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1. Introduction

The quantization of gravity remains one of the outstanding problems of
theoretical physics despite more than 30 years of research. There are indeed
many aspects we need to understand: questions of covariant regularization and
renormalization! measurement? quantum coherence® gravitational collapse and
singularities? and the potential for change of topology?>~® to name but a few.
These problems are sufficiently formidable in 2 and 3 spacetime dimensions, let
alone 10 or 11, to warrant a probe of simple soluble systems in order to pro-
vide a sound basis for the investigation of more realistic theories. The work
reported here is an attempt to quantize gravitation in 141 and 241 dimensions
using canonical path integral methods; we will find that the only gauge invariant
degrees of freedom are a finite number of global variables. In 1+1 dimensions,
only the volume of space cannot be gauged away; in 2+1 dimensions, only the
volume and a set global metric parameters remain’® In section 2, we review
Hamiltonian methods for gravity and path integrals of constrained systems. We
proceed in section 3 to apply this formalism to the quantization of 141 gravity
in a particular gauge.

In section 4 we add scalar matter to 141 gravity and discuss some implica-
tions for the theory of quantized strings, and conclude our discussion in section

5 with quantization of 2+1 gravity. The appendix contains a mathematical ex-

ercise needed to construct the 241 wavefunction.



2. Path Integrals, Constraints, and Gravity

in the Hamiltonian Formalism - -

A direct route to the path integral expression for the transition amplitude

in quantum mechanics is to partition the evolution time T into N steps and

approximate giflei(#,9) T/N: one finds®
5 [ Tirg—Ho)d
(¢', T e’Hquﬁ,O): / Dx D ¢ o (ro—Haldt (2.1)
#(0)=¢
#(T)y=0¢'

If the action is invariant under some continuous symmetry, then the paths in the
functional integral will be highly degenerate. The symmetry is characteristically

generated by some constraint variable y, for example in a gauge theory

x=V-E = A= ¢V -E,A} =V (2.2)

In this case, the degeneracy of paths may be factored out using the Faddeev-

Popov method?; with gauge-fixing condition F[r, ¢] = 0 the amplitude becomes

 z=(") = / Dr'Dp;iDNe det{x", F*}6(F")
T (2.3)
X expt (Wd)—H—)\axa)
l

In our gauge theory example, H = E2 + B%2, x = V- E, and A = A,

Integration over A enforces the constraint y = 0; the determinant

5(X,F))

det{y,F} = det( reg)

(2.4)



1s precisely the Faddeev-Popov determinant - the Jacobian that allows the elim-
ination of é(x) and 6(F), leaving only the “physical” degrees offreedom orthog-
onal to the gauge direction generated by x and the gauge constraint F.

In gravity, the symmetries are local space and time translations generated
by the local momentum (¢ = 1,...,d where d is the spatial dimension) and
the local Hamiltonian ¥¢(z), respectively. Being symmetry generators, they are

constrained to vanish:

H,=0 p=0,...,d (2.5)

If we write the spacetime metric as

n* 0 gre — n°2

¢,
Gy = g6 (2.6)

n* g ‘ gij

then the Einstein - Hilbert action [ V@I R4+ may be cast in the form!0
5= [ @55 = 1" ¥ (2.7

where

Xo :%\/5 (ﬂfrr; —- (di 0 7r2) +kgR + X\/g

(2.8)
Ny =—V;n

Here R and V are the curvature and covariant derivative intrinsic to the spacelike

hypersurface defined by the g;;, and n‘Z is related to the extrinsic curvature of

that hypersurface in spacetime (also 7 = 7r:) The Lagrange multipliers g# are

Timple functions of the g and play the same role as A% in gauge theories (note

also the similarity of the momentum constraint to V- E = 0).



The Hamiltonian path integral for gravity may now be written as

Z:/ Dyt DDy 8[F ¥ (x, g)] det{H ,, F*} & (2.9)

In 141 dimensions, the Einstein action is a topological invariant, so the spatial
metric has no conjugate momentum and the canonical formalism breaks down.
There are, however, quantum effects which give rise to a non-trivial effective
action. Polyakov has shown that in the gauge g,, = 624’6,“,, the functional

measure has an anomaly!! leading to an effective action

Seffzf [Zz%(am)%xew] (2.10)

The Hamiltonian generators which reproduce this result in the conformal gauge

are!?

Ho =1 e ¥ + ke ? (l¢'2 — ¢") + Ne?

2K 2
(2.11)

H¥i=—-Vr=mn¢ -7
where g1 = €%% and k = Ig—?rg in the conformal gauge. Simailar results are also
found in the gauge specified by F# = (g# — a#%)13

6‘lassically, these generators form a closed algebra

{Ho(e), ¥o(y)} = e *?[N1(z) + X1(y)] &'(<, y)
Hi(z), X1(y)} = [Hilz) + X1(y)] 8'(2, y) (2.12)

[Ni(2), Ho(y)y = [Hol(x) + Holy)] 8'(z,y) — ke ?6""(2, 1)

Tup to the anomalous term proportional to k. Apart from this term, this algebra

is identical to the algebra of the Einstein generators (2.8). This implies that the



classical evolution of spacelike hypersurfaces is invariant under local space and

time translations!? Indeed, the classical equations of motion- —

o={n-X,¢} F={n A r} (2.13)

are equivalent to

RZ) = —2) (2.14)

We would now like to quantize the system (2.11) by choosing a gauge and
evaluating the path integral (2.9). In order to consistently implement the con-
straints ¥, = 0, we must quantize in such a way that there is no central charge
the algebra {2.12). Also, we must find a regularization which preserves the co-
ordinate invariance of the theory. Finding such regularization is not trivial —
in the conformal gauge, the regulator must preserve conformal invariance. In
fact, the central charge is related to the regularization; the renormalization of
the functional determinants associated with gauge fixing and matter fields pro-

duces contributions to the central charge, and quantization of  and ¢ will yield

additional contributions.

Our assumption is supported by the fact that there does exist a theory of
1+1 gravity with no central charge which is found by taking the formal limit

k — 0in (2.12), so that

Xo — oy retm—Ne? . | (2.15)



The constraint algebra becomes

{Ho(x), Ho(y)} =0
{Hi(z), H1(y)} = [Hi(2) + Hily)] 6'(2,y) (2.16)

{X1(z), Ho(y)} = [Holz) + Ho(y)] 8'(z,y)

which may be consistently quantized. This theory, which has been studied by
Banks and Susskind!? is just the strong coupling limit of 141 gravity!® When
matter fields are added, k can be nonzero such that the gravitational central

charge is cancelled by the charge of the quantized matter fields.

3. 141 Dimensional Gravity

In what follows, we will consider space to be a circle. In order to fix the

freedom of spatial reparametrization, let us choose the gauge

¢' =0 (3.1)
The momentum constraint ¥; = 0 then implies

=0 (3.2)

and we have eliminated all the canonical variable (except for global degrees of
freedom; these cannot be fixed because V = [ e®dr is a geometric invariant).
There now remain no canonical variables to be fixed by ¥¢. This curious situation
arises because there are two constraints but only one pair of canonical variables -
“1+1 gravity has —1 degrees of freedom in thersens_e that upon addiqg one matter

field, all local degrees of freedom are eliminated in a canonical gauge (see Section



4). Thus, in order to fix local time translations, we must choose a non-canonical
gauge such as - : -

n° = const (3.3)

With the gauge choices (3.1) and (3.3) the Faddeev-Popov determinant is

0 Ho, o'
Sp o {Xo ¢}

det = det
6(gauge transf)
0 {¥,¢'} (3-4)

= det(dp) X det ({)(17 ¢)l})

As before, the determinant of canonical variables just serves as the Jacobian
needed to eliminate the constraints. The determinant det(dy) yields formally
just the determinant of Ay which may be shown to give simply a renormalization
of the Hamiltonian density (2.11)!3

All that remains in the theory are the global variables IT and ¢ defined by

I(t) = / de n(z,t) , 2= / dr e (3.5)

Note that in the elimination of #°, we must separately integrate out the part
of n° which is a constant in both space and time since this mode of #° can be
absorbed into the definition of T:

T n°T

/[H(b—noHo]dt:/ (HE(%%—) - Ho)d(not) (3.6)
0

The transition amplitude reduces to

T
_ - (1 e (e ] }
Z_/ dT DT1 D& exp{z/ [ncp (petm=xe®)at} )
0



i.e., quantum mechanics with the Hamiltonian

[ ®
H=—Te™® I - Xe (3.8)

where we have taken the simplest hermitian ordering for the kinetic term.

Additional justification for this ordering is provided by an analysis of the
strong-coupling (k — 0) limit!* in which this is the only ordering for which the

wavefunction 9[¢] solves the local Schroedinger equation

1

ﬂﬂ-(x) e~ x(z) — Xe?@ |yp[¢] = 0 (3.9)

without ambiguous terms proportional to 6(0).

The integration over T enforces the constraint H = 0:
/ dT 8T = §(H) (3.10)

so that the wavefunction ¢ solves

1 6 g 6 q,] B |

or, changing variables to V = e® = [ dzx e?,

1 6° i
[é-I\: 72 + X]’(,D[‘/ =0 . (3.12)
The solution ¢{V] is
PIV] = ae™V?V 4 pemiVERY (3.13)



Expectation values of quantum operators O are calculated using the integra-

tion measure dp = 4¥ : T

(0) = g P O (3.14)

It seems meaningful in our gauge to talk of the expansion rate of the “world”,
even though this is not a coordinate invariant object; the two branches ¢ = 0

and b = 0 are eigenstates of the operator
My =e N~V (3.15)

with eigenvalues j:\/m, corresponding to uniformly expanding or contracting
universes. From the equations of motion (2.13) we find

) 12
R=H=—[TV+>\} , (3.16)

which yields the expectation values

([ eR™)
T =) (3.17)

Thus-the expectation values of covariant quantities, with the exception of the
volume, have no dispersion. The volume, however, fluctuates wildly since all
volume have unit probability for A > 0 (the situation for A < 0 is somewhat
better behaved - large volumes are exponentially damped). In calculating (3.14)
we must impose an ultraviolet cutoff to control the logarithmic integral [ dv‘i;
when the cutoff is removed the result is finite so long as we factor out the volume

dependence of any quantity of interest.

10



4. Adding Matter Fields

When a scalar field is coupled to the geometry, we find that the constraints
are sufficient to eliminate all canonical variables using the methods of Section
2, save for the global degrees of freedom. The Hamiltonian and momentum

densities are

-¢
Xo L ke (@22 — ¢'") — Ne? + S (P? 4 X'%) 4+ fU(X)
2K 2 (4.1)

¥ =m¢ — '+ PX’

where X and P are the field and its conjugate momentum. A convenient gauge
is

=X =0 (4.2)

Proceeding as before, we arrive at a quantum mechanics problem for the wave-

function; the Hamiltonian is
He 2T -\V+—P4V.UX) (4.3)
Tk Vv 2V '

In the special case where U = 0, we find that the solution to HyY = 0 is a

Bessel function

YV, P) = (5V2RV)/ Ja(VERRY) (4.4)

with & = (kP? + 1/4)'/2. The asymptotic forms

11



show that the solution behaves likes the sum of the solutions for an expanding
and a contracting universe for large volumes, and that the small-volume behavior
will be regular, the probability for finding the universe at small volumes no longer

diverges logarithmically.

In order to interpret the result (4.4), it is helpful to explore the classical

physics of the Hamiltonian (4.3). The classical equation of motion

KVK — g(;)z x4+ 21)722 (4.7)
and Hamiltonian constraint
lyz_(K)2—x+P—2—o (48)
|4 |4 A
together yield the solution
V= \/% cosh( % t) (4.9)

describing a universe which contracts from large volumes down to a minimum

Vinin = —2= and then “bounces” back into an expansion phase. In deriving (4.4),

V21
though, we have integrated away all references to an external time parameter.
How then, can we compare the two? In the classical system, the probability of

finding the universe in the range (V,V + AV) is proportional to the time spent

in that interval

V+av » o
- __ \/'~C 14 _ - 1
/dt— / v 2>\(F) ,1] ' (4.10)
Vv

12



which is asymptotically proportional to —A‘}/—” for V.>> P/J/2x and falls to zero

sharply at V,,;;, = P/v2x. For the quantum system, the probability is

V+AV ,
Prob(V,V +dV) = / 'C'l‘—/‘{,— P (V)9(v")
v (4.11)
AV P
N —— y V >> —_—
Vv V2\

and decays like a power law (c.f. eq. (4.5)) for volumes less than about Vi;,. Thus
the classical regime is the region of large volumes, and quantum mechanics causes
a smearing of the wavefunction into the classically forbidden region V< V,,.,.
For a plot of the classical and quantum probability amplitudes for kP? = 2 as a
function of volume, see Fig. 1.

Our approach runs into trouble if we consider 141 gravity coupled to more
than one scalar field, since in this case it is no longer possible to find an explicit
solution to the constraints. Unfortunately, this is one of the most interesting
c'ases, because 141 gravity coupled to D+1 massless free scalar fields is precisely
the theory of vibrating strings in D+1 dimensions. We can use the methods
developed here to shed some light on the difficulties of quantized strings. We

have

1 1 1
Xo :5——7re_¢7r + fce_d’(é-aﬁ'? — ¢>") —xe? + §e_¢(P3 + X'

(4.12)
¥ =r¢/ —7' + P*. X! , a=20,...,D

In the conformed gauge g,, = €*® 6,,, we have precisely Polyakov’s result in

Hamiltonian form!? Another popular gauge is the light-cone gauge

Xt at P* = const. (4.13)

13



where X* = X 4+ XP. Because of the Minkowski signature of the embedding

space, the constraint ¥o = 0 can be solved to give .. -

i
P = -51;”6‘¢”+”e‘¢(§¢’2 = ") =2ef + %”(P? +XP) ()

where i = 1,..., D — 1. Substituting this solution into the action we find
S = / (¢ + P, X ) dz dt
- / {m'» FPXG — SRR X - (4.15)

N [512 e fr’ + ke¥(9"/2-0") - >\e¢]}d;r dt

Thus the gravitational field ¢ acts as a sort of longitudinal oscillation of the
string, exponentially coupled to the transverse fields X;. Even though the con-
straints have been solved, the effective theory appears quite formidable.
Finally, a third gauge choice is also interesting to consider. We may, as in
the soluble examples previously considered, eliminate the gravitational field with

the gauge
= p'=7'=0 (4.16)

Here the Faddeev-Popov determinant is not quite a Jacoblan, because we are

fixing both elements of a conjugate pair; rather, we find

{Ho, 'y {Hy, 7}
det = det[{)(gmv(a:) , )(“{mv(y)}}x const.
{Ho, ¢’} {H1,¢} (4.17)

=H' HI*(x) X const.
X

14



where the superscript grav indicates the purely gravitational part of the full
Hamiltonian density. Thus, the path integral measure depenrdson the energy in
the volume fluctuations. The Hamiltonian becomes

1

2V(Pf + X% de (4.18)

1
H=—VIE -\V + /
2K
subject to the quantum mechanical constraints
1 2 1 12
Oz)(oj:)h:(ﬂv HV—W) + S V(Pa£ X)) (4.19)

But these constraints, apart from the single additional degree of freedom, are
just those of the covariantly quantized string'®; they are notoriously difficult
to satisfy without destroying either unitarity or Lorentz invariance. It would
appear that fundamental progress in quantizing strings is still lacking, and will
require a better understanding of the quantized vacuum since the difficulties with
central charges, unitarity, etc., can be traced directly to the divergent zero-point

fluctuations of the fields.

15



5. 2+1 Dimensional Gravity

In 2+1 dimensions, the Einstein action (2:7) exists, although the classical
equations of motion allow only flat spacetime as a solution® (there is no gravita-
tional radiation in 2+1 dimensions).

There are only a finite number of physical degrees of freedom, even though
the theory is perturbatively nonrenormalizable. Again, if we assume the existence
of a coordinate invariant regulator, we may apply the canonical formalism. If
we choose a gauge where the constraints can be solved explicitly, we won’t have
to confront the difficult question of regularization. In what follows, we consider
space to be closed with a toroidal topology. A convenient gauge is specified by

choosing the metric to be spatially constant

i = G5 (t) (51)

(For other spatial topologies it is possible to choose a metric with constant cur-
vature described by a finite number of parameters known as moduli’® ) The

constraints ¥, = 0 imply that 7% is spatially constant

7 = 7' (1) (5.2)
The Hamiltonian density (2.8) may be rewritten

Lol . . g 11 _ _ \
= — (==, — T R+ ) 5.3
o I‘;(\/g.q”gwr T 2%\/g7r)+ff\/g +A\/g (5.3)

i;=9""g;
(5.4)

7~rijr — gl/2(ﬂ_ij _ % gtg;r)

16



are the degrees of freedom orthogonal to the local volume /g and its conjugate

717 We again choose the ordering such that ¥o-is hermitian in the measure!®

_(d+1)
du(g) =[] Dgij - 972 (5.5)
1<y
In the gauge (5.1), and using the formalism of Section 2, we see that the wave-

function of the world satisfies

Y = 1! TN e L 1 2 7] S R .
with
6 .. P |
- =5 o preoneed 4
v &V : 4 59:; (5.7)

Since the 7/ are the generators of symmetric, traceless deformations of the
metric, it is natural that those deformations are elements of symmetric space

SL(2, R)/SO(2) and that

A= (5.8)

is the covariant Laplace operator on that space? The eigenfunctions esp [g] of A

are “plane waves” on SL(2, R)/SO(2) satisfying

Ay, = (p* + 1/8) ey (5.9)

where p is a “wave number” and b is its “direction vector” (see the appendix).
Inserting (5.9) into (5.6), this equation takes just the form of (4.3), and so the
solution to the Schroedinger problem for the volume may be read off from (4.4).

We find the wavefunction of 2+1 gravity in the gauge (5.1) to be

v=(3VaRa V) U o (VBN V) e, (@) (5.10)

17



It is again instructive to contrast this result with the set of classical solutions.

The most general classical solution in the gauge (5.1) is. -
gi; = A% M 4 BY eV 4 (AB + BA); (5.11)

where A and B are symmetric matrices satisfying the constraint

tr{A"1B} =0 , for A nondegenerate
(5.12)
tr{B~1A} =0 , for B nondegenerate

The formula (5.11) is easily verified in the vierbein formalism. The constraint
implies that the volume of space shrinks to zero at a finite time. Physically,
this is clear because the Hamiltonian is just like the 141 gravity theory with a
scalar field except that the conformal degrees of freedom g;; contribute with the
opposite sign compared to the scalar field. Thus the volume feels an attractive
1/V? potential rather than repulsive — the world is drawn towards zero volume,
which is reached at finite time. The wave function (5.10)reflects this feature
in that the probability amplitude ¥*1 does not approach zero as V approaches
zero (cf. the asymptotic form Eq. (4.6)). The classical and quantum probabilities
are shown in Fig. 2. Note that the quantum amplitude follows the classically
expegfed value even more closely than in 141 dimensions, and also has no zeroes
as may be seen from the asymptotic form (4.5).

Finally let us examine qualitatively how these results are modified when we
consider different spatial topologies. When space is topologically a sphere, we
can fix a gauge where the metric has constant positive curvature and the volume
is the only dynamical variable —~ the conformal metric g;; has no dynamics. The

-\/ﬁR term in the Hamiltonian contributes a repulsive 1/V potential, and the

universe will have a smooth classical bounce solution that does not reach zero

18



volume - much like the 141 case with scalar field. When space is a closed
surface with n > 2 handles, we may choose a metric which has constant negative
curvature. In addition to the volume, there will be 6n—6 real parameters (known
to mathematicians as the moduli of the space) describing the global geometry’
In fact, the two degrees of freedom in g,; in our torus example are an example
of these moduli. The parameters will all enter into the Hamiltonian (5.3} with a
kinetic energy opposite in the sign to the volume kinetic energy; these energies
and the /gR potential energy will push the volume towards zero. Thus the
more involved the topology is, the more singular the dynamics becomes at small

volumes.

6. Discussion

We have considered quantized gravity in 14+1 and 241 dimensions, as well as
matter fields coupled to gravity in 141 dimensions. The Hamiltonian version of
the path integral has proved useful in isolating the physical degrees of freedom in
those cases where the gauge constraints allow an explicit solution. Such instances
typically reduce the problem to a finite number of degrees of freedom, quite sim-
ilar t—o- the minisuperspace models of DeWitt* and others but less suspect in that
no approximations are involved beyond the (admittedly delicate) assumption of
a regulator which preserves the algebra of ¥y and ¥,;. There are no great sur-
prises — the wavefunctions correspond quite closely to what one would expect
from an analysis of the classical equations of motion, together with the smearing
of probabilities mandated by the uncertainty principle. There is no need for a

“modification of the framework of quantum theory in order to fit geometrodynam-

ics into it, at least at this level. In addition, we now have a stepping stone from

19



which we may proceed to consider, e.g., a non-trivial matter field (i.e. massive
or self-interacting) in 141 dimensions, or explore the possibility of topological
metamorphosis. A parallel analysis should be possible for low-dimensional su-
pergravity.

Of course, it may be that qualitatively different effects occur when there are
an infinity of physical modes in the system. Then an explicit regularization is
necessary, a question we have carefully avoided here. It seems that herein lies

the major difficulty of quantum gravity.
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APPENDIX SL(2,R)/SO(2)

We describe here some of the elegant mathematics associated with space

M = SL(2, R) /SO(2) of the 7~rf The exposition is a direct transcription of the

beautiful exposition of Ref. 15 to 241 dimensions. Any element geM may be

written

§=NAA'N!

where the matrices A and N are of the form

+r/VB 1
0 e—r/VB 0

~ Sk
| ———

the natural metric on M 1s

G(dg,dg) = tr {g™ dgg~" dg}

= dr® + e~ V2" gn?
The Laplace operator on M is

.9
A= L 9 Jgaimt 9
VG 99 OGre

. o 1 (.0 o .
. with Gljkl)« — 5 gik gjf + gze g]k _ guglce

In terms of the line element (6.3) this operator becomes

2 1 8 . g 0
= — + e
or: /2 Or don?

(6.1)

(6.3)

(6.4)

(6.5)

To find the eigenfunctions of A, let us first solve for those that are indepen-

_dent of n:
(ip + Lo)r 1

€p (T) = ¢ ve 3 Aep = —(P2 + g

21
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Then, just as we can generate all two-dimensional plane waves by rotating a plane
wave travelling along the x-axis (the y-independent solution), we can generate
all the “plane waves” on M through the action of S0(2) on the n-independent

solution ep(r)
eps (7) = € (B'¢B) (6.7)

where B ¢ S0(2) and r is determined from B! § B through the decomposition
B'gB = NAA'N! (6.8)
The integration measure for inner products is deduced from (6.3)

dj = e="V% drdn (6.9)
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