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Abstract: The setting of the renormalization scale (µr) in the perturbative QCD (pQCD) is one of the

crucial problems for achieving precise fixed-order pQCD predictions. The conventional prescription is

to take its value as the typical momentum transfer Q in a given process, and theoretical uncertainties

are then evaluated by varying it over an arbitrary range. The conventional scale-setting procedure

introduces arbitrary scheme-and-scale ambiguities in fixed-order pQCD predictions. The princi-

ple of maximum conformality (PMC) provides a systematic way to eliminate the renormalization

scheme-and-scale ambiguities. The PMC method has rigorous theoretical foundations; it satisfies the

renormalization group invariance (RGI) and all of the self-consistency conditions derived from the

renormalization group. The PMC has now been successfully applied to many physical processes. In

this paper, we summarize recent PMC applications, including event shape observables and heavy

quark pair production near the threshold region in e+e− annihilation and top-quark decay at hadronic

colliders. In addition, estimating the contributions related to the uncalculated higher-order terms

is also summarized. These results show that the major theoretical uncertainties caused by different

choices of µr are eliminated, and the improved pQCD predictions are thus obtained, demonstrating

the generality and applicability of the PMC.

Keywords: perturbative QCD; QCD renormalization scale; principle of maximum conformality;

event shapes

1. Introduction

The asymptotic freedom property of quantum chromodynamics (QCD) was proposed
by Politzer, Gross, and Wilczek 50 years ago [1,2]. Due to the asymptotic freedom property,
the strong interaction whose magnitude can be characterized by the QCD strong coupling
αs becomes small at very short distances, allowing perturbative calculations for observables
involving large momentum transfer. The strong coupling αs is scale-dependent, and its
behavior is controlled by renormalization group equation (RGE),

β(αs) =
d

d ln µ2
r

(

αs(µr)

4π

)

= −
∞

∑
i=0

βi

(

αs(µr)

4π

)i+2

. (1)

The β functions β0, β1, · · · are one-loop, two-loop, · · · corrections, respectively.
In the framework of perturbative QCD (pQCD), the prediction for an observable ρ at

the nth-order level can be expressed as a perturbative series over the QCD coupling αs, i.e.,
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ρ =
n

∑
i=0

Ci αs(µr)
p+i, (2)

where p is the power of the αs(µr) for the tree-level terms. The scale µr represents the initial
choice of renormalization scale. The coefficients C1, C2, · · · are one-loop, two-loop, · · ·
corrections, respectively. The pQCD predictions, calculated up to all orders with n → ∞, are
independent of the choice of the renormalization scheme and renormalization scale because
of the renormalization group invariance (RGI). At any finite order, the renormalization
scheme and scale dependence of the QCD coupling constant αs(µr) and of the QCD
perturbative coefficients Ci only partially cancel. For example, it has been conventional
to guess the renormalization scale µr, choosing among the typical scales of a process, e.g.,
the typical momentum transfer Q, in order to minimize large logarithmic corrections and
achieve relativistically more convergent series. This conventional procedure breaks the
RGI and introduces renormalization scheme-and-scale ambiguities in pQCD predictions.
The conventional scale-setting method also has the negative consequence that the resulting
pQCD series suffers from a divergent renormalon (αn

s βn
0n!) series [3] characteristic of a

non-conformal series at order n. Furthermore, theoretical uncertainties estimated by simply
varying the renormalization scale µr over an arbitrary range such as µr ∈ [Q/2, 2Q] are
clearly unreliable, since they are only sensitive to the β-dependent non-conformal terms,
not the entire pQCD series. One cannot judge whether the slow convergence is an intrinsic
property of pQCD series or is due to the improper choice of renormalization scale µr.

The conventional scale-setting procedure is also inconsistent with the well-known
Gell-Mann-Low (GM-L) method used in QED [4]. In practice, the GM-L method shows
that, by fixing the scale to the correct momentum flow, one can reabsorb all the vacuum
polarization diagrams into the running coupling. Thus, the renormalization scale-setting
procedure in QED is void of any ambiguity. A self-consistent scale-setting procedure
should be adaptable to both QCD and QED. In the limit of NC → 0 [5], predictions for
non-Abelian QCD theory must agree analytically with predictions for Abelian QED, and
this also includes the renormalization scale-setting procedure. Thus, the elimination of the
ambiguities in order to achieve precise pQCD predictions is crucial for testing the standard
model (SM) and for searching for new physics beyond the SM.

The well-known Brodsky–Lepage–Mackenzie (BLM) method has been suggested in
Ref. [6] and has been improved to all orders as the principle of maximum conformality
(PMC) [7–11] method. The PMC is the underlying principle for the BLM method and
provides a systematic all-orders way to eliminate the renormalization scheme-and-scale
ambiguities. This method extends the BLM procedure unambiguously to all orders, to all
processes, and to all gauge theories. The PMC method meets all the rigorous theoretical
requirements, satisfying both the RGI [12–14] and the self-consistency conditions derived
from the renormalization group [15]. The PMC method reduces to the GM-L method in
the Abelian limit. A remarkable achievement of the PMC is that the resulting scale-fixed
predictions for physical observables are independent of the choice of renormalization
scheme—a key requirement of RGI.

In 2017, the PMC single-scale method (PMCs) [16] was suggested, which is is equiv-
alent to the multi-scale method [7–11] in the sense of perturbative theory. The PMCs
method effectively replaces the individual PMC scales at each order derived by using
the PMC multi-scale method in the sense of a mean value theorem. In 2020, we used an
additional property of renormalizable SU(N)/U(1) gauge theories [17], “Intrinsic Confor-
mality (iCF)”, which underlies the scale invariance of physical observables. It shows that
the scale-invariant perturbative series shows the intrinsic perturbative nature of a pQCD
observable. In 2022, following the idea of iCF, we suggested a novel single-scale-setting
method under the PMC with the purpose of removing the conventional renormalization
scheme-and-scale ambiguities [18]. In Ref. [18], it has been demonstrated that the two
PMCs methods are equivalent to each other in accuracy. This equivalence indicates that, by
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using the RGE for fixing the value of the effective coupling, it is equivalent to requiring
that each loop term must satisfy the scale invariance simultaneously, and vice versa. Thus,
using the RGE provides a rigorous way to resolve conventional scale-setting ambiguities.

2. A Mini-Review of the PMC Scale-Setting Method

The scale evolution of αs is described by the RGE as shown by Equation (1), which
can be used recursively to establish the perturbative pattern of {βi}-terms at each order.
The pQCD prediction for a physical observable ρ can be reorganized into the specific
“degeneracy” pattern [19] as follows:

ρ(Q) = r1,0 α(µr)
p + (r2,0 + pβ0r2,1) α(µr)

p+1 +

(

r3,0 + pβ1r2,1 + (p + 1)β0r3,1 +
p(p + 1)

2
β2

0r3,2

)

α(µr)
p+2

+

(

r4,0 + pβ2r2,1 + (p + 1)β1r3,1 +
p(3 + 2p)

2
β1β0r3,2 + (p + 2)β0r4,1 +

(p + 1)(p + 2)

2
β2

0r4,2 (3)

+
p(p + 1)(p + 2)

3!
β3

0r4,3

)

α(µr)
p+3 + · · · ,

where α = αs/4π and Q represents the kinematic scale at which the observable is measured.
The coefficients ri,0(i=1,2,··· ) are conformal parts and ri,j(i>j≥1) are non-conformal ones. All
the non-conformal coefficients ri,j(i>j≥1) are, in principle, functions of the scales µr and Q.

Following the PMC multi-scale procedures [7–11], all the non-conformal {βi}-terms
in Equation (4) are systematically eliminated to fix the correct magnitudes of QCD running
couplings at each order (their arguments are referred to as PMC scales); the resulting
perturbative series then matches the corresponding conformal theory with β = 0, leading to
scheme-independent predictions. The divergent renormalon contributions are eliminated,
and the convergence of the perturbative series is in general greatly improved. This is the
same principle used in QED where all {βi}-terms derived from the vacuum polarization
corrections of the photon propagator are absorbed into the QED coupling. As in QED,
the resulting PMC scales are physical in the sense that they reflect the virtuality of the
gluon propagators at a given order, and that they set the active flavors n f . More explicitly,
after applying the PMC multi-scale method, the pQCD series for the physical observable
ρ becomes

ρ(Q) = r1,0 α(Q1)
p + r2,0 α(Q2)

p+1 + r3,0 α(Q3)
p+2

+r4,0 α(Q4)
p+3 + · · · , (4)

where Qi=1,2,3,4 are the PMC scales. Due to uncalculated higher-order contributions, there
are two kinds of residual scale dependences [20]. The first kind of residual scale depen-
dence is from the PMC scale itself because the PMC scale is a perturbative expansion
series in αs. The second kind of residual scale dependence is from the last terms of the
pQCD approximant because its magnitude cannot be determined. These residual scale
dependencies are distinct from the conventional renormalization scale ambiguities and are
suppressed due to the perturbative nature of the PMC scale.

In order to suppress the residual scale dependence, which also makes the PMC scale-
setting procedures simpler and more easily automatized, the PMCs method has been
suggested in Ref. [16]. The PMCs method provides a self-consistent way to achieve precise
αs running behavior in both the perturbative and nonperturbative domains [21,22]. After
applying the PMCs method, the pQCD prediction for the physical observable ρ can be
written as

ρ(Q) = r1,0 α(Q⋆)
p + r2,0 α(Q⋆)

p+1 + r3,0 α(Q⋆)
p+2

+r4,0 α(Q⋆)
p+3 + · · · . (5)

The single PMC scale Q⋆ is determined by requiring all the non-conformal {βi}-terms
to vanish simultaneously and can be regarded as the overall effective momentum flow of the



Universe 2023, 9, 193 4 of 19

process. The PMCs method exactly removes the second kind of residual scale dependence,
and the first kind of residual scale dependence is highly suppressed. The PMCs method
eliminates the renormalization scheme-and-scale ambiguities and satisfies the standard
RGI [14].

Up to now, the PMC approach has been successfully applied to many physical pro-
cesses (see, e.g., [13,14,23] for reviews), including the Higgs boson production at the LHC,
the Higgs boson decays to γγ, gg, and bb̄ processes, the top-quark pair production at
the LHC and Tevatron and its decay process [24], the semihard processes based on the
BFKL approach [20,25–27], the electron–positron annihilation to hadrons [10,11,13], the
hadronic Z0 boson decays, the event shapes in electron–positron annihilation [17,28], the
electroweak parameter ρ [29,30], the Υ(1S) leptonic decay [31,32], and the charmonium
production [33–35]. In addition, the PMC provides a possible solution to the B → ππ

puzzle [36] and the γγ∗ → ηc puzzle [37]. In the following, we present some recent
PMC applications and a way of estimating unknown contributions from uncalculated
higher-order terms by using the PMC pQCD series.

3. Applications

3.1. New Analyses of Event Shape Observables in e+e− Annihilation

Event shapes represent an ideal platform for high-precision tests of QCD (see e.g., [38]
for a summary from Particle Data Group). The experiments at LEP and at SLAC have
measured event shape distributions with very high precision, especially those at the Z0

peak [39–43]. On the theoretical side, the pQCD corrections to event shape observables
have been calculated up to the next-to-next-to-leading order (NNLO) [44–50]. Currently,
one finds that the main obstacle for achieving highly precise measurements of αs from
event shape variables is given by theoretical uncertainties, especially those related to the
renormalization scale ambiguities.

Comprehensive PMC analysis for event shapes in e+e− annihilation and a novel
method for the precise determination of the QCD running coupling αs(Q2) are shown in
Refs. [28,51]. Interested readers may turn to these studies for more details. In this paper, we
only present the main PMC results for two fundamental event shapes: the thrust (T) [52,53]
and the C-parameter (C) [54,55].

In the case of conventional scale setting, one simply sets the renormalization scale µr

to the center-of-mass energy µr =
√

s. We present the thrust and C-parameter differential
distributions using the conventional scale-setting method at

√
s = 91.2 GeV in Figure 1.

Results show that even up to NNLO QCD corrections, the conventional results are plagued
by large-scale uncertainty and substantially deviate from the precise experimental data.

Moreover, the method does not improve the precision at higher orders, since the
results are totally arbitrary. In fact, varying the µr ∈ [

√
s/2, 2

√
s], the NLO calculation

does not overlap with the LO prediction, and the NNLO calculation does not overlap
with the NLO prediction. This indicates that the evaluation of uncalculated higher-order
(UHO) terms for event shape observables by varying µr ∈ [

√
s/2, 2

√
s] is not quantitatively

reliable. Worse, since the renormalization scale is simply set to µr =
√

s, only one value of
αs at the scale

√
s can be extracted, with an arbitrary large error given by the choice of the

renormalization scale µr.
The PMC scales are determined by absorbing all the β terms of the pQCD series. In

Figure 2, we show the PMC scales for thrust and C-parameter at the scale
√

s = 91.2 GeV.
The resulting PMC scales are not a single value, but they monotonically increase with the
value of T and C, reflecting the increasing virtuality of the QCD dynamics. The number
of active flavors n f changes with the value of T and C according to the PMC scales. It is
noted that the quarks and gluons have soft virtuality near the two-jet region (left boundary).
As the argument of the αs approaches the two-jet scale-region, the PMC scales are very
soft. Thus, the dynamics of the PMC scale reflect the correct physical behavior when
approaching the two-jet region. In addition, the PMC scales are small in the wide kinematic
regions compared to the conventional choice of µr =

√
s.
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Figure 1. The thrust (T) and C-parameter (C) distributions using the conventional scale-setting

method at
√

s = 91.2 GeV, where the dashed, dot-dashed, and dotted lines are the conventional

results at LO, NLO, and NNLO [45,48], respectively. The bands are obtained by varying the scale

µr ∈ [
√

s/2, 2
√

s]. The experimental data are taken from the ALEPH Collaboration [39].
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Figure 2. The PMC scales for the event shape observables thrust (T) and C-parameter (C) at√
s = 91.2 GeV.

It is noted that the behavior of the PMC conformal coefficients is significantly different
from the pQCD terms given by the conventional scale-setting method. Since the conformal
coefficients are renormalization scale-independent, the resulting PMC predictions eliminate
the renormalization scale uncertainty. By setting all input parameters to their central values,
we present the thrust and C-parameter distributions using the PMC scale-setting method
for

√
s = 91.2 GeV in Figure 3. This figure shows that the PMC predictions improve for a

wide range of values in the kinematic regions with respect to the conventional scale-setting
predictions and are in excellent agreement with the experimental data, especially in the
intermediate kinematic regions. Since there are large logarithms that spoil the perturbative
regime of the QCD near the two-jet region and there are missing higher-order contributions
that are important for the multi-jet region, the PMC predictions in these regions show some
deviations from experiments.

The resummation of large logarithms is thus required for the PMC predictions, es-
pecially near the two-jet region. In fact, the resummation of large logarithms has been
extensively studied in the literature.

For the extraction of αs, since the renormalization scale is simply set as µr =
√

s
when using conventional scale setting, only one value of αs at scale

√
s can be extracted,

as mentioned above. On the contrary, in applying the PMC method, since the PMC scales
vary with the value of the event shapes T and C, we can extract αs(Q2) over a wide range
of Q2 using the experimental data at a single energy of

√
s. By comparing PMC predictions

with measurements at
√

s = 91.2 GeV, we present the extracted running coupling αs(Q2)
from the thrust and C-parameter distributions in Figure 4.
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The experimental data are taken from the ALEPH Collaboration [39].
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Figure 4. The extracted running coupling αs(Q2) from the thrust (T) and C-parameter (C) distribu-

tions by comparing the PMC predictions with the ALEPH data [39] measured at a single energy of√
s = 91.2 GeV. As a comparison, the three lines represent the world average [38].

Figure 4 shows that the extracted αs(Q2) in the ranges 4 < Q < 16 GeV from the thrust
and 3 < Q < 11 GeV from the C-parameter are in excellent agreement with the world
average evaluated using the value αs(M2

Z) = 0.1179 [38] for the coupling at Z0 mass. Since
the PMC method eliminates the renormalization scale uncertainty, the extracted αs(Q2) is
not plagued by any uncertainty from the choice of the scale µr. Thus, PMC scale setting
provides a remarkable way to verify the running of αs(Q2) from event shape observables
in e+e− annihilation measured at a single energy

√
s.

The mean value of event shape observables provides an important complement to the
differential distributions and to the determination of αs. The mean value of an event shape
y is defined as

〈y〉 =
∫ y0

0

y

σh

dσ

dy
dy, (6)

where y0 is the kinematically-allowed upper bound of the y variable, and the integration is
over the full phase space.

In the case of a conventional scale setting, the mean values of T and C are plagued by
the renormalization scale uncertainties and substantially deviate from the measurements
even at NNLO [56,57], similar to the case of the differential distributions.

Currently, the most common way to calculate the integral for the mean values is
to distinguish the two perturbative and non-perturbative contributions and to calculate
them separately. This is known and extensively studied in the literature. Nevertheless,
some artificial parameters and a theoretical model have to be introduced in order to match
theoretical predictions with experimental data.

After applying the PMC, we obtain

µ
pmc
r |〈1−T〉 = 0.0695

√
s (7)
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for the mean value of the thrust and

µ
pmc
r |〈C〉 = 0.0656

√
s (8)

for the mean value of the C-parameter. The PMC scales satisfy µ
pmc
r ≪ √

s, reflecting the
soft virtuality of the underlying QCD subprocesses. We note that in the analysis of Ref. [39],
using a conventional scale setting leads to an anomalously large value of αs, demonstrating
again that the correct description for the mean values requires µr ≪

√
s. The PMC scales

for the differential distributions of the thrust and C-parameter are also very small. PMC
scale setting is self-consistent with the differential distributions of the event shapes and
their mean values.

After using PMC scale setting, the thrust and C-parameter mean values are increased,
especially at small

√
s. The scale-independent PMC predictions are in excellent agreement

with the experimental data over a wide range of center-of-mass energies
√

s [51]. Since
we can obtain a high degree of consistency between the PMC predictions and the mea-
surements, the QCD coupling αs(Q2) can be extracted with high precision. The extracted
QCD coupling αs(Q2) in the MS scheme from the thrust and C-parameter mean values
is presented in Figure 5. This figure shows that the extracted αs(Q2) values are mutually
compatible and are in excellent agreement with the world average.
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Figure 5. The extracted QCD coupling αs(Q2) from the thrust and C-parameter mean values by

comparing PMC predictions with the JADE and OPAL data [41,58]. The error bars are the squared

averages of the experimental and theoretical errors. The three lines are the world average [38].

A highly precise determination of the value of αs(M2
Z) fitting the PMC predictions to

the measurements is achieved. Finally, we obtain [51]

αs(M2
Z) = 0.1185 ± 0.0012 (9)

from the thrust mean value and

αs(M2
Z) = 0.1193+0.0021

−0.0019, (10)

from the C-parameter mean value. Since the dominant renormalization scale µr uncertainty
is eliminated and the convergence of pQCD series is greatly improved after using the PMC
method, the precision of the extracted αs values is largely improved.

3.2. Heavy Quark Pair Production in e+e− Annihilation near the Threshold Region

Heavy fermion pair production in e+e− annihilation is a fundamental process for the
SM and of considerable interest for other phenomena. Heavy quark interaction in the
threshold region is of particular interest due to the presence of singular terms from the
QCD Coulomb corrections. Physically, the renormalization scale that reflects the subprocess
virtuality becomes very soft in this region. It is conventional to set the renormalization scale
to the mass of the heavy fermion µr = m f . This conventional procedure obviously violates
the physical behavior of the QCD corrections and leads to results affected by systematic
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errors, due to inherent scheme and scale uncertainties, and predictions are quite unreliable
in this kinematic region.

The quark pair production cross-section for e+e− → γ∗ → QQ̄ at the two-loop level
can be written as

σ = σ(0)
[

1 + δ(1) as(µr) + δ(2)(µr) a2
s (µr) +O(a3

s )
]

, (11)

where as(µr) = αs(µr)/π. The LO cross section is

σ(0) =
4

3

π α2
e

s
Nc e2

Q

v (3 − v2)

2
, (12)

where αe is the fine structure constant, Nc is the number of colors, and eQ is the Q quark

electric charge. The quark velocity v is v =
√

1 − 4 m2
Q/s, where s is the center-of-mass

energy squared and mQ is the mass of the quark Q.

The one-loop correction coefficient δ(1) is δ(1) = CF(π
2/2 v − 4). The two-loop cor-

rection coefficient δ(2) can be conveniently split into terms proportional to different SU(3)
color factors,

δ(2) = C2
F δ

(2)
A + CF CA δ

(2)
NA

+CF TR n f δ
(2)
L + CF TR δ

(2)
H . (13)

The terms δ
(2)
A , δ

(2)
L , and δ

(2)
H are the same in Abelian and non-Abelian theories; the

term δ
(2)
NA only arises in the non-Abelian theory. This process offers the opportunity to

rigorously rigorously the scale-setting method in the non-Abelian and Abelian theories.
The cross-section given in Equation (11) can be written indicating explicitly the n f -

dependent and n f -independent parts, i.e.,

σ = σ(0)
[

1 + δ
(1)
h as(µr) +

(

δ
(2)
h,in(µr) + δ

(2)
h,n f

(µr) n f

)

a2
s (µr)

+
(π

v

)

δ
(1)
v as(µr) +

(π

v

) (

δ
(2)
v,in(µr) + δ

(2)
v,n f

(µr) n f

)

a2
s (µr) +

(π

v

)2
δ
(2)
v2 a2

s (µr) +O(a3
s )

]

. (14)

Coefficients δ
(1)
v , δ

(2)
v , and δ

(2)
v2 are for the Coulomb corrections, while coefficients δ

(1)
h

and δ
(2)
h are for the non-Coulomb corrections. These coefficients have been determined

in Refs. [59–61] for the MS scheme. Due to their proportional form to powers of (π/v),
Coulomb corrections are enhanced in the threshold region. This implies that the renor-
malization scale can be relatively soft in this region. Therefore, the PMC scales must
be determined separately for the non-Coulomb and Coulomb corrections [8,62]. When
the quark velocity v → 0, the Coulomb correction dominates the contribution for the
production cross-section.

Absorbing the non-conformal term β0 = 11/3 CA − 4/3 TR n f into the running cou-
pling constant, as implemented in the PMC procedure, we obtain

σ = σ(0)
[

1 + δ
(1)
h as(Qh) + δ

(2)
h,sc(µr) a2

s (Qh)

+
(π

v

)

δ
(1)
v as(Qv) +

(π

v

)

δ
(2)
v,sc(µr) a2

s (Qv) (15)

+
(π

v

)2
δ
(2)
v2 a2

s (Qv) +O(a3
s )

]

.

The PMC scales Qi are
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Qi = µr exp





3 δ
(2)
i,n f

(µr)

2 TR δ
(1)
i



, (16)

and the coefficients δ
(2)
i,sc(µr) are

δ
(2)
i,sc(µr) =

11 CA δ
(2)
i,n f

(µr)

4 TR
+ δ

(2)
i,in(µr), (17)

where i = h and v stand for the non-Coulomb and Coulomb corrections, respectively. At
the present two-loop level, the conformal coefficients and the PMC scales are independent
of the renormalization scale µr. Thus, the resulting cross-section in Equation (16) is void of
renormalization scale uncertainties.

The V-scheme defined by the interaction potential between two heavy quarks [63–71],
V(Q2) = −4 π2 CF aV

s (Q)/Q2, provides a physically-based alternative to the usual MS
scheme. As in the case of QED, when the scale of the coupling aV

s is identified with the
exchanged momentum, all vacuum polarization corrections are resummed into aV

s . By
using the relation between as and aV

s at the one-loop level, i.e.,

aV
s (Q) = as(Q) +

(

31

36
CA − 5

9
TR n f

)

a2
s (Q), (18)

we can perform a change of scheme, from the MS scheme to the V-scheme, for the quark
pair production cross-section. The corresponding perturbative coefficients in Equation (14)
for the V-scheme are given in Ref. [72]. The predictions using the PMC eliminate the
dependence from the renormalization scheme; this is explicitly displayed in the form of
“commensurate scale relations” (CSR) [73,74].

The PMC scales in the MS scheme are Qh = e(−11/24) mQ for the non-Coulomb cor-

rection and Qv = 2 e(−5/6) v mQ for the Coulomb correction. In the V-scheme, the scales

are Qh = e(3/8) mQ for the non-Coulomb correction and Qv = 2 v mQ for the Coulomb
correction. The scale Qh stems from the hard virtual gluon corrections, and the scale Qv

originates from the final state Coulomb re-scattering. As expected, the scale Qh is of the
order mQ, whereas the scale Qv is of the order v mQ. The scale Qv depends on the quark
velocity v and becomes soft for v → 0, yielding the correct physical behavior. The PMC
scales in the usual MS scheme are different from the PMC scales in the physically-based
V-scheme. This difference is caused by the convention used in defining the MS scheme.

For the Coulomb correction, the behavior of the Coulomb term of the form (π/v) δ
(2)
v

is dramatically changed after using the PMC. More explicitly, by taking mQ = 4.89 GeV for
the b quark pair production as an example, we present the behavior of the Coulomb terms

of the form (π/v) δ
(2)
v in the V-scheme using the conventional and the PMC scale setting

in Figure 6. Using the conventional scale setting in the region where the quark velocity

v → 0, the Coulomb term becomes (π/v)δ
(2)
v → +∞. On the contrary, applying PMC scale

setting, the Coulomb term becomes (π/v)δ
(2)
v → −∞. This dramatically different behavior

of the (π/v)δ
(2)
v between conventional and PMC scale settings near the threshold region

should also be investigated in QED.
In analogy to the quark pair production, the lepton pair production cross-section for

the QED process e+e− → γ∗ → ll̄ has an expansion in the QED fine structure constant
αe. The cross-section can also be divided into the non-Coulomb and Coulomb parts, as in
Equation (14). The perturbative coefficients for the lepton pair production cross-section are
given in Refs. [59,75,76].
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Figure 6. The behavior of the Coulomb terms in the V-scheme for the b quark pair production, where

δ
(2)
v = (δ

(2)
v,in|V + δ

(2)
v,n f

|V n f ) for conventional scale setting, and for PMC scale setting, δ
(2)
v = δ

(2)
v,sc|V .

The one-loop correction coefficients δ
(1)
h and δ

(1)
v and the two-loop correction coeffi-

cients δ
(2)
h,n f

, δ
(2)
v,n f

, and δ
(2)
v2 have the same form in QCD and QED, with only some replace-

ments for the color factors, i.e., CA = 3, CF = 4/3 and TR = 1/2 for QCD and CA = 0,
CF = 1, and TR = 1 for QED, respectively.

By using the PMC, the vacuum polarization corrections can be absorbed into the QED
running coupling whose one-loop approximation is given by:

αe(Q) = αe

[

1 +
(αe

π

)

n f

∑
i=1

1

3

(

ln

(

Q2

m2
i

)

− 5

3

)]

, (19)

where mi is the mass of the light virtual lepton. The resulting PMC scales can be written as

Qi = ml exp





5

6
+

3

2

δ
(2)
i,n f

δ
(1)
i



. (20)

For the lepton pair production, we obtain the PMC scales Qh = e(3/8) ml for the
non-Coulomb correction and Qv = 2 v ml for the Coulomb correction.

Given that the scale Qh stems from the hard virtual photon corrections, while Qv

originates from the Coulomb rescattering, it follows that Qh is of order ml and Qv is of
order v ml . The scales show the same physical behavior from QCD to QED after using the
PMC. The PMC scales in QCD with the V-scheme coincide with the PMC scales in QED.
This scale self-consistency shows that the PMC procedure in QCD agrees with the standard
Gell-Mann-Low method [4] in QED for the quark pair production.

For the Coulomb correction, by taking mτ = 1.777 GeV for the τ lepton as an example,

the behavior of the Coulomb terms of the form (π/v) δ
(2)
v using conventional and PMC

scale settings is shown in Figure 7. It is noted that, different from the QCD case, when the

quark velocity v → 0, the Coulomb terms are (π/v)δ
(2)
v → −∞ for both the conventional

and the PMC scale settings in lepton pair production. Thus, the behavior of the Coulomb
terms is the same when using PMC scale setting for both QCD and QED.
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Figure 7. The behavior of the Coulomb terms for the τ lepton pair production, where δ
(2)
v =

(δ
(2)
v,in + δ

(2)
v,n f

n f ) for conventional scale setting, and for PMC scale setting, δ
(2)
v = δ

(2)
v,in.

3.3. TReanalysis of the Top-Quark Decay at Next-To-Next-To-Leading Order

Top-quark properties, such as its mass, its production cross-section, its decay width,
and its couplings to elementary particles, are very important for understanding the
mechanism of electro-weak symmetry breaking and for searching new physics beyond
the SM. At present, the top-quark decay width has been calculated up to NNLO QCD
corrections [77–82]. Experimentally, various collaborations at the Tevatron and LHC have
measured the total width of the top-quark decay, and the world average reported by the
Particle Data Group is Γt = 1.42+0.19

−0.15 GeV [38].
The top-quark decay process is dominated by t → bW, and its total decay width up to

NNLO QCD corrections is given by:

Γt = ΓLO
t

[

1 + c1(µr) as(µr) + c2(µr) a2
s (µr) +O(α3

s )
]

, (21)

where the LO decay width

ΓLO
t =

GF |Vtb|2 m3
t

8 π
√

2

(

1 − 3 w2 + 2 w3
)

. (22)

Here, w = m2
W/m2

t , with mW = 80.385 GeV being the W-boson mass, mt = 172.5 GeV [38]
is the top-quark mass, GF = 1.16638 × 10−5 GeV−2 [81] is the Fermi constant, and |Vtb| = 1
is the Cabibbo–Kobayashi–Maskawa (CKM) matrix element. The NLO and NNLO coeffi-
cients c1 and c2 can be found in the literature, and a detailed PMC analysis for the top-quark
decay process can be found in Ref. [24]. For self-consistency, we will adopt the two-loop
MS QCD coupling with αs(MZ) = 0.1179 [38] for numerical analysis.

We present the total decay width of the top-quark decay using the conventional and
PMC scale settings in Table 1, where the NLO and NNLO contributions δΓNLO

t and δΓNNLO
t

are also shown. Up to the NNLO level, the net scale uncertainty is ∼ [−0.5%,+0.4%] by
varying the scale µr within the range [mt/2, 2mt]. Such a small net scale uncertainty is due
to the cancellation of the scale uncertainties between δΓNLO

t and δΓNNLO
t . However, the

scale uncertainty is still rather large for each perturbative term, i.e., the scale uncertainties
of δΓNLO

t and δΓNNLO
t are ∼ [−10.5%,+7.9%] and ∼ [+23.5%,−16.7%], respectively.

If we set µr = mt, the relative importance of the NLO and NNLO QCD corrections
become δΓNLO

t /ΓLO
t ∼ −8.6% and δΓNNLO

t /ΓLO
t ∼ −2.1%, respectively. The relative

importance of each order of accuracy up to NNLO becomes: δΓNLO
t /ΓLO

t ∼ −9.4% and
δΓNNLO

t /ΓLO
t ∼ −1.6% for µr = mt/2; and δΓNLO

t /ΓLO
t ∼ −7.8% and δΓNNLO

t /ΓLO
t ∼

−2.4% for µr = 2mt. Thus, by using the conventional scale-setting method, one cannot
judge a posteriori the intrinsic convergence of the pQCD series; a poorer convergent
behavior may be caused by improper choice of renormalization scale. This explains why
the renormalization scale uncertainty is one of the systematic errors for pQCD predictions.
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Table 1. Total decay width Γt up to NNLO QCD corrections (in unit GeV) using the conventional

(Conv.) and PMC scale settings, respectively.

Scale µr Γ
LO
t δΓ

NLO
t δΓ

NNLO
t Γ

NNLO
t

µr = mt/2 1.4806 −0.1394 −0.0234 1.3179
Conv. µr = mt 1.4806 −0.1261 −0.0306 1.3239

µr = 2mt 1.4806 −0.1161 −0.0357 1.3288

PMC 1.4806 −0.1892 0.0207 1.3122

On the other hand, after applying the PMC scale setting, Table 1 shows that the PMC
predictions are scale invariant, e.g., δΓNLO

t = −0.1892 GeV and δΓNNLO
t = 0.0207 GeV for

any choice of µr. This leads to a scale invariant relative importance of the NLO and NNLO
QCD corrections, e.g., δΓNLO

t /ΓLO
t ∼ −12.8% and δΓNNLO

t /ΓLO
t ∼ 1.4% for any choice of

scale. Thus, with respect to the conventional pQCD series for the top-quark decay, the
convergence of the PMC series is greatly improved.

The determined PMC scale for the top-quark decay is

Q = 15.5 GeV. (23)

The PMC scale is independent of any choice of µr and is one order of magnitude
smaller than mt. This reflects the small virtuality of the QCD dynamics for the top-quark
decay process. Numerically, we observe that the top-quark decay width at NNLO first
decreases and then increases with the increase in the scale µr using a conventional scale
setting, and the minimum total decay width is achieved at µr ∼ 23 GeV. If we change the
conventional choice µr = mt to a smaller-scale µr ≪ mt, the pQCD convergence of the
top-quark decay width would be greatly improved, even though the resulting conventional
prediction is close to the PMC prediction. Thus, the effective momentum flow for the
top-quark decay should be ≪ mt, far smaller than the conventional choice of µr = mt.

After applying the PMC in order to achieve reliable predictions, there are still other
error sources that have to be taken into account, such as the effect of finite bottom-quark
mass and the finite W boson width, as well as the electroweak corrections. In Table 2, we
present the top-quark decay width ΓNNLO

t |PMC using the PMC together with the correc-
tions from the finite bottom-quark mass δb

f , the finite W boson width δW
f , and the NLO

electroweak correction δNLO
EW for mt = 172.5 and 173.5 GeV. These corrections are taken

from Ref. [81]. Since the corrections from the finite bottom-quark mass and the finite W
boson width provide negative values, while the NLO electroweak correction provides a
positive value, their contributions to the top-quark decay width cancel out greatly.

Table 2. PMC top-quark decay widths ΓNNLO
t |PMC (in unit GeV). Uncertainties caused by the bottom-

quark mass δb
f , the finite W-boson width δW

f , and the NLO electroweak corrections δNLO
EW are also

presented, whose magnitudes are taken from Ref. [81].

mt Γ
NNLO
t |PMC δb

f δW
f δNLO

EW Γ
tot
t

172.5 1.3122 −0.0038 −0.0221 0.0249 1.3112

173.5 1.3392 −0.0039 −0.0225 0.0255 1.3383

After applying the PMC, we then obtain more reliable predictions for the top-quark
total decay width [24]. If we set mt = 172.5 GeV, we have

Γtot
t = 1.3112 ± 0.0016 ± 0.0023 GeV, (24)

whhereas if we set mt = 173.5 GeV, we have

Γtot
t = 1.3383+0.0016

−0.0017 ± 0.0023 GeV. (25)
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The first error is due to the error of αs at the critical scale µr = MZ, e.g.,
∆αs(MZ) = ±0.0009 [38], and the second error is given by the evaluation of the UHO
terms. The top-quark total decay width depends heavily on the magnitude of the top-quark
mass. More explicitly, we present the top-quark total decay width Γtot

t versus mt in Figure 8.
The CMS measurement together with its error [83] are also presented in Figure 8. No dis-
crepancy is observed in comparing the experimental value and the theoretical predictions
obtained by using the PMC and the conventional scale setting, respectively (Figure 8).
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Figure 8. The top-quark total decay width Γtot
t versus the top-quark mass mt. The solid line is the

PMC prediction, and the dashed line stands for the conventional prediction. As a comparison, the

CMS measured value [83] is also presented.

3.4. An Estimate of the Contributions from Uncalculated Higher-Order Terms

At present, remarkable progress has been achieved in loop calculations in perturbation
theory. However, most of theoretical calculations have only been finished at relatively
lower orders due to the complexity of Feynman diagram calculations. It is thus important
to have a way to evaluate contributions from the UHO terms, in order to improve the
predictive power of perturbative theory.

In this subsection, we briefly review two representative approaches to evaluate the
UHO contributions for the fixed-order pQCD series by using the known partial sum of the
conventional series and PMC conformal series, respectively. The first approach is the Padé
approximation approach (PAA) [84–86], which attempts to directly predict the unknown
higher-order coefficients by using a fractional generating function whose parameters can be
directly fixed by matching to the known finite order. The second approach is the Bayesian-
based approach (BA) [87–90], which attempts to quantify the unknown higher-order terms
in terms of a probability distribution by applying Bayes’ theorem.

3.4.1. Applying PAA to Evaluate the UHO Contributions

The Padé approximation provides a feasible approach that predicts the unknown
(n+ 1)th-order coefficient from the known nth-order perturbative series. Following the basic

PAA procedure, an [N/M]-type fractional generating function ρ
[N/M]
n for ρn = ∑

n(≥1)
i=0 ciα

i
s

is constructed as [84–86]

ρ
[N/M]
n =

d0 + d1αs + · · ·+ dNαN
s

1 + e1αs + · · ·+ eMαM
s

=
n

∑
i=0

ciα
i
s + cn+1αn+1

s + · · · , (26)

where M ≥ 1 and N + M = n. The parameters di (0 ≤ i ≤ N) and ej (1 ≤ j ≤ M)
are firstly determined by the known coefficients ci (0 ≤ i ≤ n) and then provide a
reasonable prediction for the next uncalculated coefficient cn+1. For n = 4, it has been
found that the diagonal [2/2]-type generating function is preferable for predicting unknown
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coefficients from the conventional pQCD series [91,92], while the non-diagonal [0/4]-
type generating function is preferable for predicting unknown coefficients from the PMC
conformal series [93], which also expands the geometric series to be self-consistent with
the GM-L prediction [4].

3.4.2. Applying BA to Evaluate the UHO Contributions

The BA quantifies the UHO coefficients in terms of probability distributions, in which
Bayes’ theorem is applied to iteratively update the probability as new coefficients become
available. Here we present the main results for BA; for a detailed introduction and all BA
formulas, see, e.g., [94] and references therein.

Following the BA procedure, the conditional probability density function (p.d.f.)
for a generic (uncalculated) coefficient cn (n > k) of any possible perturbative series
ρk = ∑

k
i=1 ciα

i
s with given coefficients {c1, c2, . . . , ck} is given by

f (cn|c1, c2, . . . , ck) =











k
2(k+1)c̄(k)

, |cn| ≤ c̄(k)

kc̄k
(k)

2(k+1)|cn |k+1 , |cn| > c̄(k)

, (27)

where c̄(k) = max{|c1|, |c2|, · · · , |ck|}. Equation (27) provides a symmetric probability
distribution for negative and positive cn, predicts a uniform probability density in the
interval [−c̄(k), c̄(k)], and decreases monotonically from c̄(k) to infinity. The knowledge of
probability density fc(cn|c1, c2, . . . , ck) allows one to calculate the degree-of-belief (DoB)
that the value of cn belongs to some credible interval (CI). The symmetric smallest CI of

fixed p% DoB for cn is denoted by [−c
(p)
n , c

(p)
n ]. Here the boundary c

(p)
n is defined implicitly

by p% =
∫ c

(p)
n

−c
(p)
n

fc(cn|cl , . . . , ck) dcn and can be obtained by further using the analytical

expression in Equation (27),

c
(p)
n =







c̄(k)
k+1

k p%, p% ≤ k
k+1

c̄(k)[(k + 1)(1 − p%)]−
1
k , p% >

k
k+1

. (28)

We adopt the interval [−c
(p)
n αn

s , c
(p)
n αn

s ] with p% = 95.5%1 as the final estimation for
any UHO term δn = cnαn

s .
As an example, we consider the total hadronic e+e− annihilation ratio Re+e−(Q) =

Nc ∑q e2
q[1 + R(Q)], where R(Q) represents the QCD correction. The probability density

distributions for R(Q = 31.6 GeV) with different states of knowledge predicted by PMCs
and BA are presented in Figure 9, where the four curves correspond to different degrees
of knowledge: given LO (dotted), given NLO (dot-dashed), given N2LO (solid), and
given N3LO (dashed). The figure illustrates the characteristics of the posterior probability
distribution: a symmetric plateau with two suppressed tails. The posterior probability
distribution depends on the prior probability distribution. With more and more loop terms
available, the posterior probability is updated and becomes less and less dependent on the
prior probability; i.e., the probability density becomes increasingly concentrated as more
and more loop terms are added.

As a final remark, the PAA and BA can only be applied after one has specified the
choice for the renormalization scale due to the fact that the coefficients of the conventional
pQCD series are scale-dependent. Thus, extra uncertainties are introduced when applying
the PAA and BA to a conventional pQCD series. However, the resulting PMC series is
scale-independent, and it thus provides a more reliable basis for estimating the UHO
contributions. Thus, the total theoretical uncertainty of a pQCD approximant can be treated
as the squared average of the scale error due to the conventional scale dependence (or the
first kind of residual scale dependence) and the predicted magnitude of the UHO terms for
the pQCD approximant.
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Figure 9. The probability density distributions of R(Q = 31.6 GeV) with different states of knowledge

predicted by PMCs and BA. The blue dotted, the black dash-dotted, the green solid, and the red

dashed curves represent the results with given LO, NLO, N2LO, and N3LO series, respectively.

4. Summary

The PMC method provides a systematic way to eliminate the renormalization scheme-
and-scale ambiguities. The PMC method has a rigorous theoretical foundation, satisfying
the RGI and all of the self-consistency conditions derived from the renormalization group.
The PMC scales are obtained by shifting the argument of αs to eliminate all the non-
conformal β-terms; the PMC scales thus reflect the virtuality of the propagating gluons for
the QCD processes. The divergent renormalon contributions are eliminated since they are
summed into the running coupling αs, and the resulting pQCD convergence is in general
greatly improved. The PMC scale-setting method provides the underlying principle for the
well-known BLM method, extending the BLM scale-setting procedure unambiguously to
all orders. The PMC reduces to the GM-L method in the NC → 0 Abelian limit [5].

We have provided a new analysis of event shape observables in e+e− annihilation
by using the PMC method. The PMC scales are not given by a single value but depend
dynamically on the virtuality of the underlying quark and gluon subprocess and thus the
specific kinematics of each event. The renormalization scale-independent PMC predictions
for event shape distributions agree with precise experimental data. Remarkably, the PMC
method provides a novel method for the precise determination of the running of QCD
coupling αs(Q2) over a wide range of Q2 from event shapes measured at a single energy
of

√
s. The PMC also provides an unambiguous method for determining the scales in

multiple-scale processes. It is remarkable that two distinctly different PMC scales are
determined for the heavy fermion pair production near the threshold region. One PMC
scale entering the hard virtual corrections is of the order of the fermion mass m f , while the
other PMC scale entering the Coulomb re-scattering amplitude is of the order v m f . Perfect
agreement between the Abelian unambiguous Gell-Mann-Low and the PMC scale-setting
method in the limit of zero number of colors is observed in this process. We also calculated
the top-quark decay process, obtaining the PMC scale Q = 15.5 GeV. The convergence
of the pQCD series is largely improved for the top-quark decay. We finally obtained the
top-quark total decay width Γtot

t = 1.3112+0.0190
−0.0189 GeV. Since the PMC conformal series is

scale-independent, it provides a reliable basis for obtaining constraints on the predictions
for the UHO contributions. These applications demonstrate the generality and applicability
of the PMC. The PMC thus improves the precision tests of the SM and and increases the
sensitivity of experiments to new physics beyond the SM.
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Note

1 One may also use a 68.3% credible interval (CI) to compare with experimental data in the same confidence level, or use 99.7% CI

for a more conservative estimation.
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