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Abstract We study the evolution of the two-pion correla-
tion function parameters with collision energy in the context
of relativistic heavy-ion collisions within the NICA energy
range. To this end, we perform UrQMD simulations in the
cascade mode to produce samples of pions from 5 x 10°
Bi+Bi collisions for each of the studied energies. The effects
of the quantum-statistical correlations are introduced using
the correlation afterburner code CRAB. We fit the correlation
function using Gaussian, exponential and symmetric Lévy
shapes and show that for all collision energies the latter pro-
vides the best fit. We separate the sample into pions coming
from primary processes and pions originating from the decay
of long-lived resonances, and show that the source size for the
latter is significantly larger than for the former. The source
size for the secondaries, is similar but in general larger than
the size for the whole pion sample. To further characterize
the pion source, we also simulate the effects of a non-ideal
detector introducing a momentum smearing parameter, rep-
resenting the minimum pair momentum and thus a maximum
source size that can be resolved. The values of the correla-
tion function intercept parameter are therefore modified from
the values they attain for the perfect detector case. Using the
core-halo picture of the source, we show that the values of
the intercept parameter are influenced by the presence of a
significant fraction of core pions coming from the decay of
long-lived but slow-moving resonances. These findings serve
as a benchmark to compare with future Monte Carlo studies
that consider an Equation of State and thus allow for a phase
transition within the studied energy domain.
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author)
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1 Introduction

Two-particle correlation studies have become a prime tool
to determine the size and lifetime, as well as to infer the
global properties, of the strongly interacting systems pro-
duced in relativistic heavy-ion collisions [1-10]. Since the
two-particle correlation function is related to the Fourier
transform of the spatio-temporal component of the phase-
space density of the emitting source, measurements of the
correlation function provide access in particular to the space-
time features of this source. Pions are by far the most abun-
dant particles produced in these collisions. Therefore, it is
common to perform correlation studies by experimentally
measuring the two-pion correlation function. The technique
is closely related to the photon intensity interferometry mea-
surements introduced by Hanbury-Brown and Twiss to deter-
mine the size of stellar objects [11,12]. In the context of col-
lisions of hadron systems, Goldhaber, Goldhaber, Lee and
Pais [13] developed a similar technique to study the interac-
tion region formed in these systems. Lednicky [14] coined
the term femtoscopy to emphasize that the technique is in
this case applied to measurements at the fermi or femtometer
scale. Femtoscopic studies have nowadays become a sophis-
ticated and ever more precise tool, both experimentally as
well as theoretically.

From the phenomenological point of view, the two-pion
correlation function can be described in terms of a set of
parameters that contain not only information about the space-
time size of the pion emitting source but also about the
kind of processes that drive pion production. These param-
eters include the average source size R and the intercept
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A at vanishing relative momentum. Since particle produc-
tion processes depend on the collision energy, it is expected
that such parameters likewise evolve with energy. Of par-
ticular importance is to find whether the variation of these
parameters show signals of criticality in the range of col-
lision energies, where strongly interacting matter under-
goes a transition from hadron to quark and gluon-dominated
degrees of freedom. In this sense, femtoscopic studies pro-
vide also a tool for the exploration of the QCD phase dia-
gram [15,16]. Experimentally, a promising energy domain
where signals of criticality can be found is planned to be
scanned by the Multipurpose Detector (MPD) [17] at the
Nuclotron-based Ion Collider fAcility (NICA), currently
under construction at the Joint Institute for Nuclear Research
(JINR).

When the correlation function is described as a function
of the relative invariant pair momentum for a fixed average
pair momentum, it is common to assume that the shape of
the correlation function can be parametrized in terms of a
Gaussian. Since the Fourier transform of a Gaussian is also
a Gaussian, this assumption provides a simple description
of the space-time source from the information obtained in
momentum space. However, in recent times, it has become
clear that this simple parametrization is not adequate and
that a better description is achieved if the correlation func-
tion is parametrized based on a source described by a sym-
metric Lévy distribution [18-20]. This is based on the real-
ization that particle sources may show a large tail in con-
figuration space and thus a description in terms of a distri-
bution containing only one characteristic length may not be
appropriate. The symmetric Lévy distribution is a general-
ization of the Gaussian distribution where the exponent « is
called the Lévy exponent. The case @ = 2 corresponds to the
Gaussian distribution and & = 1 corresponds to a Cauchy
distribution.

Two-particle correlation studies based on Lévy shape fits
have been performed to describe experimental data for a sin-
gle, or simultaneously at most for a couple of collision ener-
gies, mainly in the large energy domain. These studies cor-
respond to SPS [21], RHIC [22-26] and LHC [27] energies
for nucleus—nucleus (A—A) collisions and also to LHC [28]
energies for proton—proton collisions. A recent compilation
in this energy range for the A—A case has been reported
in Ref. [29]. However, these studies have not yet been per-
formed, neither fitting experimental data nor at Monte Carlo
(MC) level, for energies where the putative Critical End Point
(CEP) is thought to exist. In this work we aim to set up these
studies within the NICA energy range where the CEP could
be found. We report on correlation studies using MC gen-
erated data for central Bi+Bi collisions, which is one of the
beam species planed to be used at the startup of the MPD
data taking. The collision energies considered are within the
range that is planned to be explored by the MPD experiment:
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JSvn = 4.0, 5.8, 7.7 and 9.2 GeV. For our present pur-
poses, the MC generated data does not include an Equation
of State (EoS) and thus it does not consider a possible phase
transition at a given energy. In this sense, this work repre-
sents a benchmark study that we aim to use to compare with
future studies that will consider an EoS in the MC generated
data. To contrast the commonly used shapes that describe the
correlation functions, these are fitted with Gaussian, expo-
nential and symmetric Lévy shapes and the fits are compared.
We show that, as it happens for the large energy domain, in
the considered range and for all the studied cases, the sym-
metric Lévy shape provides the best fits. From the fits we
extract the source parameters R and A, and in the case of the
Lévy fit, also « and find their dependence with the collision
energy. We also separate the pion sample into pions coming
from the decay of long-lived resonances, (secondary) and
pions coming from direct processes (primary) and analyze
the parameters describing their Lévy shape fits. We show
that, as expected, primary pions come from a source with
a smaller average size than secondary pions. However, the
source size for secondary pions, although similar, is in gen-
eral larger than the source size for the whole pion sample. To
further characterize the source, we then introduce in the MC
simulation the effects of a smeared momentum determina-
tion, that can be translated into a minimum pair momentum
resolution, to extract the fraction of pions that come from
the core using the core-halo picture of the source [30-33].
This momentum smearing hampers resolving particles com-
ing from the halo, and thus affects the extracted values of the
intercept A in the correlation function. In this case, which sim-
ulates a real detector with a finite momentum resolution, the
core-halo picture identifies the intercept A with the square of
the fraction of pions coming from the core [30,34]. We show
that, for the energy range considered, the core still contains
a significant fraction of pions that we interpret as coming
from long-lived but slow-moving resonances and thus is not
made up mainly from primary particles. We point out that
future comparisons of MC studies that include an EoS with
our results, can help to identify the emergence of particle
production processes that change the relative abundance of
primary and secondary pions in the core that in turn could
signal critical behavior, which can be identified analyzing
the properties of the Lévy stability index « as the collision
energy changes.

The work is organized as follows: In Sect. 2 we describe
the generalities of the two-pion correlation function and the
implementation of the MC simulation. In Sect. 3 we fit the
MC generated correlation functions with Gaussian, exponen-
tial and symmetric Lévy shapes and extract the correlation
parameters. In Sect. 4, we separate the source into two com-
ponents; one corresponding to primary and another corre-
sponding to secondary pions and analyze the two samples
finding the average source sizes for each of these sets. We
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also show an example of the source image for a collision
producing a pion source at a time where 90% of the pions
have attained freeze-out and compare the average size of the
freeze-out hyper-surface with the Lévy size, finding an excel-
lent agreement. We then introduce a smeared momentum res-
olution to simulate the effects of a real detector. We find the
values of the intercept parameter and use the core-halo pic-
ture to link this parameter with the square of the fraction of
core pions. We find that the core contains a significant com-
ponent of secondary pions that we interpret as coming from
long-lived but slow-moving resonances. We finally summa-
rize and conclude in Sect. 5.

2 Monte Carlo simulations for the two-pion correlation
function

The two-pion correlation function is defined as

Py(p1, p2)

P2) 1
Py (p1) Pi(p2) W

C(p1. p2) =

where P) and P, are the single- and two-pion momentum dis-
tributions, respectively, and p; and p; are the four-momenta
of each of the pions. Usually, the two-pion correlation func-
tion is analysed as a function of the relative four-momentum
q = p1— p2 and for fixed values of the average pair momen-
tum K = %( p1 + p2). The two-pion correlation function
can also be related to the pion emitting source function in
phase space, S(x, p), by noting that if dynamical correla-
tions, such as Coulomb or strong final state interactions are
neglected, the single- and two-pion momentum distributions
can be written as

Pi(p) = f d*x S p) W, P

Py(p1, p2) = / d*x1d*xy S(x1, p1)S(x2, p2)

X Wy o (x| 3)

where ¥, and W), ,, are the single- and two-pion sym-
metrized wave functions.

With the purpose of identifying possible non-Gaussian
structures in the correlation function, which becomes difficult
in a three-dimensional study, we perform a one-dimensional

analysis in terms of the variable giny = /¢35 — |G|* [34].

Then, the two-pion correlation function can be written
as

“

C2(P17P2)21+m|: (ginv> P1)S™ (Ginv pZ)]

50, p1)S*(0, p2)

where S is the Fourier transform of S. If the relative momen-
tum between the particles is much smaller than the average
pair momentum, then the two-pion correlation function can
be written as [35,36]

S, 50|
Co(ine, K) =1+ - ——— ®)

- 2
‘S(O, K)‘

which is a function of giny, for a fixed average pair momen-
tum K. Since the simulations require a large amount of events
to produce a statistically significant sample, hereby we con-
sider all possible values of K that contribute to a given gipy.
In this sense, our results have to be regarded as describing an
effective source that contains all possible sizes corresponding
to all values of the pair momenta. The resulting correlation
function can thus be parametrized by different shapes, for
instance Gaussian, exponential or Lévy shapes [20]. From
the previous equation, it can be seen that the two-pion cor-
relation function can reach a maximum value of 2 at zero
relative momentum, where the correlation function intercept,
C2(giny — 0), is usually, denoted by C2(giny — 0) = 1 +A,
with A also known as the chaoticity or intercept parame-
ter. However, different effects such as final state interactions
and a finite experimental resolution, can prevent the intercept
parameter from reaching the value 1 and can be understood in
terms of the core-halo picture, whereby particles that come
from the decays of long-lived resonances create a compo-
nent of the source with a size that may not be resolved when
the corresponding width of the pair momentum difference
becomes smaller than the detector resolution. Accounting
for this possibility the phase space emitting source can be
modeled as consisting of two components S = Score + Shalo,
where each component has a Fourier transform and the core is
composed of pions that come from primary processes. Notice
that

Neore = /d4x Score (X) = Score(o)’ (6)
Nhalo = /d4x Shalo(x) = Shalo(o), @)

and hence, S(0) = Ncore + Npalo. Thus, for experimen-
tally resolvable values of the relative momentum, it can be
assumed that S (Giny) = S’core (¢inv). Therefore, the two-pion
correlation function can be expressed as

2

Score (Ginv)

®)

N, 2
Calginmy) = 1+ ( )
m N, core 1 N halo

~ 2
Seore )
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As a consequence, in the core-halo picture, we can identify written as
for any given pair invariant average momentum [20,30]
2 p2
C2(Qinv) =1+ eXP(—‘Iianinv), (11)

A= <—Nc°r° )2. )
Neore + Nhalo

On the other hand, the previous definition of the two-pion
correlation function, Eq. (1), is barely used when dealing
either with experimental or MC produced data. Instead of
Eq. (1), one usually defines the measured two-pion correla-
tion function as [36,37]

N A(q)
C — B9 10
2@) N4 B(q) (10)

where A(q) is the relative momentum distribution of pions
created in the same event which contains the quantum statis-
tical effects, and B(q) is the relative momentum distribution
of pions created in different events, which does not contain
Bose-Einstein correlations. A4 and N are normalization
factors for A and B.

In this work, we obtain the relative momentum distribu-
tions by means of MC simulations of relativistic heavy-ion
collisions, from the Ultra-relativistic Quantum Molecular
Dynamics Model (UrQMD) [38,39] in the cascade mode,
which is used to simulate five million Bi+Bi central colli-
sions at different collision energies within the NICA range
(V/sny = 4.0,538,7.7 and 9.2 GeV) with the simulation
stopped at a time 200 fm. Since UrQMD does not include
quantum statistical correlations [40,41], these are added
by the formalism included in the “correlation after-burner”
(CRAB) analyzing program [42], which uses the phase space
distributions at their freeze-out positions to implement corre-
lation weights. CRAB performs a boost for each of the pion
pair momenta to the pair center of mass frame, where the
pair wave function is easier to symmetrize, to then produce
the quantum correlation. This is expressed as a function of
the relative momentum which can then in turn be written in
terms of gipy.

3 Correlation function fits and parameters

In general, it is assumed that the phase space source distri-
bution, S, can be factorized into a space-time distribution
and momentum distribution. The Fourier transform of the
space-time part, which is often referred to as the characteris-
tic function, is assumed to be an analytic function around zero
relative momentum and its second order Taylor expansion
characterizes its behavior, even for large values of gjny [20].
Thus, the two-pion correlation function can be approximately

@ Springer

where Rjn, is the characteristic size of the source. Equa-
tion (11) will be referred to as the Gaussian form. The pre-
viously mentioned assumptions can be translated into the
stochastic nature of the several (independent) pion emission
process. If one assumes that there are many independent pro-
cesses that shift the emission position and that the final pro-
duction point is a sum of many, similarly distributed, random
shifts whose variance is finite, then according to the Central
Limit Theorem, the distribution tends to a Gaussian. How-
ever, if the processes are characterized by large fluctuations
originating power-like tails and a non-analytic behaviour of
the characteristic function, then the limiting distribution is
not a Gaussian but instead a Lévy distribution. A special
case of this distribution is the one named symmetric stable
Lévy distribution. Utilizing such a distribution for the source
function, the correlation function is written as

C2(giny) = 1+ L exp(—|qiny Rinv|*), (12)

where « is called the index of stability and can be related
to the correlation critical exponent of QCD [43-45]. Equa-
tion (12) will be referred to as the Lévy form of the correlation
function. As a last example of the different functions that can
describe the two-pion correlation function, we consider the
exponential shape

Ca(qiny) = 1 4+ A exp(— |Giny Rinv 1), (13)

Equation (13) will be referred to as the exponential form of
the correlation function.

4 Source features

If the source can be thought of as consisting of two compo-
nents, one made of pions coming from primary and another
one from secondary processes, on average the distance from
the center of the fireball, where these particles are produced,
is different. This is the core-halo picture of particle produc-
tion. In this section we test whether the simulated two-particle
correlation functions can be analyzed separating the pion
sample into primary and secondary pions, with the former
coming from the core and the latter from the halo. As we
proceed to show, this does not happen. To see this, we first
study the case of a perfect resolution detector, and show that
for the collision energies studied, although primary pions do
indeed come from a small size source, the source size for sec-
ondary pions is similar albeit in general larger than the overall
source size, which may seem puzzling. The picture is further
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2.5 - - sample is for statistical purposes. By increasing the statistics
= » Fit exponential
. . A should tend to 1 and the error bar become smaller.
= Fit Gaussian . .
90— = Fit Levy The results of the source size obtained from the fit to the
’ -~ CRAB Lévy form for the complete set of pions can be compared

0.5 I I I I I I I I I
0 25 50 75 100

Qinv [MGV]

Fig. 1 Two-pion correlation function for Bi+Bi collisions at \/syny =
5.8 GeV, with impact parameter » = 0 — 1 fm. The dots represent the
output of CRAB which is compared with exponential, Gaussian and
Lévy fits

elucidated when introducing a finite momentum resolution.
As we also show, the fraction of pions coming from the core
contains a significant portion of secondary pions which we
attribute to the decay product of long-lived but slow-moving
resonances. In this work we include all the resonances avail-
able in UrQMD. However the resonances that give rise to
most of the secondary pions are p, A, w, K*, N(1440),
A(1600), A(1700), A(1950), 2, a; and p(1700) [31]. Most
of these resonances have not such a long life-time. However
they are produced all over the life-time of the system. It is
in this sense that we consider them to be “long-lived”. The
picture that emerges is that the overall source size is the aver-
age between a small size core, containing a large population
of secondaries, and a larger size halo. We extract the corre-
sponding fireball parameters from fits to the central value of
the correlation function in each bin. The rationale is to sim-
ulate the case of a very large statistical sample. We study the
evolution of these parameters as a function of the collision
energy for four cases: \/syy = 4, 5.8, 7.7 and 9.2 GeV.
In all cases the analyses are made for 5x 10® central (impact
parameter b = 0 — 1 fm) UrQMD Bi+Bi collisions to which
CRARB is then applied.

4.1 Ideal resolution case

Figure 1 shows as an example the case for /syy = 5.8
GeV. The resulting parameters from fits to Gaussian, expo-
nential and Lévy shapes are shown in Table 1. Notice that the
fit that better describes the correlation function is obtained
with the Lévy shape. For all the studied shapes, from the fits
we should obtain A = 1. Nevertheless, the obtained values
slightly deviate from 1 due to the limited statistics. The devi-
ation from 1 within errors is an indication of how good the

to the source image obtained from the freeze-out coordi-
nates (fxo, 'ro) given by UrQMD. An example of the three-
dimensional source image is shown in Fig. 2. The image is
obtained in the center-of-mass system for a collision energy
with /syn = 9.2 GeV from the spatial freeze-out coordi-
nates given by UrQMD at time ¢ = 35 fm when 90% of the
charged pions have frozen out. The source is nearly spheri-
cal in coordinate space. A long tail with a small density of
frozen out pions can also be inferred from this image. The
average space-time interval of the pion freeze-out coordi-
nates A = /((tro?); — (|F|2,);) coincides, within a few per-
cent, with the Lévy fit value. We interpret this as the average
width of the freeze-out hyper-surface, divided by a correction
factor that accounts for the three-dimensional nature of this
hyper-surface needed to compare with the one-dimensional
Lévy analysis.

To explore the origin of pions that populate the core and
the halo, we first perform the separation of the sample into
primary and secondary pions. We accomplish this using the
UrQMD parent process identification, whereby secondary
pions are those produced as a result of decays of long-lived
resonances. Figure3 shows the separate contribution from
primary and secondary pions to the the total correlation func-
tion shown in Fig. 1. Since the best fitis obtained using a Lévy
form, hereafter we consider only the parameters obtained
from this kind of fit, which are shown in Table 2. The results
are consistent with the picture whereby primary pions come
mainly from the core, since their source has a size signifi-
cantly smaller than that of secondary pions.

Figures 4 and 5 show the evolution of the source radii and
of the Lévy index of stability, respectively, with the collision
energy for the complete, primary and secondary sets of pions.
Notice that for most of the studied energies the following hier-
archy of source size parameters holds: Riny, prim < Rinv, all <
Rinv, second- €xcept for the largest energy considered where
we have instead Riny, prim < Riny, second < Riny, ail- This may
seem somewhat confusing if one thinks that the larger por-
tion of secondary pions should come from the halo, since they
originate from long-lived resonances. We also notice that in
general the following hierarchies for the intercept and Lévy
index: Aprim < Aall < Asecond and Qgecond S all < ®prim,
and that the correlation function for primary pions has the
closest behaviour to a Gaussian. For the whole sample of
pions, there is a general tendency for Rj,, to increase as
the collision energy increases. For the separate samples of
primary and secondary pions, although Rj,, grows with the
collision energy from the lowest to the largest energy con-
sidered, this growth is non-monotonic. The index « slightly
decreases with the collision energy from the lowest to the

@ Springer
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Table 1 Parameters resulting ] 2
from fits of the two-pion Riy [fm] » ¢ X~/ ndf
correlation functionto Exponential 9.459 +0.218 1.18 +0.019 - 14.849
exponential, Gaussian and Lévy
forms for the complete pion set  Gaussian 7.254 +0.166 0.919+0.018 - 38.301
obtained at ./syny = 5.8 GeV Lévy 8.121 + 0.059 1.05 £+ 0.006 1.312 £ 0.015 0.835

(@)t =35fm

g
]
\-|a R

P4

z
el

v b b b .l
0 5 10 15 20 25 30 35 40 45
A, [fm]

(b) 7 = 200 fm

Fig. 2 (a) Example of the three-dimensional source image in the
center-of-mass system for an event with \/syy = 9.2 GeV obtained
from the spatial freeze-out coordinates given by UrQMD at time t = 35
fm when 90% of the charged pions have attained their freeze-out. The
source is nearly spherical in coordinate space. (b) One-dimensional

distribution of A; = / (tFZO),- — (IF|%,); for each particle for a sample
event obtained from the freeze-out coordinates given by UrQMD at time

t = 200 fm. The average value is obtained as A = 9.19 fm

largest energy considered but, except for the case of the pri-
mary pion sample, the overall decrease is non-monotonic.
To summarize, for the perfect detector case, the general ten-
dency for the source radii is to grow with the collision energy,
while the Lévy index of stability does not have a clear gen-
eral tendency. The values of Rj,y for secondary pions are very
similar but in general larger than those of the complete set

@ Springer

2.5
— Fit primaries
— F'it secondaries
2.0 = -+ CRAB primaries
Py = CRAB secondaries
E
15+
)
1.0

0=r—T—T—T1T T T T T 1
0 25 50 75 100

Gy [MeV]

Fig. 3 Two-pion correlation function of primary and secondary pions,
produced in Bi+Bi collisions at \/syxy = 5.8 GeV, with impact param-
eter b = 0 — 1 fm. The dots represent the output of CRAB, while the
solid lines represent the fit of Lévy forms

of pions for the whole energy range; the opposite happens in
general for the index «.

4.2 Finite resolution case

To account for finite resolution effects, recall that it has been
reported that the NICA-MPD will have a minimum momen-
tum resolution of about 1.5 % for particles with total momen-
tum around 0.2 GeV [46]. Therefore, the relative momentum
resolution of MPD will be of about A, = 10 MeV. This
effect can be included in our studies by fixing the smearing
parameter of CRAB to 10 MeV. This means that the momen-
tum p of a given particle will be assigned the same value,
provided it lies in the range p &= A, /2, which in turn can be
translated into a limit for the minimum pair momentum reso-
lution. Our results show that for the studied energy range and
for a non-perfect detector with a smearing, or equivalently, a
track resolution A, = 10 MeV, the resolvable size, in invari-
ant variables, is of order 10 fm and the sample contains a
non-resolvable halo which, as opposed to the case at higher
collision energies, is basically a smooth continuation of the
core, that is to say, it is not made of a very largely separated
component. The existence of this non-resolvable component
is signaled by a value A < 1. By means of the Heisenberg
uncertainty relation, this finite resolution therefore translates
into the fact that source components whose characteristic
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Table 2 Parameters resulting from fits of the two-pion correlation function to a Lévy form for primary and secondary pions obtained at . /syny = 5.8

GeV
Riny [fm] A o Xz/ ndf
Primary 3.516 £ 0.014 0.982 + 0.004 1.863 +0.021 0.353
Secondary 8.402 £+ 0.065 1.066 + 0.007 1.31 £0.016 0.321
9 - [ ] 2.5
s > —Fit all
— 8= b — Fit smearing
é 7 - s 2.0 = -+ CRAB all
— — = CRAB smearing
> 6= 2
g &
3 54 — 1.5=
- $)
4 [ ™ [ u
1 1T 1 1T 1T 1 1T 1T 1T 1 1.0 =
4 5 6 7 8
A/ SNN [GGV]

Ideal Resolution

@ Complete set & Primaries - Secondaries

Fig. 4 Source size Riyy as a function of the collision energy, /sy, for
the complete set of pions (black circles), primary pions (red rectangles)
and secondary pions (blue diamonds), obtained from Bi+Bi collisions

with impact parameter b = 0 — 1 fm. Rj,y is obtained from fits to a
Lévy form
185 " "
[
1.65 = "
3
[
L 4
1.25-
[ J
T T 1T 1T 17T 1T 1T T 1T 1T 1
4 ) 6 7 8 9

A/ SNN [GGV]

Ideal Resolution

-@ Complete set - Primaries @ Secondaries

Fig. 5 Lévy index of stability « as a function of the collision energy,
/SN, for the complete set of pions (black circles), primary pions (red
rectangles) and secondary pions (blue diamonds), obtained from Bi+Bi
collisions with impact parameter » = 0 — 1 fm. « is obtained from fits
to a Lévy form

size is larger than R 2 1/A,, cannot be resolved [32] and
we hereby refer to these as the halo.

Figure 6 shows the effect of this finite resolution on the
two-pion correlation function, shown in Fig. 1, together with
afitto a Lévy form. The results of the fit are shown in Table 3.

05=r—T—T—T1T T T T T 1
0 25 50 75 100

Gy [MeV]

Fig. 6 Two-pion correlation function of Bi+Bi collisions at \/syy =
5.8 GeV, with impact parameter b = 0 — 1 fm. The blue dots represent
the same output of CRAB of Fig.1, while the red dots include the
finite resolution effect of MPD, with a smearing of 10 MeV. Solid lines
represent the fit to a Lévy form

2.5
— Fit primaries
— F'it secondaries
2.0 = -+ CRAB primaries
Py = CRAB secondaries
>
=]

05=r—T—T— T T T T T 1
0 25 50 75 100

Gnv [MeV]

Fig. 7 Two-pion correlation function of primary and secondary pions,
produced in Bi+Bi collisions at \ /sy y = 5.8 GeV, with impact parame-
ter b = 0—1 fm. The dots represent the output of CRAB with a smearing
of 10 MeV, while the solid lines represent the fit of Lévy forms

Notice that the finite resolution has the effect of significantly
diminish the source size (by about 23%) and the value of the
intercept (by about 39%), while increasing the value of the
Lévy stability index (by about 14%).
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Table 3 Results of the fit to the two-pion correlation function with a Lévy form accounting for a finite resolution of the detector, setting a smearing

of 10 MeV, for the complete pion set obtained at \/syy = 5.8 GeV

Riny [fm] A o x%/ndf
w. smearing 6.238 £ 0.046 0.632 £ 0.004 1.502 + 0.022 0.912
Wwo. smearing 8.121 £ 0.059 1.05 £ 0.006 1.312 £ 0.015 0.835
2.5 *
—Fit primaries 6.5 : L § °
— Fit secondaries — 6= $
2.0 -+ CRAB primaries = 5.5
Py - CRAB secondaries =
> 5=
g z
3 1.5 = Q‘E 4.5 =
N 4 -
O
3.5= m = = [ ]
1.0= T T T T T T T T 11
4 5 6 7 8 9
0.5 A/ SNN [GGV]

T T T T T T T
0 25 50 () 100

Gy [MeV]

Fig. 8 Two-pion correlation function of primary and secondary pions,
produced in Bi+Bi collisions at ,/syy = 5.8 GeV, with impact parame-
ter b = 0—1 fm. The dots represent the output of CRAB with a smearing
of 10 MeV, while the solid lines represent the fit of Lévy forms

Figure 8 shows the effect of a finite resolution (smearing
of 10 MeV) on the separation of primary and secondary pions
shown in Fig. 3, together with a fit to a Lévy form. The results
of the fits are shown in Table 4. Notice that, once again, the
finite resolution has the effect of diminishing the source size
(by about 2% for primary pions and about 21%, for secondary
pions) and the value of the intercept (by about 8% for primary
pions and about 39% for secondary pions), while the value of
the Lévy index decreases for primary pions (by about 8%) and
increases for secondary pions (by about 10%). This means
that the effect of the finite resolution is of the same order
for the set containing all the pions than for the set containing
only the secondary pions, while the effect of a finite resolution
barely affects the set of primary pions.

Figures 9 and 10 show the evolution of the source
radii and the Lévy index, respectively, with the collision
energy for the complete, primary and secondary sets of
pions. The hierarchy of the fit parameters for the invari-

Finite Resolution
-@- Complete set - Primaries -4~ Secondaries

Fig. 9 Source size Rjny as a function of the collision energy, /sy, for
the complete set of pions (black circles), primary pions (red rectangles)
and secondary pions (blue diamonds), obtained from Bi+Bi collisions
with impact parameter » = 0 — 1 fm and a smearing of 10 MeV. Rjy
is obtained from fits to a Lévy form

1.75= # ‘
1.65 " '
3

*

1.55 ° .

*

1.45— ¢ ¢ ¢
1 1 1 1 1 1 1 1 1
4 5 6 7 9

\/% [GeV]

Finite Resolution

@ Complete set - Primaries @ Secondaries

Fig. 10 Lévy index of stability « as a function of the collision energy,
/5w, for the complete set of pions (black circles), primary pions (red
rectangles) and secondary pions (blue diamonds), obtained from Bi+Bi
collisions with impact parameter » = 0 — 1 fm and a smearing of 10
MeV. « is obtained from fits to a Lévy form

Table 4 Results of the fit to the two-pion correlation function with a Lévy form accounting for a finite resolution of the detector, setting a smearing

of 10 MeV for primary and secondary pions at \/syn = 5.8 GeV

Riny [fm] X o x2/ndf
Primary 3.426 £0.012 0.905 + 0.003 1.709 £ 0.016 1.615
Secondary 6.591 £ 0.054 0.647 + 0.005 1.447 £ 0.022 0.259
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TableS Evolution of the intercept parameter A with the collision energy
for the complete, primary and secondary sets of pions, obtained from
fits to a Lévy form accounting for a finite resolution of the detector with
a smearing of 10 MeV

Jsnn [GeV] Aall )hprim Asecond

4.0 0.677 £ 0.003 0.907 £ 0.002 0.651 £ 0.004
5.8 0.632 £+ 0.004 0.905 £ 0.003 0.647 £ 0.005
7.7 0.625 £+ 0.004 0.9 £+ 0.003 0.608 £ 0.003
9.2 0.595 £+ 0.007 0.887 £ 0.005 0.602 £ 0.003

ant radii is Riny, prim, FR < Rinv, al, FR < Riny, second, FR»
except for le lowest energy considered where we have instead
Rin, prim, FR < Riny, second, FR S Rinv, an, Fr. The hierar-
chy for the intercept parameter becomes now Aq FrR <
Asecond, FR < Aprim, FR, While it remains the same for the Lévy
index Ofgecond, FR < all, FR < COprim, FR- Notice that for the
set of primary pions, Rj,y is basically constant for the energy
range considered, whereas o shows a moderate decrease with
energy. This means that a finite momentum resolution has a
small effect on the pions of primary origin. The values for
Riny and « for the set of secondary pions are closer to the
corresponding parameters when the whole pion sample is
considered. This means that when no separation of the sam-
ple between primary and secondary pions is made, the full
sample is dominated by the secondary pions. For the whole
sample of pions, as well as for the set of secondary pions,
Riny shows an overall tendency to increase with the collision
energy, whereas for both of these samples, « is basically
constant around the same value o >~ 1.5.

Table 5 shows the evolution of the intercept parameter A
with respect to the collision energy for the complete set of
pions, as well as for the primary and secondary pions. Notice
that for all the cases, the value of A decreases as the energy
increases. Nonetheless, for the complete set and the set of
secondary pions, the decrease is around 10%, whereas for
the set of primary pions the decrease is only marginal and
around 2%. In the core-halo picture, the intercept parameter
can be related to the square of the fraction of pions com-
ing from the core. This implies, according to Eq. (9), that
between 77% and 82% of the pions should come from the
core and only a smaller fraction should come from the halo.
According to our definition, pions of secondary origin are
those coming from the decay or long-lived resonances. The
results show that simulating a finite resolution detector with
asmearing Ag ~ 10 MeV, this fraction of pions of secondary
origin together with the pions of primary origin come from a
space-time region within Rjyy, such that Ag Ripy < 1 imply-
ing that the space region that can be accessed is restricted to
Riny < 20 fm. We have verified from the simulations that
indeed, about 20% of the pions are produced in a region
with a distance from the collision center larger than 20 fm.

Table 6 Average charged pion multiplicity evolution with the collision
energy for the complete, primary and secondary sets of pions

JSnn [GeV] All Primaries Secondaries
4.0 120 10 110
5.8 230 20 210
7.7 330 40 290
9.2 400 50 350

Therefore, the spatial region where about 20% of secondary
pions come from, corresponds to an average size Rpao = 20
fm. This explains why, when considering a finite resolution
detector, the core pions (as defined by the core-halo picture)
do not contain this fraction of secondary pions and thus, the
average size for the source of secondaries decreases from
Riny ~ 8 fm to Rj,y ~ 6.5 fm. Since the intercept param-
eter for secondaries decreases more than for the primaries
as the energy increases, this means that for larger energies,
long-lived resonances decay further away from the center, as
expected, and thus contribute less to the population of core
pions. From the UrQMD simulation, it is possible to directly
identify that the average fraction of primary pions, which
always populate the core, increases marginally with energy
to be between 6% and 12%. Therefore, we can conclude that
for lower energies, the core is mainly populated by pions from
resonance decays and that this population slowly decreases
as the collision energy increases. For completeness, and in
order to fully characterize the pion sample, Table 6 shows the
average multiplicity per event for the complete, the primary
and the secondary sets of pions.

5 Summary and conclusions

In the context of relativistic heavy-ion collisions within the
NICA energy range, we have studied the evolution with colli-
sion energy of the parameters that describe the two-pion cor-
relation function. We have performed MC simulations using
the UrQMD event generator in the cascade mode, to produce
5% 106 events for each considered energy. In each case, the
quantum correlations are included using the CRAB analyzing
code. No other source of correlations but the quantum ones
have been included. We studied the correlation function as a
function of the invariant relative pair momentum for a fixed
value of the average pair momentum. To find the parameters
that describe the correlation function we performed fits using
Gaussian, exponential and symmetric Lévy shapes. We have
shown that, as is the case when considering larger energies,
the Lévy shape provides that best description of the corre-
lations for the different settings and across the considered
energy range. The most likely origin of the Lévy behavior is
that the particle source has a large tail in configuration space
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and thus a description in terms of a distribution containing
only one characteristic length is not appropriate. This is con-
firmed by our study of the three-dimensional source image.
The pion sample is separated into its primary and secondary
components. The latter is defined as the set of pions coming
from the decay of long-lived resonances, mostly p, A, w, K*,
N(1440), A(1600), A(1700), A(1950), X, a; and p(1700).
We have shown that the source size for the sample of sec-
ondaries is similar but larger than that for the whole sample
and significantly larger than the source size of the primaries.
The intercept parameter exhibits the same hierarchy whereas
the Lévy index exhibits the opposite one. For the case of the
primary pion sample, the Lévy index shows an overall slight
decrease with collision energy, however the secondary and
full set of pions do not show a clear tendency with collision
energy. We also notice that when restricting only to the set
of primary pions, the correlation function already requires
o < 2. Adding to the sample of primary pions the pions
coming from resonance decays produces in general a further
decrease of o [47].

In order to obtain a more accurate picture of the space-time
characteristics of the pion producing sources, we have simu-
lated the case of a non-ideal detector introducing a smearing
parameter in the CRAB code to mimic a minimum resolu-
tion for the determination of the relative pair momentum.
From the uncertainty relation between momentum and posi-
tion, this translates into a maximum source size from where
pion pairs can be identified. This smearing produces that the
intercept of the correlation function becomes smaller than
1. Within the core-halo picture, the impossibility to deter-
mine source sizes larger than the inverse of the smearing
momentum can be turned into an advantage since the size
of the intercept can be directly identified with the square of
the fraction of pions coming from the core. Our results indi-
cate that the core pion sample has a large component that
comes from the decay of long-lived but slow-moving reso-
nances, as well as a small component of pions coming from
primary processes. The former decreases whereas the latter
increases with collision energy. In this sense, the analysis
of the relative abundance of pions in the core coming from
resonance decays and from primary processes, as the colli-
sion energy changes, becomes more important as a tool to
study signals of criticality within the NICA energy range,
when future comparisons are made with results from similar
analysis but using an event generator that includes a phase
transition within the same energy range. Indeed, when addi-
tional particle producing processes within the core introduce
extra sources of correlations with lengths of order of the size
of the system, such as when an EoS is considered in the
MC generator, it is expected that these leave an imprint that
can show up in particular as a non monotonic evolution of
the Lévy index with collision energy [47]. In this sense, or
results represent a benchmark to use for comparison with

@ Springer

future studies where the event generator includes and EoS.
We are performing this kind of analysis based on the findings
of this work and the results will soon be reported elsewhere.
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