes the gauge-
independence manifest.
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In this chapter, we study including the simple Debye-like isotropic screening
(3.29) in the different equivalent expressions (6.18) in (6.19), by using the matrix
elements,

∣MDebye1∣2
16dAC2

Ag4
= 1

4
(9+ 2

(s − u)2
t2

q4(q2 + ξ2
gm2

D)2 + (t − u)2
s2 ) , (6.20a)

∣MDebye2∣2
16dAC2

Ag4
= 3− 2

su
t2

q4(q2 + ξ2
gm2

D)2 − tu
s2 , (6.20b)

∣MDebye3∣2
16dAC2

Ag4
= 3+ 2( s2

t2 + s
t
) q4(q2 + ξ2

gm2
D)2 − tu

s2 . (6.20c)

Because of Eq. (3.18), the second and third matrix elements exactly coincide,MDebye2 ≡MDebye3, and we only need to consider differences betweenMDebye1 ≠MDebye2.
Note that for the region ∣t∣ ≪ s, the agreement of the matrix elements (6.20) is

independent of the values of q and mD. On the other hand, for sufficiently large
q≫ mD and independent of the values of s, t, these matrix elements only differ up
to factors of O(m2

D/q2). Since screening effects are only important for these regions
of small q ∼ mD ∼ gT or small ∣t∣ ≪ s, the matrix elements (6.20) are leading-order
equivalent.

6.3 thermalization of isotropic systems

We have already discussed how isotropic systems thermalize in Section 6.3. In this
section, we will now study how the screening choice modifies QCD thermalization
in isotropic systems. For that, numerical simulations using the isoHTL screened
matrix element (6.13) are performed and compared with Debye-like screened
simulations. In the isotropic case, we consider non-expanding isotropic systems
where the longitudinal expansion term in Eq. (3.76) is omitted. Similarly to [21,
187], we start with both an under- and over-occupied initial distribution. The
under-occupied simulations are initialized via

f (p) = A exp (−(p −Q)2/(Q/10)2) , (6.21)

with A chosen1 such that Q = 50T, where T is the temperature of the equilibrium
system after thermalization. As an initial condition for the over-occupied system,
the parametrization of the system’s self-similar scaling solution from [169]

f (p) = (Qt)−4/7
λ p̃

(0.22e−13.3p̃ + 2e−0.92p̃2) , (6.22)

is used, with p̃ = (p/Q)(Qt)−1/7 and initial time Qt = 0.12.
The Boltzmann equation (3.76) is solved numerically until equilibrium is reached,

using a Debye-likeMDebye1 or isoHTL screened matrix elementMHTL. The system’s
time evolution can be fully described by the one-dimensional distribution function,

1 In the simulation, all quantities are given in dimensionless units. There, we first fix Q = 50, then
adjust A such that the energy density is that of a thermal system with T = 1.
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Figure 6.2: Thermalization of an initially over-occupied (left) and under-occupied (right)
gluonic plasma. The top row shows the distribution function f scaled with p3

corresponding to the contribution of f to the energy density. The bottom row
shows ratios of observables (Debye mass mD and particle number n) calculated
with isoHTL screening (6.13) over Debye-like screening (variant 1, (6.20a)) as
functions of the rescaled time λ2Tεt. Figures from [4].

which is depicted in the top row of Fig. 6.2 rescaled with p3 f (p, t) for initially over-
(left) and under-occupied systems (right). We observe that the curves corresponding
to the Debye-like (full lines) and isoHTL screening (dotted lines) almost coincide.
Hence, for isotropic systems, the Debye-like screening prescription provides a good
quantitative approximation of the full HTL matrix element.

Next, as an attempt to better quantify deviations between the different screening
prescriptions, we consider a measure for the thermalization time ttherm.. We define
this time scale implicitly in terms of the effective temperatures following [187]

(T0(ttherm.)/T1(ttherm.))±4 = 0.9, (6.23)

with + for under- and − for overoccupied systems. The effective temperatures are
defined via

Tα = [ 2π2

Γ(α + 3)ζ(α + 3) ∫ d3p(2π)3 pα f (p)]1/(α+3)
. (6.24)

The first moment T1 = Tε has the physical interpretation of the temperature of a
thermal system with the same energy density (Landau matching, see Eq. (3.84)),

Tε(τ) = (30ε(τ)
π2νg

)1/4
. (6.25)

Due to energy conservation in non-expanding systems, it is constant throughout
the evolution and corresponds to the temperature of the thermal system after



112 improving qcd kinetic theory simulations

Overoccupied Underoccupied
λ Debye-like: λ2Tttherm. isoHTL: λ2Tttherm. Debye-like: λ2Tttherm. isoHTL: λ2Tttherm.

0.5 69.7 67.0 1029 1022
2 86.0 84.4 1127 1112
10 93 93 1245 1216

Table 6.1: Thermalization times for initially over- and under-occupied systems. Table
adapted from Ref. [4].

equilibration. The other effective temperature, T0, is related to the particle number

density n, via the relation T0 = (π2n/(ζ(3)νg))1/3. The thermalization times are
listed in Tab. 6.1. We observe that the full HTL matrix element leads to only slightly
smaller thermalization times.

To also quantify differences in the dynamics, in the bottom row of Fig. 6.2, the
evolution of the Debye mass (3.11) and number density n are depicted as ratios of
a simulation with isoHTL screening over one with Debye-like screening. The gray
area indicates when the system is close to equilibrium, i.e., after the thermalization
time defined in (6.23). We observe that both the Debye mass and the number
density differ only at a sub-percent level between the simulations.

Finally, the excellent agreement for isotropic systems among the screening pre-
scriptions might not come as a big surprise. In fact, as detailed in Section 6.2.3,
the Debye-like screening prescription was introduced specifically in the isotropic
non-expanding case to approximate (isotropic) HTL screening.

6.4 results with longitudinal expansion

We now turn to systems undergoing Bjorken expansion, relevant for the initial
stages in heavy-ion collisions. For that, we need to include the additional expansion
term in the Boltzmann equation (3.76) that was absent for the isotropic case in the
previous subsection.

6.4.1 Initial conditions, time markers and time scales

We use the initial conditions discussed in Section 3.6.2 with ξ0 = 10, and the time
markers introduced in section 3.6.4. Recall that the star and circle markers are
related to the occupancy ⟨p f ⟩/⟨p⟩ (star at occupancy 1/λ and circle at minimum),
and the triangle marker is placed when the pressure ratio PT/PL = 2, indicating that
the system has almost isotropized.

We will also use the time scales introduced in Section 3.6.4 and used extensively
in Chapter 5, both the relaxation time τR and the bottom-up time scale τBMSS,

τR = 4πη/s
Tε

, τBMSS = ( λ

4πNc
)−13/5 /Qs . (6.26)
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Figure 6.3: Ratios of various observables of simulations with different Debye-like screening
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obtained from statistically averaging over five independent simulations. Plots
from Ref. [4].



114 improving qcd kinetic theory simulations

6.4.2 Comparison of Debye-like screening prescriptions

First, let us consider differences arising from the different variants of implementing
the Debye-like screening prescription as written in (6.20). The numerical results
for simulations with identical initial conditions but different Debye-like screening
prescriptions are presented in Fig. 6.3, where the ratio of various observables is
plotted. These observables consist of various moments of the distribution function,
such as components of the energy-momentum tensor Tµν from Eq. (3.82), and
Debye mass mD from Eq. (3.11), and the effective infrared temperature T∗ given by
Eq. (3.10). We observe only very small changes, mostly on a sub-percent level. To
verify that these small changes are not caused by random fluctuations or noise from
the Monte Carlo evaluation of the collision kernels, several (four to five) simulations
with identical parameters but different seeds for the random number generator
were performed. The error bands in the figure are estimates of the standard error
of the results, see Appendix B.9.

As can be seen in Fig. 6.3, the different Debye-like screening prescriptions
differ less for smaller couplings. This is expected because the different screening
prescriptions are leading-order equivalent, as we discussed in section 6.2.4. Perhaps
surprisingly then, also for larger values of the coupling (even for λ = 20), the
considered observables differ only at a percent level. This is because these matrix
elements (6.20) are not only leading-order equivalent but also equivalent in the
small angle scattering region where ∣t∣ ≪ s, in accordance with our discussion
in Section 6.2.4. In fact, it is well-known that the dynamics is mostly dominated
by small-angle scatterings, which is used also as the basis for other QCD studies
using the Boltzmann equation in diffusion approximation (BEDA) [66, 73, 74, 197–
199, 229]. Indeed, it can be checked that processes with s ≫ ∣t∣ are dominant for
QCD kinetic theory simulations, which is presented in more detail in Appendix
Appendix B.8.

6.4.3 Comparison with isoHTL: Pressure ratio

We now turn to the isoHTL screening prescription (6.14). Numerically, employing
the isoHTL prescription leads to larger noise and a more unstable numerical
evaluation of the differential equation (3.76), and requires an improved step size
algorithm which is given in detail in Appendix B.6. We will first discuss the results
for the pressure ratio and then move on to other observables.

Fig. 6.4 shows the results for the pressure ratio for different couplings (color-
coded) in the left panel, and the ratio between the isoHTL and Debye-like pressure
ratio in the right panel. Before discussing these results in more detail, a note
about the time scales is in order. As already discussed in Section 3.6.4, curves of
the pressure ratio nicely collapse at late times when the time is rescaled with the
relaxation time τR = 4πη/s/Tε.,

PL

PT
= 1− 2

π

τR

τ
, (6.27)

which is shown in the left panel of Fig. 6.4 as a thick red dotted line.
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Figure 6.4: Pressure ratio as a function of time for different couplings (colors). In the left
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first-order hydrodynamic estimate is shown as a thick red dotted line. The right
panel shows the pressure ratio of the isoHTL-screened simulations normalized
to the pressure ratio with Debye-like screening. Time is rescaled with the kinetic
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Importantly, the shear viscosity η depends on the screening prescription, and
for the curves to collapse in Fig. 6.4, one needs to use different values of η/s for
different screening prescriptions. We will discuss how to extract this transport
parameter in more detail in the next section.

Coming back to the pressure ratio shown in Fig. 6.4, we find that the maximum
pressure anisotropy is almost halved by employing the isoHTL screening prescrip-
tion, i.e., the lowest value of PL/PT is larger. While both the isoHTL-screened (solid
line) and Debye-like screened curves (dashed line, corresponding to (6.20a)) start
at the same value of the pressure ratio by using the same initial condition, the
time evolution with the different screening prescriptions shows clear differences:
Simulations with Debye-like screening become more anisotropic as compared to
isoHTL screening, which is more pronounced at small values of the coupling λ.

This can be understood from the observation that while the Debye-like screening
prescription (6.20a) approximates well the longitudinal momentum transfer, it
underestimates transverse momentum broadening as encoded in the jet quenching
parameter q̂, see Fig. 6.1. However, transverse momentum broadening is an essential
ingredient in the bottom-up equilibration process [185]. The Debye-like screening
prescription, therefore, leads to less efficient transverse momentum broadening
and to a larger anisotropy.

In contrast, the late-time evolution is less sensitive to the screening prescription if
the relaxation time τR in Eq. (5.1) is adjusted accordingly. The required parameter
η/s is obtained such that the curves follow this late-time first-order hydrodynamic
estimate (6.27). We will study the approach to hydrodynamics and thermalization
first and then discuss the extraction procedure of η/s together with the numerical
results in Section 6.4.4.

Note also that the curves in the right panel of Fig. 6.4 do not start at 1 despite
the simulations being initialized with the same initial condition. This is because
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due to the different values of η/s for different screening prescriptions, the system
is initialized at a different τ/τR (as can be seen in the left panel).

6.4.4 Numerical extraction of the specific shear viscosity η/s
As input for the relaxation time τR in (5.1), the value of the transport parameter
η/s for every coupling and screening prescription is needed. This first-order
hydrodynamic parameter quantifies the late-time approach to isotropy. It has been
obtained perturbatively in Ref. [205, 206].

General strategy

The general strategy employed here is to compare the late-time evolution of the
numerical simulations with a first-order conformal hydrodynamic system, in which
the shear viscosity over entropy density η/s is the only medium parameter and
uniquely governs the relaxation to isotropy. For a Bjorken expanding system, the
pressure ratio is given by Eq. (6.27). However, other ways to extract η/s have been
used in the literature. For example, the authors of Ref. [28] fit to the pressure
difference

PT − PL

ε + P
= 2( η/s

τTε
)+ 4C2/3( η/s

τTε
)2

, (6.28)

which originates from a second-order hydrodynamic formulation. Here, C2 is an
additional fitting constant, and the (isotropic) pressure P is related to the energy
density ε via the conformal relation P = ε/3. Both expressions (6.27) and (6.28)
will be used here to obtain the value of η/s for a given coupling λ and screening
prescription. While both equations give similar results, they are not identical, and
their difference is taken as an estimate of the systematic uncertainty.

Detailed fitting procedure

More concretely, the parameter η/s is extracted by fitting Eq. (6.27) at some late
time interval (ti, t f ) to the pressure anisotropy PL/PT of the simulation. There are
two main causes of inaccuracy in this procedure: On the one hand, any fixed-order
hydrodynamic formula only describes the system’s behavior sufficiently close to
thermal equilibrium (in the present case: at sufficiently late times). Before that,
corrections to the first-order form are expected, which will make the obtained
values less reliable when decreasing the initial fit time ti. On the other hand, the
numerical simulations performed here are plagued with discretization artifacts that
become worse over time (see Section 3.6.6). Hence, a too large final time t f may
worsen the fit.

Therefore, to obtain the best fit, the start (ti) and end times (t f ) of the fitting
process are varied. The earliest time for ti is chosen as the time when the pressure
anisotropy is PL/PT = 0.5 (triangle marker). For each (ti, t f ) pair, the value of η/s
and its fit error is recorded. Fig. 6.5 illustrates this procedure for one particular
example. The top left panel shows the pressure ratio to which Eq. (6.27) is fitted.
The bottom left panel shows the values of η/s obtained for different pairs of initial
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Figure 6.5: One example of how η/s is fitted and its dependence on the start and end of the
fit time, for λ = 0.5 and isoHTL screening. (Top left): Pressure ratio and pressure
anisotropy as in (6.27) and (6.28). Shown are also the fits with the best value
of η/s. (Bottom left): Fitted values of η/s as a function of the start and end time.
(Top right): Gradient of the fitted values of η/s with respect to varying start and
end time. (Bottom right): Fit errors from fitting η/s to Eq. (6.27). The cross is the
best value obtained as explained in the text.
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and final times for the fit, (ti, t f ). Calculating also the gradients ∇ti ,t f η/s (Top
right panel) allows extracting the value where the fit-error (bottom right panel)
times the gradient is the smallest. This fitting procedure is then performed for
several simulations with different random number generator seeds and the results
are averaged. From that, the statistical uncertainty is obtained by using a simple
error of the mean estimate (see Appendix B.9). The procedure described here
is not meant to account for all possible systematic errors. The goal here is to
obtain a robust procedure to obtain η/s and investigate whether there are systematic
differences in the value of η/s for different screening prescriptions.

Initial conditions

The shear viscosity over entropy density η/s is a medium parameter and as such,
independent of the specific initial condition. For λ ≥ 1, the same initial distribution
(3.77) as for all expanding simulations (with ξ0 = 10) is used, for λ = 0.5 late-time
discretization artifacts are reduced by choosing the initialization time Qsτ = 50 and
initial anisotropy ξ0 = 2 with the suitable initial amplitude A(ξ0=2) = 0.96789, see
Table 3.2.

Results for η/s
The results of this procedure are summarized in Tab. 6.2, where also the statistical
error estimate for the fit procedure is given. We find that both Debye-like screening
prescriptions and both fit formulas (6.27) and (6.28) lead to similar values of
η/s which are consistent with earlier numerical extractions [56]. However, the
isoHTL values are, in general, about 10% - 20% smaller than those from Debye-like
screening. Additionally, they are much closer to the perturbative estimates at
next-to-leading-log accuracy [206], which are labeled as “pQCD NLL” and given by

η

s
∣
NLL pQCD

= 34.784
λ2 ln [4.789/√λ] . (6.29)

This formula is based on an expansion in inverse logarithms and is thus only valid
at small couplings at next-to-leading logarithmic (NLL) accuracy, and there is good
agreement for λ ≲ 1 between this formula and the isoHTL values. This may indicate
that there are no large systematic biases in the extraction procedure performed here.
In general, any such systematic bias would be similar for all screening prescriptions
considered in this paper, and thus the decrease of the value of η/s for the isoHTL
screening prescription can be seen as a robust statement.

Fig. 6.6 shows the ratio of the extracted values of η/s over the perturbative NLL
results from Ref. [206]. As mentioned before, for small couplings λ ≲ 1, the values
of η/s for the isoHTL matrix element are very close to the pQCD values, whereas
the Debye-like screened matrix elements consistently lead to larger values of η/s.
At larger couplings, we see increasing discrepancies between the perturbative NLL
values and the extracted results. Nevertheless, the isoHTL screening continues
to yield consistently smaller values than the Debye-like prescriptions. At such
large coupling strengths, we should recall that the inverse log expansion from
Ref. [206] breaks down, and also kinetic theory becomes less accurate. However,
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λ Debye1 Debye2 isoHTL pQCD
Eq. (6.27) Eq. (6.28) Eq. (6.27) Eq. (6.28) Eq. (6.27) Eq. (6.28) NLL

0.5 76.6(9) 78.2(1) 77.0(2) 78.2(1) 70.6(9) 71(2) 72.7
1.0 23.249(6) 25.0(3) 23.228(6) 25.0(3) 21.55(6) 21.6(7) 22.2
2.0 7.50(4) 7.55(4) 7.49(4) 7.517(10) 6.59(9) 6.3(4) 7.13
5.0 1.7037(5) 1.731(5) 1.6909(4) 1.717(1) 1.44(2) 1.48(3) 1.83

10.0 0.5940(6) 0.60(2) 0.5830(7) 0.55(3) 0.505(2) 0.513(8) 0.838
20.0 0.2120(5) 0.20(1) 0.2027(6) 0.20(1) 0.1759(3) 0.180(2) 1.27

Table 6.2: Extraction of η/s values for various couplings λ using the screening prescriptions
Debye1 (6.20a), Debye2 (6.20b), isoHTL (6.13) and the extraction procedures (6.27)
and (6.28). The error estimate from our fitting procedure is explained in the text.
NLL pQCD denotes the weak coupling perturbative expression (6.29) from [206].
Table adapted from [4].
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Figure 6.6: Numerically extracted values η/s from Tab. 6.2. The simulation and fit results
for the different screening methods and fitting formulas are normalized by the
NLL pQCD results stated in the table. For visual ease, the markers are slightly
shifted around the value of λ. Adapted from [4].
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λ Debye1, (6.27) Debye1, (6.28)

0.53 70.49(3) 72.4(8)
2.2 6.39(3) 6.417(4)
11.2 0.5012(8) 0.507(8)

Table 6.3: Extraction of η/s values for different couplings λ and the Debye-like screening
(6.20a) for the η/s extraction procedures (6.27) and (6.28). Table from Ref. [4].
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Figure 6.7: Pressure ratio for systems with similar η/s. The values of λ are adjusted between
the isoHTL and Debye-like screened simulations to yield a similar value of η/s.
Figure from [4].

it is interesting and encouraging to note that both screening prescriptions lead to
rather similar values even at large couplings.

6.4.5 Simulations at the same specific shear viscosity η/s
In the previous sections, we have compared the results using Debye-like and isoHTL
screening for the same value of the coupling λ. But then we showed that shear
viscosity η entering the relaxation time τR via Eq. (6.26) depends on the screening
prescription. Therefore, one might ask whether the changes in the pressure ratio for
different screening prescriptions (shown in Fig. 6.4) are due to the different values
of η/s. We will see here that this is not the case. To do that, instead of comparing
simulations with the same value of λ, we compare at the same value of η/s.

In particular, the isoHTL screened simulations at couplings λ ∈ {0.5, 2, 10} are
compared with Debye-like screened simulations with couplings λ ∈ {0.53, 2.2, 11.2},
which lead to similar values of η/s (see Tab. 6.3). This comparison is illustrated
in Fig. 6.7 for the pressure ratio PL/PT as a function of the rescaled time τ/τR.
Again, at late times, the curves coincide and fall on the universal hydrodynamic
curve (6.27) (red dotted line) as expected from an approach to a hydrodynamical
evolution. In contrast, as before, we find that the evolution at early times differs
substantially for the different screening prescriptions. The overall behavior is very
similar to the comparison between screening prescriptions at the same value of
the coupling in Fig. 6.4. Thus, the early-time evolution of the pressure ratio (and
similarly of other quantities) is significantly different for the isoHTL screening
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from Ref. [4].

prescription, both when compared at the same value of the coupling λ or shear
viscosity over entropy density η/s.

6.4.6 Thermalization and hydrodynamization time

Next we move on to study how quickly the system thermalizes, and how quickly
a hydrodynamic description becomes applicable. In Ref. [24], the thermalization
time is defined as the time when the energy density of the nonequilibrium kinetic
theory simulation first gets within 10% of the ideal hydrodynamic estimate,

∣1− ε(τtherm)
εid(τtherm)∣) = ∣1− T4

ε (τtherm)
T4

id(τtherm)∣ = 0.1 . (6.30)

Similarly, the hydrodynamization time is defined as the time when the full kinetic
theory result gets within 10% of the first-order hydrodynamic estimate,

∣1− ε(τhydro)
ε1st(τhydro)∣ =

�����������1−
T4

ε (τhydro)
T4

1st(τhydro)
����������� = 0.1 . (6.31)

In ideal and first-order hydrodynamics, the temperature evolution is given by

Tid(τ) = c1

τ1/3 , (6.32)

T1st(τ)
Tid(τ) = 1− 1

6π

τR

τ
, (6.33)

with a constant c1, which has to be fitted at late times from the late-time behavior
of the nonequilibrium energy density (or rather the effective temperature Tε from
Eq. (3.84)).

The left panel of Fig. 6.8 shows the energy density of the simulation normalized
to the energy density of ideal hydrodynamics for different values of the coupling λ.
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We observe that both the Debye-like screening results (dashed lines, corresponding
to Eq. (6.20a)) and the lines associated with simulations using the isotropic HTL
matrix element (solid lines, corresponding to Eq. (6.13)) lie almost on top of each
other. This is due to the rescaling of time using the relaxation time τR, in which the
different values for the shear viscosity η/s are already included. In particular, we
find that thermalization occurs roughly at the same time, at τtherm ≈ 2 τR for λ ≳ 2.

The right panel of Fig. 6.8 shows the energy density normalized to the first-order
hydrodynamic estimate. Similar to the thermalization case, we find that hydro-
dynamization occurs roughly at the same time when comparing both screening
approximations. The results for different values of the coupling λ differ more
than the different screening prescriptions themselves. Hydrodynamization occurs
roughly at τhydro ≈ 0.35 τR.

These results indicate that the impact of changing the screening prescription
on the approach to hydrodynamics and to local thermal equilibrium is mainly
captured by the values of the coefficient η/s.

6.4.7 Impact of screening prescriptions on early-time dynamics

We have depicted the bottom-up thermalization process [185] already in Fig. 3.2 in
Section 3.5.2 (see also Fig. E.1 in Appendix E). We will now discuss how different
screening prescriptions impact the curves shown in these figures. Fig. 6.9 depicts
the system’s time evolution in the occupancy-anisotropy plane, both for Debye-like
screened matrix elements (dashed lines) and the isoHTL screening (solid lines.
All simulations start with the same initial condition given by Eq. (3.77), shown
in the upper-right part of the plot, and then evolve towards thermal equilibrium
(black crosses). The isoHTL matrix element leads to a visibly different evolution,
especially during the far-from-equilibrium initial stages before minimal anisotropy
is reached (circle marker). These differences are seen throughout a wide range
of occupation numbers. For instance, for weak couplings, the system reaches a
significantly smaller anisotropy in terms of PT/PL, as we have seen before in Fig. 6.4.
Additionally, the minimal occupancy reached is larger than for Debye-like screening.
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Nonetheless, we do not find significant qualitative changes to the bottom-up picture
of thermalization [185].

We now move on to study a wide range of different moments of the distribution
function, the same moments that were already shown in Fig. 6.3: the Debye mass
mD, effective temperature T∗, particle density n, energy density and pressures ε, PT,
PL, and moments of the distribution function ⟨ f ⟩, ⟨p2

T⟩ and ⟨p2
z⟩. Fig. 6.10 shows

the ratio of these moments obtained from simulations with the isoHTL screening
prescription over the same quantities from a Debye-like screened simulation. Time
is rescaled using the bottom-up timescale τBMSS, because then all ratios start at
unity, which is not the case when using the relaxation time τR because of the
different shear viscosities for the different screening prescriptions, as can be seen,
e.g., in Fig. 6.4. Different couplings are indicated with different colors. The bands
indicate an estimate of the statistical uncertainty from the Monte Carlo evaluation
of the collision terms. They are obtained by performing five simulations for every
set of initial conditions with different random number seed and calculating the
standard error (see Appendix B.9). We observe that most considered quantities
show larger deviations between the screening prescriptions for smaller values of the
coupling. This is in line with our expectation that for larger values of the coupling
the screening prescriptions differ less, as discussed in Section 3.6.5. Nonetheless,
sizable corrections can be found even at large couplings.

For instance, the Debye mass in the isoHTL simulation is enhanced by almost
15% for λ = 0.5 between the star and circle marker, and by about 5% for λ = 20. The
average occupancy ⟨ f ⟩ is reduced in the isoHTL simulations by over 30% at early
times for weak couplings, but even for λ = 20 we find a reduction of more than
10%. In contrast, the particle density is enhanced by 5− 10%.

However, the largest deviations concern measures of the bulk anisotropy of
the plasma. At late times, the components of the energy-momentum tensor from
the isoHTL simulations are about 10% smaller than for the Debye-like screened
simulations, which implies a smaller temperature in the subsequent equilibrium
plasma. In contrast, the longitudinal pressure increases by more than 60% for
λ = 0.5, and by more than 30% for λ = 10 and λ = 20 before eventually also
decreasing to values similar to PT. This effect results from the longitudinal pressure
being dominated by particles close to the transverse plane that undergo transverse
momentum broadening, i.e., in pz direction. Since isoHTL leads to a more accurate
and more efficient transverse momentum broadening than the simple Debye-like
screening prescription (see, e.g., Fig. 4.4), one arrives at the observed higher values
of PL. Similar effects can be seen in the moments of f . Indeed, the anisotropy ratio⟨p2

z⟩/⟨p2
T⟩ is also considerably larger for isoHTL simulations than for Debye-like

screening. In particular, ⟨p2
z⟩ overshoots and ⟨p2

T⟩ is lower in the HTL cases at early
times. This significant reduction of anisotropy at early times is, hence, one of the
main qualitative differences between these different screening prescriptions.

6.4.8 Evolution of the jet quenching parameter

We have studied the jet quenching parameter with various screening prescriptions
already in Chapter 4. However, in the previous chapters, the simulations from
which f (p, τ) was taken as input to calculate the jet quenching parameter were all
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performed using the Debye-like screening prescription in the matrix element. Here,
we show that the jet quenching parameter q̂ is only mildly influenced by the choice
of screening in the medium evolution.

As in the previous chapters, Eq. (4.45) is used to obtain the jet quenching
parameter for a fixed transverse momentum cutoff Λ⊥.

Fig. 6.11 shows the time evolution of the jet quenching parameter along the beam
axis q̂zz and in the transverse direction q̂yy for different couplings and screening
prescriptions of the plasma. The results are quantitatively close to those presented
in the previous chapters, and the curves for isoHTL and Debye-like screened
evolutions only mildly differ. Thus, the choice of either Debye-like or isoHTL
screening prescription has only a negligible influence on the time evolution and
value of the jet quenching parameter q̂.

6.5 concluding remarks

In this chapter, we have discussed results for QCD kinetic theory simulations
with the isoHTL screening prescription in the elastic collision term, and compared
with simulations using the Debye-like screening prescription. We first reviewed
the Debye-like and isoHTL screening prescriptions and discussed, in particular,
their gauge invariance. For isotropic systems, we find only minor differences, but
for a Bjorken expanding system relevant for the initial nonequilibrium stages in
heavy-ion collisions, we find that the maximum anisotropy is drastically reduced
when using the isoHTL screening prescription. Changes can also be found in the
transport parameter η/s, the shear viscosity over entropy density, which determines
the approach to isotropy. Employing the isoHTL screening prescription leads to
a reduction of η/s at the same value of the coupling λ, and for small couplings,
η/s agrees with the perturbative expression. Finally, we studied whether the jet
quenching parameter is influenced by the different screening prescriptions used
in the background medium evolution. We find that this is not the case, the value
of the jet quenching parameter is almost insensitive to the screening prescription
used in the QCD kinetic theory evolution of the background.





7
C O L L I S I O N K E R N E L A N D A M Y R AT E S O U T O F E Q U I L I B R I U M

In Chapter 4, we considered the jet quenching parameter q̂, which characterizes the
small-distance behavior of the dipole cross section. In this chapter, we go beyond
the small distance form and obtain the full dipole cross section, as the Fourier
transform of the elastic collision kernel. We will then use this dipole cross section
to calculate the gluon emission rates in the AMY formalism. This chapter is based
on a paper in preparation [6].

7.1 going beyond the jet quenching parameter : elastic collision
kernel

As discussed in the introduction in Section 1, the jet quenching parameter q̂ can be
obtained as a moment of the elastic collision kernel (see Eq. (1.4)),

q̂ = ∫ d2q⊥(2π)2 q2⊥C(q⊥), (7.1)

which is directly related to the elastic scattering rate

C(q⊥) = (2π)2 dΓel

d2q⊥ . (7.2)

While the jet quenching parameter quantifies the rate of change of transverse

momentum squared, q̂ = d⟨Δp2⊥⟩
dt , the collision kernel C(q⊥) encodes the rate for the

jet parton to receive a transverse momentum kick with momentum q⊥. Additionally,
this elastic collision kernel C(q⊥) is needed as input to calculate the rate of inelastic
gluon emissions (as discussed in Chapter 2), making it an essential quantity that
encodes all the relevant medium properties. For solving the AMY rate equations
(2.11) relevant for gluon emission, it is convenient to transform to impact parameter
space, where the relevant quantity is then the dipole cross section

C(x) = ∫ d2q⊥(2π)2 (1− eix⋅q⊥)C(q⊥). (7.3)

7.1.1 Generalizing the jet quenching parameter to obtain the collision kernel

In Chapter 4, we have discussed how to obtain the jet quenching parameter q̂ in
QCD kinetic theory. The collision kernel can be obtained in a very similar way,
which we will briefly discuss here.
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We start again with the expression for the elastic scattering rate (3.59),

Γel = 1
4pνa

∑
bcd
∫ d3k(2π)32k

d3p′(2π)32p′ d3k′(2π)32k′ ∣Mab
cd(p, k; p′, k′)∣2

× (2π)4δ4(P +K − P′ −K′) f (k)(1± f (k′))(1± f (p′)), (7.4)

As noted before, the scattering rate (7.4) is symmetric under the exchange of
outgoing particles p′ ↔ k′ (switching u and t channel), so we can always enforce
p′ > k′, which leads to an additional factor 2. We first integrate over k′ using the
delta function and then perform a variable substitution p′ = p +q. We pull out the
integral over q⊥ and use Eq. (7.2) to arrive at

C(q⊥) = 1
2pνa

∑
bcd
∫ d3k(2π)3 ∫ dqz

∣Mab
cd(p, k; p +q, k −q)∣2
8∣k∣∣k −q∣∣p +q∣× f (k)(1+ f (k −q))δ(p + ∣k∣ − ∣p +q∣ − ∣k −q∣). (7.5)

In the limit p → ∞, as already was the case for the jet quenching parameter q̂ in
Section 4.1.7, only the matrix elements in Table 4.2 remain, which can be written in
terms of the screened matrix element M̃screen. For instance, the matrix element for
gluon-gluon scattering reduces to

lim
p→∞ ∣Mgg

gg∣2
p2 = 4dAC2

A ∣GR(P − P′)µν(P + P′)µ(K +K′)ν∣2 , (7.6)

and we can use the isotropic retarded hard-thermal loop propagator GR for the
internal soft gluon propagator (isoHTL screening), Eq. (4.47).

The delta function can be rewritten as [205]

δ(qz − k + k′) = k′
kq

δ(cos θqk − qz

q
+ t

2kq
)Θ(k − qz), (7.7)

and only yields a contribution if k > qz+q
2 . We then arrive at

C(q⊥) = 1
16pνa(2π)3 ∑bcd

∫ 2π

0
dφqk ∫ ∞

−∞ dqz

q ∫ ∞
q+qz

2

dk

× lim
p→∞ ∣Mab

cd(p, k; p +q, k −q)∣2
p2 f (k)(1+ f (k −q)). (7.8)

Note that in Chapter 4, we have introduced ω = p′ − p, which is equivalent to
qz ≡ ω in the limit p → ∞. We proceed similarly as in Chapter 4, and perform
the k integral in a frame in which q points in the z direction, and the q integral
is performed in a frame in which p points in the z direction. In practice for an
implementation, we need the angles θk and θk′ , which we obtain as in Chapter 4 via
Eq. (4.20). Note that the collision kernel C(q⊥) is a function of the two-dimensional
vector q⊥ in the transverse plane to the jet. Only the component of q parallel to the
jet is integrated over (see also Eq. (2.15)). The remaining two-dimensional vector
q⊥ can be parameterized as

q⊥ = q⊥ (cos φ

sin φ
) = q⊥ (cos φpq

sin φpq
) = (qx

qy
) = ⎛⎝−q(1)z

q(1)y

⎞⎠ , (7.9)
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and q = √q2⊥ + q2
z , all in accordance with Eq. (4.14b) in Section 4.1.2. For a jet

moving in the x direction, φpq = 0 corresponds to momentum broadening along the
beam direction, while φpq = π/2 to momentum broadening transverse to the beam
direction and to the jet direction.

A note about coordinate systems is in order. The upper index (1) denotes the
components in the coordinate system, in which the beam axis defines the z-axis,
which is the coordinate system that we called lab frame in Section 4.1.2. However,
since q⊥ is a two-dimensional vector in the transverse plane to the jet, it is more
natural to use a coordinate system, where these two components are labeled qx and
qy. This is the coordinate system, in which the jet points in the z direction, which
we called p frame in Section 4.1.2. For our purposes here, it will be more natural
to work in this frame, and to label the transverse components q⊥ = (qx, qy), as in
Eq. (7.9). The spatial coordinate in the transverse plane is x = (x, y). Furthermore,
we will frequently abbreviate the angle of q⊥ in the transverse plane to the jet as
φpq = φ.

Eq. (7.8) is the final result of this subsection and is the equation that is imple-
mented and evaluated numerically.

7.1.2 Symmetries of the collision kernel

Next, let us discuss the symmetries of the collision kernel C(q⊥), and of the dipole
cross section C(x). In momentum space, we can adopt the notation C(q⊥) =
C(qx, qy). Since the distribution function f (k) is symmetric around mid-rapidity
(mirror-symmetry around the z = 0 plane, see Eq. (3.72)), f (k, cos θk) = f (k,− cos θk),
we obtain C(q(1)z , q(1)y ) = C(−q(1)z , q(1)y ), and, hence, C(qx, qy) = C(−qx, qy). Addition-
ally, the distribution function is symmetric under rotations in the transverse plane
(see Eq. (3.71)), which implies C(qx, qy) = C(qx,−qy). Combining this, we obtain

C(qx, qy) = C(±qx,±qy). (7.10)

With that, the Fourier transform (7.3) becomes real,

C(x, y) = ∫ d2q⊥(2π)2 (1− eiqxx+iqyy)C(qx, qy) = ∫ d2q⊥(2π)2 (1− cos(q⊥ ⋅ x))C(qx, qy)
(7.11)

From that, we can infer the symmetry properties of the dipole cross section

C(x, y) = C(±x,±y). (7.12)

Therefore, we can map all angles φ > π/2 into the first quadrant,

C(∣x∣, φ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(∣x∣, φ), 0 < φ < π/2
C(∣x∣, π − φ), π/2 < φ < π

C(∣x∣, φ −π), π < φ < 3/2π

C(∣x∣, 2π − φ), 3/2π < φ < 2π

(7.13)
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It will be convenient to note here how calculating the coefficients of a Fourier series
is simplified under these symmetries. For a function D(φ) obeying the symmetries
(7.13),

∫ 2π

0
dφ e−imφD(φ) = ∫ π/2

0
dφ D(φ) (e−imφ + e−im(π−φ) + e−im(φ−π) + e−im(2π−φ))

= ⎧⎪⎪⎨⎪⎪⎩0, m odd

4 ∫ π/2
0 dφ cos mφ D(φ), m even

(7.14)

7.1.3 Analytic limits: Small and large momentum transfers

Next, we discuss the analytic limits of the collision kernel C(q⊥) for small and large
momentum transfers. Both limits have implicitly already been discussed before
for the jet quenching parameter, but it is insightful to consider these limits here
specifically for the collision kernel.

First, we consider large momentum transfer, ∣q⊥∣ → ∞, for which it is convenient
to start with Eq. (7.5). We consider the case of pure gluons, but including quarks is
considered in Appendix C.2.2. For p →∞, ∣p +q∣ → p + qz, when p = (0, 0, ∣p∣), and
then the delta function can be rewritten to constrain qz,

δ(k − qz − ∣k −q∣) → q2⊥
2(k − kz)2 δ(qz − q⊥ ⋅ k⊥ − q2⊥/2

k − kz
) , (7.15)

where in the normalization we have already taken the leading term in the limit
q⊥ → ∞. Thus, qz ≈ −q2⊥/(2(k − kz)), and q → ∞. In this limit, screening effects
can be neglected in the matrix element, and we may take the vacuum form of the
matrix element

∣Mgg
gg∣2 = −16g4dAC2

A
su
t2 = 16g4dAC2

A
4p2(k − kz)2

q4⊥ . (7.16)

Inserting this, we obtain

C(q⊥) = 4dAC2
Ag4

νg

1
q4⊥ ∫ d3k(2π)3 k − kz

k
f (k). (7.17)

Therefore, the broadening kernel is proportional to the number density J0 = n =
νg ∫ d3p(2π)3 f (p) and the number current in the jet direction Jz = νg ∫ d3p(2π)3 f (p)pz/∣p∣,
which is zero for a distribution that obeys the symmetry condition (3.72). Using
that, we obtain

lim∣q⊥∣→∞C(q⊥) → g4CRN
q4⊥ , (7.18)

where N , in the general case also including quarks (see Appendix C.2.2), is given
by

N = ∫ d3k(2π)3 ⎛⎝2Nc fg(k) +∑
f

f f (k)⎞⎠ . (7.19)
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Importantly, this does not depend on the angle of q⊥ for an arbitrary1 distribution
function f (k).

The opposite limit, ∣q⊥∣ → 0 is more difficult to take because in this limit screening
effects become important. While for isotropic systems, the qz integral can be
performed analytically using a sum rule (see Appendix A.5.4), in the anisotropic
case, this is more difficult. Here, it will be enough to demonstrate that the leading
behavior is 1/q2⊥. It is not apriori clear that this should be the case since screening
effects would naively change the propagators from 1/q2 → 1/(q2 + m̃2), where m̃ is
some effective screening mass, thus becoming finite at low momenta. Thus, we
need to consider the HTL self-energy correction instead and reevaluate the integral
more cautiously.

To do that, we start with (7.8), and, following the steps in Appendix A.5.4, we
write the matrix element as (without assuming isotropic distributions),

lim
p→∞ ∣Mgg

gg∣2
4dAC2

A
= c̃2

1∣GL∣2 + c̃2
2∣GT ∣2 − 2c̃1c̃2∣GL∣2∣GT ∣2(AC + BD) (7.20)

It is enough to focus on the transverse propagator, (with x = qz/q)
∣GT ∣2 = − 4q

qzm2
Dπ(1− x2) ImΠT(x)(q2 +ReΠT(x))2 + (ImΠT(x))2 , (7.21)

which, when integrated over qz using the sum rule from Appendix A.5.4 gives

∫ ∞
−∞ dq z

q
∣GT ∣2 = − 4

m2
D
[ 1

q2⊥ +ReΠT(∞) − 1
q2⊥ +ReΠT(0)] = − 4

m2
D
[ 1

q2⊥ +m2
D/3 − 1

q2⊥ ] .

(7.22)

This gives exactly the 1/q2⊥ contribution that we wanted to show and proves that the
leading contribution goes like ∼ 1/q2⊥ for small q⊥, even in an anisotropic system.2

Thus, to summarize, the limiting cases are

C(q⊥) → ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(φ)
q2⊥ , q⊥ → 0

g4CRN
q4⊥ , q⊥ →∞ (7.23a)

where the coefficient a(φ) may depend on the direction of q⊥.
For an isotropic system, the coefficient a for the small q⊥ case can be obtained

analytically using exactly the same rule mentioned above. It leads to

lim
q⊥→0

C(q⊥) → g2CRT∗ m2
D

q2⊥(q2⊥ +m2
D) , (7.23b)

and in equilibrium we have T∗ → T and the equilibrium form of the Debye mass
(3.13).

1 As long as the assumptions needed for the elastic scattering rate (7.4) are valid.
2 A more careful analysis potentially revealing more of the angular information of the coefficient a(φ)

in Eq. (7.23a) may be possible, but since we deal with an isotropic screening prescription, it seems
going beyond a simple scaling needed for the extrapolations used here, is not needed and perhaps
not useful.
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Figure 7.1: Collision kernel C(q⊥) for a thermal gluonic system multiplied with q3⊥ in units
of the plasma temperature T for coupling λ = 2. This is the integrand of the jet
quenching parameter q̂. Shown are also the analytic small and large q⊥ limits
(7.23), as well as the Debye mass mD as a square on the curve.

7.1.4 Numerical results

Similar to the jet quenching parameter q̂ in Chapter 4, Eq. (7.8) is evaluated using
Monte Carlo integration. We consider a purely gluonic system with a gluon jet, but
in the limit p → ∞, the collision kernel for a quark jet or parton can be obtained
using Casimir scaling (4.46),

Cgluon(q⊥)
CA

= Cquark(q⊥)
CF

. (7.24)

Thermal equilibrium

First, we consider a thermal system, i.e., take f (k) to be the Bose-Einstein distri-
bution f+(k), Eq. (3.20). The numerical results for the collision kernel multiplied
with q3⊥ are shown in Fig. 7.1 as a solid green curve. the analytic limits (7.23)
are added as dashed and dash-dotted curves. We see that they nicely agree in
their respective region of applicability. The collision kernel Ceq(q⊥) in thermal
equilibrium is approximately peaked at the Debye mass, which is indicated by a
square on the curve.

We will frequently use the thermal form Ceq(q⊥) to normalize the nonequilibrium
kernel C(q⊥), in order to highlight the deviations from the thermal form. For
that, always the numerically evaluated Ceq(q⊥) is used, and computed with the
corresponding discretization parameters as in the nonequilibrium case.

Bjorken expanding systems

We now consider gluonic plasmas undergoing Bjorken expansion, motivated by
the initial stages in heavy-ion collisions. We take the initial conditions described
in more detail in Section 3.6.2 with ξ0 = 10, and use the couplings λ = 2 and
λ = 10. We use λ = 2, because for this coupling the qualitative and quantitative
features of the bottom-up thermalization (see Chapter 3.5.2) are still clearly visible,
and the system is still moderately weakly coupled, and choose λ = 10 as a more
phenomenologically relevant value.



7.1 going beyond the jet quenching parameter : elastic collision kernel 133

q⊥/Tε

10−2

10−1

100
101

φ

0

π/8

π/4

3π/8

π/2

0

1

2

3

4

De
by
e

m
as
s

τ/
τR
=
0.0
10

q⊥/Tε

10−2

10−1

100
101

φ

0

π/8

π/4

3π/8

π/2

0

1

2

3

De
by
e

m
as
s

τ/
τR
=
0.0
12

q⊥/Tε

10−2

10−1

100
101

φ

0

π/8

π/4

3π/8

π/2

0

1

2

De
by
e

m
as
s

τ/
τR
=
0.0
20

q⊥/Tε

10−1

100
101

φ

0

π/8

π/4

3π/8

π/2

0.0

0.5

1.0

1.5

2.0

De
by
e

m
as
s

τ/
τR
=
0.0
76

q⊥/Tε

10−1

100
101

102

φ

0

π/8

π/4

3π/8

π/2

0.0

0.5

1.0

1.5

De
by
e

m
as
s

τ/
τR
=
0.4
78

q3⊥/T
2
ε C(q⊥), λ = 2

φ = 0

φ = π/2

angular average

thermal form q⊥ Q Tε

0.0 0.5 1.0 1.5 2.0 2.5

Figure 7.2: Collision kernel C(q⊥) of a gluonic plasma undergoing bottom-up thermal-
ization for various times during the evolution for coupling λ = 2. The back
plane shows the projection of the angles φ = 0 and φ = π/2, the angular average⟨C(q⊥)⟩φ and the large q⊥ result (7.23a) in thermal equilibrium with the same
energy density.
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Figure 7.3: Collision kernel C(q⊥) of a gluonic plasma undergoing bottom-up thermal-
ization for various times during the evolution for coupling λ = 10. The back
plane shows the projection of the angles φ = 0 and φ = π/2, the angular average⟨C(q⊥)⟩φ and the large q⊥ result (7.23a) in thermal equilibrium with the same
energy density.



7.1 going beyond the jet quenching parameter : elastic collision kernel 135

Figs. 7.2 and 7.3 show the results for the anisotropic collision kernel C(q⊥) for
various times and the two couplings λ = 2 (Fig. 7.2) and λ = 10 (Fig. 7.3). The
anisotropic kernel is shown as a surface plot with the height (and color) representing
the value of the collision kernel, rescaled with q3⊥/T2

ε , representing the integrand
of the jet quenching parameter q̂. Recall that Tε is an effective temperature of the
nonequilibrium system obtained via the Landau matching condition (3.84). The
kernel for φ = 0 (broadening along beam axis), φ = π/2 (broadening transverse to
beam) and the angular averaged collision kernel

⟨C(q⊥)⟩φ = 1
2π ∫ 2π

0
dφ C(q⊥, φ) (7.25)

are shown as black lines on the back plane, where also the large q⊥ result (7.23a)
for a thermal system with temperature Tε are shown as an orange dashed line.
Additionally, the Debye mass is marked with a gray square (and line) on the x-axis
(where q⊥/Tε is plotted). The time variable is given as a ratio over the relaxation
time τR (see Eq. (3.85b)).

At late times, the kernel is seen to be isotropic (flat in the φ direction), while at
early times it is most anisotropic, with a large peak at φ = 0 and a smaller one at
φ = π/2. The latter is only visible at very early times and is more pronounced for
λ = 2. The peak itself is at the Debye mass for later times and is shifted towards
smaller momenta at early times and small angles. Clearly visible is also the noise
from the Monte Carlo evaluation of the integral at small momenta and early times,
see, e.g., the top left panel in Fig. 7.2.

The angular resolution can be studied in more detail in the top panels of Fig. 7.4.
Here, as already shown on the back sides of the three-dimensional plots in Figs. 7.2
and 7.3, both the angular averaged kernel (7.25), and the two angles φ = 0 and
φ = π/2 are shown for two distinct times. It can be clearly seen that the anisotropy
decreases at later times. The box marks the Debye mass. As already mentioned
before, for very early times, the nonequilibrium collision kernel is peaked at
momenta below the Debye mass, and the peak is shifted even more to lower
momenta for smaller angles φ. This might suggest that at early times, the effective
screening scale is angle-dependent, and considerably lower than the Debye mass at
small angles.

This is further corroborated by the central and bottom panels in Fig. 7.4. The
central panels show the angular averaged collision kernel for different times. We
clearly observe the evolution towards its equilibrium form and its peak shifting
from the left towards the Debye mass, which is again indicated by the squares. In
the bottom panels, the collision kernel is normalized to its equilibrium form. There,
the enhancement of small momentum exchanges for early times is most visible.
For instance, for λ = 2 and τ/τR ≤ 0.08, small momentum exchange processes are
enhanced by more than a factor 2, which is similar for λ = 10 and τ/τR ≤ 0.2.
This indicates that small momentum exchange processes are more likely than
in thermal equilibrium and that using a thermal form for the collision kernel
drastically underestimates the momentum transfer at small momenta q⊥. Thus,
describing the momentum broadening during the splitting process as a diffusion
process in transverse momentum space, as required for the multiple-soft-scattering
approximation (see Chapter 2) is a good approximation in this region.
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Figure 7.4: Collision kernel C(q⊥) for different times as a function of the momentum
transfer q⊥. Runs with coupling λ = 2 are depicted in the left column and
those with λ = 10 in the right column. The box indicates the Debye mass.
(Top): Collision kernel for two angles and angular average at an early and
late time. (Center): Angular averaged collision kernel (7.25) for different times
(color-coded). Shown are also the limiting analytic expressions for a thermal
system (7.23). (Bottom): Angular averaged collision kernel normalized to the
thermal one for the Landau-matched temperature Tε for different times.
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Figure 7.5: Collision kernel for two angles and angular average for λ = 10, showing the
anisotropy present even at a relatively late time.

Since the enhancement gets larger for smaller angles φ, scatterings with mo-
mentum transfer along the beam axis are more likely. This counteracts the highly
anisotropic plasma with small longitudinal momentum extent and contributes to a
broadening of the distribution.

At late times, the collision kernel coincides with its equilibrium form, as we
can see explicitly in the bottom panel in Fig. 7.4, where at late times the ratio of
the nonequilibrium kernel to its equilibrium counterpart is close to unity for all
momenta.

Finally, due to the Bjorken expansion, the plasma never fully isotropizes. For
instance, the pressure ratio only approaches but never reaches unity (up to nu-
merical uncertainties). In particular, also the collision kernel is expected to remain
anisotropic, even at late times. Fig. 7.5 shows the results for the nonequilibrium
kernel for λ = 10, where we observe a clearly visible anisotropy in the kernel even
at rather late times τ/τR = 1.2, where a hydrodynamic description starts becoming
applicable (see Fig. 3.3). This underlines that understanding which physical effects
and observables are sensitive to the anisotropy in the collision kernel (and related
jet quenching parameter) is an important step to understanding the nonequilibrium
stages in heavy-ion collisions.

7.2 dipole cross section

We have already discussed in Section 2.2 that the splitting rate is obtained by
transforming the collision kernel to impact parameter space (7.11),

C(x) = ∫ d2q⊥(2π)2 (1− cos(q⊥ ⋅ x))C(q⊥) (7.26)

to obtain the dipole cross section. We will now study the form of this dipole cross
section C(x) in expanding systems. The Fourier transform (7.11) is performed
numerically. As C(q⊥) is obtained on a finite grid qmin⊥ < q⊥ < qmax⊥ , smaller and
larger values of q⊥ are obtained by extrapolation using the limiting forms (7.23a).
In practice, the small q⊥ behavior is fitted to a1(φ)/q2⊥, and the large q⊥ behavior to
a2(φ)/q4⊥.
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The integral in Eq. (7.26) can be done analytically for the small q⊥ form of the
collision kernel for isotropic distributions (7.23b),

C(q⊥) = CRg2m2
DT∗

q2⊥(q2⊥ +m2
D) , (7.27)

which yields (see Appendix A.5.5)

Cappr.
iso (∣x∣) = CRg2

s T∗
2π

(γE +K0(∣x∣mD) + log
∣x∣mD

2
) , (7.28)

with T∗ and mD given by Eqs. (3.10) and (3.11). In equilibrium, this then becomes

Cappr.
eq (∣x∣) = CRg2

s T
2π

(γE +K0(∣x∣mD) + log
∣x∣mD

2
) , (7.29)

with the equilibrium Debye mass (3.13). This form (7.29) or also the small q⊥
expression (7.27) is also often used in the literature (see, e.g., [97, 124, 125, 169]).
For instance, it is used in QCD kinetic theory simulations to calculate the splitting
rates γa

bc as discussed in Section 3.2, or also used as a medium model in jet
quenching studies. While Eq. (7.29) is convenient because of its simple analytic
form, it should be emphasized that it is not the correct form of the dipole cross
section in thermal equilibrium. For that, not only the small q⊥ form (7.23b), but
the whole possibly numerically evaluated collision kernel needs to be Fourier
transformed using Eq. (7.26). Therefore, we label it Cappr.

eq , because it constitutes an
analytic approximation to the true thermal form of the dipole cross section.

7.2.1 Small distance limit

As explained before, for highly energetic particles (see Chapter 2), the small distance
form of the dipole cross section is important. Here, we discuss the analytic limit
of the small distance behavior of the dipole cross section and show that it can be
expressed using the jet quenching parameter q̂(Λ⊥) with a transverse momentum
cutoff.

In an isotropic system (when C(q⊥, t) does not depend on the angle φ), the
angular integral in (7.26) can be done analytically,

C(∣x∣) = ∫ ∞
0

dq⊥
2π

q⊥(1− J0(∣x∣q⊥))C(q⊥). (7.30)

First, let us consider the isotropic case of thermal equilibrium. There, to find
the small distance ∣x∣ ≪ 1/T behavior of the dipole cross section C(∣x∣), one might
naïvely expect it to be sufficient to expand the integrand in powers of ∣x∣, (1 −
J0(∣x∣q⊥)) = x2q2⊥/4+O(x4q4⊥)). However, in this expansion

C(∣x) ∼ x2 +O(x4), (7.31)

the first nonvanishing term for the dipole cross section C(x) is given by the jet
quenching parameter q̂,

q̂ ∼ ∫ ∞
0

dq⊥
2π

q3⊥C(q⊥) → ∞, (7.32)
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and is divergent (without introducing a UV cutoff), as we have discussed before
extensively in Section 4.1.7. Clearly, the problem is the highly oscillatory function
J0(∣x∣q⊥) at large q⊥. The result could be made finite by introducing again a UV
cutoff Λ⊥, but it is not clear at this stage how this would appear naturally in
Eq. (7.30).

And even worse, for the analytically solvable case, (7.29), the small-∣x∣ behavior
is not given by (7.31) but

C(∣x∣ ≪ 1/T) = x2(a1 + b1 log ∣x∣) + . . . (7.33)

In particular, the logarithmic dependence on ∣x∣ will be important for small-∣x∣. It is
now also clear that the naïve expansion in (7.31) was doomed to fail since it would
have never led to a logarithm by just expanding the integrand for small-∣x∣.

A better way to do it in full generality is to introduce a cutoff Λ⊥ in the integral,
and to split the integral in a part below and above the cutoff,

C(x) = ∫
q⊥<Λ⊥

d2q⊥(2π)2 (1− eiq⊥⋅x)C(q⊥) +∫ ∞
Λ⊥

dq⊥
2π

q⊥C(q⊥)(1− J0(bq⊥)). (7.34)

Here, we have already used that for a general distribution function, the collision
kernel becomes isotropic for sufficiently large q⊥, and is given by (see Eq. (7.23a))

C(q⊥) = g4CRN
q4⊥ . (7.35)

In the first integral in Eq. (7.34), we can expand the exponential for small x,
which yields exactly the jet quenching parameter q̂ with a transverse momentum
cutoff Λ⊥,

∫
q⊥<Λ⊥

d2q⊥(2π)2 (1− eiq⊥⋅x)C(q⊥) ≈ 1
2 ∫q⊥<Λ⊥

d2q⊥(2π)2 (x2q2
x + y2q2

y)C(q⊥) (7.36)

= 1
2
(x2q̂xx(Λ⊥) + y2q̂yy(Λ⊥)) , (7.37)

where we have parameterized the vector x = (x, y). For large enough cutoffs Λ⊥, we
have seen before in Section 4.1.8 (see Eq. (4.50)) that the jet quenching parameter q̂
has the simple form

q̂xx = a log Λ⊥/Qs + bx, q̂yy = a log Λ⊥/Qs + by (7.38)

The second integral in Eq. (7.34) can be solved analytically for the isotropic large
q⊥ form (7.35) (which is also valid for an anisotropic distribution function f (p)),

∫ ∞
Λ⊥

dq ⊥
2π

CRg4N
q3⊥ (1− J0(∣x∣q⊥)) (7.39)

= CRg4N
256π

(Λ2⊥x4
2F3 (1, 1; 2, 3, 3; −Λ2⊥x2

4
)− 32x2 (−1+γE + log

Λ⊥∣x∣
2
)) ,

= −CRg4N
8π

x2 (γE − 1+ log
Λ⊥∣x∣

2
)+O(x4) (7.40)
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where pFq is the generalized hypergeometric function and γE is the Euler Mascheroni
constant.

Importantly, since the sum of the two integrals in (7.34) cannot depend on Λ⊥ for
small ∣x∣, the terms log Λ⊥ must exactly cancel in the sum. In particular, because
the large q⊥ form (7.40) is isotropic, so must be the cutoff dependence in Eq. (7.38).
This provides another argument for why the coefficient a in (7.38) cannot depend
on the direction.

Adding these two expressions, we finally obtain the small ∣x∣ form of the dipole
cross section,

C(x, t) ≈ 1
2
(x2bx(t) + y2by(t)) + x2q̂0(t)

2
(1−γE − log

∣x∣Qs

2
) , (7.41)

where we have redefined q̂0(t) = a(t), and a, bx and by come from the large cutoff
parameterization of the jet quenching parameter (7.38), which leads to

q̂0(t) = a(t) = g4CRN(t)
4π

. (7.42)

More conventionally (see, e.g., [124]), the small-∣x∣ form is often written as

C(x, t) ≈ 1
4

q̂0(t)x2 log
1

x2µ2∗(t) (7.43)

which, for an anisotropic medium, can be generalized to

C(x, t) ≈ 1
4

q̂0(t)(x2 log
1

x2µ2∗0
+ x2 log

Q2
s

µ2
x
+ y2 log

Q2
s

µ2
y
) , (7.44)

where we need to identify

µ2
i = e− 2bi

q̂0 , µ2∗0 = 1
4

e2γE−2. q̂0 = a. (7.45)

For the special case of thermal equilibrium (and pure gluons), we can use the
result for q̂ from Eq. (4.77a) to obtain

Ceq(x) ≈ x2

4
CRNCg4T3

π3 (7.46)

× [ζ(3)(1−γE + ln
2∣x∣mD
)+ (ζ(2) − ζ(3)){log

T
mD
+ 1

2
−γE + log 2}− σ+

2π
]

(7.47)

from which we may deduce in equilibrium

q̂0 = CRNcg4T3ζ(3)
2π3 , (7.48a)

µ2∗ = m2
D

4
(mD

2T
)2ζ(2)/ζ(3)−2

exp [2γE − 2−(ζ(2)
ζ(3) − 1)(1− 2γE) + σ+

πζ(3)] . (7.48b)
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Figure 7.6: Dipole cross section C(x) in thermal equilibrium, compared with an often used
analytic approximation (7.29) for λ = 2.

7.2.2 Numerical results

Let us now move on to discuss the numerical results for the dipole cross section,
which we first discuss in thermal equilibrium. Fig. 7.6 compares the thermal form
for the dipole cross section Ceq(∣x∣) with the analytic approximation Cappr.

eq (∣x∣) from
Eq. (7.29). While the upper panel shows both curves on a logarithmic scale, where
only little differences are visible, the lower panel depicts their ratio. We find that
at small ∣x∣, which is the region relevant for highly energetic partons, these two
expressions differ by more than 25%, which implies that the small-∣x∣ behavior of
Cappr.

eq significantly overestimates the true small-∣x∣ behavior.

Next, we consider the dipole cross section of the expanding plasma for λ = 2 and
two early times in Fig. 7.7. In particular, we consider the times τ/τR = 0.01 (left
panels) and τ/τR = 0.48 (right panels). In the upper panels, the dipole cross section
is plotted in units of the temperature Tε; in the lower panels, it is normalized to
its equilibrium form. The two angles φ = 0 and φ = π/2, and the angular averaged
dipole cross section ⟨C(x)⟩φ are shown as solid lines. We compare the full dipole
cross section with the small x result (7.41), which is shown as dashed lines, and
agrees very well for both times and angles.
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Figure 7.7: Dipole cross section C(x) for two angles and angular average for two distinct
times (left and right panels). In the top panels, the dipole cross section itself is
shown, in the bottom panels it is normalized to its thermal value. We also show
the small-∣x∣ formula (7.41).

This angular averaged dipole cross section can be obtained from the angular
averaged collision kernel, as we show now. For that, consider the angular averaged
dipole cross section,

⟨C(∣x∣)⟩φ = 1
2π ∫ 2π

0
dφ C(∣x∣, φ) = 1

2π ∫ 2π

0
dφ x ∫ d2q⊥(2π)2 (1− cos(q⊥ ⋅ x))C(q⊥)

(7.49)

= 1
2π ∫ 2π

0
dφ x

1
2π ∫ 2π

0
dφ q ∫ dq ⊥q⊥

2π
(1− cos(q⊥∣x∣ cos(φx − φq)))C(q⊥, φq)

(7.50)

We can now swap the φx and φq integrations and define a new integration variable
φ̃x = φx − φq, such that

⟨C(∣x∣)⟩φ = 1
2π ∫ 2π

0
dφ q

1
2π ∫ 2π−φq

−φq
dφ̃x ∫ dq ⊥q⊥

2π
(1− cos(q⊥∣x∣ cos φ̃x))C(q⊥, φq).

(7.51)

Because we integrate φ̃x over the whole period of the cosine, we may shift it freely,
and then have

⟨C(∣x∣)⟩φ = 1
2π ∫ 2π

0
dφ̃x ∫ dq⊥ q⊥

2π
(1− cos(q⊥∣x∣ cos φ̃x)) 1

2π ∫ 2π

0
dφ qC(q⊥, φ)

(7.52)

= ∫ d2q⊥(2π)2 (1− cos(q⊥∣x∣ cos φq))⟨C(q⊥)⟩φ, (7.53)
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Figure 7.8: Dipole cross section ⟨C(x)⟩φ for different times and λ = 2. In the left panel, four

times are chosen to illustrate the general behavior, whereas in the right panel,
more times are shown to show the continuous behavior.

which proves that to obtain the angular average of the dipole cross section ⟨C(∣x∣)⟩φ,
it is enough to use the isotropic already angular averaged collision kernel ⟨C(q⊥)⟩φ
(Eq. (7.25)) in the Fourier transform (7.26).

We will now move on to discuss the time evolution of the dipole cross section.
The angular averaged dipole cross section ⟨C(x)⟩φ is depicted for different times
for couplings λ = 2 in Fig. 7.8 and λ = 10 in Fig. 7.9. In the top panels, the dipole
cross section is normalized by the effective temperature Tε from Eq. (3.84), and in
the lower panels by its equilibrium value. In the left panels, four distinct times
are shown, whereas the right panels show more times to illustrate the continuous
evolution. We observe that the dipole cross section as a function of time behaves
qualitatively differently for small and large ∣x∣, as compared to its thermal form.
For all couplings and times, at large x, the dipole cross section significantly exceeds
its equilibrium values and continuously decreases towards equilibrium throughout
the time evolution. In contrast, at small ∣x∣, which is the relevant region for highly
energetic partons (jet quenching), the evolution is not monotonous, and we consider
this region in more detail in Fig. 7.10. There, the small-∣x∣ behavior is shown at∣x∣Tε = 0.01 as a function of time. In particular, for λ = 2, the dipole cross section
is initially about 50% larger than in equilibrium, then quickly drops below its
equilibrium value at around τ/τR ≈ 0.025, and then approaches its equilibrium
value from below. Therefore, for times τ/τR ≳ 0.025, gluon radiation and thus
jet quenching is suppressed as compared to thermal equilibrium. Naïvely, in the
infinite static medium, the rate/spectrum would go as

√
q̂ (see Eq. (2.6)), and q̂

determines the small distance behavior of ⟨C(∣x∣)⟩φ. Thus, the suppression in the
spectrum is expected to be less dramatic than the suppression of the dipole cross
section. The smallest value is at about 0.75 of its thermal value, and we would
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Figure 7.9: Dipole cross section ⟨C(x)⟩φ for different times and λ = 10. In the left panel,
four times are chosen to illustrate the general behavior, whereas in the right
panel, more times are shown to show the continuous behavior.

therefore expect the suppression to be of
√

0.75 ≈ 0.87, only of about 10%. This
naïve estimate is, of course, very simplistic; in practice, one needs to integrate over
the whole splitting process.

An interesting feature of Fig. 7.10 is the angular ordering, i.e. that the dipole cross
section for φ = 0 is initially suppressed until the star marker and then enhanced
as compared to the φ = π/2 cross section. This is similar to the behavior of the jet
quenching parameter which was observed in Chapter 4.

For λ = 10, the qualitative behavior, i.e., that the dipole cross section at small ∣x∣
first drops and then rises again as compared to its equilibrium value stays the same,
but for the whole evolution, it is below the thermal value, which indicates suppres-
sion of jet quenching during the whole evolution. Although this is qualitatively in
agreement with findings of phenomenological studies that find jet quenching needs
to be suppressed before τ = 0.6 fm/c [76], the effect coming from the rather mild
suppression of the dipole cross section at small ∣x∣ is rather too small to explain
this. However, this result provides a hint that the nonequilibrium dynamics may
influence the collision kernel and dipole cross section and can lead to an effective
suppression of jet quenching during the initial stages.

7.3 gluon radiation in an anisotropic medium

As explained in Chapter 2, the collision kernel is the key input for calculating the
rate of inelastic gluon emissions. It is used as the medium input for jet quenching
calculations, where one considers a highly energetic parton emitting a gluon. In
that case, the dominant contribution comes from the small distance (small-∣x∣)
behavior of the dipole cross section.
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Figure 7.10: Dipole cross section C(x) for a fixed ∣x∣Tε = 0.01 as a function of time. Shown
is both the angular averaged cross section ⟨C(∣x∣⟩φ as a red curve, and the cross
section for angles φ = 0 and φ = π/2. The upper panels show the cross section
normalized to the saturation momentum Qs, the lower panels to the thermal
cross section. Shown are couplings λ = 2 (left) and λ = 10 (right).

For less energetic partons, the whole form of the collision kernel becomes
important. This is the case needed for calculating the splitting and merging rates
γa

bc included in QCD kinetic theory simulations as discussed in Section 3.2. In
current QCD kinetic theory implementations (see, e.g., [21–26, 169, 170]) only the
approximated thermal dipole cross section (7.28) is used, valid for isotropic systems,
effectively taking the analytic Fourier transform (7.11) of the small q⊥ limit (7.23b).

7.3.1 AMY rate equation

In this section, we will consider the full form of the dipole cross section C(x) to
calculate the rate in the formalism of Arnold, Moore, and Yaffe. Recall from Section
2.2 that the rate for the process g → gg [19, 94] is given by

γ = p4 + p′4 + k′4
p3 p′3k′3 dAαs

2(2π)3 ∫ d2h(2π)2 2h ⋅ReF, (7.54)

where F is the solution to the integral equation

2h = iδE(h)F(h) + 1
2 ∫ d2q⊥(2π)2 C(q⊥) (7.55)

× [(3F(h) − F(h − pq⊥) − F(h − kq⊥) − F(h + p′q⊥)] ,
with δE(h) = m2

D/4×(1/k+1/p−1/p′)+ h2/(2pkp′). The expression for this rate was
derived with the assumption of an infinite medium and that the collision kernel
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C(q⊥) does not significantly change (i.e., is constant) during the formation time
(tform ∼ √ω/q̂, see Eq. (2.4)) of a splitting process, but it is valid for all emitted
gluon energies. As discussed before, despite these approximations, these rates are
used in kinetic theory simulations with the simplified isotropic form (7.23b) of the
collision kernel [19, 21–26, 169, 170].

In this thesis, this rate equation is solved numerically for a general collision kernel
C(q⊥) satisfying the symmetry conditions (7.10) (but it is easy to generalize the
method discussed here for a generic kernel). Previously in the literature, numerical
evaluations of this rate only considered isotropic collision kernels (or, equivalently,
isotropic dipole cross sections) [97, 110, 125–129], or solved the rate equation (7.54)
perturbatively around isotropy [230]. To the best of my knowledge, I present here
the first method to obtain the rate (7.54) for an anisotropic collision kernel C(q⊥).
7.3.2 Solving the AMY rate equation numerically

We follow (and generalize) the method outlined in Ref. [231] and solve Eq. (7.55) in
impact parameter space, where the equation reduces to

(A −D(z, x) − B∇2)F(x) = −2i∇δ(x) (7.56)

with

A = i
m2

D
4p
(1

z
+ 1

1− z
− 1) , (7.57)

B = i
2pz(1− z) , (7.58)

D(z, x) = −1
2
(C(x) +C(zx) +C((1− z)x)) , (7.59)

and z is the energy fraction of the emitted gluon, i.e., p → zp + (1− z)p. By going
from the original integral equation (7.55) to impact parameter space (7.56), we go
from the collision kernel C(q⊥) to the dipole cross section C(x), see Appendix D.

In the isotropic case, F(x) ∼ xF(∣x∣), and Eq. (7.56) for small ∣x∣ only has two
linearly independent solutions. For the general case, one can decompose the angular
information in Fourier modes, and find that there are two linearly independent
solutions for every Fourier mode, effectively summing up to infinitely many
different independent solutions. The boundary conditions are dictated for small x
by the delta function in Eq. (7.56), and by requiring that F(x) → 0 for ∣x∣ → ∞, as
well as that the rate (7.54) is finite.

The rate is solved for 7 and 11 Fourier modes to ensure that the results do not
depend on the truncation of the Fourier series. While in the isotropic case, it is
enough to solve two independent ordinary differential equations, in the anisotropic
case, nfourier + 3 different systems of nfourier coupled ordinary differential equations
need to be solved. More details on the numerical method is provided in Appendix
D.

For solving the differential equation, the dipole cross section C(x) is needed for
possibly arbitrary small and large x. In practice, this is achieved by considering
the analytic limits of C(x). We have already extensively discussed the small-∣x∣
limit in Section 7.2.1, where we found that C(∣x∣) ∼ x2 log ∣x∣. We will now briefly
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Figure 7.11: Gluon splitting rate γ for various parton energies P. The axis are scaled such
that in equilibrium all coupling and temperature dependence cancels. (Left):
Plot from Ref. [121] showing the splitting rate in thermal equilibrium for the
approximated dipole cross section (7.29) (dashed lines) and its leading-log
approximation (solid lines). (Right): Splitting rate as computed for collision
kernels at different times for Bjorken expanding system at coupling λ = 2.
Shown are, for simplicity, only the rates obtained from the averaged kernel
(dotted lines) and from the approximated dipole cross section (7.29).

also discuss the opposite limit ∣x∣ → ∞. The Fourier transform (7.3) features a
rapidly oscillating function, and the integral is dominated by the region where the
exponent is approximately unity, i.e., q⊥ ∼ 1/∣x∣. In the limit ∣x∣ → ∞, we, therefore,
need to consider the q⊥ → 0 limit of the collision kernel, which we have already
worked out in Eq. (7.23a). In this limit, C(q⊥) ∼ 1/q2⊥, which leads to a logarithmic
behavior when performing the integral (7.3).

To summarize, the dipole cross section exhibits the following asymptotic behavior

C(∣x∣, φ) → ⎧⎪⎪⎨⎪⎪⎩x2(a1(φ) log ∣x∣ + a2(φ)), ∣x∣ → 0

a3(φ) log ∣x∣ + a4(φ), ∣x∣ → ∞,
(7.60)

with angular dependent coefficients ai(φ). In the numerical method, Eq. (7.60) is
used to extrapolate the numerical results for the dipole cross section to arbitrarily
small and large values of ∣x∣.
7.3.3 Numerical results

We now move on to discuss the numerical results for the splitting rate. As in the
whole thesis, we consider only gluons, i.e., the process of inelastic gluon radiation
g → gg. First, to validate the numerical approach, we compare the splitting rate
obtained from the numerical approach with previously known results for the
splitting rate in thermal equilibrium [121], which are shown in the left panel of
Fig. 7.11. The axes are scaled in a way to make all curves fall on top of each
other in thermal equilibrium for different temperatures T and couplings λ. The
dashed lines denote the numerically obtained rate from Ref. [121] using the small q⊥
form of the collision kernel (7.23b), which is equivalent to using the approximated
analytic dipole cross section (7.29) in impact parameter space. The dashed lines
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represent the next-leading-log solution of Ref. [121] valid at large jet momenta. This
corresponds to an expansion in logarithms, and is, thus, similar to the improved
opacity expansion [122–124]. Different colors denote different splitting fractions
z (labeled in the left plot as x). The right panel shows the results of using the
numerical method, applied for angular averaged dipole cross sections ⟨C(∣x∣)⟩φ,
and also for the approximated thermal cross section (7.29) as black dash-dotted
lines. These latter lines should be compared with the dashed curves in the left
panel, and show excellent agreement, validating the numerical method used here.
The colored dotted lines correspond to the rates obtained from the dipole cross
sections at different times and roughly follow the thermal estimates in magnitude.

We now turn to study the rates obtained from the nonequilibrium kernel in more
detail. Fig. 7.12 shows the gluon splitting rate γ obtained from the nonequilibrium
dipole cross section C(x, τ) at several times for a Bjorken expanding plasma for
couplings λ = 2 (left column) and λ = 10 (right column). The different times are
color-coded, with a consistent color scheme for the same coupling.

In the upper row, the rate for the anisotropic nonequilibrium collision kernel
C(q⊥, τ) is plotted over the rate from its angular average ⟨C(q⊥, τ)⟩φ. Remarkably,
this ratio is close to unity (less than 2% deviations) for both considered couplings
and all considered times. This implies that obtaining the rate for the averaged
collision kernel ⟨C(q⊥)⟩φ provides already a very good estimate for the rate obtained
from the anisotropic kernel C(q⊥). In the latter case, the maximum number of
Fourier modes is varied (nmax = 3 and nmax = 5), where we observe that nmax = 3
coincides with nmax = 5 for almost the entire parton energy range, and, thus,
already provides a very good description. For larger parton energies P ≥ 50Tε,
using more Fourier modes leads to numerical problems (e.g., finding the unique
linear combination of solutions that satisfies all the boundary conditions). This is
seen in the plots by the diverging lines at larger parton energies P. These numerical
problems will be discussed in more detail in Appendix D.

Let us now move on to the central panels, where the rate obtained from the
nonequilibrium kernel C(q⊥) is compared to the Landau-matched thermal rate
γeq. Here, we observe an enhancement of the rate at small parton energies and a
suppressed rate at large energies. This suppression aligns with the discussion in
the last section regarding the reduction of the small-∣x∣ behavior of the dipole cross
section. However, interpreting the rate at large momenta P is complicated by the
fact that an underlying assumption for the rate equation (7.54) is that the collision
kernel C(q⊥) does not change during the emission process. This is only true for
processes with small formation time (2.4),

tform ∼√ω

q̂
=√zP

q̂
. (7.61)

Let us provide a simple estimate of until which parton energies we may trust the
results in Fig. 7.12. For example, consider λ = 2 (left panels), where in the middle
panels, the rate (or rather ratio) seems to be approximately constant between
0.076 < τ/τR < 0.9 (corresponding to QsΔτ ≈ 400). If we take as average temperature
Tε ≈ 0.3Qs from Tab. E.5, and q̂ ≈ 0.16T3

ε ≈ 0.004Q3
s from Fig. 4.11, this leads to

ω ≈ 640Qs ≈ 2000Tε, for which the formation time is of this order.
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Figure 7.12: Gluon splitting rate for λ = 2 (left column) and λ = 10 (right column) in
a Bjorken expanding gluonic plasma at different times (color-coded). The
parameter z is the energy fraction of one of the emitted gluons. (Top): Ratio
of the rate for the anisotropic collision kernel C(q⊥) over the rate obtained
from the angular averaged one ⟨C(q⊥)⟩φ. (Middle): Rate for the nonequilibrium
kernel over the Landau-matched equilibrium one. Additionally shown is the
rate obtained from the approximated thermal dipole cross section (7.29) as a
black dash-dotted line. (Bottom): Rate using the T∗ approximated dipole cross
section as input (7.28) to the thermal one.
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Figure 7.13: Comparison of the rate γ obtained from the nonequilibrium collision kernel
C(q⊥) (blue dotted line), the equilibrium approximated cross section (7.29)
(green dashed line) and the isotropic approximated cross section (7.28) (orange
dash-dotted line) for a parton with energy P = 1.25Tε as a function of time τ.
The left panel shows the results for coupling λ = 2, the right panel for λ = 10.

For λ = 10, we can consider the right center panel of Fig. 7.12. Taking the time
between the red and yellow curve corresponding to QsΔτ ≈ 2 with Tε/Qs ≈ 0.5 from
Tab. E.6, and taking q̂ ≈ 2T3

ε ≈ 0.25Q3
s from Fig. 4.13, we can estimate ω ≲ Qs ≈ 2Tε,

which implies that for z = 0.1, the formation time is smaller or of that order for
P/T ≲ 20.

If we are less restrictive and consider the rate (or rather ratio) between the green
(τ/τR = 0.48) and blue curve (τ/τR = 0.82) to be almost constant, this corresponds
to roughly Δτ ≈ 10/Qs, and take Tε = 0.2Qs and q̂ ≈ 2T3 ≈ 0.08Q3

s , we obtain
ω = 8Qs ≈ 40Tε, leading to a maximum parton energy of P ≈ 400Tε, where the rate
is still larger than its thermal equilibrium counterpart.

These simple estimates verify that the rates cannot be used for very energetic
particles at all times, but can be used for particles with momenta of the order of
the effective plasma temperature Tε, for example, in kinetic theory simulations.

In the bottom row, we compare the rate γT∗ obtained from the isotropic approxi-
mation to the dipole cross section Cappr.

iso in (7.28) to the nonequilibrium one. We find
that at early times the rate γT∗ significantly overestimates the nonequilibrium rate.
In particular for λ = 2, we find that initially the rate is overestimated by more than
a factor of two. Even for λ = 10, γT∗ is about 40% larger than the nonequilibrium
rate.

Finally, in Fig. 7.13, we compare the splitting rate γ at a specific constant parton
energy over effective temperature P/Tε, obtained from the full anisotropic nonequi-
librium collision kernel C(q⊥, τ) (blue dotted line), and for various approximations:
The rate from the approximated thermal cross section (7.29) is shown as a green
dashed curve, and the rate from the approximated isotropic cross section (7.28)
is shown as an orange dash-dotted line. All of the values are normalized to the
thermal values. The left panel shows the results for λ = 2, the right panel for λ = 10.
In both cases, all of the curves are above unity, implying that the splitting rate
for this parton energy is larger than expected from a Landau-matched thermal
equilibrium. The thermal approximated rate in green is constant, at a value of
20% above the thermal rate. The nonequilibrium rate (blue dotted curves) initially
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grows up to 20% above the thermal rate (50% for λ = 2) and then decreases, but
at the triangle marker, the differences to thermal equilibrium are still larger than
10%. Surprisingly, the rate for the isotropic approximation (7.28) that is used in
QCD kinetic theory simulations exhibits a qualitatively different behavior. It peaks
at initial times with up to 60% above the thermal values (300% in the case of
λ = 2), then drops below the nonthermal rate, crossing it approximately at the
star marker, where the system becomes under-occupied. It then approaches the
approximated thermal rate (which it should approach at late times). The failure to
exactly approach the thermal rate at the very end is due to discretization artifacts.

This qualitative and quantitative different behavior of the rate γT∗ obtained from
the isotropic cross section (7.28) poses several questions regarding QCD kinetic
theory simulations, in which this rate is commonly applied. In particular, at
weak couplings, the deviations seem to become even larger. Since the bottom-up
thermalization process relies crucially on the splitting rate, through which a soft
thermal bath is formed, a modification of this rate in simulations can have sizable
consequences. The rate obtained from the nonequilibrium kernel seems to be
initially smaller during the over-occupied stage, which implies that fewer soft
gluons are initially emitted. In the under-occupied stage (after the star marker),
for λ = 2, the nonequilibrium rate becomes larger than γT∗ , possibly affecting
the second and third stage in the bottom-up equilibration simulations. Clearly,
only further simulations using this nonequilibrium rate can clarify whether the
equilibration and hydrodynamization process is substantially modified, which will
be an exciting opportunity in the future.

7.4 concluding remarks

In this chapter, we studied the elastic collision kernel C(q⊥, τ), which generalizes
the jet quenching parameter. The results obtained from numerical QCD kinetic
theory simulations of the bottom-up equilibration process reveal an effectively
angle-dependent screening scale and indicate that the jet quenching parameter
q̂ receives larger contributions from small-momentum exchanges than in a corre-
sponding thermal equilibrium, particularly in regions below the Debye mass. The
anisotropy and magnitude of the kernel are consistent with the evaluation of the
jet quenching parameter q̂ in Chapter 4.

We then moved on to study the dipole cross section, which can be obtained
from the collision kernel using a (one-subtracted) Fourier transform (7.3). Its small
distance behavior is relevant for calculating the gluon emission probability of a
highly energetic parton, and, thus, the relevant region for jet quenching. This small
distance behavior of the dipole cross section can be well described by the analytic
formula (7.41), which needs as medium input only the jet quenching parameter as
a function of the cutoff q̂(Λ⊥). We found that this formula also reproduces very
well the angular information. Furthermore, for calculating gluon emission rates of
softer partons, the whole form of the dipole cross section is important. We have
discussed the analytic limits of this quantity and compared it to its equilibrium
estimates at various times. We find that while the nonequilibrium dipole cross
section at large ∣x∣ is significantly larger than in equilibrium, at small distances ∣x∣,
it is slightly smaller, indicating a suppression of jet quenching.
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In the final part of this chapter, we considered the AMY gluon splitting rates
obtained from the dipole cross section. For the first time, a numerical method is de-
veloped to obtain this quantity for an anisotropic dipole cross section. Remarkably,
the rate obtained from the anisotropic cross section is well approximated by the rate
obtained from the angular averaged cross section. However, it is still substantially
different from the rate for an equilibrium collision kernel, especially at early times
(up to 50% for λ = 2). Additionally, we have discussed that the approximation for
the collision kernel used in QCD kinetic theory simulations leads to significantly
larger rates at early times (up to 300% for λ = 2), which potentially impacts QCD
kinetic theory simulations of the bottom-up equilibration and hydrodynamization
process in heavy-ion collisions.



8
S U M M A RY, C O N C L U S I O N S A N D O U T L O O K

This thesis focuses on the initial nonequilibrium stages in heavy-ion collisions,
which can be described and modeled using QCD kinetic theory. Potential experi-
mental probes of these initial stages are high-energy particles which are measured
as jets in the detectors. Their energy loss can—in the harmonic approximation—be
described by a single medium parameter, the jet quenching parameter q̂.

In Chapter 4, we discussed how this jet quenching parameter q̂ can be obtained
for a nonequilibrium QCD plasma using QCD kinetic theory, particularly for a
Bjorken expanding system relevant for the initial stages in heavy-ion collisions. We
studied this parameter for several toy models of different parts of these initial stages,
and then extracted and obtained its value numerically using QCD kinetic theory
for such expanding systems. The parameter is found to be similar in magnitude
to calculations and simulations from the earlier Glasma stage, as well as in its
qualitative properties, including increased broadening along the beam axis for a jet
moving perpendicular to it. This first extraction using QCD kinetic theory marks
an important step in understanding pre-equilibrium jet quenching.

We also discussed the jet quenching parameter and the related heavy-quark
diffusion coefficient in the context of hydrodynamic attractors in Chapter 5. While
for their anisotropy ratio, the commonly used time scaling associated with the
hydrodynamic attractor seems to be less useful than for other observables, we
identified a new feature in these transport coefficients. When time is rescaled
with the parametric estimate for the bottom-up thermalization of weakly-coupled
expanding systems, we observe that these anisotropy ratios admit an extrapolation
to vanishing couplings, which we refer to as limiting attractors. We also observe this
weak-coupling bottom-up limiting attractor in the pressure ratio, which additionally
allows an extrapolation to the strong-coupling hydrodynamic limiting attractor.
While the hydrodynamic limiting attractor is also visible for the jet quenching
parameter and heavy-quark diffusion coefficient ratio, it offers less predictive
power since even moderate values of the couplings quantitatively and qualitatively
deviate from this attractor.

In Chapter 6, we then moved on to discuss in detail screening approximations
which are typically employed in QCD kinetic theory simulations. In particular,
we investigated how including the fully resummed HTL propagator in the elastic
collision term modifies previous results on QCD thermalization obtained with a
simpler Debye-like screening prescription. While for isotropic systems the effects
are negligible, large and significant deviations can be observed in several quanti-
ties for expanding systems, which are relevant for the initial stages in heavy-ion
collisions. For instance, the maximum pressure anisotropy is significantly reduced
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when employing HTL screening. The approach to hydrodynamics is less affected
when the different screening prescriptions are accounted for with different numeri-
cal values of the hydrodynamic transport parameter η/s. For this parameter, we
found that the HTL screening prescription consistently leads to smaller values,
which are closer to their perturbative estimate than when employing Debye-like
screening. Furthermore, we studied the impact of this screening prescription on
the jet quenching parameter q̂, which was found to be only mildly influenced by
different screening prescriptions. However, it should be noted that similar to all
other previous treatments in QCD kinetic theory, we still lack a proper understand-
ing of the effect of plasma instabilities in these simulations, which are currently
neglected by employing an isotropic screening approximation.

Finally, we generalized the jet quenching parameter to obtain the elastic collision
kernel C(q⊥, τ) in Chapter 7. We found that it is anisotropic and the contribution
to the jet quenching parameter is peaked at the Debye mass for late times and for
broadening transverse to the beam axis. For early times and broadening along
the beam axis, the peak is shifted to smaller momentum exchanges, which could
be interpreted as an emerging angle-dependent effective screening mass. This
contribution to q̂ is significantly enhanced at early times for small momenta and
suppressed for large momenta when compared to a corresponding thermal system,
while at late times, it approaches its thermal form. We then moved on to obtain
the dipole cross section as a Fourier transform of the collision kernel. We first
verified that its small distance behavior is accurately described by the formula
obtained in Section 7.2.1, and then studied and compared its nonequilibrium and
angularly averaged form to the thermal form. There, we found that the dipole
cross section is smaller than in thermal equilibrium for small distances throughout
the whole evolution for larger couplings (and most of the evolution for coupling
λ = 2). In contrast, for large distances, it significantly exceeds its thermal form and
continuously decreases to thermal equilibrium throughout the hydrodynamization
process. Finally, we also considered the dipole cross section as input to calculate the
gluon splitting rates used in QCD kinetic theory simulations. There, we found that
the rates obtained from an anisotropic collision kernel can be well approximated
by the rate from an angular averaged kernel. However, these nonequilibrium
rates significantly differ from those obtained in a corresponding thermal system.
In particular, they are 20 − 50% enhanced. Moreover, the rate obtained from an
isotropic approximated collision kernel employed in QCD kinetic theory simula-
tions exhibits a significantly different behavior than the actual nonequilibrium rate,
both in magnitude and functional time dependence, with possible and as of yet
unexplored consequences for QCD kinetic theory simulations.

This first extraction of both the jet quenching parameter q̂ and the collision
kernel during the initial stages in heavy-ion collisions using QCD kinetic theory
marks an important step in increasing our understanding of pre-equilibrium jet
quenching in heavy-ion collisions. In particular, many features found in these
quantities, such as anisotropies and deviations from equilibrium, are unaccounted
for in current simulations of heavy-ion collisions and will be even more important
in the upcoming collisions of light ions at the LHC.

While this thesis thus constitutes an important theoretical and conceptual im-
provement of medium properties relevant for jet quenching studies during the
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initial stages, further studies are needed to quantify the effect of these initial
nonequilibrium stages. In particular, the effect of using the isotropic approximated
kernel for obtaining the nonequilibrium splitting rates in QCD kinetic theory simu-
lations will need to be explored in further simulations, to investigate if qualitative or
quantitative changes arise from this approximation. Moreover, it will be interesting
to study the new concept of limiting attractors proposed in this thesis, in particular,
to identify other observables that exhibit a weak-coupling bottom-up limiting at-
tractor. Studying how this bottom-up limiting attractor interferes and interplays
with the hydrodynamic limiting attractor may improve our understanding of the
hydrodynamization and equilibration process of QCD in heavy-ion collisions and
beyond. Furthermore, the anisotropy and evolution of the jet quenching parameter
and collision kernel during the nonequilibrium evolution should be included in the
phenomenological modeling of heavy-ion collisions to assess their impact on jet
quenching. This will enable finding, identifying, and proposing new experimental
observables that may be sensitive to the initial stages and, thus, may offer the
exciting opportunity of probing the nonequilibrium evolution of the QCD plasma
in heavy-ion collisions.





A
Q C D A N D N O N E Q U I L I B R I U M Q UA N T U M F I E L D T H E O RY

In this appendix, we discuss details about QCD, correlation functions and nonequi-
librium field theory. We start in Section A.1 by discussing the QCD Lagrangian
and its building blocks. In Section A.2, we discuss aspects of nonthermal quantum
field theory such as the closed time path and different types of propagators and
correlation functions. In Section A.3, we discuss how the self-energy arises, and
in A.4, the various propagators and correlation functions are listed, together with
some convenient properties. In Section A.5, we discuss the hard thermal loop
propagators, how they can be used in the isoHTL screening for the jet quenching
parameter and elastic collision term, and in particular how to use the sum rule
from Ref. [100] to obtain an analytic result for the collision kernel in isotropic
systems. In Section A.6, we verify that for soft-gluon exchange, the AMY screening
prescription (3.21a) is leading-order accurate by considering explicitly quark and
gluon scatterings with soft momentum transfer.

a.1 qcd lagrangian and notation

Quantum chromodynamics is the quantum field theory describing the strong
interaction. It is a nonabelian gauge theory with gauge group SU(Nc) with Nc = 3
for QCD (but we can leave it arbitrary for the moment since it does not further
complicate the discussion). This implies that the Lagrangian

L =∑
f

ψ̄
f
i (iγµDµ,ij −m f )ψ

f
j − 1

2
Tr (FµνFµν) (A.1)

is invariant under the gauge transformation

ψ
f
i (X) → Uij(X)ψ f

j (X), Aµ(X) → U(X)Aµ(X)U†(X) + i
g

U(X)∂µU†(X), (A.2)

where U ∈ SU(Nc) with components Uij is a unitary Nc × Nc matrix with unit

determinant, det U(X) = 1. The Dirac field ψ
f
i,α(X) is a spinor field with color

(i), flavor ( f ) and spinor (α) index. The gamma matrices (γµ)αβ are matrices in
spinor space (i.e., they act on the spinor index of ψ) and satisfy the Clifford algebra
relation

{γµ, γν} = γµγν +γνγµ = −2ηµν. (A.3)

The adjoint spinor can be obtained via ψ̄ = ψ†γ0.
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The index f runs over the number of n f quark flavors with mass m f . For this
thesis, the typical momenta of particles will be much larger than their rest mass
(for the light flavors), making m f = 0 a good approximation.

The gauge field Aµ(X) ∈ su(Nc) is an element of the Lie Algebra su(Nc), and as
such, can be represented by a traceless hermitian matrix. If we want to explicitly
expand in the degrees of freedom, we can expand it in terms of the dA = N2

c − 1
basis vectors (or generators) ta,

Aµ(X) = Aa
µ(X)ta. (A.4)

It enters the covariant derivative

Dµ = ∂µ − igAµ(X), (A.5)

describing how a vector rotates in color space when it is parallel transported.
The generators ta fulfill the commutation relations

[ta, tb] = i f abctc, (A.6)

and can be represented as dR × dR matrices, where R labels different representations.
For our purposes, the fundamental (R = F) and adjoint (R = A) representation are of
importance. Their dimensions are

dF = Nc, dA = N2
c − 1. (A.7a)

Furthermore, in every representation, there is the invariant object tata = ∑a tata =
CRI, where CR is called the quadratic Casimir. Their values for different representa-
tions are given by

CF = N2
c − 1

2Nc
, CA = Nc. (A.7b)

The coupling g often appears combined with Nc as the ’t Hooft coupling λ, or αs,

λ = g2Nc, αs = g2

4π
. (A.8)

The field strength tensor Fµν is a generalization of the field strength tensor of
classical electromagnetism, and is given by

Fµν = i
g
[Dµ, Dν] = ∂µ Aν − ∂ν Aν − ig[Aµ, Aν]. (A.9)

a.2 correlation functions and closed time path

In this subsection, we discuss aspects of quantum field theories out of equilibrium.
The presentation here follows Ref. [183] but with the conventions from Ref. [177]. In
a quantum field theory at finite temperature and out of equilibrium, it is useful to
define several correlation functions. For a general quantum system, the expectation
value of an operator O is given by

⟨O⟩ = Tr (ρ̂O) , (A.10)
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Figure A.1: The closed time path of the path integral (A.14).

where ρ̂ is the density matrix (ρ̂ = e−βH/Z in thermal equilibrium). If ρ̂(t0) is known
at a given time t0 and the operator O has several time arguments but is not time
ordered, e.g., O = O(t1)O(t2), suitable time translation operators U(t f , ti) need to
be inserted in (A.10). Representing them as a path integral is more tricky than for
time-ordered operators since a path integral naturally introduces a time ordering
along its path. For a product of operators of two different times t1 ≠ t2, this can be
achieved effectively by introducing two sets of fields, one set living on a forward
while the other on the backward time path.

To illustrate this, take the correlation function

⟨O(t1)O(t2)⟩ = Tr (ρ̂(t0)O(t1)O(t2)) (A.11)= ∑
ijklmn

⟨φi∣ ρ̂(t0) ∣φj⟩ ⟨φj∣U(t0, t1) ∣φk⟩ ⟨φk∣O(t1) ∣φl⟩ ⟨φl ∣U(t1, t2) ∣φm⟩
× ⟨φm∣O(t2) ∣φn⟩ ⟨φn∣U(t2, t0) ∣φi⟩ . (A.12)

Next, note that the time evolution operator can be represented as a path integral

⟨φi∣U(t1, t0) ∣φi⟩ = ⟨φi∣ e−iĤ(t1−t0) ∣φj⟩ = ∫ φ1(t1)=φi

φ1(t0)=φj

Dφ1(t)eiS(φ1), (A.13)

representing the time evolution from initial time t0 to t1. It naturally satisfies the
composition rule U(t0, t1)U(t1, t2) = U(t0, t2). Eq. (A.12) can then be written as a
path integral (assuming t0 < t1 < t2)

⟨O(t1)O(t2)⟩ = ∑
ijklmn

⟨φi∣ ρ̂(t0) ∣φj⟩∫ φ2(t1)=φk

φ2(t0)=φj

Dφ2(t)e−iS(φ2) ⟨φk∣O(t1) ∣φl⟩
×∫ φ2(t2)=φm

φ2(t1)=φl

Dφ2(t)e−iS(φ2) ⟨φm∣O(t2) ∣φn⟩
×∫ φ1(t2)=φn

φ1(t0)=φi

Dφ1(t)eiS(φ1)
(A.14)

and represented graphically in Fig. A.1. Effectively, we first evolve forward in
time to reach the maximum time extent t2 (using the fields on the forward path
φ1) and then backward to reach t1 and back to t0 using the fields on the backward
path φ2. Going back to the initial time t0 is a consequence of the trace in Eq. (A.10).
Note that the action in the exponent of Eq. (A.14) in the path integral involving
the fields φ2 has a negative sign, which is a consequence of the backward time
evolution. For a thermal system, the density operator ρ̂ = e−βH/Z can be interpreted
as a time evolution operator in imaginary time up to time extent β = 1/T, together



160 qcd and nonequilibrium quantum field theory

with a periodicity condition at the boundary φi(t0) = φi(t0 − iβ). The thermal case
is depicted in the left panel of Fig. A.1.

Considering the fields on the forward (φ1) and backward (φ2) to be different
objects allows for a path integral representation of correlation functions, which
are not time ordered. These types of correlation functions appear in thermal and
nonthermal situations quite naturally. For instance, the Wightman functions are
the (not time-ordered) correlators,

G>(t1, t0) = ⟨φ(t1)φ(t0)⟩, G<(t1, t0) = ⟨φ(t0)φ(t1)⟩ (A.15)

They can be obtained more generally by introducing the generating functional
using the closed path integral using the two fields φ1 and φ2 and corresponding
sources,

Z[J1, J2] = ∑
ij
⟨φi∣ ρ̂ ∣φj⟩∫ φj

φi

Dφ1Dφ2eiS(φ1)−iS(φ2)−∫ d4x (J1(x)φ1(x)−J2(x)φ2(x)). (A.16)

Using this, the various correlation functions can be obtained using functional
derivatives,

Dij = δ

δJi

δ

δJj
Z[J1, J2]∣

J=0

= (⟨φ1φ1⟩ ⟨φ1φ2⟩⟨φ2φ1⟩ ⟨φ2φ2⟩) = ( G G<
G> GF̄) , (A.17)

where G> and G< are the Wightman functions (A.15), D is the time-ordered (Feyn-
man) propagator,

G(t1, t0) = Θ(t1 − t0)G>(t1, t0) +Θ(t0 − t1)G<(t1, t0), (A.18)

and GF̄ is the anti time-ordered (Dyson) propagator.
It is often useful to perform a basis transformation to the r/a basis, which is

obtained by the linear transformation

φr = 1
2
(φ1 + φ2), φa = φ1 − φ2, φ1 = φr + 1

2
φa, φ2 = φr − 1

2
φa, (A.19)

in which the propagator matrix has the form

G = (⟨φrφr⟩ ⟨φrφa⟩⟨φaφr⟩ ⟨φaφa⟩) = ( Grr −iGR−iGA 0
) , (A.20)

where Grr = G> + G< is called the statistical two-point function or Hadamard
propagator, and DR and DA are the retarded and advanced propagators1,

GR(t1, t0) = iΘ(t1 − t0)ρ(t1, t0), GA(t1, t0) = −iΘ(t0 − t1)ρ(t1, t0), (A.21)

where the spectral function or Jordan propagator ρ is given by

ρ(t1, t0) = G> −G< = −i(GR −GA). (A.22)

An important feature of the r/a basis is that the correlation function of two a fields
vanishes ⟨φaφa⟩ = 0, which simplifies calculations. Additionally, because of the

1 We follow here the conventions of [177], which differ by a factor of i from the one in Ref. [183] for the
retarded and advanced propagator.
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step functions in (A.21), any closed loop containing only retarded or advanced
propagators vanishes as well.

Physically, the retarded propagator represents causality flow, and we represent
them pictorially by an arrow that points towards the r-field,

Gra(t0, t1) = GR(t0, t1) = r a . (A.23)

In this basis, the vertices can be obtained from Eq. (A.16) by taking the difference
of the interaction part of the action with φ1 fields and φ2 fields and using the
transformation (A.19),

SI(φ1) − SI(φ2) = SI (φr + φa/2) − SI (φr − φa/2) , (A.24)

which implies that there are only vertices with an odd number of a fields.
The propagators and correlation functions are often used in momentum space.

More generally, if the system is not translational invariant (e.g., inhomogeneous),
one may instead perform a Wigner transform and expand in gradients for slowly
varying fields. This is sketched in Section 3.4 to obtain the Boltzmann equation
from a quantum field theory.

The Wigner transform of a function f (X, Y) is given by

f̃ (K, X̄) = ∫ d4S e−iK⋅S f (X(s, X̄), Y(s, X̄)) , (A.25)

with the difference S and central coordinates X given by

Sµ = Xµ −Yµ, X̄µ = Xµ +Yµ

2
. (A.26)

Note that the Wigner transform (A.25) reduces to an ordinary Fourier transform
when the system is translational invariant (does not depend on X̄).

A more detailed review of nonequilibrium quantum field theory can be found,
e.g., in Refs. [179, 232].

a.3 perturbation theory and self-energy

In perturbation theory, one separates the action into an action for a free theory,
which is typically analytically solvable, and an interaction part, which is suppressed
by a small dimensionless parameter g ≪ 1 (which for QCD is satisfied at high
energies due to asymptotic freedom. The full propagators are obtained from Eq. (A.10)
with the full action, while the free propagators (indicated by an additional index 0)
are obtained using only the free action. The interaction part gives rise to vertices,
while the free theory part gives rise to the free propagators G0. Any quantities of
interest are then expanded in terms of vertices and free propagators G0 to obtain
corrections proportional to the coupling g, g2, . . . This is typically represented
graphically as an expansion in loops.

An important concept is the concept of a self energy, which determines the
difference between the full and free propagator,2

G−1(X, Y) = G−1
0 (X, Y) +Π(X, Y), (A.27)

2 Different conventions exist that differ in signs or whether or not to also put an imaginary unit i there.



162 qcd and nonequilibrium quantum field theory

where the inverse propagators are defined via

∫ d4Z G−1(X, Z)G(Z, Y) = δ4(X −Y), ∫ d4Z G−1
0 (X, Z)G0(Z, Y) = δ4(X −Y).

(A.28)

Similar to the Wightman functions and their relation to the propagator in
Eq. (A.18), one may also decompose the self-energy into

Π(t1, t0) = Θ(t1 − t0)Π>(t1, t0) +Θ(t0 − t1)Π<(t1, t0) − iδ(t1 − t0)Πδ(t1), (A.29)

where we have included the possibility of a singular term Πδ, see, e.g., [177].
Similar as with the propagators (A.21), we may introduce a retarded self-energy

ΠR(t1, t0) = −iΘ(t1 − t0)Γ(t1, t0), ΠA(t1, t0) = iΘ(t0 − t1)Γ(t1, t0), (A.30)

with

Γ = −(Π> −Π<). (A.31)

a.4 correlator relations and properties

To summarize, the different propagators and correlators are given by

G>ab
µν(X, Y) = ⟨Aa

µ(X)Ab
ν(Y)⟩, (A.32a)

G<ab
µν(X, Y) = ⟨Ab

ν(Y)Aa
µ(X)⟩ = G>ba

νµ(Y, X), (A.32b)

Gab
µν(X, Y) = Θ(X0 −Y0)G>ab

µν(X, Y) +Θ(Y0 −X0)G<ab
µν(X, Y) (A.32c)

ρab
µν(X, Y) = ⟨[Aa

µ(X), Ab
ν(Y)]⟩ (A.32d)

GRab
µν(X, Y) = iΘ(X0 −Y0)ρab

µν(X, Y), (A.32e)

GAab
µν(X, Y) = −iΘ(Y0 −X0)ρab

µν(X, Y) = GRba
νµ(Y, X) (A.32f)

Here, Θ(x) is the usual step function,

Θ(x) = ⎧⎪⎪⎨⎪⎪⎩1, x ≥ 0,

0, x < 0
(A.32g)

Several useful properties of these correlators and the self-energies are listed in the
following:

(G><(Y, X))∗ = G
><(X, Y) (A.33)

GA(X, Y) = GR(Y, X), ΠR(X, Y) = ΠA(Y, X) (A.34)(G̃A(K, X))∗ = G̃R(K, X) (A.35)

ρ̃(K, X) = 2ImG̃R(K, X), Γ̃(K, X) = −2ImΠ̃R(K, X) (A.36)

G̃
><(−K, X) = G̃

<>(K, X) (A.37)

ρ̃(−K, X) = −ρ̃(K, X) (A.38)

GR(−K, X) = GA(K, X) (A.39)

ρ = G> −G< = −i(GR −GA), −Γ = Π> −Π< = −i(ΠR −ΠA) (A.40)

The definitions for the correlation functions (A.32) hold generically for any
bosonic fields. For fermions, additional minus signs have to be considered, and the
commutators are replaced by anticommutators.
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a.5 hard thermal loops

It is well-known in thermal field theory that to cure infrared problems, the propa-
gators for the soft modes have to be resummed [225, 233, 234]. At a fixed order
in the coupling g, it turns out that more diagrams contribute than what would
be expected from a naïve loop expansion. In fact, for diagrams with soft external
momenta, it is needed to integrate out the hard loop momenta, which is formalized
in the hard thermal loop (HTL) theory [163–165].

Parts of the following discussion are based on Appendix B in [2].

a.5.1 Hard thermal loop resummed gluon propagator

The HTL retarded propagator in strict Coulomb gauge3 is given by4 [177, 183]

G00(Q) = −1
q2 +Π00(ω/q) , (A.41a)

Gij
R(Q) = (δij − qiqj

q2 )GT(Q) = δij − qiqj

q2

q2 −ω2 +ΠT(ω/q) (A.41b)

with x = ω/q and the self-energies

ReΠ00(x) = m2
D (1− x

2
ln ∣x + 1

x − 1
∣) , ImΠ00(x) = xm2

Dπ

2
Θ(1− ∣x∣) (A.42a)

ReΠT(x) = m2
D

2
− 1

2
(1− x2)ReΠ00, ImΠT(x) = −1

2
(1− x2)ImΠ00. (A.42b)

The Debye mass can be obtained via the integral (3.11) and in equilibrium has the
value (3.13),

m2
D = g2T2 (Nc

3
+ n f

6
) . (A.43)

For later use, let us also list here the spectral function ρ(Q) = 2ImGR(Q) (see
Eq. (A.36)),

ρ00(Q) = 2ImΠ00(Q)(q2 +ReΠ00(Q))2 + (ImΠ00(Q))2 , (A.44a)

ρT(Q) = −2ImΠT(Q)(q2 −ω2 +ReΠT(Q))2 + (ImΠT(Q))2 . (A.44b)

In the next subsections, we will use the propagators to obtain explicitly the isoHTL
screened matrix element used for evaluating the jet quenching parameter and
the elastic collision term. Additionally, we will discuss how to perform a certain
integral over these propagators, where the spectral function will appear.

3 By Coulomb gauge we mean using ∂i A
i as the gauge function and by strict we mean enforcing it

strictly, i.e. ∂i A
i = 0, which amounts to setting ξ = 0 in the Faddeev-Popov procedure [225].

4 We take the explicit expression from Ref. [177] (BI), but write it in the form of [183] (GKSV). As
mentioned before, different authors use different conventions of factors of ±i. The conventions used
by these authors are related by GBI

R = iGGKSV
R for the retarded (and advanced) propagators.



164 qcd and nonequilibrium quantum field theory

a.5.2 IsoHTL screening in the jet quenching parameter

Here, we want to explicitly derive the expression (including all the kinematic
contractions) for the full isotropic HTL matrix element (4.47) needed for the jet
quenching parameter q̂ in Chapter 4. We start with the AMY screening prescription
Eq. (4.31) (see also Eq. (3.21a)),

MHTL = ∣GR(P − P′)µν(P + P′)µ(K +K′)ν∣2 , (A.45)

Due to the kinematic constraint ∣ω∣ < q (see (4.11)), the variable x appearing in
the self-energies (A.42) is always ∣x∣ < 1, and thus the imaginary parts of the self
energies (A.42) always contribute. Note that GR(−Q) corresponds to the advanced
propagator (see Eq. (A.39)), which has a different imaginary part in the self-energy,
ImΠR(−Q) = −ImΠR(Q). Let us further abbreviate

G00(−Q) =∶ zL = −1
A + Bi

, GT(−Q) =∶ zT = 1
C +Di

, (A.46)

A = q2 +ReΠ00(x), B = ImΠ00(−x), (A.47)

C = q2 −ω2 +ReΠT(x), D = ImΠT(−x). (A.48)

It will turn out that B and D only appear quadratically or as a product, i.e., we can
consider the internal propagator to have momentum Q or (−Q). Thus, we do not
need to distinguish them from ImΠR(x). We can now split the retarded propagator
in (A.45) into its temporal and spatial parts and use the expressions for p, q, and k
in the q-frame, i.e., using their parametrizations (4.15a), (4.15b) and (4.15c),

Q = P′ − P = ⎛⎜⎜⎜⎜⎝
ω

0
0
q

⎞⎟⎟⎟⎟⎠ , P = p

⎛⎜⎜⎜⎜⎝
1

sin θqp

0
cos θqp

⎞⎟⎟⎟⎟⎠ , K = k

⎛⎜⎜⎜⎜⎝
1

sin θqk cos φqk
sin θqk sin φqk

cos θqk

⎞⎟⎟⎟⎟⎠ . (A.49)

to obtain

MHTL = ∣c1zL + c2zT ∣2 = c2
1∣zL∣2 + c2

2∣zT ∣2 + c1c2(zL z̄T + z̄LzT), (A.50)

where z̄ means taking the complex conjugate of z and c1 = (2p +ω)(2k −ω) and
c2 = 4pk sin θqp sin θqk cos φqk.

This leads to ∣zL∣2 = ∣G00(Q)∣2 = (A2 + B2)−1, ∣zT ∣2 = ∣GT(Q)∣2 = (C2 +D2)−1 and

z̄LzT + zL z̄T = −2(AC + BD)∣zL∣2∣zT ∣2, (A.51)

and eventually we obtain

MHTL = c2
1

A2 + B2 + c2
2

C2 +D2 − 2c1c2(AC + BD)(A2 + B2)(C2 +D2) . (A.52)

The last term is proportional to cos φqk and may, therefore, be dropped for isotropic
distributions f (k).

The rescaled matrix element M̃ = limp→∞MHTL/p2 in the limit p → ∞ can be
obtained easily by scaling out p (see Eq. (4.48))

c̃1 = lim
p→∞ c1/p = 2(2k −ω), c̃2 = lim

p→∞ c2/p = 4k sin θqp sin θqk cos φqk, (A.53)
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which yields

M̃HTL = c̃2
1

A2 + B2 + c̃2
2

C2 +D2 − 2c̃1c̃2(AC + BD)(A2 + B2)(C2 +D2) . (A.54)

Similarly, as before, for isotropic distributions, f (k), the last term does not con-
tribute and may be dropped.

a.5.3 IsoHTL screening in the elastic collision kernel

In Chapter 6, we consider isoHTL screening in the elastic collision term C2↔2. The
difference to the previous Section A.5.2 is that Eq. (A.49) is replaced by (B.13),
in which the momentum p is parametrized differently, including an additional
angle φqp. This is because for q̂, as explained in Section 4.1.2, the incoming parton
specifies a specific direction p, and one performs the q integral in a frame, in which
p points in the z direction and the k integration in a frame in which q points in
the z direction. For QCD kinetic theory simulations, however, one needs to solve
the more general integration measure (3.16), performing the q integration in the
“lab frame” (in which also the distribution function is stored), and both the p and
k integrations in the frame in which q points in the z direction. This leads to the
different parameterizations (A.49) and (B.13).

Effectively, the only change is in the coefficient c2 in (A.52), with

c2 = 4pk sin θqp sin θqk cos(φqk − φqp). (A.55)

a.5.4 Sum rule

In this appendix, we show that one can analytically perform the integral over ω

over the HTL matrix element (A.54),

∫ ∞
−∞ dω

q
M̃HTL, (A.56)

using the sum rule from Ref. [100]. This sum rule simplifies the evaluation of an
integral over a “spectral function”

∫ 1

0

dx
x

2ImΠ(x)(z +ReΠ(x))2 + (ImΠ(x))2 = π [ 1
z +ReΠ(∞) − 1

z +ReΠ(0)] , (A.57)

provided that the function Π(x) fulfills the conditions ImΠ(0) = 0, ImΠ(x) = 0 for
x ≥ 1 and ReΠ(x) ≥ 0 for x ≥ 1.

Let us now calculate the collision kernel C(q⊥) for small q⊥ ≪ k ≪ p. Thus,
effectively, we can take the formalism developed in Section 4 for the jet quench-
ing parameter q̂ (related to the collision kernel via Eq. (1.4)), and employ the
approximations q⊥ ≪ k ≪ p. Effectively, we can thus work in the limit p → ∞
discussed in Section 4.1.7. We consider isotropic systems and may thus drop the
last term in the isoHTL screened matrix element (4.47). Recall that in this limit
cos θqp = cos θqk = ω/q, and then (4.47) reduces to

⟨M̃HTL⟩φ = ∫ 2π

0

dφqk

2π
M̃HTL = 16k2 ⎛⎝∣G00∣2 + 1

2
(1− ω2

q2 )2 ∣GT ∣2⎞⎠ , (A.58)
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where we have inserted back the more physical quantities ∣G00(Q)∣2 = (A2 + B2)−1

and ∣GT(Q)∣2 = (C2 +D2)−1, and already integrated out the angle φqk. Importantly,
the collision kernel then reads (see Eq. (4.61))

C(q⊥) = (CR∑± Ξ± g4

28π4 ∫ ∞
0

dk k2 f±(k)(1± f±(k)))∫ 2π

0
dφqk ∫ ∞

−∞ dω M̃HTL

k2q
,

(A.59)

where, importantly, we have factored out the k-dependence and the distribution
functions. As we will see, the integral over ω can now be performed using the sum
rule (A.57), for which we write ∣GR∣2 in terms of the self-energy ΠR, and expand
the fraction with the imaginary part of the self-energy,

∣G00∣2 = 2q
ωm2

Dπ

ImΠ00(x)(q2 +ReΠ00)2 + (ImΠ00)2 (A.60a)

∣GT ∣2 = − 4q
ωm2

Dπ(1− x2) ImΠT(x)(q2⊥ +ReΠT)2 + (ImΠT)2 , (A.60b)

where we can immediately recognise the spectral functions (A.44),

⟨M̃HTL⟩φ = 16k2q
ωm2

Dπ
(ρ00(x) + ρ33(x)) = 16k2q

ωm2
Dπ
(ρ00(x) + (1− x2)ρT(x)) . (A.61)

A similar trick is also used in [20]. Together with the substitution dω
ω = dx

x(1−x2) , this
results in

∫ ∞
−∞ dω

q
⟨M̃HTL⟩φ = 2∫ ∞

0

dω

q
⟨M̃HTL⟩φ = 32k2

m2
D

⎡⎢⎢⎢⎢⎢⎣
1

q2⊥ + m2
D

3

− 1
q2⊥ +m2

D
− 1

q2⊥ + m2
D

3

+ 1
q2⊥
⎤⎥⎥⎥⎥⎥⎦ .

(A.62)

For the longitudinal propagator ∣G00∣2 the factor (1 − x2) from the coordinate
transformation needs to be absorbed into the self-energy Π̃00(x) = (1− x2)Π00(x).
The relevant limits read

ReΠT(0) = 0, ReΠ̃00(0) = m2
D, (A.63a)

ReΠT(∞) = m2
D

3
, ReΠ̃00(∞) = m2

D
3

. (A.63b)

This leads to the familiar result

m2
D

32k2 ∫ 2π

0

dφqk

2π ∫ ∞
−∞ dω

q
M̃HTL = m2

D

q2⊥(q2⊥ +m2
D) (A.64)

A similar result is obtained in [100, 102] in thermal equilibrium, where also the
integral over the distribution functions f (k)(1 + f (k)) is automatically included.
Here, we have shown explicitly that the matrix element itself gives rise to the form
(A.64). In the soft limit, this enables us to perform the integral over the distribution
function separately, allowing a straightforward generalization to nonequilibrium
systems. Finally, we note that this sum rule is used in Section 4.1.5 to set the
parameter ξ⊥g in the Debye-like screening prescription.
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Figure A.2: Self-energy of an energetic quark, representing Eq. (A.66).

An interested reader might wonder what this has to do with the Wightman
function appearing in the integral equation (2.11). Another interested reader might
wonder if the approach taken here was perhaps overly complicated. Perhaps, using
a different approach, the spectral function (A.36) would appear more naturally.
Indeed, both of these questions are answered by the following short discussion
following the introduction of Ref. [133].

Let us consider a quark moving through the plasma with large momentum
Kµ = (k, k), which has the decay rate [225] (or scattering rate)

Γ = 1
4k

Tr [γµKµΠ>(K)] (A.65)

Calculating the self-energy via (see Fig. A.2)

Π>(K) = g2CF∫ d4Q(2π)4 G>,µν
gluon(Q)γµγνG>quark(K −Q), (A.66)

where we used the vertex factors (ig) × (−ig) = g2, and have the additional minus
sign for the 2 vertex. We may now use Eq. (3.46) to write the Wightman functions
G>(K) = ρ(K)(1 ±N(K)) as spectral density ρ and off-shell distribution function
N. For the quark, since it is highly energetic K ≫ Q, we may use the quasiparticle
approximation, representing the spectral function as a delta function [225]

ρquark(P) = 2πsign(P0)γµPµδ(P2). (A.67)

With the trace identity

Kα(K −Q)βTr [γαγµγβγν] = 4 (Kµ(K −Q)ν +Kν(K −Q)µ −K ⋅ (K −Q)ηµν) ≈ 8KµKν − 4K2ηµν,
(A.68)

where we used the symmetry of the propagator G>µν, we obtain

Γ = π

2k
g2CF∫ d4Q(2π)4 G>gluon

µν(Q) (8KµKν − 4K2ηµν) sign(K0 −Q0)δ ((K −Q)2) (1−N(K −Q)).
(A.69)

The delta function sets the distribution function on-shell N(K −Q) = f (k − q) (see
Eq. (3.48)), and setting the self-energy on-shell (as in Eq. (3.50)), we obtain

Γ = 2πg2CF∫ d4Q(2π)4 G>µν
gluon(Q)vµvνδ(v ⋅Q)(1− f (k −q)), (A.70)
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where we have neglected Q2 ≪ 2K ⋅Q. Since the scale separation k≫medium scale≫
q, we can set f (k −q) → 0. Therefore, the differential scattering rate is given by

dΓ
d4Q

= 2πg2CF(2π)4 G>µν
gluon(Q)vµvνδ(v ⋅Q) (A.71)

This expression is exactly what enters in the AMY integral equation (2.11). If we
take the particle to be moving in the z direction, we have vµ = (1, 0, 0, 1), and the
delta function enforces Q0 = qz. We may now use the relation of the Wightman
function to the spectral function (3.46),

G>,µν
gluon(Q) = ρµν(Q) (1+ f (Q0)) ≈ T∗

Q0 ρµν(Q), (A.72)

where we have approximated the distribution function for very soft momenta using
the infrared temperature T∗. Contracting this with vµvν, we obtain

dΓ
d2q⊥ = g2CFT∗(2π)3 ∫ dω

ω
(ρ00 + ρ33) = CFg2T∗(2π)2 m2

D

q2⊥(q2⊥ +m2
D) , (A.73)

where we used the sum rule result (A.62). This is exactly, up to prefactors, the
collision kernel

C(q⊥) = (2π)2 dΓ
d2q⊥ = g2CF∫ dQ 0dQ z(2π)2 2πδ(v ⋅Q)G>µν

gluon(Q)vµvν

isotropic
soft= CFg2T∗m2

D

q2⊥(q2⊥ +m2
D)

(A.74)

Thus, we have seen that the collision kernel can be represented via a Wightman
function, and how the spectral function appears.

a.5.5 An analytic results for the dipole cross section

Here we show how to obtain the dipole cross section (1.2),

C(x) = ∫ d2q⊥(2π)2 C(q⊥) (1− eix⋅q⊥) , (A.75)

using the small q⊥ form of the collision kernel for an isotropic system (A.74),

C(q⊥) = CRg2T∗m2
D

q2⊥(q2⊥ +m2
D) . (A.76)

First, the q⊥ integral is split into modulus and angle, and the angular integral can
be performed to yield the Bessel function J0,

C(x) = CRg2T∗(2π)2 ∫ ∞
0

dq⊥ q⊥∫ 2π

0
dφ (1− eiq∣x∣ cos φ) m2

D

q2⊥(q2⊥ +m2
D) (A.77)

= CRg2T∗∫ ∞
0

dq⊥
2π
(1− J0(∣x∣q⊥)) m2

D

q⊥(q2⊥ +m2
D) . (A.78)
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Figure A.3: Feynman diagram of a quark with momentum q1 scattering off another quark
(q2) with two distinct quark flavors. The color, spin, and Lorentz indices are
shown explicitly for illustration. Figure from [4].

Using d J0(∣x∣q)
dq = −∣x∣J1(∣x∣q) and ∫ dq m2

D
q(q2+m2

D) = 1
2 log q2

q2+m2
D

, we obtain by partial

integration (the boundary terms vanish because J0(0) = 1)

C(x) = −CRg2T∗ ∣x∣2 ∫ ∞
0

dq⊥
2π

J1(∣x∣q⊥) log
q2⊥

q2⊥ +m2
D

(A.79)

= CRg2T∗
2π

(γE +K0(∣x∣mD) + log
∣x∣mD

2
) , (A.80)

where γE is the Euler-Mascheroni constant, and K0 is the modified Bessel function
of the second kind. This expression can be expanded for small ∣x∣,

C(x) = CRg2T∗m2
D

8π
x2 (1−γE − log

∣x∣mD

2
)+O(x4, xx4 log ∣x∣). (A.81)

It should be noted that Eq. (A.80) is not the correct form of the dipole cross section
in thermal equilibrium, because we started off with only the small q⊥ form of the
collision kernel.

a.6 scattering with soft gluon exchange

In this Appendix, we verify that quark or gluon scatterings with soft-gluon ex-
change are equivalent to scalar scatterings as in Eq. (3.27) up to O(Q/P). Or, put
differently, that for soft-gluon exchange the matrix elements are at leading order
independent of the spin of the hard particles.

This presentation follows Ref. [4].

a.6.1 Quark scattering

First, we calculate the square of the matrix element for quark scattering with a
general internal gluon propagator. The amplitude for quark scattering of two
different flavors with incoming momenta P and K (spin states s1, s2 and colors i1,
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i2) to the outgoing momenta P′ and K′ (spin states s3 and s4, colors i3 and i4), as
depicted in Fig. A.3, is given by5

iMs1i1,s2i2
s3i3,s4i4

= −g2 (ūs3(P′)γµus1(P)) (ūs4(K′)γνus2(K)) (−iGab
µν(Q)) ta

i3i1 tb
i4i2 . (A.82)

To calculate the square ∣M∣2 = ∑sj,ij
(Ms1i1,s2i2

s3i3,s4i4
)∗Ms1i1,s2i2

s3i3,s4i4
, we need to sum over the

color indices and use

(ta
i3i1 tb

i4i2)∗ tc
i3i1 td

i4i2 = Tr (tatc)Tr (tbtd) = n2
Fδacδbd, (A.83)

where nF = 1/2 = CFNc/dA is the index of the fundamental representation of SU(Nc).
Summing over all spins, we obtain

∣M∣2 = ∑
s1s2s3s4

n2
Fδacδbdg4Gab

µν(Q) (Gcd
ρσ(Q))∗

× (ūs3(P′)γµus1(P)) (ūs1(P)γρus3(P′))× (ūs4(K′)γνus2(K)) (ūs2(K)γσus4(K′))
(A.84)

Using the identity ∑s1
us1

i (P)ūs1
j (P) = −Pµ(γµ)ij = −/Pda, we obtain

∣M∣2 = n2
Fg4Gab

µν(Q) (Gab
ρσ(Q))∗ Tr (γµ /Pγρ /P′)Tr (γν /Kγσ /K′).

With

Tr (/Pγµ /P′γν) = 4(PµP′ν + PνP′µ − gµνP ⋅ P′), (A.85)

we finally arrive at

∣M∣2 = 16n2
Fg4Gab

µν(Q) (Gab
ρσ)∗ (Q) [PµP′ρ + PρP′µ − gµρP ⋅ P′] [KνK′σ +KσK′ν − gνσK ⋅K′] .

(A.86)

This expression is independent of the precise form of the gluon propagator G. Note
that all terms in the propagator Gµν proportional to Qµ or Qν (which we argue
in Section 6.2.1 are the terms that depend on the specific gauge choice) do not
contribute, i.e.,

Qµ [Pµ(P +Q)ν + Pν(P +Q)µ − gµνP ⋅Q] = Pν (2(Q ⋅ P) +Q2) = Pν(P +Q)2 = PνP′2 = 0.

To expand for small Q, we use P′ = P +Q, K′ = K −Q. To lowest order, the only
Q-dependence remains in the propagator and we obtain

∣M∣2 = 16n2
Fg4GµνG∗ρσ 4PµPρKνKσ (1+O(Q

P
)) . (A.87)

To the lowest order in Q, this is equivalent to

∣M∣2 = 4n2
Fg4GµνG∗ρσ × (P + P′)µ(P + P′)ρ(K +K′)ν(K +K′)σ × (1+O(Q/P)) ,

which at the same order is the same as the scalar quark result (3.27).
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Figure A.4: t-channel diagram for gluon scattering. Figure from [4].

a.6.2 Gluon scattering

After having considered the case of quark scattering, we turn to gluon scattering.
In this subsection, we show that in the soft limit, medium effects in gluon scattering
enter in the same way.

Gluon-gluon scattering is depicted pictorially in Fig. A.4. The dominant process
for screening effects is the t-channel, where ∣t∣ ≪ s, or—equivalently—the u-channel,
which can be readily obtained by exchanging u↔ t in the collision kernel.

Using the Feynman rules, we can write (suppressing color factors)

Mµµ̃νν̃ ∝ Gρρ̃(Q) [gµρ(K +Q)ν + gρν(K − 2Q)µ + gνµ(Q − 2K)ρ]× [gµ̃ν̃(2P +Q)ρ̃ + gν̃ρ̃(−P − 2Q)µ̃ + gρ̃µ̃(Q − P)ν̃] . (A.88)

In the soft limit, for small Q, we can, to a first approximation, neglect all Q depen-
dence except for the propagator. Additionally, when summing over polarizations,
we need to contract the “same” external lines (Mµµ̃νν̃)∗Mµµ̃νν̃, and then the first
line simplifies to

[gµρKν + gρνKµ − 2gνµKρ] [gµρ′Kν + gρ′νKµ − 2gνµKρ′] = 2K2δ
ρ
ρ′ + (4D − 6)KρKρ′ ,

(A.89)

where D = gµ
µ is the space-time dimension. With P2 = K2 = 0, we obtain

∣M∣2 ∝ KρKρ′Pρ̃Pρ̃′Gρρ̃(Q)Ḡρ′ρ̃′(Q) × (1+O(Q
K

,
Q
P
)) (A.90)

= ∣(K +K′)ρ(P + P′)ρ̃Gρρ̃(Q)∣2 × (1+O(Q
K

,
Q
P
)) . (A.91)

Again, to the lowest order in Q, this is the same as the scalar quark result (3.27).

5 The Feynman rules can be found in any standard QFT textbook, e.g. see [235] for the mostly plus
metric convention.





B
N U M E R I C A L A N D K I N E M AT I C D E TA I L S O N K I N E T I C
T H E O RY S I M U L AT I O N S

In this appendix, we discuss several numerical and kinematic aspects relevant for
QCD kinetic theory simulations. In particular, we discuss how the distribution
function is discretized, and how the collision terms are rewritten in a symmetrized
form to solve the Boltzmann equation for the discretized distribution function.
We discuss the coordinate systems that are used for the integral measure of the
elastic collision term and discuss how the collision terms are evaluated using Monte
Carlo sampling. We also discuss the adaptive step size algorithm used for the
isoHTL-screened simulations.

b.1 discretization

In kinetic theory, all medium information is encoded in the distribution function
f (t, p). In our case, for a given time t (or proper time τ), it depends only on two
parameters (see the discussion in section 3.6.1), the magnitude of the momentum p
and its polar angle θp. How the distribution function f (p) is stored on a finite grid
follows the discrete momentum method of Ref. [169], where we store the number
density per bin,

nij = λ∫ d3p(2π)3 f (p)wi(p)w̃j(cos θ), (B.1)

with the piecewise linear wedge functions w, defined for the momentum case as

wi(p) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p−pi−1
pi−pi−1

, pi−1 < p < pi
pi+1−p
pi+1−pi

, pi < p < pi+1

0 else,

(B.2)

and for the polar angle similarly with the grid points substituted by pi → cos θi.
The distribution function f (p) can be (approximately) recovered from the moments
nij by linear interpolation between the grid points, using the simple relation

f (pi, cos θj) = (2π)3nij

λp2
i 4πΔVp

i ΔVθ
j

, (B.3)

with the volume factors defined via

ΔVp
i = ∫ ∞

−∞ dx wi(x), ΔVθ
i = ∫ 1

−1
dcos θ w̃i(cos θ). (B.4)
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174 numerical and kinematic details on kinetic theory simulations

Description Chapter(s) Np Nθ pmin pmax

Runs with Bjorken expansion for q̂ 4, 5 100 180 0.03 6
Runs extracting κ 5 100 180 0.05 6
Additional runs with λ ∈ {0.25, 0.75, 1.5} 5 180 250 0.03 6
Bjorken expanding isoHTL/Debye-like 6 200 180 0.03 8
Over-occupied, with λ = 0.5 6 300 1 0.01 25
Over-occupied, with λ = 2 6 200 1 0.01 12
Over-occupied, with λ = 10 6 200 1 0.01 10
Under-occupied runs 6 500 1 0.03 100
Runs with Bjorken expansion 7 200 180 0.03 8

Table B.1: Discretization parameters for the simulations used in this thesis.

This simplifies obtaining observables because the integral for an observable (3.80)
can be computed via

n⟨O(p)⟩ = ∫ d3p(2π)3O(p) f (p) ≈ ∑
ij

nijO(pij), (B.5)

which is exact for the number and energy density

n = ∑
ij

nij, ε = ∑
ij

nij pi, (B.6)

because we can insert (B.1) and use

∑
i

wi(p) = 1, ∑
i

wi(p)pi = p. (B.7)

See also Appendix A of Ref. [25] for a more detailed discussion about the discretiza-
tion.

The discretization parameters used for simulations in this thesis are summarized
in Table B.1.

b.2 symmetrization of the collision terms

For the numerical evaluation, it is convenient to rewrite Eq. (3.15) in a symmetric
form. For pure gluons, it then reads

C2↔2[ f (p̃)] = (2π)3
4π p̃2

1
8νg
∫ dΓPS ∣M(p, k; p′, k′)∣2

× ( f (p) f (k)(1+ f (p′))(1+ f (k′) − f (p′) f (k′)(1+ f (p)(1+ f (k))× (δ3(p̃ −p) + δ3(p̃ −k) − δ3(p̃ −p′) − δ3(p̃ −k′)) ,

(B.8)

with the integration measure

∫ dΓPS = ∫
pkp′k′ (2π)4 δ4 (P +K − P′ −K′) (B.9)

= 1
212π8 ∫ ∞

0
dq ∫ q

−q
dω ∫ ∞

q−ω
2

dp ∫ ∞
q+ω

2

dk ∫ 1

−1
dcos θq ∫ 2π

0
dφq ∫ 2π

0
dφ pq ∫ 2π

0
dφqk .
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We will discuss the integration variables in more detail in the next section B.3.
As discussed in Section 3.3, the integrand is symmetric under the exchange

of the outgoing particles with momenta k′ ↔ p′, which exchanges the u− and
t−channel. This shifts the dominating integration region from small ∣u∣ and small∣t∣ to the small ∣t∣ region only, which greatly simplifies the screening prescription
and importance sampling.

The inelastic collision term (3.3) accounts for collinear splitting and merging. In
its symmetrized form, and for pure gluons, it is given by

C1↔2[ f (p̃)] = (2π)3
4π p̃2

1
ν ∫ ∞

0
dp ∫ p/2

0
dk′ 4πγ

p
p′,k′

×{ f (p)(1+ f (p′p̂))(1+ f (k′p̂))
− f (p′p̂) f (k′p̂)(1+ f (p))}× [δ(p̃ − p) − δ(p̃ − p′) − δ(p̃ − k′)]

(B.10)

b.3 coordinate system and mandelstam variables

The elastic collision term, after symmetrization (B.8) features an integration over
p, k, and q. Similarly to Ref. [206], the integrals over p and k are performed in a
frame, in which q defines the z-direction with the original z-axis lying in the xz
plane. However, contrary to Ref. [206], p is not required to be in the xz plane, since
it is also integrated. This is also different to how the jet quenching parameter q̂
is obtained in Section 4.1.2, where the jet direction p was fixed. As integration
variables it is convenient to choose the exchange momentum q, parametrized by its
magnitude q, polar and azimuthal angle cos θq, and φq, the exchange energy ω, the
magnitude of the vectors p and k, and the azimuthal angles of p and k in a frame
(q-frame), in which q points in the z direction and the original z-axis lies in the xz
plane. This fixes the kinematics completely. We denote these azimuthal angles by
θqp and θqk. Energy conservation results in the kinematic conditions

∣ω∣ < q, p > q −ω

2
, k > q +ω

2
, (B.11)

and fixes the polar angles θqp and θqk of p and k in the q-frame (see, e.g., [206] or
the discussion in Section 4.1.2),

cos θqp = ω

q
+ ω2 − q2

2pq
, cos θqk = ω

q
− ω2 − q2

2kq
. (B.12)

In terms of these integration variables, we parameterize the relevant vectors (in
the q-frame) using these variables as

Q = P′ − P = ⎛⎜⎜⎜⎜⎝
ω

0
0
q

⎞⎟⎟⎟⎟⎠ , P = p

⎛⎜⎜⎜⎜⎝
1

sin θqp cos φqp

sin θqp sin φqp

cos θqp

⎞⎟⎟⎟⎟⎠ , K = k

⎛⎜⎜⎜⎜⎝
1

sin θqk cos φqk
sin θqk sin φqk

cos θqk

⎞⎟⎟⎟⎟⎠ . (B.13)
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In terms of the integration variables, the Mandelstam variables needed for the
matrix elements are given by

t = ω2 − q2, (B.14)

s = − t
2q2 ((p + p′)(k + k′) + q2 −√(4pp′ + t)(4k′k + t) cos(φqk − φqp)), (B.15)

u = t
2q2 ((p + p′)(k + k′) − q2 −√(4pp′ + t)(4k′k + t) cos(φqk − φqp)). (B.16)

b.4 inelastic collision term

For the inelastic collision term, the splitting rate γ
g
gg from Section 2.2 has to be

evaluated. This is done using the method described in Ref. [169] following Ref. [231].
The integral equation (2.11) is solved in impact parameter space, where the dipole
cross section (A.80) is used. We do not discuss this method here in detail, but
discuss a general method for obtaining the splitting rate for an arbitrary collision
kernel C(q⊥) in Appendix D.

b.5 monte carlo evaluation of the collision terms

To derive the differential equations for the moments nij, one needs to rewrite the
Boltzmann equation (3.2) in terms of nij,

vµ∂µnijk = λ∫ d3p̃(2π)3 wi(p̃)w̃j(cos θ̃)vµ∂µ f (p̃) = −λ∫ d3p̃(2π)3 wi(p)w̃j(cos θ̃)C[ f (p̃)].
(B.17)

This replaces the delta functions in the collision terms (B.8) and (B.10) by the wedge
functions wi and w̃j. The collision terms are then computed using Monte Carlo
importance sampling.

For the elastic collision term C2↔2, points from the integration measure (B.9) are
sampled using Monte Carlo importance sampling. For finite grid boundaries, we
need to require that all momenta sampled lie within the grid. For the q, ω, p, and k
integration, the grid boundaries pmin and pmax have to be considered, and these
integrals become

∫ pmax

0
dq ∫ min(q,pmax−pmin)

max(−q,pmin−pmax) dω ∫ min(pmax,pmax−ω)
max( q−ω

2 ,pmin,pmin−ω) dp ∫ min(pmax,pmax+ω)
max( q+ω

2 ,pmin,pmin+ω) dk ,

which ensures that all momenta k, k′ = k −ω, p, p′ = p +ω lie within the grid. The
second boundaries for ω come from the requirement that pmax > pmin +ω and
pmax +ω > pmin in the k integral.

For the q-integral, we sample from a dq /(q + ξmD)4 distribution, with ξg =
e5/6/√8 (see section 3.3.2), although its precise value is not important for the
sampling process. While ω is sampled uniformly, both k and p are sampled from a
dk /k distribution.
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b.6 adaptive step size

Here, the adaptive step size is described, which is used for simulations with the
isoHTL screened matrix element in Chapter1 6. The philosophy of the adaptive
timestep is to set it such that the relative change of specific observables is smaller
than a predefined constant ϵerrorgoal. This is similar to the stepsize employed in
Ref. [25], but the method here goes beyond linearization by calculating the exact
change in the considered observables. It is found that this approach is better
stabilizes simulations with isoHTL screening.

To be more concrete, in every timestep tk+1 = tk +Δt, the stored values of nij are
changed (defined in (B.1)) such that

nij(tk+1) = nij(tk) +Δt cij, (B.18)

and cij are numerical estimates (from Monte Carlo integrals) of the sum of all
collision terms in Eq. (3.2).

With the discretization choice (B.1), several quantities can be easily calculated,

ε = ∫ d3p(2π)3 p f (p) = ∑
ij

nij p
λ

(B.19a)

n = ∫ d3p(2π)3 f (p) = ∑
ij

nij

λ
(B.19b)

n⟨p2
z⟩ = ∫ d3p(2π)3 p2 cos2 θ f (p) ≈ ∑

ij

nij

λ
p2 cos2 θ (B.19c)

n⟨ f ⟩ = ∫ d3p(2π)3 f 2(p) ≈ ∑
ij

n2
ij

λ2
(2π)3

ΔVp
i ΔVθ

j p2
i 4π

(B.19d)

n⟨p f ⟩ = ∫ d3p(2π)3 p f 2(p) ≈ ∑
ij

n2
ij

λ2 pi
(2π)3

ΔVp
i ΔVθ

j p2
i 4π

(B.19e)

m2 = 2λ∫ d3p(2π)3 f (p)
p
≈ 2∑

ij

nij

pi
. (B.19f)

Note that, except for n⟨ f ⟩ and n⟨p f ⟩, these quantities are linear in nij. After having
evaluated the collision terms cij, we can accurately predict how these observables
change in a single timestep and adjust the timestep such that their relative change
does not exceed the parameter ϵerrorgoal.

For quantities that are linear in nij (e.g., ε, m2, n, n⟨p2
z⟩), their exact change per

unit time can be obtained by replacing nij → cij in Eq. (B.19). For instance, the
energy density ε changes by

δε ∶= Δε

Δt
= ∑

ij
cij pi. (B.20)

With the relative change Δε
ε = δεΔt

ε , the new time step can then be set according to

Δt = ϵerrorgoal∣ δε
ε
∣ . (B.21)

1 The presentation here follows Ref. [4].
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The change of the quadratic quantities (e.g., n⟨ f ⟩ and n⟨p f ⟩), could be approxi-
mated linearly, e.g., for ⟨ f ⟩,

Δ(n⟨ f ⟩) ≈ ∑
ij

2nijcijVij (B.22)

with

Vij = (2π)3
ΔVp

i ΔVθ
j p2

i 4π
(B.23)

but this is only a crude estimate of the change and it turns out that using the correct
change leads to a more stable evolution. The exact change Δn⟨ f ⟩ = (n⟨ f ⟩)i+1 −(n⟨ f ⟩)i can easily be obtained via

Δn⟨ f ⟩ = ∑
ij

Vij ((nij + cijΔt)2 − n2
ij) (B.24)

= ∑
ij

Vij (2nijcijΔt + c2
ij(Δt)2) . (B.25)

Enforcing a maximum relative change ∣Δn⟨ f ⟩/n⟨ f ⟩∣ ≤ ϵerrorgoal leads to a quadratic
equation in Δt,

∣aΔt + bΔt2∣ = ϵerrorgoal, (B.26)

with b > 0 and

a = ∑ij Vij2nijcij

n⟨ f ⟩ , b = ∑ij Vij(cij)2
n⟨ f ⟩ . (B.27)

To solve this quadratic equation for the most restrictive (i.e., smallest) Δt, we
need to consider the two cases:

1. a > 0:

Here, aΔt + bΔt2 monotonically increases and is always positive, thus the
timestep is given by

Δt = − a
2b
+√ a2

4b2 + ϵerrorgoal

b
. (B.28)

2. For a < 0, the parabola (B.26) is sketched in Fig. B.1. Its minimum is at
Δtmin = −a/(2b), with the minimum value Amin = −a2/(4b).
When ∣Amin∣ < ϵerrorgoal as in Fig. B.1, we need to solve for positive ϵ, which
yields the same result as above (again, we need the positive square root, as
can be easily seen from the figure)

Δt = − a
2b
+√ a2

4b2 + ϵerrorgoal

b
. (B.29)

For ∣Amin∣ > ϵerrorgoal, we need to equate to negative ϵerrorgoal, i.e., solve
aΔt + bΔt2 = −ϵerrorgoal, which yields

Δt = − a
2b
−√ a2

4b2 − ϵerrorgoal

b
. (B.30)
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0 Δtmin

Δt

0

Amin

−:errorgoal

:errorgoal

a
Δ
t
+
bΔ

t2

Figure B.1: Sketch of the quadratic equation (B.26) for a < 0. Figure from [4].

The new goal for the timestep is then set by determining the minimum of these

Δtgoal = min
i∈{ε,n,n⟨p2

z⟩,n⟨ f ⟩,n⟨p f ⟩,m2}Δti (B.31)

and then adjusting it smoothly to the old one via

Δtnew = √(Δtgoal)2α(Δtold)2−2α, (B.32)

where α is a constant 0 < α < 1 that ensures an interpolation between the previous
value and the goal time step. While α = 1 corresponds to always choosing the goal
timestep, α = 0 corresponds to a constant time step (i.e., never choosing the goal
time step). Choosing α between these limits prevents large variations of this time
step due to statistical fluctuations. In practice, a value of α = 0.9 is used for the
simulations performed here.

b.7 kinematic considerations

In this section, we discuss why s is always the largest Mandelstam variable, and
that if Q2 is small, also q, ω are necessarily small. This section follows Ref. [4].

Why s is always the largest Mandelstam variable

Here, we want to show that s is always the largest Mandelstam variable. This has
the consequence that no s-channel processes needs to be screened in Section 3.3.

The Mandelstam variable s corresponds to the square of the center-of-mass
energy. Since the Mandelstam variables are Lorentz invariant, we may compute
them in any frame.

For simplicity, let us choose the center-of-mass frame, where

P = (p, p, 0, 0), K = (p,−p, 0, 0), (B.33a)

P′ = (p, p ex +q), K′ = (p,−p ex −q), (B.33b)

and rotate the frame such that qz = 0. Note that in this frame, the energy of each
particle is conserved separately in an elastic scattering process.
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From P′2 = 0 we can compute 2pqx + q2 = 2pqx + q2
x + q2

y = 0, and thus qx =−p ±√p2 − q2
y. Therefore, ∣qy∣ ≤ p, and ∣qx∣ ≤ 2p. Additionally, qx = − q2

2p .

The Mandelstam variable t is given by t = −q2, which is thus bounded by∣t∣ ≤ 4p2 = s. Therefore, s is always the largest Mandelstam variable, and no
s-channel process will need to be screened.

Kinematic considerations: From Q2 small follows q, ω small

Here, we show that the condition 0 < −t ≪ s, or Q2 ≪ −(P +K)2 implies that all
components of Q, i.e., ∣ω∣ and q, are small. For that, we consider a plasma with
typical excitations at momentum T,

P = T(1, 1, 0, 0), K = T(1, n), (B.34a)

P′ = (T +ω, T + qx, qy, qz), K′ = (T −ω, Tn −q), (B.34b)

with n = (nx, ny, 0) being a unit vector in the x − y plane, i.e., n2
x + n2

y = 1. The
condition ∣t∣ = ∣Q2∣ ≪ s is equivalent to

q2 −ω2 ≪ 2T2(1− nx), (B.35)

where we used that q2 > ω2.
We show in the following that Eq. (B.35) implies ∣q∣ ≳ ∣ω∣ ≪ T.
Let us assume

∣q∣ ≈ T (B.36)

and show that this leads to a contradiction. Eq. (B.36) requires ∣ω∣ ≈ T for Eq. (B.35)
to be fulfilled. We will show in the following that this is kinematically forbidden,
and thus ∣q∣ ≪ T.

We thus assume ∣ω∣ ≈ T and introduce a parameter α≪ 1−nx to rewrite Eq. (B.35)
to q2 −ω2 = O(αT2). From P′2 = 0 we can obtain2 an expression for qx = ω +O(α2T).
Similarly, from K′2 = 0, we obtain3 qy = 1−nx

ny
ω+O(αT). Inserting back into Eq. (B.35)

and using (1−nx)2
1−n2

x
= 1−nx

1+nx
yields an equation for qz,

q2 −ω2 = 1− nx

1+ nx
ω2 + q2

z +O(αT2) = 0, (B.37)

which has no solution for which q2
z > 0. Therefore, the assumption q2 ≈ ω2 ≈ T2

leads to a contradiction, and we have shown that ∣q∣, ∣ω∣ < q≪ T.

b.8 dominance of small angle scatterings

Here, it is demonstrated that ∣t∣ ≪ ∣s∣ ∼ ∣u∣ is the dominant regime for elastic pro-
cesses in the collision term. This implies that the different screening prescriptions
that we discussed in Eq. (6.20) in Chapter 6 agree for ∣t∣/s≪ 1 and ∣t/u∣ ≪ 1.

2 Using P′2 = q2 −ω2 − 2T(ω − qx)
3 Using K′2 = (K −Q)2 = q2 −ω2 − 2T[−ω + qxny + qyny] and then using qx = ω − q2−ω2

2T
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Figure B.2: Ratio of contributions of the elastic collision term with only s/t as matrix element
over s2/t2, denoted ∣⟨s/t⟩ f /⟨s2/t2⟩ f ∣, which is defined in Eq. (B.38). All four
panels show ∣⟨s/t⟩ f /⟨s2/t2⟩ f ∣ as a function of the momentum p, parametrized by
its length p and angle θp with respect to the beam axis. The histograms show
the distribution of values in the plots above. The left column corresponds to
the initial time and the right column to a later time for the couplings λ = 0.5
(top) and λ = 10 (bottom). Figure from [4].
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To show this, typical distribution functions f (p) are considered during simu-
lations of the equilibration process in expanding systems, and the “expectation”
value of s/t and s2/t2 is calculated by integrating over phase-space and the sta-
tistical factors. More concretely, kinetic theory simulations using the Debye-like
screened matrix element (6.20a) are performed, and the distribution function f (p)
is extracted at two distinct times. Then the contribution to the collision term from
the small ∣t∣ ≪ s contributions are calculated,���������������

∂ f (p)
∂τ ∣el. coll. with s/t

∂ f (p)
∂τ ∣el. coll. with s2/t2

��������������� =
������������ ∫

dΓ s
t F2↔2

∫ dΓ s2

t2 F2↔2

������������ = ∣
⟨s/t⟩ f⟨s2/t2⟩ f

∣ , (B.38)

where we have introduced the short notation ⟨. . . ⟩ f to denote the phase-space
average including the distribution functions F2↔2 = fp fk(1+ fp′)(1+ fk′) − fp′ fk′(1+
fp)(1+ fk). Note that the result still depends on the vector p, which is the argument
of the initial distribution function.

The results of this procedure are presented for two distinct times in Fig. B.2
for couplings λ = 0.5 and λ = 10. We observe that the values of ∣⟨s/t⟩/⟨s2/t2⟩∣
fluctuate depending on the momentum bin, coupling, and time. However, when
plotted within a histogram below (indicated by blue arrows), we find consistently
dominating values below 1. Therefore, we conclude that indeed ⟨s/t⟩ terms are
suppressed as compared to ⟨s2/t2⟩ terms, and the results with the different Debye-
like screening prescriptions coincide not only for weak coupling, as argued in
Chapter 6.

b.9 statistical averages

The method for obtaining the collision integrals described here is based on Monte
Carlo integration, which is based on random numbers. There, the value of an
integral is estimated based on random samples in the integration region. Thus, the
resulting estimate of the integral is inherently stochastic. In Chapter 6, different
simulations with different seeds for the random number generators are performed.
Every simulation, thus, will yield slightly different results. An estimate for the
error of the mean, or the standard error [236] can be given by taking n samples of a
considered quantity, Oi, and calculating the sample average Ō and sample variance
s2,

Ō = 1
n

n∑
i=1
Oi, s2 = 1

n − 1

n∑
i=1
(Oi − Ō)2 . (B.39)

The standard error σ̄ is then calculated as

σ̄ =√ s2

n
. (B.40)

This is the method for calculating the error bars in the time evolution in Chapter 6.
The same method is also used to estimate the error from the Monte Carlo evaluation
of the integral for the jet quenching parameter q̂ in Chapter 4.



C
L A R G E M O M E N T U M L I M I T S O F T H E J E T Q U E N C H I N G
PA R A M E T E R

In this appendix, we study the behavior of the jet quenching parameter q̂ for large
jet momentum p and, in particular, how to correctly perform the limit p →∞. We
verify that taking the term which is leading order in 1/p in the integrand of q̂ij is
indeed sufficient to obtain the correct leading-order contribution. This is not trivial
since p also appears in the integration boundaries. Thus, there are two possible
sources for large-p contributions to q̂: the integrand and the integral boundaries.
Our strategy here is to expand the integrand in orders of 1/p and then perform the
integrals. This Appendix is based on Appendix C in [2].

We illustrate the large p behavior of q̂ using the gluonic matrix element,

q̂ ∼ ∫ ∞
0

dk∫ k

− p−k
2

dω∫ min(p+p′,k+k′)
∣ω∣ dq q2(1− cos2 θqp) ∣Mgg

gg∣2
p2 fb(k) (1± fd(k′)) . (C.1)

The distribution function f (k) provides a natural upper limit for the momentum
of the plasma constituent k, which we assume to be much smaller than the jet
momentum p, thus k≪ p. Hence, the minimum of (p + p′, k + k′) = (2p +ω, 2k −ω)
is always 2k −ω, because 2k −ω < 2p+ω for ω > k − p, which is always fulfilled due
to the lower boundary of the ω-integral, ω > k−p

2 . Then the only p-dependence in
the integration boundaries of Eq. (C.1) comes from the lower limit of the ω integral.

Therefore, we will be interested in the region ω < 0, where ∣ω∣ is very large. In
particular, we will assume ∣ω∣ > Λω ≫ k with a new scale Λω, which will lead to
simplifications in the matrix element. Additionally, the Bose-enhanced term q̂ff that
includes f (k) f (k′) does not contribute in this limit, since f (k′) ≈ 0. Focusing only
on relevant terms, i.e., disregarding the k-integral since it cannot contribute to any
large p behavior, we analyze

q̂ ∼ ∫ −Λω

− p−k
2

dω ∫ 2k−ω

∣ω∣ dq q2(1− cos2 θqp) ∣Mgg
gg∣2

p2 . (C.2)

c.1 the integrand of q̂ for large p

Now let us expand the integrand in (C.2) for large p explicitly.
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c.1.1 The large p limit of cos θqp

First, we consider cos θqp in the limit p →∞. Our starting point is Eq. (4.19b),

cos θqp = 1
q
(ω + ω2 − q2

2p
) . (C.3)

Using Eq. (4.11), i.e., q < 2k −ω, one has

q2 −ω2

2p
< 4k(k −ω)

2p
≪ ∣ω∣, (C.4)

which leads for p →∞ to,

cos θqp = ω

q
, (C.5)

where the neglected terms are O(k/p). However, considering the term 1− cos2 θqp

that appears in (C.2) is more subtle, because the seemingly leading term in a 1/p
expansion, ω/q, can get close to unity, ∣ω∣ < q. This leads to the corrections

1− cos2 θqp = 1− ω2

q2 + ω(q2 −ω2)
pq2 + . . .

= (1− ω2

q2 )(1+ ω

p
+ . . .) , (C.6)

and the correction term ω/p could possibly become large at the lower boundary
of the ω integral, ω > −(p − k)/2. Thus, in the limit k/p → 0, cos θqp → ω/q, but
1− cos2 θqp ↛ 1−ω2/q2.

c.1.2 Matrix element for large ∣ω∣
For large ∣ω∣, and therefore also large q (from Eq. (C.2)), we do not need to take into
account screening effects O(mD) in the matrix element, such that (4.33) reduces to
Mscreen ≈ M0 = (s − u)2/t2. The contribution from the transverse propagator in the
sum in (4.33) is negligible for large ∣ω∣, and we are left with

∣Mgg
gg∣2

g4 p2 = 16dAC2
A

ω2

q4 (1+ ω

p
+ . . .) . (C.7)

Collecting the pieces, we can rewrite the relevant integrand in (C.2) as

q2(1− cos2 θqp) ∣Mgg
gg∣2

g4 p2 = 16dAC2
A
(q2 −ω2)ω2

q4 (1+ 2ω

p
+ . . .) . (C.8)

c.1.3 Integral over a more generic integrand

The integrand, which is relevant for determining the large p dominant behavior
for q̂, is a sum of terms qnωm, as can be seen from (C.8). Therefore, let us analyze
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a general integrand of this form and define the integral Inm (which should not be
confused with Eq. (4.74) in Section 4.2.1),

Inm(p) = ∫ −Λω

− p−k
2

dω ∫ 2k−ω

−ω
dq qnωm. (C.9)

Although ∣ω∣ ≫ 2k, we cannot neglect 2k in the upper integration boundary of the
q-integral (because it will be important later on), which additionally complicates
the analysis. Using ω̃ = −ω > 0 to get rid of additional minus signs, we obtain for
n ≠ −1

Inm(p) = (−1)m ∫ p−k
2

Λω

dω̃ ∫ 2k+ω̃

ω̃
dq qnxm, (C.10)

= (−1)m
n + 1 ∫ p−k

2

Λω

dω̃ xm [(2k + ω̃)n+1 − ω̃n+1] . (C.11)

We expand the first term in a power series using the Binomial series

(x + y)r = ∞∑
k=0
(r

k
) xr−kyk, x, y ∈ R, (C.12)

with ∣x∣ > ∣y∣ and r ∈ C. We thus obtain

Inm = (−1)m
n + 1 ∫ p−k

2

Λω

dω̃ ω̃m
⎡⎢⎢⎢⎢⎣
∞∑
j=0
(n + 1

j
) ω̃n+1−j(2k)j − ω̃n+1

⎤⎥⎥⎥⎥⎦
= (−1)m

n + 1 ∫ p−k
2

Λω

dω̃
∞∑
j=1
(n + 1

j
)ω̃n+m+1−j(2k)j (C.13)

= (−1)m
n + 1

⎛⎝ ∞∑
j=1

j≠n+m+2

(n + 1
j
) ω̃n+m+2−j

n +m + 2− j
∣ p−k

2

ω̃=Λω

(2k)j +( n + 1
n +m + 2

) ln( p − k
2Λω

)(2k)n+m+2⎞⎠.

(C.14)

Since we are interested in the behavior at large p, we drop the lower boundary
ω̃ = Λω and take only the leading-order (LO) terms with the largest powers of p
into account. Those are obtained for j = 1, for which the (generalized) binomial
coefficient yields n + 1. It will be useful to also consider the next-to-leading order
(NLO) terms in p. We obtain, up to an additive constant,

ILO
nm ≃ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)m(2k)
n+m+1 ( p−k

2 )n+m+1
, n +m + 1 ≠ 0(−1)m(2k) ln(p), n +m + 1 = 0

(C.15a)

INLO
nm ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(−1)m(2k)2(n+1)(n+m) ⎛⎝n + 1

2

⎞⎠( p−k
2 )n+m

, n +m ≠ 0

(−1)m
n+1
⎛⎝n + 1

2

⎞⎠(2k)2 ln(p), n +m = 0.

(C.15b)

Note that the inclusion of k in (p − k)n+m+1 in the LO term is because it will
contribute at NLO.
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c.2 behavior of q̂ for large p

Gathering the results of the previous sections and applying them to the integral of
q̂ in (C.2) with the integrand (C.8), we obtain

q̂LO ∼ I−2,2 − I−4,4 = (2k)2 ln p + const, (C.16a)

q̂NLO ∼ 1
p
(I−2,3 − I−4,5) = const+O(1

p
) . (C.16b)

Note that here NLO denotes the terms proportional to 1/p in the integrand. For
both cases, n+m is constant, thus the leading terms (C.15a) cancel and we need the
next-to-leading terms (C.15b). We observe that, due to the logarithmic enhancement
of the leading-order contributions q̂LO, the next-to-leading order contributions q̂NLO

become negligible1 for sufficiently large p, and q̂ can be written in the form of
Eq. (4.42),

q̂(p≫ Q) ≃ ap ln p + bp. (C.17)

Therefore, for sufficiently large jet momenta p, it is in principle enough to expand
the matrix element and the integrand for large p and take only the leading-order
contribution in p. Note, however, that to obtain the constant term it is not enough
to use the leading large p behavior, but one must use the full matrix element.

Let us now calculate the coefficient of the logarithm, ap. Until now, we have not
considered the exact form of the distribution function f (k) and merely used that it
provides an upper cutoff for the k integral. The numerical value of the coefficient
ap will depend on the exact form of f (k).

Let us consider a gluon jet scattering off a gluon in the plasma and start with
Eq. (4.21),

q̂ ≃ 16g4C2
A

210π5 ∫ 2π

0
dφpq ∫ 2π

0
dφqk ∫ ∞

0
dk ∫ k

− p−k
2

dω ∫ 2k−ω

∣ω∣ dq f (k)ω2(q2 −ω2)
q4 ,

(C.18)

where we have taken the leading term in the large p integrand (C.8) that leads to
the logarithmic behavior. Additionally, as explained below Eq. (C.1), it is sufficient
to use 2k −ω as the upper boundary of the q-integral.

In comparison to the general integrand we analysed in Eq. (C.9), there appears
also the distribution function f (k) = f (k, cos θk), and the angle depends on cos θqk
and cos θqp as well, which are functions of ω and q. For the large p behavior, we
are interested in the region ∣ω∣ ≫ k and q ∼ ∣ω∣, which renders vpq → −1. For vkq,
however, we cannot make a definite statement, since it changes from −1 to 1 when
q varies between its integration boundaries ∣ω∣ < q < 2k −ω. Therefore, we will
restrict to isotropic distributions f (k) here that only depend on the magnitude of k.
Then, the ω and q integrations in Eq. (C.18) are given by Eq. (C.16a).

1 This is not a trivial statement: for an integrand qnωm(1 +ω/p) with n +m > 0, we would obtain
q̂NLO

q̂LO = 1
p (apn+m+2+b)

cpn+m+1+e ∼ a
c +O( 1

p), thus the ratio NLO/LO does not tend to 0 for p →∞. This implies
that multiplying the LO term with ω/p and integrating over it yields a term of the same order as the
LO term.
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For an isotropic plasma consisting of quarks and gluons with distributions fq

and fg, the coefficient ap is then given by Eq. (4.43),

ap/CR = CAg4

4π3 ∫ ∞
0

dk k2 fg(k) +∑
f

g4

8π3 ∫ ∞
0

dk k2 fq(k). (C.19)

In thermal equilibrium, this reduces to

aeq
p

CR
= g4ζ(3)T3

2π3 (Nc + 3
4

n f) . (C.20)

This logarithmic behavior of q̂LO implies that the limit p →∞ requires a UV cutoff
to render q̂ finite. This is typically done by restricting the transverse momentum
transfer, q⊥ < Λ⊥. We will verify in the next section that in this limit, q̂ is finite, and
we only need to consider the leading-order term in p in the integrand.

c.2.1 Large p behavior combined with a transverse momentum cutoff

Using a transverse momentum cutoff, q⊥ < Λ⊥ ≪ p, we can retrace the steps in
the previous sections. For large p, apart from factors O(1/p), this amounts to
q2⊥ = q2 −ω2 < Λ2⊥ (c.f., (4.44)), and thus we modify Inm to

Inm(p) = ∫ −Λω

− p−k
2

dω ∫ √
ω2+Λ2⊥−ω

dq qnωm. (C.21)

The upper limit in the q integral replaces 2k −ω in Eq. (C.9) for sufficiently large

Λω because
√

ω2 +Λ2⊥ < 2k −ω for −ω > Λ2⊥
4k − k, which, since −ω > Λω, can always

be fulfilled by choosing

Λω > Λ2⊥
4k
− k. (C.22)

Similarly as before, with ω̃ = −ω and for n ≠ −1, we obtain

Inm(p) = (−1)m
n + 1 ∫ p−k

2

Λω

dω̃ ω̃m [(ω̃2 +Λ2⊥) n+1
2 − ω̃n+1] . (C.23)

For the convergence of the Binomial series (C.12), we need to check that Λ2⊥ < ω̃2,
which follows from (C.22),2 and thus,

Inm= (−1)m
n + 1 ∫ p−k

2

Λω

dω̃
∞∑
j=1
((n + 1)/2

j
)ω̃n+m+1−2j(Λ⊥)2j (C.24)

= (−1)m
n + 1

⎡⎢⎢⎢⎢⎣
∞∑
j=1

j≠(n+m+2)/2
((n + 1)/2

j
) ω̃n+m+2−2j

n +m + 2− 2j
∣ p−k

2

ω̃=Λω

Λ2j⊥ +( (n + 1)/2(n +m + 2)/2) ln( p − k
2Λω

)Λn+m+2⊥
⎤⎥⎥⎥⎥⎦.

(C.25)

2 We know that Λ2⊥ < 4kΛω (1+ k
Λω
) ≈ 4kΛω and thus Λ2⊥/Λω

2 < 4k
Λω
≪ 1, which makes Λ⊥ < Λω and

thus Λ⊥ < ω̃.
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We now obtain, up to an additive constant (in p),

ILO
nm = ⎧⎪⎪⎨⎪⎪⎩

(−1)mΛ2⊥
2(n+m) ( p−k

2 )n+m
, n +m ≠ 0(−1)mΛ2⊥ ln(p), n +m = 0

(C.26)

INLO
nm = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)mΛ4⊥B(n+1)(n+m−2) ( p−k
2 )n+m−2

, n +m − 2 ≠ 0(−1)m
n+1 BΛ4⊥ ln(p), n +m − 2 = 0,

(C.27)

where B = ((n + 1)/2
2

). In this case, denoting again with NLO the terms propor-

tional to 1/p in the integrand, we obtain

q̂LO ∼ I−2,2 − I−4,4 ∼ const +O( 1
p2) , (C.28a)

q̂NLO ∼ 1
p
(I−2,3 − I−4,5) ∼ const

p
+O( 1

p2) . (C.28b)

Thus, with a transverse momentum cutoff Λ⊥ in place, we can explicitly take the
limit of infinite jet momentum, p →∞, and obtain a finite jet quenching parameter
q̂. Moreover, it is then sufficient to take the leading-order terms in the integrand
(in particular the matrix elements) in an expansion in 1/p.

c.2.2 Large momentum cutoff Λ⊥ behavior

Removing the momentum cutoff, i.e. taking Λ⊥ → ∞, leads to a divergent jet
quenching parameter q̂. It is reasonable to assume that this divergence will be
logarithmic, as it is for finite but large jet momentum. We will now show this
explicitly and calculate the coefficient of the logarithm.

We continue working in the limit p →∞, and thus take only the leading-order
terms in p in the integrand into account. For that we start with Eq. (4.12) with
explicit step-functions and perform the coordinate transformation in Eq. (4.59) to
integrate over q⊥,

q̂ ∼ ∫ ∞
0

dk ∫
q⊥<Λ⊥ d2q⊥ ∫ k− q2⊥

4k−∞ dω q2⊥ f (k) (1± f (k′)) ∣Mgg
gg∣2

p2
√

q2⊥ +ω2
, (C.29)

where we have not included the angular integrals.
The behavior for large Λ⊥ is of course dominated by the upper integration

boundary of the q⊥ integral. For large Λ⊥, we now split the integral into a part
0 < q⊥ < Λω and Λω < q⊥ < Λ⊥. We can choose the scale Λω ≫ k, such that q⊥ ≫ k,
since the momentum k has a natural upper cutoff coming from the distribution

function f (k). Then, also ∣ω∣ > q2⊥
4k − k must be very large and thus f (k′) ≈ 0. Hence

we arrive at the scale separation ∣ω∣ ≫ q⊥ ≫ k. (C.30)

Using this for the integrand (C.8), we obtain

q̂ ∼ ∫ Λ⊥
Λω

dq⊥ q⊥∫ k− q2⊥
4k−∞ dω q2⊥ 1∣ω∣3 ≈ 8k2∫ Λ⊥

Λω

dq⊥ q3⊥
q4⊥ = 8k2 ln Λ⊥ + const (C.31)



C.2 behavior of q̂ for large p 189

We have thus shown that we can write q̂ in that limit as in Eq. (4.50),

q̂(Λ⊥ ≫ Q) ≃ aΛ⊥ ln Λ⊥ + bΛ⊥ . (C.32)

It is also possible to determine the coefficient of ln Λ⊥, similarly as in Ap-
pendix C.2. While in Ref. [2], this was only done for isotropic systems, it is actually
quite straightforward to generalize this to anisotropic system if one starts from the
collision kernel, which we consider in more detail in Chapter 7.

Starting from the general expression (7.5),

C(q⊥) = 1
2pν
∑
bcd
∫ d3k(2π)3 dqz

∣Mab
cd(p, k; p +q, k −q)∣2
8∣k∣∣k −q∣∣p +q∣× f (k)(1+ f (k −q))δ(p + ∣k∣ − ∣p +q∣ − ∣k −q∣), (C.33)

we take the limit of large q⊥ following Section 7.1.3. Using

δ(k − qz − ∣k −q∣) → q2⊥
2(k − kz)2 δ(qz − q⊥ ⋅ k⊥ − q2⊥/2

k − kz
), (C.34)

and the form for the matrix elements

∣Mgg
gg∣2 = 16g4dAC2

A
4p2(k − kz)2

q4⊥ , ∣Mgq
gq∣2 = 16g4dFCFCA

4p2(k − kz)2
q4⊥ , (C.35)

we obtain

C(q⊥ ≫ Tε) = 2CRg4

q4⊥ ∫ d3k(2π)3 (1− kz

k
)⎛⎝Nc fg(k) + 1

2
∑

f
f f (k)⎞⎠ , (C.36)

where, according to our symmetry arguments (3.72), the term proportional to kz/k
vanishes. Integrating this to obtain q̂, we obtain

q̂(Λ⊥ ≫ Tε) ≃ CRg4

π ∫ d3k(2π)3 ⎛⎝Nc fg(k) + 1
2
∑

f
f f (k)⎞⎠ log Λ⊥ + const (C.37)

For a plasma consisting of quarks and gluons with distributions fq and fg.
For isotropic systems, we obtain

aΛ⊥
CR
= Ncg4

2π3 ∫ ∞
0

dk k2 fg(k) +∑
f

g4

4π3 ∫ ∞
0

dk k2 f f (k), (C.38)

which reduces for thermal distributions to

aeq
Λ⊥

CR
= g4ζ(3)T3

π3 (Nc + 3
4

n f) . (C.39)

This nicely agrees with Eq. (4.77a) that stems from [101].





D
N U M E R I C A L D E TA I L S O N S O LV I N G T H E A M Y R AT E
E Q UAT I O N S

In this Appendix, more details are provided on the numerical method used to solve
the integral equation (7.55),

2h = iδE(h)F(h) + 1
2 ∫ d2q⊥(2π)2 C(q⊥) (D.1)

× [(3F(h) − F(h − pq⊥) − F(h − kq⊥) − F(h + p′q⊥)] ,
with δE(h) = m2

D/4× (1/k + 1/p − 1/p′) + h2/(2pkp′). This needs to be solved for the
function F(h), which enters the rate via Eq. (7.54)

γ = p4 + p′4 + k′4
p3 p′3k′3 dAαs

2(2π)3 ∫ d2h(2π)2 2h ⋅ReF, (D.2)

While in this thesis, the purely gluonic case is considered, quarks can be included
by taking different color factors in (D.1) and different vacuum splitting functions
in (D.2).

d.1 equations and boundary conditions

First, we transform the integral equation to impact parameter space using the
Fourier transformed quantities,

F(x) = ∫ d2h(2π)2 eix⋅hF(h), F(h) = ∫ d2x e−ix⋅hF(x), (D.3)

C̃(x) = ∫ d2q⊥(2π)2 eix⋅q⊥C(q⊥). (D.4)

Here, I have introduced a tilde on the Fourier-transformed collision kernel because
it is more convenient to think of the object

C(x) = C̃(0) − C̃(x) = ∫ d2q⊥(2π)2 (1− eix⋅q⊥)C(q⊥). (D.5)

With the abbreviations

A = im(z, P) = i
⎛⎝m2∞,z

2zP
+ m2∞,(1−z)

2(1− z)P − m2∞,1

2P
⎞⎠ , B = i

2Pz(1− z) (D.6)
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we may rewrite the integral equation (D.1) into the shorter form

2h = F(h)(A + Bh2) + 1
2 ∫ d2q(2π)2 C(q) {3F(h) − F(h −q) − F(h − zq) − F(h − (1− z)q)} .

(D.7)

Note that A, B ∈ C but purely imaginary such that iA ∈ R, A/B ∈ R.
Inserting now the Fourier transforms (D.3), we obtain Eq. (7.56) in impact pa-

rameter space,

(A −D(z, x) − B∇2)F(x) = −2i∇δ(x), (D.8)

where we have introduced the function

D(z, x) = −1
2
(C(x) +C((1− z)x) +C((1− z)x)). (D.9)

Methods to solve this equation for isotropic D(z, b) have been described in
Refs. [110, 231]. Building on these previous methods, I describe here the method
used in this thesis to solve this equation for any anisotropic D(b) = D(b, φ).

First, note that the delta function can be seen as imposing a boundary condition
on F, which can be seen by considering the most singular terms

−2i∇δ(x) = −B∇2F(x). (D.10)

This is solved by going to Fourier space, where we can use

δ(x) = ∫ d2q⊥(2π)2 eiq⊥⋅x, (D.11)

such that F(q⊥) = 2 q⊥
Bq2⊥ . The backward Fourier transform can be done using the

parameterization x = ∣x∣(cos φx, sin φx), q⊥ = q⊥(cos φq, sin φq),
∫ d2q⊥ q⊥

q2⊥ eix⋅q⊥ = ∣x∣ ∫ 2π

0
dφ q ∫ ∞

0
dq ⊥ (cos φq

sin φq
) ei∣x∣q⊥ cos(φq−φx) (D.12)

= ∣x∣ ∫ 2π

0
dφ̃q ∫ ∞

0
dq⊥ (cos(φ̃q + φx)

sin(φ̃q + φx)) ei∣x∣q⊥ cos φ̃q (D.13)

= ∣x∣ ∫ 2π

0
dφ̃q ∫ ∞

0
dq⊥ (cos φx cos φ̃q − sin φx sin φ̃q

sin φx cos φ̃q + cos φx sin φ̃q
) ei∣x∣q⊥ cos φ̃q ,

(D.14)= 2πi
x
x2 (D.15)

where we used

∫ 2π

0
dφ cos φei∣x∣q⊥ cos φ = 2πi J1(q⊥∣x∣), ∫ 2π

0
dφ sin φei∣x∣q⊥ cos φ = 0. (D.16)

Eq. (D.10) (and the full differential equation (D.8)) is thus solved by

lim∣x∣→0
F(x) = i

Bπ

x
b2 . (D.17)
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This we can take as a boundary condition and solve Eq. (D.8) for ∣x∣ > 0.
Next, we redefine F = ∣x∣g = ∣x∣(gx, gy), for which the differential equation

becomes

[A −D(∣x∣, φ)
B

− ∂2∣x∣ − 3∣x∣∂∣x∣ − 1
x2 − 1

x2 ∂2
φ]g(∣x∣, φ) = 0. (D.18)

This redefinition has the advantage that the real part of the integral appearing in
(D.2) can be obtained by the function g evaluated at x → 0.

∫ d2h(2π)2 Re (h ⋅ F(h)) = Re ∫ d2h(2π)2 ∫ d2x e−ix⋅hF(x) ⋅ h (D.19)

= Re ∫ d2h(2π)2 ∫ d2x (i∇x)e−ix⋅h ⋅ F(b) (D.20)

= Re ∫ d2h(2π)2 ∫ d2x e−ix⋅h(−i∇ ⋅ F(x)) (D.21)

= Re (−i∇ ⋅ F(x))x=0 (D.22)= Im (∇ ⋅ F(x))x=0 (D.23)

= Im [gx(0)
cos φ

+ gy(0)
sin φ

] . (D.24)

For the angular information, we decompose g in its Fourier modes,

g(∣x∣, φ) = ∑
n

gn(∣x∣)einφ, (D.25)

D(∣x∣, φ) = ∑
m

Dm(∣x∣)eimφ, (D.26)

Dm(∣x∣) = 1
2π ∫ 2π

0
dφ e−imφD(∣x∣, φ). (D.27)

In terms of these Fourier modes gn, the differential equation becomes

[A
B
− ∂2

b − 3∣x∣∂b + n2 − 1
x2 ]gn(∣x∣) = ∑

m

Dm(∣x∣)
B

gn−m(∣x∣) (D.28)

Note that the boundary condition (D.17) only affects the modes n = ±1, which can
be seen by rewriting Eq. (D.17) using exponential functions,

lim∣x∣→0
g(∣x∣, φ) = 1

2Bπ

1
x2 (i(eiφ + e−iφ)

eiφ − e−iφ ) . (D.29)

This fixes the small ∣x∣ limit of g±1. In the isotropic limit, Dm ∼ δm0 and does not
couple different Fourier modes. Therefore, in this isotropic limit, only the modes
for m = ±1 need to be solved for.

Let us now consider the case of small ∣x∣, where D ∼ x2 log ∣x∣ can be neglected
against A, i.e., ∣Dm(∣x∣)∣ ≪ ∣A∣. In this region, Eq. (D.28) can be solved analytically,

gn(∣x∣) = c1 I∣n∣(∣x∣√A/B) + c2K∣n∣(∣x∣√A/B)∣x∣ , (D.30)
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where In and Kn are the modified Bessel functions of the first and second kind.
Thus, at small x, the general solution is given by the linear combination

g(∣x∣, φ) = ∑
n

einφ cn
I I∣n∣(∣x∣√A/B) + cn

KK∣n∣(∣x∣√A/B)∣x∣ . (D.31)

In practice, we will need to truncate the series, and only consider modes with−nmax ≤ n ≤ nmax, leading to nfourier = 2nmax + 1 different Fourier modes for every
component of g = (gx, gy). We then have 2(2nmax+1) linearly independent solutions
at small ∣x∣. For a general solution, we thus need 2(2nmax + 1) boundary conditions.

Eq. (D.28) is a coupled system of 2nmax + 1 ordinary second-order differential
equations, for which we need 2(2nmax + 1) boundary conditions, which fix all the
cn

I and cn
K uniquely. One natural boundary condition to impose is regularity at

infinity [231],

lim∣x∣→∞gn(∣x∣) = 0, (D.32)

which yields 2nmax + 1 conditions for every component of g. We also have the
boundary condition (D.29) at small ∣x∣. To achieve that, we expand the Bessel
functions for small ∣x∣,
In(∣x∣)/∣x∣ ∼ ∣x∣n−1(1+O(∣x∣)), Kn(∣x∣)/∣x∣ ∼ ∣x∣n−1(1+O(∣x∣)) + #∣x∣−n−1(1+O(∣x∣)).

(D.33)

Comparing with (D.17), we conclude that this fixes c±1
K (2 additional conditions

per component of g). Furthermore, no function may diverge more quickly than
1/x2 at the origin, which fixes cm

K = 0 for m ≥ 2, resulting in 2(nmax − 1) additional
conditions per component of g. With that we are missing one (complex) boundary
condition to determine the system completely1. Since we are interested in the
imaginary part of the constant to which gn converges (see Eq. (D.24)) for ∣x∣ → 0,
and since both K0/∣x∣ and I0/∣x∣ diverge in that limit, we can use one complex (or
two real) boundary conditions to set Im c0

I = Im c0
K = 0. To summarize, the boundary

conditions are given by

lim∣x∣→∞gn(x) = 0, (D.34a)

c1
K = √A/B

2Bπ
( i

1
) , (D.34b)

c−1
K = √A/B

2Bπ
( i−1
) , (D.34c)

Re c0
I = 0, (D.34d)

Re c0
K = 0, (D.34e)

where the cI and cK coefficients are given by the small x approximation of the full
solution.

1 An interested reader might ask if excluding the n = 0 modes would solve the problem: This would
reduce the number of independent solutions by 2, and the system would then be overdetermined.
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To solve the differential equation with these boundary conditions, we make use
of the fact that since it is a linear homogeneous equation, any linear combination
also solves the equation. We thus solve m linearly independent systems {g(m)n }
with m linearly independent initial conditions

cn
K = 0, ∣n∣ ≥ 2, (D.35)

and initialize every system with exactly one nonzero coefficient. This leads to
2(2nmax + 1) − 2(nmax − 2) = 2nmax + 6 linearly independent sets of solutions {g(m)n }.
The full solution may be obtained by superimposing

g(∣x∣, φ) = ∑
m

amg(m)(∣x∣, φ), (D.36)

by choosing the coefficients am such that the boundary condition (D.34) is fulfilled.
We have now put the information of the vector components of g into the coefficients
am. The advantage of that is that we only need to solve the m systems once, and
can then obtain two different sets of coefficients {ax

m, ay
m}. In practice, this leads to

a linear system for am,

∑
m

am lim∣x∣→∞ g(m)n (∣x∣) = 0, (D.37)

which can be solved for a sufficiently large xmax, and supplemented by (D.34),

∑
m

amg(m)n (xmax) = 0 (D.38a)

∑
m

amc1
K
(m) = √A/B

2Bπ
( i

1
) , (D.38b)

∑
m

amc−1
K
(m) = √A/B

2Bπ
( i−1
) , (D.38c)

∑
m

Re amc0
I
(m) = 0, (D.38d)

∑
m

Re amc0
K
(m) = 0, (D.38e)

I have checked explicitly that the results are independent of the choice of xmax.
Every system with index (m) is initialized at a value x = xmin, chosen such that

D(xmin, φ)/A < 0.00001 with exactly one coefficient cn
I,K (taken to be a scalar not

a vector) in Eq. (D.31) nonzero (except for those in Eq. (D.35)). For every system(m), the system (D.28) is then integrated outwards using a fourth-fifth order Runge
Kutta with time stepping until the absolute value of one of the solutions becomes
larger than a threshold. Of all the systems, we then take the smallest of the
maximum x, and solve the linear system (D.38). For larger nmax, the linear system
becomes increasingly difficult to solve numerically, as the scipy2 routine used to
solve the linear system encounters an almost singular matrix. Finally, the solution
can be written as

g(∣x∣, φ) = ∑
m

am∑
n

einφ cn
I
(m) I∣n∣(∣x∣√A/B) + cn

K
(m)K∣n∣(∣x∣√A/B)∣x∣ , (D.39)

2 [237]
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where the cn
I,K
(m) are the initial conditions.

Eventually, the prefactor of the I1 solution is needed, because in the limit ∣x∣ → 0,

only the I1(∣x∣√A/B) = √A/B
2 +O(x2) contribute. Thus, at small ∣x∣,

g(∣x∣, φ) = ∑
m

am

√
A/B
2
(c1(m)

I eiφ + c−1(m)
I e−iφ) . (D.40)

Comparing with (D.24), this clearly induces additional requirements3 on the coeffi-
cients (am)x and (am)y, which we take as an uncertainty measure for our method.
We thus obtain

Im gx(0)/ cos φ = √A/B Im∑
m
(am)xc1(m)

I = √A/B Im∑
m
(am)xc−1(m)

I (D.41a)

Im gy(0)/ cos φ = √A/B Im(i∑
m
(am)xc1(m)

I ) = −√A/B Im(i∑
m
(am)xc−1(m)

I ) .

(D.41b)

Now I want to briefly discuss that these additional requirements on the coefficients
are actually not an additional equation but follow from the system (D.38). To do
that, we consider as a toy model the simplified case of first having only 4 sets and
only considering the modes n = ±1. With that assumption, the function g(m) for
one set of initial conditions c(m)i can be written as

g(m) = eiφ(c(m)1 f1(∣x∣) + c(m)2 f2(∣x∣)) + e−iφ(c(m)3 f1(∣x∣) + c(m)4 f2(∣x∣)). (D.42)

As initial conditions, we assume that we use c(m)i = δm
i . In that simplified case, the

requirement of vanishing at infinity leads to

c1a1 + c2a2 + c3a3 + c4a4 = 0

c3a1 + c4a2 + c1a3 + c2a4 = 0,
(D.43)

where we have used that g(1) and g(3) are similar because they are both initialized
with the f1 function. As an additional boundary condition, we need to have a1 = ±a3,
enforcing symmetric or antisymmetric boundary condition (corresponding to the
cosine or sine in (D.29), and additionally fixing the value of one coefficient, e.g.,
a1 = 1. Thus, we have the additional conditions (mimicking (D.38b) and (D.38c))

a3 = ±a1, a1 = 1. (D.44)

Inserting this into (D.43), we can subtract (or add) those two equations to obtain

a2(c2 ∓ c4) + a4(c4 ∓ c2) = 0, (D.45)

which leads to a2 = ±a4, i.e., the symmetry condition for (D.44) enforces the same
symmetry on the other coefficients a2 and a4.

3 These requirements amount to the whole function g(φ) to be odd or even.
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Figure D.1: Numerically obtaining the rate γ for Eq. (D.50) with small ∣x∣ (left) or large ∣x∣
(right) behavior modified.

While this holds for only considering two modes, n = ±1, this is also true for
adding higher modes. For instance, let us consider now adding additionally n = ±2,
such that Eq. (D.43) then reads

c1a1 + c2a2 + c3a3 + c4a4 + c5a5 + c6a6 = 0 (D.46a)

c3a1 + c4a2 + c1a3 + c2a4 + c6a5 + c5a6 = 0 (D.46b)

c7a1 + c8a2 + c9a3 + c10a4 + c11a5 + c12a6 = 0 (D.46c)

c9a1 + c10a2 + c7a3 + c8a4 + c12a5 + c11a6 = 0 (D.46d)

which, with the condition (D.44) leads to

0 = a2(c2 ∓ c4) + a4(c4 ∓ c2) + a5(c5 ∓ c6) + a6(c6 ∓ c5) (D.47)

0 = a2(c8 ∓ c10) + a4(c10 ∓ c8) + a5(c11 ∓ c12) + a6(c12 ∓ c11), (D.48)

which, similar than before, upon eliminating a5 and a6, leads to

0 = a2 (c2 ∓ c4

c5 ∓ c6
− c8 ∓ c10

c11 ∓ c12
) + a4 (c4 ∓ c2

c5 ∓ c6
− c10 ∓ c8

c11 ∓ c12
) . (D.49)

Similar as before, this leads to a2 = ±a4, and thus to the same symmetry condition
as for the other coefficients a2 and a4.

Thus, the symmetry between c1(m)
I and c−1(m)

I in Eq. (D.41) is not an additional
input but a consequence of the linear system (D.38).

d.2 numerical cross-checks

As a numerical crosscheck, the rate is calculated for an isotropic dipole cross section
(7.29),

Cappr.
eq (∣x∣) = CAg2T

2π
(γE +K0(mD∣x∣) + log

mD∣x∣
2
) . (D.50)

This is compared with a variation in the small or large ∣x∣ region. In the left panel of
Fig. D.1, the large ∣x∣ behavior is modified such that it remains constant for ∣x∣ > xmax.
In the right panel the small ∣x∣ behavior is modified, such that C(∣x∣ < xmin) = 0. We
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Figure D.2: Splitting rate for an anisotropic dipole cross section (D.50) with (D.51) and
comparison to the rate from the angular averaged kernel.

find that modifying the small ∣x∣ behavior changes the rate for large parton energies
P, while changing the large ∣x∣ behavior results in modifications for small parton
energies.

In Fig. D.2, the anisotropic method is tested using (D.50), but an anisotropic
Debye mass

m2
D(φ) = (1− 2ξ

3
+ ξ cos2 φ)mD, (D.51)

also used in Ref. [230] based on Ref. [36]. This model is used as a numerical
cross-check. Its physical origin stems from a simple anisotropic plasma model
using a squeezed thermal distribution, where this relation for the dominant mass
m+ is found in Ref. [36] in the static limit for small anisotropies. Using this model,
T does no longer represent the actual effective temperature Tε from (3.84), but it is
still used here as a dimensionful scale. The results for the rather large anisotropy
ξ = 1.4 are shown in Fig. D.2, which we compare with the rate from the angular
averaged kernel (7.25). Two different sets of parameters are used for the number of
Fourier modes, and grid values ∣xi∣ where the Fourier modes are calculated, and
are shown as different line styles in Fig. D.2. Both anisotropic evaluations agree
very well. As in the main text in Chapter 7, we find that the angular averaged
kernel provides a good approximation of the anisotropic kernel when considering
the rate. Note the small deviations for z = 0.1 despite the extremely anisotropic
kernel with ξ = 1.4.



E
A D D I T I O N A L N U M E R I C A L R E S U LT S F O R B O T T O M - U P
T H E R M A L I Z AT I O N

In this Appendix, further results and plots for the simulations performed for this
thesis are provided.

Fig. E.1 shows the time evolution of an expanding system in the anisotropy-
occupancy plane, similar to Fig. 3.2, but with more couplings and initial conditions.
Fig. E.2 depicts the temperature of an expanding system with the Debye-like screen-
ing prescription. For couplings λ ∈ {0.5, 2, 10}, several results are also tabulated
in Tabs. E.1 - E.6. There, one may easily obtain numerical values for the effective
temperature Tε (Eq. (3.84)), infrared temperature T∗ (Eq. (3.10)), screening mass
(3.11), occupancy ⟨p f ⟩/⟨p⟩ and pressure ratio PL/PT. The energy density ε can be
obtained from the effective temperature Tε via Eq. (3.84). For the relaxation time τR,
the values of η/s from Tab. 6.2 are used. In the left column, the times corresponding
to the star, circle and triangle marker are indicated with the corresponding symbol.
For λ = 10, the time is additionally given in fm/c and the effective temperature in
GeV using Qs = 1.4 GeV.
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Figure E.1: Time evolution of expanding systems in the anisotropy-occupancy plane for
various couplings for a Debye-like screening prescription.
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λ = 0.5, Screening: Debye-like
Qsτ τ/τR τ/τBMSS Tε/Qs T∗/Qs mD/Qs ⟨p f ⟩/⟨p⟩ PL/PT

1.0 0.0013 0.000013 1.2 9.5 0.52 9.7 0.018
1.3 0.0015 0.000017 1.1 5.7 0.38 5.5 0.014
1.7 0.0019 0.000023 1.1 4.5 0.31 4.1 0.011
2.3 0.0024 0.000030 0.98 3.6 0.26 3.1 0.0086
3.0 0.0029 0.000040 0.92 3.1 0.22 2.5 0.0075★ 4.0 0.0035 0.000052 0.86 2.6 0.18 2 0.0069
5.2 0.0043 0.000068 0.8 2.3 0.16 1.6 0.0066
6.8 0.0053 0.000090 0.75 2 0.14 1.2 0.0065
8.9 0.0065 0.00012 0.7 1.7 0.12 0.96 0.0066
11.6 0.0079 0.00015 0.65 1.4 0.1 0.72 0.0068
15.2 0.0097 0.00020 0.61 1.2 0.089 0.53 0.0069
19.8 0.012 0.00026 0.57 1.1 0.079 0.38 0.0072
25.8 0.014 0.00034 0.54 0.92 0.07 0.26 0.0077
33.6 0.017 0.00044 0.5 0.81 0.062 0.18 0.008
43.7 0.021 0.00058 0.47 0.73 0.056 0.13 0.0086
56.9 0.026 0.00075 0.44 0.67 0.051 0.09 0.0092
74.3 0.032 0.00098 0.41 0.61 0.046 0.066 0.0099
96.6 0.039 0.0013 0.38 0.56 0.042 0.05 0.011

125.7 0.047 0.0017 0.36 0.51 0.039 0.039 0.012
164.1 0.057 0.0022 0.34 0.47 0.036 0.031 0.013
213.8 0.07 0.0028 0.31 0.42 0.034 0.026 0.014
278.9 0.085 0.0037 0.29 0.38 0.031 0.022 0.016
363.1 0.1 0.0048 0.28 0.35 0.03 0.02 0.019
472.9 0.13 0.0062 0.26 0.31 0.028 0.018 0.022
615.8 0.15 0.0081 0.24 0.28 0.027 0.018 0.025○ 801.2 0.19 0.011 0.23 0.26 0.025 0.018 0.03
1043.9 0.23 0.014 0.21 0.23 0.024 0.018 0.036
1360.3 0.28 0.018 0.2 0.21 0.024 0.02 0.045
1768.4 0.34 0.023 0.18 0.2 0.023 0.022 0.056
2302.8 0.41 0.030 0.17 0.18 0.022 0.024 0.071
2999.8 0.5 0.039 0.16 0.17 0.021 0.028 0.091
3904.5 0.61 0.051 0.15 0.15 0.021 0.033 0.12
5085.0 0.74 0.067 0.14 0.14 0.02 0.039 0.15
6630.1 0.9 0.087 0.13 0.13 0.02 0.047 0.2
8630.3 1.1 0.11 0.12 0.13 0.019 0.056 0.27
11250.5 1.3 0.15 0.11 0.12 0.019 0.067 0.35
14675.9 1.6 0.19 0.1 0.11 0.018 0.078 0.45▽ 19127.1 1.9 0.25 0.096 0.1 0.017 0.088 0.55
24886.6 2.3 0.33 0.088 0.097 0.016 0.096 0.65
32404.6 2.7 0.43 0.081 0.091 0.015 0.1 0.74
42160.0 3.3 0.55 0.075 0.084 0.014 0.1 0.8

Table E.1: Simulation results of an expanding system with λ = 0.5 and Debye-like screening
prescription.
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λ = 2.0, Screening: Debye-like
Qsτ τ/τR τ/τBMSS Tε/Qs T∗/Qs mD/Qs ⟨p f ⟩/⟨p⟩ PL/PT

1.0 0.0091 0.00048 0.86 2.7 0.52 2.4 0.018
1.3 0.011 0.00064 0.8 1.7 0.38 1.3 0.018
1.7 0.014 0.00084 0.75 1.4 0.31 0.89 0.018
2.3 0.017 0.0011 0.7 1.2 0.26 0.64 0.019★ 3.0 0.021 0.0015 0.65 1.1 0.23 0.48 0.02
3.9 0.025 0.0019 0.61 0.94 0.2 0.35 0.021
5.2 0.031 0.0025 0.57 0.83 0.17 0.26 0.022
6.8 0.038 0.0033 0.53 0.75 0.15 0.18 0.023
8.8 0.046 0.0043 0.5 0.67 0.14 0.13 0.025
11.5 0.056 0.0055 0.46 0.61 0.13 0.099 0.027
15.0 0.069 0.0073 0.43 0.55 0.12 0.075 0.03
19.6 0.084 0.0095 0.4 0.5 0.11 0.061 0.033
25.4 0.1 0.012 0.38 0.46 0.1 0.051 0.037
33.3 0.12 0.016 0.35 0.42 0.095 0.046 0.043
43.4 0.15 0.021 0.33 0.38 0.09 0.043 0.05
56.6 0.19 0.027 0.31 0.34 0.086 0.042 0.059○ 73.8 0.23 0.036 0.29 0.31 0.082 0.042 0.07
96.5 0.27 0.047 0.27 0.29 0.079 0.044 0.086
125.8 0.33 0.061 0.25 0.26 0.076 0.048 0.11
164.5 0.41 0.079 0.23 0.24 0.073 0.053 0.13
214.5 0.49 0.10 0.22 0.23 0.071 0.059 0.17
279.3 0.6 0.13 0.2 0.21 0.068 0.066 0.21
363.7 0.73 0.18 0.19 0.2 0.065 0.075 0.27
474.3 0.88 0.23 0.17 0.18 0.062 0.083 0.34
617.8 1.1 0.30 0.16 0.17 0.059 0.092 0.42▽ 803.6 1.3 0.39 0.15 0.16 0.056 0.099 0.51

1046.4 1.5 0.51 0.14 0.15 0.052 0.1 0.59
1360.6 1.8 0.66 0.13 0.14 0.048 0.11 0.66
1779.4 2.2 0.86 0.12 0.13 0.044 0.11 0.73
2328.5 2.6 1.1 0.11 0.12 0.04 0.11 0.77
3034.0 3.2 1.5 0.098 0.11 0.037 0.11 0.81
3959.8 3.8 1.9 0.09 0.1 0.034 0.11 0.84
5171.6 4.5 2.5 0.083 0.092 0.031 0.11 0.87
6741.4 5.4 3.3 0.076 0.085 0.028 0.11 0.89
8767.8 6.5 4.2 0.07 0.079 0.025 0.11 0.91
11433.4 7.8 5.5 0.064 0.074 0.023 0.1 0.93

Table E.2: Simulation results of an expanding system with λ = 2 and Debye-like screening
prescription.
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Figure E.2: Time evolution of the effective temperature Tε from Eq. (3.84) of an expanding
system. (Left: Time is rescaled with the relaxation time (3.85b). (Right): Time is
rescaled with the bottom-up timescale (3.67).

λ = 10.0, Screening: Debye-like
Qsτ

τ
fm/c τ/τR

τ
τBMSS

Tε/Qs
Tε

GeV T∗/Qs mD/Qs ⟨p f ⟩/⟨p⟩ PL/PT

1.0 0.14 0.077 0.032 0.57 0.8 0.89 0.52 0.48 0.018
1.3 0.18 0.094 0.042 0.54 0.75 0.71 0.41 0.23 0.041
1.7 0.24 0.12 0.054 0.5 0.7 0.62 0.37 0.15 0.057
2.2 0.32 0.14 0.071 0.47 0.65 0.55 0.34 0.11 0.071★ 2.9 0.41 0.17 0.093 0.44 0.61 0.5 0.32 0.093 0.084
3.8 0.54 0.21 0.12 0.41 0.57 0.45 0.3 0.085 0.099
5.0 0.7 0.25 0.16 0.38 0.53 0.41 0.28 0.082 0.12○ 6.5 0.92 0.31 0.21 0.35 0.49 0.38 0.27 0.082 0.14
8.5 1.2 0.37 0.27 0.33 0.46 0.35 0.26 0.085 0.17
11.1 1.6 0.45 0.35 0.31 0.43 0.32 0.25 0.089 0.21
14.4 2 0.55 0.46 0.28 0.4 0.3 0.23 0.095 0.26
18.8 2.6 0.66 0.60 0.26 0.37 0.28 0.22 0.1 0.31
24.6 3.5 0.8 0.78 0.24 0.34 0.26 0.21 0.1 0.38
32.2 4.5 0.97 1.0 0.23 0.32 0.24 0.19 0.11 0.45▽ 42.2 5.9 1.2 1.3 0.21 0.29 0.22 0.18 0.11 0.52
54.9 7.7 1.4 1.7 0.19 0.27 0.2 0.17 0.11 0.59
71.8 10 1.7 2.3 0.18 0.25 0.19 0.15 0.11 0.65
93.9 13 2 3.0 0.16 0.23 0.17 0.14 0.11 0.71
122.2 17 2.4 3.9 0.15 0.21 0.16 0.13 0.11 0.75
159.2 22 2.9 5.1 0.14 0.19 0.15 0.12 0.11 0.79
207.7 29 3.5 6.6 0.13 0.18 0.14 0.11 0.11 0.83
271.0 38 4.2 8.6 0.12 0.16 0.13 0.099 0.11 0.86

Table E.3: Simulation results of an expanding system with λ = 10 and Debye-like screening
prescription. Values in GeV and fm/c are obtained by using Qs = 1.4 GeV.
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λ = 0.5, Screening: isoHTL
Qsτ τ/τR τ/τBMSS Tε/Qs T∗/Qs mD/Qs ⟨p f ⟩/⟨p⟩ PL/PT

1.0 0.0014 0.000013 1.2 9.5 0.52 9.7 0.018
1.3 0.0017 0.000017 1.1 5.1 0.39 5.1 0.017
1.7 0.002 0.000022 1.1 3.8 0.32 3.5 0.015
2.2 0.0025 0.000029 1 3.1 0.28 2.6 0.014★ 2.9 0.003 0.000038 0.93 2.5 0.24 1.9 0.013
3.7 0.0037 0.000049 0.87 2.1 0.2 1.5 0.012
4.8 0.0044 0.000064 0.82 1.7 0.18 1.1 0.011
6.3 0.0054 0.000083 0.76 1.5 0.15 0.84 0.011
8.2 0.0066 0.00011 0.72 1.3 0.13 0.63 0.011

10.6 0.008 0.00014 0.67 1.1 0.12 0.48 0.011
13.8 0.0098 0.00018 0.63 0.97 0.1 0.36 0.011
17.9 0.012 0.00024 0.59 0.87 0.092 0.27 0.011
23.3 0.014 0.00031 0.55 0.78 0.082 0.21 0.012
30.3 0.018 0.00040 0.51 0.72 0.073 0.16 0.012
39.5 0.021 0.00052 0.48 0.66 0.065 0.12 0.013
51.3 0.026 0.00067 0.45 0.61 0.059 0.092 0.013
66.7 0.032 0.00088 0.42 0.56 0.053 0.071 0.014
86.7 0.039 0.0011 0.4 0.52 0.049 0.056 0.015
112.8 0.047 0.0015 0.37 0.48 0.045 0.045 0.016
146.6 0.057 0.0019 0.35 0.44 0.041 0.037 0.018
190.7 0.07 0.0025 0.32 0.41 0.038 0.031 0.019
247.9 0.085 0.0033 0.3 0.37 0.035 0.027 0.021
322.5 0.1 0.0042 0.28 0.34 0.033 0.024 0.024
419.5 0.13 0.0055 0.27 0.31 0.031 0.022 0.027
545.4 0.15 0.0072 0.25 0.28 0.029 0.021 0.031○ 709.0 0.19 0.0093 0.23 0.26 0.028 0.02 0.037
922.0 0.23 0.012 0.22 0.24 0.026 0.021 0.043
1199.3 0.27 0.016 0.2 0.22 0.025 0.022 0.052
1559.9 0.33 0.021 0.19 0.2 0.024 0.023 0.063
2028.4 0.41 0.027 0.18 0.18 0.023 0.026 0.078
2637.5 0.49 0.035 0.17 0.17 0.023 0.029 0.098
3429.2 0.6 0.045 0.15 0.16 0.022 0.034 0.12
4458.0 0.72 0.059 0.14 0.15 0.021 0.039 0.16
5795.5 0.88 0.076 0.13 0.14 0.021 0.046 0.2
7534.5 1.1 0.099 0.12 0.13 0.02 0.054 0.26
9799.1 1.3 0.13 0.12 0.12 0.019 0.064 0.34
12745.3 1.5 0.17 0.11 0.11 0.018 0.074 0.42▽ 16573.2 1.9 0.22 0.099 0.11 0.017 0.083 0.52
21555.5 2.2 0.28 0.092 0.1 0.016 0.092 0.62
28024.8 2.7 0.37 0.085 0.094 0.015 0.097 0.7
36435.8 3.2 0.48 0.078 0.087 0.014 0.1 0.77
47372.4 3.8 0.62 0.072 0.081 0.013 0.1 0.82
61601.2 4.6 0.81 0.066 0.075 0.012 0.1 0.86
80090.0 5.5 1.1 0.061 0.07 0.011 0.1 0.88

Table E.4: Simulation results of an expanding system with λ = 0.5 and isoHTL screening
prescription.
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λ = 2.0, Screening: isoHTL
Qsτ τ/τR τ/τBMSS Tε/Qs T∗/Qs mD/Qs ⟨p f ⟩/⟨p⟩ PL/PT

1.0 0.01 0.00048 0.86 2.7 0.52 2.4 0.018
1.3 0.013 0.00063 0.8 1.6 0.39 1.2 0.023
1.7 0.015 0.00082 0.75 1.3 0.33 0.74 0.025
2.2 0.019 0.0011 0.7 1.1 0.28 0.51 0.027★ 2.9 0.023 0.0014 0.66 0.92 0.25 0.36 0.028
3.7 0.028 0.0018 0.62 0.82 0.22 0.26 0.029
4.8 0.034 0.0023 0.58 0.74 0.19 0.19 0.031
6.3 0.041 0.0030 0.54 0.67 0.17 0.15 0.032
8.2 0.05 0.0039 0.5 0.62 0.16 0.11 0.034
10.6 0.06 0.0051 0.47 0.57 0.14 0.09 0.037
13.8 0.073 0.0067 0.44 0.52 0.13 0.073 0.04
18.0 0.089 0.0087 0.41 0.48 0.12 0.062 0.044
23.4 0.11 0.011 0.39 0.44 0.11 0.054 0.048
30.4 0.13 0.015 0.36 0.41 0.1 0.049 0.054
39.5 0.16 0.019 0.34 0.37 0.098 0.046 0.062
51.4 0.2 0.025 0.32 0.34 0.092 0.045 0.071○ 66.8 0.24 0.032 0.29 0.31 0.088 0.045 0.084
86.9 0.29 0.042 0.27 0.29 0.083 0.046 0.1

113.0 0.35 0.055 0.26 0.27 0.08 0.049 0.12
146.9 0.42 0.071 0.24 0.25 0.076 0.053 0.15
191.0 0.51 0.092 0.22 0.23 0.073 0.059 0.18
248.4 0.62 0.12 0.21 0.21 0.07 0.065 0.22
323.0 0.75 0.16 0.19 0.2 0.067 0.072 0.28
420.0 0.91 0.20 0.18 0.19 0.064 0.08 0.34
546.2 1.1 0.26 0.17 0.17 0.06 0.088 0.42
710.3 1.3 0.34 0.15 0.16 0.057 0.095 0.5▽ 923.4 1.6 0.45 0.14 0.15 0.053 0.1 0.58
1200.7 1.9 0.58 0.13 0.14 0.049 0.1 0.65
1561.0 2.3 0.75 0.12 0.13 0.045 0.11 0.72
2030.2 2.7 0.98 0.11 0.12 0.042 0.11 0.77
2639.6 3.2 1.3 0.1 0.11 0.038 0.11 0.81
3431.9 3.9 1.7 0.094 0.1 0.035 0.11 0.84
4462.6 4.6 2.2 0.086 0.096 0.032 0.11 0.87
5802.8 5.5 2.8 0.079 0.089 0.029 0.11 0.89
7545.7 6.6 3.6 0.073 0.082 0.026 0.1 0.91
9811.5 7.9 4.7 0.067 0.076 0.024 0.1 0.93
12758.2 9.4 6.2 0.061 0.071 0.022 0.1 0.94
16587.0 11 8.0 0.056 0.066 0.02 0.099 0.95

Table E.5: Simulation results of an expanding system with λ = 2 and isoHTL screening
prescription.
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λ = 10.0, Screening: isoHTL
Qsτ

τ
fm/c τ/τR

τ
τBMSS

Tε/Qs
Tε

GeV T∗/Qs mD/Qs ⟨p f ⟩/⟨p⟩ PL/PT

1.0 0.14 0.091 0.032 0.57 0.8 0.89 0.52 0.48 0.018
1.3 0.18 0.11 0.041 0.54 0.75 0.66 0.42 0.18 0.054
1.7 0.24 0.13 0.054 0.5 0.7 0.58 0.38 0.12 0.076★ 2.2 0.31 0.16 0.070 0.47 0.66 0.52 0.36 0.096 0.094
2.9 0.4 0.2 0.091 0.44 0.61 0.48 0.33 0.086 0.11
3.7 0.52 0.24 0.12 0.41 0.57 0.44 0.31 0.081 0.13○ 4.9 0.68 0.29 0.15 0.38 0.53 0.4 0.29 0.081 0.15
6.3 0.89 0.35 0.20 0.35 0.5 0.37 0.28 0.082 0.18
8.2 1.2 0.43 0.26 0.33 0.46 0.34 0.26 0.085 0.21
10.7 1.5 0.52 0.34 0.31 0.43 0.32 0.25 0.089 0.25
13.9 2 0.62 0.44 0.28 0.4 0.3 0.24 0.093 0.3
18.1 2.6 0.75 0.58 0.26 0.37 0.27 0.22 0.098 0.36
23.6 3.3 0.91 0.75 0.24 0.34 0.25 0.21 0.1 0.42
30.7 4.3 1.1 0.97 0.23 0.32 0.24 0.19 0.1 0.49▽ 40.0 5.6 1.3 1.3 0.21 0.29 0.22 0.18 0.11 0.56
51.9 7.3 1.6 1.6 0.19 0.27 0.2 0.17 0.11 0.62
67.5 9.5 1.9 2.1 0.18 0.25 0.19 0.15 0.11 0.68
87.9 12 2.3 2.8 0.16 0.23 0.17 0.14 0.11 0.73

114.4 16 2.7 3.6 0.15 0.21 0.16 0.13 0.11 0.77
148.9 21 3.2 4.7 0.14 0.19 0.15 0.12 0.11 0.8
193.7 27 3.9 6.1 0.13 0.18 0.14 0.11 0.11 0.84
251.9 35 4.6 8.0 0.12 0.16 0.13 0.099 0.11 0.86

Table E.6: Simulation results of an expanding system with λ = 10 and isoHTL screening
prescription. Values in GeV and fm/c are obtained by using Qs = 1.4 GeV.
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N O T E S O N N O TAT I O N A L C O N V E N T I O N S H E R E A N D I N T H E
PA P E R S

• v... in Ref. [2] is written as cos θ... here.

In Ref. [2], the cosine of angles is usually abbreviated with the letter v... =
cos θ.... In this thesis, I choose to always write the cosine explicitly. For the
angle between p and q, θqp, I write here for the cosine cos θqp = vpq.

• The parameter ξ used in Ref. [1, 3] labels the anisotropy in the initial condition
(3.77), which we denote as ξ0 here. The parameter ξ is used in this thesis to
denote the gauge parameter in the Fadeev-Popov procedure. Furthermore,
the same letter ξ was used in Ref. [2] to denote the constant used in the
Debye-like screening prescription. We denote this here by ξg for Debye-like
screening in the elastic collision term (3.15), and ξ⊥g for Debye-like screening
for the jet quenching parameter q̂.

• The convention for the HTL propagators (A.41) differs from the one used
in Ref. [2, 4] by a factor i and correspond here to the convention used
by Blaizot and Iancu [177] to be consistent with the propagators defined
throughout the thesis. In both references, the propagators enter only via
the AMY replacement (3.21a) using the absolute value, so there are no other
differences.

• The angle φkq from Ref. [2] is written φqk here, because it measures the
azimuthal angle of k in a frame which is defined by q.
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