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ABSTRACT: We present the first application of the Wavelet Scattering Transform (WST) in
order to constrain the nature of gravity using the three-dimensional (3D) large-scale structure
of the universe. Utilizing the QUIJOTE-MG N-body simulations, we can reliably model the
3D matter overdensity field for the f(R) Hu-Sawicki modified gravity (MG) model down to
kmax = 0.5 h/Mpc. Combining these simulations with the QUIJOTE vCDM collection, we
then conduct a Fisher forecast of the marginalized constraints obtained on gravity using the
WST coeflicients and the matter power spectrum at redshift z=0. Our results demonstrate
that the WST substantially improves upon the 1o error obtained on the parameter that
captures deviations from standard General Relativity (GR), yielding a tenfold improvement
compared to the corresponding matter power spectrum result. At the same time, the WST
also enhances the precision on the ACDM parameters and the sum of neutrino masses,
by factors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite the
overall reduction in the WST performance when we focus on larger scales, it still provides a
relatively 4.5x tighter 1o error for the MG parameter at kpax = 0.2 h/Mpc, highlighting its
great sensitivity to the underlying gravity theory. This first proof-of-concept study reaffirms
the constraining properties of the WST technique and paves the way for exciting future
applications in order to perform precise large-scale tests of gravity with the new generation
of cutting-edge cosmological data.
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1 Introduction

The dramatically increasing quantity and quality of cosmological observations of the Large-
Scale Structure (LSS) of the universe in the coming decade creates an exciting landscape
for the exploration of the deepest mysteries in modern fundamental physics. The recent
announcement of the first cosmology results [1-3] by the Dark Energy Spectroscopic Instrument
(DESI) [4, 5] marked the beginning of the Stage-IV era of precision cosmology, which will soon
also include the corresponding analyses by the Vera C. Rubin Observatory Legacy Survey
of Space and Time (LSST) [6, 7], Euclid [8], the Nancy Grace Roman Space Telescope [9]
and SPHEREXx [10]. By accurately tracing the distribution of galaxies in the 3-dimensional
(3D) LSS of the universe, which sensitively depends on the interplay between its fundamental
constituents and interactions, we are able to perform stringent tests of our assumptions
about the physics of the early universe and other light relics [11-13], the nature of dark
matter [14], massive neutrinos [15, 16], the accelerated expansion of the universe [17] and
also the properties of gravity at large scales [18-21].

Despite being the weakest out of the 4 fundamental interactions, gravity played a central
role in shaping the LSS of the universe, driving the instabilities that converted the primordial
fluctuations into the inhomogeneous pattern of galaxies observed at late times. As a result,
the LSS is a valuable probe that enables precise cosmological tests of gravity. These tests
do not come in a vacuum; General Relativity (GR), our best theory of classical gravity,



has successfully passed a wide array of tests, ranging from laboratory and Solar System
experiments [22] all the way to the strong field regime [23] and gravitational wave (GW)
observations [24]. Its validity on the cosmic scales, however, relies upon an extrapolation of
the above conclusions by many orders of magnitude, a fact that has recently also come into
question in connection to the discovery of the accelerated expansion of the universe [25, 26]
and the cosmological constant problem [27] associated with its standard A Cold Dark Matter
(ACDM) explanation.! As a result, the wealth of incoming cosmological data provides us with
the timely opportunity to accurately test the large-scale nature of gravity and its potential
links to cosmic acceleration [18-21].

Even though the LSS is in principle a great arena for testing fundamental physics, fully
utilizing it is far from trivial in practice. The nonlinear evolution of the primordial Gaussian
density field has caused the dispersion of its information content [30], which was originally
fully encoded by the power spectrum, into higher order correlations [31-37] that are expensive
to extract and perhaps unable to even extract the information that is available in the deeply
non-Gaussian regime [30]. On the particular front of testing gravity, these challenges are
further exacerbated by the ‘screening’ mechanisms that various modified gravity (MG) theories
typically invoke in order to restore their viability in the Solar System [38, 39]. Suitably
tailored interaction terms in the scalar field potential basically manage to suppress the MG-
induced ‘fifth forces’ in regions of high density and/or gravitational potential, where GR is
recovered [40-45]. Given, however, that it is mainly these high overdensities that dominate the
signal in the 2-point function, what keeps such theories viable also makes them very challenging
to detect using the power spectrum, even with the next generation of cosmological surveys.

Aiming to overcome these sets of challenges, a wide array of alternative techniques have
been developed, with a primary focus on efficiently recovering the additional non-Gaussian
information that lies beyond the power spectrum, in order to fully utilize the constraining
potential of the wealth of upcoming cosmological data. As far as testing gravity is concerned,
for example, transformations that “mark” the significance of low-density, unscreened, regions
have demonstrated great promise for improving cosmological constraints [21, 46-50], matching
and exceeding their performance in the context of conventional cosmologies [30, 46, 47, 51-63].
These are joined by a long list of related approaches to galaxy clustering, involving for instance
the use of Minkowski functionals [64-69], density-split clustering [70-74], proxy higher-order
statistics [75-81], k-nearest neighbors [82, 83], 1-point cumulants [84, 85] or the minimum
spanning tree [86] (with a similar level of activity in the context of weak gravitational lensing
(WL) [87]). On the other end of the interpretability spectrum, modern Artificial Intelligence
(AI) seeks to capture the entire field-level information, without any compression, exhibiting
very promising results in preliminary applications [88-95]. Identifying the approach that
delivers the optimal trade-off between performance, cost and interpretability for a given
application is one of the most pressing open questions in the field of precision cosmology.

A more balanced path between the above two fronts can be taken by the Wavelet
Scattering Transform (WST) [96, 97], which is a novel summary statistic that subjects a
target field to a cascade of successive convolutions with a set of localized wavelets, followed by

Tt should also be noted that recent cosmological observations may be providing hints for a potential
deviation from a background evolution consistent with a cosmological constant [3, 28, 29].



a nonlinear modulus and a global averaging operation. Given the close resemblance between
these basic WST operations and the ones performed by a Convolutional Neural Network
(CNN) (convolution, nonlinearity, pooling), the former can be alternatively viewed as a fixed-
kernel shallow neural net, delivering thus a more favorable trade-off between performance
and interpretability [30, 98-100]. As a result, its use for non-Gaussian information extraction
has been increasingly growing in a broad range of physical applications [101], such as in
astrophysics [102-104], cosmology [105-111, 111-117] or molecular chemistry [118, 119].
Notably, it has been recently successfully applied to galaxy clustering observations, enabling
substantial improvements in the derived cosmological constraints compared to the conventional
2-point correlation function [108, 109].

Our previous applications [107-109] were mainly focused on constraining the cosmological
parameters of the standard ACDM scenario, with only a brief consideration of simple
extensions to it in [109], due to the limitations imposed by the available simulations [120, 121].
Motivated by these encouraging findings in the context of ACDM, in this work we move
one step further and perform the first WST application to test a modified theory of gravity,
the popular f(R) Hu-Sawicki model [122]. Using a new set of state-of-the-art simulations for
this cosmological scenario, that expand upon the publicly available QUIJOTE suite [120, 123],
we perform a WST Fisher forecast using the real space matter overdensity and compare
against the constraints predicted by the standard matter power spectrum at redshift z = 0.
Our work lays the foundation for obtaining precise constraints on the nature of gravity
using the WST technique.

This paper is structured as follows: in section 2 we introduce the Wavelet Scattering
Transform, in section 3 the modified gravity model that we are going to focus on, while in
section 4 we describe the simulations we use to make our predictions for it. We then proceed
to lay out all the details of our Fisher forecast framework in section 5, before presenting
our results in section 6. Finally, we summarize our conclusions in section 7. More technical
details are discussed in appendices A, B and C.

2 Wavelet Scattering Transform

First proposed in the context of signal processing and computer vision applications, the
Wavelet Scattering Transform (WST) [96, 97] is a novel summary statistic that was intended
to shed light on the performance of CNNs. As such, it can simultaneously also serve as a
more interpretable alternative. Specifically, consider I(x) to be a physical field of interest
defined in an arbitrary number of dimensions, and also 1;, ;, (x) to be a localized wavelet, the
spatial and angular support of which is characterized by the indices j; and [, respectively.
If x denotes a convolution, then the operation

S1 = ([1(x) * .1, (X)) (2.1)

will extract a global (through spatial averaging over the volume of the field) quantity S; which
quantifies the degree of clustering around scales j; and [; (through the wavelet convolution).
The successive repetition of the fundamental operation (2.1) up to the n* order can then
generate a cascade of such WST coefficients, S, given explicitly by the following hierarchy



of expressions:

So = (I(x)]),
S1(71, 1) = (H(x) * ¢jp.1 (X)1) (2.2)
Sa(j2, b2, g1, 1) = (| ([1(x) % gy 1, (X)) * a1 (X))

up to n = 2. Eq. (2.2) is referred to as a scattering network, the coefficients of which can
summarize the strength of clustering in the input field when combined with a family of
localized wavelets, which we will define below. In direct analogy to the familiar hierarchy of
n-point correlation functions, it can be proven that a WST coefficient of order n contains
high-order information related to the correlation function of order up to 2" [96, 99]. Thanks
to its fundamental property of not elevating the input field to very high powers, however,
it is more efficient in the highly non-Gaussian regime because it does not amplify the tail
of the probability distribution, unlike the traditional moment expansion [30, 101]. The
same property leads to a greater degree of robustness and numerical stability, as we will
also find in this analysis, while the compact wavelet basis in eq. (2.2) guarantees that the
extracted information is not dispersed among a very high-dimensional data vector [101].
Given that a CNN essentially subjects an input field to a convolution with a kernel, followed
by a nonlinear operation, before summarizing with a global pooling operation, it can be
immediately understood why the WST can be viewed as a more interpretable equivalent,
that is, as a fixed-kernel (wavelet) shallow neural net lying at the middle-ground between a
powerful yet “black box” CNN and the well-understood but limited power spectrum. This
makes it a valuable novel summary statistic with a wide range of applications considered
across the physical sciences [101].

If we slightly relax the requirement that the field enters the WST operation in a strictly
linear fashion, as in eq. (2.2), and allow it to be raised to a more generic power ¢ # 1 instead,
we end up with the generalized version

So = ((x)|),
S1(g1s ) = (%) * gy (X)) (2.3)
Sa (g2, b2 g1; 1) = ([ ([(x) # 4y 1y () * 1o ()]9)

which essentially provides the flexibility to highlight the overdense or underdense regions of
the LSS (when working with the cosmic density field), by choosing powers ¢ > 1 or ¢ < 1,
respectively. Given that cosmic voids are known to be sensitive probes of fundamental
physics, such as the properties of massive neutrinos or gravity, the latter choice is of particular
interest to cosmological applications, a fact that we already confirmed for the neutrino mass
constraints in ref. [107]. As a result, we will adopt the same choice of eq. (2.3) in this modified
gravity WST application as well, as we will further discuss below.

For a particular choice of a 3-dimensional (3D) field as input, which will be the case
in our cosmological application, a convenient wavelet basis can be generated starting with
a solid harmonic mother wavelet:

m _ 1 —|x|?/202 Iy m i
000 = e M (). (2:4)




that was first applied in the context of 3D molecular chemistry [118, 119], but which we
also adopted in our previous galaxy clustering applications [107-109]. If Y} in eq. (2.4) is
a Laplacian spherical harmonic and ¢ the Gaussian width in pixel units, then a dilation
of the mother wavelet will give:

7i(x) = 27y (270x), (2.5)

which builds a family of wavelets spanning different dyadic scales, 27, and angular frequencies
[, after we sum over the second spherical harmonic index m. Adopting this configuration,
the WST network eventually takes the following form:

So = ([1(x)[%),
m=l %
S1(j1, ) = << > (x) *T/fﬂ,zl(X)P) >v (2.6)
m=—I

[N]ES)
~_—

m=ly
Sa(j2, j1. 1) = <( > UG, h) (%) ¢§'§,z1(x)|2)

m=—I

where

m=lq %

Ui(j1, ) (x) = ( Y H(x)« ¢}T,zl(><)\2) : (2.7)
m=—I

Aside from the solid harmonic wavelets that we adopt in this analysis, other applications

have considered bump-steerable wavelets [110, 112], Morlet wavelets [105, 106] or wavelets

with a preferred direction [103, 113].

Furthermore, and staying consistent with previous applications [105, 107, 108, 118, 119],
we further reduce the dimensionality of the resulting WST data vector by discarding second
order coefficients for jo < j1, since the 1¢ order convolution over j; washes out all information
below that scale, and also proceed with lo = [{, which provides a reasonable compromise
between performance and computational cost.

This configuration leads to a total of

So+ 8148y =1+ (L+1)(J+2)(J +1)/2 (2.8)

WST coefficients up to 2" order, with the spatial and angular indices running in the
following range

(s,0) e ([0,...,J—1,J],[0,...,L —1,L]), (2.9)

respectively. For an input field resolved using NGRID cells on each dimension, the maximum
spatial scale cannot exceed J < log,(NGRID), given that the wavelet dilations scale as 27.

Summarizing, the overall WST configuration is determined by the values of J, L, ¢ and o,
which the user is free to choose based on the particular application. We note that technically
not all these parameters are completely independent: for instance, the Gaussian width is
typically adjusted based on the other parameters in order to achieve a desired coverage of



the Fourier space, and/or quality factors can likewise be introduced for a specific spectral
resolution. We will justify how we pick their values for this particular analysis in the following
sections. Finally, given an input field I(x) of resolution NGRID? 2 the WST coefficients (2.8)
can be evaluated from eq. (2.6), using the public KyMATIO package [124].3

3 Gravity model

Testing General Relativity against competing alternatives has a long history that traces all
the way back to its original formulation; for an overview see [22]. Ever since the discovery
of the accelerated expansion of the universe [25, 26] and the subsequent dawn of precision
cosmology, many such approaches of modifying GR have been naturally increasingly focusing
on cosmological scales [18-21]. In order to evade the tight constraints already placed on
gravity in the strong regime [23] and the vicinity of our Solar System [22], while at the
same time being able to predict detectable signals at cosmic scales, these alternative gravity
scenarios typically invoke a dynamical screening mechanism that restores their viability at
smaller scales [38-45].

One of the most popular such scenarios is the f(R) class of theories [125], in which a
suitably chosen function of the Ricci scalar, R, modifies the Einstein-frame expression of
the Einstein-Hilbert action S, as follows:

S— /d4 [ngg ) vzl (3.1)

where Gy is the Newtonian gravitational constant, g the determinant of the metric tensor
and Ly, the Lagrangian density of the matter sector. In the limit f(R) = 0 the standard GR
expression is recovered, while non-zero values of the modifying function free up an additional
degree of freedom, fr = df(R)/dR, that can potentially cause self-acceleration [126]. In the
weak-field regime and under the quasi-static approximation, the scalar field equations become:

1
VQCI)N = 47TGNCL25,0m - §v2fR7

2 8 G 2
Vg = —%«m - ”Twépm,

(3.2)

where dpn, and 0R are the matter density perturbations and the perturbation of the Ricci
scalar at a scale factor a, respectively. Eqgs. (3.2) essentially describe how the “scalaron”
fr sources an additional fifth force, in addition to the standard Newtonian contribution
described by the Poisson term.

Arguably the most popular member of this class, which is the one we are going to work
with in this analysis, is the Hu-Sawicki model [122], with

C m2 "
f(R) = —m? Cs (1R(/Rn42)n)+ 1’ (3'3)

2An additional layer of smoothing can be applied to the field in case we want to ensure that small-scale
sensitivity is completely removed beyond a fixed cut-off, as we will explain below.
3 Available in https://www.kymat.io/.
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where Hj denotes the Hubble constant, ), the fractional matter density evaluated today,
m = Hyv/Qm, and c1, ca & n are free parameters of the model. When we restrict our attention
to background histories exactly matching the ACDM one, with vacuum fractional energy
density Q,, we end up with

= C1 Qm n+1
= n=(-—" 3.4
=13 (5@, o) 34

which effectively reduces the number of free parameters to the pair fr, & n that fully
characterize the model in this case. The quantity fRO corresponds to the average (over the
universe) value of the scalaron, fr, evaluated at redshift z = 0. Larger fRO absolute values
lead to stronger deviations, with fRO — 0 corresponding to the GR limit. The popularity of
this scenario stems from the fact that it realizes the chameleon screening mechanism [40] (the
other popular class being the Vainshtein mechanism [45]); that is, the scalaron fg acquires a
non-zero mass, m?ﬁ = % fgfl{, which leads to an exponential Yukawa-type suppression of the
fifth force. In high-density regions the field becomes very massive, heavily suppressing the
deviations such that GR is recovered. As a result, it serves as a very useful toy model for
testing modified gravity theories with a screening phenomenology. Last but not least, we
note that one of its characteristic signatures is the scale-dependence of the growth factor
even at the linear level, since the MG field has a non-zero background mass as well, given by:

1 n

1 \2 (a3 +49,)" "2

m(a) = < _ ) ( a + A2+1 7 (35)
2| fR,| (Q +490) 7

which leads to the following evolution of the linear growth factor, Dy:

Dy, +2HD,, = §Qm(a)H2DmM, (3.6)
2 Gy
with e ) )
off(k,a 1 k
T4 gy 5 3.7
Gn * 3 k2 + a’?m?(a) (37)

We notice that the enhancement reaches a maximum value of % at scales below the field
Compton wavelength, r < A\, ~ 1/am(a). Conversely, the growth factor reduces to its
standard GR form for large values of the background mass (equivalently, at scales r > A.).

4 Simulations

In order to be able to properly assess the extent to which higher order statistics such as the
WST can allow us to extract the non-Gaussian information encoded in the cosmic density field,
we need to accurately model structure formation down to the nonlinear scales, a step that can
be reliably performed only through N-body simulations. In this work we utilize the suite of
the QUIJOTE simulations [120],* which have been ideally designed to enable Fisher forecasts
and parameter inference in a simulation-based manner. These are N-body simulations run
using the state-of-the-art TreePM code Gadget-III [127], using a resolution of 5123 cold dark

“https://quijote-simulations.readthedocs.io/.
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matter (CDM) particles placed inside a simulation cube with a side equal to 1.0 Gpc/h. The
runs were initialized at a redshift z; = 127 using second order Lagrangian Perturbation Theory
(2LPT), and evolved the dynamics all the way to z = 0. The fiducial configuration consists of
15,000 random realizations run for a cosmology determined by the following parameter values:
Qp, = 0.049, Q,, = 0.3175, h = 0.6711, ns = 0.9624, og = 0.834, sum of the neutrino masses
M, = 0.0eV and dark energy equation of state w = —1. Furthermore, in order to enable
the numerical evaluation of derivatives needed for Fisher matrix calculations, additional
simulations have been run for step-wise variations of each one of the base parameters, while
keeping the rest fixed, and for 500 phase-matched realizations for each pair. For the neutrino
mass case, where the fiducial value is M, = 0.0eV and cannot get negative values, 3 steps have
been run for values M;" = 0.10eV, M+ = 0.20eV and M+ = 0.40eV, using 5123 neutrino
particles alongside CDM, in order to enable the evaluation of high order derivatives using a
forward-stepping scheme. Because these neutrino simulations were initialized using the first
order, Zel’dovich Approximation (ZA), instead, 500 additional realizations have been run for
the fiducial cosmology but with ZA initial conditions, in order to match this configuration.
All the associated details are presented in table 1 of ref. [120] and the related discussion.

In addition to the above collection of ¥CDM simulations, that we have already used
in our previous WST application [107], in this work we employ a new set of QUIJOTE-MG
simulations [123],° which expand the previously described public suite in order to enable
studies of modified gravity. The highly nonlinear nature of the screening mechanisms that
MG models typically possess leads to slow convergence when attempting to integrate the
scalar field equations (3.2) with N-body simulations, significantly increasing the associated
computational cost. Even though many approaches in the literature have attempted to
circumvent this issue using a combination of analytical [128—132], emulation [133, 134] or
hybrid techniques [135-137], there has still been a scarcity, relative to standard models, of
available mocks for simulation-based investigations of beyond-GR theories. Thanks to this
new set of simulations, we are able to properly forecast constraints to gravity alongside other
ACDM parameters while working down to the nonlinear regime. In particular, Quijote-MG
contains N-body simulations for the Hu-Sawicki model introduced in section 3, that were
performed using the code MG-Gadget [138], which is a MG expansion of Gadget [127]. Among
a total of 4,048 simulations, it contains 4 cases corresponding to increasing values of parameter
fro (equivalent to increasing degrees of deviation from GR), in a step-wise fashion, each one
of which was initialized (at z; = 127) using ZA initial conditions for the same 500 realizations
as the vCDM derivative grid described above. In increasing order of their corresponding fRO
value, we label these steps as fr,, fRpp» fRppp @0 fRpppp> With fRO values:

{fRys fRops fRopss FRoppp} = 1—5 X 1077, =5 x 1075, =5 x 107°, =5 x 107}, (4.1)

while the second Hu-Sawicki model parameter is always kept fixed to n = 1. We note that
viable predictions of this model span multiple orders of magnitude in the parameter fRO,
with fg, ~ 1077 being practically indistinguishable from GR and fg, ~ 10~* leading to very
pronounced deviations, which, as a result, motivates the range and choice of logarithmic
steps (4.1) for our simulations. In the next section we will explain how these can be combined

Shttps://quijote-simulations.readthedocs.io/en /latest /mg.html.


https://quijote-simulations.readthedocs.io/en/latest/mg.html

Figure 1. Visualizations of the large-scale structure obtained by an instance of the GR simulation
[left] and by the MG fr___ simulation [right], both at z = 0 and for the same set of initial conditions.

PPPP

to evaluate numerical derivatives with respect to deviations from GR. The output of the
simulations, including both dark matter particles and also halo catalogs, was saved at redshifts
z=3,2,1,0.5,0. In addition to these 4 x 500 =2,000 simulations available for the step-wise
variations of fRO, a second set of 2,048 runs was performed for simultaneous variations of the
6 base vCDM parameters + fRO, in a Sobol sequence. Readers interested in further details
on these simulations are referred to ref. [123] as well as the public website.

5 Fisher forecast

The main focus of our analysis will be to forecast the constraining power of our summary
statistics of interest, which, as we explain in detail below, will be the WST and the standard
matter power spectrum. Under the assumption of a Gaussian likelihood, which we confirm in
the appendix A, this can be commonly achieved using the Fisher matrix formalism. According
to it, if O,, is a data vector of m observations, which are considered functions of a set of
cosmological parameters ., then the Fisher matrix is defined as:

T

T 00, 9605

Fop (5.1)
where Cj; denotes the covariance matrix of O,,. The Fisher matrix expression of eq. (5.1)
assumes that the covariance matrix is independent of the cosmology, which has been found to
be a good approximation [139, 140]. According to the Cramer-Rao inequality, it then follows
that (for an unbiased estimator) the marginalized 1o error on each one of the parameters

0, is always oo > /(F~1),,, providing thus a lower bound.

e
In this work we evaluate the ingredients of the Fisher matrix (5.1), which in turn gives

the 1o errors on the parameters through o, = (/(F~1) using the Quijote simulations

ao’
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Figure 2. The fractional deviation with respect to the ACDM real-space matter power spectrum is
plotted for the 4 derivative steps in fg, (4.1) of the Hu-Sawicki MG model, at z = 0. The solid lines
correspond to the results from the QUIJOTE simulations while the dotted ones show the equivalent
predictions from the linear theory prediction eq. (3.6).

described in section 4. In particular, for the covariance matrix estimation we use the 15,000
realizations available for the fiducial cosmology to get:

1
N, -1

Ny _ B T
> (0k = Om) (OF = 0m) (5.2)

k=1

C =

where O,, is the mean value of the observable evaluated over the N, =15,000 realizations
and O,’ﬁl its corresponding value for the k-th realization. Furthermore, upon inversion of the
covariance matrix in eq. (5.1), we apply the standard de-biasing Hartlap factor [141]:

R N, — Ng—2
cl=——"—c! 5.3
Nr _ 1 ’ ( )
where Ny is the dimensionality of the observable data vector O,,. For the vectors of WST
coefficients and matter power spectrum that we consider in this work, for which, as we will
explain shortly, N; < 100, the large number of available realizations N, =15,000 guarantees
that this factor is practically very close to 1.

The numerical derivatives w.r.t. the ACDM parameters {€,,, Q, h,ns, 08} can be eval-
uated using the central difference expression:

00w O (04 00) — O (0 — 60)

00 260 ’ (5-4)

,10,
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Figure 3. Correlation matrix of the matter power spectrum monopole evaluated for the fiducial
cosmology at redshift z = 0.
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Figure 4. Same as in figure 2 but here shown for the data vector of 76 WST coeflicients corresponding
to our baseline configuration as defined in section 5.1. The WST coefficients populate the data vector in
order of increasing values of the j; and [; indices, with the [; index varied faster. As we look from left to
right, the first 25 points comprise the 15 order group of wavelets, before moving to the 2% order part.
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Figure 5. Correlation matrix of all 76 coefficients of the WST data vector evaluated at the fiducial
cosmology at z = 0. The WST coeflicients populate the data vector in order of increasing values of
the 7; and [y indices, with the l; index varied faster, just like in figure 4.

with corresponding step values {0.02,0.004, 0.04,0.04,0.03} around the fiducial cosmology,
as can be seen in table I of [120]. For the neutrino mass M, we follow our previous
works [107, 120] and work with the highest order forward difference derivative version using

all 3 available steps, that is:

90 O(M;++) — 120(M; ) + 320(M;) — 210(0) (55)
oM, 12M,F ’ '

where the subscript in Oy, above was omitted for compactness. We also clarify that, since we
are interested in 3D galaxy clustering applications, we will only work with the density field
traced by cold dark matter and baryons in the presence of massive neutrinos, d., = dopar + 9
(since galaxies are biased tracers of it), rather than the total field 6, = dcpar + O + 0y,
which can only be probed by weak lensing [142].

Last but not least, for the Hu-Sawicki model extension, there are 4 available steps away
from GR, distributed equally in a logarithmic scale, as seen in eq. (4.1). In order to map
them to equal steps in a linear scale, which is what the derivative expressions assume, we
first perform the following variable transformation:

Y = (Fa) ™" (5.

which maps to 4 equal steps in the linear space, as follows:

{Yp, Yops Yopps Yoppp} = {—0.0127, —0.0254, —0.0507, —0.101}, (5.7)
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where Y,ppp = 2Y,pp = 4Ypp = 8Y}, and the fiducial value for the ACDM cosmology is again
Y = 0. Using these steps, one can in principle construct multiple versions of the derivatives,
including a higher order version than eq. (5.5). However, and as we explain in detail in the
appendix C., we chose not to use the smallest step Y},, because this value corresponds to a
very small deviation from the GR limit in our summary statistics, and the observed signal
might be masked by numerical noise at large scales. We instead work with Y,ppp, Yopp: Yops
which can be combined, similarly to the neutrino mass case, to give the prediction for the
derivative away from the Y = 0 ACDM limit:

90 _ O(Ypppp) — 120 (Yppp) + 320(Ypp) — 210(0)

ay 12V, (5:8)

We emphasize that we have checked and confirmed that our conclusions are nevertheless
robust against the choice of the version used to evaluate the derivative w.r.t. Y, as explained
in the appendix C.

To summarize, we use the above methods to evaluate the numerical derivatives of the
observable Oy, (in eq. (5.1)) with regards to the 7 cosmological parameters of interest:

(904 = {QmavaH()anSaOB;MZMY}a (59)

averaging over the 500 random realizations available for each parameter. Given that the
massive neutrino and Hu-Sawicki cosmology simulations were initialized using ZA initial
conditions, we use the ZA fiducial simulations for the evaluation of the corresponding ACDM
limit, O(0), in their derivatives, in egs. (5.5) & (5.8). In the appendix B we carefully check
and confirm the numerical stability of our results as a function of the available number of
realizations for the evaluation of the derivatives and the covariance matrices of our statistics.

We should note at this point, that a given Fisher constraint on Y can in principle be
subsequently translated to a constraint on fRO,6 which is the parameter most commonly
quoted in the literature (for example, see ref. [143]). Indeed, using the standard error
propagation formula for the power law eq. (5.6)) gives:

oy fRo
o=\ - 1
7 Fro logy( 2 < Y ) (5-10)

However, for our fiducial values, Y = fRO = 0, the fraction in eq. (5.10) becomes singular,
preventing us from applying the transformation in this particular case. As a result we will
quote constraints on Y in this analysis.

Having laid out the details of our Fisher framework, we finally proceed to describe the
exact configuration of the summary statistics that we will apply it to:

5.1 WST

In order to evaluate the WST coefficients, we first begin with the real-space 3D matter
overdensity field at z = 0,

Sup(x) = pc;i:() —1, (5.11)

5This would assume that the first-order Taylor expansion of the observable Q; is simultaneously valid both

in the range of Y and fg,, which should be confirmed in that case.

,13,



which we extract from each one of the 24,000 Quijote realizations we use for the covariance
matrix and the derivatives. In particular, we make use of the public package PyLIANS[144]"
to evaluate the overdensity field (5.11) on a grid of 256 resolution using the Piecewise-
Cubic Spline (PCS) interpolation scheme. These fields are then fed as input into the WST
egs. (2.6), which are evaluated using KYMATIO [124]. Staying consistent with our previous
works [107-109], we adopt a baseline WST configuration for J = L = 4 and ¢ = 0 = 0.8,
which results in a vector of Ny = 76 coefficients So + S1 + Sz up to 2" order, and Ny = 26
coefficients up to first order. Last but not least, in order to better facilitate an “apples vs
apples” comparison against the power spectrum that is commonly evaluated at a fixed kpax,
we further implement an additional pre-processing step and apply a sharp k-cut filter to the
field (5.11) before the WST evaluation. This step guarantees the removal of any residual
small-scale sensitivity that might be coming from the tails of the Gaussian-like wavelets that
the WST convolves with, as was also performed in [109] (see a relevant discussion in appendix
E of that work). For our baseline WST case, we will restrict ourselves to a conservative
kmax = 0.5 h/Mpc, in order to make sure we stay within the regime in which we can reliably
trust the validity of our simulations.

5.2 Power spectrum

In order to have a benchmark that can allow us to assess the extent to which the WST
can improve upon the constraints to gravity obtained using conventional statistics, we also
perform forecasts for the real-space matter power spectrum at z = 0, given by:®

Pey(k) = (|0cn (k) [*)i, (5.12)

which we evaluate in 79 equally-spaced logarithmic k-bins and 10243 grid resolution down
t0 kmax = 0.5 h/Mpc, using PYLIANS [144]. Given that we only work in real-space, where
the field (5.11) is isotropic, we do not need to consider higher order (¢ > 0) multipoles of
the power spectrum, as they vanish.

6 Results

We begin this section by visualizing the characteristic effects of the Hu-Sawicki model on the
large-scale structure formation, through a side-by-side comparison between the outputs of the
largest deviation MG simulation, fgr,,,,, and the corresponding GR case at z = 0, in figure 1.
The visual differences in the clustering pattern caused by the effect of the MG fifth force are
apparent, even through this simple comparison. We then proceed to examine our familiar case
of the matter power spectrum. In figure 2 we plot its fractional deviation with respect to the
fiducial ACDM prediction (often referred to as the “boost”) for the 4 derivative steps (4.1),
evaluated at z = 0. The linear theory predictions from eq. (3.6) (dotted lines) illustrate the
effect of the Compton mass of the scalaron at the background level (3.5), below which GR is

PMG . .
P thus approaches unity at large scales. Increasing absolute

recovered and the ratio

Thttps://pylians3.readthedocs.io/en /master/index.html.
8For an isotropic power spectrum estimator such as the one we use in this application, the angular brackets
in egs. (5.12) actually correspond to an average over all k with magnitude |k| belonging to a given k-bin.
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Figure 6. 1o and 20 contours of the cosmological parameters as obtained from the Fisher forecast
using the real-space matter power spectrum (red) and the WST coefficients (blue) at z = 0.

values of fRO lead to smaller values of the Compton mass and more pronounced deviations
w.r.t. the ACDM power spectrum, which (for the linear theory prediction) monotonically
increase as we look into larger Fourier modes (smaller scales). The nonlinear effect of the
chameleon screening becomes clearly apparent when we look at the corresponding simulated
predictions (solid lines), which become progressively more suppressed compared to their
linear theory counterparts as we focus on smaller scales in figure 2. For decreasing absolute
values of fRO, this suppression becomes increasingly more pronounced, a reflection of a higher
degree of chameleon screening. These results reflect the characteristic phenomenology of the
Hu-Sawicki model, which has been extensively studied in the literature (for example see an
overview in ref. [21]). Looking into the correlation matrix of the matter power spectrum, in
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Statistic P(k) WST

Femax |1/ Mpc] 0.2 0.5 0.2 0.5
() 0.079 0.046 0.077 0.020
o () 0.034 | 0.017 |0033 |o0.014
o(og) 0.080 0.069 0.080 0.021
o(ng) 0.415 0.184 0.356 0.054
o(h) 0.432 0.204 | 0.40 0.132
o(M,) [eV] 1.310 | 1.197 | 1.270 | 0.357
oY) 0.025 0.016 0.0054 0.0012

Table 1. Marginalized 1o errors on all cosmological parameters obtained from the matter P(k) and
the baseline WST configuration at z = 0. The results are reported using both kyax = 0.2 h/Mpc and
also kmax = 0.5 h/Mpec.

figure 3, it exhibits a well-known structure that is perfectly diagonal at linear scales, but
progressively includes non-diagonal contributions as we focus on the nonlinear regime [120].

In figure 4 we then repeat the same plotting exercise for the data vector of the 76 WST
coeflicients of our baseline configuration up to second order, that was defined in section 5.1.
Even though the result is unsurprisingly harder to interpret than the familiar power spectrum
case, we notice that it does reflect the same basic trends: the fractional deviation of the WST
summary statistic w.r.t. its ACDM prediction (shown in the y-axis) becomes increasingly
more pronounced for stronger deviations from GR (i.e. for larger absolute values of fRO),
just like in the power spectrum case of figure 2. In a similar fashion, the amplitude of the
deviation is relatively larger for the groups of coefficients that probe the smallest scales, when
compared to the ones capturing the largest scales at the same order L (i.e. from left to right
in figure 4). When we finally inspect the correlation matrix of the WST coefficients, that is
shown in figure 5, we observe the same patterns as in our previous applications [107-109]:
starting with the 1%¢ order group of wavelets (that is, until index 26), we notice the existence
of strong correlations between nearby scales and frequencies L (close to the diagonal), which
progressively weaken and eventually vanish as we look into the coupling between the smallest
and the largest wavelet scales. Similar patterns permeate into the 2"¢ order group of wavelets
and their correlations with the corresponding scales at the 1! order level.

Moving on to the discussion of our cosmological results, in figure 6 we plot the 1o and
20 Fisher ellipses obtained on all 7 cosmological parameters of interest using the matter
power spectrum and the baseline WST configuration at z = 0. At the same time, the values
of the marginalized 1o errors are explicitly listed in table 1. We clarify again at this point
that both predictions include contributions from scales down to at most kpax = 0.5 h/Mpec,
which serves as a conservative limit. Looking into the results, and starting from the MG
parameter Y, we immediately observe that the WST delivers an impressive improvement
on the value of the 1o constraint, which is ~ 10x tighter than the corresponding prediction
from the matter power spectrum. The parameter that exhibits the second best improvement
using the WST is the sum of the neutrino masses, with an 1o error that is tighter by a factor
of ~ 3.4 compared to the corresponding power spectrum value, in line with our previous
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findings in [107]. Furthermore, using the WST coefficients improves the constraints obtained
on the rest of the ACDM parameters by a factor in the range 1.2 — 3.3, as seen in table 1,
also in broad agreement with [107]. We note that a joint forecast using P(k)+WST does not
improve the 1o errors on M, and Y by more than 20% compared to the WST-only analysis,
which is why we do not explicitly show the results for this combination. We also report that
the 1o errors obtained on the 6 vCDM parameters increase by up to 90% for the power
spectrum and by up to 20% for the WST when we marginalize over the new MG parameter
Y, as compared to the pure GR forecast that we performed in [107] with these QUIJOTE
simulations. In the specific case of the WST, the implementation of a sharp k-filter on top of
the Gaussian smoothing has led to an additional slight increase in the errors compared to
the values reported in [107]. We emphasize again at this point that the numerical stability
of these results as a function of the available number of realizations for the evaluation of
the Fisher matrix has been checked and confirmed in the appendix B.

As we already clarified in section 5, since our fiducial cosmology is the one governed by
GR gravity, with a value of Y = 0, we cannot propagate our 1o errors on Y to the typically
quoted parameter fRO, since the transformation (5.10) becomes singular in this case. If we
however assume a cosmology-independent Fisher matrix for a small perturbation around
the fiducial cosmology, for example a scenario with fRO = —107%, we would get 1o errors
O frg = 2.55 x 10~7 from the WST and O fry = 3.4 x 1079 using the matter power spectrum,
allowing us to connect our analysis to the commonly quoted Hu-Sawicki constraints when
analyzing cosmological and astrophysical observational probes [143]. Such a comparison
reveals that these constraints are competitive with the current tightest bounds coming from
galactic structure [e.g. 145], which might however be relying on simple assumptions to model
the screening effect in galactic settings [146].

Even though the main focus of this application is to evaluate the WST’s ability to extract
non-Gaussian information that lies at the smallest scales, it is also useful to examine how our
results change if we restrict our focus on larger scales instead, through the application of sharp
k-filters with a smaller kpax.? Indeed, in figure 7 we plot the successive degradation of the
marginalized 1o errors on the cosmological parameters obtained from both summary statistics
as we impose more conservative scale cuts, up to a kmax = 0.2 h/Mpc. At the same time, we
also compare the Fisher ellipses obtained using the smallest and the largest scale cut for the
WST in figure 8 and for the power spectrum in figure 9. In figure 7 we notice that, as expected,
the values of the 1o constraints obtained from both estimators increase as we progressively
remove valuable small-scale information. For most parameters, the slope of this increase is
steeper for the WST, such that the overall net improvement w.r.t. the power spectrum is
smaller at kpyax = 0.2 h/Mpc compared to the baseline kpax = 0.5 h/Mpc case. This is not
surprising given that most of the constraining power is, in principle, expected to reside in the
nonlinear scales. As these get progressively removed, the two results will eventually converge
in the linear regime that contains only Gaussian information (up to the limited spectral

9We note that this effect can also be investigated by adopting different combinations of the Gaussian
smoothing width, o, and field resolution, Ngriq, that enter the WST evaluation, as we explained in section 5.1.
For the exploratory purposes of this work, however, the comparison is more straightforward if we stick to the
same WST settings and only change the kmax value of the top-hat filter.
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resolution granted by the wavelets, and the fact that we are not considering L2 norms).
Furthermore, the coarse logarithmic binning of the WST configuration we adopted in this
work has not been fully optimized for the extraction of large-scale information. Nevertheless,
the WST is still able to provide an overall improvement in the errors on all the parameters
even at kmax = 0.2 h/Mpc, which is actually equal to a factor of ~ 4.5 for the MG parameter
Y (and up to 15% for the rest of the parameters). This result seems to be consistent with
recent findings hinting at the existence of substantially more information available beyond
the power spectrum, even at the quasi-linear regime [147]. Lastly, we note that when we
attempt to filter out scales kpax < 0.2 h/Mpc, our WST predictions become substantially
more noisy, leading to insufficient levels of numerical convergence of our Fisher predictions,
which we cannot trust and do not report as a result. More simulations would be needed to
investigate these scales with this WST configuration, which we defer to future work.

As we explained in section 5.1, our analysis adopted a baseline WST configuration that
uses J = L = 4 spatial and angular scales, which we have found to deliver a satisfactory
trade-off between performance and computational cost. In figure 10 we proceed to explicitly
show how the inclusion of larger scales J and frequencies L, up to J = L = 7, can further
improve our constraints. We find that, for the maximum case using J = L = 7, the 1o errors
do not improve by more than 30% compared to the baseline case, with the corresponding
improvement on the MG parameter Y being equal to ~ 5% only. Given that the main
focus of this work was to derive constraints on the MG model, and also that including
these additional scales makes the WST evaluation slower by a factor of ~ 3, we did not
consider this to be a worthwhile trade-off, but we urge users to reconsider the optimal WST
configuration for each individual application.

We finish this section with a brief interpretation of these results. As we already pointed
out in ref. [107] and also explained in section 2, the higher-order nature of the WST allows
it to capture non-Gaussian information and as a result to improve upon the performance
of the standard power spectrum. In addition, raising the modulus to powers ¢ < 1 in (2.6)
allows it to effectively upweight the significance of cosmic voids (lower over-density regions),
which are known to be valuable probes of fundamental information [51] related to e.g. the
nature of massive neutrinos or theories of gravity. In ref. [107] we showed that by realizing
these properties in a novel way the WST was able to significantly improve upon the standard
constraints to the neutrino mass, with parallels to the performance of the marked power
spectrum [61]. Given that many such techniques were originally proposed [46] and subsequently
explored [21, 47-50] in the context of testing MG models with a density-dependent screening
mechanism, the significant improvement on the MG constraints by the WST is thus not a
surprise. In fact, in light of these results we would expect other higher-order statistics of this
kind to also be able to improve upon the standard MG constraints, which is something that
we are planning to explore with these simulations in the future. We however note, at this
point, that our reported results are very optimistic as we have worked with the 3D matter
overdensity field, which is not observable by realistic galaxy surveys. Marginalizing over the
uncertainties introduced by galaxy physics and also accounting for survey systematics are
expected to substantially weaken these constraints, tasks that we are going to undertake in
future work. Such a forecast was, for example, performed in ref. [131], working however only
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with quasi-linear scales using perturbation theory. Nevertheless, this first proof-of-concept
application paves the way for the application of the WST technique in order to obtain
competitive constraints on extended theories of gravity and other non-standard scenarios
with future LSS data, going beyond [109]. For a recent similar first exploration in the context
of primordial non-Gaussianity, see ref. [116].

7 Conclusions

In this work we move beyond previous ACDM applications [107-109] and perform the first
exploration in the direction of applying the Wavelet Scattering Transform in order to constrain
the nature of gravity using the 3-dimensional Large-Scale Structure of the universe.

Using the new suite of the QUIIOTE-MG N-body simulations [123], in particular, we
are able to reliably predict structure formation for the popular Hu-Sawicki screened MG
scenario down to the nonlinear regime. In combination with the preceding QUIJOTE vCDM
collection, we then proceed to perform a simulation-based Fisher forecast of the marginalized
constraints to gravity obtained using the WST coefficients and the matter power spectrum
at redshift z = 0. The WST statistic is found to deliver an impressive improvement in the
marginalized 1o error obtained on the parameter characterizing the deviations from standard
GR, which is tighter by a factor of ~ 10 compared to the corresponding prediction of the
regular matter power spectrum. At the same time it also substantially improves upon the
power spectrum constraints obtained on the rest of the ACDM parameters and the sum
of the neutrino masses, by 1.2 — 3.3x and 3.4x, respectively, in full agreement with our
previous work [107]. Even though the WST constraints and their relative improvement over
the power spectrum inevitably degrade as we progressively restrict our focus on larger scales,
we find that the WST is still able to deliver an error that is relatively ~ 4.5x tighter for
kmax = 0.2 h/Mpc, highlighting its great sensitivity to the nature of the underlying gravity
model. We carefully check and confirm the robustness of our Fisher analysis and then proceed
to briefly explain how the inherent properties exhibited by the WST estimator allow it to be
particularly informative as far as cosmological tests of gravity are concerned.

Moving forward, a series of improvements will be necessary before the above result
can actually be exploited using real observational data, following the previous successful
WST applications in the context of ACDM [108, 109]. First of all, we only worked with the
underlying matter density field, which is not observable by surveys of the 3D LSS. In follow-up
studies we will accordingly revisit this analysis using biased tracers, simulated dark matter
halos and realistic galaxy mocks obtained for the same MG model. Furthermore, the effect of
anisotropic redshift-space distortions (RSD) of spectroscopic galaxy observations along the
line-of-sight will need to be accounted for in our model, together with additional systematics
related to a specific galaxy survey. Since RSD is known to be particularly sensitive to the
underlying gravity theory, adopting anisotropic wavelets [113, 148] can form a powerful basis
for future tests of gravity with spectroscopic data. Marginalizing over these effects is of
course expected to lead to more realistic constraints over the optimistic ones reported in this
dark matter-only application. Given the very promising findings from this first exploration in
the context of gravity theories beyond GR, it would also be very interesting to explore the
extent to which suitably tailored WST bases could be employed in order to test for other
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Figure 7. The marginalized 1o errors obtained on all 7 parameters are plotted as a function of
the kmax value used for the evaluation of the matter power spectrum (dashed lines) and the WST
coefficients (solid lines).

types of MG screening mechanisms, such as, for example, the Vainshtein mechanism or more
general classes encompassing the broad Horndeski family [41-45, 149]. The ever increasing
interest in developing efficient and accurate simulation methods for more general theories of
gravity [136, 137] will naturally enable such simulation-based endeavors. Parallel to all these
improvements on the modeling front, lastly, in future work we plan to go beyond the limits
imposed by the Fisher method and revisit this analysis using likelihood-free inference.

This first proof-of-concept study reaffirms the constraining properties of the WST
technique and lays the foundation for exciting future applications in order to perform precise
large-scale tests of gravity with the new generation of cutting-edge cosmological data.
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Figure 8. 1o and 20 Fisher contours obtained on the cosmological parameters using the WST
estimator evaluated up to a maximum wavenumber kpax = 0.2 h/Mpc (green) and kmax = 0.5 h/Mpc
(blue), at z = 0.
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Figure 9. The kya.x comparison of figure 8 is repeated for the matter power spectrum at z = 0.

A Gaussianity of the likelihood

The Fisher matrix formalism (5.1) that we employ for the forecasts presented in this work relies
upon the assumption that the summary statistic of interest follows a Gaussian probability
distribution. This approximation is accurate when the binning used to evaluate the statistic
is wide enough that a sufficient number of modes contributes to its evaluation at each bin,
such that the Central Limit Theorem kicks in and the observable becomes Gaussianized.
This is a well-known fact in the case of the power spectrum, that needs to also be confirmed
before performing likelihood analyses using alternative estimators. Following our previous
application [109], we test and confirm this to be the case for the WST coefficients using the
15,000 QUIJOTE realizations available for the fiducial cosmology, as explained in section 4.
Specifically, if O; is the estimator value evaluated at the i*" realization, O the mean value
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a function of the number of spatial J and angular L configurations included in the WST estimator, at
z =0 and for kyax = 0.5 h/Mpc.

over all realizations and C' its covariance matrix from eq. (5.2), then the 15,000 realizations
will follow a x? distribution, given by:

X =[0i - ()}T c'[o;-0]. (A1)

For a summary statistic that actually follows a Gaussian distribution, the probability
density function (pdf) of the x? values given by eq. (A.1) will match the theoretical prediction
for a distribution with a number of degrees of freedom equal to the dimensionality of the data
vector. In figure 11 we plot this comparison for the WST coefficients, with Ngq = 76 degrees
of freedom for our base configuration, finding no apparent discrepancy between the two
predictions and also a distribution of samples randomly drawn from a Gaussian with the same
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by the WST as a function of the 500 realizations used to evaluate the numerical derivatives. This
example corresponds to the WST base configuration defined in section 5 and used in figure 6.

mean and covariance. Performing the equivalent comparison for the standard power spectrum,
in figure 12, reaffirms the known Gaussianity of the power spectrum and highlights the very
similar levels of consistency between the two summary statistics considered in this application.
These findings are in line with our previous WST application to the galaxy density field [109],
but also to weak lensing maps [106], as well as with similar findings when considering other
alternative summary statistics in the literature [71, 150, 151]. For further discussion on how
to handle cases that significantly deviate from Gaussianity in the context of Fisher forecasting
or simulation-based inference, we refer readers to [152] or [113], respectively.

B Numerical stability analysis

Even though the Fisher matrix technique is a valuable tool in a variety of cosmological appli-
cations, it can lead to biased constraints when using simulations to evaluate its ingredients. In
particular, when the number of available random realizations is not sufficiently large to provide
a smooth, noise-free, prediction, the residual Monte Carlo noise in the observable data vector
(particularly the derivatives) can lead to an overestimation of the Fisher matrix and, in turn,
the prediction of artificially tight 1o errors after its inversion [153-155]. In this appendix we
explicitly make sure that this is not the case in our forecasts. Specifically, in figure 13 we inves-
tigate how the 1o errors obtained from the WST Fisher matrix in the base configuration vary as
a function of the 500 random realizations that are available for the evaluation of the numerical
derivatives, finding a remarkable level of numerical stability for all the parameters, including
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Figure 14. Same analysis as in figure 13 but here shown for the matter power spectrum.

the new modified gravity case; the predictions are converged at a level better than 1% even
when using only 20% of the 500 total realizations. When using half of the available realizations,
the predictions do not fluctuate by more than 0.2% compared to the ones from the full set,
demonstrating the prominent numerical stability of the WST estimator. It is also worth noting
that it seems to converge even faster than the standard power spectrum case, which is shown in
figure 14, and which is converged at the ~ 1% level when using half of the available realizations
for the numerical evaluation of the derivatives. These findings are in line with our previous
Fisher applications using the WST [107, 108]. We also note that we have double-checked the
numerical stability of our results using the code by ref. [154],!0 finding no detected biases.
We caution, nevertheless, that these conclusions hold for this particular WST configuration
applied to the matter field, only. Using the WST coefficients evaluated at different scales and
angles, and also when raising the modulus of the field in different powers ¢ in eq. (2.6), can lead
to slower convergence. Similarly, the halo and galaxy fields tend to be inherently noisier than
the matter case, leading to significant challenges when attempting to perform simulation-based
forecasts [155]. In such cases, compression techniques can be employed to reduce the noise and
obtain unbiased estimates [154]. In fact, we note that we did repeat our analysis using these
compressed variants as well, finding entirely consistent results with the standard forecast, given
the high degree of convergence already reported above. For a more thorough investigation into
the impact of numerical noise on simulation-based Fisher forecasts, we refer readers to [155].

Lastly, we similarly confirmed that the 15,000 realizations available at the fiducial
cosmology are more than sufficient for the evaluation of a well-converged covariance matrix.

Yhttps://github.com /wcoulton/CompressedFisher/tree/main.
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Figure 15. Same as in figure 6 but using eq. (C.4) instead of (5.8) for the evaluation of the derivative
w.r.t. the MG parameter Y for both summary statistics.

Even if we use half of them (7,500) to evaluate the covariance matrix from eq. (5.2), the
Fisher predictions for the WST do not change by more than 0.5 % for any of the parameters.
We choose not to explicitly include these plots here as well, for brevity, since this is a result
already discussed in [107], which used the exact same set of fiducial simulations for the
evaluation of the covariance matrix.

C Dependence on derivative formula

When multiple steps are available for the evaluation of the numerical derivatives, as is the
case for the MG parameter Y (seen in (5.7)) (but also for the neutrino mass M, ), we have
more than one options to evaluate the derivatives using a forward stepping scheme. Starting
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with the smallest step, Y),, for example, we can get the following versions:

90 _ 0(¥,) = 0(0)

oy v, , (C.1)
oY 2Y, ’ '
90 _ O(Yppp) — 120(Ypp) + 320(Y;) — 210(0) (©.3)
oY 12Y, ’ '
90 —O(Ypppp) + 280 (Yppp) — 2240(Yyp) + 5120(Y;) — 3150(0) (C.4)
oy 168Y}, '

in increasing order of evaluation. If the difference between a given summary statistic evaluated
at the fiducial cosmology (i.e. at Y = 0) and at Y}, is large enough such that it is not masked
by numerical noise fluctuations, then eq. (C.4) above will in principle provide the most precise
estimation of the derivative. In our case, however, and as we explained in the main text,
the smallest step Y), corresponds to a highly-screened instance of the Hu-Sawicki model that
typically gives very small deviations from ACDM. If we look at the power spectrum case
in figure 2, for example, we find that the fractional deviation from the ACDM prediction
never reaches 1% for Y),, even at the smallest scales we consider, kmax = 0.5 h/Mpc. For
k < 0.1 h/Mpc, the differences between the two predictions are so small that they are
inevitably masked by the numerical noise. In order to prevent this fact from contaminating
our predictions, we chose to skip Y, and only work with the other 3 available larger steps,
Yoo, Yopo, Y;

pps L ppps Y pppps
eq. (C.4) is no longer possible so we then use the next most precise version, eq. (C.3), replacing

as we explained in section 5 of the main text. With these 3 steps at hand,

Y}, by Y}, and so on, which coincides with eq. (5.8).

Even though we adopted this above choice out of an abundance of caution, we emphasize
at this point that the conclusions of our analysis are robust against the derivative version. In
fact, the same levels of improvement are found even if we use eq. (C.4) (or any of its lower
order variants with Y},). This can be seen in figure 15, where we repeat the comparison of
figure 6 for the two estimators, but this time using eq. (C.4) instead for the evaluation of the
MG derivative. The WST is once again found to improve upon the power spectrum lo error
prediction for Y by a factor of ~ 10x, just like in the main analysis portrayed in figure 6. As
a matter of fact, we also found this to hold true when experimenting with forecasts using all
the other possible variations of egs. (C.1)—(C.4). Even though the individual predictions for
the 1-0 error on Y may fluctuate a bit when using different versions of the derivative, the
trend is similar for both the power spectrum and the WST predictions, such that the relative
improvement is always robust against the particular version of the derivative. Lastly, the
different predictions also exhibit similar high levels of numerical stability as the one presented
in figure 13, even when using the smallest step Y},. These results mirror our previous findings
w.r.t. the neutrino derivative and its variants [107].

As a result of all the above, we conclude that our main conclusions w.r.t. to the
improvement delivered by the WST relative to the power spectrum are robust against
the derivative choice for the MG parameter Y. Nevertheless, we caution users to be aware
of these nuances and make use of the most appropriate combination of egs. (C.1)—(C.4)
according to the particular application. For further discussion see ref. [155].

— 28 —



References

1]

2]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

DESI collaboration, DESI 2024 III: baryon acoustic oscillations from galazies and quasars,
arXiv:2404.03000 [INSPIRE].

DESTI collaboration, DESIT 2024 IV: baryon acoustic oscillations from the Lyman-« forest,
arXiv:2404.03001 [INSPIRE].

DESI collaboration, DESI 2024 VI: cosmological constraints from the measurements of baryon
acoustic oscillations, arXiv:2404.03002 [INSPIRE].

DESI collaboration, The DESI experiment, a whitepaper for Snowmass 2013,
arXiv:1308.0847 [INSPIRE].

DESI collaboration, The DESI experiment. Part I. Science, targeting, and survey design,
arXiv:1611.00036 [INSPIRE].

LSST Scienck and LSST PROJECT collaborations, LSST science book, version 2.0,
arXiv:0912.0201 [INSPIRE].

LSST DARK ENERGY SCIENCE collaboration, Large Synoptic Survey Telescope: dark energy
science collaboration, arXiv:1211.0310 [InSPIRE].

EUCLID collaboration, Euclid definition study report, arXiv:1110.3193 [INSPIRE].

D. Spergel et al., Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets
WFIRST-AFTA final report, arXiv:1305.5422 [INSPIRE].

SPHEREX collaboration, Cosmology with the SPHEREX all-sky spectral survey,
arXiv:1412.4872 [INSPIRE].

X. Chen et al., The future of primordial features with large-scale structure surveys, JCAP 11
(2016) 014 [arXiv:1605.09365] [INSPIRE].

N. DePorzio, W.L. Xu, J.B. Munoz and C. Dvorkin, Finding eV-scale light relics with
cosmological observables, Phys. Rev. D 103 (2021) 023504 [arXiv:2006.09380] [INSPIRE].

W.L. Xu, J.B. Mufioz and C. Dvorkin, Cosmological constraints on light but massive relics,
Phys. Rev. D 105 (2022) 095029 [arXiv:2107.09664] [INSPIRE].

LSST DARK MATTER GROUP collaboration, Probing the fundamental nature of dark matter
with the large synoptic survey telescope, arXiv:1902.01055 [INSPIRE].

J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307
[astro-ph/0603494] [NSPIRE].

C. Dvorkin et al., Neutrino mass from cosmology: probing physics beyond the Standard Model,
arXiv:1903.03689 [INSPIRE].

E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15
(2006) 1753 [hep-th/0603057] [INSPIRE].

K. Koyama, Cosmological tests of modified gravity, Rept. Prog. Phys. 79 (2016) 046902
[arXiv:1504.04623] INSPIRE].

M. Ishak, Testing general relativity in cosmology, Living Rev. Rel. 22 (2019) 1
[arXiv:1806.10122] [INSPIRE].

P.G. Ferreira, Cosmological tests of gravity, Ann. Rev. Astron. Astrophys. 57 (2019) 335
[arXiv:1902.10503] [INSPIRE].

— 29 —


https://doi.org/10.48550/arXiv.2404.03000
https://inspirehep.net/literature/2774173
https://doi.org/10.48550/arXiv.2404.03001
https://inspirehep.net/literature/2774159
https://doi.org/10.48550/arXiv.2404.03002
https://inspirehep.net/literature/2774167
https://doi.org/10.48550/arXiv.1308.0847
https://inspirehep.net/literature/1246316
https://doi.org/10.48550/arXiv.1611.00036
https://inspirehep.net/literature/1495394
https://doi.org/10.48550/arXiv.0912.0201
https://inspirehep.net/literature/838560
https://doi.org/10.48550/arXiv.1211.0310
https://inspirehep.net/literature/1197970
https://doi.org/10.48550/arXiv.1110.3193
https://inspirehep.net/literature/940088
https://doi.org/10.48550/arXiv.1305.5422
https://inspirehep.net/literature/1235253
https://doi.org/10.48550/arXiv.1412.4872
https://inspirehep.net/literature/1334478
https://doi.org/10.1088/1475-7516/2016/11/014
https://doi.org/10.1088/1475-7516/2016/11/014
https://doi.org/10.48550/arXiv.1605.09365
https://inspirehep.net/literature/1466276
https://doi.org/10.1103/PhysRevD.103.023504
https://doi.org/10.48550/arXiv.2006.09380
https://inspirehep.net/literature/1801703
https://doi.org/10.1103/PhysRevD.105.095029
https://doi.org/10.48550/arXiv.2107.09664
https://inspirehep.net/literature/1888786
https://doi.org/10.48550/arXiv.1902.01055
https://inspirehep.net/literature/1718342
https://doi.org/10.1016/j.physrep.2006.04.001
https://doi.org/10.48550/arXiv.astro-ph/0603494
https://inspirehep.net/literature/712677
https://doi.org/10.48550/arXiv.1903.03689
https://inspirehep.net/literature/1724447
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.48550/arXiv.hep-th/0603057
https://inspirehep.net/literature/711939
https://doi.org/10.1088/0034-4885/79/4/046902
https://doi.org/10.48550/arXiv.1504.04623
https://inspirehep.net/literature/1362135
https://doi.org/10.1007/s41114-018-0017-4
https://doi.org/10.48550/arXiv.1806.10122
https://inspirehep.net/literature/1679818
https://doi.org/10.1146/annurev-astro-091918-104423
https://doi.org/10.48550/arXiv.1902.10503
https://inspirehep.net/literature/1722295

[21] S. Alam et al., Towards testing the theory of gravity with DESI: summary statistics, model
predictions and future simulation requirements, JCAP 11 (2021) 050 [arXiv:2011.05771]
[INSPIRE].

[22] C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9
(2006) 3 [gr-qc/0510072] [INSPIRE].

[23] D. Psaltis, Probes and tests of strong-field gravity with observations in the electromagnetic
spectrum, Living Rev. Rel. 11 (2008) 9 [arXiv:0806.1531] [INSPIRE].

[24] LIGO ScIENTIFIC and VIRGO collaborations, Observation of gravitational waves from a binary

black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

[25] SUPERNOVA COSMOLOGY PROJECT collaboration, Measurements of Q and A from 42 high
redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].

[26] SUPERNOVA SEARCH TEAM collaboration, Observational evidence from supernovae for an
accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009
[astro-ph/9805201] [INSPIRE].

[27] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].

[28] DESI collaboration, DESI 2024: reconstructing dark energy using crossing statistics with DEST

DR1 BAO data, JCAP 10 (2024) 048 [arXiv:2405.04216] [INSPIRE].

[29] DESI collaboration, DESI 2024: constraints on physics-focused aspects of dark energy using
DESI DR1 BAO data, arXiv:2405.13588 [INSPIRE].

[30] J. Carron, Information escaping the correlation hierarchy of the convergence field in the study
of cosmological parameters, Phys. Rev. Lett. 108 (2012) 071301 [arXiv:1201.1000] [INSPIRE].

[31] H. Gil-Marin et al., The power spectrum and bispectrum of SDSS DR11 BOSS galazies — 1.
Bias and gravity, Mon. Not. Roy. Astron. Soc. 451 (2015) 539 [arXiv:1407.5668] [INSPIRE].

[32] H. Gil-Marin et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic

Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS
galazies, Mon. Not. Roy. Astron. Soc. 465 (2017) 1757 [arXiv:1606.00439] [INSPIRE].

[33] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the
universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astro-ph/0112551]
[INSPIRE].

[34] O.H.E. Philcox and M.M. Ivanov, BOSS DR12 full-shape cosmology: ACDM constraints from

the large-scale galaxy power spectrum and bispectrum monopole, Phys. Rev. D 105 (2022)
043517 [arXiv:2112.04515] [INSPIRE].

[35] S.-F. Chen, H. Lee and C. Dvorkin, Precise and accurate cosmology with CMBxLSS power
spectra and bispectra, JCAP 05 (2021) 030 [arXiv:2103.01229] [INSPIRE].

[36] O.H.E. Philcox, J. Hou and Z. Slepian, A first detection of the connected 4-point correlation
function of galazies using the BOSS CMASS sample, arXiv:2108.01670 [INSPIRE].

[37] O.H.E. Philcox and T. Floss, PolyBin3D: a suite of optimal and efficient power spectrum and

bispectrum estimators for large-scale structure, arXiv:2404.07249 [INSPIRE].
[38] J. Khoury, Theories of dark energy with screening mechanisms, arXiv:1011.5909 [INSPIRE].

[39] J. Khoury, Les Houches lectures on physics beyond the Standard Model of cosmology,
arXiv:1312.2006 [iNSPIRE].

— 30 —


https://doi.org/10.1088/1475-7516/2021/11/050
https://doi.org/10.48550/arXiv.2011.05771
https://inspirehep.net/literature/1829491
https://doi.org/10.12942/lrr-2006-3
https://doi.org/10.12942/lrr-2006-3
https://doi.org/10.48550/arXiv.gr-qc/0510072
https://inspirehep.net/literature/695239
https://doi.org/10.12942/lrr-2008-9
https://doi.org/10.48550/arXiv.0806.1531
https://inspirehep.net/literature/787729
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.48550/arXiv.1602.03837
https://inspirehep.net/literature/1421100
https://doi.org/10.1086/307221
https://doi.org/10.48550/arXiv.astro-ph/9812133
https://inspirehep.net/literature/484837
https://doi.org/10.1086/300499
https://doi.org/10.48550/arXiv.astro-ph/9805201
https://inspirehep.net/literature/470671
https://doi.org/10.1103/RevModPhys.61.1
https://inspirehep.net/literature/263386
https://doi.org/10.1088/1475-7516/2024/10/048
https://doi.org/10.48550/arXiv.2405.04216
https://inspirehep.net/literature/2784156
https://doi.org/10.48550/arXiv.2405.13588
https://inspirehep.net/literature/2789350
https://doi.org/10.1103/PhysRevLett.108.071301
https://doi.org/10.48550/arXiv.1201.1000
https://inspirehep.net/literature/1083634
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.48550/arXiv.1407.5668
https://inspirehep.net/literature/1307220
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.48550/arXiv.1606.00439
https://inspirehep.net/literature/1466736
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.48550/arXiv.astro-ph/0112551
https://inspirehep.net/literature/568955
https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.1103/PhysRevD.105.043517
https://doi.org/10.48550/arXiv.2112.04515
https://inspirehep.net/literature/1986704
https://doi.org/10.1088/1475-7516/2021/05/030
https://doi.org/10.48550/arXiv.2103.01229
https://inspirehep.net/literature/1849538
https://doi.org/10.48550/arXiv.2108.01670
https://inspirehep.net/literature/1898870
https://doi.org/10.48550/arXiv.2404.07249
https://inspirehep.net/literature/2776339
https://doi.org/10.48550/arXiv.1011.5909
https://inspirehep.net/literature/878838
https://doi.org/10.48550/arXiv.1312.2006
https://inspirehep.net/literature/1268273

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[55]

[56]

[57]

J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space,
Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].

K.A. Olive and M. Pospelov, Environmental dependence of masses and coupling constants,
Phys. Rev. D 77 (2008) 043524 [arXiv:0709.3825] [INSPIRE].

K. Hinterbichler and J. Khoury, Symmetron fields: screening long-range forces through local
symmetry restoration, Phys. Rev. Lett. 104 (2010) 231301 [arXiv:1001.4525] [INSPIRE].

E. Babichev, C. Deffayet and R. Ziour, k-mouflage gravity, Int. J. Mod. Phys. D 18 (2009) 2147
[arXiv:0905.2943] [INSPIRE].

G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP
08 (2011) 108 [arXiv:1010.1415] [INSPIRE].

AL Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393
[INSPIRE].

M. White, A marked correlation function for constraining modified gravity models, JCAP 11
(2016) 057 [arXiv:1609.08632] [INSPIRE].

G. Valogiannis and R. Bean, Beyond d: tailoring marked statistics to reveal modified gravity,
Phys. Rev. D 97 (2018) 023535 [arXiv:1708.05652] [INSPIRE].

C. Hernéndez-Aguayo, C.M. Baugh and B. Li, Marked clustering statistics in f(R) gravity
cosmologies, Mon. Not. Roy. Astron. Soc. 479 (2018) 4824 [arXiv:1801.08880] InSPIRE].

J. Armijo et al., Testing modified gravity using a marked correlation function, Mon. Not. Roy.
Astron. Soc. 478 (2018) 3627 [arXiv:1801.08975] [INSPIRE].

J. Armijo, C.M. Baugh, P. Norberg and N.D. Padilla, A new test of gravity — II. Application
of marked correlation functions to luminous red galaxy samples, Mon. Not. Roy. Astron. Soc.
528 (2024) 6631 [arXiv:2309.09636] INSPIRE].

A. Pisani et al., Cosmic voids: a novel probe to shed light on our universe, arXiv:1903.05161
[INSPIRE].

E. Massara, F. Villaescusa-Navarro, M. Viel and P.M. Sutter, Voids in massive neutrino
cosmologies, JCAP 11 (2015) 018 [arXiv:1506.03088] [INSPIRE].

C.D. Kreisch et al., Massive neutrinos leave fingerprints on cosmic voids, Mon. Not. Roy.
Astron. Soc. 488 (2019) 4413 [arXiv:1808.07464| INSPIRE].

Y.-C. Cai, N. Padilla and B. Li, Testing gravity using cosmic voids, Mon. Not. Roy. Astron.
Soc. 451 (2015) 1036 [arXiv:1410.1510] InSPIRE].

N. Hamaus, P.M. Sutter, G. Lavaux and B.D. Wandelt, Probing cosmology and gravity with
redshift-space distortions around voids, JCAP 11 (2015) 036 [arXiv:1507.04363] INSPIRE].

C.D. Kreisch et al., The GIGANTES data set: precision cosmology from voids in the
machine-learning era, Astrophys. J. 935 (2022) 100 [arXiv:2107.02304] [INSPIRE].

T. Bonnaire, N. Aghanim, J. Kuruvilla and A. Decelle, Cosmology with cosmic web
environments — I. Real-space power spectra, Astron. Astrophys. 661 (2022) A146
[arXiv:2112.03926] [INSPIRE].

EucLID collaboration, Euclid: cosmology forecasts from the void-galaxy cross-correlation
function with reconstruction, Astron. Astrophys. 677 (2023) A78 [arXiv:2302.05302)
[INSPIRE].

— 31 —


https://doi.org/10.1103/PhysRevLett.93.171104
https://doi.org/10.48550/arXiv.astro-ph/0309300
https://inspirehep.net/literature/627903
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.48550/arXiv.0709.3825
https://inspirehep.net/literature/761712
https://doi.org/10.1103/PhysRevLett.104.231301
https://doi.org/10.48550/arXiv.1001.4525
https://inspirehep.net/literature/843552
https://doi.org/10.1142/S0218271809016107
https://doi.org/10.48550/arXiv.0905.2943
https://inspirehep.net/literature/820765
https://doi.org/10.1007/JHEP08(2011)108
https://doi.org/10.1007/JHEP08(2011)108
https://doi.org/10.48550/arXiv.1010.1415
https://inspirehep.net/literature/872211
https://doi.org/10.1016/0370-2693(72)90147-5
https://inspirehep.net/literature/75796
https://doi.org/10.1088/1475-7516/2016/11/057
https://doi.org/10.1088/1475-7516/2016/11/057
https://doi.org/10.48550/arXiv.1609.08632
https://inspirehep.net/literature/1488353
https://doi.org/10.1103/PhysRevD.97.023535
https://doi.org/10.48550/arXiv.1708.05652
https://inspirehep.net/literature/1616710
https://doi.org/10.1093/mnras/sty1822
https://doi.org/10.48550/arXiv.1801.08880
https://inspirehep.net/literature/1650603
https://doi.org/10.1093/mnras/sty1335
https://doi.org/10.1093/mnras/sty1335
https://doi.org/10.48550/arXiv.1801.08975
https://inspirehep.net/literature/1650959
https://doi.org/10.1093/mnras/stae449
https://doi.org/10.1093/mnras/stae449
https://doi.org/10.48550/arXiv.2309.09636
https://inspirehep.net/literature/2698962
https://doi.org/10.48550/arXiv.1903.05161
https://inspirehep.net/literature/1724858
https://doi.org/10.1088/1475-7516/2015/11/018
https://doi.org/10.48550/arXiv.1506.03088
https://inspirehep.net/literature/1375464
https://doi.org/10.1093/mnras/stz1944
https://doi.org/10.1093/mnras/stz1944
https://doi.org/10.48550/arXiv.1808.07464
https://inspirehep.net/literature/1689433
https://doi.org/10.1093/mnras/stv777
https://doi.org/10.1093/mnras/stv777
https://doi.org/10.48550/arXiv.1410.1510
https://inspirehep.net/literature/1320545
https://doi.org/10.1088/1475-7516/2015/11/036
https://doi.org/10.48550/arXiv.1507.04363
https://inspirehep.net/literature/1383094
https://doi.org/10.3847/1538-4357/ac7d4b
https://doi.org/10.48550/arXiv.2107.02304
https://inspirehep.net/literature/1877742
https://doi.org/10.1051/0004-6361/202142852
https://doi.org/10.48550/arXiv.2112.03926
https://inspirehep.net/literature/1986803
https://doi.org/10.1051/0004-6361/202346121
https://doi.org/10.48550/arXiv.2302.05302
https://inspirehep.net/literature/2631199

[59]

M.C. Neyrinck, I. Szapudi and A.S. Szalay, Rejuvenating the matter power spectrum: restoring
information with a logarithmic density mapping, Astrophys. J. Lett. 698 (2009) L90
[arXiv:0903.4693] [INSPIRE].

F. Simpson, J.B. James, A.F. Heavens and C. Heymans, Clipping the cosmos: the bias and
bispectrum of large scale structure, Phys. Rev. Lett. 107 (2011) 271301 [arXiv:1107.5169]
[INSPIRE].

E. Massara et al., Using the marked power spectrum to detect the signature of neutrinos in
large-scale structure, Phys. Rev. Lett. 126 (2021) 011301 [arXiv:2001.11024] INSPIRE].

E. Massara et al., Cosmological information in the marked power spectrum of the galazy field,
Astrophys. J. 951 (2023) 70 [arXiv:2206.01709] [nSPIRE].

E. Massara et al., SIMBIG: cosmological constraints using simulation-based inference of galazy
clustering with marked power spectra, arXiv:2404.04228 [INSPIRE].

J. Schmalzing, S. Gottloeber, A.A. Klypin and A.V. Kravtsov, Quantifying the evolution of
higher order clustering, Mon. Not. Roy. Astron. Soc. 309 (1999) 1007 [astro-ph/9906475]
[INSPIRE].

G. Pratten and D. Munshi, Non-Gaussianity in large scale structure and Minkowski functionals,
Mon. Not. Roy. Astron. Soc. 423 (2012) 3209 [arXiv:1108.1985] [INSPIRE].

S. Codis et al., Non-Gaussian Minkowski functionals € extrema counts in redshift space, Mon.
Not. Roy. Astron. Soc. 435 (2013) 531 [arXiv:1305.7402] [INSPIRE].

W. Fang, B. Li and G.-B. Zhao, New probe of departures from general relativity using
Minkowski functionals, Phys. Rev. Lett. 118 (2017) 181301 [arXiv:1704.02325] [INSPIRE].

W. Liu, A. Jiang and W. Fang, Probing massive neutrinos with the Minkowski functionals of
the galazy distribution, JCAP 09 (2023) 037 [arXiv:2302.08162] INSPIRE].

J.H.T. Yip et al., Cosmology with persistent homology: a Fisher forecast, JCAP 09 (2024) 034
[arXiv:2403.13985] [iNSPIRE].

E. Paillas, Y.-C. Cai, N. Padilla and A.G. Sanchez, Redshift-space distortions with split
densities, Mon. Not. Roy. Astron. Soc. 505 (2021) 5731 [arXiv:2101.09854] INSPIRE].

E. Paillas et al., Constraining vA CDM with density-split clustering, Mon. Not. Roy. Astron.
Soc. 522 (2023) 606 [arXiv:2209.04310] [INSPIRE].

A E. Bayer et al., Detecting neutrino mass by combining matter clustering, halos, and voids,
Astrophys. J. 919 (2021) 24 [arXiv:2102.05049] [INnSPIRE].

E. Paillas et al., Cosmological constraints from density-split clustering in the BOSS CMASS
galazy sample, Mon. Not. Roy. Astron. Soc. 531 (2024) 898 [arXiv:2309.16541] INSPIRE].

C. Cuesta-Lazaro et al., SUNBIRD: a simulation-based model for full-shape density-split
clustering, Mon. Not. Roy. Astron. Soc. 531 (2024) 3336 [arXiv:2309.16539] [INSPIRE].

M. Schmittfull, T. Baldauf and U. Seljak, Near optimal bispectrum estimators for large-scale
structure, Phys. Rev. D 91 (2015) 043530 [arXiv:1411.6595] [INSPIRE].

A. Peel et al., Breaking degeneracies in modified gravity with higher (than 2nd) order
weak-lensing statistics, Astron. Astrophys. 619 (2018) A38 [arXiv:1805.05146] [INSPIRE].

A. Moradinezhad Dizgah, H. Lee, M. Schmittfull and C. Dvorkin, Capturing non-Gaussianity
of the large-scale structure with weighted skew-spectra, JCAP 04 (2020) 011
[arXiv:1911.05763] [INSPIRE].

- 32 —


https://doi.org/10.1088/0004-637X/698/2/L90
https://doi.org/10.48550/arXiv.0903.4693
https://inspirehep.net/literature/816412
https://doi.org/10.1103/PhysRevLett.107.271301
https://doi.org/10.48550/arXiv.1107.5169
https://inspirehep.net/literature/920261
https://doi.org/10.1103/PhysRevLett.126.011301
https://doi.org/10.48550/arXiv.2001.11024
https://inspirehep.net/literature/1777821
https://doi.org/10.3847/1538-4357/acd44d
https://doi.org/10.48550/arXiv.2206.01709
https://inspirehep.net/literature/2091455
https://doi.org/10.48550/arXiv.2404.04228
https://inspirehep.net/literature/2774695
https://doi.org/10.1046/j.1365-8711.1999.02912.x
https://doi.org/10.48550/arXiv.astro-ph/9906475
https://inspirehep.net/literature/502663
https://doi.org/10.1111/j.1365-2966.2012.21103.x
https://doi.org/10.48550/arXiv.1108.1985
https://inspirehep.net/literature/922662
https://doi.org/10.1093/mnras/stt1316
https://doi.org/10.1093/mnras/stt1316
https://doi.org/10.48550/arXiv.1305.7402
https://inspirehep.net/literature/1236330
https://doi.org/10.1103/PhysRevLett.118.181301
https://doi.org/10.48550/arXiv.1704.02325
https://inspirehep.net/literature/1590846
https://doi.org/10.1088/1475-7516/2023/09/037
https://doi.org/10.48550/arXiv.2302.08162
https://inspirehep.net/literature/2633130
https://doi.org/10.1088/1475-7516/2024/09/034
https://doi.org/10.48550/arXiv.2403.13985
https://inspirehep.net/literature/2770705
https://doi.org/10.1093/mnras/stab1654
https://doi.org/10.48550/arXiv.2101.09854
https://inspirehep.net/literature/1842703
https://doi.org/10.1093/mnras/stad1017
https://doi.org/10.1093/mnras/stad1017
https://doi.org/10.48550/arXiv.2209.04310
https://inspirehep.net/literature/2149812
https://doi.org/10.3847/1538-4357/ac0e91
https://doi.org/10.48550/arXiv.2102.05049
https://inspirehep.net/literature/1845823
https://doi.org/10.1093/mnras/stae1118
https://doi.org/10.48550/arXiv.2309.16541
https://inspirehep.net/literature/2704053
https://doi.org/10.1093/mnras/stae1234
https://doi.org/10.48550/arXiv.2309.16539
https://inspirehep.net/literature/2704047
https://doi.org/10.1103/PhysRevD.91.043530
https://doi.org/10.48550/arXiv.1411.6595
https://inspirehep.net/literature/1329763
https://doi.org/10.1051/0004-6361/201833481
https://doi.org/10.48550/arXiv.1805.05146
https://inspirehep.net/literature/1672999
https://doi.org/10.1088/1475-7516/2020/04/011
https://doi.org/10.48550/arXiv.1911.05763
https://inspirehep.net/literature/1765050

[78]

[79]

[80]

[81]

[82]

[89]

[90]

[91]

[92]

(93]

P. Chakraborty, S.-F. Chen and C. Dvorkin, Skewing the CMBxLSS: a fast method for
bispectrum analysis, JCAP 07 (2022) 038 [arXiv:2202.11724] [INSPIRE].

J. Hou, A. Moradinezhad Dizgah, C.H. Hahn and E. Massara, Cosmological information in skew
spectra of biased tracers in redshift space, JCAP 03 (2023) 045 [arXiv:2210.12743] [INSPIRE].

S.-F. Chen, P. Chakraborty and C. Dvorkin, Analysis of BOSS galazy data with weighted
skew-spectra, JCAP 05 (2024) 011 [arXiv:2401.13036] [INSPIRE].

J. Hou et al., Cosmological constraints from the redshift-space galaxy skew spectra, Phys. Rev. D
109 (2024) 103528 [arXiv:2401.15074] [INSPIRE].

A. Banerjee and T. Abel, Nearest neighbour distributions: new statistical measures for
cosmological clustering, Mon. Not. Roy. Astron. Soc. 500 (2020) 5479 [arXiv:2007.13342]
[INSPIRE].

A. Banerjee and T. Abel, Cosmological cross-correlations and nearest neighbour distributions,
Mon. Not. Roy. Astron. Soc. 504 (2021) 2911 [arXiv:2102.01184] [INSPIRE].

C. Uhlemann et al., Fisher for complements: extracting cosmology and neutrino mass from the
counts-in-cells PDF, Mon. Not. Roy. Astron. Soc. 495 (2020) 4006 [arXiv:1911.11158]
[INSPIRE].

D. Jamieson and M. Loverde, The position-dependent matter density probability distribution
function, Phys. Rev. D 102 (2020) 123546 [arXiv:2010.07235] [InSPIRE].

K. Naidoo, E. Massara and O. Lahav, Cosmology and neutrino mass with the minimum
spanning tree, Mon. Not. Roy. Astron. Soc. 513 (2022) 3596 [arXiv:2111.12088] [INSPIRE].

EucLiD collaboration, Fuclid preparation. XX VIII. Forecasts for ten different higher-order weak
lensing statistics, Astron. Astrophys. 675 (2023) A120 [arXiv:2301.12890] [INSPIRE].

A. Gupta, J.M.Z. Matilla, D. Hsu and Z. Haiman, Non-Gaussian information from weak lensing
data via deep learning, Phys. Rev. D 97 (2018) 103515 [arXiv:1802.01212] InSPIRE].

A. Peel et al., Distinguishing standard and modified gravity cosmologies with machine learning,
Phys. Rev. D 100 (2019) 023508 [arXiv:1810.11030] [INSPIRE].

J. Merten et al., On the dissection of degenerate cosmologies with machine learning, Mon. Not.
Roy. Astron. Soc. 487 (2019) 104 [arXiv:1810.11027] [InSPIRE].

CAMELS collaboration, The CAMELS project: Cosmology and Astrophysics with MachinE
Learning Simulations, Astrophys. J. 915 (2021) 71 [arXiv:2010.00619] [INSPIRE].

L.A. Perez et al., Constraining cosmology with machine learning and galazy clustering: the
CAMELS-SAM suite, Astrophys. J. 954 (2023) 11 [arXiv:2204.02408] [INSPIRE].

N.S.M. de Santi et al., Robust field-level likelihood-free inference with galaxies, Astrophys. J.
952 (2023) 69 [arXiv:2302.14101] [INSPIRE].

B. Dai and U. Seljak, Multiscale flow for robust and optimal cosmological analysis, Proc. Nat.
Acad. Sci. 121 (2024) €2309624121 [arXiv:2306.04689] [INSPIRE].

D. Sharma, B. Dai and U. Seljak, A comparative study of cosmological constraints from weak
lensing using convolutional neural networks, JCAP 08 (2024) 010 [arXiv:2403.03490]
[INSPIRE].

S. Mallat, Group invariant scattering, Commun. Pure Appl. Math. 65 (2012) 1331.

J. Bruna and S. Mallat, Invariant scattering convolution networks, IEEE Trans. Pattern Anal.
Machine Intell. 35 (2013) 1872.

— 33 —


https://doi.org/10.1088/1475-7516/2022/07/038
https://doi.org/10.48550/arXiv.2202.11724
https://inspirehep.net/literature/2037683
https://doi.org/10.1088/1475-7516/2023/03/045
https://doi.org/10.48550/arXiv.2210.12743
https://inspirehep.net/literature/2169719
https://doi.org/10.1088/1475-7516/2024/05/011
https://doi.org/10.48550/arXiv.2401.13036
https://inspirehep.net/literature/2751004
https://doi.org/10.1103/PhysRevD.109.103528
https://doi.org/10.1103/PhysRevD.109.103528
https://doi.org/10.48550/arXiv.2401.15074
https://inspirehep.net/literature/2751955
https://doi.org/10.1093/mnras/staa3604
https://doi.org/10.48550/arXiv.2007.13342
https://inspirehep.net/literature/1808972
https://doi.org/10.1093/mnras/stab961
https://doi.org/10.48550/arXiv.2102.01184
https://inspirehep.net/literature/1844487
https://doi.org/10.1093/mnras/staa1155
https://doi.org/10.48550/arXiv.1911.11158
https://inspirehep.net/literature/1767190
https://doi.org/10.1103/PhysRevD.102.123546
https://doi.org/10.48550/arXiv.2010.07235
https://inspirehep.net/literature/1822832
https://doi.org/10.1093/mnras/stac1138
https://doi.org/10.48550/arXiv.2111.12088
https://inspirehep.net/literature/1975726
https://doi.org/10.1051/0004-6361/202346017
https://doi.org/10.48550/arXiv.2301.12890
https://inspirehep.net/literature/2628018
https://doi.org/10.1103/PhysRevD.97.103515
https://doi.org/10.48550/arXiv.1802.01212
https://inspirehep.net/literature/1653190
https://doi.org/10.1103/PhysRevD.100.023508
https://doi.org/10.48550/arXiv.1810.11030
https://inspirehep.net/literature/1700610
https://doi.org/10.1093/mnras/stz972
https://doi.org/10.1093/mnras/stz972
https://doi.org/10.48550/arXiv.1810.11027
https://inspirehep.net/literature/1700609
https://doi.org/10.3847/1538-4357/abf7ba
https://doi.org/10.48550/arXiv.2010.00619
https://inspirehep.net/literature/1821271
https://doi.org/10.3847/1538-4357/accd52
https://doi.org/10.48550/arXiv.2204.02408
https://inspirehep.net/literature/2064087
https://doi.org/10.3847/1538-4357/acd1e2
https://doi.org/10.3847/1538-4357/acd1e2
https://doi.org/10.48550/arXiv.2302.14101
https://inspirehep.net/literature/2637323
https://doi.org/10.1073/pnas.2309624121
https://doi.org/10.1073/pnas.2309624121
https://doi.org/10.48550/arXiv.2306.04689
https://inspirehep.net/literature/2667227
https://doi.org/10.1088/1475-7516/2024/08/010
https://doi.org/10.48550/arXiv.2403.03490
https://inspirehep.net/literature/2765887
https://doi.org/10.1002/cpa.21413
https://doi.org/10.1109/tpami.2012.230
https://doi.org/10.1109/tpami.2012.230

[98] L. Sifre and S. Mallat, Rotation, scaling and deformation invariant scattering for texture
discrimination, in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), June 2013 [DOI:10.1109/cvpr.2013.163].

[99] J. Bruna, S. Mallat, E. Bacry and J.-F. Muzy, Intermittent process analysis with scattering
moments, Annals Statist. 43 (2015) 323.

[100] J. Anden and S. Mallat, Deep scattering spectrum, IEEE Trans. Signal Processing 62 (2014)
4114.

[101] S. Cheng and B. Ménard, How to quantify fields or textures? A guide to the scattering
transform, arXiv:2112.01288 [INSPIRE].

[102] E. Allys et al., The RWST, a comprehensive statistical description of the non-Gaussian
structures in the ISM, Astron. Astrophys. 629 (2019) A115 [arXiv:1905.01372] INSPIRE].

[103] A.K. Saydjari et al., Classification of magnetohydrodynamic simulations using wavelet
scattering transforms, Astrophys. J. 910 (2021) 122 [arXiv:2010.11963].

[104] B. Regaldo-Saint Blancard et al., Statistical description of dust polarized emission from the
diffuse interstellar medium — a RWST approach, Astron. Astrophys. 642 (2020) A217
[arXiv:2007.08242] [INSPIRE].

[105] S. Cheng, Y.-S. Ting, B. Ménard and J. Bruna, A new approach to observational cosmology
using the scattering transform, Mon. Not. Roy. Astron. Soc. 499 (2020) 5902
[arXiv:2006.08561] [INSPIRE].

[106] S. Cheng and B. Ménard, Weak lensing scattering transform: dark energy and neutrino mass
sensitivity, Mon. Not. Roy. Astron. Soc. 507 (2021) 1012 [arXiv:2103.09247] [INSPIRE].

[107] G. Valogiannis and C. Dvorkin, Towards an optimal estimation of cosmological parameters with
the wavelet scattering transform, Phys. Rev. D 105 (2022) 103534 [arXiv:2108.07821]
[INSPIRE].

[108] G. Valogiannis and C. Dvorkin, Going beyond the galaxy power spectrum: an analysis of BOSS
data with wavelet scattering transforms, Phys. Rev. D 106 (2022) 103509 [arXiv:2204.13717]
[INSPIRE].

[109] G. Valogiannis, S. Yuan and C. Dvorkin, Precise cosmological constraints from BOSS galaxy
clustering with a simulation-based emulator of the wavelet scattering transform, Phys. Rev. D
109 (2024) 103503 [arXiv:2310.16116] [INSPIRE].

[110] E. Allys et al., New interpretable statistics for large scale structure analysis and generation,
Phys. Rev. D 102 (2020) 103506 [arXiv:2006.06298] [INSPIRE].

[111] B. Greig, Y.-S. Ting and A.A. Kaurov, Ezploring the cosmic 21 cm signal from the epoch of
reionization using the wavelet scattering transform, Mon. Not. Roy. Astron. Soc. 513 (2022)
1719 [arXiv:2204.02544] [INSPIRE].

[112] M. Eickenberg et al., Wavelet moments for cosmological parameter estimation,
arXiv:2204.07646 [INSPIRE].

[113] SIMBIG collaboration, Galazy clustering analysis with SimBIG and the wavelet scattering
transform, Phys. Rev. D 109 (2024) 083535 [arXiv:2310.15250] [INSPIRE].

[114] D.T. Chung, Exploration of 3D wavelet scattering transform coefficients for line-intensity
mapping measurements, Mon. Not. Roy. Astron. Soc. 517 (2022) 1625 [arXiv:2207.06383]
[INSPIRE].

— 34 —


https://doi.org/10.1109/cvpr.2013.163
https://doi.org/10.1214/14-aos1276
https://doi.org/10.1109/tsp.2014.2326991
https://doi.org/10.1109/tsp.2014.2326991
https://doi.org/10.48550/arXiv.2112.01288
https://inspirehep.net/literature/1983126
https://doi.org/10.1051/0004-6361/201834975
https://doi.org/10.48550/arXiv.1905.01372
https://inspirehep.net/literature/1733297
https://doi.org/10.3847/1538-4357/abe46d
https://doi.org/10.48550/arXiv.2010.11963
https://doi.org/10.1051/0004-6361/202038044
https://doi.org/10.48550/arXiv.2007.08242
https://inspirehep.net/literature/1807277
https://doi.org/10.1093/mnras/staa3165
https://doi.org/10.48550/arXiv.2006.08561
https://inspirehep.net/literature/1801234
https://doi.org/10.1093/mnras/stab2102
https://doi.org/10.48550/arXiv.2103.09247
https://inspirehep.net/literature/1852076
https://doi.org/10.1103/PhysRevD.105.103534
https://doi.org/10.48550/arXiv.2108.07821
https://inspirehep.net/literature/1907137
https://doi.org/10.1103/PhysRevD.106.103509
https://doi.org/10.48550/arXiv.2204.13717
https://inspirehep.net/literature/2074521
https://doi.org/10.1103/PhysRevD.109.103503
https://doi.org/10.1103/PhysRevD.109.103503
https://doi.org/10.48550/arXiv.2310.16116
https://inspirehep.net/literature/2713957
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.48550/arXiv.2006.06298
https://inspirehep.net/literature/1800791
https://doi.org/10.1093/mnras/stac977
https://doi.org/10.1093/mnras/stac977
https://doi.org/10.48550/arXiv.2204.02544
https://inspirehep.net/literature/2064096
https://doi.org/10.48550/arXiv.2204.07646
https://inspirehep.net/literature/2068420
https://doi.org/10.1103/PhysRevD.109.083535
https://doi.org/10.48550/arXiv.2310.15250
https://inspirehep.net/literature/2714336
https://doi.org/10.1093/mnras/stac2662
https://doi.org/10.48550/arXiv.2207.06383
https://inspirehep.net/literature/2111424

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]
[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

DES collaboration, Dark Energy Survey year 3 results: simulation-based cosmological inference
with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps.
Validation on simulations, Phys. Rev. D 109 (2024) 063534 [arXiv:2310.17557] INSPIRE].

M. Peron, G. Jung, M. Liguori and M. Pietroni, Constraining primordial non-Gaussianity from
large scale structure with the wavelet scattering transform, JCAP 07 (2024) 021
[arXiv:2403.17657] [INSPIRE].

S. Cheng et al., Cosmological constraints from weak lensing scattering transform using HSC Y1
data, arXiv:2404.16085 [INSPIRE].

M. Eickenberg, G. Exarchakis, M. Hirn and S. Mallat, Solid harmonic wavelet scattering:
predicting quantum molecular energy from invariant descriptors of 3d electronic densities, in
Proceedings of the 315 International Conference on Neural Information Processing Systems,

NIPS’17, (Red Hook, NY, U.S.A.), Curran Associates Inc. (2017), p. 6543.

M. Eickenberg et al., Solid harmonic wavelet scattering for predictions of molecule properties, J.
Chem. Phys. 148 (2018) 241732.

F. Villaescusa-Navarro et al., The Quijote simulations, Astrophys. J. Suppl. 250 (2020) 2
[arXiv:1909.05273] [INSPIRE].

N.A. Maksimova et al., AbacusSummit: a massive set of high-accuracy, high-resolution N-body
simulations, Mon. Not. Roy. Astron. Soc. 508 (2021) 4017 [arXiv:2110.11398] INSPIRE].

W. Hu and 1. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests, Phys.
Rev. D 76 (2007) 064004 [arXiv:0705.1158] [INSPIRE].

M. Baldi et al., in preparation (2024).
M. Andreux et al., Kymatio: scattering transforms in python, arXiv:1812.11214.

A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928]
[NSPIRE].

S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new
gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [INSPIRE].

V. Springel, The cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105 [astro-ph/0505010] [INSPIRE].

G. Valogiannis and R. Bean, Convolution Lagrangian perturbation theory for biased tracers
beyond general relativity, Phys. Rev. D 99 (2019) 063526 [arXiv:1901.03763] [INSPIRE].

G. Valogiannis, R. Bean and A. Aviles, An accurate perturbative approach to redshift space
clustering of biased tracers in modified gravity, JCAP 01 (2020) 055 [arXiv:1909.05261]
[INSPIRE].

A. Aviles et al., Redshift space power spectrum beyond Einstein-de Sitter kernels, JCAP 04
(2021) 039 [arXiv:2012.05077] [INSPIRE].

R. Liu, G. Valogiannis, N. Battaglia and R. Bean, Constraints on f(R) and normal-branch
Duali- Gabadadze-Porrati modified gravity model parameters with cluster abundances and galazy
clustering, Phys. Rev. D 104 (2021) 103519 [arXiv:2101.08728] [INSPIRE].

M.A. Rodriguez-Meza et al., fkPT: constraining scale-dependent modified gravity with the
full-shape galazy power spectrum, JCAP 03 (2024) 049 [arXiv:2312.10510] [NnSPIRE].

LSST DARk ENERGY SCIENCE collaboration, Matter power spectrum emulator for f(R)
modified gravity cosmologies, Phys. Rev. D 103 (2021) 123525 [arXiv:2010.00596] [INSPIRE].

,35,


https://doi.org/10.1103/PhysRevD.109.063534
https://doi.org/10.48550/arXiv.2310.17557
https://inspirehep.net/literature/2714763
https://doi.org/10.1088/1475-7516/2024/07/021
https://doi.org/10.48550/arXiv.2403.17657
https://inspirehep.net/literature/2771893
https://doi.org/10.48550/arXiv.2404.16085
https://inspirehep.net/literature/2780855
https://doi.org/10.1063/1.5023798
https://doi.org/10.1063/1.5023798
https://doi.org/10.3847/1538-4365/ab9d82
https://doi.org/10.48550/arXiv.1909.05273
https://inspirehep.net/literature/1753771
https://doi.org/10.1093/mnras/stab2484
https://doi.org/10.48550/arXiv.2110.11398
https://inspirehep.net/literature/1950356
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.48550/arXiv.0705.1158
https://inspirehep.net/literature/750201
https://doi.org/10.48550/arXiv.1812.11214
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.48550/arXiv.1002.4928
https://inspirehep.net/literature/846995
https://doi.org/10.1103/PhysRevD.70.043528
https://doi.org/10.48550/arXiv.astro-ph/0306438
https://inspirehep.net/literature/621682
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.48550/arXiv.astro-ph/0505010
https://inspirehep.net/literature/681719
https://doi.org/10.1103/PhysRevD.99.063526
https://doi.org/10.48550/arXiv.1901.03763
https://inspirehep.net/literature/1713545
https://doi.org/10.1088/1475-7516/2020/01/055
https://doi.org/10.48550/arXiv.1909.05261
https://inspirehep.net/literature/1753730
https://doi.org/10.1088/1475-7516/2021/04/039
https://doi.org/10.1088/1475-7516/2021/04/039
https://doi.org/10.48550/arXiv.2012.05077
https://inspirehep.net/literature/1835477
https://doi.org/10.1103/PhysRevD.104.103519
https://doi.org/10.48550/arXiv.2101.08728
https://inspirehep.net/literature/1842169
https://doi.org/10.1088/1475-7516/2024/03/049
https://doi.org/10.48550/arXiv.2312.10510
https://inspirehep.net/literature/2738154
https://doi.org/10.1103/PhysRevD.103.123525
https://doi.org/10.48550/arXiv.2010.00596
https://inspirehep.net/literature/1821238

[134]

[135]

[136]

[137]

[138]

[139)

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

J. Bai and J.-Q. Xia, FREmu: power spectrum emulator for f(R) gravity, Astrophys. J. 971
(2024) 11 [arXiv:2405.05840] [INSPIRE].

G. Valogiannis and R. Bean, Efficient simulations of large scale structure in modified gravity
cosmologies with comoving Lagrangian acceleration, Phys. Rev. D 95 (2017) 103515
[arXiv:1612.06469] [INSPIRE].

LSST DARK ENERGY SCIENCE collaboration, Hi-COLA: fast, approzimate simulations of
structure formation in Horndeski gravity, JCAP 03 (2023) 040 [arXiv:2209.01666] [INSPIRE].

A.S. Gupta, B. Fiorini and T. Baker, K-mouflage at high k: extending the reach of Hi-COLA,
arXiv:2407.00855 [INSPIRE].

E. Puchwein, M. Baldi and V. Springel, Modified gravity-GADGET: a new code for cosmological
hydrodynamical simulations of modified gravity models, Mon. Not. Roy. Astron. Soc. 436 (2013)
348 [arXiv:1305.2418] INSPIRE].

J. Carron, On the assumption of Gaussianity for cosmological two-point statistics and
parameter dependent covariance matrices, Astron. Astrophys. 551 (2013) A88
[arXiv:1204.4724] [INSPIRE].

M. Tegmark, A. Taylor and A. Heavens, Karhunen-Loeve eigenvalue problems in cosmology: how
should we tackle large data sets?, Astrophys. J. 480 (1997) 22 [astro-ph/9603021] [INSPIRE].

J. Hartlap, P. Simon and P. Schneider, Why your model parameter confidences might be too
optimistic: unbiased estimation of the inverse covariance matriz, Astron. Astrophys. 464 (2007)
399 [astro-ph/0608064] [INSPIRE].

A.E. Bayer, A. Banerjee and U. Seljak, Beware of fake v’s: the effect of massive neutrinos on
the nonlinear evolution of cosmic structure, Phys. Rev. D 105 (2022) 123510
[arXiv:2108.04215] [INSPIRE].

L. Lombriser, Constraining chameleon models with cosmology, Annalen Phys. 526 (2014) 259
[arXiv:1403.4268] [INSPIRE].

F. Villaescusa-Navarro, Pylians: Python libraries for the analysis of numerical simulations,
Astrophysics Source Code Library record ascl:1811.008, November 2018.

H. Desmond and P.G. Ferreira, Galaxy morphology rules out astrophysically relevant
Hu-Sawicki f(R) gravity, Phys. Rev. D 102 (2020) 104060 [arXiv:2009.08743] [INSPIRE].

C. Burrage, B. March and A.P. Naik, Accurate computation of the screening of scalar fifth
forces in galaxies, JCAP 04 (2024) 004 [arXiv:2310.19955] INSPIRE].

N.-M. Nguyen et al., How much information can be extracted from galaxy clustering at the field
level?, arXiv:2403.03220 [INSPIRE].

A K. Saydjari and D.P. Finkbeiner, Equivariant wavelets: fast rotation and translation
invariant wavelet scattering transforms, arXiv:2104.11244.

G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J.
Theor. Phys. 10 (1974) 363 [INSPIRE].

DES collaboration, Dark Energy Survey year 3 results: covariance modelling and its impact on
parameter estimation and quality of fit, Mon. Not. Roy. Astron. Soc. 508 (2021) 3125
[arXiv:2012.08568] [INSPIRE].

S. Yuan, B. Hadzhiyska and T. Abel, Full forward model of galaxy clustering statistics with
AbacusSummit light cones, Mon. Not. Roy. Astron. Soc. 520 (2023) 6283 [arXiv:2211.02068]
[INSPIRE].

— 36 —


https://doi.org/10.3847/1538-4357/ad55ef
https://doi.org/10.3847/1538-4357/ad55ef
https://doi.org/10.48550/arXiv.2405.05840
https://inspirehep.net/literature/2784818
https://doi.org/10.1103/PhysRevD.95.103515
https://doi.org/10.48550/arXiv.1612.06469
https://inspirehep.net/literature/1505134
https://doi.org/10.1088/1475-7516/2023/03/040
https://doi.org/10.48550/arXiv.2209.01666
https://inspirehep.net/literature/2147274
https://doi.org/10.48550/arXiv.2407.00855
https://inspirehep.net/literature/2803704
https://doi.org/10.1093/mnras/stt1575
https://doi.org/10.1093/mnras/stt1575
https://doi.org/10.48550/arXiv.1305.2418
https://inspirehep.net/literature/1233009
https://doi.org/10.1051/0004-6361/201220538
https://doi.org/10.48550/arXiv.1204.4724
https://inspirehep.net/literature/1111925
https://doi.org/10.1086/303939
https://doi.org/10.48550/arXiv.astro-ph/9603021
https://inspirehep.net/literature/435880
https://doi.org/10.1051/0004-6361:20066170
https://doi.org/10.1051/0004-6361:20066170
https://doi.org/10.48550/arXiv.astro-ph/0608064
https://inspirehep.net/literature/722897
https://doi.org/10.1103/PhysRevD.105.123510
https://doi.org/10.48550/arXiv.2108.04215
https://inspirehep.net/literature/1902036
https://doi.org/10.1002/andp.201400058
https://doi.org/10.48550/arXiv.1403.4268
https://inspirehep.net/literature/1286275
https://www.ascl.net/1811.008
https://doi.org/10.1103/PhysRevD.102.104060
https://doi.org/10.48550/arXiv.2009.08743
https://inspirehep.net/literature/1818065
https://doi.org/10.1088/1475-7516/2024/04/004
https://doi.org/10.48550/arXiv.2310.19955
https://inspirehep.net/literature/2715787
https://doi.org/10.48550/arXiv.2403.03220
https://inspirehep.net/literature/2765239
https://doi.org/10.48550/arXiv.2104.11244
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://inspirehep.net/literature/1189313
https://doi.org/10.1093/mnras/stab2384
https://doi.org/10.48550/arXiv.2012.08568
https://inspirehep.net/literature/1836908
https://doi.org/10.1093/mnras/stad550
https://doi.org/10.48550/arXiv.2211.02068
https://inspirehep.net/literature/2176800

[152] C.F. Park, E. Allys, F. Villaescusa-Navarro and D.P. Finkbeiner, Quantification of
high-dimensional non-Gaussianities and its implication to Fisher analysis in cosmology,
Astrophys. J. 946 (2023) 107 [arXiv:2204.05435] INSPIRE].

[153] W.R. Coulton et al., Quijote-PNG: the information content of the halo power spectrum and
bispectrum, Astrophys. J. 943 (2023) 178 [arXiv:2206.15450] [INSPIRE].

[154] W.R. Coulton and B.D. Wandelt, How to estimate Fisher information matrices from
simulations, arXiv:2305.08994 INSPIRE].

[155] C. Wilson and R. bean, Fisher’s mirage: noise tightening of cosmological constraints in
simulation-based inference, arXiv:2406.06067 [INSPIRE].

— 37 —


https://doi.org/10.3847/1538-4357/acbe3b
https://doi.org/10.48550/arXiv.2204.05435
https://inspirehep.net/literature/2066123
https://doi.org/10.3847/1538-4357/aca7c1
https://doi.org/10.48550/arXiv.2206.15450
https://inspirehep.net/literature/2104181
https://doi.org/10.48550/arXiv.2305.08994
https://inspirehep.net/literature/2660346
https://doi.org/10.48550/arXiv.2406.06067
https://inspirehep.net/literature/2796689

	Introduction
	Wavelet Scattering Transform
	Gravity model
	Simulations
	Fisher forecast
	WST
	Power spectrum

	Results
	Conclusions
	Gaussianity of the likelihood
	Numerical stability analysis
	Dependence on derivative formula

