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Abstract
The physics case for the operation of high-luminosity proton-nucleus (pA)
collisions at the CERN LHC is reviewed. The collection of O(1-10 pbfl) of
proton-lead (pPb) collisions at the LHC will provide unique physics oppor-
tunities in a broad range of topics including proton and nuclear parton dis-
tribution functions (PDFs and nPDFs), generalised parton distributions
(GPDs), transverse momentum dependent PDFs (TMDs), low-x quantum
chromodynamics and parton saturation, hadron spectroscopy, baseline studies
for quark-gluon plasma and parton collectivity, double and triple parton
scatterings, photon—photon collisions, and physics beyond the Standard
Model; which are not otherwise as clearly accessible by exploiting data from
any other colliding system at the LHC. This report summarises the accelerator
aspects of high-luminosity pA operation at the LHC, as well as each of the
physics topics outlined above, including the relevant experimental measure-
ments that motivate much larger pA datasets than collected to date.

Keywords: proton-nucleus collisions, LHC, proton/nuclear distribution
functions, QCD, spectroscopy, quark-gluon plasma

1. Introduction

This document reports the physics case for an ambitious proton-nucleus (pA) collision pro-
gram at the CERN LHC in the context of the forthcoming update of the European strategy for
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particle physics. Following the accelerator and physics studies outlined in [1, 2], and a short
pilot run to demonstrate feasibility in 2012, the LHC operated pPb collisions at nucleon—
nucleon (NN) center-of-mass (CM) energies of \/syy = 5.02, 8.16 TeV in 2013 and 2016,
respectively, but no run has been performed since then, and none is currently planned for the
near future. The past pPb runs have brought essential contributions to particle, heavy-ion, and
cosmic-ray physics, leading to, among others, significantly improved nuclear parton dis-
tributions functions (nPDFs) [3], and the discovery of new phenomena, such as the onset of
parton collectivity [4]. As discussed hereafter, high-luminosity pA collisions in Run 3 and 4 at
Jsvv = 8.54 TeV, involving both heavy and light nuclei, are essential to fully exploit a rich
experimental program for the study of quantum chromodynamics (QCD) in the perturbative,
nonperturbative, and high-density regimes. They provide, in particular, a unique and com-
plementary environment for uncovering the tomography of the proton and nuclei, and their
partonic properties.

Compared to pp collisions, pA interactions allow the exploration of nuclear modifications
to PDFs and cold nuclear matter effects, which are essential for understanding the initial-state
conditions of heavy-ion collisions. Additionally, pA collisions probe small-x physics more
effectively than pp, providing insight into gluon saturation and the onset of nonlinear QCD
effects, which are enhanced due to the intrinsically larger number of initial partons [5].

Compared to AA collisions, pA collisions offer higher nucleon—-nucleon CM energies,
higher luminosity, and a cleaner environment, free from the final-state complexities of a fully-
developed quark-gluon plasma (QGP), making them an essential benchmark for interpreting
heavy-ion data, while studying the onset of collectivity in small systems. Photoproduction in
pA collisions, which capitalizes on the LHC as a photon-collider, complements the ultra-
peripheral-collisions (UPCs) program in AA collisions [6], and has many benefits through
being able to distinguish the more energetic photon emitter.

Investigations of quarkonium production [7], exotic hadrons, scenarios beyond the Stan-
dard Model (BSM), and hadronisation mechanisms, can all be performed in detail in an
environment that bridges the gap between pp and AA systems, and improves our under-
standing of ultrahigh-energy cosmic-ray interactions [8], underscoring the importance of pA
data in advancing our knowledge of high-energy nuclear, particle, and astroparticle physics.
The data taken in pA collisions at Run 1 and 2 of the LHC program has had a major impact for
all these fields, extrapolating precise knowledge of proton collisions to multi-nucleon sys-
tems. The novel use of these collisions has brought significant advances to our understanding
of both the proton and the nucleus. The Run 3 plan discussions have focused so far on pp and
AA collisions: the absence of pA collisions to date is notable and appears as a missed
opportunity. This document presents a summary of the accelerator and physics case aspects
needed to revert this trend.

2. Accelerator and detector considerations

The LHC has been designed to collide protons and nuclei at a beam energy of 7Z TeV (where
Z is the ion electric charge) [9] and up to 6.8Z TeV has been achieved to date. The LHC
typically operates about one month per year with heavy-ion beams, mainly fully stripped Pb
nuclei. Initially, the heavy-ion program consisted only of PbPb collisions, and it was then
extended with a new mode of operation with proton-nucleus collisions [1, 2, 10-13]. Fol-
lowing initial pilot tests, two 1-month physics runs with pPb collisions were carried out in
2013 and 2016, with integrated luminosities of Lj, ~ 220 nb~! collected in ATLAS and
CMS, 75nb~! in ALICE, and 36 nb™! in LHCb, combining the data in Run 1 (2010-2013)
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Table 1. Delivered integrated luminosities in pPb collisions in Run 1 and Run 2, £,
targets in pPb collisions in Run 3 and 4, and number of runs needed to achieve these
L with the presently predicted performance.

ALICE ATLAS/CMS LHCb

Total £y delivered in Run 1 and Run 2 (nb™}) 75 220 36
Target L, for Run 3 and Run 4 (pbfl) 0.6 1.2 0.6
Projected L, per 1-month run (pbfl) [21] 0.33 0.47 0.15
Number of runs needed to reach targets 1.8 2.5 4

and Run 2 (2015-2018). The heavy-ion operation in the ongoing Run 3 (scheduled from 2022
to mid 2026) has consisted of two PbPb runs so far. In the future, collisions with Pb ions are
scheduled to continue with 1-month heavy-ion operation in most operational years until the
end of Run 4 (scheduled for 2030-2033). Operation with pPb is included in this plan, but the
detailed PbPb and pPb time allocations have not yet been decided. The goals for future pPb
operation, combining Run 3 and Run 4, are L = 1.2 pbfl at ATLAS and CMS, and
0.6pb~ ' at ALICE and LHCb [14]. The next opportunity for pPb operation might come
already in 2026, however, the decision has not yet been taken. In addition to high-intensity
pPb operation, a short low-intensity pO run is planned for mid-2025 [15].

The assumed LHC scenario for future pPb operation considers the same machine cycle as
for PbPb [16], relying on crystal collimation [17], and round optics with 3 = 0.5m at
ALICE, ATLAS, and CMS. However, a more complicated setup of the radiofrequency (RF)
system is needed. Because of the difference in charge-to-mass ratio between protons and Pb,
the two species have different revolution frequencies at equal momentum per charge.
Therefore, both beams have to be brought off-momentum in different directions by the RF
cavities to equalize their frequencies, such that the longitudinal locations of the collision
points are stationary. This momentum offset is introduced only at top energy due to aperture
constraints. An additional challenge is the beam-beam effect between the asymmetric beams
and the moving long-range beam-beam encounters [13, 18]. We assume the same structure of
the Pb beam as in PbPb operation, with 50 ns bunch spacing by interleaving different bunch
trains longitudinally in the SPS (‘slip-stacking’), and an opposing 50 ns proton beam with low
intensity. The proton beam is produced in a different way by the injectors, and a perfect
overlap between the two beams cannot be obtained, resulting in slightly fewer colliding
bunches per experiment. It is also assumed that only ALICE needs luminosity levelling at
5 x 10* cm ?s™! in order to limit the event rate to about 1 MHz.

The projected future luminosity performance in single pPb fills have been simulated with
the CTE code [19] extrapolated over a full 1-month run [20]. Recent calculations with
updated filling schemes give projected £y ~ 0.33pb~ ' at ALICE, 0.47 pb~' at ATLAS /
CMS, 0.15 pbfl at LHCb, for a 1-month run (24 d of physics) at \/syy= 8.54 TeV (6.8Z TeV
beam energy). These numbers carry large uncertainties and depend highly on machine
availability and achieved beam parameters. If pPb collisions are performed at the lower PbPb
beam energy, to be used as reference data for the latter and profiting from the same pp
reference data set, the luminosity would be reduced. Table 1 summarizes the delivered Ly,
the targets for future runs, the projected L, per run, and the number of runs needed to reach
the targets. We note that one day of high-luminosity pPb running corresponds to 10%—20% of
the total L, gathered thus far. Given that up to four 1-month runs are needed to reach the
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target £y, and there will likely be at most two pPb runs until the end of Run 4, several ways
of improving the performance are being explored.

Increasing the Pb intensity, which might be within reach based on the injector performance
in 2024 and on the upgrades deployed at the LHC [22], is a good way forward, but likely not
enough to reach the targets at all IPs in two runs. Decreasing the proton-beam bunch spacing
to 25ns, as used in standard pp operation, allows for more collisions at LHCb without
penalizing other experiments. The peak luminosity can be further increased with higher
proton bunch intensity, which would benefit all experiments except ALICE, assumed to be
levelling. Further improvements might come from reduced 3 and crossing angles. However,
studies are needed to investigate the feasibility of all these measures, e.g. in view of the much
stronger beam-beam effects, as well as beam instrumentation in case of very asymmetric
beams. It therefore remains as future work to investigate realistic scenarios where all
experiments meet their L, targets.

In Run 4, the pPb program will benefit from improved experimental setups, including
enhanced forward detection capabilities (e.g. extended ATLAS and CMS trackers over
|| < 4 [23, 24] and ALICE FoCal with 3.2 < 7 < 5.8 [25]), and forward proton detectors
(e.g. CMS PPS [26]). Beyond Run 4, ion operation at the LHC is forecast to continue,
including the planned ALICE 3 detector [27] for Run 5 and beyond. The main goal for this
period will be to produce significantly higher nucleon—nucleon luminosities, and other nuclei
than Pb are being investigated. Studies of achievable intensities for a range of ion species are
ongoing in the CERN injector complex. A detailed program for this period has not been
elaborated yet, and pA collisions might be included. Initial studies of the foreseen perfor-
mance have been presented in [13, 28], although the achievable ion bunch intensities will
need to be revised in the future. Furthermore, as there are no technical limitations to colliding
protons with other nuclei than Pb, short low-intensity runs in such configurations may be
envisaged, similarly to the planned oxygen run in 2025, although they are not yet part of the
official LHC plan.

3. The physics case

The physics case for high-luminosity (HL) proton-nucleus collisions at the LHC is sum-
marized in nine subsections below, each covering the following research topics: (i) constraints
on nuclear parton distribution functions, (ii) constraints on proton generalized parton dis-
tributions (GPDs) and PDFs, (iii) small-x QCD and gluon saturation physics, (iv) benchmark
for QGP physics and onset of collectivity, (v) double and triple parton scatterings, (vi)
spectroscopy of bound states, (vii) photon—photon collisions, (viii) beyond the Standard
Model physics, and (ix) connections to ultra high-energy cosmic rays.

3.1. Constraints on nuclear parton distribution functions (nPDFs and nTMDs)

Nuclear parton distribution functions (nPDFs) describe nuclei in terms of quarks and gluons,
carrying a given longitudinal momentum fraction x at a factorization scale y, and are essential
universal ingredients in the description of all high-energy nuclear processes based on per-
turbative QCD (pQCD). When the parton density description is extended to explicitly
incorporate the transverse momentum (kt) of the incoming partons, they are called nuclear
Transverse Momentum Dependent PDFs (n'TMDs). Before LHC pPb data were available,
knowledge of nPDFs was relatively scarce and mostly limited to lepton DIS on fixed-target
nuclei. This provided information in the rather narrow region 0.01 < x < 0.2 for up and down
valence quarks alone, whereas the gluon and strange nPDFs were essentially unknown and
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Figure 1. Comparison of nPDF nuclear modification factors for ***Pb (i.e. the parton
densities of lead divided by the averaged PDFs of 82 free protons and 126 free
neutrons) for different parton species from various global analyses. Uncertainty bands
correspond to 90% CL.

arbitrarily fixed by different nPDF parametrisations [29—-33]. After limited pPb LHC running,
the situation today is very different as summarized in figure 1. Most of the parton densities are
known with a precision better than 20% in the region 107> < x < 0.1. This is a major
improvement compared to pre-LHC times, and it needs to be highlighted that this was
achieved solely thanks to pPb data. Nevertheless, the current nPDF uncertainties are still
insufficient for performing precise theoretical calculations of any process involving nuclei,
including heavy ions at colliders and cosmic-ray interactions. Disentangling cold nuclear-
matter effects in the initial and final states, separating beyond-DGLAP parton evolution
(saturation and BFKL) from other nuclear effects, or studying the QGP in PbPb collisions all
depend on the baseline description obtained with nPDFs.

A critical component for studying QCD with heavy ions is better information on the gluon
nPDF in both the high and very low x regions. Some access to high-x gluons is provided by
the fixed-target SMOG?2 program at the LHC [34, 35], while moderate-x values can be probed
at the EIC [36]. However, low-x gluons are uniquely accessible in pPb collisions. The pA
running to date has given some constraints on the low-x (x ~ 107°) gluon distribution
[37—41]. However, this information comes solely from the heavy-flavor measurements (D, B,
and quarkonium production) which are also sensitive to final-state nuclear effects [42].
Similar problems hold when searching for saturation or studying low-x evolution, see
section 3.3. To disentangle different effects, more data in the low-x region are required, where
a promising candidate is coherent J/v photoproduction on the nucleus in pA UPCs [6].

Although the photon is usually emitted from the nucleus, when it comes from the proton,
its (much) higher longitudinal energy leads to differently boosted final states through which
the events can be distinguished. However, the cross section is low, and sufficient statistics for
PDF constraints require high luminosity. The x < 10> region can also be studied in pA
collisions through measurements of Drell-Yan (DY), isolated photons, W, and Z boson
production at forward rapidities using LHCb and ALICE detectors [3]. For mid- and high-x
gluon nPDFs, the cleanest probe is top-quark production, where sufficient statistics to obtain
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precise differential distributions [43, 44] require high luminosity: the current data is only
sufficient to extract the total #f cross section [45, 46]. Another option for constraining the mid-
x gluon is inclusive jet or dijet data, as well as v + jet and Z + jet measurements [47].
Furthermore, the measurement of v+ heavy-quark allows probing intrinsic charm [31].

In addition to the constraints on the gluon nPDF, a large pA dataset will allow quark
nPDFs to be constrained, in particular through the aforementioned DY and W/Z measure-
ments both in central and forward/backward regions [44, 47]. It will provide information on
sea-quark PDFs, allowing for flavor separation, and access the poorly known strange nPDF.
However, in this latter case, much better constraints will be provided by the measurement of
the rarer W+ charm production [48], which is directly sensitive to the strange quarks in the
nucleus, and with sufficient statistics can even provide information on the s — § asymmetry.
Finally, it should be highlighted that extending the pA program to run with more than one
nucleus would allow the study of the nuclear A-dependence of nPDFs, which is very poorly
known. Currently, because of the LHC pPb runs, the nPDFs of the lead nucleus are the only
ones for which there are constraints for all flavors. For other nuclei that are relatively well
studied, such as iron and carbon, only reliable information on up and down (anti)quarks is
available. Hence, already having runs with lead and oxygen would make a big impact on our
understanding of the nuclear mass dependence of nPDFs. A proton-oxygen run, allowing the
measurement of single differential dijet cross sections, would significantly constrain gluons in
light nuclei and shed light on its A-dependence [49]. Similarly, detailed pA studies are needed
to probe the badly known impact-parameter dependence of nPDFs [50-52].

With regard to studies of TMDs at the LHC, the flagship processes are the Z-boson
transverse momentum pr spectra to constrain the quark TMD, and two-particle correlations
for color-singlet final states to study the gluon TMD distributions [53-60]. Although the HL-
LHC program is essential for a better understanding of the gluon TMDs in the proton, through
precise measurements of azimuthal correlations in pp collisions [60], the pA data would help
constrain nTMDs, both for quarks and gluons. Currently, the DY process in pPb collisions
measured at LHC by CMS [61] and ATLAS [62], together with other available lepton-
nucleus data, were used to perform a global fit of the quark nTMD [63]. In addition,
experimental constraints of nTMDs will help to match the leading-power TMDs discussed
here with the small-x TMDs appearing in the context of gluon saturation (see section 3.3).

3.2. Constraints on proton GPDs and PDFs

UPC:s at the LHC serve as an abundant source of high-energy photons making the LHC by far
the most energetic photon—proton collider ever [6]. In photoproduction processes in pA
collisions, the ion is usually the v emitter, since the photon flux is proportional to the square
of the ion charge, ¢, /4 o 77, and this emitted photon acts as a probe of the proton. Compared
to pp collisions, pA collisions offer a distinct advantage when probing the nucleon since there
is less ambiguity in the identity of the photon emitter (see also [64]). This partly compensates
for the lower luminosity. A further benefit is the absence of significant pileup in pA collisions
in comparison to pp running, where the superposition of up to 200 collisions per beam
crossing in Run 4 makes the identification of photoproduction events almost impossible.
Compared to AA collisions in which the nuclear PDF is probed, it is the free-proton PDF that
is probed in pA collisions. Both exclusive and inclusive photoproduction studies are possible,
and the quasi-real nature of the photon coherently emitted by the nucleus allows accurate
measurements of various distributions related to the proton structure, such as PDFs
and GPDs.
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Photon-induced measurements in pA UPCs provide access to GPDs in a unique kinematic
region different from that of fixed-target experiments (COMPASS, HERMES, JLab), and the
upcoming EIC. Final states composed of two photons [65-67], a meson—photon pair [68—71],
or a meson—meson pair [72] cover the whole set of unpolarized, polarized, and transversity
GPDs with small-£ reach, and provide complementary observables for the chiral-even sector
in deeply virtual Compton scattering and meson production (DVCS and DVMP). Projections
for pPb UPCs have been performed for 47 [70] and ~vp™° [71], resulting in promising
anticipated statistics, both in the chiral-even and chiral-odd sectors at moderate &, the low-£
region being more favorable for the chiral-even sector. Collecting £;,, = 1.2 pbf1 of data in
Runs 3 and 4, and ensuring that the square of the 4-meson invariant mass is above 2 GeV?,
about 16 000 ypg pairs (1700 ’yp(; pairs)™ are expected to be produced, which probe the
chiral-even (chiral-odd) sector of GPDs. With the same integrated luminosity, in the small
5x 107° < €< 5 x 10 range, about 800 ’yp(z pairs are expected. By extension, the study of
meson-meson pair production at large invariant mass can in addition provide access to the
whole set of GPDs, with the practical advantage that a photon is not required to be observed
in the final state [72].

Measurements of exclusive quarkonium (Q) photoproduction, yp — Op, across multiple
collision systems span a broad kinematic range in ~-proton CM energy [73-79], and have
been measured in pA and low-luminosity pp collisions at the LHC. Such measurements are
necessary for the extraction of GPDs, since these depend on both variables. These mea-
surements extend the coverage provided by HERA and probe much higher CM energies than
will be available at the EIC. The HL pPb program offers extended coverage in x and greater
statistical precision, particularly for ¢/(25) and T measurements [80]. In addition, there are
reduced model dependencies in the calculation of the survival factor due to the absence of the
two-fold ambiguity of the emitter [81]. The measurements will provide strong constraints on
gluon GPDs [82], which are poorly known, and constrain the gluon PDFs via the Shuvaev
transform for Q% ~ 2.4-22 GeV? and x ~ 3 x 10 °-10 > [83-85]. Analyses using J/7
photoproduction data in pp have already shown the possibility to reduce PDF uncertainties in
a previously unexplored kinematic domain [§6—88]. The pPb measurements will decrease the
theoretical uncertainties and improve the precision with which the PDFs are determined.
Furthermore, measurements of higher-mass quarkonia, such as Y, will provide constraints on
the Q2 evolution in the mid-to-low x domain and test factorization [89], while the o(1/(2S))/c
(J/1) cross-section ratio will measure the structure of the radial wavefunction at the origin.
To measure the photon PDF of the proton, a new experimental method has been proposed
[90], based on the measurement of dilepton production via yp — £*¢" + X in pA collisions.

The t-dependence of J/1v photoproduction on the nucleus has been measured in PbPb
collisions [91], but a cross-section measurement doubly differential in energy and ¢, for
photoproduction on the proton, will only be possible with HL-pA collisions. A fit of the
~p — J/p cross-section as a function of both energy and ¢ will allow a determination of the
slope and intercept of the Pomeron trajectory. Such a measurement can also probe the validity
of the widely-adopted factorization of the r-dependence in PDF and GPD modelings. Mea-
surements of exclusive J/v production in pA collisions can also look for higher-twist GPD
contributions by testing s-channel helicity conservation through measurements of the meson
polarization. First measurements have been performed in PbPb collisions [92], but more data
are required to perform the test in pA collisions.

Besides the exclusive processes discussed above, UPCs can also lead to inclusive pho-
toproduction processes. To date, inclusive UPCs have been only measured in PbPb collisions

= Here, £ is the longitudinal momentum asymmetry between the initial and final states.
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looking for dijet [93, 94] and charm [95] photoproduction. Inclusive quarkonium photo-
production has been shown [96] to be measurable by the four LHC experiments in pPb UPCs,
and would increase the pt reach of the HERA data [97-99] from 10 to 20 GeV and even of
the future EIC [100]. Similarly, dijet, charm, bottom inclusive photoproduction, to name a
few, will be accessible in pPb UPCs and will improve the determination of the low—x gluon
PDFs of the proton. In addition, the corresponding J/v, Y, and ¥(2S) spectra, particularly at
large pt, would discriminate better among different production mechanisms compared to
single inclusive hadroproduction data in pp at the HL-LHC. Finally, the pt spectrum of non-
prompt J/v¢ photoproduction is also measurable, probing bottom photoproduction and
improving the interpretation of the HERA J/v data. Measurements of J/¢ dissociative
photoproduction are sensitive to shape fluctuations of the proton [101], in particular to
energy-dependent gluonic hot spots, which should be increasingly suppressed at high energies
[102]. The ALICE forward calorimeter (FoCal) [103, 104] is particularly suited to directly test
this phenomenon in pPb collisions [105]: a dissociative J/v cross section falling with CM
energy would signal the onset of nonlinear QCD effects.

3.3. Small-x QCD and gluon-saturation physics

The phenomenon of gluon saturation arises from the nonlinear nature of QCD at high
energies [106—-109], and manifests itself as a breaking of the DGLAP-based description of
PDFs [110, 111]. It is expected that a hadronic target is found in a saturated state, when a
probe (quark or gluon) scatters off a small-x gluon constituent, with x < 10~*. Due to the
nonlinear effects, a dynamical saturation scale Q(x) is generated, which is further enhanced
by the target mass number, roughly Q2 (x) ~ A!/3 for large nucleus [5, 112—114]. Therefore,
direct searches for gluon saturation are best performed through scattering off heavy nuclei,
and measuring forward particle production observables, using pp collisions as a reference.

A suppression of the forward pA cross sections (per nucleon) compared to pp was
observed at RHIC, both for inclusive hadron production and two-particle correlations
[115-119], and at the LHC in the inclusive hadron pr spectra measured by LHCb [120, 121].
While qualitatively consistent with the saturation picture, the Color Glass Condensate (CGC)
theory for saturation predicts less suppression than observed [122]. Indirectly, nonlinear
effects may be visible [123] in J/1) photoproduction on the nuclear target in PboPb UPCs by
ALICE and CMS [124-126] compared to results on the proton target [77, 78, 127, 128]. On
the other hand, the data [124] cannot distinguish between saturation [129-131] and non-
saturation models. Similarly, the comparison of dijet correlations in the ATLAS forward
rapidity for pPb and pp [132] seems to suggest a subtle interplay of nonlinear effects and
perturbative Sudakov resummation [133], although subject to large experimental and theor-
etical uncertainties. Finally, the forward inclusive jet energy deposit in pPb collisions mea-
sured by CMS in the CASTOR detector [134] seems to challenge both the theoretical
descriptions based on saturation [135-137], as well as the available Monte Carlo event
generators.

In view of the above, a dedicated pA LHC program is crucial in disentangling the different
effects and finding clear evidence for nonlinear evolution in nuclei. Since one of the essential
predictions of the gluon saturation models is the collective behavior of gluons (carrying
average transverse momenta kr ~ (), the most significant observables are related to azi-
muthal particle correlations at forward rapidities. The CGC theory predicts a sensitivity of the
initial-state target to the color flow in the final state. Therefore, one of the crucial measure-
ments is of azimuthal correlations for various final states in a broad transverse momentum
range, including photoproduction on a nuclear target in UPCs. From a theoretical viewpoint,

9
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Table 2. Impact of the two basic small-x TMD gluon distributions to various processes
accessible in HL proton-nucleus collisions at the LHC (adapted from [138]).

Dijet in 1A
TMD type Hadron in pA  Photon-jet in pA (AA UPC) Dijet in pA
wWWwW X X v v
dipole v v X v

the simplest two-particle correlations sensitive to saturation are photon-jet and photon-hadron
correlations in pPb collisions at large |n|. The cross section depends on a single non-per-
turbative TMD small-x gluon field correlator, called the dipole gluon distribution, which is
also accessible in inclusive DIS [138] (see [139-142] for phenomenological predictions).
Photon-jet correlations can be accessed up to 7 &~ 5.1, in the planned FoCal calorimeter of
ALICE, in LHCb, and up to || = 4 in ATLAS and CMS at HL-LHC. In addition to the
dipole TMD gluon distribution, the description of small-x phenomena in the saturation regime
requires other types of TMD gluon distributions [138, 143]. The Weizsdacker—Williams (WW)
distribution, used in the leading-power TMD factorization formalism [144], can be directly
probed at the LHC in dijet correlations in UPC photoproduction on a nuclear target
[145-147], which would complement similar future measurements performed at EIC [148].
Table 2 summarizes the impact of the two basic small-x TMD distributions to different
processes accessible at HL-LHC. In particular, the precise measurement of dihadron and dijet
correlations in pPb collisions at forward rapidity [149, 150], as well as transverse energy-
energy correlators [151], will provide stringent theory tests.

Exclusive photoproduction of light mesons with a rapidity gap can help discriminate
between the non-saturation (a la BFKL) and saturation (CGC) scenarios by exploiting their
different ¢ dependence. Exploring the entire spin density matrix should provide a large set of
observables [152—-156], giving access to the generalized TMDs (GTMDs) of the proton.
Single [157] and double [158] hadron photoproduction processes are also sensitive to
GTMDs, but single inclusive observables will remain important. Last but not least, a full
understanding of low-x dynamics will require more direct observables of the intermediate
region of high gluon density targets, where the low-x linear BFKL energy evolution is
needed, but saturation is not relevant yet. In particular, despite there being indirect exper-
imental evidence for the Odderon in elastic pp scattering [159], there are no experimental
hints of the Odderon in the hard sector. To address this, pA collisions provide good prospects
for observation through interference effects in exclusive 7" 7~ photoproduction [160]; by the
observation of C=+I parity mesons in photoproduction [161]; and through the transverse
momentum distribution of exclusive J/t¢ mesons [162].

3.4. Benchmark for QGP physics and onset of parton collectivity

One of the main motivations for studying pA collisions at the LHC was to obtain a reliable
baseline, without final-state effects, to interpret the AA-collision results. However, with the
rising interest in parton collectivity in small systems (e.g. in the creation of QGP in pPb
collisions) the pA program itself merits dedicated study. Historically, pA collisions at the LHC
and RHIC were mainly motivated by measuring the so-called ‘cold’ nuclear matter effects on
strongly interacting probes of the QGP. Their main purpose was to measure how the pro-
duction of such probes was suppressed by the modification of the nuclear partonic densities,
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by initial-state energy loss, and/or by final-state interactions [163]. The pA runs have proven
to be absolutely essential as they uncovered a variety of unexpected effects that need to be
understood in their own right, as well as being crucial for the interpretation of AA mea-
surements. In particular, the observations of azimuthal correlations that are long-range in
rapidity, are indicative of collective behavior in high multiplicity pp [164] and pPb [165-167]
collisions. This observed collectivity in small systems has triggered intensive research
[4, 168] to understand its origins. Explanations range from strong final-state effects similar to
AA collisions, to initial-state effects due to gluon saturation, while the success of hydro-
dynamic models in describing the pPb data calls for further research. High luminosity pPb
collisions also provide a unique opportunity to study complex vortex-like structures in QGP
droplets; for example, studies of hyperon polarization could lead to the discovery of the
toroidal vorticity in nuclear matter [169, 170]. Therefore, while more detailed pA studies of
cold nuclear matter effects, e.g. the relative suppression of excited quarkonia compared to
their ground states in pPb collisions, are needed, a HL-pA run at the LHC will also provide
much further information on the origins of parton collectivity.

3.5. Double and triple parton scatterings

Double and triple parton scattering (DPS and TPS) processes in high-energy hadron—hadron
collisions open up novel opportunities to investigate the partonic hadron structure [171-174],
and complement the multidimensional picture of hadrons as described by GPDs and TMDs.
In addition, DPS and TPS final states constitute backgrounds for BSM searches (see e.g.
[175]). Although the DPS and TPS signals are typically much smaller than the equivalent
signal produced in single parton scattering (SPS) processes, they can be enhanced by
extending the transverse size of one of the colliding hadrons using heavy nuclear targets
[177-181], whereas they are completely swamped by binary-scaling contributions from
different nucleon—nucleon scatterings in AA collisions [176, 182]. Multiple experimental
analyses of DPS have been performed, whose results are usually summarized through the
extraction of the so-called effective cross section, o.s, defined as the normalized ratio of SPS
to DPS cross sections for the same final states. This quantity provides critical insights into the
transverse hadron structure, and badly known double parton correlations [174]. In a purely
geometric approach, o.; is assumed to be a process-independent constant [176, 183],
although recent compilations of measurements show differences between o extracted from
processes involving quarkonium [184—189] and jets or gauge-boson production [190]. Parton
correlations might explain these discrepancies, which can be better investigated with HL-
pPb data.

Estimates for DPS and TPS contributions to heavy-quark, quarkonium and/or electroweak
pair production in pPb collisions at the LHC have been provided in [181, 191]. To date, only
two experimental extractions of o exist in pPb collisions from double charm mesons [192]
and double J/v [190] production. Both measurements are statistically limited and more data
are required. A clean extraction of g is possible from same-sign W boson production [179],
where a few pb ™' of data would allow a precision of 10%. A comprehensive investigation of
DPS in gluon-initiated processes is possible through J/¢ + Y production [7]. Currently, only
a limited number of events have been observed by CMS in pp collisions, and the use of Pb
nuclei would increase the corresponding rate. Moreover, double-Y production would enable a
comparative analysis of the extracted ooy with that obtained in double-J/¢ production,

26 1n pPb collisions (A = 208), DPS and TPS yields are enhanced by factors of about 3 x A and 9 x A compared to
pp collisions [176].
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providing insights into the role of final-state interactions. Finally, large data samples are
needed to carry out multidifferential studies of o, e.g. as a function of difference in
rapidities or azimuthal angles between final states [193, 194]. These analyses will provide
unique information on double-parton correlations that cannot be accessed otherwise. The
separation of DPS from SPS processes can also be facilitated in pA collisions by exploiting
their different centrality dependence [195].

A more detailed understanding of DPS can be achieved through the study of TPS in pp [176]
and pPb [196] collisions. In pp, TPS has been searched for in triple J/1 production [184], and
also in this case, the rate will be enhanced in pPb collisions. Large data samples offer unique
opportunities to observe TPS, e.g. in ¢p¢D or ¢¢J /v production. Note that in pp (pPb) colli-
sions, triple charm production is almost 15 (20)% of all inclusive charm production, so not only
can the role of TPS not be neglected, but it is mandatory to properly characterize the
corresponding final states [176]. Another promising channel is 6-jet production, where the
impact of TPS can be up to 20% of the total cross section above a jet transverse momentum,
prit & 20 GeV in pp collisions, an effect that is further increased in the pPb case [197].

3.6. Production and spectroscopy of bound states

In the quarkonium sector, LHCb has measured multiple states in pPb collisions [198], cov-
ering a broad range of binding energies and sizes. After accounting for initial-state effects, the
data reveal a trend of dissociation of quarkonium states with weak binding, such as 1(2S), and
production consistent with scaled pp collisions for states with binding energy larger than
180 MeV. The exceptions are prompt T(2S) and Y(3S) states, which show anomalous sup-
pression relative to the Y(1S) yields [199]. The potential cause of these suppressions is the
feed-down contribution of weakly bound y, states [200]. However, Y, states were never
measured in pPb collisions due to the low efficiency for low-energy photons produced in the
decay x, — Y + ~, and more data are required. Multiplicity-dependent measurements of
Xe — J/1¢ + 7 states to search for anomalous suppression in high-density events, as well as
measurements of the x;, — Y + -y feed-down contributions are essential to confirm the origins
of Y(2S) and Y(3S) anomalous suppression. The challenging observation of the 7). state will
only be possible at high luminosity and will allow a better understanding of the behavior of
color-singlet states in the nuclear medium.

In the field of exotic hadrons, 75 new hadrons have been discovered at the LHC to date
[201] including many combinations of (candidate) tetraquark and pentaquark states. The
nature of a large number of these exotic hadrons is still under debate as it is not clear whether
they are tightly bound or molecular-like. Their binding and configuration are still largely
unknown, and so pA collisions function as an excellent laboratory to study their properties. Of
particular interest is to understand how these exotic states are produced and interact in high-
density environments. LHCb observed an enhancement of tetraquark-candidate y.;(3872)
production in pPb compared to pp collisions [202], hinting at the role of statistical hadro-
nisation in their formation, where the larger number of initial-state quarks increase the
probability of multiquark hadron production [203]. High-luminosity pPb collisions can
provide more precise measurements of x.;(3872) and other exotic hadrons, including their
density-dependent production and ‘destruction’. One expects a trade-off between statistical-
hadronisation formation and dissociation of weakly-bound exotic states by comoving parti-
cles [204], depending on their microscopic nature. Exotic production from intrinsic charm
[205] can also be searched for in HL-pPb collisions, where the asymmetric collision can
isolate charm-rich partonic environments at large x.
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3.7. Photon—photon collisions

Both LHC protons and heavy ions can act as sources of initial-state photons and hence photon—
photon collisions occur abundantly in UPCs at the LHC [6]. Being a color-singlet exchange, vy
collisions naturally lead to events with intact projectiles and rapidity gaps in the final state.
Together with low-pileup conditions, UPCs give very clean experimental signatures with very
few particles registered in a detector. The photon flux accompanying each beam is proportional to
72, thus, cross sections for 7y processes are significantly enhanced in AA compared to pA and pp
collisions. While the ~y luminosities in pA collisions are overall reduced by a factor Z> compared
with the AA case, the proton beam energies are larger, and the associated photon fluxes are much
harder, than in PbPb UPCs. As a result, the pA collisions probe significantly larger vy CM
energies [206], and they are also useful to resolve discrepancies between pp and AA UPCs.
Already some hints of mild deviations [207-209] between data and LO predictions exist for
exclusive e"e” and p* i~ production, that highlight the need for a proper modeling of inelastic
contributions [210] as well as of the Pb photon flux and higher order QED corrections [211].
Additional datasets with the asymmetric ~y collisions provided by pA UPCs can help clarify all
these aspects. Also, particular UPC processes possible in the pA mode, such as single-W pho-
toproduction [212], require large data samples. Forward neutron production from electromagnetic
ion dissociation has gained interest in AA UPCs [207, 208, 213-216] and is increasingly used in
online and offline event selection of SM processes, as well as in BSM searches [217]. Different
neutron multiplicities have different impact-parameter profiles that lead to modifications of central
kinematics. The simplicity of dilepton production in the pA system, which constrains neutron
emission from just one nucleus, will improve the modeling of dissociation for the AA system.

3.8. Beyond the standard model

At face value, pA cannot compete with pp collisions at the LHC in terms of the production of
heavy BSM objects, as they have lower CM energies and integrated luminosities. However,
akin to the AA case [218, 219], pA collisions feature 7 interactions without pileup and with
large photon fluxes (from the Pb side) that partially compensate for these drawbacks (pro-
vided that a large L, is achieved) for photon-coupled BSM objects. In terms of attainable ~y
luminosity, the HL-pPb mode would outperform the PbPb UPCs reach in the
m., = 50-300 GeV mass range [206]. This is relevant e.g. to set competitive limits on heavy
axion-like particles [220].

In order to compare the generic BSM reach of pA with pp and AA collisions, we introduce
a simple ansatz for the y collision cross section: o, (n) o s{’{l /A?". This simplified cross
section encodes the CM energy (|/s,,) dependence, which is one of the key elements to
compare the collision modes. In a specific model, the A parameter would generally encap-
sulate a combination of couplings and masses. This simplified approach provides a rough
classification of BSM candidates as a function of n. The value n = 0 includes SM-like
processes (see e.g. [221]), n = 1 includes resonant effective field theories (EFTs) (see e.g.
[222, 223]), and n > 2 arises from non-resonant EFTs, such as F operators [224] and con-
tinuum EFTs [225, 226]. Using this approach, we classify the BSM scenarios to be searched
for in UPCs into (roughly) two types: low-mass resonances and non-resonant EFTs.

The low-mass resonances>’ are described by resonant EFTs. In that case, we obtain that
the pPb mode competes with the pp mode. The non-resonant EFTs include anomalous quartic

27 UV motivated CP-odd resonances include the PQ axion [227, 228], stringy axions [229-234], and Goldstone
bosons [235], whereas CP-even resonances include the radion [236], dilaton [237], composite radial mode

[238, 239], extended Higgs sectors [240], Higgs portal [241], and KK gravitons [224, 242].

13



J. Phys. G: Nucl. Part. Phys. 52 (2025) 090501 Major Report

gauge couplings® and continuum EFTs?. In that case, we obtain that pPb competes with pp
with an event yield only moderately smaller, but with a much cleaner selection due to reduced
pileup. Due to this complementarity, assuming no prejudice on the type of BSM scenario,
searches using HL-pPb collisions provide a useful strategy to maintain sensitivity over the
broadest range of new physics possibilities. More detailed studies of effective operator
searches in pPb would be useful to reinforce such a conclusion.

3.9. Ultra high-energy cosmic-ray physics

Cosmic rays, ranging from medium to ultra-high energies, originate from various astro-
physical sources and produce extensive air showers (EAS) upon interaction with atmospheric
nuclei. These showers provide valuable information about the primary particles, including
their mass composition and energy spectrum. The study of cosmic rays and EAS offers a
unique opportunity to probe the behavior of strongly interacting matter under extreme con-
ditions, provided that the hadronic interaction models reproduce the pA collider data up to the
highest possible energies [8, 258]. The analysis of EAS has highlighted challenges, notably
the ‘muon puzzle’ [259, 260], whereby current hadronic interaction models fail to accurately
predict muon production for a given primary mass [261]. An improved description of the EAS
data requires significant changes to the models, both for their predicted position of the shower
maximum and for the fraction of signal at ground associated to the number of muons [262].
This discrepancy suggests an incomplete understanding of hadronic interactions at ultrahigh
energies and has sparked interest in exploring new phenomena, in particular linked to nuclear
effects in small systems [263]. As a matter of fact, one of the sources of the ‘muon puzzle’ is
seemingly the presence of pA collisions that do not behave as a simple superposition of pp
interactions [264]. Similarly, another area where more LHC pA data are welcomed is in the
interpretation of ultrahigh-energy astrophysical neutrinos as measured by the IceCube
experiment [265, 266]. A background to cosmic neutrinos comes from atmospheric neutrinos
produced in cosmic-ray interactions with air nuclei. The HL-pA data can provide more precise
information on the production of forward charmed particles, which are important to constrain
this background [267].

4. Summary and conclusions

High-energy proton-nucleus collisions (pA) provide a bridge between proton-proton (pp) and
ion-ion (AA) collisions with two particular merits: firstly, the asymmetric projectiles and beam
energies ensure that effects associated with the proton can be distinguished from those of the
nucleus; secondly, a path towards understanding the complexity of two large systems of
colliding bound nucleons is provided through the interaction of a well-understood proton on
the complex ion.

At the LHC, a few weeks of pA collisions were performed in Runs 1 and 2 in a diversity of
operating conditions, and have already brought essential contributions to particle, heavy-ion,
and cosmic-ray physics, leading to the discovery of new phenomena as well as the con-
firmation and extension of effects discovered in lepton-nucleus collisions. Multi-TeV pA
collisions offer several unique physics opportunities:

28 UV motivation includes heavy neutral particles linearly coupled to the SM [224, 243], new charged particles
[221, 243], polarizable dark particles [239] and Born-Infeld QED [244-246].

29 UV motivation includes AdS [247-251], linear dilaton [225, 226, 252, 253] and other braneworld geometries
[254], and strongly-interacting dark sectors [255-257].
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Table 3. Qualitative comparison of various experimental setups with respect to different
physics observables. An increasing number of star points indicates a better environment
for the considered physics topic.

Physics
topics\collider EIC FT@LHC HL-pA@LHC pp@HL-LHC AA@HL-LHC
PDFs *xkk *xx >k Fokk —
nPDFs Kok k Kok KAk — *ok
TMDs KAk *Ax Fokk >k —
nTMDs KAk *% *x — *
GPDs HFokok * *ok * —
nGPDs KAk * * —_ ok
Parton saturation *okk * HokoAk ok Hokok
searches
Odderon searches ** * *kk >k ok
Parton collectivity — *kk kK ** Fokkok
DPS/TPS * * Hokokok Hokokok *
Hadron spectroscopy  * * Hokx Fokk Fok
BSM searches * * *k FokoAk Fok

* They provide a way to study nuclear modifications to PDFs and cold nuclear matter
effects (such as shadowing, parton saturation, and energy loss) without the complexities
of hot QCD medium effects present in AA collisions.

» They serve as a crucial reference for disentangling initial-state nuclear effects from final-
state medium effects in AA collisions, aiding in the interpretation of QGP signatures.

* They typically achieve higher luminosities than AA collisions and much reduced pileup

compared to pp collisions, enabling more precise measurements.

* They provide a unique platform to extend studies of small-x QCD and gluon saturation by
probing smaller momentum fractions than any other current experimental setup.

* They offer valuable insights into the interplay of enhancement and suppression
mechanisms in nuclear matter and a cleaner environment to study coalescence and

fragmentation in hadronisation.

* They are essential for the modeling of high-energy cosmic-ray and neutrino interactions,

providing a link between particle physics and astrophysics.

The physics potential provided by the proton and heavy-ion LHC beams in asymmetric pA
collisions offers multiple complementarities and advantages compared to pp and AA colli-
sions. We have summarized the physics case for a high-luminosity pA run (HL-pA@LHC)
under twelve research axes, where large data samples are required to reduce the current
experimental uncertainties and/or to study (for the first time) multiple rare processes of
interest. Table 3 gathers qualitative comparisons of the impact that pA can have on each of
these physics topics, with respect to other collision scenarios: EIC [36], FT@LHC [35],
pp@HL-LHC [268], AA@HL-LHC [14]; with x symbols assigned as explained below.

Regarding

* PDF studies, the best experimental setup is given by the future EIC with cleaner probes
and access to polarized PDFs, while pp @HL-LHC and FT@LHC complement its reach
by probing the low-x and large-x regimes, especially in the gluon sector. HL-pA @LHC
can contribute in a timely manner to gluon PDF studies via inclusive photoproduction
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L]

(Q* ~ 0) in UPCs with a significantly wider range in transverse momentum and ~-proton
CM energy than at HERA, and with indirect PDF constraints via exclusive Q
photoproduction.

nPDF studies, the best setup is the EIC as an eA collider with cleaner final states.
However, HL-pA@LHC covers much lower x, while FT@LHC offers access to larger x
with more versatility in the probed nuclei, and earlier than the EIC. The AA@HL-LHC
program offers some sensitivity on nPDFs if the additional hot nuclear effects can be
separated out.

TMD studies, the best setups are the future EIC, FT@LHC, and HL-pA@LHC for very
different reasons. On the one hand, FT@LHC would benefit from the possibility to
polarize the target for single transverse-spin asymmetries studies of gluon-sensitive
probes, which are essentially unknown. The EIC will profit from both beams and target
polarizations and from cleaner probes. On the other hand, HL-pA @LHC can study TMDs
in the low-x regime in the dense-dilute limit, which cannot be accessed otherwise, as well
as potentially via azimuthal asymmetries in inclusive photoproduction. Lastly, pp @HL-
LHC can also definitely help in probing TMDs at low x via azimuthal asymmetries but
kinematical cuts due to triggers are usually very harmful.

nTMD studies, the best setup is the future EIC as an eA collider that can access a large
variety of TMD-factorisable processes. The FT@LHC and HL-pA@LHC programmes
can access nTMDs via DY final states. Whereas AA@HL-LHC can in principle measure
nTMDs via azimuthal asymmetries in photoproduction (UPCs), the event counts are
expected to be very small.

GPD studies, the best setup is the EIC with polarized beams, while HL-pA@LHC via
UPCs offers very interesting possibilities through exclusive-photoproduction channels
such as timelike Compton scattering, or with large final-state invariant-mass systems in
meson-pair or photon-meson photoproduction. Similar exclusive final states can be
studied at pp@HL-LHC but would be ‘polluted’ by hadronic exchanges.

nGPD studies, the best setup is the EIC via eA exclusive reactions that can be
complemented at AA@HL-LHC by exclusive-Q photoproduction reactions via UPCs.
HL-pA@LHC has a limited sensitivity to nGPDs with the same observable in the rapidity
region where the probability for photon emission by the proton becomes significant.
Finally, at FT@LHC in PbA UPCs, the nGPDs of various nuclear targets could also be
probed via exclusive-Q photoproduction.

parton-saturation searches, the best setup is the HL-pA @LHC via forward hadron and jet
production processes and their correlations. At AA@HL-LHC, saturation can be studied
via several UPC observables while pp@HL-LHC is needed both as a reference for
saturation studies in nuclei and to test the need for the small-x resummation. While the
future EIC will study inclusive and exclusive processes sensitive to saturation in eA
collisions, the forward detector upgrades of the LHC experiments will allow probing the
partonic structure of heavy nuclei at much smaller x. Diffractive processes in UPCs are
particularly promising since their extended kinematics offers a bridge towards GTMD
studies.

odderon searches, the best setup is the HL-pA @LHC through the observation of C = +1
mesons (or meson pairs, e.g. 7 7 ) photoproduction, which is sensitive to interferences
of C = +1 (pomeron) and C = —1 (odderon) exchanges. Such processes are also possible
at the EIC, but require very high luminosity. Good prospects are also present in UPCs at
AA@HL-LHC if the photon emitter can be identified.

parton-collectivity studies, the best setup is the AA@HL-LHC as a laboratory for QGP
creation. FT@LHC via PbA collisions can study collectivity in a complementary rapidity
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and (lower) energy domain. However, HL-pA@LHC, and to a lesser extent pp @HL-
LHC, can provide new probes of the generation of collective partonic behavior in small
systems.

* DPS/TPS studies, the best setups are HL-pA@LHC (thanks to the 3 x A and 9 x A
enhanced yields, respectively, for pPb compared to pp collisions) and pp@HL-LHC
(thanks to its very large integrated luminosity and higher /s, enabling the production of
pairs of very heavy particles) with large rates for multiple DPS/TPS processes. These
provide access to novel information on the partonic structure that cannot be obtained
elsewhere. HL-pA @ LHC will facilitate the determination of the effective cross section as
a function of multiple kinematic variables, hence revealing previously unexplored
multiparton correlations.

* hadron spectroscopy, the best setups are HL-pA@LHC and pp @HL-LHC. The latter has
allowed the identification of a great number of exotic states, while the former is important
in elucidating their nature by exploiting their density-dependent production and final-state
interactions.

* BSM searches, the best setup is pp@HL-LHC, while both HL-pA@LHC and AA@HL-
LHC UPCs provide a clean environment for low- and intermediate-mass photon-coupled
BSM objects, such as new even-spin particles. In UPC searches for low-mass resonances,
pPb competes with PbPb in sensitivity, whereas in UPC searches for non-resonant EFTs,
pPb has slightly lower yield than pp but cleaner selection due to reduced pileup. Due to
this complementarity, assuming no prejudice on the type of the BSM scenario, searches
using HL-pPb collisions can provide a strategy to maintain sensitivity over the broadest
range of new physics possibilities.

It appears clear from the above that the allocation of dedicated pA-collision run(s) at the
LHC will provide unique physics inputs complementary to those offered by other major
existing or planned facilities. We therefore strongly encourage additional pA running at the
LHC in Runs 3 and 4, in order to achieve and extend the original physics targets in a timely
manner, and to provide the data for the many important measurements summarized in this
document.
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