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Abstract We construct infinitely many Einstein-Weyl structures on S2×R of sig-
nature (−++) which is sufficiently close to the model case of constant curvature,
and on which the space-like geodesics are all closed. Such a structure is obtained
as a parameter space of a family of holomorphic disks which is associated to a
small perturbation of the diagonal of CP1×CP1. The geometry of constructed
Einstein-Weyl spaces is well understood from the configuration of holomorphic
disks. We also review Einstein-Weyl structures and their properties in the former
half of this article.

1 Introduction

Twistor type correspondences for the following structures are known (see (6)):

(T1) projective structures on complex 2-manifolds,
(T2) self-dual conformal structures on complex 4-manifolds, and
(T3) Einstein-Weyl structures on complex 3-manifolds.

(T2) is the original twistor theory introduced by R. Penrose (15). (T3) is called
Hitchin correspondence or minitwistor correspondence.

There has been much progress on these twistor theories; more detailed or con-
crete investigation (13; 14), real objects and reduction theory (1; 4; 5; 7; 16),
relation with the theory of integrable systems (2; 3), and so on. The geometric
structures considered in these papers are either complex or real slices of complex
objects, hence they are all analytic.
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On the other hand, the real indefinite case, for example, admits non-analytic
solutions. Recently, C. LeBrun and L. J. Mason developed another type of twistor
theory by which we can also analyse such non-analytic solutions (9; 10) (see also
(11; 12)). The structures investigated by LeBrun and Mason are

(LM1) Zoll projective structures on S2 or S2/Z2, and
(LM2) self-dual conformal structures of signature (++−−) on S2×S2 or (S2×

S2)/Z2.

Here, a projective structure is called Zoll if and only if all the maximal geodesics
are closed. Notice that (LM1) and (LM2) are the real objects corresponding to
(T1) and (T2) respectively.

There are several remarkable points for LeBrun-Mason theory. First, the twistor
space is given as a pair (Z,N) of a complex manifold Z and a totally real subman-
ifold N in Z. The “twistor lines”, also known as the “nonlinear gravitons”, are
given by holomorphic disks on Z with boundaries lying on N while in Penrose’s
case or Hitchin’s case the twistor lines are embedded CP1. Second, the structures
(LM1) and (LM2) are obtained from a small perturbation of N in Z. By this rea-
son, we have only been able to deal with the objects which are sufficiently close
to the model case up to now. Lastly, the corresponding geometry satisfies a global
condition, for example, Zoll condition in (LM1) case.

In light of this research, in this article, we investigate another possibility, the
LeBrun-Mason type correspondence for Einstein-Weyl structures. We now review
the definitions and then we state the conjecture and the main theorem. Let X be a
real (or complex) manifold.

Definition 1.1 Let [g] be the conformal class of a definite or an indefinite metric
g (or holomorphic bilinear metric for the complex case) on X, and ∇ be a (holo-
morphic) connection on T X. The pair ([g],∇) is called a Weyl structure on X if
there exists a (holomorphic) 1-form a on X such that

∇g = a⊗g. (1.1)

Definition 1.2 A Weyl structure ([g],∇) is called Einstein-Weyl if the symmetrized
Ricci tensor R(i j) = 1

2 (Ri j +R ji) is proportional to the metric tensor gi j, that is, if
we can write

R(i j) = Λ gi j (1.2)

using a function Λ which depends on the choice of g ∈ [g].

Let [g] be an indefinite conformal structure on a real manifold X . A tangent
vector v on X is called time-like if g(v,v) < 0, space-like if g(v,v) > 0 and light-
like or null if g(v,v) = 0. We introduce the following global condition.

Definition 1.3 An indefinite Weyl structure ([g],∇) is called space-like Zoll if and
only if every maximal space-like geodesic is closed.

Now we state the conjecture for the LeBrun-Mason type correspondence for
Einstein-Weyl structures.

Conjecture 1.4 There is a natural one-to-one correspondence between
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• equivalence classes of space-like Zoll Einstein-Weyl structures on S2×R; and
• equivalence classes of totally real embeddings ι : CP1 ↪→ CP1×CP1,

at least in a neighborhood of the standard objects.

Here the standard embedding CP1 ↪→CP1×CP1 is given by ζ 7→ (ζ , ζ̄−1) us-
ing the inhomogeneous coordinate ζ of CP1. The standard Einstein-Weyl structure
is explained in Sect. 5. Before we state the main theorem, we define the following
notion.

Definition 1.5 Let Z be a complex manifold and D ⊂ Z be a holomorphic disk
with boundary embedded in Z. Let v∈ TpZ be a non-zero tangent vector at p∈ ∂D.
Then v is said to be adapted to D (denoted by v ‖D) if and only if v ∈ Tp∂D and
v has the same orientation as the orientation of ∂D which is induced from the
complex orientation of D.

The main theorem (Theorem 1.6) gives half of the correspondence in the above
con-
jecture; from the embedding ι to the Einstein-Weyl space. We also claim that
the geometry of the constructed Einstein-Weyl space is characterized by the holo-
morphic disks in the following way.

Theorem 1.6 Let N be the image of any embedding of CP1 into Z = CP1×CP1

which is C2k+5 close to the standard one. Then there is a unique family of holo-
morphic disks {Dx}x∈S2×R such that each boundary ∂Dx lies on N, and that the
parameter space M = S2×R has a unique Ck indefinite Einstein-Weyl structure
([g],∇) satisfying the following properties.

1. For each p∈N, Sp = {x ∈M | p ∈ ∂Dx} is a maximal connected null surface
on M and every null surface can be written in this form.

2. For each p ∈ Z \N, Cp = {x ∈M | p ∈Dx} is a maximal connected time-like
geodesic and every time-like geodesic on M can be written in this form.

3. For each p ∈ N and non zero v ∈ TpN, Cp,v = {x ∈M | p ∈ ∂Dx,v ‖Dx} is a
maximal connected null geodesic on M and every null geodesic on M can be
written in this form.

4. For each distinguished p,q ∈ N, Cp,q = {x ∈M | p,q ∈ ∂Dx} is a connected
closed space-like geodesic on M and every space-like geodesic on M can be
written in this form.

In particular, this Einstein-Weyl structure is space-like Zoll.

The organization of this paper is as follows. We first review projective struc-
tures in Sect. 2. Next, we study complex, definite or indefinite Einstein-Weyl
spaces in Sect. 3. We prove that, in each case, the Einstein-Weyl condition can
be translated to an integrability condition for certain distributions. Applying this
method, we review the proof of the Hitchin correspondence in Sect. 4. In Sect. 5,
the model case of the LeBrun-Mason type correspondence is explained. The stan-
dard Einstein-Weyl space is obtained as a double cover of a real slice of Hitchin’s
example. We also study some properties of this model case.

From Sect. 6, we deal with the perturbation of the model case. In Sect. 6, we
prove that, for a small perturbation of the real submanifold N, there is a unique
family of holomorphic disks with boundaries lying on N. This family has similar
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properties to the model case, especially for the double fibration, which is studied
in Sect. 7. Finally in Sect. 8, we prove that there is a unique Einstein-Weyl struc-
ture on the parameter space of the constructed family of holomorphic disks. We
also prove that the geometry of the Einstein-Weyl space is characterized by the
holomorphic disks as in Theorem 1.6.

2 Projective Structures

In this section, we review projective structures. Let X be a real smooth n-manifold
and xi (i = 1, . . . ,n) be a local coordinate on X . The following argument also works
well in the complex case by considering xi as a complex coordinate, and using
holomorphic functions instead of smooth functions.

Definition 2.1 Two connections ∇ and ∇′ on the tangent bundle T X are called
projectively equivalent if their geodesics coincide without considering parame-
terizations. A projectively equivalent class [∇] is called a projective structure on
X.

Let ∇ and ∇′ be connections on T X , and let Γ i
jk and Γ ′ijk be their Christoffel

symbols respectively, that is, ∇∂k
∂ j = ∑Γ i

jk∂i and so on, where we denote ∂i = ∂

∂xi .
Notice that ∇ is torsion-free if and only if Γ i

jk = Γ i
k j. The following proposition is

readily checked (see (6)).

Proposition 2.2 Suppose that both ∇ and ∇′ are torsion-free, then they are pro-
jectively equivalent if and only if there exist functions fi (i = 1, . . . ,n) on X such
that the following condition holds:

Γ
i
jk = Γ

′i
jk +

1
2
(δ i

j fk +δ
i
k f j). (2.1)

In the complex case, we can prove the following.

Proposition 2.3 Let X be a complex n-manifold, and F be a holomorphic family
of holomorphic curves on X. Suppose that, for each non-zero tangent vector v ∈
T X, there is a unique member of F which tangents to v. Then there is a unique
projective structure [∇] on X so that F coincides to the family of geodesics.

Proof Let p : T X \ 0X → X and π : T X \ 0X → P(T X) be the projections, where
0X is the zero section and P(T X) is the projectivization of T X . We use a local
coordinate (xi) on X , and let (yi) be the fiber coordinate on T X with respect to the
frame

(
∂

∂xi

)
. First we consider a curve c : (−ε,ε)→ X given by c(t) = (xi(t)). We

also write c for the image of c. Then the natural lift c̃ : (−ε,ε)→ T X is given by
c̃(t) =

(
xi(t); dxi

dt (t)
)
. We obtain the velocity vector field of c̃, and this vector field

uniquely extends to the vector field along p−1(c) of the form

v = yi ∂

∂xi +Gi(x,y)
∂

∂yi (2.2)
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so that Gi satisfies Gi(x,ay) = a2Gi(x,y) for each non-zero a ∈ C. Notice that v
descends to a line distribution on π(c̃) ⊂ P(T X) by π∗. This is the tangent distri-
bution of the lift of c on P(T X), hence it does not depend on the parametrization
of c.

Now we go back to the statement. Since the statement is local, we can assume
P(T X) = X×CPn−1. Let CPn−1 = ∪Wα be an affine open cover. By the assump-
tion, a foliation F̃ on P(T X) is defined so that each leaf of F̃ is the natural lift of
a curve in F . We notice the curves in F of which the lift intersects with X×Wα .
Taking a parametrization of them, we obtain a holomorphic vector field

vα = yi ∂

∂xi +Gi
α(x,y)

∂

∂yi

on π−1(X×Wα) by the above construction.
In this way, we have obtained the vector fields {vα}. Since vα and vβ de-

scend to the same line distribution on X ×Wα ∩ X ×Wβ , we can write vα −
vβ = fαβ (x,y)yi ∂

∂yi on π−1(X ×Wα)∩ π−1(X ×Wβ ), where fαβ is a holomor-
phic function satisfying fαβ (x,ay) = a fαβ (x,y) for each non-zero a ∈ C. Since
H1(Pn−1,O(1))= 0, we can take {vα} so that fαβ = 0 by changing the parametriza-
tions. Hence we obtain a vector field on the whole of T X \ 0X of the form (2.2).
Then Gi must be a degree-two polynomial for y, so we obtain a torsion-free con-
nection ∇ so that Gi(y) = Γ i

jky jyk. For this ∇, each curve of F is a geodesic by
construction. Here ∇ is determined up to projective equivalence since the ambigu-
ity of taking v remains. ut

3 Einstein-Weyl Structures

In this section, we study the basic properties of 3-dimensional Einstein-Weyl
structures. We will prove that the Einstein-Weyl condition is equivalent to the
integrability condition of certain distributions. We consider the complex, definite,
and indefinite cases separately.

Complex case. Let X be a complex 3-manifold and ([g],∇) be a Weyl structure on
X . We pick a g ∈ [g], however, the statements do not depend on the choice of g.
We denote

TCX = T X⊗C = T 1,0X⊕T 0,1X
and T ∗CX = T ∗X⊗C = T ∗1,0X⊕T ∗0,1X .

Notice that g induces complex bilinear metrics on T 1,0X ,T 0,1X ,T ∗1,0X and T ∗0,1X
which we also denote g.

Definition 3.1 For each x ∈ X, a complex two-dimensional subspace V ⊂ T 1,0
x X

is called a null plane if the restriction of g on V degenerates.

The following property is easily checked.

Lemma 3.2 If v ∈ T 1,0
x X is null, then v⊥ is a null plane. Conversely, every null

plane is written as v⊥ for some null vector v.
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Notice that v⊥ = kerv∗ for every v ∈ T 1,0
x X , where v∗ = g(v, ·) ∈ T ∗1,0

x X , and
that v is null if and only if v∗ is null. Let N(T ∗1,0X) be the null cotangent vectors,
and Z = P(N(T ∗1,0X)) be its complex projectivization. Notice that each point
u ∈ Z corresponds to the null plane Vu = kerλ , where λ ∈ N(T ∗1,0X) is the
cotangent vector satisfying u = [λ ]. We can define a complex 2-plane distribution
⊂ T 1,0Z so that u ⊂ T 1,0

u Z is the horizontal lift of the null plane Vu with respect
to ∇. Notice that the horizontal lift is well-defined since N(T ∗1,0X) is parallel to
∇ because of the compatibility condition (1.1).

Proposition 3.3 Let X be a complex 3-manifold. A Weyl structure ([g],∇) with
torsion-free ∇ on X is Einstein-Weyl if and only if the induced distribution on Z
is integrable, in other words, involutive.

Proof Let {e1,e2,e3} be an orthonormal complex local frame on T 1,0X with re-
spect to g ∈ [g], and {e1,e2,e3} be the dual frame on T ∗1,0X . Let ω = (ω i

j) be the
connection form of ∇ with respect to {ei}, and let Ki

j = Ki
jkle

k ∧ el be its curva-
ture form. Then from the compatibility condition (1.1), we obtain the following
symmetry for K:

Ki
jkl = Ai

jkl +δ
i
jBkl ,

Ai
jkl = −Ai

jlk =−A j
ikl and Bkl =−Blk. (3.1)

Since the frame is orthonormal, the Einstein-Weyl equations are

R(12) = R(23) = R(31) = 0 and R(11) = R(22) = R(33),

and this is equivalent to

A1
213 +A1

312 = A2
321 +A2

123 = A3
132 +A3

231 = 0 and A1
212 = A2

323 = A3
131. (3.2)

Now let N = N(T ∗1,0X)\0X , and π : N → Z be the projection where 0X
is the zero section. Then is integrable if and only if the pull-back π∗ is inte-
grable. Here π∗ ⊂ T 1,0N is the complex 3-plane distribution defined by π∗ =
{v ∈ TN |π∗(v) ∈ }. On the other hand, there is a 2-plane distribution˜⊂ T 1,0N
which is defined in a similar way to , that is, u is the horizontal lift of the null plane
Vu. These distributions are related by π∗ =˜⊕〈ϒ 〉, where

ϒ = ∑λi
∂

∂λi
(3.3)

is the Euler differential. Now we define several 1-forms on N by

θ = ∑λiei, θi = dλi−∑λ jω
j

i and τi j = λiθ j−λ jθi. (3.4)

Then˜= {v ∈ TN |θ(v) = θi(v) = 0(∀i)} and π∗ = {v ∈ TN |θ(v) = τi j(v) =
0(∀i, j)}. Hence is integrable if and only if the 1-forms {θ ,τi j} on N are invo-
lutive. Notice that τ23/λ1 = τ31/λ2 = τ12/λ3, hence τi j are proportional to each
other.
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Let us prove that is integrable if and only if (3.2) holds. First, we claim that
dθ ≡ 0 mod

〈
θ ,τi j

〉
always holds. Indeed, since θ1/λ1 ≡ θ2/λ2 ≡ θ3/λ3, we

have

∑θi∧ ei ≡ θ1

λ1
∧θ ≡ 0 mod

〈
θ ,τi j

〉
.

On the other hand, we have the torsion-free condition: dei +∑ω i
j ∧ e j = 0. Then

dθ =∑dλi∧ ei+∑λidei =∑θi∧ ei+∑λi(dei +ω
i
j ∧ e j)≡ 0 mod

〈
θ ,τi j

〉
.

Next, a direct calculation shows that

dτ12 ≡−∑λ1λ jK
j

2 +∑λ2λ jK
j

1 mod τ12, (3.5)

and we can check that dτ12 ≡ 0 holds if and only if

0 = λ3
[
−A2

323λ
2
1 −A3

131λ
2
2 −A1

212λ
2
3

+(A3
132 +A3

231)λ1λ2 +(A2
321 +A2

123)λ3λ1 +(A1
213 +A1

312)λ2λ3
]

for every (λi) satisfying ∑λ 2
i = 0. Hence is integrable if and only if the Einstein-

Weyl equation (3.2) holds. ut

The distribution can be explicitly described in the following way. As in the
above proof, let us take a local orthonormal frame {e1,e2,e3} on an open set
U ⊂ X . From the compatibility condition (1.1), the connection form ω of ∇ is
written

ω =

 φ η1
2 η1

3

η2
1 φ η2

3

η3
1 η3

2 φ

 , with η
j

i =−η
i
j. (3.6)

We can write

N(T ∗1,0X)|U =
{
∑λiei ∣∣ ∑λ

2
i = 0

}
and Z |U =

{
[λ1 : λ2 : λ3]

∣∣∑λ
2
i = 0

}
.

Then we obtain

τ23 = λ2dλ3−λ3dλ2 +λ1
(
λ1η

2
3 +λ2η

3
1 +λ3η

1
2
)
. (3.7)

Let U×CP1 ∼→Z |U be a trivialization given by

(x,ζ ) 7−→ [i(1+ζ
2) : 1−ζ

2 : 2ζ ], (3.8)

where ζ ∈C∪{∞} is a inhomogeneous coordinate. The horizontal lift ṽ of v∈ TxU
at (x,ζ ) ∈Z |U is

ṽ = v+
{

η2
3 + iη1

3
2

− iζ η
1
2 +ζ

2 η2
3 − iη1

3
2

}
(v)

∂

∂ζ
. (3.9)
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For (x,ζ ) ∈Z |U , the corresponding null plane on T 1,0
x X is spanned by

m1(ζ ) = ie1 + e2 +ζ e3 and m2(z) = ζ (−ie1 + e2)− e3. (3.10)

Hence (x,ζ ) is spanned by m̃1(ζ )x and m̃2(ζ )x. Therefore the Einstein-Weyl con-
dition is equivalent to the involutive condition [m̃1,m̃2] ∈ . Proposition 3.3 could
also be proved in this way. However, it is rather easier to check the integrability
condition for π∗ as we did.

Definite case. Let X be a real 3-manifold and ([g],∇) be a definite Weyl structure,
that is, a Weyl structure on X with positive definite [g]. In this case, we can define
complex null planes on TCX . If we put Z = P(N(T ∗CX)), then we can define the
complex 2-plane distribution ⊂ TCZ in the same manner as the complex case by
using the horizontal lift defined by (3.9). The complex conjugation T ∗CX → T ∗CX
induces a fixed-point-free involution σ : Z →Z which is fiber-wise antiholomor-
phic. Notice that satisfies σ∗ = . We also define a complex 3-plane distribution
⊂ TCZ by = ⊕V 0,1, where V 0,1 ⊂ TCZ is the (0,1)-tangent vectors on the fiber
of ϖ : Z → X . Here, we also obtain σ∗ = .

Proposition 3.4 Let ([g],∇) be a definite Weyl structure on a 3-manifold X. Let
ϖ : Z → X be the CP1-bundle and be the distribution on Z constructed above.
Then there is a unique continuous distribution L of real lines on Z which satisfies
L⊗C = ∩ on Z . Moreover the projection ϖ(C) of each integral curve C of L is
a geodesic.

Proof If we take a real local frame {ei}, then we can describe the situations in a
similar way to (3.6) to (3.10). Then = Span〈m̃1,m̃2〉 and = Span

〈
m̃1,m̃2,

∂

∂ ζ̄

〉
.

Since + = TCZ , L exists uniquely by a dimension counting argument.
Now let us define

l = ζ̄m1 +m2 = 2(Imζ )e1 +2(Reζ )e2 +(|ζ |2−1)e3.

Notice that l is real. We can take a unique function γ on Z so that

l† := ζ̄ m̃1 + m̃2 + γ
∂

∂ ζ̄

is real. Then we obtain L = Span
〈
l†

〉
. Let p : → be the natural projection, then

p(L) = Span〈 l̃ 〉, where l̃ = ζ̄ m̃1 + m̃2. By construction, the image of an integral
curve of p(L) by ϖ is a geodesic. Pulling back to by p, we obtain the statement.
ut
Proposition 3.5 Let X be a real 3-manifold, and ([g],∇) be a definite Weyl struc-
ture on X with torsion-free ∇. Then ([g],∇) is Einstein-Weyl if and only if is
integrable, in other words, involutive.

Proof The distribution is integrable, if and only if π∗ is integrable, where π :
N = N(T ∗CX)\0X → Z . If we take an orthonormal frame field {e1,e2,e3} of
TCX , and if we use the complex fiber coordinate {λi} for T ∗CX , then we can define
1-forms θ , θi, τi j on N by (3.4). In this case, we obtain π∗ = π∗+ π∗V 0,1, and
π∗ = {v ∈ T ∗N |θ(v) = τi j(v) = 0(∀i, j)}. Hence is integrable if and only if〈
θ ,τi j

〉
is involutive. By similar arguments, this occurs if and only if ([g],∇) is

Einstein-Weyl. ut
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Remark 3.6 Locally speaking, /L defines an almost complex structure on the
space of geodesics on X . Proposition 3.5 means that this almost complex struc-
ture is integrable if and only if ([g],∇) is Einstein-Weyl (see also (14)).

Indefinite case. Let X be a real 3-manifold and ([g],∇) be a Weyl structure on X
for which the conformal structure [g] has signature (−++). Let {e1,e2,e3} be a
local frame field on T X such that

(gi j) = (g(ei,e j)) =

−1
1

1

 . (3.11)

A non-zero tangent vector v ∈ T X is called time-like, space-like or null when
g(v,v) is negative, positive, or zero respectively. The following properties are eas-
ily checked.

Lemma 3.7 1. For each space-like vector v, there are just two real null planes
which contain v.

2. Each time-like vector is transverse to every real null plane.

Similar to the definite case, we define N(T ∗CX), the space of complex null
cotangent vectors, and Z = P(N(T ∗CX)), the space of complex null planes. In
the indefinite case, we can also define N(T ∗X), the space of real null cotangent
vectors, and ZR = P(N(T ∗X)), the space of real null planes. There is a natural
embedding ZR ↪→ Z . The complex conjugation T ∗CX → T ∗CX induces an invo-
lution σ : Z → Z which is fiber-wise antiholomorphic and for which the fixed
point set coincides with ZR.

Let us describe the situation explicitly using the above frame {ei} and its dual
{ei}. From the compatibility condition (1.1), the connection form ω of ∇ is writ-
ten:

ω =

 φ η1
2 η1

3

η1
2 φ η2

3

η1
3 −η2

3 φ

 . (3.12)

We can write

N(T ∗CX)|U =
{
∑λiei ∣∣ −λ

2
1 +λ

2
2 +λ

2
3 = 0

}
and Z |U =

{
[λ1 : λ2 : λ3] | −λ

2
1 +λ

2
2 +λ

2
3 = 0

}
. (3.13)

Let U×CP1 ∼→ZR|U be a trivialization over an open set U ⊂ X such that

(x,ζ ) 7−→
[
(1+ζ

2)e1 +(1−ζ
2)e2 +2ζ e3] . (3.14)

Here ZR corresponds to {(x,ζ ) ∈U ×CP1 |ζ ∈ R∪{∞}}. The horizontal lift ṽ
of v ∈ TxU at (x,ζ ) ∈ZR|U is

ṽ = v+
{

η2
3 +η1

3
2

−ζ η
1
2 +ζ

2 η2
3 −η1

3
2

}
(v)

∂

∂ζ
. (3.15)
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If we define

m1(ζ ) =−e1 + e2 +ζ e3 and m2(ζ ) = ζ (e1 + e2)− e3, (3.16)

then m1(ζ ) and m2(ζ ) span the null plane corresponding to (x,ζ ) ∈ZR. Define
the real 2-plane distribution R ⊂ TZR so that R = Span〈m̃1,m̃2〉, where m̃i are the
vector fields on ZR such that m̃i(x,ζ ) is the horizontal lift of m(ζ )x.

We can extend m̃i meromorphically on Z , and define the complex 2-plane
distribution ⊂ TCZ by = Span〈m̃1,m̃2〉. We also define a complex 3-plane dis-
tribution by = ⊕V 0,1, where V 0,1 ⊂ TCZ is (0,1)-tangent vectors. Then we
obtain

σ
∗ = , σ

∗ = ,

R⊗C = |ZR and R = ∩TZR = ∩TZR.

Proposition 3.8 Let ([g],∇) be an indefinite Weyl structure on a 3-manifold X.
Let ϖ : Z → X be the CP1-bundle and be the distribution on Z constructed
above. Then there is a unique continuous distribution L of real lines on Z which
satisfies L⊗C = ∩ on Z \ZR and L ⊂ R on ZR. Moreover each integral curve
C of L is contained in either Z \ZR or ZR, and the projection ϖ(C) is time-like
geodesic if C ⊂Z \ZR, and null-geodesic if C ⊂ZR.

Proof Let us define a real vector field l on X by

l = m1− ζ̄m2 =−(1+ |ζ |2)e1 +(1−|ζ |2)e2 +(ζ + ζ̄ )e3. (3.17)

Notice that l is time-like if Imζ 6= 0, and null if Imζ = 0. We can take a unique
function γ on Z so that

l† = m̃1− ζ̄ m̃2 + γ
∂

∂ ζ̄

is real. Since l̃ = m̃1− ζ̄ m̃2 is real on ZR, γ = 0 and l† = l̃ on ZR. If we put
L =

〈
l†

〉
, then we obtain L⊗C = ∩ on Z \ZR and L ⊂ R on ZR. L is unique

since E + Ē = TCZ on Z \ZR. The remaining statements are proved in a similar
way to the definite case (Proposition 3.4). ut

Proposition 3.9 Let X be a real 3-manifold, and ([g],∇) be an indefinite Weyl
structure on X with torsion-free ∇. Then the following conditions are equivalent:

• ([g],∇) is Einstein-Weyl,
• the real distribution R is integrable,
• the complex distribution is integrable.

Proof If we put

ϒ = −λ1
∂

∂λ1
+λ2

∂

∂λ2
+λ3

∂

∂λ3
,

τ12 = λ1θ2 +λ2θ1, τ13 = λ1θ3 +λ3θ1 and τ23 = λ2θ3−λ3θ2

instead of (3.3) and (3.4), then the situation is parallel to the complex or definite
case. ut
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A direct calculation shows

τ23 = λ2dλ3−λ3dλ2−λ1
(
λ1η

2
3 +λ2η

1
3 −λ3η

1
2
)
. (3.18)

Equation (3.18) will be used in Sect. 8.

Remark 3.10 We can write = 〈m̃1〉⊕〈m̃2〉 locally, hence c1()= c1(〈m̃1〉)+c1(〈m̃2〉)=
−2 along each CP1-fiber of ϖ : Z → X . Since c1(V 0,1) = −2, we also obtain
c1() =−4 along each fiber.

4 Hitchin Correspondence

In this section, we recall the twistor correspondence for complex Einstein-Weyl
structures introduced by Hitchin (6).

Let Z be a complex 2-manifold and Y be a non-singular rational curve on Z
with the normal bundle NY/Z

∼= O(2). Let X be the space of twistor lines, that
is, the rational curves which are obtained by small deformation of Y in Z. By
Kodaira’s theorem, X has a natural structure of a 3-dimensional complex manifold,
and its tangent space at x ∈ X is identified with the space of sections of the normal
bundle NYx/Z , where Yx is the twistor line corresponding to x.

Proposition 4.1 There is a unique Einstein-Weyl structure on X such that

• each non-null geodesic on X corresponds to a one-parameter family of twistor
lines on Z passing through two fixed points, and

• each null geodesic on X corresponds to a one-parameter family of twistor lines
each of which passes through a fixed point and is tangent to a fixed non-zero
vector there.

Proof We have NYx/Z
∼= O(2) for each x ∈ X since Yx is a small deformation of Y .

We have TxX ∼= Γ (Yx,NYx/Z) by definition. Each holomorphic section of NYx/Z '
O(2) corresponds to a degree-two polynomial s(ζ ) = aζ 2 + bζ + c, where ζ is
the inhomogeneous coordinate on Yx. We can define the conformal structure [g]
so that a tangent vector in TxX is null if and only if the corresponding polynomial
s(ζ ) has double roots, that is, when b2−4ac = 0.

If we fix two, possibly infinitely near, points in Z, then the twistor lines passing
through these points make a one-parameter family. This family corresponds to a
holomorphic curve on X . Let F be the family of such holomorphic curves. Then,
by Proposition 2.3, we obtain a unique projective structure [∇] on X such that F
coincides with the geodesics.

Now, we prove that there is a unique torsion-free ∇ ∈ [∇] such that ([g],∇)
defines a Weyl structure. For this purpose, we first fix an arbitrary torsion-free
∇ ∈ [∇], and check that the second fundamental form on each null surface with
respect to ∇ vanishes.

For each point p∈ Z, the two-parameter family of twistor lines passing through
p corresponds to a null surface S on X . Notice that S is totally geodesic and nat-
urally foliated by null geodesics each of which corresponds to a tangent line at
p. Let N = T X |S/T S be the normal bundle of S. The second fundamental form
II : T S⊗T S→ N is defined by v⊗w→ [∇vw]N , where the value does not depend
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on how we extend w. Take a frame field {e1,e2,e3} on T X |S so that e1 is null and
T S = 〈e1,e2〉. Then the metric tensor is

g = (gi j) =

0 0 ∗
0 ∗ ∗
∗ ∗ ∗

 .

Since ∇ is torsion-free, ∇e1e2−∇e2e1 = [e1,e2]∈T S, so g(∇e1e2,e1)= g(∇e2e1,e1).
Since g13 6= 0, we obtain

Γ
3

12 = Γ
3

21. (4.1)

On the other hand, since S is totally geodesic, we obtain

0 = g(∇ξ ξ ,e1) = ξ
1
ξ

2g13
(
Γ

3
12 +Γ

3
21

)
for every tangent vector ξ = ξ 1e1 + ξ 2e2 on S. So we obtain Γ 3

12 +Γ 3
21 = 0, and

combining with (4.1), we obtain Γ 3
12 = Γ 3

21 = 0. Hence g(∇ξ η ,e1) = 0 for every
vector field ξ and η on S, and this means II = 0 on S.

Next we claim that there are functions ai,bi (i = 1,2,3) on X such that

(∇g)i jk = aig jk +
1
2

b jgik +
1
2

bkgi j. (4.2)

Since II = 0 for every null surface, we obtain

∇ηg(ξ ,ξ ) = 0 (4.3)

for every null vector ξ and every vector η satisfying g(η ,ξ ) = 0. Let us fix a local
frame {ei} on X . If we put ξ = ξ iei,η = η iei (i = 1,2,3) and ϕi jk = ∇ei(e j,ek),
then (4.3) is written

(ϕi jkξ
j
ξ

k)η i = 0. (4.4)

Since ξ runs over all null vectors, (ξ i) moves the conic

C =
{

[ξ 1 : ξ
2 : ξ

3] ∈ CP2 ∣∣ ξ
i
ξ

jgi j = 0
}

.

For fixed ξ , (η i) moves the line

L(ξ ) = { [η1 : η
2 : η

3] ∈ CP2 ∣∣ η
i(ξ jgi j) = 0}.

Since (4.4) holds for every [η i] ∈ L(ξ ), we can take a function b(ξ ) satisfying

ϕi jkξ
j
ξ

k = b(ξ )ξ jgi j

for every ξ ∈ C and i = 1,2,3. Then we can take b(ξ ) to be a degree-one poly-
nomial. Actually, since ξ jgi j (i = 1,2,3) do not all vanish at the same time, b(ξ )
= (ϕi jkξ jξ k)/(ξ jgi j) defines a holomorphic section of O(1) over CP2. If we put
b(ξ ) = bkξ k, then we obtain

(ϕi jk−bkgi j)ξ j
ξ

k = 0
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for i = 1,2,3. Here the bk (k = 1,2,3) are functions on X . Since these equations
hold for every ξ ∈C, there are functions ai on X such that

(ϕi jk−bkgi j)X jXk = ai(g jkX jXk)

for every (X j) ∈ C3 and i = 1,2,3. Noticing the symmetry, we obtain (4.2).
Finally, if we define a new connection ∇̃ by

Γ̃
i
jk = Γ

i
jk +

1
2

b j +
1
2

bk, (4.5)

then ∇̃ ∈ [∇] and ∇̃ satisfies

(∇̃g)i jk = (ai−bi)g jk,

which means ∇̃ is compatible with [g]. Moreover, ([g], ∇̃) is Einstein-Weyl, since
the integrable condition in Proposition 3.3 is automatically satisfied by construc-
tion. Notice that such a connection is unique since the compatibility condition is
not satisfied for any other torsion-free connection in [∇]. ut

Remark 4.2 Let X = {(x, p)∈X×Z | p∈Yx}, then we obtain the double fibration

X ϖ←X
f→ Z, where ϖ and f are the projections. Each u ∈X defines a null plane

at ϖ(u)∈X as a tangent plane of the null surface corresponding to f(u)∈ Z. Hence
we obtain a natural map X →Z = P(N(T ∗1,0

C X)) which is in fact biholomorphic.
Identifying X with Z , we obtain = ker{f∗ : T 1,0

C X → T 1,0
C Z}.

Hitchin introduced two examples of Einstein-Weyl spaces, each of which is
obtained from a complex twistor space (6). The twistor space of one of them is

Z =
{
[z0 : z1 : z2 : z3] ∈ CP3 |z2

1 + z2
2 + z3

3 = 0
}
.

In this case, the twistor lines are the plane sections, and the corresponding Einstein-
Weyl space is flat. In the other case, the twistor space is

Z =
{
[z0 : z1 : z2 : z3] ∈ CP3 |z2

0 + z2
1 + z2

2 + z3
3 = 0

}
. (4.6)

In this case, the twistor lines are also the plane sections, and the corresponding
Einstein-Weyl space is constant curvature space. We study the latter example in
more detail in the next section.

5 The Standard Case

In this section, the standard model of LeBrun-Mason type correspondence is ex-
plained. We start from Hitchin’s example (4.6), and construct the model case as a
real slice of it (see also (14)).

If we change the coordinate, (4.6) can be written {[zi] ∈ CP3 |z0z3 = z1z2}
which coincides with the image of the Segre embedding CP1×CP1 ↪→ CP3,

([u0 : u1], [v0 : v1]) 7−→ [u0v0 : u0v1 : u1v0 : u1v1].
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So we usually identify Z with CP1×CP1. Since the twistor lines are the plane
sections, the twistor lines are parametrized by X = CP∗3. We introduce a ho-
mogeneous coordinate [ξ i] ∈ CP∗3 so that [ξ i] corresponds to the plane {[zi] ∈
CP3 |ξ izi = 0}. Let

Xsing =
{

[ξ i] ∈ CP∗3
∣∣ ξ

0
ξ

3 = ξ
1
ξ

2}

be the set of planes tangent to Z. If [ξ i] ∈ Xsing, then the plane section degenerates
to two lines

(
CP1× [−ξ

1 : ξ
0]

)
∪

(
[−ξ

2 : ξ
0]×CP1)

intersecting at the tangent point. We call such a plane section a singular twistor
line on Z. Since Proposition 4.1 does not work on Xsing, the Einstein-Weyl struc-
ture is defined only on X\Xsing.

Next we introduce real structures, that is, antiholomorphic involution on Z.
There are several ways to introduce such a structure. For example, if we take the
fixed-point-free involution

σ
′ : ([u0 : u1], [v0 : v1]) 7−→ ([ū1 : ū0], [v̄1 :−v̄0]),

then σ ′ extends to an involution on CP3 by

[z0 : z1 : z2 : z3] 7−→ [z̄3 :−z̄2 :−z̄1 : z̄0].

Then we also obtain an antiholomorphic involution on X . Let XR be its fixed point
set. Since XR ∩ Xsing is empty, we obtain a real Einstein-Weyl structure on the
whole of XR ∼= RP3 as a real slice of the complex Einstein-Weyl structure on



Constructing Einstein-Weyl Spaces via LeBrun-Mason Twistor Correspondence 15

X\Xsing. This is nothing but the definite Einstein-Weyl structure induced from the
standard constant curvature metric on RP3.

Our main interest is, however, in the indefinite case. Let

σ : ([u0 : u1], [v0 : v1]) 7−→ ([v̄1 : v̄0], [ū1 : ū0]),

be another involution on Z for which the fixed point set is denoted by ZR. The
involution σ extends to an involution on CP3 by

[z0 : z1 : z2 : z3] 7−→ [z̄3 : z̄1 : z̄2 : z̄0].

Then we also obtain an involution on X . Let XR be its fixed point set. In this case,
XR,sing = XR∩Xsing is nonempty.

Let (η1,η2) = (u0/u1,v0/v1) be a coordinate on Z = CP1×CP1, and let us
write τ(η) for η̄−1. Then σ(η1,η2) = (τ(η2),τ(η1)) and ZR = {(η ,τ(η)) |η ∈
CP1}. In this coordinate, each non-singular twistor line l is written as a graph of
some Möbius transform f : CP1 → CP1, that is, l = {(η , f (η)) |η ∈ CP1}. The
twistor line l is σ -invariant if and only if τ( f (η)) = f−1(τ(η)), and in this case
we can write

f (η) =
Aη−B
B̄η−C

for some (A,B,C) ∈ R×C×R satisfying |B|2−AC 6= 0. The intersection l ∩ZR
is nonempty if |B|2−AC > 0, and is empty if |B|2−AC < 0.

In the non-singular case, the parameters (A,B,C) can be normalized so that
|B|2−AC =±1. Since (A,B,C) and (−A,−B,−C) defines the same Möbius trans-
form, we obtain XR\XR,sing ∼= H tH ′, where

H =
{
(A,B,C) ∈ R×C×R

∣∣ |B|2−AC = 1
}
/±

and H ′ =
{
(A,B,C) ∈ R×C×R

∣∣ |B|2−AC =−1
}
/± .

We obtain an indefinite Einstein-Weyl structure on H and a definite Einstein-Weyl
structure on H ′ as a real slice of X\Xsing . The conformal structures are the class
of

g = |dB|2−dAdC,

which is indefinite on H and definite on H ′.
If we identify CP1 ∼→ ZR by ω 7→

(
ω, ω̄−1

)
, then the intersection of ZR with

the twistor line corresponding to [A,B,C] ∈ H is the circle{
ω ∈ CP1 ∣∣A|ω|2−Bω̄− B̄ω +C = 0

}
. (5.1)

Hence H is naturally identified with the set of circles on CP1, and its double cover

H̃ =
{
(A,B,C) ∈ R×C×R

∣∣ |B|2−AC = 1
}∼= S2×R

is identified with the set of oriented circles on CP1. Since each circle divides the
twistor line into two holomorphic disks, H̃ is identified with the set of holomorphic
disks in Z with boundaries lying on ZR.
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There is a natural action of PSL(2,C) on H, H ′ and H̃ defined in the following
way. Each φ ∈ PSL(2,C) = Aut(CP1) induces an automorphism on Z by

φ∗ : (η1,η2) 7→ (φ(η1),τφτ(η2)). (5.2)

The automorphism φ∗ maps each σ -invariant twistor line to another σ -invariant
twistor line. Since φ∗ preserves ZR, φ∗ preserves H and H ′. Obviously this action
lifts to an automorphism on H̃, and we will see later that this action on H̃ is
transitive.

Now we introduce an explicit description of the holomorphic disks corre-
sponding to H̃. Let M ∼= CP1×R = U1 ∪U2, where the Ui = {(λi, t) ∈ C×R}
are patched by λ2 = λ

−1
1 . Let ϖ : X+→M be the disk bundle

X+ = (U1×D)∪ (U2×D),

(λ1, t;z1)∼ (λ2, t;z2) ⇐⇒ λ2 = λ
−1
1 , z2 =

λ̄1

λ1
z1,

where D = {z ∈C | |z| ≤ 1}. We denote XR = (U1×∂D)∪ (U2×∂D), and notice
that XR is a circle bundle with c1(XR) = 2 along each fiber of ϖ . Let us define a
smooth map f : X+→ Z by

U1×D 3 (λ1, t;z1) 7−→
( z1 + rλ1

−λ̄1z1 + r
,

rz1−λ1

rλ̄1z1 +1

)
and U2×D 3 (λ2, t;z2) 7−→

( λ̄2z2 + r
−z2 + rλ2

,
rλ̄2z2−λ

rz2 +λ2

)
,

where r = et . In this way, we have obtained the following double fibration:

X+

ϖ

}}||
||

||
|| f

  A
AA

AA
AA

A

M Z

(5.3)

We use the coordinate λ ∈C∪{∞}= CP1 satisfying λ = λ1 on U1, and we define
D(λ ,t) = f ◦ϖ−1(λ , t). Then {D(λ ,t)}(λ ,t)∈M gives the family of holomorphic disks
which coincides with the family corresponding to H̃ above. Hence naturally M ∼=
H̃. Notice that we made our construction in such a way that the center of D(λ ,t),
that is, the point given by z = 0, lies on

Q =
{
(λ ,−λ ) ∈ Z

∣∣λ ∈ CP1 }
which is a twistor line on Z corresponding to [1,0,1] ∈ H ′.

We have already defined a PSL(2,C)-action on M = H̃ by (5.2). For each
element φ ∈ PSU(2)⊂ PSL(2,C), we can check that φ∗(D(λ ,t)) = D(φ(λ ),t). Since
PSU(2) acts transitively on CP1, PSU(2) acts transitively on CP1×{t} ⊂M for
each t ∈ R. On the other hand,

φ =
[

e−t

et

]
∈ PSL(2,C) (5.4)
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gives the automorphism φ∗ which maps the disk D(0,1) to D(0,2t). Hence the action
of PSL(2,C) on M = H̃ is transitive.

Let S(T ZR) = (T ZR\0ZR)/R+ be the circle bundle on ZR, where 0ZR is the
zero section and R+ is positive real numbers acting on T ZR by scalar multipli-
cation. On XR, we can take a nowhere vanishing vertical vector field v, that is,
ϖ∗(v) = 0, so that the orientation matches the complex orientation of the fiber of
ϖ : X+→M. Since f∗(v) does not vanish anywhere, we can define a smooth map
f̃ : XR→ S(T ZR) by u 7→ [f∗(vu)]. Then we obtain the following diagram:

XR
f̃ //

f !!B
BB

BB
BB

B S(T ZR)

{{www
ww

ww
ww

ZR

Proposition 5.1 Let St = CP1×{t} ⊂M, and let ft and f̃t be the restriction of f

and f̃ on ϖ−1(St) respectively. Then, for each t ∈ R,

1. ft : (X+\XR)|St → Z\ZR is diffeomorphic,
2. f̃t : XR|St → S(T ZR) is diffeomorphic, and
3. ft : XR|St → ZR is an S1-fibration such that each fiber is transverse to the

vertical distribution of ϖ : XR→M.

In particular, {D(λ ,t)}λ∈CP1 gives a foliation on Z\ZR for each t ∈ R.

Remark 5.2 Notice that, from 2 above, the following holds: for each t ∈R, p∈ ZR
and non-zero v ∈ TpZR, there is a unique x ∈ St such that p ∈ ∂Dx and v ‖ Dx (see
Definition 1.5).

Proof of Proposition 5.1 We can assume t = 0 by changing the parameter t ∈ R
by the automorphism of type (5.4).

When t = 0, we can interpret the situation as a geometry on S2 in the following
way. Let S2 = {(x1,x2,x3) ∈R3 | ∑x2

i = 1} and p : CP1 ∼→ S2 be the stereographic
projection,

p : λ 7−→
( 2Reλ

1+ |λ |2
,

2Imλ

1+ |λ |2
,

1−|λ |2

1+ |λ |2
,
)
.

We identify Z with S2 × S2 by the diffeomorphism Z ∼→ S2 × S2 : (η1,η2) 7→
(p(η1),p ◦τ(η2)), where τ(η) = η̄−1. Notice that ZR corresponds to the diago-
nal in this identification.

Recall that D(λ ,0) is the image of D→ Z:

z 7−→ (η1,η2) =
( z+λ

−λ̄ z+1
,

z−λ

λ̄ z+1

)
.

Then ∂D(λ ,0) ⊂ ZR corresponds to the big circle on the diagonal S2 ⊂ S2×S2 cut
out by the plane

2(Reλ )x1 +2(Imλ )x2 +(1−|λ |2)x3 = 0. (5.5)
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Hence we obtain a one-to-one correspondence between λ ∈ CP1 and the oriented
big circle p(∂D(λ ,0)), where the orientation is induced from the natural orientation
of p(D(λ ,0)). Moreover, we claim that the following conditions are equivalent:

(A1) (η1,η2) ∈ Z lies on D(λ ,0),
(A2) the oriented big circle p(∂D(λ ,0)) winds anti-clockwise around p(η1), and

this big circle coincides with the set of points on S2 which have the same
distance from p(η1) and p ◦τ(η2) with respect to the standard Riemannian
metric on S2.

Indeed, if (η1,η2) ∈ D(λ ,0), then the point

p(η1)+p ◦τ(η2) ∈ R3

lies on the plane (5.5), hence the big circle p(∂D(λ ,0)) satisfies (A2). The converse
is easy. In particular, the following conditions are equivalent:

(B1) (η1,η2) ∈ ZR lies on ∂D(λ ,0),
(B2) the big circle p(∂D(λ ,0)) passes through p(η1) = p ◦τ(η2).

The statement follows directly from this interpretation. Actually, for each p =
(η1,η2) ∈ Z\ZR, the big circle satisfying (A2) exists uniquely, hence 1 holds. For
each p = (η1,η2)∈ ZR, S(TpZR) corresponds to the oriented big circles satisfying
(B2), hence 2 and 3 follow. ut

The geometry on M is characterized by the double fibration (5.3) in the fol-
lowing way:

Proposition 5.3 1. For each p ∈ ZR, Sp = {x ∈M | p ∈ ∂Dx}= ϖ ◦ f−1(p) is a
maximal connected null surface on M and every null surface can be written
in this form.

2. For each p ∈ Z\ZR, Cp = {x ∈ M | p ∈ Dx} = ϖ ◦ f−1(p) is a maximal con-
nected time-like geodesic on M and every time-like geodesic can be written in
this form.

3. For each p ∈ ZR and each non-zero v ∈ TpZR, Cp,v = {x ∈ M | p ∈ ∂Dx,v ‖
Dx}= ϖ ◦ f̃−1([v]) is a maximal connected null geodesic on M and every null
geodesic can be written in this form.

4. For each distinguished p,q ∈ ZR, Cp,q = {x ∈M | p,q ∈ ∂Dx} = Sp ∩Sq is
a closed connected space-like geodesic on M and every space-like geodesic
can be written in this form.

Proof Since {∂D(λ ,t)} is the set of oriented circles of the form (5.1), we obtain

• Sp ' S1×R for each p ∈ ZR,
• Cp,v ' R for each p ∈ ZR and non zero vector v ∈ TpZR,
• Cp,q ' S1 for each distinguished p,q ∈ ZR.

Since Sp is a real slice of a complex null surface, it is a real null surface. More-
over, it is a maximal connected null surface since Sp is closed in M. Hence 1
holds. In a similar way, we can see that Cp,v is a maximal connected real null
geodesic, so 3 holds. Cp,q is also a maximal connected real non-null geodesic. No-
tice that Cp,q is contained in the null surface Sp. Since a null plane never contains
time-like vectors, Cp,q is a space-like geodesic (see Lemma 3.7). Hence 4 holds.
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Now we check 2. Let p ∈ Z\ZR and notice that every σ -invariant twistor line
passing through p also passes through σ(p). So Cp is a real slice of the complex
geodesic corresponding to the two points p and σ(p). Hence Cp is a geodesic.
From Proposition 5.1, we obtain Cp ' R which is closed in M. Hence Cp is a
maximal connected geodesic. To see that Cp is a time-like geodesic, it is enough
to check that Cp is transversal to every null plane at each point (see Lemma 3.7).
Notice that, if we fix three points on Z, there is at most one twistor line containing
them. Hence Cp ∩Sq = {x ∈ M | p,σ(p),q ∈ Dx} is at most one point for each
q ∈ ZR. Thus Cp is time-like. ut

In particular, we obtain the following.

Corollary 5.4 The indefinite Einstein-Weyl structure on M constructed above is
space-like Zoll.

Let X = X+∪XR X− be a CP1 bundle over M, where X− = X+ is the copy
of X+ with fiber-wise opposite complex structure. On the other hand, we have a
CP1-bundle Z on M equipped with the distributions R, ,L and so on. Then, similar
to Remark 4.2, there is a natural identification X

∼→Z such that

• for each p ∈ ZR, f−1(p) corresponds to an integral surface of R,
• for each p ∈ Z\ZR, f−1(p) corresponds to an integral curve of L in X \XR,

and
• for each p ∈ ZR and [v] ∈ S(TpZR), f̃−1([v]) corresponds to an integral curve

of L in XR.

Hence the following holds:

• R = ∩TXR = ker{f∗ : TXR→ T ZR} on XR,
• L = ker{f∗ : TX → T Z} on X+\XR, and
• L = ker{f̃∗ : TXR→ S(T ZR)} on XR.

Recall that we denote St = CP1×{t} and let us denote Xt = ϖ−1(St), where
ϖ : X →M is the projection. Let t = ∩TCXt for each t. Then, since L∩TXt = 0,
we obtain = (L⊗C)⊕ t . From ∩ = L⊗C and ⊕ = TX , we obtain t⊕ t = TXt .
Moreover, since is integrable, t is also integrable. Hence t defines a complex
structure on Xt .

Now we claim that ft : (X+\XR)|St → Z\ZR is holomorphic with respect to
the above complex structure. Consider the complex Einstein-Weyl space MC =
X\Xsing defined at the beginning of this section, and let ZC = P(N(T ∗1,0MC)).

Then we obtain the double fibration MC ← ZC
fC→ Z, where fC is holomorphic.

On the other hand, there is natural embedding it : (X+\XR)|St → ZC which is
holomorphic since it preserves the distributions. Since ft = fC ◦ it , ft is holomorphic
on (X+\XR)|St .

From the above argument, we obtain t =(ft)−1
∗ (T 0,1Z)⊂ f−1

∗ (T 0,1Z) on X+\XR.
Since L⊗C = ker f∗ there, we obtain = (L⊗C)⊕ t ⊂ f−1

∗ (T 0,1Z) on X+\XR.
Then we also have ⊂ f−1

∗ (T 1,0Z). Since + = TCX+ and ∩ = L⊗C, we obtain
= f−1
∗ (T 0,1Z) on X+\XR.
In this way, we have proved the following:

Proposition 5.5 Identifying X = X+∪X− with Z ,
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1. = f−1
∗ (T 0,1Z) on X+ where f∗ : TCX+→ TCZ,

2. R = ∩TXR = ker{f∗ : TXR→ T ZR} on XR,
3. L = ker{f∗ : TX+→ T Z} on X+\XR, and
4. L = ker{f̃∗ : TXR→ S(T ZR)} on XR.

It is convenient to consider the compactification of M and X+. Let I = [−∞,∞]
be the natural compactification of R. If we put M̂ = CP1× I, then we obtain a
natural embedding ι : M ↪→ M̂. Next, let Ψ : X+ → M̂× Z be the embedding
defined by Ψ(u) =

(
ι ◦ϖ(u), f(u)

)
. Let us define X̂+ and X̂R as the closure of

Ψ(X+) and Ψ(XR) in M̂×Z. Then we obtain the double fibration

(X̂+,X̂R)
ϖ̂

{{vvvvvvvvv
f̂

%%KKKKKKKKKK

M̂ (Z,ZR)

(5.6)

where ϖ̂ and f̂ are the projections.
Notice that ϖ̂−1(x) is no longer a disk for x = (λ ,±∞) ∈ ∂M̂, but a marked

CP1 for which the marking point is ϖ̂−1(x)∩ X̂R. We denote these marked CP1

by

D(λ ,∞) = ϖ̂
−1(λ ,−∞) = {λ}×CP1

and D(λ ,−∞) = ϖ̂
−1(λ ,∞) = CP1×{−λ}, (5.7)

where D(λ ,∞) is marked at (λ , λ̄−1) and D(λ ,−∞) is marked at (−λ̄−1,−λ ).
Recall the definitions of Cp and Cp,v introduced in Proposition 5.3. We define

Ĉp and Ĉp,v as the compactification of Cp and Cp,v in M̂ respectively. Then the
following properties are easily checked.

Proposition 5.6 1. For each p ∈ Z\ZR, X̂R|Ĉp
is homeomorphic to S2 and the

restriction f̂ : X̂R|Ĉp
→ ZR is a homeomorphism. In particular, {∂Dx}x∈Cp

gives a foliation on ZR\{2 points}.
2. For each p ∈ ZR and non-zero v ∈ TpZR, X̂R|Ĉp,v

is homeomorphic to S2

and the restriction f̂ : X̂R|Ĉp,v
→ ZR is surjective. Moreover, this is one-to-

one on the complement of the curve f̂−1(p), hence {(∂Dx\{p})}x∈Cp,v gives
a foliation on ZR\{p}.

Remark 5.7 For distinguished points p,q ∈ ZR ' CP1, there are two families of
circles called “Apollonian circles”. One of them is the family of the circles passing
through p,q, which corresponds to the space-like geodesic Cp,q. The other family
gives a foliation on CP1\{p,q}, which corresponds to a time-like geodesic and
the foliation coincides with the one given in 1 of Proposition 5.6. The Case 2 of
Proposition 5.6 corresponds to the degenerate case.
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6 Perturbation of Holomorphic Disks

We now investigate the deformation of holomorphic disks. For a complex mani-
fold A and its submanifold B, we use the term holomorphic disk on (A,B) for a
continuous map (D,∂D)→ (A,B) which is holomorphic on the interior of D =
{z ∈ C | |z| ≤ 1}.

As in the previous section, we put Z = CP1×CP1 and ZR = {(η , η̄−1) |η ∈
CP1}. We have the family of holomorphic disks {D(λ ,t)} defined from the double
fibration (5.3), and we call each D(λ ,t) a standard disk. In this section, we treat a
small perturbation N of ZR, and prove that there is a natural (S2×R)-family of
holomorphic disks on (Z,N) each of which is close to some standard disk. From
the general theory by LeBrun (8), one can show that there exists a real three-
parameter family of holomorphic disks on (Z,N) near each standard disk. We,
however, use the method given in (9) so that we can consider the holomorphic
disks in more detail.

First of all, we recall the Ck-topology of the space of deformations of ZR in Z.
A small perturbation N of ZR can be written

N =
{(

η ,φ(η)
−1)∣∣∣ η ∈ CP1

}
using an automorphism φ : CP1→ CP1 which is sufficiently close to the identity
map. Let {Ai} be finitely many compact subsets and {Bi} be open subsets on CP1

with complex coordinates ηi, which satisfy Ai ⊂ Bi, φ(Ai) ⊂ Bi and ∪iAi = CP1.
Then φ is identified with a combination of functions (hi)i, where hi ∈Ck(Ai,C) is
defined by φ(ηi) = ηi +hi(ηi) for each i. The Ck-topology of the set of deforma-
tions of ZR in Z is defined by the norm

‖φ‖Ck = sup
i
‖hi‖Ck(Ai),

where ‖hi‖Ck(Ai) is the supremum on Ai of absolute values of all partial derivatives
of hi for which the order is less than or equal to k. In particular, let A ∈ CP1 be a
compact subset contained in a coordinated open subset of CP1, which we denote
B, and suppose φ(A) ⊂ B, then ‖h‖Ck(A) is sufficiently small if φ is sufficiently
close to the identity where φ(η) = η +h(η).

Lemma 6.1 Fix a standard holomorphic disk D = D(λ ,t). If N ⊂ Z is the image
of any embedding CP1 ↪→ Z which is sufficiently close to the standard one in
the Ck+l-topology with k, l ≥ 1, then there is a real three-parameter Cl-family of
holomorphic disks on (Z,N) each of which is L2

k close to D.

Proof Since there is a transitive action of PSL(2,C) on the standard disks, we can
assume (λ , t) = (0,0), that is,

D = {(z,z) ∈ Z |z ∈ D},

where D = {z ∈ C | |z| ≤ 1}. If we put A = {η ∈ C | 1
2 ≤ |η | ≤ 2}, then N can be

written {(
η ,

(
η +h(η)

)−1)
∈ Z

∣∣∣∣ η ∈ A
}
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near ∂D using a function h ∈ Ck+l(A) for which the Ck+l-norm is sufficiently
small.

Then a small perturbation of ∂D is given as the image of

S1→ N : θ 7→
(
ei(θ+u(θ)),

[
e−i(θ+ū(θ)) + h̄

(
ei(θ+u(θ)))]−1 )

,

where u is a C-valued function on S1 = R/2πZ. Here we write ū(θ) for u(θ) and
h̄(η) for h(η). Then we define the maps Fi : L2

k(S
1,C)×Ck+l(A,C)→ L2

k(S
1,C)

by

[F1(u,h)](θ) = ei(θ+u(θ))

(6.1)
and [F2(u,h)](θ) =

[
e−i(θ+ū(θ)) + h̄

(
ei(θ+u(θ)))]−1

.

For a given h, we want to choose u ∈ L2
k(S

1,C) so that [Fi(u,h)](θ) extends holo-
morphically to {|z|< 0} for z = eiθ . Taking the derivation Fi, we obtain

[F1∗(0,0)(u̇, ḣ)](θ) = ieiθ u̇(θ)
(6.2)

and [F2∗(0,0)(u̇, ḣ)](θ) = ieiθ ¯̇u(θ)− e2iθ ¯̇h(eiθ ).

Now, we introduce some bounded operators (see (9)). Set

L2↓ =

{
∑
l<0

aleilθ

∣∣∣∣∣ al ∈ C, ∑
l<0
|al |2 < ∞

}

and L2
k↓ =

{
∑
l<0

aleilθ

∣∣∣∣∣ al ∈ C, ∑
l<0

l2k|al |2 < ∞

}
= L2

k(S
1,C)∩L2↓,

and define Π : L2
k(S

1,C)→ L2
k↓ by

Π
( ∞

∑
l=−∞

aleilθ )
= ∑

l<0
aleilθ .

Similarly let us define p : L2
k(S

1,C)→ C by

p
( ∞

∑
l=−∞

aleilθ )
= a0.

Then, for k, l ≥ 1, we define a Cl-map

F : L2
k(S

1,C)×Ck+l(A,C)−→ L2
k↓ ×L2

k↓ ×Ck+l(A,C)×C×C×C

given by

F = (Π ◦F1)× (Π ◦F2)×L× (p ◦F1)× (p ◦F2)×x,

where

L : L2
k(S

1,C)×Ck+l(A,C)−→Ck+l(A,C)
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is the factor projection, and

x : L2
k(S

1,C)×Ck+l(A,C)−→ C

is given by

x(u,h) =
1

2π

∫ 2π

0
u(θ)dθ ,

in other words, x(u,h) = p(u). The map F is Cl since Π , L, p and x are all
bounded linear operators, and its derivative is given by

F∗ = (Π ◦F1∗)× (Π ◦F2∗)×L× (p ◦F1∗)× (p ◦F2∗)×x.

In particular, if we write u̇(θ) = ∑n uneinθ , then we obtain

F∗(0,0)

[
u̇
ḣ

]
=



∑n<0 iun−1einθ

i∑n<0 ū1−neinθ −Π
(
e2iθ ¯̇h(eiθ )

)
ḣ

iu−1

iū1−p
(
e2iθ ¯̇h(eiθ )

)
u0


.

Since F∗(0,0) has a bounded inverse, the Banach-space inverse function theorem
tells us that there is an open neighborhood U of (0,0) ∈ L2

k(S
1,C)×Ck+l(A) and

open neighborhood V of 0 ∈ L2
k↓ ×L2

k↓ ×Ck+l(A,C)×C×C×C such that F|U :
U→V is a Cl-diffeomorphism.

Hence, for a given h, we obtain a complex three-parameter Cl-family of holo-
morphic disks defined from (u,h) = F−1(0,0,h,α1,α2,β ), where α1,α2,β are
small complex numbers. It contains, however, real three-dimensional ambiguity
which comes from the disk automorphism. To kill this ambiguity, it is enough to
use the inverse of

(0,0,h,α,−α, iβ ) ∈ L2
k↓ ×L2

k↓ ×Ck+l(A,C)×C×C×C, (6.3)

in F for (α,β ) ∈ C×R which is sufficiently close to (0,0). Now the statement
follows since ‖h‖Ck+l(A) is sufficiently small if N is sufficiently close to ZR. ut

Remark 6.2 1. Let D be any holomorphic disk on (Z,N) constructed as in the
above lemma. Then D intersects with N only on the boundary ∂D. Actually,
let D→ Z : z 7→ (ϕ1(z),ϕ2(z)) be the map corresponding to D and denote N =
{(η , φ(η)

−1
) |

η ∈CP1}. Notice that η 7→ φ(η)
−1

maps ϕ1(∂D) to ϕ2(∂D) and maps the in-
terior of ϕ1(D) to the outside of ϕ2(D). Suppose that there is an interior point

z ∈D such that ϕ2(z) = φ(ϕ1(z))
−1

. Then ϕ1(z) is contained in the interior of

ϕ1(D), and φ(ϕ1(z))
−1

is outside of ϕ2(D). This is a contradiction.
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2. We can take V so that

V = V1×V2×W×V1×V2×V3

with W =
{

h ∈Ck+l(A,C)
∣∣∣ ‖h‖Ck+l(A) < ε0

}
, (6.4)

where Vi ⊂ L2
k↓ and Vi ⊂C are small open sets and ε0 > 0 is a constant. This

notation is used in the following arguments.

Next we want to prove that, if N is sufficiently close to ZR, then the method of
Lemma 6.1 works for all standard disks at once. Then we need a uniform estimate
of the deformation N of ZR among all standard disks. In LeBrun-Mason’s case (9;
10), the parameter spaces of holomorphic disks are compact and homogeneous, so
the uniform estimate is automatically deduced from the local estimate. In our case,
however, the parameter space is a non-compact space S2×R, so we need more
detailed arguments. For this purpose, it is enough to show that the deformations
of the disks are “tame”, as in the following lemma, on the neighborhood of the
boundary of the parameter space.

Lemma 6.3 Let {D(λ ,t)} be the standard disks. Suppose N⊂Z is sufficiently close
to ZR in the Ck+l-topology. Then a three-parameter family of holomorphic disks
on (Z,N) near D(λ ,t) always exists for each (λ , t) ∈ CP1×R with t� 0.

Proof It is enough to consider the case λ = 0. We fix a small constant c > 0 and
let Bc = {z ∈ C | |z| < c}. Notice that the compact subset Bc×CP1⊂Z contains
all holomorphic disks of the form D(0,t) if et > 2c−1. We can write

N∩ (Bc×CP1) =
{(

η ,(η +h(η))
−1)∣∣∣ η ∈ Bc

}
(6.5)

using h ∈Ck+l(Bc,C). We claim that if ‖h‖Ck+l(Bc) < ε0
4
√

2
, then a three-parameter

family of holomorphic disks on (Z,N) near D(0,t) exists for all et > 2c−1. Here ε0
is the constant defined in (6.4).

Now we show that it is enough to prove the case when h(0)= 0 and ‖h‖Ck+l(Bc) <
ε0

2
√

2
. In the general case, if we change the coordinate (η1, η̄

−1
2 ) ∈ Z to (ξ1, ξ̄

−1
2 )

by the relation

ξ1 = η1, ξ2 = η2 +h(0),

then we can write

N∩ (Bc×CP1) =
{(

ξ ,(ξ +g(ξ ))
−1)∣∣∣ ξ ∈ Bc

}
using g(ξ ) = h(ξ )−h(0). Here we obtain ‖g‖Ck+l(Bc) < ε0

2
√

2
, because

sup
ξ∈Bc

|g(ξ )|< sup
ξ∈Bc

|h(ξ )|+ |h(0)| < ε0

2
√

2

and sup
ξ∈Bc

|Dg(ξ )|= sup
ξ∈Bc

|Dh(ξ )| < ε0

4
√

2
,
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where D is any partial derivative of degree less than or equal to k+ l. Hence, if we
replace g with h, we can assume h(0) = 0 and ‖h‖Ck+l(Bc) < ε0

2
√

2
.

From now on we write r for et . A small perturbation of ∂D(0,t) is given as the
image of

S1→ N : θ 7→
(
r−1ei(θ+u(θ)),

[
r−1e−i(θ+ū(θ)) + h̄

(
r−1ei(θ+u(θ)))]−1 )

,

where u is a C-valued function on S1.
Let Ar = {z ∈C | r−1

2 ≤ |z| ≤ 2r−1} and A = A1, then Ar is a compact subset of
Bc if r > 2c−1. We define the maps Fr

i : L2
k(S

1,C)×Ck+l(Ar,C)→ L2
k(S

1,C) by

[Fr
1(u,h)](θ) = r−1ei(θ+u(θ))

and [Fr
2(u,h)](θ) =

[
r−1e−i(θ+ū(θ)) + h̄

(
r−1ei(θ+u(θ)))]−1

.

Putting hr(z) = r h(r−1z), we obtain

[Fr
1(u,h)](θ) = r−1[F1(u,hr)](θ) and [Fr

2(u,h)](θ) = r[F2(u,hr)](θ),(6.6)

where Fi is the map given by (6.1). Notice that the map ρr : h 7→ hr gives an
isomorphism of Banach spaces Ck+l(Ar,C)→Ck+l(A,C).

In a similar way to how we defined F in Lemma 6.1, we define

Fr : L2
k(S

1,C)×Ck+l(Ar,C)−→ L2
k↓ ×L2

k↓ ×Ck+l(Ar,C)×C×C×C

given by

Fr = (Π ◦Fr
1)× (Π ◦Fr

2)×L× (p ◦Fr
1)× (p ◦Fr

2)×x,

where L is the projection. Then we can relate Fr to F in the following way. Let
m(r) be multiplication of r on L2

k↓ or C, then we obtain the following commutative
diagram

L2
k(S

1,C)×Ck+l(Ar,C)
Fr

//

id×ρr

��

L2
k↓ ×L2

k↓ ×Ck+l(Ar,C)×C×C×C

Φr

��
L2

k(S
1,C)×Ck+l(A,C)

F // L2
k↓ ×L2

k↓ ×Ck+l(A,C)×C×C×C

(6.7)

where Φ r = m(r)×m(r−1)× ρr ×m(r)×m(r−1)× id. Notice that the vertical
arrows in the above diagram are isomorphisms, and that the restriction F|U : U→
V gives a Cl-diffeomorphism from the proof of Lemma 6.1. Hence the restriction

Fr : (id×ρ
r)−1(U)−→ (Φ r)−1(V)

is a Cl-diffeomorphism. If we take V to be the product as in (6.4), then

(Φ r)−1(V) = r−1V1× rV2× (ρr)−1(W)× r−1V1× rV2×V3.
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We want to show that h|Ar ∈ (ρr)−1(W), or equivalently ‖hr‖Ck+l(A) < ε0, for
all r > 2c−1. Let x,y be the real coordinate such that η = x + iy, and let D =
∂ m/∂x j∂ym− j be a derivation of degree m≤ l + k, then we obtain

Dhr(η) = r1−mDh(r−1
η).

Hence

sup
η∈A
|Dhr(η)| ≤ r1−m sup

η∈A
|Dh(r−1

η)| ≤ r1−m sup
ζ∈Ar
|Dh(ζ )|< ε0

2
√

2
r1−m < ε0,

if m≥ 1. For m = 0, notice that

|h(η)| ≤
∫ 1

0

∣∣∣∣dh
dt

(tη)
∣∣∣∣dt ≤

∫ 1

0

∣∣∣∣∂h
∂x

(tη)
∣∣∣∣ |x|dt +

∫ 1

0

∣∣∣∣∂h
∂y

(tη)
∣∣∣∣ |y|dt

<
ε0

2
√

2
(|x|+ |y|) <

ε0

2
|η |,

hence we obtain

sup
η∈A
|hr(η)|= r sup

η∈A
|h(r−1

η)|= r sup
ζ∈Ar
|Dh(ζ )|< rε0

2
sup
ζ∈Ar
|ζ |= ε0.

In this way, we have obtained ‖hr(η)‖Ck+l(A) < ε0 for all r > 2c−1. ut

Remark 6.4 Lemma 6.3 also holds for t � 0. Exchange the role of factors of
Z = CP1×CP1 and replace t with −t to prove this case.

From Lemmas 6.1 and 6.3, we obtain the following statement.

Proposition 6.5 If N⊂Z is the image of any embedding CP1 ↪→ Z which is suf-
ficiently close to the standard one in the Ck+l-topology with k, l ≥ 1, then there
is a Cl family of holomorphic disks on (Z,N), each of which is L2

k close to some
standard disk on (Z,ZR).

We will strengthen this statement in Proposition 7.3.

7 The Double Fibration

In this section, we investigate some properties for the family of holomorphic disks
constructed in Sect. 6. We continue to use the notation F,Fi,U,V and so on.

For each h ∈Ck+l(A,C), we define Cl-maps Ξ h,Fh
i : U → L2

k(S
1,C) so that(

Ξ
h(α,β ),h

)
= F−1(0,0,h,α,−α, iβ ),

Fh
1 (α,β )(eiθ ) = F1

(
Ξ

h(α,β ),h
)
(θ) = exp i

{
θ +Ξ

h(α,β )(θ)
}
,

and Fh
2 (α,β )(eiθ ) = F2

(
Ξ

h(α,β ),h
)
(θ),
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where U⊂C×R is a small open neighborhood of (0,0) depending on h. By defini-
tion, the functions Fh

i (α,β )(z) extend to holomorphic functions on D = {|z| ≤ 1},
and satisfy Fh

1 (α,β )(0) = α and Fh
2 (α,β )(0) =−α . If we expand

Ξ
h(α,β )(θ) = ∑

k
Ξ

h(α,β )keikθ , (7.1)

then we obtain Ξ h(α,β )0 = iβ by definition. Notice that we can also define the
derivatives Ξ h

∗ and Fh
i∗ which satisfy(

Ξ
h
∗ (α̇, β̇ ),0

)
= F−1

∗ (0,0,0, α̇,−α̇, iβ̇ ),

Fh
1∗(α̇, β̇ )(eiθ ) = F1∗

(
Ξ

h(α̇, β̇ ),0
)
(θ) = iFh

1 (eiθ )Ξ
h
∗ (α̇, β̇ )(θ),

Fh
2∗(α̇, β̇ )(eiθ ) = F2∗

(
Ξ̇

h(α̇, β̇ ),0
)
(θ),

Fh
1∗(α̇, β̇ )(0) = α̇, Fh

2∗(α̇, β̇ )(0) =−α̇ and Ξ
h
∗ (α̇, β̇ )0 = iβ̇ .

Let N⊂Z be the image of any embedding CP1 ↪→ Z which satisfies Propo-
sition 6.5. Let us denote by BN

(α,β ) the holomorphic disk on (Z,N) which cor-
responds to the element (0,0,h,α,−α, iβ ) ∈ V in the notation of the proof of
Lemma 6.1. Then

BN
(α,β ) =

{ (
Fh

1 (α,β )(z),Fh
2 (α,β )(z)

)
∈ Z

∣∣∣ z ∈ D
}
, (7.2)

and {BN
(α,β )}(α,β )∈U gives a three-parameter family of holomorphic disks, each

of which is L2
k-close to the standard disk D(0,0). Notice that BN

(α,β ) passes through
(α,−α) when z = 0, hence, for fixed α , {BN

(α,β )}β defines a one-parameter family
of holomorphic disks which pass through (α,−α).

In the standard case, the following statement holds.

Proposition 7.1 B
ZR
(α,β ) coincides with the standard disk D(α,β ).

Proof Since the disk

B
ZR
(α,β ) =

{(
F0

1 (α,β )(z),F0
2 (α,β )(z)

)
∈ Z |z ∈ D

}
coincides with one of the standard disks near D(0,0), there is a unique element
(λ , t) ∈ CP1×R near (0,0) such that

F0
1 (α,β )(eiθ ) = exp i

(
θ +Ξ

0(α,β )(θ)
)

=
eiθ + etλ

−λ̄eiθ + et
. (7.3)

Then we obtain α = F0(α,β )(0) = λ . On the other hand, taking the derivative of
(7.3), we obtain

iΞ
0
∗ (α̇, β̇ )(θ) =

(λ̇ +λ ṫ)e−(iθ−t)

1+λe−(iθ−t) +
eiθ−t ¯̇

λ − ṫ
1− λ̄eiθ−t

.

If we expand the right hand side and compare the constant terms, then we find

iβ̇ = Ξ
0
∗ (α̇, β̇ )0 = iṫ.

On the other hand, it is easy to see that t = β when α = 0. Hence (λ , t) = (α,β )
for each (α,β ) ∈U . ut
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Let M be the parameter space of the family of holomorphic disks on (Z,N)
constructed in Proposition 6.5. Then M has the natural structure of a real 3-
manifold and we can take a coordinate system on M in the following way. For
each (λ , t) ∈ CP1 ×R, choose an element T = T (λ , t) ∈ PSL(2,C) such that
T∗(D(λ ,t)) = D(0,0), where {D(λ ,t)} are the standard disks. Let UT ⊂ C×R be an

open neighborhood of (0,0) such that B
T∗(N)
(α,β ) is defined for all (α,β ) ∈UT . Then{

T−1
∗ B

T∗(N)
(α,β )

}
(α,β )∈UT

gives the family of holomorphic disks on (Z,N) each of

which is close to D(λ ,t), and {UT (λ ,t)} gives a coordinate system on M.
Using the above coordinates, we prove the following lemma.

Lemma 7.2 Suppose N ⊂ Z is sufficiently close to ZR so that Proposition 6.5
holds, and consider the constructed family of holomorphic disks on (Z,N). Then,
for each q = (α,−α)∈ Z, there is an R-family of holomorphic disks each of which
passes through q. Moreover there is a natural compactification of this family and
the boundary points ±∞ correspond to marked CP1.

Proof We can assume α = 0. Take any t so that |t| is sufficiently small, and con-
sider the standard disk D(0,t). If we define T ∈ PSL(2,C) by

T =
[

e
t
2

e−
t
2

]
,

then T∗(η1,η2) = (etη1,e−tη2) and T∗(D(0,t)) = D(0,0). Now
{

T−1
∗ B

T∗(N)
(0,β ′)

}
β ′∈V

gives a one-parameter family of holomorphic disks on (Z,N) each of which is
close to D(0,t) and pass through (0,0). Here V is the set {β ′ ∈ R |(0,β ′) ∈UT}.

Since |t| is small, there is an open set V ′ ⊂ V such that T−1
∗ B

T∗(N)
(0,β ′) is suffi-

ciently close to D(0,0) for all β ′ ∈ V ′. Hence, for each β ′ ∈ V ′, there is a unique
(α,β ) such that

T−1
∗ B

T∗(N)
(0,β ′) = BN

(α,β ). (7.4)

Now N and T∗(N) can be written locally as

N :
{(

η ,
(
η +h(η)

)−1) ∣∣∣∣ η ∈ A
}

and T∗(N) :
{(

η ,
(
η +hT (η)

)−1) ∣∣∣∣ η ∈ A
}

,

(7.5)

using a Ck+l-function h which is defined on a neighborhood of A = {z ∈ C | 1
2 ≤

|z| ≤ 2}. Here we write hT to mean T hT−1. Then (7.4) is equivalent to

e−tFhT

1 (0,β ′)(z) = Fh
1 (α,β )(z) on z ∈ D.

Evaluating for z = 0, we obtain α = 0. Moreover, this is also equivalent to

it +Ξ
hT

(0,β ′)(θ) = Ξ
h(α,β )(θ) on θ ∈ S1.
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Comparing the constant terms for eiθ , we obtain β = β ′+ t. Hence (7.4) is equiv-
alent to (α,β ) = (0,β ′+ t). So the one-parameter family {BN

(0,β )}(0,β )∈U extends
to {

β ∈ R
∣∣ (0,β ) ∈U or(0,β − t) ∈UT }

by putting BN
(0,β ) = T−1

∗ B
T∗(N)
(0,β−t). In this way, we can define the one-parameter

family {BN
(0,β )} for all β ∈ R.

The statement of the compactification is obtained from Lemma 6.3 and its
proof. Indeed, in the notation of (6.5), if we take the limit t→∞, the holomorphic
disk parametrized by t degenerates to {0}×CP1 marked at (0,h(0)

−1
). As we

explained in Remark 6.4, we also obtain another marked CP1 by taking the limit
t→−∞. ut

Now the following statement is easily proved.

Proposition 7.3 If N ⊂ Z is the image of any embedding CP1 ↪→ Z which is suffi-
ciently close to the standard one in the Ck+l-topology with k, l ≥ 1, then there is a
Cl family of holomorphic disks on (Z,N) parametrized by S2×R which satisfies
the following properties:

• each disk is L2
k-close to some standard disk,

• there is a natural compactification of the family such that the compactified
family is parameterized by S2× I, and each boundary point on S2× I corre-
sponds to a marked CP1 embedded in (Z,N),

where I = [−∞,∞] is the compactification of R.

Proof Let Q = {(λ ,−λ ) ∈ Z |λ ∈ CP1}. For each q ∈ Q, there is an R-family
of holomorphic disks constructed in Lemma 7.2. Since this family varies continu-
ously, we obtain the family of holomorphic disks parametrized by Q×R' S2×R.
The statement for the compactification is obvious from Lemma 7.2. ut

For each (λ , t) ∈ CP1×R, we define

D(λ ,t) = T−1
∗ B

T∗(N)
(0,0) ,

where T = T (λ , t) ∈ PSL(2,C) is an element which satisfies T∗(D(λ ,t)) = D(0,0).
Then we obtain the continuous map j : CP1×R→M : (λ , t) 7→D(λ ,t). Moreover,
we can prove that j is an isomorphism in the following way. For each constructed
holomorphic disk D on (Z,N), we can choose (λ , t) and T = T (λ , t) so that D =
T−1
∗ B

T∗(N)
(0,β ) . Here λ is uniquely defined so that the center of D is (λ ,−λ ). Then

D = D(0,β+t) from Lemma 7.2 and its proof, so j is surjective. The injectivity and
the continuity of j−1 is also deduced from the above procedure of choosing (λ , t),
hence j is isomorphism.

Let us construct the double fibration. Let U ⊂ CP1×R be a sufficiently small
neighborhood of (0,0). For each (λ , t) ∈U , we define T = T (λ , t) ∈ PSL(2,C)
by

T =
1

e−
t
2
√

1+ |λ |2

[
1 −etλ

λ̄ et

]
,
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then we obtain T∗(D(λ ,t)) = D(0,0). Introducing Ck+l-functions h and hT similar to
those in (7.5), we define a map f : U×D→ Z by

f(λ , t;z) = T−1
∗

(
FhT

1 (z),FhT

2 (z)
)
.

Then f is Cl for (λ , t) and Ck−1 for z, and we obtain D(λ ,t) = {f(λ , t;z)∈ Z |z∈D}.
Constructing a similar map for each neighborhood of CP1×R, and patching

them, we obtain the double fibration

(X+,XR)
ϖ

wwooooooooooo
f

%%KKKKKKKKKK

M ' CP1×R (Z,N)

(7.6)

where ϖ is a disk bundle. By construction, X+ is the same disk bundle as the
standard case. In particular, we obtain c1(XR) = 2 along each fiber of ϖ and that
ϖ is C∞.

Lemma 7.4 Let N ⊂ Z be the image of any embedding CP1 ↪→ Z which is suffi-
ciently close to the standard one in the Ck+l-topology with k, l ≥ 1, and consider
the double fibration (7.6). Then f∗(v) 6= 0 for each non-zero vector v ∈ TXR such
that ϖ∗(v) = 0.

Proof For each (u,h) ∈ L2
k(S

1,C)×Ck+l(A,C), we have

d
dθ

[F1(u,h)](θ) =
d

dθ
ei(θ+u(θ)) = ei(θ+u(θ))(i+ iu′(θ)),

so this does not vanish if ‖u‖L2
1

is sufficiently small. Hence, by shrinking U and V

smaller if needed, the statement holds for v ∈ kerϖ∗ over U ⊂M, where U is the
neighborhood introduced above.

Now, recall the diagram (6.7) in the proof of Lemma 6.3. Notice that the
L2

k(S
1,C) component does not change by the vertical arrow, so we can estimate

u ∈ L2
k(S

1,C) uniformly so that d
dθ

[Fr
1(u,h)](θ) does not vanish for all r. Hence

the statement holds for all v ∈ kerϖ∗. ut

By Lemma 7.4, we can define the lift f̃ of f by f̃ : XR→ S(T N) : u 7→ [f∗(vu)].
Here v is a nowhere vanishing vertical vector field, that is, ϖ∗(v) = 0, for which
the orientation matches the complex orientation of the fiber of ϖ : X+→M. The
next proposition is the perturbed version of Proposition 5.1.

Proposition 7.5 Let N ⊂ Z be the image of any embedding CP1 ↪→ Z which is
sufficiently close to the standard one in the Ck+l-topology with l ≥ 1,k ≥ 2. Con-
sider the double fibration (7.6), let St = CP1×{t} ⊂ M, and let ft and f̃t be the
restriction of f and f̃ on ϖ−1(St) respectively. Then, for each t ∈ R,

1. ft : (X+\XR)|St → Z\N is diffeomorphic,
2. f̃t : XR|St → S(T N) is diffeomorphic,
3. ft : XR|St → N is an S1-fibration such that each fiber is transverse to the

vertical distribution of ϖ : XR→M.
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In particular, {D(λ ,t)}λ∈CP1 gives a foliation on Z\N for each t ∈ R.

Remark 7.6 From 2 above, it follows that: for each t ∈ R, p ∈ N and non zero
v ∈ TpN, there is a unique x ∈ St such that p ∈ ∂Dx and v ‖Dx.

Proof of Proposition 7.5 Since St is compact and f is C1-close to the standard
case, we can assume the derivation of ft to be non-zero everywhere by shrink-
ing W smaller if required. Here W is the open set defined in Remark 6.2. Notice
that we can define W so that this property holds for all t ∈R at once by Lemma 6.3
and its proof. Thus ft gives a proper local diffeomorphism on (X+\XR)|St , and
this is actually a diffeomorphism since ft is close to the standard case.

By a similar argument for the lift f̃ : XR|St → S(T N), we obtain property 2.
If there are x ∈ St and p ∈ N such that ϖ−1(x) and f−1

t (p) are not transversal at
u ∈XR, then (ft)∗(vu) = 0. This contradicts Lemma 7.4, hence 3 holds. ut

From Proposition 7.3, we obtain the natural compactification of ϖ and f which
gives the following double fibration:

(X̂+,X̂R)
ϖ̂

{{vvvvvvvvv
f̂

%%KKKKKKKKK

M̂ (Z,N)

(7.7)

which is studied in Sect. 8.
In the last part of this section, we prove the following technical lemma which

enables us to prove the non-degeneracy of the induced conformal structure. Let
us denote Cp = ϖ ◦ f−1(p) = {x ∈ M | p ∈ Dx} for each p ∈ Z\N, then Cp is an
embedded R in M from Proposition 7.5. Notice that Cp is a closed subset in M
since it connects two boundaries of M̂.

Lemma 7.7 Let x ∈M, then there are two points p1, p2 ∈Dx\∂Dx such that Cp1
and Cp2 intersect transversally at x.

Proof We can assume x = (0,0), and we use the local coordinate (α,β ) ∈ U
around x. Each tangent vector on T(0,0)M is given by (α̇, β̇ ) ∈ C×R∼= T(0,0)(C×
R). Notice that the tangent vector (α̇, β̇ ) ∈ T(0,0)M induces the vector field(

F1∗(α̇, β̇ )(z),F2∗(α̇, β̇ )(z)
)

along D(0,0). Here we identified C×C with the tangent vectors on each point of
C×C ⊂ Z. F1∗(α̇, β̇ ) and F2∗(α̇, β̇ ) are holomorphic functions on D and their
zeros coincide since

F1∗(α̇, β̇ )(eiθ ) = ieiθ
Ξ∗(α̇, β̇ )(θ)

and F2∗(α̇, β̇ )(eiθ ) = ieiθ
Ξ∗(α̇, β̇ )(θ)

by (6.2). If β̇ 6= 0, then F1∗(0, β̇ )(z) is not a zero function since F∗ is bijective,
and F1∗(0, β̇ )(0) = 0 by definition. This means that (0, β̇ ) ∈ T(0,0)M is tangent to
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C(0,0) since the one-parameter family of holomorphic disks fixing (0,0)∈D⊂ Z is
unique and this family corresponds to the vector field

(
F1∗(0, β̇ )(z),F2∗(0, β̇ )(z)

)
along D.

Now consider the vector field(
F1∗(tα̇, β̇ )(z),F2∗(tα̇, β̇ )(z)

)
for t ∈ [0,1] and non-zero α̇ ∈ C with sufficiently small |α̇|. Then F1∗(tα̇, β̇ ) is a
non-zero holomorphic function on D for all t, and its zeros vary continuously de-
pending on t. Hence there exists a z1 ∈D near 0 such that F1∗(α̇, β̇ )(z1) = 0 but z1

cannot be 0 because F1∗(α̇, β̇ )(0)= α̇ 6= 0. If we put p2 =
(
F1(0,0)(z1),F2(0,0)(z1)

)
∈

D(0,0), then we find that (α̇, β̇ ) ∈ T(0,0)M is tangent to Cp2 . Hence p1 = (0,0) and
p2 satisfies the statement. ut

8 Construction of Einstein-Weyl spaces

In this section, we construct an Einstein-Weyl structure on the parameter space of
the family of holomorphic disks on (Z,N) constructed in the previous sections.
The following proposition is critical.

Proposition 8.1 Let M be a smooth connected 3-manifold and let ϖ : X →M be
a smooth CP1-bundle. Let ρ : X →X be an involution which commutes with ϖ ,
and is fiber-wise anti-holomorphic. Suppose ρ has a fixed-point set Xρ which is
an S1-bundle over M, and which disconnects X into two closed 2-disk bundles
X± with common boundary Xρ . Let D ⊂ TCX be a distribution of complex 3-
planes which satisfies the following properties:

• ρ∗D = D,
• the restriction of D to X+ is Ck, k ≥ 1 and involutive,
• D+D = TCX on X \Xρ ,
• D∩kerϖ∗ is the (0,1) tangent space of the CP1 fibers of ϖ ,
• the restriction of D to a fiber of X has c1 = −4 with respect to the complex

orientation, and
• the map X → P(T M) : z 7→ ϖ∗(D∩D)z is not constant along each fiber of

ϖ .

Then M admits a unique Ck−1 indefinite Einstein-Weyl structure ([g],∇) such that
the null-surfaces are the projections via ϖ of the integral manifolds of real 2-plane
distribution D∩TXρ on Xρ .

Proof Let V 0,1 be the (0,1) tangent space of the fibers, then f = D/V 0,1 is a rank
two vector bundle on X . We can define a continuous map ψ : X → Gr2(TCX)
by z 7→ ϖ∗(D|z) which makes the following diagrams commute:

X
ψ //

  @
@@

@@
@@

@ Gr2(TCX)

zzvvvvvvvvv

X

X
ψ //

ρ

��

Gr2(TCX)

c
��

X
ψ // Gr2(TCX)

(8.1)
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Using the involutiveness of D, we can prove that ψ is fiber-wise holomorphic by
a similar argument to that in (9; 10).

Let P : Gr2(TCX)−→P(∧2TCX)∼= P(T ∗CX) be the natural isomorphism. Then
we obtain the fiber-wise holomorphic map ψ̂ = P ◦ψ : X → P(T ∗CX). By defini-
tion, we obtain ψ̂∗O(−1) = ∧2f. On the other hand, since c1(V 0,1) = −2 and
c1(D) = −4 on any fiber of ϖ , we have c1(∧2f) = c1(f) = −2. Hence ψ̂ is
fiber-wise degree 2. For each fiber, there are only two possibilities for ψ̂; either a
non-degenerate conic or a ramified double cover of a projective line CP1 ⊂ CP2.
The latter is, however, removable. Indeed, any line CP1 ⊂CP2 corresponds to the
planes in C3 containing a fixed line. Notice that, for each z ∈X \XR,

ϖ∗(D∩D)z = ϖ∗(D|z)∩ϖ∗(D|z) = ϖ∗(D|z)∩ϖ∗(D|ρ(z))

is independent on z if the image of ϖ−1(x) under ψ̂ is a line. This contradicts the
hypothesis.

Now we define a conformal structure [g]. Let U ⊂ M be an open set and let
U×CP1 ∼→X |U be a trivialization on U . Let ζ be an inhomogeneous coordinate
on CP1 such that ρ(x,ζ ) = (x, ζ̄ ). Then we can choose a Ck frame field {e1,e2,e3}
on T M|U so that

ψ̂(x,ζ ) =
[
(1+ζ

2)e1 +(1−ζ
2)e2 +2ζ e3], (8.2)

where {ei} is the dual frame. Define an indefinite metric g on U so that g(ei,e j)
is given by (3.11). Here, the frame {ei} is uniquely defined by (8.2) up to scalar
multiplication, and the coordinate change of ζ causes an SO(1,2) action on the
frame {ei}. Hence the conformal structure [g] is well-defined by ψ̂ . So we can
obtain an indefinite conformal structure [g] on M.

Next we prove that a unique torsion-free connection ∇ on T M is induced, and
([g],∇) gives an Einstein-Weyl structure on M. We also prove that D agrees with
the distribution defined in Sect. 3.

We fix an indefinite metric g ∈ [g], and take a local frame field {e1,e2,e3} of
T M on an open set U ⊂M as above. It is enough to construct ∇ on U . Notice that
(8.2) gives a natural identification X

∼→Z = P(N(T ∗CM)) on U . If we define the
maps mi : U×C→ T M for i = 1,2 by

m1 =−e1 + e2 +ζ e3 and m2 = ζ (e1 + e2)− e3, (8.3)

then we obtain ϖ∗(D|(x,ζ )) = Span〈m1,m2〉 (see (3.16)).
Let m̃i be the vector fields on U×C⊂U×CP1 'X |U such that m̃i ∈D and

the m̃i are written in the following form:

m̃1 = m1 +α
∂

∂ζ
and m̃2 = m2 +β

∂

∂ζ
, (8.4)

where α and β are functions on X . Then α and β are uniquely defined and Ck.
Moreover, α and β are holomorphic for ζ , since[

∂

∂ ζ̄
, m̃1

]
=

∂α

∂ ζ̄

∂

∂ζ
≡ 0 mod D,
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and so on.
By a similar argument for ζ−1mi on {(x,ζ ) ∈U ×CP1 |ζ 6= 0}, we find that

ζ−1α
∂

∂ζ
and ζ−1β

∂

∂ζ
extends to holomorphic vector fields on {ζ 6= 0}, hence we

can write

m̃1 = m1 +(α0 +α1ζ +α2ζ
2 +α3ζ

3)
∂

∂ζ
,

(8.5)
and m̃2 = m2 +(β0 +β1ζ +β2ζ

2 +β3ζ
3)

∂

∂ζ
,

where αi and βi are Ck functions on U .
Recall that the compatibility condition ∇g = a⊗ g holds if and only if the

connection form ω of ∇ is written

ω = (ω i
j) =

 φ η1
2 η1

3
η1

2 φ η2
3

η1
3 −η2

3 φ

 (8.6)

with respect to the frame {ei} (see (3.12)). For each vector v ∈ TU , the horizontal
lift ṽ with respect to the connection defined from (8.6) is given by (3.15). If m̃i(x,ζ )
is the horizontal lift of mi(ζ )x, then η i

j must be

η
2
3 = η

2
3,0 + f e1, η

1
3 = η

1
3,0 + f e2, η

1
2 = η

1
2,0− f e3, (8.7)

where f is an unknown function on U and

η
2
3,0 =

α0 +α2 +β1 +β3

2
e1 +

−α0−α2 +β1 +β3

2
e2 +(−α3−β0)e3,

η
1
3,0 =

α0−α2 +β1−β3

2
e1 +

−α0 +α2 +β1−β3

2
e2 +(α3−β0)e3,(8.8)

and η
1
2,0 =

−α1 +α3 +β0−β2

2
e1 +

α1 +α3−β0−β2

2
e2.

We claim that there is a unique pair ( f ,φ) such that the connection (8.6) is
torsion-free, that is, ω satisfies

dei +∑ω
i
je

j = 0. (8.9)

First, we fix a connection for which the connection form is

ω0 = (ω i
j,0) =

 0 η1
2,0 η1

3,0
η1

2,0 0 η2
3,0

η1
3,0 −η2

3,0 0

 .

Let λi be the fiber coordinate on T ∗CX with respect to {ei}. We consider the dis-
tribution π∗D on N = N(T ∗CM)\0M , where π : N →Z 'X is the projection.
We define 1-forms θ ,θi,0,τi j,0 on N (see (3.4)) by

θ = ∑λiei, θi,0 = dλi−∑λ jω
j

i,0, τi j,0 = λiθ j,0−λ jθi,0.
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If we simply write τ = τ23,0, then we have (see (3.18))

τ = λ2dλ3−λ3dλ2−λ1
(
λ1η

2
3,0 +λ2η

1
3,0−λ3η

1
2,0

)
.

Similar to the proofs of Propositions 3.3 or 3.5, we obtain π∗D= {v∈TN |θ(v)=
τi j,0(θ) = 0}. Hence the 1-forms {θ ,τi j} are involutive.

Since ∑θi,0∧ ei ≡ 0 mod
〈
θ ,τi j

〉
, we obtain dθ ≡ µ mod

〈
θ ,τi j

〉
, where

µ = (λ2η
1
2,0 +λ3η

1
3,0)∧ e1 +(λ1η

1
2,0−λ3η

2
3,0)∧ e2

+(λ1η
1
3,0 +λ2η

2
3,0)∧ e3 +∑λidei. (8.10)

Then we can write

µ = µ23e2∧ e3 + µ31e3∧ e1 + µ12e1∧ e2, (8.11)

where the µi j = µ l
i j λl are linear in λ . Notice that the µ l

i j are Ck−1 functions
because θ is Ck. Since dθ ≡ 0 mod

〈
θ ,τi j

〉
, there are 1-forms Θ1 and Θ2 such

that

µ = Θ1∧ τ +Θ2∧θ . (8.12)

The 1-form Θ1 is, however, zero since µ does not contain dλi. Hence we obtain
µ ∧θ = 0, and this is equivalent to

−µ 1
23 = µ 2

31 = µ 3
12 ,

µ 2
12 + µ 3

31 = 0, µ 3
23 + µ 1

12 = 0 and µ 1
31 + µ 2

23 = 0. (8.13)

Thus, if we put f = 1
2 µ 3

12 and φ = µ 3
31 e1 + µ 1

12 e2 + µ 2
23 e3, then

µ =−φ ∧θ + f
(
−λ1e2∧ e3 +λ2e3∧ e1 +λ3e1∧ e2).

Here f and φ are Ck−1. Comparing the coefficients of λi with (8.10), we obtain

de1 +φ ∧ e1 +(η1
2,0− f e3)∧ e2 +(η1

3,0 + f e1)∧ e3 = 0,

de2 +(η1
2,0− f e3)∧ e1 +φ ∧ e2 +(η2

3,0 + f e1)∧ e3 = 0,

and de3 +(η1
3,0 + f e1)∧ e1− (η2

3,0 + f e1)∧ e2 +φ ∧ e3 = 0.

This is nothing but the torsion-free condition for the connection defined from f
and φ above.

Since ( f ,φ) is uniquely defined, we have obtained the unique torsion-free
Ck−1 connection ∇. For this ∇, the distribution on Z 'X agrees with D by
construction. Hence ([g],∇) is Einstein-Weyl from Proposition 3.9. The remain-
ing condition is deduced from the fact that D∩TXρ corresponds to R. ut
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Remark 8.2 In the statement of Proposition 8.1, the last hypothesis

• ϖ∗(D∩D)z is not constant along the fiber

is not removable. Actually, ϖ∗(D∩D)z can be constant when the metric degen-
erates so that the light cone degenerates to a line, which occurs as a limit of an
indefinite metric.

Proposition 8.3 Let N be any embedding of CP1 into Z = CP1×CP1 which is
C2k+5 close to the standard one. Let {Dx}x∈S2×R be the constructed family of
closed holomorphic disks on (Z,N). Then a Ck indefinite Einstein-Weyl structure
([g],∇) is naturally induced on M = S2×R.

Proof We apply Proposition 7.3 by putting k + 3 instead of k and l = k + 2. Let

M ϖ←X+
f→ Z be the constructed double fibration (the diagram (7.6)), then f is

Ck+2 in this case. Let X− be a copy of X+ and let X = X+ ∪X − be the CP1

bundle over X which is obtained by identifying the boundaries ∂X+ and ∂X−
where X − is a copy of X− with fiber-wise opposite complex structure. Let ρ :
X →X be the involution which interchanges X+ and X−.

Let f∗ : TCX→ TCZ be the differential of f. We define D = f−1
∗ (T 0,1Z) on X+.

Then, along XR = ∂X+, D is spanned by ∂

∂ ζ̄
and the distribution of real planes

tangent to the fibers of f : XR → N. So we can extend D to the whole of X so
that D = ρ∗D on XR. Let us check the hypotheses in Proposition 8.1:

• ρ∗D = D follows from the construction.
• D is Ck+1 on X+\XR since f∗ is Ck+1, and D is involutive since T 0,1Z is

involutive.
• D+D = f−1

∗ (T 0,1Z)+ f−1
∗ (T 1,0Z) = f−1

∗ (TCZ) = TCX+ on X+\XR since f
is surjective.

• For each fiber ϖ−1(x) = X+|x, the restriction fx : X+|x→ Z of f is a holomor-
phic embedding. Hence D∩kerϖ∗ = (fx)−1

∗ (T 0,1Z) = V 0,1.
• D is C0-close to the D of the standard case, so c1(D) = −4 on each fiber of

ϖ .
• For each x∈M, there are p,q∈Dx such that Cp and Cq intersects transversally

at x (Lemma 7.7). If we put z = f−1
x (p) = f−1(p)∩ϖ−1(x), then we obtain

(TxCp)⊗C = ϖ∗(TCzf
−1(p)) = ϖ∗(ker f∗)z = ϖ∗(D∩D)z.

Similarly (TxCq)⊗C = ϖ∗(D∩D)z′ for z′ = f−1
x (q). Hence ϖ∗(D∩D) is not

constant.

Thus all the hypotheses in Proposition 8.1 are fulfilled, so we obtain the unique
Ck indefinite Einstein-Weyl structure on M. ut

Recall that we obtained a lift f̃ : XR→ S(T N) of f : XR→ N in Sect. 7.

Proposition 8.4 Identifying X with Z ,

1. = f−1
∗ (T 0,1Z) on X+ where f∗ : TCX+→ TCZ,

2. R = ∩TXR = ker{f∗ : TXR→ T N} on XR,
3. L = ker{f∗ : TX+→ T Z} on X+\XR, and
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4. L = ker{f̃∗ : TXR→ S(T N)} on XR.

Proof 1 and 2 follow from Propositions 8.1 and 8.3 and their proofs. We also have
= f−1
∗ (T 1,0Z), so L⊗C = ∩ = ker f∗ : TCX+→ TCZ. Hence 3 follows.
Let us prove 4. Let U×CP1 ∼→X |U be a trivialization on U such that ρ(x,ζ )=

(x, ζ̄ ). Notice that X±|U = {(x,ζ ) ∈U×CP1 | ± Imζ ≥ 0}.
Let us denote ζ = ξ +

√
−1η using a real coordinate (ξ ,η). We fix a point

(x0,ξ0) ∈XR|U and let c(s) be a curve defined by Iε → ϖ−1(x) : s 7→ (x0,ξ0 +√
−1s), where Iε = (−ε,ε) is a small interval. Now, we define a map Φ : Iε×Iε→

X : (s, t) 7→ Φ(s, t) so that Φ(s,0) = c(s) and Φ∗( ∂

∂ t ) = l†, where l† is a ρ-
invariant real vector field such that L = Span

〈
l†

〉
.

Let Σ be the image of Φ , and let ν = Φ( ∂

∂ s ) which is a tangent vector field
along Σ such that T Σ = Span

〈
l†,ν

〉
. Moreover, ν is proportional to ∂

∂η
on Σ ∩

XR. Indeed, we have ρ ◦Φ(s, t) = Φ(−s, t) by definition, so ρ∗ν = −ν . Hence
ν is “pure imaginary” on XR, that is, we can write ν = a ∂

∂η
using a real-valued

function a on XR. Taking ε small, we can assume a is a positive function since
ν(x0,ξ0) = c∗( ∂

∂ s ) = ∂

∂η
.

Since {l†,ν} is involutive, there are functions A,B on Σ such that [l†,ν ] =
Al† + Bν . Let ϕ be a positive function on Σ such that l†ϕ = −B, then [l†,ϕν ] =
ϕAl†. We define a positive function ψ on Σ ∩XR by ϕν = ψ

∂

∂η
.

Now, f : X+ → Z = CP1×CP1 is described as f(x,ζ ) = (F1(x,ζ ),F2(x,ζ ))
in the neighborhood of (x0,ξ0) using functions Fi which are holomorphic on ζ .
Let p1 : Z → CP1 be the first projection. Then its restriction p1 : N → CP1 is
diffeomorphism. Hence, identifying N with CP1 by p1, f : XR→ N is described
by F1. Since L = Span

〈
l†

〉
= ker f∗ on X+\XR, we have l†Fi=0 on X+. Then

l†(ϕνFi) = [l†,ϕν ]Fi +ϕν(l†Fi) = 0,

and so l†
(
ψ

∂Fi
∂η

)
= 0 on Σ ∩XR.

Since the Fi are holomorphic for ζ , we have ∂Fi
∂ξ

=−
√
−1 ∂Fi

∂η
for i = 1,2. Thus

we have obtained

l†(
ψ

∂Fi

∂ξ

)
= 0 (8.14)

on Σ ∩XR for i = 1,2. Since f̃(x,ξ ) =
[

∂F1
∂ξ

(x,ξ )
]

by definition, and since ψ is a

positive function, (8.14) means f̃∗(l†) = 0. From 2 of Proposition 7.5, the fiber of
f̃ is at most one-dimensional, hence L = ker{f̃∗ : TXR→ S(T N)} on XR. ut

Proposition 8.5 The Einstein-Weyl structure ([g],∇) constructed in Proposition 8.3
satisfies the following properties:

1. For each p∈N, Sp = {x ∈M | p ∈ ∂Dx} is a connected maximal null surface
on M and every null surface can be written in this form.

2. For each p ∈ Z\N, Cp = {x ∈M | p ∈Dx} is a connected maximal time-like
geodesic and every time-like geodesic on M can be written in this form.
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3. For each p ∈ N and non-zero v ∈ TpN, Cp,v = {x ∈M | p ∈ ∂Dx,v ‖Dx} is a
connected maximal null geodesic on M and every null geodesic on M can be
written in this form.
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Proof From Proposition 8.4 and the properties of R and L, we obtain

• Sp = ϖ ◦ f−1(p) is a null surface for each p ∈ N,
• Cp = ϖ ◦ f−1(p) is a time-like geodesic for each p ∈ Z\N,
• Cp,v = ϖ ◦ f̃−1([v]) is a null geodesic for each p ∈ N and non-zero v ∈ TpN.

Moreover from Proposition 7.5,

• Sp ' S1×R for each p ∈ N,
• Cp ' R for each p ∈ Z\N,
• Cp,v ' R for each p ∈ N and non-zero v ∈ TpN,

and they are all closed in M. Hence the statement follows. ut

Recall the compactification of the double fibration given by (7.7). Let Ĉp and
Ĉp,v be the compactification of Cp and Cp,v in X̂+ respectively.

Proposition 8.6 1. For each p ∈ Z\N, X̂R|Ĉp
is homeomorphic to S2 and the

restriction f̂ : X̂R|Ĉp
→ N is a homeomorphism. In particular, {∂Dx}x∈Cp

gives a foliation on N\{2 points}.
2. For each p∈N and non-zero v∈ TpN, X̂R|Ĉp,v

is homeomorphic to S2 and the

restriction f̂ : X̂R|Ĉp,v
→ N is surjective. Moreover, this is one-to-one on the

complement of the curve f̂−1(p), hence {(∂Dx\{p})}x∈Cp,v gives a foliation
on N\{p}.

Proof Let p ∈ Z\N, then XR|Cp is an S1-bundle over Cp 'R. Since X̂R|Ĉp
is the

compactification of XR|Cp with extra two points, it is isomorphic to S2. Since f is
C0-close to the f of the standard case, f̂ : X̂R|Ĉp

→ N is a degree one map.
Let f∗ : T (XR|Cp)→ T ZR be the differential. We claim that ker f∗ = 0 every-

where. Indeed, if there exists a non-zero w ∈ Tz(XR|Cp) such that f∗(w) = 0, then
w ∈Dz and ϖ∗(w) 6= 0. Then ϖ∗(w) must be null with respect to the constructed
conformal structure. On the other hand ϖ∗(w) tangents to Cp, so this is time-like.
This is a contradiction.

Hence f̂ : X̂R|Ĉp
→ N is locally homeomorphic degree one map, that is, it is a

homeomorphism.
Next, let p ∈ N. By a similar argument, X̂R|Ĉp,v

' S2 and f̂ : X̂R|Ĉp,v
→ N is

degree one, hence surjective.
We claim that ker{f∗ : T (XR|Cp,v)→ T N} = 0 on z ∈

(
XR|Cp,v\f−1(p)

)
. In-

deed, if there exists non-zero w ∈ Tz(XR|Cp,v) such that f∗(w) = 0, then ϖ∗(w) is
non-zero and null. Notice that ϖ∗(w) is tangent to the null surface Sf(z).

On the other hand, ϖ∗(w) is tangent to Cp,v⊂Sp. Since f(z) 6= p, Sf(z) and Sp
are different null surfaces, hence Tϖ(z)Sf(z) and Tϖ(z)Sp are different null planes
at ϖ(z). Then ϖ∗(w) ∈ Tϖ(z)Sf(z)∩Tϖ(z)Sp must be a space-like vector which is
a contradiction. Hence the statement follows. ut

Proposition 8.7 Let ([g],∇) be the Einstein-Weyl structure constructed in Propo-
sition 8.3. Then, for each distinguished p,q ∈ N, Cp,q = {x ∈M | p,q ∈ ∂Dx} is a
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connected closed space-like geodesic on M and every space-like geodesic on M
can be written in this form. In particular, this Einstein-Weyl structure is space-like
Zoll.

Proof Since Cp,q is the intersection of the null surfaces Sp and Sq, this is either
empty or a space-like geodesic. We claim that Cp,q is not empty and is homeo-
morphic to S1. For each non-zero v ∈ TpN, there is a unique x ∈ Cp,v such that
q ∈ ∂Dx, since {(∂Dx\{p})}x∈Cp,v foliates N\{p} by 2 of Proposition 8.6. Then
x ∈ Cp,q, so Cp,q is not empty. Moreover there is a one-to-one continuous map
S(TpN)→ Cp,q, so Cp,q ' S1. ut

The main theorem (Theorem 1.6) follows from Propositions 8.3, 8.5 and 8.7.
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