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ABSTRACT

Using Boosted Decision Trees to Separate Signal and Background in B → Xsγ Decays.

JAMES BARBER (University of Massachusetts, Amherst, Amherst, MA 01003) PHILIP

BECHTLE (Stanford Linear Accelerator Center, Stanford, CA 94025)

The measurement of the branching fraction of the flavor changing neutral current B →

Xsγ transition can be used to expose physics outside the Standard Model. In order to

make a precise measurement of this inclusive branching fraction, it is necessary to be able to

effectively separate signal and background in the data. In order to achieve better separation,

an algorithm based on Boosted Decision Trees (BDTs) is implemented. Using Monte Carlo

simulated events, ‘forests’ of trees were trained and tested with different sets of parameters.

This parameter space was studied with the goal of maximizing the figure of merit, Q, the

measure of separation quality used in this analysis. It is found that the use of 1000 trees,

with 100 values tested for each variable at each node, and 50 events required for a node to

continue separating give the highest figure of merit, Q = 18.37.
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INTRODUCTION

A rare B meson decay explored at BaBar is the process B → Xsγ, in which a B meson decays

to a photon and a hadronic final state containing an s quark from the b → sγ transition. A

Feynman diagram of this transition is given in Figure 1. This process is predicted to have

a branching fraction of B(B → Xsγ) = (3.61 ± 0.49) × 10−4 [1], which agrees well with the

world average of previous measurements of B(B → Xsγ) = (3.55± 0.26)× 10−4 [2]. With a

future improvement in the theoretical uncertainty expected, an improvement in the precision

of the experimental measurement would increase the sensitivity for new physics.

The B → Xsγ measurement presented here is fully inclusive, meaning any final state is

allowed. This has the advantage of reduced theoretical uncertainties compared to exclusive

measurements. These uncertainties stem from the predictions of specific final states, such

as B → K∗γ, and are due to uncertainties in the fragmentation, i.e. the calculation of how

the remaining quarks combine to form hadrons. These uncertainties are largely avoided by

allowing for all possible hadronic states. Reduced information about the kinematics of the

entire final state, however, makes background suppression difficult because neither of the

two B mesons in the event are reconstructed.

The background is split into two categories: BB̄ and continuum. BB̄ background refers

to decays from BB̄ events not of the type B → Xsγ. Continuum background, by contrast, is

comprised of all non-BB̄ events and is present at and below energies of BB̄ events. To gain

information about the continuum background, 10% of the data is taken at energies too low

for BB̄ production. Thus all data taken at ‘off-peak’ energies is continuum, while ‘on-peak’

data is a mix of continuum and BB̄ backgrounds. Expected amounts of background and

signal data are shown in Figure 2a, where it can be seen that the amount of background must

be reduced by 3 orders of magnitude in order to detect a significant signal. Figure 2b shows

the result of a Fisher discriminant method of separation using event-shape variables and

lepton tagging to separate signal and background. Lepton tagging is a method of identifying
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BB̄ events by requiring the presence of a high momentum lepton (from the decay B → Xlν)

in order to accept an event. The higher the momentum of the lepton is required to be, the

less likely it is to have come from a continuum event. The branching fraction of a semi-

leptonic B decay is, however, only about 10%, so in using this method at least 90% of BB̄

events are rejected. The Fisher discriminant method of signal and background separation,

used after lepton tagging, successfully eliminated 99% of the background but also rejected

95% of the signal. To reduce the amount of signal rejected, more advanced techniques

for the suppression of both the continuum and BB̄ backgrounds are needed. With these

advanced techniques it is possible to use both the event-shape and lepton tagging variables

concurrently to increase the selection efficiency.

The current technique used in the extraction of signal from background data is based

on an Artificial Neural Network (ANN). When variables with low individual separation

power and non-negligible, non-linear correlations (such as the event-shape variables used

in this analysis) are used to separate signal and background, ANNs outperform methods

based on a likelihood estimator or Fisher discriminant. In order to obtain high separation

from variables with low separation power, an ANN must be ‘trained’ on Monte Carlo (MC)

simulated data. By varying the importance of different variables (via adjusting the variables’

weights) and combining variables in different manners, an ANN can learn which of these

variable combinations and weight values yield the highest ratio of signal to background. The

variable combination and weight adjustment is done in hidden layers of the ANN (as shown

in Figure 3), the exact process of which is completely concealed from the user. This learning

process, of re-weighting and re-combining variables in order to achieve the best signal and

background separation, is referred to as ‘training’.

One of the drawbacks in using an ANN is that it is possible to decrease the total separation

power by giving the ANN too many variables with low separation power. Another drawback

of an ANN is that ANNs are very sensitive to their training; the order of input variables in

the training may affect the output, and if the Monte Carlo sample used to train the ANN
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does not very closely model the real data, the separation power of an ANN can suffer more

than that of other methods.

In order to avoid these problems, an algorithm implementing Boosted Decision Trees

(BDTs) has been developed to perform the signal and background separation. This method,

like an ANN, must be trained to yield the best separation of signal and background (see [3]

for a more detailed explanation of this process). To train a BDT, a number of MC events are

chosen as training events and put into a ‘root node’. The algorithm then iterates through each

variable, finding the value at which a selection would give the highest signal and background

separation. The variable that would give the highest separation is chosen and the training

events are subjected to this selection. Events are sent to the left or right child, depending on

whether the selection classifies them as signal or background. At each new node a variable

and value are chosen from which a selection is made. The events are again separated and

the process is repeated. Nodes are separated until they contain less than some minimum

number of events or have a signal to background (or background to signal) ratio greater

than a given limit. Nodes are then classified as either ‘signal’ or ‘background’ depending

on whether the majority of events in that node is signal or background, respectively (see

Figure 4). Misclassified signal and background events (e.g. signal events in background nodes

or vice versa) are given an increased weight and the entire process is started again, with a

new root node established and a new tree created. The result of increasing the weights

of these previously misclassified events is that these events become more important when

determining signal to background separation in the next iteration. In this way, a specified

number of trees is created and the training is complete.

After training, the resulting ‘forest’ of trees must be tested to determine how well it

separates signal and background. Events chosen for testing (of which none were used for

training) are sent through each tree in the forest, and for each event a likelihood value is

calculated. This value is equal to the number of times an event ends in a signal node divided

by the number of trees it is sent through. An event classified as signal by every tree would
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thus have a likelihood value of 1, whereas an event always classified as background would

have a likelihood value of 0. In this way, signal events tend to bunch closer to 1 than 0, while

background events tend toward 0. A threshold value is determined, which is equal to the

likelihood value about which a selection made would give the best signal and background

separation.

In order to determine superiority of one method over another, we must have some way

to compare the quality of separation. We calculate a figure of merit, Q, for each separation

method:

Q =
S√

S + B
,

where S is the number of signal events correctly classified as signal and B is the number of

background events incorrectly classified as signal. Because we are dealing with two types of

background – BB̄ and continuum – B is defined as

B = NB(1 + f · BMCerror) +
NC

1 − f
,

where NB is the number of BB̄ background events and NC is the number of continuum

background events. The factor f is the on-peak fraction, i.e. the fraction of data taken at

the energy required for BB̄ pair production. In typical BaBar data taking, f is about 90%.

Hence, (1 - f) is the fraction of available off-peak data from which continuum measurements

are made. The term BMCerror accounts for systematic uncertainties in the MC generated

BB̄ background events.

Once the forest of trees with the highest figure of merit has been formed, it is ready to

be used with real data. Each data event is sent through the forest of trees and, just like

with testing events, a likelihood value is determined. If the likelihood value is above the

previously determined threshold value, the event is classified as signal.
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MATERIALS AND METHODS

Rather than creating a new implementation of the BDT algorithm, modifications were made

to an existing implementation contained in the Toolkit for Multivariate Analysis (TMVA) [4].

A program was created to interface with the TMVA package, allowing us to input data. As

mentioned above, BDTs must be ‘trained’ to separate signal and background and then tested

to measure their efficiencies. Because of this, parameters indicating the number of events to

use for training need to be passed into the program along with the data used in the training

and testing. It is important for the BDT to be trained on a sample of data representative

of the entire data range so that variations in the data will be accounted for by the BDT. It

is also important that the testing sample be statistically independent of the training sample

and taken from the same data range to ensure proper measurement of separation efficiency.

In this way, the agreement of the results of the training and testing can be used to ensure

that the BDT does not classify the data according to particular features of the training

sample (known as “over-training”) but separates based on general event properties of the

signal and background.

It was found that the method used by the TMVA to select training and testing events was

not appropriate for our set of input events, because the events chosen were not representative

of the entire event range. Let us take, for instance, a sample of 100,000 (Ntotal) events, with

10,000 (Ntrain) used for training and 50,000 (Ntest) used for testing. The TMVA would use

events numbered 1-10,000 for training and events numbered 10,001-60,000 for testing. If

different experimental setups were used to collect data, and different MC data samples were

generated to reflect those changes, testing could be done on a continuous subset of events

representative of only a portion of the actual data. In this case, the calculated quality of

separation would be inaccurate. It is then obvious that training and testing event samples

must be selected from throughout the entire data set to protect against training and testing

on events from different experimental setups. To fix this problem, changes were made to the
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TMVA code to ensure that events used for training and testing are taken from the entire

data range. To do this, we required that if Ntrain events were asked for, approximately one

out of every Ntotal

Ntrain
events is selected for training.

A second issue in the selection of events that needed to be addressed concerned the ratio

of signal to background events. If the ratio of signal to background events in our Monte

Carlo data sample is
Nsig

Nbkg
, it is imperative that our training sample has this same ratio

of signal to background. As implemented, the TMVA used equal numbers of signal and

background events. Failure to retain the proper signal to background ratio would cause

incorrect values of the figure of merit to be calculated, thus giving an incorrect assessment

of the separation power of the algorithm. The algorithm used to select events was again

changed to accommodate the needs of our analysis.

With the aforementioned problems fixed, we began training and testing forests of trees

using different parameter values in order to find the setup yielding the maximal figure of

merit. From a data set of 749,684 MC events, 100,000 events were chosen for training. The

number of trees in the forest (Ntrees) was either 500 or 1,000; the minimum number of events

(NminEvents) required for a node to be separated further was either 50 or 100; and the number

of values checked for each variable in determining how to best separate a node (Ncuts) was

either 25, 50, or 100. At the conclusion of testing, figures of merit were calculated for each

parameter setup so that the separation quality of each might be compared.

RESULTS

Table 1 shows the different parameter setups for which trees were trained and tested, as well

as the resultant figure of merit for each setup. As can be seen, parameter set ‘b’ is found to

give the highest figure of merit. The results of the testing conducted with this parameter set

are shown graphically in Figure 5, where the likelihood value is plotted on the x-axis in red

for signal, blue for BB̄ background, and cyan for continuum background. The vertical line
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superimposed on the graph shows the threshold value at which a selection would yield the

maximal figure of merit. This threshold value was found to be .595, which gave a figure of

merit, Q, of 18.37. Plots representative of the selection quality are shown in Figures 6 and 7.

Figure 6 shows the total number of signal and background events both before and after the

selection algorithm. Figure 7 shows the efficiency of selection for the B → Xsγ signal as well

as both the BB̄ and continuum backgrounds. Note that a low efficiency is desirable for the

backgrounds, as the efficiency is a measure of the number of events selected as signal.

DISCUSSION AND CONCLUSIONS

Table 1 suggests that the figure of merit increases as the number of trees (Ntrees) is increased,

and also as the number of values (for each variable) used to determine where to best make

a selection (Ncuts) is increased. The results also indicate an increase in the figure of merit

as the minimum number of events required in a node (NminEvents) is decreased, however this

effect is small compared to the effect due to an increase in either Ntrees or Ncuts. The gain

resulting from an increase in these two variables, however, comes at the cost of speed. The

number of trees selected should scale linearly (as a roughly constant amount of computing

must be done to train a tree), however increasing the value of Ncuts greatly increases the time

it takes to train each tree. This increase in computational time for each tree is so great when

compounded over 1000 trees that it took 5 times longer to run the program with parameter

setup ‘b’ than with setup ‘a’.

To determine whether this BDT algorithm is preferable to the ANN currently used by

the analysis requires the generation of comparable figures of merit for each method. This can

be realized by designing within a Monte Carlo event sample a group of events designated for

training and another set of events designated for testing. In running the BDT and ANN on

this same set of events and calculating figures of merit for each method, a direct comparison

can be made.
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It is hoped that the result of such a comparison will show the BDT implementation

worked on this summer superior to the ANN currently in use, and that the use of BDTs

in separating signal and background will lead to increased precision in the analysis of the

B → Xsγ decay. This precision will help the search for physics beyond the standard model

as it puts tighter limits on the experimental value for this branching fraction. If it is found

that the theoretical predictions and experimental measurements for this branching fraction

do not agree it may point to the presence of an until now undetected massive particle, such

as a Higgs or SUSY particle, in the radiative penguin loop.
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FIGURES

Figure 1: Feynman diagram of b → sγ transition.

Parameter setup a Parameter setup b

Ntrees 1000 Ntrees 1000
NminEvents 50 NminEvents 50
Ncuts 50 Ncuts 100
figure of merit: 18.21 figure of merit: 18.37
Parameter setup c Parameter setup d

Ntrees 500 Ntrees 1000
NminEvents 50 NminEvents 100
Ncuts 50 Ncuts 50
figure of merit: 18.04 figure of merit: 18.18
Parameter setup e

Ntrees 500
NminEvents 50
Ncuts 25
figure of merit: 17.91

Table 1: Parameter setups and corresponding figures of merit
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Figure 2: Signal and background plotted before (a) and after (b) selection including the
Fisher method of separation.

Figure 3: Variable weighting and combination are done in the hidden layers of an ANN
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Figure 6: Number of signal and background events before (a) and after (b) BDT separation
with parameter set ‘b’.
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Figure 7: Signal and background efficiencies of BDT algorithm with parameter set ‘b’.
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