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Abstract: The Harko, Kovács, and Lobo wormhole (HKLWH) metric contains two free parameters:

one is the wormhole throat r0, and the other is a dimensionless deviation parameter γ with values

0 < γ < 1, the latter ensuring the needed violation of the null energy condition at the throat. In

this paper, we study the energetics of the HKLWH and the influence of γ on the tidal forces in

the Lorentz-boosted frame. Finally, we apply a new concept, namely, the probabilistic identity of

the object observed by different external observers in terms of the Fresnel coefficients derived by

Tangherlini. The intriguing result is that observations can differ depending on the location of the

observer, i.e., there is a nonzero probability that the HKLWH will be identified as a black hole even

when γ 6= 0.

Keywords: wormhole; energy conditions; Fresnel coefficients

1. Introduction

Wormholes (WHs) were conceived as a particle model by Einstein and Rosen (the well
known Einstein–Rosen bridge) in 1935 [1]. Ellis [2] and Bronnikov [3], independently in
1973, found WH solutions threaded by an Einstein minimally coupled scalar field with a
negative kinetic term in the Lagrangian. After the seminal work by Morris and Thorne in
1988 [4], there was a revival of interest in the subject among the physics community. WHs
are topological handles connecting two spacetimes that have not yet been ruled out by ex-
periments. In fact, in the context of semiclassical quantum gravity, the minimal two-surface
is not the horizon of a black hole (BH) but the throat of a WH [5]. The possibility of the
appearance of Planck-sized WHs in quantum gravity is well discussed in the literature [6,7].
Moreover, there has been much work on the possibility of observationally distinguish-
ing classical WHs from BHs by means of various diagnostics, such as an accretion disc,
gravitational lensing, etc.; see, for example, [8–24].

The purpose of the present paper is to study the features of the HKLWH in reasonable
detail, emphasizing the role of γ in various physical effects that include energetics, tidal
effects, and most interestingly, the probabilistic identification of the type of the object as
an outcome of probes by photons, i.e., we calculate the probability of the HKLWH being
identified as a WH or a BH by different observers using probability flows of photons
as probes.

To achieve this, we adopt Tangherlini’s [25] idea of the probabilistic scattering of
photons, which is as follows. Classically, a photon motion is a regular deterministic wave
propagation into an optical medium with reflection and transmission amplitudes; however,
Tangherlini introduced an indeterministic condition instead of a deterministic one at the interface.
The indeterminacy was introduced by assuming a hypothetical arrangement in which
individual photons are incident on widely separated media at random intervals of time.
As a consequence, the physical flow of energy into the medium cannot be associated with
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a physical flow of energy but some kind of probability flow associated with each photon.
In other words, the Fresnel coefficients are determined in terms of a statistical ensemble
average over a large number of replica media having the same index n—with one photon
for each replica. Because of the assumed independence of collisions at the medium interface,
the coefficients are the same for one photon as for N photons [25].

The above ingenious idea of Tangherlini does not use Planck’s constant but an experi-
mentally verified photon momentum increase in the refractive medium, namely, p′ = np,
n ≥ 1. Equivalently, the de Broglie relation p′λ′ = pλ = constant (without Planck’s constant
ℏ), together with the well-known reduction in the wavelength λ′ = λ/n, then leads to
p′ = np, which was used as a starting point by Tangherlini [25] to derive the Fresnel coeffi-
cients R and T. Remarkably, the same Fresnel coefficients can also be deduced from the
standard quantum mechanical treatment of the Schrödinger equation for a certain potential
well, which reinforces the validity of the assumed probability flow in Tangherlini’s scheme.
Loosely speaking, we can say that the scheme yields “quantum mechanics without quan-
tum mechanics”. That is why Tangherlinini called his approach a “pre-quantal statistical
formulation”. No information is reduced, and the new idea is that the photon motion
into the medium is raised from the classical deterministic level to a so-called pre-quantal
statistical flow of energy without Planck’s constant. For further explanation, see the origi-
nal paper [25]. The purpose of Tangherlini’s approach [25], as enumerated by the author
himself, is that “The approach should be of value in further clarifying questions about the
foundations of quantum mechanics as well as fundamental questions about the interaction
of light and matter”.

The expected outcome in the present study is that an external observer has the prob-
ability to observe the probed centrally gravitating object either as a BH or a WH, thus
forming a two-point sample space. The indeterministic effect of Tangherlini’s approach
is dictated only by the WH geometry, which subsumes the source energy distribution in
the spirit of general relativity, no matter whether the source satisfies the energy conditions
or not. A photon is propagating (in the statistical sense, as explained above) through
the exterior energy-violating region of the HKLWH, portrayed as an “effective optical
medium”. We make a similar hypothetical arrangement to that explained above but now
involving a gravitational “effective optical medium” to probe the nature of the central
object. If every photon is reflected back by the probed surface (implying R = 1, T = 0), the
observer sending the pulse would identify the surface to be a BH horizon with certainty.
The ground for taking R = 1, T = 0 as a hallmark of a BH is that these values follow directly
from the conventional quantum mechanical treatment using the Schrödinger equation for a
certain potential well [26]. On the other hand, if all of the photons transmit through the
surface, so that R = 0, T = 1, then the observer identifies the surface as a WH throat with
certainty. If some photons are reflected and some transmitted, then depending on the value
of γ and location of the observer, the latter is more likely to identify the object as a BH (if
R > T) or a WH (if R < T) in a large number of probes. Thus, for any γ 6= 0, however
tiny, the (R, T) values would differ leading correspondingly to the different outcomes in
the two-point sample space (BH or WH). The essence of all this is that γ 6= 0 does not
necessarily lead to the observation of a HKLWH but, statistically speaking, can also lead to
a BH.

To apply Tangherlini’s idea in gravity, we shall first portray the HKLWH spacetime as
a gravitational “effective optical medium” with index n(r) as sensed by photons sent by

asymptotic and another index ñ(r) sensed by photons sent by near-throat observers1 [34]. We
emphasize that Tangherlini’s formulation was originally developed for an ordinary optical
medium, but its present application to the gravitational effective optical medium is justified
on the famous Pound–Rebka experiment in a gravity field. The reason for this assertion
can be seen from the connection that, while the required momentum increase law p′ = np,
which is already an experimentally confirmed fact in an ordinary optical medium [35–37],
the Pound–Rebka experiment in gravity can also be nicely reinterpreted as yet another
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momentum increase law but in the effective optical medium with index n(r), as shown in
detail in [34].

The paper is organized as follows: In Section 2, we study the energetics of the HKLWH,
and in Section 3, we study the influence of γ on the tidal forces in the Lorentz-boosted
frame. Finally, in Section 4, we apply a new concept, namely, the identification of the
HKLWH by different observers in terms of the probabilistic Fresnel coefficients. We shall
use a gravitational refractive medium representing the HKLWH to calculate the influence
of γ on these coefficients. Section 5 concludes the paper. We take units G = c = 1, unless
specifically restored.

2. HKLWH and Its Energetics

The Morris and Thorne [4] WH has a generic form in standard coordinates

dτ2 = e2Φ(r)dt2 − dr2

1 − b(r)/r
− r2dΩ

2, (1)

where dΩ
2 ≡ dθ2 + sin2 θdϕ2 represents the metric on a unit sphere. The function Φ(r)

is called the redshift function, b(r) is the shape function, and the root of b(r0) = r0 is the
throat radius, such that r ∈ [r0, ∞). The material threading the WH has the density ρd and
pressures (pr, pt) (components of transverse pressures, pθ , pϕ are collectively called pt)
given by

ρd =
1

8π

b′

r2
, (2)

pr =
1

8π

[
2

(
1 − b

r

)
Φ

′

r
− b

r3

]
, (3)

pt =
1

8π

(
1 − b

r

)[
Φ

′′ +
(
Φ

′)2 − b′r − r

2r2(1 − b/r)
Φ

′ − b′r − r

2r3(1 − b/r)
+

Φ
′

r

]
. (4)

Harko, Kovács, and Lobo [38] considered a wormhole metric supported by exotic
matter. It is well known that exotic matter is a type of matter that violates one or more
energy conditions, especially the Null Energy Condition (NEC) [39,40]. The violation of
the NEC is the minimal condition for the existence of traversable WHs [39]. The Harko–
Kovács–Lobo wormhole (HKLWH) metric [38] is given in standard coordinates as

ds2 = e−2r0/rdt2 − dr2

1 − r0[1 + γ(1 − r0/r)]/r
− r2dΩ

2, (5)

where 0 < γ < 1 is a constant, and r0 is the minimum radius defining the wormhole
throat. The metric (5) describes a wormhole geometry with two identical asymptotically
flat regions joined together at the throat r0 > 0. The redshift function of the wormhole is
Φ(r) = −r0/r, and the shape function is b(r) = r0 + γr0(1 − r0/r). In [38], it was shown
that particles moving in circular orbits around wormholes are stable, due to the outward
gravitational repulsion.

To avoid the presence of event horizons to ensure communications between the two
connecting universes, Φ(r) is constrained to be finite throughout the coordinate range. At
the throat r0, one has b(r0) = r0, and a fundamental property is the flaring-out condition
given by (b′2 < 0, which is provided by the geometric method of embedding [4]. Most worm-
holes are made up of exotic matter that violates one or more energetic conditions [39,41,42].
Here, we will check the null (NEC), strong (SEC), and dominant (DEC) energy conditions
following Rodrigues et al. [43]
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NEC1(r) = ρd + pr ≥ 0, NEC2(r) = ρd + pt ≥ 0, (6)

SEC(r) = ρd + pr + 2pt ≥ 0, (7)

WEC1,2(r) = ρd + pr ≥ 0, WEC2(r) = ρd + pt ≥ 0, (8)

DEC1(r) = ρd ≥ 0, (9)

DEC2(r) = ρd − pr ≥ 0, DEC3(r) = ρd − pt ≥ 0. (10)

After putting (5) into (6)–(10), we obtain

NEC1(r) = WEC1(r) = − r0

r3

[
1 − γ − 2(1 + γ)

r0

r
+ 2γ

r2
0

r2

]
, (11)

NEC2(r) = WEC2(r) = − r0

2r3

[
1 − γ − (5 + 3γ)

r0

r
+ 2(1 + 3γ)

r2
0

r2
− 2γ

r3
0

r3

]
, (12)

SEC(r) = − r0

r3

[
2(1 − γ)− (7 + 3γ)

r0

r
+ 2(1 + 4γ)

r2
0

r2
− 2γ

r3
0

r3

]
, (13)

DEC1(r) =
γr2

0

8πr4
, (14)

DEC2(r) =
r0

r3

[
1 − γ − 2

r0

r
+ 2γ

r2
0

r2

]
, (15)

DEC3(r) =
r0

2r3

[
1 − γ − (5 − γ)

r0

r
+ 2(1 + 3γ)

r2
0

r2
− 2γ

r3
0

r3

]
. (16)

Figure 1 shows the dependence of the energy conditions of the HKLWH on the radial
coordinate r for different values of the dimensionless metric parameter γ. NEC is violated
near the throat of the wormhole. In this case, the range of the NEC violation directly
depends on the value of γ. The reverse picture is observed for NEC2 and DEC2; as γ
increases, the range of violation of energy conditions decreases. The energy conditions SEC
and DEC2 are not violated at any γ values. An interesting case is observed in the case of
DEC3: at γ ≤ 0.5, the energy condition is violated near the throat radius; at γ > 0.5, a gap
appears near the throat, where the energy condition is not violated.

From the integration of the 00-component of the Einstein field equations (see, [44]),
we obtain

∂m

∂r
= 4πr2T0

0 = 4πr2ρd (17)

for a metric ansatz

dτ2 = ξ(r, t)dt2 − dr2

1 − 2m(r, t)/r
−
(

r2dθ2 + sin2 θdϕ2
)

, (18)

where m(r, t) is the mass function, and T0
0 (r, t) is the energy density of matter in the rest

frame (r, θ, ϕ)constant. We see the genesis of the volume measure 4πr2 in Equation (17).
With the volume measure 4πr2dr, the mass function in the static case is given by

m =
1

8π

∫
∞

r0

4πρdr2dr =
γr0

2
, (19)

which is the ADM mass. If one introduces the radial fluid motion with a velocity v of the
source matter, then the static observers in the rest frame (r, θ, ϕ) constant see a Lorentz

transformed T00 = ρd+prv2

1−v2 . The Lorentz contraction due to fluid motion gives rise to
a mechanical energy flux within r = const passing through the hypersurface t = const.
However, even for a static configuration (such that v = 0), Lynden-Bell et al. [44] asserted
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that the mechanical energy EM in the spacetime, whatever constitutes the Tµν, is still given
by

EM =
1

8π

∫
∞

r0

4πρd(grr)
1/2r2dr. (20)

Lynden-Bell et al. [44] made a further assertion that “A comparison between
Equations (19) and (20) illustrates that (19) is seductively like the classical relationship be-
tween density and mass, but in fact conceals all the complications beneath a cloak of apparent
clarity”. For instance, 4πr2 is not the proper volume measure, while the correct one is
4π(grr)1/2r2dr = dV.

Figure 1. The energy conditions of the HKLWH as γ = 0.1 ((a), top left hand), γ = 0.5 ((b), top right

hand), and γ = 0.9 ((c), bottom).

The ADM mass m is the net mass-energy that contains the self-gravitational energy
EG, together with the other mechanical energies, such as the rest mass-energy and the
internal energy collectively denoted by EM. Thus, Lynden-Bell et al. [44] advocated that
EG = m − EM < 0 should be the generic definition of self-gravitational energy that can be
explicitly computed for any given system.

In the present case, we find that

EM =

√
γr0

2
log

[
1 +

√
γ

1 −√
γ

]
> 0 ⇒ (21)

EG =
γr0

2

{
1 − 1√

γ
log

[
1 +

√
γ

1 −√
γ

]}
< 0. (22)

This shows that one side of the mouth with an asymptotic mass m(r → ∞) = γr0
2 is

attractive. By extending the coordinate path to cover the entire real line, −∞ < r < +∞,
exposing the two asymptotically flat regions, it can be shown that the negative mass mouth
is repulsive, i.e., it has EG > 0. Thus, while one side attracts the traveller in, the other side
repels the traveller out, as it should be.
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3. Influence of γ on the Tidal Forces in the Lorentz-Boosted Frame

We start with the general form of a static spherically symmetric physical metric:

dτ2 =
F(r)

G(r)
dt2 − dr2

F(r)
− R2(r)[dθ2 + sin2 θdϕ2]. (23)

For a traveler in a static orthonormal frame, we shall denote the only nonvanishing
components of the Riemann curvature tensor as R0101, R0202, R0303, R1212, R1313, and R2323.
Radially freely falling observers with conserved energy E are connected to the static
orthonormal frame by a local Lorentz boost with an instantaneous velocity given by

v =

[
1 − F

GE2

]1/2

. (24)

Then, the nonvanishing Riemann curvature components in the Lorentz-boosted frame
with velocity v are (k = 2, 3):

R0̂1̂0̂1̂ = R0101, (25)

R
0̂k̂0̂k̂

= R0k0k + (R0k0k + R1k1k) sinh2 α, (26)

R
0̂k̂1̂k̂

= (R0k0k + R1k1k) sinh α cosh α, (27)

R
1̂k̂1̂k̂

= R1k1k + (R0k0k + R1k1k) sinh2 α, (28)

where sinh α = v/
√

1 − v2. The relative tidal acceleration ∆a
ĵ

between two parts of the

traveler’s body in the orthonormal basis is given by

∆a
ĵ
= −R

0̂ ĵ0̂p̂
ξ p̂, (29)

where
−→
ξ is the vector separation between the two parts [45]. Thus the curvature compo-

nents contributing to the tidal force on the traveler in the Lorentz-boosted frame are R0̂1̂0̂1̂,
R0̂2̂0̂2̂, and R0̂3̂0̂3̂. (Components in the coordinate basis are not required here).

The component R0̂2̂0̂2̂ is given by

R0̂2̂0̂2̂ = − 1

R

[
R′

2

(
E2

s G′ − F′
)]

− 1

R

(
R′′G +

R′G′

2

)
E2

ex (30)

= R
(s)

0̂2̂0̂2̂
+ R

(ex)

0̂2̂0̂2̂
, (31)

where

E2 =
F

G
+

F

G

(
v2

1 − v2

)
= E2

s + E2
ex, (32)

where E2
s represents the value of E2 in the static frame, and E2

ex represents the enhancement
in E2

s due to the geodesic motion.

It is easy to verify that the term |R(s)

0̂2̂0̂2̂
| actually represents the curvature component in

the static frame, namely, R
(s)

0̂2̂0̂2̂
= R0202. Thus, only the term R

(ex)

0̂2̂0̂2̂
[= sinh6 α(R0202 +R1212)]

represents the overall enhancement in the curvature in the Lorentz-boosted frame over the
static frame. It is this part that needs to be particularly examined as the observer approaches
the horizon. Note also that the energy E2 is finite (it can be normalized to unity) and so are
E2

s and E2
ex. As the horizon is approached, (F/G) → 0, v → 1 such that E2 → E2

ex.
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From Equations (5) and (23), we find

F(r) = 1 − r0

r

{
1 + γ

(
1 − r0

r

)}
, (33)

G(r) =
[
1 − r0

r

{
1 + γ

(
1 − r0

r

)}]
e

2r0
r , (34)

R(r) = r. (35)

Using Equations (30), (33)–(35), we find

R0̂1̂0̂1̂ = − r2
0

2r5
[r(1 + γ)− 2γr0]

R
(s)

0̂2̂0̂2̂
=

r0

r3

(
1 − r0

r

)(
1 − γr0

r

)
, (36)

and

R
(ex)

0̂2̂0̂2̂
=

r0

2r3

(
1 − γ − 2

r0

r
+ 2γ

r2
0

r2

)(
v2

1 − v2

)
, (37)

which, at the throat, r = r0, yields

R0̂1̂0̂1̂ =
γ − 1

2r2
0

, R
(s)

0̂2̂0̂2̂
= 0, R

(ex)

0̂2̂0̂2̂
=

γ − 1

2r2
0

(
v2

1 − v2

)
. (38)

We can see that, at the throat, the static curvature component R
(s)

0̂2̂0̂2̂
is 0, while R0̂1̂0̂1̂, as

measured in the Lorentz-boosted frame, is negative for 0 < γ < 1, which is consistent with

the wormhole topology. However, the excess part R
(ex)

0̂2̂0̂2̂
can be very large if v2 → 1. This

largeness is a kinematic effect inherited from the Lorentz boost and not an enhancement of
the curvature.

4. Influence of γ on the Fresnel Coefficients: the Tangherlini Formulation

The approach of Tangherlini involves scales and clocks not affected by the medium; in
addition, the light falls normally on the plane, semi-infinite, homogeneous, isotropic, and
nonabsorbing real medium. When a photon is transmitted, the magnitude of its momentum
p′ inside the medium is related to the magnitude of its momentum p in free space by the
equation [25,35–37]:

p′ = np, (39)

where n (≥1) is the index of refraction. This equation is independent of the angle of
incidence and is an experimental fact in an ordinary optical medium. The de Broglie
relation p′λ′ = pλ = constant (not Planck’s constant) together with the reduction in the
wavelength in the real optical medium, λ′ = λ/n, which we verify in the effective medium,
lead to Equation (39); the unprimed quantities p and λ refer to those in free space (the
absence of gravity or an effective medium).

Dynamically, the trajectory of a photon can be approximated by the following Hamil-
tonian, neglecting the dispersion (see Equation (A1) of Tangherlini [25]):

H′ =
c0

n(ρ)
p′,

where n = n(ρ) is assumed to be a slowly varying refractive index for an ordinary optical
medium oriented so that the boundary of the fluid is in the direction perpendicular to the
photon rays.

Tangherlini’s [25] statistical method introduces probability in the following novel way:
the probability for a photon to be found either in a reflected or in a transmitted mode
on the impinging surface has to be an ensemble average. The ensemble is meant to be
a large number of identical media with the same refractive index. Associated with each
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incident photon, there is one ensemble. The condition p′λ′ = pλ = constant does not
involve Planck’ s constant, and in this sense, the method introduces an indeterminacy of a
pre-quantum type. The probability of reflection will be defined by the fraction of the total
number of particles that are observed in the reflected mode and similarly for the probability
of the transmission.

A static spherically symmetric wormhole in isotropic coordinates can be written as

dτ2 = Ω
2(ρ)dt2 − Φ

−2(ρ)[dρ2 + ρ2
(

dθ2 + sin2 θdϕ2
)
]. (40)

Suppose I is the flux of incident particles, IR is the flux of reflected particles, and IT is
the flux of transmitted particles; then, number conservation implies

IR + IT = I.

In accordance with standard notation, the ratios R = IR/I and T = IT/I are taken to
define the probabilities of the reflection and transmission, respectively. These probabilities
satisfy the conservation of the probability condition

R + T = 1.

Equating the average rate of energy delivered to the ensemble member in reflected
and transmitted modes, Tangherlini [25] derives the coefficients:

R =
(n − 1)2

(n + 1)2
, T =

4n

(n + 1)2
, (41)

which remain invariant under n → 1/n.
The coefficients for the ingoing photon at the throat as observed by asymptotic observers

(a.o.) are given with n, using Equation (41):

Ra.o.
photon =

[n(ρth)− 1]2

[n(ρth) + 1]2
, (42)

Ta.o.
photon =

4n(ρth)

[n(ρth) + 1]2
, (43)

where n = Ω
−1

Φ
−1.

The coefficients for the ingoing photon pulse at the throat as observed by near-throat
local observers (l.o.) are given with ñ (=nΦ), using Equation (41):

R̃l.o.
photon =

[ñ(ρth)− 1]2

[ñ(ρth) + 1]2
, (44)

T̃l.o.
photon =

4ñ(ρth)

[ñ(ρth) + 1]2
. (45)

The idea is to find the coefficients of two pairs of equations, (42)–(45). Looking at these,
we see that the formulation of the second pair is of a hybrid nature, as they have one leg in
the effective medium defined by the index n and the other in the metric function Φ. For
our purposes, it is enough to treat all of the equation pairs as merely some functions of ρ
and evaluate the coefficients for different observers in different metrics. Thus, we convert
solution (5) to isotropic form by the radial transform r → ρ:

ρ = (
√

r − r0 +
√

r − γr0)
2 (46)
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and inverting, we find

r =
ρ2 + 2ρr0(1 + γ) + r2

0(1 − γ)2

4ρ
.

The thoat now occurs at
ρth = (1 − γ)r0. (47)

Then, metric (5) can be rewritten in the isotropic form

ds2 = Ω
2
HKLdt2 − Φ

−2
HKL(dρ2 + ρ2dΩ

2), (48)

where

ΩHKL = exp

[
− 4ρr0

ρ2 + 2ρr0(1 + γ) + r2
0(1 − γ)2

]
, (49)

ΦHKL =
4ρ2

ρ2 + 2ρr0(1 + γ) + r2
0(1 − γ)2

. (50)

Therefore, we find the refractive index, as perceived by asymptotic observers, to be

n(ρ) =
1

ΩHKLΦHKL
(51)

=
1

4

[
1 +

2r0

ρ
(1 + γ) +

r2
0(1 − γ)2

ρ2

]
exp

[
4ρr0

ρ2 + 2ρr0(1 + γ) + r2
0(1 − γ)2

]
, (52)

and similarly, the index as perceived by near-throat local observers is

ñ(ρ) = nΦHKL (53)

= exp

[
4ρr0

ρ2 + 2ρr0(1 + γ) + r2
0(1 − γ)2

]
. (54)

At the throat, the indices (51)–(54) have the values

n(ρth) =
e

1 − γ
, ñ(ρth) = e. (55)

Thus, the reflection and transmission coefficients of the HKLWH for asymptotic
observers are given by

Ra.o.
photon =

(e − 1 + γ)2

(e + 1 − γ)2
, Ta.o.

photon = 1 − Ra.o.
photon (56)

and for local observers, they are

R̃l.o.
photon =

(e − 1)2

(e + 1)2
, T̃l.o.

photon = 1 − R̃l.o.
photon. (57)

From the above, it follows that

lim
γ→1

Ra.o.
photon = 1, lim

γ→1
Ta.o.

photon = 0 (58)

R̃l.o.
photon = 0.213, T̃l.o.

photon = 0.786. (59)

It is clear from Equation (57) that the Fresnel coefficients perceived by the local ob-
servers are independent of γ, whereas for the asymptotic observers the Fresnel coefficients
at the throat are the same as those of the Schwarzschild black hole horizon R = 1, T = 0,
when γ → 1. We take these values as base values representing with certainty a reflection character-
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istic of a stable horizon. Thus, asymptotic observers are likely to identify the object as a black
hole in the extreme limit γ → 1, while local observers are more likely identify the object
as an unstable wormhole, as the probability of the reflection R̃l.o.

photon is much less than the

horizon value Ra.o.
photon = 1. When γ → 0, the Fresnel coefficients measured by the local and

asymptotic observers, together with the corresponding observations, coincide.

5. Conclusions

The broad purpose of this paper was to study certain novel features of the HKLWH
depending on the parameter γ. The behavior of different energy conditions for HKLWH
were investigated in Section 2, which showed that some were violated depending on the
ranges of γ and the size of the throat r0. It was shown that the gravitational energy EG

was negative on the positive side of the HKLWH meaning attractive gravity. Next, we
studied the influence of γ on the tidal forces in the Lorentz-boosted frame in Section 3,

which showed that the static curvature component R
(s)

0̂2̂0̂2̂
was 0, while R0̂1̂0̂1̂ as measured

in the Lorentz-boosted frame was negative for 0 < γ < 1, which is consistent with the
wormhole topology.

In Section 4, we studied the influence of γ on the Fresnel coefficients R and T by
postulating that the identity of the observed object depended on the probabilistic outcome
of the photon motion probing the object. The underlying idea was explained in the
introduction. The “effective refractive medium” with index n(ρ) for a gravitational field
could be valuable in the sense that it allows one to borrow wisdom from the phenomena
occurring in an ordinary optical medium, for instance, the Fizeau effect [33]. The motion of
light and particles in terms of refractive indices was previously carried out using a new
formulation by Evans and Roenquist [32,46,47]. The application to gravity deriving exact
general relativistic equations was conducted in [27–31,48]. In the spirit of these works,
we introduced the idea of a pre-quantum indeterminacy, proposed by Tangherlini [25],
in identifying the gravitating source object to be either a BH or a WH. That means, we
no longer asked what the object truly was but asked how the object was likely to be
identified by differently located observers using the probe of the pre-quantum probability
flow of photons. Thus, local observers may see the object as a HKLWH, while asymptotic
observers are more likely to observe it as a BH horizon. Such a new possibility of different
identifications of the same object, based on probabilistic outcomes of probes, does not seem
to have been proposed heretofore.

Author Contributions: Conceptualization, R.K.K., R.N.I., and K.K.N.; methodology, R.K.K., R.N.I.,

and K.K.N.; software, R.K.K., R.N.I., and K.K.N.; validation, R.K.K., R.N.I., and K.K.N.; formal

analysis, R.K.K., R.N.I., and K.K.N.; investigation, R.K.K., R.N.I., and K.K.N.; resources, R.K.K., R.N.I.,

and K.K.N.; data curation, R.K.K., R.N.I., and K.K.N.; writing—original draft preparation, R.K.K.;

writing—review and editing, R.K.K., R.N.I., and K.K.N.; visualization, R.K.K., R.N.I., and K.K.N.;

supervision, R.N.I.; project administration, K.K.N. All authors have read and agreed to the published

version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Note

1 Yet another different index N(r) is sensed by a massive particle in motion [27–32]. In the present paper, we deal only with

photon motion taking into account that, in general relativity, the observations depend on the location of the observer. The photon

motion in the effective medium also gives rise to the interesting possibility of the gravitational analogue of the Fizeau effect in the

“effective optical medium” [33].
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