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Abstract: Because of the substantial progress in quantum computing technology, the safety of

traditional cryptologic schemes is facing serious challenges. In this study, we explore the quantum

safety of the lightweight cipher MIBS and propose quantum key-recovery attacks on the MIBS

cipher by utilizing Grover’s algorithm and Bernstein–Vazirani algorithm. We first construct linear-

structure functions based on the 5-round MIBS cipher according to the characteristics of the linear

transformations, and then we obtain a quantum distinguisher of the 5-round MIBS cipher by applying

Bernstein–Vazirani algorithm to the constructed functions. Finally, utilizing this distinguisher and

Grover’s algorithm, we realize a 7-round key-recovery attack on the MIBS cipher, and then we expand

the attack to more rounds of MIBS based on a similar idea. The quantum attack on the 7-round MIBS

requires 156 qubits and has a time complexity of 210.5. An 8-round attack requires 179 qubits and

has a time complexity of 222. Compared with existing quantum attacks, our attacks have better time

complexity when attacking the same number of rounds.

Keywords: quantum cryptanalysis; MIBS; key-recovery attack; Bernstein–Vazirani algorithm

MSC: 94A60

1. Introduction

There has been substantial progress in quantum computer development in recent
years. Experts in physics, quantum computing, and computer architecture are committed
to realizing quantum computers. While quantum computing may bring benefits to research
in many fields, it also brings challenges, especially for cryptography.

The key difference in quantum computing from classical information computing
and processing is parallelism, which comes from the principle of superposition. This par-
allelism superiority makes it possible to execute a great quantity of computational
paths simultaneously on quantum computers, so that some computational problems
that cannot be solved by electronic computers may be solved by quantum computers.
For example, factoring large integers will be solvable on quantum computers by utilizing
Shor’s algorithm [1]; however, the security of some widely used public key algorithms is
built on it.

Apart from public key schemes, symmetric cryptography is under the threat of quan-
tum attacks as well. Grover’s algorithm [2] is the most representative example. It can be
used for any unstructured search and brings a quadratic speedup. Searching a specific
marked target in an M-element database using Grover’s algorithm needs only O(

√
M)

complexity, while classical algorithms need at least O(M) complexity. Another famous
example is Simon’s algorithm [3], which was introduced to find periods. It is also frequently
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applied to cryptanalysis of symmetric ciphers. At first, Simon’s algorithm was exploited to
distinguish between a Feistel structure and a random function [4–6]. Afterwards, it was
also utilized to find the key of the Even-Mansour (EM) scheme [6,7]. Lender et al. then
utilized Grover’s algorithm and Simon’s algorithm simultaneously to extract the keys of
FX ciphers [8]. Dong and Wang applied a similar method to attack a Feistel cipher [9]
and the generalized Feistel cipher [10]. As for the Substitution–Permutation Network
(SPN) structure, quantum attacks on the Advanced Encryption Standard (AES) algorithm
were investigated by Jaques et al. [11]. Halak et al. evaluated the computation costs and
performance of several quantum-attack-resilient cryptographic algorithms [12]. Recently,
the research on the cryptanalysis of symmetric schemes has begun to pay attention to the
Bernstein–Vazirani (BV) algorithm [13] and has obtained some good results [14,15].

In addition to the specific attacks on certain symmetric ciphers, analytic tools for
symmetric ciphers must also be investigated for accurate security evaluation. In this
direction, Grover’s algorithm was used to accelerate the search involved in differential
attacks [11,16], and it was also used in the search part of linear attacks and their variants [17].
Afterwards, the BV algorithm was exploited for finding differentials [14,18,19]. Zhou and
Yuan combined the BV algorithm and Grover’s algorithm for attacking Feistel ciphers [15].
Their attack strategy was inspired by the attack presented in [8,9], the main innovation being
that it uses BV algorithm to distinguish the functions with nonzero linear structures from
random functions instead of using Simon’s algorithm to distinguish functions with nonzero
periods from random functions. Quantum algorithms are also applied to the collision attack
on Hash functions [20,21]. Quantum cryptanalysis under the related-key model has also
been studied [22,23]. The attacks mentioned above all exhibit the acceleration superiority
of quantum algorithms in symmetric cryptanalysis over classical algorithms.

In this study, we investigate quantum attacks on the MIBS cipher, which is a lightweight
algorithm with a Feistel structure and designed specifically for constrained environ-
ments [24]. First, by analyzing the characteristics of the MIBS cipher, we construct linear-
structure functions based on the 5-round encryption of the MIBS cipher. Then, we combine
this function with the BV algorithm to construct a distinguisher of the 5-round MIBS cipher.
Afterwards, we utilize Grover’s algorithm and this distinguisher to implement a 7-round
key-recovery attack on the MIBS cipher. Based on a similar idea, we further use the same
distinguisher to implement 8-round and 9-round key-recovery attacks on the MIBS cipher.
The 7-round, 8-round, and 9-round attacks require 156, 179, and 194 qubits, respectively,
and their complexity are 210.5, 222, and 232, respectively. Compared with existing quantum
attacks, the quantum attacks presented in this article have the minimum complexity when
attacking the same number of rounds. Our work further explores the “BV-meet-Grover”
attack strategy and helps to evaluate the security of the MIBS cipher.

We first construct a periodic function based on the 5-round encryption, and then we
combine Simon’s algorithm with the found periodic function to obtain a 5-round quan-
tum distinguisher. As the number of rounds increases, the encryption function becomes
more complex, making it increasingly difficult to find periodic functions. The 5-round
distinguisher is the longest distinguisher we can find. Using the constructed 5-round
distinguisher to attack 7-round, 8-round, and 9-round MIBS requires guessing 21, 44, and
64 bits of subkeys, respectively. The complexity of the 10-round attack exceeds that of the
key exhaustive attack. Therefore, we only provide 7-round, 8-round, and 9-round attacks
on MIBS.

Organization. Section 2 recalls the the fundamental concepts of quantum computing
and cryptography; Section 3 constructs a 5-round quantum distinguisher of the MIBS
cipher; Section 4 presents key-recovery attacks on the MIBS cipher; Section 5 provides
a summary.
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2. Preliminaries

2.1. Mibs Block Cipher

Lightweight cipher MIBS applies a standard Feistel structure [24]. Each block has
64 bits, and the key length supports 80-bit and 64-bit. We only consider the 64-bit version in
this paper. MIBS has 32 rounds. Figure 1 shows the encryption structure of one round. Li−1

and Ri−1 are the left branch and right branch of the input of the i-th round, respectively. Li

and Ri are the left branch and right branch of the output of the i-th round, respectively. Ki

is the i-th subkey (i = 1, 2, · · · , 32). In the i-th round, Li−1 and Ki are input to the function
F, and the XOR of Ri−1 and the output of F is the left branch Li of the output. The right
branch Ri of the output directly takes the value of Li−1. All operations appearing in MIBS
are nibble-based. A nibble contains four bits.

Figure 1. The i-th round function of MIBS.

Suppose the plaintext is M ∈ F
64
2 , then the encryption process of MIBS is as follows:

1. Divide M into two 32-bit parts M = L0||R0.
2. For i = 1, 2, · · · , 32, compute

{

Li = Ri−1 ⊕ F(Li−1 ⊕ Ki)
Ri = Li−1,

where Ki is the subkey of the i-th round generated by the key scheduling, and function
F is defined below.

3. Output the ciphertext C = R32||L32. (The ciphertext is obtained by exchanging the
left and right branches of the output L32||R32 of the last iteration.)

The function F : F32
2 → F

32
2 maps eight nibbles to eight nibbles:

F : (F4
2)

8 → (F4
2)

8

x → P ◦ M ◦ S(x),

where S is the substitution transformation, M and P are the mixing layer and the permuta-
tion layer, respectively. The S layer implements 8 identical Sboxes of 4 bits, all denoted s.

S : (F4
2)

8 → (F4
2)

8

(x8, x7, · · · , x1) → (s(x8), s(x7), · · · , s(x1)).

The definition of the Sbox s is presented in Table 1.
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Table 1. SBox s.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s(x) 5 15 3 8 13 10 12 0 11 5 7 14 2 6 1 9

The M layer mixes 8 nibbles using the XOR operation:

M : (F4
2)

8 → (F4
2)

8

(y8, y7, · · · , y1) → (u8, u7, · · · , u1),

where

u1 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7

u2 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8

u3 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8

u4 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8

u5 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6

u6 = y1 ⊕ y2 ⊕ y3 ⊕ y6 ⊕ y7

u7 = y2 ⊕ y3 ⊕ y4 ⊕ y7 ⊕ y8

u8 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y8.

The P layer rearranges the input 8 nibbles in the order given in Table 2. That is, the P
transformation is defined as

P : (F4
2)

8 → (F4
2)

8

(u8, u7, · · · , u1) → (z8, z7, · · · , z1),

where

z1 = u3, z2 = u1, z3 = u4, z4 = u7,
z5 = u8, z6 = u5, z7 = u6, z8 = u2.

Table 2. P transformation.

- 1 2 3 4 5 6 7 8

P 2 8 1 3 6 7 4 5

For the convenience of cryptanalysis, we combine the transformations P and M. Let
PM = P ◦ M, which is a linear transformation and operates as follows:

PM : (F4
2)

8 → (F4
2)

8

(y8, y7, · · · , y1) → (z8, z7, · · · , z1), (1)

where

z1 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8

z2 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y7 ⊕ y8

z5 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y8

z6 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6

z7 = y1 ⊕ y2 ⊕ y3 ⊕ y6 ⊕ y7

z8 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8.
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The construction of F is depicted in Figure 2. x8, x7, · · · , x1 denotes the input of
function F. First, the input is XORed with the 32-bit subkey Ki. Then, all nibbles are
performed on 8 identical Sboxes s, respectively. The output of the Sboxes are denoted
as y8, y7, · · · , y1. Subsequently, F performs PM transformation on these nibbles. PM
is composed of XOR operations and position permutations as defined in Equation (1).
We mark the PM transformation with a dashed box.

Figure 2. Construction of the function F.

The attack on the MIBS cipher needs to use the inverse of PM.

PM−1 : (F4
2)

8 → (F4
2)

8

(z8, z7, · · · , z1) → (y8, y7, · · · , y1),

where

y1 = z2 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

y2 = z1 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8

y3 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6

y4 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7

y5 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8

y6 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8

y7 = z1 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7 ⊕ z8

y8 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7.

The matrix forms of PM and PM−1 are

PM =

























1 1 1 0 1 1 0 1
0 1 1 0 0 1 1 1
0 0 1 1 1 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0
1 0 1 1 0 1 1 1
0 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1

























, PM−1 =

























0 1 1 0 1 1 1 1
1 1 1 1 0 1 0 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 1 0
0 1 1 1 0 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 0

























.

The key scheduling of MIBS generates 32 32-bit round keys K1, K2, · · · , K32. Suppose
the user key K = (k63, k62, · · · , k0). K is stored in a 64-bit key register state. Initialize
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the state of the register as state = [k63, k62, · · · , k0], i.e., statei = ki . The round key
Ki = ki

31ki
30 · · · ki

0 in the i-th round is equal to the leftmost 32 bits of the current regis-
ter. Namely,

Ki = ki
31ki

30 · · · ki
0 = state63, state62, · · · , state32.

After extracting the round key Ki, update the register as follows:

state = state >>> 15,

state[63 : 60] = s(state[63 : 60]),

state[15 : 11] = state[15 : 11]⊕ Round-Counter,

where >>> denotes rotation to the right, and state[j : i] denotes the j-th to the i-th bits of
the register. s(·) is the Sbox defined in Table 1.

2.2. Bernstein–Vazirani Algorithm

The BV algorithm was introduced to find a secret vector ρ ∈ F
n
2 when given the

function f (x) = ρ · x = ∑
n
i=1 ρixi [13]. The steps of the BV algorithm are illustrated in

Figure 3.

Figure 3. BV algorithm.

The notation H in Figure 3 denotes the Hadamard gate, which maps the state |0⟩ to
the state 1√

2
(|0⟩+ |1⟩) and maps the state |1⟩ to the state 1√

2
(|0⟩ − |1⟩). The notation H⊗n

is a product of n Hadamard gates. Performing H⊗n on |0⟩⊗n gives the state

H⊗n|0⟩⊗n =H|0⟩ ⊗ H|0⟩ ⊗ · · · ⊗ H|0⟩

=
1√
2n

(|0⟩ ⊕ |1⟩)⊗n

=
1√
2n ∑

x∈Fn
2

|x⟩.

The notation U f denotes the unitary operator of f , which operates as follows:

U f : |x⟩|y⟩ → |x⟩|y ⊕ f (x)⟩.

The symbol at the end of the first quantum wire in Figure 3 denotes a measurement.
Suppose a quantum state ∑x∈Fn

2
αx|x⟩ is measured, where αx is a complex number and
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called the amplitude of |x⟩, then for any vector x ∈ F
n
2 , the probability of the measurement

result being x is equal to |αx|2. The quantum states in Figure 3 are defined as follows:

|φ0⟩ = |0⟩⊗n|1⟩;

|φ1⟩ = ∑
x∈Fn

2

|x⟩√
2n

· |0⟩ − |1⟩√
2

;

|φ2⟩ = ∑
x∈Fn

2

(−1) f (x)|x⟩√
2n

|0⟩ − |1⟩√
2

;

|φ3⟩ = ∑
y∈Fn

2

(
1

2n ∑
x∈Fn

2

(−1) f (x)+y·x)|y⟩ |0⟩ − |1⟩√
2

;

|φ4⟩ = |ρ⟩ |0⟩ − |1⟩√
2

.

The last equation holds because

1

2n ∑
x∈Fn

2

(−1) f (x)+y·x =
1

2n ∑
x∈Fn

2

(−1)(ρ⊕y)·xs =

{

1 y = ρ

0 y ̸= ρ.

After measurement, the output is ρ with a probability of 1.

2.3. Linear Structure

Definition 1. For a Boolean function f : Fm
2 → F

n
2 , α ∈ F

m
2 is called a linear structure of f if

f (x ⊕ α)⊕ f (x) = β, ∀x ∈ F
m
2 (2)

holds for some β ∈ F
n
2 .

If β in Equation (2) is the n-dimensional zero vector 0n, then α is also called a period
of f . If a function has a nonzero period, we call it a periodic function. If a function has
a nonzero linear structure, we call it a linear structure function. Particularly, for the case
n = 1, Li et al. presented a quantum algorithm that can determine whether f has a nonzero
linear structure in polynomial time [19].

Theorem 1 ([19]). Any nonzero linear structure of f : Fm
2 → F2 must be output by Algorithm 1.

Conversely, taking p(n) = n, any vector output by Algorithm 1 is a linear structure of f except a
negligible probability.

Algorithm 1 Algorithm for finding linear structures of single-output functions

Input : quantum oracle of f : Fm
2 → F2, a polynomial p(n).

Output: linear structures of f .

1: Define a set T := Φ;
2: for p = 1, 2, · · · , p(n) do
3: Execute BV algorithm on f , obtaining a vector ω;
4: Let T = T ∪ {ω};
5: end for
6: Solve the equation {x · ω = i|ω ∈ T} and obtain two solution sets Ci for both

i = 0, 1;

7: if C0 ∪ C1 ⊆ {0m} then
8: Output “Not linear structure function”;
9: else

10: Output C0 and C1;
11: end if
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2.4. Grover’s Algorithm

Grover’s algorithm [2] was introduced for unstructured search. Suppose the set to be
searched is Fn

2 , and u ∈ F
n
2 is the target vector. In a classical setting, it takes a time of 2n

to find u, while in a quantum setting, using Grover’s algorithm only takes a time of
√

2n.
Grover’s algorithm has three steps:

1. Prepare the quantum state

H(n)|0⟩⊗n =
1√
2n ∑

x∈Fn
2

|x⟩ ∆
= |φ⟩

by applying Hadamard transform.
2. Construct the quantum oracle Ou of function

fu(x) =

{

1 x = u
0 x ̸= u.

Ou operates as

Ou : |x⟩ → (−1) fu(x)|x⟩.
3. Let Oφ = 2|φ⟩⟨φ| − I. Perform Grover’s iteration OφOu for R ≈ π

4

√
2n times to obtain

(OφOu)
R|φ⟩ ≈ |u⟩.

4. Return u.

When implementing Grover’s algorithm, the quantum oracle O fu
of the function fu is

given, which operates as follows:

O fu
: |x⟩|y⟩ → |x⟩|y ⊕ fu(y)⟩.

The oracle Ou can be constructed based on O fu
as in Figure 4. Given the input state |x⟩,

Ou performs O fu
on |x⟩ and the auxiliary state 1√

2
(|0⟩ − |1⟩). Then, the whole quantum

state is

O fu

(

|x⟩ |0⟩ − |1⟩√
2

)

=|x⟩ |0 ⊕ fu(x)⟩ − |1 ⊕ fu(x)⟩√
2

=(−1) fu(x)|x⟩ |0⟩ − |1⟩√
2

.

The last equation holds because when fu(x) = 0, the state of the second register
remains unchanged, while when fu(x) = 1, the state of the second register becomes

1√
2
(|1⟩ − |0⟩), which brings a negative sign. Then Ou discards the second register and

outputs the state (−1) fu(x)|x⟩ of the first register.

Figure 4. The construction of Ou.
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3. Quantum Distinguisher of MIBS

One of the common methods for attacking block ciphers by quantum algorithms
is to first construct a quantum distinguisher by Simon’s algorithm or the BV algorithm,
and then utilize Grover’s algorithm to extract the correct key based on the constructed
distinguisher. Specifically, Simon’s algorithm can quickly determine whether a function
is a periodic function. To obtain a distinguisher, the attacker first constructs a periodic
function by using part of the encryption algorithm. Then, when the queried oracle is the
block cipher, implementing Simon’s algorithm on the constructed function should output a
period. When the queried oracle is a random function, applying Simon’s algorithm on the
constructed function outputs a nonzero period with a negligible probability. Based on this
significant difference, the attacker can distinguish between the block cipher and random
function. In the phase of key recovery, the attacker guesses the round keys of several rounds
after the distinguisher and uses the guessed keys to decrypt the ciphertexts obtained by
querying. If the guessed round keys are correct, then the distinguisher performed on the
partly decrypted ciphertexts should identify them as the outputs of a block cipher. If the
round keys are incorrect, the partly decrypted ciphertexts are equivalent to the outputs of
a random function. Thus, the distinguisher should identify them as outputs of a random
function. By traversing all possible round keys, the attacker can recognize the correct key.
In this process, Grover’s algorithm can provide speedup. This attack strategy is called
“Grover-meet-Simon” [8–10].

Similar to Grover-meet-Simon, the strategy “Grover-meet-BV” is also used [15]. In a
Grover-meet-BV attack, the attacker constructs a linear-structure function instead of a
periodic function and uses the BV algorithm to distinguish functions with nonzero linear
structures from random functions, instead of using Simon’s algorithm to distinguish
functions with nonzero periods from random functions. Except for this point, other parts
of these two attacks are the same. According to this attack strategy, we first construct a
linear-structure function based on a 5-round encryption of MIBS; then, we present a 5-round
quantum distinguisher of MIBS using this linear structure function and BV algorithm.

3.1. A Linear-Structure Function Based on 5-Round MIBS

In this subsection, we construct a linear-structure function based on 5-round MIBS.
For the convenience of derivation, let Fi be the F transformation in the i-th round, and let
the S layer in the i-th round be Si, as presented in Figure 5. All Fis (Si’s) operate in the same
way. The left-branch input in the i-th round is Li−1, and the right branch is Ri−1.

According to Figure 5, it holds that

R5 = R3 ⊕ F4(L3). (3)

Select two arbitrary constant vectors δ0, δ1 ∈ F
4
2 such that δ0 ̸= δ1. For any variables

d ∈ F2 and x = (x4, x3, x2, x1) ∈ F
4
2, let the input of the 5-round MIBS be

L0 = (04, δd, 04, 04, 04, 04, 04, 04),

R0 = PM(04, x, 04, 04, 04, 04, 04, 04),

where 04 = (0, 0, 0, 0), δd = δ0 when d = 0, and δd = δ1 when d = 1. PM is defined as in
Equation (1). We use R5 to construct a linear-structure function. Due to Equation (3), for
computing R5, we should first compute R3 and L3. Let Ki[j] be the j-th nibble of the i-th
round key Ki. That is,

Ki = (Ki[8], Ki[7], Ki[6], Ki[5], Ki[4], Ki[3], Ki[2], Ki[1]), i = 1, 2, · · · , 32.
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Figure 5. Illustration of 5-round distinguisher.

It holds that

F1(L0 ⊕ K1)

=F1(K1[8], δd ⊕ K1[7], K1[6], K1[5], K1[4], K1[3], K1[2], K1[1])

=PM ◦ S1(K1[8], δd ⊕ K1[7], K1[6], K1[5], K1[4], K1[3], K1[2], K1[1])

=PM(s(K1[8]), s(δd ⊕ K1[7]), s(K1[6]), s(K1[5]), s(K1[4]), s(K1[3]), s(K1[2]), s(K1[1]))

=PM(C, ∆d, C, C, C, C, C, C),

where ∆d = s(δd ⊕ K1[7]), K1[7] is a constant, and the notation C indicates that the cor-
responding nibble is a constant. The values of different nibbles marked with C may be
different, but they are all restricted to constants that do not depend on variables x and
d. Then,

L1 = F1(L0 ⊕ K1)⊕ R0

= PM(C, ∆d, C, C, C, C, C, C)⊕ PM(04, x, 04, 04, 04, 04, 04, 04)

= PM(C, ∆d ⊕ x, C, C, C, C, C, C).
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Therefore,

R3 = L2 = R1 ⊕ F2(L1 ⊕ K2)

= L0 ⊕ F2(L1 ⊕ K2)

= L0 ⊕ F2

(

PM(C, ∆d ⊕ x, C, C, C, C, C, C)⊕ K2

)

= L0 ⊕ F2

(

PM(C, ∗, C, C, C, C, C, C)⊕ K2

)

, (4)

where ∗ = ∆d ⊕ x. Since

L2 = F2(L1 ⊕ K2)⊕ R1

= F2

(

PM(C, ∗, C, C, C, C, C, C)⊕ K2

)

⊕ R1

= F2

(

PM(C, ∗, C, C, C, C, C, C)⊕ K2

)

⊕ L0,

we have

L3 = F3(L2 ⊕ K3)⊕ L1

= F3

(

F2

(

PM(C, ∗, C, C, C, C, C, C)⊕ K2

)

⊕ L0 ⊕ K3

)

⊕ L1.

Before further deriving the linear-structure function, we first give Lemma 1.

Lemma 1. Let g(∗, δd) = F3

(

F2(PM(C, ∗, C, C, C, C, C, C) ⊕ K2) ⊕ L0 ⊕ K3

)

, where

L0 = (04, δd, 04, 04, 04, 04, 04, 04) and ∗ = s(δd ⊕ K1[7]) ⊕ x; then, the value of the 5th nib-
ble g(∗, δd)[5] of g(∗, δd) is only related to the value of ∗.

Proof. According to the construction of the PM transformation,

PM(C, ∗, C, C, C, C, C, C)⊕ K2

=(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗))⊕ K2

=(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗)),

where C indicates that the corresponding nibble is a constant, and h̄(∗) indicates that the
value of the corresponding nibble is a function of ∗. Different nibbles marked with h̄(∗)
may be different functions of ∗, but their values are all restricted to only depend on the
variable ∗. Notations C and h̄(∗) are used to indicate the state of the corresponding nibbles,
not a specific vector or function. The last equality holds since K2 is a constant. Then,

F2(PM(C, ∗, C, C, C, C, C, C)⊕ K2)

=PM ◦ S2(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗))
=PM(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗))
=(h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗)).

Then,

F2(PM(C, ∗, C, C, C, C, C, C)⊕ K2)⊕ L0 ⊕ K3

=(h̄(∗), h̄(∗)⊕ δd, h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗))
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Therefore,

g(∗, δd) =
(

g(∗, δd)[8], g(∗, δd)[7], · · · , g(∗, δd)[2], g(∗, δd)[1]
)

=F3(h̄(∗), h̄(∗)⊕ δd, h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗))
=PM ◦ S3(h̄(∗), h̄(∗)⊕ δd, h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗))
=PM(h̄(∗), ?, h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗), h̄(∗))
=(?, ?, h̄(∗), h̄(∗), ?, h̄(∗), ?, ?),

where “?” means that the state of corresponding nibbles is uncertain. Due to the above
equation, the 5th nibble g(∗, δd)[5] of g(∗, δd) is in the state h̄(∗); thus, its values are only
related to ∗. The notation h̄(∗) means that every nibble marked with h̄(∗) is a function of
∗. The h̄(∗) does not refer to a specific function, but rather indicates that the values of the
corresponding nibbles depend only on the value of ∗. It represents a kind of state of nibbles
rather than a specific function. The h̄(∗) symbols in the 2nd, 3rd, and 5th nibbles of g(∗, δd)
indicate that these three nibbles are all functions of ∗, and their values depend only on ∗,
but they are not necessarily the same function.

According to Lemma 1, we define the function

G : F2 × F
4
2 → F

4
2

(d, x) → PM−1(L0 ⊕ R5)[5]⊕ d4,

where

L0 = (04, δd, 04, 04, 04, 04, 04, 04),

R0 = PM(04, x, 04, 04, 04, 04, 04, 04),

and (L5, R5) = MIBS5(L0, R0), i.e., the ciphertext after a 5-round encryption of MIBS.
PM−1 is the inverse function of PM. PM−1(L0 ⊕ R5)[5] is the 5th nibble of PM−1(L0 ⊕ R5).
d4 = (dddd).

Theorem 2. Function G(d, x) is a linear-structure function, and (1, ∆0 ⊕ ∆1) is its linear struc-
ture. Specifically,

G(d, x)⊕ G(d ⊕ 1, x ⊕ ∆0 ⊕ ∆1) = (1111),

where ∆0 = s(δ0 ⊕ K1[7]) and ∆1 = s(δ1 ⊕ K1[7]) are constants.

Proof. According to Equation (3), it holds that

PM−1(L0 ⊕ R5) = PM−1(L0)⊕ PM−1(R3)⊕ PM−1(F4(L3)).

Due to Equation (4), we have

PM−1(R3) = PM−1(L0)⊕ PM−1(F2(PM(C, ∗, C, C, C, C, C, C)⊕ K2)).

Therefore,

PM−1(L0 ⊕ R5) = PM−1(F2(PM(C, ∗, C, C, C, C, C, C)⊕ K2))⊕ PM−1(F4(L3)). (5)

We compute the first part:

PM−1(F2(PM(C, ∗, C, C, C, C, C, C)⊕ K2))

=S2(PM(C, ∗, C, C, C, C, C, C)⊕ K2))

=S2(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗))
=(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗)).
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Then, we compute the second part:

PM−1(F4(L3))

=S4(g(∗, δd)⊕ L1)

=S4

(

g(∗, δd)⊕ PM(C, ∗, C, C, C, C, C, C)
)

=S4

(

(?, ?, h̄(∗), h̄(∗), ?, h̄(∗), ?, ?)⊕ (h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗))
)

=(?, ?, h̄(∗), h̄(∗), ?, h̄(∗), ?, ?).

Combining these two parts gives

PM−1(L0 ⊕ R5) (6)

=(h̄(∗), h̄(∗), C, C, h̄(∗), C, h̄(∗), h̄(∗))⊕ (?, ?, h̄(∗), h̄(∗), ?, h̄(∗), ?, ?) (7)

=(?, ?, h̄(∗), h̄(∗), ?, h̄(∗), ?, ?). (8)

Thus, we have

G(d, x) = PM−1(L0 ⊕ R5)[5]⊕ d4 = h̄(∗)⊕ d4 = h̄(∆d ⊕ x)⊕ d4

and
G(d ⊕ 1, x ⊕ ∆0 ⊕ ∆1) = h̄(∆d ⊕ x)⊕ d4 ⊕ (1111).

These two equations mean that

G(d, x)⊕ G(d ⊕ 1, x ⊕ ∆0 ⊕ ∆1) = (1111).

which indicates the conclusion.

3.2. 5-Round Quantum Distinguisher

We have constructed a linear-structure function based on the 5-round encryption
of MIBS. Combining this with the quantum algorithm, which can determine whether
a function is a linear-structure function, we can obtain a quantum distinguisher of 5-
round MIBS.

Based on Algorithm 1, Xie and Yang constructed a quantum algorithm that can
determine whether a function has linear structures [14]. We present this quantum algo-
rithm below.

Theorem 3 ([14]). If f : Fm
2 → F

n
2 is a linear-structure function, then except with a negligible

probability, Algorithm 2 on f with p(n) = n will output a linear structure of f .

Algorithm 2 [14] Algorithm for finding linear structures of multiple-output functions

Input : quantum oracle of f : Fm
2 → F

n
2 , a polynomial p(n). ( f = ( f1, f2, · · · , fn).)

Output: a linear structure of f .

1: for j = 1, 2, · · · , n do
2: Run Algorithm 1 on f j with p(n);
3: if Algorithm 1 returns “Not linear structure function” then
4: Output “Not linear structure function”;
5: else
6: Let Cj = C0

j ∪ C1
j , where C0

j and C1
j are the outputs of Algorithm 1;

7: end if
8: end for
9: if C1 ∩ C2 ∩ · · · ∩ Cn ⊆ {0m} then

10: Return “Not linear structure function”;
11: else
12: Randomly choose a nonzero vector α ∈ C1 ∩ · · · ∩ Cn and return α;
13: end if
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In a quantum distinguishing attack on 5-round MIBS, a quantum oracle O is available,
which implements either the encryption of 5-round MIBS MIBS5 or a random function RF.
Since the linear-structure function G is defined only using the right part R5 of the output of
MIBS5, it is assumed that the attacker can query the oracle, which merely returns the right
branch R5. Such assumption is commonly used in quantum distinguishing attacks [4–6].
Moreover, in the following key-recovery attack, we show how to construct such oracle via
the oracle of complete encryption. Thus, the attacker can query O by implementing either
the operator

O : ∑
u∈F64

2
v∈F32

2

|u⟩|v⟩ → ∑
u∈F64

2
v∈F32

2

|u⟩|v ⊕ MIBS5
R(u)⟩

or the operator
O : ∑

u∈F64
2

v∈F32
2

|u⟩|v⟩ → ∑
u∈F64

2
v∈F32

2

|u⟩|v ⊕ PF(u)⟩,

where MIBS5
R : F64

2 → F
32
2 is the the encryption function of 5-round MIBS, which only

returns the right 32 bits, and PF : F64
2 → F

32
2 is a random function.

A quantum distinguisher of O is a quantum algorithm that can distinguish whether O
implements MIBS5

R or a random function PF. In order to construct a quantum distinguisher,
an intuitive idea is to construct the oracle OG of function G based on O

OG : ∑
(d,x)∈F2×F4

2,

y∈F4
2

|d⟩|x⟩|y⟩ → ∑
(d,x)∈F2×F4

2,

y∈F4
2

|d⟩|x⟩|y ⊕ G(d, x)⟩,

and then run Algorithm 2 on OG to determine whether it is the oracle of a linear-structure
function, thereby determining whether O is the encryption of 5-round MIBS. If O im-
plements MIBS5, then Algorithm 2 will return a linear structure of G; otherwise, if O
implements RF, then its probability of outputting a linear structure of G is negligible.

Figure 6 shows how to construct the oracle OG of function G based on O. The unitary
operator CNOT(32) is composed of 32 CNOT gates and works as follows:

CNOT(32) : ∑
u,v∈F32

2

|u⟩|v⟩ → ∑
u,v∈F32

2

|u⟩|v ⊕ u⟩.

Similarly, CNOT(4) is composed of 4 CNOT gates and works as follows:

CNOT(4) : ∑
u8,u7,··· ,u1∈F4

2
v∈F4

2

|u8, u7, · · · , u1⟩|v⟩ → ∑
u8,u7,··· ,u1∈F4

2
v∈F4

2

|u8, u7, · · · , u1⟩|v ⊕ u5⟩.

Figure 6. Construction of OG.



Mathematics 2024, 12, 2678 15 of 20

The unitary operator UPM−1 is defined as

UPM−1 : ∑
u∈F32

2

|u⟩ → ∑
u∈F32

2

|PM−1(u)⟩

and can be realized as shown in Figure 7. The input |d⟩ of OG is combined with 31 auxiliary
states |0⟩ to form the state |L0⟩, and the input |x⟩ is combined with 28 auxiliary states |0⟩ to
form the state |R0⟩. The states in Figure 6 are defined as below.

Input state = ∑
(d,x)∈F2×F4

2,

y∈F4
2

|d⟩|x⟩|y⟩,

|ϕ0⟩ = ∑
(d,x)∈F2×F4

2,

y∈F4
2

|04⟩|δd⟩|04⟩ · · · |04⟩|04⟩|x⟩|04⟩ · · · |04⟩|032⟩|y⟩

= ∑
(d,x)∈F2×F4

2,

y∈F4
2

|L0⟩|R0⟩|032⟩|y⟩,

|ϕ1⟩ =
{

∑d,x,y |L0⟩|R0⟩|MIBS5
R(L0, R0)⟩|y⟩, if O is oracle of MIBS5

R

∑d,x,y |L0⟩|R0⟩|RF(L0, R0)⟩|y⟩, if O is oracle of RF

|ϕ2⟩ =
{

∑d,x,y |L0⟩|R0⟩|R5 ⊕ L0⟩|y⟩, if O is oracle of MIBS5
R

∑d,x,y |L0⟩|R0⟩|RF(L0, R0)⊕ L0⟩|y⟩, if O is oracle of RF

|ϕ3⟩ =
{

∑d,x,y |L0⟩|R0⟩|PM−1(R5 ⊕ L0)⟩|y⟩, if O is oracle of MIBS5
R

∑d,x,y |L0⟩|R0⟩|PM−1(RF(L0, R0)⊕ L0)⟩|y⟩, if O is oracle of RF

Figure 7. Quantum circuit of UPM−1.

Therefore, when O is the oracle of MIBS5
R, it holds that

|ϕ4⟩ = ∑
d,x,y

|L0⟩|R0⟩|PM−1(R5 ⊕ L0)⟩|y ⊕ PM−1(R5 ⊕ L0)[5]⟩

= ∑
d,x,y

|L0⟩|R0⟩|PM−1(R5 ⊕ L0)⟩|y ⊕ G(d, x)⟩.

When O is the oracle of random function RF, it holds that

|ϕ4⟩ = ∑
d,x,y

|L0⟩|R0⟩|PM−1(RF(L0, R0)⊕ L0)⟩|y ⊕ PM−1(RF(L0, R0)⊕ L0)[5]⟩.
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The disentanglement process is to disentangle the registers denoted |d⟩, |x⟩, and |y⟩
from the registers of the auxiliary states. Thus, after this process, the state will be

|ϕ5⟩ = ∑
d,x,y

|L0⟩|R0⟩|032⟩|y ⊕ G(d, x)⟩

if O is the oracle of MIBS5
R, or

|ϕ5⟩ = ∑
d,x,y

|L0⟩|R0⟩|032⟩|y ⊕ PM−1(RF(L0, R0)⊕ L0)[5]⟩ (9)

if O is the oracle of random function RF. Since RF is a random function from 64 bits to
32 bits, PM−1(RF(L0, R0)⊕ L0)[5] can also been seen as a random function mapping 5 bits
to 4 bits given input (d, x). Let RF5,4 denote the random function from 5 bits to 4 bits; then,
we have

|ϕ5⟩ = ∑
d,x,y

|L0⟩|R0⟩|032⟩|y ⊕ RF5,4(d, x)⟩ (10)

when O is the oracle of RF. The output state of OG shown in Figure 6 is

output state =

{

∑d,x,y |d⟩|x⟩|y ⊕ G(d, x)⟩, if O is oracle of MIBS5
R

∑d,x,y |d⟩|x⟩|y ⊕ RF5,4(d, x)⟩, if O is oracle of RF.

The quantum oracle OG has been constructed; then, we present the quantum distin-
guisher of 5-round MIBS. Given the access to the oracle O, the distinguisher DO works
as follows:

(1) Construct the oracle OG based on O as in Figure 6;
(2) Implement Algorithm 2 using oracle OG;
(3) If Algorithm 2 returns a linear structure, output |1⟩; otherwise, output |0⟩.

The output |1⟩ indicates that O is the oracle of MIBS5
R, and output |0⟩ indicates that O

is the oracle of random function RF. According to Theorem 2, DO can correctly distinguish
the 5-round MIBS from a random function.

4. Key-Recovery Attack

We first give a 7-round key-recovery attack on MIBS utilizing the distinguisher pro-
posed in Section 3.2. We consider a chosen plaintext attack, where the oracle of the 7-round
MIBS is available. Namely, the oracle

OMIBS7 : ∑
u,v∈F64

2

|u⟩|v⟩ → ∑
u,v∈F64

2

|u⟩|v ⊕ MIBS7(u)⟩

can be queried by an attacker. Through querying OMIBS7 , the attacker can obtain the
superposition state of the ciphertexts after 7-round encryption; then, the attacker guesses
the relevant bits of the 6th- and 7th-round keys and decrypts the ciphertexts for two rounds
to obtain the ciphertexts of MIBS5

R (R5). Therefore, for each guessed candidate round
key of the 6th and 7th rounds, the attacker can use it to decrypt 2 rounds to obtain oracle
O, which is the oracle of MIBS5

R when the guessed key is right, and is the oracle of the
random function RF when the guessed key is wrong. Using the distinguisher DO defined
in Section 3.2 with queries to O can determine whether the guessed round key bits are
right. If the round key bits are right, DO will output |1⟩; otherwise, it will output |0⟩.
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The key is how to compute R5 using the least bits of K6 and K7 given the ciphertext
(L7, R7). Since

g(d, x)

=PM−1(MIBS5
R(L0, R0)⊕ L0)[5]

=PM−1(R5)[5]⊕ PM−1(L0)[5],

to construct oracle OG, we actually only need to compute the 5th nibble of PM−1(R5)
instead of the entire R5. Therefore, we can slightly change the way to generate OG so that
we do not need the entire R5. OG can still be constructed from O using the method in
Section 3.2, except that O is no longer the oracle of the entire R5, but only the part of R5

required for computing PM−1(R5)[5]. This does not bring any essential differences but can
void guessing the unnecessary key bits during key-recovery attack. As shown in Figure 8,
it holds that

PM−1(R5)[5] = PM−1(F6(L5 ⊕ K6))[5]⊕ PM−1(L6)[5]

= S6(L5 ⊕ K6)[5]⊕ PM−1(R7)[5]

= s(L5[5]⊕ K6[5])⊕ PM−1(R7)[5]

= s(R6[5]⊕ K6[5])⊕ PM−1(R7)[5]

= s
(

F7(R7 ⊕ K7)[5]⊕ L7[5]⊕ K6[5]
)

⊕ PM−1(R7)[5]

= s
(

PM
(

S7(R7 ⊕ K7)
)

[5]⊕ L7[5]⊕ K6[5]
)

⊕ PM−1(R7)[5].

Since L7 and R7 are known, according to the definition of PM, to compute PM(S7(R7 ⊕
K7))[5], we only need to guess the 1st, 3rd, 4th, 5th, and 8th nibbles of K7. Therefore, K6[5],
K7[8, 5, 4, 3, 1] are enough for computing the value of PM−1(R5)[5] or g(d, x). There are
24 bits needed to be guessed. Considering the key scheduling, there may exist repetitive bits.

Figure 8. Illustration of key-recovery attack.

Table 3 shows the repetition bits of the subkeys in 7–10 rounds generated as the key
scheduling. Suppose the state of the key register in the 6th round of key scheduling is

state = a63a62 · · · a1a0,
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then, K6 = a63a62 · · · a32 and K7 = a14a13 · · · a0a63 · · · a47. Here, we omit the Sbox trans-
formation since the determined transformation does not affect the amount of bits that is
required to be guessed. According to Table 3, the 2nd, 3rd, and 4th bits of K7[1] are the
same as the 1st, 2nd, and 3rd bits of K6[5]. Thus, in fact, we only need to guess 21 key bits:

K6[5], K7[8, 5, 4, 3, 1(1)],

where K7[8, 5, 4, 3, 1(1)] denotes the 8th, 5th, 4th, and 3rd nibbles and the 1st bit of the 1st
nibble of K7.

Table 3. Repetition of round key bits.

K6 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

K7 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63
62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47

K8 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 62

K9 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

K10 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44
43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

Define

G : F21
2 × F2 × F

4
2 → F

4
2

(K6,7, d, x) → G(d, x) under the decryption of K6,7.

Given the oracle of MIBS7, by decrypting under the relevant keys in the 6th and 7th
rounds, it is easy to obtain the oracle of PM−1(R5)[5]. Then, we can construct the oracle
of G using a similar method in Section 3.2. The oracle of G can play the role of OG in the
distinguisher A. Thus, A will output |1⟩ when K6,7 is the correct 21-bit key and output |0⟩
when K6,7 is the wrong 21-bit subkey. Taking A as the oracle Ou in Grover’s algorithm, it
will search for the right key bits: K6[5], K7[8, 5, 4, 3, 1(1)].

According to [8], this key-recovery attack needs a total of

nk + nin × l + nout × l (11)

qubits, where nk is the number of bits of the subkeys to be recovered, nin is the input length
of the linear structure function G, nout is the output length of G, and l = 2(nin +

√
nin).

nk = 21, nin = 5, nout = 4, and l ≈ 15. Thus, this attack requires 156 qubits. The time

complexity is
√

221 = 210.5.
Consider attacking 8-round MIBS using the same distinguisher. By similar derivation,

to compute PM−1(R5)[5] based on the ciphertext (L8, R8), we need to guess the subkeys

K6[5], K7[8, 5, 4, 3, 1(1)], K8.

According to Table 3, K8 has 9 repetitive bits, so there are only 44 bits to be recov-
ered. According to Equation (11), an 8-round key-recovery attack requires 179 qubits.

The corresponding time complexity is
√

244 = 222.
By similar derivation, a 9-round attack requires 194 qubits, and the time complexity is√

259 = 229.5. A 10-round attack requires 199 qubits, and the time complexity is
√

264 = 232.
The authors in [25] also presented quantum attacks on MIBS. The time complexity of their
7-round, 8-round, and 9-round attacks is 212, 228, and 244, respectively. The complexity of
our attacks proposed in this article is lower.
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5. Results and Discussion

In this article, we proposed quantum attacks on the MIBS cipher based on the BV
algorithm. Specifically, we first fully utilize the characteristics of the linear transformations
of the MIBS cipher to construct a linear-structure function. Then, we use the fact that the BV
algorithm can quickly determine whether a function has nonzero linear structures to design
a 5-round quantum distinguisher for the MIBS cipher, which can effectively distinguish
the encryption of the 5-round MIBS cipher from a random function. Subsequently, by
analyzing the key scheduling of the MIBS cipher, we find the repeated bits between round
keys. Combined with Grover’s algorithm, we realize a 7-round key-recovery attack on MIBS
and generalize the attack to more rounds. The quantum attack on 7-round MIBS requires
156 qubits and has a time complexity of 210.5. The 8-round attack requires 179 qubits, and
the time complexity is 222. Compared with the existing quantum attacks, our attack has
the smallest time complexity. We believe this study contributes to evaluating the safety of
the MIBS cipher in the quantum world and helps to further explore the "BV-meet-Grover"
attack strategy.

For further research, how to reduce the resource consumption and time complexity
of the attacks on the MIBS cipher is worth studying. We can also study the applications
of the BV algorithm and other quantum algorithms to key-recovery attacks on various
block ciphers. Quantum attacks on other symmetric primitives, such as hash functions and
stream ciphers, are also a meaningful direction. For example, we can apply the quantum
attack strategies introduced in [20,21] to attack other hash functions [26,27]. We can also
apply quantum algorithms to enhance the classical attacks on stream ciphers that have
been proposed [28,29] or to attack other cryptographic schemes [30,31].
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