1.
Alekseevsky, D.V., Cortes, V., Devchand, C., Semmelmann, U.: Killing spinors are Killing vector fields in Riemannian supergeometry. J. Geom. Phys. 26(1–2), 51–78 (1998)
2.
Bär, Ch.: Real Killing spinors and holonomy. Comm. Math. Phys.
154, 509–521 (1993)
MathSciNet3.
Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudo–Riemannschen Mannigfaltigkeiten, volume 41 of Teubner-Texte zur Mathematik. Teubner-Verlag, Leipzig, 1981
4.
Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Glob. Anal. Geom.
7, 205–226 (1989)
MathSciNetMATH5.
Baum, H.: Lorentzian twistor spinors and CR-geometry. Diff. Geom. Appl.
11(1), 69–96 (1999)
CrossRefMATH6.
Baum, H.: Twistor spinors on Lorentzian symmetric spaces. J. Geom. Phys.
34, 270–286 (2000)
CrossRefMathSciNetMATH7.
Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, volume 124 of Teubner-Texte zur Mathematik. Teubner-Verlag, Stuttgart/Leipzig, 1991
8.
Benn, I.M., Charlton, P.: Dirac symmetry operators from conformal Killing-Yano tensors. Class. Quant. Grav.
14, 1037–1042 (1997)
CrossRefMathSciNetMATH9.
Benn, I.M., Charlton, P., Kress, J.: Debye potentials for Maxwell and Dirac fields from a generalization of the Killing-Yano equation. J. Math. Phys.
38, 4504–4527, (1997)
CrossRefMathSciNetMATH10.
Bohle, Ch.: Killing spinors on Lorentzian manifolds. J. Geom. Phys.
45, 285–308 (2003)
CrossRefMATH11.
Bryant, R.: Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor. In: Global analysis and harmonic analysis. Bourguignon, J.-P., Branson, T., Hijazi, O. (eds) in: Seminaires et Congress of the Soc. Math. France 4, 53–94 (2000)
12.
Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. Am. Math. Soc.
76, 585–591 (1970)
MATH13.
Graham, C.R.: On Sparling’s characterization of Fefferman metrics. Am. J. Math.
109, 853–874 (1987)
MathSciNetMATH14.
Habermann, K.: The twistor equation on Riemannian manifolds. J. Geom. Phys.
7, 469–488 (1990)
CrossRefMathSciNetMATH15.
Habermann, K.: The graded algebra and the conformal Lie derivative of spinor fields related to the twistor equation. Preprint, 1993
16.
Habermann, K.: Twistor spinors and their zeroes. J. Geom. Phys.
14, 1–24, (1994)
CrossRefMathSciNetMATH17.
Habermann, K.: The graded algebra and the derivative of spinor fields related to the twistor equation. J. Geom. Phys.
18, 131–146 (1996)
CrossRefMathSciNetMATH18.
Kashiwada, T.: On conformal Killing tensors. Nat. Sci. Rep. Ochan. Univ.
19, 67–74 (1968)
MATH19.
Kath, I.: Killing Spinors on Pseudo-Riemannian Manifolds. Habilitationsschrift Humboldt-Universität Berlin, 1999
20.
Kühnel, W., Rademacher, H-B.: Twistor spinors with zeros. Int. J. Math. 5, 887–895 (1994)
21.
Kühnel, W.., Rademacher, H-B.: Twistor spinors and gravitational instantons. Lett. Math. Phys.
38, 411–419 (1996)
MathSciNet22.
Kühnel, W.., Rademacher, H-B.: Twistor spinors on conformally flat manifolds. Illinois J. Math.
41, 495–503 (1997)
MathSciNet23.
Kühnel, W., Rademacher, H-B.: Asymptotically Euclidean manifolds and twistor spinors. Comm. Math. Phys.
196, 67–76 (1998)
CrossRefMathSciNet24.
Lawson, H.B., Michelsohn, M-L.: Spin geometry. Princton Univ. Press, 1989
25.
Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. AMS
296(1), 411–429 (1986)
MATH26.
Leistner, Th.: Lorentzian manifolds with special holonomy and parallel spinors. to appear in Proceedings of the 21st Winter School on ‘‘Geometry and Physics’’ (Srni 2001), Rend. Circ. Mat. Palermo, 2001
27.
Leistner, Th.: Berger algebras, weak-Berger algebras and Lorentzian holonomy. SFB 288 preprint No. 567, (2002)
28.
Leistner, Th.: Towards a classification of Lorentzian holonomy groups I and II. J. Math. Phys.
44, 4795–4806 (2003)
CrossRef29.
Leitner, F.: The twistor equation in lorentzian spin geometry. PhD-thesis, Humboldt University Berlin, 2001
30.
Leitner, F.: Imaginary Killing spinors in Lorentzian geometry. arXiv: math.DG/0302024, to appear in J. Math. Phys.
31.
Lewandowski, J.: Twistor equation in a curved spacetime. Class. Quant. Grav.
8, 11–17 (1991)
CrossRef32.
Neukirchner, Th.: Solvable pseudo-Riemannian symmetric spaces. arXiv: math.DG/0301326
33.
Penrose, R., Rindler, W.: Spinors and space-time II. Cambr. Univ. Press, 1986
34.
Penrose, R., Walker, M.: On quadratic first integrals of the geodesic equation for type 22 spacetimes. Comm. Math. Phys.
18, 265–274 (1970)
MATH35.
Schimming, R.: Riemannsche Räume mit ebenfrontiger und ebener Symmetrie. Mathematische Nachrichten
59, 129–162 (1974)
MATH36.
Semmelmann, U.: Conformal Killing forms in Riemannian Geometry. Habilitationsschrift, Universität München, 2001
37.
Sparling, G.A.J.: Twistor theory and the characterization of Fefferman’s conformal structures. Preprint Univ. Pittsburg, 1985
38.
Tashibana, S., Kashiwada, T.: On the integrability of Killing-Yano’s equation. J. Math. Soc. Japan 21, 259–265 (1969)
39.
Wang, McKenzy~Y.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom.
7, 59–68 (1989)
MathSciNetMATH