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Abstract: We present the post-Newtonian solution for the quasi-Keplerian motion of a charged

test particle in the field of Reissner-Nordström black hole under the Wagoner-Will-Epstein-Haugan

representation. The explicit formulations for the charge effects on perihelion precession and the

orbital period are achieved, which may be useful not only in the comparisons with astronomical

observations but also in calculating the waveform of the gravitational wave from this kind of system.

Keywords: quasi-Keplerian; Reissner-Nordström spacetime; post-Newtonian approximation

1. Introduction

The motion of charged or neutral, or massive or massless test particles in the gravita-
tional fields is one of the most important problems of relativistic astrophysics. For example,
the prediction by general relativity accounts for the perihelion precession of Mercury per-
fectly [1]. The analytical solutions of the motion are not only important in the theoretical
significance, but are also useful in exploring the properties of spacetime in which the bodies
move as well as calculating the gravitational wave radiated by the bodies. For the motion
of celestial bodies in the strong gravitational fields, a variety of analytical solutions have
been obtained using the post-Newtonian (PN) approximation. These solutions include
not only the motion of the photon with the small-deflection angle [2–4], but also the quasi-
Keplerian motion of the test particles as well as the binary systems [5–22]. The latter is
mainly represented in the following two ways: one is the Brumberg–Damour–Deruelle
(BDD) representation [5,8,14–17,20] and the other is the Wagoner-Will-Epstein-Haugan
(WWEH) representation [6,7,9–11,21,22]. Under the WWEH representation, the solution
is expressed by the eccentricity and the semilatus rectum in the Newtonian theory being
different from the solution under the BDD representation, which is expressed with the test
particle’s orbital energy and angular momentum.

The Reissner-Nordström (RN) spacetime is a static, asymptotically flat solution of
the Einstein–Maxwell equations in general relativity (GR) [23–25]. The exact harmonic
metric for a moving RN black hole with an arbitrary constant speed has been obtained [26].
In fact, there are two paths to solve the orbits of charged particles in the RN spacetime.
They are numerical methods and analytical methods. The numerical methods are a main
path to solve the orbits of charged particles in the RN spacetime at present. The numerical
methods include manifold correction schemes [27], energy-conserving integrators [28],
extended phase space explicit symplectic-like methods [29], and explicit and implicit mixed
symplectic algorithms [30]. Recently, explicit symplectic methods have been developed
for black hole spacetimes [31–34]. Solving the geodesic equations numerically may be
straightforward, but it would be time-consuming for the numerical simulations to achieve
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a good precision. On the other hand, the analytical solutions can exhibit the effects of the
source’s parameters (e.g., mass, magnetic charge, and angular momentum) on the particle’s
motion explicitly. The analytical solutions to the equations of motion for the test particles
moving in the RN spacetime have been extensively investigated in the literature in a variety
of contexts and ways [35–43]. In the GR framework, several others have successfully used
PN formalism on binary mergers to evaluate the source parameters from gravitational
waves [44–47]. In particular, Zhang et.al discussed equivalence between two charged black
holes in dynamics of orbits outside the event horizons [48].

On the other hand, the spherical symmetry of the spacetime in physics or mathematics
has an invariant angular momentum and a fourth motion constant such as the Carter
constant. Thus, the spacetime is integrable and nonchaotic. In addition, the spherical
symmetry of the spacetime is convenient to study black hole shadows because only one
impact parameter is used and lots of circular photon orbits are considered [49,50]. Therefore,
it is interesting and timely to discuss the charge’s effects on the quasi-Keplerian motion for
a particle in spherical symmetric RN spacetime.

In the previous work [42,43], we derived the quasi-Keplerian motion for the neutral
test particle in the RN spacetime under both the BDD representation and the WWEH one,
and that for the charged test particle under the BDD representation. Here, we derive the
quasi-Keplerian motion for the charged test particle in the same background under the
WWEH representation. The charge effects of the black hole and the test particle on the
quasi-Keplerian motion, including the perihelion precession and the orbital period, are
shown clearly.

The structure of the paper is as follows: In Section 2, we briefly introduce the quasi-
Keplerian dynamics for the charged test particle in the RN spacetime. In Section 3, we give
a detailed derivation of the 1PN solution for the quasi-Keplerian motion of the charged
test particle. In Section 4, we investigate the relations between the Keplerian parameters
and the conserved quantity (orbital energy and angular momentum). The validity of the
analytical solution is discussed in Section 5. A summary is given in Section 6.

2. The Quasi-Keplerian Dynamics for the Charged Test Particle

In the harmonic coordinates, the metric of RN spacetime with mass M and electric
charge Q in the 1PN approximation can be written as (G = 1 and c = 1) [26,51]

g00 = −1 +
2M

r
−

2M2

r2

(

1 +
1
2

ǫ2
0

)

, (1)

g0i = 0 , (2)

gij =
(

1+
2M

r

)

δij, (3)

where ǫ0 ≡ Q/M denotes the charge-to-mass of the RN black hole. The condition for the
nonsingularity of the RN spacetime is |ǫ0| ≤ 1. r ≡ |x| denotes the distance from the field
position x ≡ (x, y, z) to the black hole located at the coordinate origin. The metric has
signature of (−+++). Latin indices i and j range from 1 to 3.

We consider the motion of a charged test particle with mass m and electric charge q.
ǫ1 ≡ q/m is the charge-to-mass ratio of the test particle. The covariantgeodesic equation is

d2xµ

dτ2 + Γ
µ
νλ

dxν

dτ

dxλ

dτ
= ǫ1Fµ

ν
dxν

dτ
, (4)

where Γ
µ
νλ denotes the Christoffel’s symbols that are given by the derivatives of the chosen

metric gµν, and τ is the proper time of the particle along its world line. The electromagnetic
Faraday tensor Fµν is given by

Fµν =∂Aν/∂xµ−∂Aµ/∂xν , (5)
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where Aα is the associated electromagnetic potential vector [51]

A0 = −
ǫ0M

r

(

1 +
M

r

)−1
, (6)

Ai = 0 . (7)

Substituting Equations (1)–(3) into Equation (4), we can obtain the 1PN geodesic
equations for the charged test particle as follows [43]:

dv

dt
= −

Mx

r3

[

(1−ǫ0ǫ1)−
M

r
(4+ǫ2

0−5ǫ0ǫ1)+v
2
(

1+
1
2

ǫ0ǫ1

)]

, (8)

where v denotes the velocity of the test particle. When ǫ1 = 0, it is the equation of motion
for a neutral particle in RN spacetime.

Since the problem has a spherical symmetry, for convenience, we take the plane in
which the test particle moves as the equatorial plane, then the particle’s trajectory x can be
expressed as

x = r(cos φ ex + sin φ ey) , (9)

where φ is the azimuthal angle, and ex and ey are the unit vectors of the x and y axes.

3. The Quasi-Keplerian Motion for the Charged Test Particle

3.1. Keplerian Motion in the Newtonian Theory

In order to derive the analytical solution for the quasi-Keplerian motion, we first
present the Keplerian solution as follows:

r =
p

1 + e cos φ
= a(1 − e cos E) , (10)

φ = 2 arctan
(

√

1 + e

1 − e
tan

E

2

)

, (11)

t
(2π

TK

)

= E − e sin E , (12)

r2φ̇ = [M(1−ǫ0ǫ1)p]
1
2 , (13)

vK =
[ M(1−ǫ0ǫ1)

p

]
1
2
[− sin φ ex + (e + cos φ) ey] , (14)

with

p = a(1 − e2) , (15)

TK = 2π
[ a3

M(1−ǫ0ǫ1)

]
1
2

, (16)

where p, e denote the semilatus rectum and the eccentricity of Keplerian orbit. a ≡ p/(1 − e2)
is the semimajor axis. vK is the Keplerian solution for the velocity of the charged test
particle. E is the eccentric anomaly. TK represents the Keplerian period.

3.2. The Quasi-Keplerian Motion under the Wagoner-Will-Epstein-Haugan Representation

We start with the equation of motion for the charged test particle under the harmonic
coordinates. Following the derivation in Ref. [6,7,9,11], we can write

r2φ̇ = [M(1−ǫ0ǫ1)p]
1
2

[

1 − (4−ǫ0ǫ1)
M

p
e cos φ

]

, (17)
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where the sign “dot” denotes the derivative with respect to the time, and the 1PN solution
for the velocity of the charged particle can be written as

v =
[ M(1−ǫ0ǫ1)

p

]
1
2
{

−sin φ ex+
M

p

[ 6−6ǫ0ǫ1−ǫ2
0(1−ǫ2

1)

−2(1−ǫ0ǫ1)
eφ+

6−9ǫ0ǫ1+ǫ2
0(2+ǫ2

1)

2(1−ǫ0ǫ1)
sin φ

−
1
2

e2(2+ǫ0ǫ1) sin φ+
2−4ǫ0ǫ1+ǫ2

0(1+ǫ2
1)

4(1−ǫ0ǫ1)
e sin 2φ

]

ex

+(e + cos φ) ey+
M

p

[ 6−9ǫ0ǫ1+ǫ2
0(2+ǫ2

1)

−2(1−ǫ0ǫ1)
cos φ

−
3
2

e2(2−ǫ0ǫ1) cos φ−
2−4ǫ0ǫ1+ǫ2

0(1+ǫ2
1)

4(1−ǫ0ǫ1)
e cos 2φ

]

ey

}

, (18)

Substituting Equations (9), (17) and (18) into the identity

d

dφ

1
r
= −(r2φ̇)−1

(

v · x

r

)

, (19)

and making integration over φ, we can achieve

p

r
= 1+e cos φ−

M

4p(1−ǫ0ǫ1)
{2(6−2e2−7e cos φ−6eφ sin φ)

−2(9−e2−8e cos φ−6eφ sin φ)ǫ0ǫ1+ǫ2
0[4+e cos φ

+2eφ sin φ+(2+2e2−3e cos φ−2eφ sin φ)ǫ2
1]} . (20)

From Equation (20), we can obtain the orbital precession per revolution as

∆φ =
6−6ǫ0ǫ1−ǫ2

0(1−ǫ2
1)

1−ǫ0ǫ1

πM

p
. (21)

In order to obtain the time dependence of the quasi-Keplerian equation, we introduce
the true anomaly η as [7,9]

η =
[

1 −
6−6ǫ0ǫ1−ǫ2

0(1−ǫ2
1)

2(1−ǫ0ǫ1)

M

p

]

φ , (22)

or

φ
(2π

Φ

)

= η , (23)

with

Φ = 2π + ∆φ . (24)

Then, we can rewrite Equations (17) and (20) as

r2φ̇ = [M(1−ǫ0ǫ1)p]
1
2

[

1−(4−ǫ0ǫ1)
M

p
e cos η

]

, (25)

p

r
= 1+e cos η−

M

4p(1−ǫ0ǫ1)
{2(6−2e2−7e cos η)−2(9−e2−8e cos η)ǫ0ǫ1

+ ǫ2
0[4+e cos η+(2+2e2−3e cos η)ǫ2

1]} . (26)

We further introduce the eccentric anomaly E′ in the quasi-Keplerian orbit, which is
related to the true anomaly η by

sin η =
(1 − e2)

1
2 sin E′

1 − e cos E′
; cos η =

cos E′ − e

1 − e cos E′
, (27)
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we can rewrite Equation (26) as

r = a(1−e cos E′)

+
M

(1−e2)2

{24+46e2−4e4−2(18+31e2−e4)ǫ0ǫ1+ǫ2
0[8+e2+(4+15e2+2e4)ǫ2

1]

8(1−ǫ0ǫ1)

−
38+6e2−4(13+3e2)ǫ0ǫ1+ǫ2

0[7−e2+7(1+e2)ǫ2
1]

4(1−ǫ0ǫ1)
e cos E′

+
26−4e2−2(17−e2)ǫ0ǫ1+ǫ2

0[3+(5+2e2)ǫ2
1]

8(1−ǫ0ǫ1)
e2 cos 2E′

}

. (28)

Taking the derivative of Equation (22) with respect to the time, and then using
Equation (25), we have

[

1+
6−6ǫ0ǫ1−ǫ2

0(1−ǫ2
1)

2(1−ǫ0ǫ1)

M

p

]

r2 dη

dt
= [M(1−ǫ0ǫ1)p]

1
2

[

1−(4−ǫ0ǫ1)
M

p
e cos η

]

. (29)

From Equation (27), we can obtain

dη

dt
=

(1 − e2)
1
2

1 − e cos E′

dE′

dt
. (30)

Substituting Equations (28) and (30) into Equation (29) for eliminating r, then integrat-
ing over the time, we finally obtain the quasi-Keplerian equation

t
( 2π

TE′

)

= E − g sin E′ − h sin 2E′ , (31)

where g and h are given by

g = e
{

1+
M

p

2(18−e2−6e4)−2(24+e2−9e4)ǫ0ǫ1+ǫ2
0[3(2−e2)+(6+7e2−6e4)ǫ2

1]

4(1 − e2)(1−ǫ0ǫ1)

}

, (32)

h =
M e2

p(1 − e2)

26−4e2−2(17−e2)ǫ0ǫ1+ǫ2
0[3+(5+2e2)ǫ2

1]

−8(1−ǫ0ǫ1)
, (33)

and

TE′ = 2π
[ a3

M(1−ǫ0ǫ1)

]
1
2

×
{

1 +
3M

4p

12+6e2+4e4−2(8+5e2+3e4)ǫ0ǫ1+ǫ2
0[2+e2+(2+3e2+2e4)ǫ2

1]

(1 − e2)(1−ǫ0ǫ1)

}

, (34)

which can be used to characterize the orbital period of the quasi-Keplerian motion.

4. The Relations between the Keplerian Parameters and the Orbital Energy and
Angular Momentum

From the equation of motion Equation (8), we can calculate the corresponding La-
grangian for the charged particle:

L =
1
2

v
2+

M

r
(1 − ǫ0ǫ1)+

1
8

v
4+

3
2

M

r
v

2−
1
2

M2

r2 (1+ǫ2
0 − 2ǫ0ǫ1) . (35)

We study the motion of charged particles in a spherically symmetric RN spacetime,
where the Lagrangian quantities of the system have continuous symmetry, which in turn
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yields two conserved quantities, orbital energy E and orbital angular momentum J of the
charged particle. Based on Equation (35), we have

E =
1
2

v
2−

M

r
(1 − ǫ0ǫ1)+

3
8

v
4+

3
2

M

r
v

2+
1
2

M2

r2 (1+ǫ2
0 − 2ǫ0ǫ1) , (36)

J = |x×v|
(

1+
1
2

v
2+

3M

r

)

, (37)

which reduces to those of the neutral particle in RN spacetime if ǫ1 = 0 [42], and energy
conservation comes from translational symmetry in time, where angular momentum
conservation is from rotational symmetry in space.

Substituting Equations (9), (18) and (20) into Equations (36) and (37), we can obtain

E =
M

8p

{

4(−1+e2)(1−ǫ0ǫ1)+
M

p
[19+22e2+3e4−2(1+e2)(13+3e2)ǫ0ǫ1

+2(2+e2)ǫ2
0+(3+8e2+3e4)ǫ2

0ǫ2
1]
}

, (38)

J = [M(1−ǫ0ǫ1)p]
1
2

{

1+
M

2p
[7+e2−(1+e2)]ǫ0ǫ1

}

. (39)

By solving Equations (38) and (39) inversely, we can obtain p and e in terms of E and
J , as follows:

p =
J 2

M(1−ǫ0ǫ1)

{

1 −
M2(1−ǫ0ǫ1)

J 2

[

8+
2EJ 2

M2(1−ǫ0ǫ1)2 −
(

2+
2EJ 2

M2(1−ǫ0ǫ1)2

)

ǫ0ǫ1

}

, (40)

e2 = 1+
2EJ 2

M2(1−ǫ0ǫ1)2

{

1−
7
2
E−15

M2

J 2 −
11
2

M4

EJ 4 +
(

21
M2

J 2 +19
M4

EJ 4

)

ǫ0ǫ1

+
M4

4EJ 4 ǫ3
0ǫ1[6+46ǫ2

1−ǫ0ǫ1(3+7ǫ2
1)]−

M2

4J 2 ǫ2
0

[

2+
3M2

EJ 2 +
(

22+
93M2

EJ 2

)

ǫ2
1

]}

. (41)

Substituting Equations (40) and (41) into Equations (21) and (34), and keeping the
accuracy to the 1PN order, we can obtain

∆φ =
πM2

J 2 [6−6ǫ0ǫ1−ǫ2
0(1−ǫ2

1)] , (42)

TE′ =
2πM(1−ǫ0ǫ1)

(−2E)
3
2

[

1−E
15−3ǫ0ǫ1

4−4ǫ0ǫ1

]

, (43)

which are same as the results of a charged particle in RN spacetime under the Burmberg–
Damour–Deruelle representation [43]. It is worth emphasizing that orbital energy, orbital
angular momentum, orbital period, and perihelion precession all remain constant during
the different coordinate transformations.

5. The Validity of the Analytical Solution

The achieved analytical solution of the quasi-Keplerian motion is based on the Lagrangian
formulation, and is kept to the first-order post-Newtonian approximation. Damour et al. [52]
showed the equivalence of the post-Newtonian Lagrangian formulation and the post-
Newtonian Hamiltonian formulation at same order; however, Wu et al. [30,53] proved
that there are some differences between them. They also showed that the truncated post-
Newtonian Lagrangian equations, the coherent post-Newtonian Lagrangian equations, and
the post-Newtonian Hamiltonian formulation at same order are not exactly equivalent, and
even have completely different dynamical behaviors [54]. When the test particle is far away
from the RN black hole, for example, the distance is about 107 M, where the gravitational
field approximately matches that of the solar system, the differences among these methods
reach the computer double precision of 10−16, and in this case, they are basically equivalent.



Symmetry 2022, 14, 2661 7 of 9

6. Summary

The aim of this work is to obtain the effects of the black hole and the test particle’s
charges on the quasi-Keplerian motion in the RN spacetime under the Wagoner-Will-
Epstein-Haugan representation. In order to achieve this, we expand the metric of the
RN black hole into the powers of Newtonian potential to the 1PN order, and the latter is
substituted intothe covariant geodesic equation with the Lorentz force. Then, we employ
the iterative method to derive the perturbation to the Keplerian motion. The perturbation
is expressed in terms of the semilatus rectum and the eccentricity defined in the Newtonian
theory, instead of the orbital energy and angular momentum. We also demonstrated the
congruency of the solutions for the orbital period and perihelion precession between these
two formulations.

The formulation is

p

r
= 1+e cos η−

M

4p(1−ǫ0ǫ1)
{2(6−2e2−7e cos η)−2(9−e2−8e cos η)ǫ0ǫ1

+ ǫ2
0[4+e cos η+(2+2e2−3e cos η)ǫ2

1]} , (44)

φ
(2π

Φ

)

= η , (45)

η = 2 arctan
(

√

1 + e

1 − e
tan

E′

2

)

, (46)

t
( 2π

TE′

)

= E − g sin E′ − h sin 2E′ , (47)

with

Φ = 2π
[

1 +
M

p

6−6ǫ0ǫ1−ǫ2
0(1−ǫ2

1)

2(1−ǫ0ǫ1)

]

, (48)

g = e
{

1+
M

p

2(18−e2−6e4)−2(24+e2−9e4)ǫ0ǫ1+ǫ2
0[3(2−e2)+(6+7e2−6e4)ǫ2

1]

4(1 − e2)(1−ǫ0ǫ1)

}

, (49)

h =
M e2

p(1 − e2)

26−4e2−2(17−e2)ǫ0ǫ1+ǫ2
0[3+(5+2e2)ǫ2

1]

−8(1−ǫ0ǫ1)
, (50)

TE′ = 2π
[ a3

M(1−ǫ0ǫ1)

]
1
2

×
{

1 +
3M

4p

12+6e2+4e4−2(8+5e2+3e4)ǫ0ǫ1+ǫ2
0[2+e2+(2+3e2+2e4)ǫ2

1]

(1 − e2)(1−ǫ0ǫ1)

}

, (51)

where η and E′ denote the true anomaly and the eccentric anomaly for the quasi-Keplerian
motion in the Wagoner-Will-Epstein-Haugan representation [7,9]. TE′ represents the orbital
period of the quasi-Keplerian motion.

The effects of the black hole and the test particle’s charges are characterized by the
terms containing ǫ0 and ǫ1 in the above formulas, which can not only affect the motion of
the test particle, but also further affect the emission of gravitational waves. The analytical
solution for the quasi-Keplerian motion is valid for the cases of |ǫ0| ≤ 1 and |ǫ0ǫ1| ≪ 1.
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