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Abstract We construct infinitely many Einstein-Weyl structures on S> x R of sig-
nature (— -+ -+) which is sufficiently close to the model case of constant curvature,
and on which the space-like geodesics are all closed. Such a structure is obtained
as a parameter space of a family of holomorphic disks which is associated to a

small perturbation of the diagonal of CP' x CP!. The geometry of constructed
Einstein-Weyl spaces is well understood from the configuration of holomorphic
disks. We also review Einstein-Weyl structures and their properties in the former
half of this article.

1 Introduction

Twistor type correspondences for the following structures are known (see (6)):

(T1) projective structures on complex 2-manifolds,
(T2) self-dual conformal structures on complex 4-manifolds, and
(T3) Einstein-Weyl structures on complex 3-manifolds.

(T2) is the original twistor theory introduced by R. Penrose (15)). (T3) is called
Hitchin correspondence or minitwistor correspondence.

There has been much progress on these twistor theories; more detailed or con-
crete investigation (13} [14)), real objects and reduction theory (1} 145 |55 [7} [16),
relation with the theory of integrable systems (2} 13), and so on. The geometric
structures considered in these papers are either complex or real slices of complex
objects, hence they are all analytic.
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On the other hand, the real indefinite case, for example, admits non-analytic
solutions. Recently, C. LeBrun and L. J. Mason developed another type of twistor
theory by which we can also analyse such non-analytic solutions (9;[10) (see also
(115 12)). The structures investigated by LeBrun and Mason are

(LM1) Zoll projective structures on S or S*/Z,, and
(LM2) self-dual conformal structures of signature (++——) on $? x 5 or (52 x
S?)/Z,.

Here, a projective structure is called Zoll if and only if all the maximal geodesics
are closed. Notice that (LM1) and (LM2) are the real objects corresponding to
(T1) and (T2) respectively.

There are several remarkable points for LeBrun-Mason theory. First, the twistor
space is given as a pair (Z,N) of a complex manifold Z and a totally real subman-
ifold N in Z. The “twistor lines”, also known as the “nonlinear gravitons”, are
given by holomorphic disks on Z with boundaries lying on N while in Penrose’s
case or Hitchin’s case the twistor lines are embedded CP!. Second, the structures
(LM1) and (LM2) are obtained from a small perturbation of N in Z. By this rea-
son, we have only been able to deal with the objects which are sufficiently close
to the model case up to now. Lastly, the corresponding geometry satisfies a global
condition, for example, Zoll condition in (LM1) case.

In light of this research, in this article, we investigate another possibility, the
LeBrun-Mason type correspondence for Einstein-Weyl structures. We now review
the definitions and then we state the conjecture and the main theorem. Let X be a
real (or complex) manifold.

Definition 1.1 Let [g] be the conformal class of a definite or an indefinite metric
g (or holomorphic bilinear metric for the complex case) on X, and V be a (holo-
morphic) connection on TX. The pair ([g], V) is called a Weyl structure on X if
there exists a (holomorphic) 1-form a on X such that

Vg=a®yg. (1.1)

Definition 1.2 A Weyl structure ([g], V) is called Einstein-Weyl if the symmetrized
Ricci tensor R(;j) = %(Ri j+Rji) is proportional to the metric tensor g;j, that is, if
we can write

Riijy = Agij (1.2)
using a function A which depends on the choice of g € [g].

Let [g] be an indefinite conformal structure on a real manifold X. A tangent
vector v on X is called fime-like if g(v,v) < 0, space-like if g(v,v) > 0 and light-
like or null if g(v,v) = 0. We introduce the following global condition.

Definition 1.3 An indefinite Weyl structure ([g],V) is called space-like Zoll if and
only if every maximal space-like geodesic is closed.

Now we state the conjecture for the LeBrun-Mason type correspondence for
Einstein-Weyl structures.

Conjecture 1.4 There is a natural one-to-one correspondence between
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e equivalence classes of space-like Zoll Einstein-Weyl structures on S*> x R; and
o equivalence classes of totally real embeddings 1 : CP! < CP! x CP!,

at least in a neighborhood of the standard objects.

Here the standard embedding CP' < CP' x CP! is given by £ ~— (&, 1) us-
ing the inhomogeneous coordinate { of CP'. The standard Einstein-Weyl structure
is explained in Sect. [5] Before we state the main theorem, we define the following
notion.

Definition 1.5 Let Z be a complex manifold and © C Z be a holomorphic disk
with boundary embedded in Z. Let v € T,Z be a non-zero tangent vector at p € 9D.
Then v is said to be adapted to ® (denoted by v || ®) if and only if v € T,0D and
v has the same orientation as the orientation of d® which is induced from the
complex orientation of ®.

The main theorem (Theorem[I.6) gives half of the correspondence in the above
con-
jecture; from the embedding 1 to the Einstein-Weyl space. We also claim that
the geometry of the constructed Einstein-Weyl space is characterized by the holo-
morphic disks in the following way.

Theorem 1.6 Let N be the image of any embedding of CP! into Z = CP' x CP!
which is C**3 close to the standard one. Then there is a unique family of holo-
morphic disks {Dx},cs «r such that each boundary 09 lies on N, and that the

parameter space M = §* x R has a unique C* indefinite Einstein-Weyl structure
(lg], V) satisfying the following properties.

1. Foreachp€eN, G, ={x € M|p € dD.} is a maximal connected null surface
on M and every null surface can be written in this form.

2. Foreach p € Z\N, €, ={x € M|p € D,} is a maximal connected time-like
geodesic and every time-like geodesic on M can be written in this form.

3. Foreach p € N andnonzerov € TyN, €, , ={xeM|p € 0D,,v | D,} isa
maximal connected null geodesic on M and every null geodesic on M can be
written in this form.

4. For each distinguished p,q € N, €, , = {x € M|p,q € 0D,} is a connected
closed space-like geodesic on M and every space-like geodesic on M can be
written in this form.

In particular, this Einstein-Weyl structure is space-like Zoll.

The organization of this paper is as follows. We first review projective struc-
tures in Sect. 2| Next, we study complex, definite or indefinite Einstein-Weyl
spaces in Sect. [3] We prove that, in each case, the Einstein-Weyl condition can
be translated to an integrability condition for certain distributions. Applying this
method, we review the proof of the Hitchin correspondence in Sect. ] In Sect. [3]
the model case of the LeBrun-Mason type correspondence is explained. The stan-
dard Einstein-Weyl space is obtained as a double cover of a real slice of Hitchin’s
example. We also study some properties of this model case.

From Sect. [f] we deal with the perturbation of the model case. In Sect. [6] we
prove that, for a small perturbation of the real submanifold N, there is a unique
family of holomorphic disks with boundaries lying on N. This family has similar
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properties to the model case, especially for the double fibration, which is studied
in Sect.[7] Finally in Sect.[§] we prove that there is a unique Einstein-Weyl struc-
ture on the parameter space of the constructed family of holomorphic disks. We
also prove that the geometry of the Einstein-Weyl space is characterized by the
holomorphic disks as in Theorem [I.6]

2 Projective Structures

In this section, we review projective structures. Let X be a real smooth n-manifold
and ' (i=1,...,n) be alocal coordinate on X. The following argument also works
well in the complex case by considering x' as a complex coordinate, and using
holomorphic functions instead of smooth functions.

Definition 2.1 Two connections V and V' on the tangent bundle TX are called
projectively equivalent if their geodesics coincide without considering parame-
terizations. A projectively equivalent class [V] is called a projective structure on
X.

Let V and V’ be connections on 7X, and let Fj’k and I’ j»k be their Christoffel
symbols respectively, that is, V5 d; = Zl"j’}(&[ and so on, where we denote d; = %

Notice that V is torsion-free if and only if 17 = Fk’j The following proposition is
readily checked (see (6)).

Proposition 2.2 Suppose that both V and V' are torsion-free, then they are pro-
Jjectively equivalent if and only if there exist functions f; (i =1,...,n) on X such
that the following condition holds:

] i L o i
17/<:Fljk+§<5jfk+5kfj)~ 2.1

In the complex case, we can prove the following.

Proposition 2.3 Let X be a complex n-manifold, and .7 be a holomorphic family
of holomorphic curves on X. Suppose that, for each non-zero tangent vector v €
TX, there is a unique member of F which tangents to v. Then there is a unique
projective structure [V] on X so that F coincides to the family of geodesics.

Proof Let p: TX\0x — X and 7 : TX \ Ox — P(TX) be the projections, where
Ox is the zero section and P(7'X) is the projectivization of TX. We use a local
coordinate (x') on X, and let (') be the fiber coordinate on 7X with respect to the
frame (%) First we consider a curve ¢ : (—&,€) — X given by ¢(t) = (x'(¢)). We
also write ¢ for the image of c. Then the natural lift ¢ : (—¢,€) — TX is given by

&) = (x'(2); ‘%i(t)). We obtain the velocity vector field of & and this vector field

uniquely extends to the vector field along p~!(c) of the form

0 ) 0
+G'(x,y)

V=Y o a7

(2.2)
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so that G satisfies G'(x,ay) = a®G'(x,y) for each non-zero a € C. Notice that v
descends to a line distribution on 7(¢) C P(TX) by m,. This is the tangent distri-
bution of the lift of ¢ on P(TX), hence it does not depend on the parametrization
of c.

Now we go back to the statement. Since the statement is local, we can assume
P(TX) =X x CP""!, Let CP"~! = UW,, be an affine open cover. By the assump-
tion, a foliation .% on P(TX) is defined so that each leaf of . is the natural lift of
a curve in .%. We notice the curves in .% of which the lift intersects with X x W,,.
Taking a parametrization of them, we obtain a holomorphic vector field

9 . 9
Vo :y’g +Gix(x,y)a7

on 7! (X x W) by the above construction.

In this way, we have obtained the vector fields {vq}. Since vy and vg de-
scend to the same line distribution on X x Wy NX X Wg, we can write vg —
vg = fup (x,y)yiaiyi on T~ (X x We) N~ (X x Wp), where fyp is a holomor-
phic function satisfying f,g(x,ay) = afqp(x,y) for each non-zero a € C. Since
H'(P"~!,0(1)) =0, we can take {v } so that fap = 0 by changing the parametriza-
tions. Hence we obtain a vector field on the whole of 7X \ Ox of the form (2.2).
Then G' must be a degree-two polynomial for y, so we obtain a torsion-free con-
nection V so that G'(y) = [}/ yX. For this V, each curve of .Z is a geodesic by
construction. Here V is determined up to projective equivalence since the ambigu-
ity of taking v remains. 0O

3 Einstein-Weyl Structures

In this section, we study the basic properties of 3-dimensional Einstein-Weyl
structures. We will prove that the Einstein-Weyl condition is equivalent to the
integrability condition of certain distributions. We consider the complex, definite,
and indefinite cases separately.

Complex case. Let X be a complex 3-manifold and ([g], V) be a Weyl structure on
X. We pick a g € [g], however, the statements do not depend on the choice of g.
We denote

TeX = TX®C =T o1%X
and T¢X =T'X@C=T"""Xor%X.

Notice that g induces complex bilinear metrics on 719X, 701X 7*1.0X and 7*%1 X
which we also denote g.

Definition 3.1 For each x € X, a complex two-dimensional subspace V C TXI’OX
is called a null plane if the restriction of g on V degenerates.

The following property is easily checked.

Lemma 3.2 Ifv e Txl’OX is null, then v* is a null plane. Conversely, every null
plane is written as v* for some null vector v.
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Notice that v = kerv* for every v € Tx1 ’OX, where v = g(v,-) € Ty 1’OX, and

that v is null if and only if v* is null. Let N(7*!°X) be the null cotangent vectors,
and 2 = P(N(T*'°X)) be its complex projectivization. Notice that each point
u € Z corresponds to the null plane V, = kerA, where A € N(T*'°X) is the
cotangent vector satisfying u = [A]. We can define a complex 2-plane distribution
c 710 % so that, C Tul’off is the horizontal lift of the null plane V,, with respect
to V. Notice that the horizontal lift is well-defined since N(T*'°X) is parallel to
V because of the compatibility condition (L))

Proposition 3.3 Let X be a complex 3-manifold. A Weyl structure ([g],V) with
torsion-free V on X is Einstein-Weyl if and only if the induced distribution on &
is integrable, in other words, involutive.

Proof Let {e},e3,e3} be an orthonormal complex local frame on T'°X with re-
spectto g € [g], and {e',e?, e} be the dual frame on T*1:°X . Let 0 = (@}) be the
connection form of V with respect to {e;}, and let K;'- = K}klek Ael be its curva-
ture form. Then from the compatibility condition (I.I), we obtain the following
symmetry for K:

Kj'kl = A;kl + (sjl:Bkl,

Ay = —Al =—A}, and By =—By. 3.1)
Since the frame is orthonormal, the Einstein-Weyl equations are
R(12) =R23) =R;31) =0 and  R(11) = R2) = R33),
and this is equivalent to
Adi3 A3y = Al +AT; = Al +A4%; =0 and Ay, =A% = Aty 32)

Now let A" = N(T*'9X)\0x, and 7 : .4 — 2 be the projection where Ox
is the zero section. Then is integrable if and only if the pull-back 7* is inte-
grable. Here 7* C T'0.# is the complex 3-plane distribution defined by 7* =
{ve T#|m.(v) € }. On the other hand, there is a 2-plane distribution™C 7104
which is defined in a similar way to , that is, , is the horizontal lift of the null plane
V... These distributions are related by n* ="@ (Y'), where

P
T = ina—% (3.3)

is the Euler differential. Now we define several 1-forms on .4/ by
0 =Z),iei, elzdl,—Zl/(Dlj and Tij :),,-Gj—),jei. (34)

Then"={ve T A |0(v)=6;(v)=0(Vi)} and n* ={v € T A |O(v) = T;j(v) =
0(Vi,j) }. Hence is integrable if and only if the 1-forms {6, 7;;} on .4 are invo-
lutive. Notice that 73 /A1 = 731 /A2 = T12/A3, hence 7;; are proportional to each
other.
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Let us prove that is integrable if and only if (3.2) holds. First, we claim that
d9 =0 mod <9 ’L',]> always holds. Indeed, since 0, /A; = 6,/ = 63/23, we
have

Y one = /\9 0 mod (6,7;).

On the other hand, we have the torsion-free condition: de’ + ) a)j. Ael =0. Then
de :ZdliAei+Zl;dei:ZOi /\ei—i—Z/li(dei + (D; Aely=0 mod (6,7;).
Next, a direct calculation shows that
drp =Y MAK)+ Y LAK]  mod 7, (3.5)
and we can check that d7j, = 0 holds if and only if
0 =3[ — A3l — Aly A3 — AypA3
+ (AT + A% M A + (A% +ATs) A + (A3 +A312) ks

for every (4;) satisfying Y A? = 0. Hence is integrable if and only if the Einstein-
Weyl equation (3.2) holds. O

The distribution can be explicitly described in the following way. As in the
above proof, let us take a local orthonormal frame {e;,e;,e3} on an open set
U C X. From the compatibility condition (L.1), the connection form @ of V is
written

o m m -
o=|nt ¢ ni|, withn/=-n] (3.6)
nmomo¢

We can write
N(T*YX) |y = { Y de'| Y. A7 =0}
and Z|y = {[ll 20 3] !Zl,z:O}.
Then we obtain
T3 = hdAs — A3dda + A1 (Mind +mi +A3m)). (3.7)
Let U x CP! = 2|y be a trivialization given by
(r.0) — [i(1+82) : 1-¢%:2(], (3.8)

where § € CU{eo} is a inhomogeneous coordinate. The horizontal lift ¥ of v € T,U
at (x,§) e Zy is

o ni +ing 2M5—im Y\, 9
v—v—i-{ 5 —ilm+¢ 5 }(v)ac (3.9)
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For (x,{) € Z|y, the corresponding null plane on Tx] Ox is spanned by
m(§) =iej +ex+Ces and my(z) = {(—ies +e2) —es. (3.10)

Hence (, ) is spanned by iy ($), and M (&)y. Therefore the Einstein-Weyl con-
dition is equivalent to the involutive condition [, ;] € . Proposition could
also be proved in this way. However, it is rather easier to check the integrability
condition for 7* as we did.

Definite case. Let X be a real 3-manifold and ([g], V) be a definite Weyl structure,
that is, a Weyl structure on X with positive definite [g]. In this case, we can define
complex null planes on TcX. If we put 2° = P(N(T*X)), then we can define the
complex 2-plane distribution C 7¢Z in the same manner as the complex case by
using the horizontal lift defined by (3.9). The complex conjugation TX — TX
induces a fixed-point-free involution ¢ : 2 — 2 which is fiber-wise antiholomor-
phic. Notice that satisfies 6* = . We also define a complex 3-plane distribution
CTcZ by = @V, where VO! C T 2 is the (0, 1)-tangent vectors on the fiber
of @ : Z — X. Here, we also obtain 6* = .

Proposition 3.4 Let ([g],V) be a definite Weyl structure on a 3-manifold X. Let
@ : Z — X be the CP'-bundle and be the distribution on % constructed above.
Then there is a unique continuous distribution L of real lines on 2 which satisfies
L®C = N on Z. Moreover the projection ®(C) of each integral curve C of L is
a geodesic.

Proof Tf we take a real local frame {e'}, then we can describe the situations in a

similar way to 1) to (3.10). Then = Span (f;,M;) and = Span <ﬁl],ﬁlg, a%>

Since + = Tp %, L exists uniquely by a dimension counting argument.
Now let us define

[ =Cmy+my=2(Im¢)e; +2(Re)er+ (|]> — 1)es.

Notice that [ is real. We can take a unique function y on % so that

. d
"= +ﬁaz+y&—§

is real. Then we obtain L = Span <l*>. Let p: — be the natural projection, then

p(L) = Span(I), where [ = {1it; + fit,. By construction, the image of an integral
curve of p(L) by @ is a geodesic. Pulling back to by p, we obtain the statement.
O

Proposition 3.5 Let X be a real 3-manifold, and ([g],V) be a definite Weyl struc-
ture on X with torsion-free V. Then ([g],V) is Einstein-Weyl if and only if is
integrable, in other words, involutive.

Proof The distribution is integrable, if and only if 7* is integrable, where 7 :
N = N(TEX)\Ox — 2. If we take an orthonormal frame field {e,es,e3} of
TcX, and if we use the complex fiber coordinate {4;} for 7;*X, then we can define
1-forms 6, 6;, 7;; on .4 by . In this case, we obtain * = 7* + 1*V%!, and
mt={veT*A|0(v)=1j(v) =0(Vi )} Hence is integrable if and only if
(8,7;) is involutive. By similar arguments, this occurs if and only if ([g],V) is
Einstein-Weyl. O
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Remark 3.6 Locally speaking, /L defines an almost complex structure on the
space of geodesics on X. Proposition [3.5 means that this almost complex struc-
ture is integrable if and only if ([g], V) is Einstein-Weyl (see also (14)).

Indefinite case. Let X be a real 3-manifold and ([g], V) be a Weyl structure on X
for which the conformal structure [g] has signature (— ++). Let {e1,e2,e3} be a
local frame field on 7'X such that

-1

(9:j) = (g(eirej)) = 1 e 3.11)

A non-zero tangent vector v € TX is called time-like, space-like or null when
g(v,v) is negative, positive, or zero respectively. The following properties are eas-
ily checked.

Lemma 3.7 1. For each space-like vector v, there are just two real null planes
which contain v.
2. Each time-like vector is transverse to every real null plane.

Similar to the definite case, we define N (TEX ), the space of complex null
cotangent vectors, and 2 = P(N(T$X)), the space of complex null planes. In
the indefinite case, we can also define N(7*X), the space of real null cotangent
vectors, and Zg = P(N(T*X)), the space of real null planes. There is a natural
embedding Zr — 2. The complex conjugation 7*X — 72X induces an invo-
lution o : Z — Z which is fiber-wise antiholomorphic and for which the fixed
point set coincides with Zg.

Let us describe the situation explicitly using the above frame {¢;} and its dual
{e'}. From the compatibility condition , the connection form @ of V is writ-

ten:
o mny m
o=|n} ) n; |- (3.12)
nmo-ni ¢

We can write
NTEX)u = { Y A€’ | A7+ A3 +2F =0}
and Z|y={[M:A: A AT+ +AF =0}, (3.13)
Let U x CP! = Z%|y be a trivialization over an open set U C X such that
(x.0)— [(1+8%)e! + (1= +28 ] . (3.14)

Here 2% corresponds to {(x,{) € U x CP' |{ € RU {0} }. The horizontal lift ¥
ofve T,U at (x,§) € Z&|u is

o Mmooy anim 9
v—v—i—{ > ¢ny +¢ 5 (v)aé,. (3.15)
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If we define

m({)=—e;+ex+Ces and my({) = (e +e2) —es, (3.16)

then m;({) and my (&) span the null plane corresponding to (x,{) € 2. Define
the real 2-plane distribution g C T 2R so that g = Span (], 1, ), where #; are the
vector fields on 2% such that i, ¢ is the horizontal lift of m({),.

We can extend #; meromorphically on %, and define the complex 2-plane
distribution C T2 by = Span (i, ;). We also define a complex 3-plane dis-
tribution by = @ V%!, where VO C T2 is (0,1)-tangent vectors. Then we
obtain

r®C = |5R and rp=NT2x=NT2Zk.

Proposition 3.8 Let ([g],V) be an indefinite Weyl structure on a 3-manifold X.
Let ® : 2 — X be the CP'-bundle and be the distribution on % constructed
above. Then there is a unique continuous distribution L of real lines on & which
satisfies LQC = N on Z\ 2R and L C g on Zr. Moreover each integral curve
C of L is contained in either 2\ 2% or 2%, and the projection @ (C) is time-like
geodesic if C C %\ 2, and null-geodesic if C C Zg.

Proof Let us define a real vector field / on X by

l=my—{my = —(1+[CP)er + (1 [)ex+ (£ + Oes. (G.17)

Notice that [ is time-like if Im § # 0, and null if Im{ = 0. We can take a unique
function y on Z so that

z d

IM=1my —Cy+y—

1—&my+y FYe

is real. Since [ = i, — {1y is real on 2%, ¥ =0 and [T = [ on 2%. If we put

L= (I"), then we obtain L& C = N on 2\ Zk and L C g on Zg. L is unique

since E + E = Tc 2 on 2\ 2. The remaining statements are proved in a similar
way to the definite case (Proposition[3.4). O

Proposition 3.9 Let X be a real 3-manifold, and ([g],V) be an indefinite Weyl
structure on X with torsion-free V. Then the following conditions are equivalent:
e ([g],V) is Einstein-Weyl,

e the real distribution R is integrable,

e the complex distribution is integrable.

Proof 1If we put

d d 0
T = _/’LITM—FAZTM—'—)GT)B’

T =M +10;, T3=A460;+4060 and T3 =710;—136,

instead of (3.3)) and (3.4)), then the situation is parallel to the complex or definite
case. O
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A direct calculation shows
T3 = lzdﬂg — 7L3d12 — ll (ll T]32 + )QT[% — ;\,37721) (3.18)
Equation (3.T8) will be used in Sect. [§]

Remark 3.10 We can write = () & () locally, hence ¢; () = ¢ ((f1)) +c1 ((Mz)) =
—2 along each CP!-fiber of @ : 2 — X. Since ¢ (V®!) = —2, we also obtain
¢1() = —4 along each fiber.

4 Hitchin Correspondence

In this section, we recall the twistor correspondence for complex Einstein-Weyl
structures introduced by Hitchin (6).

Let Z be a complex 2-manifold and Y be a non-singular rational curve on Z
with the normal bundle Ny,; = &/(2). Let X be the space of twistor lines, that
is, the rational curves which are obtained by small deformation of Y in Z. By
Kodaira’s theorem, X has a natural structure of a 3-dimensional complex manifold,
and its tangent space at x € X is identified with the space of sections of the normal
bundle Ny, /7, where Y, is the twistor line corresponding to x.

Proposition 4.1 There is a unique Einstein-Weyl structure on X such that

e each non-null geodesic on X corresponds to a one-parameter family of twistor
lines on Z passing through two fixed points, and

o cachnull geodesic on X corresponds to a one-parameter family of twistor lines
each of which passes through a fixed point and is tangent to a fixed non-zero
vector there.

Proof We have Ny, ;; = 0/(2) for each x € X since ¥, is a small deformation of Y.
We have T.X = I"(Yy, Ny, 7) by definition. Each holomorphic section of Ny, /7 =~
0(2) corresponds to a degree-two polynomial s({) = al? 4+ b + ¢, where ¢ is
the inhomogeneous coordinate on Y,. We can define the conformal structure [g]
so that a tangent vector in 7,.X is null if and only if the corresponding polynomial
5(&) has double roots, that is, when b? —4dac = 0.

If we fix two, possibly infinitely near, points in Z, then the twistor lines passing
through these points make a one-parameter family. This family corresponds to a
holomorphic curve on X. Let .% be the family of such holomorphic curves. Then,
by Proposition we obtain a unique projective structure [V] on X such that %
coincides with the geodesics.

Now, we prove that there is a unique torsion-free V € [V] such that ([g],V)
defines a Weyl structure. For this purpose, we first fix an arbitrary torsion-free
V € [V], and check that the second fundamental form on each null surface with
respect to V vanishes.

For each point p € Z, the two-parameter family of twistor lines passing through
p corresponds to a null surface S on X. Notice that S is totally geodesic and nat-
urally foliated by null geodesics each of which corresponds to a tangent line at
p. Let N = TX|g/TS be the normal bundle of S. The second fundamental form
H:TS®RTS — N is defined by v w — [V,w]", where the value does not depend
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on how we extend w. Take a frame field {e;,e2,e3} on TX]|g so that e is null and
TS = (e, ez). Then the metric tensor is

*
*
*

9= 1(gij) =

* OO
* x O

Since V is torsion-free, V,, e2 — Vo, e1 = [e1,e2] € TS, 50 g(Ve e2,e1) = g(Ve,e1,€1).
Since g13 # 0, we obtain

Ly =I5 (4.1)
On the other hand, since S is totally geodesic, we obtain
0=g(Ve&,e1) =& &g +13))
for every tangent vector & = E'e; +&2e; on S. So we obtain 1“132' +F231 =0, and
combining with 1} we obtain I3 = I} = 0. Hence g(Ven,er) = 0 for every
vector field & and 1 on S, and this means I/ =0 on S.
Next we claim that there are functions a;,b; (i = 1,2,3) on X such that
1 1
(Vg)ijk = aigji + Ebjgik + Ebkgij- 4.2)
Since /I = 0 for every null surface, we obtain
Vng(£,6)=0 (4.3)
for every null vector £ and every vector 1) satisfying g(n, &) =0. Let us fix alocal

frame {e;} on X. If we put & = &'e;,n = n'e; (i =1,2,3) and @, = V,, (e, ex),
then (4.3)) is written

(pia&’E")m' =o. 4.4

Since & runs over all null vectors, (&7) moves the conic
C={[E":&%: & eCP?| E'Elg; =0} .
For fixed &, (n') moves the line
L&) ={m':n*:n’ €CP*| n'(§/gy) = 0}.
Since (4.4) holds for every [n'] € L(§), we can take a function b(&) satisfying
P& " = b(8)E gij

for every £ € C and i = 1,2,3. Then we can take b(&) to be a degree-one poly-
nomial. Actually, since £/g;; (i = 1,2,3) do not all vanish at the same time, b(§)
= (@ijx&IEX) /(E7gij) defines a holomorphic section of &'(1) over CP2. If we put
b(E) = byEX, then we obtain

(@ijx — brgij) E7EF =0
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for i = 1,2,3. Here the by (k= 1,2,3) are functions on X. Since these equations
hold for every & € C, there are functions a; on X such that

(Qiji — brgij) X X* = ai(gijij>

for every (X/) € C3 and i = 1,2,3. Noticing the symmetry, we obtain (4.2).
Finally, if we define a new connection V by

. , 1 1

then V € [V] and V satisfies

(V9)ijk = (ai —b;)gjk,

which means V is compatible with [g]. Moreover, ([g], V) is Einstein-Weyl, since
the integrable condition in Proposition [3.3]is automatically satisfied by construc-
tion. Notice that such a connection is unique since the compatibility condition is
not satisfied for any other torsion-free connection in [V]. O

Remark 4.2 Let 2" = {(x,p) € X XZ| p € Y, }, then we obtain the double fibration
xZ ol Z, where @ and f are the projections. Each u € 2" defines a null plane
at @ (u) € X as a tangent plane of the null surface corresponding to f(u) € Z. Hence
we obtain a natural map 2" — 2 =P(N(T{ 19X)) which is in fact biholomorphic.
Identifying 2" with 2, we obtain = ker{f, : Té’oﬁ” — T(CI’OZ}.

Hitchin introduced two examples of Einstein-Weyl spaces, each of which is
obtained from a complex twistor space (6)). The twistor space of one of them is

Z={lzo:21:22:23] € CP*|zf +25 +23 = 0}.

In this case, the twistor lines are the plane sections, and the corresponding Einstein-
Weyl space is flat. In the other case, the twistor space is

Z:{[ZO:ZI3225Z3]ECP3|Z%+Z%+Z%+Z%=O}. (4.6)

In this case, the twistor lines are also the plane sections, and the corresponding
Einstein-Weyl space is constant curvature space. We study the latter example in
more detail in the next section.

5 The Standard Case

In this section, the standard model of LeBrun-Mason type correspondence is ex-
plained. We start from Hitchin’s example (4.6)), and construct the model case as a
real slice of it (see also (14)).

If we change the coordinate, can be written {[z;] € CP?|z0z3 = z122}
which coincides with the image of the Segre embedding CP! x CP' — CP3,

([uo : ur], [vo : vi]) — [uovo : uovi = uivo : ujvy).
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So we usually identify Z with CPP! x CP'. Since the twistor lines are the plane
sections, the twistor lines are parametrized by X = CP*3. We introduce a ho-
mogeneous coordinate [£7] € CP*3 so that [£7] corresponds to the plane {[z;] €
CP3|&iz; = 0}. Let

Xoing = { [§] € CP | £°8° =162}

be the set of planes tangent to Z. If [£] € Xsing, then the plane section degenerates
to two lines

(CP' x [—&": €%) U ([—€2 : €°) x CP!)

intersecting at the tangent point. We call such a plane section a singular twistor
line on Z. Since Proposition [lef] does not work on Xy, the Einstein-Weyl struc-
ture is defined only on X\ Xgip,.

Next we introduce real structures, that is, antiholomorphic involution on Z.
There are several ways to introduce such a structure. For example, if we take the
fixed-point-free involution

Gl : ([u() : ul], [V() : V]]) — ([ul : uo], [Vl : —V()D,

then ¢’ extends to an involution on CPP? by

[20:z21:22:23) — [Z3: —Z2 0 —7Z1 2 Zo).-

Then we also obtain an antiholomorphic involution on X. Let Xg be its fixed point
set. Since X M Xjng is empty, we obtain a real Einstein-Weyl structure on the

whole of X = RP? as a real slice of the complex Einstein-Weyl structure on
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X \Xsing. This is nothing but the definite Einstein-Weyl structure induced from the
standard constant curvature metric on RIP3.
Our main interest is, however, in the indefinite case. Let

o: ([u() : ul],[V() : vl]) — ([\71 :17()],[121 :I/_t()]),

be another involution on Z for which the fixed point set is denoted by Zg. The
involution ¢ extends to an involution on CP? by

[20:z1:22:3] — [Z3:21 1 221 Z0).-

Then we also obtain an involution on X. Let Xg be its fixed point set. In this case,
XR sing = XR N Xiing 1S nonempty.

Let (n1,M2) = (uo/u1,v0/v1) be a coordinate on Z = CP' x CP!, and let us
write 7(n) for f1~". Then &(n1,m2) = (t(n2), T(m)) and Zg = {(n,7(n))|n €
CP'}. In this coordinate, each non-singular twistor line / is written as a graph of
some Mébius transform f : CP' — CP!, that is, I = {(1,f(n))|n € CP'}. The
twistor line [ is o-invariant if and only if (f(n)) = f~!(z(n)), and in this case
we can write

__An-B

f(n)—Bn_C

for some (A,B,C) € R x C x R satisfying |B|> — AC # 0. The intersection / N Zg
is nonempty if |B|> — AC > 0, and is empty if |B|> — AC < 0.

In the non-singular case, the parameters (A,B,C) can be normalized so that
|B|> —AC = +1. Since (A, B,C) and (—A, —B, —C) defines the same M&bius trans-
form, we obtain Xg \Xp sing = H LUH', where

H={(ABC)eRxCxR||Bf-AC=1}/=%
and H' = {(A,B,C) eRxCxR|[B?-AC=—1}/=.

We obtain an indefinite Einstein-Weyl structure on H and a definite Einstein-Weyl
structure on H' as a real slice of X \Xsing . The conformal structures are the class
of

g = |dB|* —dAdC,

which is indefinite on H and definite on H’.
If we identify CP' = Zg by @ — (@, ®""), then the intersection of Zg with
the twistor line corresponding to [A,B,C| € H is the circle

{w € CP' |Alo|*~Bd—Bw+C=0}. (5.1)
Hence H is naturally identified with the set of circles on CP!, and its double cover
H={(A,B,C) eRxCxR|[B?-AC=1}2§xR

is identified with the set of oriented circles on CP!. Since each circle divides the
twistor line into two holomorphic disks, H is identified with the set of holomorphic
disks in Z with boundaries lying on Z.
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There is a natural action of PSL(2,C) on H, H' and H defined in the following
way. Each ¢ € PSL(2,C) = Aut(CP') induces an automorphism on Z by

¢ - (m,m) = (¢(m), 79 T(12)). (5.2)

The automorphism ¢, maps each o-invariant twistor line to another o-invariant
twistor line. Since ¢, preserves Zg, ¢, preserves H and H'. Obviously this action
lifts to an automorphism on H, and we will see later that this action on H is
transitive.

Now we introduce an explicit description of the holomorphic disks corre-
sponding to H. Let M =2 CP! x R = U; UU,, where the U; = {(4;,t) € C x R}
are patched by A, = A, '. Let @ : 27, — M be the disk bundle

2y = (U, xD)U(Up x D),

where D = {z € C||z] < 1}. We denote 2k = (U} x dD)U (U, x dD), and notice
that 2 is a circle bundle with ¢ (ZRr) = 2 along each fiber of @. Let us define a
smooth map f: 25 — Z by

a+rh ora—MA

filzl +r rilm +1
1222 +r rizzz —A
—2+1" ro+h

Uy xD 3 (A,1521) — (

and U x5 (A, 1322) — (

);

where r = ¢'. In this way, we have obtained the following double fibration:

2
7N
M VA

We use the coordinate A € CU {o0} = CP! satisfying A = A; on Uy, and we define
Dy = fom~'(A,t). Then {D (1) }(1.1)em gives the family of holomorphic disks
which coincides with the family corresponding to H above. Hence naturally M =2
H. Notice that we made our construction in such a way that the center of D 1)
that is, the point given by z = 0, lies on

0={(A,-1)ez|reCP'}

(5.3)

which is a twistor line on Z corresponding to [1,0,1] € H'.

We have already defined a PSL(2,C)-action on M = H by (5.2). For each
element ¢ € PSU(2) C PSL(2,C), we can check that ¢..(D (3 1)) = D(4(1),)- Since
PSU(2) acts transitively on CP', PSU(2) acts transitively on CP! x {t} ¢ M for
each ¢t € R. On the other hand,

o= ["_t e,] € PSL(2,C) (5.4)
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gives the automorphism ¢, which maps the disk D(g,1) to D(g 2;)- Hence the action
of PSL(2,C) on M = H is transitive.

Let S(TZr) = (TZr\0z,) /R be the circle bundle on Zr, where Oz, is the
zero section and R is positive real numbers acting on TZg by scalar multipli-
cation. On 2R, we can take a nowhere vanishing vertical vector field v, that is,
@.(v) =0, so that the orientation matches the complex orientation of the fiber of
@ : 2 — M. Since {.(v) does not vanish anywhere, we can define a smooth map
f: 2& — S(TZg) by u— [f.(v,)]. Then we obtain the following diagram:

f S(TZg)
.
R

Proposition 5.1 Let S; = CP! x {t} C M, and let f; and §; be the restriction of §
and § on @~ (S;) respectively. Then, for eacht € R,

1. f: (Z5\Z2R)|s, = Z\Zg is diffeomorphic,
2. §i: 2rls, — S(TZg) is diffeomorphic, and

3. fii Zrls, > Zrisan S Ufibration such that each fiber is transverse to the
vertical distribution of @ : Zr — M.

2R

In particular, {D(3, 1)}, ccpr gives a foliation on Z\Zy for eacht € R.

Remark 5.2 Notice that, from 2 above, the following holds: for eacht € R, p € Zg
and non-zero v € T,Zg, there is a unique x € S; such that p € dD, and v || D, (see
Definition[T.3).

Proof of Proposition[5.1] We can assume ¢ = 0 by changing the parameter r € R

by the automorphism of type (5.4).
When ¢ = 0, we can interpret the situation as a geometry on S in the following

way. Let §? = {(x1,x2,x3) € R?| Y.a? = 1} and p : CP! = S? be the stereographic
projection,

2ReA 2ImA 1—|AJ?

i (T 1 e

We identify Z with S? x §? by the diffeomorphism Z = S? x 82 : (n1,m2) —
(p(m),p°t(N2)), where T(n) = 1~ !. Notice that Zg corresponds to the diago-
nal in this identification.

Recall that D, ¢ is the image of D — Z:

z+A  z—A
—Az+1" Az+1

).

Then aD( 1,0) C Zg corresponds to the big circle on the diagonal §% C 8% x §? cut
out by the plane

z— (m,m) = (

2(ReA)x; +2(ImA)xz + (1 —|A[*)x3 =0. (5.5)
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Hence we obtain a one-to-one correspondence between A € CP! and the oriented
big circle p(dD;, o)), Where the orientation is induced from the natural orientation
of p(D( “»). Moreover, we claim that the following conditions are equivalent:

(A1) (T]l,nz) € Z lies on D(LO)*
(A2) the oriented big circle p(dD(y o)) winds anti-clockwise around p(n;), and

this big circle coincides with the set of points on S? which have the same
distance from p(n;) and p-7(n,) with respect to the standard Riemannian
metric on S2.

Indeed, if (11,M2) € D3 ¢), then the point

p(m)+pet(n) R’

lies on the plane (5.5)), hence the big circle p(BD( LO)) satisfies (A2). The converse
is easy. In particular, the following conditions are equivalent:

B1) (nl,nz) € Zp lies on 8D<,170),
(B2) the big circle p(dD(y )) passes through p(11) = po7(1n2).

The statement follows directly from this interpretation. Actually, for each p =
(M, M2) € Z\Zg, the big circle satisfying (A2) exists uniquely, hence 7 holds. For
each p = (11,M2) € Zr, S(TZRr) corresponds to the oriented big circles satisfying
(B2), hence 2 and 3 follow. O

The geometry on M is characterized by the double fibration (5.3) in the fol-
lowing way:

Proposition 5.3 1. Foreachp € Zg, G, ={xEM|p € D} =@-f '(p)isa
maximal connected null surface on M and every null surface can be written
in this form.

2. Foreach p € Z\Zg, €, = {x € M|p € D} = ®@-§ (p) is a maximal con-
nected time-like geodesic on M and every time-like geodesic can be written in
this form.

3. For each p € Zg and each non-zero v € T,Zp, €, , = {x € M|p € dDy,v ||
D} = @5 ([v]) is @ maximal connected null geodesic on M and every null
geodesic can be written in this form.

4. For each distinguished p,q € Zg, €, 4 ={x € M|p,qg € ID:} = &,N G, is
a closed connected space-like geodesic on M and every space-like geodesic
can be written in this form.

Proof Since {dD; )} is the set of oriented circles of the form (5.1, we obtain

e &,~S!xRforeach p € Zg,
e (,,~Rforeach p € Zg and non zero vector v € T, Zg,
o &y S! for each distinguished p,q € Zg.

Since &, is a real slice of a complex null surface, it is a real null surface. More-
over, it is a maximal connected null surface since &, is closed in M. Hence I
holds. In a similar way, we can see that €, , is a maximal connected real null
geodesic, so 3 holds. &, , is also a maximal connected real non-null geodesic. No-
tice that €, ; is contained in the null surface &,. Since a null plane never contains
time-like vectors, €, , is a space-like geodesic (see Lemma . Hence 4 holds.
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Now we check 2. Let p € Z\Zg and notice that every o-invariant twistor line
passing through p also passes through 6 (p). So €, is a real slice of the complex
geodesic corresponding to the two points p and o(p). Hence €, is a geodesic.
From Proposition we obtain €, ~ R which is closed in M. Hence €, is a
maximal connected geodesic. To see that €, is a time-like geodesic, it is enough
to check that €, is transversal to every null plane at each point (see Lemma .
Notice that, if we fix three points on Z, there is at most one twistor line containing
them. Hence €,N &, = {x € M|p,6(p),q € D,} is at most one point for each
q € Zr. Thus €, is time-like. O

In particular, we obtain the following.

Corollary 5.4 The indefinite Einstein-Weyl structure on M constructed above is
space-like Zoll.

Let 2 = 2y Uy, 2_ be a CP! bundle over M, where 2_ = 27, is the copy
of 2~ with fiber-wise opposite complex structure. On the other hand, we have a
CP'-bundle 2 on M equipped with the distributions g, , L and so on. Then, similar
to Remark there is a natural identification .2~ — 2 such that

e foreach p € Zg, f~!(p) corresponds to an integral surface of g,

e for each p € Z\Zg, {~!(p) corresponds to an integral curve of L in 2"\ 2k,
and

e for each p € Zg and [v] € S(T,Zgr), §'([v]) corresponds to an integral curve
of Lin Zx.

Hence the following holds:

e Rp= QT%RZKCI'{](* ZT:%-RHTZR} on 2,
o L=ker{f,: T2 —TZ}on 2 \Zr,and
o L=ker{f,:T2r — S(TZg)} on 2%.

Recall that we denote S; = CP' x {t} and let us denote Z; = @~(S,), where
O : 2 — M is the projection. Let , = NTg Z; for each ¢. Then, since LNT Z; =0,
we obtain = (L®C)&®,. From N =L®Cand & =T 2", we obtain , &, =T Z;.
Moreover, since is integrable, ; is also integrable. Hence , defines a complex
structure on Z;.

Now we claim that f, : (23\ZRr)|s, — Z\Zg is holomorphic with respect to
the above complex structure. Consider the complex Einstein-Weyl space M¢ =
X\Xging defined at the beginning of this section, and let 2z = P(N(T*'"OMc)).

Then we obtain the double fibration M¢ «— Z¢ Ig Z, where f¢ is holomorphic.
On the other hand, there is natural embedding i, : (Z5\ZRr)|s, — Z¢ which is
holomorphic since it preserves the distributions. Since f; = fc ¢, f; is holomorphic
on (Z3\2R)s,-

From the above argument, we obtain, = (f,); /(T%!Z) c {71 (T%'Z) on 27, \ 2&.
Since L ® C = kerf, there, we obtain = (L®C)®, C f;/(T*'Z) on 27\ Zk.
Then we also have C §;'(T'°Z). Since + = Tc. 2, and N = L® C, we obtain
— 171(11Z) on 2.\ 2.

In this way, we have proved the following:

Proposition 5.5 Identifying & = &+ U Z_ with Z,
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=T Z) on 2 where §, : Tc X, — TcZ,
r=NTZr = ker{f* T 2R — TZR} on Ig,
L=ker{f,: T2y —>TZ} on Z1\2r, and
L=ker{f,:T2r — S(TZr)} on 2x.

bl NS

It is convenient to consider the compactification of M and :27.. Let I = [—oo, o]
be the natural compactification of R. If we put M= (Cﬂl’l x I, then we obtain a
natural embedding 1 : M — M. Next, let ¥ : 27 — M x Z be the embedding
defined by ¥ (u) = (1°@(u),f(u)). Let us define Z and Zy as the closure of
¥(2 ) and ¥(2Rr) in M x Z. Then we obtain the double fibration

(‘%7'-‘1-7%]1%) (5.6)

S
M \(szR)

where @ and f are the projections. .

Notice that &' (x) is no longer a disk for x = (A, e0) € dM, but a marked
CP! for which the marking point is @~ (x) N Zr. We denote these marked CP!
by

Dy

700)

& '(A,—o0) = {1} x CP!
a1

and D .y =@ '(A,00) =CP' x {-1}, (5.7)

where Dy, .,) is marked at (A,A7") and Dy}, —os) is marked at (A7, =2).
Recall the definitions of €, and €, , introduced in Proposition We define

@p and @m as the compactification of €, and €, in M respectively. Then the
following properties are easily checked.

Proposition 5.6 1. For each p € Z\Zg, fR|@]) is homeomorphic to S? and the

restriction § : X

&~ ZRr is a homeomorphism. In particular, {8Dx}x€¢p
gives a foliation on Zg\{2 points}.
2. For each p € Zgr and non-zero v € T,Zg, %M@p , is homeomorphic to S2

and the restriction §: 2w &y ZR is surjective. Moreover, this is one-to-

one on the complement of the curve ~'(p), hence {(@D\{P}) }rce,, gives
a foliation on Zg\{p}.

Remark 5.7 For distinguished points p,q € Zg ~ CP!, there are two families of
circles called “Apollonian circles”. One of them is the family of the circles passing
through p, g, which corresponds to the space-like geodesic €, ;. The other family
gives a foliation on CP'\{p,q}, which corresponds to a time-like geodesic and
the foliation coincides with the one given in / of Proposition[5.6] The Case 2 of
Proposition[5.6] corresponds to the degenerate case.
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6 Perturbation of Holomorphic Disks

We now investigate the deformation of holomorphic disks. For a complex mani-
fold A and its submanifold B, we use the term holomorphic disk on (A,B) for a
continuous map (ID,dD) — (A, B) which is holomorphic on the interior of D =
{zeC|lz| < 1}.

As in the previous section, we put Z = CP! x CP! and Zg = {(n,77")|n €
CP'}. We have the family of holomorphic disks {Dy ,)} defined from the double
fibration @, and we call each Dy, ;) a standard disk. In this section, we treat a
small perturbation N of Zg, and prove that there is a natural (S? x R)-family of
holomorphic disks on (Z,N) each of which is close to some standard disk. From
the general theory by LeBrun (8)), one can show that there exists a real three-
parameter family of holomorphic disks on (Z,N) near each standard disk. We,
however, use the method given in (9) so that we can consider the holomorphic
disks in more detail.

First of all, we recall the C*-topology of the space of deformations of Zg in Z.
A small perturbation N of Zy can be written

N= { (m.o(m) ) ) n e(CJPl}

using an automorphism ¢ : CP' — CP! which is sufficiently close to the identity
map. Let {A;} be finitely many compact subsets and {B;} be open subsets on CPP!
with complex coordinates 1;, which satisfy A; C B;, ¢(A;) C B; and U;A; = CP!,
Then ¢ is identified with a combination of functions (h;);, where k; € C¥(A;,C) is
defined by ¢(n;) = n; + h;(n;) for each i. The C*-topology of the set of deforma-
tions of Zg in Z is defined by the norm

19llcx = S‘%P||hi||ck(A,»)v
l

where ||| ck 4, is the supremum on A; of absolute values of all partial derivatives

of h; for which the order is less than or equal to k. In particular, let A € CP' be a
compact subset contained in a coordinated open subset of CP!, which we denote
B, and suppose ¢(A) C B, then ||| 4 1s sufficiently small if ¢ is sufficiently

close to the identity where ¢(1) =1+ h(n).

Lemma 6.1 Fix a standard holomorphic disk D = D ;). If N C Z is the image

of any embedding CP' — Z which is sufficiently close to the standard one in
the C*'-topology with k,1 > 1, then there is a real three-parameter C'-family of
holomorphic disks on (Z,N) each of which is L close to D.

Proof Since there is a transitive action of PSL(2,C) on the standard disks, we can
assume (A,7) = (0,0), that is,

D ={(z,z) € Z|z € D},

where D = {z € C||z| < 1}. If we put A = {n € C|J < |n| <2}, then N can be
written

{(777(77+/1(77))1)EZ’116A}
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near dD using a function h € CK*/(A) for which the C¥*'-norm is sufficiently
small.
Then a small perturbation of dD is given as the image of

1

S' 5 N: 0 (04O [e—i<e+a<e>> " }‘l(ei(G-s—u(B)))}_ ).

)

where u is a C-valued function on S! = R /27Z. Here we write () for u(6) and
ﬁ(n) for h(1). Then we define the maps §; : LZ(S',C) x CF(A4,C) — L (S',C)
y
[§1(u,1))(6) = &)

1 6.1)

and  [§2(u,h)](6) = e—i(9+ﬁ(6))_i_/jl(ei(e-&-u(e)))}_ _

For a given h, we want to choose u € L(S",C) so that [§;(u,/)](6) extends holo-
morphically to {|z] < 0} for z = /®. Taking the derivation §;, we obtain

[31-(0.0) (i, 1)](8) = i€ 1(6)

. : o (6.2)
and  [§2.(0,0)(,1)](0) = ie®i(0) — e*h(e™®).

Now, we introduce some bounded operators (see (9)). Set

Lzl = {Zaleile GIEC, Z|al|2<w}

<0 <0

a €C, Y *a)? < oo} =L(s',Cc)nL?,
1<0

and L,%l = {Zale’w

1<0

and define IT : L(S',C) — L7 | by
I Z aleile) _ Zaleile~
[=—00 <0
Similarly let us define i : L(S',C) — C by

o Y ae®) =ap.

|=—oc0

Then, for k,I > 1, we define a Cl-map
F:L2(S',C) x C*(A,C) — LF] xL}| xCM(A,C) xCxCxC
given by
F=IT-F1) x (IToF2) X JT X (meFy) X (meF2) X 1,
where

JI:L23(S',C) x 1 (A,C) — C*(A,C)
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is the factor projection, and
.72(¢l k+1
m: L (S ,C) xC"(A,C) —C

is given by

1 21
m(u,h):E/o u(6)d6,

in other words, mr(u,h) = u(u). The map § is C' since IT, JI, m and m are all
bounded linear operators, and its derivative is given by

Ss = (Hogl*) X (H"g%) x JI x (HOSI*) X (HOSZ*) X .

In particular, if we write 1(6) = ¥, u,e™?, then we obtain

[ Zn<0 iun—leine 1

iZn<oﬁ1—n€i"9 _ H(ezio;l(eie))
I/‘t .

il —H(eZiesz(eie))
uo

Since §,(0,0) has a bounded inverse, the Banach-space inverse function theorem
tells us that there is an open neighborhood 4 of (0,0) € L2(S',C) x C**/(A) and
open neighborhood B of 0 € L7 | xL?| xC*™(A,C) x C x C x C such that §]y :
{ — Y is a C'-diffeomorphism.

Hence, for a given /&, we obtain a complex three-parameter C'-family of holo-
morphic disks defined from (u,h) = F~1(0,0,h, 01,0, B), where o, a, 3 are
small complex numbers. It contains, however, real three-dimensional ambiguity
which comes from the disk automorphism. To kill this ambiguity, it is enough to
use the inverse of

(0,0,h, 0, —,if) € L7| xLi| xC*™(A,C) x Cx C xC, (6.3)

in § for (a, ) € C x R which is sufficiently close to (0,0). Now the statement
follows since [|A|cx+14) is sufficiently small if N is sufficiently close to Zg. O

Remark 6.2 1. Let ® be any holomorphic disk on (Z,N) constructed as in the
above lemma. Then ® intersects with N only on the boundary 0. Actually,
letD — Z:z+— (¢1(z), ¢2(z)) be the map corresponding to © and denote N =

{900 )|

n € CP'}. Notice that 1 — ¢(n)_1 maps @;(9D) to ¢2(ID) and maps the in-
terior of ¢; (D) to the outside of @, (D). Suppose that there is an interior point

z € D such that @,(z) = ¢ (¢ (z))il. Then ¢;(z) is contained in the interior of

@1 (D), and ¢ (¢, (z))_1 is outside of @,(ID). This is a contradiction.
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2. We can take U so that
V=0 xVp xWxV; xV, xVs
with 20 = { he C*'(A,C) | ||hllcriq) < &}, (6.4)

where U; C Lﬁl and V; C C are small open sets and &) > 0 is a constant. This
notation is used in the following arguments.

Next we want to prove that, if N is sufficiently close to Zg, then the method of
Lemmal[6.Tlworks for all standard disks at once. Then we need a uniform estimate
of the deformation N of Zg among all standard disks. In LeBrun-Mason’s case (9;
10), the parameter spaces of holomorphic disks are compact and homogeneous, so
the uniform estimate is automatically deduced from the local estimate. In our case,
however, the parameter space is a non-compact space S x R, so we need more
detailed arguments. For this purpose, it is enough to show that the deformations
of the disks are “tame”, as in the following lemma, on the neighborhood of the
boundary of the parameter space.

Lemma 6.3 Let {D; ;) } be the standard disks. Suppose N CZ is sufficiently close

to Zg in the C*"'-topology. Then a three-parameter family of holomorphic disks
on (Z,N) near Dy, ;) always exists for each (A,t) € CP' x R with t > 0.

Proof 1t is enough to consider the case A = 0. We fix a small constant ¢ > 0 and
let B, = {z € C||z| < c}. Notice that the compact subset B. x CP! C Z contains
all holomorphic disks of the form D g, if e >2¢~!. We can write

NO(Bex CPY) = { (n.(n+h(m) ) |0 eB. (65)

using i € C**!(B,,C). We claim that if 2l i,y < %, then a three-parameter

family of holomorphic disks on (Z,N) near D g, exists for all ¢’ > 2¢~ ! Here g
is the constant defined in (6.4).
Now we show that it is enough to prove the case when 2(0) =0 and ||| cer1(,) <

2‘9—\%. In the general case, if we change the coordinate (11,7, ') € Z to (1, ")

by the relation

Si=m, &=m+hr0),

then we can write
NO(Bex CPY) = { (&.E+9(@) )| & € B}

using g(&) = h(§) — h(0). Here we obtain ||g|ce+1(p,) < ;—Oﬁ, because

&
52}3’('9(5)' < ;:g |h(&)| +[1(0)] < W
&

and sup [Dg(&)| = sup [Dh(§)| < —7=,
E€B. E€B, 42
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where D is any partial derivative of degree less than or equal to k+ /. Hence, if we
replace g with i, we can assume /(0) = 0 and ||h||ck+1(BC) < %

From now on we write r for e’. A small perturbation of dD g, is given as the
image of

1V 01 (10RO, [0 (oD |

where u is a C-valued function on § I
LetA"={z€C|5 < |z <2r '} and A=A', then A" is a compact subset of
B if r > 2c~ 1. We define the maps §7 : L7 (S',C) x C**!(A",C) — LZ(S',C) by
[ (u,)](6) = r~"e/O ()

B »
and  [35(u,h))(6) :[flgﬂwﬂ«e» +h(,flez<e+u<e)))}

Putting 4’ (z) = rh(r~'z), we obtain

(31 (u,m)](8) = ' [1(u,h")](6) and  [F5(u,h)](6) = r[F2(u,h)](6).(6.6)
where §; is the map given by . Notice that the map p” : h +— h" gives an

isomorphism of Banach spaces C*7/ (A", C) — C**!(A,C).
In a similar way to how we defined § in Lemmal[6.1] we define

3 L2(S',C) x C*T(A",C) — LF] xL}| xCF(AT,C) x Cx C x C
given by
§" = (IT>§1) x (IT>F3) X JI X (me ) X (meF) X mr,

where JI is the projection. Then we can relate §" to § in the following way. Let
m(r) be multiplication of r on L7 or C, then we obtain the following commutative
diagram

L2(S',C)x CHH (A7, C) — 5+ [2| xI2| xCHH(A7,C) x CxCxC  (6.7)

lidxp’ iqpr

L(S',C) x CH1(A,C) L>L,%L xLZ| xCH(A,C)xCxCxC

where @ = m(r) x m(r~') x p” x m(r) x m(r~!) x id. Notice that the vertical

arrows in the above diagram are isomorphisms, and that the restriction §|g : 4 —

0 gives a C'-diffeomorphism from the proof of Lemma Hence the restriction
F: (idx p") (8 — (@) 71(D)

is a C'-diffeomorphism. If we take % to be the product as in (6.4), then

(D)UY = r 101 x 18y x (p7) 1) x r V) x Vs x V3.
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We want to show that h|4r € (p”)~!(20), or equivalently [7"{| crs(ay < €o. for

all r >‘20_1. Let x,y be the real coordinate such that n = x + iy, and let D =
d™/dx’dy™/ be a derivation of degree m < [+ k, then we obtain

Dh'(n) = rlf’”Dh(f] n).

Hence
sup [ DI ()| < =" sup |Dh(r~ )] < r'™" sup IDA(G)| < S5=r' " < g,
neA neA CeAr 2v/2

if m > 1. For m = 0, notice that

1
dtS/ ?
0

h 1
Setem)| e+ [

L dh
A E(m)

) < [

oh
ay(m)\ yldi

& &
< ——=(|x|+ <=1,
275 DD < inl

hence we obtain

_ r&y
sup ()| = rsup [h(r~'n)| = r sup [DA()] < —= sup |{| = &.
neA nea CeAr LeAr

In this way, we have obtained || (n)|cx+1(4) < & for all r > 27 O

Remark 6.4 Lemma also holds for ¢ < 0. Exchange the role of factors of
Z = CP! x CP' and replace ¢ with — to prove this case.

From Lemmas[6.1]and [6.3] we obtain the following statement.
Proposition 6.5 If N C Z is the image of any embedding CP' < Z which is suf-
ficiently close to the standard one in the C**!-topology with k,1 > 1, then there
is a C! family of holomorphic disks on (Z,N), each of which is L,% close to some
standard disk on (Z,Zg).

We will strengthen this statement in Proposition

7 The Double Fibration

In this section, we investigate some properties for the family of holomorphic disks
constructed in Sect. |6l We continue to use the notation §,§;, 4,0 and so on.
For each h € CK(A, C), we define C'-maps ", F" : U — L}(S",C) so that
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where U C C x R is a small open neighborhood of (0,0) depending on /. By defini-
tion, the functions F* (e, B)(z) extend to holomorphic functions on D = {|z| < 1},
and satisfy F/'(a,B)(0) = a and F}(a, 8)(0) = —a. If we expand

E"a,B)(6) = Y E" (o, B)re™, (7.1)

k

then we obtain Z"(a, B)o = iB by definition. Notice that we can also define the
derivatives Z" and F". which satisfy

(2¥(a.B),0) = .(0,0,0, 6, —¢x,ip),
Fl\ (¢, B) () = F1. (2" (e, B),0)(6) = iF{'(e"®) EX (e, B)(6),
(e, B)(¢°) = F2. (5"(e1, 8),0) (),
Fl.(a.p)0)=¢a  F.(6,p)0)=—a and E!(c,B)o=ip.
Let N C Z be the image of any embedding CP' < Z which satisfies Propo-

sition Let us denote by %1(\/&‘ g) the holomorphic disk on (Z,N) which cor-

responds to the element (0,0,/, &, —,if3) € U in the notation of the proof of
Lemmal[6.1l Then

%?/a,ﬁ) ={ (F!(a,B)(2). F'(, B)(2)) € Z’ z€D}, (7.2)

and {%I(Va_ B)}(aﬁ)ey gives a three-parameter family of holomorphic disks, each
of which is L,%-close to the standard disk D o). Notice that ‘B’(Va p) Passes through

o, —a) when z =0, hence, for fixed «, efines a one-parameter fami
h 0,h for fixed gB](vaB)ﬁdﬁ p family

of holomorphic disks which pass through (o, —a).

In the standard case, the following statement holds.
Zr
(a,

Proof Since the disk
B = {(F)(.B)().F (. B)(z)) € Z|z €D}

coincides with one of the standard disks near D(q ), there is a unique element
(A,t) € CP! x R near (0,0) such that

Proposition 7.1 B ) coincides with the standard disk D¢ ).

i0 t
. +eA
FO(a, B)(€) = expi(6 + =°(a, B)(0)) = =% 73
{(@.B)(e) = expi(6+ (@ B)0) = Fp ()
Then we obtain & = F°(c, 8)(0) = A. On the other hand, taking the derivative of
(7.3), we obtain
(A +Af)e(10-1)  oi0=t) _j

c=00 5 [ _ _
l“* (avﬁ)(e) l_i_ke,(ig,[) + l—leie—"
If we expand the right hand side and compare the constant terms, then we find
iB = Z(ct, B)o = i

On the other hand, it is easy to see that t = 3 when o« = 0. Hence (1,7) = (o, )
foreach (a,f) € U. O
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Let M be the parameter space of the family of holomorphic disks on (Z,N)
constructed in Proposition [6.5] Then M has the natural structure of a real 3-
manifold and we can take a coordinate system on M in the following way. For
each (1,t) € CP! x R, choose an element T = T(4,¢) € PSL(2,C) such that
T.(D(a,)) = D(o,0)» Where {D; ;} are the standard disks. Let UTcCxRbean

open neighborhood of (0,0) such that ‘B(T;(‘? is defined for all (o, ) € UT. Then

)
{T*_l%{;cszg}(a_ﬁ)euf gives the family of holomorphic disks on (Z,N) each of

which is close to D(; ), and {U T(A0} gives a coordinate system on M.
Using the above coordinates, we prove the following lemma.

Lemma 7.2 Suppose N C Z is sufficiently close to Zg so that Proposition |6.5)
holds, and consider the constructed family of holomorphic disks on (Z,N). Then,
foreach qg= (o, — ) € Z, there is an R-family of holomorphic disks each of which
passes through q. Moreover there is a natural compactification of this family and
the boundary points oo correspond to marked CP!.

Proof We can assume o = 0. Take any ¢ so that || is sufficiently small, and con-
sider the standard disk D(g ). If we define T € PSL(2,C) by

="l

_ - _ Y
then T*(T]l,nz) = (e’m,e tnz) and T*(D(O,t)) = D(070), Now {T* 1%(0,ﬁ,)}ﬁ’ev

gives a one-parameter family of holomorphic disks on (Z,N) each of which is
close to D(y ) and pass through (0,0). Here V is the set {3’ € R|(0,8') e U”}.
(N

B~

N~

Since |¢| is small, there is an open set V' C V such that T*’l%(TS )) is suffi-

ciently close to D(g ) for all B’ € V'. Hence, for each 8’ € V', there is a unique
(a,B) such that

T.(V)

-1 -
T "B =

Blp)- (7.4)

Now N and T (N) can be written locally as

N;{(m(n+Mn»‘3‘neA} and 74Nk{(n(n+hﬂn»4)‘neA},

using a C¥*!_function i which is defined on a neighborhood of A = {z € C|
|z| < 2}. Here we write i’ to mean ThT~!. Then (7.4) is equivalent to

<

e F"(0,8")(2) = Fl'(a.B)(z)  onzeD.

Evaluating for z = 0, we obtain @ = 0. Moreover, this is also equivalent to

it+ =" (0,8')(8) = E"(a,B)(8) onBeS.
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Comparing the constant terms for ¢!, we obtain 8 = B’ +¢. Hence || is equiv-
alent to (o, ) = (0, B’ +1). So the one-parameter family {%%,B)}(Oﬁ)GU extends
to

{BeR]|(0,B)eUor(0,p—1)eU" }

by putting %1(\(]1 ) = T*_l%g(gll " In this way, we can define the one-parameter

family {%%.ﬁ)} for all B € R.

The statement of the compactification is obtained from Lemma and its

proof. Indeed, in the notation of (6.3)), if we take the limit # — oo, the holomorphic
disk parametrized by ¢ degenerates to {0} x CP' marked at (0, (0)71). As we

explained in Remark we also obtain another marked CP! by taking the limit

t— —co, 0O
Now the following statement is easily proved.

Proposition 7.3 If N C Z is the image of any embedding CP' < Z which is suffi-
ciently close to the standard one in the C**'-topology with k,1 > 1, then there is a
C! family of holomorphic disks on (Z,N) parametrized by S% x R which satisfies
the following properties:

o ceach disk is Lz-close to some standard disk,

e there is a natural compactification of the family such that the compactified
family is parameterized by S* x I, and each boundary point on S* x I corre-
sponds to a marked CP' embedded in (Z,N),

where [ = [—oo, 00| is the compactification of R.

Proof Let Q = {(A,—A) € Z| A € CP'}. For each g € Q, there is an R-family
of holomorphic disks constructed in Lemma(7.2] Since this family varies continu-
ously, we obtain the family of holomorphic disks parametrized by O x R ~ §% x R.
The statement for the compactification is obvious from Lemma O

For each (A,t) € CP' x R, we define

T.(N)

Py
Do =T. %(0,0) J

where T = T(,t) € PSL(2,C) is an element which satisfies T..(D(; ;) = D 0,0)-
Then we obtain the continuous map j: CP! xR — M : (A,1) D (a.1)- Moreover,

we can prove that j is an isomorphism in the following way. For each constructed
holomorphic disk © on (Z,N), we can choose (4,7) and T =T (A,t) so that ® =

T*_l%(T(’;%). Here A is uniquely defined so that the center of © is (1,—A). Then

D =D p) from Lemma and its proof, so j is surjective. The injectivity and
the continuity of j~! is also deduced from the above procedure of choosing (A1),
hence j is isomorphism.

Let us construct the double fibration. Let U C CPP! x R be a sufficiently small
neighborhood of (0,0). For each (A,t) € U, we define T = T(A,t) € PSL(2,C)
by

7 1 [] —etl]
e 2\ /T+ A2 A e |’
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then we obtain 7. (D(; ;)) = D o )- Introducing C**!_functions /4 and h” similar to
those in ((7.5)), we define amap f: U x D — Z by

f(A,62) =T, (F" (2), ' (2).

Then f is C' for (A,) and C¥~! for z, and we obtain D ; ) = {f(A,1:2) € Z|z € D}.
Constructing a similar map for each neighborhood of CP! x R, and patching
them, we obtain the double fibration

(%+7 %R) (7.6)

/ \
M ~CP' xR (Z,N)

where @ is a disk bundle. By construction, Z7; is the same disk bundle as the
standard case. In particular, we obtain ¢; (£r) = 2 along each fiber of @ and that
oisC”.

Lemma 7.4 Let N C Z be the image of any embedding CP' — Z which is suffi-
ciently close to the standard one in the C**'-topology with k,1 > 1, and consider

the double fibration (1.6). Then f.(v) # 0 for each non-zero vector v € T 2y such
that @, (v) = 0.

Proof For each (u,h) € LX(S',C) x CK!(A,C), we have

d d . .
S lB1(1)](0) = OO = OHHON iy i (5)),
so this does not vanish if ||u]] 2 is sufficiently small. Hence, by shrinking 4( and U
smaller if needed, the statement holds for v € ker @, over U C M, where U is the
neighborhood introduced above.

Now, recall the diagram (6.7) in the proof of Lemma Notice that the
L,%(S ! C) component does not change by the vertical arrow, so we can estimate
u € L(S',C) uniformly so that %[SI (u,h)](0) does not vanish for all r. Hence
the statement holds for all v e ker@,.. O

By Lemma we can define the lift f of f by f: 2& — S(TN) : u+ [f.(V.,)].
Here v is a nowhere vanishing vertical vector field, that is, @.(v) = 0, for which
the orientation matches the complex orientation of the fiber of @ : 2. — M. The
next proposition is the perturbed version of Proposition

Proposition 7.5 Let N C Z be the image of any embedding CP' < Z which is
sufficiently close to the standard one in the C**'-topology with | > 1,k > 2. Con-
sider the double fibration (7.6), let S; = CP' x {t} C M, and let §; and §, be the

restriction of § and | on @' (S;) respectively. Then, for eacht € R,

L f: (ZE\ZR)|s, — Z\N is diffeomorphic,

2. §,: 2rls, — S(TN) is diffeomorphic,

3. f;: 2Rls, — N is an S'-fibration such that each fiber is transverse to the
vertical distribution of @ : Zr — M.
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In particular, {® (3, 1)} )ccpt gives a foliation on Z\N for eacht € R.

Remark 7.6 From 2 above, it follows that: for each t € R, p € N and non zero
v € T,N, there is a unique x € S; such that p € 99, and v || D,.

Proof of Proposition[/.5] Since S; is compact and f is C I_close to the standard
case, we can assume the derivation of f; to be non-zero everywhere by shrink-
ing 20 smaller if required. Here 20 is the open set defined in Remark [6.2] Notice
that we can define 2 so that this property holds for all # € R at once by Lemma/|6.3
and its proof. Thus f; gives a proper local diffeomorphism on (£ \ ZR)|s,, and
this is actually a diffeomorphism since f; is close to the standard case.

By a similar argument for the lift f : 2&|s, — S(TN), we obtain property 2.

If there are x € S; and p € N such that @' (x) and f, ! (p) are not transversal at
u € 2w, then (f).(v,) = 0. This contradicts Lemma([7.4] hence 3 holds. O

From Proposition[7.3] we obtain the natural compactification of @ and f which
gives the following double fibration:

(24, Zr) 7.7

S
m \(Z,N)

which is studied in Sect.[8]

In the last part of this section, we prove the following technical lemma which
enables us to prove the non-degeneracy of the induced conformal structure. Let
us denote €, = @-f~!(p) = {x € M|p € D,} for each p € Z\N, then €, is an
embedded R in M from Proposition Notice that €, is a closed subset in M
since it connects two boundaries of M.

Lemma 7.7 Let x € M, then there are two points py,py € D,\0D, such that €,
and &, intersect transversally at x.

Proof We can assume x = (0,0), and we use the local coordinate (¢,) € U
around x. Each tangent vector on (g )M is given by (&, 8) € C x R = Tj ) (C x
RR). Notice that the tangent vector (¢, B) € T(0,0)M induces the vector field

(Fi(e, B)(2). P (. B)(2))

along D). Here we identified C x C with the tangent vectors on each point of

CxC CZ F(a,p) and B, (&, B) are holomorphic functions on ID and their
zeros coincide since

by (6.2). Ifﬂ # 0, then F.(0,B)(z) is not a zero function since §. is bijective,
and F1.(0,)(0) = 0 by definition. This means that (0, 3) € T(o)M is tangent to
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€ 0,0) since the one-parameter family of holomorphic disks fixing (0,0)e®CZis

unique and this family corresponds to the vector field (Fi.(0,8)(z), F>+(0.8)(z))
along ®.
Now consider the vector field

(F]*<IQ,B)(Z),FZ*(taaB)(Z))

for ¢ € [0,1] and non-zero & € C with sufficiently small |¢|. Then F . (r¢x, ) is a
non-zero holomorphic function on ID for all 7, and its zeros vary continuously de-
pending on 7. Hence there exists a z; € D near 0 such that Fi (&, 8)(z1) = 0 but z
cannot be 0 because Fi . (¢, 8)(0) = & # 0. If we put po = (F{(0,0)(z1), F2(0,0)(z1)) €
D (0,0)> then we find that (a,B) € T(o,0)M is tangent to €, . Hence p; = (0,0) and

p2 satisfies the statement. 0O

8 Construction of Einstein-Weyl spaces

In this section, we construct an Einstein-Weyl structure on the parameter space of
the family of holomorphic disks on (Z,N) constructed in the previous sections.
The following proposition is critical.

Proposition 8.1 Let M be a smooth connected 3-manifold and let @ : 2~ — M be
a smooth CP'-bundle. Let p : & — 2 be an involution which commutes with @,
and is fiber-wise anti-holomorphic. Suppose p has a fixed-point set 2, which is
an S'-bundle over M, and which disconnects X into two closed 2-disk bundles
2+ with common boundary Z,. Let I C Tc 2" be a distribution of complex 3-
planes which satisfies the following properties:

o p =1,

the restriction of Il to 2 is Ck k > 1 and involutive,

O+ 0 =TcZ on Z\Zp,

ILNker @, is the (0,1) tangent space of the CP! fibers of @,

the restriction of Il to a fiber of 2~ has ¢y = —4 with respect to the complex

orientation, and

o themap 2 — P(TM) : z — @,(I1N 1), is not constant along each fiber of
.

Then M admits a unique C*~' indefinite Einstein-Weyl structure ([g], V) such that
the null-surfaces are the projections via ® of the integral manifolds of real 2-plane
distribution INT %, on Zp.

Proof Let V! be the (0, 1) tangent space of the fibers, then & = JT/V*! is a rank
two vector bundle on 2. We can define a continuous map y : 2" — Gr(TcX)
by z — @.(1];) which makes the following diagrams commute:

A Gl’z(T(cX) Z Gl’z(T(cX) 8.1
N7 |
X @ Y Gry(TeX)
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Using the involutiveness of I, we can prove that y is fiber-wise holomorphic by
a similar argument to that in (9} [10).

Let P : Gry(TcX) — P(A?TeX ) 2 P(TEX) be the natural isomorphism. Then
we obtain the fiber-wise holomorphic map ¥ = Poy : 2~ — P(T#X). By defini-
tion, we obtain {*&(—1) = A?U. On the other hand, since ¢;(V®!) = —2 and
c1(I1) = —4 on any fiber of @, we have c1(A%0) = ¢;(U) = —2. Hence ¥ is
fiber-wise degree 2. For each fiber, there are only two possibilities for ; either a
non-degenerate conic or a ramified double cover of a projective line CP! ¢ CP?,
The latter is, however, removable. Indeed, any line CP! C CP? corresponds to the
planes in C? containing a fixed line. Notice that, for each z € 2"\ 2,

@. (AN ). = @.(A|) N@.(A]:) = @, (1]:) N @ (L))

is independent on z if the image of @' (x) under V¥ is a line. This contradicts the
hypothesis.

Now we define a conformal structure [g]. Let U C M be an open set and let
U x CP' 5 27|y be a trivialization on U. Let ¢ be an inhomogeneous coordinate
on CP! such that p(x, {) = (x, {). Then we can choose a C* frame field {e;,e>,e3}
on TM|y so that

V(x,8) =[(1+&He' + (1 - EP)e* +2¢e°], (8.2)

where {e'} is the dual frame. Define an indefinite metric g on U so that g(e;,e;)
is given by (3.11). Here, the frame {e;} is uniquely defined by up to scalar
multiplication, and the coordinate change of { causes an SO(1,2) action on the
frame {e;}. Hence the conformal structure [g] is well-defined by . So we can
obtain an indefinite conformal structure [g] on M.

Next we prove that a unique torsion-free connection V on 7'M is induced, and
([g], V) gives an Einstein-Weyl structure on M. We also prove that II agrees with
the distribution defined in Sect.[3l

We fix an indefinite metric g € [g], and take a local frame field {e;,ez,e3} of
TM on an open set U C M as above. It is enough to construct V on U. Notice that
1! gives a natural identification 2" = 2 =P(N(T¢M)) on U. If we define the
maps m; : U x C — TM fori=1,2 by

m;=—e; +ex+8e; and mp = (e +e2)—e3, (8.3)

then we obtain @, (|, ¢)) = Span(m;,my) (see (3.16)).
Let t; be the vector fields on U x C C U x CP*' ~ 27|y such that @; € IT and
the m; are written in the following form:

P d
My =m +0— and thy=my+f—s (8.4)

e e

where o and 3 are functions on .2". Then o and f8 are uniquely defined and C*.
Moreover, ¢ and 8 are holomorphic for {, since

{8 1] da d

a—é,m =0 mod /1,

=37t =
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and so on.
By a similar argument for { ~'m; on {(x,{) € U x CP!|{ # 0}, we find that

¢! aa‘% and (!B a% extends to holomorphic vector fields on {§ # 0}, hence we
can write

ﬁl—muww+a@+aﬂz+%@hi,
3 (8.5)
and W =my+ (ﬁo+ﬁ1§+ﬁz€2+ﬁsé3)x,

where o; and f3; are Ck functions on U.
Recall that the compatibility condition Vg = a ® g holds if and only if the
connection form @ of V is written

/0 m m
o=)=[nl ¢ n} (8.6)
m -n ¢

with respect to the frame {e;} (see (3.12))). For each vector v € TU, the horizontal
lift ¥ with respect to the connection defined from @ is given by @]) If i ¢)

is the horizontal lift of m;({),, then 71; must be

ny=nso+rfe', M =n30+rf M =mo—fe, (8.7)

where f is an unknown function on U and

+on+ B+ —0— 0+ B+
» _ Mt atpf ﬁ3e1—|— o — o+ pi ﬁ3e2+(—a3—[30)e3,

=
w
=]

|

! 2 2
— 0+ P — —0p+ 0+ Ppr —
iy =2 22B1 Pap — 3 Piobs o (o p)e8s)
—oy + o3+ Py — o + a5 — o —
and nzl’() _ 1 32 ﬁO ﬁ2€1+ 1 32 ﬁO ﬁ2€2.

We claim that there is a unique pair (f,¢) such that the connection is
torsion-free, that is, @ satisfies

de' +Y wie! =0. (8.9)
First, we fix a connection for which the connection form is

_ (1) Mo 773;0
= () = 772],0 02 N30
Mo ~Mo O
Let A; be the fiber coordinate on X with respect to {e'}. We consider the dis-

tribution 7* 1 on A" = N(TEM)\Oy, where 1 : AN — 2 ~ 2 is the projection.
We define 1-forms 8, 6,0, T;j,0 on .4 (see (3.4)) by

0= Zliei, 9,'7() = dliflewli{O, Tij0 = liej,() —)LjG,;o.
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If we simply write T = T3 0, then we have (see (3.18))
T= lgdﬂg — )@,dﬂq M (A,l 1‘]32’0 + 121’]3170 — 131721’0).
Similar to the proofs of Propositions[3.3|or[3.5] we obtain 7* 1= {v € T.#"| 8(v) =

7ij,0(0) = 0}. Hence the 1-forms {6, 7;;} are involutive.
Since }_ 6; o Aet =0 mod <9,’L’l‘j>, we obtain d6 = 4 mod <6,’L’l-j>, where

u= (127121,0 + 137131,0) Ne' + (A 7?21,0 - 137132,0) Ne
+(Amig+Aamig) Ae’ + Y Aide'. (8.10)
Then we can write
U= lze* Ned + usred Ael + el Ae?, (8.11)

where the p;; = g, jl)q are linear in A. Notice that the y; j’ are C¥~! functions

because 6 is CX. Since d0 =0 mod <9,’L’,’j>, there are 1-forms ®; and ®, such
that

U=O AT+, NB. (8.12)

The 1-form O, is, however, zero since ( does not contain dA;. Hence we obtain
U A6 =0, and this is equivalent to

—Ha3 = i = 5
W+ =0, fod + ) =0 and  pyy 7 =0. (8.13)

Thus, if we put f = $11,5 and ¢ = pye! + pyle? + py 2, then
L=—¢ A0+ f(—Ae* A&’ +Ae* Ne' +Aze! Ae?).
Here f and ¢ are C*~!. Comparing the coefficients of A; with 1} we obtain

de' + 9 Ne' +(n)g— fE) N+ (nig+ fe') Ae® =0,
de® + (Ml — fE)Ne' + 9 NP+ (3o + fe') Ae® =0,
and d63+(n3]70+fel)Ael —(7132,0+fel)/\ez+¢/\e3 =0.

This is nothing but the torsion-free condition for the connection defined from f
and ¢ above.

Since (f,¢) is uniquely defined, we have obtained the unique torsion-free
C*=! connection V. For this V, the distribution on 2 ~ 2" agrees with II by
construction. Hence ([g], V) is Einstein-Weyl from Proposition The remain-
ing condition is deduced from the fact that ZINT %, corresponds to g. O
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Remark 8.2 In the statement of Proposition the last hypothesis
e ®.(IINII); is not constant along the fiber

is not removable. Actually, @, (I ﬂﬁ)z can be constant when the metric degen-
erates so that the light cone degenerates to a line, which occurs as a limit of an
indefinite metric.

Proposition 8.3 Let N be any embedding of CP' into Z = CP' x CP! which is
C?*+3 close to the standard one. Let {D,},.q g be the constructed family of

closed holomorphic disks on (Z,N). Then a C* indefinite Einstein-Weyl structure
([g], V) is naturally induced on M = S* x R.

Proof We apply Proposition [7.3] by putting k + 3 instead of k and [ = k+ 2. Let

mME Xy . Z be the constructed double fibration (the diagram ), then f is
C**2 in this case. Let 2" be a copy of 27 and let 2" = 2. U .2 _ be the CP!
bundle over X which is obtained by identifying the boundaries d 27, and d 2"
where 2" _ is a copy of 2" with fiber-wise opposite complex structure. Let p :
Z — 4 be the involution which interchanges 2~ and Z_.

Let f, : TcX — TcZ be the differential of f. We define JT = f, ' (T%!Z) on 2.
Then, along Zg = d 27, Il is spanned by a% and the distribution of real planes

tangent to the fibers of f : Zr — N. So we can extend I to the whole of 2" so
that JT = p* Il on Zg. Let us check the hypotheses in Proposition

o pJI= 11 follows from the construction.

e Ilis CH! on 27\ 2% since §, is C**1, and II is involutive since T*!Z is
involutive.

o I+ M= (T%2)+11(T"0Z) = ;1 (TcZ) = Tc 2+ on 274\ 2k since |
is surjective.

e Foreach fiber @' (x) = 27, |, the restriction §, : 27, |, — Z of f is a holomor-
phic embedding. Hence 1Nker @, = (f,); ' (T%'Z) = V!,

e Ilis C%-close to the T of the standard case, so c¢;(JI) = —4 on each fiber of
0.

e Foreach x € M, there are p,q € D, such that €, and €, intersects transversally

at x (Lemma. If we put z=f, '(p) = '(p) N@ ' (x), then we obtain
(T:¢,) @ C = @.(Tcof ' (p)) = @. (kerf), = @ (1N T)..

Similarly (7,¢,) ® C = @, (1N 1), for 7 = f, '(g). Hence @, (1N II) is not
constant.

Thus all the hypotheses in Proposition [8.1] are fulfilled, so we obtain the unique
C* indefinite Einstein-Weyl structure on M. O

Recall that we obtained a lift  : 2% — S(TN) of § : 2& — N in Sect.

Proposition 8.4 Identifying &~ with %,

1. =141%'2) on 2 wheref,:Tc 2 — TcZ,
2. r= OT%RZKCI‘{f* :T%‘RHTN} on A,
3. L=ker{f.:TZ+ —TZ}on ZL\2Zr, and
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4. L=ker{},:T2r — S(TN)} on Z&.

Proof 1 and 2 follow from Propositions[8.1]and[8.3|and their proofs. We also have
=§,1(T"Z2),50 L& C = N =kerf, : Tc 2, — TcZ. Hence 3 follows.

Let us prove 4. Let U x CP' = 27|y be a trivialization on U such that p (x, {) =
(x,{). Notice that 2 |y = {(x,{) € U x CP'| £Im ¢ > 0}.

Let us denote { = £ 4+ +/—1n using a real coordinate (&,1). We fix a point
(x0,&0) € 2&r|u and let ¢(s) be a curve defined by I — @' (x) : s — (x0,& +
v/—1s), where I = (—¢, €) is a small interval. Now, we define amap @ : I x Iy —
X (s,t) — P(s,t) so that P(s,0) = c(s) and fb*(%) =17, where [" is a p-
invariant real vector field such that L = Span <l T>.

Let X be the image of &, and let v = CD(%) which is a tangent vector field
along X such that 7YX = Span <l+, V). Moreover, V is proportional to % on XN
Zr. Indeed, we have poP(s,t) = @(—s,t) by definition, so p,v = —v. Hence
v is “pure imaginary” on 2R, that is, we can write v = a% using a real-valued

function a on ZR. Taking € small, we can assume a is a positive function since
Vigbo) = C+(5) = £
(x0,60) = “*\3s/ — 97"

Since {I,v} is involutive, there are functions A,B on X such that F, V] =
Al" +Bv. Let ¢ be a positive function on X such that I'¢ = —B, then [I", pv]| =
@AI". We define a positive function y on £ N 2% by ¢v = ‘I/%-

Now, §: 2, — Z = CP! x CP! is described as §(x,$) = (Fi(x,{),F2(x,{))
in the neighborhood of (xo,&p) using functions F; which are holomorphic on &.
Let p; : Z — CP! be the first projection. Then its restriction p; : N — CP! is
diffeomorphism. Hence, identifying N with CP! by py, { : 2 — N is described
by Fy. Since L = Span (/') = kerf, on 27\ 2k, we have ['F;=0 on 2. Then

I'(ovF) =[I",ov]Fi+@v(I'F) =0,

and so ZT(lyg—Z") =0on XN Z2k.

Since the F; are holomorphic for {, we have g—g’ =—v—-1 3—? fori=1,2. Thus
we have obtained

JF;

lT(u/ﬁ

)=0 (8.14)

on XN 2 fori=1,2. Since f(x,&) = [%—?(x, 5)} by definition, and since v is a

positive function, 1D means ﬂ(lT) = 0. From 2 of Proposition the fiber of
f is at most one-dimensional, hence L = ker{f, : T Zr — S(TN)} on Zx. O

Proposition 8.5 The Einstein-Weyl structure ([g], V) constructed in Proposition[8.3|
satisfies the following properties:

1. ForeachpeN,S,={xeM|p € dD.} is a connected maximal null surface
on M and every null surface can be written in this form.

2. Foreach p € Z\N, €, = {x € M|p € ©,} is a connected maximal time-like
geodesic and every time-like geodesic on M can be written in this form.
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3. Foreach p € N and non-zerov € T,N, €, , ={x e M|p € 0D,,v | D,} isa
connected maximal null geodesic on M and every null geodesic on M can be
written in this form.
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Proof From Proposition |8.4]and the properties of g and L, we obtain

e &,=m-f(p)isanull surface for each p € N,
e ¢,=0m-f!(p)is atime-like geodesic for each p € Z\N,
e &,,=m-f !([v])is anull geodesic for each p € N and non-zero v € T,N.

Moreover from Proposition [7.5]

e &,~S!'xRforeachpeN,
e &, ~Rforeach peZ\N,
e ¢,,~Rforeach p€ N and non-zerov € T,N,

and they are all closed in M. Hence the statement follows. O

Recall the compactification of the double fibration given by 1) Let @,, and
("‘Zpyv be the compactification of €, and €, , in . respectively.

Proposition 8.6 1. For each p € Z\N, Zr

restriction | : Ix

& is homeomorphic to S? and the
P

¢, N is a homeomorphism. In particular, {0D.},ec,
gives a foliation on N\{2 points}.
2. Foreach p € N and non-zerov € T,N, «%R|@p , is homeomorphic to S* and the

restriction f : Q}R &py — N is surjective. Moreover, this is one-to-one on the
complement of the curve ' (p), hence {(3D,\{ P})}xee,, gives a foliation

on N\{p}.

Proof Let p € Z\N, then %Mgp is an S!-bundle over ¢, ~ . Since c%}R
compactification of %Rk,, with extra two points, it is isomorphic to 2. Since § is
C-close to the § of the standard case, f : Ir F N is a degree one map.

Let f. : T(2r|c,) — TZg be the differential. We claim that kerf, = 0 every-
where. Indeed, if there exists a non-zero w € T;(Zk|c,) such that f.(w) = 0, then
w € I, and @, (w) # 0. Then @, (w) must be null with respect to the constructed
conformal structure. On the other hand @, (w) tangents to €,, so this is time-like.
This is a contradiction.

Hence f - In &, N is locally homeomorphic degree one map, that is, it is a
homeomorphism.

Next, let p € N. By a similar argument, f%}m@m ~ §% and f c I
degree one, hence surjective. '

We claim that ker{f, : T(ZR|c,,) = TN} =0onz¢€ (%R|¢p1‘,\f’l(p)). In-
deed, if there exists non-zero w € T;(ZR|¢,,) such that f.(w) = 0, then @.(w) is
non-zero and null. Notice that @, (w) is tangent to the null surface &y,

On the other hand, @, (w) is tangent to €, , C &,,. Since f(z) # p, &j,) and &,
are different null surfaces, hence T () Sy, and T (;)S), are different null planes
at @(z). Then @i (w) € Tg(;)Sy(;) N Tiy(;) S must be a space-like vector which is
a contradiction. Hence the statement follows. O

&, 18 the

~ —Ni
Epy N is

Proposition 8.7 Let ([g],V) be the Einstein-Weyl structure constructed in Propo-
sition[8.3] Then, for each distinguished p,q €N, €, s ={x € M|p,q € 9D,} isa
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connected closed space-like geodesic on M and every space-like geodesic on M
can be written in this form. In particular, this Einstein-Weyl structure is space-like
Zoll.

Proof Since €, , is the intersection of the null surfaces &, and &, this is either
empty or a space-like geodesic. We claim that €, , is not empty and is homeo-
morphic to S'. For each non-zero v € T,N, there is a unique x € €, such that
q € 9Dy, since {(dD,\{p})}sce,, foliates N\{p} by 2 of Proposition Then
x €&, s0 &, , is not empty. Moreover there is a one-to-one continuous map
S(T,N) = €, 4,50 €, , =S O

The main theorem (Theorem follows from Propositions and

References

1. Calderbank, D.M.J.: Selfdual 4-manifolds, projective surfaces, and the
Dunajski-West  construction. http://arxiv.org/abs/math.DG/
0606754, 2006

2. M. Dunajski (2004) A class of Einstein-Weyl spaces as-
sociated to an integrable system of hydrodynamic  type
J. Geom. Phys. 51 1 126 — 137

3. M. Dunajski L.J. Mason P. Tod (2001) Einstein-
Weyl  geometry, the dKP  equation and  twistor theory
J. Geom. Phys. 37 1-2 63 — 93

4. M. Dunajski S. West (2007) Anti-self-dual conformal structures with null
Killing vectors from projective structures Commum. Math. Phys. 272 1 85 —
118

5. Dunajski, M., West, S.: Anti-self-dual conformal structures in neu-
tral signature. http://arxiv.org/abs/math/0610280V4 [math.
DG], 2008, to appear in Recent Developments in pseudo In: Riemannian ge-
ometry, ESI-Series on Math and Physics

6. Hitchin, N.J.: Complex manifolds and Einstein’s equations. In: Twistor Ge-
ometry and Non-Linear Systems, Lecture Notes in Mathematics, Vol. 970,
1982

7. PE.  Jones K.P. Tod (1985)  Minitwistor  spaces
and Einstein-Weyl spaces Class. Quant. Grav. 2
565 - 577

8. LeBrun, C.: Twistors, Holomorphic Disks, and Riemann Surfaces with
Boundary. In: Perspectives in Riemannian geometry, CRM Proc. Lecture
Notes, 40, Providence, RI: Amer. Math. Soc. 2006, pp. 209-221

9. C.LeBrun L.J. Mason (2002) Zoll Manifolds and complex surfaces J. Diff.
Geom. 61 453 — 535

10. C. LeBrun L.J. Mason (2007) Nonlinear Gravitons, Null Geodesics, and
Holomorphic Disks Duke Math. J. 136 2 205 — 273

11. F. Nakata (2007) Singular self-dual Zollfrei met-
rics and twistor correspondence J. Geom. Phys. 57 6
1477 — 1498


http://arxiv.org/abs/math.DG/0606754
http://arxiv.org/abs/math.DG/0606754
http://arxiv.org/abs/math/0610280V4[math.DG]
http://arxiv.org/abs/math/0610280V4[math.DG]

Constructing Einstein-Weyl Spaces via LeBrun-Mason Twistor Correspondence 41

12.

13.

14.

15.

16.

F. Nakata (2007) Self-dual  Zollfrei  conformal struc-
tures  with  o-surface  foliation J.  Geom.  Phys. 57 10
2077 - 2097

H. Pedersen (1986) Einstein-Weyl spaces and (1,n)-curves in the quadric
surface Ann. Global Anal. Geom. 4 1 89 — 120

H. Pedersen K.P. Tod (1993) Three-dimensional Einstein-Weyl geometry
Adv. Math. 97 74 — 109

R. Penrose (1976) Nonlinear gravitons and curved twistor theory Gen. Rel.
Grav. 731 -52

K.P. Tod (1992) Compact 3-dimensional Einstein-Weyl structures J. London
Math. Soc (2) 45 341 — 351



