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Tsallis Distribution as a A-Deformation of
the Maxwell-Jiittner Distribution

Jean-Pierre Gazeau

Centre National de la Recherche Scientifique (CNRS), Astroparticule et Cosmologie, Université Paris Cité,
F-75013 Paris, France; gazeau@apc.in2p3.fr

Abstract: Currently, there is no widely accepted consensus regarding a consistent thermodynamic
framework within the special relativity paradigm. However, by postulating that the inverse tempera-
ture 4-vector, denoted as B, is future-directed and time-like, intriguing insights emerge. Specifically,
it is demonstrated that the g-dependent Tsallis distribution can be conceptualized as a de Sitterian
deformation of the relativistic Maxwell-Jiittner distribution. In this context, the curvature of the de
Sitter space-time is characterized by v/A /3, where A represents the cosmological constant within the
ACDM standard model for cosmology. For a simple gas composed of particles with proper mass m,
and within the framework of quantum statistical de Sitterian considerations, the Tsallis parameter g
exhibits a dependence on the cosmological constant given by g = 1+ £cv/A/n, where (. = 11/ mc is
the Compton length of the particle and n is a positive numerical factor, the determination of which
awaits observational confirmation. This formulation establishes a novel connection between the
Tsallis distribution, quantum statistics, and the cosmological constant, shedding light on the intricate
interplay between relativistic thermodynamics and fundamental cosmological parameters.

Keywords: Maxwell-Jiittner distribution; Tsallis distribution; de Sitter quantum field; ACDM
standard model

1. Preamble: Temperature, Heat, and Entropy, That Obscure Objects of Desire

check for It is opportune to start out this contribution by quoting what de Broglie wrote in Ref. [1]
updates . . . c . .
about the relation between entropy invariance and relativistic variance of temperature
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of a macroscopic state is proportional to the logarithm of the number of microstates that
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(a) The covariant viewpoint (Einstein [3], Planck [4], de Broglie [1] ...),
AQ=AQyy ', T=Tyy " 2)
(b) The anti-covariant one (Ott [5], Arzelies [6], ...),
AQ =AQyy, T=Tyy. @3)
(¢) Theinvariant one, “nothing changes” (Landsberg [7,8], ...),
AQ=AQy, T=T. 4)

Also note that, for some authors (Landsberg [9], Sewell [10], ...), “there is no mean-
ingful law of temperature under boosts”.

Nevertheless, more recent approaches (e.g., Ref. [11]) show that there is a covariant
relativistic thermodynamics with proper absolute temperature in full agreement with
relativistic hydrodynamics.

In this paper, we adopt the viewpoint in Section 1 and review de Broglie’s arguments in
Section 2. In Section 3, we remind you of the construction of the so-called Maxwell-Jiittner
distribution presented by Synge in Ref. [12]. In Section 4, we then present the de Sitter
space-time, its geometric description as a hyperboloid embedded in the 1 4 4 Minkowski
space-time, and give some insights of the fully covariant quantum field theory of free scalar
massive elementary systems propagating on this manifold. In Section 5, we then develop
our arguments in favor of a novel connection between the Tsallis distribution, quantum
statistics, and the cosmological constant, shedding light on the intricate interplay between
relativistic thermodynamics and fundamental cosmological parameters. A few comments
end our paper in Section 6.

2. Relativistic Covariance of Temperature According to de Broglie (1948)

Here, we give an account of the de Broglie arguments given in Ref. [1] in favor of the
covariant viewpoint (a).

Let us consider a body B with proper frame Ry, and total proper mass M. It is
assumed to be in thermodynamical equilibrium with temperature Ty and fixed volume Vj
(e.g., a gas enclosed with surrounding rigid wall). Let us then observe B from an inertial
frame R, in which B has constant velocity v = vn relative to Ry. We suppose that a source
in R provides B with heat AQ. In order to keep the velocity v of B constant, work W has
to be performed on B. Its proper mass is consequently modified My — M. Then, from
energy conservation,

1
M) — My)ye> =AQ+W, 7=9(0) = ——, 5
and the relativistic second Newton law,
AP:M()'yv—Mo'yv:/th:%/det:g, ©)
we derive 5
- _ _
AQ = 77*W = (My — Mo)cy 2. )

In frame R, there is no work performed (the volume is constant), there is just trans-
mitted heat AQy = (M], — Mp)c?. By comparison with (7), one infers that heat transforms
as

AQ = AQyy !. (8)
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Since the entropy S = [ dTQ is relativistic invariant, S = Sy, temperature finally

transforms as
T=Toy " 9)

3. Maxwell-Jiittner Distribution

We now present a relativistic version of the Maxwell-Boltzmann distribution for
simple gases, namely the Maxwell-Jiittner distribution [13-15]. We follow the derivation
given by Synge in Ref. [12]; see also Ref. [16], and the recent article [17] for a comprehensive
list of references. Note that this distribution is defined on the mass hyperboloid, and not
expressed in terms of velocities (see the recent [18] and references therein).

Our notations [19] for event four-vector x in the Minkowskian space-time M; 3 and
for four-momentum k are the following:

Mijzsx=(x) = (x0 =xp,x = —x;,i= 1,2,3) = (xo,x), (10)
equipped with the metric ds? = (dx?)? —dx - x = gudxtdxY, gy = diag(1, -1, -1, -1),
k= (k) = (K k). (11)
The Minkowskian inner product is noted by:
x-x = gw,xyx’v = x”x;l — 0% _x. X, (12)

Let k be four-momentum, pointing toward point A of the mass shell hyperboloid
Vi=1k, k- k= m2c2}, and an infinitesimal hyperbolic interval at A, with length

do =mcdw, (13)

3

where dw = e is the Lorentz-invariant element on V,}. Given a time-like unit vector 7,
0

and a straight line A passing through the origin and orthogonal (in the M 3 metric sense)
to n, denote by dQ) the length of the projection of do on A along n. As is illustrated in
Figure 1, one easily proves that

dQ = k-n|dw (=dkifn = (1,0)). (14)

Vor

do = medw

dQ

A

Figure 1. 1 is a time-like unit vector, A is a straight line passing through the origin and orthogonal (in
the Minkowskian metric sense) to 1. The 4-momentum k = (k*) = (k, k) points toward a point A of
the mass shell hyperboloid V;; = {k, k -k = m?c?}. dQ) is the length of the projection, along 1, of an
infinitesimal hyperbolic interval at A of length do = mcdw.
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The sample population consists of those particles with world lines cutting the in-
finitesimal space-like segment dX orthogonal to the time-like unit vector #, as is shown in
Figure 2.

n

dx

M = (x9,x)

Figure 2. C is the portion of the null cone starting at the event M = (x,x) and limited by the
infinitesimal space-like segment dX. orthogonal to the time-like unit vector n. R is the region
delimited by M, the portion of the light cone C, and dX.

Every particle that traverses the segment C of the null cone between M and dX must
also traverse dX (causal cone). Consequently, regardless of the collisions that take place
within the infinitesimal region R bounded by M, the segment of the light cone C, and d%,
the number of particles crossing X, is predetermined as the number crossing C:

V:M-gd2:d2/+N(Lk)dQ, (15)
VY”

where N is the numerical-flux four-vector and N (x, k) is the distribution function. By
the conservation of four-momentum at each collision in a simple gas, the flux of four-
momentum across dZ¥ is predetermined as the flux across C,

T, ndS = dx /V+ N (x,k) ck,dQ, (16)

where T = (Tyy) is the energy-momentum tensor.
The most probable distribution function N at M is that which maximizes the following
entropy integral:

F—_dx /V+ N (x,k) log N'(x, k) Q. (17)

Variational calculus with five Lagrange x-dependent multipliers « and 7, associated
with constraints on v and T), - n, respectively, leads to the solution

N(x, k) = C(x) exp(—y(x) k), C=e"" (18)

Scalar C and time-like four-vector 7 are determined by the constraintsonv = N - ndZ
and Ty, - nd:

c /v ke Tfdw=N,, C /v ckykye T dw = Ty (19)

established by taking into account that # is arbitrary.
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With the equations of conservation
9-N=0, 9-T, =0, (20)

We finally obtain as many equations as the 19 functions of x: C, 1, N,T. The following
partition function is essential for all relevant calculations.

_pk Ok 4mme

Z(y) = /V+e s = mKl (mey/777) 1)

m

where K, is the modified Bessel function [20]. Hence, the components of the numerical flux
four-vector N and of the energy tensor T in (19) are given in terms of derivatives of Z and,
finally, in terms of Bessel functions by

B Z 4tm>c?y,
27 K3 (mcm) K; (mcm)
TV:Ccﬁ:Célnmc me——————n2Nyfly — —————0u | . (23)
U 317? 877 (’7 ) /2 Mull E K z 8

For a simple gas consisting of material particles of proper mass 1, the components of
the energy—momentum tensor T are given by

Tyv = (P + P)uyuv — P8&uv (24)

where p is the mean density, p is the pressure, and u = (u;, = % ,u-u =1,is the mean
four-velocity of the fluid. Hence, by identification with (23), Synge [12] proved that a

relativistic gas consisting of material particles of proper mass m is a perfect fluid through the
relations:

My
uy = , (25)
VIR
Kg(mc 7] 17)
p+p = Cdrm’c ——, (26)
VI
Ky(me, /M7
p= Carrm?c3 ( — 7) (27)

1

From (26) and (27), we derive the expression of the density:

_ C‘ﬁij K (mey/777) = (meyn) _ _c‘ﬁﬁj;rq (meyiri). — @s)

Let us define the invariant quantity, i.e., the projection of the numerical flux (57) along
the four-velocity of the fluid,

4rm?c?

E .

M=N-u=C

K, (mc\/ﬂ) . (29)

B
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This expression, which represents the number of particles per unit length (“numerical
density”) in the rest frame of the fluid (19 = 1), allows us to determine the function
C = C(x), and to eventually write Distribution (18) as:

_ No cu-k
N(llk) o mzckBTaKz(mcz/kBTa) xp (_ kBTa ) (30)

The term T, := ¢/ (kg /77 -17), where kg is the Boltzmann constant, is a “relativistic”
absolute temperature. It is precisely the relativistic invariant, which might fit pointview (c).
Note that, with this expression, (27) reads as the usual gas law:

p = NokgT,. 31)

The Maxwell-Boltzmann non relativistic distribution (in the space of momenta) is
recovered by considering the limit at k3T, < mc? in the rest frame of the fluid:

2 2

mc [ tkgT, — me

K| — | &~/ =——¢ FrpTa
2(kBTa> 2me ¢

~ No(2rrmkpT,) %% exp (—

koc — mc

2 K?
~ -3/2 _
T, ) ~ No(2rtmkgT,) exp( ks T, > (32)

Inverse Temperature Four-Vector

The found distribution (30) on the Minkowskian mass shell for a simple gas consisting
of particles of proper mass m leads us to introduce the relativistic thermodynamic, future
directed, time-like four-coldness vector B, as the four-version of the reciprocal of the
thermodynamic temperature (see also Ref. [2]):

cu

T, L= (B°=po>0,p'=—pi) = (Bo, B), (33)

with absolute coldness as relativistic invariant,

/6B = kBCTa = Ba. (34)

It is precisely the way the component B transforms under a Lorentz boost, =
¥(v)(Bo — v - B/c), which explains the way the temperature transforms a la de Broglie,
T + T’ = Ty~ 1. So, in the follow-up, we call Maxwell-Jiittner distribution the following

relativistic invariant: IV

0

_ ¥ —B-k

mcKy (mcpBq) exp( p *)’ (35)

N(k) =

where the space-time dependence holds through the coldness four-vector coldness field

B = B(x).

4. de Sitter Material

We now turn our attention to the de Sitter (dS) space-time and some important features
of a dS covariant quantum field theory.

4.1. de Sitter Geometry

The de Sitter space-time can be viewed as a hyperboloid embedded in a five-dimensional
Minkowski space M 4 with metric Sup =diag(1, —1,—1, —1, —1) (see Figure 3). Of course,
one should keep in mind that all choices of one point in the manifold as an origin are
physically equivalent, as are the points of the Minkowski space-time Mj 3.

Mg = {x € R x? = Sup x*xP = —Rz}, a,p=0,1,273,4, (36)
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3
where the pseudo-radius R (or inverse of curvature) is given by R = A within the

cosmological ACDM standard model. The de Sitter symmetry group is the group SOy(1,4)
of proper (i.e., det. = 1) and orthochronous (to be precised later) transformations of the
manifold (36). This group has ten (Killing) generators K,z = x40dg — xp0x.

de Sitter space-time

i
\“\&{Q&‘\,}Q\\\\

‘&3&\3\\\

—F
—
—
=
=i
==
=

T

1|
\

=
==
=
—

—

Space direction 4

Figure 3. The de Sitter space-time as viewed as a one-sheet hyperboloid embedded in Minkowski

space M 4.

4.2. Flat Minkowskian Limit of de Sitter Geometry

Let us choose the global coordinates ct € R, n € S?,r/R € [0, 7] for the dS manifold
Mg. They are defined by:

Mg > x = (xo, xb x?, %8, x4) = (xO, X, x4)
= (Rsinh(ct/R), Rcosh(ct/R)sin(r/R)n, Rcosh(ct/R) cos(r/R)) = x(£,x). (37)

At the limit R — oo, and the manifold Mg — M 3, the Minkowski space-time tangent
to Mg at, say, the de Sitter point Oy5 = (0,0, R), chosen as the origin, since

Mg 2 x R% (Ci’,l‘ = rn,R) = (E,R), le M1,3. (38)

—» 00

At this limit, the de Sitter group becomes the Poincaré group:
lim SO(1,4) = PL(1,3) = My 3 % SOy(1,3). (39)
—00

Consistently, the ten de Sitter Killing generators contract (in the Wigner-Inénii sense) to
their Poincaré counterparts Ky, I'T,, p = 0,1,2, 3, after rescaling the four Ky — 1T = Ky, /R.

4.3. de Sitter Plane Waves as Binomial Deformations of Minkowskian Plane Waves

The de Sitter (scalar) plane waves are defined in [21] as

Prz(x) = (ng> , XE€Mg, C€Cy4, (40)

where C14 = {¢ € R®, &- & = 0} is the null cone in M 4. They are solutions of the
Klein—Gordon-like equation

1
5 MapM*Pprz(x) = RPOpprz(x) = T(T+3)prz(x),
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where Mg = —i(x40p — xp0y) is the quantum representation of the Killing vector K,g,
and Op stands for the d”Alembertian operator on Mg. For the values

3 .
T=—-+41iv, veR, (41)

2

7

they describe free quantum motions of “massive” scalar particles on Mg. The term “massive’
is justified by the flat Minkowskian limit R — oo, i.e., A — 0. This limit is understood as
follows.

(i) First, one has the Garidi [22] relation between proper mass m (curvature independent)
of the spinless particle and the parameter v > 0:

me D2 ), R 1 Rme_me [3
" Re 4 - 12 4Rlarge B B VA

h
The quantity % is a kind of at rest de Sitterian energy, which is distinct of the proper
mass energy mc? if A # 0.
(ii) Then, with the mass shell parameterization ¢ = (Q’O = ,%,C = m%,C‘l = 1) € Cf 4 one
obtains at the limit R — oo:
Grp(x) = (x-G/R)Z o MU= (et ). (43)
—00
This relation allows us to consider Function (40) as deformation of the plane waves

propagating in the Minkowskian space-time M 4. This pivotal property justifies the name
“dS plane waves” granted to Function (40).

4.4. Analytic Extension of dS Plane Waves for dS QFT
T
Mg, due to the possible change of sign of x - . A solution to this drawback is found
through the extension to the tubular domains in the complexified hyperboloid M§ =
{z=x+iy € C°, 22 = g3 2"z = —R? or, equivalently, x> —y* = —R?, x -y = 0}:

The dS plane waves ¢, s(x) = = —3/2 +iv, are not defined on all

TH:=T* Mg, TF =M +iVT, (44)

where the forward and backward light cones V* := {x €My, x> /x2+ (x4)2} allow
for a causal ordering in M 4.

T
Then, the extended plane waves ¢ ¢(z) = <ZR€> are globally defined for z € T+

and ¢ € C,.

These analytic extensions allow for a consistent QFT for free scalar fields on My: the
two-point Wightman function W, (x, x") = (Q, ¢(x)¢(x')Q)) can be extended to the com-
plex covariant, maximally analytic, two-point function having the spectral representation
in terms of these extended plane waves:

W "o —3/2+iv n—3/2-iv Ak - +
V(Z/Z)—Cv/ (z-8) (¢-2) et zeT ,ZeT™. (45

Vi UV 0

Details are found in Ref. [21] and in the recent volume [23].
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4.5. KMS Interpretation of W, (z,2") Analyticity

From the analyticity of W, (z,z’), we deduce that W, (x, x") defines a 2i7tR /¢ periodic
analytic function of ¢, whose domain is the periodic cut plane

Cy ={t € C,Im(t) #2nnR/c, n € ZYU{t, t —2innR/c € Iy, n € L},  (46)

where I, v is the real interval on which (x — x’)? < 0. Hence, W, (z,z’) is analytic in
the strip

{teC,0<Im(t) <2inR/c}, (47)
and satisfies
Wy (X' (t+,x),x) = 11%1+ Wy ((x,x'(t+ ' +2inR/c —ie,x)), ' €R. (48)
€—

This is a KMS relation at (~ Hawking) temperature

he hc A
Ta= 2rkgR 2wk V 3° (49)

5. de Sitterian Tsallis Distribution
5.1. Tsallis Entropy and Distribution: A Short Reminder

Given a discrete (resp. continuous) set of probabilities {p; } (resp. continuous x — p(x))
with Y, p; = 1 (resp. [ p(x)dx = 1), and a real g, the Tsallis entropy [24] is defined as

Sq<pz~>=kqi1(1—lzp?> resp. Sylpl = 5 (1= [(par). e0)

Asq —1,S4(pi) — Ssg(p) = —k¥; piIn p; (Boltzmann-Gibbs). The Tsallis entropy
is non additive for two independent systems, A and B, for which p(A UB) = p(A) p(B),
Sq(AUB) = S4(A) +S4(B) + (1 —q)S4(A)Sq(B). A Tsallis distribution is a probability distri-
bution derived from the maximization of the Tsallis entropy under appropriate constraints.
The so-called g-exponential Tsallis distribution has the probability density function

(2= )AL — (1= Ax]" /070 = (2— g)Aeg(—Ax), (51)

where g < 2 and A > 0 (rate) arise from the maximization of the Tsallis entropy under
appropriate constraints, including constraining the domain to be positive. More details are
given, for instance, in Ref. [25].

Let us now show how the Tsallis distribution can be viewed as a A-deformation of the
Maxwell-Jiittner distribution.
5.2. Coldness in de Sitter

Analogous with the de Sitter plane waves, we introduce the following distributions
on the subset ~ V| of the null cone Cff4 ={¢eMyy,&-¢=0,8 >0}

. T 0
¢T,§(x) = ([]BF') , beMsg, g = (k >0, k,—l), (52)

mc mc
where one should note the negative value —1 for ¢4, and
Mp = {b € My, b? = gop b°6P = —B?}, &, =0,1,2,3,4, (53)

is the manifold of the “de Sitterian five-vector coldness fields” b = b(x).
Like for Mg, we use global coordinates on Mp:

pPeR, B=|BllneR® |Bl/Bel0n], (54)
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with

Mg 3 b =b(B) = (67,061,062, 6%, 6%) = (b7, b, %)

- (Bsinh(ﬁO/B), Bcosh(ﬁO/B)sin(||,8||/B)n,—Bcosh(,BO/B)cos(||,BH/B)), (55)
in such a way that at large B we recover the Minkowskian coldness p:

Mp b ~ (B B).

—00 —

We now need to connect the de Sitterian coldness scale B with A. Inspired by the

relativistic invariant g, = and the KMS temperature Ty = 22—%3 %, we write

kBTu
21 /3 n
Bx —4/—, ie, B= 56
<=\ xr Lew A (56)
where n is a numerical factor. Note that, with the values
Acurrent = 1.1056 x 1072 m™2, h = 1.054571817... x 1073475,
one obtains B ~ 0.9 x 10% n SI (inverse of a momentum).
5.3. A de Sitterian Tsallis Distribution
We now consider the distribution on Mg x V. with B = ﬁ:
b'C —mcB b(] ko b k b4 —mcB
k) =Cg| —=2 =Cg|l =——-—=-— . 57
N (b,k) B(B) B\ B mc Bmc+B ©7)

0 k
bGMB, €:<k>0//1)r
mc mc
where the constant Cp involves an associated Legendre function of the First Kind [26].
With the global coordinates (55), and with the constraint ‘30 /B € [0,7/2), the distri-

bution N (b, k) reads

N (b,k)

— cosh(p°/B) sin(|| B/ B)

kO n-k —mcB
mc mc >

=Cg <cosh(,80/B) cos(||B||/B) + sinh(8°/B)

= Cpexp [—ch log (cosh(ﬁo/B) cos(|| Bl /B))}

sinh(B°/B) ,}fTOC — cosh(p°/B) sin(|| Bl /B) %:&
cosh(B0/B) cos(|| ||/ B) '

X exp [—ch log (1 + (58)

At large B this expression becomes the Maxwell-Jiittner distribution:

N(bk) ~ Cge PE

" B—o
Hence, going back to the original expression

_ b'g —ch_ p0 kO b k p4 —mcB
N(b,k)—C3<B) _CB<Bch'mC+B)

bt —mcB b-k —mcB
= —_ 1 _— = 0
CB<B) ( +b4mc> , b:=(b",0b),
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and introducing
1 A
=1+ —=1
1 *oncB t e 9
We finally obtain the Tsallis-type distribution
b4\ " B =
vep=c(f)  (1-a-pger) )

Analogously to (21) and all subsequent determinations of thermodynamical quantities,
the following partition function is essential for their transcriptions to the de Sitter case:

b4 —mcB h . k —mcB d3k
zsob)=(5) L (4 gme) (€D
VA bo ek
= 47m“c 3 / 1+ o cosh t sinh” t dt. (62)
0

With the following integral representation of the associated Legendre function of the
First Kind P} (z) [26],

Pl (z) =

271/ 2 1 _”‘/2 00
I( v(z mr?V 7y ) (= eoshe) T sink? rt, (63)
v — Jo

valid for z ¢ (—co, —1] and Re(—u) > Re(v) > —1, the function (61) reads as

B/2-3/4
B mcB B2_p. mc 4
Zas(b,k) = (871)%?T(1 — mcB) (b) (;’b Pl”}c28—3/2 <b> (64)
0 b5 bo

6. Conclusions

In this contribution, we have forged a groundbreaking link between the Tsallis dis-
tribution, quantum statistics, and the cosmological constant, illuminating the complex
interplay between relativistic thermodynamics and a fundamental cosmological parameter.

Our key findings are encapsulated in Equations (59) and (60). The intricate technical
details of the associated thermodynamic features (flux number, energy-momentum tensor,
etc.) in the de Sitter space-time, along with their physical (and astrophysical!) implications
and determinations (e.g., numerical factor(s) n), are reserved for future exploration. In
this endeavor, analogous studies, such as those found in Refs. [27,28], may provide useful
insights and avenues for the advancement of this project.
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