
Searching for Precessing Black Hole Binaries in
Gravitational-wave Data

Stefano Schmidt



ISBN: 978-94-6496-395-3
doi: https://doi.org/10.33540/2857
Printed by: Gildeprint – www.gildeprint.nl
Copyright: © 2025 Stefano Schmidt

This work originates as part of the research program of the Foundation for Funda-
mental Research on Matter (FOM), and falls as of April 1, 2017 under the respon-
sibility of the Foundation for Nederlandse Wetenschappelijk Onderzoek Instituten
(NWO-I), which is part of the Dutch Research Council (NWO).



Searching for Precessing Black
Hole Binaries in

Gravitational-wave Data

Zoeken naar Dubbele Zwarte Gaten met Precessie in
Zwaartekrachtsgolven-data

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht
op gezag van de

rector magnificus, prof. dr. ir. W. Hazeleger,
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen op
dinsdag 20 mei 2025 des middags te 12.15 uur

door

Stefano Schmidt
geboren op 21 juli 1995

te MILAAN, Italië



Promotor:
Prof. dr. C.F.F. van den Broeck

Copromotor:
Dr. S.E. Caudill

Beoordelingscommissie:
Prof. dr. J.F.J. van der Brand
Prof. dr. S. Fairhurst
Dr. A. Grelli
Prof. dr. T. Peitzmann
Dr. A. Samajdar



Vanitas vanitatum, dixit Ecclesiastes; vanitas vanitatum, et omnia vanitas.
Quid habet amplius homo de universo labore suo quo laborat sub sole?

—Qohelet, 1:2-3





Contents

Index viii

Preface ix

1 Basic Concepts about Gravitational Waves 1
1.1 Gravitational Waves in General Relativity . . . . . . . . . . . . . . . . . 1

1.1.1 Essentials of General Relativity . . . . . . . . . . . . . . . . . . . 1
1.1.2 Linearized Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Physical Degrees of Freedom of a Gravitational Wave . . . . . . 7
1.1.4 Interaction with Test Masses . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Energy of a Gravitational Wave . . . . . . . . . . . . . . . . . . . 11

1.2 Sources of Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 The Quadrupole Formula . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Multipole Expansion of the Source and of h(t) . . . . . . . . . . 14

1.3 Black Hole Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Black Hole and Black Hole Binaries in Astrophysics . . . . . . . 17
1.3.2 Orbital Evolution of a Black Hole Binary . . . . . . . . . . . . . 18
1.3.3 Precession in Black Hole Binaries . . . . . . . . . . . . . . . . . . 24

2 Detecting Gravitational Waves with Data Analysis 31
2.1 Interferometers for Gravitational-wave Detection . . . . . . . . . . . . . 31

2.1.1 Features of a Real Interferometer . . . . . . . . . . . . . . . . . . 35
2.1.2 Sources of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Noise Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Essentials of Timeseries Analysis . . . . . . . . . . . . . . . . . . 39
2.2.2 A statistical Model for the Noise . . . . . . . . . . . . . . . . . . 40
2.2.3 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.4 Whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



Contents

2.3 Overview of the Data Analysis for Compact Binary Coalescences . . . 46

3 Searching for Signals with Matched Filtering 51
3.1 Basics of Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Matched Filtering as Optimal Filter . . . . . . . . . . . . . . . . 52
3.1.2 Matched Filtering as Hypothesis Test . . . . . . . . . . . . . . . 53

3.2 Search Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Statistic for Circular Aligned-spin Binaries . . . . . . . . . . . . 56
3.2.2 Statistic for General Binaries . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Maximization over Time . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Template Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Features of a Realistic Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Generating Triggers . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Signal Consistency Test . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.4 False Alarm Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.5 pastro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Generating Template Banks in High Dimensional Spaces 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 The Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Sampling from the Manifold . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Random Template Placing . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1 Normalizing Flow Validation . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Template Placement Performance . . . . . . . . . . . . . . . . . . 88

4.4 Comparison with Other Bank Generation Methods . . . . . . . . . . . . 89
4.4.1 A Non-spinning HM Template Bank . . . . . . . . . . . . . . . . 90
4.4.2 An “All-sky” Template Bank . . . . . . . . . . . . . . . . . . . . 91

4.5 Novel Applications of the Method . . . . . . . . . . . . . . . . . . . . . 93
4.5.1 A Precessing Bank . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.2 An Aligned-spin HM Bank . . . . . . . . . . . . . . . . . . . . . 100
4.5.3 Other Possible Applications . . . . . . . . . . . . . . . . . . . . . 103

4.6 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.A Details of the Metric Computation . . . . . . . . . . . . . . . . . . . . . 110
4.B Alternative Definitions for the Metric . . . . . . . . . . . . . . . . . . . . 112
4.C Computing the Volume of the Parameter Space . . . . . . . . . . . . . . 114

vi



Contents

5 Generalized Signal Consistency Test 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 A New Generalized ξ2 Signal consistency Test . . . . . . . . . . . . . . 116

5.2.1 The “Standard” Signal Consistency Test . . . . . . . . . . . . . . 117
5.2.2 The Novel “Symphony” Signal Consistency Test . . . . . . . . . 118
5.2.3 Approximating the New ξ2 Test . . . . . . . . . . . . . . . . . . 120

5.3 Validity and Limitations of Different Signal Consistency Tests . . . . . 123
5.3.1 How Does the Different Tests Compare to Each Other? . . . . . 124
5.3.2 When Does the “Standard” Test Fail? . . . . . . . . . . . . . . . 127
5.3.3 How Does the “Mixed” Test Perform? . . . . . . . . . . . . . . . 127
5.3.4 Which “Mixed” Test Should We Use? . . . . . . . . . . . . . . . 130
5.3.5 How to Choose the Autocorrelation Length for the Test? . . . . 131
5.3.6 How Does Real Noise Affect the Test Performance? . . . . . . . 132

5.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.A Expected Value of the “Symphony” Signal Consistency Test in Gaus-

sian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Searching for Gravitational-wave Signals from Precessing Binaries 137
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Search Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Template Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 SVD Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4 Precessing Searches Results . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4.1 Recovered SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.2 ξ2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.4.3 Sensitivity Improvement . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Outline of Future Improvements . . . . . . . . . . . . . . . . . . . . . . 157
6.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Searching for Precessing Binaries in LIGO Data from the Third Observing
Run 161
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Set-up of the Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3 Search Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3.1 Rate Upper Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8 Closing Remarks 171

Public Summary 175

vii



Contents

Openbare Samenvatting 181

Selected Publications 187

List of Figures 198

List of Tables 200

Acknowledgments 201

Bibliography 241

viii



Preface

The theory of General Relativity, proposed by Albert Einstein in 1915, provides today
the most accurate description of the gravitational interaction. The theory models the
spacetime as a geometric manifold, whose structure is influenced by the distribution
of masses across the spacetime. In turn, the geometry of the spacetime influences
the movement of free falling masses, hence affecting the mass distribution itself. The
theory has been successfully applied to the a wide variety of physical phenomena
on different scales, ranging from the motion of the planets to the cosmological evo-
lution of the universe. Among many others phenomena, general relativity predicts
the existence of very dense star-like objects, called black holes, and of tiny propagat-
ing high-frequency perturbations to the “slowly moving” spacetime structure, called
gravitational waves. They will be both of primary interest for our work.

A black hole is a region of spacetime where the effect of gravity is so strong that
nothing can posses enough speed to escape. Clearly, such strong gravity must be
generated by some high density mass distribution and for this reason, black holes
are thought to be the results of the gravitational collapse of ordinarymatter, triggered
whenever the outward pressure generated bymatter is not able to support the inward
pressure of gravity. By the aptly named no-hair theorem, the effect of a black hole on
the spacetime is uniquely defined by its mass, spin and electric charge [10].

Gravitational waves are the propagating effect on spacetime of a time-varying
mass distribution. They arise naturally from causality, which requires the gravita-
tional interaction to propagate at finite speed. Gravitational waves have the effect
of changing the distance between two free-falling observers and such variation can
be measured by sophisticated interferometric-based detectors, such as LIGO [11],
Virgo [12] or KAGRA [13], giving birth to the field of gravitational-wave astron-
omy [14].

Due to their time-varying nature, black hole binaries are copious emitters of grav-
itational waves and indeed, more than 90 black hole binaries were detected so far
by the LIGO-Virgo-KAGRA collaboration [15–18], thanks to their gravitational wave
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emission. The significance of such observations cannot be emphasized enough. The
direct detection of a gravitational wave from black hole binaries allowed for advance-
ments in astrophysics [19–21], fundamental physics [22–25], cosmology [26–29] and
general relativity [30–34], with promises of evenmore groundbreaking impacts with
the next generation observatories, such as the Einstein Telescope [35,36], Cosmic Ex-
plorer [37] and LISA [38].

According to the general relativistic description of a binary black hole, the two
black hole spins play an important role in determining the dynamics of the binary.
Indeed, their magnitude andmutual interaction can speed up or slow down the grav-
itational wave emission and hence the rate of orbital shrinking. Moreover, if at least
one of the two spins is mis-aligned with the orbital angular momentum [39], the in-
teraction between spin and orbital angular momentum L causes the orbital plane to
rotate around an approximately constant axis. This phenomenon is called precession
and the gravitational wave signal emitted in this case acquires a more complicated
structure [40–43].

Despite the intricacies inherent in the modeling [44–52], the underlying physical
concept is clear: as gravitational wave emission attains its maximum along the direc-
tion L̂ of the orbital angular momentum, and given that L̂ evolves over time, an iner-
tial observerwill measure a timemodulation of thewave amplitude and phase, as the
orbital plane points towards and away from the observer. This effect can be observed
by current gravitational wave detectors and indeed, precession has been observed as
a statistical property of the BBH population [20, 21]: this marks yet another remark-
able achievement of the LIGO, Virgo and KAGRA collaboration. However, very few
individual signals show conclusive evidence for largely misaligned spins [53], inter-
esting exceptions including GW190521 [54], GW191109 [55] and GW200129 [56].

The primary scientific interest of precession arises from the fact that through a
single observation of a heavily precessing binary we can break the degeneracies in
the measurement of several parameters that characterize the binary, thus achieving
higher accuracy in the inferred physical quantities. For example, breaking the de-
generation between distance and inclination has a direct impact on the accuracy of
cosmological parameters inferred using gravitational wave observations [27,57]. As
another example, the measurement of individual spins enables a better understand-
ing of the spin distribution in the population of black hole binaries, which directly
impacts our understanding of the binaries’ formation mechanism [58–62]1.

The binary black hole detections made so far have been achieved through mod-
1Indeed, population studies indicate that heavily precessing systems are more likely to form through

dynamic assembly rather than through common evolution [61]. However, currently the fraction of binaries
formed from each channel and a detailed understanding of these channels are still under debate and could
possibly be illuminated by further detections of precessing signals.
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eled searches conducted by advanced matched-filtering pipelines. These pipelines
use matched filtering [63] to correlate the detector’s output with a large number of
waveform templates, gathered in so-called template banks. While modeled searches
are optimal for known signals in purely Gaussian noise, they rapidly loose sensitivity
for signals not included among the templates [64–68]. Unfortunately, despite having
possibly detected a few precessing signals, the modeled searches deployed to build
the modern catalogs [15–18, 69–72] search only for “aligned-spin” systems (where
the black holes spins are aligned or anti-aligned with the orbital angular momen-
tum) and do not include the effects of precession in the models used for the template
waveforms. Indeed, as aligned-spin systems have only two spin-related degrees of
freedom2 and result in a simpler waveform structure, building a search for gravi-
tational waves from merging aligned-spin binary black holes drastically simplifies
the search problem and reduces the computational cost, hence making a systematic
search of systems over a broad mass range feasible. On the other hand, only deploy-
ing aligned-spin searches limit the sensitivity of current pipelines towards precess-
ing signals in certain regions of the parameter space, most notably for asymmetric
systems and maximally mis-aligned spins [3, 73, 74]. For instance, as pointed out
in [75], an aligned-spin search targeting neutron star-black hole systems can miss up
to ∼ 60% of highly precessing sources with mass ratio q ≳ 6 and largely mis-aligned
spins.

The limited sensitivity of traditional matched-filter pipelines towards precessing
systems poses an important question, which we address in this dissertation. Is the
observed lack of strongly precessing signals due to their rarity [76]? Or, rather, is
it caused by the limited sensitivity of current searches to such extreme signals? To
discern between the two alternatives, it is important to develop a search tuned for
heavily precessing systems and able to achieve optimal sensitivity, thus unlocking
the scientific potential of studying precession in black hole binaries: this is the goal
of the research described here. But the importance of developing a search for pre-
cessing signals extends beyond the question posed above. Indeed, the machinery we
develop here can be straightforwardly applied to matched-filtering searches of other
types of signals (e.g. from eccentric binaries), hence paving the way to a large vari-
ety of studies in gravitational-wave astronomy: these future prospects will be further
discussed in the conclusions of the dissertation.

Moving from an aligned-spin search to a precessing search is a highly non trivial
task, which requires us to address a number of challenges:

• Increased number of degrees of freedom for the search templates. The large variabil-
ity of precessing signals makes the current template placement techniques un-

2As opposed to six spin-related degrees of freedom of a precessing binary black hole.
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feasibly computationally costly and urges for novel techniques to be employed.
In [1], we addressed this by developing a novelmachine learning basedmethod
for template bank generation, particularly suited for this scenario.

• Generalized signal consistency test. In order to distinguish between candidates
from astrophysical and terrestrial origin, each search performs a consistency
test between the observed data and the template signals. In the precessing
case, the signal consistency test needs to be heavily modified and its validity
assessed: this is the main contribution we gave in [2].

• Choice of a suitable region of the parameter space to search. Due to the large num-
ber of templates required to carry on a precessing search, it is crucial to select
a range in the binary masses and spin where to focus the search on. Ideally,
a precessing search on the target binaries should maximise the sensitivity im-
provement over a traditional search. In [3], we identified a target region of
the parameter space where such improvement is at hand and we performed a
proof-of-principle search to demonstrate the sensitivity increase.

In this dissertation, we describe the long journey toward searching for precess-
ing signals using the GstLAL pipeline [77–82]. In Chapter 1 we begin with an in-
troduction to gravitational waves and their detection principles and to black hole
binaries (with a particular focus on precession). Chapter 2 is devoted to the dis-
cussion of basic data analysis techniques for gravitational wave astronomy, while in
Chapter 3 we delve into the details of the matched-filtering searches for gravitational
waves from binary black hole signals. The remaining chapters address the challenges
outlined above for searches for precessing signals. In Chapter 4 we discuss a novel
template placement method, especially designed for complex signals such as those
associated to precession. Chapter 5 introduces a generalized signal consistency test
and discusses its limitations and applicability to precessing searches. In Chapter 6we
present a study on the performance of twoprecessing searches, covering twodifferent
regions of the parameter space, and we assess the sensitivity improvement enabled
by our search method. Finally, in Chapter 7 we look for precessing signals in the
publicly available data from the third observing run [83, 84] from the LIGO-Virgo-
KAGRA collaboration. While we do not report new detections, our results allow us
to place an upper limit on the rate of a potential undetected population of precessing
signals. Chapter 8 summarizes our work and gathers some closing remarks, high-
lighting possible future developments of this work.
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CHAPTER 1

Basic Concepts about Gravitational Waves

This chapter provides a concise overview on the field of gravitational waves (GWs).
It is by no means meant to be exhaustive but it acts as a summary of the physical
concepts needed to understand our work. After providing an introduction to grav-
itational waves in the context of the theory of general relativity and to its possible
sources, we will discuss their effect on matter and their detection principles. Finally,
we will discuss with some details the importance of black holes binaries (BBH) and
their dynamics, with a special attention to the phenomenon of precession.

Throughout the chapter, we will closely follow the discussion in [85], and unless
explicitly noted, we employ geometrical units, where G = c = 1.

1.1 Gravitational Waves in General Relativity

1.1.1 Essentials of General Relativity

General relativity (GR) is the theory that represents our most advanced knowledge
of gravity and at its core, the theory describes the way that masses (or equivalently
an energy distribution) affect each others’ motion [86]. Despite the intricacies of the
mathematics, the general idea is simple: the spacetime has a geometric structure that
defines a set of curves, called geodesics, which correspond to the motion of free parti-
cles, i.e. particles not subject to any force. The geometric structure of the spacetime,
which influences the motion of the masses, is affected by the masses themselves. In
this way, the masses filling the spacetime interact with each other in a non-linear and
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Chapter 1. Basic Concepts about Gravitational Waves

non-trivial way, giving rise to the complex phenomenology of GR.
The mathematical formulation of the theory heavily relies on differential geome-

try to describe the spacetime. According to this mathematical model, a generic point
of the space time, also called event, is represented as a four-vector xµ on a 4 dimen-
sional semi-Riemannian manifold. For example, a straightforward choice of coordi-
nates can label an event using a time coordinate t and a Cartesian space coordinate
x, so that:

xµ = (t,x). (1.1)

Clearly, the choice of coordinate system is arbitrary and it can be changed through a
coordinate transformation mapping the old coordinates xµ to the new ones x′µ:

xµ −→ x′µ (1.2)

where the ′ symbolwill be used to denote the new coordinate system. As any physical
law or prediction cannot depend on the chosen coordinate frame (general covariance),
a global transformation of the spacetime coordinate is the gauge symmetry of the the-
ory of general relativity.

According to GR, all the physical quantities are represented by tensors. Mathe-
matically, a tensor of type (k− l) is an element of a suitable vector space of dimension
k+ l1. For the purpose of our discussion, it is sufficient to state that, given a canonical
choice of basis, each tensor can be represented by its components, which are multi-
index quantity Tµ1...µk

ν1...νl
. By defining a tensor that varies smoothly at each point of

the spacetime manifold, we create a tensor field Tµ1...µk
ν1...νl

(xµ), which we will still call
tensor, with a slight abuse of notation. A defining property of tensors is their be-
haviour under general coordinate transformation. More precisely, under the change
of coordinates Eq. (1.2) a (k − l) tensor Tµ1...µk

ν1...νl
transforms as

Tµ1...µk
ν1...νl

(xµ) −→ T ′ µ1...µk
ν1...νl

(x′µ) = T ρ1...ρk
σ1...σl

∂x′µ1

∂xρ1
. . .

∂x′µk

∂xρk

∂xσ1

∂x′ν1
. . .

∂xσl

∂x′νl
(1.3)

where we employed the Einstein summation convention for repeated indices:

aµbµ =
∑

µ

aµbµ. (1.4)

According to an equivalent characterization, a tensor of type (k − l) can also be seen
as a linear map (a functional) between tensor of type (l − k) and a scalar, i.e. a real
quantity invariant under a coordinate transformation. For example, a (1 − 2) tensor

1More formally, a (k−l) tensor is defined as a linear functional acting on k-vectors and l-forms. Thanks
to the linearity of its action, it can be shown that all the set of all the (k− l) tensors satisfies the properties
of a vector space, hence the definition given above.
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1.1. Gravitational Waves in General Relativity

Uρ
µν can be applied to a tensor V µν

ρ of type (2 − 1) to yield the scalar s(xµ), by an
operation called tensor contraction:

s(xµ) = Uρ
µνV

µν
ρ . (1.5)

By contracting together two tensors, we can define other tensors. For instance by
combining a (3 − 2) tensor Uρστ

µν with a (0 − 2) tensor Vαβ , we can obtain a (1 − 2)

tensor Z with components Zρ
µν = Uραβ

µν Vαβ . We may also generate new tensors by
applying the tensor product, denoted by ⊗, between two tensors A,B:

(A⊗B)µ1...µkρ1...ρk
ν1...νlσ1...σl

= Aµ1...µk
ν1...νl

Bρ1...ρk
σ1...σl

. (1.6)

The advantage of using tensors in GR relies on the fact that the tensor transforma-
tion laws Eq. (1.3) under general coordinate transformations make straightforward
to construct scalar quantities satisfying the gauge symmetry of general relativity by
contraction, as shown in Eq. (1.5). Indeed by using ∂x′µ

∂xα
∂xα

∂x′ν = δµν , it is a simple exer-
cise, to show that any scalar produced by tensor contraction is invariant under change
of coordinates:

s(xµ) = s′(x′µ). (1.7)
This is the reason why we require that any physical quantity in GR is represented by
a tensor and we will only formulate equations by relating the components of tensor
fields defined on the spacetime. This ensures that the general covariance of the GR
is respected.

A special tensor is the metric tensor gµν(xα), which can be used to compute the
distance ds2 between two close-by events xµ

1 , x
µ
2 , separated by a small displacement

dxµ:
ds2 = gµν(x

α) dxµdxν . (1.8)
The functional ds2 is also called line element and can be used to compute the length
L of a given path xµ(t) on the spacetime manifold:

L =

∫
dt
√
gµν(xα(t))

dxµ

dt
dxν

dt . (1.9)

We also introduce the inverse metric tensor gµν such that gµρgνρ is equal to the iden-
tity δµν .

A spacetime is called flat if the metric tensor is gµν = ηµν = diag(−1, 1, 1, 1). Due
to non flat metric tensor, the partial derivative operator ∂α = ∂

∂xα is not a tensor,
since it does not satisfy the tensor transformation law Eq. (1.3). To overcome this
shortcoming, we introduce the covariant derivative operator ∇µ, acting on a vector
vµ as:

∇µv
ν = ∂µv

ν + Γν
µσv

σ (1.10)

3



Chapter 1. Basic Concepts about Gravitational Waves

where the quantities Γµ
ρσ are called Christoffel symbols and they are functions of the

metric and its derivatives

Γµ
ρσ =

1

2
gµα(∂ρgσα + ∂σgρα − ∂αgρσ). (1.11)

Note that if the metric is flat, i.e. ∂ρgσα = 0, the Christoffel symbols vanish and
∇µ = ∂µ.

The metric tensor is important not only for computing distances and defining
derivatives but also for determining the trajectory of a test particle—a particle with
negligible mass and no external forces acting upon it—in spacetime. In this context,
the metric tensor gµν plays the role of the gravitational potential in Newtonian grav-
ity. More precisely, general relativity2 postulates that a free particle follows a geodesic,
which is a “straight” lineminimizing the distance between its two endpoints, and that
the shape of a geodesic is fully specified by the metric tensor. To provide a charac-
terization for a geodesics, we need to consider that, like in the Newtonian case, the
velocity vµ = dxµ

dt of a geodesics path xµ(t) is constant along the path itself. Math-
ematically, this amounts to the requirement that the directional covariant derivative
of vµ along the path (i.e. along the direction of vµ) is zero:

vν∇νv
µ = 0. (1.12)

Note that the equation depends on the metric tensor through the Christoffel symbols
appearing in the∇µ operator. The equation is called geodesic equation and leads to the
following equation for the trajectory of a test particle xµ(t):

d2xµ(t)

dt2 = Γµ
ρσ

dxρ

dt
dxσ

dt . (1.13)

This is the equation of motion of a particle within the GR framework and it is the
general relativistic generalization of the second Newton equation. Indeed, it can be
shown that, in the low density, low velocity regime, Eq. (1.13) reduces to the Newto-
nian equation of motion.

As the motion of particles is fully specified by the metric tensor gµν and by the
energy content Tµν of the spacetime, the theorymust provide an equation connecting
those two quantities. Following the spirit of the theory, the lattermust be represented
by a tensor, called energy momentum tensor Tµν , whose components are defined in
terms of the energy andmomentumdensitymeasured at each point of the spacetime.
More precisely, the T 00 component amounts to the energy density in the comoving
frame, while the T 0i components amount to the flux of energy across the surface i

and the T ij is the stress matrix.
2Indeed the same postulate is also in the Newton’s first law of motion.
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1.1. Gravitational Waves in General Relativity

The relation between the energy momentum tensor and the metric tensor is ele-
gantly established in the famous Einstein equations:

Rµν − 1

2
gµνR = 8πTµν (1.14)

where Rµν is the Ricci tensor and R = Rµ
µ = gµνRµν is the curvature scalar. The

tensor Rµν − 1
2gµνR is sometime also referred to as Einstein tensor Gµν . The Ricci

tensor is obtained by contracting two indices of the Riemann curvature tensor Rρ
µσν :

Rµν = Rσ
µσν = gσγgργR

ρ
µσν . (1.15)

The Riemann tensor is a primary measure of the spacetime curvature and, heuristi-
cally, it quantifies the failure of two infinitesimally close geodesics, initially parallel
to each other, to follow parallel paths along their trajectory. Let tµ be the tangent vec-
tor and xµ their separation vector, two observers along the two geodesics will then
experience a relative acceleration aµ proportional to the Riemann tensor3:

aρ = Rρ
µσνx

σtµtν . (1.16)

This expression is also known as geodesics deviation equation. The Riemann tensor
can be expressed as a function of the metric tensor, through the derivatives of the
Christoffel symbols:

Rρ
µσν = ∂σΓ

ρ
µν − ∂νΓ

ρ
σµ + Γρ

σλΓ
λ
µν − Γρ

νλΓ
λ
µσ. (1.17)

This expression, along with the definition of the Christoffel symbols Eq. (1.11) and
the Einstein equations Eq. (1.14), constitutes a set of coupled partial differential equa-
tions for the metric tensor gµν . These equations fully describe the dynamics of space-
time once the energy content Tµν is specified.

We note that the Einstein equations implies the conservation law for the energy
momentum tensor. Indeed, as the following identity is true for any spacetime

∇ν

(
Rµν − 1

2
gµνR

)
= 0, (1.18)

we trivially obtain:
∇νTµν = 0. (1.19)

The last equation is the general relativistic equation for the conservation of energy
momentum, in the form of a continuity equation.

3To be more mathematically precise, the relative acceleration is obtained by computing twice the direc-
tional derivative of xµ along tµ: aµ = tρ∇ρ(tσ∇σxµ). It turns out that for an infinitesimal displacements
xµ, this is proportional to xσtµtν , with the proportionality constant set by the Riemann tensor.
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Chapter 1. Basic Concepts about Gravitational Waves

1.1.2 Linearized Gravity

General relativity is a highly non linear theory, where the combined effect on the
spacetime of two distinct masses is not equal to the summed effect of the two indi-
vidual masses. However, in the limit where the gravitational interaction is “weak”,
the theory simplifies considerably, giving rise to a linear solution to Einstein field
equation, the so-called linearized gravity. The weak gravity regime arises whenever
the energy densities are “small” compared to the typical energy density scale in gen-
eral relativity, c4/G. In this regime, is it possible to find a coordinate systemwhere the
spacetime is nearly flat everywhere, i.e. gµν ≃ ηµν , and the theory of general relativity
reduces to the Newtonian theory of gravity. Far from being an unrealistic scenario,
this is an excellent approximation of nature in most situations (including on Earth),
as shown by the excellent agreement of the Newtonian gravity to many observations.

But the importance of linearized gravity goes well beyond the Newtonian limit
of Einstein equations. Indeed, the expansion of the Einstein equation around the flat
spacetime predicts the existence of gravitational waves, a purely general relativis-
tic phenomenon. Gravitational waves are small, high-frequency perturbation to a
slowly changing backgroundmetric of the spacetime. While the definition of “slowly
changing background” spacetime and “high-frequency perturbation” is somewhat
arbitrary, in what followwe simplify the problem andwe only consider small pertur-
bations hµν to a flat spacetime ηµν . In this limit, the spacetime metric becomes:

gµν = ηµν + hµν (1.20)

where of course we assume |hµν | ≪ 1 everywhere, since we are only considering
small perturbations. The fact that the perturbations are small implies that we can
safely neglect from the equation of motion any term proportional to h2 and h∂h.
Thus, as we expand the equation of motion around ηµν , we will only consider the
first order term in hµν and therefore the dynamical evolution of hµν becomes linear
with the sources.

Asmentioned above, general relativity is invariant under a global coordinate trans-
formation andwe can exploit this gauge freedom to choose a particular reference frame
in order to (i) simplify the expression of the equation of motion and (ii) highlight the
physical degrees of freedom of the linear theory. Moreover, to preserve the condition
|hµν | ≪ 1, any gauge coordinate transformation must be in the form of:

xµ −→ x′µ = xµ + ξµ(xµ) (1.21)

where the derivatives ∂ξµ of ξµ needs to be of the same order of magnitude of hµν .
Under the transformation Eq. (1.21), the metric perturbation transforms as:

hµν −→ h′
µν = hµν − (∂µξν + ∂νξµ) (1.22)
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1.1. Gravitational Waves in General Relativity

where we neglect any quadratic term. Eq. (1.22) represents the gauge freedom of the
linearized theory.

We can then compute the linearized versions of the Einstein equations. The com-
putation is more conveniently done by defining

h̄µν = hµν − 1

2
ηµνh (1.23)

and by choosing a gauge such that4

∂ν h̄µν = 0. (1.24)

With the coordinate choice above, called Lorentz gauge, the Einstein equations reduces
to a wave equation in flat spacetime:

□h̄µν = −16πTµν (1.25)

where □ = ηµν∂
µ∂ν . We call gravitational wave any solution to this equation. While

wewill providemore insights in the next section, we can already read from the above
equation that any perturbation to the spacetime (i.e. a gravitationalwave)must prop-
agate at the speed of light c.

1.1.3 Physical Degrees of Freedom of a Gravitational Wave

The general perturbation h̄µν to the metric tensor is fully specified by ten real func-
tions, i.e. it has ten degrees of freedom. However, as the theorymust be invariant un-
der a gauge transformation, not all those degrees of freedom are independent from
each other some: we call physical the degrees of freedom that corresponds to a phys-
ically measurable quantity, while the rest are called gauge degrees of freedom. The
latter are mere artifacts of the chosen coordinate system and might be set to zero
with an appropriate choice of gauge. For instance the Lorentz condition Eq. (1.24)
sets four constraints on the metric components, thus leaving only six independent
metric components.

It turns out that a perturbation to metric propagating in vacuum (a gravitational
wave) has only two physical degrees of freedom. This can be shown by constructing a
suitable system of coordinates where h̄µν only depends on two functions. A common
choice for such gauge is the so called transverse-traceless gauge (TT). In this coordinate
frame, in additional to the Lorentz condition, four more conditions on h̄µν are set to
give the following eight constraints:

h̄0µ = 0; h̄i
i = 0; ∂j h̄ij = 0 (1.26)

4One can show using Eq. (1.22) that such gauge exists by showing that it is always possible to find a
function ξµ so that the transformed hµν satisfy the required condition.
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Chapter 1. Basic Concepts about Gravitational Waves

where we use the convention that roman indices i, j = 1, 2, 3 refers to the spatial
components of a four-vector. In particular, note that since h̄ = 0, in the TT gauge
h̄µν = hµν .

In the TT gauge, a simple monochromatic plane wave, propagating in the n̂-
direction, is a trivial solution to the wave equation Eq. (1.25) and its components
have the explicit expression

hTT
µν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


 cos(ω(t− z/c)) (1.27)

where we assumed, without loss of generality, that the wave is propagating along the
z-axis. The quantities h+ and h× are the amplitude of the so-called “plus” and “cross”
polarization and they carry information about the physical degrees of freedom of a
gravitational wave. To move further, we can introduce the two polarization tensors
e+µν , e

×
µν

e+µν =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


 ; e×µν =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


 (1.28)

so that the monochromatic solution is written as a linear combination of e+µν , e×µν .
Moreover, we introduce the TT projector operator Λij,kl(n̂), which projects into the
TT gauge any plane wave solution hµν propagating in the n̂-direction and expressed
in the Lorentz gauge:

Λij,kl(n̂) = PikPjl −
1

2
PijPkl (1.29)

wherewedefinedPij = δij−n̂in̂j the projector on the plane orthogonal to n̂. Eq. (1.29)
will be used to project any solution to thewave equation Eq. (1.25) into the convenient
TT gauge.

Of course, the general solution to the wave equation is not monochromatic. How-
ever, due to the constraints introduced by the TT gauge, even the most general solu-
tion will be a linear combination of the two polarization tensors

hTT
µν (t,x) = h+(t,x)e

+
µν + h×(t,x)e

×
µν (1.30)

and the problem of modelling a gravitational wave is equivalent to the problem of
determining the two polarization functions h+(t,x) and h×(t,x). We will discuss the
matter in Sec. 1.2.
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1.1. Gravitational Waves in General Relativity

1.1.4 Interaction with Test Masses

As a gravitational wave is a perturbation to the spacetime metric, which defines dis-
tances between events of the spacetime, a gravitational wave alters the distances be-
tween two free falling test masses. This alteration is detectable and forms the basis for
directly detecting gravitational-wave signals, through a very precise measurement of
the distance between two test masses by means of laser interferometry.

To see this effect, we note that, in the TT gauge, a test mass follows a trajectory
with constant spatial coordinates xi, since the geodesics equation trivially reduces to

d2xi

dt2 = 0. (1.31)

Thus, in TT gauge, coordinates are marked by the trajectories of a set of free falling
observers (test masses) and the coordinate separation between two test masses is not
affected by an incoming perturbation. However, the physical distance between two
test masses is affected by it. To quantify this, we define si to be the proper separation
vector between two test masses, located at coordinates x1,x2 and separated by a con-
stant coordinate separation vector∆x = x1 − x2. By considering the line element ds2
for the spacetime in the TT gauge

ds2 = −dt2 + dz2 + (1 + h+)dx2 − (1− h+)dy2 + (1 + h×)dxdy (1.32)

we obtain that at first order in hij the proper separation changes as:

s̈ i ≃ 1

2
ḧTT
ij sj (1.33)

where ˙ denotes a time derivative of a scalar function. This shows that the effect of a
gravitational is to perturb the physical distance between a pair of test masses

Even though in the TT gauge the metric perturbation has a particularly simple
expression, the TT gauge is not convenient to model a physics experiment aimed
at detecting gravitational waves. In a physics experiment, we use a ruler to mark
our coordinates and two coordinate points ξ1, ξ2 are always separated by the same
physical distance L. In this frame of reference, called laboratory frame, the coordinate
separation ξi(t) between two test masses is still given by Eq. (1.33) 5

ξ̈ i ≃ 1

2
ḧTT
ij ξj , (1.34)

hence, unlike in the TT frame, the two test masses do change their coordinates as
a consequence of a spacetime perturbation. The same expression can also be com-
puted starting from the geodesics deviation equation Eq. (1.16) and its derivation

5Note that this result is non trivial. Indeed, the time derivative of the proper separation is not a gauge
invariant quantity and therefore its value may change when computed in different frames.
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Figure 1.1: Effect on a ring of test masses of a monochromatic gravitational wave, propagating
perpendicularly to the plane of the particles. For different phases ωt of the wave, we report the
position of the particles, for the a plus-polarized waveform (top line) and a cross-polarized
waveform (bottom line). Each particle moves according to Eq. (1.37) and Eq. (1.38) under the
effect of the plus and cross polarization respectively.

assumes that the typical wavelength λ of the perturbation is much larger than the
typical length L:

L ≪ λ. (1.35)
Since the unperturbed spacetime is flat and we use the distance between points

to define a coordinate frame, in the laboratory frame we can apply our Newtonian
intuition and the effect of a gravitationalwave is equivalent to a force 1

2 ḧ
TT
ij ξj between

two points of the spacetime separated by a distance ξi. The Newtonian force induced
by an incoming gravitational wave can be measured by means of an interferometer,
as explained with some details in Sec. 2.1.

We can use Eq. (1.34) to study the motion of a test particle. We will consider a
plus-polarized monochromatic wave propagating on the z direction so that the x-y
components of the perturbation are:

hTT
ab = h+ sinωt

[
1 0

0 −1

]
(1.36)

where h+ is a constant waveform amplitude. By introducing the unperturbed posi-
tion ξi0 of a test mass and defining the perturbation ξi = ξi0 + δξi, the integration of
Eq. (1.34) yields:

δξx(t) =
h+

2
ξx0 sinωt

δξy(t) = −h+

2
ξy0 sinωt

(1.37)

Similarly for a cross-polarized waveform, we obtain:

δξx(t) =
h×
2
ξy0 sinωt

δξy(t) =
h×
2
ξx0 sinωt

. (1.38)
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1.1. Gravitational Waves in General Relativity

The effect of an incoming GW can be easily visualized by studying the motion of a
set of test masses on a ring around the unperturbed position, as shown in Fig. 1.1

1.1.5 Energy of a Gravitational Wave

The problem of defining the energy carried by a gravitational wave is very subtle
and highly non-trivial. In general relativity, there is no notion of gravitational en-
ergy—this fact, called equivalence principle, marks one of the basis for the theory. For
this reason, it is impossible to associate a gauge invariant quantity to the “energy” of
a gravitational field. On the other hand, we know from the previous section that a
gravitational wave has the effect of moving a set of test masses and thus, being able
to carry on work, it must carry some form of energy.

The solution to this problems consists in defining a somewhat arbitrary separa-
tion between a “static” background gravitational field and a dynamic gravitational-
wave field. While no energy notion can be meaningfully defined for the first, for
the latter we can define a gauge invariant expression for the energy. A crucial as-
sumption is that there is a clear scale separation between the typical timescale of the
background and of the gravitational-wave field. More precisely, we assume that there
exist a frequency f̄ , which is simultaneously much higher than the typical frequency
of the background fbg and much smaller than the frequency of the perturbation fGW:
fbg ≪ f̄ ≪ fGW. If that assumption holds, we can define the energy carried by a
high frequency perturbation as the average effect that the perturbation has on the
background spacetime. Note that in the case of a flat background gbg = η, the spatial
frequency fbg becomes zero, which supports our earlier assumption of classifying any
metric perturbation, regardless of its frequency content, as a gravitational wave. Al-
though we have assumed a flat background so far and will maintain this assumption
throughout this work, we discuss here the more general case here for the valuable
insights it offers.

To make things more precise, we can expand the Einstein equation in vacuum up
around the gbg solution to second order in the metric perturbation h:

Gµν(gbg + h) ≃ G(0)
µν (gbg) +G(1)

µν (h) +G(2)
µν (h) = 0 (1.39)

where we G(i) denotes the i-th term of the expansion, which depends either on the
background or on the perturbation only.

The expression G
(1)
µν (h) = 0 is the dynamical equation for the gravitational-wave

perturbation and is equivalent to Eq. (1.25) in vacuum. For this reason, G(1)
µν (h) = 0

is automatically satisfied by the perturbation hµν and Eq. (1.39) reduces to:

G(0)
µν (gbg) = −G(2)

µν (h) (1.40)
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Chapter 1. Basic Concepts about Gravitational Waves

which is equivalent to the Einstein equations for the background metric gbg with a
source term −G

(2)
µν (h). As the tensor G(2)

µν (h) depends only on the metric perturba-
tion and it affects the backgroundmetric, we can identify it as the energymomentum
tensor of a gravitational wave. The energymomentum tensorG(2)

µν (h) is not gauge in-
variant, however, it becomes so after averaging over the high-frequency components:
this is equivalent to integrating out degrees of freedom impossible to resolve at the
large scale of observation corresponding to the background metric. We can then de-
fine the energy momentum tGW

µν (h) of a gravitational wave as:

tGW
µν (h) := − 1

8π
⟨G(2)

µν (h)⟩ =
1

32π
⟨∂µhαβ∂νhαβ⟩ (1.41)

where ⟨. . .⟩ denotes the average of the high frequencies f > f̄ . As the expression is
gauge invariant, it is also valid in the TT gauge.

Using Eq. (1.41), we can compute the energy density tGW
00 of a gravitational wave

in terms of the polarizations h+, h× in the TT gauge:

tGW
00 =

1

16π
⟨ḣ2

+ + ḣ2
×⟩ (1.42)

The fact that the energy density depends only on the physical degrees of freedom
of a gravitational wave (and not on the gauge ones) is a further proof that a metric
perturbation indeed carries energy.

1.2 Sources of Gravitational Waves
As we will show below, any accelerating object can emit gravitational waves. How-
ever, due to the smallness of the gravitational constant G entering the Einstein equa-
tions, only few accelerating systems are actually relevant for gravitational-wave as-
tronomy. Such systems are the most “extreme” ones, where the energy densities are
large enough to produce ameasurable effect on the spacetime, and give rise to a large
variety of signals with different morphologies.

Detectable signal and sources include bursts emitted by a core collapse super-
nova [87–89] or by cosmic strings produced in the early universe [90–93], long du-
ration signals emitted by a tiny asymmetry in a fast rotating neutron star [94–97],
stochastic signals [98] produced by unresolvable overlapping sources (also called as-
trophysical background) [99] or by perturbations in the early universe (cosmological
background) [100]. In this work however, we will consider gravitational-wave sig-
nals from the coalescence of compact objects. More specifically, we will be concerned
with signals produced by the coalescence of heavily precessing black hole binaries.
This will be the focus of the next section. In this section, we describe the mathemati-
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1.2. Sources of Gravitational Waves

cal formalism needed to compute the gravitational wave emitted by a given physical
system.

1.2.1 The Quadrupole Formula

To compute the gravitational waves emitted by a given source, we need to solve the
wave equation Eq. (1.25) for the metric perturbation hµν . As discussed above, we
will work in the TT gauge, which is particularly convenient to describe the waveform
propagation. From the structure of the wave equation, we already know that any
solution hTT

ij (t,x)must satisfy hTT
ij (t,x) = fij(t± |x|), where the details of the func-

tions fij depends on the source. The solution for a particular source can be readily
obtained using the Green’s function G(x− x′) of the d’Alembert operator □:

G(x− x′) = − 1

|x− x′|δ (t− t′ − |x− x′|) (1.43)

where the time t−|x−x′| is also called retarded time. Using the fact that the Green’s
function satisfies

□G(x− x′) = δ(4)(x− x′), (1.44)

we are able to obtain the general solution for the metric perturbation projected on the
TT gauge:

hTT
ij (t,x) = 4Λij,kl(n̂)

∫
d3x′ 1

|x− x′| Tkl (t− |x− x′|,x′) . (1.45)

This expression, coupledwith the knowledge of the energymomentum tensorTij(t,x)

fully solves the problem of computing the gravitational-wave emission of a source.
Clearly, inmost practical applications Eq. (1.45) is impossible to solve analytically,

or even to tackle numerically. For this reason, we are interested on computing a first
order approximation for the solution, which is valid for slowly moving sources, char-
acterized by a velocity v negligible with respect to the speed of light. In this scenario,
we are interested in the behaviour of the waveform far away from the source, i.e.
at large R = |x|. We begin by computing the Fourier transform [101] h̃TT

ij (ω,x) of
hTT
ij (t,x) to obtain:

h̃TT
ij (ω,x) =

4√
2π

Λij,kl(n̂)

∫
dtd3x′eiωt 1

|x− x′| Tkl (t− |x− x′|,x′) (1.46)

=
4√
2π

Λij,kl(n̂)

∫
dtret d3x′eiωtret e

iω|x−x′|

|x− x′| Tkl (tret,x′) (1.47)

= 4Λij,kl(n̂)
eiωR

R

∫
d3x′T̃kl (ω,x

′) (1.48)
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where to obtain the second limewe performed a change of variables tret = t− |x− x′|
and in the third we introduced the frequency domain energy momentum tensor
T̃kl (ω,x

′) and we made the approximation eiω|x−x′|

|x−x′| ≃ eiωR

R . The latter approxima-
tion is a consequence of our assumption of a far-away source (|x − x′| ≃ R) and of
a slowly-moving source (ω|x′| ≪ 1) and corresponds to considering the first order
term of an expansion of |x− x′| ≃ R+ δR+ . . ..

To move further, we note that from the conservation of the energy momentum
∂νT

µν = 0, we have the following identity in Fourier space

−iω T̃ 0µ = ∂iT̃ 0i. (1.49)

Therefore, we can integrate ∫ d3x′T̃kl (ω,x
′) by parts twice and discard boundaries

terms to obtain:
∫

d3x′T̃ ij (ω,x′) = −ω2

2

∫
d3x′ T̃ 00 (ω,x′)xixj . (1.50)

The integral expression in the right hand side is equivalent to the mass quadrupole
tensor M ij(t), which has the following expression in time domain:

M ij(t) =

∫
d3x′ T 00 (t,x′)xixj . (1.51)

By plugging Eq. (1.50) into Eq. (1.48) and computing the inverse Fourier transform,
we obtain:

hTT
ij (t,x) =

4

R
Λij,kl(n̂) M̈

kl(t). (1.52)
This equation is the famous quadrupole formula and it relates the gravitational-wave
emission of a compact system to the second time derivative of its mass quadrupole
Eq. (1.51). It is valid in the far zone only for slowly moving sources and it is not
able to resolve the fine details of a generic source. While the formula can provide a
satisfactory approximation to Eq. (1.45), it is only the first termof an expansion of |x−
x′| around R. In the next section, we will discuss a more systematic approach to the
expansion of Eq. (1.45), leading to the so-called multipole expansion of gravitational-
wave radiation.

1.2.2 Multipole Expansion of the Source and of h(t)

The quadrupole formula Eq. (1.52) relies on two approximations, namely that the
sources are slowly moving and that the observer is far away from the source. Under
this assumptions, we approximated |x− x′| ≃ R in Eq. (1.46) and obtained a strik-
ingly simple expression. However, the solution we obtained is only the first term of
an infinite series for hTT

ij . Performing a systematic expansion is a complicated task,
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outside the scope of this work, thus we limit ourself to summarize a few interesting
results.

The expanded solution to the wave equations can be written in terms of the statis-
tical moments, also called multipoles,M i1...iN of the energy density distribution T 00

M i1...iN =

∫
d3x T 00(t,x)xi1 . . . xiN (1.53)

and of the multipoles P i,i1...iN of the linear momenta T 0i, also called current multi-
poles,

P i,i1...iN =

∫
d3x T 0i(t,x)xi1 . . . xiN . (1.54)

As we already seen, the first term of the expansion only depends on the second
derivative of the mass multipole M ij . Higher order terms will involve a combina-
tion of high order time derivatives of M i1...iN and P i,i1...iN . For instance, at second
order hTT

ij is given by:

hTT
ij (t,x) =

4

R
Λij,kl(n̂)

{
M̈kl(t) + nm

[
1

6

...
M

klm
+

1

3

(
P̈ k,ml + P̈ l,mk − 2P̈m,lk

)]
+ . . .

}
.

(1.55)

This expression is called the multipole expansion of the source [102].
It turns out that it is more convenient to express the spatial dependence of the

solution in spherical coordinates (r, θ, ϕ) and express the solution in terms of a basis of
complex functions defined on the sphere, called spin-2 spherical harmonics Yℓm(θ, ϕ)

[103]. The spin-2 spherical harmonics have the property that:

Yℓ−m = (−1)mY ∗
ℓm. (1.56)

Moreover, they define a set of multi-indices tensors Yℓm
i1...iN

, called spherical tensors,
as follows:

Yℓm(θ, ϕ) = Yℓm
i1...iℓ

ni1 . . . niℓ (1.57)

where the vector n̂ defines the z-axis of the spherical coordinate system chosen. Note
that the indices ℓm are not covariant indices, i.e. they are not related to any spacetime
coordinate. As a consequence, we make no distinction between upper and lower
indices as we did for the covariant indices in the previous sections. The spherical
tensors can be used to project a generic tensor Ai1...iN onto the basis of spherical
harmonics by computing the scalar product

Aℓm = Ai1...iNYℓm
i1...iN . (1.58)
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The quantity Aℓm is called the spherical component of the tensor Ai1...iN . The de-
composition is very convenient since in spherical coordinates, the general solution
for hTT

ij in the far zone can be written [85,104,105]:

hTT
ij (t,x) =

1

r

∞∑

ℓ=2

m=ℓ∑

m=−ℓ

[
UℓmTE2,ℓm

ij (θ, ϕ) + VℓmTB2,ℓm
ij (θ, ϕ)

]
(1.59)

where the functions Uℓm and Vℓm are directly related to the mass and linear momen-
tum multipoles of the source:

Uℓm =
dℓ

dtℓM
i1...iℓYℓm

i1...iℓ
(1.60)

Vℓm =
dℓ

dtℓ ϵijkP
j,ki1...iℓ−1Yℓm

i,i1...iℓ−1
(1.61)

and ϵijk is the totally antisymmetric symbol. The tensorsTE2,ℓm
ij (θ, ϕ) andTB2,ℓm

ij (θ, ϕ)

carry the angular dependence of the solution and are defined in terms of the spher-
ical harmonics Yℓm(θ, ϕ) [85, 104]. The two gravitational-wave degrees of freedom
h+, h× can be extracted from Eq. (1.59) as

h+ + ih× = hTT
ij ninj =

1

r

∞∑

ℓ=2

m=ℓ∑

m=−ℓ

hℓmYℓm(ι, ϕ). (1.62)

The functions hℓm are calledmodes of a waveform and are a function of only Uℓm and
Vℓm:

hℓm =
1√
2
(Uℓm + iVℓm) . (1.63)

The result above connects the multipole expansion of the source Eq. (1.55) to the
expansion in spherical harmonics of the gravitational wave h+ + ih× in the far zone.
For the purpose of modelling, it is customary to write each mode hℓm in terms of its
amplitude Aℓm and phase φℓm:

hℓm(t) = Aℓm(t) eiφℓm(t). (1.64)

Moreover, as each mode corresponds to a different order in the expansion of the
source, different modes have different typical magnitudes, with ℓ = |m| = 2 mode
corresponding to the dominant quadrupole emission. While most detected binary
systems reveal only the dominant mode in observations, evidence suggests that for a
few asymmetric systems, higher order modes (HMs) beyond the dominant one are
also detectable [106,107].
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1.3. Black Hole Binaries

1.3 Black Hole Binaries
A binary black hole (BBH) is a binary system composed by two black holes. As the
two black holes orbit around each other, they emit gravitational radiation, which dis-
sipates orbital energy causing the orbit to shrink until the two black holes eventually
merge. The gravitational waves emitted by this process is detectable by current in-
terferometers. After a brief discussion of black holes, black hole binaries and their
formation, we dive into some details of their orbital evolution. Finally we will review
the role of the two BH spins in determining the dynamics of the binary, eventually
discussing the spin-induced precession motion of the orbital plane, whose detection
is the main focus of this work.

1.3.1 Black Hole and Black Hole Binaries in Astrophysics

A black hole is a region of the spacetime which is not able to communicate with
the rest of the space time. Indeed, inside this region the gravitational interaction
is so strong that no object or light sign can escape from it. Inside a black there is
a singularity, which is a region that the general relativity is unable to appropriately
describe and for which predicts an infinite curvature. Every object inside the black
holewill eventually reach the singularity, ormore formally, every geodesics inside the
black hole end inside the singularity. The nature of the singularity is still unknown
and probably its understanding requires a new theory, possibly incorporating the
theory of quantum mechanics within the framework of general relativity.

A black hole arises naturally as a solution of the Einstein equations and it can be
uniquely described by its mass M and possibly by its spin vector S and its electric
charge q. The spin vector is bounded by the mass of the black hole and must satisfy
S ≤ M2; it is also common to define a dimensionless spin vector s = S/M2 ∈ [0, 1]. A
chargeless and spinless black hole is described by the Schwarzschild solution [108],
while a rotating chargeless black hole is well modeled by the Kerr solution [109,110].
Finally, a charged black hole is described by the Reissner–Nordström [111] solution
in the spinless case and by Kerr–Newman [112, 113] solution in the spinning case.
Each of this solution assumes that the black hole is immersed in vacuum and it is iso-
lated (technically, it assumes an asymptotically flat spacetime) and provides a metric
tensor gµν modelling the spacetime outside and inside the black hole [114].

Black holes are considered to be one of the end point of stellar evolution. After the
termination of the nuclear fusion processes supporting a star, the matter composing
a star collapses under its own gravity forming a compact object [115]. Depending
on the mass of the star and on its composition, the star will collapse into a white
dwarfs (with a maximum mass [116] around 1.4M⊙), into a neutron stars (with an
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unknown maximum mass [117,118] between 2.2− 2.9M⊙) or into a black hole. The
black holes resulting from stellar collapse typically have masses from ∼ 3M⊙ up to
∼ 50M⊙ [115, 119]. Besides stellar black holes, supermassive black holes [120, 121]
have also been observed at the center of some galaxies [122]withmasses of hundreds
of thousands solarmasses. They play an active role in the dynamics of the galaxy and
their origin is still under study [123–125].

As for other objects in the universe, stellarmass black holes can be found in binary
systems. Such binaries are thought to have primarily two formation channels [61]:

• Common evolution: two stars in a binary system end their life cycle and both of
them collapse into a black hole while still orbiting around each other. Black
hole binaries formed in this way tend to have equal mass objects with highly
aligned spins, hence showing little sign of precession [126–131].

• Dynamical capture: a black hole falls into the potential well of another isolated
black hole. Systems formed in this way have more asymmetric masses and
show larger spin mis-alignment, possibly showing a larger amount of preces-
sion [132–139].

Black hole binaries are routinely detected through their gravitational-wave emission,
whose study allows us to gain important information about the population of BBH
and their formation with impacts in the fields of cosmology [29] or of tests of the
theory of general relativity [32–34]. In what followswe describe the orbital evolution
of a black hole binary and its gravitational-wave emission.

1.3.2 Orbital Evolution of a Black Hole Binary

In the limit where the two objects are far apart, the dynamics of the system is well
approximated by the Kepler’s law and the emission of a binary system iswell approx-
imated by the quadrupole formula. Moreover, we assume that the orbital shrinking
due to gravitational-wave energy loss, also called radiation reaction, happens at a slow
rate as compared to the orbital frequency. With this three assumptions, we can obtain
a simple approximate expression, usually called Newtonian approximation, for the
time evolution of a binary black hole and for the GW radiation emitted [140]. The
slow orbital shrinking, which we are modelling with the Newtonian approximation,
is called inspiral.

We assume that the two black holeswithmassesm1,m2 follows a uniform circular
trajectory with frequency ωorb/2π. As it is well known from Newtonian gravity, such
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system can be mapped into a single mass with mass µ = m1m2

m1+m2
with trajectory x(t)

x(t) = R cos(ωorbt+ π/2) (1.65)
y(t) = R sin(ωorbt+ π/2) (1.66)
z(t) = 0 (1.67)

and with an energy density ρ(t,x) = µ δ(3)(x(t)− x). This allows us to compute the
quadrupole moment M ij Eq. (1.51) and its second time derivative M̈ ij , whose only
non-zero components are:

M̈11 = 2µR2ω2
orb cos 2ωorbt (1.68)

M̈12 = 2µR2ω2
orb sin 2ωorbt . (1.69)

Plugging this expression inside the quadrupole formula Eq. (1.52) and choosing a
generic direction of propagation n = (sin ι cosϕ, sin ι sinϕ, cos ι), parameterized by
two angles ι and ϕ, we obtain and expression for the two polarizations:

h+(t; r, ι, ϕ) =
1

r
µR2ω2

orb
1 + cos2 ι

2
cos(2ωorbtret + 2ϕ) (1.70)

h×(t; r, ι, ϕ) =
1

r
µR2ω2

orb cos ι sin(2ωorbtret + 2ϕ) (1.71)

where tret denotes retarded time. The angles ι and ϕ are also known as inclination
angle and reference phase. By using the Kepler’s relation between orbital frequency
ωorb and orbital radius R of the two objects

ω2
orb =

m1 +m2

R3
(1.72)

and introducing the chirp mass Mc of the system:

Mc =
(m1m2)

3/5

(m1 +m2)1/5
(1.73)

we obtain

h+(t) =
1

r
M5/3

c (πfgw)2/3
1 + cos2 ι

2
cos(2πfgwtret + 2ϕ) (1.74)

h×(t) =
1

r
M5/3

c (πfgw)2/3 cos ι sin(2πfgwtret + 2ϕ) (1.75)

where we defined the frequency of the gravitational wave as twice the orbital fre-
quency: 2πfgw = ωgw = 2ωorb. The two polarizations h+ and h× are identical except
for an inclination dependent amplitude scaling and π/2 phase shift. As we will see
in Ch. 3, this has a deep impact on the way we search for signals for black hole bina-
ries. Besides the chirp mass Eq. (6.10), we may also introduce the total mass M of
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Figure 1.2: Waveform emitted by a binary system according to the Newtonian approximation
Eqs. (1.85-1.86) (in blue), compared to a more realistic prediction generated with the state-of-
the-art IMRPhenomT waveform approximant (underlaid in orange). The two waveforms refer
to a system with masses m1 = 30M⊙ and m2 = 10M⊙, seen from a distance of 100Mpc and
with zero inclination, and generated from a minimum frequency fmin = 5Hz.

the system M = m1 + m2, the mass ratio q = m1/m2 ≥ 1 and the symmetric mass
ratio η = µ

M = m1m2

(m1+m2)2
. Such quantities defines a common parametrization for the

masses m1,m2 of the binaries, which may be useful in certain cases. Associated to
the orbital rotation, the binary possesses an orbital angular momentum L:

L = µR2ωorb = µ
√
MR = µM2/3ω

−1/3
orb (1.76)

which plays an important role in the description of the phenomenon of precession,
as we will see in the next section.

According to Eq. (1.42), a binary system will radiate energy in the form of grav-
itational radiation. The total radiated power P , integrated over the solid angle, can
be computed from the two polarizations to be:

P =

∫
dΩdP

dΩ =
32

5
(Mcπfgw)10/3. (1.77)

The source of radiated energy is the orbital energy

Eorb = −m1m2

2R
= −

(
π2

8
M5

c f
2
gw

)1/3

(1.78)
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which decreases to compensate for the radiated energy. Therefore, from the conser-
vation of energy

Ėorb + P = 0 , (1.79)
we can obtain the rate of orbital shrinking, or equivalently the rate of increase in the
wave frequency

ḟgw =
96

5
π8/3M5/3

c f11/3
gw . (1.80)

This can be integrated in time to give the frequency evolution of the binary

fgw(τ) =
1

π

(
5

256

1

τ

)3/8

M−5/8
c (1.81)

where τ is the time to coalescence τ = tcoal − t. To gain a better intuition of the mag-
nitude of the quantities involved, we can discard the natural units and express time
in seconds and the chirp mass in solar masses, resulting in the following expression:

fgw(τ) ≃ 151Hz

(
1M⊙
Mc

)5/8(
1 s

τ

)3/8

. (1.82)

The frequency evolution is only valid in the so called quasi circular regime, where

ḟgw ≪ f2
gw, (1.83)

as the model for the gravitational-wave emission Eq. (1.68) is only valid for the cir-
cular case.

Under this assumption, the phase of the gravitational wave emitted by the binary
can be obtained by integrating the instantaneous frequency Eq. (1.81) as a function
of time to obtain the phase φ(τ) of the waveform

φ(τ) =

∫ τ

τ0

dτ 2πfgw(τ) = 2

(
τ

5Mc

)5/8

+ φ0 (1.84)

where φ0 is an integration constant which can be freely chosen. By plugging the ex-
pression for the phase into thewaveform polarizations Eqs. (1.74-1.75), we obtain the
following expression for the gravitational waves emitted by a binary system, under
the Newtonian approximation:

h+(t) =
1

r
M5/3

c

(
πfgw(τ)

)2/3 1 + cos2 ι

2
cos(φ(τ) + 2ϕ) (1.85)

h×(t) =
1

r
M5/3

c

(
πfgw(τ)

)2/3
cos ι sin(φ(τ) + 2ϕ). (1.86)

An example of such waveform is shown in Fig. 1.2 and it is compared with the same
waveform computed with the state-of-the-art approximant IMRPhenomT [48], which
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provides amore realistic waveform. Note thatwhile the twowaveforms start in phase
with each other, after some cycles, the Newtonian approximation (in blue) is not able
to track the more accurate phase evolution obtained by the phenomenological model
(in orange). The dephasing is slow during the inspiral phase, where the Newto-
nian approximation retains some accuracy. During the late inspiral, the dephasing
becomes much faster, indicating that the simple assumptions made for our computa-
tion are not valid for signals close to the merger of the two black holes.

It is instructive to compute the order ofmagnitude of the polarizations in a realistic
scenario. If we consider two black holes, each with mass 10M⊙, which are 1 s away
from merger and at a realistic distance of r = 100Mpc, we see that

h+ ∼ 10−21

This justifies the assumption of a small perturbation to the spacetime! Moreover, it
sets an ambitious sensitivity requirement for a ground based detector, such as LIGO
or Virgo, designed to detect such signals (among others).

Towards amore realisticmodel As the two objects get closer and the orbital shrink-
ing gets faster, theNewtonian approximation is not valid anymore andmore sophisti-
cated calculations must be performed to obtain an accurate prediction for the orbital
dynamics and for the gravitational-wave emission. The computation is organized
through an expansion of the Einstein equation for small velocities v (or equivalently,
for weakly gravitationally bounded systems), called post-Newtonian (PN) expan-
sion [141–143]. The PN expansion adds some correction to the amplitude and the
phase of the waveform Eqs. (1.85-1.86) as a series expansion in power of v. The main
physical picture however does not change: the gravitational-wave emission is the
main source of orbital energy loss, which causes shrinking of the orbit.

The PN expansion breaks down in the very last few cycles of the binary. Dur-
ing this phase, the two black holes are very close to each other and they eventually
merge into a single black hole - this is the merger phase of the binary evolution. In
this regime, gravity is so strong that the dynamical evolution and the GW emission
can be only obtained by solving the full Einstein equations with expensive numerical
methods. This is one of the goals of numerical relativity [144–148].

The black hole produced by the coalescence of the two objects is usually in a per-
turbed state, where part of the orbital energy is stored into the excited modes of the
event horizon. As this perturbed state is unstable, it promptly decays into the ground
state (theKerr’s solution) by emitting gravitationalwaves. This is the ringdownphase.
As the perturbations to the Kerr’s solutions are expected to be “small”, a perturbative
approach can be employed to describe the dynamics and GW emission, by express-
ing the perturbations as a superposition of quasi-normal modes [149]. The study of the
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quasi-normalmodes can provide invaluable information about the event horizon of a
black hole, possibly leading to a better understanding of gravity in the strong regime.

An accurate prediction of the BBHgravitational-wave emission, incorporating not
only the inspiral but also themerger and ringdown, is essential for most data analysis
purposes. For this reason, many models for the waveform have been developed over
time, in order to incorporate all the available knowledge of the dynamics of a binary
black hole. Such models can be categorized in two families, both able to achieve state
of the art accuracy in their predictions. The first family relies on the Effective One
Body (EOB) formalism [52,150–156], which maps the complicated general relativis-
tic binary system into a problem governed by an effective Hamiltonian. EOB models
tend to be accurate but are quite costly to generate, since for eachwaveform one needs
to solve the Hamiltonian equation of motion. On the other hand, the phenomenolog-
ical waveforms [47, 48, 157–159] rely on PN analytical expressions to model the in-
spiral, and on fits to numerical simulations to describe the intermediate and merger-
ringdown regimes. They tend to be faster to evaluate than the EOB models. Both
families, EOB and phenomenological, need to be calibrated with numerical relativity
waveforms, computed by directly solving the Einstein equations in discretized form.
The calibration makes sure that a model retains its accuracy even close to merger,
where approximate treatments such as the post-Newtonian or EOB formalisms are
no longer applicable.

Eccentricity So far we have consider binaries in circular orbits. However, in the
most general solution the trajectory of a binary follows an ellipse: the system is then
said to have an eccentric orbit. In this case, the properties of the orbit are not only
characterized by the angular velocityω but also by the eccentricity e of the system and
the mean periastron anomaly a. As the latter two are time-varying quantities, they
must usually be specified at a given reference orbital frequency. The eccentricity has
the effect of increasing the power emitted by the binary Eq. (1.77), hence speeding
up the binary evolution.

A closer study of the orbital dynamics in the eccentric case reveals that, already
at the first order, the eccentricity of a binary always tends to decrease with time, i.e.
de
dt < 0. In other words, the effect of the back-reaction of the system to a GW is to
circularize the orbit. This process is so efficient that the orbit circularization usually
happens well before the merger, or equivalently, the time-scale of the circularization
is smaller than the merger timescale. This means than most of the BBH observed by
ground based detectors will be in circular orbits. This justifies the fact that in most
of the GW data analysis for compact binary coalescences, the effect of eccentricity is
neglected and only systems on a circular orbits are considered. Recent work has been
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Figure 1.3: Schematic representation of the orbital plane of a precessing binary system with
the orbital angular momentum L, the total spin vector S and the total angular momentum J.
We also report the angles α and β, which parameterize the precession of the orbital angular
momentum L around the J-axis with respect to an inertial Cartesian frame.

focused on accurately modelling the effect of the eccentricity [154, 160, 161] and on
incorporating its effect in the data analysis [162–166].

1.3.3 Precession in Black Hole Binaries

One interesting effect arising from the Einstein equations is the dependence of the
dynamics (hence of the waveform) on the two black hole spins S1,S2. A simple way
to understand this is to consider that, in general, the total angular momentum vector
J = L+S1+S2 retains an approximately constant direction, while decreasing in mag-
nitude due to the decrease in |L|, which in turn is caused by the orbital shrinking. If
the two spins are aligned with each other and with the direction of the orbital angu-
lar momentum L̂, the conservation of the direction of J implies that the orbital plane
as well as the two spin vectors remain constant throughout the inspiral. Moreover,
the relative orientation of the two spin vectors affects the dynamics of the system.
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Heuristically, a spin vector anti-parallel to L̂ enhances the GW emission, hence it ac-
celerates the orbital shrinking. On the contrary, two spins parallel with L̂ slow down
the GW emission and the orbital shrinking. In this aligned-spin case, an interesting
quantity is the effective spin parameter χeff

χeff =
m1s1z +m2s2z

m1 +m2
, (1.87)

which encodes the dominant spin dependence of the waveform. Consequently, the
effective spin parameter is typically measured more accurately in GW observations
than the individual spins.

Amore interesting scenario involves the case where the two spins are mis-aligned
with each other and/orwith the orbital angularmomentum, as first discussed in [39].
In that case, due to conservation of the direction Ĵ of the orbital angular momen-
tum, the orbital angular momentum L and the two spin vectors interact with each
other non-trivially and the binary experiences a gradual rotation of the orbital plane
(whose normal direction is parameterized by L̂) around the total angular momen-
tum Ĵ. This effect is called precession and it causes observable variations in the gravita-
tional-wave signal emitted by a binary system, introducing characteristic modulation
in amplitude and phase over time. A schematic representation of the physical system
is reported in Fig. 1.3.

The strength of precession is characterized by the tilt angle β of the binary’s orbit,
i.e. the angle between J and L, and by the angular velocity Ωp at which L rotates
around Ĵ. By calling S∥ and S⊥ the parallel and perpendicular component of the total
spinSwith respect to the orbital angularmomentum, the tilt angle β is approximately
given by:

tanβ ≃ S⊥
µ
√
MR+ S∥

, (1.88)

where we used Eq. (1.76) to express the orbital angular momentum. As the orbital
separationRdecreases, we see that the precession opening angle increases throughout
the orbital evolution, hence also the effect of precession on the waveforms is more
visible towards the end of the inspiral. At leading order (see below for more details)
the precession frequency is given by

Ωp ≃
(
3 +

3

2q

)
J

R3
, (1.89)

where again we see that Ωp increases for small separations, hence increasing the ef-
fect of precession as the orbital evolution goes on. We note that the physical picture
described here holds only approximately. Indeed, higher order PN corrections causes
the total angular momentum to also precess around a constant axis, introducing a
nutationmotion and yielding a more complicated phenomenology.
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Figure 1.4: The Euler angles α and β obtained by numerically integrating Eqs. (1.96-1.97) (in
blue) and with their approximate expressions Eq. (1.89) and Eq. (1.88). The fast oscillations
around the approximate expression for β are caused by the nutation of L along its precession
motion. The angles refer to a system with masses m1 = 15M⊙ and m2 = 1.5M⊙ and with
dimensionless spins s1 = (0.8, 0.0,−0.5) and s2 = (−0.7, 0.1, 0.3).

The situation described above is called simple precession and it is characterized by
a non-zero total angular momentum, which provides a well defined direction for the
precession axis. In the case where L ≃ −S, the system does not have an axis to rotate
around and the orbital orientation L rapidly changes until the system settles into a
new configuration of simple precession. This phenomenon is known as transitional
precession and, as it is expected to be rare in LIGO BBHs, in what followswewill focus
only on simple precession.

Modelling the GW emission We now turn our attention to a more precise descrip-
tion of the gravitational waves emitted by a precessing binary. To begin, we recognize
that a precessing binary system has three timescales of relevance [167–170]: the or-
bital timescale torb = ω−1

orb, associated to the orbital motion, the precessing timescale
tprec = Ω−1

p , associated to the change in the direction of orbital plane, and the radi-
ation reaction timescale tRR = ωorb/ω̇orb, induced by the shrinking of the orbit due
to GW energy loss. The timescale of precession tprec is typically much larger than
the orbital timescale torb. Moreover, the precession motion happens at a much faster
rate than the shrinking of the orbit due to GW emission (radiation reaction), with
timescale tRR:

torb ≪ tprec ≪ tRR. (1.90)

Thanks to this hierarchy of timescales, we can decouple the precessing motion from
the binary evolution and from the effect of radiation reaction.

To move on, we consider a timescale t̄ which is short enough to neglect the pre-

26



1.3. Black Hole Binaries

cessingmotion but long enough to observemany orbital cycles: torb ≪ t̄ ≲ tprec. Over
such timescale t̄ the change in the direction of the orbital angular momentum is neg-
ligible and the binary dynamics and GW emission are well approximated by those of
a non-precessing system. As the orbital plane orientation changes over a timescale
of tprec, the system’s dynamics can still be approximated by that of the same non-
precessing system. However, this approximation must incorporate a rotation to ac-
count for the changing orientation. Therefore, the effect of precession can bemodeled
by a time dependent rotation of a suitable non-precessing binary system.

More formally, there exists a non-inertial reference frame where the orientation of
the precessing binary does not change and the effect of precession on the dynamics is
negligible. In such frame, called “quadrupole aligned” [171], the system dynamics
and the GW emission are roughly equivalent to those of a non-precessing system
with the same masses and spin magnitudes [172]. The precessing waveform can
be obtained by performing a time-dependent transformation from the quadrupole
aligned frame to a chosen inertial frame. The latter is typically chosen to be the frame
where L(t = 0) is along the z-axis, also known as L0 frame. The quadrupole aligned
frame approximately coincides with frame where the total angular momentum J is
aligned along the z-axis and for this reason, it is sometimes referred to as J-frame.

As the quadrupole aligned frame is built to track the time evolution of the direc-
tion of the binary’s orbital angular momentum L̂, it is very important to accurately
model the time evolution of L̂. This is usually donewithin the PN framework [39,41],
where it is possible to write down a set of coupled equations for the combined evo-
lution of the orbital angular momentum L and of the direction of the two spins. The
equations are valid at the precessing timescale tprec, as they average over many orbit
cycles exploiting the hierarchy between the timescales of the problem. At 2PN order
they consist in

Ṡ1 = Ω1 × S1 (1.91)
Ṡ2 = Ω2 × S2 (1.92)
˙̂
L = − v

ηM2
(Ṡ1 + Ṡ2) (1.93)

and

Ω1 = ηv5
(
2 +

3

2q

)
L̂+

v6

2M2

[
S2 − 3(L̂ · S2) L̂− 3

q
(L̂ · S1) L̂

]
(1.94)

Ω2 = ηv5
(
2 +

3q

2

)
L̂+

v6

2M2

[
S1 − 3(L̂ · S1) L̂− 3q(L̂ · S2) L̂

]
(1.95)

where v is the orbital velocity v =
√

M/R and its time evolution can be also computed
with the PN expansion [40, 173–178]. Note that if the two spins are aligned with or-
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bital angular momentum, the precession frequenciesΩi are zero. Therefore as noted
before, only the in-plane spin components S⊥ = S× L̂ contribute to precession.

Once the time evolution L̂(t) of the orbital plane is known, it is possible to write
down the explicit transformation from the quadrupole aligned frame to theL0 frame.
This is done bydefining the three timedependent Euler anglesα(t), β(t), γ(t), parametriz-
ing the rotation of a rigid body [179]:

α(t) = arctan
L̂y(t)

L̂x(t)
(1.96)

β(t) = arccos L̂z(t) (1.97)

γ(t) = −
∫ t

0

dt′ α̇(t′) cosβ(t′). (1.98)

Note that the β angle corresponds to the tilt angle introduced before, while the time
derivative of α amounts to the precession frequency Ωp. Approximate first order ex-
pressions for β andΩp respectively were previously given in Eq. (1.88) and Eq. (1.89)
respectively. In Fig. 1.4, we plot the two angles α and β as computed by integrating
Eqs. (1.96-1.97), together with their first order approximations.

Once the three angles are known, we can rotate the waveform in the quadrupole
aligned frame (QA) to the inertial L0 frame. The waveform rotation acts on each
mode as follows:

hℓm =

m=ℓ∑

m=−ℓ

hQA
ℓm′D

ℓ
mm′(α(t), β(t), γ(t)) (1.99)

where Dℓ
mm′(α, β, γ) are the Wigner D matrices

Dℓ
mm′(α, β, γ) = eimαeim

′γdℓmm′(β). (1.100)

In this context, dℓmm′(β) are the real valuedWigner dmatrices, which are polynomial
functions of cos(β/2) and sin(β/2) and their expression can be found in [47]. The
procedure outlined above goes usually under the name of spin twist [171, 172, 180]
and is employed in most of the state-of-the-art waveform approximants [47–50,52].

An aligned-spin system (or, approximately, a precessing system observed from
the quadrupole aligned frame) exhibits a symmetry over reflection across the orbital
plane, characterized by its normal vector L̂. It can be shown that this symmetry, also
called equatorial symmetry, translates into a symmetry between different modes [181]:

hℓm = (−1)ℓh∗
ℓ−m. (1.101)

Clearly a precessing system does not possess any equatorial symmetry and thus the
symmetry between positive and negative modes is broken, as can also be seen in

28



1.3. Black Hole Binaries
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Figure 1.5: Effect of precession on a BBH signal. On the top panel we show the GW signal
from an aligned-spin BBH, while in the bottom panel we show the effect of precession on the
same system. On the y-axis we report the observed strain (with arbitrary units). The signal
considered is characterized by m1 = 40M⊙ and m2 = 3M⊙ and s1z = −0.2 and s2z = 0.7.
The precessing signal is chosen with χP = 0.8, with precession placed only on the first BH
spin. The system is in an “edge on" configuration, with inclination ι = π/2.

Eq. (1.99). Thanks to themode symmetry Eq. (1.101), an aligned-spin system, where
only the ℓ = |m| = 2 dominant modes are considered, is always characterized by a
symmetry between the two polarizations. In frequency domain, it takes the form:

h̃+ ∝ ih̃×. (1.102)

This expression is not valid for precessing systems and/or for systems where the
higher order modes are considered. This remark has a large impact on the search for
black hole binaries, asmost of the searches rely onEq. (1.102) to simplify the problem.
To search for precessing signals, we need to move away from this assumption and,
detailed in the next chapters, this is an important part of the original work presented
in this dissertation.

Impact of precession for different systems Each precessing mode is the superpo-
sition of different aligned-spins modes hQA

ℓm and for this reason, it exhibits a charac-
teristic modulation in the amplitude and phase, as the result of a non-trivial interfer-
ence pattern. Physically, this is understood as follows: as the GW emission attains
its maximum along the direction of L and given that the L̂ changes with time, an
inertial observers will see a time-varying amplitude as a result. Moreover, the ro-
tation of L around a constant axis will introduce a time dependent phase shift of
α(t) =

∫ dt Ωp(t), as can also be seen in Eq. (1.99) where α enters as a phase eiα.
From a qualitative point of view, the effects of precession are more pronounced

for asymmetric systems (large mass ratios) observed with an edge-on inclination
(i.e. binaries observed with inclination angle ι ≃ π/2) [73]. Clearly, larger values
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of spins induce a larger amount of precession. Furthermore, the effects of precession
are more pronounced in longer waveforms, primarily because there are more cycles
duringwhich precessing effects can accumulate. In typical data analysis applications,
where the starting frequency of the signal is usually fixed, longer waveforms corre-
spond to lower total masses. Consequently, with current instruments, the detection
of precession is more likely in low-mass, highly asymmetric systems characterized
by very large spins [74,182].

The impact of spin misalignment can be amplified or suppressed by the inclina-
tion of the binary system, measured by the angle ι between the inclination of the ob-
server’s line of sight and the orbital angular momentum at a specific reference time.
When ι is close to 0 or π, there is minimal variation in the flux of emitted gravita-
tional waves, resulting in a limited effect of precession on the waveform. Conversely,
for ι ≃ π/2, significant variations in the GW emission occur over time. Therefore, the
inclination angle is a crucial parameter to consider when searching for precessing
signals.

The effect of precession is usually quantified by the effective precession spin param-
eter χP [172, 183], where large values of χP denotes large amounts of precession.
Given a system with dimensionless spins s1 and s2, we define s1⊥ = |s1 × L̂| as the
magnitude of the in plane component of s1 and similarly s2⊥. The effective precession
spin parameter is equal to:

χP = max

{
s1⊥,

1

q

4 + 3q

3 + 4q
s2⊥

}
. (1.103)

χP defines amapping between the original binary systems (with 6dimensional spins)
and a system of reduced dimensionality, where s1 = (χP , 0, s1z) and s2 = (0, 0, s2z).
Two such systems will show similar precessing effects, since by construction the av-
erage value of the precessing frequenciesΩi in Eqs. (1.94-1.95) are roughly the same.
Despite the introduction of alternative precession measures in the literature [74,184–
187], χP retains its status as the most interpretable and widely utilized.

In Fig. 1.5, we show how precession changes the GW signal generated by a BBH.
The upper panel reports an aligned-spin BBH, while the bottom panel shows the
same signal with a non-zero χP . We can see how precession changes the amplitude
and phase evolution of the waveform, happening with a typical timescale of tprec
much larger than the orbital period. This work is concerned with signals such as the
one depicted in the bottom panel of Fig. 1.5.

30



CHAPTER 2

Detecting Gravitational Waves with Data
Analysis

Somework is always required tomove from theory to practice. This chapter describes
how the theoretical principles introduced before come into play for the construction
of very sensitive instruments for GW detection and how the instrument data can be
used to extract new knowledge about the universe, through a careful data analysis.
After describing the working principles of a gravitational-wave interferometer, we
delve into the foundations of the techniques used to analyse interferometer data. Fi-
nally, we will give a broad overview of the variety of the scientific questions of grav-
itational-wave astronomy and of the data analysis techniques required to answer to
them.

2.1 Interferometers for Gravitational-wave Detection

Aswe saw in Sec. 1.1.4, the effect of a gravitational wave is to alter the proper distance
between pairs of testmasses. This variation in distance can bemeasured by dedicated
instruments, called Michelson interferometers. In an interferometer, a monochromatic
continuous laser beam is sent to a beam splitter, which sends the beam into two or-
thogonal arms. At the end of each arm, a fully reflectivemirror is positioned to reflect
the light back to the beam splitter. The two light beams recombine into a photode-
tector and interfere with each other. The energy measured by the photodetector is a
measure of accumulated phase difference between the optical path in the two beams
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Chapter 2. Detecting Gravitational Waves with Data Analysis

Figure 2.1: Basic setup for a Michelson interferometer to search for gravitational waves, such
as LIGO or Virgo. The photodetector will measure any variation in the laser power caused by
an incoming gravitational wave. In the inset, we report the typical magnitude of the instru-
mental noise as a function of different frequency bins, measured around the first detection of a
gravitational wave in 2015. This quantity is called amplitude spectral density of the detector’s
output and it will be introduced in Sec. 2.2.2. Figure adapted from [188].

and it is a direct measure of the difference in distance between the two arms. As
an incoming gravitational wave changes the differential arm length, the photodetec-
tor will measure a change in the collected power, possibly detecting an astrophysical
signal. In this setup, the two mirrors at the end of the arms, together with the beam
splitter, constitutes a set of test masses, which are free to move on the plane of the
interferometer.

To make our description more quantitative, we consider an interferometer with
two arms placed along the x and y-axis and with lengths at rest Lx and Ly respec-
tively. The basic set up is described in Fig. 2.1. In what follows, we assume the wave-
length λGW of the gravitational wave is much larger than the length of the detector
(L ≪ λGW) so that the polarization is roughly constant along the arms, or equiva-
lently that the gravitational-wave perturbation varies slowly as compared to time of
travel of the laser in the two arms (ωGW ≪ c/L). Thanks to this assumption, the laser
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2.1. Interferometers for Gravitational-wave Detection

can be described within a Newtonian framework (i.e. without solving the geodesics
equation for the light) and we can model the experimental apparatus in the labora-
tory frame, where the effect of a gravitational wave is equivalent to a Newtonian force.
For a more general solution [85], it is convenient to choose the TT gauge and to solve
Eq. (1.33) for the dynamics of a test masses together with the geodesics equation for
the behaviour of the laser.

After traveling back and forth into the x and y arms, two laser pulses E1/2 =

E0e
iωLt of frequency ωL observed at time t are described by:

E1/2 = ∓1

2
E0e

−iωL(t−2Lx/y) (2.1)

where t − 2Lx/y is the time where the beam entered the x/y arm and the opposite
signs in the amplitude are introduced by the behaviour of the beam splitter. At any
given time t, the photodetector measures the power |Edetector|2 of the superposition
Edetector = E1 + E2 of the two pulses:

|Edetector|2 = E2
0 sin

2 [ωL(Lx − Ly)] (2.2)

hence the power measured is directly related to differential arm length (Lx − Ly).
By temporarily choosing the TT gauge1 and considering the spacetime metric

Eq (1.32), we can compute the length of the two arms as a function of time:

Lx/y(t) =

∫ Lx/y

0

√
1± h+(t)dx ≃

(
1± 1

2
h+(t)

)
Lx/y (2.3)

whereLx/y refers to the length of the unperturbed arms. We can then obtain a simple
relation between the gravitational wave and the variation∆(Lx−Ly) in the differen-
tial arm length:

∆(Lx − Ly)(t)

L
= h+(t) (2.4)

where L =
Lx+Ly

2 . Note that, thanks to our assumption L ≪ λGW, the polarization is
constant along the arms: this allowed to simplify the integral in Eq. (2.3).

The expression above is only valid in the special case of a plus polarized wave
propagating along the z direction. For a waveform with generic polarization and
direction of propagation, a careful computation [14] reveals that for a Michelson in-
terferometer the differential arm length ∆L is related to the two polarizations by a
similar relation

∆(Lx − Ly)(t)

L
= h(t) (2.5)

1This choice is particularly convenient as the coordinate distance between two test masses is constant
with time, hence the integral has a particularly simple form. Clearly, as we are computing a scalar quantity,
the result is gauge-independent.
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Figure 2.2: Visual representation of the antenna pattern functions F+, F× for a ground based
interferometer, Eq. (2.7) and (2.8) respectively. In the left panel, along each direction orig-
inating from the center and parameterized by the angles ϑ and φ, the gray-shaded surface
extends to a distance F+(ϑ, φ, 0) from the origin. In the right panel we make the same plot for
F×(ϑ, φ, 0). Note that in both cases, we set the polarization angle Ψ to zero.

where h(t) is called gravitational-wave strain and amounts to a linear combination of
the two polarizations, with the combination coefficients depending on the geometry
of the instrument and the direction of propagation of the waves:

h(t) = F+(ϑ, φ,Ψ)h+(t) + F×(ϑ, φ,Ψ)h×(t). (2.6)

In this context, ϑ and φ are the polar and azimuthal angles of the direction of propa-
gation of thewaveswith respect to the normal to the detector plane, andΨ is the polar-
ization angle, characterizing an arbitrary rotation of the polarization tensors e+µν , e×µν
Eq. (1.28) around the direction of propagation of the wave. The functions F+, F× are
called antenna pattern functions and have the following expression:

F+(ϑ, φ,Ψ) =
1

2

(
1 + cos2 ϑ

)
cos 2φ cos 2Ψ− cosϑ sin 2φ sin 2Ψ (2.7)

F×(ϑ, φ,Ψ) =
1

2

(
1 + cos2 ϑ

)
cos 2φ sin 2Ψ + cosϑ sin 2φ cos 2Ψ. (2.8)

In Fig. 2.2, we visualize the behavior of F+, F× for different directions in the sky. The
antenna pattern functions defines the sensitivity of the detector towards different
source locations and different gravitational-wave detectors, such as the resonant bar
detectors [189], are described by different antenna pattern functions.

From Eq. (2.5) and Eq. (2.2), we see that the power measured by the photode-
tector depends on the gravitational-wave perturbation: this simple remark lies at the
foundation of the gravitational-wave interferometry. By combining the two expres-
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sions, we obtain:

|Edetector|2 = E2
0 sin

2 [ωL(Lx − Ly) + ωLh(t)L] . (2.9)

An effective choice of experimental setup will tune the arm lengths Lx, Ly in order
to maximise the sensitivity to a gravitational wave.

Naively, one may think it is desiderable to maximise the change in measured
power |Edetector|2, hence settingωL(Lx − Ly) = π/4 tomaximise the derivative of sin2.
However, due to the large laser power readout, any gravitational-wave signal will be
subdominant as compared to the Poisson uncertainty

√
N for the photon count N .

For this reason, it is convenient to set ωL(Lx − Ly) = 0, so that the unperturbed
instrument is in a state of destructive interference. In this case, the presence of a grav-
itational wave will increase the photon count well above the Poisson uncertainties.
Any realistic interferometer works under this condition of destructive interference,
called dark fringe.

2.1.1 Features of a Real Interferometer

A real ground-based interferometer, such as LIGO and Virgo, has very strict sensi-
tivity requirements, due to the smallness of the effects it is designed to measure. As
seen above, a typical gravitational-wave signal has a magnitude h ∼ 10−21, which for
a interferometer with an arm of L ≃ 4 km translates into a change in the differential
arm length of ∆(Lx − Ly) ∼ 10−18 m. Such high precision cannot be achieved by
the simple design outlined above but only with several sophisticated experimental
devices.

To obtain a sensitivity improvement of several orders of magnitude, the optical
path of the laser can be increased by placing a semi-reflective parallel mirror at the
beginning of each arm. This configuration creates in each arm a so-called Fabry–Pérot
cavity [190], where the laser bounces back and forth hundreds of times, producing
a complex interference pattern. As the optical path length increases to hundreds
of kilometers, effectively increasing the arm’s length, the same sensitivity can be
achieved with a smaller precision in the measure of ∆(Lx − Ly). As the cavity acts
as a filter on the laser spectrum, the length of the cavity must be carefully chosen in
order to achieve constructive interference at the laser operating frequency: such cavity
is also called resonant. With careful computations [85], we can see that the cavity is
resonant only if its length Lcavity satisfy:

ωLLcavity ≃ nπ (2.10)

for any integer n.
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In general such situation is not achieved, as the normal oscillation of the mir-
rors will prevent the experimenters to impose a distance of their choice between the
mirrors of the cavity. For this reason, the movement of each mirror is controlled by
magnetic attenuators, which are able to impose a small force upon them. By prop-
erly controlling all the attenuators simultaneously, it is possible to precisely control
the length of the cavity and achieve constructive interference for the laser circulating
inside the interferometer. This is called the lock state of the interferometer and it is
possible thanks to an advanced control system, which quickly counterbalance any
random fluctuation of the mirrors of the system. The interferometer reaches enough
sensitivity to detect a gravitational wave only when it set to the lock state.

An interferometer in lock state produces a measurement Ldiff
meas(t) of the differen-

tial arm length Lx − Ly . However, the measure is affected by the mechanical cor-
rection to the free movement of the mirrors and this has to be taken into account to
observe the effect of a gravitational wave Ldiff

free(t) on the arm length. By assuming a
linear response of the detector to the attenuation, the two quantities are related in
frequency domain by a simple relation:

L̃diff
meas(f) =

L̃diff
free(f)

1 +G(f)
(2.11)

where G(f) is the interferometer response function, which relates the variation of
the readout to the various input forces exerted by the attenuators. The process of
estimating G(f) is crucial to measure a gravitational wave and it is called calibration
of the interferometer [191–194]. We can think of the calibration process as a way to
“filter out” the effect of the attenuators on the differential arm length, in order to
provide a sensible estimate of a gravitational-wave signal.

Besides the Fabry–Pérot cavity and the control loop, a state-of-the-art interferom-
eter is composed of many other devices, such as a power recycling cavity, suspen-
sion mechanisms, vacuum chambers for the laser propagation, laser squeezing or
advanced coatings for the mirrors. A complete description of all of them is outside
the scope of this work and the interested reader is encouraged to read [195] for more
details.

2.1.2 Sources of Noise

After calibration, the instrument produces a noisy estimation s(t) of the gravitational-
wave strain

s(t) = n(t) + h(t) (2.12)
where h(t) is given by Eq. (2.6) in the case of a spacetime perturbation but of course,
it might also be zero in the case where no gravitational signal is recorded. The noise
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n(t) is commonly assumed to be stationary over short timescales (see below for more
discussion on the characterization of the noise) and it can be traced back to different
sources [196,197]:

• Seismic noise, arising from the displacement of themirrors due to groundmove-
ment, produced by both natural and artificial sources. The seismic noise dom-
inates for frequencies below 20Hz and becomes a major limitation to the sen-
sitivity for frequencies below ∼ 5Hz. To mitigate the effect of seismic noise,
each mirror is suspended with a complicated set of pendula, which isolates the
mirror from the ground and dampen the induced oscillations [198,199].

• Newtonian noise, arising from the Newtonian gravitational interaction of the test
masses with density waves surrounding the instrument. It mostly affects the
noise budget below 1Hz. While Newtonian noise is not currently the dominant
source of noise at low frequencies, it will become so with an improved sus-
pension mechanism and it is likely to be the dominant source of low-frequency
noise in the next generation of detectors [200, 201], such as the Einstein Tele-
scope [35, 36]. Unlike seismic noise, Newtonian noise cannot be eliminated
with a suitable experimental apparatus, due to the impossibility of screening
the gravitational force. Therefore, the effect of Newtonian noise has to be mit-
igated by properly modelling its effect on the experimental readout and by al-
gorithmically removing it [202,203].

• Thermal noise, arising from the thermally induced Brownian motion of the mir-
ror surface. This source of noise is dominant between a few tens and a few
hundreds of Hz. While the thermal noise can be mitigated by a careful choice
of the mirror material, a great improvement comes from putting the mirror
at cryogenic temperatures. This is the strategy adopted in the KAGRA detec-
tor [13, 198] and in the proposed Einstein Telescope.

• Shot noise, due to the error in the photon counting by the photodetector [204].
Due to the discrete nature of photons, the photon hits the detector following
a Poisson stochastic process. The uncertainties in the photon count, translates
into uncertainties in the measured power and dominate the noise budget for
frequencies above 100Hz. Since the shot noise originates from a fundamen-
tal quantum effect, it can never be fully eliminated, however by increasing the
amount of power circulating in the interferometer, it is possible to reduce the
photon counting uncertainties, hence limiting the impact of the shot noise. A
power recycling mechanism is typically deployed to increase the circulating
power in the instrument, at the expense of an increased noise from radiation
pressure.
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• Radiation pressure noise, emerging from the laser radiation pressure on the mir-
ror. As for the seismic noise, the radiation pressure noise acts on the low fre-
quencies, however it cannot be mitigate by a suitable suspension system. In
principle the pressure noise can be straightforwardly reduced with a low circu-
lating power, but this would result in a high amount of shot noise at high fre-
quencies. Theoretically, the trade off between radiation pressure noise and shot
noise is a direct consequence of the Heisenberg’s uncertainty principle and the
optimal balance the two sources can be achieved by light squeezing [205, 206]
or even by a frequency dependent light squeezing [207]. The future Einstein
telescope will eventually go beyond this limitation by constructing two inter-
ferometers: one with a low circulating power optimized to reduce the pressure
noise in the low frequencies and another one with high circulating power, de-
signed to reduce the shot noise in the high frequencies.

• Other sources of noise are also present in the interferometer, such as noise arising
from the vacuum, from imperfections in the mirrors, from power fluctuations
or from unideal laser or electronic components [85].

The properties of the detector’s output are studied and validated as soon as new data
are recorded. If some of the detector’s output does notmeet the quality requirements,
a data quality veto can be issued [208–210]. A veto is a label, applied to a certain
segment of the data, warning the user of a potential non optimal behaviour of the
detector. Depending on the type of analysis, a scientist can choose to remove certain
segments, based on the assessed data quality.

All the sources of noise described above produce a stationary noise, whose average
properties do not depend on time. Besides stationary noise, sometimes loud transient
burst of noise (glitches) [211–214] are possibly recorded. Glitches can happen in each
detector with a rate as high as 1 per minute and they are empirically grouped into
different categories based on their morphology [212]. While the origin of some glitch
classes is known [215], in most cases the physical mechanism producing a glitch is
unknown [216]. Glitches are an unavoidable part of the detector’s output and they
can negatively affect the extraction of physical information from the interferometer
data. Indeed, they might mimic a short duration BBH signal, hence increasing the
false positive rate of a search for BBH signals (see Sec. 3.4.2), or they may overlap
with an astrophysical signal, hence reducing the amount of information available,
as was the case for the BNS event GW170817 [217, 218]. Due to their ubiquity and
their negative impact on the data analysis, substantial effort has focused on glitch
subtraction, characterization and modeling [219–231].
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2.2 Noise Characterization
Noise is the predominant output of any present ground-based interferometer. In-
deed with the current sensitivity, BBH signals are recorded only every few days and,
even if they are present in detector’s output, their amplitude is typically one or two
orders of magnitude smaller than the noise. For this reason, characterizing the sta-
tistical properties of the noise is essential. This knowledge, combined with certain
assumptions about the noise, plays a crucial role in every data analysis application,
including the searches for precessing black hole binaries discussed in this work.

2.2.1 Essentials of Timeseries Analysis

Before diving into the details, we introduce some notation and define some useful
operations. The detector’s output consist of a timeseries s(t), which provides a noisy
estimation of the strain Eq. (2.6) as a function of time. Practically, the strain timeseries
is recorded only at some discrete times tn, separated by a constant spacing ∆t. We
call sampling frequency, or sampling rate, fs the quantity 1/∆t. The detector’s output
is sampled with fs = 16 384Hz but for a typical data analysis it is sufficient to set
fs = 4096Hz or even fs = 2048Hz 2. When a timeseries s(t) of length T is sampled
at a given sample rate, it can be represented by a real vector s such that:

sn = s(tn) with n ∈ {0, . . . , N − 1} (2.13)

where, of course, N = ⌊T/∆t⌋ = ⌊Tfs⌋ and ⌊·⌋ denotes the floor of a real number.
Sometimes it is convenient to represent a timeseries in the frequency domain. This

amount to applying the Fourier transform F to s(t) to obtain a complex frequency
series s̃(f) = Fs(t)

s̃(f) =

∫ +∞

−∞
dt s(t)e−i2πft. (2.14)

Clearly, the transformation is invertible:

s(t) =

∫ +∞

−∞
df s̃(f)ei2πft. (2.15)

Note that if s(t) is real, then s̃(f) = s̃∗(−f). This means that is there is a symmetry
between the real and the negative frequencies of the frequency domain timeseries.

2Indeed a typical BBH signal does not span frequencies higher than a thousands of Hertz, which is
below the maximummeasurable frequency at a given sample rate (also known as the Nyquist frequency).
Moreover, as discussed in Sec. 2.1.2, the detector sensitivity is severely limited by the shot noise for fre-
quencies above a few thousands Hertz.
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For a discretely sampled timeseries, the Fourier transform reduces to the discrete
Fourier transform (DFT), which produces a discrete frequency series:

s̃k =

N−1∑

n=0

sne
−i2π n

N k (2.16)

with inverse
sn =

1

N

N−1∑

k=0

s̃ke
i2π k

N n. (2.17)

The discrete frequency series s̃ consist ofN points and it is evaluated on a frequency
grid with a constant spacing ∆f = 1

T :

fk = {−fNy,−fNy +∆f, . . . , 0, . . . fNy −∆f, fNy} (2.18)

where fNy = 1
2fs = 1

2∆t is known as the Nyquist frequency and it amounts to the
maximum measurable frequency given the time resolution available.

Formost operations, included spectral estimation andwhitening described below,
it is useful to apply a window to the data, i.e. to multiply the timeseries s(t) by a
window functionW (t). The window function is usually taken to have zero values at
the edges of the time grid. Windowing a timeseries avoids the edge-effects due to the
limited sample size, arising from computing the discrete Fourier transform.

Finally, we define the cross-correlation ⋆ between two timeseries a(t), b(t) as:

(a ⋆ b)(t) =

∫ ∞

−∞
dτ a(τ − t)b(τ). (2.19)

The cross-correlation has a remarkable property: the Fourier transform of the cross-
correlation of two timeseries is the product of the Fourier transform of the two time-
series - in symbols F{a ⋆ b} = F{a}F{b}. This is the analagous of the convolution
theorem for cross-correlation. The operation of cross-correlation lies at the core of the
matched-filtering algorithm and it is extensively used in the search for BBH signals,
as detailed in Sec. 3.1.

2.2.2 A statistical Model for the Noise

Since, for every given time, the noise part nt of the detector’s output Eq. (2.12) takes
a random value, we can conveniently model the noise timeseries nt as a stochastic
process. A stochastic process is a collection of random variables indexed by a variable
t, which may be correlated with each other. For a stochastic process, we can define
the mean µ(t) and the two-point correlation function K(t1, t2)

µ(t) = E [nt] (2.20)
K(t1, t2) = E [nt1nt2 ] (2.21)
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where the expected value E is taken over many noise realizations in a procedure
called ensemble average.

In what follows, we assume that the noise process nt in consideration is fully char-
acterized by its mean and its two-point correlation function. This means that other
quantities derived from the process, such as the three-point or higher-order correla-
tions, are functions of these two quantities. It turns out [232,233] that our knowledge
of µ(t) andK(t1, t2) is sufficient to write down the probability distribution p for a re-
alization of the noise (n0, . . . , nN−1)

p(n0, . . . , nN−1) ∝ exp
{
− 1

2

∑

ij

(ni − µi)K
−1
ij (nj − µj)

}
(2.22)

where Kij = K(ti, tj), µi = µ(ti) and K−1 denotes matrix inversion. The result is
obtained by applying the Maximum Entropy principle, which states that such distri-
bution must maximise the entropy, compatibly with the available constraints given
by the knowledge of µ(t) andK(t1, t2). The solution to the maximization problem is
then a simple multivariate Gaussian3. For this reason, a process satisfying Eq. (2.22)
is called Gaussian noise. It is important to recognize that the probability distribution
Eq. (2.22) is derived solely from the knowledge of µ(t) and K(t1, t2). Had we in-
cluded additional information in our noise characterization (e.g. an expression for
the three-point correlation), we would have obtained a different probability distribu-
tion for the observed timeseries.

A crucial observation is that the mean of the detector’s noise is zero, i.e. µ(t) = 0.
Moreover, the two-point correlation function K(t1, t2) is found to depend only on
τ = t1 − t2 and hence is invariant under a time shift t1, t2 → t1 + C, t2 + C. A
process satisfying this property is said wide-sense stationary. The empirical observa-
tion above is only valid for when averaging over a “short” period of time O(hours).
However, as our analysis will focus on signals with a durationO(10 seconds), we can
safely assume that the interferometer noise is stationary over the time of analysis.
The properties of stationary noise, i.e. K(t1, t2), will still change over the timescale
of hours and this will be taken into account. See [234–238] for some examples on
how to drop this assumption. For a wide-sense stationary process, we can define the
autocorrelation function C(τ):

C(τ) = K(τ, 0) = E [n0nτ ] . (2.23)

Thanks to our Gaussian noise assumption, the knowledge of the autocorrelation fully
specifies the stochastic properties of the noise, computed by invoking the Maximum
Entropy principle.

3The fact that the Gaussian distribution maximizes entropy given the variance and the mean is indeed
a standard textbook results in statistics and it justifies its ubiquitous application throughout physics.
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A deeper understanding on the properties of stationary noise arises from consid-
ering the correlation E[ñ∗

f ñf ′ ] of different frequencies, averaged over time:

E
[
ñ∗
f ñf ′

]
= E

[∫ +∞

−∞
dtdt′ n(t)n(t′)ei2πfte−i2πf ′t′

]
(2.24)

=

∫ +∞

−∞
dtdτ C(τ)e−i2πt(f ′−f)e−i2πf ′τ (2.25)

= δ(f − f ′)
∫ +∞

−∞
dτ C(τ)e−i2πf ′τ (2.26)

= δ(f − f ′)S(f) (2.27)

where in the computation we used C(t′ − t) = E [n0nt′−t], we performed the change
of variables τ = t′ − t and in the last line we defined:

S(f) =

∫ +∞

−∞
dτ C(τ)e−i2πτf . (2.28)

Note that as C(τ) is a real function, S(f) = S(−f). Eq. (2.27) states that, for a
wide-sense stationary process, the components in the frequency domain are uncorre-
lated with each other. Moreover, it provides a simple characterization of the variance
E
[
|ñf |2

] of the frequency domain noise, which simply amounts to the Fourier trans-
form of the autocorrelation function.

Further insight is given by the Wiener-Khinchin theorem, which states that S(f)
is equivalent to the power spectral density (PSD), defined as the absolute value of the
Fourier transform ñT (f) of the noise timeseries nT (t) with length T in the limit of
large values of T :

S(f) = lim
T→∞

1

T
|ñT (f)|2. (2.29)

This expression gives a useful characterization of S(f) as well as a way to estimate
its value. The PSD has units of time and it is commonly measured in 1/Hz. It is
sometimes useful to work with square root of the power spectral density, which goes
under the name of amplitude spectral density (ASD). In the inset of Fig. 2.1, we show
the typical ASD for the two LIGO detectors, as measured around the first detection
of a gravitational wave [188].

Aswe did for the time domain case, we canwrite themaximum entropy probabil-
ity density of obtaining a noise realization of frequency domain noise (ñ0, . . . , ñN−1)

By rearranging Eq. (2.22) and assuming zero mean, we obtain:

p(ñ0, . . . , ñN−1) ∝ exp

{
− 1

2

∑

i

∆f
|ñi|2
S(fi)

}
(2.30)
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where the frequencies fi belongs to the usual grid Eq. (2.18) and of course,∆f = 1/T

. By taking the continuous limit, we obtain:

p[ñ(f)] ∝ exp

{
− 1

2

∫ +∞

−∞
df |ñ(f)|2

S(f)

}
. (2.31)

This simple expression can be used both for sampling noise realizations and to com-
pute the likelihood that a given frequency series ñ(f) is generated by the noise process
described by the power spectral density S(f).

Motivated by Eq. (2.31), we introduce the Wiener complex scalar product ⟨·|·⟩
between two timeseries a(t), b(t) as follows:

⟨a|b⟩ =
∫ +∞

−∞
df ã∗(f)b̃(f)

S(f)
. (2.32)

We denote with (·|·) and [·|·], the real and imaginary part respectively of ⟨·|·⟩, so that

⟨a|b⟩ = (a|b) + i[a|b] . (2.33)

Using this notation, the probability distribution for Gaussian noise takes a simple
expression:

p[ñ(f)] ∝ e−
1
2 ⟨n|n⟩. (2.34)

We use the ˆ symbol to denote a normalized timeseries

â =
1√
(a|a)

a(t) (2.35)

such that (â|â) = 1.
In a practical application, the strain is only calibrated for a limited range of fre-

quencies and for this reason, it is often convenient to consider only a certain range
of positive frequencies [fmin, fmax], where fmin and fmax depend on the application.
We can also introduce the one sided power spectral density Sn(f), defined only for
positive frequencies f > 0 as:

Sn(f) = 2S(f). (2.36)
By setting a frequency range and using the one sided PSD, we can re-define the
Wiener product as

⟨a|b⟩ = 4

∫ fmax

fmin
df ã∗(f)b̃(f)

Sn(f)
(2.37)

This definition allows the scalar product to be computed only within a specific fre-
quencywindowof interest. Typically, we set fmin = 10/15Hz and fmax = 1024/2048Hz,
thereby excluding frequency ranges where the detector’s sensitivity is poorer (see
the inset of Fig. 2.1). In this work, we will consistently apply this definition for the
Wigner product, and when relevant, we will explicitly specify the frequency range
considered. Clearly, Eq. (2.34) is still valid within the domain of interest.
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2.2.3 Spectral Estimation

From the discussion above, it is clear that computing the power spectral density is of
primary importance for the characterization of noise. While several spectral estima-
tion methods have been developed, gravitational-wave data analysis mostly relies on
theWelch’smethod [239]. The method relies on Eq. (2.29) and computes the discrete
Fourier transform of a noise realization to estimate the PSD. To reduce the bias of the
estimation, the time domain signal is usually sliced into several smaller segments:
each segment is windowed and after computing the DFT, the results are averaged to-
gether. While the averaging procedure reduces the estimation bias for an individual
point, it downgrades the method resolution, especially at the low frequencies, due to
less frequency points considered.

Even though the method is widely used, mostly due to its simplicity, the trade
off between resolution and bias requires requires a lot of tuning and the PSD estima-
tion can suffer from a poor choice of the length of segments. Also the windowing
procedure involves some arbitrary choices which may impact negatively the PSD es-
timation.

Maximum entropy spectral estimation A competitive alternative to the Welch’s
method comes from applying themaximum entropy principle to the problem, as first
done by Burg [240]. The method was recently brought to the attention of the grav-
itational-wave data analysis community in [9], with some interesting application to
parameter estimation.

The starting point of the Burg’s method is the computation of the N empirical
autocorrelation coefficients Ĉk, which provides an estimator of the autocorrelation
C(τ = tk) based on a single noise realization xt. For an infinitely long timeseries,
the empirical autocorrelation coefficients are known for any discrete time shift tk,
hence the problem of computing the spectrum reduces to just computing the dis-
crete Fourier transform of Ĉk, by evaluating Eq. (2.28). However, due to the finite
size of the sample, our knowledge of such coefficients is limited. Moreover, the vari-
ance of their estimation will increase as the time shift increases, further limiting our
knowledge of the autocorrelation. As a way out, we can invoke the maximum en-
tropy principle to find the PSD as the solution of a variational problem which takes
into account our knowledge and at the same time does not make any assumption on
the unknown coefficients. The variational problem can be stated as follow. We need
to find a function S(f)which maximizes the entropy gain ∆H

∆H =

∫ fNy

−fNy
df logS(f) (2.38)
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and whose Fourier transform agrees with the empirical autocorrelation coefficients
Ĉk ∫ fNy

−fNy
df S(f)ei2πfk∆t = Ĉk. (2.39)

Note that, unlike with the Welch method, the maximization problem does not make
any assumption about the unknown coefficients Ck with k > N .

The maximization problem admits a closed form solution:

S(f) =
P∆t

|1−∑p
k=1 ake

i2πfk∆t|2
(2.40)

where the p coefficients ak as well as the scale factor P are obtained by solving a
recursive formula. The number p of coefficients is the only tunable parameter for the
PSD estimation and several strategies are available for an effective choice.

A comparison between the Burg’s algorithm and the Welch’s algorithm reveals
that the Burg’s solution yields an estimation with a smaller variability over different
noise realizations and, especially for short timeseries, a better accuracy for the PSD
at low frequencies [9]. A PSD estimation stable for very short timeseries can open
up interesting opportunities in the parameter estimation of a BBH signal, possibly
avoiding any bias introduced by using the Welch’s method.

2.2.4 Whitening

We saw that in Gaussian noise samples at different times are correlated with each
other and a measure of this correlation is given by the autocorrelation function C(τ)

or equivalently, by its Fourier transform, the power spectral density S(f). For many
applications, including searching for signals, it is useful to introduce a transforma-
tion, called whitening, which removes any correlation between different times. We
therefore obtain an uncorrelated noise process nW (t), called white noise, each sample
is independent from the others, hence the autocorrelation function is simply C(τ) =

δ(τ) and, according to Eq. (2.22), the noise at every time is sampled from a standard
normal distribution (i.e. zero mean and unit variance):

nW
t ∼ N (0, 1). (2.41)

The whitening transformation acts on a Gaussian noise process n(t) to produce a
white noise process nW (t) as follows

nW (t) =

∫ +∞

−∞
df ñ(f)√

S(f)
ei2πft (2.42)
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Asimple computation of the two-point correlation function shows that indeedEq. (2.42)
produces a white noise process:

E
[
nW
t1 n

W
t2

]
=

∫ +∞

−∞
dfdf ′ E [ñ∗(f)ñ(f ′)]

S(f)
ei2πft1e−i2πf ′t2 (2.43)

=

∫ +∞

−∞
df ei2πf(t1−t2) = δ(t1 − t2). (2.44)

where we used Eq. (2.27) to compute the expected value over different noise realiza-
tions. Finally, we can see that the PSD of white noise process is constant

SW (f) =

∫ +∞

−∞
dτ δ(τ) e−i2πfτ = 1. (2.45)

Clearly, any white noise process can be rescaled by a constant factor to set a given
variance. This rescaling also affects the PSD.

As introduced above, the whitening operation removes the correlation between
samples at different times, which is expected from a Gaussian noise model for the
timeseries. This step is crucial because it simplifies the detection of any residual cor-
relation, whichmay arise either from an astrophysical signal or a non-Gaussian noise
transient. Further insight can be obtained by looking at the frequency domain rep-
resentation of the noise timeseries. As expressed in Eq. (2.45), whitening rescales
each frequency so that the variance of the power in each frequency bin becomes con-
stant. In this way, the whitening process normalizes the “noise floor” across differ-
ent frequencies, making it easier to detect excess power in any particular frequency
bin. An excess power in a frequency bin manifests in the time domain as a corre-
lation between samples at different times, highlighting the complementary nature
of the time and frequency domain perspectives. This relationship underscores how
insights from both domains can be combined to improve signal detection and noise
characterization.

2.3 Overview of the Data Analysis for Compact Binary
Coalescences

An array of interferometers produces a large amount of raw data, which need to be
analysed with complex techniques in order to extract information about compact bi-
naries and answer the most pressing questions of gravitational-wave astronomy. We
discuss below a few of such techniques, highlighting some of the questions that the
gravitational-wave community is trying to address. Far from being exhaustive, our
discussion is helpful to frame the current work about searching for precessing com-
pact binary signals into the large and active field of gravitational-wave astronomy.
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Note that our discussion only focuses on the physics of compact binary coalescence
(CBC), hence neglecting a large portion of the scientific goals of the LIGO, Virgo and
KAGRA (LVK) collaboration, such as studies in continuous waves [241–245], super-
novae [246–250] and stochastic gravitational-wave background [251–255].

Waveforms A preliminary step for every data analysis application on CBC study
is the availability of fast and accurate prediction of the gravitational signal emitted
by a BBH, a binary neutron star (BNS) or a neutron star-black hole system (NSBH).
As already discussed in some details in Sec. 1.3.2, this is done by “combining” the
perturbative dynamics of the binary with accurate but expensive predictions from
numerical relativity. This idea gave birth to two families of model, EOB models [52,
153,155,156,256] and phenomenological model [48,157,257–259], both readily avail-
able for the public and widely used. Such models may or may not incorporate effects
of spins, spins precession, higher order multipoles and (more recently) eccentricity.

As most of the data analysis relies on a fast availability of such waveforms, a
longstanding effort has been devoted to develop surrogate models [260–267], with
the goal of speeding up the waveform generation and enable several data analysis
applications. Surrogate models are usually large parametric models, trained to re-
produce waveforms from an approximant of choice or even by numerical relativity
waveforms. Recent works have developed machine learning based surrogate mod-
els [5–7, 268–276], even though none of such model has yet reached a production
level.

Searches Once the interferometer data are available, the first task is to identify a
set of candidate CBC signals and assign them ameasure of the statistical significance
of a potential detection. This is the primary goal of a search pipeline, which can be
broadly categorized into unmodeled and modeled. Unmodeled searches, such as
those of the Coherent WaveBurst (cWB) pipeline [277–281], search for transient sig-
nals with minimal assumptions by looking for coherent excess power between two
detectors. Unmodeled searches tend to be less sensitive to CBC signals than mod-
eled searches but can potentially identify signals from a broader range of sources,
even the ones that the theory fails to predict. On the other hand, modeled searches
rely on matched-filtering [63] to correlate the detector’s output with a large number
of CBCwaveform templates. While they generally offer greater sensitivity compared
to unmodeled searches, this comes at the cost of reduced sensitivity to signals out-
side their target regions or to other non-CBC events. We will discuss matched-fil-
tering searches in the next Chapter. Both types of searches have been used to build
most recent LVKGW transient catalogs [15–18] and theywere crucial to detect all the
confirmed GW events detected so far.
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Parameter estimation Once a waveform is detected, a thorough analysis is needed
to provide a measurement of the properties (masses, spins, sky location etc...) of the
source binary. This is done by means of a parameter estimation procedure [282–284]
which operates in a Bayesian framework. Given a set of parameters θ of a parametric
model p(D|θ) which describes the observed data D, the analysis defines a posterior
probability distribution p(θ|D), which represents our best knowledge of the source.

Sampling from the posterior p(θ|D) is a challenging task, due to the high dimen-
sionality of the problem and to high computational cost related to the generation
of millions of waveforms. Traditionally the parameter estimation utilizes standard
sampling techniques, such as Markov chain Monte Carlo [285] and Nested Sam-
pling [286, 287]. More recently Machine Learning based sampling approaches have
been investigated [288–292].

Rates and population The combined detections of many CBC sources provide in-
valuable information about the population of astrophysical binaries, its properties
and the rate of mergers per unit of time and volume. Several methods have been de-
veloped to estimate the rate of a population of binaries based on search results [293,
294]. Moreover, ever since tens of detections are routinely performed, more sophis-
ticated Bayesian methods have emerged not only to estimate the signal rates but also
to constrain the statistical distributions of astrophysical parameters such as masses,
redshifts and spins [19–21]. To achieve this, both parametric [295–297] and non para-
metric [298–302] probabilistic models have been developed and are routinely used.
These models rely on the results of parameter estimation for each detected event to
make the most accurate inference about the population’s properties.

Tests of general relativity A detected CBC signal provides a unique regime where
to test the predictions of theory of GR in a strong field regime [303]. By comparing
the many detected signals with the GR predictions, it is possible to probe the theory
in many scenarios, allowing to rule out alternative theories and to pose experimen-
tal constraints on the amount of GR violation. Tests of general relativity routinely
performed include constraints on the dynamics of the inspiral or on the ringdown
phase [304, 305], a measurement of the speed of propagation of a GW and a mea-
surement of the number of polarizations of the spacetime perturbations [30–34]. So
far, no deviation from the theory of general relativity has been observed.

Extremematter andmulti-messenger astronomy Abinary neutron starmerger [306,
307] is a unique phenomenon where matter is squeezed at very high densities ρ ≃
1014 g/cm3, in such extreme conditions that the macroscopic and microscopic be-
haviour of matter are still poorly understood. A GW from a binary neutron star sys-
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tem can give invaluable information on the deformability of a neutron star [308],
allowing to pose important constraints on the equation of state the matter at high
densities. Moreover, a binary neutron star merger will launch an energetic gamma
ray burst [309, 310], with consequent ejection of highly radioactive matter in what is
known as a kilonova [311]. Both the gamma ray burst and the kilonova can be ob-
served in the electromagnetic band with existing telescopes. The multi-messenger
study of binary neutron stars has started with the observation GW170817 [23, 217,
312], with plenty of spectacular results [22,24,25,31,313–315], and has the potential
of providing more interesting observations, as the interferometers collect more data.

Cosmology The gravitational wave from a compact binary allows for a measure-
ment of the distance of the binary. This information, coupled with a measure of red-
shift, can be used to constraint the expansion history of the universe, via the mea-
surement of the Hubble constant H0 [26, 28, 29, 316]. A few methods have been de-
veloped for redshift estimation [317,318], either jointly fitting the cosmological mod-
els and the BBH redshift distribution or using statistical information from galaxy
catalogs. In the case of a multi-messenger event, such as GW170817, the redshift
can be easily obtained by the electromagnetic observation of kilonova surrounding
the merger [319, 320]. While the uncertainties for the inferred value for the Hub-
ble constant are still large, more observation might eventually solve the “Hubble
tension” [321] between the measurements of the H0 from cosmic microwave back-
ground [322] and from standard candles [323,324].
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CHAPTER 3

Searching for Signals with Matched Filtering

In this section we describe some general features of the matched-filtering pipelines
that are routinely employed to search for binary black holes systems. Their primary
objective is to produce a list of potential candidates, ranked from themost to the least
likely to be of astrophysical origin, and to estimate the statistical significance of each
candidate. We will first introduce the basics of matched filtering and show how it
can be used to define a suitable search statistic useful to identify potential signals.
The search statistic must be evaluated for many different binary systems of interest,
forming large template banks, whose generation will be the topic of one subsection.
Finally, we will provide an overview of a realistic matched-filtering pipeline, diving
into some details of the several steps required to build a candidate list and to estimate
their statistical significance. We will mostly specialize our discussion to the GstLAL
pipeline, even though we will highlight differences and features with other widely
used pipelines.

3.1 Basics of Matched Filtering

A major challenge for the detection of gravitational waves comes from the fact that
the magnitude of an oscillating signal h(t) is one or two orders of magnitude smaller
than the noise n(t). Luckily, in this scenario it is still possible to detect a signal thanks
to the technique of matched filtering. Heuristically, matched filtering computes the
correlation 1

T

∫ T

0
dt h(t)s(t) between a signal h(t), which starts at time t = 0 and has
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a duration T , and the noisy data s(t) = n(t) + h(t):

1

T

∫ T

0

dt h2(t) +
1

T

∫ T

0

dt h(t)n(t). (3.1)

The advantages of this expression are evident: while the first term is constant and
amounts to the squared amplitude of the signal1, the second termdecreases as2 1/

√
T .

As a result, for sufficiently long (or loud) signals, this method can potentially reveal
their presence even when buried deep within the noise floor.

In the rest of the section we will make this rough argument more precise, em-
ploying two different approaches to obtain the expression for the optimal filter to be
used to search for a signal h(t). A matched-filtering search will then compute the
correlation between the data s(t) and the optimal filter as a function of time (i.e. as a
function of a time shift of the template). Consequently, it will claim a detection only
if the correlation value, also called search statistic3 or Signal-to-Noise ratio, exceeds a
certain threshold at a given time.

3.1.1 Matched Filtering as Optimal Filter

To formalize our problem [14,85,325], we define the correlation ρ between the detec-
tor’s output s(t) and a filterK(t)

ρ =

∫ ∞

−∞
dt s(t)K(t). (3.2)

This is real random variable, whose value depends on a particular noise realization
and on the signal h(t) present in the detector’s data. We want to find the optimal
filterK(t) so as to maximise the ratio S/N between the expected value S of ρwhen a
signal is present and the square root N of the variance of ρ in the presence of noise
only. After the optimal filter is chosen, the value of ρ represents the search statistic
used to claim a detection.

In the presence of a signal, the expected value S of ρ is

S = E

[∫ ∞

−∞
dt s(t)K(t)

]
=

∫ ∞

−∞
df K̃∗(f)h̃(f), (3.3)

1For a perfect sine wave, the integral ∫ T
0 dt h2(t) is equal to Th2

0, where h0 is the amplitude of the
wave and therefore 1

T

∫ T
0 dt h2(t) = h2

0. While this argument relies on a sinusoidal wave, it can be easily
extended to a chirp-like wave, such as a gravitational-wave signal. Indeed, we could show that for any
oscillating signal, the integral ∫ T

0 dt h2(t) is always proportional to T .
2As h and n are uncorrelated, ∫ T

0 dt h(t)n(t) is well approximated by the integral of a random walk
process, whose magnitude grows as

√
T .

3As explained below, this term is borrowed from the field of frequentist hypothesis testing.
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where we used the fact that E [s(t)] = E [h(t)] = h(t) and we wrote the convolution
in the frequency domain. On the other hand, the variance N2 of ρ when a signal is
absent is given by

N2 = E
[
ρ2
]
− E [ρ]

2 (3.4)

=

∫ ∞

−∞
dfdf ′ K̃∗(f)K̃(f ′)E [ñ∗(f)ñ(f ′)] (3.5)

=

∫ ∞

−∞
df |K̃(f)|2S(f) (3.6)

wherewe used the fact thatE [ρ] = 0 andwe used Eq. (2.27) to evaluateE [ñ(f)ñ(f ′)].
The ratio S/N is usually called Signal-to-Noise ratio (SNR) and can be conve-

niently written using the real part of the Wiener product Eq. (2.32):

SNR =
S

N
=

(u|h)√
(u|u)

= (û|h) (3.7)

with ũ(f) = S(f)K̃(f) and û = u√
(u|u)

as in Eq. (2.35). Trivially, the expression is
maximized when u ∝ h, hence the optimal filter to search for a signal h(t) in the
detector’s data is

K̃(f) ∝ h̃(f)

S(f)
(3.8)

where an overall constant can be freely chosen. By combining the last two equations,
we obtain an expression for the SNR of a signal h(t)

SNR2 = (h|h) = ℜ
∫ +∞

−∞
df |h̃(f)|2

S(f)
. (3.9)

With the optimal filter, we can thenwrite down the final expression for search statistic
ρ:

ρ = (s|ĥ) = ℜ
∫ ∞

−∞
df s̃∗(f)˜̂h(f)

S(f)
, (3.10)

where we set to one the amplitude of the optimal filter in Eq. (3.8). This expression is
completely generic and does not make any assumption about the nature of the signal
h(t) we are searching for. In the next section, we will specialize the equation to the
case of a compact binary coalescence.

3.1.2 Matched Filtering as Hypothesis Test

Another, perhapsmore elegant, approach for determining the optimal search statistic
comes from the theory of hypothesis testing [141]. In this context, we frame the
detection problem as a test between two hypothesis:
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1. The “noise” hypothesis: The observed strain s(t) is only formed by noise

2. The “signal” hypothesis: The observed strain s(t) is formed by a superposition of
noise and a signal h(t)

We then need to perform a test to distinguish between the two hypothesis. In a fre-
quentist framework, this involve the computation of a test statistic, whose value de-
termines whether the “signal” hypothesis can be accepted. According to the Ney-
man–Pearson lemma [326], the likelihood ratio between the two hypothesis is the
optimal score for the hypothesis test in the sense that it maximizes the true positive
rate, i.e. the probability of accepting a signal hypothesis whenever a signal is actually
present in the data.

Mathematically, we can assign a likelihood to the “noise” hypothesis by evaluat-
ing the probability that the observed strain arises from Gaussian noise, as given in
Eq. (2.34). The likelihood for the “signal” hypothesis can be obtained by considering
that if the signal h(t) is present in the data s(t), then s(t)− h(t) must be a timeseries
formed of noise only and should also follow Eq. (2.34). The log likelihood ratio Λ is
then

Λ = log
p(s(t)|signal)
p(s(t)|noise) = log

e−
1
2 (s−h|s−h)

e−
1
2 (s|s)

= (s|h)− 1

2
(h|h), (3.11)

where we used the standard notation p(A|B) to denote the conditional probability of
A given B. The conditional probability p(A|B) = p(A∪B)

p(B) amounts to the probability
of the event A given the knowledge that the event B has already occurred.

We note that the log likelihood ratio Λ depends on the data only through the
quantity (s|h) and it is amonotonically increasing function of this inner product. This
means that we are free to choose the amplitude of h(t) without affecting the ability
of the test to distinguish between signal and noise4. By convention, we choose such
amplitude so as to maximise the value of Λ. The maximization over a constant scale
factor a can be written as

max
a

Λ = max
a

{
a(s|h)− a2

2
(h|h)

}
(3.12)

and it yields the expression for the search statistic 2Λ = ρ2 = (s|h)2
(h|h) = (s|ĥ)2, identical

to Eq. (3.10).

3.2 Search Statistic
The search statistic ρ in Eq. (3.10) is useful to detect a specific signal h(t) within the
data, also known as the template. The analytical form of a template must be known

4This is true provided that we scale the detection threshold accordingly.
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with precision ahead of the search and it usually depends onmany parameters stored
in a vector ϑ, which describes the property of the source and fully specify a template.
We may then write h(t;ϑ). Clearly, in a realistic scenario, we are not interested in
checking for the presence of a single signal, characterized by a particular value of ϑ,
but we rather seek to detect any signal present in the data, within a reasonable range
of template parameters. For this reason, our search problem can be cast into a large
optimization problem, where the search statistic ρ is maximized over all the possible
values of the template parameters ϑ:

max
ϑ

ρ(ϑ) = max
ϑ

(s|ĥ(ϑ)). (3.13)

The search statistic ρ Eq. (3.10) is fully general and does not make any assumption
about the nature of signal or even about the type of detector. Without further knowl-
edge of the signal model, the maximization Eq. (3.13) must be carried out by a brute
force approach, where ρ(ϑ) is evaluated over a discrete set of value of ϑ, or equiv-
alently, different matched-filtering searches are carried out for many different tem-
plates. The discrete set of template searched for is called template bank, which will be
the topic of the next section.

By including the effect of eccentricity, the template h for a BBH signal is described
by 17 parameters, as shown in Eq. (2.6) and Eq. (1.62). The two masses m1, m2 and
spins s1, s2 of the BHs together with the eccentricity e of the orbit and the mean peri-
astron anomaly a form a set of 10 parameters called intrinsic, since they only depend
on the source. Other 7 parameters are needed to describe the position and orienta-
tion with respect to the observer and for this reason are called extrinsic: they are the
time of arrival in the detector frame t0, the inclination angle ι, the reference phase ϕ,
the polarization angle Ψ and the sky location, parameterized by the right ascension
α, the declination δ, together with the luminosity distance DL. Luckily, we can max-
imise the search statistic over some of these nuisance parameters, thus reducing the
number of parameters that needs to be discretely covered by the template bank, i.e.
the dimensionality of the bank. The details of the analytical maximization depend on
the type of binary considered.

As a realistic search does not have access to all the frequencies components of
the strain, every matched-filtering analysis is restricted only to a finite range of fre-
quencies [fmin, fmax]. From a practical point of view, this amounts to computing the
scalar product using the one-sided PSD Sn(f) and to constrain any integration over
frequencies to the range of interest. Thus, in what follows, we will consider the scalar
product Eq. (2.37), instead of the scalar product Eq. (2.32) used above.
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3.2.1 Statistic for Circular Aligned-spin Binaries

Astandard assumption is thatwe only search for circular aligned-spin binaries, where
only the quadrupole dominant (ℓ, |m|) = (2, 2) modes are considered. From an as-
trophysical perspective, restricting the search to circular, aligned-spin systems still
encompasses a large fraction of the binaries in the universe. Indeed, most binaries
are expected to have lost their orbital eccentricity through gravitational radiation by
the time they merge, and the dominant formation channel—isolated binary evolu-
tion—is believed to produce systems with nearly aligned spins. Furthermore, this
choice drastically simplifies the morphology of the waveform and by limiting the
template bank size, it reduces the cost of the search by orders of magnitude, as we
will see below with more details. Therefore, most of the traditional searches intro-
duced so far are restricted to aligned-spin binaries with only the dominant mode
considered.

Under this simplification, Eq. (1.62) becomes:

h+ + ih× =
1

DL

{
h22Y22(ι, ϕ) + h2−2Y2−2(ι, ϕ)

}
(3.14)

=
1

DL

√
5

64π
(1 + cos ι)2Aeiφe2iϕ+

+
1

DL

√
5

64π
(1− cos ι)2Ae−iφe−2iϕ (3.15)

=
1

DL

√
5

64π

1 + cos2 ι

2
A cos(φ+ 2ϕ)+

+ i
1

DL

√
5

64π
cos ιA sin(φ+ 2ϕ) (3.16)

where we use the explicit expression for the spherical harmonics [103] and A and φ

are the time-dependent amplitude and phase of the (ℓ, |m|) = (2, 2)modes

h22 = h∗
2−2 = Aeiφ, (3.17)

which depend only on the masses m1, m2 and on the z-components of the spins χ1z
and χ2z5. The expression is remarkably simple and extends the Newtonian formulas
Eqs. (1.74-1.75) to account for a more accurate description of the orbital evolution.

The simplicity of Eq. (3.16) can be used tomaximise the detection statistic Eq. (3.10)
with respect to all the extrinsic parameters except the masses and spins, thus leaving
only 4 parameters to maximise over by brute force. To show this, we note that the

5As we are focusing on circular binaries, we are not considering the eccentricity and the mean anomaly
of the system.
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strain h Eq. (2.6) can be written as [327]

h = F+h+ + F×h× =
1

Deff
A cos(φ+ 2ϕ0) (3.18)

where the effective distance Deff is given by

Deff =
DL√

F 2
+

(
1+cos2 ι

2

)2
+ F 2

× cos2 ι

(3.19)

and the phase ϕ0 is defined as

e2iϕ0 = e2iϕ
Deff
DL

[
F+

1 + cos2 ι

2
− iF× cos ι

]
. (3.20)

This result is remarkable: the effect of all the extrinsic parameter on the observed
signal can be absorbed by an overall amplitude scale and by a phase shift. This has a
profound implication formatched-filtering, sincewe can easilymaximise analytically
the search statistic over an amplitude and a phase.

To move forward it is convenient to define the waveforms hp(t;m1,m2, s1z, s2z),
hc(t;m1,m2, s1z, s2z) as

hp(t) = A(t) cos(φ(t))

hc(t) = A(t) sin(φ(t))
(3.21)

with the notable properties that hp ∝ h+, hc ∝ h× and

˜̂
hp = i

˜̂
hc. (3.22)

Moreover, we note that hp and hc are orthogonal, i.e. (hc|hp) = 0. With this definition,
the frequency domain strain can be written as:

h̃ =
1

Deff

[
h̃p cos(ϕ0) + h̃c sin(ϕ0)

]
=

1

Deff
eiϕh̃p. (3.23)

As the detection statistic does not depend on an overall amplitude scaling, we must
only maximise over a constant phase ϕ0:

max
DL,α,δ,ι,ϕ,Ψ

ρ2(ϑ) = max
ϕ0

ρ2(ϑ) = max
ϕ0

(s|ĥpe
iϕ0). (3.24)

The solution is trivial, as the effect of the phase is just to rotate the number ⟨s|ĥp⟩ on
the complex plane. Thus the maximum value of the search statistic is attained when
⟨s|ĥp⟩eiϕ0 is a real number, i.e. when ⟨s|ĥp⟩eiϕ0 = |⟨s|ĥp⟩|, giving:

max
DL,α,δ,ι,ϕ,Ψ

ρ2(ϑ) = |⟨s|ĥp⟩|2. (3.25)

57



Chapter 3. Searching for Signals with Matched Filtering

Thanks to the symmetry of the problem Eq. (3.22), the expression is equivalent to

max
DL,α,δ,ι,ϕ,Ψ

ρ2(ϑ) = (s|ĥp)
2 + (s|ĥc)

2. (3.26)

This result is straightforward to interpret: in the limit where only the dominantmode
is considered, Eq. (3.26) allows to search for all the aligned-spin BBHs characterized
by the same BHmasses and spins, regardless of the binary orientation, position in the
sky or choice of polarization. With this result, the template bank has to cover only
a four dimensional space as opposed to a ten dimensional space that would result
from using Eq. (3.10). This comes at the minimal price of filtering the data with the
two templates ĥp and ĥc.

3.2.2 Statistic for General Binaries

The analytical maximization of the search statistic over the extrinsic parameters was
made possible thanks to heavy assumptions about the nature of the signal. In the case
where we don’t make any of those assumptions, we can still analytically maximized
over somenuisance parameters [328]. To do so, we start again from the strainhEq. 2.6
and we rewrite it as:

h(t) = F+h+(t) + F×h×(t) = A
[
uĥ+(t) + ĥ×(t)

]
(3.27)

where we defined the two variables

A = F×
√

(h×|h×) (3.28)

u =
F+

F×

√
(h+|h+)

(h×|h×)
. (3.29)

We are then able to maximise over A and u, which capture the dependence of h on
the sky position and on the polarization angle (4 parameters), leaving to a brute
force approach the maximization over the remaining 10 parameters, i.e. the two BH
masses, the two spin vectors si, the inclination angle ι and the reference phase ϕ.

After a straightforward maximization over the amplitude A, the maximization
over u yields:

max
DL,α,δ,Ψ

ρ2(ϑ) = max
u

ρ2(ϑ) =
(s|ĥ+)

2 + (s|ĥ×)2 − 2ĥ+×(s|ĥ+)(s|ĥ×)

1− ĥ2
+×

(3.30)

where we define the important parameter ĥ+× as

ĥ+× = (ĥ+|ĥ×). (3.31)
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The quantity ĥ+× quantifies the lack of orthogonality between the two polarizations:
while in the aligned-spin dominant mode case ĥ+× = 0, this is not the case from pre-
cessing systems and/or systems showing imprints of higher ordermodes (HMs). We
may informally refer to Eq. (3.30) as symphony search statistic, from the title of [328],
which laid the foundation for our work. In [328] the term originally refers to the de-
tection of higher-order modes, which combinemultiple “voices” into a unified “sym-
phony” produced by a BBH merger. Due to the similarities in their mathematical
descriptions, we are going to use this term even if we consider precessing systems
without imprints from higher order modes.

The expression can be simplified by introducing the orthogonalized template ĥ⊥:

ĥ⊥(t) =
1√

1− ĥ2
+×

(
ĥ×(t)− ĥ+×ĥ+(t)

)
(3.32)

which is orthogonal to ĥ+ and properly normalized (ĥ⊥|ĥ⊥) = 1. With this defini-
tion, the search statistic takes a remarkably simple functional form:

max
DL,α,δ,Ψ

ρ2(ϑ) = (s|ĥ+)
2 + (s|ĥ⊥)

2. (3.33)

This is the same expression for the aligned-spin case Eq. (3.26), with the replacement
ĥp → ĥ+ and ĥc → ĥ⊥. Note that while in both cases data are filtered with two or-
thogonal templates, the templates ĥ+, ĥ⊥ depend on 10 parameters (two masses, six
spins and the inclination angle and reference phase)while the aligned-spin templates
ĥp, ĥc depend only on 4 parameters (two masses and two spins). For this reason, the
complexity of the general case does not arise on a more complicated filtering expres-
sion but only on the higher computational cost introduced by a larger number of
parameters to be spanned by a template bank. We can recover the aligned-spin case
from Eq. (3.30), in the limit where ĥ+× → 0, where also ĥ+ → ĥp, ĥ⊥ → ĥc.

We close by mentioning that, under the assumption that the BBH system is pre-
cessing but the signal is only composed by the dominant mode, we can further max-
imise over the reference phase ϕ [327, 329]. However, the resulting expression has
a rather complicated functional form which i) increases the cost of filtering, ii) re-
quires large changes to existing software infrastructures and iii) does not generalize
to a search employing templates with HMs. Moreover, as wewill see in Ch. 4, numer-
ical studies have shown that the inclusion of the reference phase inside the template
bank is not required to produce a bank of good quality. For all these reasons, we will
not consider the search statistic in [327], but we will rather rely on Eq. (3.30) for the
remainder of our work.
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Figure 3.1: On the left plot we show the SNR timeseries ρ(t) Eq. (3.35) for a non-precessing
signal injected in Gaussian noise, filtered with a matching template. The signal is injected
with SNR = 10 and refers to a system with m1 = 30M⊙ and m2 = 10M⊙, generated from
a starting frequency fmin = 20Hz. On the right plot, we show the normalized distribution of
the measured values ρ of the search statistic, whose squares follow a chi-squared distribution
with two degrees of freedom in presence of noise only. In orange, we overlay the chi-squared
distribution for the values of ρ Eq. (3.41). Note that there a few outliers to the SNR distribu-
tions, corresponding to the injected signal.

3.2.3 Maximization over Time

So far, we have described amethod to search over different waveform parameters but
wemade the crucial assumption that the time of arrival t of the signal on the detector
frame is known. Clearly, that is not the case and an appropriate search statistic must
also maximise over the arrival time. This is done again by computing the search
statistic for different times of arrivals to obtain a timeseries ρ(t), which is the called
the SNR timeseries with a slight abuse of notation. To keep our discussion general,
we introduce two real templates6 hR and hI , which are not generally related to each
other and are used to filter the data with the search statistic:

ρ2 = (s|hR)
2 + (s|hI)

2 = ⟨s|hT ⟩2 (3.34)

where we introduced a complex template hT , so that hT (t) = hR(t) + ihI(t). This
case is very general and encompasses the search statistic maximized for both the
situations described above. The aligned-spin search statistic Eq. (3.25) can be ob-
tained by setting hR, hI = ĥp, ĥc

7, while the general case Eq. (3.33) is retrieved with
hR, hI = ĥ+, ĥ⊥.

6Note that here, to keep our discussion general, we are not making the assumption that the two tem-
plates are normalized.

7Thanks to the symmetry in Eq. (3.22), in frequency domain we have that h̃T = 2
˜̂
hp.
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In the frequency domain, a constant time shift t of the template hT (f) is simply
given by hT (f)e

−i2πft and the SNR timeseries is readily computed from Eq. (3.34):

ρ(t) =

∣∣∣∣∣4
∫ fmax

fmin
df s̃∗(f) h̃T (f)

Sn(f)
e−i2πft

∣∣∣∣∣ (3.35)

where of course, the template ĥT is normalized to unity. Motivated by this expres-
sion, we may also define a time dependent complex scalar product between the two
frequencies [fmin, fmax]

⟨a|b⟩(t) = 4

∫ fmax

fmin
df ã∗(f)b̃(f)

S(f)
e−i2πft, (3.36)

which allows us to define a complex SNR timeseries z(t)

z(t) = ⟨s|hT ⟩(t) = (s|hR)(t) + i(s|hI)(t) (3.37)

so that the SNR timeseries has a compact expression: ρ(t) = |z(t)|.
Using the properties of the cross-correlation, we canwrite the complex SNR time-

series as the cross-correlation of thewhitened sW (t)detector’s output and thewhitened
templates hW

R , hW
I :

z(t) = (sW ⋆ hW
R )(t) + i(sW ⋆ hW

I )(t) (3.38)

=

∫ ∞

−∞
dτ sW (τ)hW

R (τ − t) + i

∫ ∞

−∞
dτ sW (τ)hW

I (τ − t). (3.39)

The expression is remarkable in its simplicity: the time dependent matched-filtering
statistic is the quadrature sum of the cross-correlation of the whitened data with the
two whitened normalized orthogonal templates.

Statistical distribution of ρ(t) A matched-filtering search may employ Eq. (3.38)
(or equivalently Eq. (3.35)) to compute the SNR timeseries for a large number of
templates and it may claim a detection whenever any of the SNR timeseries exceeds
a certain threshold value ρ̄2.8 In this case, a trigger is generated. Of course, for any
choice of threshold ρ̄2, there is a small but non vanishing probability to obtain a SNR
value above the threshold even in the absence of a signal, i.e. due to noise fluctua-
tions. For this reason, it is important to characterize the statistical properties of ρ(t)
in the case of noise only: this will allow to measure the statistical significance of a
trigger, by assigning to each a false alarm probability or, equivalently, a false alarm
rate.

8As we will see below, the GstLAL pipeline does not impose a threshold on ρ2 but rather on a ranking
statistic L, which takes into account other quantities besides the SNR value.

61



Chapter 3. Searching for Signals with Matched Filtering

For a single real normalized template ĥ, in the presence of noise only (s = n), the
random variable (ĥ|s) can be seen as the sum of an “infinite” number of Gaussian
random variables, hence the distribution of (ĥ|s) also follows a Gaussianwith 0mean
and unit norm:

(ĥ|s) ∼ N (0, 1) (3.40)
where the variance, which in principle is arbitrary, is set by the filter normalization.
The random variable ρ2 = |x + iy|2 is then the quadrature sum of two random nor-
mal variables x, y ∼ N (0, 1) hence it follows a χ2 distribution with two degrees of
freedom ρ2 ∼ 1

2e
−ρ2/2, which can be written as a distribution for ρ through a change

of variables
p(ρ) = ρ e−ρ2/2. (3.41)

For each trigger with SNR ρ̄, we can then define its false alarm probability (FAP) as the
probability of obtaining a value of ρ > ρ̄ only due to noise fluctuations

FAP (ρ̄) =

∫ ∞

ρ̄

dρ ρ e−ρ2/2. (3.42)

In Fig. 3.1 we show a simulated SNR timeseries for an injected signal, where the pres-
ence of a trigger is manifest by the large peak in the timeseries. We also display a
histogram of the simulated SNR values. We note that the bulk of the distribution is
formed by background triggers, generated by random noise fluctuations and whose
distribution agrees with Eq. (3.41). In correspondence of the injected signal, the plot
shows a number of large SNR outliers from the expected distribution, with a very
low false alarm probability.

3.3 Template Banks
As discussed above, the search statistic can bemaximized analytically only over some
of the 17 parameters characterizing a generic eccentric BBH. The maximization with
respect to the others is performed by a brute force approach, where the search statistic
is evaluated on a discrete set of values. In practice, thismeans that the data are filtered
multiple times with different templates and for each template, the SNR timeseries is
analysed looking for peaks, corresponding to potential candidates. As already men-
tioned, the set of templates used to filter the data is called template bank [63,325,330–
333]. In what follows, we will denote by θ the parameters for which a brute force ap-
proach is required, as opposed to the whole 17 parameters describing a BBH, which
we collectively referred to as ϑ.

Of course, using a discrete set of templates, implies a reduced search sensitivity.
Indeed, by filtering a signal, characterized by parameters θ2, with the “wrong” tem-
plate, characterized by parameters θ1, the measured value of the search statistic is
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only a fraction of the value obtained by filtering the data with the appropriate tem-
plate θ2, thus reducing the statistical significance of any potential discovery. This is
quantified by the match M(θ1, θ2), defined as the fraction of SNR measured when
filtering a signal ĥp(θ2)with the template ĥp(θ1):

M(θ1, θ2) = max
t

∣∣∣⟨ĥp(θ1)|ĥp(θ2)⟩(t)
∣∣∣
2

(3.43)

= max
t

∣∣∣∣∣∣
4

∫ fmax

fmin
df

˜̂
h∗
p(f ; θ1)

˜̂
hp(f ; θ2)

Sn(f)
ei2πft

∣∣∣∣∣∣

2

(3.44)

where we considered a frequency window [fmin, fmax] and we considered normalized

templates. In the template bank jargon, the quantity
∣∣∣⟨ĥp(θ1)|ĥp(θ2)⟩(t)

∣∣∣
2

is also called
overlap, which we denote byO(θ1, θ2, t). The match has values in [0, 1], where is equal
to one only when θ1 = θ2. In this definition, we assumed that the templates corre-
spond to quadrupolar circular aligned-spin systems, hence thematch is defined from
the search statistic Eq. (3.25). In the next Chapter, we will drop this assumption and
we will define a match based on the general statistic Eq. (3.30).

With the match at hand, we can define the fitting factor of a signal θ as the maxi-
mum match of the signal ĥp(θ)with the templates of the bank [334]:

FF (θ) = max
θ′∈bank

M(θ, θ′). (3.45)

This quantity is useful for the purpose of bank validation, as it gives important pieces
of information about the performance of the bank in different regions of the param-
eter space. Borrowing the jargon of GW searches, we call injections the simulations
for which we evaluate the fitting factor. Moreover, we can use the match to define a
distance d between two points θ1, θ2 of the parameter space:

d(θ1, θ2) =
√

1−M(θ1, θ2). (3.46)

As discussed below with more details, many template placement algorithms rely on
this definition for optimal placement.

The generation of a template bank requires to find a delicate compromise between
two competing needs. On the one hand, it is desiderable to have a fine template spac-
ing, so that the SNR loss of a randomBBH signal due to the discreteness of the bank is
low: this would require to place as many templates as possible. On the other hand, a
high number of template results in a high computational cost and, more importantly,
in a larger number of degrees of freedom to search over, resulting in more matches
to false alarms, which could possibly reduce the search sensitivity. Thus, an optimal
template bank is composed of the smallest number of templates that guarantees that
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only a small fraction of SNR fromGW signals is missed due to the discreteness of the
template bank [335]. The maximum tolerable SNR loss is set by the minimal match
(MM) parameter. The minimal match is approximately related to the fraction of as-
trophysical signals lost due to the discreteness of the bank: assuming that BBHs are
uniformly distributed on the volume and since the SNR scales inversely with the bi-
nary distance, the rate of lost events roughly scales as FF 3 [331]. It is common to set
MM = 0.97, so that less than 10% of the signals are expected to be missed because
of the template bank.

Once aminimalmatch is chosen, it is crucial to choose the templates in such away
that they cover the space of interest “as uniformly as possible”: this makes sure that
the required bank accuracy is achievedwith the lowest number of templates possible,
hence at a low computational cost. A number of methods have been developed to
effectively place the templates: their effectiveness and speed heavily depends on the
dimensionality of the template bank, i.e. on the dimension of the parameter vector θ,
and on the waveform model being used. Below, we provide a succinct review of the
most important methods.

Metric template placement Historically, the first template placement algorithms
was developed to place templates on a lattice with constant spacing [331,336,337] on
a suitable manifold. The geometry of the manifold is described by a scalar product
between templates, represented by a metric Mij(θ):

Mij(θ) = −1

2

∂2M(θ, θ +∆θ)

∂i∆θ∂j∆θ

∣∣∣∣
∆θ=0

. (3.47)

The metric above is designed to provide a first order approximation to the distance
Eq. (3.46), so that:

d2(θ, θ +∆θ) = 1−M(θ, θ +∆θ) ≃ Mij(θ)∆θi∆θj . (3.48)

For simple analytical PN waveform models, the expression for the metric is known
analytically [336], provided that also the PSD admits an analytical expression. This
makes the metric evaluation particularly convenient. Thus, the problem of template
placement is cast into the problem of covering a non-flat manifold, such that every
point of the manifold is closer than √

1−MM to at least one lattice point. In other
words, every point in parameter space has to be closer than√

1−MM to at least one
template – it has to be covered by at least one template.

While several template placement schemes have been developed to place tem-
plates, all differing in the details, they are mostly based on two key ideas:

1. Finding a coordinate systemwere the metric is approximately flatMij(θ) ≃ δij .
This allows to use the large variety of lattice geometries available for the eu-
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clidean space [338]. To this goal, the two BH masses m1,m2 are often parame-
terized using pairs of chirp times variables, such as τ0, τ1 [331] or τ0, τ3 [339].

2. Finding a suitable lattice to cover the parameter space, with several lattice being
employed from a simple cubic lattice [335, 336] to a more complicated geome-
tries [339–343].

Despite being appealing for its simplicity and optimality under ideal conditions, the
geometric placement suffers from sever drawbacks, limiting its applicability. First
of all, obtaining coordinate transformation which avoids varying metric components
has proved particularly difficult, especially for modern approximants, which include
sophisticated effects. Secondly, and perhaps more importantly, the geometric tem-
plate placement suffers from poor scaling with the number of dimensions. Orig-
inally developed for searches of non-spinning system covering only a two dimen-
sional space, producing a lattice in high dimensions is extremely costly. Moreover,
as pointed out in [344], for a large number of dimension, the best performing lattices
show only marginal improvement over a simple cubic lattice.

Random template placement An appealing alternative to geometric placement re-
lies on generating random template bank [345]. While the first method aims at cov-
ering every point in the relevant parameter space, the latter only covers each point
with a probability η < 1. Templates are randomly drawn from the uniform proba-
bility distribution induced by the metric, without checking for their mutual distance,
until the required coverage fraction has been achieved [346]. This approach allows to
greatly reduce the number of templates, as compared to the geometric approach, and
at the same time it has a very good scaling with the number of dimensions. While
the method may seem sub-optimal with respect to a lattice, in [345, 347] it is argued
that for high-dimensional spaces, random template banks outperform even the best
known lattice in terms of coverage (at a fixed number of templates), effectively beat-
ing the “curse of dimensionality”.

Stochastic template placement While the random algorithm avoids many of the
problems introduced by the geometric placement, it has a fundamental drawback,
which has so far limited its applicability: as it does not check between the distance
between templates, it covers the space with more templates than might be required
with amore efficient sampling scheme. This forms the core idea of the stochastic tem-
plate placementmethod [348,349]. Starting from an empty template bank, a template
proposal is randomly drawn from a suitable distribution. The proposal is added to the
template bank only if its fitting factor Eq. (3.45) with the templates already accepted
is lower than the minimal match requirement MM. The iteration terminates after a
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large number of proposals are consecutively rejected. The fitting factor can be com-
puted either with the match Eq. (3.43) or with its metric approximation Eq. (3.48),
with the latter being generally faster but less precise [350]. The stochastic method
produces very high quality template banks and due to its simplicity and efficacy, it
has become the standard tool for template bank generation [351] in mostly all the
modern template banks used for GW searches [327,328,352–354].

Even though the stochastic approach has proven very powerful, its performance
does not scale well with (i) the number of templates and, most importantly, (ii) with
the number of dimensions of the parameter space. Handling a large number of tem-
plates can have a large impact on computing time and memory, because for every
new proposal, a waveform needs to be generated and stored and many expensive
match calculations need to be performed - modern template bank with millions of
templates may take up to weeks to be generated. Furthermore, the sheer number of
dimensions can have an even more catastrophic impact on the bank generation cost.
Indeed, at every iteration the stochastic algorithm computes the distance between
Np ∼ rD pairs of templates within a given radius r. It is clear how the number of
match computations diverges for large dimensional spaces. Moreover, in a higher
number of dimensions, the advantages of controlling the mutual distance between
templates become less prominent, as demonstrated in [347] and also observed in our
work presented in Ch. 4 and in [1]. In this scenario, as previously discussed, a ran-
dom template bank approaches optimality. Therefore, the distance control executed
by the stochastic algorithm may result in an unnecessary expenditure of computa-
tional resources. As a template bank for precessing systems necessarily gathers a
large number of templates in a high number of dimension, the generation of a pre-
cessing template bank with the stochastic approach might prove unfeasible due to a
huge computational cost. In the next chapter we show how we can efficiently gener-
ate a template bank of precessing signals by coupling the random template placement
method with an effective parameter space sampling scheme.

3.4 Features of a Realistic Pipeline

The matched-filtering technique for aligned-spin circular binaries described above is
implemented in the state-of-the-art matched-filtering pipelines which are routinely
deployed for the search of LIGO, Virgo and KAGRA data. Notable examples are Gst-
LAL [77–82], PyCBC [355–359], the Multi-Band Template Analysis (MBTA) [360,
361], the SummedParallel Infinite ImpulseResponse (SPIIR) pipeline [362–364] among
others [63, 365–369]. While they differ in many implementation details, they all uti-
lize the matched filtering to achieve the same goal of producing a list of events. In
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this context, an event is a flag for a segment of data that potentially identifies a GW
signal. The events identified by each pipeline are then ranked from the most likely
to the least likely to be a GW signal according to their probability of being recorded
due to a noise fluctuation only.

A matched-filtering search can happen either online or offline. For an online con-
figuration [81], the events are generated in a streaming fashion as soon as the data
are available: while the pipeline sensitivity might be sub-optimal due to a poor back-
ground9 estimation, it allows to discover potential candidates with seconds of delays,
thus enabling multi-messenger applications. On the other hand, the offline configu-
ration is not concerned with low latency and it uses all the data available for a more
thorough background estimation. It is usually run to confirm the results of an online
search or to search for systems which are not expected to produce multi-messenger
signatures, such as the intermediate mass black holes (IMBHs) [370–373] or sub-
solar mass (SSM) black holes [374–378]. In what follows we will describe in details
the offline GstLAL pipeline, used for our current work, highlighting the differences
and similarities with other pipelines for matched-filtering GW searches.

3.4.1 Generating Triggers

The first step of the GstLAL pipeline is of course the filtering of the data. The pipe-
line computes the correlation between each template and data in time domain, using
Eq. (3.38). While in frequency domain the cost of filtering D data-points with N

templates is ND logD, in time domain the filtering is more costly, being ND2. To
reduce the computational cost associated to filtering, the GstLAL pipeline employs
the LLOID method [77, 379], which consists in splitting the template bank in small
groups of O(500) templates and to perform the singular value decomposition (SVD)
of the templateN ×D matrixH , whose rows correspond to different templates. The
SVD provides a low rank approximation of H , where each template is written as a
linear combination of K SVD basis:

H =



h1

. . .

hN


 = V U (3.49)

where hi ∈ RD is the template evaluated on a discrete time grid and V and U are two
matrices with dimensionsN ×K andK ×D respectively. IfK is much smaller than
the number of templates N , the computational cost of filtering is greatly reduced.
The LLOID method also employs a time slice mechanism for the templates, so that

9Here we refer to the characterization of the triggers due to noise fluctuation and not associated to any
astrophysical signal. As we will discuss in Sec. 3.4.3, these are also called “background” triggers.
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the low frequency part of the templates is evaluated at a lower sample rate, with
consequent computational benefits. Traditionally, the splitting of the bank into many
different groups is done by tiling the Mc − χeff space with rectangles, also called
SVD bins. More recently, [380] introduced a splitting based on the PN variables µ1

and µ2 [381]. We will investigate this matter for precessing signals in Ch. 6.
Asmodern template banks consist of millions of templates, it is unfeasible to store

the SNR timeseries with a typical sample rate of 4096Hz for every template and, for
this reason, the SNR timeseries is discretized into triggers. A trigger records the peak
of the SNR timeseries within a 1 s window and it is only stored if the peak exceeds a
threshold of SNR = 4. A trigger is a vector {t,ΦT, ρ, ξ2, D, θ} consisting of the time t
of the recorded peak, the SNR ρ, the phaseΦT of the complex SNR peak z(t = t0), the
parameters θ of thematching template, the value of the signal consistency test ξ2 (see
next section) and the instantaneous sensitivity of each detector, measured in terms
of horizon distance D. The latter is commonly defined to be the distance at which a
1.4M⊙ − 1.4M⊙ BNS is observed with a SNR equal to 8 [63].

The trigger generation phase is common to most of the pipelines, with some im-
portant differences. First of all, the vast majority of them computes the SNR time-
series in frequency domain with Eq. (3.35), thus avoiding the SVD decomposition of
the templates. Because of this, a different signal consistency test is employed, con-
sisting in the traditional χ2 test. Finally, different pipelines may use different time
windows and thresholds for trigger generation.

It often happens that more than one detector is operating at every given time. In
that situation, the data from every instrument are scanned with matched filtering
and triggers are produced for every instrument. As a loud astrophysical signal is
expected to produce a trigger in all the observing instruments, it is convenient to
group together triggers from different instruments happening around the same time
and from the same template and to assign them to the same event. This procedure
produces a set coincidences [63], which we denote as a set of vectors

{t⃗, Φ⃗T, ρ⃗, ξ⃗2, D⃗, θ},

where each row of the vector refers to a different instrument and a coincidence can be
formed even by a single trigger. Considering coincidences is a very powerful way to
suppress the background of noise triggers and reduce the number of false positives
returned by the search. Once coincidences are formed, the rest of the pipeline is
devoted to rank the coincidences and to evaluate their significance: coincidenceswith
high significance are eventually considered events.
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3.4.2 Signal Consistency Test

A fluctuation of Gaussian noise or the presence of loud transient burst of noise can
occasionally mimic the effect of a GW signal in the detector, leading to a high value of
measured SNR. Clearly, this can produce a large number of false positives in the can-
didate list or may reduced the search sensitivity due to background contamination.
Therefore, it is important to record an additional quantity (or statistic) that helps to
distinguish between peaks in SNR due to astrophysical signals and to loud transient
noise bursts [382]. To construct this quantity, we utilize the idea that, although a ter-
restrial noise burst may produce a high SNR, its time evolution in the SNR time series
differs significantly from that of an expected astrophysical signal.

This idea is implementedwithinGstLAL through the introduction of the ξ2 test [77],
where the expected complex SNR timeseries R(t) is compared with the measured
SNR timeseries z(t):

ξ2 =

∫ δt

−δt
dt |z(t)−R(t)|2

∫ δt

−δt
dt
(
2− 2

∣∣∣R(t)
R(0)

∣∣∣
2
) (3.50)

where the integration extends in a small time window [−δt, δt] around the trigger
time. For circular aligned-spins systems without HMs, the expected SNR timeseries
is readily computed by plugging a signal of the form of Eq. (3.23) into the search
statistic Eq. (3.35):

R(t) =
1

Deff
⟨eiϕhp|ĥp⟩(t) =

√
(hp|hp)

e−iϕ

Deff
⟨ĥp|ĥp⟩(t) (3.51)

= z(0) ⟨ĥp|ĥp⟩(t) (3.52)

where in the last linewe recognized that z(0) =
√
(hp|hp)

e−iϕ

Deff
. The quantity ⟨ĥp|ĥp⟩(t)

is also called template autocorrelation. The value of ξ2 is recorded for every trigger and
it is used for the subsequent ranking process. The expression Eq. (3.52) for the ex-
pected SNR timeseries is not valid in the precessing and/or HM case and in Ch. 5 we
will compute an expression valid in the general case.

Of course, other tests are available in the literature [366, 382–387] and they all
have been employed in real searches. An example of widely utilized test is the χ2

signal consistency test [382], which splits the template into p frequency bins which
contributes for equal power to the total SNR ρ. The test then computes the χ2 statistic,
which checks whether the measured power ρ2i in each frequency bin is equal to the
expected power ρ2/p:

χ2 = p

p∑

i=1



(
ρ2p
p

− ρ2p,i

)2

+

(
ρ2c
p

− ρ2c,i

)2

 (3.53)
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where ρ2p = (s|ĥp)
2 and similarly for ρ2c . The test is employed by the PyCBC pipeline

(among others) to reweight the matched filter SNR, hence to downrank the signifi-
cance of triggers with high values of χ2.

3.4.3 Ranking

In modern pipelines, hundreds of thousands of triggers are generated every second.
As the vast majority of such triggers arise from noise fluctuations, an effective search
must be able to distinguish the triggers of astrophysical origin (signal events), from
the background of coincidences originated from noise (noise events). To do so, every
search develops a ranking statistic L, which is a numerical value assigned to each co-
incidence. A good ranking statistic assigns a large value to signal events and a low
value to noise events: in this way, the ranking statistic can be used to order coinci-
dences from the most likely to the least likely to be of astrophysical origin. More-
over, a threshold on L can be used to claim a detection. In principle, one could use
the search statistic ρ as a ranking statistic. However, ρ is the optimal statistic only in
Gaussian noise and in the presence of non-Gaussianities or loud transient noise burst,
we need a more powerful statistic, which takes into account all the other information
available.

Unlike other pipelines, the GstLAL pipeline builds a ranking statistic by comput-
ing the logarithmic ratio between the likelihood p(. . . | signal) that a coincidence is
the result of a signal and the probability p(. . . |noise) that each coincidence is a re-
sult of a random noise fluctuations [79,82, 388, 389]:

L = log
p(⃗t, Φ⃗T, ρ⃗, ξ⃗2, D⃗, θ | signal)
p(⃗t, Φ⃗T, ρ⃗, ξ⃗2, D⃗, θ |noise)

(3.54)

where ρ is a shorthand for SNR and {D⃗, ρ⃗, ξ⃗2, t⃗, Φ⃗T} defines a coincidence of one or
more instruments. Following the GstLAL jargon, we call signal model the statistical
model for p(. . . | signal), while noise model refers to p(. . . |noise). Note the that both
signals and noise models depend on the template θ. We may also refer to L as the
likelihood ratio (LR).

Both the signal and noise model are parametric probabilistic models, whose pa-
rameters are set at the time of the search. They are conveniently factorized to exploit
the known correlations between the recorded quantities — see also [82, Eqs. (2) and
(8)]. While in principle the LR may depend on the template parameter θ, it is more
convenient to divide the template bank into background bins and have the LR depend
only on the background bin of a given template. This choice reduces the number of
free parameters in the LR model and it is found to improve its performance [389].
Typically, one background bin corresponds to one or more SVD bins. The robustness
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of the ranking statistic can be enhanced by considering pieces of information regard-
ing the status of the detector, hence downranking triggers originated at times where
the detector has known data quality issues [390,391].

Once the ranking statistic L has been computed, the coincidences are clustered
within a 4 s time window and only the one with maximum likelihood is retained.
This makes sure to remove multiple triggers from the same astrophysical signal and
it avoids to propose multiple candidates events for a single trigger time.

3.4.4 False Alarm Rate

To claim a detection, it is customary to put a threshold L̄ on the ranking statistic and
to label as “signal” all the triggers with L > L̄. As also discussed in Sec. 3.2.3, there is
always a small but non vanishing probability that a high value of L is recorded due
to only noise fluctuations. For this reason, claiming a detection with a threshold on L
must be accompanied by an estimation of the probability that the claimed “signal” is
actually of astrophysical origin. In other words, we need an estimate of the probabil-
ity of a false claim or, equivalently, we need a measure of the statistical significance
of a detection.

Similarly to what done in Sec. 3.2.3 for triggers in Gaussian noise, we canmeasure
the statistical significance of an event with likehood L̄ by comparing the event with
the distribution p(L|noise) of the LR values for noise triggers. This allows us to com-
pute the false alarm probability (FAP) of recorded event, defined as the probability that
a search targeting only noise yields a trigger with a L greater than the recorded trig-
ger L > L̄. Traditionally, p(L|noise) is estimated using the time slide method [365],
which consist in producing artificial coincidences between time shifted triggers and
evaluating their ranking statistic. The GstLAL pipeline however estimates p(L|noise)
by integrating the noise likelihood p(. . . |noise) on the surfaces Σ(L) of constant
L [388,389]:

p(L|noise) =
∫

Σ(L)

dn−1Θ⃗ p(Θ⃗ |noise) (3.55)

where Θ⃗ is a shorthand for all the quantities defining a trigger t⃗, Φ⃗T, ρ⃗, ξ⃗2, D⃗, θ and
Σ(L) is mathematically defined as

Σ(L) =
{
Θ⃗ s.t. log p(Θ⃗ | signal)

p(Θ⃗ |noise)
= L

}
. (3.56)

The procedure of estimating p(L|noise) is crucial for every GW search and it goes un-
der the name of background estimation. Once the background of the search p(L|noise)
is known, we can compute the FAP of a trigger with ranking statistic L as:

FAP (L) =
∫ ∞

L
dL′ p(L′|noise). (3.57)
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For a typical search, it is convenient to express the significance in terms of the false
alarm rate (FAR), defined for any L as the average frequency of occurrence of a noise
event ranking statistic > L:

FAR(L) = FAP (L)
T

=
1

T

∫ ∞

L
dL′ p(L′|noise) (3.58)

where T is the length in time of the search.
The need to introduce the FAR can be better understood in the context of the the-

ory of hypothesis testing. Tomake a decision regarding the origin of a given trigger, it
is natural to introduce the null hypothesis that “the event withL = L̄ has originated from
a noise source” and test whether the hypothesis is confirmed by the data through the
computation of a p-value. A standard textbook result guarantees that in this scenario,
the correct p-value to use is indeed the false alarm probability Eq. (3.57). Of course,
claiming a detection always amounts to choosing a somewhat arbitrary threshold on
some statistic, which in our case can be either the false positive rate or the ranking
statistic10. A detection threshold on the FAP (or equivalently on the FAR) has the
benefit of being more robust as it is based on the statistical properties of L, which
depend on the search performance and not on an arbitrary definition of the LR. A
typical choice for a FAR threshold is 1/year.

3.4.5 pastro

Another way to measure the statistical significance of an event, hence to make amore
informed choice for the detection threshold, consist on defining for each event the
probability of being of astrophysical origin pastro. This approach is somehow comple-
mentary to computing the FAP, as the latter is intimately related to the probability
that an event has originated from noise. First introduced in [294], the method to es-
timate pastro relies on a Bayesian framework to estimate the rate of signal and noise
events and use this information to infer the origin of a single event. It starts from the
assumption a search produces both signal and noise events according to two inde-
pendent Poisson processes. The density of the observed number of events N is then
given by the superposition of the two processes [392,393]:

1

T

dN
dL = Rn p(L|noise) +Rs p(L|signal) (3.59)

whereRn, Rs are the rates of noise and signal triggers, T is the time of the search and
p(L|signal) can be estimated with Eq. (3.55) by replacing the noise model with the
signal model.

10Of course, the two are equivalent since the FAP is an monotonous function of L, so a threshold in FAR
is directly translated into a threshold on L.
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Given an observed set of triggers {Li}Ni=1 above a threshold L̄, chosen such that
noise triggers dominates at the threshold, we can write down a posterior distribution
for the trigger rates Rn, Rs [294,394]:

p(Rn, Rs | {Li}Ni=1) ∝
{

N∏

i=1

[Rn p(Li|noise) +Rs p(Li|signal) ]
}

× exp [−T (Rs +Rn) ]
1√
RnRs

(3.60)

where we used the Jeffreys prior p(Rn, Rs) ∝ (RnRs)−1/2 for the likelihood in con-
sideration. An estimation from the rates can be obtained by employing stochastic
sampling method available in the literature.

With the posterior at hand, we can define a the conditional probability that an
event with detection statistic L is of astrophysical origin pastro [294,395]:

pastro =
R̄s p(L|signal)

R̄n p(L|noise) + R̄s p(L|signal)
(3.61)

where the R̄s/n denotes the posterior averaged rate of signal and noise triggers re-
spectively [396]. The same computation can be generalized to multiple classes [294],
to tackle the case the experimenter is interested in distinguishing between multiple
sources of astrophysical signals, such as a BBH, a NSBH and BNS.

Due to its simplicity and interpretability, it is common to claim a detection based
on pastro rather than on the FAR. Indeed, modern catalogues [16,18] produced by the
LIGO-Virgo-KAGRA collaboration are constructed by including all the events with
pastro > 0.5. Despite this, the FAR still remain an important quantity tomonitor before
claiming a detection, mostly because it does not depend on any assumption about the
nature of signal being detected.
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CHAPTER 4

Generating Template Banks in High
Dimensional Spaces

4.1 Introduction

As gravitational-wave astronomy enters amature statewith an ever increasing instru-
ment sensitivity, the accessible parameter space of BBH mergers continues to grow.
Besides standard aligned-spin GW searches for stellar-mass BBH mergers [15–18],
there are GW searches targeting the parameter space of sub-solar mass black holes
(SSM) [376,397,398], primordial BHs [375], eccentric binaries [68,166,375,399–403]
and intermediate-mass BHs (IMBH) [370, 371, 373]. Moreover, there is a growing
interest in GW searches for more complex binaries, such as those with precession
[66,74,185,327,328,404–406] or higher-ordermode (HMs) content [328,372,407–409].

As discussed in the previous chapter, the most sensitive GW searches for signals
from compact binary mergers relies on filtering the data with a template bank of
model waveforms. The task of generating a template bank is far from trivial, as one
must balance good coverage (thus ensuring low SNR loss due to the discreteness of
the bank) with maintaining a manageable bank size. We saw that this is very effec-
tively achieved by the stochastic method [348, 349], which iteratively adds templates
to the bank by checking that they are not “too close” to each other. However, the
stochastic approach becomes computationally and memory expensive as the bank
size and the dimensionality of templates grow. As the BBH searches grow in com-
plexity due to the inclusion of more physical effects and hence more dimensions, the

75



Chapter 4. Generating Template Banks in High Dimensional Spaces

stochastic approach struggles to produce template banks in a feasible amount of time
and with a manageable memory footprint. This poses the challenge of finding a vi-
able alternative for template bank generation, which is able to deliver large banks in a
high-dimensional parameter space, such as those associated with precession, eccen-
tricity and HMs.

Revitalizing a pioneering line of research [345], the random template placement is
appealing to cover such high dimensional spaces due to its speed and good scaling
properties, as demonstrated in [347]. The strength of the method is twofold: on the
one hand, since no distance between templates is computed, the template placement
is very fast and memory efficient; on the other hand, by only covering a fraction of
the space, the number of templates remains under control. Moreover, the cost does
not increase for an increasing number of dimensions. Generating a random template
banks requires the ability to effectively sample templates “uniformly” across the pa-
rameter space. Traditionally, due to the high dimensionality of the space, expensive
sampling techniques, such as Markov chain Monte Carlo, must be used. This poses
a serious limitation to the range of applicability of the method — and perhaps lim-
ited its application in GW data analysis so far. Without a fast sampling method, the
speed up promised by the newmethod is washed away by the cost of a large number
of metric evaluations.

In this chapter based on [1], we address the challenges described above by cover-
ing high-dimensional spaces with random template banks. As a first step, we derive
a novel expression for the metric, which is suitable for generic precessing and/or
HMwaveforms. In doing so, we drop several symmetry assumptions that enters the
standard metric computation. The metric is then expressed in terms of the gradients
of the waveform. Secondly, to enable a fast template sampling, we employ machine
learning and train a normalizing flow model to efficiently sample templates from the
parameter space. While the first innovation delivers an accurate distribution for the
templates throughout the space, the use of a normalizing flow allows us to generate
random template banks in a few hours (including the training time).

The combination of a new metric expression and the normalizing flow model,
applied to the random template placement algorithm, makes our method particu-
larly well-suited for dealing with high-dimensional (> 4D) parameter spaces, such
as those associated with precessing or eccentric searches. Our method is imple-
mented in an open-source, production-ready, Python package mbank [410], available
on GitHub1 and on the PyPI repository2.

The rest of the chapter is devoted to the presentation and description of our meth-

1https://github.com/stefanoschmidt1995/mbank.
2The package is distributed under the name gw-mbank.
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ods and software package. In Sec. 4.2 we present the details of our bank generation
algorithm. In Sec. 4.3 we assess the accuracy of our template placing method in all
its parts. Furthermore, we reproduce two banks available in the literature [328, 380]
created with independent codes: this will be the topic of Sec. 4.4. To demonstrate the
capabilities of mbank, in Sec. 4.5, we present two large banks covering “exotic” regions
of parameter space: a precessing bank and an IMBH bank with HM content. We also
discuss some possible further applications of our normalizing flow model, includ-
ing a study of the size of the precessing neutron star-black hole (NSBH) parameter
space. Finally, in Sec. 4.6 we discuss some possible future development of our work
and gather some final remarks in Sec. 4.7.

Throughout the chapter we will use the term “standard” to refer to the searches
for circularized, aligned-spin BBHs without imprints of HMs, currently conducted
by the LIGO-Virgo-KAGRA collaboration.

4.2 Methods

Amatched-filtering search aims at maximizing the search statistic over a large num-
ber of templates, where each template depends on a number of parameters describing
the properties of the BBH being searched. We remind the reader that in the general
case, the search statistic Eq. (3.30) depends on 12 parameters: they are the two BH
massesm1,m2, the two three-dimensional spins s1, s2, the inclination angle ι, the ref-
erence phase ϕ and the eccentricity parameters e, a. On the other hand, if we restrict
our attention to circular aligned-spin BBHwithout HM, it is sufficient to consider the
search statistic Eq. (3.26), which only depends on four parameters.

For the purpose of template placement, it is useful to think of the parameter space
of BBH signals as a D-dimensional manifold BD, embedded in a large 12 dimensional
manifold B. Each point of the manifold corresponds to a GW signal. The number of
dimensions D depends on the BBH variables under consideration. As the parame-
ters that do not enter the interesting space can be freely neglected (i.e. set to 0 or
to a meaningful constant value), the manifold BD is effectively a lower dimensional
projection of the large manifold B.

To place templates on BD, it is standard to equip the manifold with a distance
(called mismatch), which also naturally defines a volume element at every point in
space. The volume element defines the “uniform” probability distribution according
to the metric. A random template bank will be populated by templates drawn from
such distribution, until a certain coverage is reached. For this reason, our primary
concern is to sample from the manifold and to check for coverage. To effectively do
so, we rely on the three steps below:
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1. Construction of a metric approximation of the match between templates. This
makes BD a Riemannian manifold with a volume element.

2. Training of a normalizing flow model to sample from the manifold.

3. Placing the templates by sampling from the normalizing flowmodel and check-
ing for coverage, following [346].

The rest of this section details the steps above.

4.2.1 The Metric

The definition of ametric on themanifold BD provides a fast-to-compute approxima-
tion to the mismatch (distance) between templates and an estimation of the volume
element at each point in the space. While all the literature available [335, 336, 338,
341,343,345,346] is built only for the “standard” case Eq. (3.26), in this work we will
construct a metric approximation of the “symphony” search statistic Eq. (3.30): to
our knowledge, this is done here for the first time. Clearly, the metric expression we
derive reduces to the standard case when (ĥ+|ĥ×) = 0.

Before introducing the metric, we need to generalize the definition of the match
Eq. (3.43) to the general case. Given two points of the manifold θ1, θ2, we begin by
defining the “symphony” overlapOsym(θ1, θ2, t) betweennormalizedprecessing and/or
HM templates as:

Osym(θ1, θ2, t) =
1

1− ĥ+×(θ2)2

{(
ĥ+(θ1)e

i 2πft|ĥ+(θ2)
)2

+
(
ĥ+(θ1)e

i 2πft|ĥ×(θ2)
)2

− 2h+×(θ2)
(
ĥ+(θ1)e

i 2πft|ĥ×(θ2)
)(

ĥ+(θ1)e
i 2πft|ĥ+(θ2)

)}
(4.1)

where ĥ+(θ)e
i 2πft is the plus polarization ĥ+(θ) translated by a constant time shift t

and ĥ+×(θ) = (ĥ+(θ)|ĥ×(θ)). The “symphony” overlap retains the same physical in-
terpretation of the standard case and amounts to the fraction of SNR recovered when
filtering a signal s = h+(θ1) with a template evaluated at a point θ2, as a function of
a time shift t.

In Eq. (4.1), we choose to compare the plus polarization of the first template with
both polarizations of the second template. We are forced to make such arbitrary
choice by the fact that the search statistic in Eq. (3.30) does depend on F+, F×, unlike
the standard case Eq. (3.25). Thus, if we don’t want the overlap to depend on two
arbitrary combination coefficients, an arbitrary choice for the signal s is needed. Of
course, any linear combination of h+(θ1) and h×(θ1) works but we set s = h+(θ1)

for computational convenience. Some numerical studies that we performed as part
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of our development efforts (but not published) show that replacing h+(θ1)with any
linear combination does not have a large impact on the metric definition below.

In the case of a “standard” search, ĥ+× = 0 and h̃+ = ih̃×, hence the “symphony”
overlap simplifies to:

Osym(θ1, θ2, t) = O(θ1, θ2, t) =
∣∣∣⟨ĥ+(θ1)e

i 2πft|ĥ+(θ2)⟩
∣∣∣
2

. (4.2)

and agrees with the overlap we introduced in the discussion following Eq. (3.43).
Note that, since Eq. (3.25) is symmetric3 between signal and template, the expression
for the overlap in the “standard” case is also symmetric. This means that an arbitrary
choice on the signal composition is no longer needed, as was the case for Eq. (4.1).

Relying on the expression for the overlap introduced above, we obtain a straight-
forward generalization to the precessing and/or HM case of the match M(θ1, θ2) in-
troduced in Eq. (3.43). Therefore, we define the “symphony” match Msym(θ1, θ2)

between two templates evaluated at different points θ1, θ2 of the manifold as:

Msym(θ1, θ2) = max
t

Osym(θ1, θ2, t). (4.3)

Suchdefinition of thematch between template, which combines Eq (4.3)with Eq. (4.1),
is introduced in our work [1] for the first time. As it is directly tied to the relevant
search statistic, using the “symphony” match for bank generation yields precessing
and/or HM template banks of higher quality compared to those produced by the
“standard” match definition. For this reason, the “symphony” match will be consis-
tently used for the remaining of our work, and for simplicity we will refer to it simply
as the match M(θ1, θ2).

Even though in general the match is not symmetric and does not satisfy trian-
gular inequality, we can use it to introduce a distance d between two points on the
D-manifold BD

d2(θ1, θ2) := 1−M(θ1, θ2). (4.4)

which can by approximated locally by a bilinear form dM

d2M (θ1, θ2) := Mij(θ)∆θi∆θj ≃ 1−M(θ1, θ2). (4.5)

The bilinear form dM is represented by a D-dimensional square matrix Mij(θ), de-
fined at each point of themanifold, which we callmetric. By comparing the two equa-
tions above, we identify the metric with the quadratic term of the Taylor expansion
of dM (θ +∆θ, θ) around ∆θ ≃ 0:

Mij(θ) = −1

2

(
Hij −

HtiHtj

Htt

)
(4.6)

3Indeed, for a “standard” signal s ∝ h+, hence ŝ = ĥ+, and Eq. (3.25) does not depend on the antenna
patterns functions, if s is normalized.
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Chapter 4. Generating Template Banks in High Dimensional Spaces

where H(θ) is the Hessian [331] of the overlap in Eq. (4.1), which is a D + 1 square
matrix whose entries are explicitly given by

Hij(θ) =
∂ijO(θ, θ +∆θ)

∂i∆θ∂j∆θ

∣∣∣∣
∆θ=0

. (4.7)

See App. 4.A for more details on the Hessian computation. Note that the metric is
positive definite (i.e. has positive eigenvalues), since it is evaluated at the local min-
imum of a differentiable function.

A convenient expression for H in terms of the gradients of the waveform is pre-
sented in App. 4.A, with the full expression given in Eqs. (4.35)-(4.37). While identi-
fying the metric with the Hessian is well motivated and yields reliable results, other
definitions forMij are possible; this is briefly discussed in App. 4.B.

For most of the waveform models available, the gradients can be evaluated with
finite difference methods. For a limited number of machine-learning based models
[5, 6, 268, 270, 411], the gradients are available analytically.

Equippedwith themetric from Eq. (4.6), themanifold BD becomes a Riemannian
manifold with line element:

ds2 = Mij(θ)dθidθj . (4.8)

We can then use standard results from differential geometry to compute distances
and volumes. In particular, the volume of a subset T of themanifold can be computed
as:

Vol(T ) =

∫

T
dDθ

√
detM(θ) , (4.9)

where detM(θ) is the determinant of the matrix Mij(θ), also denoted as |M |. More-
over, we introduce the uniform probability measure, such that p(V ) ∝ Vol(V ) for any
V ⊆ BD. The measure has the following probability distribution function (PDF):

p(θ) ∝
√
detM(θ). (4.10)

Samples from the uniform distribution tend to have a “uniform” (i.e. constant) spac-
ing, computed with the metric distance. Owing to this feature, the uniform distribu-
tion is a natural candidate to draw templates from.

4.2.2 Sampling from the Manifold

To generate a random template bank, we need to sample points on the manifold BD

from Eq. (4.10). A simple way to do so is by means of a Markov Chain Monte Carlo
(MCMC). However, this turns out to be unfeasibly expensive, since to obtain a single
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sample, the metric must be evaluated tens of times. For instance, to produce a bank
with O(106) templates, O(107)metric evaluations are required.

To speed up the sampling, we introduce a normalizing flow model. As we will
show below, in order to train the modelO(105)metric evaluations are sufficient: this
is a small fraction of the metric evaluations needed to run a MCMC. Once trained,
the normalizing flowmodel produces high quality samples from Eq. (4.10) in a small
amount of time, effectively providing templates to populate a random template bank.

A normalizing flowmodel [412–415] is a machine learning model widely used to
reproduce and/or parameterize complicated probability distributions. Mathemati-
cally, a flow is an invertible parametric function ΦW which is trained to map samples
θ from an arbitrary probability distribution p(θ) to samples x from a multivariate
standard normal distribution N (x|0,1). The space of the x is sometimes referred to
as latent space. The parametersW of the flow are set in such a way that:

x = ΦW (θ) ∼ N (x|0,1) if θ ∼ p(θ). (4.11)

In other words, a normalizing flow defines a parametric representation of a generic
probability distribution p(θ), obtained by change of variables,

pflowW (θ) = N (ΦW (θ)|0,1) |det JΦW
(θ)| (4.12)

where JΦW
is the Jacobian of the flow transformation ΦW . Sampling from pflowW can

then be easily done by sampling x ∼ N (x|0,1) and obtaining θ from the inverse flow
transformation: θ = Φ−1

W (x). Thus, given a target distribution, both the problems of
sampling and of density estimation become tractable thanks to the normalizing flow
model.

The flow transformation ΦW is built by composing nlayers simple (invertible) trans-
formations, each called a layer. Of course, depending on the application, a variety of
options are available in the literature. We build a layer by concatenating a linear trans-
formation and a masked autoregressive layer [416–418] with nhidden hidden features.
A masked autoregressive layer implements the following transformation:

TMADE(θ) = a(θ)θ + b(θ) (4.13)

where the coefficients a(θ), b(θ) are computed by (masked) autoencoderswith nhidden
hidden features.

In our case, the target probability distribution has support in the rectangle [θmin, θmax],
while the base distribution of the flow (a Gaussian) has support in RD. We imple-
ment the change of support explicitly by introducing the following transformation
T0(θ) : [θmin, θmax] → RD as the first layer of the flow:

T0(θ) = 0.5 log
1 + y

1− y
with y =

2θ − θmin − θmax
θmax − θmin

(4.14)

81



Chapter 4. Generating Template Banks in High Dimensional Spaces

where the fraction above is intended as element-wise division.4 This transformation
maps the rectangle [θmin, θmax] into the plane. Then the remaining transformations
only need to implement a change in probability density and not in the support of the
distribution, making the loss function optimization easier.

The flow probability distribution pflowW (θ) is trained to closely reproduce a given
probability distribution ptarget(θ). During the training, the weights W of the flow are
set by minimizing a loss function LΦ(W ), which measures the discrepancy between
ptarget and pflowW . The minimization is performed by gradient descent. In our case,
ptarget ∝

√
detM , with an unset normalization.

Depending on the nature of the data, several loss functions are available. If samples
from the target distribution are available, the loss function is defined as the forward
Kullback–Leibler (KL) divergence [419,420] between the target distribution ptarget(θ)

and the one defined by the flow in Eq. (4.12):

LKL
Φ (W ) = −Eptarget(θ)[log p

flow
W ] + const. (4.15)

where the expected value is computed using empirical samples from ptarget(θ) to pro-
vide a Monte-Carlo estimation of the loss function.

In our situation however, we do not have access to such samples (indeed, we are
training the flow precisely to avoid sampling!) but we are only able to evaluate ptarget
up to a constant scaling factor. For this reason, we treat the training as a regression
problem, rather than a density estimation problem, and we use the following loss
function:

LΦ(W ) =
1

N

N∑

i=1

(
log pflowW (θi)− log ptarget(θi)

)2

=
1

N

N∑

i=1

(
log pflowW (θi)− log

√
|M(θi)|+ C

)2
(4.16)

where the sum runs on a dataset of N points:

{(θi,
√
|M(θi)|)}Ni=1. (4.17)

Our experiments show that N ≃ 5× 105 is adequate in most cases.
In Eq. (4.16), C is a trainable constant, which sets the normalization of ptarget =

e−C
√

|M | on the domain of interest. Although not strictly needed, it can have a large
impact on the flow performance, since it constrains the values of

√
|M(θ)| to a scale

which is easier to learn by the normalizing flow. Some heuristics suggest initializing
4Note that the inverse T−1

0 of the transformation takes a simple form: 1
2
[tanh(T0(θ))(θmax − θmin) +

θmax + θmin], where again the multiplication is intended as element-wise.
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the constant to the 90th percentile of the values log
√
|M(θ)| stored in the dataset. As

shown in App. 4.C, the constant can be used to compute (an approximation to) the
volume of the parameter space V in Eq. (4.9).

The values of θi in the dataset Eq. (4.17) are obtained by sampling the masses
m1,m2 from

p(Mc, η) ∝ M10/3
c η8/5, (4.18)

where Mc = (m1m2)
3/5

(m1+m2)1/5
is the chirp mass and η = m1m2

(m1+m2)2
is the symmetric mass

ratio. All other quantities are sampled from a uniformdistribution in the coordinates.
Eq. (4.18) defines a flat distribution on the chirp-time parameters τ0 and τ3 [339].

Indeed, it can be shown that for a non-spinning binaries, the metric expressed in the
chirp-time coordinates is approximately flat [325,330], and that Eq. (4.18) represents
a first order approximation to the true metric. Sampling from Eq. (4.18), ensures a
high quality training set, where the distribution of the training points is reasonably
close to the target distribution5.

During the training we halve the learning rate each time the validation loss does
not improvemore than a given threshold after a given number of iterations. This pro-
cedure finds local minima better in the loss function. We also apply early stopping,
to avoid useless gradient descent iterations.

The training of the normalizing flow usually takes O(30 minutes). On the other
hand, from one to a few hours are needed to generate a dataset of O(105) points, de-
pending on the dimensionality of the manifold and on the waveform approximant.
This is the bulk of the cost of generating a template bank: the random template plac-
ing takes only a few minutes.

4.2.3 Random Template Placing

As customary, the input parameter controlling the average spacing and number of
templates is the minimal match MM . It is defined as the minimum tolerable match
that a random signal (inside the relevant parameter space)must havewith its nearest
templates in the bank. Of course, during the template placement, we only consider
the match between templates on the same manifold, while the quantity can be used
also to compare waveforms on different manifolds.

To generate our random template bank, following [345], we add random tem-
plates to the bank until a satisfactory coverage is achieved. The coverage is checked
using a procedure that closely matches [346]. The templates are sampled from the

5Indeed more samples are present at low chirp mass, which is where the metric determinant tends to
have larger values due to longer waveforms (for a constant starting frequency). Hence, a consistent bias
in the low mass region is largely penalized in the loss function due to more samples in the dataset at low
mass.
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normalizingflow inEq. (4.12), which, as discussed above, is trained to target Eq. (4.10).
This choice makes sure that the templates are spread as “uniformly as possible”
across the manifold.

One point of the space θ is said to be covered by the bank if there is at least one tem-
plate θT in the bank, whose squared metric distance (mismatch) as given in Eq. (4.5)
is at most 1−MM or:

d2M (θ, θT ) < 1−MM. (4.19)
The covering fraction η̂ of a given region T of the parameter space is then defined as
the fraction of volume covered by the bank:

η̂(T ) =
1

Vol(T )

∫

T
dDθ

√
detM(θi) c(θ). (4.20)

where c(θ) is an indicator function:

c(θ) =

{
1 if θ is covered by the bank
0 otherwise . (4.21)

According to our chosen placement method, we do not require that the space is fully
covered but we only require that it is covered with probability η. This means that we
terminate the bank construction when the covering fraction η̂ ≥ η.

To provide a sensible estimate of the covering fraction η̂, we perform a Monte
Carlo estimation of the integral in Eq. (4.20) [346]:

η̂(T ) ≃ 1

Nlivepoints

∑

i

c(θi) (4.22)

where the Nlivepoints samples θi ∼ pflow are sampled from the normalizing flow and
are called live points. Note that in Eq. (4.22), we don’t compute volumes using the
volume element

√
detM itself but rather its normalizing flow approximation.

In practice, while the templates are being added to the bank, the distance between
each livepoint is computed. If the i-th livepoint is close enough to the newly added
template, it will be removed from the set of live points and a running estimate of η̂(T )

will be updated. The estimation of the covering fraction η̂ has standard deviation
[346, App. A]:

ση̂ =

√
η(1− η)

Nlivepoints − 1
, (4.23)

which suggests using a large number of live points for better estimation. In [346], the
authors typically choose η = 0.9 and Nlivepoints = 2000.

Since themethod does not check for distances between templates, it can overcover
the space (as also reported in [345,346]), especially for a low number of dimensions.
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Despite this, it is very fast and provides a reliable bank at a cheap computational and
memory cost. Moreover, as argued in [344, 345, 347], for a large number of dimen-
sions, the banks generated by the random method provides close to optimal perfor-
mance.

As a final remark, we note that for the purpose of computing the covering fraction,
the templates do not need to be stored, which enables the algorithm to runwith a very
low memory footprint. As exemplified in Sec. 4.5.3, this allows to study the number
of templates required to cover a particular region of the parameter space, providing
invaluable pieces of information useful to plan a GW search.

4.3 Validation
In this section, we assess the performance of the two key ingredients of our tem-
plate bank generation algorithm, namely the normalizing flow model and the ran-
domplacement algorithm. Our goal is to understand the limitations of our algorithm
aswell as tomake an informed choice of the various hyperparameters that impact the
quality of the template bank.

We will consider different manifolds, which will be named with a string that lists
the manifold coordinates. The coordinates are grouped by mass coordinates, spin
coordinates, (eventual) eccentricity coordinates (i.e. e and a) and (eventual) angles
coordinates (i.e. ι and ϕ). Consequently, a string has the format:

Masses_Spin1_Spin2_Eccentricity_Angles.

Valid options for themass coordinates are m1m2which usesm1 andm2 as coordinates,
Mq which uses total mass M = m1 +m2 and mass ratio q = m1/m2 > 1, and logMq
which uses log10 M instead ofM . Similarly, other variables are listed by their names.
The manifold with spin label chi uses the effective spin χeff parameter as coordinate.
Since χeff is degenerate in the two spins, we choose to set s1z = s2z = χeff and all the
other spin components to 0.

If more than one spin coordinate is given for a given BH, the spin vector swill be
parameterized in spherical coordinateswithmagnitude s ∈ [0, 1) and angles θ ∈ [−π, π]

and φ ∈ [0, π] as follows:

sx = s sin θ cosφ (4.24)
sy = s sin θ sinφ (4.25)
sz = s cos θ. (4.26)

Note that the angle θ controls the amount of precession. With θ = 0,±π the spin
has only a z component (i.e., is aligned with the orbital angular momentum), while
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Parameter space D Architecture

m1m2_nonspinning

m1,m2 ∈ [1, 200]M⊙

q ∈ [1, 30]

f ∈ [15, 1024] Hz

IMRPhenomD [157]

2 60 60 30

Mq_s1xz

M ∈ [25, 100]M⊙

q ∈ [1, 5]

s1 ∈ [0, 0.99]

θ1 ∈ [0, π]

f ∈ [15, 1024] Hz

IMRPhenomXP [47]

4 70 70

m1m2_chi_e

m1,m2 ∈ [1, 50]M⊙

q ∈ [1, 20]

χeff ∈ [−0.99, 0.99]

e ∈ [0, 0.5]

f ∈ [10, 1024] Hz

EccentricFD [421]

4 60 60 60

logMq_s1z_s2z_iota
(with HM)

m1,m2 ∈ [50, 300]M⊙

M ∈ [100, 400]M⊙

q ∈ [1, 10]

s1z, s2z ∈ [−0.99, 0.99]

ι ∈ [0, π]

f ∈ [10, 1024] Hz

IMRPhenomXP [47]

5 20 60 60

logMq_s1xyz_s2z_iota

m1,m2 ∈ [1, 100]M⊙

M ∈ [2, 150]M⊙

q ∈ [1, 20]

s1 ∈ [0, 0.99]

θ1 ∈ [−π, π]

φ1 ∈ [0, π]

s2z ∈ [−0.99, 0.99]

ι ∈ [0, π]

f ∈ [15, 1024] Hz

IMRPhenomXHM [422]

7 100 60 60 60

Table 4.1: Details of the manifold considered for the validation of the normalizing flowmodel
in Fig. 4.1. For eachmanifold, we report the variables being sampled togetherwith their ranges.
We also list the frequency range considered, the waveform approximant used, the number of
dimensions D of the manifold as well as the number of hidden features for each layer of the
flow.
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for θ = ±π/2 there is maximal precession, as the spin vector only has an in-plane
component.

4.3.1 Normalizing Flow Validation

To study the accuracy of the normalizing flow model in reproducing
√
|M |, we con-

sider five manifolds. The manifolds are listed in Tab. 4.1, together with the region
of the parameter space they cover. We also report the waveform approximant used
as well as the frequency range where the metric is computed. The manifolds were
chosen to have a variety of number of dimensions D and to cover a broad ranges of
physical scenarios (non-spinning, aligned-spins, precession, HM, and eccentric or-
bits).

For eachmanifoldwegenerate a dataset of 3×105 points andwe compute the (log)
value of the PDF in Eq. (4.10). We then train a normalizing flow model on each of
the datasets. The architecture of each flow is also reported in Tab. 4.1. Fig. 4.1 shows
a histogram with the accuracy of the normalizing flow reconstruction of the PDF on
each manifold. This is quantified by log10

pflow

ptrue , which measures the logarithmic ratio
between the two PDFs.

Overall, the accuracy of the flow is (almost) always containedwithin one order of
magnitude. Whether a similar error is acceptable for the purpose of template place-
ment needs to be checked on a case-by-case basis with an injection study, as discussed
in Sec. 4.4.

We note that all histograms are well-centered around 0, showing that the flow
does not have a systematic bias. Moreover, the accuracy tends to be higher for low-
dimensional manifolds. Indeed, low dimensional manifolds present an easier learn-
ing task for the flow.

Themanifold logMq_s1xyz_s2z_iota shows the largest spread in accuracy, as it is
the largest dimensionalmanifold being considered. Note that it parameterizes a huge
parameter space, which cannot be realistically covered by a template bank. Hence, as
a realistic bank will necessarily cover a subset of the manifold, a flow trained on that
smaller parameter space will most certainly show better accuracy, due to an easier
regression task.

Finally, we see that the flow trained on the eccentric manifold m1m2_chi_e has re-
markably good performance. This can be explained by the fact that the approximant
EccentricFD [421] used is analytical. This ensures very smooth behaviour across the
parameter space, which can be easier for the normalizing flow model to learn.
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−1 0 1 2 3

log10
pflow

ptrue

10−1

100

101
m1m2_nonspinning

Mq_s1xz

m1m2_chi_e

logMq_s1z_s2z_iota

logMq_s1xyz_s2z_iota

Figure 4.1: Study of the accuracy for several normalizing flow, trained on different manifolds.
For eachmanifold, we compute the logarithmic ratio log10 pflow

ptrue
between the PDF computed by

the flow and the true one. We use 40000 test points from the validation set of each manifold.
Details on the manifold considered are reported in Tab. 4.1.
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Figure 4.2: Validation of the random template placement algorithm. For three of themanifolds
introduced in Tab. 4.1, we plot the number the number of templates Ntemplates of a random
template bank as a function of the number of live pointsNlivepoints used to estimate the covering
fraction. For each template bank, we set η = 0.9 and MM = 0.97.

4.3.2 Template Placement Performance

As already stated, the template placement method in use closely matches the one
introduced in [346]. The main novelty introduced here is sampling with the normal-
izing flow as opposed to rejection sampling.

For the random placement method, there are two parameters to tune that affect
the final bank size. They are the number of live points Nlivepoints and the covering
fraction η. The authors of [346] make an extensive investigation on how the bank
size depends on such quantities and we do not repeat such in-depth studies here.
We limit ourselves to examining the convergence of the template number Ntemplates
as a function ofNlivepoints (see [346, Fig. 4 (right)]) in the case of manifolds with pre-
cessing and HM signals. For the study, we chose the manifolds m1m2_nonspinning,
Mq_s1xz and logMq_s1z_s2z_iota introduced in Sec. 4.3.1 (see also Tab. 4.1). The
second manifold covers a precessing parameter space, while the metric on the latter
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Parameter space Size
Original mbank

HM bank [328]

M ∈ [50, 400]M⊙
q ∈ [1, 10]

ι ∈ [0, π]

ϕ ∈ [0, 2π]

IMRPhenomXHM [422]

20500 58932

“All-sky” bank [380]

m1,m2 ∈ [1, 200]M⊙
q ∈ [1, 20]

χeff ∈ [−0.99, 0.99]

IMRPhenomD [157]

1.8× 106 1.3× 106

Table 4.2: Details of the two banks available in the literature that we reproduce with our code.
For each bank, we indicate the parameter space considered and the approximant used. We
also compare the number of templates of the banks obtained with the different methods.

manifold is computed with an HM approximant [422].
We present our results in Fig. 4.2, where the number of templates is computed

with a covering fraction η = 0.9 with varying Nlivepoints. In all cases the number of
templates converges to a constant value as Nlivepoints increases. Already ∼ 500 live
points are enough to provide an accurate estimation of the bank size. Our results are
consistent with the findings of [346], which we further extend to higher-dimensional
manifolds.

4.4 Comparison with Other Bank Generation Methods

We compare the output of mbank with two banks available in the literature, gener-
ated with two different methods. The first bank is a non-spinning HM bank [328],
covering the high mass region of the BBH parameter space. The bank was generated
using the stochastic placement algorithm, as implemented in the code sbank [351].
The second bank is the aligned-spin bank [380] currently in use by the GstLAL pipe-
line [77,78] for the fourth observing run (O4) of the LIGO-Virgo-KAGRA collabora-
tion. It was generated using the manifold [343]metric template placement algorithm
called and covers a very widemass range in the BNS and BBH parameter space. Both
banks have a minimal match MM requirement of 0.97.

In much of what follows we will measure the coverage of a bank by studying the
dependence of the fitting factor Eq. (3.45) across different regions of the parameter
space. To do so, we randomly extract a number of simulated signals and, for each of
them, we compute the maximum match with the templates of the bank.
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Figure 4.3: Fitting factor studies for the two template banks introduced in Sec. 4.4. As dis-
cussed in Sec. 4.4.1 and 4.4.2 respectively, “HM bank” is designed to reproduce [328] and
targets high mass non-spinning systems with HM content, while the “All-sky bank” bank cov-
ers aligned-spin systems (without HM) over a broad mass range, following [380]. We report
the cumulative histogram of the fitting factors of 105 injections samples across the parameter
space.
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(b) Validation of the “All-sky bank”, generated
with our code and designed to reproduced [380].

Figure 4.4: Validation of the two template banks designed to reproduce two independently
generated banks. On the left side, we report results pertaining the “HM bank”, while on the
right side we report the “All-sky bank”. For each two dimensional bin, we report the median
fitting factor of 105 injections covering the parameter space, as described in the text.

4.4.1 A Non-spinning HM Template Bank

The non-spinning HM bank described in [328] covers systems with total mass M in
the range [50, 400]M⊙ and mass ratio q ∈ [1, 10]. It also includes the inclination angle
ι and reference phase ϕ of the system, both covering the whole possible spectrum of
values ι ∈ [0, π] and ϕ ∈ [0, 2π]. The authors use the analytical “zero-detuning high
power” PSD [423] and consider a low frequency cutoff fmin = 10Hz.

As already noted, they use the state-of-the-art code sbank [349,351]. The method
is very accurate and known to provide effective coverage with a low number of tem-
plates. Of course, this comes at a large up-front computational cost to construct the
bank.
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To reproduce this bank,weplace templates on themanifold logMq_nonspinning_-
iotaphi, with coordinates log10 M , q, ι and ϕ. We use the same PSD and coordinate
ranges as the original bank. We refer to our bank as “HM bank”. We train a normal-
izing flowmodel with 4 layers with 60, 60, 60, 10 hidden features respectively and we
choose Nlivepoints = 2000 and a covering fraction η = 0.8. Our bank has 58932 tem-
plates and took a few hours to generate; the original bank is reported to have 20500

templates. All information is summarized in Tab. 4.2. We perform an injection study,
drawing 105 signals uniformly sampled in logM, q, cos ι and ϕ. The results of such
study are reported in Fig 4.3 and Fig 4.4a.

First we note that our bank successfully covers the parameter space, with only
1% of injections found with fitting factor below 0.97 and less than 1% with fitting
factor below 0.96. The coverage of the bank is similar to that of [328]. In Fig. 4.4a,
we observe that the coverage is uniform across the space, i.e. we do not see regions
where the fitting factor is significantly different from the others.

Comparing the number of templates, it is striking that our bank has almost three
times more templates than the original template bank. As no template rejection is
done during the random bank construction, there is no control over templates being
too close to each other. For this reason, an over-coverage of the space is inherent to
the random template placement and is also reported in [345, 346]. This problem can
be addressed in future work, as discussed in Sec. 4.6.

4.4.2 An “All-sky” Template Bank

The aligned-spin bank (with noHMs) introduced in [380] covers a broadmass range,
with systems with component masses m1,m2 ∈ [1, 200]M⊙. The spins of the two
objects are constrained to be equal to each other6, s1z = s2z = χeff, spanning the range
[−0.99, 0.99]. The authors set an upper limit to the mass ratio q < 20. Moreover, for
objects with component mass m < 3M⊙, they limit χeff in the range [−0.05, 0.05]7.
The authors use the Advanced LIGO O4 Design PSD (with 190Mpc range) [425]
and consider a low frequency cutoff fmin = 10Hz.

The comparison with [380] is particularly interesting, since the bank is also pro-
duced with a metric template placement, implemented in the manifold code [343].
manifold uses a geometric approach, where the parameter space is iteratively split
into (hyper)rectangles along the coordinates, until the volumeof each rectangle reaches
a sufficiently small value that it can be covered by a single template.

As summarized in Tab. 4.2, we construct a bank to cover the parameter space
6This choice reduces the dimension of themanifold, without compromising the template bank accuracy.
7This is motivated by astrophysical considerations. Objects with masses smaller than 3M⊙ are likely

to be neutron stars and such objects are believed to develop only mild rotations [424].
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used in [380] over the manifold m1m2_chi, sampling the coordinatesm1,m2 and χeff.
We may refer to our bank as the “All-sky” bank. To produce our “All-sky” bank,
we trained three different normalizing flows in different regions of the parameter
space. A first normalizing flow covers the BBH region with m1 ∈ [3, 200]M⊙, with
χeff ∈ [−0.99, 0.99]. A second one covers the BNS region, covering the manifold,
(m1,m2, χeff) ∈ [1, 3]M⊙ × [1, 3]M⊙ × [−0.05, 0.05]. A third normalizing flow spe-
cializes in the high mass region, characterized by m1,m2 ∈ [100, 200]M⊙. Indeed,
at high masses, the template density is so low that hardly any livepoint is sampled,
which results in dramatic undercoverage. An appropriate coverage is enforced by
the third normalizing flow, which placesO(3000) templates in the region as opposed
to zero templates placed by the first flow. The additional coverage at high masses is
manifest in Fig. 4.4b, as discontinuity in the fitting factor for m1,m2 > 100M⊙.

All the three normalizing flow models are made of 5 layers of 10 hidden features
each. Three templates banks are generated using each normalizing flow and they are
merged together afterwards. For the template placement we setNlivepoints = 2000 and
covering fraction η = 0.95. The resulting bank has 1326805 templates.

The bank generation took around three hours, with most of the computing time
spent on the dataset generation (i.e. on expensive metric evaluations). If needed,
the dataset generation can be easily parallelized using mbank, hence reducing sig-
nificantly the bank generation time. Relying on parallel execution, [380] reported a
generation time of minutes.

To validate our bank, we generate an injection set with 105 injections, with the
logarithm of the masses uniformly sampled. Results of our injections studies are
reported in Fig 4.3 and Fig 4.4b. Note that our injection set is different from the ones
used in [380].

In Fig 4.3, we see that ∼ 5% of the injections have a match below 0.97. The low
fitting factor injections are mostly located around the low mass corners of the bank,
clustered on the lowmass end of the BNS region and in the high spin - lowmass edge
of the BBH region. Inside the template bank and on the high mass end of the param-
eter space, satisfactory coverage is achieved. Our results suggest that mbank struggles
to accurately cover the “narrow” corners of the parameter space. Nevertheless, this
is a common problem that has been observed with other placement methods as well,
and several strategies have been proposed to cope with it. Within our framework, the
simplest option would be to extend the boundaries of the bank at low masses, thus
ensuring better coverage of the region of interest.

With slight variations depending on the region of parameter space, [380] reports
that 10% of BBH injections have fitting factor smaller than∼ 0.98, while for our bank
the 10th percentile is around 0.975. Even though it is hard to compare the results
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directly due to different injection sets, it seems fair to state that, compared to [380],
our template bank provides slightly worse injection recovery. On the other hand,
our template bank has 30% less templates, matching the number of templates placed
by sbank in the same region, as reported by [380]. With an accurate treatment of the
lowmass corner, the coverage of our template bankwill easilymatch the one of [380],
with a comparable bank’s size.

4.5 Novel Applications of the Method
Our template placement method allows for several exciting applications in GW data
analysis. Obviously, the most straightforward application is the generation of high-
dimensional template banks, such as a precessing and/or HM banks. While in prin-
ciple it is possible to generate these high-dimensional banks with a stochastic place-
ment method, very few of such banks have been generated so far, mostly due to the
enormous computational cost of choosing the right parameter space and of comput-
ing the match between templates. These tasks becomes feasible thanks to mbank.

Besides efficient high-dimensional bank generation, our method can be used for
other purposes as well. These include choosing the appropriate parameter space
to cover by forecasting the size of a bank or selecting the appropriate coordinates
to cover a given region of binary systems. Moreover, our normalizing flow could
be used as a proposal for a stochastic placement algorithm or to create datasets for
machine-learning applications in GW data analysis.

Inwhat follows, we generate a large precessing template bank and a large aligned-
spin HM bank. Additionally, we provide a detailed discussion of other innovative
applications of our method.

4.5.1 A Precessing Bank

Choosing the Parameter Space

Themain difficulty in generating a precessing bank lies in the huge size of the param-
eter space. As we show below, a precessing bank can easily have billions of templates,
even when covering the mass range routinely explored by “standard” searches. As
current search pipelines can handle only up to a few million templates, due to com-
putational cost limitations, the size of a bank sets very stringent constraints in the
selection of a suitable parameter space to explore with a GW search.

Another difficulty, related to the first, arises from the choice of the BBH coordi-
nates to include in the bank, i.e. the choice of manifold. In principle, a precessing
BBH system is described by 10 parameters (two masses, six spins, and two angles).
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Figure 4.7: Fitting factor study of the precessing bank, introduced in Sec. 4.5.1. For each bin,
we color-code the median fitting factor of 105 injections sampled “On manifold”, as described
in the text.

However, not all of them are important, as large changes in some parameters do not
result in large changes in the waveform morphology. Thus, including them in the
bank does not yield any obvious improvement and, on the contrary, it may lead to
vanishing metric eigenvalues, which would degrade the metric predictivity, hence
the template placement. The latter point is discussed with more details in Sec. 4.5.3.

Finally, a more technical complexity arises from the fact that in high dimensional
spaces, both the training of a normalizing flow (see Sec. 4.3.1) and the template place-
ment become harder, hence possibly harming the quality of the template bank.

All these difficulties imply that great care must be taken when deciding both the
parameter space and the BBH variables to include in the bank. The choices are en-
tangled, since covering different manifolds with the same mass range can produce
banks of very different sizes. Roughly speaking, choosing a lower dimensional sub-
manifold reduces the bank size, at the cost of a loss in the bank’s ability to cover the
high dimensional space.

To choose a manifold, we rely on the theory. In [183], the authors find that the
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Figure 4.8: Fitting factor study of the precessing bank of Sec. 4.5.1. Unlike Fig. 4.7, here we
focus on the low q, lowM region, where the random placement method fails. For each bin, we
color-code the median fitting factor of 5× 104 injections sampled “On manifold”, as described
in the text.

effect of the four in-plane spin components (i.e. s1x, s1y, s2x, s2y) can be well approxi-
mated by a single precessing spin parameter χP assigned to the x-component of the
heavier object’s spin. Thus, a generic precessing system is roughly equivalent to a
system with

s1 = (χP , 0, s1z)

s2 = (0, 0, s2z)

effectively creating an explicit mapping between a six dimensional spin manifold
to a three dimensional one. In a later work [186], it is suggested that to capture
the combined effect of precession and HM, a two-dimensional spin parameter χ⃗P

is needed. In this case, the mapping is between a six-dimensional spin manifold to a
four-dimensional one.

Both works suggest that the in-plane components of the spin on the lighter object
(i.e. s2x, s2y) can be neglected, reducing the dimensionality of the parameter space.
Moreover, sincewe are not currently concernedwith precession combinedwithHM8,
we can rely on the one-dimensional effective spin mapping [183] to also neglect the
y-component of the spin of the heavier object, s1y.

We then consider only three out of six spin components, s1x, s1z and s2z, where
all the effects of precession are included in s1x. To obtain accurate coverage, we also
need to include the inclination ι in the manifold. Some investigations showed that
the inclusion of the reference phase ϕ yields a (almost) degenerate metric, which, by
dramatically undercovering the space, negatively affects the placement. Luckily, as
injection studies show that neglecting ϕ does not harm the bank’s effectiveness, we
can exclude ϕ from the set of parameters. However, this might not be the case if we
include both precession and HMs.

8In such a space, the template banks would be unfeasibly large!
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To summarize, we find that the 6 variables M , q, s1x, s1z, s2z and ι provide a suf-
ficiently complete description of waveforms in the precessing space. This claim is
confirmed by an injection study presented in Fig. 4.9, where we see that more than
93% of the injections covering the 10 dimensional precessing space have a fitting fac-
tor greater than the minimal match target of 0.97. We note that a precessing template
bank with HMs will likely need to sample two additional variables s1y and ϕ, hence
increasing the dimensionality to 8 [186].

Regarding the search parameter space, we are interested to target BBHs where
precession is stronger as such systems aremost likely to bemissed by current searches
[74, 185]. Precession is more visible for high mass ratio, edge-on9 systems and for
high values of spins [73]. Moreover, as more cycles are detectable, precession effects
will be stronger for longer signals due to the accumulation of the phasing effects of
precession. These considerations suggest that very asymmetric, low mass systems,
such as the neutron star-black hole (NSBH) space, would be an ideal target for a
precessing bank. However, as shown below in Sec. 4.5.3 searching the full NSBH
region is unfeasible, as hundreds of millions of templates would be needed.

For this reason, we restrict ourselves to a different, less extreme, region of the
parameter space. After several investigations, made possible by the speed and flex-
ibility of our approach, we found that a parameter space with component masses
in the range [8, 70]M⊙, with a mass ratio cut-off of 6, produces a bank with a man-
ageable size. In this space, we obtain a precessing bank with ∼ 2 million templates.
Extending the parameter space to lower masses (or higher mass ratios) results in
much larger banks, pushing the limits of current pipelines.

In closing, we stress again that the investigations above are made possible by
mbank, since they rely on fast template bank generation across a variety of manifolds
and ranges of coordinates.

Generating and Validating the Bank

As stated above, our precessing bank covers the manifold logMq_s1xz_s2z_iota,
with coordinates log10 M , q, s1, θ1, s2z and ι. We consider BBHs with individual
masses between 8 and 70M⊙, with a maximum mass ratio q = 6. The other vari-
ables s1, θ1, s2z and ι cover the set [0, 0.9]× [−π, π]× [−0.99, 0.99]× [0, π].

To compute the metric, we use the Advanced LIGO O4 sensitivity estimate [425]
andwe set a frequency range of [15, 1024]Hz, employing the approximant IMRPhenomXP
[47]. We train a normalizing flow with 3 layers with 100, 100 and 60 hidden features
respectively, using a dataset of 4 × 105 points. The flow performance after training
is reported in Fig. 4.6. To generate the bank, we use a minimal match requirement of

9An edge-on system is observed with inclination ι ≃ π/2.
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Figure 4.9: Cumulative fitting factor for the precessing bank introduced in Sec. 4.5.1. The 105
injections “Full precessing” have isotropic spins, while the 3 × 105 precessing injections “On
manifold” are sampled on the manifold logMq_s1xz_s2z_iota and they have s1y = s2x =

s2y = ϕ = 0. For the injections “On manifold”, we plot separately the low q, low M corner,
characterized by q ≤ 1.2 andM ≤ 20M⊙. The other two histograms exclude this region.

0.97, with a covering fraction η = 0.95, estimated with 3000 live points. In a similar
way to what was done for the “All-sky” template bank, we also train a normalizing
flow to target the high total mass region withM > 100M⊙. We use the latter to place
templates with the same covering fraction η = 0.95, with great benefits. The overall
bank has 1605625 templates, plotted in Fig. 4.5.

This bank generation took a fewhours in total: ∼ 1 hour for the dataset generation,
∼ 30minutes for the training of the flow and∼ 5minutes for the template placing. All
the steps above ran on a single core, using less than 4GB of memory. We highlight
that our time andmemory requirements are a fraction of those of a similar bank with
the state-of-the-art stochastic algorithm.

The template distribution reported in Fig. 4.5 shows a spike in the template den-
sity for θ1 = ±π (close to the non-precessing limit) in the high mass ratio and high
s1 region. Some investigations indicate that these are not artifacts introduced by the
normalizing flow. Whether the feature is physical or is due to the behaviour of the
waveform approximant in the non-precessing limit remains an open question which
needs more inspection.

To study the performance of our template bank, we generate two injections sets,
with masses sampled uniformly in logm1 and logm2. The first set, labeled “Full pre-
cessing” has fully precessing injections (with two 3D spins and varying ϕ). The sec-
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ond one, denoted as “On manifold”, has injections lying on the manifold logMq_-
s1xz_s2z_iota, hence covering a subset of the “Full precessing” set. The latter set is
needed to asses the coverage of the bank on the manifold on which the templates lie
and thus is a measure of the templates’ placement accuracy. On the other hand, the
“Full precessing” injection set evaluates the ability of the bank to recover a generic
precessing signal, hence assessing the quality of our choice of manifold. Clearly, this
is the injection set that is most relevant for designing the bank for a fully precessing
search.

We report the results of our study in Fig 4.9, in the form of a histogram of the
fitting factors, and in Fig. 4.7, where we study the dependency of the fitting factor
across the parameter space. Fig. 4.8 reports the same fitting factor study focused on
the low q, low M region.

As is clear from Fig. 4.8 and 4.9, the random template placement method fails for
the low q, low M region, with q ≤ 1.2 and M ≤ 20M⊙, where only ∼ 40% of the
injections “On manifold” have a fitting factor higher than 0.97. On the other hand,
outside the low q, low M corner, the template bank provides a good coverage: 97%
of the injections “On manifold” has a fitting factor large than 0.97.

The poor performance for lowmass ratio and lowmasseswas also observed in the
“All-sky” template bank in Sec. 4.4.2, although less severe. Such failure be explained
by two combined causes. First of all, as noted above, the randommethod is unable to
cover “sharp” corners of the parameter space, due to the lack of appropriate bound-
ary treatment: this can (and does) severly limit the bank’s ability to cover the space.
Moreover, we observe that for q → 1 the metric determinant goes rapidly to 0, mean-
ing that very few templates are placed. This is shown in Fig. 4.10, where we plot |M |
as a function of q keeping constant all the other coordinates 10. The two effects com-

10Although not reported here, the same behaviour is observed for “standard” signals.
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Figure 4.11: Accuracy of the normalizing flow trained used to generate the aligned-spin HM
bank of Sec. 4.5.2. The accuracy is expressed in terms of the logarithmic ratio between the
template density PDF ptrue Eq. (4.10) and its approximation pflow given by the flow. The flow
accuracy is evaluated on 40000 test points.

bines together in the low q, low M region, which is drastically undercovered. The
same issue is not observed anywhere else in the parameter space.

In principle, we could remedy the problem by extending the covered region to
lower masses and higher q: this would make sure that the low q, lowM target region
does not lie at the boundaries of the bank anymore. However, the lack of coverage in
this region is not amajor concern for the bank’s effectiveness in a real search scenario.
Indeed, precession for q ∼ 1 has very little effect on the BBHwaveform and a precess-
ing system with symmetric masses would likely be detected by current aligned-spin
searches.

In Fig. 4.7, we see that the coverage is rather uniform across the parameter space.
The median fitting factor slightly drops for the high q high s1 corner of the parameter
space. As shown in Fig. 4.6, the flow performance degrades in that undercovered
corner of the space: the true template density

√
|M | is underestimated by the nor-

malizing flow, which accordingly places less templates than optimal.
The fitting factor of the “Full precessing” injection set is fairly good, with only 7%

of the injections (outside the “low q, low M” region) below the target match. This
means that the χP approximation that motivates our choice is robust: the manifold
logMq_s1xz_s2z_iota provides a faithful low-dimensionality representation of the
entire precessing parameter space.

4.5.2 An Aligned-spin HM Bank

Aligned-spinHM template banks are easier to generate than precessing ones, due to a
smaller dimensionality of the parameter space. Indeed, a generic aligned-spin binary
system with HMs is characterized by 6 parameters (two masses, two spins and two
angles ι ϕ) but, as for the non-HM case, the spin effects can be easily parameterized
with an effective spin parameter, reducing the number of dimensions to 5. Note that

100



4.5. Novel Applications of the Method

200 400

M

2

4

6

q

2.5 5.0

q

−1

0

1

χ
2.5 5.0

q

0

1

2

3

ι

2.5 5.0

q

0

2

4

6

φ

0.990

0.995

1.000

0.985

0.990

0.995

1.000

0.990

0.995

1.000

0.990

0.995

1.000

M
a
tch

Figure 4.12: Fitting factor study of the aligned-spin HM bank, introduced in Sec. 4.5.2. For
each bin, we color-code the median fitting factor of 105 injections sampled uniformly from the
parameter space.

here we deal with one dimension more than in the non-spinning HM bank produced
in Sec. 4.4.1. Despite less uncertainties in the choice ofmanifold than in the precessing
case, the parameter space is very large and producing a template bank of a feasible
size still requires a careful choice of the region to target.

We used mbank to generate an HM aligned-spin bank, covering the high mass re-
gion of the BBH parameter space. High mass events are notoriously hard to detect
[371, 372]. As they are very short, their morphology matches closely non-Gaussian
transient noise bursts, also called glitches, [211–214]. In this scenario, a more realis-
tic model for the waveform can improve the detectability of such signals, thanks to
both an increase in recovered SNR and to a more accurate signal-based veto [77,426].
Several studies [64,67,407,427] confirmed this claim, finding that failing to consider
HMs in GW searches can lead to a large sensitivity loss for large mass ratios q ≳ 4

and high masses M ≳ 100M⊙ [73].
Consequently, our bank covers themanifold logMq_chi_iotaphi, sampling log10 M ,

q and χeff as well as inclination and reference phase. We consider templates with to-
tal mass M between 50M⊙ and 400M⊙ and a mass ratio smaller than 7. The effec-
tive spin lies in range [−0.99, 0.99] and, as usual, ι ∈ [0, π] and ϕ ∈ [−π, π]. We use
the Advanced LIGO O4 sensitivity estimate [425] and we set a frequency range of
[10, 1024]Hz, with approximant IMRPhenomXHM [422].

We generate a dataset with 4 × 105 points and train a normalizing flow with 4

layers, each with nhidden = 60 hidden features. The accuracy of the normalizing flow
is reported in Fig. 4.11. For the template placement, we use a minimal match require-
ment of 0.97 and set a covering fraction η = 0.8, estimated with 10000 live points.
The overall bank gathers 2115299 templates, which are plotted in Fig. 4.13. The bank
generation took roughly the same time as for the precessing bank.

We study the bank performance with 105 injections and report their fitting factor
in Fig. 4.12 and Fig. 4.14. Our injection study shows that only ∼ 2% of the injections
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Figure 4.13: Corner plotwith the templates of the aligned-spinHMbankdescribed in Sec. 4.5.2.
Along the diagonals, we show the histogram of the template number as a function of each
coordinate.
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Figure 4.14: Cumulative fitting factor for the aligned-spin HM bank described in Sec. 4.5.2.
The histogram is built upon 105 injections sampled from the manifold.

have a fitting factor smaller than the target of 0.97, with a median fitting factor of
0.99. We can conclude that the bank provides good coverage of the parameter space.
Moreover, the fitting factor is rather constant across all the parameters space. As was
also the case for the HM bank introduced in Sec. 4.4.1, there are not regions which
are undercovered by the template banks. Also the accuracy of the normalizing flow
does not vary too much over the parameter space, showing a bad performance only
in the region with high total mass and low mass ratio.

We note that, in order to achieve good performance in the two HM banks pre-
sented in this work, we set a covering fraction of only η = 0.8. This is significantly
lower than what we used for the non-HM banks and also lower than the recom-
mended value of η = 0.9 in [346]. This means that, unlike the non-HM case, the
metric match in Eq. 4.5 underestimates the “true” match. In this scenario, the covering
fraction estimated with the live points (which makes use of the metric) also under-
estimates the “true” covering fraction. Therefore, a lower value of η is enough to
obtain an acceptable coverage. This is not the case for non-HM banks. The reason
why this happens only for HM banks is currently not understood and requires more
investigation.

4.5.3 Other Possible Applications

The speed of the bank generation, together with the flexibility of the flow in sampling
from the parameter space, allows for several novel applications of our work to GW
data analysis, besides producing high-dimensional template banks. Without being
exhaustive, we discuss below some of the new possibilities.

Selecting the parameter space to target As already discussed, the choice of the pa-
rameter space to target in GW searches can be challenging, as it is hard to obtain a
reliable forecast of the number of templates needed for accurate coverage. Moving

103



Chapter 4. Generating Template Banks in High Dimensional Spaces

20 30 40 50 60

Mmax

108

N
te

m
p
la

te
s

MM = 0.9

MM = 0.95

Figure 4.15: Study of the size of a template bank in the neutron star-black hole parameter space.
Each point refers to a template bank on the manifold logMq_s1xz_iota, covering a total mass
range M ∈ [Mmin,Mmax]. The component masses are limited to m1 ∈ [10, 60]M⊙ and m2 ∈
[1, 3]M⊙, with mass ratios q ∈ [3.3, 15]. In the plot we report the number of templatesNtemplates
as a function of the maximum total mass Mmax, for different minimal match requirements.
The resulting banks are huge, with tens of millions of templates, showing that a search for
precessing NSBH binaries is still prohibitively costly.

towards high-dimensional template banks, the number of templates increases by or-
ders of magnitude and the standard stochastic approach suffers frommemory issues
due to the storage of the waveforms needed for the match calculation. This in turn
makes it difficult to even explore high-dimensional spaces, as the current algorithms
time-out by the time the bank reaches several million templates

Our method has a low memory footprint and this makes possible to forecast the
number of templates in a given parameter space, providing invaluable information to
choose an appropriate target for the search. To do so, the interested user might train
a normalizing flow on a large region of the parameter space and then place templates
in a subregion, without the need to store them. Sampling in a subregion can be easily
completed with the use of rejection sampling.

A natural candidate to demonstrate the usefulness of this technique is the precess-
ing NSBH parameter space. Indeed, due to the large mass asymmetry of NSBH sys-
tems (i.e. high q), precession has a strong imprint on the waveform, leading to a very
large volume to cover by a template bank. To study the number of templates needed
to cover the space, we train a normalizing flowmodel on the manifold logMq_s1xz_-
iota11 for systemswithmassesm1 ∈ [10, 60]M⊙ andm2 ∈ [1, 3]M⊙, withmass ratios
q ∈ [3.3, 15]. The other coordinates s1, θ1 and ι vary in set [0, 0.9]× [−π, π]× [0, π]. As
above, we use the approximant IMRPhenomXP, in a frequency range of [15, 1024]Hz.

To study the parameter space size, we run our template placement algorithm for
varyingmaximum total massMmax andwemeasure the number of templates needed

11We neglect any spin on the lighter object, a neutron star. This is physically motivated by the fact that
a NS is expected to have low spins [424].
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to achieve a covering fraction of η = 0.9 for different minimal match requirements.
Since we do not store and validate the template banks, there is no guarantee that the
resulting banks provide a satisfactory coverage. The procedure is justmeant to obtain
an order of magnitude estimation of the bank size.

As shown in Fig. 4.15, the precessing NSBH parameter space is huge. With a
minimal match requirement of 0.9, around 100million templates are needed to cover
the full space. Around half of the templates are in the low total mass region with
M ∈ [11, 15]M⊙. The numbers agree with the investigations carried out in [406]. To
cover the space with a minimal match of 0.95, around five times more templates are
needed.

The magnitude of the precessing NSBH space makes it nearly impossible to use
traditional matched-filtering techniques to search for such signals. It thus becomes
compelling to either develop new search techniques [406] or to improve the compu-
tational power available.

Thanks to our method, similar estimates can easily be done for other regions of
the BBH parameter space (e.g. targeting eccentric BBHs), thus providing invaluable
information to plan future high-dimensional GW searches.

Manifold selection Themetric eigenvalues and eigenvectors can give an interesting
piece of information about the relative importance of the coordinates of themanifold.
Let λi and vi be the i-th eigenvalue and eigenvector respectively of the metric Mij .
We can think of each eigenvector λi as a measure of the relative importance of the
eigenvector vi, which represents a linear combination of the coordinates. We can
then introduce the following quantity for each coordinate j, which we call coordinate
importance:

Ij =
∣∣∣∣∣
∑

i

λi(vi)j

∣∣∣∣∣ (4.27)

where (vi)j is the j-th component of the i-th eigenvector. It is a weighted average over
the projection of each eigenvector along a given coordinate. Heuristically, an “impor-
tant” coordinate will give a larger contribution to the “important” eigenvectors (i.e.
with larger eigenvalues).

This quantity might be used to create a hierarchy among the coordinates and,
when choosing the manifold to cover, it can offer a useful criteria to decide which
quantities to include in the bank. For example, in the manifold logMq_s1xyz_s2z_-
iotaphi, the variable log10 M has an importance of 5 × 104, while variables q, s1, θ1
and s2z have importance two orders of magnitude less. This implies that a template
bank must include (besides the total mass) all the variables q, s1, θ1 and s2z. On the
other hand, coordinates φ1 (controlling the magnitude of s1y) and the angles ι and
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ϕ have an “importance” of one order of magnitude less than all the other quantities.
As a consequence, the latter three play a smaller role in covering the space and they
can be possibly ignored (or perhaps only one of them can be included).

Of course, this line of reasoning is heuristic and whether a manifold is suitable or
not to cover the space must be checked by means of an injection study. However, the
study of the relative importance between coordinates can give an educated guess on
the manifold to cover and serve as a starting point for the trial and error process of
manifold selection.

A proposal for the stochastic template placement Our normalizing flow finds an
obvious applicationwithin a stochastic placement algorithm. According to the stochas-
tic algorithm, template proposals are randomly drawn from an analytical PDF, which
is specifically design to approximate Eq. (4.10) in the non-spinning case. A good pro-
posal is crucial to reduce the template rejection rate, hence reducing the overall run
time.

The normalizing flow is a natural candidate for a proposal distribution, since it
goes beyond the non-spinning BBH approximation, allowing for more physics to be
considered. Implementing a normalizing flow within the stochastic algorithm will
most likely provide a computational benefit, due to a more efficient proposal.

Generating datasets formachine learning applications The recent years have seen
a burst of machine learning application to GW data analysis, covering all fields of the
analysis of compact binary systems from waveform modelling [5, 6, 270, 411] to GW
searches [428–431] and parameter estimation [288–290,292,432].

For all these applications, it is crucial to have high quality datasets of waveforms
for training purposes. The goodness and the applicability of themodel strongly relies
on the distribution of waveforms in the dataset and substantial time is often spent in
tuning the dataset composition to achieve optimal performance. The waveforms in
such datasets can be sampled using our normalizing flow model, thus covering the
space accurately. In many cases this may prove beneficial.

4.6 Future Prospects
Clearly, ourwork can be improved and expanded in several directions. In this section,
we discuss some possible advancements.

Introducing a new metric As shown in App. 4.B, the Hessian of the match (with
which we identify the metric) does not always approximate the behaviour of the true
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match in a neighborhood of a point. For instance, on themanifold Mq_s1xyz, consider
the ellipse E0, centered on θ0 = (10M⊙, 7, 0.6, 2, 2) of all the points θwithmetricmatch
with the center higher than 0.97. It turns out that only ∼ 50% of the points inside
E0 have a match higher than 0.97. The situation gets worse for smaller mass ratio,
when the metric determinant vanishes, and it can significantly vary among different
manifolds.

While this hasn’t affected (too much) the effectualness of our template bank, the
failure of the metric approximation is concerning and can negatively influence the
placement, especially in presence of a parameter with a small impact on the wave-
form. The interested reader is encouraged to read App. 4.B.

Exploring different flow architectures In this work, we only considered Masked
Autoregressive Layers for our normalizing flow architecture. Of course, other choices
are available in the literature and could possibly improve the flow accuracy. Further
work should implement some of these and assess the (possible) gain in accuracy.
Possible transformations include coupling layers [433, 434] or residual flows [435,
436].

As discussed in Sec. 4.2.2, it is very beneficial to use a transformation like Eq. (4.14)
as the first layer of the normalizing flow. Future work can find a different transfor-
mation offering better performance.

Estimating the covering fraction with importance sampling An accurate evalua-
tion of the covering fraction in Eq. (4.20) is crucial to providing a realistic estimation
of the template number and hence good coverage. Currentlywe estimate the covering
fraction by using the approximation to the volume element given by the normalizing
flow. We can increase the accuracy by computing the integral in Eq. (4.20) with im-
portance sampling:

η̂(T ) ≃ 1∑
i wi

∑

i

c(θi)wi (4.28)

where the live points are sampled from the flow and are weighted with weights wi =√
|M(θi)|

pflow(θi)
. The weights make sure that we evaluate the unapproximated version of the

integral, i.e. using the true volume element and not its flow approximation.
In a practical application, it is wise to prevent the weights to grow indefinitely, as

this can negatively impact the estimation of the covering fraction. For this reason, we
clip the weights to a maximum value of W : wi = min

(√
|M(θi)|

pflow(θi)
,Wmax

)
. The tuning

of Wmax deserves more attention, as it can really impact the bank performance.
Some tests have shown that importance sampling delivers larger banks, thus with

better coverage but with an increased variance in the number of templates. However,
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in some occasions, one or a few live points can dominate the sum (i.e. have very
large weight), making the covering fraction computation less robust in case of flow
inaccuracies. More work is required to treat such cases and successfully implement
this new feature.

Exploring different placement methods While the random template placement
method in use has proven its effectiveness, other alternatives are certainly possible.
A different placement method is appealing to reduce the bank size without degrad-
ing its performance, as random template banks tend to place more templates than
needed.

First, one could use the metric to reject templates that are too close to each other.
This would be a variation of the stochastic algorithm, where distances are computed
with the metric and not with the true match. While this may prove unfeasibly slow
in some cases, it can still be computationally more efficient than with the brute force
match computation. As a compromise, a random template bank with low covering
fraction and minimal match might be given as starting point for the iteration (i.e. a
seed bank).

One could also devise alternative strategies to sample from the flow latent space,
such as using quasiMonte Carlo sampling or even setting points on a lattice. Since the
coordinates of the templates will be correlated with each other, we cannot compute
iteratively the covering fraction as described in Sec. 4.2.3. For this reason the suitable
bank size needs to be computed with other methods, before selecting the templates.

Regardless of the placement method, the templates in a bank may still not be
placed optimally, creating over(under)-dense regions. This is especially true for the
randommethodusedhere. For this reason, itmay be beneficial to add apost-processing
step to move or remove some templates [437].

Encoding the metric into the flow? A fascinating path to explore is to encode in-
formation about the metric Mij inside the flow transformation. So far, the normal-
izing flow ΦW is trained in such a way that the determinant of the Jacobian det JΦW

matches the determinant of the metric. Thus, among the D(D−1)
2 free components of

JΦW
, only one of them is constrained during the training. This leaves a lot of degener-

acy in JΦW
. One could break such degeneracy by imposing the additional constraint

that the Jacobian of the flow matches the metric Mij :

(JΦW
)ij ≃ Mij . (4.29)

Such constraint should be imposed by introducing a suitable loss function. The ap-
proach would involve a much harder optimization problem and it remains to be as-
sessed whether the flow has enough representation power to solve such problem.
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A flow trained in this way would create an isometry (i.e. distance preserving
transformation) between the latent space and the physical space. According to dif-
ferential geometry, this is not possible, unless the Mij has zero curvature, which is
not the case in general. A possible way out could be to embed the manifold of sig-
nals in an higher dimensional flat manifold, which would guarantee the existence of
a solution.

As outlined, there are many open questions and issues to solve, which require
significant work. The reward however would be significant: the flowwould parame-
terize a distance preserving (and not only volume preserving) transformation, which
can be used for high dimensional fast stochastic placement or even geometric place-
ment – the holy grail of bank generation.

4.7 Final Remarks

In this chapter, we presented a novel method to generate template banks covering
a high-dimensional manifold of (possibly) precessing and/or HM and/or eccentric
BBH signals. Key to our method is the metric Mij and the derived volume element√
|M |. The latter defines the number of templates that should cover an infinitesimal

volume and can be seen as a probability measure on the space. We derive here for
the first time an expression for the metric suitable for precessing and/or HM signals
(see App. 4.A). The metric is written in terms of the gradients of the waveform po-
larizations and is numerically stable.

To sample the templates, we introduce a novel normalizing flow model, which
serves the twofold purpose of sampling from the space and providing a fast-to-com-
pute approximation to

√
|M |. Once we are able to sample from the space, we place

templates using the random algorithm, which is fast and suitable to cover high-di-
mensional spaces. This comes at the price of a larger bank than would be produced
with the state-of-the-art stochastic algorithm, although the over-coverage becomes
less severe as the number of dimensions, and correspondingly the overall size of the
bank, increases.

We validate our code by evaluating the normalizing flow accuracy and the ro-
bustness of the random placement. Moreover, with a few hours of computation, we
were able to reproduce two template banks existing in the literature obtained with
independent codes - a non-spinning HM bank [328] and an aligned-spin bank [380].

To demonstrate the capabilities of our code, we generate two large template banks
covering systems for which no or little searches have been performed: a precess-
ing bank gathering 1.6 million templates (Sec. 4.5.1) and an aligned-spin HM bank
formed by 2.1 million templates (Sec. 4.5.2). We show that the two banks satisfac-
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torily cover the space. They were both produced in a matter of hours, with minimal
CPU and memory usage. We also discuss other possible applications of our method,
including the optimization of the template proposal of the stochastic algorithm, the
selection of a suitable parameter space for a GW search and the generation of datasets
of waveforms for the training of machine learningmodels. Our code is publicly avail-
able as a package mbank [410] and comes with a large number of tools to simplify the
bank generation and validation.

As a final remark, we stress that our work will enable the GW community to run
searches on novel regions of the BBH parameter space. Being able to generate a high
dimensional bank in a few hours, the computational cost of searching new regions of
the parameter space will be dominated by the actual cost of the analysis rather than
the cost of prior steps. Thiswill allow for optimal resource allocation to search for sig-
natures of precession, eccentricity and/or HMs, hopefully leading to exciting physics
discoveries. For this reason, we will heavily rely on mbank to generate the template
bank needed for a precessing search. Its speed an flexibility quickly allowed us to
explore different regions of the parameter space, allowing us to identify a suitable
search target and to cover it with templates.

4.A Details of the Metric Computation
In this Appendix we report the details of the derivation of Eq. (4.6), as well as the
computation of the HessianH of the overlap in Eq. (4.1) in terms of the gradients of
the waveform h(θ). In what follows, we define (h1|h2) and [h1|h2] to be the real and
imaginary part, respectively, of ⟨h1|h2⟩.

We begin by expanding the quantityM(θ+∆θ, θ) for∆θ around 0. SinceM(θ+

∆θ, θ) has a maximum for ∆θ = 0, the leading term is quadratic in ∆θ. We obtain:
M(θ +∆θ, θ) = max

∆t
O(θ +∆θ, θ,∆t)

= max
∆t

{
1 +

1

2

[
∂ijO∆θi∆θj + 2∂itO∆θi∆t+ ∂ttO(∆t)2

]}

= 1 +
1

2

[
∂ijO − ∂itO∂jtO

∂ttO

]
∆θi∆θj (4.30)

where all the derivatives are evaluated at ∆θ = ∆t = 0 and the explicit time maxi-
mization yields ∆t = −∂itO∆θi

∂ttO .
From Eq. (4.30), we can read the expression for the metric in Eq. (4.6) recogniz-

ing in the derivatives ∂∂O|∆θ,∆t=0 the components of the Hessian matrix H of the
overlap.

We now compute the Hessian H of the overlap in terms of the gradients of the
normalized waveforms. For notational convenience, we set h+(θ1)e

ift = s, we drop
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any dependence on θ2 and we understand µ = i, t. We have:

∂µO =
1

O
1

1− ĥ2
+×

[
(∂µŝ|ĥ+)(ŝ|ĥ+) + (∂µŝ|ĥ×)(ŝ|ĥ×)

−(∂µŝ|ĥ+)(ŝ|ĥ×)h+× − (∂µŝ|ĥ×)(ŝ|ĥ+)h+×
]

(4.31)

Differentiating another time, after some rearrangements, we get:

Htt = −(ĥ+|ĥ+f
2) +

1

1− ĥ2
+×

[ĥ×|ĥ+f ]
2 (4.32)

Hti = [ĥ+|∂iĥ+f ]−
1

1− ĥ2
+×

(ĥ×|∂iĥ+)[ĥ×|ĥ+f ] (4.33)

Hij = (ĥ+|∂i∂j ĥ+) +
1

1− ĥ2
+×

(ĥ×|∂iĥ+)(ĥ×|∂j ĥ+) (4.34)

To move further, we express the normalized waveform derivatives in terms of the
un-normalized ones:

• ∂i⟨h|h⟩ = ⟨∂ih|h⟩+ ⟨h|∂ih⟩ = 2(h|∂ih)

• ∂iĥ =
1

(h|h)3/2 [(h|h)∂ih− (h|∂ih)h]

• ∂tĥ = if ĥ = if
h

(h|h)1/2

• ∂i∂j ĥ =
1

(h|h)1/2 ∂ijh+ 3
1

(h|h)5/2 (h|∂ih)(h|∂jh)h

− 1

(h|h)3/2
[
(h|∂ijh)h+ (∂ih|∂jh)h+ 2(h|∂(ih)∂j)h

]

where A(ij) =
1
2 (Aij +Aji) denotes symmetrization.

Plugging this into the equations (4.32)-(4.34), we get:

Htt = − 1

h++
(h+|f2h+) +

1

1− ĥ2
+×

1

h++h××
[h×|fh+]

2 (4.35)

Hti = − 1

h++
(h+|f∂ih+)−

1

1− ĥ2
+×

1

h++h××
[h×|fh+](h×|∂ih+)

+
ĥ+×

1− ĥ2
+×

1

h
3/2
++h

1/2
××

[h×|fh+](h+|∂ih+) (4.36)

Hij = − 1

h++
(∂ih+|∂jh+) +

1

1− ĥ2
+×

1

h2
++

(h+|∂ih+)(h+|∂jh+)

+
1

1− ĥ2
+×

1

h++h××
(h×|∂ih+)(h×|∂jh+)

− 2ĥ+×

1− ĥ2
+×

1

h
3/2
++h

1/2
××

(h×|∂(ih+)(h+|∂j)h+) (4.37)
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Figure 4.16: For each eigenvector of the metric, we compute the empirical relation between the
mis-match 1 − M and the distance ϵ of points along the eigenvector direction. The solid line
shows the relation predicted by the metric, while the dashed line shows a parabolic fit. In the
legend are reported the quadratic coefficients of both lines.

where we defined h·∗ = (h·|h∗).
These expressions, together with Eq. (4.6) fully specify the metric. The gradients

∂ih of the waveform can be computed with a finite difference scheme or analytically
for a number of surrogate waveform models [5, 6, 270, 411].

The non precessing limit can be recovered by setting h× = ih+ and h+× = 0:

Htt =
1

h2
++

(h+|fh+)
2 − 1

h++
(h+|f2h+) (4.38)

Hti =
1

h2
++

[h+|∂ih+](h+|h+f)−
1

h++
[h+|f∂ih+] (4.39)

Hij =
1

h2
++

{
(h+|∂ih+)(h+|∂jh+) + [h+|∂ih+][h+|∂jh+]

}

− 1

h++
(∂ih+|∂jh+) (4.40)

4.B Alternative Definitions for the Metric
Throughout this paper, we identified the metric with the Hessian of the overlap (see
Eq. (4.6)). While this is widely used in the literature [336, 345] and has been proven
to provide reliable template banks, it still has some undesirable properties. To show
this, we compute the metric at point θ0 = (20M⊙, 3., 0.7, 1.8) of manifold Mq_s1xz,
described in Sec. 4.3.1, andwe compute its eigenvalues α(i) and eigenvectors v(i) . We
then compute the matchM(i)

ϵ between θ0 and the point θ(i)ϵ = θ0 + ϵv(i), located at a
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distance ϵ along i-th eigenvector. Finally, we compute the coefficient α of the Taylor
expansion 1 − M(i)

ϵ = αϵ2. α corresponds to the i-th eigenvalue and in principle, it
should be close to its value.

In Fig. 4.16, we plot the fitted relation between 1−M and ϵ for each eigenvector,
as well as the one computed with the metric. In the legend we report the α coeffi-
cient (dashed blue line) and the eigenvalue of the metric (solid orange line). The
striking feature we note in Fig. 4.16 is that the eigenvalue is consistently smaller than
the fitted α coefficient, sometimes by an order of magnitude. This means that the
Hessian, which is computed for ϵ → 0, is not able to extrapolate the behaviour of
1 − M(ϵ) even at modestly large value of ϵ: the metric approximation to the match
loses its predictivity as a measure of distance. The problem becomes more severe in
high-dimensional manifolds. On the other hand, since the banks generated with the
Hessianmetric show nice coverage, one may argue that the volume estimate provided
by the Hessian is still accurate enough for our purposes.

As a way out, we could redefine the matrixMij(θ) to a more suitable expression,
departing from the Hessian. The goodness of the metric expression may depend on
the application and on the range of validity of the approximation. The tensor field
Mij(θ) can be computed through an optimization problem, where we minimize the
discrepancy between the two quantities in Eq. (4.5), encoded into a loss function. The
loss function depends on the values of the matrix elements M ′

ij :

Lθ(M
′
ij) =

∫

{d(θ,θ′)<dtarget}

dDθ′
[
1−M(θ, θ′)−M ′

ij∆θi∆θj
]2 (4.41)

where the integration extends on a D-ball with radius dtarget centered around θ and
dtarget is a tunable parameter, which controls the validity of the approximation.

At any given point θ, the components Mij(θ) of the metric are selected by mini-
mizing the above loss:

Mij(θ) = argmin
M ′

ij

Lθ(M
′
ij). (4.42)

Although theminimization can be tackledwith standard techniques, it requiresmany
evaluations of Eq. (4.4) and the ability to sample froma “complex” set such as {d(θ, θ′) < dtarget}.

While in most cases this may prove unfeasible, future work could solve the prob-
lem in Eq. (4.42) at a manageable cost. This may be beneficial to many data analysis
applications, such as template placement and Fisher information matrix studies. A
number of alternative metric expressions, coming from different heuristic optimiza-
tion strategies, are already available in mbank, although not fully validated.

4.C Computing the Volume of the Parameter Space
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Since the number of templates is proportional to the volume of the parameter space
[336], estimating this volume can be valuable for forecasting the size of a template
bank. The estimation can be easily done by importance sampling, using samples from
the normalizing flow, since the latter is trained to reproduce the volume element.

The volume of the parameter space BD is defined as:

V =

∫

BD

dDθ
√
detM(θ) (4.43)

=

∫

Sflow

dDθ
√
detM(θ) IBD

(θ) (4.44)

where in the last equality we compute the integral on the support of the flow Sflow ⊇
BD andwe introduced the indicator function IBD

which is non-zero only on theman-
ifold BD. Eq. (4.44) can be numerically evaluated by importance sampling:

V ≃ 1

N

∑

i

√
detM(θi)

pflow(θi)
IBD

(θi) (4.45)

with θi ∼ pflow. The normalizing flow ensures a low variance in the volume estima-
tion.

Eq. (4.45) involves several metric evaluations, which has some computational
cost. To further reduce the computational cost, we can use the fact that, after the
training procedure, the flow approximates the volume element as follows:

log pflow − log
√

|M |+ C ≃ 0 (4.46)
where C is the trainable constant appearing in Eq. (4.16). Hence we can replace√

detM(θi)

pflow(θi)
in Eq. (4.45) simply with eC . The volume estimation is then reduced to

computing the fraction of the volume of Sflow covered by BD:

V ≃ eC
1

N

∑

i

IBD
(θi) (4.47)

where again θi ∼ pflow. The goodness of such approximation is closely related to the
flow performance, as studied in Sec. 4.3.1 (see also Fig. 4.1).

Once an estimation of the volume is available, the number of templates can be
obtained by noting [336] that in a lattice, given a minimal match MM , the average
spacing d between template is:

d(MM) = 2

√
1−MM

D
. (4.48)

Hence, roughly speaking, the number of templates N needed to cover the volume V
is given by:

N =
V

d(MM)D
. (4.49)
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CHAPTER 5

Generalized Signal Consistency Test

5.1 Introduction

As discussed in Sec. 3.4.2, in the presence of non-Gaussian transient noise bursts [211,
213–216] a matched-filter routine can occasionally output triggers with large SNR
values. As such triggers can contaminate the background of a search, hence lowering
its sensitivity, several statistical tests, known as signal consistency tests [77,79,82,382–
387,389,391], have been designed to improve the separation between GW candidates
and false alarms caused by the detectors’ non-Gaussian noise.

Expanding our searches to include signals from precessing binaries [66, 74, 327,
405, 406, 438] and/or binaries with higher-order modes (HMs) [328, 373, 407–409]
necessitates the generalization of those signal consistency tests to a more versatile
framework. Neglecting to update these tests can result in decreased search sensitivity,
potentially offsetting the benefits of using a more diverse set of templates. While
the χ2 time-frequency signal consistency test [382] and its variant, the sine-Gaussian
χ2 discriminator [384], have been successfully applied in searches including higher-
order modes [328, 373] and precessing signals [406], little attention has been given
to generalizing other types of signal consistency tests, or even to the development of
new ones.

In particular, in this work based on [2] we focus on the autocorrelation-based
least-squares test Eq. (3.50), denoted ξ2, which is currently utilized by the GstLAL
search pipeline. The traditional test relies on the assumption that the signal to detect
is a circular aligned-spin binary system where no HMs are considered. Indeed, as
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detailed in Sec. 1.3.3 in the discussion around Eq. (1.101), in this scenario the system
is symmetric under reflection across the orbital plane and this equatorial symmetry
translates into a simple relation between the two polarizations of the GW emitted

h̃+ ∝ ih̃×, (5.1)

which allows to obtain a convenient and computationally efficient expression for the
test. In this Chapter, we describe how the simplicity of Eq. (5.1) enters the expres-
sion for the currently used ξ2 signal consistency test [77] and we describe how to
move away from from the “aligned-spin and no HM” assumption. Consequently, we
introduce a new signal consistency test that does not make any assumption about the
nature of the signal to detect. Thus, while the test is primarily motivated to search for
precessing and/or HM signals, it can be applied to a matched-filtering search for any
type of gravitational-wave signal. In Sec. 5.2, we discuss in details the “standard”
test and show how it can be generalized to precessing and/or HM binaries, by in-
troducing our new generalized signal consistency test ξ2sym. Moreover, we provide a
computationally convenient approximate expression ξ2mix to the novel test. In Sec. 5.3
we discuss the performance of the newly introduced test and its approximated ver-
sion. Sec. 5.4 gathers some final remarks and future prospects.

5.2 A New Generalized ξ2 Signal consistency Test
As introduced in Sec. 3.2.3, the generic output of the matched-filtering procedure is
the complex timeseries z(t):

z(t) = (d|hR)(t) + i(d|hI)(t) (5.2)

where hR and hI are two normalized real templates. The real filters hR, hI are chosen
to maximise the SNR timeseries ρ(t) = |z(t)| at the time where a GW signal is present
in the data and their expression depends on the assumptions about the nature of the
GW signal to search.

Given a trigger at time t = 0, the ξ2 signal consistency test relies on predicting
the SNR timeseries z(t) obtained by filtering a signal h with a matching templates.
The predicted timeseries R(t) is then compared to the measured timeseries z(t) to
compute the squared residual timeseries:

ξ2(t) = |z(t)−R(t)|2. (5.3)

We can integrate the residual timeseries to obtain the ξ2 statistic:

ξ2 =

∫ δt

−δt
dt |z(t)−R(t)|2

∫ δt

−δt
dt E [ξ2(t)]

(5.4)
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where the integral extends on a short time window [−δt, δt] around the trigger time.
To obtain the ξ2 statistic, the integral of the residual timeseries is normalized by the
integral of the expected value E

[
ξ2(t)

] over different Gaussian noise realizations of
the residual timeserieswithout a signal buried in the noise. Clearly, its value depends
on the template considered. It is convenient to express δt in terms of the so-called
autocorrelation length (ACL) [77], defined as the number of samples in the time-
window [−δt, δt] at a given sample rate fsampling, so that δt = (ACL− 1)/(2 fsampling).

The ξ2 defined above can be used by the GW search pipelines to veto some loud
triggers. If a trigger is caused by a noise fluctuation or non-Gaussian noise transient
bursts, the discrepancy between the expected and measured SNR timeseries will be
large, leading to a large value of ξ2. This can be used to downrank certain triggers,
with large improvement in sensitivity.

5.2.1 The “Standard” Signal Consistency Test

In the case of aligned-spin systems, where no HMs are considered, the two templates
hR, hI used to filter the data are given by ĥp, ĥc introduced in Eq. (3.21) and the
matched-filtering procedure outputs the “standard” SNR timeries zstd(t) Eq. (3.26).
Thanks to the equatorial symmetry of the “standard” systems, mathematically ex-
pressed by Eq. (5.1), (i) the two templates are related by the simple expression h̃R =

ih̃I and (ii) the observed signal at the dector Eq. (3.23) in frequency domain is also
proportional to h̃p. Thanks to this remarkable property of the signal, the predicted
SNR timeseries Rstd(t) around a trigger at t = 0 is given by:

Rstd(t) = (h|ĥp)(t) + i(h|ĥc)(t)

= z(0)
{
(ĥp|ĥp)(t) + i(ĥp|ĥc)(t)

}
(5.5)

where, to simplify the expression above, we used the fact that h = 1
Deff

eiϕĥp and that
z(0) = 1

Deff
e−iϕ, since (ĥc|ĥp)(t = 0) is equal to zero. By comparing the measured

timeseries zstd(t) and the expected timeseriesRstd(t)with Eq. (5.4), one can compute
ξ2std for a non-precessing search. It is a simple exercise to compute the expected value
of the residual timeseries over different noise realizations [77, App. A]:

E
[
ξ2std(t)

]
= 2− 2

∣∣∣(ĥp|ĥp)(t) + i(ĥp|ĥc)(t)
∣∣∣
2

(5.6)

The integral of this expression can be used as a normalization for the ξ2 statistic1.
1Note that the normalization of ξ2 computed in Eq. (5.6) is equivalent to the denominator of Eq. (3.50)

introduced in Sec. 3.4.2.
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By using again ˜̂
hp = i

˜̂
hc and the identity [a|ib] = (a|b), the “standard” SNR

Eq. (3.26) can also be expressed in terms of ĥp only:

ρstd(t) =
√
(h|ĥp)2 + [h|ĥp]2. (5.7)

Of course the same is readily done for the Rstd(t):

Rstd(t) = z(0)
{
(ĥp|ĥp)(t) + i[ĥp|ĥp](t)

}

= z(0) ⟨ĥp|ĥp⟩(t) (5.8)

The quantity ⟨ĥp|ĥp⟩(t) is sometimes called template autocorrelation. For “standard”
signals, the Eqs. (5.5) and (5.8) are equivalent. However, for precessing and/or HM
they may give very different results, due to the breaking of the symmetry Eq. (3.22).

We close by noting that the predicted timeseries is given by a product of a trigger-
dependent scalar and a complex template-dependent timeseries

R(t) = Trigger× Complex timeseries

This arises directly from the fact that the signal model Eq. (3.23) presents the same
convenient factorization. Such factorizationmakes the ξ2 evaluationparticularly com-
putationally convenient and hence the ξ2 test computationally attractive. As we will
see, the use of precessing and/orHM templates breaks this factorization, as Eq. (3.23)
is no longer valid.

5.2.2 The Novel “Symphony” Signal Consistency Test

The simplicity of the “standard” case arises directly from the symmetry between the
two polarizations h̃+ = ih̃×, which allows us to conveniently factorize the signal
model and the predicted SNR timeseries. However, in general this is not possible
and a different expression for the filters and the expected SNR timeseries needs to
be computed. As we saw in Sec. 3.2.2, with the only assumptions that the observed
signal is a linear combination of the two polarizations, the appropriate filters for the
interferometric data are given by [183,328,427]:

hR = ĥ+

hI = ĥ⊥ =
1√

1− ĥ2
+×

(ĥ× − ĥ+×ĥ+)
(5.9)

where the real quantity ĥ+× = (ĥ+|ĥ×)(t = 0) is a crucial measure of the precession
and/orHMcontent of a template. The non-precessing non-HM limit can be recovered
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by ĥ+× = 0. We call symphony SNR the SNR timeseries produced with the templates
above:

zsym(t) = (h|ĥ+) + i(h|ĥ⊥). (5.10)
Note that as in the “standard” case, the two templates ĥ+ and ĥ⊥ are orthogonal
vectors, i.e. (ĥ+|ĥ⊥) = 0. Indeed, the vectors for ĥ+, ĥ⊥ follows the Gram-Schmidt
“orthogonalization" prescription to create a set of orthonormal basis from the set of
basis vectors {ĥ+, ĥ×}. Obviously, the fact that the two filters are orthogonal doesn’t
mean that in general ĥ+ and ĥ⊥ are related by a simple expression such as Eq. (3.22).

To compute the predicted timeseries Rsym(t), it is convenient to rewrite the signal
model Eq. (2.6) in terms of ĥ+ and ĥ⊥

h = A+ĥ+ +A⊥ĥ⊥ , (5.11)
where we absorbed into A+,A× an overall scaling factor (which depends on the
source distance and on the sky location, as well as on ĥ+×). With this definition,
the predicted SNR timeseries is given by:

Rsym(t) =(h|ĥ+)(t) + i(h|ĥ⊥)(t)

= A+ĥ++(t) +A⊥ĥ⊥+(t)

+ iA+ĥ+⊥(t) + iA⊥ĥ⊥⊥(t) (5.12)
where to shorten the notation we defined

ĥ•⋆(t) = (ĥ•|ĥ⋆)(t) with • ⋆ = +,×,⊥ (5.13)
and we identify A+/⊥ with the real and imaginary part respectively of the trigger
z(0) = A++iA⊥. This directly arises from the settingRsym(0) = z(0) and recognizing
that ĥ⊥+(0) = ĥ+⊥(0) by definition.

The expression for Rsym(t) Eq. (5.12) is a linear combination of four basis real
timeseries, which in general are independent from each other. Note that this is not
the case for the “standard” test Eq. (5.5), where only two independent timeseries are
needed to describe the SNR timseries. This is the direct consequence of the fact that in
the “standard” case the signal model only depends on a single timeseries ĥR

22, while
in the general case, the two timeseries h+, h× are needed to specify the signal model.
We can gain more insight by redefining a different set of basis for Rsym(t)

ĥS
++(t) =

1

2

(
ĥ++(t) + ĥ⊥⊥(t)

)
(5.14)

ĥA
++(t) =

1

2

(
ĥ++(t)− ĥ⊥⊥(t)

)
(5.15)

ĥS
+⊥(t) =

1

2

(
ĥ+⊥(t)− ĥ⊥+(t)

)
(5.16)

ĥA
+⊥(t) =

1

2

(
ĥ+⊥(t) + ĥ⊥+(t)

)
(5.17)
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and the predicted SNR timeseries takes a strikingly simple expression:

Rsym(t) =z(0)
(
ĥS
++(t) + iĥS

+⊥(t)
)

+ z∗(0)
(
ĥA
++(t) + iĥA

+⊥(t)
)
. (5.18)

We can write Eq. (5.18) more compactly by introducing the two complex timeseries

ĥS/A(t) = ĥ
S/A
++ (t) + iĥ

S/A
+⊥ (t) , (5.19)

so that
Rsym(t) = z(0) ĥS(t) + z∗(0) ĥA(t). (5.20)

The expected SNR timeseries Rsym(t) can be compared to the complex “symphony”
SNR timeseries to yield a novel generally applicable signal consistency test ξ2sym. We
can compute the normalization of the ξ2 statistic with a simple computation of the
expected value of the residual timeseries

∣∣z(t)−Rsym(t)
∣∣2 over different noise real-

izations:

E
[
ξ2sym(t)

]
= 2− 2

∣∣∣ĥS(t)
∣∣∣
2

+ 2
∣∣∣ĥA(t)

∣∣∣
2

. (5.21)

The expression generalizes Eq. (5.6) to the “symphony” search statistic. The details
of the computation are reported in App. 5.A.

The first term in Eq. (5.18) has the same structure of the “standard” test Eq. (5.5).
However, an additional term proportional to z∗(0) enters the expression, thus break-
ing the convenient factorization between a complex trigger and a complex template-
dependent timeseries. Of course, the expression agrees with the “standard” test for
aligned-spin limit where ˜̂h+ = i

˜̂
h×. In that case, it is easy to show that ĥ⊥ = ĥ× = ĥc

and that

(ĥ+|ĥ+)(t) = (ĥ×|ĥ×)(t) (5.22)
(ĥ+|ĥ×)(t) = −(ĥ×|ĥ+)(t). (5.23)

For this reason, both ĥA
++(t) and ĥA

+⊥(t) are identically vanishing timeseries and
Eq. (5.18) reduces to the “standard” case.

5.2.3 Approximating the New ξ2 Test

Although the timeseriesRsym(t) offers the best prediction for the “symphony" SNR, it
cannot be expressed as a product of the trigger z(0) and a template-dependent com-
plex timeseries. As discussed earlier, such a convenient factorization is crucial for
reducing the computational cost of the consistency test and for deploying the test
with minimal changes to existing infrastructures. Therefore, we seek an expression
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Figure 5.1: Predicted and measured absolute value of the SNR timeseries, |R| and ρ respec-
tively, for a precessing signal in zero noise and with unit magnitude, filtered with a perfectly
matching template. Wemeasure the SNR using both the “standard” SNR and the “symphony"
SNR. The predicted SNR is computed with three different prescriptions, Rstd Eq. (5.8) suit-
able for the “standard” SNR, and Rsym Eq. (5.18) and Rmix Eq. (5.24), both suitable for the
“symphony" SNR.We also report in the bottom panel the difference between the expected and
measured SNR timeseries. In the bottom panel we report the difference between both |Rsym|
or |Rmix| and the “symphony" SNR. It is manifest that |Rsym| and ρsym show perfect agree-
ment between each other while |Rstd| and |Rmix| do not accurately predict the relevant SNR
timeseries. Also note that the peak of “standard” search statistic is lower than unity, mean-
ing that performing matched filtering with templates Eq. (3.21) is not able to fully recover
the SNR of a precessing signal. The signal is injected into Gaussian noise, sampled from the
LIGO Livingston PSD [439] with a rate of 4096Hz. The waveform is characterized by masses
m1,m2 = 28M⊙, 3M⊙ and spins s1 = (−0.8, 0.02,−0.5) and s2 = 0, observed with an in-
clination ι = 2.66. It was generated starting from a frequency of 12Hz with the approximant
IMRPhenomXP [47].

Rmix(t) for the predicted symphony SNR timeseries that retains this convenient fac-
torization while providing satisfactory accuracy. While this expression is only an
approximation to Rsym(t), it may prove adequate in certain cases.

In particular, in the case of a precessing and HM binary system, the symmetries
in Eqs. (5.22-5.23) are violated by only a “small amount”. More formally, we observe
that the magnitude of ĥA

++(t) and ĥA
+⊥(t) is small in most of the practical cases and

it makes sense to discard from Eq. (5.18) the term ∝ z∗(0). This leads to the an
approximation Rmix(t) of the predicted symphony timeseries:

Rmix(t) = z(0)
(
ĥS
++(t) + iĥS

+⊥(t)
)

(5.24)

Therefore, we can introduce the additional “mixed" signal consistency test ξ2mix, which
is obtained by comparing Rmix with the “symphony" SNR Eq. (5.10). The normal-
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ization factor E [ξ2(t)] can be straightforwardly computed by setting ĥA(t) = 0 in
Eq. (5.21):

E
[
ξ2sym(t)

]
= 2− 2

∣∣∣ĥS(t)
∣∣∣
2

. (5.25)
The test is equivalent to the “standard” ξ2 Eq. (5.8) with the minimal replacement
⟨ĥp|ĥp⟩(t) → ĥS(t).

To obtain this expression we discarded from the predicted timeseries the complex
quantity z∗(0)ĥA(t). For this reason, the order of magnitude of ĥA(t) is intimately
connectedwith the error introduced by the “mixed” predicted timeseries, hencewith
the performance of ξ2mix. In what follows we will use the magnitude of the peak ρA

of the ĥA(t) as a primary indicator of the goodness of the “mixed” consistency test
ρA = max

t

∣∣∣ĥA(t)
∣∣∣ . (5.26)

As already noted, ĥA(t) is identically zero for “standard” systems, hence ρA can be
also used as a metric to quantify the amount of precession and/or HM of a template.
Note that by definitionmaxt

∣∣∣ĥS(t)
∣∣∣ = 1, hence the quantity above automaticallymea-

sures the ratio between ĥA and ĥS .
The choice of discarding the term z∗(0)ĥA(t) is very natural but somehow arbi-

trary. Other choices for the residuals are possible, thus leading to a different expres-
sion for the predicted timeseries, hence different values of ξ2. A convenient alter-
native choice for an approximate signals consistency test consists in neglecting from
Rmix(t) all the terms O(ĥ+×):

Rmix-bis(t) ≃ z(0)

[
1

2

(
ĥ++(t) + ĥ××(t)

)

+i
1

2

(
ĥ+×(t)− ĥ×+(t)

)]
(5.27)

The expression has themerit of beingmore physically interpretable thanEq. (5.24), as
it only depends on the physical polarizations, and it defines an additional test, labeled
ξ2mix-bis. As we will see in the next section, the values of ξ2 obtained with the latter
expression do not significantly differ from the values of ξ2mix obtainedwith Eq. (5.24),
hence an experimenter interested in interpretability could freely use ξ2mix-bis instead
of ξ2mix.

We close by noting that by assuming the approximate symmetries Eq. (5.22-5.23),
Rmix-bis(t) has the simple expression

Rmix-bis(t) ≃ z(0)
(
ĥ++(t) + iĥ+×(t)

)
(5.28)

where we can straightforward recognize the “standard” test with the natural replace-
ment ĥp → ĥ+ and ĥc → ĥ×. This is the expression that one could have naively guessed
without thorough computations.
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Figure 5.2: Values of ξ2 Eq. (5.4) as a function of the absolute value of (ĥ+|ĥ×), which quantifies
the precession and/or HM content of a signal. Each value is computed on random precessing
BBHs, injected into Gaussian noise at a constant SNR. The left and center panels show SNRs
of 10 and 100 respectively, while the right panel tackles the case of zero noise with injected
signal normalized to 1. ξ2 is computed using three different prescriptions. ξ2std is obtained
from Rstd(t) and zstd(t) (label “standard”). ξ2sym is computed using Rsym(t) and zsym(t) (label
“symphony"), while ξ2mix uses Rmix(t) and zsym(t). For this study we set ACL = 701.

In Fig. 5.1, we present an example demonstrating how accurately the predicted
SNR timeseries aligns with the actual one, comparing the “standard," “mixed," and
“symphony" cases. We compute the SNR timeseries obtained for precessing BBH
signal with zero noise and filter the data with the same signal; we plot the measured
SNR timeseries ρstd(t) and ρsym(t) and the expected absolute values of the timeseries
Rstd(t), Rmix(t) and Rsym(t). We note that Rstd(t) and ρstd(t) show poor agreement
with each other, while Rsym(t) perfectly models the complicated features of ρsym(t).
Moreover, Rmix(t) provides a satisfactory approximation to ρsym(t), accurate to a few
percents.

5.3 Validity and Limitations of Different Signal Consis-
tency Tests

In this section we study in depth the validity and the range of applicability of the var-
ious signals consistency tests discussed above, namely the new ξ2sym, the “standard”
ξ2std and the approximated test ξ2mix and its alternative expression ξ2mix-bis. After pre-
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senting a study of the capabilities of the different tests, we study the performance
of the “standard” and “mixed” tests as a function of the region of the parameter
space. We also study the differences between the two alternative approximations
of the “symphony” test ξ2mix and ξ2mix-bis and how the test depend on the choice of the
integrationwindowACL. Finally, we compare the results obtained by performing the
test in Gaussian noise with those obtained with real interferometer data: this study
is crucial to test the robustness of the test in a “real life” scenario.

To carry out our analysis, we compute ξ2std, ξ2mix, ξ2mix-bis and ξ2sym for 15000 ran-
domly sampled BBH signals, injected into Gaussian noise at different values of SNR.
Weuniformly sample the totalmassM ∈ [10, 50]M⊙ andmass ratio q = m1/m2 ∈ [1, 15],
while reference phase and inclination, as well as the sky location, are drawn from a
uniform distribution on the sphere. We also sample the starting frequency fmin in the
range [5, 20]Hz. Conveniently, we can introduce the spin tilt angle θ, defined as

θi = arccos
siz
si

, (5.29)

where si is the magnitude of the i-th spin. The tilt angle measures the mis-alignment
of the each spin with the orbital momentum and thus it is crucial to control the
amount of precession in a system, with a maximally precessing system having θ ≃
π/2.

In our study, we explore two scenarios. In one case, we focus on precessing sys-
tems with the vectors’ end points of both spins homogeneously distributed inside
the unit sphere. In the other case, we consider aligned-spin systems but include
higher modes (HMs) in the waveform. For the latter experiment, we sample both
z-components of the spins uniformly between [−0.99, 0.99] and we consider the HM
with (ℓ, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4). We utilize the frequency domain ap-
proximants IMRPhenomXP [47] and IMRPhenomXHM [422] for the two scenarios respec-
tively. We employ the PSD computed over the first three month of the third observ-
ing run at the LIGO Livingston detector [439] and sample 100 s of Gaussian noise at
a sample rate of 4096Hz for each signal under study. To study the performance in
real noise, we repeat the experiment by using segments of real publicly available real
data [84], as we discussed with more details below.

5.3.1 How Does the Different Tests Compare to Each Other?

We compare here the performance of the different tests for different SNR summariz-
ing the main results of the analysis described above. In figure Fig. 5.2, we present
results pertaining precessing systems, while results in Fig. 5.3 refer to aligned-spin
systemwith HM. In both figures for varying SNR, we plot the ξ2 values as a function
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Figure 5.3: Values of ξ2 Eq. (5.4) as a function of the absolute value of (ĥ+|ĥ×), which quantifies
the precession and/or HM content of a signal. Each value is computed on random aligned-spin
BBHs with HM content, injected into Gaussian noise at a constant SNR. The left and center
panels show SNRs of 10 and 100 respectively, while the right panel tackles the case of zero
noise with injected signal normalized to 1. ξ2 is computed using three different prescriptions.
ξ2std is obtained fromRstd(t) and zstd(t) (label “standard”). ξ2sym is computed usingRsym(t) and
zsym(t) (label “symphony"), while ξ2mix uses Rmix(t) and zsym(t). For this study we set ACL
= 701.

of the peak ρA of ĥA(t), which as discussed above is an excellent measure of the con-
tent of precession and/or HM content in a template. Note that the ξ2 values do not
depend exclusively on ρA but also on the details of the residuals ĥA(t). Nevertheless,
ρA still remains a useful scalar quantity to quantify the lack of orthogonality of the
two templates. In the “zero noise” case the injected signals are normalized to one:
this arbitrary choice only affects the value of ξ2 with an overall scaling but it does
not alter the distribution of values. We compute the ξ2 using a window (ACL) of 701
points centered around the injection time.

As long as zero noise is considered, we note that ξ2std and ξ2mix are both non-zero.
This means that Rstd(t) and Rmix(t) are not able is not able to predict exactly the be-
haviour of the SNR timeseries. This is expected, since in the precessing/HM regime,
they are both approximations to the true SNR. On the other hand, ξ2sym is always zero
(up to numerical noise), showing that the newly introduced ξ2sym is the optimal test to
search for generic BBH signals: this is also manifest in Fig. 5.1.
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Figure 5.4: Performance of the “standard” test as a function of the parameter space. We color
each bin according to the median value of ξ2std and we consider the mass ratio q, the polar spin
components s1, θ1 and of the inclination angle ι of the 15000 test BBHs described in the text.

Precessing templates By looking at the injected precessing signals in Fig. 5.2 in the
presence of noise, we see that ξ2sym is always superior to the “standard” test, with an
improvement as large as two orders of magnitude in the SNR = 100 case. As long as
ξ2mix is considered, we observe that ξ2mix and ξ2sym show similar dispersions in the low
SNR case. Therefore, in the presence of a substantial amount of noise, the accuracy
improvement provided by ξ2sym is negligible over the approximation given by ξ2mix.
The discrepancy between the two ξ2 tests increases for SNR = 100; in that case,
the noise level is lower and it must be of the same order of magnitude of the terms
neglected to obtain ξ2mix. We also note that the values ξ2mix are verywell correlatedwith
ρA, thus confirming the usefulness of the latter to predict the failure of the “mixed”
signal consistency test.

The fact that ξ2mix degrades its performance at high SNR should not be of concern,
as the signal consistency test is less crucial for the high SNR region. Indeed, due
to the rarity of very loud signals, it is feasible to perform targeted follow up and ad
hoc studies, hence assessing the significance of a trigger with other strategies. For
this reason, we conclude that ξ2mix is likely to perform close to optimality for the vast
majority of the practical applications and we recommend its implementation in any
pipeline aiming to search for precessing signals.

In closing, we note that in the ξ2std computation, we could have used Eq. (3.26)
instead of Eq. (5.7) to filter the data and, similarly, Eq. (5.5) rather than Eq. (5.8) to
compute the autocorrelation. Even though in the “standard” case, the two expres-
sions agree, they do not agree when precessing and/or HM template are considered.
In that case, a straightforward generalization to precession ĥp → ĥ+ and ĥc → ĥ×
would lead ξ2std to also take into account both polarizations, with potential improve-
ments. However, as the GstLAL pipeline implements the test using Eq. (5.8), we
made the choice to describe the current situation.
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HMtemplates The picture outline above changeswhen aligned-spinHM templates
are considered in Fig. 5.3. In this case, the performance of ξ2std, ξ2mix and ξ2sym are very
comparable in the low SNR case. In the high SNR case, ξ2sym retains a slightly bet-
ter performance but the use of ξ2mix does not bring any additional improvement over
the “standard” test ξ2std. Therefore, if only HMs are considered, our results indicate
that ξ2std already delivers close to optimal results, suggesting that no updates of the
“standard” signal consistency test are required to tackle only the aligned-spin HM
case.

5.3.2 When Does the “Standard” Test Fail?

To study the limitation of the “standard” ξ2, in Fig. 5.4 we report the values of ξ2std as
a function of the template parameters. We only focus on the precessing case, because
in the HM case ξ2std Fig. 5.3 shows a good performance across the whole parameter
space. Our results suggest that the performance of the test decreases for large values
of the mass ratio, large values of spin and for large spin misalignment. Moreover,
precession is more visible for systems observed with a close to edge-on inclination,
i.e. ι ≃ π/2. These findings align with the literature on the detectability of preces-
sion in BBH [73,74,182,406], which demonstrates that precession is more detectable
for asymmetric, heavily spinning edge-on systems. The GW signals emitted by such
heavily precessing acquires a more complicated structure, which translates into the
lack of symmetry between the two polarizations, which fail to satisfy Eq. (5.1). As
the “standard” test relies on such symmetry and uses only the plus polarization to
predict the SNR timeseries, a large violation of Eq. (5.1) also leads straighforwardly
to large values of ξ2std.

5.3.3 How Does the “Mixed” Test Perform?

As we turn our attention to the performance of the approximate “mixed” signal con-
sistency test, we are interested in (i) identifying the regions of the parameter space
where this test provides an advantage over the “standard” test and (ii) evaluating the
extent of performance loss compared to the optimal “symphony” test. We limit our
study to precessing signals, since for aligned-spin HM systems the three tests show
very similar performance.

To answer the first question, we report in Fig. 5.5 the ratio ξ2mix/ξ
2
std between the

“mixed” and the “standard” test, evaluated at SNR = 100 as a function of the tem-
plate parameters. Unsurprisingly the “mixed” test outperforms the “standard” test
for system that show a strong amount of precession: in these regions of the parame-
ter space the “standard” test shows poor performance while the “mixed” test is able
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Figure 5.5: Comparison between the “mixed” and the “standard” signal consistency tests as a
function of the parameter space. We color each bin according to the median value of ξ2mix/ξ
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and we consider the mass ratio q, the polar spin components s1, θ1 and of the inclination angle
ι of the 15000 test BBHs described in the text.

5 10

q

0.25

0.50

0.75

s 1

1 2 3

ι

0.25

0.50

0.75

s 1

1 2 3

ι

1

2

3

θ 1

1.6

2.4

3.2

4.0

ξ
2m

ix
/ξ

2sy
m

Figure 5.6: Comparison between the “mixed” and the “standard” signal consistency tests as a
function of the parameter space. We color each bin according to the median value of ξ2mix/ξ

2
sym

and we consider the mass ratio q, the polar spin components s1, θ1 and of the inclination angle
ι of the 15000 test BBHs described in the text.
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Figure 5.7: Values of ρA as a function of the parameter space. We color each bin according to
the median value of ρA and we consider the mass ratio q, the polar spin components s1, θ1
and of the inclination angle ι of the 15000 test BBHs described in the text. ρA is intended as a
measure of the goodness of the “mixed” signal consistency test and as such, it correlate very
well with the values of ξ2mix (see also Fig. 5.6).
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to better predict the behaviour of the SNR timeseries.

To understand the performance loss of the “mixed” test as compared to the op-
timal “symphony” test, we turn our attention to Fig. 5.6, where we report the ratio
ξ2mix/ξ

2
sym, also evaluated at SNR = 100, as a function of the template parameters. By

comparing the performance of the ξ2mix with ξ2sym it striking to note that the “mixed”
test has poor performance for systems with ι ≃ π

2 . This is somehow expected as it
is well known that the inclination increases the precession induced amplitude and
phase modulation on the waveform. However, it is surprising that the worst perfor-
mance occurs mostly for systems with low precession content, i.e. with s1 ≲ 0.25

and for θ1 ≲ 1. This is puzzling because the precession content of such systems is
expected to be small, due to low spins and mild mis-alignment. We make the hy-
pothesis that the effect can be explained by studying the details of the spin twist pro-
cedure [171,172,180] employed tomodel the precessing effects in the approximant in
use. According to this procedure, the waveform is generated with a time dependent
rotation of the waveform emitted by a corresponding aligned-spin system. The spin
twist might introduce some numerical noise in the polarizations, even in the aligned-
spin limit. For ι far from π

2 , the numerical noise is expected to be much smaller than
the waveform itself, however as h× → 0 for ι → π

2 the noise might become dominant
and affect the computation of ĥS(t). A numerical study reported in Fig. 5.8 shows
that even in the aligned-spin case the precessing approximant IMRPhenomXP returns a
non-zero value for ρA, while the aligned-spin approximant IMRPhenomXAS [158] re-
turns the zero value consistent with the theory. For this reason, as IMRPhenomXP is
built upon IMRPhenomXAS, we may conclude that the spin twist procedure introduces
spurious noise into the polarizations. The numerical noise becomes visible in the
timeseries ĥA(t) only when the cross polarization tends to zero, which happens for
close to aligned-spin systems but not for heavily precessing systems: that explains
why the issue is seen only for small values of s1. Further investigations should cor-
roborate this hypothesis.

These limitations for ι ≃ π
2 , most likely due to the approximant employed, should

not be of concern. First of all, they affect a region of the parameter space well covered
by current searches and for which the “standard” test is mostly suitable. Secondly,
future precessing approximants might solve the pathological behaviour observed in
Fig. 5.8, thus potentially improving the performance of the “mixed” test. Finally, we
note that ξ2mix differs from ξ2sym by at most a factor of ∼ 2. It is left to the developer of
a search to quantify the consequent loss in sensitivity and to consider whether this
is an acceptable loss. Here we limit ourself to stress that ξ2mix is more suitable to deal
with the heavily precessing regime and provides a substantial improvement over the
“standard” test. Moreover, we stress again that the results discussed refers to signals
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Figure 5.8: Numerical stability of the approximant IMRPhenomXP in the aligned-spin limit as a
function of the inclination angle ι. We compute the values of ρA and for a BBHwith total mass
M = 10M⊙ and mass ratio q = 8 and with spins s1z, s2z = −0.4, 0.6, seen at different inclina-
tion angles ι. We repeat the experiment with both the precessing approximant IMRPhenomXP
and the aligned-spin approximant IMRPhenomXAS. While for the aligned-spin approximant ρA
are both zero up to numerical precision, for the precessing approximant the two quantities be-
come non zero as the inclination gets close to ι ≃ π/2. In this case, since h× → 0, the numerical
noise introduced by the spin twist procedure affects the normalized cross polarization ĥ×.
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Figure 5.9: Discrepancies between the “mixed” signal consistency test ξ2mix Eq. (5.24) and a
possible alternative definition Eq. (5.27) ξ2mix-bis. For the 15000 BBH signals introduced in the
text, we report a histogram with the fractional difference ξ2mix-bis−ξ2mix

ξ2mix
between the two consis-

tency tests. The discrepancies between the two versions are negligible, showing that Eq. (5.24)
and Eq. (5.27) are mostly equivalent.

with a high SNR of 100, for which a ad hoc follow up strategy can be implemented,
thus making the signal consistency test less decisive. For signals observed with a
more realistic lower SNR, the impact on the ξ2mix values is much smaller, as shown in
Fig. 5.2.

In Fig. 5.7we report the peak value ρA of the residual timeseries ĥA(t) as a function
of the template parameters. We observe that the values of ρA are very well correlated
with the values of ξ2mix reported in Fig. 5.6. This confirms the utility of ρA as ameasure
of the performance of the ξ2mix.

5.3.4 Which “Mixed” Test Should We Use?

As a final analysis, we compare the performance of the two approximate tests intro-
duced in Sec. 5.2.3, ξ2mix and ξ2mix-bis. While ξ2mix has a more straightforward definition,
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Figure 5.10: Values of ξ2 for different window lengths (ACL) used for the integral in Eq. (5.4).
For each ACL, we report the values of ξ2std (blue), ξ2mix (orange) and ξ2sym (green), following the
color code introduced in Figs. 5.2 and 5.3. The data refers to 15000 precessing signals injected
at SNR = 100.

ξ2mix-bis has a simpler expression and it is only written in terms of the two polariza-
tions. Depending on the pipeline details, an user may decide to implement either
versions. For this reason, it is important to check that they give consistent results.
This is done in Fig. 5.9 where we report an histogramwith the relative error of ξ2mix-bis
with respect to ξ2mix. From the histogram we learn that in 90% of the cases ξ2mix-bis has
a discrepancy of less than 6% from ξ2mix. Our results show that the two expressions
for the predicted SNR timeseries, Eq. (5.24) and Eq. (5.27), are mostly equivalent
and they can both successfully employed in a full search, with the caveats about the
validity of the approximation discussed above.

5.3.5 How to Choose the Autocorrelation Length for the Test?

In Fig. 5.10, we study how the three ξ2 tests considered depend on the choice of the
integrationwindowACL. For brevity, we only consider the ξ2 values for precessing in-
jectionswith SNR= 100 andwe choose three different values ofACL= 351, 701, 1401.
These values are routinely employed by different analysis carried by the GstLAL pi-
peline and were chosen after careful numerical simulations [77].

Our results show that the ξ2 values are slightly improved for a longer integration
window, i.e. for a larger ACL. However, the smallness of the differences suggests that
the choice of ACL is not crucial and that overall the test is robust against different ACL
values. We then recommend to choose ACL= 701, which seems a satisfying trade-off
between test performance and computational cost.
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Figure 5.11: Performance in real detector’s noise of the three signal consistency tests discussed
in the paper. We randomly select a number of precessing templates as in Fig. 5.2 and we in-
ject a corresponding signal into both Gaussian noise and real detector’s noise. The detector’s
noise was recorded by the LIGO-Hanford observatory between GPS times 1245708288 s and
1246756864 s. In each histogram, we report the values of ξ2 for the Gaussian noise (orange)
and Real noise (blue) case. Each panel refers to a different type of signal consistency test and
to different values of the injected SNR.

5.3.6 How Does Real Noise Affect the Test Performance?

We conclude our analysis by studying the performance of the various signal con-
sistency tests in real detector’s noise. This study allows us to study a realistic sce-
nario, where non-Gaussian artifacts may negatively impact our ability to predict the
SNR timeseries. To do so, we use the publicly available data [84] taken during the
third Observing Run (O3) by the LIGO-Hanford observatory between GPS times
1245708288 s and 1246756864 s. We use the data to produce whitened segments of
100 s, where we inject the test signals introduced above. We then compute the SNR
timeseries, both for the “standard” and the “symphony” case, and we compute the
ξ2 for each injection. We present our results in Fig. 5.11, where for each type of signal
consistency test we report the distribution of ξ2 values computed in both the real and
Gaussian noise cases. As above, we repeat the experiment for signals injected at an
SNR of 10 and 100.

From our results it is manifest that the bulk of the ξ2 distributions computed for
both real and Gaussian noise are consistent with each other: this confirms the robust-
ness of the test even in the real noise scenario. Moreover, we note that our novel “sym-
phony” produces systematically lower values of ξ2 as compared to both the “mixed”
and “standard” tests, further confirming its optimal performance in the high SNR
case.
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In some occasions the real noise produces triggers with large values of ξ2 when
compared with the Gaussian noise case: in these situations the non-Gaussianities of
the detector’s output introduce artifacts in the SNR timeseries, which are not taken
into account by our prediction. This produces the large values of ξ2 observed in
Fig. 5.11. This behaviour is not only expected but also desired: indeed, the ξ2 test
is specifically designed to discriminate between astrophysical triggers and triggers
from noise artifacts. Consequently, large ξ2 values in the presence of noise artifacts
indicate that the test is correctly performing its intended function.

For triggers at SNR = 100, the “standard” and “mixed” signal consistency tests
agree when computed for Gaussian and real noise: in this case, the test in Gaus-
sian noise already produces triggerswith large ξ2 values, which are indistinguishable
from the effect of non-Gaussian artifacts.

5.4 Final Remarks
We introduce a novel ξ2 signal consistency test tailored for the matched-filtering
searches of gravitational waves emitted by precessing and/or higher-mode binary
systems. The test measures the discrepancy between the predicted and measured
SNR timeseries, as output by any matched-filtering pipeline which filters the data
with a large set of templates. While the traditional test ξ2std is only valid for the case of
aligned-spin binaries where HM are not considered, our new ξ2sym is built upon the
“symphony" search statistic [328] and it does not make any assumption about the
nature of the signal to detect. Our new ξ2sym relies on the expression Eq. (5.18) for the
predicted matched-filtering output, which is derived here for the first time.

Thanks to the symmetry of the aligned-spin systems without HMs, the “stan-
dard” consistency test is conveniently factorized as themultiplication between a com-
plex trigger and a complex template-dependent timeseries. As our newly introduced
test breaks such simple factorization, it requires twice the computational cost to be
performed. To alleviate such cost, we also proposed an approximation ξ2mix to our
new ξ2sym, which, by respecting the simple factorization for the predicted timeseries,
requires minimal changes to existing code platforms and is obtained without extra
computation with respect to the “standard” test.

We investigated the validity of the two newly introduced tests ξ2sym and ξ2mix, by
performing an extensive study on signals injected in both Gaussian noise, reaching
to four main conclusions:

• The newly introduced test ξ2sym has optimal performance for precessing and/or
HM systems, being able to optimally predict the SNR timeseries in the zero
noise case
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• The traditional test ξ2std show poor performance for heavily asymmetric systems
with mis-aligned spins

• The approximate test ξ2mix is very suitable for low SNR signals, while it displays
some loss of performance for systems with high SNR

• The traditional test ξ2std is very suitable for aligned-spin systems where HM are
considered, showing similar performances to the optimal ξ2sym

These same conclusions are obtained by studying the test performance on real de-
tector’s noise, although with some outliers with high ξ2 values in correspondence of
loud non-Gaussian transient burst of noise.

The newly introduced test, ξ2sym, can be implemented in any matched-filtering pi-
peline, enhancing the search for both precessing and aligned-spin signals with HM
content. Additionally, the validation studies presented here will help the community
better understand the limitations of the traditional ξ2std test, benefiting any matched-
filtering pipeline aimed at detecting binary black hole signals with strong precession
and/or higher-mode content.

5.A Expected Value of the “Symphony” Signal Consis-
tency Test in Gaussian Noise

To compute the expected value of the “symphony” signal consistency test inGaussian
noise we closely follow the computation presented in [77, App. A]. We begin by not-
ing that since the two templates ĥ+, ĥ⊥ and the data are real timeseries, the matched-
filtering output ⟨d|h+/×⟩(t) is also a real timeseries: ⟨d|h+/⊥⟩(t) = (d|h+/⊥)(t). Thus,
the complex SNR timeseries zsym(t) = (d|ĥ+)(t) + i(d|ĥ×)(t) can be re-written as:

zsym(t) = ⟨d|ĥ+ + iĥ⊥⟩(t). (5.30)

We can now compute the expect value of the residual timeseries E
[
ξ2sym(t)

]
by
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taking the ensemble average of |z(t)−Rsym(t)|2:

E
[
ξ2sym(t)

]
= E

[∣∣∣z(t)− z(0)ĥS(t)− z∗(0)ĥA(t)
∣∣∣
2
]

= −2ℜ
{
E [z∗(t)z(0)] ĥS(t)

}

− 2ℜ
{
E [z(t)z(0)] ĥA∗(t)

}

+ 2ℜ
{
E [z(0)z(0)] ĥ∗A(t)ĥS(t)

}

+ E
[
|z(0)|2

] ∣∣∣ĥS(t)
∣∣∣
2

+ E
[
|z(0)|2

] ∣∣∣ĥA(t)
∣∣∣
2

+ E
[
|z(t)|2

] (5.31)

Tomove forward,weneed to consider someproperties ofGaussian noise in frequency
domain, introduced in Sec. 2.2.2:

E [ñ∗(f ′)ñ(f)] = S(f) δ(f − f ′) (5.32)
E [ñ(f ′)ñ(f)] = 0 . (5.33)

Using these two properties it is easy to show that

E
[
|z(t)|2

]
= E

[
|z(0)|2

]
= 2 (5.34)

E [z(0)z(0)] = E [z(t)z(0)] = 0 (5.35)

by computing the relevant integrals. Moreover, we can easily compute E [z∗(0)z(t)]

using the definition of scalar product Eq. (3.36):

E [z∗(0)z(t)] =
∫ ∞

−∞

∫ ∞

−∞
df df ′ ñ∗(f ′)ñ(f)

S(f ′)S(f)
×

× (ĥ∗
+ − iĥ∗

⊥)(ĥ+ + iĥ⊥)e
−i2πft

=

∫ ∞

−∞
df ĥ∗

+ĥ+ + ĥ∗
⊥ĥ⊥ + i(ĥ∗

+ĥ⊥ − ĥ∗
⊥ĥ+)

Sn(f)
e−i2πft

= 2ĥS(t) . (5.36)

Putting everything together, we obtain a simple expression for E
[
ξ2sym(t)

]
:

E
[
ξ2sym(t)

]
= 2− 2

∣∣∣ĥS(t)
∣∣∣
2

+ 2
∣∣∣ĥA(t)

∣∣∣
2

(5.37)

which can be used to normalize the “symphony” ξ2 test. Note that in the “standard”
limit, we have ĥA(t) → 0 and ĥS(t) → ⟨ĥp|ĥp⟩(t), hence the two expected values
E
[
ξ2(t)

] agree.

135



Chapter 5. Generalized Signal Consistency Test

136



CHAPTER 6

Searching for Gravitational-wave Signals from
Precessing Binaries

6.1 Introduction

As already discussed, themajority ofmatched-filtering pipelines heavily relies on the
simplicity of aligned-spin systems to obtain a convenient expression for thematched-
filter and to reduce the number of templates required to cover the space of interest.
In this Chapter, wemove on from a search for aligned-spin systems andwe introduce
a search method suitable for precessing systems. The search is particularly useful to
target asymmetric binaries with significantly misaligned spins, where a substantial
sensitivity reduction is expected [73–75]. The method presented lay the foundation
for a more in-depth study of precessing binaries, with implications for our under-
standing of binary formation channels and gravitational wave cosmology.

Several approaches have been developed to tackle the challenges of precessing
searches. Seminal works [42, 334, 440] focused on modeling precession with a set of
phenomenological parameters, whichwere subsequently used to perform amatched-
filtering search [441]. In this approach, the templates do not correspond to real phys-
ical signals but they are designed to match adequately physical precessing signals.
More recently and in a similar fashion, the authors of [406] leveraged the so-called
two-harmonic approximation of a precessing signal [185] to achieve a substantial
sensitivity increase at a moderate computational cost when searching for precessing
signals in the NSBH parameter space.
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A different approach consists in directly using the physical waveform to filter the
data [66,327,328]. This corresponds to a straightforward extension of the traditional
matched-filter pipeline and has the benefits of using the real physical templates and,
as such, it does not rely on any approximation of the waveforms, being applicable
to virtually any type of binary system (including non-GR waveforms). Employing
this method typically requires a large number of templates and, as such, it poses
the challenge of effectively generating large, high-dimensional template banks at a
feasible computational cost. In Ch. 4 we addressed this challenge and developed a
novel template placement method, specifically designed to generate large template
banks, with minimal assumptions on the nature of the GW signal. Hence, by cutting
the bank generation time, the exploration of the heavily precessing parameter space
was made feasible.

Similar to the direct filtering method of [328], here we design a search method
for precessing signals using the features of the GstLAL search pipeline. Our method
was first presented in [3]. Besides using the template placement algorithm of Ch. 4,
our method relies on the results of Ch. 5 for an effective signal consistency test. We
demonstrate that our method results in an improvement in the pipeline’s sensitiv-
ity to systems with large spin-orbit misalignment, reaching up to 100% increase in
the search sensitive volume, depending on the region of the parameter space. Fur-
thermore, our findings suggest that the primary cause of degraded performance in an
aligned-spin search targeting precessing signals is not a poor SNR recovery but rather
the failure of the ξ2 signal consistency test. We stress that with the new upgrades, the
GstLAL pipeline is ready to handle not only a search for precessing signals but also a
search for generic BBH signals, such as those generated by eccentric binaries [68,399]
or those with imprints from higher-order modes (HMs) [105,373,407].

In Sec. 6.2 we describe our searchmethod and themodifications to the GstLAL pi-
peline needed to achieve our goal, while in Sec. 6.3, we generate and validate two tem-
plate banks, targeting heavily precessing BBHs. We use these banks to conduct two
searches using real data from the LIGO and Virgo interferometers during the third
observing run (O3) [83, 84]. In Sec. 6.4, we present the results from these searches,
validate their performance and report the sensitivity improvement in comparison to
the aligned-spin version of the pipeline. In Sec. 6.4, we describe future work which
will further improve the pipeline’s sensitivity to precessing binary systems. Final
remarks are gathered in Sec. 6.6.

6.2 Search Method
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As discussed in Sec. 1.3.3, the rotation of the orbital plane induced by precession [39]
breaks the equatorial symmetry of the system. This translates into the breaking of
the symmetry between the + and the × frequency-domain polarizations h̃+, h̃× of
the GW generated by an aligned-spin systems which is typically expressed as

h̃+ ∝ ih̃×. (6.1)

Asmost of the aligned-spin search pipelines, includingGstLAL, use this symmetry to
simplify the search problem [63,77,355,360], the development of a precessing search
pipeline must relax the assumption of Eq. (6.1) and address the general case. This
entails the introduction of the general search statistic discussed in Sec. 3.2.2 and of the
modified signal consistency test discussed in Ch. 5. In what follows we summarize
how such upgrades are implemented in the GstLAL pipeline.

General search statistic In this work, we compute the SNR timeseries for a precess-
ing template as in Eq. (3.33):

zprec/HM(t) = (s|ĥ+)(t) + i(s|ĥ⊥)(t) (6.2)

where we introduced the “orthogonalized” template1:

ĥ⊥(t) =
1√

1− ĥ2
+×

(
ĥ×(t)− ĥ+×ĥ+(t)

)
. (6.3)

This expression is particularly convenient as it enables the straightforward implemen-
tation of the search statistic in the GstLAL pipeline by simply modifying the filter
waveforms.

It is worth noting that an alternative search statistic, suitable only for precessing
signals, is introduced in [327]. While the alternative statistic has the obvious advan-
tage of also maximizing over the reference phase ϕ, thus reducing the dimensionality
of the template banks. it comes at the price of a more complex functional formwhich
translates into an increased computational cost of the search. Moreover, the statis-
tic [327] can be applied in a less general scenario as it does not apply to signals with
HM content. Indeed by implementing the statistic Eq. (6.2), our pipeline is ready to
search for signals with imprints from HMs, thus reproducing the successful search
presented in [373]. See however [409,442,443] for a promising alternative method to
search for systems with HMs, which does not rely on Eq. (6.2).

1Note that, trivially, (ĥ⊥|ĥ⊥) = 1.
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General ξ2 test As discussed in Ch. 5, in the aligned-spin case the predicted SNR
timeseries Rstd(t) for a given template has a simple expression

Rstd(t) = (ĥ+|ĥ+)(t) + i(ĥ+|ĥπ/2
+ )(t). (6.4)

In Sec. 5.2.2 we showed that in the precessing case the true template response is given
by Eq. (5.18) and it depends on both the trigger z(0) and on its complex conjugate
z∗(0), thus losing the simple factorization ofR(t) as a product between the trigger z(0)
and a complex template-dependent timeseries. This translates into an increased com-
putational cost, and implementing the exact expressionwould require heavy changes
to the pipeline.

Luckily, in Sec. 5.3 we showed that for SNR ≲ 100 an approximate template re-
sponse is adequate for the purpose of the ξ2 test, while at the same time keeping the
simple simple factorization of the standard template response. Therefore, since a sig-
nal has typically a much lower SNR, the use of the approximation is justified and we
can use the “mixed” signal consistency test we introduced earlier in Sec. 5.2.3. Thus,
the predicted SNR timeseries suitable for our precessing pipeline is given by:

Rprec(t) = z(0)
1

2

[
(ĥ+|ĥ+)(t) + (ĥ×|ĥ×)(t)

]

+ i
1

2

[
(ĥ+|ĥ×)(t)− (ĥ×|ĥ+)(t)

]
. (6.5)

We note that we choose to implement in the pipeline the expression Eq. (5.27), as
opposed to the one in Eq. (5.24). While the two expression are mostly equivalent
and provide very similar results, our chosen expression has the advantage of being
more physically interpretable. Based on our study in Sec. 5.3.4, we do not expect this
choice to alter the search sensitivity.

Ranking statistic For each trigger happening in any of the instruments {H1, L1, V 1},
the GstLAL pipeline records the trigger time t, the phase ΦT of the trigger, the SNR
ρ, the ξ2 value and the instantaneous sensitivity of each detector, measured in terms
of horizon distance D. Triggers happening on different instruments within a similar
timewindow andwith the same template are grouped together, forming a coincident
trigger or coincidence.

As discussed in Sec. 3.4.3, to discriminate between coincidences arising from ran-
dom fluctuations and coincidences of astrophysical origin, it is crucial to develop an
accurate ranking statistic. Within the GstLAL framework, this is accomplished by
using the ranking statistic Eq. (3.54) for a coincidence {D⃗, ρ⃗, ξ⃗2, t⃗, Φ⃗T}:

L =
p({D⃗, ρ⃗, ξ⃗2, t⃗, Φ⃗T} | signal)
p({D⃗, ρ⃗, ξ⃗2, t⃗, Φ⃗T} |noise)

. (6.6)
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When it comes to precessing searches, the trigger time t, SNR, ξ2 andD keep the same
physical meaning they have in the standard case and, for this reason, the terms in the
LR involving only such quantitiesmay not require anymodification for the precessing
case. On the other hand, due to a different signalmodel, the recorded phaseΦT looses
its straightforward physical interpretation it has in the aligned-spin case (see also
Eq. (3.23)). Therefore, the factors of L depending on ϕ may require to be adapted
for a precessing search. The phase dependent terms measure the coherence of the
triggers among multiple detectors and in the GstLAL pipeline they correspond to
p(ρ⃗, t⃗, Φ⃗T | D⃗, signal) and p(⃗t, Φ⃗T | D⃗,noise).

Since we have no reason to believe that the ranking statistic, aside from the “co-
herence” term, is unsuitable for the precessing case, in this study we maintain with-
out modification the ranking statistic utilized by the pipeline in its latest version [82].
However, the use of “coherence” terms designed for aligned-spin searches in the pre-
cessing case could potentially impact the search sensitivity negatively. Future work
may investigate this impact on sensitivity and could develop an improved ranking
statistic by computing and implementing an expression for the “coherence” term that
is suitable for the precessing case.

6.3 Template Banks

To demonstrate the effectiveness of the updated GstLAL pipeline, we conduct two
runs employing large template banks constructed for precessing signals. One is tai-
lored for mildly asymmetric systems (referred to as the “Low q” bank), while the
other focuses on more asymmetric systems (the “High q” bank). For each precessing
search, we run an aligned-spin search targeting the same mass range. This compar-
ative approach enables an assessment of the enhanced sensitivity resulting from the
use of precessing templates and the modifications in the filtering scheme described
in the previous section. The next section will present the results of said compari-
son. Here, we delve into the template banks’ generation, providing insight into our
choices for parameter space and validating their ability to cover the target regions. A
summary of the template banks generated is presented in Tab. 6.1.

As it is standard in the literature, the size and performance of the bank are con-
trolled by the target minimal match MM [336]: as mentioned in Sec. 3.3, a good bank
should have only a small fraction ≲ 10% of random signals with a match lower than
MM with the nearest template of the bank. The actual fraction of signals with a
match belowMM depends on the details of the template bank generation as well as
on the parameter space of choice.

To generate the aligned-spin template banks, we use the state-of-the-art stochastic
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Mass range Parameter space Size
AS P

Low q
m1,m2 ∈ [8, 70]M⊙
q ∈ [1, 6]

s1z ∈ [−0.99, 0.99]

s2z ∈ [−0.99, 0.99]

−−−−−−−−−
s1 ∈ [0, 0.9]

θ1 ∈ [−π, π]

s2z ∈ [−0.99, 0.99]

ι ∈ [0, π]

8425 1605625

High q

m1 ∈ [15, 70]M⊙
m2 ∈ [3, 10]M⊙
q ∈ [5, 12]

s1z ∈ [−0.99, 0.99]

s2z ∈ [−0.99, 0.99]

−−−−−−−−−
s1 ∈ [0.5, 0.9]

θ1 ∈ [−π, π]

s2z ∈ [−0.99, 0.99]

ι ∈ [0, π]

27016 2287083

Table 6.1: We summarize here the most important features of the four template banks consid-
ered in this work. We select two regions of the parameter space, labeled “Low q” and “High q”
respectively. For each region, we generate two template banks, one only gathering aligned-spin
signals (AS) and another one including precessing signals (P). The aligned-spin banks covers
the variableM, q, χeff, while the precessing template bank cover the variablesM, q, s1, θ1, s2z, ι.
For each template bank we report the range covered by each variable as well as the number of
templates (size). The BBH variables not explicitly mentioned in the table are set to 0.
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method, which builds a template bank through an iterative process, as discussed in
Sec. 3.3. As the stochastic method is not suitable to cover high dimensional regions
of the parameter space, such as those associated to precession, we generate the pre-
cessing template banks with our publicly available code mbank [410], introduced in
Ch. 4. Our novel method relies on the random template placement to quickly cover
the parameter space of interest, coupled with a normalizing flow model trained for
an effective template sampling and ensures a very fast placement at the price of up to
∼ 50% larger banks than those produced by the state-of-the-art stochastic approach.

As it is common, the non precessing template banks sample the variables

M, q, s1z, s2z

while both the precessing templates bank sample the variables

M, q, s1, θ1, s2z, ι

where M = m1 + m2 denotes the total mass of the binary and the first spin is ex-
pressed in spherical coordinates:

sx = s sin θ (6.7)
sy = 0 (6.8)
sz = s cos θ. (6.9)

In our template bank, precession is only encoded into sx,2 while all the other in-plane
spin components s1y, s2x, s2y are set to zero. Note that we also set the reference phase3
ϕ = 0, despite the fact that the search statistic Eq. (6.2) does not explicitly maximizes
over ϕ. The reasons for this choice were already discussed in Sec. 4.5.1.

To generate the precessing template banks, we use the frequency domain approx-
imant IMRPhenomXP [47], while for the aligned-spin banks we use IMRPhenomD [157].
In all cases, we consider frequencies between fmin = 15Hz and fmax = 1024Hz and
we use the Advanced LIGOO4 Design Power Spectral Density (with 190Mpc range)
[425].

To validate a template bank, we select a number of test signals (also called injec-
tions) and for each signal s(θ), characterized by θ, we compute the fitting factor FF

Eq. (3.45), with the match M computed with Eq. (4.1). The precessing injections
are sampled from the relevant mass space using a probability distribution uniform
in m1 and q. The spins’ magnitudes are sampled so that the fourth power of spin is

2Here sx plays the role of the precession spin parameter χP .
3Note that the reference phase ϕ has not to be confused with the phaseΦT of a trigger. While the first is

a physical property of the system, the latter corresponds to the angle between the real and the imaginary
part of the complex SNR timeseries z(t) and it depends also on the location and orientation of the detector.

143



Chapter 6. Searching for Gravitational-wave Signals from Precessing Binaries

50 100

M

2

4

6

q

2.5 5.0

q

0.25

0.50

0.75

s 1
2.5 5.0

q

−2

0

2

θ 1

2.5 5.0

q

0

1

2

3

ι

0

1

2

lo
g

1
0
N

Figure 6.1: Binned templates of the “Low q” precessing template bank. For each equal size bin,
we color code the logarithmic number of templates so that the color is also a measure of the
template density. In the different panels, we consider the variables M, q, s1, θ1, ι. The bank
was first introduced in [1].
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Figure 6.2: Binned templates of the “High q” precessing template bank. For each equal size bin,
we color code the logarithmic number of templates so that the color is also a measure of the
template density. In the different panels, we consider the variablesM, q, s1, θ1, ι.

uniformly distributed in [0, 1]. While this distribution of spins is clearly unphysical,
it was chosen to make sure that a large fraction of the injected signals had a large pre-
cessing spin: in this way, approximately 70% of the injected signals have χP > 0.5.
The spin directions, the sky location and the binary orientation are all isotropically
distributed over the solid angle. The reference phase is uniformly sampled in [0, 2π].
We generate a set of 21947 precessing injections, with a 30 seconds spacing. This will
be used both for validating the banks and for the runs described in Sec. 6.4. To val-
idate the aligned-spin banks, we use the same 21947 precessing injections as before,
with the in-plane spin components set to zero (i.e. s1x = s1y = s2x = s2y = 0).

A template bank for lowmass ratio systems Theprecessing “Low q” template bank
was introduced in [1, Sec. V]. It is a large bank covering systems with component
masses m1,m2 ∈ [8, 70]M⊙ with mass ratio limited into q ∈ [1, 6]. With a target min-
imal match of 0.97, the template bank has 1.6 million templates. We also generated
an aligned-spin bank in the same mass region, consisting of 1.4 × 104 templates. A
summary of the two “Low q” banks is reported in Tab. 6.1.
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Figure 6.3: Fitting factor study for the four template banks considered in this work. For each
given value of the match, we report the fraction of injections with fitting factor lower than
than that value. The two aligned-spin banks (AS) and the two precessing banks (P) are
tested against the relevant injection set of fully precessing injections used for searching the
data, with spins magnitudes reaching values up to 0.99. To evaluate their ability to cover the
non-precessing space, the two AS template banks are also tested against a set of aligned-spin
injections. The composition of the injection sets is described in the text. In the left panel, we
report the results concerning the “Low q” parameter space, while the right refers to the “High
q” parameter space. The vertical dashed lines mark the target minimal match of the template
banks: 0.9 for the “High q” precessing bank and 0.97 for the others.

In Fig. 6.1 we plot the template density of the precessing bank, while in Fig. 6.3
we present the results of an injection study. We note that both the precessing and the
aligned-spin banks have an acceptable performance with only ∼ 10% of the test sig-
nals having amatch below the 0.97 threshold. The aligned-spin bank recovers∼ 15%

of the precessing injections with a fitting factor below 0.9. Such as a “small” fraction
of signals below a given match threshold is in line with what is achieved by other
template banks (see e.g. Fig. 4.3 and Fig. 4.9) and it suggests that our 0.97 aligned-
spin bank approximates a 0.9 target minimal match bank for precessing signal. This
remark will be needed to explain some of the search results.

As discussed in [1], the precessing bank provides a very poor coverage in the
“low q, low M”, characterized by q ≲ 1.2 and M ≲ 20M⊙. For this reason, we ex-
clude such region from our searches (and also from our injection studies)4: systems
in this region are expected to show little or no effect from precession, hence this re-
gion is of scarce interest for our purpose of quantifying the benefit of using precessing
templates. Finally, we note in Fig. 6.1 that two small regions at θ = ±π and q ≃ 5, cor-
responding to the aligned-spin limit, are unphysically populated bymany templates.
This is a feature of the metric approximation, probably due to the approximant in

4To address the issue of poor coverage, an effective strategy could involve using aligned-spin templates
to cover the “low q, low M” region.
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use, and was also discussed in [1].
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Figure 6.4: Fitting factor of the “High q” precessing template bank, as a function of total mass
M , mass ratio q, tilt θ1 andmagnitude s1 of the first BH, inclination angle ι and reference phase
ϕ. For each bin, we report the 5th percentile of the fitting factor distribution. Note that while
the fitting factor study covers values of primary spin between 0 and 0.99, the template bank
only gathers templates with s1 ∈ [0.5, 0.9].

A template bank for highmass ratio systems To target heavily asymmetric precess-
ing systems, we construct the precessing “High q” template bank. The bank targets
systems with mass ratio q ∈ [5, 12], with primary mass m1 ∈ [15, 70]M⊙ and sec-
ondary massm2 ∈ [3, 10]M⊙. For the precessing bank, we limit the magnitude of the
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primary spin s1 to the range [0.5, 0.9]. As shown in the fitting factor study Fig. 6.3, our
choice does not impact the bank injection recovery, in the low s1 region excluded by
the bank. As part of our development, we also generated a bank covering the entire
spin range. However, this additional bank, consisting of 3× 105 more templates, did
not demonstrate improved coverage of the low s1 region.

Given the vast size of the parameter space, employing a template bank with a
target minimal match of 0.97would entail dealing with an unwieldy number of tem-
plates, reaching as high as 30 million5. As modern pipelines are unable to handle
banks of similar size, we have pragmatically set a target minimal match requirement
of 0.9 for the precessing bank. With the bank now comprising 2.3 million templates,
this adjustment helps manage the computational load while still ensuring a reason-
able level of template coverage in the search for GW signals.

We also generate an aligned-spin bank, covering the same mass range: with a
target minimal match of 0.97, the aligned-spin bank has 3.9 × 104 templates. It is
noteworthy that the aligned-spin bank is two orders of magnitude smaller than the
precessing bank. Consequently in this case, a precessing search is nearly two orders
of magnitude more computationally demanding than its aligned-spin counterpart.
Other details of the two “High q” are reported in Tab. 6.1. Fig. 6.2 shows the template
density of the precessing bank, where we observe that the bulk of the templates are
placed in the high q, high s1 region, particularly for systems with θ1 ≃ ±π/2, as
seen with an inclination ι ≃ π/2. This distribution is consistent with the fact that
signals in such regions exhibit the largest precession content. In Fig. 6.3, we report
the results of an injection study for the two banks. Note that some of these injections
lie outside the precessing template bank, for which s1 ∈ [0.5, 0.9]. Nevertheless, our
results show that both the precessing and “aligned-spin” bank are able to satisfy the
relevant minimal match requirements of 0.9 and 0.97 respectively.

In Fig. 6.4, we study the dependence of the fitting factor of the precessing template
bank on the several parameters characterizing a template. We note that the fitting
factor is pretty stable across different regions of the parameter space, confirming the
quality of our template bank. As the template bank only covers values of s1 up to 0.9,
we expect and observe a drop in accuracy for large primary spin values, which lie
outside the template bank. The reduced accuracy at high spins seems to be limited
only to edge-on systems (i.e. ι ≃ π/2) with large values of χP (i.e. θ ≃ ±π/2),
where precessing effects are the strongest. Finally, we see that the coverage is rather
uniform in ϕ. This justifies our choice of not including the reference phase as part of
the variables characterizing the precessing template banks.

5This number comes from an attempt we made to generate such bank with mbank. A similar number
appears in [406], although referring to a template bank covering a slightly lower mass range.
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For both the precessing and the aligned-spin bank, only ∼ 10% of the injections
are below the target minimal match threshold of 0.9 and 0.97 respectively. This is
consistent with the results obtained in the “Low q” case. With only ∼ 20% of the
precessing injections recovered with a match higher than 0.9, the aligned-spin bank
struggles to cover the precessing parameter space satisfactorily. Note that in the “Low
q” case, the aligned-spin template bank was able to recover ∼ 85% of the precessing
injections with a match higher than 0.9.

6.3.1 SVD Compression

As opposed to the largemajority of other pipelines, theGstLALpipeline performs the
matched filtering in time domain. Since computing the cross-correlation between two
timeseries in time domain is notoriously more expensive than in frequency domain6,
a Singular Value Decomposition (SVD) based template bank compression [77, 379,
444] scheme has been implemented to mitigate the cost of filtering.

As alreadymentioned in Sec. 3.4.1, templates in the banks are grouped together in
bins of O(500) templates. Each template is then divided in different time slices, each
with a different sample rate. For each time slice of each bin an SVD decomposition of
the templates is performed. The data are then filtered only using a small subset of the
SVD basis and the SNR timeseries for each template is reconstructed by “inverting”
the SVD. Filtering the data using the SVD basis results in a reduction of one or two
orders of magnitude of the number of filters. Clearly, the bins for the SVD must be
carefully chosen: heuristically, each bin should gather very similarwaveforms, so that
only a small number of SVD basis are required to faithfully represent the templates.

The bins are constructed based on two quantities α1, α2. As a first step, the tem-
plate bank is split into Ngroups bins based on the α2 values. Second, groups of Ntmplt
templates are gathered together based on their α1 value to form an SVD bin. Sev-
eral choices have been implemented for the two sorting variables (α1, α2). Common
choices for α1 are the template duration or the chirp mass M:

M =
(m1m2)

3/5

(m1 +m2)1/5
. (6.10)

A typical choice for α2 is the effective spin parameter χeff = m1s1z+m2s2z
m1+m2

. As in the
case of precessing templates, χeff does not capture the effect of precession, the effec-
tive precession spin parameter χP can be a good option forα2 instead of χeff. In [380],
the authors suggests to use the variables µ1 and µ2, first introduced in [381], and

6Indeed, for a timeseries of D points, computing the correlation in time domain has a computational
cost ofO(D2)while in frequency domain the same operation amounts to computing a Fast Fourier trans-
form and has a cost ofO(D logD).
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Figure 6.5: Compression achieved by the Singular Value Decomposition of the templates of
the two precessing template banks considered in this work. For each bin, the compression is
measured by the ratio between the number of filters and the number of templates. The number
of filters is obtained by averaging, across different time slices, the number of SVD basis. The
average is weighted by the sampling rate of each time slice. For different choices of the sorting
variables (α1, α2) used to construct the bank split, we report the histogram of the compression
achieved for different bins.

they achieve very high compression. The use of µ1 and µ2 is motivated by the anal-
ysis in [381], which shows that µ1 and µ2 are the two best constrained quantities by
parameter estimation. Mathematically they are expressed as a linear combination of
the first three coefficients Ψ0,Ψ2,Ψ3 of the PN expansion for the frequency domain
phase φPN(f) of the waveform:

µ1 = 0.974Ψ0 + 0.209Ψ2 + 0.0840Ψ3 (6.11)
µ2 = −0.221Ψ0 + 0.823Ψ2 + 0.524Ψ3 (6.12)

The coefficients Ψ0,Ψ2,Ψ3 depend on the two BH masses and on the z components
of the two spins as well as on the minimum frequency considered for the template.
The interested reader can find their expression in [380, Eqs. (9-11)].

In Fig. 6.5 we investigate how the compression provided by the SVD varies for
the two template banks and for different choices of sorting quantities. The study
aims at finding the best sorting quantities for maximal speed up. In our study, we set
Ntmplt = 500 and Ngroups = 20.

Our results show that the sorting with variables µ1 and µ2 introduced in [380]
provides the best speed up even in the precessing case. Regardless of the sorting
variables considered, the “Low q” precessing bank shows better compression than
the “High q” precessing bank. This is expected on the basis that the “High q” bank
gathers signalwith higher precession content andmore complexmorphology. There-
fore, a higher number of SVD basis is needed to faithfully reproduce the waveform.

A comparisonwith the results in [380] shows that, in the precessing case, the SVD
compression is a factor of 2/3worse than the aligned-spin case. As noted before, this
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is expected due to the increased complexity of precessing waveforms. The higher
number of SVD basis translates directly into a larger computational cost and it needs
to be taken into accountwhen allocating the computational resources for a precessing
search.

6.4 Precessing Searches Results
Using the four template banks described in the previous Sec. 6.3, we run four searches
on the publicly available LIGO and Virgo data [84] obtained through GWOSC [445],
takenduring the third observing runO3betweenGPS times 1259423400 and 1260081799.
As described above, we generate two sets of precessing injections, one for the “Low q”
banks and another for the “High q” banks. This choice allows us to directly compare
the results of a precessing search with those of an aligned-spin search.

When assessing the sensitivity of a precessing search compared to an aligned-
spin search, two competing effects come into play. On one hand, the precessing
search enhances the recovered SNR and lowers the ξ2, leading to improved sensi-
tivity. On the other hand, the larger bank’s size results in an increased number of
background triggers (i.e., false alarms), which can potentially downgrade the signif-
icance of any candidate event. Determining whether the improvement in recovered
SNR outweighs the increased background triggers, and thus whether a precessing
search indeed provides enhanced sensitivity will be the focal point of this section.

In what follows, we evaluate the improvement brought by a precessing search
using three different figure of merits: recovered SNR, results from the ξ2 test and,
finally, increase in search sensitivity. To study the sensitivity we used the same injec-
tion set introduced for bank validation in Sec. 6.3, with injections sampled uniformly
inm1 and mass ratio inside the mass ranges covered by each template bank.

6.4.1 Recovered SNR

In Fig. 6.6, we present a histogram for each injection, illustrating the discrepancy
∆SNR between the SNR recovered by the precessing search and the SNR recovered
by the aligned-spin search. The SNR difference is divided by the nominal SNR of
the injection and we the data refers both to the “Low q” and “High q” cases. This
analysis offers a valuable metric to evaluate the improvement brought by filtering
the data with precessing templates compared to aligned-spin ones.

A certain degree of scattering of the discrepancies in recovered SNR (∆SNR) is
expected due to random noise fluctuations. This is especially true in the low SNR
regime, where even a small SNR discrepancy can lead to a large fractional SNR vari-
ation. This remark is useful to explain the counterintuitive observation in Fig. 6.6 of a
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Figure 6.6: Histogramwith the fractional SNR gain of a precessing search over its aligned-spin
counterpart. For the two cases “Low q” and “High q”, we report the discrepancy ∆SNR =

SNRprecessing − SNRaligned-spin of the SNR recovered by the precessing and the aligned-spin, nor-
malized by the SNR of each injection. The injections are described in Sec. 6.3 and the data refer
to the LIGO Livingston detector.
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Figure 6.7: Histogram with the difference between the ξ2 measured by a precessing search
and its aligned-spin counterpart. For the two cases “Low q” and “High q”, we report the
discrepancy∆ξ2 = ξ2precessing−ξ2aligned-spin, evaluated on the set of precessing injections described
in Sec. 6.3. Data refer to the LIGO Livingston detector.

tail of large negative SNR variations, for which the precessing triggers are recovered
with lower SNR than their aligned-spin counterpart. Nevertheless, our analysis re-
veals a systematic trend: searches utilizing precessing templates consistently recover
a larger fraction of the injected SNR compared to those using aligned-spin templates.
This improvement can be substantial, with precessing searches recovering up to 75%

more SNR than their aligned-spin counterparts. The systematic increase in recovered
SNR fraction with precessing templates aligns with expectations, given the closer
match of precessing templates to injected waveforms shown in Fig. 6.3. Whether the
improved SNR recovery translates into a larger search sensitivity will be assessed in
the next sections.

Finally, we observe that the improvement brought by the “High q” precessing
search is larger than in the “Low q” case. This is consistent with our results in Fig. 6.3,
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Figure 6.8: “SNR-ξ2” plot for the “High q” aligned-spin search. On the left panel, we report
the SNR and ξ2 of the background triggers, not associated to any injection, and the injection
triggers, corresponding to an injection. On the right panel, we only report the injection triggers,
colored by the logarithmof the FARassigned by the pipeline. Data refer to the LIGOLivingston
detector. The red star refers to the trigger produced by the GW event GW191204_171526 [18],
detected by our search with FAR < 1

1000
yr−1.

which show that the aligned-spin “High q” template bank exhibits poorer perfor-
mance than the “Low q” one, in recovering precessing injections. This is a direct
consequence of the effects of precession being more prominent for asymmetric sys-
tems.

6.4.2 ξ2 Test Results

We present in this section results from the ξ2 consistency test. We will focus on the
results of the “High q” runs, comparing results from aligned-spin and precessing
template banks. First of all, in Fig. 6.7 we report the difference between the ξ2 values
measured on the injected signals by the precessing and by the aligned-spin search.
We note that in most cases, the ξ2 measured by the precessing pipeline is lower than
in the aligned-spin case. This is because the precessing templates are more similar to
the injected signals, thus providing a more accurate prediction of the SNR timeseries
and consequently yielding lower ξ2 values. Moreover, this demonstrates the benefits
of the updated ξ2 expression in Eq. 6.5 over the standard expression Eq. 5.5.

In Fig. 6.8 and Fig. 6.9, we report the values of SNR and ξ2 for the aligned-spin
and precessing search respectively. The values refer to the LIGO-Livingston interfer-
ometer (L1). As clear from the left panel of Fig. 6.9, for the precessing run, the ξ2 is
able to separate real signals from the background for SNR higher than≃ 9. The result
is consistent with the standard behaviour on a set of aligned-spin injections [81].

In the Figs. 6.8-6.9we see that both runs, aligned-spin and precessing, were able to
detect the GW event GW191204_171526 [18]: the associated trigger is well separated
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Figure 6.9: “SNR-ξ2” plot the “High q” precessing search. On the left panel, we report the SNR
and ξ2 of the background triggers, not associated to any injection, and the injection triggers,
corresponding to an injection. On the right panel, we only report the injection triggers, col-
ored by the logarithm of the FAR assigned by the pipeline. Data refer to the LIGO Livingston
detector. The red star refers to the trigger produced by the GW event GW191204_171526 [18],
detected by our search with FAR < 1

1000
yr−1.

from the background and hence was detected in both cases with a FAR < 1
1000 yr

−1.
In the figures, one can also see that the two searches record a handful of background
triggers with high SNR and low ξ2, with the potential of contaminating the back-
ground of the searches. A close followup of these points revealed that such triggers
were mostly caused by pairs of glitches happening very close in time to each other.
This behaviour could possibly emulate the amplitude modulation typical of a pre-
cessing signal. It is worth noting that all of those potentially spurious candidates had
a very high FAR, as a result of other terms of the ranking Eq. (3.54) downweighting
their significance.

By looking at the right panel of Fig. 6.9, we note that the injection coincidences
with SNR ≳ 8 are mostly ranked with a low FAR, meaning that they are mostly re-
covered. In the region characterized by SNR ≃ 10 and ξ2 ≃ 2, the FAR slightly drops,
suggesting that the ξ2 test loses its effectiveness. This can be probably improved by
using a denser template bank (at a much larger computational cost), by implement-
ing the unapproximated ξ2sym test or by improving the ranking statistic model.

In Fig. 6.8, it is evident that, in the case of the aligned-spin bank, the ξ2 values
for injection signals are considerably larger than in the precessing case. Clearly, an
aligned-spin template is not able to model accurately the response of a heavily pre-
cessing signal, thus measuring a high ξ2 value. Consequently, injection and back-
ground triggers are not well-separated in the SNR− ξ2 plane and the ξ2 has dramat-
ically downgraded performance.

It is perhaps surprising that the reduced sensitivity of the aligned-spin search
is not caused by a poor SNR recovery but rather by the failure of ξ2 signal consis-
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Figure 6.10: Efficiency of the BBH searches as a function of the loudest SNR measured by the
three detectors, also called the “Decisive SNR”. The efficiency is defined as the fraction of signal
detected at constant FAR = 1/10 years. In each panel, we show the efficiency pertaining
the aligned-spin (AS) and the precessing (P) searches, reported separately for χP > 0.5 and
χP < 0.5. The left panel refers to the “Low q” search, while the right panel to the “High q”
search.

tency test. In other words, the sensitivity loss does not arise from using the “wrong”
aligned-spin templates to filter precessing signals but rather from incorrectly labeling
astrophysical triggers as non-Gaussian noise artifacts. This is manifest in the right
panel of Fig. 6.8, where many injections recovered with a considerably large SNR
present very large ξ2 values, and are consequently assigned a high FAR. This obser-
vation aligns closely with previous literature on the topic, most notably [366, 382],
while extending these well-established results to the precessing and/or HM case.
Furthermore, it could significantly influence the design of future large-scale searches
for precessing signals, as we will explore in Sec. 6.5.

An analysis of the “Low q” runs (not reported here) shows similar conclusions,
even though the downranking of injection triggers due to large ξ2 has less impact on
the search’s sensitivity, as will be discussed in the next section.

6.4.3 Sensitivity Improvement

We finally measure the improvement in the search sensitivity brought by the use of a
precessing bank both in the “Low q” and in the “High q” case. As standard [82,446],
the sensitivity of a search is measured by spacetime volume (VT), corresponding to
the volume reached by a search multiplied by the observing time T :

V T = T

∫ ∞

0

dVc ϵ(Dc,FAR) (6.13)

where Dc is the comoving distance and dVc = dDc 4πD
2
c is the infinitesimal comov-

ing volume [447]. The quantity ϵ(Dc,FAR) is the efficiency of a search, defined as
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Figure 6.11: Sensitive volume increase as a function of the FAR detection threshold. The in-
crease in sensitive volume is computed in terms of the VT ratio, measured between the VT of
a precessing search and the VT of an aligned-spin searches. The two blue lines refer to the
“Low q” region, while the blue lines correspond to “High q”. A dashed line refers to the VT
computed only from injections with χP > 0.5, while a solid line corresponds to χP < 0.5.

the fraction of injections recovered in an infinitesimal shell betweenDc andDc+dDc

with at least a given FAR. Clearly, every estimation for V T heavily depends on the
distribution of injection: this motivated the use of the same injection set for the pairs
of runs. For our computations

In Fig. 6.10 we report the efficiency (evaluated at a FAR = 1/10 years) of each
search as a function “Decisive SNR”, defined as the maximum between the three
SNRs measured by each detector. In the “Low q” search, we note that there is not a
significant difference between the aligned-spin and the precessing case. Moreover,
the efficiency does not depend on the value of χP . In this case, the improvement
in the SNR recovery and in the ξ2 values brought by a precessing search does not
translate into an increased efficiency. In the “High q” case, the precessing search has
comparable performance with the “Low q” . On the other hand, the aligned-spin
search has poorer performance, especially in recovering signals with χP > 0.5. Thus,
in the region covered by the “High q” search, the use of precessing templates brought
a substantial improvement in the pipeline’s sensitivity.

In Fig. 6.11, we report the ratio V TP
V TAS

between the VT of a precessing search and
the VT of the corresponding aligned-spin search. The ratio is plotted as a function of
FAR and we report different measurement for the low and high χP regions. We note
that for very high values of FAR, the precessing searches always perform better than
the aligned-spin ones. This is a direct consequence of the improved SNR recovery of-
fered by the precessing search (see also Sec. 6.4.1 and Fig. 6.6). The picture changes
as soon as a lower FAR threshold is considered. Due to the increased background
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Figure 6.12: Sensitive volume increase for different bins in the q − χP space. The left panel
refers to the “Low q” region while the right panel to the “High q” region. For each bin, we
compute the VT ratio between a precessing spin search and the corresponding aligned-spin
search. The VT ratio is encoded into the color scale and is computed at a FAR = 1/10 years.

caused by a large number of precessing templates, the “Low q” precessing search
suffers from a sensitivity loss of ∼ 20% as compared to its aligned-spin counterpart.
Indeed, even for highly precessing signals, with χP > 0.5, the significance of many
triggers is downranked by a large amount of false positives, due to a very large num-
ber of templates which can potentially lead to high SNR triggers. A more effective
ranking statistic Eq. (3.54) canmitigate this issue by providing a more robust distinc-
tion between signal and noise. This approach was successfully applied in a search
targeting precessingNSBH systems [406], where an updated ranking statisticwas de-
veloped, improving upon its aligned-spin counterpart. Thanks to this enhancement,
the authors of [406] achieved up to a ∼ 50% sensitivity improvement compared to
the aligned-spin ranking statistic. Notably, their search did not reveal a decrease in
performance for low values of χP , unlike in our case. Future studies will be needed
to understand the limitations of the current ranking statistic and to develop more
powerful alternatives that are better suited for detecting precessing signals.

In the “High q” scenario, we still observe a decrease in sensitivity for mildly pre-
cessing signals χP < 0.5, even at low FAR. The observation above is still valid: the
increased background downranks many potential candidates found by the precess-
ing search. On the other hand, for χP > 0.5 we observe a ∼ 50% increase of the
volume reached by the precessing search. The increase remains stable with the FAR.
These considerations are consistent with our observations regarding the measured
search efficiency Fig. 6.10.

It is remarkable, if not surprising, that in the “High q” case an improvement in
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sensitivity was obtained despite the fact that the precessing bank was generated with
0.9 target minimal match. Moreover, the “Low q” aligned-spin bank, provides an ex-
cellent recovery of precessing injections, despite the fact that more than 10% of the
injections considered have a match of 0.9 and lower. The two coupled observations
seems to indicate that also future searches for precessing signals can employ 0.9 tar-
get minimal match template banks. This has the potential of reducing by orders of
magnitude the computational cost as well as the background of the search.

In Fig. 6.12, the VT ratio is computed for different bins in the q − χP plane for a
fixed FAR of 1/10 years. Results in in the left and right panels refer to the “Low q”
and “High q” respectively and they corroborate what observed above. In the “Low
q” case, we see little variation of the sensitive volume across the space, and for low
values of q and χP , we observe up to a 40% decrease in sensitivity due to the largely
increased background. On the other hand, in the “High q” scenario we note that VT
ratio can be as high as 100%, depending on the values of q and χP . As already noted
before, for low χP the precessing search does not bring any improvement. On the
other, for χP > 0.5, the sensitivity rapidly grows as χP and q grow, reaching a 120%

gain in the most extreme case.
Our results suggests that targeting more asymmetric systems, such as a NSBH

system, could potentially lead to an even larger sensitivity improvement. However as
noted in [1], a search in such region struggles with an increased size of the parameter
space, due to the increased length of the templates required. Indeed, a template bank
in the NSBH region has hundreds of millions of templates and probably a different
approach to the search might be needed. In this respect, the work presented in [406]
is a promising avenue to target the precessing NSBH parameter space, due its lower
computational cost.

6.5 Outline of Future Improvements

Up to this point, we have adapted the GstLAL pipeline to handle precessing tem-
plates by modifying the SNR computation routine and making minimal edits to the
ξ2 test, as outlined in Sec. 6.2. However, other components of the pipeline have re-
mained unchanged. Although our modifications have successfully enhanced the pi-
peline sensitivity for precessing signals, there might still be room for improvement in
the pipeline’s overall performance. Below, we summarize several potential directions
for future developments.

Firstly, it’s important to acknowledge that the ξ2 test implemented in this work
represents an approximate version of the test proposed in [2] and discussed in Ch. 5.
Implementing the full ξ2 test would necessitate extensive changes to the pipeline,
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which are beyond the scope of this work. In Ch. 5, an injection campaign in both
Gaussian and real noise was conducted, suggesting that for signals with SNR ≲ 20,
the approximation employed in our implementation of ξ2 does not introduce signifi-
cant bias. However, for high SNR signals, the bias introduced by our approximation
becomes more significant. We note that the study in Ch. 5 did not account for the
discreteness of the template bank, which can potentially degrade the performance of
the currently implemented ξ2 test Eq. (6.5) in a real search scenario. Investigating
this aspect is deferred to future work and is essential for determining whether modi-
fying the ξ2 test can lead to a substantial increase in the performance of a precessing
search.

In our searches, we have not employed the “bank ξ2”, introduced in [82]. The
“bank ξ2” is an alternative signal consistency test, which checks for a consistent re-
sponse among several templates within the same SVD bin. It is used as an additional
test to the “original” ξ2 and it has been shown to provide an improvement in the high
mass region. Future work should assess the performance of the “bank ξ2” applied to
precessing signals and possibly deploy it in a real search.

As previously discussed, the ranking statistic given by Eq. (3.54) may also need
adaptation for precessing templates. The key LR term requiring modification is the
“coherence” term, as highlighted in Sec. 6.2. In the precessing case, the measured
phase of a triggerΦT loses the straightforward interpretation it has for an aligned-spin
signal. Since this information has been crucial in producing the “coherence” term of
the ranking statistic, it might not be directly suitable for a precessing template. De-
riving an analytical expression that generalizes the “coherence” term to precession
is likely to be challenging. In this context, utilizing an unsupervised Machine Learn-
ing model could prove to be an effective solution, allowing for a more flexible and
data-driven adaptation of the ranking statistic to precessing templates.

Besides the “coherence” term, other factors of the ranking statistic retain the same
physical meaning they have for an aligned-spin search. For this reason, in principle,
they do not require modification. However, their predictive power depend on some
hyperparameters, which were tuned by only considering aligned-spin searches. Tun-
ing such hyperparameters on a set of precessing injections can also offer an increased
performance for the search.

We observed in Sec. 6.4.2 that the primary loss in sensitivity by the aligned-spin
“High q” precessing search arises from the degraded performance of the ξ2 test. This
fact can have a profound impact on the search for precessing signals. Indeed, as the
SNR recovery is not crucial for performance, it should be possible to deploy a tem-
plate bank with a very low target minimal match (0.8, or even smaller). The reduced
size of the resulting bankwill have two favorable implications: (i) it reduces the com-
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putational cost and (ii) it reduces the amount of false positives, possibly improving
the sensitivity. Of course, a more sparse template bank will also downgrade the per-
formance of the ξ2 test and future work should explore the trade off between the
benefits of a smaller template bank and the downsides of a less effective signal con-
sistency test. With this strategy, it should become feasible to carry on a precessing
search in the NSBH region of the parameter space, where the precession content of a
signal is expected to be very strong.

Finally, it is important to stress that the changes we made to the pipeline are fully
applicable to systems with HM content. Similar to the approach taken for precession
in this work, future efforts will evaluate the pipeline’s performance in the presence
of HM signals and assess potential sensitivity improvements. Once results from an
HM search become available, the considerations outlined above regarding possible
further pipeline upgrades remain relevant.

6.6 Final Remarks

In this chapterwe describe themodificationsmade to the GstLAL pipeline to enable a
systematic search for GW signals originating from precessing BBH systems. To filter
the data, we incorporated the search statistic outlined in [183,328,427] by employing
the “orthogonalized” template Eq. (6.3). To account for the effects of this modified
template response, we made updates to the ξ2 consistency test. The test now imple-
mented is an approximation to the one proposed in [2] and discussed in Ch. 5.

To assess the effectiveness of our enhancements, we generated two large precess-
ing template banks to search for precessing signals in two distinct regions of the
BBH parameter space. These template banks were employed to search one week of
publicly available data from the third observing run, spanning between GPS times
1259423400 s and 1260081799 s. The results obtained from these searches were then
comparedwith two identical searches conductedusing an aligned-spin template bank,
which covered the same mass range.

As discussed in Sec. 6.4, searching the data with precessing templates results in a
slight increase of a signal recovered SNR and to a substantial improvement in the ξ2
test performance. However, this is achieved at the price of a large increase in the back-
ground triggers, due to a template bank being up to two orders of magnitude larger
than in the corresponding aligned-spin case. We obtain a substantial improvement
of the sensitivity of the pipeline only when searching strongly precessing systems,
characterized by a high mass ratio q ≳ 5 and highly precessing spin χP ≥ 0.5. For
less strongly precessing systems, we observe a slight decrease of the pipeline sensi-
tivity, as the increased background removes any positive effect of the improved SNR
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recovery and of the more accurate signal consistency test.
In Sec. 6.5, we outlined a few possible future upgrades of the pipeline, including

an updated ranking statistic Eq. (3.54) and the implementation of the “exact” signal
consistency test introduced in Ch. 5. Moreover, the pipeline developed for precessing
signals can be straightforwardly applied to the search of signals with HM content.
Future work should aim at assessing the sensitivity brought by a similar search.

Our results lead to two significant conclusions that can inform the planning of fu-
ture precessing searches. The first observation is technical: we find that employing a
template bank with a target minimal match of 0.9 is sufficient to achieve a substantial
sensitivity improvement for highly precessing signals. As discussed in Sec. 6.4.2, this
is due to the fact that the primary sensitivity loss of an aligned-spin search targeting
the precessing region is not due to a lack of recovered SNR but rather by a worsen-
ing of the ξ2 value. The observation is crucial for reducing the size of the template
bank, consequently lowering computational costs and the associated background in a
search. The second observation pertains to the targeted parameter space. Our results
suggest that, to attain any sensitivity improvement, a precessing search should focus
solely on asymmetric and heavily precessing systems, characterized by q ≳ 5 and
χP ≳ 0.5. Current aligned-spin searches have limited sensitivity in such an extreme
region, and indeed, signals in this range have not been detected by past aligned-spin
searches.

Our work provides the community with the tools to search for precessing signals.
Moreover, our investigations enable the community to select an appropriate param-
eter space to target with a precessing search, where a large sensitivity improvement,
and possibly new detections, are within reach. In the next and final chapter, we lever-
age the capabilities of the precessing pipeline developed here to conduct a large scale
search for precessing signals.
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CHAPTER 7

Searching for Precessing Binaries in LIGO
Data from the Third Observing Run

7.1 Introduction

As emphasized throughout this work, precession in BBH is of primary scientific in-
terests with a profound impact on GW astronomy, ranging from BBH population
studies [58–60, 62] to cosmology [27, 57]. As previously mentioned, precession has
been observed as a statistical property of the BBH population [20,21]. However, very
few signals show decisive evidence for mis-aligned spins [53], as measured by χP .
Interesting exceptions include GW190521 [54], GW191109 [55] and GW200129 [56].
It is worth noting however that analyses on GW200129 are made difficult by data
quality issues [448, 449], which could possibly undermine any statement about the
precessing nature of the system.

While the lack of strongly precessing signals might be due to their rarity, it might
also be caused by the limited sensitivity of current searches to such extreme signals. If
this is the case, it is important to explore thoroughly the BBH parameter space, using
the most sensitive possible matched-filtering search pipeline. In view of this goal, in
Ch. 6 we developed a precessing version of the GstLAL pipeline, we validated the
results and we identified a region of the BBH parameter space where a sensitivity
improvement of up to 120% is within reach.

In this chapter, we leverage the capabilities of the newly developed GstLAL pre-
cessing pipeline to search the LIGO-Virgo publicly available data from the third ob-
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serving runO3 [84] for precessingBBHsignalswith componentmassesm1 ∈ [15, 70]M⊙
and m2 ∈ [3, 10]M⊙, with a mass ratio restricted to q = m1/m2 ∈ [5, 12], using the
“High q” template bank introduced earlier. After briefly reviewing our searchmethod
in Sec. 7.2, we report the results of our search in Sec. 7.3. While we do not detect any
novel signal, our results [293] allow us to place an upper limit on the astrophysi-
cal merger rate of a hypothetical subpopulation of asymmetric, heavily precessing
signals, not detected by past searches. Results from this chapter are also presented
in [4].

7.2 Set-up of the Search
To search for precessing signals, we employ the search technique introduced and
implemented in [3], also described in Ch. 6, which offers up to 120% sensitive vol-
ume increase for very asymmetric highly precessing BBH systems, as compared to
its aligned-spin counterpart. The sensitivity improvement is made possible thanks
to three main features:

• New metric template placement algorithm [1]: by reducing the bank generation
time by orders of magnitude, it allows for a fast identification of a region of
the parameter space where a sensitivity improvement can be achieved using
feasible number of templates.

• Updated signal consistency test [2]: it improves the robustness of the signal iden-
tification stage.

• Implementation of a suitable search statistic [328]: it allows for optimal SNR recov-
ery of the candidates.

Our search employs the “High q” 0.9 match1 precessing template bank introduced
in Ch. 6 with 2.3 millions of templates, targeting systems with component masses
m1 ∈ [15, 70]M⊙ andm2 ∈ [3, 10]M⊙ and restricted to amass ratio q = m1/m2 ∈ [5, 12].
Moreover, we only consider templates with s1y = s2x = s2y = 0 and zero reference
phase ϕ. The other spin components are set such that s1 ∈ [0.5, 0.9], s2z ∈ [−0.99, 0.99]

and θ1 ∈ [−π, π], with θ1 = arctan s1x
s1z

. As discussed in Ch. 4 and Ch. 6, such lim-
itations of the spin degrees of freedom leverages the degeneracies in the spin pa-
rameter space to provide good injection recovery, while limiting the number of tem-
plates required to cover the space [1, 3]. We filter the data in a frequency range
f ∈ [15, 1024]Hz with the waveform approximant IMRPhenomXP [47]. Note that for

1The choice of using a 0.9minimalmatch, instead of the standard 0.97, allows us to obtain a bankwith a
manageable size. As discussed in Sec. 6.4.1, it does not seem to have a large negative impact on the search.
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our analysis we only consider simple precession, thus neglecting the effect of transi-
tional precession2. To compare the performance of our precessing search we use an
aligned-spin template bank, also introduced in [3], covering the same mass range
and with s1z, s2z ∈ [−0.99, 0.99], employing 2.7× 104 templates.

To estimate the search sensitivity and to place a limit on themerger rate of precess-
ing signals (see Sec. 7.3.1), we sample a number of injections using the BBH popula-
tion results inferred by the LIGO-Virgo-KAGRA (LVK) collaboration using GWTC-
3 [21]. Our choice of relying on the population results from GWTC-3 poses a strong
prior on the structure of the hypothetical subpopulation of asymmetric precessing
system that we are searching for. To avoid this, we could have used amore “agnostic”
populationmodel, in order to avoid any preference for a populationmodel developed
only with aligned-spin searches. On the other hand, our choice makes sure that the
rate upper limits from our search are comparable with those produced by the LVK.
For this purpose, we use the best fit of the Binned Gaussian Process (BGP) popula-
tion model [302], which allows us to easily sample BBH signals in the mass range of
consideration. We sample the two spins isotropically, where the magnitude of each
spin is constrained between 0.5 and 0.9. The sources are uniformly distributed in the
volume between [30, 300]Mpc with uniformly sampled orientation, and generated
with the IMRPhenomXP approximant.

For our search we use publicly available GW data [84] collected by the two LIGO
observatories [11, 214, 450] during the third observing run (O3). Data collection pe-
riods were divided in two halves: the first half of O3 (O3a) spanned between 1 April
2019, 1500UTC and 1October 2019, 1500UTC,while the second half (O3b) happened
between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. Forced by lim-
ited computational resources, we did not use Virgo data taken in the same period,
due to the smaller contribution to the sensitive volume given by Virgo.

7.3 Search Results
The search detected 30 events with pastro > 0.5: they were all previously reported in
the GW transient catalogs GWTC-2 [16,17] and GWTC-3 [18] released by the LIGO-
Virgo-KAGRA collaboration. The confident detections are reported in Tab. 7.1. In
Fig. 7.1, we summarize the information about our detected GWTC signals, where we
report all the detected events in GWTC-2 and GWTC-3. Each event not discovered

2As discussed in Sec. 1.3.3, transitional precession happens when the total spin vector S is approxi-
mately opposite to the orbital angular momentum L. In this case, the system does not have a rotation
axis for the precession motion, which is usually given by the total angular momentum J = L + S. As a
consequence, the orbital orientation will rapidly changes until a new configuration (where J is non-zero)
is reached.
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SNR SNRGWTC FAR(1/yr)
GW190408_181802 14.29 14.6 < 10−5

GW190412_053044 17.82 19.8 < 10−5

GW190512_180714 11.88 12.7 < 10−5

GW190513_205428 11.8 12.5 0.0008
GW190519_153544 12.69 15.9 0.0001
GW190521_074359 22.74 25.9 < 10−5

GW190527_092055 8.79 8.0 0.1547
GW190706_222641 12.54 13.4 0.0221
GW190707_093326 12.68 13.1 < 10−5

GW190708_232457 12.13 13.4 < 10−5

GW190720_000836 10.55 10.9 0.0012
GW190727_060333 11.3 11.7 < 10−5

GW190728_064510 11.92 13.1 < 10−5

GW190814_211039 20.52 25.3 < 10−5

GW190828_063405 15.93 16.5 < 10−5

GW190828_065509 10.56 10.2 0.001
GW190915_235702 12.09 13.1 0.0015
GW190924_021846 12.87 12.0 < 10−5

GW191109_010717 14.19 17.3 < 10−5

GW191129_134029 13.14 13.1 < 10−5

GW191204_171526 16.78 17.4 < 10−5

GW191215_223052 10.36 11.2 0.0008
GW191216_213338 17.52 18.6 < 10−5

GW191222_033537 10.91 12.5 0.0009
GW200128_022011 9.0 10.6 0.0059
GW200129_065458 25.8 26.8 < 10−5

GW200224_222234 17.85 20.0 < 10−5

GW200225_060421 12.1 12.5 0.0664
GW200311_115853 15.69 17.8 < 10−5

GW200316_215756 9.96 10.3 0.0003

Table 7.1: Confident events detected by our search with pastro > 0.5. For each event, we report
the event name, together with the SNR and FAR. For reference, we also report the SNRGWTC
reported in the transient catalog.

by our search is represented by a cross, while a large dot, colored by the detection
FAR, represents a detection. Note that we report events detected by our search up
to a FAR = 1/day, hence some of them do not satisfy our detection threshold of
pastro > 0.5.
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GPS time SNR FAR(1/yr) pastro

1252415231 8.84 2.367 0.06
1252465013 8.35 3.2005 0.05
1253504581 9.02 4.5486 0.03
1267433277 7.75 5.4287 0.04

Table 7.2: Candidates not reported in GWTC, detected by our search with FAR < 6/yr =

1/2months. For each candidate, we report the SNR, FAR and pastro.
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Figure 7.1: Median masses of the GWTC candidates as computed with parameter estimation.
The GWTC candidates detected by our search are denoted by large circles, colored according
to their FAR. A black cross marks the GWTC events that our search missed. The blue dots
represent the templates used in our search bank.

As shown in Fig. 7.1 and as further confirmed by parameter estimation stud-
ies [16, 18], the GWTC events detected by our search lie mostly outside the region
covered by our template bank. We observe that these events typically have a higher
total mass than our templates, meaning they are shorter in duration. Consequently,
we conclude that the sensitivity of our search extends to higher masses beyond our
intended target. This is likely due to the large number of relatively long-duration tem-
plates used, which can easily match short-duration events, albeit with sub-optimal
SNR and ξ2 values. The fact that the detected events are outside the target region
also explains the observation in Tab. 7.1 that our search measures a systematically
lower SNR than the GWTC searches. Finally, we highlight that our search was able
to recover with high confidence the three individual events previously mentioned
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Figure 7.2: Efficiency of the search as a function of the decisive SNR, i.e. themaximum injected
SNR between the two detectors. The efficiency is measured on four different chunks with GPS
start time and length reported on the caption separated by a dash.

(GW190521, GW191109, and GW200129), for which spin misalignment measure-
ments had been claimed by other works [54–56].

In Fig. 7.1 we note that two events, GW191113_071753 and GW200210_092254,
were missed by our search, even if they lie close to our target region. The first one
GW191113_071753was not recorded by theGstLALpipeline even in the offline broad-
band search3 and for this reason it is not surprising that also our precessing search
failed to detect it. On the other hand, the issue of why GW200210_092254 wasmissed
requires more investigation. For the moment we can postulate that this is due to a
combination of the signal being at the very edge of our template bank and of the low
mass of the lighter object, resulting in a signal duration longer than most of the tem-
plates in the bank. Unlike the other short events detected outside the bank, the longer
duration of this event makes it more challenging for a template to recover the entire
SNR of the system.

Besides the known GW events, our search did not detect any novel GW candi-
date. In Tab. 7.2, we report a list of the candidates observed with FAR < 2/year, not
included in a previous transient catalog.

In Fig. 7.2, we report the efficiency ϵ(SNR,FAR) of our search for different bins of
decisive SNR, defined as themaximum injected SNR between the two LIGOdetectors.
The efficiency amounts to the fraction of signals detected by the search and it is com-
puted using the BGP injection set defined above. We perform injections only for two
chunks of data in O3a and O3b respectively, and we report the results separately for
each chunk. The efficiencies obtained are similar to those reported in [3], however
for the chunk starting at GPS time 1262192988 s we observe a drop in efficiency of

3The event was found instead by the PyCBC [355–357] and Multi-Band Template Analysis
(MBTA) [360, 361] pipelines, although with a low significance. Similar situations, where only a few
pipelines find a given event, are very common for marginally significant events.
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Figure 7.3: Search sensitivity computed over different regions of the parameter space. Each
dot marks the center of a set of log-normally distributed injections and it is colored according
to the sensitive spacetime volume measured using such injection set. The number superim-
posed denotes the ratio between the sensitive spacetime volume of our search and the one of
an aligned-spins search targeting the same space.

unknown origin.
The efficiency is used to compute the averaged sensitive spacetime volume ⟨V T ⟩

of the search, defined as:

⟨V T ⟩(FAR) = T

∫ ∞

0

dVc ϵ(SNR(Dc),FAR) (7.1)

where dVc is the comoving volume element at a given comoving distance Dc. In
Fig. 7.3, we report the VT as a function of the parameter space of our search. The effi-
ciency is averaged over the four chunks for which it was computed and it is assumed
constant for all the observation time. We also report the ⟨V T ⟩ improvement brought
by our search as compared to an aligned-spin search. For each centroid, we employ
∼ 3 × 104 injections, log-normally distributed around the center with a variance of
0.1. All the sensitive volumes are estimated at a fiducial FAR = 1/yr.

7.3.1 Rate Upper Limits

The lack of newly detected signals allows to place an upper limit [293, 294, 392, 393]
on the presence of a subpopulation of asymmetric, heavily precessing signals, not
identified by other searches. In our analysis, we assume that such population is well
described by the BGP injection set and, unlike standard works in BBH population
analysis [20, 21], we do not attempt to constrain the distribution of BBH masses or
spins.

After removing from consideration all the triggers associated to any GWTC event,
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FAR = 1/yr
⟨V T ⟩O3a = 4.10+0.25

−0.26 Gpc3yr

⟨V T ⟩O3b = 3.2+1.5
−1.5 Gpc3yr

FAR = 2.36/yr
⟨V T ⟩ = 8.4+1.5

−4.6 Gpc3yr

Table 7.3: Sensitive spacetime volume estimated for the BGP population at a nominal FAR of
1/year and the FAR corresponding to the loudest event not reported in the GWTC. In the first
case, we report the ⟨V T ⟩ separately for O3a and O3b.

the loudest trigger has a FAR = 2.367/yr. We can then use our knowledge of the
sensitive spacetime volume to place an upper limit R90% (90% confidence interval)
on the merger rate of the said population of heavily precessing signals. From this,
we can compute the 90% confidence limit for the upper limit to the said population
of heavily precessing signals,

R90% =
2.3

⟨V T ⟩ (7.2)

where the sensitive spacetime volume is estimate using the FAR of the loudest event.
Using the VT values for the BGP population reported in Tab. 7.3, we obtain an upper
limit of

R90% = 0.28+0.33
−0.04 Gpc−3yr−1.

The rate upper limit we obtain is consistent with the LVK rate estimates for our sub-
population [21]: considering that our target population is only a small fraction of the
total BBH population considered in the analysis, the LVK results imply a BBHmerger
rate of

RLVK = 0.117− 0.298Gpc−3yr−1

for our target region. Thus, our results do not provide any evidence to support the
hypothesis of a population of asymmetric, heavily precessing signals that have not
been detected by other searches. Searching the data taken during the first and second
observing runs [83] will increase the surveyed sensitive spacetime volume, however
it is unlikely that such increase will change the picture outlined above.

According to our results, the past analysis carried on by the LVK have not missed
any heavily precessing asymmetric system, despite having a poor sensitivity towards
those signals. Therefore, the population analysis based on the confirmed events of
the GWTC [20,21,76] retain their validity in light of our findings, at least in the mass
region target by our search. In particular, we are able to confirm that precession is
a rare event in BBHs, detectable in ∼ 2% of the cases with the current detector’s
sensitivity, as pointed out in [76].
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7.4 Conclusion
In this chapter, we presented the results of a matched-filtering search on the interfer-
ometric data from the LIGO-Virgo-KAGRA third observing run. Our search targets
asymmetric precessing BBHs, with a doubled sensitivity over such extreme systems:
the search method is thoroughly discussed in [3]. We report the detection of 30 can-
didates, already announced in the LIGO-Virgo-KAGRA transient catalogs, but we
do not find any new candidate. Our results allow us to place an upper limit on the
merger rate of the binaries targeted by our search and, as our result is consistent with
the rate estimates from the LVK, we can rule out the existence of a subpopulation
of asymmetric precessing BBH not detected by past searches. Therefore, our results
support the conclusions drawn from the existing catalogs: precessing systems are as
“rare” as we thought they were before conducting the search.

Future work should focus on expanding the parameter space of the search, pos-
sibly targeting Neutron Star- Black Hole systems. This attempt will struggle with
the huge size of the template bank required for this task, although see [406] which
demonstrated that this is possible with only a 3x increase in template bank size.
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CHAPTER 8

Closing Remarks

In this dissertation, we described the four years long journey to detect gravitational
waves emitted by precessing binary black holes systems, also called precessing sig-
nals. Our work was motivated by the apparent rarity of detection of precessing sig-
nals [76], which raised the obvious question of why so few signals with clear imprint
of precessions have been observed. Given the large scientific interest of precessing
signals, with impacts on BBH formation mechanisms and cosmology, the question is
very worthy of an answer. Therefore, to rule out the possibility that a few precessing
signals were missed by the lack of sensitivity of current aligned-spin searches, we de-
veloped a technique to search for precessing signals, achieving up to 120% sensitivity
increase over traditional searches. Thanks to our work, we were able to search for the
first time for precessing signals in a small but interesting corner of the precessing
parameter space and we were able to rule out the presence of precessing signals not
detected by previous searches, thus confirming the results from the LIGO, Virgo and
KAGRA collaboration.

The search results, which we presented in Ch. 7 and published in [4], were made
possible thanks to three preparatory works: the first two addressed key challenges,
while the third detailed andvalidated our end-to-endpipeline for precessing searches.
The first of our work, presented in Ch. 4 and in [1], was dedicated to the daunting
task of placing templates in a high dimensional space, such as the one in which pre-
cessing signals are embedded. This task was complicated by the strict requirements
on the bank’s effectualness as well as on its size. Building on solid theoretical re-
search as well as on effective computational method, we were able to cast the prob-
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lemof placing templates into the problemof sampling fromamanifold. The sampling
was elegantly performedwith a normalizing flows, amachine learningmodel widely
used to sample from complicated probability distributions. Thanks to ourwork, pub-
licly available as a python package mbank [410], we are able to place millions of tem-
plates in a matter of hours: this is a significant improvement over previous methods,
which required days of memory-intensive computations for generating banks. While
primarily motivated by the search for precessing signals, the relevance of our work
extends well beyond that. Indeed, it can be straightforwardly applied to generate
template banks for eccentric signals or signals with imprints of HMs and it can find
applications even outside the problem of template placing.

A second work, discussed in Ch. 5 and first presented in [2], was concerned to
solve a technical, but important, issue for matched-filtering searches: what is the best
signal consistency test to use for a precessing search? After the filtering stage, where
the correlation between a template and the data is computed (SNR timeseries), the
signal consistency test checks whether the measured SNR timeseries corresponds to
the theoretical expectations. A robust signal consistency test is able to discern be-
tween astrophysical signals and short noise transient bursts happening in the detec-
tors. While traditional tests were designed and tested only for aligned-spin systems,
our study allowed us to introduce a novel generalized test ξ2sym, which does not make
any assumption about the nature of the signal. Moreover, we obtained a compu-
tationally convenient approximation ξ2mix for the newly introduced test. Finally, we
assessed the validity of the two newly introduced tests and we compared their per-
formance with the traditional one. Our results suggested that for precessing signals
it is crucial to introduce either the novel test or its approximation.

Our findings on the signal consistency test, together with our novel template
placement method, allowed us to upgrade the GstLAL pipeline to effectively search
for precessing signals. The new pipeline implements a suitable expression for the
SNR timeseries computation, previously introduced in [328], and utilized ξ2mix as a
signal consistency test. In the work, presented in Ch. 6 and published in [3], we iden-
tified two interesting regions of the precessing parameter space, for both of which we
performed a precessing search and compared it with an aligned-spin search over the
same mass range. It is worth to stress that the identification of a region to search is
already a computationally challenging task, as we have to balance between the desire
of a search covering a wide region of the parameter space and the need of having a
contained number of templates. We could have not achieved this delicate balance
without the capabilities of our template placement code mbank. The two precess-
ing searches have roughly 100x more templates than their aligned-spin counterparts.
While this surely improves the SNR recovery and the effectiveness of the signal con-
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sistency test, it increases the number of false alarms, potentially washing out any
improvement. Our results indicate that the latter effect prevails in the case of system
with a lowmass ratio q ≲ 5: in this scenario, our precessing search does not offer any
improvement, over the traditional method. A different conclusion was drawn for the
“High q” case, covering systems with mass ratio q ∈ [5, 12] and with primary mass
m1 ∈ [15, 70]M⊙ and secondary massm2 ∈ [3, 10]M⊙. In this region of the parameter
space, the improvement in SNR and ξ2 prevails and the precessing search offers up
to 120% sensitivity increased for high values of mass ratios and effective precession
spin parameter χP . Therefore we conclude that, in this “High q” region, the sensitiv-
ity of traditional searches is very limited and a search with precessing templates is
very much required. This paved the way for the first ever large scale search that we
conducted on data from the LVK third observing run.

Too costly? The increase in sensitivity achieved by our precessing search comes
at a heavy price. The two orders of magnitude increase in the size of the template
bank translates almost directly into a two orders of magnitude increase of the com-
putational cost of the search. Indeed, the cost of the search described in Ch. 7 can be
quantified in half amillion of CPUhours! While such cost is still manageable bymod-
ern computer clusters, we were only able to search a small region of the parameter
space. A more extensive search for precessing signals, for instance covering also the
interesting region of NSBH systems, can easily add a factor of ten on this cost, mak-
ing similar searches unfeasible. Of course, this sets a large limitation to the breadth
of precessing searches and it poses a threat to our scientific program of systemati-
cally searching for exotic signals. For this reason, a future generation of precessing
searches must do better than the “brute force” approach we employed in this work.
A very interesting example is presented in [406], where a proof-of-principle search
for NSBH systems is developed with only a 3x increase in computational cost. The
search, however, relies on an approximate expression for the precessing waveform
and it is only valid for precessing signals composed by the dominant ℓ = |m| = 2

multipole.
Based on our findings, we are able to suggest a different approach to speed up

our precessing searches. This might lead to a promising search for systems which
includes not only precession but also contributions from higher order multipoles, at
a moderate computational cost. While this path has not been yet explored, we sketch
below a few ideas that can help to focus the efforts of an interested researcher. A cru-
cial takeaway from Ch. 6 is that the drop in performance of an aligned-spins search
does not only arise from a low SNR recovery but also from a poor performance of the
signal consistency test (see e.g. Fig. 6.8). In otherwords, even though an aligned-spin
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template has a high correlation (SNR) with data containing a precessing astrophysi-
cal signal, the template response differs from the expected one, thus delivering a high
ξ2 value. This means that a search with aligned-spin templates will be likely launch
a trigger in correspondence to an heavily precessing signal but this trigger will be as-
signed a low significance due to its high ξ2 value and hence discarded. This suggests
that a search targeting precessing signals can filter the data with aligned-spin tem-
plates and, in a second stage, recompute the SNR and ξ2 values of the “promising”
triggers, i.e. of triggers showing SNR values above a certain threshold. This second
stage should aim at minimizing the ξ2 values associated to each trigger with a set of
precessing templates and advanced optimization techniques might be also used to
efficiently find the template minimizing the ξ2.

This technique could save an enormous amount of resources, since the expen-
sive filtering with a large number of precessing templates would only involve a small
chunk of data. The advantages are manifest: with only aminimal increase in filtering
cost, we can achieve a precessing searchwith largely enhanced sensitivity. Potentially,
this approach could be easily extended to precessing systems with imprints of HMs
and (why not?) imprints from an eccentric orbit. While this research project is yet to
be fully explored, we believe that it has great potential and as such it constitutes one
of the greatest “lessons learnt” from this dissertation.

Interesting times ahead! Regardless of the search techniques employed, the impor-
tance of a search that overcomes the limitations of the traditional ones is undeniable.
The scientific impact of the detection of many precessing systems and/or systems
with imprints fromHMs is too wide to be neglected. This is also witnessed by the in-
creasing attention given in the literature to the topic, withmultiple groups competing
to develop various state-of-the-art pipelines. Therefore, it is easy to predict that the
next generation of searches for the coalescence of compact objects will incorporate
an ever increasing number of different physical effects, hopefully leading to exciting
new detections. This in turn can improve our understanding of many open problems
in gravitational-wave astronomy. The present dissertation is a modest contribution
to the wealth of different ideas and search techniques currently being developed by
multiple groups worldwide. Nevertheless, we hope that the results from our search
and the lessons learned during our journey will assist the community in generating
new ideas or refining search methods, and in some small way, facilitate the new dis-
coveries that lie ahead. We could not wish for a better outcome for the four years of
effort we’ve dedicated to this work.
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General relativity, black holes and gravitational waves Challenging our conven-
tional understanding of concepts like time, energy, and space, the theory of gen-
eral relativity is considered an accurate description of physical phenomena involv-
ing massive objects in the universe, such as planets or stars. Behind the intricacies
of the mathematics, the theory predicts the existence of a class of a very dense star-
like objects, called black holes (BH), not predicted by the classical Newtonian theory
of gravity. A black hole is a region of the space where the gravity is so strong that
nothing can posses enough speed to escape from its gravitational attraction. There-
fore, anything entering a black hole, including light, will remain inside a black hole
forever1.

If black holes are the most famous prediction of the theory, they are not the only
one. Indeed, the theory predicts also the existence of gravitational waves, arising as
natural consequence of the finite speed of propagation of the gravitational interac-
tion. A simple thought experiment can help to clarify this. Imagine to put a large
mass in an empty space (in vacuum) and to probe with a small test mass its gravita-
tional effect, which according to high school textbooksmanifests itself as an attraction
towards the large mass. Now imagine that (for whatever reason) at time t0 the mass
starts tomove: what happens to the test mass? Or better, when does it feel the change
in the attraction due to the fact that the mass have changed its position? According to
the Newtonian theory of gravity, the interaction is instantaneous: as soon as the large
mass moves, the small mass will feel the effect. While this feature of the theory was
already looked with suspicion by Newton and his contemporaries, it took more than
two hundreds years to establish that nothing can travel at “infinite” speed. For this
reason, general relativitymust predict that the test mass perceives a variation in grav-
ity only at some delayed (retarded) time tR. What happens between t0 and tR? The
gravitational interaction is propagating through the form of a gravitational wave! Of

1This motivates their name: since no light is emitted or reflected, they appear as a purely black sphere
to any observer “looking” at them.
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course, this picture picture is heavily simplified and there are a lot of caveats on what
you may or may not define as a gravitational wave. Nevertheless, the main physi-
cal idea still stands: a gravitational wave is a propagating gravitational interaction,
pretty much like light is a propagating electromagnetic interaction.

Black holes binaries Oncewe establish that gravitationalwaves exist (note that this
step is not trivial, as it took almost fifty years of scientific debate to establish their ex-
istence) we can ask ourselves: how are gravitational waves produced? Diving into all
themathematical details of the theory, provides a rather simple answer: gravitational
waves are produced by accelerating objects. Of course, there are many accelerating
objects in the universe, including a train leaving a station, but a particularly intriguing
class of sources of gravitational waves comes from binaries of compact objects. Some
definitions are in order: a compact object is a very dense stellar-like object, such as a
neutron star or a black hole, while a compact binary is a pair of compact objects, which
orbit around each other under the influence of the mutual gravitational attraction. In
simple words, a compact binary is the familiar system of Earth and Sun, where both
the Earth and Sun are replaced by heavier and denser objects. We call binary black
hole a system formed by two black holes. Both the objects are in (quasi) uniform cir-
cular motion and, more importantly, they experience a centripetal acceleration: this
means that they emit gravitational waves!

Due to their importance as GW emitters, the physics of binary black holes is
widely studied in most of its details and indeed, very accurate predictions for the
GW signal emitted by the system are known. Despite the mathematical intricacies, a
few simple physical ideas arise. First of all, it is well known that, as the gravitational
radiation carries energy, the two objects compensate for the energy loss by orbiting
closer and closer to each other, until they eventually merge into a single object. More-
over, the spins (i.e. the rotation around a given axis) of the two objects play a role in
the dynamics of the system, slowing down or accelerating the GW emission. Finally,
if the two spins are mis-aligned with each other the system undergoes precession.
This means that the orbital plane itself wobbles and changes orientation as the two
black holes spiral towards each other, introducing unique signatures in the gravita-
tional-wave signals.

The observation of the GW emitted by the coalescence of compact objects allows
scientists to answer a huge variety of important scientific questions. First of all, one
may wonder how many binaries exist in the universe, what are their properties and
how they formed—this goes into the field of the so called population studies. An-
other set of questions concerns the validity of the theory of general relativity to de-
scribe such complicated binary systems—this is the field of tests of general relativity.
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Moreover, it is possible to constrain the properties of dense matter, by observing the
merger of neutron stars and the complex phenomenology attached. Finally, as the
sources are placed at very large distances, we can use them to study the structure of
our universe, posing constraints on its expansion rate and on its history, contributing
to the field of cosmology.

Detecting gravitational waves from black hole binaries The list above just gave a
hint of the scientific potential of the observing compact binary systems and it is no
surprise that billions of euros were allocated to build large instruments dedicated
to the detection of gravitational waves, such as LIGO, Virgo or KAGRA. Such in-
struments are designed to measure a tiny variation of the distance between to test
masses, which is the effect of a gravitational wave on the spacetime predicted by
general relativity. Such a precise measurement can only be achieved with very large
interferometers, by analyzing the interference pattern of two lasers shot in the two
kilometers-long arms. The interferometer outputs a time dependent estimation of
the differential arm length (i.e. the difference between the length of the two arms),
which is closely related to any incoming gravitational wave.

With the theory of compact binaries at hand and with sophisticated instruments
operating to measure the gravitational waves, it would seem that the hardest part of
the work is done. Unfortunately, most of the detector’s output is noise. Therefore,
without proper data analysis techniques limiting the impact of noise, it is impossi-
ble to extract any physical information from the detector’s readout. While the field
of gravitational-wave data analysis is vast and many different tasks can be achieved
with different tools, in this dissertation we focus on the problem of searching a par-
ticular signal inside the detector’s output. As the noise is typically louder than most
of signals that we can conceivably detect, we have to employ sophisticated compu-
tational techniques to identify a signal inside the data stream. In other words, you
cannot find a gravitational wave unless you are specifically looking for it.

One important search method goes under the name of matched filtering and con-
sists in explicitly searching inside the data for a particular source, i.e. a particular
binary. The search is done by computing the correlation between the data and the
expected gravitational-wave signal emitted by the source. Of course, there are many
possible binaries that could have emitted a detectable signal and, for this reason, we
want to make sure that we don’t miss any source. Therefore, we typically simulta-
neously search for millions of different sources inside the data. A little bit of jargon:
we call template a signal that we search in the data produced by a given source (i.e.
with given masses and spins), while the set of signal templates that are searched
in the data is called template bank. Whenever a template shows a large correlation
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value with the data, a search pipeline launches a trigger. In summary, to perform a
matched-filter search, an interested experiment must (i) generate a template bank
and (ii) wait until a computer filters the interferometer data with all the templates of
the template bank.

Matched-filtering searches have proved their value by detectingmore than 90 GW
signals from the coalescence of compact objects but they are almost blind to signals
that are not explicitly included inside the template bank, i.e. inside the set of signals
to search in the data. This brings us to the problem addressed by this dissertation.
Traditional searches typically search for signals with aligned spins, which are signals
not showing precession. This clearly poses a limitation on their ability to detect pre-
cessing binaries and indeed, aligned-spin searches brought to the detection of very
few precessing signals. Therefore we ask ourselves: is the observed lack of strongly
precessing signals due to their rarity? Or, rather, is it caused by the limited sensitivity
of current searches? To answer these questions and tomake sure we are not currently
missing any precessing signal in the data, we developed a matched-filtering search,
based on the GstLAL pipeline, targeted to precessing signals and, for the first time,
we searched real data looking for gravitational waves emitted by heavily precessing
systems.

Our contributions: novel template placement method Despite being in principle
straightforward, developing a search for precessing signals must face a number of
technical challenges, whose solution makes up the original content of the disserta-
tion. A first challenge comes with the generation of a template bank of precessing
signals. Traditional template placement methods iteratively propose a new signal as
a possible template. The proposal is then added to the bank only if its “distance”
(defined in some meaningful way) with the other templates is larger than a certain
threshold. Now, the problemwith this method is that the number of distance compu-
tations to be performed increases with the number of parameters that characterize a
template–the dimensionality of the space. An aligned-spin template is characterized
by only four parameters (the two BH masses and the two spin components aligned
to the orbital plane). On the other hand, a precessing parameter can be characterized
by up to ten parameters and the traditional method becomes unfeasibly expensive in
the precessing scenario.

To solve this challenge, we drop the expensive distance computation and instead
we randomly draw template from a suitable, theoretically motivated distribution–
this is not as bad as it might seem: a theorem guarantees that in a high number of
dimension this approach is close to optimality. The sampling from the distribution is
made feasible thanks to a machine learning model, designed for the purpose. While
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our method delivers template banks up to 50% larger than those generated by the
traditional method, it enables very fast bank generation (hours vs weeks). The speed
of our method allows us to quickly identify a convenient region of the precessing
parameter space, which is interesting from a physical point of view and at the same
time can be covered with a relatively low number of templates. The template banks
generated are used to search for precessing signals in the real interferometer data.

Our contributions: novel signal consistency test A second technical challenge in-
herent to precessing searches involves a so-called signal consistency test. During the
filtering procedure the pipelinemay occasionally launch spurious triggers, caused by
instrumental noise artifacts. For this reason, each pipeline has to deploy a test to dis-
tinguish spurious triggers from triggers of astrophysical origin. The current version
of the pipeline deploys a version of the test which is unsuitable for precessing signals.
For this reason, we are forced to update the signal consistency test for precessing sys-
tems and to validate its performance. The updated test has been incorporated into
the precessing search we developed.

Our contributions: sensitivity improvement andO3 search Having solved the two
technical challenges above, we are ready to deploy amatched-filtering search for pre-
cessing signals. To assess the improvement over an aligned-spin search, we identify
two different regions of the parameter space, one “Low q” composed by systemswith
a limitedmass asymmetry (mass ratio up to 5/1) and another “High q” targeting sys-
tems with a large mass asymmetry (up to 12/1). For each of these two regions, we
conduct both an aligned-spin search and a precessing search and we measured their
sensitivity (evaluated in terms of the spacetime volume surveyed). We found that the
precessing search performed worse than the aligned-spin one in the “Low q” region:
this can be explained by considering the larger number of templates of the precess-
ing search, which increases the number of false positive triggers, hence harming the
overall sensitivity. The situation is reversed in the “High q” region, where for system
with largelymis-aligned spins a sensitivity improvement of up to 120%was recorded.
This is the primary takeaway from this investigation: in order to achieve a sensitivity
improvement when searching for precessing signals, it is necessary to consider very
asymmetric systems with largely mis-aligned spins!

Leveraging our results, we searched for precessing signals the public data col-
lected by the LIGO observatory during the third observing run O3. Our search did
not report any new discovery, however it allowed to place an upper limit on the de-
tection rate of a population of precessing signals, not detected by past searches. Since
our rates are consistent with the findings of previous analysis, we are able to confirm
that precessing signals are indeed “as rare” as previously thought.
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Despite bringing an interesting null result, our work does not end here. Indeed,
other corners of the parameter space are left to be explored and other physical effects
are to be incorporated within the matched-filtering searches. Due to its large compu-
tational cost, our approach is likely not suitable to be scaled to a larger scale search.
For this reason, it is important to develop the next generation of matched-filtering
searches, able to incorporate a large variety of physical effects at a moderate costs.
The lessons learnt in this dissertation will provide invaluable guidance towards this
goal.
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Algemene relativiteitstheorie, zwarte gaten en zwaartekrachtsgolven De theorie
van de algemene relativiteit daagt ons conventionele begrip van concepten zoals tijd,
energie en ruimte uit en wordt beschouwd als een nauwkeurige beschrijving van
fysische verschijnselen die massieve objecten in het universum omvatten, zoals pla-
neten of sterren. Achter de ingewikkelde wiskunde voorspelt de theorie het bestaan
van een klasse van zeer dichte, sterachtige objecten, genaamd zwarte gaten (BH), die
niet worden voorspeld door de klassieke Newtoniaanse zwaartekrachttheorie. Een
zwart gat is een regio in de ruimte waar de zwaartekracht zo sterk is dat niets genoeg
snelheid kan hebben om aan de zwaartekracht te ontsnappen. Daarom zal alles wat
een zwart gat binnengaat, inclusief licht, voor altijd binnen een zwart gat blijven2.

Hoewel zwarte gaten de bekendste voorspelling van de theorie zijn, zijn ze zeker
niet de enige. De theorie voorspelt ook het bestaan van zwaartekrachtsgolven, die
voortkomen als een natuurlijke consequentie van de eindige voortplantingssnelheid
van de zwaartekrachtinteractie. Een simpel gedachtenexperiment kan dit verduide-
lijken. Stel je voor dat je een grote massa in een lege ruimte (in vacuüm) plaatst en
met een kleine testmassa de zwaartekrachtseffecten ervan meet, die volgens school-
boeken worden waargenomen als een aantrekkingskracht naar de grote massa. Stel
je nu voor dat (om welke reden dan ook) de massa op tijdstip t0 begint te bewegen:
wat gebeurt er dan met de testmassa? Of beter gezegd, wanneer voelt deze de veran-
dering in de aantrekkingskracht vanwege de verplaatsing van de massa? Volgens de
klassieke zwaartekrachttheorie is de interactie onmiddellijk: zodra de grote massa
beweegt, voelt de kleine massa het effect. Natuurlijk weten we dat dit beeld naïef is,
aangezien niets kan reizen met “oneindige” snelheid. Om deze reden moet de alge-
mene relativiteit voorspellen dat de testmassa een variatie in de zwaartekracht pas
op een vertraagd tijdstip tR waarneemt. Wat gebeurt er tussen t0 en tR? De zwaarte-
krachtinteractie plant zich voort in de vorm van een zwaartekrachtsgolf! Dit beeld is

2Dit motiveert hun naam: aangezien er geen licht wordt uitgezonden of gereflecteerd, verschijnen ze
voor elke waarnemer die naar hen kijkt als een puur zwarte bol.
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natuurlijk sterk vereenvoudigd en er zijn veel nuances over wat je wel of niet kunt de-
finiëren als een zwaartekrachtsgolf. Desondanks blijft het belangrijkste fysische idee
overeind: een zwaartekrachtsgolf is een zich voortplantende zwaartekrachtinteractie,
net zoals licht een zich voortplantende elektromagnetische interactie is.

Zwarte gaten-binaire systemen Wanneer we vaststellen dat zwaartekrachtsgolven
bestaan (merk op dat deze stap niet triviaal is, aangezien het bijna vijftig jaar van we-
tenschappelijk debat kostte om de gemeenschap hiervan te overtuigen), kunnen we
ons afvragen: hoe worden zwaartekrachtsgolven geproduceerd? Duiken in alle wis-
kundige details van de theorie biedt een vrij eenvoudig antwoord: zwaartekrachts-
golven worden geproduceerd door versnellende objecten. Natuurlijk zijn er veel ver-
snellende objecten in het universum, waaronder een trein die een station verlaat,
maar een bijzonder intrigerende klasse van bronnen van zwaartekrachtsgolven komt
van binaire systemenvan compacte objecten. Hier zijn enkele definities ophunplaats:
een compact object is een zeer dicht, sterachtig object, zoals een neutronenster of een
zwart gat, terwijl een compact binair systeem een paar compacte objecten is die om el-
kaar heen draaien onder invloed van hun wederzijdse zwaartekracht. Simpel gezegd
is een compact binair systeem vergelijkbaarmet het bekende systeem van de aarde en
de zon, maar dan vervangen door zwaardere en dichtere objecten. We noemen een
systeem van twee zwarte gaten een binair zwart gat. Beide objecten bevinden zich
in een (bijna) uniforme cirkelvormige beweging en, nog belangrijker, ze ervaren een
centripetale versnelling: dit betekent dat ze zwaartekrachtsgolven uitzenden!

Vanwege hun belang als bronnen van zwaartekrachtsgolven wordt de fysica van
een binair zwart gat uitgebreid bestudeerd in demeeste van hun details en zijn er in-
derdaad zeer nauwkeurige voorspellingen voor het GW-signaal dat door het systeem
wordt uitgezonden. Ondanks de wiskundige complexiteit ontstaan enkele eenvou-
dige fysische ideeën. Allereerst is het algemeen bekend dat, aangezien de zwaarte-
krachstraling energie transporteert, de twee objecten de energieverliezen compense-
ren door steeds dichter naar elkaar te draaien, totdat ze uiteindelijk samensmelten
tot één enkel object. Bovendien spelen de spins (d.w.z. de rotatie rond een bepaalde
as) van de twee objecten een rol in de dynamiek van het systeem, waardoor het uit-
zenden van zwaartekrachtsgolven wordt vertraagd of versneld. Ten slotte, als de
twee spins niet zijn uitgelijnd met elkaar of met het baanvlak, ondergaat het sys-
teem precessie. Dit betekent dat het baanvlak zelf wiebelt en van oriëntatie veran-
dert terwijl de twee zwarte gaten naar elkaar toe spiralen, wat unieke kenmerken in
de zwaartekrachtsgolf-signalen introduceert.

De observatie van de zwaartekrachtsgolven uitgezonden door de samensmelting
van compacte objecten stelt wetenschappers in staat om een grote verscheidenheid
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aan belangrijke wetenschappelijke vragen te beantwoorden. Allereerst kan men zich
afvragen hoeveel binaire systemen er in het universum bestaan, wat hun eigenschap-
pen zijn en hoe ze zijn ontstaan—dit valt onder het domein van zogenaamde popu-
latiestudies. Een andere set vragen betreft de geldigheid van de theorie van de al-
gemene relativiteit om dergelijke ingewikkelde binaire systemen te beschrijven—dit
is het domein van de testen van de algemene relativiteitstheorie. Bovendien is het
mogelijk om de eigenschappen van dichte materie te beperken door de samensmel-
ting van neutronensterren en de complexe fenomenologie die daarmee gepaard gaat
te observeren. Ten slotte, omdat de bronnen zich op zeer grote afstanden bevinden,
kunnen we ze gebruiken om de structuur van ons universum te bestuderen, waar-
door we beperkingen kunnen opleggen aan de expansiesnelheid en de geschiedenis
ervan, en zo bijdragen aan het vakgebied van de kosmologie.

Detecteren van zwaartekrachtsgolven van zwarte gatenbinaries Debovenstaande
lijst geeft slechts een hint van het wetenschappelijke potentieel van het observeren
van compacte binairen, en het is dan ook geen verrassing dat er miljarden euro’s zijn
toegewezen om grote instrumenten te bouwen die zijn gewijd aan de detectie van
zwaartekrachtsgolven, zoals LIGO, Virgo of KAGRA. Dergelijke instrumenten zijn
ontworpen om een kleine variatie in de afstand tussen twee testmassa’s te meten,
wat het effect is van een zwaartekrachtsgolf op de ruimtetijd zoals voorspeld door de
algemene relativiteitstheorie. Een dergelijke nauwkeurige meting kan alleen worden
bereikt met zeer grote interferometers, door het interferentiepatroon te analyseren
van twee lasers die worden afgevuurd in de kilometerslange armen. De interferome-
ter levert een tijdsafhankelijke schatting van de differentiële armlengte (d.w.z. het
verschil tussen de lengte van de twee armen), die nauw verwant is aan elke inko-
mende zwaartekrachtsgolf.

Met de theorie van compacte binaire systemen in handen en met geavanceerde
instrumenten die werken om de zwaartekrachtsgolven te meten, zou het lijken alsof
het moeilijkste deel van het werk is gedaan. Helaas is het grootste deel van de de-
tectoroutput ruis. Zonder de juiste data-analysetechnieken om de impact van ruis te
beperken, is het onmogelijk omenige fysieke informatie uit de detectorlezing te halen.
Hoewel het veld van zwaartekrachtsgolfdata-analyse breed is en veel verschillende
taken kan worden uitgevoerd met verschillende tools, richten we ons in deze disser-
tatie op het probleem van het zoeken naar een bepaald signaal in de detectoroutput.
Aangezien de ruis sterker is dan elk signaal dat we kunnen detecteren, moeten we
geavanceerde computatietechnieken gebruiken om een signaal in de datastroom te
identificeren. Met andere woorden, je kunt een zwaartekrachtsgolf niet vinden tenzij
je er specifiek naar op zoek bent.

183



Openbare Samenvatting

Een belangrijke zoekmethode staat bekend als matched filtering en bestaat uit het
expliciet zoeken in de gegevens naar een specifieke bron, d.w.z. een specifiek binair
systeem. De zoekopdracht wordt uitgevoerd door de correlatie te berekenen tussen
de gegevens en het verwachte zwaartekrachtsgolfsignaal dat door de bron wordt uit-
gezonden. Natuurlijk zijn er veel mogelijke binairen die een detecteerbaar signaal
hadden kunnen uitzenden en daarom willen we ervoor zorgen dat we geen enkele
bron missen. Daarom zoeken we doorgaans tegelijkertijd naar miljoenen verschil-
lende bronnen in de gegevens. Een beetje vaktaal: we noemen een signaal dat we
in de gegevens zoeken, geproduceerd door een bepaalde bron (d.w.z. met bepaalde
massa’s en spins), een sjabloon, terwijl de set signaalsjablonen die in de gegevenswor-
den doorzocht, de sjabloonbank wordt genoemd. Telkens wanneer een sjabloon een
hoge correlatiewaarde met de gegevens vertoont, start een zoekpipeline een trigger.
Samengevat, om een matched-filter-zoekopdracht uit te voeren, moet een geïnteres-
seerd experiment i) een sjabloonbank genereren en ii) wachten tot een computer de
interferometergegevens met alle sjablonen van de sjabloonbank heeft gefilterd.

Matched-filtering zoekopdrachten hebben hun waarde bewezen door meer dan
90 GW-signalen te detecteren van de samensmelting van compacte objecten, maar
ze zijn bijna blind voor signalen die niet expliciet zijn opgenomen in de sjabloon-
bank, d.w.z. binnen de reeks signalen om in de gegevens te zoeken. Dit brengt ons
bij het probleem dat in deze dissertatie wordt behandeld. Traditionele zoekopdrach-
ten zoeken doorgaans naar signalen met uitgelijnde spins, wat signalen zijn die geen
precessie vertonen. Dit vormt duidelijk een beperking op hun effectiviteit bij het de-
tecteren van precesserende binairen, en inderdaad hebben zoekopdrachten met uit-
gelijnde spins geleid tot de detectie van zeer weinig precesserende signalen. Daarom
stellen we ons de vraag: is het waargenomen gebrek aan sterk precesserende sig-
nalen te wijten aan hun zeldzaamheid? Of wordt het eerder veroorzaakt door de
beperkte gevoeligheid van de huidige zoekopdrachten? Om deze vragen te beant-
woorden en ervoor te zorgen dat we momenteel geen precesserende signalen in de
gegevensmissen, hebbenwe eenmatched-filter-zoekopdracht ontwikkeld, gebaseerd
op de GstLAL-pipeline, gericht op precesserende signalen en, voor het eerst, hebben
we echte gegevens doorzocht op zoek naar zwaartekrachtsgolven die worden uitge-
zonden door sterk precesserende systemen.

Onze bijdragen: nieuwe methode voor sjabloonplaatsing Hoewel het in principe
eenvoudig lijkt, brengt het ontwikkelen van een zoekmethode voor precesserende
signalen een aantal technische uitdagingen met zich mee, waarvan de oplossing de
originele inhoud van het proefschrift vormt. Een eerste uitdaging is de generatie van
een sjabloonbank voor precesserende signalen. Traditionelemethoden voor sjabloon-
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plaatsing stellen iteratief een nieuw signaal voor als mogelijke sjabloon. Dit voorstel
wordt alleen aan de bank toegevoegd als de “afstand” (op een zinvolle manier ge-
definieerd) tot de andere sjablonen groter is dan een bepaalde drempelwaarde. Het
probleem met deze methode is dat het aantal berekeningen van afstanden toeneemt
met het aantal parameters dat een sjabloon kenmerkt—de dimensionaliteit van de
ruimte. Een sjabloon met uitgelijnde spin wordt gekarakteriseerd door slechts vier
parameters (de twee massa’s van de zwarte gaten en de twee spincomponenten die
zijn uitgelijnd met het baanvlak). Aan de andere kant kan een precesserend signaal
worden gekarakteriseerd door maximaal tien parameters, waardoor de traditionele
methode onhaalbaar duur wordt in het geval van precessie.

Om deze uitdaging op te lossen, laten we de dure afstandsberekening vallen en
trekken we in plaats daarvan willekeurig sjablonen uit een geschikte, theoretisch on-
derbouwde verdeling—dit is niet zo nadelig als het lijkt: een stelling garandeert dat
deze aanpak in een groot aantal dimensies dicht bij optimaliteit ligt. Het bemonsteren
van de verdeling wordt mogelijk gemaakt door een machine learning-model, speci-
aal hiervoor ontworpen. Hoewel onze methode sjabloonbanken oplevert die tot 50%
groter zijn dan die welke worden gegenereerd door de traditionele methode, maakt
het zeer snelle bankgeneratie mogelijk (uren versus weken). De snelheid van onze
methode stelt ons in staat om snel een geschikt gebied van de precessieparameter-
ruimte te identificeren, dat interessant is vanuit fysiek oogpunt en tegelijkertijd met
een relatief klein aantal sjablonen kan worden afgedekt. De gegenereerde sjabloon-
bankenworden gebruikt om precesserende signalen in echte interferometergegevens
te zoeken.

Onze bijdragen: nieuwe consistentietest voor signalen Een tweede technische uit-
daging bij precessie-zoektochten betreft de zogenoemde consistentietest voor signalen.
Tijdens de filterprocedure kan de pijplijn soms valse triggers activeren, veroorzaakt
door ruisartefacten van instrumenten. Om deze reden moet elk analyse-algoritme
een test inzetten om valse triggers te onderscheiden van triggers van astrofysische
oorsprong. De huidige versie van het algoritme maakt gebruik van een versie van
de test die ongeschikt is voor precesserende signalen. Daarom zijn we genoodzaakt
de consistentietest voor precessiesystemen te updaten en de prestaties ervan te vali-
deren. De bijgewerkte test is geïntegreerd in de precessie-zoektocht die we hebben
ontwikkeld.

Onze bijdragen: verbetering van de gevoeligheid en O3-zoektocht Nadat we de
twee hierboven genoemde technische uitdagingen hebben opgelost, zijn we klaar om
een matched-filtering zoekopdracht naar precessiesignalen uit te voeren. Om de ver-
betering ten opzichte van een zoektocht met uitgelijnde spins te beoordelen, identifi-
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ceren we twee verschillende gebieden van de parameterspace: een “Laag q” dat be-
staat uit systemen met een beperkte massa-asymmetrie (massaverhouding tot 5/1)
en een andere “Hoog q” die zich richt op systemen met een grote massa-asymmetrie
(tot 12/1). Voor elk van deze twee gebieden voeren we zowel een uitgelijnde-spins
zoekopdracht als een precessiezoekopdracht uit en meten we hun gevoeligheid (ge-
ëvalueerd in termen van het gesurveilleerde ruimtetijdvolume). We ontdekten dat
de precessiezoekopdracht slechter presteerde dan de uitgelijnde-spin zoektocht in het
“Laag q”-gebied: dit kan worden verklaard door het grotere aantal sjablonen van de
precessiezoekopdracht, wat het aantal vals-positieve triggers verhoogt en dus de al-
gehele gevoeligheid schaadt. De situatie is omgekeerd in het “Hoog q”-gebied, waar
voor systemen met sterk niet-uitgelijnde spins een verbetering van de gevoeligheid
tot 120%werd geregistreerd. Dit is de belangrijkste conclusie van dit onderzoek: om
een verbetering van de gevoeligheid te bereiken bij het zoeken naar precessiesigna-
len, is het noodzakelijk om zeer asymmetrische systemen met sterk niet-uitgelijnde
spins in overweging te nemen!

Met behulp van onze resultaten hebben we gezocht naar precessiesignalen in de
openbare gegevens die door het LIGO-observatorium zijn verzameld tijdens de derde
waarnemingsronde O3. Onze zoektocht heeft geen nieuwe ontdekking gerappor-
teerd, maar het stelde ons in staat om een bovengrens vast te stellen voor het detec-
tietempo van een populatie van precessiesignalen die niet door eerdere zoektochten
zijn gedetecteerd. Aangezien onze tarieven consistent zijn met de bevindingen van
eerdere analyses, kunnen we bevestigen dat precessiesignalen inderdaad “zo zeld-
zaam” zijn als eerder werd gedacht.

Ondanks het brengen van een interessant nulresultaat, eindigt ons werk hier niet.
Inderdaad, andere uithoeken van de parameterruimte moeten nog worden verkend
en andere fysische effecten moeten worden opgenomen binnen de matched-filtering
zoekopdrachten. Vanwege de grote computationele kosten is onze benadering waar-
schijnlijk niet geschikt om op grotere schaal te worden opgeschaald. Om deze re-
den is het belangrijk om de volgende generatie matched-filtering zoekopdrachten te
ontwikkelen, die in staat zijn om een grote verscheidenheid aan fysische effecten op
gematigde kosten te integreren. De lessen die in deze dissertatie zijn geleerd, zullen
van onschatbare waarde zijn voor deze doelstelling.
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with dimensionless spins s1 = (0.8, 0.0,−0.5) and s2 = (−0.7, 0.1, 0.3). 26
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1.5 Effect of precession on a BBH signal. On the top panel we show the
GW signal from an aligned-spin BBH, while in the bottom panel we
show the effect of precession on the same system. On the y-axis we
report the observed strain (with arbitrary units). The signal consid-
ered is characterized by m1 = 40M⊙ and m2 = 3M⊙ and s1z = −0.2

and s2z = 0.7. The precessing signal is chosen with χP = 0.8, with
precession placed only on the first BH spin. The system is in an “edge
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2.2 Visual representation of the antenna pattern functions F+, F× for a
ground based interferometer, Eq. (2.7) and (2.8) respectively. In the
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3.1 On the left plot we show the SNR timeseries ρ(t) Eq. (3.35) for a non-
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4.1 Study of the accuracy for several normalizing flow, trained on differ-
ent manifolds. For each manifold, we compute the logarithmic ratio
log10

pflow

ptrue between the PDF computed by the flow and the true one.
We use 40000 test points from the validation set of each manifold. De-
tails on the manifold considered are reported in Tab. 4.1. . . . . . . . . 88
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4.15 Study of the size of a template bank in the neutron star-black hole pa-
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5.2 Values of ξ2 Eq. (5.4) as a function of the absolute value of (ĥ+|ĥ×),
which quantifies the precession and/or HM content of a signal. Each
value is computed on random precessing BBHs, injected into Gaussian
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5.7 Values of ρA as a function of the parameter space. We color each bin
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6.1 Binned templates of the “Low q” precessing template bank. For each
equal size bin, we color code the logarithmic number of templates so
that the color is also a measure of the template density. In the differ-
ent panels, we consider the variables M, q, s1, θ1, ι. The bank was first
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6.2 Binned templates of the “High q” precessing template bank. For each
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6.3 Fitting factor study for the four template banks considered in thiswork.
For each given value of the match, we report the fraction of injections
with fitting factor lower than than that value. The two aligned-spin
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we report the results concerning the “Low q” parameter space, while
the right refers to the “High q” parameter space. The vertical dashed
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6.4 Fitting factor of the “High q” precessing template bank, as a function
of total mass M , mass ratio q, tilt θ1 and magnitude s1 of the first BH,
inclination angle ι and reference phase ϕ. For each bin, we report the
5th percentile of the fitting factor distribution. Note that while the fit-
ting factor study covers values of primary spin between 0 and 0.99, the
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6.5 Compression achieved by the Singular Value Decomposition of the
templates of the twoprecessing template banks considered in thiswork.
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6.6 Histogram with the fractional SNR gain of a precessing search over its
aligned-spin counterpart. For the two cases “Low q” and “High q”, we
report the discrepancy ∆SNR = SNRprecessing − SNRaligned-spin of the
SNR recovered by the precessing and the aligned-spin, normalized by
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6.8 “SNR-ξ2” plot for the “High q” aligned-spin search. On the left panel,
we report the SNR and ξ2 of the background triggers, not associated to
any injection, and the injection triggers, corresponding to an injection.
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by the GW event GW191204_171526 [18], detected by our search with
FAR < 1
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6.9 “SNR-ξ2” plot the “High q” precessing search. On the left panel, we
report the SNR and ξ2 of the background triggers, not associated to
any injection, and the injection triggers, corresponding to an injection.
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6.11 Sensitive volume increase as a function of the FAR detection thresh-
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