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Abstract

According to the current experimental data, the Higgs vacuum appears to be metastable due to

the development of a second, lower ground state in its potential. Consequently, this leads to a

non-zero rate of vacuum decay through nucleation of bubbles of true vacuum with catastrophic

consequences for our false vacuum Universe. Since such an event would render our Universe

incompatible with measurements, there cannot have been any such bubble nucleation events

anywhere in our whole past lightcone. Thus, we are motivated to study possible stabilising

mechanisms in the early universe, focusing on the period of cosmological inflation. We consider a

minimal scenario of the Standard Model of particle physics together with single-field, high-scale

inflation, while accounting for the time-dependence of the Hubble rate, both in the geometry of

our past light-cone and in the Higgs e↵ective potential. The latter is approximated with three-

loop renormalization group improvement supplemented with one-loop curvature corrections in

de Sitter. We study three one-parameter inflationary models in field theory, quadratic, quartic,

and Starobinsky-like power law inflation, and the modified gravity scenario R+R2, that leads

to the observationally favoured model of Starobinsky inflation. We show that the survival of

the vacuum state through inflation places lower bounds on the non-minimal Higgs curvature

coupling ⇠, the last unknown parameter of the Standard Model. The bounds are significantly

stronger in Starobinsky inflation than in field theory models with no Higgs-inflaton coupling,

⇠ & 0.1 > 0.06 , but are independent of the duration of inflation. However, they are sensitive

to the details of the dynamics at the end of inflation, and therefore they can be improved with

a more detailed study of that period.
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�1/4 and Ḣ/H2 = �1, respectively. The leftmost black parts of the curves

show the lowest ⇠EW values below which ⇠(µ) turns negative during its running,

and thus “pushes” the EW vacuum to higher field values. Previous constraints

with a Starobinsky-like power-law model are shown in the dotted blue curve (see

Section 4.2.1). The vertical dashed black line stands at the threshold value of

mt, below which the EW vacuum is stable. Finally, the horizontal, black line

illustrates the conformal point ⇠ = 1/6. Figure included in [2]. . . . . . . . . . . 79



Chapter 1

Introduction

1.1 Motivation and Objectives

In 2012, the last missing particle of the Standard Model (SM) of particle physics, the Higgs bo-

son, was observed in the Large Hadron Collider (LHC) at CERN [9, 10]. This event established

firmly the validity of the SM as a self-consistent theory of nature’s fundamental particles and

their interactions. The SM has famously provided predictions about observables, which agree

with experimental results to many decimal places and therefore render it as our most success-

ful physical theory so far [11]. Even though there are still many open questions, unexplained

phenomena and intricacies that we cannot tackle with the SM alone, it is possible that the SM

could indeed describe physics beyond the few TeV’s we probe with the LHC up to the Planck

scale, where a theory of quantum gravity would be needed [12, 13, 14]. This implies that we

could use the SM for studying the early universe, when energies were high, and thus make a

promising connection between particle physics and cosmology. [12]

The Higgs boson, rather than acting just as a confirmation of the SM, has a number of in-

teresting characteristics that may have allowed it to a↵ect the evolution of the universe. In

the context of the SM alone, the eponymous boson is the excitation of the Higgs field that

permeates all of spacetime and via its coupling to matter fields, such as the leptons and quarks,

it generates their corresponding masses. This is the result of spontaneous symmetry breaking

14
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of the SU(2)⇥U(1) symmetry of the electroweak force into electromagnetism’s U(1) symmetry,

due to the field’s non-zero vacuum expectation value (vev) of v ⇡ 246.22 GeV [11, 15]. The

experimentally measured mass of the Higgs boson lies in a range [8] within which the Higgs

self-interaction does not diverge below the Planck scale [16, 17, 18]. This has attracted signif-

icant interest in the past [19, 20, 21, 22, 23, 24, 25, 26] and it implies that the SM might be

su�cient to describe our universe up to Planck scale energies, where quantum gravity e↵ects

become significant. Thus, the SM can be used as a consistent minimal model for describing the

early Universe and address open questions by considering its cosmological applications [5, 12].

These revolve around cosmological phase transitions, baryon asymmetry, dark matter, the dy-

namics of inflation that seed the present day large scale structure and the possible death of the

universe due to the electroweak vacuum instability. In this study, we focus on the last topic

but for more details on these applications we refer the reader to [12].

The current parameters of the SM, in particular the masses of the Higgs boson and the top

quark, suggest that the Higgs field lies currently in a metastable electroweak vacuum state [16,

17]. The corresponding decay rate is extremely small and thus a collapse into the true minimum

is very unlikely in the present day universe [27, 28, 29, 30, 31, 32]. However, when considering

our cosmological evolution and thus given a long enough time interval, the Higgs field will

eventually decay to its true vacuum state. This can happen either via thermal fluctuations,

quantum tunnelling or a combination of both. This is a local process at a particular point in

spacetime that in turn excites the surrounding field in all directions to vacuum decay in a rapidly

evolving chain reaction [33]. This induces the nucleation of bubbles of true vacuum that expand

rapidly with velocity close to the speed of light c and consume everything in their path [34, 35].

Inside these bubbles, the physics that govern the true vacuum spacetime are very di↵erent

to our false vacuum Universe and depend on the shape of the Higgs potential, high energy

(UV) e↵ects and quantum gravity [36]. However, for all practical purposes in the framework

of the SM, the bubble interior is considered to collapse into a singularity [36, 37, 38, 39].

From our measurements of the relevant SM parameters and the observation that the Universe

around us is still in the metastable state, we can conclude that no such bubble nucleation event

took place inside our past lightcone, despite the many di↵erent mechanisms that could have
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triggered it throughout our cosmological history. In other words, the probability for suppressing

bubble production and thus surviving so far has to be significant [5, 38]. In the early Universe,

the probability of such an event could have been close to unity, which allows us to constrain

fundamental theories and their parameters leading to a wide variety of physical implications

reviewed in Ref. [5], where we refer the reader for more details and references.

The cosmological implications of Higgs vacuum metastability have been studied in a variety of

scenarios in recent years and reviewed in [5]. There is already a substantial body of literature

investigating implications from vacuum stability during inflation [6, 13, 28, 36, 38, 40, 41, 42,

43, 44, 45, 39, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] and reheating [60, 61, 62,

63, 64, 65, 66, 67, 68, 69] and possible cosmological signatures from non-fatal scenarios as well

as e↵ects from black holes [70, 71, 37, 72, 73, 74, 75, 76, 77, 78, 79, 80]. For recent works

addressing aspects of vacuum decay in de Sitter (dS) space see the Refs. [81, 82, 83, 84, 85].

In particular, vacuum stability allows us to constrain the non-minimal coupling ⇠, which cou-

ples the Higgs field to spacetime curvature [38, 48, 60]. This parameter is required by the

renormalizability of the theory in curved spacetime [86, 87, 88], but it is practically impossible

to be measured experimentally in the current almost flat Universe, which makes it the last

unknown renormalizable parameter of the SM [6, 89]. On the contrary, at the high energy

scales of the early universe, the fabric of spacetime was curved significantly more so, that its

e↵ects on the Higgs field dynamics would be more evident. [5, 12]. Therefore, the constraints

from cosmological vacuum instability are many orders of magnitude stronger than those from

other measurements [5]. Within this context, vacuum stability during inflation [1, 2, 6, 38, 48]

and after inflation [60, 67, 90] requires ⇠ to lie within a narrow range around the conformal

value ⇠ = 1/6. For recent work on other cosmological implications of non-minimal couplings

see the Refs. [91, 92, 93].

The aim of this work was to explore this possibility by calculating the probability of the Higgs

field to vacuum decay during the period of cosmological inflation. It is essential for this compu-

tation to consider the entire particle spectrum of the SM and especially the e↵ects of spacetime

curvature. The bubble nucleation probability depends sensitively on the Higgs-curvature cou-



1.1. Motivation and Objectives 17

pling and the spacetime volume of the expanding universe. Most of the existing literature has,

nonetheless, approximated the spacetime during inflation with a de Sitter spacetime. That

means that the Hubble rate is treated as a constant free parameter. In this work, we consider

the question in the context of actual inflationary models in which the Hubble rate is time-

dependent and, once a model is chosen, the parameters are determined by cosmic microwave

background (CMB) observations. The choice of the inflationary model a↵ects the bubble nucle-

ation probability in two ways: Because of the time-dependence of the Hubble rate, spacetime

curvature is di↵erent, which a↵ects the nucleation rate per unit spacetime volume. We compute

this using the renormalization group improved e↵ective Higgs potential with three-loop run-

ning [94, 95], pole matching as described in Ref. [96], and where crucially the e↵ective potential

is calculated on a curved background to one-loop order as given in Ref. [6]. The model choice

also determines the geometry of the past lightcone, which is di↵erent from dS. We incorporate

both of these e↵ects and find the constraints on the Higgs-curvature coupling ⇠ arising from

vacuum stability in three models of field theory inflation and in the modified gravity setting

R +R2 which leads to the observationally favourable model of Starobinsky inflation.

The format of this thesis is as follows. In Chapter 2, we provide an overview of the electroweak

vacuum instability in the context of the Standard Model of particle physics. We focus on

the Higgs e↵ective potential, going from the simplest tree-level case in flat spacetime to the

current state-of-the-art with 3-loops and one-loop curvature corrections. Afterwards, we review

the necessary aspects of inflationary cosmology in Chapter 3, with a particular emphasis on

departing from the slow-roll approximation, and present the inflationary models of interest. In

Chapter 4, we introduce the framework for studying bubble nucleation during the inflationary

epoch and describe our approach for the numerical computations. Additionally, we present our

findings for the constraints on the non-minimal coupling ⇠ for the di↵erent inflationary models

in field theory and a range of top quark masses. We also discuss the time of the nucleation event

and its connection to the duration of inflation. In Chapter 5, we extend the analysis of Chapter

4 to study the Higgs vacuum metastability in Starobinsky inflation, in order to bound ⇠ from

below more accurately. First, we present the analytic calculations for the transformation from

the Jordan to the Einstein frame and illustrate the corresponding e↵ects on a spectator scalar
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field. We continue by discussing the particular case of the Standard Model in R2 inflation,

the renormalization group improvement of the e↵ective Higgs potential and the e↵ect of the

time-dependent background. Furthermore, we establish the formalism of bubble nucleation in

R2 inflation and showcase our results regarding the lower ⇠-bounds along with their dependence

on the definition for the end of inflation. Finally in Chapter 6, we summarise the arguments

for motivating this study and delineate its wider context, while highlighting its di↵erences

from the past literature. We also provide an overview of our results, where we underline their

cosmological implications regarding the early universe and identify the next steps and objectives

for future work.

1.2 Summary of results

In Chapter 4, which is based on Ref. [1], we studied the electroweak (EW) vacuum instabil-

ity of the Standard Model (SM) Higgs field in the context of cosmological inflation in field

theory to obtain lower bounds on the Higgs-curvature coupling. To that end, we developed a

code based on F. Bezrukov’s mathematica package (see Statement of originality), that deals

with the renormalization group (RG) running of the SM parameters. We utilised a three-loop

renormalization group improved e↵ective Higgs potential calculated on a curved background

and also took into account the time dependence of the Hubble rate both in the Higgs potential

and in the geometry of our past lightcone. For the latter, we solved numerically the evolution

equations, regarding the inflaton field and the conformal time in terms of e-foldings of inflation,

subject to the choice of inflationary model.

We considered three one-parameter models of inflation, quadratic, quartic and Starobinsky-like

power law inflation beyond the slow-roll regime. The e↵ects of the inflationary models, entered

the calculation indirectly through the calculation of the spacetime volume element dV that

appears in the integral of the expectation value of true vacuum bubbles hN i. In addition, we

tuned these inflationary models according to the famous CMB measurements, which resulted

in degenerate results and behaviour between these otherwise very di↵erent models of inflation,
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and managed to constrain the coupling ⇠ & 0.051 � 0.066 depending on the top quark mass.

We also demonstrated that vacuum decay is most likely to happen a few e-foldings before

the end of inflation and it is independent of its total duration, unless it lasts for more than

approximately 1060 e-folds. Then, in the very early universe, vacuum decay is enhanced, which

acts as a possible hint against eternal inflation.

One of the inflationary potentials we investigated in Section 4.2 corresponded to Starobinsky

inflation [97, 98], in which the inflaton field arises from a scalar metric degree of freedom when

the action has a quadratic R2 curvature term. It can be thought of as the minimal inflationary

model because it does not require the introduction of any new fields, and it is also compatible

with observations of inflationary observables [99]. However, in the presence of other scalar

fields, specifically the Higgs field, it will give rise to derivative couplings between the fields,

which we have not included in the formalism presented in Section 4.2. These terms have been

investigated in the setting of mixed Higgs-Starobinsky inflation [100, 101], and also to study

vacuum stability during reheating in Starobinsky inflation [90].

Chapter 5, which is based on Ref. [2], focuses on the minimal construction of the Standard

Model in Starobinsky inflation as description of the early universe. In particular, we present

the analytic calculations that show how the conformal transformation from R + R2 gravity

(Jordan frame) to Einstenian gravity with additions to the matter sector (Einstein frame), af-

fects the SM action, the e↵ective masses, and the renormalization group improvement process.

These implications result from the non-trivial field redefinitions that are necessary to canoni-

cally diagonalise the Lagrangian, where additional destabilising terms manifest in the e↵ective

potential. Therefore, we derived stronger bounds on the non-minimal coupling ⇠ & 0.1, which

are however very sensitive to the last moments of inflation, compared to the field theory case.

For this reason, we investigated bubble production with various endpoints for inflation and

inferred that it is essential to incorporate the epoch of reheating in these studies, if we wish to

improve our constraints further.



Chapter 2

The electroweak vacuum instability

2.1 Vacuum instability in flat spacetime

The SM is a renormalizable Quantum Field Theory (QFT), where the interactions between

particles are related to the energy scale at which they take place. This is evident in the

context of the path integral formulation of QFT and it is treated formally in the context of

renormalization. Via this procedure we account for the UV (high energy) divergences of the

theory we devised at lower energies (IR), and we see that our renormalized parameters are

functions of the renormalization scale µ, which corresponds to the energy scale of the physics

one is probing. If a renormalized coupling diverges (i.e., has a Landau pole) at energies lower

than the Planck scale, then this means that our theory is not valid at those energies and

thus we need to think of ways to fix it, such as beyond the Standard Model (BSM) physics.

[5, 11, 14, 33, 102]

The Standard Model particle content can be written as [5]

LSM = LYM + LF + L� + LGF + LGH , (2.1)

where the first three terms in eq. (2.1) come from the gauge fields (Yang-Mills), the fermions

and the Higgs doublet �, respectively. The ‘GF’ and ‘GH’ correspond to the gauge fixing and

20
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ghost Lagrangians, respectively. Here we show only the steps for the Higgs contribution, but

the complete derivation can be found in Ref. [6] (see also a shortened derivation in Ref. [5]).

The Higgs piece reads

L� = (Dµ�)
† (Dµ�)�m2�†�� �(�†�)2 , (2.2)

where m2 < 0 is the Higgs mass parameter and the SM covariant derivative is given by

Dµ = rµ � ig⌧aAa

µ
� ig0Y Aµ; ⌧a = �a/2 , (2.3)

where rµ contains the covariant connection for Einsteinian gravity, g and g0 are the SU(2) and

U(1) gauge couplings, Aa

µ
and Aµ the gauge fields, ⌧ and Y the corresponding generators, and

�a are the Pauli matrices. When expressing the Higgs field � as1

� =
1
p
2

0

B@
�i(�1 � i�2)

h+ (�0 + i�3)

1

CA , (2.4)

where h 2 R is a constant classical mean field and �0 and �i, i 2 {1, 2, 3}, are quantum

fluctuations with zero expectation value, the scalar part of the Lagrangian becomes

LSM = �
m2

2
h2

�
�

4
h4

�
1

2
�0

⇥
2+m2

h

⇤
�0 �

1

2
�i

⇥
2+m2

�

⇤
�i + · · · , (2.5)

and denote the flat space e↵ective masses as

m2

h
= m2 + 3�h2 , m2

�
= m2 + �h2 . (2.6)

In a similar fashion, one may derive the quadratic terms for all degrees of freedom in the SM,

with the rest of the flat space e↵ective masses given by

m2

W
=

g2

4
h2 , m2

Z
=

g2 + g02

4
h2 , m2

F
=

y2
F

2
h2 . (2.7)

1
Here we use the same notation as in Ref. [1], which di↵ers slightly to that in Ref. [5] (' $ h)
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In the case of the Higgs field, its interaction with bosons increases its self-coupling �(µ), whereas

fermionic interactions decrease it. The size of these contributions scales with the mass of the

corresponding particle. In the SM, the top quark and the Higgs boson are by far the heaviest

of the fermions and bosons, respectively, and therefore, they dominate the contributions to the

quartic coupling compared to the rest of the SM particle spectrum. Hence, if either one is

significantly more massive than the other, then � diverges to ±1 accordingly. This implies

that the only way for the SM to remain valid until the Planck scale would be for the two masses

to be comparable with one another and the two competing contributions to cancel out. As it

turns out, their experimentally measured masses at the electroweak (EW) scale [8] of

mh = 125.10± 0.14 GeV ; mt = 172.76± 0.30 GeV (2.8)

suggest exactly that. This realisation acts as a strong constraint on BSM theories that would

disrupt the balance between the two masses by a↵ecting �’s dependency on µ. Note that the

quoted value for the mass of the top quark corresponds to the direct measurement, which

has smaller uncertainty from cross-section measurements mt = 162.5+2.1

�1.5
GeV and pole from

cross-section measurements mt = 172.4± 0.7 GeV [8]. [5]

The experimental values of mh and mt have another important implication. According to the

calculation reviewed in Ref. [5], the Higgs self-coupling � turns negative as it runs with the

renormalization scale µ above approximately 1010 GeV. This is shown in figure 2.1 for the

central values of the SM parameters [103], with 3� uncertainty in the leading terms of the beta

function �� calculated to 3 loops [6]. Therefore, there is an additional vacuum state of lower

energy due to � < 0 in the potential of the Higgs

VH(µ, h) =
m2(µ)

2
h2 +

�(µ)

4
h4 . (2.9)

Therefore, the current vacuum state of the quantum Higgs field is metastable, because there is

a small but non-zero probability to quantum tunnel through the barrier.

Vacuum metastability in the Standard Model is a quantum e↵ect, which appears at one loop
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Figure 2.1: Running of the Higgs self-interaction coupling with the renormalization scale for the
central values of the Higgs mass, top mass, and strong coupling with 3� uncertainty, according
to the current experimental data [8]. Figure taken from [2].

order in perturbation theory. Therefore, in order to describe it, it is essential to compute the

e↵ective Higgs potential. Although the renormalization scale µ has been an integral part of

the discussion so far, our theory should not depend on it, because it is not physical but just

a measure of the range of validity of the theory. The process of eliminating the µ-dependence

by choosing the renormalization scale µ in an optimal and field-dependent way is called renor-

malization group improvement (RGI). This is a method of improving the perturbative approx-

imation of the e↵ective potential, which is the tree-level potential with the addition of loop

corrections. In flat space and for large values of h, often a reasonable approximation for the

renormalization group improved e↵ective potential is [16]

VH(h) ⇡
�(h)

4
h4 , (2.10)

with the choice µ = h as the renormalization group (RG) scale for the running four-point
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coupling, where we have omitted the quadratic term because it is negligible [23]. At 1-loop

order, its �-function reads [6]

16⇡2�� = 16⇡2µ
@�

@µ
= 24�2 � 3�(g02 + 3g2) +

3

4

✓
1

2
g04 + g02g2 +

3

2
g4
◆
+ 4Y2�� 2Y4 , (2.11)

where we have grouped together the terms coming from the Yukawa couplings of the up u,

down d, charm c, strange s, top t, and bottom b quarks and the electron e, muon µ, and ⌧

leptons as

Y2 ⌘ 3(y2
u
+ y2

c
+ y2

t
) + 3(y2

d
+ y2

s
+ y2

b
) + (y2

e
+ y2

µ
+ y2

⌧
) , (2.12)

Y4 ⌘ 3(y4
u
+ y4

c
+ y4

t
) + 3(y4

d
+ y4

s
+ y4

b
) + (y4

e
+ y4

µ
+ y4

⌧
) , (2.13)

but it should be solved to as high a precision as is practically feasible in order to accurately

capture the running. Even though all of the SM fermions are included for completeness and

because they would not increase the complexity of the numerical computations, the top quark is

by far the dominant contribution to Y4, resulting in more than 99.99996% of its value compared

to the rest of the fermions combined. The current state-of-the-art calculation [18] making use of

two-loop matching conditions, three-loop RG evolution and pure QCD corrections to four-loop

accuracy leads to an instability around the scale µ⇤ = 1.60 ⇥ 1010 GeV for the central values

of the mt and mh. However, direct loop corrections are neglected in Eq. (2.10), which may

therefore be a poor approximation in some cases [5]. This can be remedied either by including

the quantum corrections to 1-loop

�V1�loop(h, µ) =
1

64⇡2

31X

i=1

⇢
niM

4

i


log

✓
|M

2

i
|

µ2

◆
� di

��
(2.14)

in Eq. (2.10), or by choosing explicitly the RG scale, instead of µ = h, such that the quantum

correction vanishes. The corresponding entries for Mi along with the coe�cients ni, di can be

found in Section 5 of Ref. [6] and in Table2 5.1, in the flat space regime where R = 0.

2
The table entries have tildes because they correspond to redefined SM fields, according to the discussion of

Chapter 5. However, they look identical to the standard case and therefore their form corresponds to the usual

“untilded” entries.
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In general, a quantum field in a non-degenerate, double-well potential is prone to vacuum

decay via quantum tunnelling, thermal excitations, or a mixture of both, as shown in Fig.2.2.

We quantify the probability of decay via the decay rate �, which is a function of spacetime

and also evidently of mh and mt. For an infinitely old universe, even the most infinitesimal

decay rate would render it incompatible with ours. Today, our measurements indicate that

we are in the metastable EW vacuum with a rate that requires more time than the age of

the universe for the decay to occur [13]. This result has two important implications. Firstly,

it acts as a reality check for SM extensions, which should abide by this long-lasting false

vacuum. Secondly, it places constraints in our early universe theories, where a higher decay

rate was favoured, as the metastable vacuum has managed to survive through its various epochs.

Absolute vacuum stability is still viable within the experimental accuracy and systematic errors

in our measurements, since � can remain non-negative during its running for a su�ciently light

top quark. However, the data for the central values place it well inside the metastability region

within 3� uncertainties, as shown in 2.1. [5, 33]

V (')

'

Tunneling

Fluctuations

True

Vacuum

Metastable

Vacuum

0

Figure 2.2: Vacuum decay of a scalar field ' for a double-well potential from a metastable
vacuum to its true vacuum. Originally published in [5] (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
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Vacuum decay is a local process in spacetime, where the field decays to its true vacuum and

subsequently excites the surrounding field to follow. This process induces the formation of

a spherically symmetric bubble of true vacuum, which expands with velocity that rapidly

approaches the speed of light, see Ref. [5] and references therein, and [59, 80] for a recent

discussion. The true vacuum may or may not be bounded from below, but in the context of this

study this is not relevant, since we are interested in the number of bubbles that would form from

the decay and not on their interiors. This is because we are focusing on the possible signatures

evident in our false vacuum Universe and not on the specifics of the exotic physics inside the

true vacuum bubbles, which would obviously depend on the exact form of the potential. We

cannot make any definite claims about the nature of the bubble interior, but it is certain that

the true vacuum universe would look very di↵erent compared to ours. At the very least, the

Higgs vev would be greater resulting into heavier SM particles. However, given the high energy

scales of these phenomena, for all practical purposes in the context of SM physics, we assume

that spacetime collapses into a singularity inside the bubble. Such a rapidly growing singularity

would be catastrophic for our false vacuum Universe, as it would devour the spacetime around

it so quickly that we would not see it coming. [5, 11, 15, 16, 17, 33]

2.2 Vacuum instability in curved spacetime

There have been numerous studies of the EW metastability in flat spacetime in the past,

especially before the discovery of the Higgs boson, aiming mainly at obtaining bounds on the

Higgs mass and other SM parameters that were not known accurately at the time [19, 20,

21, 22, 23, 24, 25, 26, 104, 105, 106, 107]. Since then, our measurements have improved and

we are placed more confidently within the metastability region of the parameter space with

smaller uncertainty [5]. In addition, the present-day calculation in Minkowski space dictates

a half-life for our false vacuum universe that exceeds the age of the Universe and thus there

is no constraining power or further insights from studies in this regime [28, 32]. However,

the persistence of the false vacuum throughout our cosmological evolution, despite the various

mechanisms that could have triggered vacuum decay, motivates us to consider the implications
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from the metastability of the EW vacuum in the early universe [5, 12].

In particular, we are interested in the epoch of cosmological inflation, where the universe un-

derwent a period of accelerated expansion, before the radiation-dominated era of the Hot Big

Bang model, as reviewed in chapter 3. During inflation, spacetime was highly curved, and

therefore the Minkowski calculation of the vacuum decay rate is not applicable. A detailed cal-

culation of the decay rate in a general curved spacetime would be very di�cult, and therefore

we approximate it locally with de Sitter, where the Ricci scalar R is constant3. The tunnelling

process from false to true vacuum can be solved classically yielding solutions called instan-

tons [34, 109]. The vacuum decay rate is then determined by the action of the Coleman-de

Luccia instanton [35]. At su�ciently high Hubble rates H & 108 GeV [5], it approaches the

much simpler Hawking-Moss instanton [51, 108], whose action di↵erence is given in the linear

approximation limit by

BHM(R) ⇡
384⇡2�VH

R2
, (2.15)

where �VH = VH(hbar) � VH(hfv) is the height of the potential barrier, “bar” signifies the top

of the potential barrier and “fv” the false vacuum [5, 108, 110]. This is the approximation we

will use throughout this study. It results in a reasonably good first approximation for the form

of the decay rate as

�HM(R) ⇡

✓
R

12

◆2

e�BHM(R) , (2.16)

where the prefactor is justified by dimensional arguments according to [5]. For light fields,

m ⌧ H, this agrees with the stochastic formalism [38].

Non-zero spacetime curvature a↵ects the e↵ective potential of the Higgs field already at tree

level, where it enters through the Higgs-curvature coupling ⇠,

L� = (Dµ�)
† (Dµ�)�m2�†�� ⇠R�†�� �(�†�)2 , (2.17)

3
With a dynamical metric, as done in Ref. [108], the result is slightly di↵erent because of gravitational

backreaction, but because the relevant energy scales are well below the Planck scale, the di↵erence is minimal.
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and appears also in the scalar part of the Lagrangian 2.5,

LSM = �
m2

2
h2

�
�

4
h4

�
1

2
�0

⇥
2+m2

h
+ ⇠R

⇤
�0 �

1

2
�i

⇥
2+m2

�
+ ⇠R

⇤
�i + · · · . (2.18)

In this approximation, the Lagrangian for the Higgs field in curved spacetime is given by

L =
M2

P

2
R +

1

2
gµ⌫(@µh)(@⌫h)� VH(h,R) , (2.19)

where the first term is the standard Einstein-Hilbert term that corresponds to General Rela-

tivity, with MP = (8⇡G)�1/2
⇡ 2.435 ⇥ 1018 GeV being the reduced Planck mass (and G the

gravitational constant), the second is the kinetic term, and the third is the curvature-dependent

Higgs potential. In the high-field approximation, the e↵ective potential at tree level is

VH(h,R) =
⇠

2
Rh2 + VH(h) , (2.20)

where the first term couples the Higgs field to the Ricci scalar R and acts as a mass term [111],

and VH(h) corresponds to a general flat spacetime potential from QFT, e.g. �h4/4. The

strength of the Higgs-curvature interaction is measured by the non-minimal coupling ⇠, which

is also a running SM parameter. Whenever we refer to numerical values of ⇠, we mean the

MS4 renormalized parameter at scale µ = mt, which we denote by ⇠EW for clarity. Considering

the negative quartic self-interaction from (2.10) in curved spacetime, we recover the metastable

potential albeit with a stabilising term due to the positive sign of the Higgs curvature coupling,

0  ⇠EW 
1

6
, where the conformal value ⇠ = 1/6 denotes the limit of applicability of the

Hawking-Moss bounce solution [108]. As we will see, the relevant values for our analysis are

low, ⇠ ⌧ 1/6, and therefore the Higgs field remains light and we should be able to trust

Eq. (2.16).

To understand the e↵ect from the non-minimal term, let us consider constant ⇠ and � < 0,

which is a reasonable approximation for the Higgs potential at field values h � 1010 GeV. We

4
In the Modified Minimal Subtraction renormalization scheme MS, we absorb the divergences from the per-

turbative result beyond leading order, the omnipresent universal constant, and the infinities from the Feynman

diagrams into the counterterms [112].
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may then write

VH(h,R) =
⇠

2
Rh2

�
|�|

4
h4 , (2.21)

where the value of the potential at the top of the barrier is

VH(hbar, R) =
⇠2R2

4|�|
, (2.22)

resulting in the action di↵erence via Eq. (2.15),

BHM ⇡
96⇡2⇠2

|�|
. (2.23)

In this approximation, the action is independent of spacetime curvature and it is an increasing

function of ⇠. This suggests that a su�ciently high value of ⇠ will prevent vacuum decay during

inflation and that, conversely, vacuum stability provides a lower bound on its value.

2.3 One-loop curvature corrections

Beyond tree level, spacetime curvature also enters the e↵ective potential through loop correc-

tions. The e↵ective potential for the full SM on a curved background to 1-loop order was

calculated in Ref. [6],

VH(h, µ,R) =
m2

2
h2 +

⇠

2
Rh2 +

�

4
h4 + V⇤ � R + ↵1R

2 + ↵2Rµ⌫R
µ⌫ + ↵3Rµ⌫�⌘R

µ⌫�⌘ +�Vloops ,

(2.24)

where we have suppressed all the implicit renormalisation scale dependence. In dS space,

R2 = 144H4 , Rµ⌫R
µ⌫ = 36H4 , Rµ⌫�⌘R

µ⌫�⌘ = 24H4 , (2.25)

and thus we can group together the pure curvature terms, resulting into
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VH(h, µ,R) =
m2

2
h2 +

⇠

2
Rh2 +

�

4
h4 + V⇤ � R +

↵

144
R2 +�Vloops , (2.26)

where ↵ ⌘ 144↵1 + 36↵2 + 24↵3 [113]. We identify the additional terms in (2.26) as the

cosmological constant correction (4th), the correction to the EH term (5th), the radiatively

generated curvature correction (6th), and the loop correction (7th) summing over the SM

degrees of freedom

�Vloops(h, µ,R) =
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The various terms can be found in Section 5 of Ref. [6] and in Table 5.1, where we note that

we are using ⇣i = 1 for the gauge fixings in this study.5 In the early universe, spacetime

is significantly curved so that the SM e↵ective masses receive curvature corrections which,

in addition to flat space contributions as in Eq. (2.6), we denote with Mi. It is necessary

to highlight that we will be neglecting the mass term for the Higgs, because it is negligible

compared to the high scales of the Hubble rates in the inflationary models of this study. Setting

m = 0 implies that we can also disregard all dimensionful couplings of our theory, having a

renormalization group flow fixed point at m = 0, V⇤ = 0, = 0 [113]. Hence, we end up with

VH(h, µ,R) =
⇠(µ)

2
Rh2 +

�(µ)

4
h4 +

↵(µ)

144
R2 +�Vloops(h, µ,R) . (2.28)

In this result, µ is an arbitrary dimensionful constant. The convergence of the perturbative

expansion depends on the chosen value, and in general there is no single choice that gives good

convergence for all values of h. It is expected that the choice µ = h will not be a su�ciently

good approximation, since it misses the contribution from curvature which is expected to be

the dominant one [5]. A simple scale choice that incorporates the e↵ect of curvature with the

form µ2 = ah2 + bR, where a and b are constants, was suggested in [48] and has since widely

been used in the literature, see e.g. Ref. [39, 54, 75, 114]. With that choice, the direct loop

5
Regarding the value of the potential at the top of the barrier, we have checked that there is no significant

di↵erence between using gauge fixings ⇣i = 0 and ⇣i = 1 in the loop contribution.
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corrections do not cancel exactly and should therefore be included in the e↵ective potential for

full accuracy. On the other hand, it avoids the issue that in some cases Eq. (2.29) does not

have a continuous solution covering all field values [6]. In our approach, this issue does not

arise and therefore, we use the exact scale choice from (2.29). We eliminate the dependence on

the scale µ in Eq. (2.28) via RGI, where we fix µ = µ⇤(h,R) choosing µ⇤ in such a way as to

result in null loop corrections to the potential [115], i.e. as a solution of

�Vloops(h, µ⇤, R) = 0. (2.29)

This leads to the RGI e↵ective potential with no direct loop contribution

V RGI

H
(h,R) =

⇠(µ⇤(h,R))

2
Rh2 +

�(µ⇤(h,R))

4
h4 +

↵(µ⇤(h,R))

144
R2 , (2.30)

which implies a well-defined loop expansion6. Because the renormalization scale µ⇤ is approxi-

mately equal to the largest of h and R, it follows that when R . 1020 GeV2, the RGI e↵ective

potential (2.30) has a barrier at h ⇠ 1010 GeV that makes the vacuum metastable. On the

other hand, when R & 1020 GeV2 the barrier disappears altogether, making the vacuum un-

stable unless it is stabilised by a su�ciently large and positive non-minimal coupling term

⇠ [6, 60].

The beta functions for the non-gravitational couplings of the SM are well known [96], in some

cases up to three loops. Therefore, we provide here explicitly only the 1-loop couplings associ-

6
In Eq. (2.30) h refers to the field renormalized at a scale µ⇤, which is related to the field h0 renormalized

at some fixed physical scale µ0 via the anomalous dimension � as

h = h0 exp

✓
�

Z log
⇣

µ⇤
µ0

⌘

0
�(t)dt

◆
. (2.31)

Arguably, here the relevant physical quantity is the field renormalized at the electroweak scale instead of h.
The Hawking-Moss instanton however is independent of this subtlety, since it does not a↵ect the barrier height,

and for simplicity we may then perform our calculation in terms of h.
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ated with curvature, the non-minimal coupling and ↵, as a reference [48],
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16⇡2
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d lnµ
= 16⇡2�↵ = 288⇠2 � 96⇠ �

1751

30
. (2.33)

Assuming given electroweak-scale values ⇠EW = ⇠(µEW) and ↵EW = ↵(µEW), these equations

determine their scale-dependence, which enters Eq. (2.30). The di↵erential equations above are

sensitive to the initial condition of ⇠ but not of ↵, since the right-hand sides on Eq. (2.32) and

Eq. (2.33) are independent of ↵. Although we will not be limiting our analysis to strict dS

space, it is still a good approximation to make use of the dS form of (2.26): the higher order

curvature invariants R2, Rµ⌫Rµ⌫ and Rµ⌫↵�Rµ⌫↵� couple to the Higgs only via loop corrections

[6] and reduce to a single term at the dS limit, indicating that our approximation captures the

leading contribution, which we have checked is already a small contribution.

Solving Eq. (2.29) and calculating the barrier height of (2.30) require us to incorporate the

entire SM particle spectrum. Firstly, we need to obtain the running of �, yt, g0, g according to

the corresponding beta functions and the accompanying pole-matching [95]. Using the publicly

available Mathematica code7, which is based on Refs.[94, 95, 96], we calculate the three-loop

Minkowski space �-functions of the running couplings in (2.30). The code takes as input

parameters the fine structure constant ↵S, and the masses of the Higgs boson mh and the top

quark mt renormalized at the electroweak scale, and then calculates the running of the SM

parameters. After this, we obtain ⇠(µ) and ↵(µ) by solving the remaining beta functions (2.32)

and (2.33). Finally, we can calculate the maximum of Eq.(2.30), after having obtained µ⇤ via

Eq.(2.29), including the masses of all the SM particles. The overview of all the input values

along with the evaluated SM couplings is shown in Table 2.1.

In Fig.2.3, we illustrate the e↵ect of the running of ⇠(µ), according to Eq. (2.32), for a range

of boundary conditions at µEW. We can see that below ⇠EW ⇡ 0.03, ⇠ switches sign as it runs,

resulting in a negative term in the potential (2.30). This can potentially destabilise the Higgs

vacuum, depending on how the other couplings in Eq. (2.30) run. It is also evident that even a

7
By Fedor Bezrukov, available at http://www.inr.ac.ru/⇠ fedor/SM/.

http://www.inr.ac.ru/~fedor/SM/
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Masses [GeV]
Higgs mh = 125.10 v = 246.22

Quarks
mt = 172.76 ms = 93⇥ 10�3 mu = 2.16⇥ 10�3

mb = 4.18 mc = 1.27 md = 4.67⇥ 10�3

Leptons m⌧ = 1.77686 mµ = 105.6583745⇥ 10�3 me = 510.9989461⇥ 10�6

Dimensionless couplings
gauge couplings ↵S = 0.1179 g = 0.648382 g0 = 0.358729

couplings � = 0.126249 yt = 0.934843

Table 2.1: Experimental values of the SM particle masses and couplings [8] at µEW used for
the RGI of the Higgs potential. The couplings in bold are calculated by the SM code7 subject
to the input of mh,mt and aS. Originally published in [1] (CC BY 4.0).

2� deviation in mt does not a↵ect the running of ⇠ significantly, at the energy scales of interest.

In particular, it seems to produce a more observable e↵ect beyond scales of order 1018 GeV

and for smaller values of ⇠EW. We have not considered any deviation in mh and kept it fixed at

its central value throughout our calculations, because of its smaller experimental uncertainty

compared to the top quark’s.

Finally, it is worth clarifying the loop order of this calculation. Even though our discussion in

this chapter has been with reference to 1-loop e↵ects, and we have included 1-loop curvature

corrections to the Higgs potential 2.26, the �-functions of the non-gravitational SM couplings

have been calculated to 3-loops. Evidently, this is an inconsistency in our approach, where

di↵erent couplings and terms have been computed to di↵erent loop orders. However, performing

the entirety of the calculation to 3-loops would be extremely complicated and beyond the scope

of this work. In addition, incorporating the �-functions to 3-loops results only in a numerical

error in the choice of µ⇤, since it is the solution of �V1�loop = 0 and not �V3�loop = 0. Thus,

the potential errors from this inconsistency will be well below the accuracy of the numerical

results, when taking into account other factors such as our cosmological history.

https://creativecommons.org/licenses/by/4.0/
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Figure 2.3: The running of non-minimal coupling ⇠(µ) with various boundary conditions ⇠EW
for top quark mass mt = (172.76 ± 0.6) GeV. The solid lines correspond to the central value
of mt for each case, while the dashed and the dotted ones correspond to mt ± 2�, respectively.
Originally published in [1] (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/


Chapter 3

Cosmological inflation

3.1 Theoretical framework

The theory of cosmological inflation postulates that there was a period of accelerated expansion

of the universe before the Hot Big Bang (HBB) and the epochs of cosmological evolution that

followed. Initially, inflation was proposed as a possible solution to the standard cosmological

problems of the time, namely the horizon, flatness and relic abundance problems, but without

interfering with the successes of the HBB model [97, 116]. Inflation’s major success however,

lies in its ability to explain the origin of large scale structure observed today in galaxy sur-

veys, via the amplification of the initial quantum fluctuations, while recovering the HBB era

through the process of reheating. Even though there are still issues that need to be addressed

for the theory to be fully consistent, there exists a plethora of significant evidence in sup-

port of inflation coming from the measurements of the cosmic microwave background (CMB)

anisotropies, whereas the future cosmological surveys promise to provide more insight. Refer

to [117, 118, 119, 120, 121] for a more in depth discussion of inflation.

The theoretical framework to study inflation is field theory in the Lagrangian formalism, where

the minimisation of the action gives the field’s equation of motion (EoM), which describes its

dynamics. In the simplest case, inflation is driven by a single scalar field, known as the inflaton

35
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�, subject to a potential VI(�),

S =

Z
d4x

p
�g

✓
1

2
@µ�@

µ�� VI(�)

◆
, (3.1)

where g = det(gµ⌫) [117] and gµ⌫ is the spacetime metric. A homogeneous and isotropic universe,

that is expanding, is described by the Friedmann-Robertson-Walker (FRW) metric

ds2 = a(⌘)2
�
d⌘2 � d~x2

�
, (3.2)

where ⌘ is the conformal time, defined as

d⌘ =
dt

a(t)
=

da

a2H(a)
, (3.3)

and a(t) is the scale factor that quantifies the expansion of the universe [117, 121]. The stress-

energy tensor for a perfect cosmological fluid can be written in terms of its energy density ⇢

and pressure p, which are related through the fluid’s equation of state p = w⇢, as

Tµ⌫ = (⇢+ p) uµu⌫ � pgµ⌫ , (3.4)

where uµ is the local 4-velocity of the fluid normalised at u2 = 1. In general, the stress-energy

tensor of a Lagrangian L is given by varying gµ⌫ in its action [117]

Tµ⌫ = 2
@L

@gµ⌫
� gµ⌫L . (3.5)

In the case of the action (3.1) in FRW, w = �1 and the stress-energy tensor reads

Tµ⌫ = @µ�@⌫�� gµ⌫

✓
1

2
(@�)2 � VI(�)

◆
. (3.6)

Thus, we can express the energy density and pressure of the universe in terms of the inflaton

field and its potential, as
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⇢ =
1

2
�̇2 + VI(�) , p =

1

2
�̇2

� VI(�) , (3.7)

where the dot denotes di↵erentiation with respect to time t.

Solving the Einstein field equations in FRW results famously in the Friedmann equation [117],

which gives the rate of the expansion in terms of the energy density ⇢,

H2 =

✓
ȧ

a

◆2

=
⇢

3M2

P

, (3.8)

where H is the Hubble rate, and the acceleration equation

ä

a
= �

⇢+ 3p

6M2

P

, (3.9)

respectively. The curvature scalar R in FRW is expressed in terms of Eqs. (3.8) and (3.9) as

R = 6

✓
ȧ2

a2
+

ä

a

◆
. (3.10)

The corresponding EoM gives the evolution of the inflaton,

�̈+ 3H�̇+ V 0
I
(�) = 0 , (3.11)

where the prime denotes di↵erentiation with respect to the field. Apart from the second term,

which is known as the “Hubble drag”, because of the friction experienced by the field from the

universe’s expansion, the above EoM corresponds to the standard Klein-Gordon equation for a

spatially homogeneous field in flat spacetime. [117]

In order to obtain the accelerated expansion of the universe during inflation, the energy density

has to be approximately constant. Therefore, the inflaton field has to be “slowly rolling”

towards the minimum of its potential, i.e. its potential V (�) has to be a very slowly varying

function of �, so that it is approximately flat [117, 119]. The necessary conditions for the
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inflaton potential to exhibit this behaviour are called the slow-roll conditions and are famously

given by

✏ =
M2

P

2

✓
V 0
I
(�)

VI(�)

◆2

⌧ 1 , |⌘| =

����M
2

P

V 00
I
(�)

VI(�)

����⌧ 1 , (3.12)

which should be satisfied for a su�ciently long time so that the inflationary solution to approach

the attractor [117]. They lead to the desired attractor solutions when they also imply �̇2
⌧ V

and �̈⌧ H�, and then we can write (3.8) and (3.11) in the slow-roll regime as

H2
⇡

VI(�)

3M2

P

, (3.13)

3H�̇ ⇡ �V 0
I
(�) . (3.14)

Within the slow-roll approximation, for a given model of inflation with potential V (�), the

power spectrum of curvature perturbations has the expression [117]

P⇣(k) =
VI(�)

24⇡2M4

P
✏
. (3.15)

Current CMB observations set the amplitude of the power spectrum to be P⇣(k⇤) ⇡ 2.1⇥ 10�9

at the pivot scale k⇤ = 0.05Mpc�1 [99], where the scale factor is chosen to be a0 = 1 today.

When precisely the comoving scale corresponding to the pivot scale exits the horizon, during

inflation, depends on the cosmic history and in particular, on the reheating epoch. However,

when determining the input parameters for inflationary models, we will assume that this takes

place 60 e-folds before the end of inflation, which in turn we take to occur when the potential

slow-roll parameter is explicitly violated, ✏ = 1. All inflationary models studied in this work

involve just one parameter and therefore, they are completely determined once the correct

amplitude has been fixed [117].

We quantify the amount of inflation that has occurred via the number of e-foldings N ,

N(t) = ln

✓
ainf
a(t)

◆
, (3.16)



3.1. Theoretical framework 39

where ainf is the scale factor at the end of inflation1. The ratio of the comoving Hubble lengths

today and at the end of inflation is given by

eÑ =
ainfHinf

a0H0

, (3.17)

where Ñ ⇡ 60 + ln

✓
V

1/4

I
(�inf)

1016 GeV

◆
according to the approximation used in [5]. This allow us to

express the boundary conditions on the scale factor in terms of the inflationary model, as

ainf =

✓
a0H0e60

1016 GeV

◆
V 1/4

I
(�inf)

Hinf

, (3.18)

astart = ainf exp(�Nstart) , (3.19)

where the Hubble constant today is H0 ⇡ 1.5⇥ 10�42 GeV, according to cosmological measure-

ments [117, 122, 123]. As we mentioned previously, we adopt the convention that inflation ends

at Ninf = 0, when the slow roll condition is explicitly violated2 at ✏ ! 1. In order to comply

with observations, inflation has to last for at least ⇠ 60 e-folds [117], but we cannot place any

upper constraint to its duration from experimental measurements. We can only claim that

there is a maximum value of N(tstart), where the energy density has reached the Planck scale

⇢ ⇡ M4

p
, beyond which we would need a theory of quantum gravity [117].

The post-inflationary energy/matter density of the universe is given by

⇢(a) = ⇢0
tot

✓
⌦⇤ + ⌦mat

⇣a0
a

⌘3
+ ⌦rad

⇣a0
a

⌘4◆
, (3.20)

where the ⌦’s denote density ratios with respect to the total density ⇢0
tot

= ⇢crit = 3H
2

0

8⇡G
=

3M2

P
H2

0
, with ⌦⇤ = 0.69 corresponding to the cosmological constant/dark energy component,

⌦mat = 0.31 to the matter component (baryonic and dark), and ⌦rad = 5.4⇥ 10�5 to radiation

(photons � and neutrinos ⌫). According to [5], integrating the post-inflationary comoving radius

1
Note that with this definition, higher N corresponds to earlier time during inflation.

2
This is not entirely true for Chapter 5, where we are explicitly investigating the e↵ect from di↵erent

definitions for the end of inflation.
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of the past lightcone r(⌘) = ⌘0 � ⌘, in terms of the scale factor via (3.8) and (3.20), results to

⌘0 � ⌘inf =

Z
a0

0

da

a2H(a)
=

Z
a0

0

da

a2
q

⇢(a)

3M
2

P

=
1

H0

Z
a0

0

dap
⌦⇤a4 + ⌦mata30a+ ⌦rada40

=
3.21

a0H0

.

(3.21)

This corresponds to the total conformal time between the end of inflation and today, and it is

a useful result that we will use in Section 4.1. On the other hand, we can express the comoving

radius during inflation in terms of e-foldings as

⌘inf � ⌘(N) =

Z
0

N

dN 0
✓

�eN
0

ainfH(N 0)

◆
. (3.22)

The total comoving radius of our past lightcone is the addition of (3.21) and (3.22), r(⌘) =

⌘0 � ⌘ = (⌘0 � ⌘inf) + (⌘inf � ⌘(N)), for a variable start point of inflation N .

The slow-roll approximations are valid away from the minimum of the inflationary potential,

where we can use (3.13) and (3.14) to infer the dependence of the field and the Hubble rate on

t, a, ⌘ or any other quantity that is expressed in terms of these, see for example the explicit

calculations for quadratic inflation in Appendix A. Within the slow-roll regime, the acceleration

equation (3.9) reduces to H2 to leading order and therefore, we can write the Ricci scalar as

R = 12H2. (3.23)

However, it is necessary to go beyond the slow-roll approximation, if we wish to have a better

understanding of the inflationary dynamics towards the end of inflation. This is necessary for

the purposes of this study in particular, as we will see in Chapters 4 and 5, because vacuum

decay is expected to take place close to the end of inflation. Since we will be integrating over

the duration of inflation, the spacetime volume V , that multiplies the decay rate � (i.e. the

probability for decay per spacetime volume), has reached its largest value during the inflationary

period. Therefore, vacuum decay is expected to be more prominent when the product �V is

large. See Chapter 4 for a more thorough explanation.



3.2. Departure from the slow-roll regime 41

3.2 Departure from the slow-roll regime

3.2.1 Leading order corrections

The first point where we can include slow-roll corrections to leading order is the Ricci scalar

(3.10), through the the ä/a term. We calculate this term explicitly by di↵erentiating (3.8) with

respect to t, while making use of the slow-roll approximations (3.13) and (3.14), and noting

that the primes denote di↵erentiation with respect to �,
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) 2H
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ä

a
�H2

◆
=

�̇V 0
I

3M2

P

)

ä
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I
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◆2
#

)

ä

a
= H2 (1� ✏) , (3.24)

which results in the following correction to the curvature scalar,

R = 6
⇥
H2 +H2(1� ✏)

⇤
= 12H2

⇣
1�

✏

2

⌘
. (3.25)

For a further departure from slow-roll, we can solve the full Friedmann equation (3.8), instead

of its slow-roll version (3.13), to obtain a leading order correction to H2. We are still disre-

garding the higher order correction in the inflaton’s EoM (3.11), and use (3.14) instead. This

combination results in a quadratic equation in H2,

27M4

P

V 2

I

H4
�

9M2

P

VI

H2
� ✏ = 0 , (3.26)
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which accepts only positive solutions. Its solution to leading order in slow-roll is

H2
⇡

VI

3M2

P

⇣
1 +

✏

3

⌘
. (3.27)

Understandably, there is a corresponding correction to R, again via the acceleration term. By

inserting Eq. (3.14) in (3.8) and (3.9), we can write them respectively, as

H2 =
VI

3M2

P

+
1

2

(V 0
I
)2

27M2

P
H2

, (3.28)

ä
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We can eliminate the VI/3M2

P
term, and therefore, we obtain the following expression to second

order in slow-roll,
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Hence, combining (3.27) and (3.30) in Eq. (3.10), allow us to express the Ricci scalar to second

order in slow-roll, as

R ⇡ 12H2


1�

✏

2
+
✏2

3

�
. (3.31)

These results illustrate the considerations that allow us to go beyond the slow-roll regime, with

leading order corrections to the Hubble rate and Ricci scalar, which invalidate the dS relation

(3.23) between them when ✏ ⇠ 1. Thus far, our procedure has been to gradually drop the

slow-roll approximations in the Friedmann equation and the inflaton’s EoM, in order to deviate

increasingly from slow-roll. Hence, we are naturally led to the point where we should drop all

slow-roll approximations, if we want to depart completely from dS.
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3.2.2 Beyond slow-roll

We can write completely general expressions, without assuming any slow-roll conditions, if we

consider the general Friedmann equation (3.8) and inflaton’s EoM (3.11). It is convenient to

continue this discussion in terms of e-foldings of inflation, for the purposes of our analysis in

Chapters 4 and 5. Therefore, by using the change of variables

d�

dt
= �

d�

dN
H , (3.32)

we can express the Hubble rate from the Friedmann equation in terms of N , as
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3M2

P
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#�1

. (3.33)

Now, we have to find an expression for d�/dN , but unfortunately the calculations will be more

involved, since we will not be disregarding any higher derivative terms. To utilise the EoM

(3.11), we must first calculate

�̈ = �H
d

dN

✓
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◆
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◆
, (3.34)

where we need to account for the last term by di↵erentiating (3.33)
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which results into

dH
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2VI
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◆
. (3.36)

Inserting (3.34) and (3.36) in the EoM (3.11) leads to
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3H2
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which simplifies to
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after eliminating the H2 terms. Similarly as before, we can express the acceleration equation

in terms of derivatives of the inflaton field, without making use of slow-roll approximations, as

ä
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leading to a general expression for the Ricci scalar

R = 12H2
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. (3.40)

One necessary remark regarding (3.38) consists of how �(N) is calculated according to (3.38).

Since this is a second order di↵erential equation, we need to provide two boundary conditions,

one for the field � and one for its derivative d�

dN
. We choose the boundary point to be far away

from the end of inflation, e.g. at N = 106 e-foldings, where the slow-roll approximations are

valid and spacetime approximates dS. It is not necessary to consider such early times for the

slow-roll approximations to hold, but we are interested in Section 4.2.3 to look further back in

time. In this case, we can use the slow-roll solution from (3.14) for �(N), with the boundary

condition �inf = �(0)|
✏=1

, in order to obtain the values of the inflaton at su�ciently early times,

which are then used as the boundary values when solving Eq. (3.38) explicitly. Thus, we can

study how the inflaton behaves near the end of inflation, without making any assumptions

about that period.

However, there is some freedom when defining the inflationary endpoint and it is not just the

evolution of the attractor solution to N = 0, which originates deep inside the slow-roll regime.
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Therefore, the actual behaviour of the inflaton is given by �(N + Nshift), where we determine

Nshift according to the definition for the end of inflation. There are two conditions that seem

natural as definitions for the inflationary finale, either that acceleration (3.39) halts ä|
Nshift

= 0,

which corresponds to ✏ = 1, or that the curvature (3.40) vanishes R(Nshift) = 0. The inflaton

field oscillates at these late times, before decaying into the SM particles during reheating [117].

Therefore, we should be cautious and choose the first numerical solution for each Nshift, before

the oscillatory behaviour takes over. This discussion continues in Section 4.2.

3.3 Inflationary models

3.3.1 Monomial potentials

So far in this chapter, we have been discussing inflation and performing various calculations, in

a general manner without specifying a particular inflationary model. This has been a beneficial

approach to obtain model-independent results, but as we will see in Chapter 4, we have to choose

an inflationary potential VI(�), in order to compute the spacetime volume of the integral which

gives the expectation value of true vacuum bubbles hN i (see Eq. (4.4) later). First, for the sake

of simplicity, we will be considering two single-field, monomial models, which allow to perform

almost the entirety of the necessary calculations analytically.

In quadratic inflation, the inflaton potential has only a quadratic term

Vquad(�) =
1

2
m2

�
�2 , (3.41)

where m� = 1.4⇥ 1013 GeV acts as the inflaton mass, which is fixed from CMB measurements

and Eq. (3.15). Away from the end of inflation, we can solve Eqs. (3.38), (3.33), and (3.22)

analytically (see Appendix A for a detailed calculation) to leading order in slow-roll to obtain

the expressions for the inflaton, the Hubble rate, and the comoving radius of the past lightcone,

respectively, as
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where erfi is the imaginary error function and the approximate forms are valid at N � 1.

The first term in Eq. (3.44) is the post inflationary contribution 3.21, which is subdominant

when N & 60. The requirement that the Hubble rate does not reach trans-Planckian values,

H(Nstart) ⌧ MP , places an upper bound to the duration of inflation at

Nstart ⌧
3

2

✓
MP

m�

◆2

⇡ 1010 . (3.45)

Another common monomial model is quartic inflation with the characteristic potential

Vquar(�) =
1

4
���

4 , (3.46)

where �� = 1.4 ⇥ 10�13 comes from Eq. (3.15) and is not to be confused with the running

self-coupling �(µ) of the Higgs. In a similar manner as before, we obtain the slow-roll solution

for the inflaton, Hubble rate and conformal time, as

�(N) =
⇣
2MP

p
2
⌘p

1 +N ⇡ 2MP

p

2N , (3.47)

H(N) = 4MP

r
��
3
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⌘0 � ⌘(N) =
3.21

a0H0

+

p
3/��

4MPainfe
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3/��

4MPainf

!
eN

N
, (3.49)

where Ei is the exponential integral function. The approximate forms are valid for large N and

the constraint arising from trans-Planckian Hubble rates is
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Nstart ⌧
1

4

s
3

��
⇡ 106 . (3.50)

The quadratic and quartic models do not provide a very good fit to data, regarding the spectral

index of scalar perturbations and the scalar-to-tensor ratio [99]. Nevertheless, we are including

them in our study because of their simplicity and to act as a comparison to a more realistic

model. An example of such a model would be Starobinsky inflation [97, 124], which complies

with observational data very well and can draw connections between di↵erent inflationary

models [117, 125].

3.3.2 Starobinsky inflation

Given the inevitable generation of gravitational terms beyond the simple EH term / R

S =

Z
d4x

p
�g

M2

P

2
R , (3.51)

due to, for example, the gravitational induced renormalization group running of the conformal

anomaly (see Ref. [6, 126]), Starobinsky modified gravity by including such terms already at

the tree-level action [124]. This formalism provided simple extensions to General Relativity,

a subset of which is grouped together as f(R) theories. Their action is given by a di↵erent

function of the Ricci scalar,

S =

Z
d4x

p
�gJ

M2

P

2
f(RJ) , (3.52)

where J denotes the original metric gJµ⌫ in which the theory is defined, and is known as the

Jordan frame. As we will see, it is possible to carry out a change of variables to a di↵erent

metric gµ⌫ in which the action has the Einstein-Hilbert form (3.51), and which is known as the

Einstein frame. The simplest and most studied f(R) model emerges by adding a quadratic

term to the curvature scalar of the EH action [127],
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f(RJ) = RJ +
R2

J

6M2M2

P

, (3.53)

where M is a small dimensionless parameter. This is equivalent to the inflationary model

proposed by Starobinsky in 1980 [97, 98], which is known as Starobinsky or R2 inflation.

In order to describe the physics of this theory, it is convenient to carry out the transformation to

Einstein frame. To do that, we first remove the quadratic term R2

J
by introducing an auxiliary

scalaron field s, and thus the action reads

S =

Z
d4x

p
�gJ


M2

P

2

✓
1 +

s

3M2M2

P

◆
RJ �

s2

12M2

�
. (3.54)

Its classical equation of motion is s = RJ on-shell and thus, it reproduces the action from

(3.52) and (3.53). Now, the action can be turned into the EH form (3.51) through a conformal

transformation

gµ⌫ = ⌦
2gJµ⌫ , (3.55)

⌦2 = 1 +
s

3M2M2

P

. (3.56)

Because the conformal transformation is not a coordinate transformation, it a↵ects the Ricci

scalar. As a result, the Ricci scalars RJ and R corresponding to the Jordan and Einstein frames,

respectively, are related by the equation

RJ = ⌦2


R� 32ln⌦2 +

3

2
gµ⌫@µln⌦

2@⌫ ln⌦
2

�
, (3.57)

which gives rise to new terms in the action.

To write this in a more convenient form, we carry out a new change of variables and introduce

a scalar field �, which we refer to as the inflaton, through
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⌦2 = 1 +
s
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= e
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2

3
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MP . (3.58)

In terms of �, the relation between the two Ricci scalars (3.57) becomes

RJ = ⌦2

"
R�

p
6

MP

2�+
1

M2

P

gµ⌫@µ�@⌫�

#
. (3.59)

The essence of the conformal transformation is that it corresponds to a field redefinition, which

maps an nonstandard gravitational theory (the Jordan frame) to GR with additions in the

matter sector (the Einstein frame). In this case, we have R+R2 gravity ! GR + inflaton field

[117]. Therefore, in the Einstein frame, the action (3.57) is written in terms of � as

S =

Z
d4x

p
�g


M2

P

2
R +

1

2
@µ�@

µ�� VS(�)

�
, (3.60)

where we have omitted the 2� term because it is a total derivative, and we have obtained the

potential of Starobinsky inflation

VS(�) =
3M2M4

P

4

✓
1� e

�
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2

3

�

MP

◆2

. (3.61)

In conclusion, we saw that the modified gravity theory defined by Eq. (3.53) can be equivalently

viewed as Einsteinian gravity with an additional scalar field � with potential VS(�). When

� & MP , the potential satisfies the slow-roll conditions and the scalar field is slowly rolling in its

potential, giving rise to inflation. Because it does not require an introduction of any additional

fields by hand, only a small and well-justified modification of the gravitational action, it can

be viewed as the minimal model of inflation. It is also in great agreement with observational

constraints [99], thus making it one of the most promising models to describe the inflationary

epoch. The value of the single free parameterM can be determined from the observed amplitude

of the CMB temperature anisotropies to be M = 1.1⇥ 10�5 [99, 117].
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For plateau models, such as the Starobinsky-type potential in Eq. (3.61), the energy density

quickly approaches a constant for large Nstart, and thus remains strictly sub-Planckian. There-

fore, it does not give rise to an upper limit on the total number of e-foldings. The slow-roll

solution of Eqs. (3.38), (3.33) and (3.22) is

�(N) = MP

r
3

2


lnF � F �
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3
N �W�1
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�elnF�F� 4N
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lnN , (3.62)
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ainfMMP
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2eN

ainfMMP
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where we have defined F = 1 + 2/
p
3 and W�1 is the -1 branch of the Lambert function [128].



Chapter 4

Vacuum decay constraints from

inflation

4.1 Bubble nucleation during inflation

The observation that our Universe is still in the metastable phase implies that no bubble

nucleation event took place in our cosmological history. Denoting the probability that there

were N bubble nucleation events in our past lightcone by P(N ), we require P(0) ⇡ 1, because

otherwise our existence would be highly unlikely. Since we are interested in cases where bubble

nucleation is extremely unlikely, we can assume that this probability distribution follows Poisson

statistics and thus, we can relate it to the expectation number of true-vacuum bubbles hN i

through

P(0) = e�hN i . (4.1)

The condition for vacuum stability can therefore be expressed as hN i . 1. This is convenient

because if we know the cosmological evolution of our Universe and can compute the nucleation

51
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rate per spacetime volume �(x) as a function of spacetime position x, then

hN i =

Z

past

d4x
p
�g�(x) , (4.2)

where the subscript “past” indicates that the integral is taken over the past lightcone, and the

decay rate � depends on the shape of the Higgs potential during our cosmological history [5].

In this study, we focus on the contribution from the period of inflation, which we denote by

hN iinf . Because the integrand in Eq. (4.2) is positive, the contribution from the rest of the

cosmological history is positive, and therefore hN i � hN iinf . This means that if any inflationary

scenario gives hN iinf > 1, it is ruled out. The expected number of bubbles nucleated between

the start of inflation ⌘start and the end of inflation ⌘inf is therefore given by [5]

hN iinf =
4⇡

3

Z
⌘inf

⌘start

d⌘a(⌘)4(⌘0 � ⌘)3�(a(⌘)) . (4.3)

Instead of conformal time ⌘, it is convenient to express this as an integral over the number of

e-foldings of inflation N ,

hN iinf =

Z
Nstart

Nend

dN
4⇡

3H(N)

✓
ainf [⌘0 � ⌘ (N)]

eN

◆3

�(N) , (4.4)

where ainf is given by (3.18), and we use Eq. (2.16) to approximate the decay rate in the time-

dependent inflationary spacetime, by replacing the inflaton-dependent quantities, such as the

Ricci scalar (3.40), by their time-dependent values

�(N) ⇡ �HM (R(N)) . (4.5)

For future reference, it is instructive to note that the integrand in Eq. (4.4), which we will

denote by �(N), is a product of a geometric factor

dV

dN
=

4⇡

3H(N)

✓
ainf [⌘0 � ⌘ (N)]

eN

◆3

, (4.6)
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and a dynamical factor �(N), i.e.

�(N) ⌘
dhN i

dN
=

dV

dN
�(N). (4.7)

The dynamical factor depends on the spacetime geometry only through the Ricci scalar and it

is given by Eq. (2.16), whereas the geometric factor depends on the inflationary model.

For a general single-field inflationary model, the spacetime geometry is determined by the

Friedmann and field equations. By solving these, one can obtain �(N), H(N) and ⌘(N) and

hence calculate the integral (4.4) for a given a bubble nucleation rate �(N). In practice, for the

numerical evaluation of (4.4), it is convenient to express it as a system of coupled di↵erential

equations, using N as the time variable,

dhN i

dN
= �(N) =

4⇡

3
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◆
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where ⌘̃ = e�N⌘. The Hubble rate H(N) is given by Eq.(3.33), and we use the Ricci scalar

(3.40) for the nucleation rate �(N) according to Eq. (2.16). The time dependence in H(N)

and R(N) enters through the solution of (3.38). Note that all the expressions and quoted

equations above do not assume the slow-roll approximations, and therefore remain valid as we

are approaching the inflationary finale.

The choice of the limits of integration in Eq. (4.4), Nstart and Nend, is a compromise between

stronger and more reliable bounds. Specifically, they have to be chosen in such a way that the

approximation (4.5) for the decay rate �(N) is valid throughout. This is only the case when

spacetime can be well approximated by de Sitter. Deviation from dS can be characterised by

the adiabaticity parameter Ḣ/H2, which would be equal to zero in dS. One can therefore expect
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Eq. (4.5) to be valid when

�����
Ḣ

H2

�����⌧ 1 . (4.11)

As N ! 1, Ḣ/H2
! 0 monotonically from below. Therefore, the further back in time we

go, the better the de Sitter approximation (4.5) becomes. This means that Eq. (4.11) does not

constrain the upper limit Nstart, and we could even consistently choose Nstart = 1. On the

other hand, empirically we have only evidence for roughly 60 e-foldings of inflation, somewhat

dependent on the post-inflationary evolution [117]. Conversely, the further forward we go in

time, the more Ḣ/H2 deviates from zero. Defining Nend = 0 where R = 0 in (3.40) implies

that Ḣ/H2 = �2. In the case when ä/a = 0 in (3.39), which is often defined to be the end

of inflation, it corresponds to Nend ⇡ 0.19 and Ḣ/H2 = �1. Therefore, in order to ensure

that the condition (4.11) is satisfied, Nend needs to be su�ciently large, Nend & O(1). We

will parameterise the choice of Nend by the corresponding value of the adiabaticity parameter

Ḣ/H2, which lies in the range

�2 
Ḣ

H2
< 0 . (4.12)

4.2 Vacuum decay in field theory inflation

In this section, we present the cosmological implications from the metastability of the elec-

troweak vacuum during inflation. These computations were performed in field theory, where

there were no portals between the inflaton and the Higgs, but the two fields were completely

decoupled. This resulted in two parallel calculations, one regarding the barrier height of the

RGI e↵ective Higgs potential V RGI

H
, and one for the relevant cosmological quantities, namely

the Hubble rate H and the comoving radius ⌘0 � ⌘, for each inflationary model. For the latter,

we solve the system of (4.8)-(4.10) numerically using Mathematica, starting from determining

the boundary conditions for Eq. (4.10) using its slow-roll solution at su�ciently early times.

To be precise, we fix the boundary values of �(N) and �0(N) at N = 106 e-foldings before the
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end of inflation, and then integrate the equations down towards lower N , until the field reaches

the point �inf where inflation ends. In this way, we derive lower bounds on the non-minimal

coupling ⇠ in section 4.2.1, while investigating also the time of predominant bubble nucleation

in 4.2.2 and its dependence on the total duration of inflation in 4.2.3.

In this section, we consider the monomial inflationary models of Section 3.3.1 and a Starobinsky-

like power-law model with the potential given by (3.61). This potential does not include cross-

couplings between the Higgs and the inflaton, which in the Starobinsky model in Chapter 5,

they are introduced when the initial Lagrangian is parameterised in terms of an additional

R2-term [100, 101]. Therefore, in Chapter 4, we will not be considering what is strictly defined

as Starobinsky inflation, but rather a toy model version of it. However, we will refer to it as

Starobinsky inflation throughout the remainder of this chapter for the sake of brevity. It is

also important to highlight that all the following computations assume that inflation lasts for

60 e-folds, and its end N(�inf) = 0 is set at the point where the expansion of the universe no

longer accelerates,

ä

a

����
�=�inf

= H2

"
1�

1

2M2

P

✓
d�

dN

◆2
#�����
�=�inf

= 0 . (4.13)

In this calculation, we use the Higgs e↵ective potential (2.30), which is approximated with

three-loop renormalization group improvement and supplemented with one-loop curvature cor-

rections, according to Section 2.3. In Fig. 4.1, we see how the corresponding Hawking-Moss

action di↵erence BHM (2.15) scales with the Ricci scalar/Hubble rate for di↵erent values of the

non-minimal coupling, and for a mass range of 2� for the top quark. The choice of the depicted

⇠EW values is motivated by the bounds obtained in Section 4.2, as the ones of interest, which

also parallel the corresponding ones in Fig. 2.3. The three arrows denote the last 60 e-folds of

each inflationary model, where their dashed tails extend to earlier times. Hence, the relevant

range of the BHM values, for this study, is the one coinciding with the arrow of each model. We

observe that as mt increases, the bounce action becomes less sensitive to the curvature. At high

R, the action becomes approximately constant, in line with the analytic approximation (2.23).
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Figure 4.1: Evolution of the Hawking-Moss bounce action with spacetime curvature in the dS
approximation (3.23), for sample value of the non-minimal coupling. The shaded areas denote
1� and 2� deviation from the central value of mt, where a heavier top quark decreases the value
of BHM and vice versa. The solid red, blue and green arrows denote the last 60 e-foldings of
inflation in quadratic, Starobinsky and quartic inflation respectively, whereas the dashed ones
extend beyond that. Originally published in [1] (CC BY 4.0).

4.2.1 Bounds on ⇠

Assuming a particular inflationary model, and given the values of the top quark mass and other

SM parameters, one can obtain a lower bound on the Higgs-curvature coupling ⇠, by solving

Eqs. (4.8)–(4.10) and requiring that hN iinf  1. The precise bound will depend on the duration

of inflation, which we discuss in Section 4.2.3 in more detail. Because in Eq. (4.8), �(N) > 0,

the longer inflation lasts, the stricter the bound on ⇠. In Fig. 4.2, we show these lower bounds

calculated for di↵erent values of mt, in the three inflationary models of Section 3.3.1, based on

the minimal assumption that inflation lasts for N = 60 e-foldings. We can see that all three

inflationary models lead to very similar bounds, which indicates that, at least to some extent,

they can be considered to be model-independent.

https://creativecommons.org/licenses/by/4.0/
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Figure 4.2: Constraints on the value of the curvature coupling ⇠ at µEW, by imposing
hN iinf(60) ⇡ 1 at the bound, with a varying top quark mass and di↵erent inflationary mod-
els. The vertical dashed black line signifies the threshold below which, the Higgs self-coupling
remains positive as it runs, and thus there is no formation of a second minimum in the Higgs
potential. The vertical dashed orange line lies at the central value mt = (172.76± 0.30) GeV,
where the shaded areas denote the corresponding ±� and ±2� variances [8]. The horizontal
dotted black line shows the lowest ⇠EW value below which, ⇠(µ⇤) turns negative as it runs.
Originally published in [1] (CC BY 4.0).

On the other hand, the bound depends quite significantly on the mass of the top quark. If

it is su�ciently low, as indicated by the vertical black dashed line, the bound disappears

completely because the electroweak vacuum becomes the true minimum. However, already at

mt ⇡ 171.2 GeV, the instability requires negative ⇠ at the relevant scale µ⇤, as indicated by the

horizontal dotted line. With a negative ⇠(µ⇤), the Higgs field gets displaced from its electroweak

value during inflation. This changes its dynamics so much that we cannot use the same estimate

(4.8) for the expected number of bubbles, and more work is required to determine the actual

constraints. Therefore we terminate the curves at that line.

https://creativecommons.org/licenses/by/4.0/
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Finally, for completeness, we state explicitly the ⇠-bounds for mt ± 2� in each model,

Quadratic : ⇠EW � 0.060+0.007

�0.008
, (4.14)

Quartic : ⇠EW � 0.059+0.007

�0.008
, (4.15)

Starobinsky : ⇠EW � 0.059+0.007

�0.009
, (4.16)

where the numerical errors in the ⇠EW’s, for a fixed mt, are approximately < 1% of their values.

4.2.2 Bubble nucleation time

In addition to the overall constraint on ⇠, it is instructive to calculate the time during inflation

at which bubbles are most likely to nucleate. This is important for two reasons. First, if bubbles

were predominantly nucleated very close to the end of inflation, for example during the last

e-folding, it would suggest that the constraints in Fig. 4.2 may not be reliable. This is because

Eq. (2.16) is calculated in dS spacetime, and near the end of inflation spacetime geometry

deviates increasingly from dS. Secondly, if bubble formation was most likely to happen early

on during inflation, before the last 60 e-foldings, then the bounds in Fig. 4.2 would depend

significantly on the early stages of inflation, which we have not accounted for.

In Fig. 4.3, we show the probability of bubble nucleation per e-folding �(N) for the three

inflationary models. In each case, mt has been assumed to have its experimental value, and

⇠EW is fixed to the value that gives hN iinf = 1. We can see that in all three cases, the function

has a clear localised peak. This means that there is a definite, fairly well-defined time during

inflation, when the vacuum decay is most likely to happen. In quadratic and quartic models,

this peak is a few e-foldings before the end of inflation, which means that the constraints on

⇠ should be reliable, and even in Starobinsky inflation it is more than one e-folding before the

end. Also note that a lighter top quark “pushes” the peak to earlier times, while a heavier one

towards the end of inflation.
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Figure 4.3: The integrands of (4.4) for the expectation value of the number of bubbles hN iinf ,
for three inflationary models, with ⇠EW chosen such that hN iinf(60) = 1 in each case. This
means that ⇠Star

EW
= 0.05938, ⇠Quad

EW
= 0.05998, and ⇠Quar

EW
= 0.05875 for Starobinsky, quadratic,

and quartic inflation, respectively. The solid lines correspond to the central value ofmt, whereas
the dashed and dotted lines to a deviation of ±0.5 GeV, respectively. The scales of the Hubble
rate, at which the bubbles are predominantly produced, are HStar = 9.96⇥ 1012 GeV, HQuad =
1.83⇥ 1013 GeV, and HQuar = 1.16⇥ 1013 GeV. Originally published in [1] (CC BY 4.0).

The reason for this localised peak can be seen in Fig. 4.4. As pointed out in Eq. (4.7), the overall

probability �(N) consists of two factors, a dynamical and a geometric one. Due to the expansion

of space, the geometric factor decreases exponentially as a function of N . The dynamical factor

�(N) increases, but not exponentially. Thus, the product �(N) has a maximum.

4.2.3 Significance of the total duration of inflation

As discussed in the previous section, and is also evident from Fig. 4.3, bubble nucleation is

strongly dominated by the dynamics close to the end of inflation. This implies that bounds

from vacuum stability are relatively insensitive to the total duration of inflation, as long as it

is larger than around ten e-folds. However, in principle inflation can last for many orders of

https://creativecommons.org/licenses/by/4.0/
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Figure 4.4: Factors of the integrand �(N) defined in Eq.(4.7) as functions of e-foldings of
inflation in quartic inflation with ⇠EW = 0.05875 and mt = 172.76 GeV. The dynamic factor
corresponds to �(N), while the geometric factor to dV

dN
, and we have normalised all factors to

one at N = 0. Originally published in [1] (CC BY 4.0).

magnitude longer than this, and therefore it is important to check whether the behaviour at

very large N can change this conclusion.

To consider a long period of inflation, we split the integral (4.4) into two pieces,

hN iinf(Nstart) = hN iinf(60) +

Z
Nstart

60

dN �(N) , (4.17)

where we have already computed the first term numerically for the calculations presented earlier.

If we choose the parameter values at the threshold, then by definition hN iinf(60) = 1. The

second term, on the other hand, can be computed using the slow-roll approximation, which is

valid at early times.

Based on Eq. (2.23) and as implied also by Fig. 4.1, we assume that the Hawking-Moss action

BHM is approximately constant at early times, so that �(N) ⇡ H(N)4e�BHM , where we have

https://creativecommons.org/licenses/by/4.0/
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used the dS approximation (3.23) for the Ricci scalar. Under these approximations, and using

the slow-roll expressions for H and ⌘, in the quadratic (3.43)-(3.44), quartic (3.48)-(3.49), and

Starobinsky (3.63)-(3.64) models, Eq. (4.17) is simplified to

hN i(Nstart) ⇡ 1 +
4⇡e�BHM

3
Nstart . (4.18)

However, this is true for all monomial potentials and all plateau models, where the Hubble rate

is constant at early times. For the latter case, this is immediately evident when writing the

early-time contribution to Eq. (4.17) in the slow-roll approximation,

hN i(Nstart) ⇡ 1 +
4⇡e�BHM

3

Z
Nstart

60


H(N)ainf

eN

✓Z
N

0

eN
0
dN 0

H(N 0)ainf

◆�3
dN , (4.19)

where the nested integral, in terms of N 0, corresponds to the conformal factor

⌘0 � ⌘(N) =
1

ainf

Z
N

0

eN
0

H(N 0)
dN 0 , (4.20)

after having dropped the post-inflationary contribution of (3.21), because it is negligible com-

pared to (4.20) for large values of N .

In the case of monomial models of inflation with

V (�) = r�q , 8 r, q > 0 , (4.21)

solving the inflaton’s equation of motion in slow-roll results in

�(N) = MP

p
q(2N + q/2) . (4.22)

This allows to express the Hubble rate in the slow-roll limit as well,

H(N) =

r
r

3
M

q�2

2

P
[q(2N + q/2)]q/4 = K(N + p)p , (4.23)

where we have redefined q = 4p and rewritten the constant factor as K =
p

r

3
M2p�1

P
(8p)p.
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Inserting the above expression to (4.20) and integrating by parts leads to

ainf(⌘0 � ⌘(N)) ⇡

Z
N

0

eN
0
dN 0

K(N 0 + p)p
=

1

K


eN

(N + p)p
�

1

pp

�
+

p

K

Z
N

0

eN
0
dN 0

K(N 0 + p)p+1
. (4.24)

By performing consecutive integrations by parts in the same manner, we end up with

ainf(⌘0 � ⌘(N)) ⇡
eN

K(N + p)p


1 +

p

N + p
+

p(p+ 1)

(N + p)2
+

p(p+ 1)(p+ 2)

(N + p)3
+ ...

�

�
1

Kpp
[1 + 1 + 1 + 1 + ...] , (4.25)

which in the large-N limit, can be approximated by the leading order of the first term,

ainf(⌘0 � ⌘(N)) ⇡
eN

K(N + p)p
. (4.26)

Finally, inserting (4.23) and (4.26) in Eq. (4.19) produces the result quoted in Eq. (4.18),

hN i(Nstart) ⇡ 1 +
4⇡e�BHM

3

Z
Nstart

60


K(N + p)p

eN

✓
eN

K(N + p)p

◆�3
dN

⇡ 1 +
4⇡e�BHM

3
(Nstart � 60) ⇡ 1 +

4⇡e�BHM

3
Nstart . (4.27)

Therefore, the early-time contribution is only important if Nstart & eBHM ⇠ 1058�69, depending

on the value of mt ± 0.5 GeV and the corresponding ⇠EW. For comparison, according to

Eqs. (3.45) and (3.45), the Hubble rate does not reach trans-Planckian values in quadratic

inflation until 1010 e-folds, and in quartic inflation until 106 e-folds. Therefore, one can conclude

that in these models, early bubble production is never important. This observation can also be

obtained in a naive toy model calculation shown in Appendix A.4. For plateau models, where H

approaches a constant at high N , such as the Starobinsky-type potential (3.61), the asymptotic

behaviour of the expected number of bubbles is again Eq. (4.18). Therefore, if inflation lasts

for a very long time, such that Nstart & eBHM ⇡ 1060, the vacuum stability bounds on ⇠ become

stronger.



Chapter 5

The metastability of the e↵ective

potential in Starobinsky inflation

5.1 The e↵ective potential in R + R2 gravity

5.1.1 Non-minimally coupled scalar spectator field

We wish to go beyond the field theory case of Starobinsky inflation, that was presented in

Chapter 4, and study the metastability of the Higgs potential in the actual R + R2 gravity

setting of Section 3.3.2. Since we are interested in the evolution of the Higgs field, we need to

understand how the scalar field action appears in the Einstein frame. Let us, therefore, consider

a spectator scalar doublet field �, which is non-minimally coupled to spacetime curvature, and

has the potential V� in the Jordan frame. Its action reads

S =

Z
d4x

p
�gJ


M2

P

2

✓
1�

⇠�†�

M2

P

◆
RJ +

1

12M2
R2

J
+

1

2
gµ⌫
J
(@µ�

†)(@⌫�)� V�

�
, (5.1)

where we emphasise that ⇠ = 1/6 corresponds to the conformal point. We assume that � is a

quantum field in the classical background metric, and we ignore the backreaction of � on the

metric. As in Eq. (3.54), we remove the quadratic curvature term by introducing the auxiliary

63
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field s, so that the action becomes

S =

Z
d4x

p
�gJ


M2

P

2

✓
1 +

s

3M2M2

P

◆
RJ �

1

12M2
s2 +

1

2
gµ⌫
J
(@µ�

†)(@⌫�)�
⇠

2
�†�RJ � V�

�
.

(5.2)

Then, we use the conformal transformation (3.58) to write the action in the Einstein frame as

S =

Z
d4x

p
�g

2

4M
2

P

2
R +

1

2
@µ�@

µ�

0

@1�
⇠e

�
p

2

3
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MP �†�

M2
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1

A

+

r
3

2

⇠e
�
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2

3

�

MP �†�

MP

2�+
e
�
p

2

3

�

MP

2
@µ�

†@µ�� U(�,�)

3

5 , (5.3)

having neglected the first 2� term, because it was coupled to the constant quantity
M

2

P

2
and

thus, it would not survive the subsequent integration by parts. We have grouped the potential

terms together as

U(�,�) = VS(�) +
⇠

2

�†�R

e
p

2

3

�

MP

+
V�

e
2

p
2

3

�

MP

, (5.4)

having obtained the potential of Starobinsky inflation (3.61), and exponential suppression to

the scalar doublet’s potential terms.

To canonically normalise the scalar field �, we rescale it with the field redefinition

� = e
1

2

p
2

3

�

MP �̃ , (5.5)

which turns the action (5.3) to

S =

Z
d4x

p
�g

"
M2

P

2
R +

1

2
@µ�@

µ�

 
1 +

✓
�⇠ +

1

6

◆
�̃†�̃

M2

P

!

+
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3
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✓
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1

6

◆
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MP

@µ
⇣
�̃†�̃

⌘
+
1

2
@µ�̃

†@µ�̃� Ũ(�, �̃)

�
, (5.6)

with the potential now written in terms of the redefined field as
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Ũ(�, �̃) = VS(�) +
⇠

2
�̃†�̃R + e

�2

p
2

3

�

MP V�

✓
e

1

2

p
2

3

�

MP �̃

◆
. (5.7)

In the case of a renormalizable tree-level potential

V�(�) =
1

2
m2�†�+

1

4
�
�
�†�

�2
, (5.8)

the potential reads

Ũ(�, �̃) = VS(�) +
⇠

2
�̃†�̃R +

1

2
e
�
p

2

3

�

MP m2�̃†�̃+
1

4
�
⇣
�̃†�̃

⌘2
. (5.9)

This shows that in the Einstein frame, and when expressed in terms of �̃, the potential has the

same form as in the original Jordan frame, but with a scaled mass term.

We also observe that the transformation from Jordan to Einstein frame has given rise to two

non-renormalizable coupling terms between � and �. We will discuss these terms, and their

e↵ect on the scalar field dynamics, in Section 5.1.3. However, we can already note that if the

non-minimal coupling is conformal, ⇠ = 1/6, or if � is constant so that @µ� = 0, these terms

vanish, and therefore the scalar field action has its standard form. The latter requirement is a

good approximation during inflation, and we make use of it in the next section, when computing

the quantum corrections to the e↵ective Higgs potential.

5.1.2 The e↵ective masses in the Einstein frame

The discussion and results presented in Section 2.3 are applicable in an almost identical manner

in the R + R2 gravity scenario. We assume a constant spacetime curvature R and a constant

inflaton field �, meaning that @µ� = 0, and also that we can eliminate the inflaton field � from

the equations using the relation
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e
�
p

2

3

�

MP = 1�
2H

MMP

= 1�
2
p

R/12

MMP

, (5.10)

which follows from the Friedmann equation (3.8) in dS. Considering first the Higgs field, we

can see from Eq. (5.9) that within our approximations, the relevant part of the action has the

same form as in Einsteinian gravity, apart from a modified mass term. In terms of the rescaled

mean field

h̃ = ⌦�1h = e
� 1

2

p
2

3

�

MP h , (5.11)

the e↵ective masses of the Higgs and Goldstone modes are

m̃2

h
= m2e

�
p

2

3

�

MP + 3�h̃2 , (5.12)

m̃2

�
= m2e

�
p

2

3

�

MP + �h̃2 . (5.13)

In a similar way, all SM fields can be rescaled in such a way, that the form of the quadratic

terms in the action is identical to GR, but with potentially modified mass terms, denoted with

a tilde (⇠).

Therefore, for any fermion  we define a rescaled field  ̃ and mass m̃2

 
, by demanding that

S =

Z
d4x

p
�gJ

⇣
i ̄D̂ �m  ̄ 

⌘
=

Z
d4x

p
�g
⇣
i ¯̃ ˆ̃
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¯̃  ̃
⌘
, (5.14)

where the covariant derivative ˆ̃
D transforms under the conformal transformation as [129]

D̂ = ⌦ ˆ̃
D = e

1p
6

�

MP
ˆ̃
D . (5.15)

This implies that the fermion field is rescaled as

 =
�
⌦2
�3/4

 ̃ = e
3

4

p
2

3

�

MP  ̃ , (5.16)
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and its mass as

m̃2

 
=

y2
 

2
h̃2 . (5.17)

ForW -bosons (and identically for Z-bosons), with gauge fixings ⇣i = 1, there is no field redefini-

tion as
�
W J
�+
µ
= W+

µ
, since the exponential factors coming from the conformal transformation

are cancelling one another in the kinetic term of the action
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(Rµ⌫ + ...)W�

⌫

�
, (5.18)

where the dots (. . .) indicate terms that vanish because we are assuming constant �. Therefore,

this has the same form as in Einstein gravity, with the masses given in terms of the transformed

Higgs field by

m̃2

W
=

g2

4
h̃2 , (5.19)

m̃2

Z
=

g2 + (g0)2

4
h̃2 . (5.20)

From Eqs. (5.17), (5.19) and (5.20), we can see that the particle masses have their standard

expressions, when written in terms of the transformed Higgs field, with the exception of the

Higgs (5.12) and the Goldstone (5.13) bosons that receive an exponential suppression to their

constant term. Because in these rescaled variables, the action has the same form as in Einstein

gravity, the one-loop curvature correction to the e↵ective potential is also identical to Eq. (2.27)

when expressed in terms of h̃, but with modified e↵ective masses in curved space M̃i, which

are given in Table 5.1,

�Vloops(h̃, µ⇤, R) =
1

64⇡2

31X
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144
R2 log
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2

i
|

µ2
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!�
. (5.21)
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Table 5.1: Loop corrections to the e↵ective potential with tree-level couplings to the Higgs,
from the W̃± and Z̃0 bosons, the quarks q̃, the leptons l̃, the Higgs h̃, the Goldstone bosons
�̃W and �̃Z , and the ghosts c̃W and c̃Z , and corrections that do not to couple to the Higgs at
tree-level, from the photon �̃, the gluons g̃, the neutrinos ⌫̃, and the ghosts c̃� and c̃g. Table
originally published in [6] (CC BY 4.0), then adapted and included in [2].

 ̃ i ni di n0
i

M̃
2

i

1 2 3/2 �34/15 m̃2

W
+R/12

W̃± 2 6 5/6 �34/5 m̃2

W
+R/12

3 �2 3/2 4/15 m̃2

W
�R/6

4 1 3/2 �17/15 m̃2

Z
+R/12

Z̃0 5 3 5/6 �17/5 m̃2

Z
+R/12

6 �1 3/2 2/15 m̃2

Z
�R/6

q̃ 7� 12 �12 3/2 38/5 m̃2

q
+R/12

l̃ 13� 15 �4 3/2 38/15 m̃2

l
+R/12

h̃ 16 1 3/2 �2/15 m̃2

h
+ (⇠ � 1/6)R

�̃W 17 2 3/2 �4/15 m̃2

�
+ ⇣W m̃2

W
+ (⇠ � 1/6)R

�̃Z 18 1 3/2 �2/15 m̃2

�
+ ⇣Zm̃2

Z
+ (⇠ � 1/6)R

c̃W 19 �2 3/2 4/15 ⇣W m̃2

W
�R/6

c̃Z 20 �1 3/2 2/15 ⇣Zm̃2

Z
�R/6

21 1 3/2 �17/15 R/12

�̃ 22 3 5/6 �17/5 R/12

23 �1 3/2 2/15 �R/6

24 8 3/2 �136/15 R/12

g̃ 25 24 5/6 �136/5 R/12

26 �8 3/2 16/15 �R/6

⌫̃ 27� 29 �2 3/2 19/15 R/12

c̃� 30 �1 3/2 2/15 �R/6

c̃g 31 �8 3/2 16/15 �R/6

https://creativecommons.org/licenses/by/4.0/
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In analogy with Eqs. (2.29) and (2.30), the RGI improved e↵ective potential is given by

V RGI

H
(h̃, R) =

⇠(µ⇤(h̃, R))

2
Rh̃2 +

�(µ⇤(h̃, R))

4
h̃4 +

↵(µ⇤(h̃, R))

144
R2 , (5.22)

where the renormalization scale µ⇤(h̃, R) is determined by demanding

�Vloops(h̃, µ⇤, R) = 0. (5.23)

In this study, we are assuming classical gravity, with the inflaton field � also treated as a classical

background field. Therefore, neither � nor the graviton loops contribute to the �-functions. As

a consequence of this, the �-functions used to obtain the running couplings in Eq. (5.22) are the

standard ones, and not the ones shown in Ref. [130]. This is a good approximation because the

relevant energy scales, the highest of which is the Hubble rate during inflation Hinf ⇡ 1013 GeV,

are well below the Planck scale. Because of this, and since the masses M̃i appearing in the

loops are almost identical to Mi, the quantum corrections to the Higgs e↵ective potential are

very similar to those in Einstein gravity, apart from the rescaling of the field h.

Even though we will be taking into account the time-dependence of the background in the next

section, the calculation of the RG scale via (5.21) is performed on dS with constant �. After

the RG improvement of the e↵ective potential, we take into account the time-dependence of

the Ricci and the inflaton in the terms that involve them (see Section 5.1.3). Naturally, this

approximation starts to break down as we are approaching the end of inflation, where spacetime

deviates increasingly from dS. At that stage, the time-dependence of all these objects cannot

be ignored, but a proper calculation would be more involved and beyond the scope of this work.

Therefore, the adoption of the dS approximation will introduce some level of uncertainty in our

numerical results, as explained in Section 5.2, but inevitably towards the inflationary finale,

there are other factors that would complicate the calculations. An obvious example would be

the non-trivial transition to the reheating period, or the appearance of mass hierarchies when

R ! 0, which would not allow to utilise (5.23) due to the di↵erent divergences in the logarithms

of (5.21) that render the approximate behaviours M̃i / R and µ⇤ / R as invalid.



70 Chapter 5. The metastability of the e↵ective potential in Starobinsky inflation

5.1.3 The time-dependence of the background

While, as we found in the previous section, the quantum corrections are very similar to Einstein

gravity, the extra classical terms in Eq. (5.6) play a very important role, because of the time-

dependence of the classical background. In order to incorporate this dependence in the e↵ective

RG improved Higgs potential, we have to rewrite the action (5.6) in a canonical form, without

neglecting the terms consisting of the inflaton field and its derivatives. We start by rewriting

the Lagrangian (5.6) more compactly as

L =
M2

P

2
R +

A(h̃, µ⇤)

2
@µ�@

µ�+B(h̃, µ⇤)@µh̃@
µ�+

1

2
@µh̃@

µh̃� Ũ(�, h̃, µ⇤) , (5.24)

where we have included the chosen RG scale explicitly and made the following definitions for

compactness,

A(h̃, µ⇤) = 1� ⌅(µ⇤)

 
h̃

MP

!2

, (5.25)

B(h̃, µ⇤) = �
p
6⌅(µ⇤)

h̃

MP

, (5.26)

⌅(µ⇤) = ⇠(µ⇤)�
1

6
 0 . (5.27)

In the remainder of this section, we will be suppressing the µ⇤-dependence for clarity.

In order to eliminate the mixing term, we can perform a field redefinition of the inflaton

� = �̃+ f(h̃) . (5.28)

Hence, the Lagrangian now reads, after having suppressed the h̃-dependence,

L =
M2

P

2
R +

A

2
@µ�̃@

µ�̃+ [f 0A+B] @µh̃@
µ�̃+

1

2
@µh̃@

µh̃
⇥
1 + 2Bf 0 + f 02A

⇤
� Ũ(�̃, h) . (5.29)

Since the function f(h̃) is an arbitrary one, we can define it as such, so that the coe�cient of

the mixing term vanishes exactly,
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f(h̃) = �MP

r
3

2
ln

2

41� ⌅
 

h̃

MP

!2
3

5 . (5.30)

Therefore, imposing the field redefinition (5.28) with (5.30) simplifies (5.24) into

L =
M2

P

2
R +

A(h̃)

2
@µ�̃@

µ�̃+
C(h̃)

2
@µh̃@

µh̃� Ũ(�̃, h̃) , (5.31)

where we have defined the following function for brevity

C(h̃) = 1�
6⌅2

⇣
h̃

MP

⌘2

1� ⌅
⇣

h̃

MP

⌘2 . (5.32)

There is a possible field redefinition of h̃ that can bring the kinetic term in canonical form, e.g.

⇢ = g(h̃)h̃ , (5.33)

since C(h̃) is not a function of �̃, which reduces to (5.31), when

⇣
g(h̃) + h̃g0(h̃)

⌘2
= C(h̃) . (5.34)

Solving the above equation results into

g(h̃) =
E (ArcSin (

p
z) |6⇠)

p
z

, (5.35)

where E(�|m) is the incomplete elliptic integral of the second kind, and we have defined the

function z(h̃) = ⌅
⇣

h̃

MP

⌘2
for convenience. We can expand (5.35) in a power series around zero,

given that h̃ ⌧ MP since the Higgs field is a spectator field, as

g(h̃) ⇡

p
z � ⌅z3/2 +O(z5/2)
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= 1� ⌅2
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MP

!2

�O

⇣
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⌘
. (5.36)
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Then, we can express the field redefinition (5.33) explicitly in terms of h̃ via (5.36) as

⇢ ⇡ h̃� ⌅2
h̃3

M2

P

. (5.37)

If we write (5.37) as ⇢ ⇡ h̃
h
1� ⌅2✏2
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i
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#
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Thus, finally we have an approximately diagonalised theory

L ⇡
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µ⇢� Ũ(�̃, ⇢) , (5.39)

where we have grouped all the potential terms in Ũ(�̃, ⇢) = VS(�̃) + V RGI

H
(�̃, ⇢), with the

first term corresponding to the Starobinsky potential (3.61) for �̃, and the second to the RG

improved e↵ective Higgs potential
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with the additional terms that were generated by the field redefinitions being
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Because we are interested in field values well below the Planck scale, the ⇢6 term is Planck

suppressed, and we do not include it in the following numerical calculations.
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5.2 Vacuum decay in R2 inflation

Let us now apply the general framework, that was introduced in Section 4.1, to the case of the

Standard Model in the setting of R + R2 gravity, with the particular aim of constraining the

value of the non-minimal coupling ⇠. In Section 4.2.1, we carried out the same analysis for the

field theory case with the same inflationary potential as in the current case, and obtained the

bound

⇠EW & 0.059+0.007

�0.009
, (5.44)

to which we will compare our findings in this chapter. For consistency of comparison, we are

using the same inputs for the numerical computation, namely the Hubble rate today H0 =

1.5 ⇥ 10�42 GeV [117] and at the end of inflation Hinf = 6.5 ⇥ 1012 GeV, where the latter is

estimated from the solution of Eq. (4.10) with �inf = 0.6MP and ainf = 1.25⇥ 10�29 estimated

at Ḣ/H2 = �1.

For the numerical evaluation of the integral (4.4), we express it as a system of coupled di↵erential

equations, similarly as described in Section 4.1, with the di↵erence that �̃ acts as the inflaton

in this context,

dhN i

dN
= �(N) =

4⇡

3


ainf

✓
3.21e�N

a0H0

� ⌘̃(N)

◆�3
�(N)

H(N)
, (5.45)

d⌘̃

dN
= �⌘̃(N)�

1

ainfH(N)
, (5.46)
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dN2
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d�̃

dN
�M2

P

V 0
I
(�̃)

VI(�̃)

!
, (5.47)

where again ⌘̃ = e�N⌘. The boundary conditions for the field �̃ and its derivative were set

at �̃ = 20MP by demanding that the right-hand-side of Eq. (4.10) vanishes, according to the

slow-roll approximation. Eq. (5.47) was then evolved forwards in time, to find the point at

which the Ricci scalar (3.40) vanishes, R = 0, which defines the origin N = 01. The full set of

Eqs. (5.45)–(5.47) was then evolved towards larger N , with the additional boundary conditions

1
This definition di↵ers slightly from the one used in Section 4.2, corresponding to shift by �N = 0.192212

in the definition of N , but this is well below the accuracy of Eq. (3.18).
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hN iinf(0) = 0 , (5.48)

⌘̃(0) = 0 . (5.49)

For the calculation of the decay rate (2.16), we replace R and �̃ by their time-dependent values,

�(N) ⇡ �HM

⇣
�̃(N), R(N)

⌘
, (5.50)

and use the RGI e↵ective potential (5.40), without the Planck-suppressed sixth-order term,

V RGI

H
(N, ⇢) = ↵(µ⇤)

R2(N)

144
+m2

e↵
(µ⇤, N)

⇢2

2
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4
, (5.51)

where
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with µ⇤ containing the implicit dependence on ⇢ and N through Eq. (5.23). Therefore, the

potential is not a polynomial. Nevertheless, to understand the shape of the potential, it is

instructive to think of m2

e↵
and �e↵ as the coe�cients of the quadratic and quartic terms,

respectively, and consider their dependence on N .

In Fig. 5.1, we show the N -dependence of the coe�cient m2

e↵
of the quadratic term for two

di↵erent values of ⇠EW. We can see that the extra contribution �m2, which is not present in

the field theory inflation model considered in Section 4.2, is negative and dominates over the

non-minimal coupling term ⇠R towards the end of inflation, which destabilises the potential.
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Figure 5.1: Coe�cient m2

e↵
of the quadratic term in Eq.(5.52) for ⇠EW = 0.06 (left) and

⇠EW = 0.1 (right), calculated at Higgs field value ⇢ = 1012 GeV. Figure included in [2].

This can be seen more concretely in Fig. 5.2, where the value of the Hawking-Moss action

(2.15) as a function of N is compared to the field theory case, which is shown with dotted lines.

Because the Hawking-Moss bounce is lower than in the field theory model, the decay rate (2.16)

is higher, and thus vacuum stability will require a higher value of ⇠EW. The vanishing action

at low N indicates unsuppressed bubble nucleation, but only if the validity condition (4.11) is

satisfied, which means that the lower ⇠-bounds are going to depend on the choice of Nend.

Early on during inflation, when N � 1, the slow-roll approximations hold and spacetime looks

approximately de Sitter, with the Hubble rate tending to a constant value H ! HdS = MMP

2
.

The extra terms in the e↵ective potential (5.51) are negligible, and therefore we find identical

behaviour as in Section 4.2.3. This can also be seen by the behaviour of the bounce action in

Fig. 5.2 for high values of N , where the two di↵erent curves overlap for each ⇠EW. Finally, as

stated in Section 2.2, the gravitational backreaction to BHM is negligible, and thus we can safely

omit it. This is explicitly evident when considering the corrections arising in the Hawking-Moss
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bounce action, if we do not use the linear approximation [5],
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If we use the dS expression for the Ricci scalar (3.23), R = 4VS

M
2

P

, we can express the corrections

in the denominator of BHM in manner which is directly comparable to (2.15) and amounts to

corrections of order less than one in a billion due to their Planck suppression,
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Figure 5.2: Bounce action (2.15) for sample values of the non-minimal coupling ⇠EW during R2

inflation (solid) and in comparison with the field theory case (dotted). Figure included in [2].

The comparison between the field theory example of Section 4.2 and the proper implementation
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of R2 inflation can be also made at the full integrand level, as shown in Fig. 5.3. Once again,

each pair of curves approach each other at earlier times, but they show very di↵erent evolution

at the final moments of inflation. The destabilising new terms lead to significantly higher

integrands, that result in an greater expectation number of true-vacuum bubbles, i.e. we have

an enhancement of vacuum decay at late times. This e↵ect is very sharply localised close to

the very end of inflation, meaning that bubble nucleation takes place predominantly moments

before the inflationary finale. The vertical lines, shown in varying shades of purple, denote

di↵erent choices of Nend, as indicated in the caption. On the other hand, because the integrand

decreases rapidly as a function of N , the number of bubbles hN iinf and hence the bounds on

⇠EW are almost independent of the choice of Nstart, unless Nstart & 1060 as discussed in Section

4.2.3. In practice, we therefore we only need to integrate up to N = 5 to obtain precise bounds.

Figure 5.3: Integrands of hN iinf with varying definition for the end of inflation. The vertical

lines are at Ḣ

H2 = �1, �1

4
, � 1

32
respectively, and the dotted lines correspond to the field theory

inflation model discussed in Section 4.2. The plateau at dhN iinf/dN ⇠ 1080, which the curves
reach at small N , corresponds to vanishing Hawking-Moss action (2.15). In that case the
expression (2.16) is not valid quantitatively, so the numerical value should be taken to be
indicative of unsuppressed bubble nucleation. Figure included in [2].
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Finding hN iinf by solving the system of di↵erential equation (5.45)-(5.47), and demanding

that hN iinf < 1, results in a lower bound on the non-minimal Higgs curvature coupling ⇠EW.

This calculation is sensitive to the input SM parameters, and because the uncertainty in the

estimation of the mass of the top quark is by far the greatest, we explore the parameter space

around its central value (2.8). For a detailed account of the input parameters we use in this

calculation, see Table 2.1. This computation is also dependent on the choice of Nend.

Figure 5.4: Dependence of the lower bound on the non-minimal Higgs curvature coupling ⇠EW
on the choice of Nend in Eq. (4.4), parameterised by Ḣ/H2, for the top quark mass mt = 172.76
GeV. The shaded regions below the curve denote the excluded values of the parameter space,
the colour scheme ranges from the most conservative lower bounds in the darkest tone on the
right to the less reliable in the lightest tone on the left and it matches with the corresponding
bounds in figure 5.5. The horizontal black line lies at the conformal value ⇠ = 1/6. Figure
included in [2].

In Fig. 5.4, we present the e↵ect of the choice of Nend, which we parameterise by the adiabaticity

parameter Ḣ/H2, on the lower ⇠-bounds for the central value mt = 172.76 GeV. A more

negative Ḣ/H2 corresponds to lower Nend and therefore leads to a significantly stronger bound

on ⇠EW, approaching the conformal value at Ḣ/H2 = �2. However, because they violate the

validity condition (4.11), these bounds probably cannot be trusted. However, the darkest purple
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area, which corresponds to Ḣ/H2 > �1/4, should be valid, and therefore we can conclude that

vacuum stability requires ⇠EW & 0.1.

Figure 5.5: Lower bounds on the non-minimal Higgs curvature coupling ⇠EW as a function of
the top quark mass mt. The vertical dashed orange line with its accompanying shaded regions
depict mt ± � , 2� [8]. The darker and lighter shades of purple show the excluded areas for
two di↵erent choices of Nend, corresponding to Ḣ/H2 = �1/4 and Ḣ/H2 = �1, respectively.
The leftmost black parts of the curves show the lowest ⇠EW values below which ⇠(µ) turns
negative during its running, and thus “pushes” the EW vacuum to higher field values. Previous
constraints with a Starobinsky-like power-law model are shown in the dotted blue curve (see
Section 4.2.1). The vertical dashed black line stands at the threshold value of mt, below which
the EW vacuum is stable. Finally, the horizontal, black line illustrates the conformal point
⇠ = 1/6. Figure included in [2].

In figure 5.5, we present the lower bounds with respect to the input value of the top quark

mass. The shaded areas are excluded by vacuum instability. The darker and lighter shades of

purple correspond to di↵erent choices of Nend, Ḣ/H2 = �1/4 and Ḣ/H2 = �1, respectively.

The blackened portions of the curves correspond to the area of parameter space where the non-

minimal coupling turns negative as it runs, and thus forces the metastable vacuum to higher

field values close to the potential barrier. These bounds are obtained in a slightly di↵erent

manner, since the height of the potential barrier is measured from the top of the barrier to
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the now dynamic local minimum of the potential. For comparison, we also show with the blue

dotted curve the bounds for the field theory inflation model as shown in Section 4.2.1. They are

evidently weaker, since now extra terms have been generated in the e↵ective potential that have

negative sign, and therefore destabilise the vacuum increasingly towards the end of inflation.



Chapter 6

Conclusion

6.1 Summary

In this thesis, we have investigated the cosmological implications of the electroweak vacuum

instability to constrain fundamental physics and gain insights into the dynamics of the Higgs

field in the early universe. More specifically, we utilised the metastability of the Higgs vacuum,

which is a feature of the Standard Model according to our experimental measurements, during

the inflationary era, to obtain lower bounds on the Higgs curvature coupling ⇠. The importance

of these results lies on the fact that ⇠ is the last unknown renormalizable parameter of the SM

which cannot be probed experimentally with accelerator experiments, because spacetime is not

significantly curved in the present day universe. Hence, such cosmological constraints are orders

of magnitude stronger than other methods. Given also that we made use of the state-of-the-art

e↵ective Higgs potential approximated with three-loop renormalization group improvement and

one-loop curvature corrections in a time-dependent background, the bounds presented here are

arguably the most accurate to date.

81
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6.2 Field theory inflation

In Section 4.2, we provided vacuum decay bounds on the Higgs curvature coupling in three

inflationary models, quadratic, quartic, and Starobinsky-like power-law inflation. For the cal-

culation of the tunnelling probability we made use of the Hawking-Moss bounce, with the

renormalization group improved e↵ective potential calculated on a curved background without

the usual assumption of strict de Sitter space. In the e↵ective potential for the SM Higgs, we

included the leading time-dependent curvature corrections from all SM constituents by making

use of the results of Ref. [6] and choosing the renormalization scale such that the loop correction

strictly vanishes, as written in Eq. (2.29). This amounts to a consistent inclusion of quantum

induced curvature corrections to 1-loop order, which in previous works has not been addressed

beyond de Sitter space. This analysis indicated that the bound for the Higgs non-minimal

coupling at the electroweak scale is

⇠FT
EW

& 0.06 , (6.1)

for the central value of the top quark mass. This is numerically close to bounds obtained earlier

in the de Sitter approximation [5, 6]. From the results in Eqs. (4.14)–(4.16), one can also see

that the bound is largely unchanged when varying the top quark mass by 2� or less. Since for

the non-minimal coupling in the SM, ⇠ = 0 is not a fixed point of the RG evolution, a small

yet non-zero value is perfectly natural from the model building point of view.

Our work also revealed non-trivial insights concerning when precisely, during inflation, the

vacuum bubbles are formed. Consistently in all three models that we studied, the bulk of

bubble nucleation occurs close to the end of inflation. This is shown explicitly in Fig. 4.3,

where the maximum probability for nucleation is at the peaks localised less than ten e-folds

before the end of inflation, while dropping rapidly for large N . In Section 4.2.3, the dependence

of the average number of bubbles on the total length of inflation was studied analytically. It

was shown that the results are largely insensitive to the entire duration of inflation, unless

one considers an extremely long period of primordial inflation lasting more than 1050 e-folds.
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Although a very large number, this might be significant for cases admitting eternal inflation [55],

which warrants further study.

It would be useful to clarify the range of validity of our approach, that utilises the Hawking-

Moss solution during high-scale inflation. In general, during the expansion in the inflationary

models we considered, because of the high scales of the Hubble rates, the Coleman-de Lucia

process is always subdominant [5]. The stochastic formalism on the other hand is only required

either at the very end of inflation, when deviating from dS, or at the earlier times, when the

Hubble scales are higher than the barrier. Thus, in our case, where we look at the last e-foldings

of inflation, the HM approach is the dominant one and because bubble production takes place

before the last e-fold or so, it is still valid to use it in the dS approximation until then. Since

the early time contribution is irrelevant, as we showed in Section 4.2.3, that means that we can

use the HM instanton confidently and only consider the stochastic formalism if we want to look

towards the very end of inflation. Numerically, we are within the HM regime [43],

H2 < (VH(hbar))
1/2 , (6.2)

where the CdL bounce does not exist since |V 00
H
(hbar)| < 4H2, even though |V 00

H
(hbar)| � H2.

As mentioned in the introduction, the issue of vacuum stability during inflation was similarly

studied on a time-dependent background in Ref. [54]. The main di↵erence to our work was

making use of the stochastic approach of Ref. [131], instead of the Hawking-Moss bounce, and

including Planck-suppressed derivative operators in the action. Furthermore, Ref. [54] made

use of the RG improved tree-level potential with the scale choice µ2 = h2+12H2, in contrast to

this study, where we used the 1-loop result in Eq. (2.30) with the scale choice from Eq. (2.29).

For the cases where the analyses overlap, there is good agreement between the results.
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6.3 Starobinsky inflation

In Chapter 5, we studied the vacuum stability of the Higgs in the minimal Starobinsky inflation

model, in which inflation is driven by an R2 term. In the Einstein frame, this term gives rise

to negative time-dependent contributions to the Higgs e↵ective potential, whose e↵ect is to

destabilise the electroweak vacuum further. In parallel with our method in Chapter 4, we

incorporated quantum e↵ects in the Higgs e↵ective potential by using the three-loop RGI

e↵ective potential, together with one-loop curvature corrections, computed in the de Sitter

approximation with a constant inflaton field. We used this potential to compute the Hawking-

Moss vacuum decay rate, and by demanding that no bubble nucleation events took place in the

entirety of our past lightcone, we obtained a lower bound on the Higgs curvature coupling,

⇠R
2

EW
& 0.1 . (6.3)

This is significantly stronger than the corresponding bound (6.1), which was obtained for the

Starobinsky-like field theory inflation model in Section 4.2.1.

These constraints exhibited similar mild dependence on the top quark mass as in Section 4.2.1,

but were significantly more sensitive to the last moments of inflation, and therefore also to the

precise choice ofNend, the lower limit of the integral (4.4). Because vacuum bubble production is

“pushed” towards the end of inflation, where our de Sitter approximations start to break down,

we adopted a conservative choice for Nend, corresponding to the condition Ḣ/H2 = �1/4.

However, this suggests that the bounds may be improved significantly, by fully accounting for

the transition from inflation to radiation dominated Hot Big Bang. Vacuum stability during

reheating, in this same theory, was recently studied in Ref. [90], but further work is needed to

bridge the gap between these two calculations.

On the other hand, when considering the shape of the e↵ective potential at early times, we

recover the results and the same cosmological implications from Section 4.2.3, where the bounds

are not sensitive to the entire duration of inflation, unless it lasts for more than 1060 e-folds.

Thus, eternal inflation appears to be inconsistent with vacuum metastability.
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The result (6.3) is in agreement with a similar study [90], which considers the metastability

of the Higgs potential in Starobinsky inflation, but focuses mainly on its dynamics during

reheating. However, it is important to highlight the di↵erences between the two approaches,

especially in their overlap regarding inflation. Firstly, the conformal transformation in [90] is

defined to include the ⇠-term, and therefore there is no explicit non-minimal term ⇠Rh2 in the

Higgs potential in the Einstein frame. This means that the additional terms that are generated

in the e↵ective Higgs potential are slightly di↵erent, since they originate from di↵erent field

redefinitions that diagonalise the respective actions. Secondly, and more importantly, there is

a discrepancy between the e↵ective potentials used in these two studies, where it is just the

quartic self-interaction term, without loop or curvature corrections, in [90]. In addition, the

scale choice is limited to µ = h, which misses the contribution from spacetime curvature R,

that dominates during the inflationary epoch. Finally, an equally important di↵erence lies in

the manner in which vacuum decay is studied, where the instability is treated classically in [90]

without considering any instanton solutions.

6.4 Future directions

It is evident from our analysis and results in Chapter 5, that it is essential to incorporate the

period of reheating in vacuum decay calculations during Starobinsky inflation, because bubble

production is predominantly taking place very close to the end of inflation. If we wish to provide

stronger and more accurate constraints on ⇠, and also follow the survival of the metastable

vacuum after inflation, it is essential to extend our treatment to incorporate the oscillatory

behaviour of the inflaton field during reheating. For this purpose, we would have to develop

new techniques that would allow us to study closely the transition from inflation to reheating

in a consistent manner, which is a particularly di�cult and unexplored endeavour. The usual

approach has been to investigate inflation and reheating separately, and introduce either an

instantaneous transition or a gradual procedure in a phenomenological way. Furthermore, it is

crucial for these studies to embed the SM consistently in the particular cosmological scenarios,

since the loop and curvature corrections to the e↵ective potential and its RG improvement
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are not trivial on curved spacetime. Finally, since the usual de Sitter space approximation

starts to break down in this regime, it would be necessary to adapt our numerical methods to

accommodate these complications, so that we can probe the quantities of interest with increased

confidence.

Another possibility relates to the possible e↵ects on the e↵ective potential from the inclusion

of higher dimensional operators in the Lagrangian. This is motivated by [54], where it was

suggested that such operators a↵ect significantly the probability of vacuum decay. However,

that study was performed in the stochastic rather than the Hawking-Moss regime. In this

respect, we may also need to consider the case where the Coleman-de Lucia instanton domi-

nates, as this can be relevant when including operators of higher dimensionality. A di↵erent

option would be to consider thermal corrections to the e↵ective Higgs potential, which become

significant towards the end of inflation and the beginning of reheating. This could provide a

route to constraining the reheating temperature and thus expanding our scope of constraining

power. To that end, we may have to incorporate the stochastic dynamics of the Higgs field in

the theory, as they would dominate the bounce solution when deviating increasingly from de

Sitter.

In this work, we have not considered a direct coupling between the Higgs and the inflaton

field. In the slow-roll limit, there are examples in which its e↵ects are similar to those of the

curvature coupling, and therefore one can translate the bounds on the curvature coupling to

include the direct Higgs-inflaton coupling [65]. Unfortunately, this is not possible in general

beyond slow roll, and therefore a new calculation is required to include the e↵ects of a direct

coupling. Lastly, within the proposed minimal framework of this thesis, there is the possibility

to expand our approach and consider a family of plateau models, such as Higgs and mixed

scalaron inflation as in [100], and di↵erent formalisms of gravity, such as Palatini [132, 133],

teleparallel [134], a�ne [135, 136], and Einstein-Cartan [137] gravity. This would potentially

allow us to confront our models with observations, constrain the number of viable inflationary

models, and gain novel insights into theories beyond General Relativity, with respect to the

desired features for their short scale signatures and the survival of the electroweak vacuum

throughout our cosmological history.
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Appendix A

Explicit calculations in quadratic

inflation

A.1 Analysis in terms of physical time

This illustrative calculation is performed in the slow-roll regime for the quadratic inflationary

model (3.41). We define that inflation ends at tinf = 0, and consider the time interval from

the start to the end of inflation, tstart < t < 0, during which the inflaton field is positive. We

can obtain the time dependence of the inflaton field � and the Hubble rate H, by inserting the

potential (3.41) into (3.13) and (3.14):
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where c1 and c2 =
m
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p
6
c1 are integration constants, and the signs of �, �̇ and H have been fixed

according to the conventions mentioned above. At the end of inflation, we have c1 = MP
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We can also obtain a = a(t) using the Friedmann equation (3.8),
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where c3 is the integration constant, and ainf = a(tinf = 0) = ec3 . This constant can be found

by inserting the potential (3.41) at tinf in (3.18), and via (3.19) we can also obtain the value of

the scale factor at the start of inflation for the minimum value of e-foldings Nstart,

Vinf = (mMP )
2
) ainf =

a0H0e60

1016

p
mMP

m/
p
3

)

ainf =
a0H0e60

1016

r
3MP

m
, (A.7)

astart =
a0H0e60�Nstart

1016

r
3MP

m
. (A.8)



102 Appendix A. Explicit calculations in quadratic inflation

Using (A.6) and (A.8), provides tstart as a function of Nstart:
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where for the minimum value of Nstart = 60, we get tstart = �10
p
3/m. The factor ⌘0 � ⌘(t) =

(⌘0�⌘inf)+(⌘inf �⌘(t)), present in the number of bubbles integral (4.4), can be calculated from

(3.3), (3.21) and (A.6):
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where erfi(x) is the imaginary error function.
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A.2 Analysis in terms of the scale factor

We repeat the previous analysis in terms of the scale factor a, which is a more suitable variable

than time t for inflationary cosmology. With a simple change of variables, we can write �̇ =

d�

dt
= d�

da

da

dt
= aH(a)d�

da
, and thus perform the same calculation more e�ciently:
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where c4 is an integration constant, and we have used the convention � > 0 during inflation.

We can express c4 in terms of ainf via
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and thus rewrite (A.11) as
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Now that we have �(a), we can get H(a) via (3.13),
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H(a) = (m/
p
3)
p

1 + 2ln (ainf/a) . (A.14)

Similarly as before, the factor ⌘0 � ⌘(a), present in the number of bubbles integral (4.4), can

be calculated from (3.3), (3.21) and (A.14)
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resulting ultimately into
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A.3 Analysis in terms of the number of e-foldings

Using (4.10), we can obtain the expression for � in terms of N , and subsequently find H(N)

through (3.13), as
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The conformal time term present in (4.4) can be derived via (3.22), where we calculate it in

the interval from N e-foldings to the end of inflation N = 0, as
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where erfi is the imaginary error function. Combining (A.19) with (3.21), gives the total

conformal time of our lightcone, from the present day to N e-foldings before the end of inflation,
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Thus, we can calculate the number of bubbles of true vacuum hN i in terms of e-folds via (4.4).

This number is sensitive to the value of the integral’s upper limit, which is not fixed but only

bounded, 60  Nstart  Nmax

�
⇢ = M4

p

�
, as explained in Section 3.3.1.

In order to simplify calculations, and especially the numerical computation in slow-roll, we can

use the asymptotic expansion of the imaginary error function erfi
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where �1!! = 0!! = 1 and
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Therefore, we can expand the erfi term in (A.20) accordingly as
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As we see in (4.4), we can combine the (⌘0 � ⌘ (N))3 factor with the e�3N factor to simplify

the form of the integrand, as
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We can also see that from the other terms in (4.4), �(N)/H(N) = H3(N)e�BHM (N), there is a

factor of H3 that can be also combined with the previous expression and simplify it further
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Finally, inserting also the a3
inf

term in the above expression and rewriting m�/
p
3 = Hinf , leads

to
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where we have calculated the numerical factor Q = 3.21
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where hN i|
Nlarge

0
corresponds to the number of bubbles formed between the end of inflation

Ninf = 0 and a su�ciently large number of e-folds Nlarge (Ninf ⌧ Nlarge < Nstart), where the

asymptotic expansion is not valid, and it is given by
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⇤3
e�BHM (N) . (A.27)

For large values of Nlarge and Nstart, the terms in the integrand of (A.26) vanish, as e�N
p
2N + 1

and (2N + 1)�1,�3,... both tend to zero, so we can rewrite it in a very simplified form as

hN i = hN i|
Nlarge

0
+

4⇡

3

Z
Nstart

Nlarge

e�BHM (N)dN . (A.28)
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A.4 Toy model vacuum decay in slow-roll

With the assumptions of slow-roll inflation and approximately constant bounce action BHM,

we can obtain explicit lower bounds on the non-minimal coupling ⇠, in an almost completely

analytical manner. Following the formalism of Section 4.1 and inserting (2.23) in (A.26) results

into

hN i =
4⇡

3
e�

96⇡
2
⇠
2

|�|

✓Z
Nlarge

0

dN
⇥
(⌘0 � ⌘ (N)) ainfH(N)e�N

⇤3

+

Z
Nstart

Nlarge

dN


Q

✓p
2N + 1

eN

◆
+

✓
1 +

1

(2N + 1)
+ ...

◆�3!
. (A.29)

We can rewrite this expression in a more compact way as

hN i = e�
96⇡

2
⇠
2

|�| [�A(0, Nlarge) +�B(Nlarge, Nstart)] , (A.30)

�A(0, Nlarge) =
4⇡

3

Z
Nlarge

0

dN
⇥
(⌘0 � ⌘ (N)) ainfH(N)e�N

⇤3
, (A.31)

�B(Nlarge, Nstart) =
4⇡

3

Z
Nstart

Nlarge

dN


Q

✓p
2N + 1

eN

◆
+

✓
1 +

1

(2N + 1)
+ ...

◆�3
.(A.32)

Unfortunately, there is no analytical expression for the �A term, but we can calculate its

value at a valid Nlarge that is numerically attainable. We choose Nlarge = 600, which results in

�A(0, 600) = 4⇡

3
(1.0817 ⇥ 1079). However, note that we would get the same answer for �A

at a value as low as N = 11 e-folds. On the other hand, we can perform the integral in �B

analytically

B(N) =

"
1

3
e

3

2Q3

✓r
⇡

6

◆
erf(

r
3

2
(1 + 2N)) +

3

2
ln(1 + 2N)� 3Q

p
2e⇡ �

1

3
e

3

2Q3

r
⇡

6

�
2Q3e�3N

3
p
1 + 2N

(2N2 + 3N + 1) + 3Q
⇣p

2e⇡
⌘
erf(

r
1

2
(1 + 2N))

+ N �
3

2(1 + 2N)
�

6Qe�N

p
1 + 2N

(N + 1)� 3Q2e�2N

✓
N +

3

2

◆�
4⇡

3
, (A.33)

where erf is the error function. For large values of N , Eq. (A.33) can be written in a much

more simple form, since most of its terms get suppressed and erf(x ! 1) ⇡ 1, as
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B(N) ⇡
4⇡

3

✓
N +

3

2
ln(1 + 2N)

◆
⇡

4⇡

3
N . (A.34)

The value of the �A term is very large, of order 1079, and thus dominates the contribution to

the number of bubbles of true vacuum in (A.30). In order for the the early universe contribution

�B(Nlarge, Nstart) ⇡
4⇡

3
(Nstart � Nlarge) ⇡

4⇡

3
Nstart to be comparable and eventually dominate,

we need to go beyond N = 1078 e-folds, which is inconsistent with the maximum duration of

quadratic inflation (3.45).

Imposing the condition hN i  1 to (A.30), we can obtain an analytic relationship between ⇠

and Nstart, as

|⇠| �

p
|�|

4⇡
p
6

q
ln [�A(0, Nlarge) +�B(Nlarge, Nstart)] , (A.35)

where the equality holds at the boundary hN i = 1, and for Nlarge = 600 reduces to

|⇠| �

p
|�|

4⇡
p
6

p
ln(4⇡/3) + ln (1.0817⇥ 1079 +Nstart) . (A.36)

Thus, for quadratic inflation in slow-roll, we obtain the lower bound on the Higgs curvature

coupling at high curvature scales ⇠(µ ⇡ 1015 GeV) � 0.044, for 60  Nstart  Nmax ⇡ 1010.

The expected number of bubbles hN i scales with the number of e-folds and follows (A.30). For

⇠ ⇡ 0.044, we can approximate (A.30) in the very early universe as

hN i ⇡ 9.2451⇥ 10�80
⇥
1.0817⇥ 1079 +Nstart

⇤
. (A.37)

It is evident that we have approximately one bubble forming, even if inflation does not begin

much earlier than Nlarge. However, this is a consequence of the condition that we set in order to

find the bound on ⇠. Nevertheless, we see that when Nstart becomes comparable with 1079, the

number of bubbles becomes proportional to the number of e-foldings, with enhanced bubble

production in the very early universe, as illustrated in Section 4.2.3.
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