
The first law and Wald entropy formula 
of heterotic stringy black holes at first 

order in α0 

Memoria de Tesis Doctoral realizada por 

Zachary Elgood 

presentada ante el Departamento de Física Teórica 
de la Universidad Autónoma de Madrid 

para optar al Título de Doctor en Física Teórica 

Tesis Doctoral dirigida por el Prof. D. Tomás Ortín Miguel1 

1Profesor de Investigación del Instituto de Física Teórica UAM/CSIC 

Departamento de Física Teórica 
Universidad Autónoma de Madrid 

Instituto de Física Teórica 
UAM/CSIC 

Madrid, 1 de Mayo, 2022 



The project that gave rise to these results received the support of a fellowship from 
”la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660042. 
This project has received funding from the European Union´s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No. 713673. 



The world is indeed full of peril, and in it there are many dark places; but still there is 
much that is fair, and though in all lands love is now mingled with grief, it grows perhaps 

the greater. 
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Abstract 

Black-hole thermodynamics is probably one of the most active fields of research in The-
oretical Physics. It interconnects seemingly disparate areas of Physics such as Gravity, 
Quantum Field Theory, and Information Theory, providing deep insights in all of them. 
While initially valid only for General Relativity, Wald and collaborators developed a new 
approach to demonstrate the first law of black hole mechanics in general diffeomorphism-
invariant theories, beyond General Relativity. As a by-product, this approach lead to the 
identification of an expression that plays the role of entropy (Wald entropy) in the first law 
in theories beyond General Relativity. However, the first laws and the entropy formulas 
derived in the literature with this formalism (the Iyer-Wald prescription) present severe 
shortcomings in certain string theories, such as missing work terms in the first laws and 
lack of gauge invariance of the entropy formula. This prevents a fair comparison with the 
microscopic entropy computed using other techniques (AdS/CFT correspondence etc.). 
The main goal of this thesis is to identify the roots of these problems and fix them. As we 
will see, the root of these problems is the inadequate treatment of the fields that exhibit 
some kind of gauge freedom. These are, as a matter of fact, all fields except for scalars 
and the metric (if one does not use the vielbein formalism). 

This thesis is divided into two parts. The first section will involve compactifying 
the heterotic string action on S1 , allowing us to compute re-derive the Buscher rules and 
prove T duality. We will then use the Iyer-Wald formula in the dimensionally reduced 
action to derive an entropy formula that can be applied to black-hole solutions which can 
be obtained by a single non-trivial compactification on a circle and discuss its invariance 
under the α0-corrected T duality transformations. Specifically, we shall apply it to the 
Strominger-Vafa extremal black hole. We will demonstrate that in addition to the lack 
of gauge invariance, there exists an ambiguity in applying the formula, as applying it to 
d = 10 and d = 5 yields two different results that differ by a factor of 2. 

As previously mentioned, Iyer-Wald formula cannot be applied unambiguously in 
the case of the heterotic string case, as one of the main assumptions was that all fields 
behaved as tensors. However, all fields apart from the metric and scalars possess gauge 
freedoms, and their transformations under diffeomorphisms are always coupled to gauge 
transformations. This serves as motivation for the second section of the thesis, where we 
determine the first law of black hole thermodynamics in a gauge-invariant way, introducing 
gauge-covariant transformations under diffeomorphisms (gauge covariant Lie derivatives). 
The construction of these transformations involves the definition of “momentum maps” 
associated to field strengths and the vectors that generate their symmetries. These objects 
play the role of generalized thermodynamical potentials in the first law and satisfy the 
restricted generalized zeroth laws. 

After testing our ideas on the d-dimensional Reissner-Nordström-Tangherlini black 
hole in the context of the Einstein-Maxwell theory, we turn our focus to the heterotic 
string case. Initially, we examine the case of the heterotic string theory up to zeroth 
order α0 compactified on a torus. This theory is interesting because of the black-hole 
solutions it admits, and because of the Abelian Chern-Simons terms present in the Kalb-
Ramond 3-form field strength. The presence of those terms induces the so-called Nicolai-
Townsend gauge transformations of the Kalb-Ramond 2-form. These terms and gauge 
transformations, appear in the 10-dimensional theory at first order in α0 in a much more 
complicated way (non-Abelian, gravitational) and this model can be used as a toy model 
to test our ideas. We show how to deal with all these gauge symmetries deriving the 
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first law in terms of manifestly gauge-invariant quantities. Explicitly, we will demonstrate 
this in the case of a non-extremal, charged, black ring solution of pure N = 1, d = 5 
supergravity embedded in the Heterotic Superstring effective field theory. 

In the final chapter, we arrive at our main result, based on the work of the previous 
chapters. We derive the first law of black hole mechanics in the context of the Heterotic 
Superstring effective action to first order in α0 using Wald’s formalism, taking into account 
all the symmetries of the theory. This requires additional care due to the presence of 
the non-Abelian Lorentz and Yang-Mills Chern-Simon terms found in the Kalb-Ramond 
field strength. As a result, we obtain a manifestly gauge- and Lorentz-invariant entropy 
formula in which all the terms can be computed explicitly. An entropy formula with these 
properties allows unambiguous calculations of macroscopic black-hole entropies to first 
order in α0 that can be reliably used in a comparison with the microscopic ones. Such a 
formula was still lacking in the literature 



Resumen 

La termodinámica de los agujeros negros es probablemente uno de los campos de investi-
gación más activos de la Física Teórica. Interconecta áreas de la Física tan aparentemente 
dispares como la Gravedad, la Teoría Cuántica de Campos y la Teoría de la Información, 
proporcionando una visión profunda de todas ellas. Si bien inicialmente solo era válida 
para la Relatividad General, Wald y sus colaboradores desarrollaron un nuevo enfoque 
para demostrar la primera ley de la mecánica de los agujeros negros en teorías generales 
invariantes bajo difeomorfismos más generales que la Relatividad General. Como sub-
producto, este enfoque condujo a la identificación de una expresión que juega el papel 
de entropía (entropía de Wald) en la primera ley en teorías más allá de la Relatividad 
General. 

Sin embargo, las primeras leyes y las fórmulas de entropía derivadas en la liter-
atura con este formalismo (la prescripción de Iyer-Wald, en concreto) presentan graves 
deficiencias en ciertas teorías de cuerdas, como la falta de términos de trabajo en las 
primeras leyes y la falta de invariancia de gauge de la fórmula de entropía. Esto impide 
una comparación justa con la entropía microscópica calculada utilizando otras técnicas 
(correspondencia AdS/CFT, etc.). El objetivo principal de esta tesis es identificar las 
raíces de estos problemas y solucionarlos. Como veremos, la raíz de estos problemas es 
el tratamiento inadecuado de los campos que exhiben algún tipo de libertad de gauge. 
Estos son, de hecho, todos los campos excepto los escalares y la métrica (si no se usa el 
formalismo de tétradas). 

Esta tésis está dividida en dos partes. En la primera sección se realiza la compact-
ificación de la acción efectiva de la cuerda heterótica en S1 a primer orden en α0 , lo que 
nos permitirá volver a calcular las reglas de Buscher y demostrar que es invariante bajo 
T dualidad. Luego usaremos la fórmula de Iyer-Wald en la acción del modelo dimension-
almente reducido para derivar una fórmula de entropía que se puede aplicar a soluciones 
de agujeros negros que pueden ser obtenidos por una sola compactifición no trivial en un 
círculo y discutiremos su invariancia bajo las transformaciones de T dualidad corregidas 
por α0 . En concreto, lo aplicaremos al agujero negro extremo de Strominger-Vafa. De-
mostraremos que, además de la falta de invariancia de gauge, existe una ambigüedad en 
la aplicación de la fórmula, ya que al aplicarla a d = 10 y d = 5 produce dos resultados 
diferentes que difieren por un factor de 2. 

Como se mencionó anteriormente, la fórmula de Iyer-Wald no se puede aplicar sin 
ambigüedades en el caso de la cuerda heterótica, ya que una de las suposiciones principales 
en su derivación era que todos los campos se comportaban como tensores y todos los 
campos, excepto el métrico y el escalar, poseen libertades de gauge y sus transformaciones 
bajo difeomorfismos siempre están acoplados a transformaciones de gauge. Esto sirve 
de motivación para la segunda sección de la tesis en la que probamos la primera ley de 
la termodinámica de agujeros negros de una manera invariante de gauge, introduciendo 
transformaciones bajo difeomorfismos covariantes de gauge (derivadas de Lie covariantes 
de gauge). La construcción de estas transformaciones implica la definición de momentum 
maps asociados a los campos y a los vectores que generan sus simetrías. Estos objetos 
juegan el papel de potenciales termodinámicos generalizados en la primera ley y satisfacen 
las “leyes cero generalizadas restringidas”. 

Después de haber puesto a prueba nuestras ideas sobre el agujero negro Reissner-
Nordström-Tangherlini en el contexto de la teoría de Einstein-Maxwell d-dimensional, nos 
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centramos en el caso de la cuerda heterótica. Inicialmente, examinamos el caso de la teoría 
efectiva de la cuerda heterótica hasta orden cero en α0 compactificada sobre un toro. Esta 
teoría es interesante debido a las soluciones de agujeros negros que admite, y debido a los 
términos abelianos de Chern-Simons presentes en la intensidades de campo de la 3 forma 
de Kalb-Ramond. La presencia de esos términos induce las llamadas transformaciones de 
gauge de Nicolai-Townsend de la 2-forma de Kalb-Ramond. Estos términos y transfor-
maciones de gauge aparecen en la teoría de 10 dimensiones a primer orden en α0 de una 
manera mucho más complicada (no-abeliana, gravitacional) y este modelo puede usarse 
como un modelo de juguete para poner a prueba nuestras ideas. Así, explicamos cómo 
hay que tratar todas estas simetrías de gauge y derivamos la primera ley en términos de 
cantidades manifiestamente invariantes de gauge. Explícitamente, demostraremos esto en 
el caso de una solución de anillo negro cargada no-extrema de supergravedad pura N = 
1, d = 5 que se puede ver tambi’en como solución de la teoría efectiva de supercuerda 
heterótica. 

En el capítulo final, llegamos a nuestro resultado principal, basado en el trabajo 
de los capítulos anteriores. En él demostramos la primera ley de la mecánica de los 
agujeros negros en el contexto de la acción efectiva de la supercuerda heterótica a primer 
orden en α0 utilizando el formalismo de Wald, teniendo en cuenta correctamente todas 
las simetrías de la teoría. Esto requiere un cuidado adicional debido a la presencia de 
los términos no-abelianos de Lorentz y Yang-Mills Chern-Simons que se encuentran en 
la intensidad de campo de Kalb-Ramond. Como resultado, obtenemos una fórmula de 
entropía manifiestamente invariante de gauge (incluyendo transformaciones de Lorentz 
locales) en la que todos los términos puede calcularse explícitamente. Una fórmula de 
entropía con estas propiedades permite cálculos inambiguos de entropías de agujeros negros 
macroscópicos de primer orden en α0 que pueden usarse de forma fiable en una comparación 
con los microscópicos. Tal fórmula aún faltaba en la literatura. 
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1 
Introduction 

Black holes remain one of the most enigmatic objects in our universe. Interest from sci-
entists and the public has grown within the last few years, due to the recent discovery of 
the black hole shadow detected by the Event Horizon Telescope: the first direct obser-
vation. Formed from the collapse of massive stars, black holes are regions of space with 
gravity so strong that light cannot escape. There is evidence that at the center of most 
galaxies, including our galaxy, there are supermassive black holes, possessing masses of 
M ∼ 106 − 1010M . There are even suggestions that primordial black holes could have 
been formed in the early universe. Black holes present many useful research opportunities, 
allowing us to probe extreme regions of general relativity (GR), as well as observing grav-
itational waves, which may help us better understand what truly is the nature of gravity. 
In 2015, the first observation of gravitational waves occurred, which were produced by the 
merging of two black holes [1], with additional discoveries made in the following years. 
These detections have been used to perform precision tests of GR [2–6], as well as to 
constrain the parameter space of its possible extensions [7–11]. 

One of the most important aspects of black holes, though, is that they present one 
of the few known regimes where GR and quantum field theory both play a significant role. 
While the gravitational effects of black holes can be described by GR, a true theory of 
quantum gravity is necessary in order to deal with various issues, such as the black hole 
information paradox, or the presence of gravitational singularities. 

One particular aspect that has received attention in the past decades is black hole 
thermodynamics. It has been found that, classically, the geometric properties of the 
black hole horizon can be interpreted as thermodynamic properties. This allows a test 
to help determine a theory of quantum gravity, as any prospective theory should provide 
an explanation for the black hole entropy from a counting of microscopic states. One of 
the most prominent of these theories is string theory, in which particles are replaced by 
1-dimensional strings, which we will examine in detail in 1.3. 

Before we examine the quantum aspects of black holes and how they appear in string 
theory, we will begin discussing black holes in the most classical sense, as described by GR. 
We will first provide a general description of black holes (focusing on the simplest example 
of the Schwarzschild case), before examining the laws of black hole thermodynamics in 
detail. 
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Chapter 1. Introduction 

1.1 Black Holes 

Defined more rigorously, a black hole region B in an asymptotically-flat spacetime (M, gµν ) 
is defined as the set of events from which outgoing null geodesics cannot reach future null 
infinity, I + . The event horizon, defined as the boundary of the black hole region H = ∂B, 
is a null hypersurface generated by null geodesics that have no future end points [12]. 

One further assumption that we shall make is that the black hole spacetime is 
stationary. This means that the metric gµν admits a one-parameter family of isometries 
generated by a Killing vector which is timelike in the asymptotic region. In this case, 
the rigidity theorems [13, 14] establish that the event horizon is a Killing horizon: a null 
hypersurface whose normal vector kµ is a Killing vector of gµν 

1 . Consequently, the null 
generators of the horizon are given by the integral curves of kµ, satisfying 

kν rν k
µ = κ kµ , (1.1) 

on the horizon. κ can be defined as the surface gravity of the black hole. If κ 6= 0, then the 
Killing horizon contains a (D2)-dimensional spacelike cross section B on which the Killing 
field kµ vanishes. B is then known as a bifurcation surface. The fact that κ is constant 
on the horizon H is known as the zeroth law of black hole thermodynamics (explained in 
section 1.1.1). 

The simplest example of a black hole is the Schwarzschild black hole, a black hole 
possessing no rotation, electric, or magnetic charge. The line element of this case can be 
presented as (using the (+,-,-,-) signature) 

Rs dr2 
ds2 = (1 − )dt2 − − r 2dΩ2 , (1.2) 

r 1 − Rs 
r 

where dΩ2 = dθ2 + sin2 θdφ2 , and Rs is the Schwarzschild radius Rs = 2GM (assuming 
natural units of c = ~ = 1, where G is the Newton’s constant). 

It is noted that two singularities occur at r = 0 and r = Rs in the above metric (a 
component blows up in each case). The former case is known as a curvature singularity. 
These singularities are properties of the spacetime itself, and as such are present in the 
metric regardless of which coordinate system we choose; they are physical singularities. 
The simplest way to see this is to check that at least one curvature invariant diverges there. 
In the case of the Schwarzschild solution, the simplest non-trivial curvature invariant is 
the Kretschmann invariant, 

48M2 cos2 θ 
RµνρσR

µνρσ = + O(r −8), (1.3)
6r 

which also possesses a singularity at r = 0. The latter singularity at r = Rs is a coordinate 
singularity, which can be removed from the metric by changing our coordinate system. In 
this case, r = Rs coincides with the event horizon of the black hole. This singularity arises 
due to a poor choice of coordinates. 

One of the best ways of removing this singularity is through the use of the Kruskal-
Szekeres’ coordinates. We wish for the two coordinates to be a linear combination of the 

1A Killing vector is defined as a vector kµ that satisfies the Killing equation, r(µkν) = 0. This means 
the metric does not change along the integral curves of kµ, and that the metric possesses an isometry along 
kµ. This can also be expressed in terms of the Lie derivative L as Lkgµν = r(µkν) = 0 
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Figure 1.1: Penrose diagram of the extended Schwarzschild metric. Region I corresponds 
to the area outside the black hole, while region II corresponds to the inside of the black 
hole. Region IV is the white hole that arises in the new coordinates, and region III 
corresponds to an alternative universe. 

temporal and spatial coordinates. Defining the functions U, V implicitly by 

r 
UV r/Rs= (1 − )e

Rs 
(1.4) 

U 
V 

t/Rs= −e , (1.5) 

our metric now reads as 
−r/Rs4R3es 2dΩ2ds2 = dUdV − r . 
r 

(1.6) 

Only the physical singularity at r = 0 remains in the metric. In addition, this 
new form of our metric gives us a wider spacetime patch. The original Schwarzschild 
coordinates only were valid for the region where r > Rs, the area outside the event 
horizon. Our maximally extended spacetime includes the region of 0 < r < Rs, as well as 
two other regions, separated by the null hypersurfaces V = 0. 

The best way to illustrate the black hole in the new coordinate system is through 
the use of a Penrose diagram, where infinities are brought into a finite distance through 
conformal transformations, as seen in figure 1.1. These transformations preserve light 
cones, so light propagates at 45◦ in the diagram. Region I corresponds to the black hole 
exterior, r > Rs. Region II corresponds to the region beyond the event horizon. Here, we 
can see that any observer in II will always be doomed to reach the singularity, which is a 
spacelike hypersurface instead of a timelike one. One notable consequence of the change 
in coordinates is the appearance of two additional regions, due to the range of values U, V 
can take. We can visualize this by picturing the constant r curves as hyperbolas with two 
branches, one occurring in Regions I/II, and the other in Regions III/IV. In the latter 
case, III can be described as an alternative universe, while IV takes the form of a white 
hole, where it is impossible for an object to enter, and everything inside is eventually 
dispersed. The event horizon consists of the case of the two null hypersurfaces: U = 0 and 
V = 0. These divide into the future and past event horizons, with the future (past) horizon 
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occurring at U = 0 (V = 0) in Region I and at V = 0 (U = 0) in Region III. These null 
surfaces intersect at the bifurcation 2-sphere, where kµ = 0, which plays an important role 
in some black hole calculations. Explicitly, in Kruskal-Szekeres’ coordinates, this Killing 
vector takes the form k = κ(V ∂V − U∂U ). 

1.1.1 Black Hole Thermodynamics 

Black-hole thermodynamics originates in the analogy between the behaviour of the area of 
the event horizon A and the second law obeyed by the thermodynamic entropy S noticed by 
Bekenstein [15,16] in the results obtained by Christodoulou and Hawking [13,17,18]. The 
non-decreasing area of the black hole as a function of time, known as the Area theorem, 
was first proposed by Hawking [19]. Shortly afterwards, Bardeen, Carter and Hawking [20] 
extended this by proving another two laws of black hole mechanics, as well as conjecturing 
a third, similar to the other three laws of thermodynamics involving the event horizon’s 
surface gravity κ, the angular velocity Ω and angular momentum J , and the black hole’s 
mass M . However, the analogy was only taken seriously after Hawking’s discovery that 
black holes radiate as black bodies with a temperature T = κ/2π [21], which implied the 
relation S = A/4 (when we work in c = GN = ~ = k = 1 units). These laws can be 
expressed in the following form 

0. The surface gravity κ is constant across the event horizon. This was initially proven 
using the Einstein equations. Later on, it would be proven using the geometric 
properties of the event horizon without the Einstein equations by Racz and Wald 
[22]. This is analogous to the zeroth law of thermodynamic, which states that the 
temperature is constant through a body in thermal equilibrium. 

1. The variation of the mass is equal to the variation of the area of the black hole horizon 
κmultiplied by the surface gravity, plus additional work terms: δM = δA + ΩδJ ,8π 

where M is the total spacetime energy computed from the Hamiltonian, Ω is the 
angular velocity of the horizon, and J is the angular momentum. This is similar to 
the standard first law: δE = T dS + V dP + work terms. This is true as long as the 
black hole is stationary, axisymmetric, and asymptotically flat. 

2. The area of the black hole horizon is a non-decreasing function of time, which is the 
area theorem proved by Hawking: δA ≥ 0 assuming the weak energy condition: that 
for all non-spacelike vector fields ka , Tabkakb ≥ 0 for the stress tensor Tab. This is 
analogous to the second law of thermodynamics, which states that the entropy of an 
isolated system will be given by ΔS ≥ 0. This suggests the association of entropy 
with the black hole area. 

3. No method can reduce κ to zero in a finite time. This conjecture was proved later 
by Israel [23]. This is analogous to the third law in thermodynamics, which states 
that T = 0 cannot be reached in a finite number of steps. 

Shortly after the publication of the black hole thermodynamic laws, Hawking discovered 
that quantum fluctations of the vacuum in the presence of black holes caused them to 
behave as black bodies, emitting a steady flux of radiation of temperature. 

TH = 
~κ

, (1.7)
2π 
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This allowed the fixing of the constants in the Bekenstein Hawking entropy, utilizing 
the first law: 

AH
SBH = . (1.8)

4~GN 

The physical mechanism behind particle creation by black holes is analogous to the 
Schwinger pair production in strong electric fields [24]. In the case of black holes, pairs of 
virtual particles are created just outside the event horizon. One member of the pair has 
positive energy and escapes to infinity to become part of the Hawking radiation, while 
the other has negative energy and falls into the black-hole interior, to the region where it 
can exist as a real particle. The net effect is that the mass and the area of the black hole 
decrease, hence violating the second law of black-hole mechanics. Still, the evaporation 
process does not violate the generalized second law of thermodynamics [25], which states 
that the total entropy, i.e. the sum of the black-hole entropy and the entropy of the matter 
fields in the exterior region, never decreases [26]. One consequence of the particle emission 
is that black holes evaporate over time. Since the temperature is inversely proportional 
to the mass in the case of a Schwarzchild black hole, the black hole will get hotter as it 
evaporates. 

Ever since the formulation of these four laws, attempts have been made to extend 
their original domain of application. Since the surface gravity relation to the Hawking 
temperature only depends on generic geometric properties of the event horizon, the quan-
tity whose variation it multiplies in the first law is naturally associated to the entropy 
S. The Bekenstein-Hawking entropy however is derived from GR, and as such, is not 
necessarily valid in other cases. 

In Refs. [22, 27, 28] Wald and collaborators developed a new approach based on the 
Noether charge, in order to demonstrate the first law of black hole mechanics in general 
diffeomorphism-invariant theories, beyond and including GR. They introduced the concept 
of the Iyer-Wald entropy, which in GR can be reduced to the Bekenstein-Hawking entropy 
A . However, in the presence of α0 corrections in Superstring Theories (or any higher4 
order curvature corrections in general), the entropy is no longer solely determined by the 
area [29–34]. 

The explicit form of this Iyer-Wald entropy formula is generally written as [22] 
(taking ~=1) Z p

dD−2S = −2π x |h|ERabcd�ab�cd, (1.9) 
Σ 

where we define |h| as the determinant of the metric on the bifurcation surface Σ, �ab is the 
= −2, and Eabcdbinormal on the horizon defined such that �ab�ab represents the equivalent R 

of the equation of motion for the Riemann tensor if it was treated as an independent 
variable: 

Eabcd = √ 
1 δS 

. (1.10)R g δRabcd 

When Iyer and Wald derived their entropy formula, they made a few assumptions, 
some of which we will address in detail later. Their derivation looked at Lagrangian 
theories on an n-dimensional oriented manifold M , with dynamic fields consisting of a 
Lorentz signature gab, along with other fields ψ. A major assumption that was made, 
which we shall discuss later, is that for simplicity, all fields ψ were assumed to be tensor 
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fields on M . In addition, they were only interested in diffeomorphic invariant theories, 
and all fields and spacetimes were assumed to be smooth. 

1.2 Conservation laws 

In order to understand the Wald entropy, one must first understand the notion of symme-
tries and conserved charges. R 

Recall that for some action S written in the form S = ddxL(φ, ∂φ, ∂2φ, . . . ), theΣ 
arbitrary infinitesimal variation of the field δφ takes the form Z � � 

∂L ∂L ∂L 
δS = dd x δφ + δ∂µφ + δ∂µ∂ν φ + . . . . (1.11) 

Σ ∂φ ∂∂µφ ∂∂µ∂ν φ 

By assumption, the variation of the coordinates is zero. This means that the deriva-
tives commute with the variation of the field. We then must integrate by parts, and 
use Stokes theorem to express the integral of the total derivative as an integral over the 
boundary. 

In theories without higher order derivatives, L(φ, ∂φ), if we impose the condition 
that the variation of the fields vanishes over the boundary, the boundary terms will vanish. 
However, if higher order derivatives are present, we require to either impose boundary 
conditions on the derivative of the variation of the field, or we must introduce boundary 
terms to the action that keep the equation of motion, but eliminate the ∂δφ terms in 
the total derivative. Once these are satisfied, and assuming that the action is stationary 
δS = 0, we arrive at the Euler-Lagrange formula, which is utilized to find the equations 
of motion: 

δS ∂L ∂L ∂L 
= − ∂µ( ) + ∂ν ∂µ( ) − . . . (1.12)

δφ ∂φ ∂∂µφ ∂∂µ∂ν φ 

From here, we will derive an extremely important concept of physics: the notion of a 
conserved charge. A conserved quantity remains invariant along the classical trajectories 
of a given dynamical system. For example, in an isolated system, energy is conserved. 
Mathematically, this can be represented by the continuity equation ∂µJµ = 0. In this 
case, Jµ is called the conserved current, because it is used to define a quantity (charge) R 
that is conserved in time: Q = J for an arbitrary Cauchy surface Σ.Σ 

1.2.1 Noether’s first theorem 

Conserved charges can be related to the symmetries via Noether’s theorems (see [35] for 
original formulation). Noether’s first theorem states that for every global symmetry of 
an action, there exists an associated conserved charge. Global symmetry transformations 
apply the same transformation to each point in spacetime. In other words, for some 

µinfinitesimal transformation for coordinates and fields x, φ respectively, δxµ ≡ σAδAx 
and δφ = σAδAφ, where δAxµ and δAφ are given functions of the coordinates and φ, and 
σA , A = 1, . . . , n are constant transformation parameters. 

Generally, the variation of any action S which is a function of dynamical fields φ 
can be written in the form Z 

δS = dd x[Eδφ + ∂µΘµ(φ, δφ)], (1.13) 
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Chapter 1. Introduction 

where summation is understood over all fields. Here, E are the various equations of motion, 
and ∂µΘµ are the additional total derivative terms. 

Let φ(x) be a general set of coordinates; then a transformation of the coordinates 
φ)(x) to new coordinates φ0(x) is a symmetry if the action functional does not change when 
we evaluate it in these two different sets of coordinates. We want to find the consequences 
of the invariance, possibly up to a total derivative that depends on the variations, of the 
action under the above infinitesimal changes of the field δsφ (which are, then, symmetry 
transformations). Therefore, we define δsφ(x) such that for any φ(x), 

δsS[φ(x)] ≡ S[φ(x) + δsφ(x)] − S[φ(x)]Z 
= ddx∂µK

µ. (1.14) 

Note that we have not imposed the equations of motion. 
We can now prove the first Noether theorem by utilizing the variation (1.14) and 

combining with (1.13). Since equation (1.13) holds for all variation δφ, including δsφ, we 
can use the infinitesimal symmetry transformation δsφ so that Z 

δsS = dd x(δsφE + ∂µΘµ(φ, δsφ)) Z 
= ddx∂µK

µ. (1.15) 

Using the fact that the domain of integration is arbitrary, we can therefore subtract the 
equations and arrive at a total derivative term. This yields the conservation law 

∂µJ
µ = Eδsφ (1.16) 
Jµ ≡ −∂µθµ(φ, δsφ) + Kµ(φ, δsφ). (1.17) 

Jµ is what is known as the Noether current, or the conserved current. In the onshell 
case (when the equations of motion are satisfied), then ∂µJµ = 0. This is Noether’s first 
theorem: that given a symmetry δsφ(x), there must exist a conserved current J given by 
(1.16). 

1.2.2 Noether’s second theorem 

By contrast, Noether’s second theorem is applied to local symmetries, which depend on 
the given point of the manifold (for a more detailed discussion, see for example [36] and 
references therein). Consider some fields φ and a Lagrangian L(φ). The generating set 
of non-trivial gauge symmetries of φ are given by δf φ

i = Rαi (fα) = Rf
i . Here, Rαi = P i(µ1...µk) 

k=0 Rα ∂µ1 . . . ∂µk are operators, and fα are arbitrary local functions of coordinates 
and fields. By definition of gauge symmetry, Rαi (fα) must satisfy 

Rα
i (fα) 

δL 
= ∂µJf

µ , (1.18)
δφi 

δLwhere is the Euler-Lagrange derivative of L(φ), and Jµ are a set of local functions.
δφi f 

Jµ are simply the Noether currents associated to the symmetry δf . From this, we canf 
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arrive at Noether’s second theorem, which states that for the Euler-Lagrange equations of 
motion, there exist associated offshell identities 

Ri+ δL 
= 0 (1.19)α δφi 

X 
Ri+ [Ri(µ1...µk)(Qi) ≡ (−1)k∂µ1 . . . ∂µk Qi], (1.20)α α 

k=0 

where Qi are local functions. Our operator Ri+ is obtained from the original operator Ri α α 
by integrating by parts and ignoring the boundary terms. Noether’s second theorem also 
leads to conserved charges, as we shall see below. 

We shall show how this theorem applies in our specific case and notation. We shall 
follow the calculations done in [28] and [22]. It is most useful in our case to convert the 
coordinate notation to differential forms, using the standard convention: 

ω(p) =
1 
ωµ1...µp dx

µ1 ∧ · · · ∧ dxµp . (1.21) 
p! 

In this case, the variation of our Lagrangian takes the d form δL = Eδφ+dΘ(φ, δφ),Pkwhile the second Noether’s theorem then takes the form DiEi = 0, where Di are thei=1 
differential operators and Ei are the equations of motion. 

Consider some vector field ξa on a manifold M , as well as the field variation δξφ = 
−Lξφ. Here, we define Lξ as the Lie derivative with respect to ξ. Due to the diffeomorphic 
invariance of L, we can express the variation of our action as Z 

δξS = δξL Z 
= − dıξL, (1.22) 

where we utilize the Cartan relation 

LξΛ = ıξdΛ + d(ıξΛ), (1.23) 

where Λ is a generic differential form.2 R 
Let us then consider the transformations of δξL: 

Z 
δξS = δξL Z 

= [Eδξφ + dΘ]. (1.24) 

By integrating equation (1.24) by parts, as well as by employing the Noether iden-
tities, we arrive at an expression where only the total derivative does not vanish. It can 
therefore be written as 

2In our conventions, for a p-form ω(p) with components ω(p) 
µ1···µp , ıξ ω

(p) is the (p − 1)-form with 
ω(p)components (ıξω(p))µ1 ·µp−1 = ξν 

νµ1 ·µp−1 . 
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Z Z 
[Eδξφ + dΘ[ξ]] = dΘ0[ξ] 

= δξS (1.25) 

Note that Θ0 = Θ onshell (when the equations of motion are satisfied). 
By combining equations (1.22) and (1.25), we arrive at 

Z 
d(Θ0[ξ] + ıξL) = 0 

Θ0[ξ] + ıξL ≡ J[ξ]. (1.26) 

This n − 1 form J[ξ] is the Noether current. As this is independent of the equation 
of motion, dJ = 0 identically offshell and in the domain of integration. Since our current 
is closed for all ξa locally, then there must exist some n − 2 form Q such that 

J = dQ. (1.27) 

Q is known as the Wald-Noether charge relative to our vector field ξa . 

1.2.3 Issues with the Iyer-Wald formula 

In the presence of matter fields, Wald’s proof of the first law of black-hole mechanics had to 
be re-examined because one of the main assumptions of Refs. [22,28] is that all matter fields 
behave as tensors and, simply put, there are no tensor fields in the Standard Model apart 
from the metric; all of them have some sort of gauge freedom and their transformations 
under diffeomorphisms are always coupled to gauge transformations. Indeed, as is well-
known, fermionic fields coupled to gravity transform under the local Lorentz group as 
spinors and bosonic fields must transform under some gauge group if unwanted, typically 
negative-energy, states are to be eliminated. The only scalar in the Standard Model, the 
Higgs field, is, in fact, an SU(2) doublet. 

The simplest matter field that, coupled to gravity, allows for black-hole solutions 
is the Maxwell field [37, 38]. The presence of this field introduces an additional term of 
the form ΦdQ in the first law which takes into account the changes in the mass of the 
black hole when its electric charge Q changes. In this term Φ is the electric potential on 
the horizon and a generalized zeroth law states that it takes a constant value over the 
horizon. The value of Φ is customarily taken to be kµAµ, where kµ is the Killing vector 
for which the event horizon is its associated Killing horizon and where it is assumed that 
the electromagnetic field is in a gauge in which Φ is, indeed, constant. 

This definition of Φ is clearly not gauge-invariant. This is a problem of principle,3 

which, as we are going to show, is related to the more fundamental problem we were 
discussing: the fact that Wald’s proof of the first law does not deal properly with fields 
which have some kind of gauge freedom. In Wald’s proof, one considers diffeomorphisms 

3There are other problems as well: in Wald’s approach, the Noether charge, which contains a term in 
which Φ occurs, is evaluated over the bifurcation surface, but the Maxwell field of the Reissner-Nordström 
black hole turns out to be singular there in the traditional gauge [39]. 
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which are symmetries of all the dynamical fields, but the naive definition of invariance of 
fields with gauge freedom under diffeomorphisms through the standard Lie derivative is 
not gauge invariant. This problem affects the gravitational field itself when it is described 
in terms of the Vielbein instead of the metric. 

This problem was first noticed and solved by Jacobson and Mohd in Ref. [40] for the 
Einstein-Hilbert action written in terms of the Vielbein. The solution consists of going 
back to the basic formalism of [27,28] and dealing carefully with the gauge (local Lorentz) 
symmetry. In practice, this means taking into account the gauge transformations induced 
by the diffeomorphisms on the Vielbein. This can be done, for instance, by defining a 
Lorentz-covariant Lie derivative (Lie-Lorentz derivative) which can be decomposed into a 
standard Lie derivative and a local Lorentz transformation. Apart from being covariant 
under local Lorentz transformations, this derivative vanishes identically when the diffeo-
morphism is an isometry of the metric (see Refs. [41, 42]4 which build on earlier work by 
Lichnerowicz, Kosmann and others [44–50]). Gauge-covariant derivatives arise naturally 
in the commutator of two local supersymmetry transformations and in the construction 
of Lie superalgebras of supersymmetric backgrounds [42, 48–50]. 

A more general mathematically rigorous approach was proposed in [51] using the 
formalism of principal gauge bundles which encompasses Yang-Mills and Lorentz fields 
but, unfortunately, not the Kalb-Ramond (KR) field or higher-rank form fields of string 
theory.5 Perhaps the most interesting result in that paper is the realization that all the 
zeroth-laws (the constancy of the surface gravity, electric potential etc.) on the horizon fit 
a common pattern. 

In Chapters 3-5, we shall make use of these covariant Lie derivatives, which will be 
constructed from momentum maps, which we will discuss in detail. We shall also illustrate 
how the Lie-Lorentz derivatives can be used to extend the proof of the first law of black 
hole mechanics to supergravity. 

1.2.4 Momentum maps 

One of the main ingredients in the proofs of the first law of black hole mechanics using 
Wald’s formalism [22, 28] is the use of infinitesimal diffeomorphisms that leave invariant 
all the dynamical fields. 

If we use the metric gµν as dynamical field, since the metric is just a tensor, its 
µtransformation under infinitesimal diffeomorphisms δξx = ξµ(x) is given by (minus) the 

standard Lie derivative 

δξgµν = −£ξgµν = −2r(µξν) , (1.28) 

which vanishes when ξµ is a Killing vector of gµν , that we denote by kµ. 
aIf, as we want to do here, we use as dynamical field the Vielbein e µ instead of gµν , 

in order to define its symmetries, we face the well-known problem of the gauge freedom of 
ae µ, which in this context has been treated in Refs. [40, 51]. The same happens with the 

electromagnetic potential Aµ, which also has been treated in this context in Refs. [51]. 

4See also Ref. [43] for a more mathematically rigorous point of view. 
5The first law has been proved for theories including one scalar and one p-form field in [52], although 

the gauge-invariance problem has not been discussed in it. 
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One way to deal with this problem is to define a gauge-covariant notion of Lie deriva-
tive. The Lie derivative in the corresponding principal bundle, used in Ref. [51] provides 
the most rigorous definition of such a derivative. Here we will introduce a less sophisti-
cated version that makes use of the so-called momentum map and which can be defined for 
more general fields such as the Kalb-Ramond 2-form of the Heterotic Superstring, which 
cannot be described in the framework of a principal bundle [53]. Due to its simplicity, we 
start with the Maxwell field. 

The electromagnetic field Aµ is a field with gauge freedom: we must consider phys-
ically equivalent two configurations that are related by the gauge transformation 

δχAµ = ∂µχ , (1.29) 

and, furthermore, as a general rule, it is not possible to give a globally regular expression of 
the electromagnetic field in a single gauge.6 However, the standard Lie derivative does not 
commute with these gauge transformations and gives different results in different gauges. 
This is why a gauge-covariant notion of Lie derivative is needed in this case. 

In the subsequent discussion it is convenient to use differential-form language. In 
terms of the electromagnetic 1-form potential A ≡ Aµdxµ, we define the electromagnetic 
field strength 2-form by F = dA so that it satisfies the Bianchi identity dF = 0. In 
components we have 

F ≡ 1 Fµν dx
µ ∧ dxν , Fµν = 2∂[µAν] . (1.30)2 

The field strength is invariant under the gauge transformations δχA = dχ and we can 
treat it as a standard 2-form whose transformation under infinitesimal diffeomorphisms 
generated by ξµ is given by (minus) the standard Lie derivative which, on p-forms, acts 
as £ξ = ıξd + dıξ. Using the Bianchi identity we find that 

δξF = −dıξF . (1.31) 

If k generates a symmetry of all the dynamical fields, we have that δkF = 0 and 
the above equation implies that, locally, there is a gauge-invariant function Pk called 
momentum map such that7 

ıkF = −dPk . (1.32) 

Pk is defined by this equation up to an additive constant. 
Let us now consider the variation of A under infinitesimal diffeomorphisms, which, 

according to general arguments (see e.g. Refs. [42,51]) has to be given locally by a combi-
nation of (minus) the Lie derivative and a “compensating” gauge transformation generated 
by a ξ-dependent parameter χξ which is to be determined by demanding that δkA = 0 
when δkF = 0: 

δξA = −£ξA + dχξ = −ıξF + d (χξ − ıξA) . (1.33) 

Then, taking into account Eq. (1.32), we conclude that 
6The main example of this situation is the magnetic monopole [54]. 
7The sign of Pk is purely conventional. 
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χξ = ıξA − Pξ , (1.34) 

where Pξ is a function of ξ which satisfies Eq. (1.32) when ξ = k and generates a symmetry 
of all the dynamical fields. 

It is natural to identify the above transformation δξA with (minus) a gauge-covariant 
Lie derivative of A that we can call Lie-Maxwell derivative 

δξA = −LξA , LξA ≡ ıξF + dPξ . (1.35) 

While this derivative does not enjoy the most important property of Lie derivatives 
[£ξ, £η] = £[ξ,η] for generic vector fields ξ, η, it is clear that it does for those that generate 
symmetries of A, F and gµν and annihilates them. This is sufficient for our purposes. 

For stationary asymptotically-flat black holes, when the Killing vector k is the one 
normal to the event horizon, the momentum map can be understood as the electric poten-
tial Φ which, evaluated on the horizon ΦH, appears in the first law.8 In the early literature 
(see e.g. Section 6.3.5 of Ref. [56]) it was assumed from the start that there is a gauge in 
which 

£kA = ıkdA + dıkA = 0 . (1.36) 

Then, the electric potential Φ was identified with ıkA because, according to the above 
equation, dΦ = −ıkF , which can be defined as the electric field for an observer associated 
to the time direction defined by k. 

It is clear that Pk can be identified with Φ (both satisfy the same equation). However, 
in a general gauge, it will not be given simply by ıkA and we will have to compute it. 
Nevertheless, the main property of Φ, namely the fact that it is constant over the horizon 
(sometimes called generalized zeroth law) still holds because it is, actually, a property 
of −ıkF based on the properties of k, the Einstein equations and the assumption that 
the energy-momentum tensor of the electromagnetic field satisfies the dominant energy 
condition. 

For a more complex example, we can consider the KR field of the effective string 
action compactified on the torus, whose field strength is given by 

H ≡ dB − 1 AI ∧ dAI , (1.37)2 

where AI consists of the Kaluza Klein and winding vectors: � � 
AI ≡ Am 

, FI = dAI . (1.38)
Bm 

The O(n, n) indices are raised as AI = ΩIJ AJ , where ΩIJ is the off-diagonal form 
of the O(n, n) metric � � 

0 1n×n(ΩIJ ) ≡ , (1.39)
1n×n 0 

8See, for instance Ref. [55] for a proof of the first law in the context of 5-dimensional supergravity and 
the role that Φ plays in it. 
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It is convenient to start by considering the transformation of the 3-form field strength 
H defined in Eq.(1.37) under diffeomorphisms. We start by defining the gauge transfor-
mations that leave H and F I invariant. 

δχAI = dχI , (1.40) 

δB = (δΛ + δχ)B = dΛ + 1 
2χI dA

I , (1.41) 

where χI (x) is an O(n, n) vector if scalar gauge parameters and Λ = Λµ(x)dx
µ is a 1-form 

gauge parameter 
Since H is gauge invariant, upon use of its Bianchi identity 

δξH = −£ξH = −ıξdH − dıξH = ıξFI ∧ F I − dıξH . (1.42) 

When ξ = k, this expression must vanish by assumption, and we can use Eq. (1.32), 
which leads to the identity 

� � 
δξH = −d ıkH + Pk I FI = 0 , (1.43) 

which, in turn, implies the local existence of a gauge-invariant 1-form that we will also 
call a momentum map, satisfying 

− ıkH − Pk I FI = dPk . (1.44) 

The KR momentum map plays a fundamental role in the definition of the variation 
of the KR 2-form B under diffeomorphisms which should be of the general form 

� � 
δξB = −£ξB + δΛξ + δχξ B , (1.45) 

where χξ and Λξ are scalar and 1-form parameters of compensating gauge transformations. 
IThey will generically depend on AI and B as well as on ξ. χξ has to be the same 

parameter used in the definition of the Lie-Maxwell derivative Eq. (1.34) and we just have 
to determine Λξ. Now, the Maxwell and Lorentz cases suggest that we try 

Λξ = ıξB − Pξ , (1.46) 

which leads to 

1 
2χξ I dA

IδξB = −£ξB + d(ıξB − Pξ) + 
(1.47) 

= − 
� � 
ıξH + Pξ I FI + dPξ 1 

2AI ∧ ıξFI + 1 
2Pξ I F

I .+ 

When ξ = k, though, 

� 
Pk I AI . (1.48)1 

2δkB = d 

This is not zero but it can be absorbed into a redefinition of Λξ: 
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Λξ = ıξB − Pξ − 2
1 Pk I AI , (1.49) 

which gives the variation 

� � 
δξB = − ıξH + Pξ I FI + dPξ − 1 AI ∧ δξAI . (1.50)2 

This form of the variation makes it evident that δkB = 0, because δkAI = 0 and because 
of the definition of the KR momentum map 1-form Eq. (1.44). 

It remains to check that the vanishing of this variation is a gauge-invariant statement. 
Indeed, if we perform a gauge transformation in δξB, taking into account that all the 
momentum maps and δξAI are gauge-invariant, we find 

δgaugeδξB = −1 δgaugeAI ∧ δξAI , (1.51)2 

which vanishes identically for ξ = k. 
Much like the electrostatic potential, we find that since the field strengths are regular 

on the horizon, 

ıkFI BH 
= 0 , (1.52a) 

BH 
ıkH = 0 . (1.52b) 

It is possible to prove the first law using Wald’s formalism working on the bifurcation 
sphere BH, where the Killing vector k associated to the horizon vanishes. This restricts 
the necessity of the proof to bifurcate horizon but, on the other hand, it makes it possible 
to carry out the proof of the first law using a more restricted form of the (generalized) 
zeroth laws which states the closedness of the electrostatic potential and its higher-rank 
generalizations on BH. We shall illustrate this proof for our specific example in Chapter 
4. In general, our calculations take place on BH, so this restriction does not prove to be 
a problem. 

1.3 String theory 

String theory9 is one of the leading candidates in the attempt to unify quantum field theory 
with GR. In this theory, point-like particles are replaced with one-dimensional “strings”. 
These strings possess a Regge slope parameter α0 , which sets the fundamental length and 

−2mass of the theory, the string length ls and string mass ms, as α0 = l2 = ms . Besides α0 ,s 
there is also a dimensionless string coupling constant gs, defined as the vacuum expectation 

φvalue of the dilaton: gs =< e >. The spectrum of ordinary particles is then believed 
to emerge as the spectrum of different string vibrational modes, remarkably leading to a 
massless graviton, which is the particle that mediates gravitational interaction. 

The most basic example of an action describing a free string in a d-dimensional 
curved background with a metric gµν is given by the Nambu-Goto action:Z q

1 
SNG = − d2ξ |gij |, (1.53)

2πα0 
S 

9For a review of string theory, see for example [57–59] 
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where ξi : i = 0, 1, are the worldsheet coordinates and gij is the induced metric on the 
worldsheet, given by 

gij = gµν (X)∂iX
µ∂j X

ν . (1.54) 

Xµ(ξ) : µ = 0, . . . , d − 1 are the spacetime coordinates of the string. It is convenient to 
1introduce the string tension T , which is given as 2πα0 . 

The Nambu-Goto action is highly non-linear and therefore very difficult to quantize 
even in Minkowski space. Therefore, it is generally convenient to work with a theory that 
is quadratic in derivatives, by introducing a worldsheet metric γij . This is known as the 
Polyakov action, and takes the form Z pT 

SP = − d2ξ |γ| γij gµν (X) ∂iXµ∂j X
ν . (1.55)

2 W 

The equation of motion of the worldsheet metric gives the vanishing of the energy-
momentum tensor, 

1 
gµν (X) ∂iXµ∂j X

ν − γij γ
kl gµν (X) ∂kXµ∂lX

ν = 0 , (1.56)
2 

which can be used to obtain the following (onshell) relation between the worldsheet metric 
and the pullback of the background metric: 

2gij k = γkl γij = , where gk gkl . (1.57)
kgk 

If we substitute this solution into equation (1.55), we simply arrive at the Nambu-Goto 
action(1.53), showing that the two are classically equivalent. 

In addition to being invariant under the worldsheet reparametrizations, the Polyakov 
action is also invariant under the following local scale transformations of the worldsheet 
metric, known as Weyl transformations: 

γij → Ω2(ξ)γij . (1.58) 

This symmetry has very important consequences, specifically in terms of the quantization 
of the Polyakov action: it allows one to gauge away the worldsheet metric completely. 

It is also possible to add another Weyl-invariant term to the Polyakov action without 
an additional field: the Einstein-Hilbert term: Z pφ0

SEuler = − d2ξ |γ| R(γ) = φ0χ. (1.59)
4π W 

However, this is a total derivative term, and as such does not change the classical 
equations of motion. This term is actually just φ0 multiplied by a topological invariant χ, 
where χ = 2 − 2g − b − c is the Euler characteristic. Here, g is the genus, b the number of 
boundaries, and c the number of crosscaps (in the case of a non-orientable theory). This 

φ0φ0 term is used in the exponential for the coupling constant gs = e . In particular, φ0 is 
just the VEV of φ. To see this, consider the calculation of the string amplitudes, which 
are defined as path integrals over all embeddings Xµ and all worldsheet metrics γij with 
given boundaries and boundary data that determine the string states that are scattered. 
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The boundary data are included as vertex operators in the path integral. Without vertex 
operators, we have vacuum amplitudes, given by the path integral Z 

Z = DXDγe−SP −SEuler . (1.60) 

The sum over metrics can be decomposed into a sum of path integrals over worldsheets 
with given topologies. The topology of two-dimensional surfaces can be characterized 
completely by g, b, and c, which are combined into the Euler characteristic χ. Therefore, 
our result takes the form ZX 

φ0 )−χ(t)Z = (e DXDγe−SP Σt , (1.61) 
t 

where t stands for the given topologies and {Σt} are the spaces of surfaces with topology 
φ0t. The above sum can be understood as a perturbative expansion, where e plays the 

role of the string coupling constant g. 
Let us discuss the canonical quantization of a free bosonic string. To do this, we 

must first examine the boundary conditions of the bosonic string. The variation of the 
Polyakov action (1.55) yields the following boundary term Z 

dW iδXµ∂iX
ν gµν , (1.62) 

∂W 

which does not vanish for open strings. In order to make it vanish, one can impose 
Neumann (N) boundary conditions 

∂iX
µ|∂W = 0 (1.63) 

For a free open string, imposing the Neumann boundary conditions is equivalent to 
the case of no momentum flowing through the endpoints of the strings, 

∂1X
µ|ξ1=0,` = 0 . (1.64) 

Alternatively, one could impose Dirichlet (D) boundary conditions, 

µδXµ|∂W = c (1.65) 

where cµ are constants. This explicitly breaks translation invariance. 
These boundary conditions determine the different possible spectra. In a relativistic 

theory, the polarization states belong to representations of the little group, the subgroup of 
the Lorentz group preserving the particle momenta.10 An analysis of the spectra of closed 
and open bosonic strings reveals that this only occurs in d = 26 spacetime dimensions, 
which is known as the anomalous dimension. We are generally interested in the lightest 
states of the spectra, which govern the low-energy dynamics. In the case of the closed 
string, the lightest (non-tachyonic) states are massless, and they fit into representations 
of SO(24), represented by fields that fit into representation SO(1, 25). These are a spin-2 
state, the graviton, represented by a symmetric tensor field (metric) gµν , a spin 1 state, 

10The little group is SO(d − 1) for massive particles and SO(d − 2) for massless particles. 
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represented by the KR 2-form Bµν , and the dilaton, represented by a scalar field φ. In 
the open-string sector with NN boundary conditions (where both sides possess Neumann 
boundary conditions), the lightest state is also massless, a spin 1 state, represented by 
the vector field Aµ. In the case of a DD boundary condition (with both sides possessing 
Dirichlet boundary conditions), the mass of the lightest state is dependent upon the sepa-
ration between the D-branes which the string endpoints are allowed to move. For example, 
if the boundary conditions are imposed on a single spacelike direction X with both ends 
of the string lying on the same hypersurface (X|ξ1=0 = X|ξ1=`), the spectrum contains 
a massless vector field and a massless scalar. The scalar corresponds to the Goldstone 
boson, and is associated with the breaking of the translational invariance of the vacuum 
due to the presence of the D-brane. The vacuum expectation value of the boson gives 
the position of the brane in the x axis, and its profile describes fluctuation of the brane 
around this position. 

However, in addition to the massless modes, there also arises a tachyonic scalar. 
These tachyons signal that the bosonic string theory is quantum-mechanically unstable. 
This can be solved by the addition of supersymmetry (though it should be noted that su-
persymmetry is not necessary do eliminate the tachyons). In addition, we want spacetime 
fermions to appear in the spectrum. 

1.3.1 Superstring theory 

The generalization of the Polyakov action, which is also invariant under local worldsheet 
supersymmetry transformations, is [60, 61] 

Z � � 
T

γij ∂iX
µ∂j Xµ

µ � 1 µ
S = − d2ξ e − iψ Dψµ + χiρj ρi(2 ψµ∂j Xµ + χj ψ ψµ) , (1.66)

2 2W 

α iwhere ψµ and χi are the worldsheet spinors, e i is the vielbein and ρi = ρα eα are the 
two-dimensional gamma matrices. Due to the invariance of this action under super-Weyl 
transformations, it is possible to eliminate the vielbein and the gravitino χi completely. 
This gives rise to the Ramond-Neveu-Schwarz (RNS) action [62, 63], Z � � 

µT
ηij ∂iX

µ∂j Xµ 
� 

SRNS = − d2ξ − iψ ∂ψµ . (1.67)
2 W 

Varying with respect to the spinor, a non-trivial boundary term arises. In order to 
cancel this, we need to impose appropriate boundary conditions. The possibilities depend 
on whether we are considering open or closed strings, with each having either Ramond(R) 
or Neveu-Schwarz(NS) conditions, which correspond to . 

String type R NS 
Open ψµ = ψµ ψµ = ψµ|ξ1 |ξ1L|ξ1=0 R|ξ1=0, L =` R =` ψµ = ψµ ψµ = −ψµ 

L|ξ1=0 R|ξ1=0, L|ξ1=` R|ξ1=` 
Closed ψµ = ψµ 

L,R|ξ1=0 L,R|ξ1=` ψµ = −ψµ 
L,R|ξ1=0 L,R|ξ1=` 

Table 1.1: Boundary conditions for RNS action 

Here, ψµ denote the right- and left-moving components of the fields. Notice that R,L 
in the case of the closed string, the boundary conditions for the left and right moving 

17 
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fields are determined independently of each other. As a result, there are four possible 
cases compared to the two cases of the open string: NSNS, NSR, RNS, and RR. 

Superstring theories are Poincaré invariant only in the critical dimension d = 10. It 
is necessary to introduce the worldvolume fermion number F , defined modulo 2. The R 
and NS sectors are separated into R± and NS± subsectors with respect to the operator 
iπFe . Then, consistency and the absence of tachyons require the combination of these 

subsectors (GSO projection) in very precise ways. A total of five different theories arise: 
Type IIA, Type IIB, Type I, and the two heterotic theories SO(32) and E8 × E8. The first 
two preserve N = 2 spacetime supersymmetry, and correspond to the non-chiral (IIA) and 
chiral (IIB) theories. By contrast, the other theories only preserve N = 1 supersymmetry. 
The heterotic string is composed of right moving fields of a type II superstring, with a left-
moving fields of a closed bosonic string (propagating in 26 dimensions). The 26 dimensions 
that normally appear in the bosonic theories are compactified down to ten dimensions, 
with the 16 compactified spacetime dimensions giving rise to the gaugini χA and vector 
fields AA . The difference between the two heterotic theories depends on the gauge group, 
and the two are related to each other via T duality. Finally, the type I string theory also 
possesses the vector fields, but is constructed differently, consisting of unoriented strings 
as well as both closed and open strings, and also possesses the SO(32) gauge group. A 
summary of the massless excitations of the theories can be seen in Table 1.2. 

Theory NSNS RR Chiral 
fermions 

Non-chiral 
fermions 

Vector 
multiplets 

Type IIA gµν , Bµν , φ C(1) , C(3)
µ µνρ ψµ, λ 

Type IIB gµν , Bµν , φ C(0), C(2)
µν , C(4)

µνρσ ψi , λi µ

Type I gµν , φ C(2)
µν ψµ, λ AA, χA 

Heterotic gµν , Bµν , φ ψµ, λ AA, χA 

Table 1.2: Massless excitations of various superstring theories. 

1.3.2 Effective string action 

It is helpful to examine the low energy limit, which corresponds to α0 → 0, the limit 
where strings become infinitely small, and T → ∞. These effective theories are useful, as 
this scenario corresponds to point-like particles, so a field theory must be recovered. In 
addition, the effective theory corresponds only to the massless modes, as the massive modes 
decouple from the low energy dynamics, due to their masses being given as proportional 
to √1 . To determine the effective field theories, one traditionally constructs a field theory 

α0 

that reproduces the string amplitudes as α0 → 0. Higher order terms of α0 are occasionally 
used for additional corrections, they are higher order derivative terms, though often these 
are dropped to the lowest order, as the complexity grows rapidly at higher order. 

The orthodox procedure to find these effective actions would be to construct a field 
theory reproducing the string amplitudes in the α0 → 0 limit; however, there are other 
approaches which ultimately yield the same result. A particularly interesting one, which 
reflects how crucial conformal invariance is in string theory, consists of coupling a string 
to general background fields and studying which conditions must be satisfied by the latter 
in order to preserve conformal invariance at the quantum level. 
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To visualize this, consider a closed bosonic string, whose coupling to the background 
fields gµν Bµν , and φ (the graviton, the KR form, and the dilaton respectively) is given 
by the generalized Polyakov action: 

(" # )Z p �ij Bµν (X)1 
γijS = − d2ξ |γ| gµν (X) − p ∂iX

µ∂j X
ν + α0φ(X)R(γ) . (1.68)

4πα0 |γ| 

The conditions under which conformal invariance is preserved were studied in [64], where 
it was shown that they boil down to the vanishing of the following β-functionals:11 

� � 
βg = α0 1

+ O(α02) , (1.69)µν Rµν − 2rµ∂ν φ + Hµ
ρσHνρσ 

4 � � 
2φ ρβB + O(α02) ,µν = 

α0 
e r e −2φHρµν (1.70)

2 � � 
α0 1 1 

βφ = − r 2φ − (∂φ)2 − R − H2 + O(α02) , (1.71)
2 4 48 

where Hµνρ = 3∂[µBνρ] is the 3-form field strength of the Kalb-Ramond 2-form Bµν . At 
leading order, this is equivalent to the equations of motion that can be derived from � �

2 Z pg 1 
dd −2φS = x |g| e R − 4 (∂φ)2 + H2 , (1.72)

(d) 2 · 3!16πGN 

with the addition of a term 

Z 
g 2(d − 26)2 

dd x 
p

|g| e −2φ[−2(d − 2)Λ] Λ = , (1.73)
(d) 3α0(d − 2)16πGN 

which vanishes at d = 26 for bosonic string theories. Thus, we see that quantum conformal 
invariance leads (in the critical dimension) to the same effective action for the string 
common sector. 

This can also be expanded to higher orders of α0 . If ωab = ωµabdxµ is the Levi-Civita 
spin connection,12 we define the zeroth-order torsionful spin connections13 

(0) 
H(0)Ω = ωab ± 1 ıbıa , (1.74)(±) ab 2 

and their corresponding zeroth-order curvature 2-forms and Chern-Simons 3-forms 

(0) ab ≡ dΩ(0) ab − Ω(0) a (0) cbR c ∧ Ω , (1.75a)(±) (±) (±) (±) 

(L)(0) (0) a (0) b 1 (0) a (0) b (0) cω = R b ∧ Ω a + Ω b ∧ Ω c ∧ Ω a . (1.75b)(±) (±) (±) 3 (±) (±) (±) 

11As recently showed in [65], these are a set of sufficient but not necessary conditions. 
a a12If e = e µdx

µ are the Vielbein, the spin connection is defined to satisfy the Cartan structure equation 
De a ≡ dea − ωa

b ∧ e b = 0. 
µ∂µ 

µ b δa13We denote by ıaA the inner product of ea ≡ ea (ea e µ = b) with the differential form A. If A 
is a p-form with components Aµ1···µp , ıaA is the (p − 1) form with components eaν Aνµ1···µp−1 . 
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(L)(0)
ω is known as the Lorentz Chern-Simon 3-form at zeroth order. (±) 

When we expand the d = 26 bosonic string theory to this higher order, the action 
will take the form (ignoring the prefactor for convenience) 14 

Z �p 1 
dd −2φS = x |g| e R − 4 (∂φ)2 + H2 

2 · 3! 
(1.76)�� �α0 

µνab µνab − R(−)µνabR(−) + R(+)µνabR(+) + O(α02) ,
8 

where now the 3-form field strength is defined as 

� �α0 
H = dB + ωL − ωL . (1.77)(−) (+)4 

When we examine superstring theories, the effective actions are fixed by spacetime-
supersymmetry up to redefinitions, which strongly limits the possibilities. In the case 
of d = 10, the possibilities vary depending on if N = 1, 2. For theories with N = 2 
supersymmetry, there are two possibilities: the so-called N = 2A and N = 2B [68–71], 
which describe the low-energy dynamics of type IIA and type IIB theories respectively at 
lowest order. Then there is the N = 1 supergravity theory, which describes both the low-
energy effective actions of heterotic and type I theories. In this theory, the supergravity 

amultiplet consists of the vielbein e µ, the dilaton φ, the gravitino ψµ, the dilatino λ 
and a 2-form, which can be either the KR 2-form Bµν or the RR 2-form C(2)

µν , whose 
main difference at the level of the low-energy action lies on the coupling to the dilaton. 
This supergravity multiplet can be consistently coupled to a Yang-Mills vector multiplet, 
which contains a vector field AAµ and a gaugino χA needed for the heterotic and type I 
superstring effective actions. 

Normally, N = 1 supergravity possesses gauge and gravitational anomalies. How-
ever, it has been shown [72] that in the case of the SO(32) and E8 × E8 gauge groups, 
these can be cancelled by adjusting our definitions. For this work, we will focus solely on 
the bosonic portion of the heterotic string. 

Making the necessary field redefinitions, the Heterotic Superstring effective action 
can be described at first order in α0 as follows [73]:15 we start by defining the zeroth-order 
Kalb-Ramond (KR) field strength H(0) and its components H(0)

µνρ as 

H(0) ≡ dB 1 H(0)= , (1.78)3! µνρdx
µ ∧ dxµ ∧ dxρ 

1where B = Bµν dx
µ ∧ dxµ is the KR 2-form potential. Next, we define the gauge field2 

strength 2-form and the Chern-Simons 3-form for the YM field AA = AAµdxµ by 

1F A = dAA + fBC 
AAB ∧ AC , (1.79)2 

ωYM = FA ∧ AA − 1 fABC A
A ∧ AB ∧ AC , (1.80)6 

14See also [66, 67]. 
15We use the conventions of Ref. [42], reviewed for the zeroth-order case in Ref. [74]. In particular, the 

relation with the fields in Ref. [73] can be found in Ref. [75]. 

20 



Chapter 1. Introduction 

where we have lowered the adjoint group indices A, B, C, . . . in the structure constants 
CfAB and gauge fields using the Killing metric. 

Then, we can define the first-order KR field strength 3-form as 

� �α0 
H(1) ≡ H(0) ωYM (L)(0)

+ + ω(−) , (1.81)
4 

(L)(0)Where ω is the Lorentz Chern Simon 3-form defined in (5.3b). Its Bianchi identity − 
takes the well-known form 

� �α0 
dH(1) (0) a (0) b = FA ∧ F A + R b ∧ R a . (1.82)(−) (−)4 

Having made these definitions and adding the dilaton field φ, we can write the 
Heterotic Superstring effective action to first-order in α0 as 

(d) 2 Z h 
S(1)[e

gs −2φa, B, AA, φ] = 
(d) e (−1)d−1 ? (e a ∧ e b) ∧ Rab − 4dφ ∧ ?dφ 

16πGN 

1 (0) a (0) b (1.83)+ H(1) ∧ ?H(1) + (−1)d α
0 � 
FA ∧ ?F A + R b ∧ ?R a 

�� 

2 (−) (−)4 

Z 
L(1)≡ . 

1.3.3 Dualities 

While initially thought to be distinct from each other, it was discovered that the five 
superstring theories were in fact related to each other via various dualities, suggesting 
they could be just different limits of the same theory. 

The first duality, S-duality, is a strong-weak coupling duality, which relates a theory 
1with a coupling constant gs to a theory with a coupling . By definition, these are non-gs 

perturbative, and as a result, their existence was inferred by the properties of the effective 
action and the non-perturbative states. One example is the IIB theory: it possesses a 
global symmetry SL(2, R) that is broken to SL(2, Z) by quantum effects [76]. In IIB, 

C(0)the complex field τ = + ie−φ (for a RR 0-form C(0) and a dilaton φ) transforms 
nonlinearly under SL(2, R). Taking C(0) = 0, we see that the transformation τ → − 1 

τ 
changes φ → −φ. This corresponds to the coupling constant gs being inverted. Another 
example relates the Type I theory to the SO(32) heterotic theory. 

The second duality, and the one which we shall focus on, is the T duality (see for 
example [77] for a review). It corresponds to the symmetry of the perturbative spectrum, 
exchanging the winding and momentum modes. The simplest example of this involves the 
closed bosonic string where one spacetime coordinate Xd−1 ≡ Z is compactified on the 
circle: Z ∼ Z + 2πRz. This results in two different modes: the momentum modes, and 
the winding modes. 

The momentum modes, also known as the Kaluza-Klein modes, are present in field 
theory, and are inversely proportional to the size of the internal dimension. The spatial 
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nmomentum of the string in the circle direction is constrained to these modes as p = forRz 
an integer n. The winding modes by contrast are purely stringy effects, which corresponds 
to the ability of closed strings to be wrapped in the compactified dimension. When we 
go around a string once, ξ1 → ξ1 + 2πl, we wind w times around the compact dimension. 
These two new modes modify the mass operator and the level matching constraint as 

2 2 � � n R2w 2zM2 = + 
α02 + N + Ñ − 2 , with N = Ñ + nw , (1.84)

R2 α0 
z 

where N and Ñ are the level operators. This shows, for example, that for a string with 
nn > 0 units of momentum gain a mass contribution of . It is straightforward to check Rz 

that (1.84) is invariant under the following transformations 

α0 
0 0 n → n = w , w → w = n , Rz → R0 = . (1.85)z Rz 

This is actually a symmetry of the full spectrum which, furthermore, has been proven 
to hold at all orders in perturbation theory [78]. It turns out that it is related to the 
invariance of the Polyakov action under Poincaré dualization of the embedding coordinate 
Z, see e.g. [42] and references therein. 

We are mostly interested in the manifestation of T-duality at the level of the ef-
fective action. In order to study it, we first need to introduce the basics of the Kaluza-
Klein (KK) dimensional reduction [79, 80]. The original idea was to unify gravity and 
electromagnetism by assuming that the spacetime has an extra dimension so that both 
four-dimensional spacetime and gauge symmetries arise from spacetime symmetries in five 
dimensions. Although abandoned for its original purpose, this theory remains an extraor-
dinarily powerful tool in the general context of theoretical physics and particularly in 
string theory, where it is crucial in order to make contact with the four-dimensional world 
that we experience. 

We will follow the modern Scherk-Schwarz formalism [81], which makes use of the 
vielbein and which is therefore well adapted to describe the dimensional reduction of 
theories with fermionic degrees of freedom, such as supergravity theories. We will always 
assume that none of the fields depend on the coordinate z ∼ z + 2πRz that parametrizes 
the compact dimension S1 .z 

As an example, we shall now carry out the dimensional reduction of the Einstein-
âHilbert action. We start by decomposing the (d)-dimensional vielbein, ê µ̂, and its inverse, 

êâ
µ̂ , in terms of the lower-dimensional fields as follows, noting that by using local Lorentz 

rotations, we can always choose a vielbein expressed in an upper triangular form16 

⎛ ⎞ ⎛ ⎞ 
a µ� � eµ kAµ � � ea −Aa 

â µ̂ êµ̂ = ⎝ ⎠, êâ = ⎝ ⎠, (1.86) 
k−10 k 0 

where Aa = eaµAµ and k is the KK scalar. The latter measures the radius of the circle S1 
z 

as a function of the non-compact coordinates xµ: 

16The d-dimensional fields and indices will be denoted with hats. Then, we have â = (a, z) for flat indices 
and µ̂ = (µ, z) for world indices. 

22 



Chapter 1. Introduction 

Z 2πRz q1 
R(x) = dz |gzz| = Rzk(x) . (1.87)

2π 0 

ˆOur choice of vielbein breaks the d̂-dimensional Lorentz invariance into a d = d − 1 
dimensional one. 

We can express this using the Palantini identity 

Z p Z p h i 
d̂  d̂ b̂â ̂  ĉ b̂ĉˆ ˆ b̂ˆd x |ĝ|KR̂ = d x |ĝ|K −ω̂ˆ ωĉ  â − ω̂â ωˆ 

a + 2ω̂ˆ 
a∂â log K , (1.88)b bĉ  b 

In order to apply it, we must first compute the spin connection. In the vielbein basis we 
have chosen, one obtains 

ω̂abc = ωabc, ω̂abz =
1 
kFab, ω̂zbc = − 

1 
kFbc, ω̂zbz = −∂b ln k (1.89)

2 2 

where Fab = 2r[aAb] is the field strength of the KK vector field Aa = eaµAµ. 
Then, making use of (1.88), one obtains 

Z Z � �p1 1 
SEH = z dd̂−1 x |g| k −ωbbaωcca − ωabcωbca + 2ωb

ba∂a log k − k2F 2 
d̂ 416πGN 

Z � �p2πl ˆ 1d−1 = d x |g| k R − k2F 2 . 
(d̂) 416πGN 

(1.90) 
In the general case in which a (d+n)-dimensional manifold M(d+n) contains a n-dimensional 
compact space C(n), the relation between the Newton’s constants is 

(d+n) 
(d) NGN = 

G

Vn 
, (1.91) 

where Vn is the volume of C(n). 
Rewriting the action (1.90) in terms of the metric in the Einstein frame, gE µν = 

2 17k d−2 gµν , 

Z � � 
1 p d − 1 1 2(d−1) 

dd d−2 F 2 
(d) SEH = x |gE| RE + (∂ log k)2 − k , (1.92)

d − 2 416πGN 

we clearly see that the KK scalar is dynamical and cannot be truncated to a fixed value 
without imposing the corresponding constraint derived from its equation of motion (F 2 = 0 
in this case). 

17The Einstein frame is the one in which there is no conformal factor multiplying the Ricci scalar. 
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Once we know how to reduce the Einstein-Hilbert term, the last piece of information 
needed is to learn how to reduce p-forms. The dimensional reduction of a p-form Ĉ(p) 

µ̂1...µ̂p 

on a circle gives raise to a p-form C(p) 
µ1...µp and to a (p − 1)-form C(p−1) 

µ1...µp−1 in d 
dimensions: 

Ĉ(p) C(p) C(p−1) 
µ1...µp = µ1...µp + pA[µ1 µ2...µp] , 

(1.93) 

Ĉ(p) C(p−1) 
µ1...µp−1z = µ1...µp−1 . 

This is, however, subject to field redefinitions. In the case of the Kalb-Ramond 2-form, 
we find convenient to define 

ˆ ˆBµν =Bµν − A[µBν] , with Bµ = Bµz , (1.94) 

where Bµ is the winding vector. 
We can begin by defining the lower-dimensional dilaton, 

φ = φ̂ − 
1 
log k , (1.95)

2 

Using Eq. (1.94) and the dimensional reduction of the Einstein-Hilbert term, one 
finds that the dimensional reduction on a circle of the effective action of the closed bosonic 
string (1.72) is 

Z � �p 1 1 1 
dd −2φ k2F 2 − k−2G2S ∼ x |g| e R − 4(∂φ)2 + H2 + (∂ log k)2 − , (1.96)

2 · 3! 4 4 

(0) (0)where Gµν = 2∂[µB is the field strength of the winding vector, and H is the KR field 
strength written as 

ν] 

H(0) B̂(0) G(0) B(0)
µνρ = 3∂[µ νρ] − 3 A[µ νρ] − 3 [µFνρ] . (1.97)2 2 

As one can easily check, the action is invariant under the following transformations 

Aµ → A0 = Bµ , Bµ → B0 = Aµ , k → k0 = k−1 , (1.98)µ µ 

which expressed in terms of the higher-dimensional fields lead to 

ĝ0 = 1/ˆ B̂0 = ˆ /ˆzz gzz , µz gµz gzz , 

ĝ0 = B̂ 
µz/ĝzz , B̂0 = B̂µν + 2ĝ[µ|zB̂ 

ν]z/ĝzz , (1.99)µz µν 

0 ˆ −2φ̂0 −2ˆ 
ĝµν = ĝµν − (ĝµz ĝνz − B̂ 

µzBνz)/ĝzz , e = e φ|ĝzz| . 

These are known as the Buscher rules [82] [83], and they show that from the per-
spective of string theory, two backgrounds related by T duality are equivalent, and are 
both solutions to the classical string effective action, if one of them is only at O(1) in α0 . 

24 



Chapter 1. Introduction 

While these rules are derived for two backgrounds in the same (bosonic) theory, this does 
not necessarily need to be the case. For example, these rules can be generalized to relate 
type IIA and type IIB superstring theories [84]. 

In our case, we are interested in the heterotic string case. At zeroth order of α0 , 
the Buscher rules are identical to that of the bosonic string; we need to modify the rules 
to take into account the α0 corrections. The specific rules for the higher order heterotic 
string will be discussed in later chapters (see [85] as well). 

1.4 Summary of Thesis 

We will end this introduction with a brief summary of the chapters and their most impor-
tant results. 

Part I: T-duality and dimensional reduction of the heterotic string on S1 

In the first part, consisting of Chapter 2 (based on paper [33]), we will examine one method 
of calculating the entropy of the heterotic string effective action up to order α0 , through 
dimensional reduction of the action on S1 . 

This is achieved through the use of the Scherk-Schwarz formalism, where we split the 
world indices and field indices into the compactified and remaining dimensions through use 
of the vielbein. We begin by revisit the dimensional reduction on a circle of the action at 
zeroth order in α0 as a warm-up exercise and also because we will need some of the results 
when we consider the higher-order terms. We will show that the compactified action takes 
the form (same as equation (1.96)) 

2 Z p n o g (2π`s)s d9 −2φ k2F 2 − 1 k−2G(0) 2 1 H(0) 2 S = x |g| e R − 4(∂φ)2 + (∂ log k)2 − 1 + . 
(10) 4 4 12 

16πGN 
(1.100) 

We will also determine the T-duality transformations and corresponding Buscher 
rules (see equation (2.29)). 

This will then be followed by the dimensionally-reduced action to first order in α0 . 
This reduction requires additional calculations due to the presence of the Chern-Simons 
terms. From this reduced action, we will recover the T duality rules found in Janssen et 
al. [85] and we will prove the invariance of the action under those T duality rules. The 
main difference between this work and [85] is that in the latter, the complete dimensionally 
reduced action was not given. 

The main result of this chapter illustrates that by dimensionally reducing the T 
duality-invariant action, it is possible to derive Iyer-Wald entropy for the heterotic version 
of the α0-corrected Strominger-Vafa black hole of Ref. [29], given by the equations 
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� �
2dŝ = 

2 
du dv − 1 Z+du −Z0(dρ

2 + ρ2dΩ2 ) − dyidyi , i = 1, . . . , 4 , (1.101a)2 (3)Z− 

Ĥ (1) = dZ−
−1 ∧ du ∧ dv + ?4dZ0 , (1.101b) 

−2φ̂ −2ˆ 
e = e φ∞ Z−/Z0 , (1.101c) 

where ?4 stands for the Hodge dual in the 4-dimensional Euclidean space with metric 
dρ2 + ρ2dΩ2 , and where the Z functions take the values18 

(3) 

q̃0 ρ2 + 2q̃0Z0 = 1 + − α0 + O(α02) , (1.102a)
ρ2 (ρ2 + q̃0)2 

q̃−Z− = 1 + 
ρ2 + O(α02) , (1.102b) 

q̃+ q̃+(ρ
2 + q̃0 + q̃−)Z+ = 1 + 

ρ2 + 2α0 + O(α02) . (1.102c) 
q̃0(ρ2 + q̃0)(ρ2 + q̃−) 

Using this, we arrive at the following entropy formula � � 
AH 2α0 

S = 
(5) 1 + . (1.103) 

q̃04GN 

This matches the entropy found by microscopic entropy calculations found in [87] 
once the relations between integration constants and asymptotic brane charges have been 
correctly taken into account. 

Part II 

The second part of this thesis will examine how to modify the Iyer-Wald formalism such 
that non-tensor fields can be considered. All the fields of the Standard Model, except 
for the metric, have some kind of gauge freedom and do not transform as tensors under 
diffeomorphisms. As such, the formalism needs to be adjusted such that it can be applied 
in these theories. 

• In Chapter 3 (which we base on paper [88]), we utilize covariant Lie derivatives, as 
well as the momentum maps previously discussed in section 1.2.4 in order to deter-
mine the Wald entropy of the Reissner-Nordström-Tangherlini black holes. We will 
consider the Einstein Maxwell theory in d dimensions, which is written in differential 

18The Regge slope parameter α0 in Refs. [29, 86] has been replaced by α0/8 here to obtain the correct 
form of the action and solutions. 
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form language as Z � � Z 
(−1)d−1 1 

Ra1a2 a3 − 1S[e a, A] = ∧ e ∧ · · · ∧ e ad �a1···ad F ∧ ?F ≡ L ,216π (d − 2)! 
(1.104) 

although it is more convenient to rewrite the first (Einstein-Hilbert) term as 

Ra1a2 a3 a ∧ e 
1 ∧ e ∧ · · · ∧ e ad �a1···ad = ?(e b) ∧ Rab . (1.105)

(d − 2)! 

We will then compute the Wald-Noether charge for this theory, using the transfor-
mations based on the gauge-covariant Lie derivatives. Specifically, we see that the 
final Wald-Noether charge can be written in terms of the momentum maps and the 
field strength as h i(−1)d−1 

Q[ξ] = ?F Pξ − ?(e a ∧ e b)Pξ ab , (1.106)
16π 

where Pξ ab = r[aξb] is the Lorentz momentum map and ıkF = −dPk is the Maxwell 
momentum map. 
Finally, we shall verify the first law for this system, identifying the Wald entropy, 
which we compute for the Reissner-Nordström-Tangherlini black hole solutions. We 

Asee that, as expected, the entropy that arises is given by S = , where A is the area4 
of the horizon, which arises through proof of the first law. 

• Chapter 4 (based on paper [74]) focuses on applying these momentum maps to a 
non-trivial case: the heterotic string black hole at zeroth-order α0 . We will study the 
heterotic string compactified on a torus, and study the various symmetries that arise. 
Using the momentum map basics defined in the previous chapter, these symmetries 
will be used to determine the parameters which leaves all the transformations in-
variant, which in turn allows us to find the conserved Noether charges. We find that 
the Noether charge takes the form h i 

Q[ξ] = (−1)d ? (e a ∧ e b) e −2φPξ ab − 2ıade−2φξb 

(1.107)� � � � 
I+ (−1)d−1Pξ e −2φMIJ ? FJ − Pξ ∧ e −2φ ? H , 

Iwhere Pξ and Pξ ab are the Maxwell and Lorentz momentum maps as in the pre-
vious chapter, the momentum map Pk is given by −ıkH − Pk I FI = dPk, MIJ is a 
symmetric O(n, n) matrix, and FI is the O(n, n) vector of the 2-form field strengths 
of the KK and winding vectors � � 

FI ≡ F m 
, F m = dAm , Gm = dBm . (1.108)

Gm 

Using the momentum maps, it is possible to prove the restricted generalized zeroth 
law. Finally, utilizing the generalized zeroth law as well as our explicit expression of 
the Noether charge, we are able to prove the first law. We conclude by considering 
as an example the charged, non-extremal, 5-dimensional black ring solution of pure 
N = 1, d = 5 supergravity of Ref. [46] and compute its momentum maps. 
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• Chapter 5 (based on paper [53]) will deal with a more complex example: the heterotic 
string effective action up to order α0 . The additional terms proportional to α0 will 
yield additional complexities, due to the presence of the Chern-Simons terms. We 
will once more study how the fields of the heterotic string theory change under 
gauge and general coordinate transformations. We construct variations of the fields 
that vanish when the parameters of the transformations generate a symmetry of 
the field configuration and we find the integrals that give the associated conserved 
charges. The conserved charge associated to the invariance under diffeomorphisms 
is the Noether-Wald charge. As we have discussed, the correct identification of the 
conserved charges is essential to obtain for the correct identification of the entropy in 
the first law. We discuss the restricted generalized zeroth laws of this theory, which 
also play an essential role in the proof of the first law. Finally, we shall prove the first 
law using the results obtained in the previous sections, which leads us to identify 
the Wald entropy formula. We discover that the Wald entropy can be written as 

Z �� � �(d) 2 
α0 

S = (−1)d gs 
e −2φ ?(e a ∧ e b) + e −2φ ? R

(0) ab nab + (−1)d α
0 
Πn ∧ ?H(0) ,

(d) (−)2 28G BH 
N 

(1.109) 
where we have defined the 1-form Πn (vertical Lorentz momentum map associated 
to the binormal) on the bifurcation sphere 

BH (0) abdΠn = R(−) nab . (1.110) 

This is the main result of this thesis, and what the previous chapters have built up 
towards. We recover the correct form of the Wald entropy, where the last term in 
(5.102) possesses an additional factor of 2 that is missing in previous derivations. 

Notes on conventions 

Throughout this thesis, we will make use of the traditional natural units: c = ~ = 1. The 
gravitational Newton’s constant G(d) will remain, though we shall occasionally remove itN 
from intermediate calculations in order to simplify computations. Furthermore, all our 
calculations will be using the convention g = (+, −, −, . . . , −) 
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Part I 

Dimensional reduction of the 
Heterotic string at α0 

29 



2 
T duality and Wald entropy formula in the 

Heterotic Superstring effective action at first-order 
in α0 

Superstring Theory is expected to be a consistent theory of Quantum Gravity. Therefore, 
one would like to use it to study gravitational systems in which quantum-mechanical 
effects are believed to play an important role, such as black holes. In particular, one of 
the results that we expect from Superstring Theory is a microscopical accounting of the 
entropy attributed to them by macroscopic (thermodynamic) laws and calculations. 

Achieving this result demands, first of all, black-hole solutions of Superstring Theory 
whose macroscopic entropy can be computed. These are classical solutions of the Super-
string effective action. Then, if one manages to associate the black-hole solution to a good 
Superstring Theory background on which the theory can be quantized, the microscopic 
entropy can be associated to the density of string states in that background. 

In a seminal paper, [89] Strominger and Vafa completed the above program for a 
extremal, static, 3-charge 5-dimensional black-hole solution of the type IIB Superstring 
Theory at lowest order in the Regge slope parameter α0, identifying the associated type IIB 
string background as one with intersecting D1- and D5-branes with momentum flowing 
along the intersection. Strominger and Vafa argued that, although the black hole only 
solved the zeroth-order in α0 equations of motion, the higher-order corrections could be 
made small enough by imposing conditions on the charges carried by the black hole. Under 
those conditions, the microscopic and macroscopic entropies (the later given simply by the 
one fourth of the area of the event horizon) matched to lowest order in α0 . 

Since α0 is the square of the string length, the higher-order in α0 corrections to the 
string effective action, its solutions, and the properties of the solutions, describe char-
acteristic “stringy” deviations and this makes their study most interesting. This study 
requires: 

1. The knowledge of the higher-order terms in the string effective field-theory actions. 

2. The construction of solutions of those effective actions with higher-order terms. 
These solutions can often be viewed as α0-corrected zeroth-order solutions (recovered 
by setting α0 = 0). 

3. The computation of the physical properties of the α0-corrected solutions. 

Terms of higher-order in α0 are terms of higher order in curvatures and their com-
plexity grows rapidly with the power of α0 . This makes them very difficult to compute 
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and, consequently, our knowledge of the α0 corrections to the effective field theory actions 
of different Superstring Theories is very limited. The α0 corrections to the Heterotic Su-
perstring effective action are probably the best known, and they have only been computed 
to cubic order (quartic in curvatures) in Ref. [73], using supersymmetry completion of the 
Lorentz Chern-Simons terms [90].1 

We can use, then, the Heterotic Superstring effective action given in Ref. [73] for 
the next step: computing α0 corrections to black-hole solutions. As a matter of fact, the 
black-hole solution studied by Strominger and Vafa in Ref. [89] can also be considered as a 
zeroth-order solution of the Heterotic Superstring effective action and it would certainly be 
interesting to compute its α0 corrections, at least to first order. Finding these corrections, 
though, is a complicated problem. One of the problems is that the complete Heterotic 
Superstring effective action with higher-order corrections has not been compactified down 
to the 5 dimensions in which the black hole lives.2 Effective actions which would capture 
what are believed to be the most relevant α0 corrections in lower dimensions have been 
proposed and used to compute corrections to black-hole solutions (see, e.g. Ref. [98] and 
references therein). Alternatively, in order to simplify the problem, it has been proposed 
to work only with the near-horizon solution (see e.g. Refs. [99,100] and references therein 
and more recent work in the Type IIA compactified on K3 setup [101, 102]). It is fair to 
say that each of these simplified approaches has problems of its own and that they do not 
offer a complete picture of what the α0-corrected black-hole solutions are like. 

Recently, a different approach for computing α0 corrections without making assump-
tions about the lower-dimensional effective actions or considering only near-horizon lim-
its has been proposed in Ref. [29]: since the 10-dimensional first-order in α0 Heterotic 
Superstring effective action is known without any ambiguities (beyond possible field re-
definitions), first-order in α0 corrections to solutions should be directly computed in 10 
dimensions using the uplift of 4- or 5-dimensional solutions. Then, the α0-corrected solu-
tions can be compactified back to 4- or 5-dimensions. This approach has been successfully 
used to compute the first-order in α0 corrections to 5- and 4-dimensional extremal black 
holes in Refs. [29] and [30,86,103], respectively and, more recently, to 4-dimensional non-
extremal Reissner-Nordström black holes in Ref. [32]. The question of the regularity of 
the so-called small black holes has also been reviewed in Ref. [104, 105] in light of those 
results. 

Having the α0-corrected solutions we can compute their physical properties. For 
black holes, these are their conserved charges and their thermodynamical properties: en-
tropy and temperature. The Hawking temperature is always determined by the value of 
the surface gravity of the metric. While the metric can receive α0 corrections, the relation 
between Hawking temperature and surface gravity does not change. This is not the case 
for the Bekenstein-Hawking entropy, which, in presence of α0 corrections (higher-order 
in curvature corrections in general) is no longer determined by the area of the horizon 
which also receives α0 corrections coming from those of the metric. Based on previous 

1The equivalence of this effective action with previous results obtained in Refs. [64,91–93] was established 
in Ref. [94]. 

2A toroidal compactification to first order in α0 but with no Yang-Mills fields has been recently con-
structed in Ref. [95]. The toroidal compactification with only Abelian Yang-Mills fields (which occur at 
first order in α0) and no terms involving the torsionful spin connection (so the 10-dimensional action is 
that of N = 1, d = 10 supergravity coupled to Abelian vector supermultiplets) was carried out in [96]. An 
earlier compactification of the Heterotic Superstring effective action to just d = 4 at zeroth-order in α0 (so 
the 10-dimensional action is that of pure N = 1, d = 10 supergravity) was carried out in [97]. 
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work [27, 28], in Ref. [22] Iyer and Wald gave a prescription to derive an entropy formula 
in diffeomorphism-invariant theories. The main fact that characterizes this prescription is 
that the entropy computed using it satisfies the first law of black-hole mechanics [20]. 

Iyer and Wald’s prescription is based on a series of assumptions about the field 
content, which has to consist of tensor fields only. The only tensor field in our current 
understanding of Nature is the metric, the rest being connections and sections of different 
gauge bundles or, in other words, field with some kind of gauge freedom. The validity 
of Iyer and Wald’s prescription has subsequently extended to theories that include fields 
with gauge freedoms in Refs. [40, 51, 106], but the Heterotic Superstring effective action 
(and many other string effective actions) include a field which is not a connection or a 
section of some gauge bundle: the Kalb-Ramond field. This complication has been ignored 
in most of the string literature3 and the Iyer-Wald prescription has been naively applied 
with results that seem to be compatible with the microscopic calculations of the entropy.4 

For instance, in Ref. [29], the entropy of the (heterotic version of the) α0-corrected 
Strominger-Vafa black hole was computed using the Iyer-Wald prescription directly in the 
10-dimensional action. The result obtained was compatible with that of the microscopic 
calculation carried out in Ref. [87] to first-order in α0 , with an appropriate identification 
between the charges carried by the black hole and associated string background [107]. 
More precisely, the entropy obtained was interpreted in Ref. [29] as the O(α0) truncation 
of the expansion in powers of α0 of the exact result found in Ref. [87]. 

This interpretation, however, was a bit puzzling, because in Ref. [29], it was argued 
that the near-horizon region of the black-hole solution, which determines the entropy, 
should not receive further α0 corrections.5 Furthermore, an explicit calculation shows that 
at least the O(α0 2) corrections to the entropy vanish identically. All this suggests that 
the result obtained for the entropy in Ref. [29] should be exact to all orders in α0 and, 
therefore, it should be identical to the result of the microscopic calculation of Ref. [87]. 

This puzzle was solved in Ref. [107], where it was observed that the dependence of the 
action on the Riemann curvature6 in the Lorentz Chern-Simons term of the Kalb-Ramond 
field strength is changed by dimensional reduction. Taking into account this change, 
which amounts to a factor of 2 with respect to the result of Ref. [29], the macroscopic 
entropy computed at first order in α0 , naively using the Iyer-Wald formula, matches the 
exact microscopic result. This gives further support to the conjecture that the black-hole 
solution does not receive further α0 corrections and may be considered an exact Heterotic 
Superstring solution. 

3An independent derivation of an entropy formula using Wald’s formalism and dealing with some of the 
problems that the presence of the Kalb-Ramond field raises has been made in Ref. [31]. The final entropy 
formula derived there depends on a compensating gauge parameter which was left undetermined. This 
makes a comparison with the entropy formula we will derive impossible. For instance, it is not possible to 
compute the entropy of the Strominger-Vafa black hole using this formula, unless one can prove that the 
unknown term does not contribute to it. Although in that reference it is argued that, at least in certain 
relevant cases, this is indeed the case. In the same reference it is also shown that the invariance of their 
entropy formula under local Lorentz transformations depends on it, which seems contradictory. 

4Wald’s formalism’s first step consists in the proof of a first law of black-hole mechanics for the theory 
under consideration. A first law for the Heterotic Superstring effective action to first order in α0 has not 
yet been proven, although it is widely assumed to exist (for instance, in the derivation of the entropy 
formula of Ref. [31]). 

5The complete black-hole solution may receive further corrections. 
6According to the Iyer-Wald prescription, the entropy formula only depends on the occurrences of the 

Riemann tensor in the action. 
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The results of Ref. [107] made clear that, in the case of the Heterotic Superstring 
effective action, the entropy formula has to be derived from the dimensionally-reduced 
action in order to determine correctly the dependence of the action of the lower-dimensional 
Riemann tensor. One of our goals in this chapter is to perform the dimensional reduction 
of the Heterotic Superstring effective action to first order in α0 over a circle to apply to it 
the Iyer-Wald prescription and obtain an entropy formula. This entropy formula can only 
be applied to d-dimensional black holes that can be obtained by trivial compactification 
on T9−d and a non-trivial compactification on a circle. For instance, it can be applied 
to the heterotic version of the Strominger-Vafa black hole because it can be obtained 
from a 10-dimensional solution by trivial compactification on T4 , to 6 dimensions and a 
non-trivial compactification on a circle from 6 to 5 dimensions. It can also be applied 
to the non-supersymmetric 4-dimensional Reissner-Nordström black hole of Ref. [108], 
which can be obtained from pure 5-dimensional gravity and, therefore, can be obtained 
from a purely gravitational 10-dimensional solution by trivial compactification on T5 to 5 
dimensions and, then, by a non-trivial compactification on a circle from 5 to 4 dimensions. 
Actually, the entropy formula Eq. (2.69b) that we are going to derive in Section 2.4 has 
been applied to a non-extremal version of the 4-dimensional Reissner-Nordström black 
hole we just discussed, in Ref. [32]. While the microscopic interpretation of the entropy 
of this black hole is unknown, being a black hole with finite temperature, one can check 
that the first law of thermodynamics is indeed satisfied because the temperature computed 
from the α0-corrected metric and the entropy computed from the α0-corrected metric with 
the α0-corrected entropy formula are related by the thermodynamic relation 

∂S 
=

1 
. (2.1)

∂M T 

This paper’s second goal has to do with one of the most interesting and characteristic 
properties of String Theory: T duality.7 T duality relates two string theories compactified 
in circles of dual radii. The spectra of the two theories can be put into one-to-one corre-
spondence and, from the lower dimensional point of view, they are essentially identical, up 
to charge identifications.8 More generally, Buscher [82, 83] showed that two string back-
grounds with one isometry whose background fields are related by the so-called Buscher 
T duality rules are equivalent. 

Perhaps not surprisingly, the Buscher rules can be derived from the string effective 
action: the dual9 Kaluza-Klein compactifications of two effective actions on a circle give 
the same (d − 1)-dimensional action and the same equations of motion. In practice, one 
can perform identical Kaluza-Klein compactifications, determine the relation between the 
(d − 1)-dimensional fields of the two actions (which is usually very simple because it does 
not involve the (d − 1)-dimensional string metric or Kalb-Ramond field) and rewrite this 
relation in terms of the components of the original d-dimensional fields [109]. This relation 
is just the Buscher T duality rules. This strategy has been successfully used to find the 
extension of the Buscher T duality rules that relates equivalent type IIA and type IIB 
superstring backgrounds [110] and higher-rank Ramond-Ramond potentials [84]. 

In the context of the Heterotic Superstring, this strategy was used in [85] to find 

7For a review with many early references see Ref. [77]. 
8Charges related to Kaluza-Klein momentum and charges related to the winding number along the 

compact direction should be interchanged. 
9That is, with fields related by the Buscher rules. 
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the first-order in α0 corrections to the Buscher rules.10 Only the Yang-Mills fields were 
included at order α0 , but, taking into account that the torsionful spin connection enters 
the action in exactly the same way as the Yang-Mills fields [90], it was possible to find the 
α0 corrections to the Buscher rules. 

The α0-corrected Buscher rules are of no use if there are no α0-corrected solutions at 
one’s disposal to generate new solutions or to check their equivalence. For this reason, the 
results of Ref. [85] were sleeping the “sleep of the just”11 until quite recently, when they 
were first applied to α0-corrected self-T-dual solutions, providing a highly non-trivial test 
of both the α0 corrections of the solutions and of the T duality rules. 

Our second goal will be to study the T duality invariance of the complete dimensionally-
reduced Heterotic Superstring effective action and of the entropy formula that follows from 
it. While the α0-corrected Buscher rules will be those of Ref. [85], the complete reduced 
action will have many more O(α0) terms than the action obtained there. The invari-
ance of the action under T duality suggests that they will contribute to the entropy in a 
T duality-invariant form, and we will prove that this is the case.12 

This chapter is organized as follows: we introduce the Heterotic Superstring effective 
action to first order in α0 following Ref. [73] in Section 2.1. In Section 2.2, we revisit the 
dimensional reduction on a circle of the action at zeroth order in α0 as a warm-up exercise 
and also because we will need some of the results when we consider the higher-order terms 
in Section 2.3. In that section we will obtain the complete dimensionally-reduced action 
to first order in α0 , we will find the T duality rules and we will prove the invariance of the 
action under those T duality rules. In Section 2.4, we will use the dimensionally-reduced 
T duality-invariant action to derive an entropy formula using the Iyer-Wald prescription 
and we will apply it to the heterotic version of the α0-corrected Strominger-Vafa black 
hole of Ref. [29]. We will end by discussing our results and future work on these topics in 
Section 5.7. 

2.1 The Heterotic Superstring effective action to O(α0) 

Let us start by reviewing the Heterotic Superstring effective action to O(α0). We will use 
the formulation given in Ref. [73], but written in the conventions of Ref. [42].13 In this 
formulation, the action is constructed recursively order by order in α0 . 

The zeroth-order 3-form field strength of the Kalb-Ramond 2-form B is defined as 

10At zeroth-order in α0 , the Heterotic Superstring effective action only describes the so-called common 
sector of Neveu-Schwarz-Neveu-Schwarz fields, so the Buscher rules are just those found by Buscher. 

11As a matter of fact, they have partially re-derived several times [111, 112]. Other studies of the effect 
of α0 corrections on T duality and O(d, d) transformations in toroidal compactifications, sometimes in 
extended set-ups (such as Double Field Theory) can be found [66,67,95,113–115]. 

12 It follows trivially from the invariance of the lower-dimensional string metric and dilaton under 
T duality that the zeroth-order in α0 temperature and entropy (the area) are also T duality invariant. 
This property was proven by Horowitz and Welch in Ref. [116] before the relation between the Buscher 
rules and dimensional reduction was established in Ref. [109]. Recently, it has been investigated again from 
the same point of view in Refs. [31, 117] to first order in α0 , but, again, the relation between dimensional 
reduction and T duality and the invariance of the lower-dimensional string metric and dilaton field lead, 
trivially, to the invariance of the α0-corrected temperature. The invariance of the action under T duality 
at this order implies that of the entropy formula using the Iyer-Wald prescription because the Riemann 
curvature is T duality invariant. 

13The relation with the fields in Ref. [73] can be found in Ref. [75]. 
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H(0)
µνρ ≡ 3∂[µBνρ] , (2.2) 

and it contributes as torsion to the zeroth-order torsionful spin connections 

(0) a a H(0) aΩ b = ωµ b ± 1 
µ b , (2.3)(±) µ 2 

awhere ωµ b is the (torsionless, metric-compatible) Levi-Civita spin connection 1-form. 
The corresponding zeroth-order Lorentz curvature 2-forms and Chern-Simons 3-

forms are defined as 

(0) a (0) a (0) a (0) cR(±) µν b = 2∂[µ|Ω(±) |ν] b − 2Ω(±) [µ| c Ω(±) |ν] b , (2.4) 

L (0) (0) a (0) b (0) a (0) b (0) cω = 3R bΩ a + 2Ω b Ω c Ω a . (2.5)(±) (±) [µν| (±) |ρ] (±) [µ| (±) |ν| (±) |ρ] 

The gauge field 1-form is AAµ, where A, B, C, . . . are the adjoint gauge indices of 
some group that we will not specify. The gauge field strength and the Chern-Simons 
3-forms are defined by 

F Aµν = 2∂[µA
A
ν] + fBC 

AAB 
[µA

C
ν] , (2.6) 

ωYM AB = 3FA [µν A
A
ρ] − fABC A

A 
[µ ν A

C
ρ] , (2.7) 

where we have lowered the adjoint group indices using the Killing metric of KAB: fABC ≡ 
fAB

DKDC and of the gauge fields FA µν ≡ KABF Bµν . 
Then, at first order 

� �α0 
H(1) ωYM L (0) 

= 3∂[µ , (2.8)µνρ Bνρ] + 4 µνρ + ω(−) µνρ 

(1) a a H(1)aΩ b = ωµ b ± 1 
µ b , (2.9)(±) µ 2 

(1) a (1) a (1) a (1) cR(±) µν b = 2∂[µ|Ω(±) |ν] b − 2Ω(±) [µ| c Ω(±) |ν] b , (2.10) 

L (1) (1) a (1) b (1) a (1) b (1) cω = 3R bΩ a + 2Ω b Ω c Ω a . (2.11)(±) µνρ (±) [µν| (±) |ρ] (±) [µ| (±) |ν| (±) |ρ] � �α0 
H(2) ωYM L (1) 

µνρ = 3∂[µBνρ] + µνρ + ω , (2.12)(−) µνρ 4 

etc. 
(0) (0) L (0) aOnly Ω , R b, ω and H(1)

µνρ (plus the Yang-Mills fields) occur in the (±) µ (±) µν (±) µνρ 
action. In practice, though, it is more convenient to work with the higher-order objects, 
neglecting the terms of higher order in α0 when necessary. Thus, from now on we will 
suppress the (n) upper indices when they do not play a relevant role. 
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In terms of all these objects, the Heterotic Superstring effective action in the string 
frame and to first-order in α0 can be written as 

Z �
2 p h i� 
s d10 −2φ 1 a bS = 
g

x |g| e R − 4(∂φ)2 + H2 − 
α0 

FA · F A + R(−) b · R(−) a ,
(10) 12 816πGN 

(2.13) 

where G(10) is the 10-dimensional Newton constant, φ is the dilaton field, the vacuum N 
φexpectation value of e is the Heterotic Superstring coupling constant gs, R is the Ricci 

scalar of the string-frame metric gµν and the dot indicates the contraction of the indices 
of 2-forms: FA · F A ≡ FA µν F A µν . 

2.2 Dimensional reduction on S1 at zeroth order in α0 

As a warm-up exercise (and also because of the recursive definition of the action that 
will make necessary the zeroth-order fields in the first-order action), we review the well-
known dimensional reduction of the action at zeroth order in α0 using the Scherk-Schwarz 
formalism [81]. We add hats to all the 10-dimensional objects (fields, indices, coordinates) 
and split the 10-dimensional world indices as (µ̂) = (µ, z) and the 10-dimensional indices 
as (â) = (a, z). 

ˆ ˆThe Zehnbein and inverse-Zehnbein components êµ̂ 
a and êâµ can be put in an upper-

triangular form by a local Lorentz transformation and, then, they can be decomposed in 
a µterms of the 9-dimensional Vielbein and inverse Vielbein components eµ , ea , Kaluza-

Klein (KK) vector Aµ and KK scalar k as 

⎛ ⎞ ⎛ ⎞ 
a µ� � eµ kAµ � � ea −Aa 

â µ̂ êµ̂ = ⎝ ⎠, êâ = ⎝ ⎠, (2.14) 
k−10 k 0 

where Aa = eaµAµ. We will always assume that all the 9-dimensional fields with Lorentz 
indices are 9-dimensional world tensors contracted with the 9-dimensional Vielbeins. For 
instance, the KK fields strength Fab is 

µFab = ea eb
ν Fµν , Fµν ≡ 2∂[µAν], (2.15) 

The components of the 10-dimensional spin connection ω̂ ˆ decompose into those âbĉ  
of the 9-dimensional one ωabc and Fab as 

1ω̂abc = ωabc, ω̂abz = 2 kFab, 
(2.16) 

ω̂zbc = −2
1 kFbc, ω̂zbz = −∂b ln k. 

Then, using the Palatini identity, it is not difficult to see that the first two terms in 
the action Eq. (2.13) take the following 9-dimensional form (up to a total derivative): 
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Z p n o 
d10 x̂ |ĝ| e −2φ̂ 

R̂ − 4(∂φ̂)2 = 

(2.17)Z Z 
d9 −2φ k2F 2dz x 

p
|g| e 

� 
R − 4(∂φ)2 + (∂ log k)2 − 1 ,4 

where the 9-dimensional dilaton field is related to the 10-dimensional one by 

φ ≡ φ̂ − 1 log k . (2.18)2 

At zeroth order in α0 , the last term that we have to reduce is the kinetic term of the 
Ĥ (0) 2 Kalb-Ramond 2-form ∼ . Following Scherk and Schwarz, we consider the Lorentz 

components of the 3-form field strength, because they are automatically gauge-invariant 
Ĥ (0)combinations. The abz components give 

H(0) µ H(0) µˆ 
abz = k−1 ea eb

ν ˆ 
µνz = k−1 ea eb

ν 2∂[µB̂ 
ν]z . (2.19) 

It is, then, appropriate to define the zeroth-order “winding”14 vector field B(0) 
µ and 

its field strength G(0)
µν by 

B(0) 
µ ≡ B̂µz , G(0) B(0)

µν ≡ 2∂[µ ν] , (2.20) 

so that 

Ĥ(0)
abz = k−1G(0)

ab . (2.21) 

The second gauge-invariant combination is � � 
Ĥ(0)

abc 
µ ν ρ = ea eb ec Ĥ(0) Ĥ(0)

µνρ − 3A[µ νρ]z , (2.22) 

which suggests the definition 

H(0) H(0) Ĥ(0)
µνρ ≡ ˆ µνρ − 3A[µ νρ]z ˆ ∂ν B

(0)= 3∂[µBνρ] − 6A[µ ρ] . (2.23) 

We could simply identify B̂νρ with the 9-dimensional Kalb-Ramond field, but it 
is customary (and convenient) to use a T duality-invariant definition. T duality will 
interchange KK momentum and winding, and therefore, will interchange Aµ with B(0) 

µ, 
modifying the Chern-Simons term in the above form of Hµνρ. We can, however, rewrite 
it in the form � � 

H(0) B̂ 
νρ] + A|ν B

(0) − 3 G(0) B(0)
µνρ = 3∂[µ ρ] A[µ νρ] − 3 [µFνρ] , (2.24)2 2 

and identify the T duality-invariant 9-dimensional Kalb-Ramond 2-form 
14This vector couples electrically to the string modes with non-vanishing winding numbers, just as the 

KK vector field couples to those with non-vanishing momentum in the internal direction. 
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B(0) B(0)
µν ≡ B̂µν + A[µ ν] , (2.25) 

with the final result 

H(0) B(0) G(0) B(0)
µνρ = 3∂[µ ˆ 

νρ] − 3 A[µ νρ] − 3 [µFνρ] . (2.26)2 2 

Then, after integrating over the length of the compact coordinate z (2π`s by con-
vention) the 9-dimensional action to zeroth order in α0 takes the form 

2 Z p n o g (2π`s)s d9 −2φ k2F 2 − 1 k−2G(0) 2 1 H(0) 2 S = x |g| e R − 4(∂φ)2 + (∂ log k)2 − 1 + . 
(10) 4 4 12 

16πGN 
(2.27) 

This action is invariant under the T duality transformations 

= B(0) B(0)0A0 
µ , = Aµ , k0 = 1/k . (2.28)µ µ 

Taking into account the relations between the 10- and 9-dimensional fields, collected 
in Appendix A.1, it is easy to see that the above T duality transformations correspond to 
the following transformations of the 10-dimensional fields known as Buscher rules [82,83]: 

0 B̂0ĝ = 1/ĝzz , = ĝµz/ĝzz ,zz µz 

0ĝ = ˆ /ĝzz , B̂0 = B̂µν + 2ˆ ˆ /ĝzz , (2.29)µz Bµz µν g[µ|z|Bν]z 

0 ˆ ˆ ˆĝ = ĝµν − (ĝµz ĝνz − B̂ 
µzBνz)/ĝzz , φ0 = φ − 1 ln |ĝzz| .µν 2 

2.3 Dimensional reduction on S1 at O(α0) 

The reduction of the first two terms in the effective action is not modified by the inclusion 
of α0 corrections. The definitions of 9-dimensional metric, dilaton and KK vector and 
scalar in terms of the 10-dimensional fields are not modified by them either. We expect 
modifications in the definitions of the 9-dimensional Kalb-Ramond 2-form and of the 
winding vector, though, because of the presence of the Lorentz and Yang-Mills Chern-

Ĥ (1)Simons 3-forms in . 
It is convenient to start by studying the dimensional reduction of the Yang-Mills 

fields. The Lorentz-indices decomposition of the gauge field is 

ÂAz = k−1ÂAz , (2.30a) 

ÂAa = eaµ(ÂAµ − ÂAzAµ) , (2.30b) 

which leads to the definition of the 9-dimensional adjoint scalars φA and gauge vectors 
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ϕA ≡ k−1ÂAz , (2.31a) 

AAµ ≡ ÂAµ − ÂAzAµ . (2.31b) 

In terms of these variables, it is not difficult to see that the components of 10-
dimensional gauge field strength are given by 

F̂Aaz = Daϕ
A + ϕA∂a log k , (2.32a) 

F̂Aab = F Aab + kϕAFab , (2.32b) 

where F Aµν is the standard Yang-Mills gauge field strength for the 9-dimensional gauge 
fields AAµ. 

The reduction of the first, second and fourth terms in the action Eq. (2.13) gives 
(up to a total derivative) 

Z Z � � �p α0 α0 
−2φdz d9 x |g|e R − 4(∂φ)2 + 1 + ϕ2 (∂ log k)2 + (Dϕ)2 

4 4 
(2.33)� � � 

α0 α0 α0 � � 
−1 1 + ϕ2 k2F 2 + ∂a log k∂aϕ2 − FA · F A + 2ϕAF A · kF ,4 2 4 8 

where ϕ2 ≡ ϕAϕA , Dµϕ
A = ∂µϕA + fBC 

AABµϕ
C etc. 

Ĥ (1)Let us now consider the reduction of the Kalb-Ramond 3-form field strength , 
starting with the gauge-invariant combination 

� 
α0 � �� 

Ĥ (1) = k−1 µ ν Ĥ (1) = k−1 µ ν ˆ ωYM L(0) 
abz ea µνz eb 2∂[µBν]z + ˆ ω . (2.34)eb ea 

4 µνz + ˆ(−) µνz 

Using the above results for the Yang-Mills fields we find that � �� � 
ωYMˆ µνz = kϕA 2F Aµν + ϕAkFµν − 2∂[µ| kϕAA| 

A
ν] . (2.35) 

The last term is a total derivative that can be absorbed into the definition of the 9-
dimensional vector field B(1) 

µ and the remaining terms are manifestly gauge-invariant 
2-forms. 

We can use this result in the reduction of the Lorentz Chern-Simons 3-form; after 
all, the only difference with the Yang-Mills Chern-Simons 3-form is the gauge group, which 
now is the 10-dimensional Lorentz group. This is, nevertheless, an important difference 
because this group is broken down to the 9-dimensional Lorentz group times U(1) and we 
will have to take this fact into account in a second step. 
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In order to profit from the previous result, we introduce the following notation 

Ââb̂ 
(0) âb̂ 

µ̂ ≡ Ω̂ , (2.36a)(−) µ̂ 

ˆ ˆab (0) âbF̂ ˆ 
µ̂ν̂ ≡ R̂ . (2.36b)(−) µ̂ν̂ 

Then, a straightforward application of Eq. (2.35) gives � � � � 
ˆ ˆ ˆL(0) a b b a bω̂ = kϕˆ

ˆ 2F ˆ ˆkFµν − 2∂[µ| kϕˆ A ˆ , (2.37)a µν + ϕ a ˆ a |ν](−) µνz b b 

where 

ˆ ˆ 
ϕâb = k−1 ˆ (0) âbΩ , (2.38a)(−) z 

Aâb̂ ˆ (0) âb̂ − Aµ ˆ
(0) âb̂ 

µ = Ω Ω , (2.38b)(−) µ (−) z 

ab abˆ ˆand where F ̂  
µν is the standard field strength of the gauge field Aˆ 

µ defined above. 
Decomposing now the Lorentz indices, we obtain � � 

L(0) zω̂ = kϕab 2F ba µν + ϕbakFµν + 2kϕaz (2Fa µν + ϕazkFµν )(−) µνz 

(2.39)h � �i 
ˆa b− 2∂[µ| k ϕˆ

ˆA â |ν] .b 

The components of these fields are 

� � 
ϕab + k−1G(0) ab = −1 kF ab , (2.40a)2 

ϕaz = ∂a log k , (2.40b) 

Aab ab − 1 H(0) ab ≡ Ω(0) ab 
µ = ωµ µ , (2.40c)2 (−) µ 

� � 
Aaz a − k−1G(0) a 

µ = −1 kFµ µ , (2.40d)2 

� �� � 
F ab (0) ab − 1 a − k−1G(0) a b − k−1G(0) b 

µν = R kF[µ kFν] , (2.40e)(−) µν 2 [µ ν] 

� � 
F az (0) a − k−1G(0) a 

µν = −D kFν] ν] , (2.40f)(−) [µ 
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(0) (0)where R ab is the standard Lorentz curvature and D is the standard Lorentz-(−) µν (−) µ 
abcovariant derivative with respect to the 9-dimensional torsionful spin connection Ω(0) .(−) µ 

Replacing the above expressions in Eq. (2.39) we obtain 

� �n � �� � 
L(0) 

b + k−1G(0) a (0) b b − k−1G(0) b − k−1G(0)ω̂(−) µνz = −2
1 k kF a b 2R(−) µν a − kF[µ| [µ kFν] a |ν] a 

� � o h � � i 
−1 kF ba + k−1G(0) b kFµν − 2∂ak 2D(0) 

kFν] a − k−1G(0) 
|ν] a − ∂akFµν2 a (−) [µ 

h � �i 
ϕâ b̂− 2∂[µ| k b̂A â |ν] , 

(2.41) 
and 

� �� 
Ĥ (1) = k−1 µ ν 

� � 
ˆ α0 

a b̂ 
bcdz ec ed 2∂[µ Bν]z − k ϕAA

A 
|ν] + ϕˆ

ˆA â |ν]4 

α0 � � 
+ kϕA 2F Aµν + ϕAkFµν

4 

� � h � �� � 
− 1 k kF ab + k−1G(0) a 2R

(0) b − kF[µ| 
b − k−1G(0) b kFν] a − k−1G(0) 

2 b (−) µν a [µ |ν] a 

� � i h � � io 
a + k−1G(0) b (0) − k−1G(0)−1 kF b a kFµν − 2∂ak 2D kFν] a |ν] a − ∂akFµν .2 (−) [µ 

(2.42) 
Since the right-hand side has to be a gauge-invariant combination, it is natural to define 
the first-order in α0 winding vector and its field strength by 

� �α0 
ˆ 

B(1) a b 
µ ≡ B̂ 

µ z − k ϕAA
A
µ + ϕˆ A aµ ˆ ˆb4 

hα0 
(0) â (0) b̂ = B̂ 

µ z − ÂAµÂAz + Ω̂ 
ˆΩ̂ 

â(−) µ b (−) z4 

� �i 
ˆ ˆ (0) â ˆ (0) b̂−Aµ A
A
zAAz + Ω̂ 

ˆΩ â , (2.43a)(−) z b (−) z 

G(1) B(1)
µν ≡ 2∂[µ ν] . (2.43b) 

Furthermore, it is also natural to define the combinations 

K(±)
µν ≡ kFµν ± k−1G(0)

µν . (2.44) 
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K(+)
µν is invariant under the zeroth-order T duality transformations Eq. (2.28) while 

K(−)
µν gets a minus sign under the same transformations. With this notation, we can 

finally write 

n h i 
Ĥ (1) = k−1G(1) ϕ2 − 1 K(+) 2 + 2(∂ log k)2 

abz ab + 
α 
4 

0 
2ϕAF Aab + kFab4 

(2.45) o 
(0) cdK(+) K(−) cK(−) dK(+) (0) 

K(−)+R ∂c log k .(−) ab cd − 2
1 

a b cd − 4D(−) [a b] c 

Ĥ (1) Ĥ (1) abThis term contributes as −1 
abz z, which, at first order in α0 gives 4 

−1 Ĥ (1) Ĥ (1) ab = −1 k−2G(1) 2 
4 4abz z 

n h iα0 
· k−1G(0) K(+) 2 + 2(∂ log k)2 · G(0)− 2ϕAF A + ϕ2 − 1 F48 

+ k−1R
(0) cdK(+)

cdG
(0) ab − 1 k−1G(0) abK(−) cK(−) dK(+) 

(−) ab 2 a b cd 

o 
−4k−1G(0) abD(0) 

K(−) 
b] c∂

c log k .(−) [a 
(2.46) 

Ĥ (1)Let us now move to the gauge-invariant combination abc, that we will identify 
with the 9-dimensional Kalb-Ramond 3-form field strength. Using the zeroth-order result, 
we get 

� �α0 
H(1) = H(0) ωYM ωL (0) ˆ 

abc abc +
4 

ˆ abc + ˆ abc . (2.47) 

Using Eqs. (2.32) it is almost immediately seen that 

ωYM = ωYMˆ abc abc + 3kϕAF[abA
A
c] . (2.48) 

Half of the last term should be integrated by parts, and the final result is 

� �� � � � 3 
ωYM = ωYM µ ν ρˆ abc abc +3ea eb ec ∂[µ kAν|ϕAA

A 
|ρ] + A[µ∂ν| kϕAA

A 
|ρ] + kϕAA

A 
[µ Fνρ] . 

2 
(2.49) 

The second term in the above expression, a total derivative, will combine with B̂µν (and 
ωL (0) terms coming from ˆ abc) to give B(1)

µν and the third term, as we know, combines with 
ˆ ωL (0) Bµz (and terms coming from ˆ abc) to give B(1) 

µ. 
ωL (0) The above result can be applied to ˆ abc, using the definitions Eq. (2.38). We get 
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h � � 
ωL (0) = ωL (0) µ ν ρ (0) 

K(−) eK(−) e f̂  
ˆ abc abc + 3ea eb ec D ν ρ] e + ∂[µ kAν|ϕ

ˆ 
f̂A ê |ρ](−)[µ 

(2.50)�� � 1e f̂  f̂eA+A[µ∂ν| kϕ
ˆ 
f̂A ê |ρ] + kϕˆ 

ê[µFνρ] . 
2 

Defining 

� 
α0 � �� 

B(1) (0) â (0) b̂ˆ ÂA ˆ ˆ
µν ≡ B̂µν + A[µ Bν] z + k |ν]AAz + Ω̂ 

(−) |ν] b̂Ω(−) z â , (2.51)
4 

we find 

H(1) = H(1)ˆ 
abc abc , (2.52a) 

H(1) B(1) G(1) B(1)
µνρ ≡ 3∂[µ νρ] − 3 A[µ νρ] − 3 [µFνρ]2 2 

� �α0 
ωYM L (0) 

K(−) eK(−)+ µνρ + ω + 3D(−) [µ ν ρ] e . (2.52b)(−) µνρ 4 

Summarizing, the reduction of all the terms in the action but the last one gives, to 
O(α0), 

Z Z � � �p α0 α0 α0 
d9 −2φ ϕ2dz x |g|e R − 4(∂φ)2 + 1 + (∂ log k)2 + (Dϕ)2 + ∂a log k∂aϕ2 

4 4 4 

� � hα0 α0 
1 H(1) 2 − 1 k−2G(1) 2 − · K(+)− 1 1 + ϕ2 k2F 2 + FA · F A + 2ϕAF A 

4 12 42 8 

h i 
K(+) 2 + 2(∂ log k)2 · G(0) (0) cdK(+)

cdk
−1G(0) ab+ ϕ2 − 1 F + R4 (−) ab 

io 
k−1G(0) abK(−) cK(−) dK(+)

cd − 4k−1G(0) abD K(−)−1 
a b 

(0) 
b] c∂

c log k .2 (−) [a 
(2.53) 

Now, we must deal with the last term. We deal with it in the same way as we dealt 
with the Yang-Mills kinetic term: 
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ˆ(0) â ˆ(0) ĉd̂ b̂ F̂ â ˆ b̂ cd − 2F̂ â ˆ b̂ cR R = F F 
(−) ĉd̂ b̂ (−) â b̂ cd â b̂ cz â z 

� �� � 
ˆ 

F â a b cd b̂ F cd = ˆ + kϕˆ
ˆFcd F â + kϕ â (2.54)b cd b 

� �� � 
ˆ ˆa a b b− 2 Dcϕ

ˆ
ˆ + ϕˆ

ˆ∂c log k Dcϕ â + ϕ â∂c log k .b b 

The Lorentz-covariant derivatives in the last line must be taken with respect to the con-
ˆabnection Aˆ 
µ, which means that the ab components contain contributions from Aazµ etc. 

Taking this fact into account, if we split the hatted indices into unhatted indices and z 
components, we get� � 

µν F µν zµν zF µν )(F ab µν + kϕabFµν ) F b + kϕb + 2 (F azµν + kϕazFµν ) (Fa + kϕaa a 

� � 
b − Aaz z z ϕaz − Abz z z ϕbz− 2 (Dcϕ
a

cϕb + Ab c + ϕab∂c log k) Dcϕba cϕa + Aa c + ϕb ∂c log ka 

� �� � 
ϕaz + Abz ϕab + ϕaz∂c z− 4 Dc c log k Dcϕa + Abz cϕab + ϕaz∂c log k , 

(2.55) 
where, now Dc is the Lorentz-covariant derivative with respect to the connection Aabµ. 

Substituting the components Aabµ, Aazµ, ϕab, ϕaz by their values, we get� �� � 
(0) a K(−) aK(−) K(+) a (0) µν b − 1 K(−) µ bK(−) ν − 1 K(+) b kF µνR b − 1 

ν] b − 1 
bkFµν R[µ a a a(−) µν 2 2 (−) 2 2 

� �� � 
(0) (0)

+ 2 D K(−) 
ν] a − ∂a log k kFµν D [µ|K(−) |ν] a − ∂a log k kF µν 

(−) [µ (−) 

� � 
1+ D(0) cK(+) ab − 2K(−) c [a∂b] log k + K(+) ab∂c log k2 (−) 

� � 
(0) 

K(+)D ab − 2K(−) 
c [a∂b] log k + K(+)

ab∂c log k(−) c 

� � 
(0) 

K(−) cbK(+) a− 4 D c∂a log k − 1 
b + ∂a log k∂c log k(−) 4 

� � 
(0) 

K(−) bK(+)D ∂a log k − 1 
c ba + ∂a log k∂c log k .(−) c 4 

(2.56) 
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Operating, we finally get 
ˆ(0) â ˆ(0) ĉd̂ b̂ (0) a (0) µν b (0) abK(−) µ K(−) ν (0) abK(+)R R = R a + R b + R abkF µν 
(−) ĉd̂ b̂ (−) â (−) µν bR(−) (−) µν a (−) µν 

1 K(−) aK(−) ν K(−) bK(−) µ − 1 K(−) K(−)
νbK

(+) abkF µν+ 4 [µ| a |ν] b 2 µa 

(0) (0)− 1 (K(+))2k2F 2 + 2D [µ|K(−) |ν] aD K(−) 
4 (−) (−) [µ| |ν] a 

(0) µK(−) νa∂a− 4D(−) log kkFµν + 2(∂ log k)2k2F 2 

1 (0) cK(+) abD(0) 
K(+) (0) cK(+) abK(−)+ D c a∂b log k2 (−) (−) c ab − 2D(−) 

(0) cK(+) abK(+)+ D(−) ab∂c log k + 2K(−) c [a∂b] log kK(−) 
ca∂b log k 

− 2K(−) c a∂b log kK(+) 1 (K(+))2(∂ log k)2 
ab∂c log k + 2 

(0) (0) (0) bK(+)+ 4D c∂a log kD ∂a log k + 2D c∂a log kK(−) 
c ba(−) (−) c (−) 

+ 2K(−) cbK(+) K(−) a
bK

(+) b K(−) c
dK

(+) d 
b
a∂c log k∂a log k − 4

1 
c a 

(0)− 8D(−) 
c∂a log k∂a log k∂c log k − 4((∂ log k)2)2 . 

(2.57) 
With all these terms, the action takes the form 
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Z �
2 p α0g (2π`s)s d9 −2φ k−1∂ak(1)S = x |g|e R − 4(∂φ)2 + (Dϕ)2 − ∂a(10) 416πGN 

− 1 k(1) 2F 2 − 1 k−2G(1) 2 1 (1 − k(1)k−1)F · G(1) 1 H(1) 2 + +4 4 2 12 

h � �α0 
(0) a (0) b (0) cd K(−) a K(−) b

d + K(+) abK(+)− FA · F A + R b · R a + R c cd(−) (−) (−) ab8 

· K(+)+ 2ϕAF A 

� �2 
− 3 K(+) a

bK
(−) b K(+) c

dK
(−) d 1 K(−) a

bK
(−) b K(−) c

dK
(−) d − 1 K(−) · K(−) 

4 8 8c a + c a 

− 4K(+) abD(0) 
K(−) (0) 

K(+)
bc∂

c log k − 2K(−) abD bc∂
c log k(−) a (−) a 

(0) [a|K(−) |b] cD(0) 
K(−) 1 (0) cK(+) abD(0) 

K(+)+ 2D + D(−) (−) [a| |b] c 2 (−) (−) c ab 

(0) (0) (0)− 4D c∂a log kD ∂a log k + 2K(−) acK(+) 
c
bD ∂b log k(−) (−) c (−) a 

io 
+2K(−) c [a∂b] log kK(−) 

ca∂b log k , 
(2.58) 

where we have defined 

� 
α0 � �� 

k(1) ≡ k ϕ2 − 1 K(+) 2 + 2(∂ log k)21 + , (2.59)44 

and we have added some O(α02) terms in order to obtain nicer or simpler expressions. 

2.3.1 T duality 

All the O(α0) terms of the reduced action Eq. (2.58) are invariant under the zeroth-order 
T duality transformations Eqs. (2.28), and the whole action is invariant to O(α0) under 
the transformations 

A0 = B(1) B(1)0 k0 = 1/k(1) µ , = Aµ , , (2.60)µ µ 

which reduce to the zeroth-order ones in Eqs. (2.28) when we set α0 = 0. Furthermore, 
observe that 
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� 
α0 � �� 

k(1) 0 K(+) 2 + 2(∂ log k)2 = k0 1 + ϕ2 − 1 
44 

� 
α0 � �� 

= k(1) −1 K(+) 2 + 2(∂ log k)2 (2.61)
1 + ϕ2 − 144 

� � 
= k−1 1 + O(α0 2) . 

Using the relation between the higher- and lower-dimensional fields, these transfor-
mations can be expressed in terms of the higher-dimensional ones in the form 

0ĝµν = ĝµν + 
Ĝ(1) Ĝ(1)ĝzz zµ zν 

Ĝ(1)2 
zz 

− 
G(1)2 ̂ ˆz(µgν)z 

Ĝ(1)
zz 

, 

B̂0 
µν = B̂µν − 

Ĝ(1) Ĝ(1)
z[µ ν]z 

Ĝ(1)
zz 

, 

0ĝzµ 
ĝzµ

= − 
Ĝ(1)

zz 
+ 

Ĝ(1)ĝzz zµ 

Ĝ(1)2 
zz 

, B̂0 
zµ 

B̂zµ
= − 

Ĝ(1)
zz 

− 
Ĝ(1) 

zµ 

Ĝ(1)
zz 
, (2.62) 

0ĝzz = 
ĝzz 

Ĝ(1)2 
zz 
, −2 ̂φ0 e −2 ̂φ| ̂G(1)= e zz| , 

ÂA 
z

Â0A 
z = − 

Ĝ(1)
zz 
, Â0A 

µ = ÂA 
µ − 

ÂA Ĝ(1) 
z zµ 

Ĝ(1)
zz 

, 

where the tensor Ĝ (1) 
µ̂ν̂ is defined by 

α0 n o 
Ĝ (1) 

ν − ˆ ÂAA ˆ 
ν + ˆ (0) â ˆ (0) b̂ 

µ̂ν̂ ≡ ĝµ̂ˆ Bµ̂ν̂ − µ̂ AA ˆ Ω(−) µ̂ b̂Ω(−) ν̂ â . (2.63)
4 

These are the α0-corrected Buscher rules first found in Ref. [85] and later rediscovered 
elsewhere [111, 112]. 

It is well known that N = 1, d = 10 supergravity [118, 119] coupled to nV Abelian 
vector multiplets [118, 119] and dimensionally reduced on a Tn has a global O(n, n + nV ) 
symmetry which was shown in Ref. [96] to be related to string T duality. In the case at 
hand, the YM vectors are, generically, non-Abelian, which reduces the symmetry to just 
O(n, n) [115] or just O(1, 1) here. This group consists of the discrete transformation that 
give rise to the Buscher rules Eq. (2.60) and rescalings of just certain lower-dimensional 
fields: 

B(1) 0 = λB(1) 0A0 = λ−1Aµ , µ , k0 = λk . (2.64)µ µ 
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Under these rescalings K±,H(1) and the Lorentz curvature terms remain invariant 
while 

k(1) 0 = λk(1) . (2.65) 

It can be checked that the dimensionally-reduced action Eq. (2.58) is invariant under 
these transformations and, therefore, under the whole O(1, 1) group. 

We observe that the kinetic term of the KK and winding vectors is the sum of two 
separately O(1, 1)-invariant terms 

⎛ ⎞⎛ ⎞ 
k(1) 2 F µν0 

G(1) 1 (1 − k(1)/k)F · G(1)− 1 (Fµν , µν ) ⎝ ⎠⎝ ⎠ + , (2.66)4 2 
G(1) µν0 1/k2 

and that the diagonal kinetic matrix transforms consistently under O(1, 1) transformations 
even though, as different to the zeroth-order case, the kinetic matrix is not an O(1, 1) 
matrix itself. The consistency is related to the fact that it is part of a O(1, 1+ nV ) matrix. 

2.4 Entropy formula 

We can use the dimensionally reduced action we have obtained to calculate the entropy of 
some d-dimensional heterotic string black holes using the Iyer-Wald prescription [22, 28]. 
These black holes must be solutions of the theory defined by the action Eq. (2.58) under-
stood as a d-dimensional action. Therefore, they must be solutions of the theory defined by 
the action Eq. (2.13) understood as a (d + 1)-dimensional action15 admitting an isometry. 
Since this (d+1)-dimensional action can be obtained from the 10-dimensional one by a triv-
ial compactification on a 10 − (d + 1)-dimensional torus, the metrics of the 10-dimensional 
solutions corresponding to the d-dimensional black holes are the direct products of non-
trivial (d + 1)-dimensional metrics and the metric of a 10 − (d + 1)-dimensional torus. The 
non-extremal 4-dimensional Reissner-Nordström black hole of Ref. [32] or the heterotic 
version of the 5-dimensional Strominger-Vafa black hole of Ref. [29] are two interesting 
examples of this kind of solution. 

Applying directly the Iyer-Wald prescription to the d-dimensional action Eq. (2.58) 
we obtain the following entropy formula expressed in string-frame variables: 

15The constant in front of the action should now contain the volume of a (10 − d)-dimensional torus 
instead of that of circle, that is 

2 (d)
gs (2π`s)

10−d (gs )2 
= , (2.67)

(10) (d)
16πG 16πG N N 

where gs 
(d) is the d-dimensional string coupling constant or the vacuum expected value of the d-dimensional 

φ φ∞ (d)dilaton < e >= e and GN the d-dimensional Newton constant. The relations of the 10-dimensional 
and d-dimensional ones with the volume of the (10 − d)-dimensional compact space, V10−d is 

2 )10−d (d) 2 
s sg = V10−d/(2π`s g , (2.68a) 

(10) (d)
GN = GN V10−d . (2.68b) 
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Z 
∂L 

dd−2S = −2π x 
p

|h| �ab�cd , (2.69a) 
Σ ∂Rabcd 

−2(φ−φ∞) � 
α0 h � �∂L e ab, cd − H(0) abg cd − H(0)cd = 

(d) g ωg
∂Rabcd 16πG 8 g 

N 

io 
(0) abcd 

+ K(−) [a|cK(−) |b]d + K(+) abK(+) cd−2R(−) , (2.69b) 

where |h| is the absolute value of the determinant of the metric induced over the event 
ab,cd 1 ac bd − gadhorizon, g = (g g gbc), �ab is the event horizon’s binormal normalized so that2 

�ab�
ab = −2 and Rabcd is the Riemann tensor. 

2.4.1 The Wald entropy of the α0-corrected Strominger-Vafa black hole 

The entropy formula Eq. (2.69b) has been shown in Ref. [32] to give an entropy which is 
related to the Hawking temperature by the thermodynamic relation 

∂S 
=

1 
, (2.70)

∂M T 

for the particular case of α0-corrected, 4-dimensional, non-extremal Reissner-Nordström 
black holes. In this section we want to recalculate the Wald entropy of the α0-corrected 
Strominger-Vafa black hole. Being an extremal black hole, we will not be able to check 
that the entropy obtained is related to the temperature as above, but, instead, we will 
be able to compare with other results obtained in the literature and with the microscopic 
calculations. 

The 5-dimensional α0-corrected Strominger-Vafa black hole corresponds to the 10-
dimensional solution of the Heterotic Superstring effective action [29, 86] 

2 � �
2dŝ = du dv − 1 Z+du −Z0(dρ

2 + ρ2dΩ2 ) − dyidyi , i = 1, . . . , 4 , (2.71a)2 (3)Z− 

Ĥ (1) = dZ−1 ∧ du ∧ dv + ?4dZ0 , (2.71b)− 

−2φ̂ −2ˆ 
e = e φ∞ Z−/Z0 , (2.71c) 

where ?4 stands for the Hodge dual in the 4-dimensional Euclidean space with metric 
dρ2 + ρ2dΩ2 , and where the Z functions take the values16 

(3) 

16The Regge slope parameter α0 in Refs. [29, 86] has been replaced by α0/8 here to obtain the correct 
form of the action and solutions. 
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q̃0 ρ2 + 2q̃0Z0 = 1 + − α0 + O(α02) , (2.72a)
ρ2 (ρ2 + q̃0)2 

Z− = 1 + 
q

ρ 
−̃ 
2 + O(α02) , (2.72b) 

q̃+ q̃+(ρ
2 + q̃0 + q̃−)Z+ = 1 + + 2α0 + O(α02) . (2.72c)

ρ2 q̃0(ρ2 + q̃0)(ρ2 + q̃−) 

Compactifying this solution in a T4 parameterized by the coordinates yi is trivial. 
Then, we just have to compactify the resulting 6-dimensional solution to d = 5 using the 
results obtained here along the coordinate z ≡ u/k∞, where k∞ is the asymptotic value 
of the KK scalar k. It is helpful to rewrite the 6-dimensional solution in the form 

� �2 
2 1 k2 1∞Z+

dŝ = dt2 −Z0(dρ
2 + ρ2dΩ2 ) − dz − dt , (2.73a)(3)Z+Z− Z− k∞Z+ 

� � 
Ĥ (1) k∞ 

= d − dt ∧ dz + ?4dZ0 , (2.73b)
Z− 

−2φ̂ −2ˆ 
e = e φ∞ Z−/Z0 , (2.73c) 

where we have set v = t, to identify immediately the following 5-dimensional fields:17 

ds2 =
1 

dt2 −Z0(dρ
2 + ρ2dΩ2 ) , (2.74a)(3)Z+Z− 

H(1) = ?4dZ0 , (2.74b) 

� � 
F = d − 

1 
dt , (2.74c)

k∞Z+ 

� � 
G(0) k∞ 

= d − dt , (2.74d)
Z− 

p−2(φ−φ∞)e = Z+Z−/Z0 , (2.74e) 

p
k/k∞ = Z+/Z− , (2.74f) 

17We have only computed G(0) and not G(1) because of its complication and because it is unnecessary to 
do it for the calculation of the entropy. On the other hand, the Kalb-Ramond field is customarily dualized 
into another vector field to which the third charge q̃0 is associated. 
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and the T duality even and odd 2-forms � � 
Z 0 Z 0 

K± 1 + − = −√ ± dρ ∧ dt , (2.75)
Z+Z− Z+ Z− 

where a prime indicates derivative with respect to ρ. 
In the Vielbein basis 

0 1 i 1 e = √
Z 
1 
+Z− 

dt , e = 
p

Z0dρ , e = 2 

p
Z0ρθ

i , (2.76) 

where the θi are the left-invariant SU(2) Maurer-Cartan 1-forms that satisfy dΩ2
(3) = 

1 θiθi , the binormal is given by just �01 = +1 and the entropy formula in Eqs. (2.69a) and 4 
(2.69b) becomes 

Z p � h i� 
S =

1 
d3 xe −2(φ−φ∞) |h| 1 + 

α0 
−2R0101 + (K(−) 01)2 + (K(+) 01)2 . (2.77)

(5) 44G Σ
N 

The fields in the integrand are only functions of ρ and we can perform the integral 
over S3 . Evaluating the zeroth-order term at ρ = 0, where the horizon is located, we get 

( " r � � �0�0 1 p Z+Z− 1 1 
S = 

(5) AH + α0π2 lim ρ3 Z0Z+Z− − √ √ 
ρ→04G Z0 Z0 Z+Z− 

N 

(2.78)#)� �2 � �2Z 0 Z 01 1+ −+ + ,
Z0 Z+ Z0 Z− 

where AH, the area of the horizon, is given by 

p p
AH = 2π2 lim ρ3 Z0Z+Z− = 2π2 q̃0q̃+q̃− . (2.79)

ρ→0 

Finally, we arrive at � � 
AH 2α0 

S = 
(5) 1 + . (2.80) 

q̃04GN 

In order to compare this result with the microscopic entropy in Ref. [87], we have 
to express the charges q̃+, q̃−, q̃0 in terms of the asymptotic charges18 . First, we have to 
take into account the relation between q̃+, q̃−, q̃0 and the numbers of fundamental strings 
n, momentum w and S5-branes N 

α0 2 2 
s 2 q̃+ = 

R

g 
2 
n
, q̃− = α0 g w , q̃0 = α0N . (2.81)s 

z 

18See Refs. [29,107], specially Eqs. (2.18),(2.20),(2.21) of the later. 
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Second, 10-dimensional Newton constant G(10) is given in terms of the Regge slope pa-N 
rameter α0 = `2 and the 10-dimensional string coupling constant gs by s 

(10) 2G = 8π6 g α0 4 . (2.82)N s 

This and Eq. (4.7b) allow us to rewrite the entropy Eq. (2.80) in the form � �√ 
S = 2π nwN 1 + 

2 
. (2.83)

N 

Finally, in terms of the asymptotic charges Q+, Q−, Q0, which are related to the 
numbers of branes by � � 

Q+ = n 1 + 
2 

Q− = w , Q0 = N − 1 , (2.84)
N 

the entropy takes the final form that can be compared with the microscopic formula p
S = 2π Q+Q−(Q0 + 3) . (2.85) 

2.5 Discussion 

In this chapter we have performed the complete dimensional reduction of the Heterotic 
Superstring effective action to first order in α0 using the formulation based on the super-
symmetry completion of the Lorentz Chern-Simons terms that occur in the Kalb-Ramond 
field strength [73, 90]. We have found a Z2 transformation of the dimensionally-reduced 
action that leaves it invariant and that is an O(α0) generalization of the standard trans-
formations that interchange KK and winding vectors and invert the KK scalar. In 10-
dimensional variables (the components of the 10-dimensional fields) these transformations 
are nothing but the α0-corrected Buscher rules of the Heterotic Superstring theory, first 
found in [85]. 

Then, we used the dimensionally-reduced action to find, following the Iyer-Wald 
prescription [22,28] an entropy formula for stringy black holes that can be obtained from 
a 10-dimensional solution by a single non-trivial compactification on a circle, supplemented 
by a trivial compactification on a torus. This formula was successfully applied to a non-
extremal 4-dimensional Reissner-Nordström black hole in Ref. [32] and, in this chapter, we 
have applied it to the α0-corrected heterotic version of the Strominger-Vafa black hole of 
Ref. [29] obtaining an entropy formula that matches the microscopic result obtained in [87] 
once the relations between integration constants and asymptotic brane charges have been 
correctly taken into account. As explained in Ref. [107], the result obtained in Ref. [29] 
misses a factor of 2 that we recover here. 
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Part II 

Black Hole Thermodynamics 
through Momentum Maps 
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3 
The first law of black hole thermodynamics in 

Einstein-Maxwell theory 

3.1 Introduction 

Black-hole thermodynamics originate in the analogy between the behaviour of the area of 
the event horizon A and the second law obeyed by the thermodynamic entropy S noticed 
by Bekenstein [15, 16] in the results obtained by Christodoulou and Hawking [13, 17–19]. 
Shortly afterwards, in Ref. [20] Bardeen, Carter and Hawking extended this analogy by 
proving another three laws of black hole mechanics similar to the other three laws of 
thermodynamics involving the event horizon’s surface gravity κ and angular velocity Ω and 
the black hole’s mass M . The analogy, however, was only taken seriously after Hawking’s 
discovery that black holes radiate as black bodies with a temperature T = κ/2π [21], 
which implied the relation S = A/4, both in c = GN = ~ = k = 1 units. 

Ever since the formulation of these four laws, it has been tried to extend their domain 
of application and validity with the inclusion of matter fields and terms of higher-order in 
the curvature, for instance. In Refs. [22, 27, 28] Wald and collaborators developed a new 
approach to demonstrate the first law of black hole mechanics in general diffeomorphism-
invariant theories, beyond General Relativity. Since the surface gravity relation to the 
Hawking temperature only depends on generic properties of the event horizon, the quantity 
whose variation it multiplies in the first law is naturally associated to the Bekenstein-
Hawking entropy S. This quantity, often called Wald entropy, is just A/4 in General 
Relativity but, in more general theories, there can be additional terms which can be 
understood, for instance, as α0 corrections in Superstring Theories [29–34]. 

In the presence of matter fields, Wald’s proof of the first law of black-hole mechanics 
had to be re-examined because one of the main assumptions Refs. [22,28] is that all matter 
fields behave as tensors and, simply put, there are no tensor fields in nature apart form 
the metric and scalar fields (if any); all of them have some sort of gauge freedom and their 
transformations under diffeomorphisms are always coupled to gauge transformations. In-
deed, as is well-known, fermionic fields coupled to gravity transform under a local Lorentz 
group as spinors and bosonic fields must transform under some gauge group if unwanted, 
typically negative-energy, states are to be eliminated. The only scalar in the Standard 
Model, the Higgs field, is, in fact, SU(2) doublet. 

The simplest matter field that, coupled to gravity, allows for black-hole solutions is 
the Maxwell field [37, 38]. The presence of the field introduces an additional term of the 
form ΦdQ in the first law which takes into account the changes in the mass of the black 
hole when its charge Q changes. In this term Φ is the electric potential on the horizon and 
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a generalized zeroth law states that it takes a constant value over the horizon. The value 
of Φ is customarily taken to be kµAµ, where kµ is the Killing vector for which the event 
horizon is its associated Killing horizon and where it is assumed that the electromagnetic 
field is in a gauge in which Φ is, indeed, constant. 

This definition of Φ is clearly not gauge-invariant. This is a problem of principle,1 

which, as we are going to show, is related to the more fundamental problem we were 
discussing: the fact that Wald’s proof of the first law does not deal properly with fields 
which have some kind of gauge freedom. In Wald’s proof, one considers diffeomorphisms 
which are symmetries of all the dynamical fields, but the naive definition of invariance of 
fields with gauge freedom under diffeomorphsisms through the standard Lie derivative is 
not gauge invariant. This problem affects the gravitational field itself when it is described 
in terms of the Vielbein instead of the metric. 

A solution for this particular case was provided in Ref. [40] by defining the variation 
of the Vielbein under diffeomorphisms through the Lie-Lorentz derivative Refs. [41, 44– 
47] which can be understood as a generalization of the Lie derivative which transforms 
covariantly under local Lorentz transformations. If the Vielbein is annihilated by the Lie-
Lorentz derivative with respect to some vector field in some gauge it will be annihilated 
in any gauge and, as a matter of fact, the vector field will be a Killing vector field of the 
metric. The Lie-Lorentz derivative can be defined on all fields with Lorentz (spinor or 
vector) indices, a fact that has been used to extend the proof of the first law of black hole 
mechanics to supergravity in Ref. [106]. 

A more general mathematically rigorous approach was proposed in [51] using the 
formalism of principal gauge bundles which encompasses Yang-Mills and Lorentz fields 
but, unfortunately, not the Kalb-Ramond field or higher-rank form fields of string theory.2 

Perhaps the most interesting result in that paper is the realization that all the zeroth-laws 
(the constancy of the surface gravity, electric potential, etc.) on the horizon fit into a 
common pattern. In this chapter we are going to recover and reformulate this result in 
terms of the momentum map, using gauge-covariant derivatives in which this object plays 
a crucial role.3 

Although gauge-covariant Lie derivatives are, perhaps, not the most mathematically 
rigorous tool one can use, they can be generalized to frameworks other than principal gauge 
bundles.4 Our goal in this chapter is to show they can be consistently used in a simpler 
context (the Einstein-Maxwell theory described in terms of Vielbeins) and the objects to 
which the generalized zeroth law applies (here the surface temperature and the electric 
potential) are the gauge-invariant momentum maps associated to each gauge symmetry 
(Lorentz and U(1)) evaluated over the horizon. 

1There are other problems as well: in Wald’s approach, the Noether charge, which contains a term in 
which Φ occurs, is evaluated over the bifurcation surface, but the Maxwell field of the Reissner-Nordström 
black hole turns out to be singular there in the traditional gauge [39]. 

2The first law has been proved for theories including one scalar and one p-form field in [52], although 
the gauge-invariance problem has not been discussed in it. 

3In Refs. [120, 121], which covers some of the topics studied here this object emerges as an “improved 
gauge transformation”. 

4In this chapter, we will not consider those more complicated cases involving higher-rank p-form fields 
with Chern-Simons terms which typically arise in Superstring/Supergravity theories. We will consider the 
case of the Kalb-Ramond field with Yang-Mills and Lorentz Chern-Simons terms in its field strength in 
Chapter 5, where we will show how the gauge-covariant derivative approach with momentum maps that 
we introduce here provides a gauge-covariant, unambiguous results for the Wald-Noether charge. 

58 



Chapter 3. The first law of black hole thermodynamics in Einstein-Maxwell theory 

The emergence of the momentum map in this context may seem a bit strange; 
for instance, there is no mention of it in Ref. [40] in spite of their use of the (gauge-
covariant) Lie-Lorentz derivative. As we will show, however, the momentum map is indeed 
present in the Lie-Lorentz derivative and plays the same role that the momentum map 
(change) we will introduce for the Maxwell case. As a matter of fact, gauge-covariant 
derivatives and the momentum map arise most naturally in the study of superalgebras 
of symmetry, when all the dynamical fields of a supergravity theory are left invariant 
by a set of supersymmetry and bosonic transformations that combine diffeomorphisms, 
gauge, local-Lorentz and local-supersymmetry transformations [42,48–50]. This object also 
plays a very interesting geometrical role in symmetric Riemannian spaces and in certain 
spaces of special holonomy when they admit Killing vectors that preserve their geometrical 
structures. When one wants to gauge the corresponding symmetries in theories with σ-
models of that kind (typically supergravity theories) the momentum map plays an essential 
role in the definition of the gauge-covariant derivative [122]. 

This chapter is organized as follows: in Section 3.2 we introduce the gauge-covariant 
derivatives that we are going to use: Lie-Maxwell in Section 3.2.1 and Lie-Lorentz in Sec-
tion 5.3.3. We also discuss the zeroth laws the respective momentum maps obey. This last 
section is essentially a review of the literature on the subject where we re-derive the for-
mulae we are going to use in the main part of this chapter using our conventions (those of 
Ref. [42]). In Section 3.3 we describe the Einstein-Maxwell theory in d dimensions (action 
and equations of motion) in differential-form language and the d-dimensional Reissner-
Nordström-Tangherlini black hole solutions. In Section 3.4 we compute the Wald-Noether 
charge for this theory using the transformations based on the gauge-covariant Lie deriva-
tives defined in Section 3.2. Then, in Section 3.5 we prove the first law for this system, 
identifying the Wald entropy, which we compute for the Reissner-Nordström-Tangherlini 
black hole solutions. In Section 5.7 we briefly discuss our results and future directions of 
research. 

3.2 Covariant Lie derivatives and momentum maps 

One of the main ingredients in the proofs of the first law of black hole mechanics using 
Wald’s formalism [22, 28] is the use of infinitesimal diffeomorphisms that leave invariant 
all the dynamical fields. 

If we use the metric gµν as dynamical field, since the metric is just a tensor, its 
µtransformation under infinitesimal diffeomorphisms δξx = ξµ(x) is given by (minus) the 

standard Lie derivative 

δξgµν = −£ξgµν = −2r(µξν) , (3.1) 

which vanishes when ξµ is a Killing vector of gµν . We will distinguish Killing vectors from 
generic vectors ξµ denoting them by kµ. 

aIf, as we want to do here, we use as dynamical field the Vielbein e µ instead of gµν , 
in order to define its symmetries, we face the well-known problem of the gauge freedom of 
ae µ, which in this context has been treated in Refs. [40, 51]. The same happens with the 

electromagnetic potential Aµ, which also has been treated in this context in Refs. [51]. 
One way to deal with this problem is to define a gauge-covariant notion of Lie deriva-
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tive. The Lie derivative in the corresponding principal bundle, used in Ref. [51] provides 
the most rigorous definition such a derivative. Here we will introduce a less sophisticated 
version that makes use of the so-called momentum map and which can be defined for more 
general fields such as the Kalb-Ramond 2-form of the Heterotic Superstring, which can-
not be described in the framework of a principal bundle [53]. Gauge-covariant derivatives 
arise naturally in the commutator of two local supersymmetry transformations and in the 
construction of Lie superalgebras of supersymmetric backgrounds [42, 48–50]. 

Due to its simplicity, we start with the Maxwell field. 

3.2.1 Lie-Maxwell derivatives 

The electromagnetic field Aµ is a field with gauge freedom: we must consider physically 
equivalent two configurations that are related by the gauge transformation 

δχAµ = ∂µχ , (3.2) 

and, furthermore, as a general rule, it is not possible to give a globally regular expression of 
the electromagnetic field in a single gauge.5 However, the standard Lie derivative does not 
commute with these gauge transformations and gives different results in different gauges. 
This is why a gauge-covariant notion of Lie derivative is needed in this case. 

In the subsequent discussion it is convenient to use differential-form language. In 
terms of the electromagnetic 1-form potential A ≡ Aµdxµ, we define the electromagnetic 
field strength 2-form by F = dA so that it satisfies the Bianchi identity dF = 0. In 
components we have 

F ≡ 1 Fµν dx
µ ∧ dxν , Fµν = 2∂[µAν] . (3.3)2 

The field strength is invariant under the gauge transformations δχA = dχ and we can 
treat it as a standard 2-form whose transformation under infinitesimal diffeomorphisms 
generated by ξµ is given by (minus) the standard Lie derivative which, on p-forms, acts 

6as £ξ = ıξd + dıξ. 
Using the Bianchi identity we find that 

δξF = −dıξF . (3.4) 

If ξ is a symmetry of all the dynamical fields, in which case we will denote it by k, we 
have that δkF = 0 and the above equation implies that, locally, there is a gauge-invariant 
function Pk called momentum map such that7 

ıkF = −dPk . (3.5) 

Pk is defined by this equation up to an additive constant that we will discuss later. 

5The main example of this situation is the magnetic monopole [54]. 
6In our conventions, for a p-form ω(p) with components ω(p) 

µ1 ···µp , ıξ ω
(p) is the (p − 1)-form with 

ω(p)components (ıξω(p))µ1 ·µp−1 = ξν 
νµ1 ·µp−1 . 

7The sign of Pk is purely conventional. 
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Let us now consider the variation of A under infinitesimal diffeomorphisms, which, 
according to general arguments (see e.g. Refs. [42,51]) has to be given locally by a combi-
nation of (minus) the Lie derivative and a “compensating” gauge transformation generated 
by a ξ-dependent parameter χξ which is to be determined by demanding that δkA = 0 
when δkF = 0: 

δξA = −£ξA + dχξ = −ıξF + d (χξ − ıξA) . (3.6) 

Then, taking into account Eq. (3.5), we conclude that 

χξ = ıξA − Pξ , (3.7) 

where Pξ is a function of ξ which satisfies Eq. (3.5) when ξ = k and generates a symmetry 
of all the dynamical fields. 

It is natural to identify the above transformation δξA with (minus) a gauge-covariant 
Lie derivative of A that we can call Lie-Maxwell derivative 

δξA = −LξA , LξA ≡ ıξF + dPξ . (3.8) 

While this derivative does not enjoy the most important property of Lie derivatives 
[£ξ, £η] = £[ξ,η] for generic vector fields ξ, η, it is clear that it does for those that generate 
symmetries of A and F and annihilates them. This is certainly enough for us. 

For stationary asymptotically-flat black holes, when the Killing vector k is the one 
normal to the event horizon, the momentum map can be understood as the electric poten-
tial Φ which, evaluated on the horizon ΦH, appears in the first law.8 In the early literature 
(see e.g. Section 6.3.5 of Ref. [56]) it was assumed from the start that there is a gauge in 
which 

£kA = ıkdA + d(ıkA) = 0 . (3.9) 

Then, the electric potential Φ was identified with ıkA because, according to the above 
equation, dΦ = −ıkF , which can be defined as the electric field for an observer associated 
to the time direction defined by k. 

It is clear that Pk can be identified with Φ (both satisfy the same equation). However, 
in a general gauge, it will not be given by just ıkA and we will have to compute it. 
Nevertheless, the main property of Φ, namely the fact that it is constant over the horizon 
(sometimes called generalized zeroth law) still holds because it is, actually, a property 
of −ıkF based on the properties of k, the Einstein equations and the assumption that 
the energy-momentum tensor of the electromagnetic field satisfies the dominant energy 
condition. 

3.2.2 Lie-Lorentz derivatives 

The original motivation for the definition of a derivative covariant under local Lorentz 
transformations, often called the Lie-Lorentz derivative, was its need for the proper treat-

8See, for instance Ref. [55] for a proof of the first law in the context of 5-dimensional supergravity and 
the role that Φ plays in it. 
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ment of spinorial fields in curved spaces in such a way that the flat-space results were 
correctly recovered. 

In Minkowski spacetime, fermionic fields transform in spinorial representations of 
the Lorentz group, which leaves invariant the spacetime metric (ηab) = diag(+ − · · · −). 
Since generic spacetime metrics gµν do not have any isometries, the Lorentz group will not 
be realized as a group of general coordinate transformations (g.c.t.s) leaving invariant the 
spacetime metric. Weyl realized that, if one introduces an orthonormal base in cotangent 
space at a given point in spacetime 

a a a b µν = ηab{e = e µdxµ} , e µe ν g , (3.10) 

the Lorentz group arises naturally as the group of linear transformations of the base 

a 0 b e = Λabe b ∼ (ηab + σab)e , (3.11) 

(σab are the infinitesimal transformations) that preserves orthonormality. 

Λa Λbdη
cd = ηab σ(a ηb)c = σ(ab) c , ⇒ c = 0 . (3.12) 

In Ref. [123], Weyl proposed to define fermionic fields ψ as fields transforming in 
the spinorial representation of the Lorentz group that acts in the tangent and cotangent 
space, that is 

σabΓsδσψ ≡ 1 (Mab)ψ , (3.13)2 

where Γr(Mab) stands for the matrices that represent the generators of the Lorentz group 
{Mab} in the representation r. As is well-known, the generators in the spinorial repre-
sentation can be constructed taking antisymmetrized products of the gamma matrices γa , 
γab ≡ γ[aγb] 

1Γs(Mab) = γab , ⇒ δσψ ≡ 1 σabγabψ . (3.14)2 4 

Since these transformations can be different at each point, the Lorentz parameters 
σab take different values at different points of the spacetime and become functions σab(x) 
which will be smooth if the bases of the tangent and cotangent space are assumed to vary 
smoothly so that they are smooth vector and 1-form fields. 

Theories containing fermionic fields in curved spacetimes are required to be invariant 
under these local Lorentz transformations. Their construction demands the introduction 
of a gauge field, the so-called spin connection 1-form, conventionally denoted by ωab = 
ωµ

abdxµ. The spin connection enters the Lorentz-covariant derivatives of any field T 
(indices not shown) transforming in the representation r of the Lorentz group as follows: h i 

ωabΓrDT (r) ≡ d − 1 (Mab) T (r) . (3.15)2 

The transformation properties of T (r) are preserved by the covariant derivative if, under 
infinitesimal local Lorentz transformations, h i 

δσω
ab = Dσab σab = d − 12 ω

cdΓAdj (Mcd) = dσab − 2ω[a
cσ

|c|b] . (3.16) 
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From now on rµ will denote the full (affine plus Lorentz) covariant derivative sat-
isfying the first Vielbein postulate 

a a a b ρ a0 = rµe ν ≡ ∂µe ν − ωµ be ν − Γµν e ρ . (3.17) 

On pure Lorentz tensors r = D. 
Now, how do spinors and general Lorentz tensors transform under infinitesimal g.c.t.s 

generated by an vector field ξ? 
Customarily, these fields are treated as scalars, so that, if £ξ stands for the standard 

Lie derivative, 

δξT = −£ξT = −ıξdT . (3.18) 

There are many reasons why this has to be wrong. For starters, if we consider the 
particular case of a vector field ξ generating a global Lorentz transformation in Minkowski 
spacetime ξµ = σµν x

ν + aµ, the transformation in Eq. (3.18) is completely different from 
the transformation of a Lorentz tensor 

1 σabΓrδσT = (Mab)T . (3.19)2 

However, it should reduce to this if the Fermionic fields introduced in curved spacetimes via 
Weyl’s prescription have anything to do with the standard special-relativistic Fermionic 
fields. 

Furthermore, it is clear that the effect of the g.c.t. Eq. (3.18) on T depends on the 
gauge, or, equivalently, on the choice of tangent space basis. In other words the expression 
for δξ in Eq. (3.18) is not covariant under local Lorentz transformations. 

Indeed, Lorentz tensors are not scalar nor tensor fields under g.c.t.s. They are 
sections of some bundle or, at a more pedestrian level, they are fields that, under g.c.t.s, 
transform as world tensors up to a local Lorentz transformation whose parameter depends 
on the field and on the generator of the g.c.t. σab .ξ 

Then, instead of Eq. (3.18) we must write 

δξT = −£ξT + δσξ T , (3.20) 

where σξab makes δξT covariant under further local Lorentz transformations. 
The parameter of the compensating local Lorentz transformation that renders δξT 

covariant turns out to be given by9 

ab = ıξωab −r[aξb]σξ , (3.22) 

and it should be compared with the parameter of the compensating U(1) gauge transfor-
mation χξ in Eq. (3.7). By analogy we can define the Lorentz-algebra-valued momentum 
map 

9After Ref. [40], this parameter is often written in the equivalent, but less transparent, form 

ab [a b] µσξ = −£ξ e µe . (3.21) 
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ab ≡ r[aξb]Pξ . (3.23) 

We will see that this object satisfies a generalization of the equation that defines the 
momentum map in the Maxwell case Eq. (3.5). 

It is natural to define the Lorentz-covariant Lie derivative (or Lie-Lorentz derivative) 
of any tensor T with Lorentz and world indices with respect to a vector field ξ as (minus) 
this transformation:10 

LξT ≡ −δξT = £ξT − δσξ T . (3.24) 

The properties of the Lie-Lorentz derivative on spinors are reviewed in Refs. [41,42]. 
Here we are mainly interested in the Lie-Lorentz derivatives of the Vielbein and the spin 
connection, specially with respect to Killing vectors. According to the general definition, 
and after trivial manipulations, we find that the Lie-Lorentz derivative of the Vielbein is 
proportional to the Killing equation 

aLξe µ = 1 
2 (rµξ

a + r aξµ) = 1 
2e 
a ν (rµξν + rν ξµ) , (3.25) 

and, therefore, it vanishes when ξ is a Killing vector field, independently of the basis 
chosen, as we should have expected. 

We will use this equivalent differential-form expression for the above equation: 

a a bLξe = Dξa + Pξ be . (3.26) 

Let us now consider the Lie-Lorentz derivative of the spin connection ωab . Taking 
into account the inhomogeneous form of the compensating Lorentz transformation for the 
spin connection Eq. (3.16) we get11 

Lξωab ab = £ξω
ab −Dσξ , (3.27) 

where σξab is with the same parameter Eq. (3.22). After some massaging, we can rewrite 
it in a much more suggestive form 

Lξωab = ıξRab ab+ DPξ , (3.28) 

where the Lorentz curvature 2-form Rab ≡ 1 
2Rµν 

abdxµ ∧ dxν is defined as 

Rab = dωab − ωa ∧ ωcb c , (3.29) 

aband where we have replaced r[aξb] by Pξ , according to the definition of Eq. (3.23). 
The left-hand side of Eq. (3.28) can be shown to vanish identically when ξ is a Killing 

vector field, because of the identity 
10The Lie-Lorentz derivative was originally introduced for spinor fields in Refs. [44–47] and its definition 

was later extended to more general Lorentz tensors T transforming in an arbitrary representation r [41] 
11The same expression can be found if one considers the variation of the Levi-Civita spin connection as 

a function of the variation of the Vielbein, given by (minus) the Lie-Lorentz derivative in Eq. (4.46a). 
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� � 
ab [aξb]) = r[a b]ξµ + rµξ

b]ξν Rνµ + rµ(r r . (3.30) 

aAs desired, for Killing vectors k we have Lke = 0 and Lkωab = 0 and both statements 
are Lorentz-invariant.12 

For Killing vectors, Eq. (3.30) can also be written in the form 

ıkR
ab ab = −DPk , (3.31) 

which is the generalization of Eq. (3.5) and justifies our definition of momentum map 
Eq. (3.23) for Killing vectors. The main difference with the Lie-Maxwell case is that here 
we have an explicit expression for Pξab for any ξ. 

In the context of asymptotically-flat stationary black holes, it is known that, when 
evaluated on the event (Killing) horizon 

ab [akb] 
H

Pk = r = κnab , (3.32) 

abwhere κ is the surface gravity and nab is the binormal, normalized to satisfy n nab = −2. 
The constant13 κ is related to the Lorentz momentum map just as the electric potential 
on the horizon was shown to be related to the Maxwell momentum map in Section 3.2.1. 
This parallelism between zeroth laws was observed in [51]. 

3.3 The Einstein-Maxwell action and the RNT solutions 

In this section we present the d-dimensional Einstein theory and the d-dimensional Reissner-
Nordström-Tangherlini (RNT) solutions we are going to study, in order to fix the conven-
tions. We will first give the action and equations of motion in the standard tensorial 
form, and will then rewrite them in the differential-language form that we will use in the 
following section. 

3.3.1 Action and equations of motion 

aSetting G(d) 
= 1 for simplicity, and choosing as basic dynamical fields the Vielbein e µ andN 

the Maxwell field Aµ, the action of the Einstein-Maxwell theory in d spacetime dimensions Z 
1 � � 

aS[e µ, Aµ] = dd x e R(ω, e) − 1 F 2 . (3.33)416π 
awhere e ≡ det(e µ), R(ω, e) is the Ricci scalar, defined in terms of the Levi-Civita spin 

abconnection ωµ , 14 that is 

µ ab(ω) ,R(ω, e) = ea eb
ν Rµν (3.34) 

12Observe that Lξω
ab transforms as a Lorentz tensor even though ωab is not (it is a connection). 

13See Ref. [124] for a proof of the constancy of κ over the horizon (the standard zeroth law of black hole 
mechanics [20]) that makes use of the Einstein equations and the dominant energy condition and Ref. [125] 
for a proof that does not, relying only on the assumption of geodesic completeness of the null generators 
of the event horizon. 

14We are using the second-order formalism. 
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where Rµνab(ω) is the curvature 2-form of the Levi-Civita spin connection, defined in 
Eq. (3.29). The Levi-Civita spin connection (metric compatible and torsion-free, that is 

aDe = 0) is given by 

µωabc = eaµωµ ba = −Ωabc +Ωbca − Ωcab , Ωabc = ea eb
ν ∂[µ|ec |ν] . (3.35) 

µFinally, F 2 = FabF ab , Fab = ea eb
ν Fµν and Fµν is defined in Eq. (3.3). 

The equations of motion are 

δS e � � 
Ea

µ ≡ = − Ga
µ − 1 T aµ , (3.36a)2δea 8πµ 

Eµ ≡ 
δS 1 

∂ν (eF νµ) ,= (3.36b)
δAµ 16π 

where 

µTa = FabF µb − 1 ea
µF 2 , (3.37)4 

is the electromagnetic field’s energy-momentum tensor. 
In differential-form language, the action Eq. (3.33) is usually written in this form 

Z � � Z 
(−1)d−1 1 

Ra1a2 a3S[e a, A] = ∧ e ∧ · · · ∧ e ad �a1···ad − 1 F ∧ ?F ≡ L , (3.38)216π (d − 2)! 

although it is more convenient to rewrite the first (Einstein-Hilbert) term as 

1 a3Ra1a2 a ∧ e∧ e ∧ · · · ∧ e ad �a1···ad = ?(e b) ∧ Rab . (3.39)
(d − 2)! 

The (d − 1)-form equations of motion (which we write in boldface) are given by 

n o 
c ∧ e 1Ea =

1 
ıa ? (e d) ∧ Rcd + (ıaF ∧ ?F − F ∧ ıa ? F ) , (3.40a)216π 

E = − 
1 
d ? F , (3.40b)

16π 

where ıc stands for iec , where ec = ecµ∂µ. 

3.3.2 The Reissner-Nordström-Tangherlini solutions 

The d-dimensional RNT solutions with rationalized mass M and electric charge q are 
described by the following metric and electromagnetic fields [37, 38, 126]: 
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dr2 16π q
ds2 = λdt2 − − r 2dΩ2 = , (3.41)(d−2) , Ftr d−2λ ω(d−2) r 

where dΩ2 is the metric of the round (d − 2)-sphere of unit radius, ω(d−2) is its volume (d−2)
and 

d−3 d−3d−3 − r d−3 − r(r )(r )+ −λ = , (3.42a) 
r2(d−3) 

d−3 d−3 r =
8π

M ± r , (3.42b)± 0(d − 2)ω(d−2) 

s 
d−3 8π 2(d − 2) 

2r = M2 − q . (3.42c)0 (d − 2)ω(d−2) (d − 3) 

The origin of the annoying normalization factors lies in the standard normalization factor 
(16π)−1 of the action, which should be replaced by [2(d − 2)ω(d−2)]

−1 . Instead, we can 
just define 

8π 16π M ≡ M , Q ≡ q , (3.43)
(d − 2)ω(d−2) ω(d−2) 

getting somewhat simpler expressions 

Ftr = 
Q 
d−2r

, (3.44a) 

d−3 r± 
d−3 = M ± r ,0 (3.44b) 

s 
d−3 r0 = M2 − 

Q2 

2(d − 2)(d − 3) 
. (3.44c) 

The event horizon of these solutions exists when M ≥ [2(d − 2)(d − 3)]−1/2|Q| and 
then it is located at r = r+ and its surface gravity is given by 

d−3κ = (d − 3)r /rd−2 . (3.45)0 + 

The surface gravity vanishes in the extremal limit r0 = 0, which is reached when M = 
[2(d − 2)(d − 3)]−1/2|Q|. We will always assume that κ =6 0. 

The timelike Killing vector that becomes null on the horizon is k = ∂t in these 
coordinates, but they do not cover the bifurcate sphere because this expression for k never 
vanishes. In the region covered by these coordinates we find that 

H[µkν] λgµν = κnµνPk
µν = r = −∂r rt , (3.46) 
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where the binormal takes the value 

µν µν µνn = −2g rt , ⇒ n nµν = −2 . (3.47) 

On the other hand, ıkF = Ftrdr and 

Q/(d − 3) H Q/(d − 3)
Pk = = = Φ . (3.48)

d−3 d−3r r+ 

In order to reach the bifurcation sphere we need to use Kruskal-Szekeres coordinates. 
For d = 4 the change from r, t to Kruskal-Szekeres’s U, V is known and given explicitly, 
for instance, in Ref. [14]. To work in arbitrary d we will just work near the event horizon: 
expanding the solution in Eq. (3.41) around r = r+ and ignoring terms of second or higher 
order in r − r+ we get 

dr2 2ds2 = 2κ(r − r+)dt2 − − r+ [1 + 2(r − r+)/r+] dΩ(
2 
d−2) + O(r − r+)2 ,

2κ(r − r+) 
(3.49a) 

Q
Ftr = [1 − (d − 2)(r − r+)/r+] + O(r − r+)2 . (3.49b)

d−2 r+ 

The tortoise coordinate r∗ is 

� � 
1 r − r+ 

r∗ = log + C + O(r − r+)2 , (3.50)
2κ r+ 

where C is an integration constant that we set to zero for the sake of convenience. Defining 

v ≡ t + r∗ , u ≡ t − r∗ , (3.51) 

the solution takes the form 

h i 
2 κ(v−u)ds2 = 2κr+e κ(v−u)dudv − r+ 1 + 2e dΩ(

2 
d−2) + O(r − r+)2 , (3.52a) 

Q κ(v−u)= κ e + O(r − r+)2 . (3.52b)Fuv d−3 r+ 

Finally, we define the coordinates U, V 

p p
V ≡ r+/κ eκv , U ≡ − r+/κ e−κu , (3.53) 

in terms of which the solution takes the form 
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2ds2 = −2dUdV − r+ [1 − 2κUV/r+] dΩ(
2 
d−2) + O(UV )2 , (3.54a) 

Q
= − + O(UV )2 . (3.54b)FUV d−2 r+ 

The Killing vector k = ∂t becomes, in these coordinates 

k = κ (V ∂V − U∂U ) + O(UV )2 , k̂ ≡ kµdxµ = κ (V dU − UdV ) + O(UV )2 . (3.55) 

In these coordinates, the hypersurface U = 0 is the past event horizon H−, generated 
by k|H− = κV ∂V = ∂v. The hypersurface V = 0 is the future event horizon H+ generated 
by k|H+ = −κU∂U = ∂u. They cross at the bifurcation sphere, which is defined by 
U = V = 0 and can also be characterized as the spatial cross section of the horizon at 
which k = 0. 

On the other hand, 

Pk µν dx
µ ∧ dxν = dk̂ = 2κdV ∧ dU + O(UV )2 = 2κgV U,µν dx

µ ∧ dxν + O(UV )2 , 
(3.56) 

⇒ nµν = −2gUV, µν . 

On the other hand, 

Q
ıkF = κ (V dU + UdV ) + O(UV )2 ,

d−2 r+ 

(3.57) 
Q⇒ Pk = C + κ UV + O(UV )2 .
d−2 r+ 

The constant C clearly has to be identified with the electric potential over the horizon Φ 
in Eq. (3.48). As observed in Ref. [39], if we use the simplest choice of electromagnetic 
potential 

A = 
Q/(d − 3)

dt , 
d−3r

(3.58) 

we obtain, 

A = 
Q 

2(d − 3)κrd−3 
+ 

�� � dV 
1 + (d − 3)κUV/r+ + O(UV )2

V 
− 

� 
dU 
U 

, (3.59) 

which is singular at the horizon. 
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3.4 Wald-Noether charge for the E-M theory 

The general variation of the action of the Einstein-Maxwell theory Eq. (3.38) is Z 
δS = {Ea ∧ δea + E ∧ δA + dΘ(e, A, δe, δA)} , (3.60) 

where Ea and E are, respectively, the (d − 1)-form Einstein (3.40a) and Maxwell (3.36b) 
equations multiplied by the volume form ddx and h i 

Θ(e, A, δe, δA) ≡ − 
1 

?(e a ∧ e b) ∧ δωab − ?F ∧ δA , (3.61)
16π 

is the presymplectic (d − 1)-form defined in Ref. [27] and ? stands for the Hodge dual. For 
the transformations given by (minus) the covariant Lie derivatives in Eqs. (3.8), (3.26) 
and (3.28) 

Z n o 
δξS = −Ea ∧ (Dξa a+ Pξ be b) − E ∧ (ıξF + dPξ) + dΘ(e, A, δξe, δξA) , (3.62) 

with 

Θ(e, A, δξe, δξA) = 
1 

16π 

h � 
ıξR

ab?(e a ∧ e b) ∧ 
� i 

ab+ DPξ − ?F ∧ (ıξF + dPξ) . (3.63) 

aLet us consider the first term. It is not difficult to see that Ea ∧ ebPξ b = 0 because 
the tensor contracted with the Lorentz momentum map give the Einstein equations, which 
are symmetric in the indices a and b. The rest can be integrated by parts, 

− Ea ∧ Dξa = −(−1)d−1d (Eaξa) + (−1)d−1ξaDEa . (3.64) 

Using the Bianchi identity DRab = 0, 

1 
ξaDEa = ξaD (ıaF ∧ ?F − F ∧ ıa ? F )

32π 
(3.65) 

1 
= ξa [rıaF ∧ ?F − ıaF ∧r ? F −rF ∧ ıa ? F − F ∧rıa ? F ] ,

32π 

where we have replaced D by r is the exterior total covariant derivative operator which 
satisfies the first Vielbein postulate. Then, using the property 

rıaω = −ıadω + raω , (3.66) 

and replacing r by the exterior derivative when it acts on differential forms with no 
indices, as well as using the Bianchi identity dF = 0, we get 

ξaDEa =
1 
ξa [raF ∧ ?F − ıaF ∧ d ? F + F ∧ ıad ? F − F ∧ra ? F ] . (3.67)

32π 
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Since ra commutes with the Hodge dual and F ∧ ?G is symmetric in F and G for any 
2-forms F, G, the two terms with ra cancel each other. Furthermore, 

F ∧ ıad ? F = ıa(F ∧ d ? F ) − ıaF ∧ d ? F , (3.68) 

and 

ξaıaω = ıξω , (3.69) 

for any p-form, we arrive at 

(−1)d−1ξaDEa 
1 

= − d ? F ∧ ıξF . 
16π 

(3.70) 

The second term in Eq. (3.62) gives 

− E ∧ (ıξF + dPξ) = 
1 
d ? F ∧ ıξF − (−1)d−1d (EPξ) ,

16π 
(3.71) 

and, collecting the partial results, we get Z 
δSξ = dΘ0(e, A, δξe, δξA) , (3.72) 

where 

ξaΘ0(e, A, δξe, δξA) ≡ Θ(e, A, δξe, δξA) + (−1)d (Ea + EPξ) 

= 
1 

16π 

h 
?(e a ∧ e b) ∧ (ıξRab + DPξ ab) − ?F ∧ (ıξF + dPξ) 

(−1)d 
+ (−1)dıξ ? (e a ∧ e b) ∧ Rab + (ıξF ∧ ?F − F ∧ ıξ ? F ) (3.73)2 

i 
+(−1)d−1d ? FPξ 

h i(−1)d−1 
= −ıξL + 

16π 
d ?FPξ − ?(e a ∧ e b)Pξ ab . 

The action of the Einstein-Maxwell theory Eq. (3.38) is exactly invariant under 
local Lorentz and electromagnetic gauge transformations and it is invariant up to a total 
derivative under diffeomorphisms. Therefore, under the combined transformations δξ ≡ 
−Lξ with the covariant Lie derivatives defined in Eqs. (3.8), (3.26) and (3.28), Z 

δξS = − dıξL . (3.74) 
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Taking into account the result in Eq. (3.72), the arbitrariness of the domain of integration, 
of the parameter ξ, and the fact that we have not used the equations of motion, we conclude 
that, if we define the (d − 1)-form 

it satisfies 

J ≡ Θ0(e, A, δξe, δξA) + ıξL , (3.75) 

identically, off-shell. 

dJ = 0 , (3.76) 

This, in its turn, implies the existence of a (d − 2)-form Q[ξ] (the 
Wald-Noether charge) such that 

J = dQ[ξ] . (3.77) 

The last line of Eq. (3.73) gives the following expression for the Wald-Noether charge: 

h i(−1)d−1 
Q[ξ] = ?F Pξ − ?(e a ∧ e b)Pξ ab . (3.78)

16π 

3.5 The first law of black hole mechanics in the E-M theory 

Following Ref. [27] we define the pre-symplectic (d − 1)-form 

ω(φ, δ1φ, δ2φ) ≡ δ1Θ(φ, δ2φ) − δ2Θ(φ, δ1φ) , (3.79) 

where φ stands for the Vielbein and Maxwell fields, and the symplectic form relative to 
the Cauchy surface Σ Z 

Ω(φ, δ1φ, δ2φ) ≡ ω(φ, δ1φ, δ2φ) . (3.80) 
Σ 

Following now Ref. [22], when φ solves the equations of motion Eφ = 0, for any 
variation of the fields δ1φ = δφ and the variations under diffeomorphisms δ2φ = δξφ 

ω(φ, δφ, δξφ) = δJ + dıξΘ0 = δdQ[ξ] + dıξΘ0 , (3.81) 

where, in our case, J is given by Eq. (3.77), Θ0 is given in Eq. (3.73) and we observe that, 
on-shell, Θ = Θ0 . Then, if δφ satisfies the linearized equations of motion δdQ = dδQ. 
Furthermore, if the parameter ξ = k generates a transformation that leaves invariant all 
the fields of the theory, δkφ = 0, ω(φ, δφ, δkφ) = 0, and we arrive at 

� � 
d δQ[k] + ıkΘ0 = 0 , (3.82) 

which, when integrated over a hypersurface Σ with boundary δΣ, gives Z � � 
δQ[k] + ıkΘ0 = 0 . (3.83) 

δΣ 
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In our case, we are dealing with asymptotically flat, static black holes. k is the 
timelike Killing vector whose Killing horizon coincides with the event horizon and the 
hypersurface Σ is the space between infinity and the bifurcation sphere (BH) on which 
k = 0. Infinity and the bifurcate horizon are the two disconnected components of δΣ and 
taking into account that k = 0 on the bifurcation sphere, we obtain Z Z � � 

δ Q[k] = δQ[k] + ıkΘ0 . (3.84) 
BH ∞ 

As explained in Ref. [22], the right-hand side can be identified with δM , where M 
is the total mass of the black-hole spacetime. Using Eq. (3.78), we find Z Z Z 

(−1)d−1 (−1)d 
δ Q[k] = δ ?FPk + δ ?(e a ∧ e b)Pk ab . (3.85)

16π 16πBH BH BH 

According to the discussion at the end of Section 3.2.1, Pk can be identified with the 
electric potential Φ and it is constant over the horizon. The electric charge contained 
inside the horizon is given by Z 

(−1)d−1 
Q ≡ ?F , (3.86)

16π BH 

and the first term just gives +ΦδQ, which implies that we get a first-law-like relation if 
the second term gives T δS. Let us study that term. Using Eq. (3.32) we get Z Z 

(−1)d (−1)dκ 
δ ?(e a ∧ e b)Pk ab = δ ?(e a ∧ e b)nab

16π 16πBH BH 

Z 
κ (3.87)ab = − δ dd−2S nabn 

16π BH 

= T δA/4 , 

abwhere we have used the normalization of the binormal nabn = −2, A is the area of the 
horizon and T = κ/2π is the Hawking temperature. 

Thus, we recover the first law of black hole mechanics if we identify the black hole 
entropy with one quarter of the area of the horizon. 

3.6 Discussion 

In this chapter, we have showed how to define gauge-covariant Lie derivatives with the 
momentum map and how to use these derivatives in the proof of the first law of black-
hole mechanics in the simple case of the Einstein-Maxwell theory with the Vielbein as the 
gravitational field. We have also shown that the momentum maps we have introduced in 
this case satisfy (well known) zeroth laws. 

While the formulation of the first law of black-hole mechanics in the Einstein-
Maxwell theory is certainly not new, our proposal for dealing with fields with gauge 
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freedoms is a first step towards a generalization of the first law to more complex cases 
involving p-form fields with Chern-Simons terms such as those occurring in the Heterotic 
Superstring effective action. The first law in heterotic superstring effective action will be 
examined in chapters 4 (in the case of zeroth order α0) and 5 (at first order). 
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4 
The first law of heterotic stringy black hole 

mechanics at zeroth order in α0 

4.1 Introduction 

In Ref. [28], Wald showed that, in a theory of gravity invariant under diffeomorphisms, 
the black hole entropy is essentially the Noether charge associated to that invariance. The 
proof consists in showing that this charge plays the role of entropy in the first law of black 
hole mechanics [20]. As we have previously discussed in Section 1.2.3 though, in presence 
of matter, some terms in the total Noether charge are identified with other terms in the 
first law. Therefore, only the “gravitational” part of the Noether charge can be identified 
with the entropy and, in principle, it is necessary to go through the proof of the first law 
in order to identify the entropy. 

A more general and mathematically rigorous treatment based on the theory of prin-
cipal bundles was given in Ref. [51] by Prabhu, who was motivated by the problems found 
by Gao in Ref. [39]. However, String and Supergravity theories have p-form fields with 
gauge freedom that cannot be described in that framework. Furthermore, the effective 
action and the field strengths often contain Chern-Simons terms which make the action 
invariant only up to total derivatives and complicate the gauge transformations of the 
p-form fields. When the Chern-Simons terms depend on the spin (Lorentz) connection, 
gauge invariance and diffeomorphism invariance become entangled in a very complex form. 

One of the simplest theories with a Chern-Simons term in the action is “minimal” 
(N = 1) 5-dimensional supergravity [127], which only contains a 1-form coupled to gravity. 
In order to deal with the lack of exact gauge invariance one has to take into account 
the total derivative in the definition of the Noether current [128]. However, the entropy 
obtained by this method in Ref. [129] in the case of the “gravitational” Chern-Simons terms 
(both in the action or in the Kalb-Ramond field strength) of the Heterotic Superstring 
effective action turned out to be gauge-dependent.1 This problem was dealt with in 
Ref. [130], albeit in a rather complicated form. 

In the previous chapter, we studied the use of gauge-covariant Lie derivatives in the 
context of the Einstein-Maxwell theory using momentum maps to construct the derivatives. 
Momentum maps arise naturally wherever symmetries of a base manifold have to be 
related to gauge transformations [42,122] and they are unsurprisingly ubiquitous in gauged 
supergravity. As a matter of fact, the Lie-Lorentz derivative can be constructed in terms 
of a Lorentz momentum map and, as previously mentioned in Chapter 3, we also used a 

1The same happens when one naively uses the Iyer-Wald prescription, as noticed in [33, 34]. 
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Maxwell momentum map to construct a Lie-Maxwell derivative, covariant under the gauge 
transformations of the Maxwell field. 

This procedure guarantees the gauge-invariance of the results and, as a byproduct, 
we found a very interesting relation between momentum maps and generalized zeroth laws 
also observed, in a completely different language by Prabhu in Ref. [51]. 

In this chapter, we extend this method to a theory with Abelian Chern-Simons terms 
in a field strength: the effective action of the Heterotic Superstring compactified on a torus 
to zeroth order in α0 . This theory can be seen as a generalization of the theory considered 
by Compère in Ref. [52] and as a first step towards dealing with the effective action of 
the Heterotic Superstring to first order in α0 , which contains non-Abelian and Lorentz 
(“gravitational”) Chern-Simons terms of the kind considered by Tachikawa [73, 90]. The 
introduction of momentum maps will allow us to obtain invariant results in a rather simple 
form, basically because they allow us to determine explicitly the gauge parameters that 
leave invariant all the fields of a given solution [36]. They also allow us to construct forms 
which are closed on the bifurcation sphere, from which the definitions of the potentials 
that appear in the first law will follow [52, 131]. The closedness of those forms, therefore, 
plays the role of the generalized zeroth law, albeit restricted to the bifurcation sphere. 
Hence, we will refer to these properties as the restricted generalized zeroth laws. 

As we are going to see in the proof of the first law, there is a very precise, almost 
clockwork, relation between the closed forms that satisfy the restricted generalized zeroth 
laws and the definitions of the conserved charges [36,132–134]. Only when both have been 
correctly identified is it possible to find the first law and identify the entropy. 

In theories with Chern-Simons terms, several different definitions of charges have 
been proposed and used in the literature (see, for instance, Ref. [135] and references 
therein). The proof of the first law demands that we use the so-called Page charge, which 
in this context is conserved, localized and on-shell gauge invariant. Only when we use this 
charge definition for the 1-forms, the closed 1-form associated to the KR potentials Φi 
over the bifurcation sphere appears [52,131] and the term ΦiδQi of the first law associated 
to the “dipole charges” [52, 131,136–139] can be identified. 

In theories with “gravitational” Chern-Simons terms, such as the effective action of 
the Heterotic Superstring at first order in α0 , the same mechanism should play a role in the 
proof of the first law, but the terms that modify the gravitational charges will contribute 
to the entropy instead [53]. It is in this precise sense that this work is a first step towards 
the proof of the first law and the determination of a gauge-invariant entropy formula for 
that theory. The previous discussion should have made clear that such a formula is not yet 
available, as we have also explained in Refs. [33,34]. Even though the calculations of some 
black-hole entropies using the Iyer-Wald prescription seem to give the right value of the 
entropy in some cases,2 it is clear that the results obtained using an entropy formula which 
is not gauge-invariant cannot be trusted in general. It is also clear that the comparison 

2In Ref. [32] it was shown that the entropy of the α0-corrected non-extremal Reissner-Nordström black 
hole based in the string embedding of Ref. [108], computed with the entropy formula derived in Ref. [33] 

T −1using the Iyer-Wald prescription satisfies the thermodynamic relation ∂S/∂M = . That entropy 
formula is not invariant under Lorentz transformations, though. In a general frame it will give wrong 
values for the entropy and the reason why it gives the right value in that particular case, in the particular 
frame in which the calculation was carried out, sill needs to be explained [53]. The same entropy formula 
has been used to compute the entropy of some α0-corrected extremal black holes and the results, although 
reasonable, cannot be tested using the same relation. 
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between entropies computed through macroscopic and microscopic methods [89] only make 
sense if both computations are reliable, and furthermore, only if the relation between the 
parameters of the black hole solution and of the microscopic theory is well understood. 
At first order in α0 , there is no full-proof entropy formula, as we have explained, and the 
identification of the parameters of the black-hole solutions (charges) with the numbers of 
branes and other parameters that appear in the microscopic entropy, has issues that still 
have not been fully understood [107]. This is one of the main motivations for this work. 

This chapter is organized as follows: in Section 4.2 we introduce the effective action 
of the Heterotic Superstring compactified on a torus at leading order in α0 . In Section 4.3 
we study the action of the symmetries of the theory on the fields, the parameters of the 
transformations that leave all of them invariant, and compute the associated conserved 
charges, including the Wald-Noether charge. In Section 4.4 we study the restricted gener-
alized zeroth laws that we will use in the proof of the first law in Section 4.5. In Section 4.6 
we consider as an example the charged, non-extremal, 5-dimensional black ring solution of 
pure N = 1, d = 5 supergravity of Ref. [140] and compute its momentum maps. Section 4.7 
contains a brief discussion of our results. In the appendix we show how the Heterotic Su-
perstring effective action compactified on T4×S1 (trivial compactification on T4) can be 
understood as a model N = 1, d = 5 supergravity coupled to two vector supermultiplets, 
which provides an embedding of this model into the Heterotic Superstring effective action. 
We also show how this model can be consistently trunctated to pure N = 1, d = 5 su-
pergravity. Again, this provides an embedding of pure N = 1, d = 5 supergravity and, in 
particular of the black ring solution of Ref. [140], into the Heterotic Superstring effective 
action, so we can apply the formulae and results obtained in the main body of the chapter 
to that solution. 

4.2 The Heterotic Superstring effective action on Tn at ze-
roth order in α0 

When the effective action of the Heterotic Superstring at leading order in α0 is compactified 
on a Tn , it describes the dynamics of the (10 − n)-dimensional (string-frame) metric gµν , 
Kalb-Ramond 2-form Bµν , dilaton field φ, Kaluza-Klein (KK) and winding 1-forms Amµ 
and Bmµ, respectively, and the scalars that parametrize the O(n, n)/O(n)×O(n) coset 
space, collected in the symmetric O(n, n) matrix M that we will write with upper O(n, n) 
indices I, J, . . . as M IJ . This means that M satisfies 

M IJ ΩJK M
KLΩLM = δIM , (4.1) 

where � � 
(ΩIJ ) ≡ 0 

1n×n 

1n×n 
0 , (4.2) 

is the off-diagonal form of the O(n, n) metric. Eq. (4.1) implies that 

MIJ ≡ (M−1)IJ = ΩIK M
KLΩLJ . (4.3) 

Using the notation and conventions of Refs. [34, 42] (in particular, for differential 
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forms, we use those of Ref. [88]), and calling the physical scalars in MIJ φ
x , the action of 

the d = (10 − n)-dimensional takes the form 

(d) 2 Z h gs −2φ a ∧ eS[e a, B, φ, AI , φx] = 
(d) e (−1)d−1 ? (e b) ∧ Rab − 4dφ ∧ ?dφ 

16πGN 

i 
−1 1 (4.4)dMIJ ∧ ?dM IJ + (−1)d 1 MIJ FI ∧ ?FJ + H ∧ ?H8 2 2 

Z 
≡ L . 

a aIn this action e = e µdxµ are the string-frame Vielbeins, ? stands for the Hodge dual 
and, therefore 

ab c1 cd−2? (e a ∧ e b) = 
1 

�c1···cd−2 e ∧ · · · ∧ e . (4.5)
(d − 2)! 

1Furthermore, ωab = ωµabdxµ is the Levi-Civita spin connection3 and Rab = Rµν
abdxµ ∧2 

dxν is its field strength (the curvature) 2-form, defined as 

Rab ≡ dωab − ωa ∧ ωcb c . (4.6) 

(d) (d)
gs and G are, respectively, the d = (10 − n)-dimensional string coupling and Newton N 
constant. 4 

FI is the O(n, n) vector of the 2-form field strengths of the KK and winding vectors � � 
FI ≡ F m 

, F m = dAm , Gm = dBm , (4.8)
Gm 

which can also be defined in terms of the O(n, n) vector of 1-forms denoted by AI 

� � 
AI ≡ Am 

, FI = dAI . (4.9)
Bm 

H is the Kalb-Ramond 3-form field strength, defined by 

H ≡ dB − 1 AI ∧ dAI , AI = ΩIJ AJ . (4.10)2 

= −ωba b3It is antisymmetric ωab and satisfies Dea = dea − ωa
b ∧ e = 0. We are using the second-order 

formalism. 
4They are related to the 10-dimensional constants through the volume of the Tn , Vn, by 

2 (d) 2 g = Vn/(2π`s)
n gs , (4.7a)s 

(10) (d)
G = GN (4.7b)N Vn . 
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The kinetic term of the scalars φx that parametrize the O(n, n)/(O(n)×O(n)) coset 
space can also be written in the form 

− 1 1dMIJ ∧ ?dM IJ = gxydφ
x ∧ ?dφy , (4.11)8 2 

where the metric gxy(φ) is given by 

� � � � 
gxy ≡ 1 ∂xMIK M

KJ ∂yMJK M
KI . (4.12)4 

Under a general variation of the fields, the action varies as 

Z � 
δS = Ea ∧ δea + EB ∧ δB + Eφδφ + EI ∧ δAI + Exδφx + dΘ(ϕ, δϕ) , (4.13) 

(d) 2(16πG
(d)where, suppressing the factors of g )1 for simplicity, the Einstein equations EaN 

are given by 

Ea = e −2φıa ? (e c ∧ e d) ∧ Rcd − 2D(ıbde
−2φ) ∧ ?(e b ∧ e c)gca 

+ (−1)d−14e −2φ (ıadφ ? dφ + dφ ∧ ıa ? dφ) 

(−1)d 
−2φ+ e gxy (ıadφ

x ? dφy + dφx ∧ ıa ? dφy)
2 (4.14) 

1 � � 
+ e −2φMIJ ıaFI ∧ ?FJ −F I ∧ ıa ? FJ 

2 

(−1)d 
+ e −2φ (ıaH ∧ ?H + H ∧ ıa ? H) ,

2 
the equations of motion of the matter fields are given by 

� � 
EB = −d e −2φ ? H , (4.15a) 

� � 
Eφ = 8d e −2φ ? dφ − 2L , (4.15b) 

EI = Ẽ 
I + 1 EB ∧ AI , (4.15c)2 

n � � o 
Ẽ 
I ≡ − d e −2φMIJ ? FJ + (−1)d−1 e −2φ ? H ∧ FI , (4.15d) 

h � � i (−1)d 
Ex = −gxy d e −2φ ? dφy + e −2φΓzw 

ydφz ∧ ?dφw + e −2φ∂xMIJ FI ∧ ?FJ ,
2 

(4.15e) 
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and 

Θ(ϕ, δϕ) = −e −2φ ? (e a ∧ e b) ∧ δωab + 2ıade
−2φ ? (e a ∧ e b) ∧ δeb 

− 8e −2φ ? dφδφ − 1 e −2φ ? dM IJ δMIJ (4.16)
4 

� �
1+ e −2φMIJ ? FJ ∧ δAI + e −2φ ? H ∧ δB + AI ∧ δAI .2 

The equations of motion of the 1-forms EI can be written in the alternative form n o 
EI = −d e −2φMIJ ? FJ + ?H ∧ AI − 1 EB ∧ AI . (4.17)2 

This form appears naturally in the definition of the electric charges Eq. (4.32). 
Here, and in what follows, ϕ stands for all the fields of the theory. Eϕ denotes 

collectively all their equations of motion. 

4.3 Variations of the fields 

In this section we are going to study the transformations of the fields under the different 
symmetries of the action and determine which parameters of the transformations leave 
a complete field configuration invariant. The conserved charges of those configurations 
will be associated to those parameters. As a general rule, only if one combines several 
transformations can one find parameters that simultaneously leave all the fields invariant. 

The simplest case in which this happens will involve the gauge transformations of the 
1-form fields: the parameters that leave them invariant do not leave the KR field invariant 
at the same time, unless we perform a KR gauge transformation with a parameter related 
to that of the other gauge symmetry. As a result, there is an additional term in the 
formula that gives the electric charges, but it is the presence of this additional term that 
guarantees the conservation of the charge and the independence of the integration surface 
(as long as we do not include sources, that is, on-shell). 

The transformation of several fields under diffeomorphisms must also be supple-
mented by “compensating” gauge transformations, including local Lorentz transformations 
if we want all the fields to be left invariant by those generating isometries (Killing vectors). 
There are several ways of understanding this need but we believe that the most funda-
mental is to realize that fields with gauge freedoms (i.e. all fields except for the metric and 
the dilaton field) are not tensors and do not transform as such under diffeomorphisms. 
The “compensating gauge transformations” can be seen as gauge transformations induced 
by the diffeomorphisms. Only when they are properly taken into account can one find 
Killing vector fields that leave all the fields invariant. Furthermore, only then the van-
ishing of the variations of the fields is invariant under gauge transformations. A more 
detailed discussion and additional references to this topic can be found in Ref. [88]. The 
conserved charge associated to diffeomorphisms, the Wald-Noether charge, will therefore 
include terms related to gauge symmetries and their associated conserved charges, which 
will ultimately contribute to the first law. 
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As we will see, only when all these details are properly taken into account can the 
first law be proven and the entropy identified. 

We start by describing the gauge symmetries of the theory (other than diffeomor-
phisms) and the associated conserved charges. 

4.3.1 Gauge transformations 

The gauge transformations of the fields are 

a = σa bδσe be , (4.18a) 

δχAI = dχI , (4.18b) 

δB = dΛ + 1 χI dAI , (4.18c)= (δΛ + δχ)B 2 

where σ(ab)(x) = 0 are the parameters of local Lorentz transformations, χI (x) is a O(n, n) 
vector if scalar gauge parameters and Λ = Λµ(x)dx

µ is a 1-form gauge parameter. They 
leave invariant the field strengths FI and H, but they induce the following transformations 
on the spin connection and curvature 

δσω
ab = Dσab σc|b]= dσab − 2ω[a|

c , (4.19a) 

δσR
ab = 2σ[a| Rc|b] c . (4.19b) 

For the sake of completeness and later use, we quote the Ricci identity in our con-
ventions: 

DDσab σc|b] = δσRab = −2R[a|
c . (4.20) 

The action is manifestly invariant under these gauge transformations. This leads to 
the following Noether identities 

E[a ∧ e b] = 0 , (4.21a) 

dẼ 
I + (−1)dEB ∧ FI = 0 , (4.21b) 

dEB = 0 , (4.21c) 

4.3.2 Gauge charges 

Let us study the conserved charges associated to the gauge transformations δχ, δΛ and, for 
the sake of completeness, δσ, starting with δΛ, which is simpler to deal with. 
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The variation of the action under δΛ transformations follows from Eqs. (4.13) and 
(4.16) Z n � �o 

δΛS = EB ∧ δΛB + d e −2φ ? H ∧ δΛB 

(4.22)Z n � �o 
= EB ∧ dΛ + d e −2φ ? H ∧ dΛ . 

Integrating by parts the first term and using the Noether identity Eq. (4.21c) Z Z� � 
δΛS = d Λ ∧ EB + e −2φ ? H ∧ dΛ ≡ dJ[Λ] . (4.23) 

The invariance of the action under these gauge transformations indicates that the current 
J[Λ] must be locally exact, so that, locally, there is a Q[Λ] such that J[Λ] = dQ[Λ]. It is 
easy to see that � � 

Q[Λ] = Λ ∧ e −2φ ? H . (4.24) 

The conserved charge is given by the integral of the conserved (d−2)-form Q[Λ] over 
(d − 2)-dimensional compact surfaces Sd−2 for Λs that leave invariant the KR field Bs. 
These are closed 1-forms. Following [52, 131], using the Hodge decomposition theorem, 
these closed 1-forms Λ can be written as the sum of an exact and a harmonic form Λe = dλ 
and Λh, respectively. The exact form Λe will not contribute to the integral on-shell because 

Z Z Z� � h � �i 
Q(Λe) = dλ ∧ e −2φ ? H = d λ ∧ e −2φ ? H − λ ∧ EB . (4.25) 

Sd−2 Sd−2 Sd−2 

Therefore, Z � � 
Q(Λ) = Λh ∧ e −2φ ? H . (4.26) 

Sd−2 

Then, using the duality between homology and cohomology, if CΛh is the (d − 3)-cycle 
dual to Λh, we arrive at the charges 

(d) 2 Z 
gs

Q(Λ) = − 
(d) e −2φ ? H , (4.27) 

16πG CΛhN 

(d) 2 (d)where we have added a conventional sign and recovered the factor of gs (16πG )−1 thatN 
we have omitted. From the string theory point of view, these charges are just winding 
numbers of strings whose transverse space is the cycle CΛh . Two homologically equivalent 
cycles give the same value of the charge on-shell, that is, if there are no sources of the KR 
field in the (d − 2)-dimensional volume whose boundary is the union of the two properly 
oriented (d − 3)-cycles. 

Let us now consider the conserved charges associated to the invariance under δχ. 
This transformation acts on the 1-forms AI and on the KR 2-form B. Transformations 
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with constant χI (closed 0-forms) leave invariant the 1-forms, but they do not leave in-� �
1variant B. They only change it by an exact 2-form d χI AI . Thus, we must add a2 

compensating Λ gauge transformation with parameter Λχ = −1 χI AI and consider the2 
transformation of B 

� � 
1δχB = −1 d χI AI + χI dAI = −1 dχI ∧ AI . (4.28)2 2 2 

Then, from Eqs. (4.13) and (4.16) and the modified transformation rule Eq. (5.35), we get 

Z � 
δχS = EB ∧ δχB + EI ∧ δχAI 

h �io 
1+d e −2φMIJ ? FJ ∧ δχAI + e −2φ ? H ∧ δχB + AI ∧ δχAI ,2 

Z n� h� � io�
1 = EI + EB ∧ AI ∧ dχI + d e −2φMIJ ? FJ + e −2φ ? H ∧ AI ∧ dχI .2 

(4.29) 
Integrating by parts the first term and using the Noether identities Eqs. (4.21b) and (4.21c) 
we get 

Z n � � o� �
1δχS = d (−1)d−1χI EI + EB ∧ AI + e −2φMIJ ? FJ + e −2φ ? H ∧ AI ∧ dχI .2 

(4.30) 
The usual argument leads to the conserved (d − 2)-form � � 

Q[χ] = (−1)dχI e −2φMIJ ? FJ + e −2φ ? H ∧ AI , (4.31) 

and the definition of electric charges 

(d) 2 Z � �(−1)d−1gsQI = e −2φMIJ ? FJ + e −2φ ? H ∧ AI , (4.32)
(d)

16πGN S(d−2) 

where we have added a conventional sign. Again, this charge is on-shell invariant under 
homologically-equivalent deformations of S(d−2). This follows from the equation of motion 
written in the alternative form Eq. (4.17). It is also on-shell invariant under the δχ 
transformations, in spite of the explicit occurrence of the vector fields AI : the second 
term in the integrand has the same structure as the integrand of the KR charge and, for 
the same reason, it is invariant on-shell when we add to AI exact 1-forms. 

This charge is, in the terminology used by Marolf in Ref. [135], a Page charge but, as 
we have explained, apart from localized and conserved, it is also gauge invariant on-shell. 
The formalism leads us to use precisely this charge, which will be the one occurring in the 
first law of black hole mechanics. 

Finally, let us consider the charge associated to the invariance under local Lorentz 
transformations δσ, which act on the Vielbein and on all the fields derived from it: spin 
connection and curvature. Let us postpone for the time being the conditions that the 
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parameters that leave all of them invariant have to satisfy and lets study the transformation 
of the action. From Eqs. (4.13) and (4.16) we find 

Z n h io 
aδσS = Ea ∧ δσe + d −e −2φ ? (e a ∧ e b) ∧ δσωab + 2ıade

−2φ ? (e a ∧ e b) ∧ δσeb , 

(4.33) 
and using Eqs. (4.18a) and (4.19a) and the Noether identity Eq. (4.21a), we find that the 
integrand immediately reduces to a total derivative, 

Z 
δσS = dJ[σ] , 

(4.34) 

cJ[σ] = (−1)d−1 e −2φDσab ∧ ?(e a ∧ e b) + 2σbcıade
−2φ ? (e a ∧ e b) ∧ e . 

The standard argument tells us that J[σ] = dQ[σ]. Integrating by parts the first term 

n o � � 
cJ[σ] = d (−1)d−1 e −2φσab ? (e a ∧ e b) + 3 σ[bcıa]de−2φ ? (e a ∧ e b) ∧ e . (4.35) 

cThe last term vanishes identically because5 ?(ea ∧ eb) ∧ e = 2ηc[a ? eb] and we arrive at 

Q[σ] = (−1)d−1 e −2φ ? (e a ∧ e b) ∧ σab . (4.37) 

Now we have to consider Lorentz parameters that leave all the fields invariant. The 
spin connection and curvature are left invariant by covariantly constant parameters 

Dσab = 0 , (4.38) 

bbut the invariance of the Vielbein σabe = 0 can only be satisfied for σab = 0, and would 
automatically imply the vanishing of Q[σ]. 

The (d−2)-form, though, reappears in the proof of the first law for a Lorentz param-
eter that is covariantly constant over the bifurcation surface. We also notice that terms of 
higher order in the Lorentz curvature, such as those which arise with α0 corrections, lead 
to a non-vanishing Lorentz charge Ref. [53] . 

4.3.3 Diffeomorphisms and covariant Lie derivatives 

As we have discussed in the introduction, out of the fundamental fields of our theory, 
only the dilaton φ and the O(n, n)/(O(n)×O(n)) scalars φx transform as a tensor under 

5Here we use the property 
(p) (p)? ω ∧ ξ̂ = ?ıξ ω , (4.36) 

which is valid for any p-form ω(p) and any vector field ξ = ξµ∂µ and its dual 1-form ξ̂ = ξµdxµ. 
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µdiffeomorphisms δξx = ξµ, that is6 

δξφ = −£ξφ = −ıξdφ , (4.40a) 

δξφ
x = −£ξφ

x = −ıξdφx . (4.40b) 

aThe Vielbein e , the vectors (1-forms), A, and the KR 2-form, B, have gauge free-
doms and transform as tensors up to compensating gauge transformations. These com-
pensating gauge transformations can be determined by 

1. Requiring gauge-covariance of the complete transformation law (which can then be 
interpreted as a gauge-covariant Lie derivative) and 

2. Imposing that, for diffeomorphisms which are symmetries of the field configuration 
that we are considering (in particular, for isometries), the complete transformation 
(covariant Lie derivative) vanishes. The first condition ensures that this vanishing 
is gauge-invariant. 

In what follows we will denote by k the vector fields ξ that generate diffeomorphisms 
that leave invariant the complete field configuration. k is, in particular, a Killing vector 
of the metric. 

In Chapter 3, we reviewed the construction of a Lie derivative of the Vielbein, 
spin connection and curvature covariant under local Lorentz transformations (Lie-Lorentz 
derivative) of Refs. [41, 42] that build upon earlier work by Lichnerowicz, Kosmann and 
others [44–47]. We also dealt with Abelian vector fields in similar terms. It is convenient to 
quickly review these results starting with the Abelian vector case, adapted to the present 
situation. 

The transformation of the Abelian vector fields AI under diffeomorphisms can be 
defined as 

δξAI = −LξAI , (4.41) 

where LξAI is the Lie-Maxwell derivative, defined by 

ILξAI ≡ ıξFI + dPξ . (4.42) 
IHere Pξ is a gauge-invariant O(n, n) vector of functions that depends on AI and on the 

generator of diffeomorphisms ξ and it is assumed to have the property that, when ξ = k, 
it satisfies the equation 

a b6The metric gµν = ηabe µe µ and the 2- and 3-form field strengths F , H also transform as tensors: 

δξgµν = −£ξ gµν = −2r(µξν) , (4.39a) 

δξ F = −£ξ F = −(ıξd + dıξ )F , (4.39b) 

δξ H = −£ξ H = −(ıξd + dıξ )H . (4.39c) 
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IdPk = −ıkFI . (4.43) 

The invariance of the 2-form FI guarantees the local existence of PkI , which is known 
as the momentum map associated to k. On the other hand, Eq. (4.43) ensures that the two 
properties of the variations of the fields under diffeomorphisms that we have demanded 
are satisfied. Finally, observe that the Lie-Maxwell derivative is just a combination of the 
standard Lie derivative plus a compensating gauge transformation with parameter 

I Iχξ = ıξAI − Pξ . (4.44) 

For fields with Lorentz indices (Vielbein, spin connection and curvature), the varia-
tion under diffeomorphisms is also given by (minus) a Lorentz-covariant generalization of 
the Lie derivative δξ = −Lξ usually called Lie-Lorentz derivative Refs. [41,42,44–47]. This 
derivative can also be constructed by adding to the standard Lie derivative a compensating 
Lorentz transformation with the parameter 

ab = ıξωab −r[aξb]σξ . (4.45) 

For the Vielbein, the Lie-Lorentz derivative can be expressed in several equivalent 
and manifestly Lorentz-covariant forms 

a 1 a ν (rµLξe µ = e ξν + rν ξµ) (4.46a)2 

a a bLξe = Dξa + Pξ be , (4.46b) 

where 

ab ≡ r[aξb]Pξ , (4.47) 

satisfies, when ξ = k, the equation 

ıkR
ab ab = −DPk , (4.48) 

that shows that we can view Pkab as a momentum map as well.7 

In the form Eq. (4.46a) we immediately see that the Lie-Lorentz derivative of the 
Vielbein vanishes when ξ = k, a Killing vector. The same is true for the connection and 
curvature. 

Observe that Pξab transforms covariantly under local Lorentz transformations. 
The above transformation of the Vielbein induce the following transformations of 

the spin connection and curvature that we quote for later use: 

� � 
δξω

ab = −Lξωab ıξR
ab ab = − + DPξ , (4.49a) 

� � 
δξR

ab = −LξRab DıξRab − 2Pξ [a Rb]c = − c . (4.49b) 

7Compare this equation to Eq. (4.43). 
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Observe that the Lie-Lorentz derivative of the spin connection has the same structure 
as that of the Abelian connection AI in Eq. (4.42), i.e. the inner product of ξ with the 
curvature plus the derivative of the momentum map. 

In asymptotically-flat stationary black-hole spacetimes with bifurcate horizon, if k 
is the Killing vector whose Killing horizon coincides with the event horizon and BH is the 
bifurcation sphere, 

[akb] 
BH abPk = r = κnab , (4.50) 

abwhere κ is the surface gravity and n is the binormal to the event horizon, with the 
abnormalization n nab = −2. The zeroth law of black-hole mechanics stating that κ is 

constant over the horizon [20, 125] is associated to the Lorentz momentum map, just as 
the generalized zeroth law that states that the electric potential is also constant over the 
horizon in the Einstein-Maxwell theory is associated to the Maxwell momentum map [88].8 

We are going to see that further “generalized zeroth laws” are also associated to momentum 
maps when we restrict ourselves to the bifurcation surface. We will call them restricted 
generalized zeroth laws. 

Let us now consider the KR field. It is convenient to start by considering the 
transformation of the 3-form field strength H defined in Eq. (4.10) under diffeomorphisms. 
Since it is gauge invariant, upon use of its Bianchi identity 

δξH = −£ξH = −ıξdH − dıξH = ıξFI ∧ F I − dıξH . (4.51) 

When ξ = k, this expression must vanish and we can use Eq. (4.43), which leads to 
the identity 

� � 
δξH = −d ıkH + Pk I FI = 0 , (4.52) 

which, in turn, implies the local existence of a gauge-invariant 1-form that we will also 
call a momentum map, satisfying 

− ıkH − Pk I FI = dPk . (4.53) 

The KR momentum map plays a fundamental role in the definition of the variation 
of the KR 2-form B under diffeomorphisms which should be of the general form 

� � 
δξB = −£ξB + δΛξ + δχξ B , (4.54) 

where χξ and Λξ are scalar and 1-form parameters of compensating gauge transformations. 
IThey will generically depend on AI and B as well as on ξ. χξ has to be the same 

parameter used in the definition of the Lie-Maxwell derivative Eq. (4.44) and we just have 
to determine Λξ. Now, the Maxwell and Lorentz cases suggest that we try 

Λξ = ıξB − Pξ , (4.55) 

which leads to 
8This parallelism between zeroth laws was observed in [51], also in the wider context of Einstein-Yang-

Mills theories. 
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1 
2χξ I dA

IδξB = −£ξB + d(ıξB − Pξ) + 
(4.56) 

= − 
� � 
ıξH + Pξ I FI + dPξ 1 

2AI ∧ ıξFI + 1 
2Pξ I F

I .+ 

When ξ = k, though, 

� 
Pk I AI . (4.57)1 

2δkB = d 

This is not zero but it can be absorbed into a redefinition of Λξ: 

Λξ = ıξB − Pξ − 1 
2Pk I A

I , (4.58) 

which gives the variation 

� � 
ıξH + Pξ I FI + dPξ − 1 

2AI ∧ δξAI . (4.59)δξB = − 

This form of the variation makes it evident that δkB = 0, because δkAI = 0 and because 
of the definition of the KR momentum map 1-form Eq. (4.53). 

It remains to check that the vanishing of this variation is a gauge-invariant statement. 
Indeed, if we perform a gauge transformation in δξB, taking into account that all the 
momentum maps and δξAI are gauge-invariant, we find 

δgaugeδξB = −1 
2δgaugeAI ∧ δξAI , (4.60) 

which vanishes identically for ξ = k. 

4.3.4 The Wald-Noether charge 

The Wald-Noether charge is the conserved (d − 2)-form associated to the invariance of 
the action under diffeomorphisms [28]. The transformations that we are going to consider 
(combinations of standard Lie derivative and gauge transformations, as we have explained) 
are 
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δξφ = −ıξdφ , (4.61a) 

δξφ
x = −ıξdφx . (4.61b) 

� �
IδξAI = − ıξFI + dPξ , (4.61c) 

� � 
a a bδξe = − Dξa + Pξ be , (4.61d) 

� � 
δξω

ab ıξR
ab ab = − + DPξ , (4.61e) 

� �
1δξB + AI ∧ δξAI = − ıξH + Pξ I FI + dPξ . (4.61f)2 

From Eq. (4.13), and using the definition of Ẽ 
I in Eqs. (4.15c) and (4.15d) to cancel 

the terms of the form EB ∧ AI ∧ δξAI , we get 

Z n � � � � 
a a bδξS = − Ea ∧ Dıξe + Pξ be + EB ∧ ıξH + Pξ I FI + dPξ 

� � (4.62)I+Ẽ 
I ∧ ıξFI + dPξ + Eφıξdφ + Exıξdφx 

−dΘ(ϕ, δξϕ)} , 

while, from Eq. (4.16), we get 

Θ(ϕ, δξϕ) = e −2φ ? (e a ∧ e b) ∧ (ıξRab + DPξ ab) 

− 2ıade−2φ ? (e a ∧ e b) ∧ (Dξb + Pξ bce c) 

−2φ+ 8e −2φ ? dφıξdφ − e gxy ? dφyıξdφx (4.63) 

� �
I− e −2φMIJ ? FJ ∧ ıξFI + dPξ 

� � 
− e −2φ ? H ∧ ıξH + Pξ I FI + dPξ . 

Next, we consider the terms in δξS that contain momentum maps, integrating by 
parts those which involve their derivatives: 
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� � 
a b IEa ∧ Pξ be + Ẽ 

I ∧ dPξ + EB ∧ Pξ I FI + dPξ 

h i 
= E[a ∧ e b]Pξ ab + PξdEB + (−1)dPξ I dẼ I + (−1)dEB ∧ F I 

(4.64) 

� � 
+ d Pξ ∧ EB + (−1)d−1PξI Ẽ 

I . 

The terms in the first line vanish as a consequence of the Noether identities Eqs. (4.21a)-
(4.21c) and we are left with the total derivative which will be added to Θ(ϕ, δξϕ). Thus, 
the variation of the action takes the form 

Z n 
aδξS = − Ea ∧ Dıξe + EB ∧ ıξH + Ẽ 

I ∧ ıξFI + Eφıξdφ + Exıξdφx 

(4.65)h io 
−d Θ(ϕ, δξϕ) − Pξ ∧ EB + (−1)dPξI Ẽ 

I . 

Integrating the first term of Eq. (4.65) by parts we get another total derivative to add to 
aΘ(ϕ, δξϕ) and (ıξe = ξa) 

(−1)dDEaξ
a + EB ∧ ıξH + Ẽ 

I ∧ ıξFI + Eφıξdφ + Exıξdφx = 0 , (4.66) 

by virtue of the Noether identity associated to the invariance under diffeomorphisms and, 
therefore, Z 

δξS = dΘ0(ϕ, δξϕ) , (4.67) 

where 

Θ0(ϕ, δξϕ) = Θ(ϕ, δξϕ) + (−1)dEaξ
a − Pξ ∧ EB + (−1)dPξI Ẽ 

I . (4.68) 

Usually, the last three terms, which are proportional to equations of motion and 
vanish on-shell, are ignored for this very reason. However, we have found that keeping 
them is actually quite useful for finding the Wald-Noether charge, because they are exactly 
what is needed to write J as a total derivative. Without them, we would have had to 
guess which combinations of the equations of motion should be added to achieve that 
goal. Furthermore, the result that we will obtain will be valid off-shell. 

Since the action is exactly invariant under the gauge transformations Eq. (4.18), but 
it is only invariant up to a total derivative under standard infinitesimal diffeomorphisms, 
under the combined transformations Eqs. (4.61) Z 

δξS = − dıξL , (4.69) 

which, combined with Eq. (4.67), leads to the identity 
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dJ = 0 , (4.70) 

which holds off-shell for arbitrary ξ with 

J ≡ Θ0(ϕ, δξϕ) + ıξL . (4.71) 

Eq. (4.70) implies the local existence of a (d − 2)-form Q[ξ] such that 

J = dQ[ξ] . (4.72) 

Using the previous results we find that, up to total derivatives and up to the overall 
(d) 2 (d)factor (gs 16πG )−1 that we are suppressing to get simpler expressions N h i 

Q[ξ] = (−1)d ? (e a ∧ e b) e −2φPξ ab − 2ıade−2φξb 

(4.73)� � � � 
I+ (−1)d−1Pξ e −2φMIJ ? FJ − Pξ ∧ e −2φ ? H . 

4.4 Zeroth laws 

The zeroth law and its generalizations, ensuring that the surface gravity and the electro-
static potential are constant over the event (Killing) horizon H are important ingredients 
in the standard derivation of the first law of black-hole mechanics in the context of the 
Einstein-Maxwell theory [20]. In presence of higher-rank p-form fields, it is not clear how 
these laws should be further generalized. However, it is possible to prove the first law 
using Wald’s formalism working on the bifurcation sphere BH, where the Killing vector 
k associated to the horizon vanishes. This restricts the validity of the proof to bifur-
cate horizons but, on the other hand, it makes it possible to carry out the proof using a 
more restricted form of the (generalized) zeroth laws which states the closedness of the 
electrostatic potential and its higher-rank generalizations on BH. Since the electrostatic 
potential is a scalar, its closedness implies that it is constant on BH, which is a restricted 
version of the generalized zeroth law. For higher-rank potentials closedness is, actually, 
all we need, as we will see in the next section. 

We start by assuming that all the field strengths of the theory are regular on the 
horizon.9 This implies that 

ıkFI BH 
= 0 , (4.74a) 

BH 
ıkH = 0 . (4.74b) 

The first equation directly implies the closedness of the components of the momentum 
map PI on BH on account of its definition Eq. (4.43), and, hence, its constancy on BH, ak 

9Observe that in this theory in which all the field strengths are gauge-invariant, this is a gauge-invariant 
statement that should be valid in a regular coordinate patch. 
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statement that we can call restricted generalized zeroth law after the natural identification 
of PI with the electrostatic black-hole potential ΦI . Observe that, our gauge-invariant k 
definition of the electrostatic black-hole potential guarantees that it is fully defined up 
to an additive constant that can be determined by setting the value of the potential at 
infinity to zero. 

Using Eq. (4.74b) and the constancy of PI on on BH in the definition of the KR k 
momentum map Eq. (4.53) we find that 

BH H � � 
0 = −ıkH = dPk + Pk I FI = d Pk + Pk I AI . (4.75) 

We can call the combination Pk + Pk I AI that is closed on BH the KR black-hole 
potential Φ and its closedness can be understood as another restricted generalized zeroth 
law of black-hole mechanics in this theory. Observe that Φ is not gauge-invariant, but Pk 
is only defined up to shifts by exact 1-forms anyway and, when we use Φ as the 1-form 
Λ in the calculation of the KR charge Eq. (4.26), the addition of exact 1-forms does not 
change the value of the associated KR charge Eq. (4.27). The fact that this Φ occurs in 
the expressions leading to the first law precisely plays this role is quite a non-trivial check 
of the consistency of our results. 

4.5 The first law 

We start by defining the pre-symplectic (d − 1)-form [27] 

ω(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(ϕ, δ2ϕ) − δ2Θ(ϕ, δ1ϕ) , (4.76) 

and the symplectic form relative to the Cauchy surface Σ Z 
Ω(ϕ, δ1ϕ, δ2ϕ) ≡ ω(ϕ, δ1ϕ, δ2ϕ) . (4.77) 

Σ 

Now, following Ref. [22], when ϕ solves the equations of motion Eϕ = 0 if δ1ϕ = δϕ is 
an arbitrary variation of the fields and δ2ϕ = δξϕ is their variation under diffeomorphisms, 
we have that 

ω(ϕ, δϕ, δξϕ) = δJ + dıξΘ0 = δdQ[ξ] + dıξΘ0 , (4.78) 

where, in our case, J = dQ, where Q is given by Eq. (4.73) and Θ0 is given in Eq. (4.68). 
Since, on-shell, Θ = Θ0 , we have that, if δϕ satisfies the linearized equations of motion, 
δdQ = dδQ. Furthermore, if the parameter ξ = k generates a transformation that leaves 
invariant the field configuration, δkϕ = 0, 10 linearity implies that ω(ϕ, δϕ, δkϕ) = 0, and 

� � 
d δQ[k] + ıkΘ0 = 0 . (4.79) 

Integrating this expression over a hypersurface Σ with boundary δΣ and using Stokes’ 
theorem we arrive at 

10We have constructed variations of the fields δξ for which this is possible. 
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Z � � 
δQ[k] + ıkΘ0 = 0 . (4.80) 

δΣ 

We are interested in asymptotically flat, stationary, black-hole spacetimes and we 
choose k as the Killing vector whose Killing horizon coincides with the event horizon 
H, which we assume to be a bifurcate horizon. This Killing vector k is assumed to be 
linear combination with constant coefficients Ωn of the timelike Killing vector associated 
to stationarity, tµ∂µ and the [1 (d − 1)] inequivalent rotations φnµ∂µ2 

kµ = tµ +Ωnφµ . (4.81)n 

Furthermore, we choose the hypersurface Σ to be the space between infinity and the 
bifurcation sphere (BH) on which k = 0. Then, its boundary δΣ has two disconnected 
pieces: a (d − 2)-sphere at infinity, Sd−2 , and the bifurcation sphere BH. Then, taking ∞ 
into account that k = 0 on BH, we obtain the relation Z Z � � 

δ Q[k] = δQ[k] + ıkΘ0 . (4.82) 
Sd−2BH ∞ 

As explained in Ref. [22,52], the right-hand side can be identified with δM −ΩmδJn, 
where M is the total mass of the black-hole spacetime and Jn are the independent com-
ponents of the angular momentum. 

(d) 2 (d)Using the explicit form of Q[k], Eq. (4.73), and restoring the overall factor gs (16πGN )
−1 , 

we find 

Z (d) 2 Z � �(−1)d−1gs
δ Q[k] = 

(d) δ PkI e −2φMIJ ? FJ 

BH 16πG BH 
N 

g
(d) 2 Z � � 
s− 

(d) δ Pk ∧ e −2φ ? H (4.83) 
16πG BH 

N 

(d) 2 Z h i(−1)dgs 
+ 

(d) δ ?(e a ∧ e b) e −2φPk ab − 2ıade−2φkb . 
16πG BH 

N 

The last term vanishes over the bifurcation sphere and will be removed from now 
on. 

As it is, this expression has two problems that make it difficult for us to obtain the 
kind of terms that occur in the first law. In the first line, we have an expression that we 
should be able to interpret in terms of the electric charges QI . However, when we compare 
this with Eq. (4.32) we see that the second term in the integrand is missing. Without that 
term, the charge is not conserved. On the other hand, in the second line, we have an 
expression that we should be able to interpret in terms of the KR charge using Eq. (4.26). 
However, the 1-form Pk is not closed on BH. 
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The solution to these two problems is unique: the addition and subtraction of the � � 
term Pk I AI ∧ e−2φ ? H in the integrand, so that the integral to evaluate on BH takes 
the form 

Z (d) 2 Z h i(−1)d−1gs Iδ Q[k] = 
(d) δ Pk e −2φMIJ ? FJ + e −2φ ? H ∧ AI 

BH 16πG BH 
N 

(d) 2 Z � � g � �s− 
(d) δ Pk + Pk I AI ∧ e −2φ ? H (4.84) 

16πG BH 
N 

(d) 2 Z 
(−1)dgs 

+ 
(d) δ e −2φ ? (e a ∧ e b)Pk ab . 

16πG BH 
N 

INow, using the generalized zeroth law that ensures that Pk ≡ ΦI is constant over 
H, in particular on BH, and the definition of electric charge Eq. (4.32), the first term in 
the right-hand side takes the form 

ΦI δQI . (4.85) 

Next, from the closedness of the combination Φ = Pk + Pk I AI on BH, (the restricted 
generalized zeroth law) using the Hodge decomposition 

= de +ΦiΛh i , (4.86)Pk + Pk I AI BH 

where the Λh i are harmonic 1-forms on BH and the Φ1 are constants that have the 
interpretation of potentials associated to the charge of the KR field (the dipole charge of 
Ref. [136] in particular), and using the definition Eq. (4.27), we find that the second term 
in the right-hand side takes the form 

ΦiδQi , Qi ≡ Q[Λh i] . (4.87) 

� � 
Observe that the addition and subtraction of the term Pk I AI ∧ e−2φ ? H has been 

crucial to recover the correct definition of the charges which, in particular, demands the 
occurrence of the closed 1-form Pk + Pk I AI . 

Now, let us consider the third integral. Before we compute it explicitly, we notice 
that the integrand is identical, up to a sign, to the Lorentz charge Eq. (4.37) computed 

afor the Lorentz parameter Pk b which is covariantly constant over the bifurcation surface. 
This coincidence is very intriguing and will be further explored in Ref. [53]. 

Using Eq. (4.50) 
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Z Z 
(−1)dκ −2(φ−φ∞) ? (e

κ −2(φ−φ∞) abδ e a ∧ e b)nab = − δ e n nab(d) (d)
16πG BH 16πG BH 

N N 
(4.88) 

= 
AH

T δ 
(d)

4GN 

, 

abwhere we have used the normalization of the binormal nabn = −2, T = κ/2π is the 
Hawking temperature and Z 

AH ≡ dd−2Se−2(φ−φ∞) , (4.89) 
B 

is the area of the horizon measured with the modified Einstein frame metric [141] which is 
−4(φ−φ∞)/(d−2)obtained from the string one by multiplying by the conformal factor e , and 

computed using the spatial section BH. 
We finally get the following expression for the first law of black hole mechanics in 

the Heterotic Superstring effective action to leading order in α0: 

δM = Tδ 
AH 

+ΩmδJm +ΦiδQi +ΦI δQI , (4.90)
(d)

4GN 

which leads to the interpretation of the area of the horizon divided by 4G(d) as the black-N 
hole entropy. 

4.6 Momentum Maps for Black Rings in d = 5 

In this section we are goin to illustrate how the definitions made and the properties 
proven in the previous sections work in an explicit example. In particular, we are going to 
determine the values of the momentum maps, checking the restricted generalized zeroth 
laws. 

The solution we are going to consider is a non-extremal, charged, black ring solution 
of pure N = 1, d = 5 supergravity which can be easily embedded in the toroidally-
compactified Heterotic Superstring effective field theory using the results in Appendix B. 
This embedding is necessary because all the definitions and formulae that we have devel-
oped are adapted to that theory. In Appendix B we show how the action Eq. (4.4), for 
d = 5 can be consistently truncated to that of pure N = 1, d = 5 supergravity Eq. B.26 
in two steps: 

1. A direct truncation of some fields of the Heterotic theory, to obtain a model of 
N = 1, d = 5 supergravity coupled to two vector multiplets. The Kalb-Ramond 
2-form has to be dualized into a 1-form in order to obtain the supergravity theory 
in the standard form, with 3 1-forms which can be treated on the same footing and 
which may be linearly combined. 
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2. A consistent truncation of the two vector supermultiplets. In this truncation, rather 
than setting two of the vector fields to zero, they are identified with the surviving 
vector, up to numerical factors. This allows the scalars in the vecort supermultiplets 
to take their vacuum values. 

Given a solution of pure N = 1, d = 5 supergravity, one can easily retrace those 
steps, restoring, first, the two “matter” vector fields so the solution becomes now a solution 
of N = 1, d = 5 supergravity coupled to two vector multiplets. Then, dualizing the 
vector in the supergravity multiplet to recover the Kalb-Ramond 2-form, the solution can 
immediately be interpreted as a solution of the Heterotic Superstring effective field theory 
in which many other fields simply take their vacuum values. 

The non-extremal, charged, black ring solution that we are going to consider is the 
one given in Section 4 of Ref. [140]. This solution belongs to a more general family of 
non-supersymmetric black rings with three charges αi, three dipoles µi, with i = 1, 2, 3, 
and two angular momenta Jϕ and Jψ in the theory with two vector supermultiplets. The 
solution above corresponds to setting all three charges and three dipoles equal, αi = α 
and µi = µ for all i. This identification of the charges and dipoles coprresponds to the 
identification between the vector fields that leads from the supergravity theory with matter 
to the theory of pure supergravity. Let us review the solution and its main features. 

The physical fields of the solution (the metric and the Abelian connection A) can 
be written in terms of the five parameters (R, α, µ, λ, ν) (all of them dimensionless except 
for the length scale R) and the three functions, F (ξ),H(ξ) and G(ξ), given by 

H(ξ) = 1 − µξ , F (ξ) = 1 + λξ , G(ξ) = (1 − ξ2)(1 + νξ) . (4.91) 

The line element is 

U(x, y)
ds2 = (dt + ωψ(y)dψ + ωϕ(x)dϕ)2 − hα(x, y)F (x)H(x)H(y)2× 

h2 
α(x, y) 

� � 
R2 G(y) dy2 dx2 G(x)× − dψ2 − + + dϕ2 , (4.92)

(x − y)2 F (y)H(y)3 G(y) G(x) F (x)H(x)3 

where we use the shorthand notation s = sinh α and c = cosh α, the following combinations 
of the fundamental parameters 

r r 
1 + λ 1 − µ

Cλ = �λ λ(λ − ν) , Cµ = �µ µ(µ + ν) , �λ,µ = ±1 , (4.93)
1 − λ 1 + µ 

and the following combinations of the fundamental functions in Eq. (4.91) 
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H(x) F (y)
U(x, y) = , (4.94a)

H(y) F (x) 

(λ + µ)(x − y) 2hα(x, y) = 1 + s , (4.94b)
F (x)H(y) 

� � 
1 3 2ωψ(y) = R(1 + y) Cλc 3 − Cµcs , (4.94c)

F (y) H(y) 

� � 
1 3 2ωϕ(x) = −R(1 + x)s Cλs 2 − Cµc . (4.94d)

F (x) H(x) 

Finally, the gauge field reads 

√ U(x, y) − 1 −A/ 3 = csdt 
hα(x, y) 

� � 
R(1 + y) U(x, y) 2 U(x, y) 2 2+ Cλc s − Cµs 3 − Cµc s dψ 
hα(x, y) F (y) H(y) H(y) 

� � 
R(1 + x) U(x, y) 1 2 1 3+ 2 Cµcs 2 − Cλcs + Cλc dϕ . (4.95a)
hα(x, y) H(x) F (x) H(x) 

The parameters of the solution must satisfy the constraints 

0 < ν ≤ λ < 1 , 0 ≤ µ < 1 , (4.96) 

to avoid naked singularities. Additional constraints arise from the codition of absence of 
Dirac-Misner strings and conical sigularities, as we are going to see. 

The coordinates x, y take values in 

−∞ < y ≤ −1 , −1 ≤ x ≤ 1 . (4.97) 

The surfaces of constant y have the topology S2×S1 . x is a polar coordinate on the S2 

(essentially, x ∼ cos θ), which is also parametrized by ϕ, which plays the role of azymuthal 
angle. ψ parametrizes the S1 , see Fig. 4.1. Spatial infinity is approached when both x 
and y go to −1, although the coordinates are ill-defined in that limit.11 The orbits of the 
vector ∂ϕ close off at x = −1, but do not do the same at x = 1 unless ωϕ(x = +1) = 0, 
which can forces us to require 

Cλ 3Cµ2 2 s = c , (4.98)
1 + λ 1 − µ 

11Good coordinates at infinity can be found in Ref. [140]. 
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which removes any possible Dirac-Misner strings. (The same constraint makes Aϕ(x = +1) 
independent of y.) Then, the fixed point sets of ∂ψ and ∂ϕ are, respectively, y = −1 (axis 
of the ring) and x = 1, −1 (inner and outer axes of the S2). 

Figure 4.1: Sketch of a section of constant t and ϕ of the black ring (figure based on 
Ref. [136]). The disc at x = 1 and infinite annulus at x = −1 are the axes (fixed points) of 
∂ϕ, while the axis of the ring is at y = −1 (fixed points of ∂ψ). Surfaces of constant y have 
topology S1 × S2 . y = −1/ν corresponds to the horizon (shaded surface) while surfaces 
of constant y ∈ (−1/ν, −1) are fatter rings containing the horizon in their interior. 

Finally, the periods of ψ and ϕ must be chosen appropriately so as to avoid conical 
singularities. The axes y = −1 and x = −1 (which extend to infinity) are regular for the 
periods 

√ 
1 − λ 

Δψ = Δϕ = 2π (1 + µ)3/2 . (4.99)
1 − ν 

For generic values of the parameters, though, the period of ϕ required by smoothness 
at the inner axis, x = 1, differs from the above Δϕ. Making both periods coincide 
(“balancing” the ring) is possible only when the following constraint holds 

� �2 � �31 − ν 1 − λ 1 + µ 
= . (4.100)

1 + ν 1 + λ 1 − µ 

Henceforth we shall assume that Eqs. (4.98) and (4.100) hold, so that, effectively, 
we will be dealing with a three-parameter family of solutions. As shown in Ref. [140], 
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the mass, the two independent angular momenta and the area of the event horizon of the 
solution read 

3πR2 (λ + µ)(1 + µ)2 
M = 

(5) cosh 2α , (4.101a)
1 − ν4GN 

� � 
πR3 (1 − λ)3/2(1 + µ)9/2 Cλ 3Cµ 2Jψ = c 3 − s c , (4.101b)

(5) (1 − ν)2 1 − λ 1 + µ2GN 

√ 
3πR3 1 − λ (1 + µ)7/2(λ + µ) 2Jϕ = − 

(5) Cµc s , (4.101c)
(1 − ν)2(1 − µ)GN 

= 8π2R3 (1 − λ)(λ − ν)1/2(1 + µ)3(ν + µ)3/2 Cλ 3Cµ3 2AH c + s c . (4.101d)
(1 − ν)2(1 + ν) λ − ν ν + µ 

There is an ergosurface at y = −1/λ, where the norm of ∂t vanishes, and the event 
horizon lies at y = −1/ν. It is a Killing horizon of 

k = ∂t +Ω∂ψ, (4.102) 

where Ω, the angular velocity of the horizon in the direction ψ, can be conveniently written 
as Ω = −1/ωψ(−1/ν). 12 A rather unusual property of this solution is that the horizon 
has no angular velocity in the direction ϕ even though Jϕ =6 0. Finally, the horizon 
temperature is 

√ 
λ − ν(µ + ν)3/2 Cλ 3Cµ

T −1 3 2 
H = 4πR c + s c . (4.103)

ν(1 + ν) λ − ν ν + µ 

This solution of pure N = 1, d = 5 supergravity corresponds to a following solution 
of the Heterotic Superstring effective field theory compactified on T4×S1 with the same 
metric and the non-trivial matter fields given by13 

12Notice we work with coordinates ϕ, ψ whose periods are not the standard ones, but those given in 
Eq. (4.99). 

13The fields that arise in the compactification over T4 and which are set to their vacuum values (they 
are trivial) have not been considered. In particular, the index I takes only two values because the fields 
corresponding to the other values are trivial. 
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φ = φ∞ , (4.104a) 

� � 
k2 0∞MIJ = , (4.104b)

k−20 ∞ 

� � 
k−1 
∞AI = A , (4.104c)
k∞ 

H = dB − 1 AI ∧ F I = ?F (4.104d)2 
√ 

where, for convenience, we have introduced A = −A/ 3 and its field strength F = dA. 
Let us obtain the vector and KR momentum maps asociated to the Killing vector k in 

IEq. (4.102) for this solution, denoted, respectively, as Pk and Pk. In the following we 
consider a constant t surface Σ defined by which extends from the bifurcate surface (here, 
a ring) BH at y = −1/ν to infinity (analogously to one leaf of the Einstein–Rosen bridge). 
The vector momentum maps PI can be written ask � � 

k−1 
∞PkI = Pk , (4.105)
k∞ 

where Pk satisfies the equation 

dPk = −ıkF . (4.106) 

Since in our gauge £kA = 0 it is clear that a solution (as a matter of fact, any 
solution) of the above equation is provided by 

Pk = ıkA + C , (4.107) 

for some constant C. Notice, though, that this is not the definition of the momentum map, 
but rather a particular form of Pk which is available in the gauge in which the black-ring 
solution is given. The momentum map is, by definition, gauge invariant. The constant C 
is determined by demanding Pk (which will be interpreted as the black ring’s electrostatic 
potential Φ) to vanish at infinity, and it is not difficult to see that C = 0. 

This solution admits an analytic prolongation to the bifurcate ring BH at y = −1/ν 
(and actually beyond that) and, in agreement with the generalised zeroth law, it is a 
constant over the whole event horizon H that we will denote by ΦH 

Pk = H Pk(x, −1/ν) 

cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) + Cµ(λ − ν) 
= − tanh α (4.108)

cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) − 3Cµ(λ − ν) 

≡ ΦH . 
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Observe that, in the gauge in which the solution is given, the potential A is ill-
defined over BH: ıkA is a non-vanishing constant there and k vanishes, which implies that 
A must diverge there. It is worth stressing that the momentum map is unaffected by such 
gauge pathologies since the solution Eq. (4.107) extends from infinity all the way down to 
BH (and beyond). This is a consequence of the fact that, although the momentum maps 
may only exist locally, they are defined by a gauge invariant equation. 

The KR momentum map 1-form, Pk, is defined by Eq. (4.53), and, for this particular 
solution 

� � 
dPk = − ıkH + PkI FI = − (ık ? F + 2PkF) . (4.109) 

If we knew the KR potential B in a gauge in which £kB = 0, using Pk = ıkA, we 
would obtain the KR momentum map 1-form 

Pk = ıkB − PkA + α , (4.110) 

where α is an arbitrary closed 1-form, dα = 0, that could be determined by imposing 
regularity: smoothness of Pk both at the axis of the ring, Pψ(x, y = −1) = 0, and at the 
outer axis of the spheres, Pϕ(x = −1, y) = 0, so that it is well defined when approaching 
infinity). Finding B is, however, as hard as finding Pk directly from Eq. (4.109), which is 
what we are going to do, taking into account that we are only interested in the pullback 
of Pk to the constant-t surface Σ, which must be of the form 

Σ
Pk = P Σ 

k ψ(x, y)dψ , k ϕ(x, y)dϕ + P Σ (4.111) 

because of the general form of the solution. 
The two functions P Σ (x, y) and P Σ (x, y) are given by k ϕ k ψ 

Z y 
Pk ϕ 

Σ (x, y) = − (ık ? F + 2PkF)yϕ dy + fϕ(x) 

Z y 
= −2PkAϕ + Iϕ(x, y)dy + fϕ(x) , (4.112a) 

Z y 
P Σ 
k ψ(x, y) = − (ık ? F + 2PkF)yψ dy + fψ(x) 

Z y 
= −2PkAψ + Iψ(x, y)dy + fψ(x) , (4.112b) 

where 
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Iϕ(x, y) = 2Aϕ (∂yAt +Ω∂yAψ) 

� � 
R2ΩF (x)G(x)H(y)h(x, y)2 F (y)G(x)H(y)ωψ(y)(Ωωψ(y) + 1) 

+ ∂xAt + 
F (y)H(x)(x − y)2 F (x)G(y)H(x)h(x, y) 

� � 
ΩH(x)2ωϕ(x)

2 
− ∂xAt 

H(y)2h(x, y) 

F (y)G(x)H(y)(Ωωψ(y) + 1) ΩH(x)2ωϕ(x)− ∂xAψ + ∂xAϕ , (4.113a)
F (x)G(y)H(x)h(x, y) H(y)2h(x, y) 

H(x)2 (ωϕ(x)∂xAt − ∂xAϕ)
Iψ(x, y) = + 2Aψ (∂yAt +Ω∂yAψ) , (4.113b)

H(y)2h(x, y) 

for some functions fϕ(x) and fψ(x) to be determined. 
In this form, the functions are well defined at y = −1/ν (and beyond), and we can 

analytically prolongate Pk there. 
The functions fϕ(x) and fψ(x) can be readily fixed from the fact that the combina-

tion Pk + 2PkA is closed on BH (the restricted generalized zeroth law). Indeed, pulling 
back on BH the KR momentum map Eq. (4.109), one has 

BH 
d (Pk + 2ΦHA) = 0 . (4.114) 

Thus, a solution of the form (4.111) that is well defined at y = −1/ν must satisfy the 
boundary condition 

BH 
Pk = −2ΦHA + Cϕdϕ + Cψdψ (4.115) 

for some constants Cϕ and Cψ. This implies that our solution reads 

Z y 
P Σ 
k ϕ(x, y) = −2PkAϕ + Iϕ(x, y)dy + Cϕ , (4.116a) 

−1/ν 

Z y 
Pψ 

Σ(x, y) = −2PkAψ + Iψ(x, y)dy + Cψ . (4.116b) 
−1/ν 

Remarkably, 
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Z y 
Iϕ(−1, y)dy = 0 , ∀y 6= −1 , (4.117a) 

−1/ν 

Z −1 cosh 2α [Cλ(µ + ν) + Cµ(ν − λ)] + Cλ(µ + ν) + Cµ(λ − ν)
Iψ(x, y)dy = × 

−1/ν cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) − 3Cµ(λ − ν) 

ν − 1 × CµR sech α , ∀x , (4.117b) 
µ + ν 

so regularity at y = −1 and x = −1 is achieved by setting 

Cϕ = 0 , (4.118) 

cosh 2α [Cλ(µ + ν) + Cµ(ν − λ)] + Cλ(µ + ν) + Cµ(λ − ν) 1 − ν 
Cψ = CµR sech α 

cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) − 3Cµ(λ − ν) µ + ν 

1 − ν ≡ C(λ, µ, ν, α) CµR sech α, (4.119) 
µ + ν 

which completes the solution. 
We conclude by noticing that the associated KR potential 1-form at BH is purely 

harmonic and given by, 

BH 
= Pk + 2PkA = Φ dψ ,˜ (4.120)ΦKR KR ψ̃ 

where ψ̃ = (2π/Δψ)ψ is the angular coordinate with canonical period ψ̃ ∼ ψ̃ + 2π and 

√ 
Δψ 1 − λ(1 + µ)3/2 

Φ = Cψ = C(λ, µ, ν, α) CµR sech α . (4.121)KR ψ̃ 
2π µ + ν 

For α = 0, ΦKR coincides with the potential given in Ref. [136] up to (parameter-
independent) numerical prefactors. 

4.7 Discussion 

In this paper we have derived the first law of black hole mechanics in the context of the 
effective action of the Heterotic Superstring compactified on a torus at leading order in α0 . 
The first law includes the variations of the conserved charges of the 1-forms, QI , and of 
the charges associated to the KR field, Qi, multiplied by the potentials ΦI and Φi which 
are constants that we have computed on the bifurcation surface.14 

I14It is not hard to prove that the potentials ΦI , defined as the momentum maps Qk are constant over 
the complete event horizon using the dominant energy condition and the Einstein equations as it is done 
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The main ingredients in this proof are the identification of the parameters of the 
gauge transformations that generate symmetries of the complete field configurations, the 
careful definitions of the associated charges and the corresponding potentials through what 
we have called restricted generalized zeroth laws. Due to the interactions between 1-forms 
and the KR 2-form induced by the Chern-Simons terms, all the terms involving charges 
and potentials in the first law are interrelated and all their definitions are either right or 
wrong simultaneously. This can be seen as a test of our definitions and of the final result. 

In the theory considered in this chapter we have arrived at the well-known result 
that the entropy is one quarter of the area. In theories of higher order in the curvature it is 
known that there are additional contributions from the terms that contain the curvature, 
as the Iyer-Wald prescription makes manifest. However, as explained in the introduction, 
in the case of the Heterotic Superstring effective action at first order in α0 , we also expect 
that the need to have well-defined charges and, simultaneously, closed forms over the 
bifurcation sphere will result in the need to include additional terms in the “gravitational 
charge” that, in the end, will give us the entropy. Work in this direction is well under 
way [53]. 

Finally, we would like to comment upon two apparent shortcomings of Wald’s for-
malism: it is not clear how to include the variation of the scalar charges and the mod-
uli [142,143] in the first law. In 5 dimensions, for instance, the KR field is dual to a 1-form 
and black-hole solutions electrically charged with respect to this dual 1-form exist. If we 
describe the theory in terms of the KR 2-form, it is not clear how to make the variation 
of this electric charge appear in the first law following this procedure. In this particular 
case, the electric charge of the 1-forms would be associated to S5-branes wrapped on T5 

and it would be very interesting to see the precise definition of this kind of charge to try 
to solve the ambiguities detected in Ref. [107]. 

for a single 1-form field in Ref. [56]. It is not clear, though, how definition of the potentials Φi may 
be extended using other sections of the event horizon different from the bifurcation sphere because the 

BH closedness of Pk + Pk I FI is based on the property ık H = 0. It is not clear how to extend this property 
to other sections of the event horizon different from the bifurcation surface BH. 
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5 
Wald entropy formula for Heterotic Superstring 

effective action at first-order in α0 

5.1 Introduction 

The interpretation of the black-hole entropy in terms of the degeneracy of string mi-
crostates is, beyond any doubt, one of the main achievements of String Theory [89]. This 
interpretation relies, on the one hand, on the correct identification of the black-hole charges 
in terms of branes whose presence affects the quantization of the string. On the other, it 
depends on a correct calculation of the macroscopic entropy. In more complicated cases, 
the couplings can make the identification of the brane sources through the charges more 
complicated [107] and, beyond leading order in α0 , the presence of terms of higher order 
in the curvature and, in the Heterotic Superstring case, of complicated Yang-Mills (YM) 
and Lorentz Chern-Simons terms [73], can also make the calculation of the macroscopic 
entropy very difficult. This is the problem we will deal with in this chapter. 

The standard method to calculate the black-hole entropy in theories of higher order 
in the curvature is to use Wald’s formalism [27,28], usually applying directly the Iyer-Wald 
prescription [22]. As we have discussed in the previous two chapters (see also Refs. [33,34, 
88] and the references therein), the Iyer-Wald prescription was derived assuming that all 
the fields of the theory behave as tensors under diffeomorphisms which, as matter of fact, 
is only true for the metric and uncharged scalars. All the fields of the Standard Model, 
except for the metric, have some kind of gauge freedom and do not transform as tensors 
under diffeomorphisms. Even the gravitational field, if it is described by a Vielbein instead 
of by a metric, has a gauge freedom, as it transforms under local Lorentz transformations. 
In theories with fermions, Vielbeins are necessary to work with the spinorial fields in 
curved space time. 

In the previous two chapters (see also Ref. [88]), we proposed a simple solution, 
based on the construction of covariant Lie derivatives of all the fields with gauge freedom. 
This construction is based on the introduction of momentum maps [42, 122] which play a 
crucial role in this chapter and which we will define later. The Lie-Lorentz derivative can 
also be seen as based on the definition of a Lorentz momentum map.1 

In Chapter 4, we have shown how to use momentum maps to construct covariant 
Lie derivatives in the Heterotic Superstring Effective action compactified in a torus at 
zeroth order in α0 . The KR field of that theory contains Abelian Chern-Simons terms2 

1In Refs. [120, 121], momentum maps emerge as “improved gauge transformations”. 
2Only the Kaluza-Klein and winding vector fields appear there at zeroth order in α0 . 
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which induce Nicolai-Townsend transformations of the 2-form [144]. These terms modify 
the definitions of the conserved charges which ultimately appear in the first law of black 
hole mechanics along the lines of the classical Refs. [36, 132–134]. 

In this chapter, we are going to use the same technique quite extensively to deal with 
the variety of fields and couplings that occur in the Heterotic Superstring effective action 
at first order in α0 and prove the first law of black hole mechanics, identifying the entropy. 
As we are going to see, the entropy formula obtained is manifestly gauge-invariant and 
contains only terms which are known and can be computed explicitly. This is the first 
entropy formula proposed for this theory that satisfies all these properties. It allows us 
to compute reliably the entropy of black hole solutions to first order in α0 and compare 
the result with the entropy computed through microstate counting. As we will show in 
the last section, it gives the same results as the non-gauge-invariant formulae used in 
Refs. [32–34] in certain basis.3 This confirms the values of the entropies obtained in those 
references, and shows why, in spite of the manifest deficiencies of the entropy formulae 
used, we obtained the right result. 

A very interesting aspect of the momentum maps is that they are related to the 
zeroth law of black hole mechanics and its generalizations.4 For higher-rank fields, Copsey 
and Horowitz [131] and, afterwards, Compère [52] proved a restricted form of the general-
ized zeroth law (restricted because it refers only to the bifurcation sphere) which follows 
from the closedness of certain differential forms on it. In Chapter 4, we proved that these 
closed forms are related to the momentum maps and we will call these statements re-
stricted generalized zeroth laws. Here we will extend the results of Chapter 4 to YM and 
KR fields and to the more complicated couplings of the Heterotic Superstring effective 

5action at first order in α0 . 
The restricted generalized zeroth laws play a crucial role in the proof of the first law 

and in the identification of the entropy, and they are intimately related to the definitions 
of conserved charges. In Wald’s formalism, the entropy is identified only after the terms 
∼ ΦδQ have been identified in the first law. As in Chapter 4, this identification requires 
the addition and subtraction of several terms as demanded by the definitions of the charges 
Q and the potentials Φ on account of the restricted generalized zeroth laws. However, in 
this case, some of the terms added and subtracted will be shown to contribute to the 
entropy. 

This chapter is organized as follows: in Section 5.2 we introduce the effective action 
of the Heterotic Superstring to first order in α0 and find how it changes under an arbitrary 
variation of the fields, which allows us to determine the equations of motion. In Section 5.3 
we study how the fields change under gauge and general coordinate transformations. We 
construct variations of the fields that vanish when the parameters of the transformations 
generate a symmetry of the field configuration and we find the integrals that give the 
associated conserved charges. The conserved charges associated to the invariance under 
diffeomorphisms are the Wald-Noether charges. As we have discussed, the correct identi-

3These results differ slightly from the results obtained in Refs. [29,30] using the Iyer-Wald prescription in 
the higher-dimensional action before dimensional reduction. As pointed out in Ref. [107], the dependence 
on the Riemann tensor changes after dimensional reduction and the formulae in Refs. [32–34] have been 
found using the dimensionally-reduced action. The formula that we give here does not suffer of any of 
these problems. See the discussion in Section 5.7. 

4This was first noticed by Prabhu, albeit in a completely different language [51]. 
5Some of these couplings have been discussed before in the literature, specially in Ref. [129] (see also 

references therein). See the discussion in Section 5.7. 
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fication of the conserved charges is essential to obtain for the correct identification of the 
entropy in the first law. In Section 5.4 we discuss the restricted generalized zeroth laws of 
this theory, which also play an essential role in the proof of the first law. In Section 5.5 
we prove the first law using the results obtained in the previous sections, which leads us 
to identify the Wald entropy formula in Section 5.6. Section 5.7 contains a discussion of 
our results, comparing them with the existing literature. 

5.2 The HST effective action at first order in α0 

The Heterotic Superstring effective action can be described at first order in α0 as follows 
[73]:6 we start by defining the zeroth-order KR field strength H(0) and its components 
H(0)

µνρ as 

H(0) ≡ dB 1 = Hµνρdx
µ ∧ dxµ ∧ dxρ , (5.1)3! 

1 abdxµwhere B = Bµν dx
µ ∧ dxµ is the KR 2-form potential. Then, if ωab = ωµ is the2 

Levi-Civita spin connection,7 we define the zeroth-order torsionful spin connections8 

(0) 
H(0)Ω ıbıa , (5.2)(±) ab = ωab ± 2

1 

and their corresponding zeroth-order curvature 2-forms and Chern-Simons 3-forms 

(0) ab ≡ dΩ(0) ab − Ω(0) a (0) cbR c ∧ Ω , (5.3a)(±) (±) (±) (±) 

(0) (0) a (0) b 1 (0) a (0) b (0) cω = R b ∧ Ω a + Ω b ∧ Ω c ∧ Ω a . (5.3b)(±) (±) (±) 3 (±) (±) (±) 

Next, we define the gauge field strength 2-form and the Chern-Simons 3-forms for 
the YM field AA = AAµdxµ by 

1F A = dAA + fBC 
AAB ∧ AC , (5.4)2 

ωYM = FA ∧ AA − 1 fABC A
A ∧ AB ∧ AC , (5.5)6 

where we have lowered the adjoint group indices A, B, C, . . . in the structure constants 
fAB

C and gauge fields using the Killing metric. 
Then, we can define the first-order KR field strength 3-form as 

� �α0 
H(1) ≡ H(0) ωYM (0)

+ + ω(−) . (5.6)
4 

6We use the conventions of Ref. [42], reviewed for the zeroth-order case in Ref. [74]. In particular, the 
relation with the fields in Ref. [73] can be found in Ref. [75]. 

a a7If e = e µdx
µ are the Vielbein, the spin connection is defined to satisfy the Cartan structure equation 

De a ≡ dea − ωa
b ∧ e b = 0. 

µ∂µ 
µ b δa8We denote by ıaA the inner product of ea ≡ ea (ea e µ = b) with the differential form A. If A 

is a p-form with components Aµ1···µp , ıaA is the (p − 1) form with components eaν Aνµ1···µp−1 . 
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Its Bianchi identity takes the well-known form 

� �α0 
dH(1) (0) a (0) b = FA ∧ F A + R b ∧ R a . (5.7)(−) (−)4 

Having made these definitions and adding the dilaton field φ, we can write the 
Heterotic Superstring effective action to first-order in α0 as 

(d) 2 Z h 
S(1)[e

gs −2φa, B, AA, φ] = 
(d) e (−1)d−1 ? (e a ∧ e b) ∧ Rab − 4dφ ∧ ?dφ 

16πGN 

1 H(1) ∧ ?H(1) + (−1)d α
0 � 

(0) a (0) b 
�� 

(5.8)+ FA ∧ ?F A + R b ∧ ?R a2 (−) (−)4 

Z 
L(1)≡ . 

Although this action is defined in 10 dimensions, we have left the dimension arbitrary 
(d) because that allows us to use the results in other dimensions after trivial dimensional 
reduction on a torus. In this action, GN 

(d) is the d-dimensional Newton constant and 
gs 
(d) is the d-dimensional string coupling constant, identified with the vacuum expectation 

φvalue of the exponential of the d-dimensional dilaton field gs 
(d) 

=< e >. In solutions such 
φ → eφ∞ φas black holes that asymptote to a vacuum solution at infinity e =< e >= gs 

(d) . 
This is a very complex action. Due to this complexity and to the lemma proven in 

Ref. [73] which we will explain later, it is convenient to perform a general variation of the 
action in two steps: first, we only vary the action with respect to the explicit occurrences 
of the fields, where we define “explicit occurrences” as those which do not take place in the 

(0)torsionful spin connection Ω(−). Then, we vary the action with respect to the occurrences 
(0)of the fields via Ω(−) using the chain rule. All the occurrences of the dilaton and YM fields 

are explicit, but those of the Vielbein and KR field are not, because they (and only they) 
are present in Ω(0) .(−) 

(d) 2 (d)Thus, setting gs (16πG )−1 = 1 for the time being in order to simplify theN 
formulae, we find that under a general variation of the “explicit” occurrences of the fields, 
the action transforms as follows: 

Z n 
S(1)δexp = E(1) 

exp a ∧ δea (1)
+ Eexp B 

(1) (1)∧ δB + E δφ + E δAA 
φ A 

(5.9) o 
+dΘ(1) (ϕ, δϕ)exp , 

where ϕ stands for all the fields of the theory, 
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E(1) 
exp a = e −2φıa ? (e c ∧ e d) ∧ Rcd − 2D(ıbde

−2φ) ∧ ?(e b ∧ e c)gca 

+ (−1)d−14e −2φ (ıadφ ? dφ + dφ ∧ ıa ? dφ) 

� �(−1)d 
−2φ H(1) ∧ ?H(1) + H(1) ∧ ıa+ e ıa ? H(1) 

2 

α0 �−2φ+ e ıaFA ∧ ?F A − FA ∧ ıa ? F A 
4 

� 
(0) b (0) c (0) b (0) c+ıaR c ∧ ?R b − R c ∧ ıa ? R b (5.10a)(−) (−) (−) (−) 

� � 
E

(1) 
= −d e −2φ ? H(1) , (5.10b)exp B 

� � 
(1) − 2L(1)E = 8d e −2φ ? dφ , (5.10c)φ 

n � � oα0 α0 
(1) (1)

E = − D e −2φ ? FA + (−1)d e −2φ ? H(0) ∧ FA − E ∧ AA , (5.10d)A exp B2 4 

and 

Θ(1) −2φ ? (e(ϕ, δϕ) = −e a ∧ e b) ∧ δωab + 2ıade
−2φ ? (e a ∧ e b) ∧ δeb − 8e −2φ ? dφδφ exp 

� �α0 
−2φ+ e −2φ ? H(1) ∧ δB + e ?FA − 1 ? H(1) ∧ AA ∧ δAA .22 

(5.11) 
An alternative form of the YM equations that arises in the calculations is 

� �α0 
(1) −2φ ? H(0) ∧ AA 

−2φ ? H(0) ∧ dAA .E = − D e −2φ ? FA − e + (−1)d−1 α
0 
e (5.12)A 2 4 

(1)Observe that neither the YM equations of motion transform covariantly nor Θexp is 
invariant under YM gauge transformations. For the YM equations this is not a big problem 
since the troublesome term is proportional to the KR equation of motion, but there is no 
obvious fix for the pre-symplectic potential. Nevertheless, we will see that, in the end, we 
will get gauge-invariant charges and, in particular a gauge-invariant Wald-Noether charge. 

An important property of the HST effective action is that the YM fields and the 
torsionful spin connection occur in it exactly on the same footing [90]. The variation of the 
action with respect to the torsionful spin connection takes exactly the same form as the 
YM equation, the only difference being the group indices and their contractions. Thus, 
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Z n 
δS(1) E(1) (1) (1) (1) 

+ E(1) b (0) a = ∧ δea + E ∧ δB + E δφ + E ∧ δAA a ∧ δΩexp a exp B φ A (−) b 

(5.13) o 
+dΘ(1)(ϕ, δϕ) , 

where the variation with respect to the torsionful spin connection is given by 

n � � oα0 α0 
E(1) b (0) b (0) b (1) (0) b 

a = − D(−) e −2φ ? R a + (−1)d e −2φ ? H(0) ∧ R a − E exp B ∧ Ω a ,(−) (−) (−)2 4 
(5.14) 

or 

� �α0 
E(1) b (0) b (0) b (0) b−2φ ? H(0) ∧ Ω ? H(0) ∧ dΩa = − D(−) e −2φ ? R a − e (−) a + (−1)d−1 α

0 

(−) a ,(−)2 4 
(5.15) 

and the pre-symplectic (d − 1)-form is given by 

� �α0 
−2φ (0) b (0) b (0) aΘ(1)(ϕ, δϕ) = Θ(1) (ϕ, δϕ) + e ?R − 1 ? H(1) ∧ Ω ∧ δΩ b , (5.16)

exp a a(−) 2 (−) (−)2 

(1)with Θexp(ϕ, δϕ) given in Eq. (5.11). 
The parallelism between the YM and torsionful spin connection terms also leads to 

the same problems of non-covariance of E(1) b
a and non-invariance of the additional term 

in Θ(1). 
An important difference between the equations of motion of these two connections 

is that, according to the lemma proven in Ref. [73], E(1) a
b is proportional to α0 and to 

(0) (0) (0)a combination of the zeroth-order equations Ea , E and E . This means that fieldB φ 
(1) (1) (1) (1)configurations that solve the equations Eexp a = 0, E = 0, E = 0 and E = 0 are exp B φ A 

solutions of the complete first-order equations, to that order in α0 . This crucial property 
effectively reduces the degree of the differential equations to 2, avoiding the problems that 
arise with dynamical equations that involve derivatives of the fields of higher order. 

5.3 Variations of the fields 

It is convenient to start by describing the gauge transformations of the fields and the 
associated Noether identities to be able to compute the associated conserved charges. 
Afterwards, we will discuss the transformations of the fields under diffeomorphisms and 
the associated Wald-Noether charge. 

5.3.1 Gauge transformations 

The fields occurring in the effective action Eq. (5.8) transform under 3 kinds of gauge 
transformations: 
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1. KR gauge transformations with 1-form parameter Λ, δΛ, which only act on B. 

2. YM gauge transformations with parameter χA , δχ, which act on the YM fields and 
on B as Nicolai-Townsend transformations. 

3. Local Lorentz transformations with parameter σab , δσ, which act on the Vielbein 
and induce transformations of spin connections and curvature and which also act on 
B as Nicolai-Townsend transformations. 

The transformation rules are 

a = σa bδσe be , (5.17a) 

δχA
A = DχA ≡ dχA + fBC 

AAB χC , (5.17b) 

α0 α0 
(0) bδB = (δΛ + δχ + δσ)B = dΛ − χAdA

A − σabdΩ(−) a . (5.17c)
4 4 

The induced local Lorentz transformations of the connections are 

δσω
ab = Dσab σc|b]= dσab − 2ω[a|

c , (5.18a) 

(0) ab (0) 
σab 

(0) [a| σc|b]δσΩ = D = dσab − 2Ω c , (5.18b)(−) (−) (−) 

and the transformations of the curvatures are 

δχF A = −χBfBC 
AF C (5.19a) 

δσR
ab = 2σ[a| Rc|b] c . (5.19b) 

(0) ab (0) c|b]δσR = 2σ[a|cR . (5.19c)(−) (−) 

Finally, for the sake of completeness and their later use, we quote the gauge trans-
formations of the Chern-Simons 3-forms 

α0 � � 
δχω

YM = d χAdA
A , (5.20a)

4 

� �α0 
(0) (0) bδσω = + d σabdΩ a , (5.20b)(−) (−)4 

and the Ricci identities 
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DDχA = −fBC 
AχBF C = δχF A , (5.21a) 

(0) (0) 
σab 

(0) [a| σc|b] 
(0) abD D = −2R c = δσR . (5.21b)(−) (−) (−) (−) 

The exact invariance of the action S(1) in Eq. (5.8) under the above gauge transfor-
mations leads, in a rather trivial way, to the following Noether identities [75] 

dE
(1) 

= 0 , (5.22a)exp B 

(1) (1)DE + (−1)d−1 α
0 
E ∧ dAA = 0 , (5.22b)A exp B4 

(0) 
E(1) (1) (0) aD a + (−1)d−1 α

0 
E ∧ dΩ = 0 , (5.22c)(−) b exp B (−) b4 

α0 
E(1) [a b] (1) ∧ dΩ(0) ab + (−1)d−1D(0) 

E(1) ab∧ e + E = 0 . (5.22d)exp exp B (−)4 

Eq. (5.22c) is just a particular case of Eq. (5.22b) with adjoint Lorentz indices. 
Furthermore, the last two identities imply the symmetry of the Einstein equation, which 
in the language f differential forms and Vielbeins, is expressed in the form 

E(1) [a b]∧ e = 0 . (5.23)exp 

5.3.2 Gauge charges 

For ths sake of simplicity, we are going to start by the charge associated to the δΛ trans-
formations, that we are going to call Kalb-Ramond charge. 

Kalb-Ramond charge 

Let us consider the transformation of the action Eq. (5.8) under the gauge transformations 
δΛ. Taking into account that this symmetry only acts on B, 9 Eqs. (5.13) and (5.16) we 
get Z n h io 

δΛS
(1) (1) −2φ ? H(1) ∧ dΛ= E ∧ dΛ + d e . (5.24)exp B 

Integrating by parts the first term and using the Noether identity Eq. (5.22a) 

Z Zn o 
δΛS

(1) (1) −2φ ? H(1) ∧ dΛ= d (−1)dE ∧ Λ + e ≡ dJ[Λ] . (5.25)exp B 

9We consider the variation of the torsionful spin connection to be zero under this transformation. 
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Since δΛS(1) = 0, the integrand must vanish, which means that J[Λ] must be locally 
exact. Indeed, � � 

J[Λ] = dQ[Λ] , with Q[Λ] = Λ ∧ e −2φ ? H(1) . (5.26) 

Integrating the (d − 2)-form Q[Λ] over (d − 2)-dimensional compact surfaces Sd−2 for 
Λs that leave invariant the KR field B we get conserved charges associated to those Λs. 
These Λs are simply closed 1-forms.10 The Hodge decomposition theorem allows us to 
write each of them as the sum of an exact and a harmonic form that we denote by Λe and 
Λh, respectively. On-shell, the exact form Λe = dλ will not contribute to the integral and 
the charge will be given by Z � � 

Q(Λh) = Λh ∧ e −2φ ? H . (5.27) 
Sd−2 

Now we can use duality between homology and cohomology: if CΛh is the (d − 3)-cycle 
dual to Λh we arrive at the charges 

(d) 2 Z 
gsQ(Λh) = − e −2φ ? H , (5.28)

(d)
16πGN CΛh 

(d) 2 (d)where we have recovered the factor of gs (16πGN )
−1 and added a conventional sign. 

Yang-Mills charge 

Now, let us consider the charges associated to the YM gauge transformations δχ. Again, 
from Eqs. (5.13) and (5.16), taking into account that this symmetry acts on the YM fields 
AA but also on the KR 2-form B, we have 

Z n 
δχS

(1) (1) (1)
= E ∧ δχB + E ∧ δχAA 

exp B A 

(5.29)� ��� �α0 
−2φ+d e −2φ ? H(1) ∧ δχB + e ?FA − 1 ? H(1) ∧ AA ∧ δχAA .22 

The parameters χA that we will use are those that preserve the field configuration, 
leaving AA and B invariant. The YM fields are left invariant by covariantly constant χAs, 
i.e. χAs that we will denote by κA satisfying 

DκA = 0 . (5.30) 

We can call these parameters vertical Killing vector fields from he principal bundle point of 
view, with the standard Killing vectors of the base manifold playing the rôle of horizontal 
Killing vector fields. 

10Here we follow Refs. [52,131]. This discussion is identical to the discussion we made for the zeroth-order 
case in Ref. [74]. 
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The integrability condition of the vertical Killing vector equation is, according to 
Eq. (5.21a), 

δκF A = −fBC 
AκBF C = 0 , (5.31) 

so they also leave invariant the field strengths, as expected. 
The vertical Killing vector fields κAs will not leave B invariant, though, but we can 

rewrite the transformation in the form � � 
α0 α0 α0 

δχB = − κAdA
A = − κAF A + d κAA

A . (5.32)
4 2 4 

Now we observe that, due to the YM Bianchi identity DF A = 0, κAF A is a closed 2-form 
and, locally, there is a 1-form Ψκ such that 

dΨκ = −κAF A , (5.33) 

and which we will call vertical YM momentum map. 11 

Then, we define the parameter of a compensating Λ transformation 

α0 α0 
Λχ = − Ψχ − χAA

A , (5.34)
2 4 

where Ψχ is a 1-form such that, when χA = κA (i.e. when it is a vertical Killing vector 
field), it satisfies Eq. (5.33). Combining the original δχ transformation with the com-
pensating δΛχ transformation we find a new δχB that vanishes for covariantly constant 
χAs: 

α0 � � α0 
δχB ≡ − dΨχ + χAF A − DχA ∧ AA . (5.35)

2 4 

The vanishing of δχB for covariantly constant χAs is gauge invariant because 

δχ0 δχ ∼ Dχ . (5.36) 

Substituting the transformation Eq. (5.35) and the standard gauge transformation 
of the YM fields into Eq. (5.29) we get 

Z � � � � � 
α0 α0 α0 

δχS
(1) (1) (1)

= E ∧ DχA + E ∧ −d Ψχ + χAA
A − χAdA

A 
A exp B 2 4 4 

� � � � � 
α0 α0 α0 

+ d e −2φ ? H(1) ∧ −d Ψχ + χAA
A − χAdA

A (5.37)
2 4 4 

��� �α0 
−2φ+ e ?FA − 1 ? H(1) ∧ AA ∧ DχA .22 

11Compare this equation with the equation satisfied by the standard (horizontal) YM momentum map 
Eq. (5.59). 
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Integrating by parts the first terms and combining the different terms in an appro-
priate way we can rewrite the variation in the form Z � � � 

δχS
(1) (1) (0)

= (−1)dχA DE + (−1)d−1 α
0 
E ∧ dAAA exp B4 

� � 
α0 α0 

− Ψχ + χAA
A ∧ dE(0) 

exp B2 4 

� � � 
(1)

+ d (−1)d−1χA E + (−1)d α
0 
e −2φ ? H(0) ∧ dAAA 4 

(5.38)� � 
α0 α0 

− Ψχ + χAA
A ∧ E(0) 

exp B2 4 

� � �� 
α0 α0 

+ e −2φ ? H(1) ∧ −d Ψχ + χAA
A 

2 4 

��� �α0 
−2φ+ e ?FA − 1 ? H(1) ∧ AA ∧ DχA .22 

The terms in the first and second lines vanish identically because of the Noether identities 
Eqs. (5.22b) and (5.22a), respectively, and we arrive to Z � � � 

δχS
(1) = d (−1)d−1χA E

(1) 
+ (−1)d α

0 
e −2φ ? H(0) ∧ dAAA 4 

� � 
α0 α0 

− Ψχ + χAA
A ∧ E(0) 

exp B2 4 

� � � �α0 α0 
− d Ψχ + χAA

A ∧ e −2φ ? H(0) (5.39)
2 4 

�� �α0 
−2φ+ e ?FA − 1 ? H(1) ∧ AA ∧ DχA 

22 

Z 
≡ dJ[χ] . 

The same arguments we made in the previous case lead to the existence of a (d − 2)-
form Q[χ] such that J[χ] = dQ[χ]. The (d − 2)-form is given by 

n � �o� �−2φ ?Q[χ] = −(−1)d α
0 
e −χAFA + (−1)dΨχ ∧ e −2φ ? H(0) . (5.40)

2 
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For Abelian vector fields the κAs are constant and Ψκ = κAAA (up to a total 
derivative) and we recover immediately the Q[χ] found in Ref. [74]. On the other hand, 
when we change Ψκ by a total derivative, Q[κ] is invariant on-shell up to a total derivative 
which will not contribute to the charge which is now given by the integral 

Z(d) 2 n � �o gs −2φ ? H(0)Q[κ] = − (−1)d α
0 
e −2φ ? dΨκ + (−1)dΨκ ∧ e , (5.41)

(d) 
Sd−2 216πGN 

where we have made use of the definition of the vertical momentum map Ψκ in Eq. (5.33). 

Lorentz charge 

Let us now consider local Lorentz transformations. As we have stressed repeatedly we can 
treat the local Lorentz transformations and the torsionful spin connection in parallel to 
the YM gauge transformations and the gauge fields. The only difference is the presence of 
one additional term in the Lorentz case: the Einstein-Hilbert case. If we follow the same 
steps as in the YM case we arrive to 

n � � � �o 
Q[σ] = (−1)d−1 e −2φ?(e a∧e b)σab−(−1)d α

0 
e −2φ ? −σabR(0) b

a + (−1)dΠσ ∧ e −2φ ? H(0) ,
2 

(5.42) 
where Πσ is a 1-form that becomes a vertical Lorentz momentum map whan the Lorentz 
parameter σab = κab, a Lorentz parameter that generates a symmetry of the field con-
figuration, i.e. a vertical Killing vector. This happens when the Vielbein and the spin 
connection are left invariant 

bκabe = 0 , (5.43a) 

Dκab = 0 . (5.43b) 

These two conditions imply the invariance of the torsion 1 ıbıaH
(0) Hence, they also implies 2 

athe invariance of the torsionful spin connection Ω(0) 
b,(−) 

D(0) 
κab = 0 . (5.44)(−) 

These conditions can be used to modify the transformation of the KR field so that 
it is also left invariant, as we did in the YM case. We just quote the final form: 

� �α0 α0 
(0) b (0) (0) bδσB = − dΠσ + κabR a) − D σab ∧ Ω a , (5.45)(−) (−) (−)2 4 

where the vertical Lorentz momentum map Πσ is such that, when σab = κab 

(0) bdΠκ = κabR(−) a . (5.46) 
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The conserved charge is the integral of the (d−2)-form Eq. (5.42) for vertical Killing 
vector fields κab satisfying Eqs. (5.43) and (5.43b). The first condition annihilates the first 
term, corresponding to the Einstein-Hilbert term in the action but the rest of the terms 
survive in this case and we get the non-vanishing Lorentz charge 

(d) 2 Z � h � �i� 
gs −2φ ? H(0)Q[κ] = (−1)d α

0 
e −2φ ? dΠκ + (−1)dΠκ ∧ e . (5.47)

(d) 
Sd−2 216πGN 

In the proof of the first law we will find the integral of (d − 2)-form Eq. (5.42) for a 
Lorentz parameter that satisfies Eq. (5.43b) only. This integral give, precisely, the entropy. 

5.3.3 The transformations under diffeomorphisms 

Now we turn our attention to the diffeomorphisms. Our treatment is similar to the treat-
ment of the δχ gauge transformations, although the use of compensating gauge transforma-
tions admits a more general justification in terms of the gauge covariance of the modified 
transformations (covariant Lie derivatives). Since we have discussed at length these mod-
ifications in Refs. [74, 88] we will only discuss the aspects not covered there: torsionful 
spin connections, non-Abelian gauge fields and the more complicated transformations of 
the KR 2-form. 

In this section k will always be a (horizontal) Killing vector which generates a 
symmetry of the complete field configuration. 

Lie-Lorentz derivatives 

The transformations of the Vielbeins, the Levi-Civita spin connection and its curvature 
2-form have been discussed in Refs. [74, 88], but it is convenient to adapt some of the 
formulae to the torsionful spin connection. They are generically given in terms of the Lie-
Lorentz (or Lorentz-covariant Lie derivative Refs. [41,42,44–47]) by δξ = −Lξ. Therefore, 
we will continue this discussion in terms of the latter. 

The parameter of the compensating local Lorentz transformation that appears in 
(0) abthe Lie-Lorentz derivative of Ω(−) is still given by 

ab = ıξωab −r[aξb]σξ , (5.48) 

(0) abbut it is useful to rewrite it using Ω(−) in the covariant derivatives. Due to the complete 
antisymmetry of the torsion, it takes the simple form 

ab (0) ab (0) [aξb]σξ = ıξΩ −D . (5.49)(−) (+) 

Observe that the presence of fully antisymmetric torsion does not modify the Killing 
equation12 

2D(0) 
= 0 . (5.50)(±) (a ξb) 

12The presence of generic torsion does modify the Killing equation. 
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Notice that Eqs. (5.49) and (5.50) are completely independent of H(0) even if we 
(0)have formally rewritten them in terms of the torsionful spin connection Ω(−). 

The Lie-Lorentz derivative of the torsion ıbıaH(0) follows the general formula while 
that of the Levi-Civita connection ωab is given by 

Lξωab ab = £ξω
ab −Dσξ , (5.51) 

and, therefore, it is easy to see that 

(0) ab (0) ab (0) abLξΩ = £ξΩ −D σξ , (5.52)(−) (−) (−) 

and it is equally easy to see that it can be rewritten in the form 

(0) ab (0) ab abLξΩ = ıξR + D(−)P(−)ξ , (5.53)(−) (−) 

with 

(0) [aξb]ab ≡ D , (5.54)P(−)ξ (+) 

The identity 

� � � � 
(0) ab (0) ab (0) [a (0) aρ bσξν R(−) νµ + D(−) µ P(−)ξ = D(−) r b]ξµ + rµξ

b] − 3 r[µ| ξ
ν Hν|ρσ] e e , (5.55)2 

(0) ab (0) abproves that δξΩ = −LξΩ vanishes when ξµ = kµ, because, in that case, (−) (−) 

(0) ab (0) ab− ıkR = D . (5.56)(−) (−)P(−)k 

abBecause P(−)k satisfies this equation, we will call it the horizontal Lorentz momentum 
map associated to the torsionful spin connection. 

k, then, generates a diffeomorphism that leaves invariant the metric and the KR 
3-form field strength. 

(0) ab (0) ababAgain, P(−)ξ is a Lorentz tensor and δξΩ = −LξΩ is a Lorentz tensor(−) (−) 
(0) abalthough Ω(−) is a connection. When it vanishes, it vanishes in all Lorentz frames. 

Lie-Yang-Mills derivatives 

Since the spin connection is just the connection of the Lorentz group, this case is very 
similar to the previous one, the main difference being that the YM fields are fundamental 
fields while the spin connection is a composite field. Apart from this, in many (but not 
all, because of the absence of a YM analogue of the Vielbein) instances we may just apply 
the same formulae with the sole change of the adjoint group indices, as we are going to 
see. 

In order to find the gauge-covariant Lie derivative of YM fields it is convenient to 
consider the Lie-Lorentz derivative of the curvature tensor first. In this case, since we do 
not know the form of the parameter of the compensating gauge transformation, we can 
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simply consider the standard Lie derivative of the gauge field strength 2-form defined in 
Eq. (5.4): 

£ξF A = (ıξd + dıξ)F A = DıξF A − fBC 
AıξA

BF C , (5.57) 

where we have used the Bianchi identity DF A = 0. 
When ξ = k this expression should vanish up to an infinitesimal gauge transforma-

Ation with some parameter that we denote by χ̃k . Then, 

� �
A B B F CDıξF A = fBC ıξA

B + χ̃k F C ≡ fBC 
APk , (5.58) 

which, upon use of the Ricci identity Eq. (5.21a), can be solved by a PkA that we call the 
(horizontal) Yang-Mills momentum map satisfying the equation 

A− ıkF A = DPk . (5.59) 

Eq. (5.56) is nothing by a particular case of this equation for which the momentum 
map is explicitly known. This happens because we know how to express the gauge field in 

Aterms of a more fundamental field (the Vielbein). In general, the general form of Pk is 
not known but is determined up to a covariantly-constant gauge parameter. We will use a 
Pξ

A which is undetermined except for the fact that it reduces to PkA satisfying Eq. (5.59) 
for Killing vectors. 

Now, we can use as definition of the Lie-Yang-Mills derivative of F A the following 
expression which is guaranteed to vanish when ξ = k on account of Eq. (5.58): 

LξF A = DıξF A − fBC 
APξ

BF C = £ξF A − δχξ F A , (5.60) 

where the gauge compensating parameter χξA is given by the (now usual) expression 

A Aχξ = ıξAA − Pξ . (5.61) 

The Lie-Yang-Mills derivative of the gauge field is, then 

A ALξAA ≡ £ξA
A −Dχξ = ıξF A + DPξ , (5.62) 

Aand, by construction, it vanishes automatically when ξ is a Killing vector field kµ and Pk 
is the momentum map satisfying Eq. (5.59). 

The Kalb-Ramond field 

The parameters of the compensating YM and local Lorentz transformations of the KR 
field are the same transformations χξA and σξab that we perform on other fields with YM 
and Lorentz indices, given by Eqs. (5.61) and (5.48). Thus, if we want to construct a 
transformation of this field under diffeomorphisms that annihilates it when ξ = k by com-
bining its standard Lie derivative with gauge transformations, the only gauge parameter 
we can still play with is the 1-form Λ because the rest are already completely determined. 
We have 

119 



Chapter 5. Wald entropy formula at first-order in α0 

δξB = − £ξB + (δΛξ + δχξ + δσξ )B 

(5.63) 
α0 α0 

a (0) b 
= − £ξB + dΛξ − χξ AdA

A − σξ bdΩ(−) a . 
4 4 

Again, it is convenient to start by considering the transformation of the 3-form field 
strength H(1) defined in Eq. (5.6) under diffeomorphisms, because it is gauge invariant: 

δξH
(1) = − £ξH

(1) 

= − ıξdH(1) − dıξH(1) 
(5.64) 

� �α0 
= − dıξH(1) − (0) a (0) bıξFA ∧ F A + ıξR b ∧ R a ,(−) (−)2 

where we have used the Bianchi identity Eq. (5.7). 
When ξ = k we can use Eqs. (5.56) and (5.59), integrate by parts, and use now the 

Bianchi identities for the curvatures, getting: 

� � 
δkH

(1) = − dıkH(1) a (0) b+ 
α0 

DPk A ∧ F A + D(−)P(−) k b ∧ R a(−)2 
(5.65)� 

ıkH
(1) − a (0) b = − d 

� 
α0 

Pk AF A + P(−) k bR a 

�� 
.(−)2 

By assumption, the above expression must vanish identically. Therefore, locally, there 
must exist a gauge-invariant 1-form, the horizontal Kalb-Ramond momentum map Pk, 
satisfying 

� � 
− ıkH(1) a (0) b+ 

α0 
Pk AF A + P(−) k bR a = dPk . (5.66)(−)2 

Then, if we apply the rule of thumb that the parameter of the compensating gauge trans-
formation is the inner product of the vector that generates the diffeomorphisms with the 
“connection” (here B) minus the momentum map (here some 1-form Pξ that in this case 
satisfies Eq. (5.66) when ξ = k) 

Λξ = ıξB − Pξ , (5.67) 

we arrive at the following candidate to δξB: 
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� � 
a (0) b

δξB = − £ξB + dΛξ − 
α0 

χξ AdA
A + σξ bdΩ(−) a4 

� � 
= − ıξH(1) − (0) a (0) bα0 

AA ∧ ıξF A +Ω(−) b ∧ ıξR (5.68)
(−) a4 

� � 
a (0) b− dPξ + 

α0 
Pξ AdA

A + P(−) ξ bdΩ(−) a . 
4 

Let us see if, with this definition, δkB = 0. Using Eqs. (5.66), (5.59) and (5.56) we 
get, instead of zero, a total derivative 

� � 
a (0) b

δkB = − 
α0 
d Pk AA

A + P(−) k bΩ , (5.69)
(−) a4 

which we can simple absorb in redefinition of Λξ in Eq. (5.67): 

� � 
a (0) b

Λξ ≡ ıξB − Pξ + 
α0 
d Pξ AA

A + P(−) ξ bΩ . (5.70)(−) a4 

With this new parameter, 

α0 α0 
a (0) b

δξB = − £ξB + dΛξ − χξ AdA
A − σξ bdΩ(−) a4 4 

� �� � 
ıξH

(1) − a (0) b 
= − 

α0 
Pξ AF A + P(−) ξ bR + dPk(−) a2 

(5.71) � � 
(0) a (0) b 

+ 
α0 

AA ∧ δξAA +Ω(−) b ∧ δξΩ(−) a4 

≡ −LξB , 

that vanishes identically when ξ = k by virtue of the definition of the KR momentum map 
(0) bEq. (5.66) and of δξAA = δξΩ = 0.(−) a 

The behavior of this variation under gauge transformations is far from obvious. A 
direct calculation gives 

� � 
(0) b

δgaugeδξB = 
α0 

dχA ∧ δξAA + dσab ∧ δξΩ(−) a , (5.72)
4 

with δξAA = −LξAA with the Lie-Yang-Mills covariant derivative given by Eq. (5.62) and 
(0) ab (0) abwith δξΩ = −LξΩ , with the Lie-Lorentz derivative given by Eq. (5.53). Therefore, (−) (−) 

although the δξB defined above is not gauge-invariant, δkB vanishes in a gauge-invariant 
way. 
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5.3.4 The Wald-Noether charge 

Now we consider the variation of the action S(1) given in Eq. (5.8) under the transforma-
tions δξ = −Lξ for all the fields, where Lξ is the gauge-covariant derivative which, for the 
Vielbein is given by [88] 

a a bLξe = Dξa + Pξ be , (5.73) 

for the torsionful spin connection in Eq. (5.53), for the YM fields in Eq. (5.62) and for the 
KR field in Eq. (5.71). 

From Eq. (5.13) 

Z n � � 
δξS

(1) E(1) a a b (1)
= − ∧ Dıξe + Pξ be + E ıξdφexp a φ 

� �� �(1) A + E(1) b (0) a a+ E ∧ ıξF A + DPξ a ∧ ıξR(−) b + D(−)P(−)ξ bA 

� � � 
(1) 

ıξH
(1) (0) a (0) b 

+ E exp B ∧ + 
α 
4 

0 
AA ∧ ıξF A +Ω(−) b ∧ ıξR(−) a 

� ���� � �α0 α0 
a (0) b a (0) b− Pξ AdA

A + P(−) ξ bdΩ(−) a +d Pξ − Pξ AA
A + P(−) ξ bΩ(−) a4 4 

o 
−dΘ(1)(ϕ, δξϕ) , 

(5.74) 
where Θ(1)(ϕ, δξϕ) is given by 

Θ(1)(ϕ, δξϕ) =e −2φ ? (e a ∧ e b) ∧ (ıξRab + DPξ ab) − 2ıade−2φ ? (e a ∧ e b) ∧ (Dıξeb + Pξ bce c) 

+ 8e −2φ ? dφıξdφ 

� � � 
ıξH

(1) (0) a (0) b− e −2φ ? H(1) ∧ + 
α0 

AA ∧ ıξF A +Ω(−) b ∧ ıξR(−) a4 

� ���� � �α0 α0 
a (0) b a (0) b− Pξ AdA

A + P(−) ξ bdΩ(−) a +d Pξ − Pξ AA
A + P(−) ξ bΩ(−) a4 4 

� �α0 � �−2φ A− e ?FA − 1 ? H(0) ∧ AA ∧ ıξF A + DPξ .22 

� � � �α0 
−2φ (0) b (0) b (0) a a− e ?R a − 1 ? H(0) ∧ Ω a ∧ ıξR b . 

2 (−) 2 (−) (−) b + D(−)P(−)ξ 

(5.75) 
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Integrating by parts and using the Noether identities Eqs. (5.22a), (5.22b), (5.22c), 
(5.23) and the Noether identity associated to the invariance under diffeomorphisms 

(−1)dDE(1) a (1) ∧ ıξH(1) (1)
ıξe + E + E ıξdφexp a exp B φ 

� � � � 
α0 α0 

(1) (0) 
E(1) b (0) (0) b (0) a 

+ E + E ∧ AA ∧ ıξF A + a + E ∧ Ω ∧ ıξR (5.76)
A exp B exp B (−) a (−) b4 4 

= 0 , 

we can see that the volume term in the variation of the action Eq. (5.74) reduces to another 
total derivative Z 

δξS
(1) = dΘ(1) 0(ϕ, δξϕ) , (5.77) 

with 

Θ(1) 0(ϕ, δξϕ) = Θ(1)(ϕ, δξϕ) 

+ (−1)dE(1) ıξe a + (−1)d−1E
(1) ∧ Pξexp a exp B 

� 
α0 � (5.78)

(1) (0) A+ (−1)d E + E ∧ AA PξA exp B4 

� � 
E(1) b (0) (0) b a+ (−1)d a + 

α0 
E ∧ Ω P(−)ξ b . exp B (−) a4 

The usual reasoning leads us to the off-shell identity 

dJ(1)[ξ] = 0 , (5.79) 

where 

J(1)[ξ] ≡ dΘ(1) 0(ϕ, δξϕ) + ıξL(1) , (5.80) 

and to the local existence of a (d − 2)-form Q(1)[ξ] such that J(1)[ξ] = dQ(1)[ξ]. 
A straightforward calculation leads to the fully gauge-invariant Wald-Noether charge h i 

Q(1)[ξ] =(−1)d ? (e a ∧ e b) e −2φPξ ab − 2ıade−2φξb 

h � �i 
a (0) b

+ (−1)d−1 α
0 
Pξ Ae −2φ ? F A + P(−)ξ b e −2φ ? R (5.81)

(−) a2 

� � 
− Pξ ∧ e −2φ ? H(1) , 
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which is one of the main results of this chapter. 

5.4 Restricted generalized zeroth laws 

One of the main ingredients in Wald’s approach to the first law of black hole mechanics 
is the zeroth law stating that κ is constant over the horizon [20]. Originally, this law was 
proved using the Einstein equations and the dominant energy condition (see, for instance, 
Ref. [124]) but a completely geometrical proof was presented in Ref. [125]. 

In presence of an electromagnetic field one also needs to use the generalized zeroth law 
that guarantees that the electrostatic potential is also constant over the whole horizon. 
There is no purely geometrical proof of this law, though, and the standard proof also 
makes use of the Einstein equations and of the dominant energy condition. In Ref. [74] 
we have explained how this proof can be extended to a theory containing an arbitrary 
number of Abelian vector fields and the KR field coupled to them via Chern-Simons terms. 
Essentially one gets a sum of non-negative terms containing the contribution of each field, 
and each of them has to vanish. Extending this proof to the non-Abelian case, as long 
as we restrict ourselves to a gauge group with definite positive Killing metric because one 

(0) 2 gets sums of non-negative terms. However, the R(−) term of our theory is of YM type, 
but with non-definite Killing metric because of the non-compactness of the Lorentz group 
and the proof cannot be extended to this case in a streightforward manner. 

It is, however, possible to proof the first law in bifurcate horizons if one can proof 
generalized zeroth laws for the matter fields restricted to the bifurcation sphere BH where 
the Killing vector associated to the event horizon, k, vanishes identically. These restricted 
generalized zeroth laws state the closedness of certain differential forms on BH. The 
definitions of the potentials as certain constants follow from them as we are going to 
explain. 

Assuming all the fields are regular over the horizon, it is clear that the inner products 
of their field strengths with k must vanish on BH: 

BH 
ıkdφ = 0 , (5.82a) 

BH 
ıkH = 0 , (5.82b) 

ıkF A BH 
= 0 , (5.82c) 

(0) a BH 
ıkR = 0 . (5.82d)(−) b 

(5.82e) 

Eq. (5.82a) is actually true over the whole spacetime, by assumption. From Eq. (5.82c) 
and the definition of the YM momentum map PkA we find that 

A BH DPk = 0 , (5.83) 

124 



Chapter 5. Wald entropy formula at first-order in α0 

which tells us that the horizontal YM momentum map PkA is, at the same time, a vertical 
Killing vector field on BH. This is what we need in order to have an associated conserved 
charge there (see the discussion in Section 5.3.2). 

aAnalogously, from Eq. (5.82d) and the definition of the momentum map P(−)k b 
Eq. (5.56) we get 

(0) a BH D = 0 , (5.84)(−)P(−)k b 

which tells us that the horizontal Lorentz momentum map PkA is, also, a vertical Killing 
vector field on BH. 

Observe that the last two equations have as consequence the existence of the gauge-
invariant 1-forms ΨPk and ΠPk defined by 

BH a (0) b
dΠPk = P(−)k bR(−) a , (5.85a) 

BH 
dΨPk = Pk AF A . (5.85b) 

The closedness of the right-hand sides of these equations on BH, which guarantee the local 
existence of ΨPk and ΠPk there are the restricted generalized zeroth laws for the YM and 
torsionful spin connecton fields. 

Finally, from Eq. (5.82b) and the definition of the KR momentum map Eq. (5.66) 
plus the above two equations that define ΨPk and ΠPk we get � � 

α0 BH 
d Pk − (ΨPk +ΠPk ) = 0 , (5.86)

2 

which is the restricted generalized zeroth law of the KR field. 

5.5 The first law 

Following Wald [28], we start by defining the pre-symplectic (d − 1)-form [27] 

ω(1)(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(1)(ϕ, δ2ϕ) − δ2Θ(1)(ϕ, δ1ϕ) , (5.87) 

and the symplectic form relative to the Cauchy surface Σ Z 
Ω(1)(ϕ, δ1ϕ, δ2ϕ) ≡ ω(1)(ϕ, δ1ϕ, δ2ϕ) . (5.88) 

Σ 

When ϕ is a solution of the equations of motion Eϕ = 0, δ1ϕ = δϕ is an arbitrary 
variation of the fields and δ2ϕ = δξϕ is their variation under diffeomorphisms [22] 

+ dıξΘ(1) 0 = δdQ(1)[ξ] + dıξΘ(1) 0ω(1)(ϕ, δϕ, δξϕ) = δJ(1) , (5.89) 

where, in our case, the Noether-Wald (d − 2)-form charge Q(1) is given by Eq. (5.81) and 
Θ(1) 0Θ0 is given in Eq. (5.78). Since, on-shell, Θ(1) = , we have that, if δϕ satisfies the 
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dδQ(1)linearized equations of motion, δdQ(1) = . Furthermore, if the parameter ξ = k 
generates a transformation that leaves invariant the field configuration, δkϕ = 0, 13 linearity 
implies that ω(1)(ϕ, δϕ, δkϕ) = 0, and 

� � 
δQ(1)[k] + ıkΘ(1) 0d = 0 . (5.90) 

Integrating this expression over a hypersurface Σ with boundary δΣ and using Stokes’ 
theorem we arrive at 

Z � � 
δQ(1)[k] + ıkΘ(1) 0 = 0 . (5.91) 

δΣ 

We consider field configurations that describe asymptotically flat, stationary, black-
hole spacetimes with bifurcate horizons H and the Killing vector k is the one whose Killing 
horizon is the black hole’s event horizon. k, then, will be given by a linear combination 
with constant coefficients Ωn of the timelike Killing vector associated to stationarity, tµ∂µ 
and the [1 (d − 1)] generators of inequivalent rotations in d spacetime dimensions φµn∂µ2 

kµ = tµ +Ωnφµ . (5.92)n 

The constant coefficients Ωn are the angular velocities of the horizon. 
The hypersurface Σ to be the space bounded by infinity and the bifurcation sphere 

BH on which k = 0, so δΣ has two disconnected pieces: a (d − 2)-sphere at infinity, Sd−2 ,∞ 
and the bifurcation sphere BH. Then, taking into account that k = 0 on BH, we obtain 
the relation 

Z Z � � 
Q(1)[k] = δQ(1)[k] + ıkΘ(1) 0δ . (5.93) 

Sd−2BH ∞ 

As explained in Ref. [22,52], the right-hand side can be identified with δM −ΩmδJn, 
where M is the total mass of the black-hole spacetime and Jn are the independent com-
ponents of the angular momentum.14 

BH Using the explicit form of Q(1)[k], Eq. (5.81), noticing that −2ıade
−2φkb = 0 and 

13Notice that our goal in Section 5.3.3 was, precisely, to construct variations of the fields δξ with that 
property. 

14When the spacetime has compact dimensions, the d-dimensional mass M is a combination of the 
lower-dimensional mass and Kaluza-Klein charges. The details depend on the compactification and will 
be studied elsewhere. 
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(d) 2 (d)restoring the overall factor gs (16πGN )
−1 , we find Z (d) 2 Z 

Q(1)[k] = 
gs −2φ ? (eδ 

(d) (−1)d e a ∧ e b)Pk ab 
BH 16πG BH 

N 

(d) 2 Z � � gs a (0) b 
+ (−1)d−1 α

0 
e −2φ ? R 

(d) P(−)k b (−) a216πG BH 
N 

(5.94) 
(d) 2 Z 
gs 

+ (−1)d−1 α
0 
Pk Ae −2φ ? F A 

(d) 216πG BH 
N 

(d) 2 Z � � gs− 
(d) Pk ∧ e −2φ ? H(1) . 

16πG BH 
N 

The right-hand side of this identity is expected to be of the form T δS +ΦδQ for some 
charges Q and potentials Φ. However, when we compare the third and fourth integrals in 
the right-hand side with the definitions of the YM and KR charges Eqs. (5.41) and (5.28) 
we see that some terms are missing in the integrand of the first and that, in the second, 
there is no closed or harmonic form in the integrand, since the horizontal KR momentum 
map is not necessarily closed on BH. We found a similar problem in Ref. [74] and the 
solution is essentially the same: add and subtract the same term in different integrals in 
order to complete the integrand of the definition of YM charge and in order to construct 
a 1-form which is closed in BH. 

The 1-form shich is closed on BH and which contains Pk follows from the restricted 
generalized zeroth law of the KR field, Eq. (5.86). We must add a term −α0 

ΨPk to the2 
fourth integral and substract the same term to the third, which now contains all the terms 
associated to the YM charge becuase of the restricted generalized zeroth law Eq. (5.83). 
However, Eq. (5.86) also tells us to add another term −α0 

ΠPk to the fourth integral and 2 
we can only compensate by subtracting it to the second. This completes the closed 1-form 
in the fourth integral and completes the integrand of the Lorentz charge according to 
Eq. (5.47) and thanks to the restricted generalized zeroth law Eq. (5.84). 

The result of these additions and subtractions is 
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Z (d) 2 Z 
Q(1)[k] = 

gs
δ 

(d) (−1)d e −2φ ? (e a ∧ e b)Pk ab 
BH 16πG BH 

N 

gs 
(d) 2 Z h � �i 

−2φ ? H(0)+ (−1)d−1 α
0 
e −2φ ? dΠPk + (−1)dΠPk ∧ e 

(d) 216πG BH 
N 

(d) 2 Z h � �i gs 
+ (−1)d−1 α

0 
e −2φ ? dΨPk + (−1)dΨPk ∧ e −2φ ? H(0) 

(d) 216πG BH 
N 

(d) 2 Z � � � � gs α0 
− 

(d) Pk − (ΨPk +ΠPk ) ∧ e −2φ ? H(1) . 
216πG BH 

N 
(5.95) 

where ΨPk and ΠPk satisfy Eqs. (5.85b) and (5.85a), respectively, whose integrability is 
guaranteed by the fact that the YM and Lorentz momentum maps are covariantly constant 
on BH (the restricted generalized zeroth laws). 

Now, let us assume that the particular field configuration under consideration admits 
Aa set of covariantly constant YM parameters on BH that we label with an index I, κI 

BH A BH DκA = 0 , ⇒ Pk = ΦI κA , (5.96)I I 

where the constants ΦI will be interpreted as the potentials associated to the YM charges 
QI computed with the parameter κIA Eq. (5.41) 

Z(d) 2 h � �i gs −2φ ? H(0)QI ≡ Q[κI ] = (−1)d−1 α
0 
e −2φ ? dΨI + (−1)dΨI ∧ e , (5.97)

(d) 216πG BH 
N 

where 

dΨI = −κI AF A . (5.98) 

As a result, the third line in Eq. (5.95) becomes ΦI δQI . 
Now, following Refs. [52, 131], as a consequence of the KR restricted generalized 

zeroth law Eq. (5.86), we can write (Hodge decomposition) 

α0 BH 
Pk − (ΨPk +ΠPk ) = de +ΦiΛh i , (5.99)

2 
where e is some function, the Λh i are the harmonic 1-forms of the bifurcation sphere and 
the Φi are constants that can be interpreted as the potentials associated to the KR charges 
Qi = Q(Λh i) Eq. (5.28) 

g
(d) 2 Z 
sQi = − e −2φ ? H , (5.100)

(d)
16πGN CΛh i 
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where CΛh i is the (d − 3)-cycle dual to the harmonic 1-form Λh i in BH. 
As a result, the fourth line in Eq. (5.95) becomes ΦiδQi and we are left with the 

abfirst two, which are linear in the Lorentz momentum map Pk , which, on BH, is given 
abby κnab , where n is the binormal to the horizon. The terms in those two lines must, 

therefore, be interpreted as those giving rise to the term T δS in the first law 

δM = T δS +ΦI δQI +ΦiδQi +ΩnδJn . (5.101) 

5.6 Wald entropy 

It follows from the results of the previous section that the entropy is given by 

Z �� � �(d) 2 
α0 

s −2φ (0) ab ∧ ?H(0)S = (−1)d g 
e ?(e a ∧ e b) + e −2φ ? R nab + (−1)d α

0 
Πn ,

(d) (−)2 28G BH 
N 

(5.102) 
where we have the defined the 1-form Πn (vertical Lorentz momentum map associated to 
the binormal) on the bifurcation sphere 

BH (0) abdΠn = R(−) nab . (5.103) 

This is the main result of this chapter, and the thesis as a whole, which we will 
discuss in the next section. It is worth stressing that the term that involves Πn, and 
which has been shown to given an important contribution to the entropy of well-known 
black-hole solutions Refs. [29, 30, 32–34] occurs in the entropy formula just to cancel an 
equivalent term that we had to add to get the correct definition of the KR charge and 
the associated potential. Without a detailed knowledge of the conserved charges, the 
restricted generalized zeroth laws and the potentials associated, the presence of that term 
in the entropy formula could not have been guessed. 

5.7 Discussion 

In this chapter we have derived an entropy formula for the black-hole solutions of the 
Heterotic Superstring effective action to first order in α0 using Wald’s formalism [27, 28] 
taking carefully into account all the symmetries of the theory. As a result, our entropy 
formula Eq. (5.102) is manifestly gauge invariant. In particular, it is manifestly invariant 
under local Lorentz transformations. 

It is interesting to compare this result with the one that would follow form the 
direct (and naive) application of the Iyer-Wald prescription [22]. The first two terms in 
Eq. (5.102) can be obtained from Eq. (5.8) by varying the Einstein-Hilbert term and the 
R2

(−) term with respect to the Riemann curvature tensor, but the third term cannot be 
obtained in that way from the H2 term. As stressed in Refs. [32–34], the variation of this 
term with respect to the Riemann tensor gives a term of the form 

� �α0 
−2φ (0) ab ∧ ?H(0)e Ω(−) nab , (5.104)

4 
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which is not Lorentz-covariant. The coefficient of this term differs from the last term in 
(0) abEq. (5.102) if we associate Πn to Ω(−) nab, which is the right thing to do as we are going 

to show. But this coefficient changes after dimensional reduction, as observed in Ref. [107]. 
The explicit calculation in Ref. [32] shows that the right coefficient is the one that arises 
after dimensional reduction,15 but, certainly, there are ambiguities in the way in which 
the Chern-Simons terms are defined in lower dimensions. 

BH It is interesting to observe that because Dnab = 0, � � 
BH (0) ab (0) a (0) cbdΠn = d Ω nab +Ω c ∧ Ω nab . (5.106)(−) (−) (−) 

For the non-extremal Reissner-Nordström black hole of Ref. [108], whose α0 correc-
tions were computed in Ref. [32], the second term vanishes identically in the tangent space 
basis used (see Appendix C). This shows that, in that basis, our entropy formula and the 
entropy formula obtained via the Iyer-Wald prescription (after dimensional reduction) give 
the same result. Of course, our formula is valid in any basis. 

Our entropy formula seems to differ from the entropy formula obtained in Ref. [31], 
but a detailed comparison is not possible since that formula contains undetermined pa-
rameters that guarantee its invariance under Lorentz transformations. In Ref. [31] it was 
argued that those undetermined parameters do not contribute to the entropy in certain 
cases but, without an explicit expression, it is difficult to understand why or when this 
may happen. Furthermore, as we have shown, the identification of the entropy formula 
can only be made after the first law of black hole mechanics has been proven and this re-
quires a careful identification of the conserved charges of the theory: some terms (the one 
involving Πn) occur in the entropy formula only because they are needed to compensate 
other terms that have to appear in the correct definition of the KR charge. This analysis 
was simply not carried out in Ref. [31]. 

Our entropy formula (the contribution due to the presence of Lorentz- or gravita-
tional Chern-Simons terms in H(1)) also differs from the one found in Ref. [129]. Ob-
serve that Eq. (40) in Ref. [129], similar to the terms contains in the formulae derived in 
Refs. [33, 34] and to Eq. (5.104) is not covariant. Thus, it may give the right result in 
certain basis, if at all.16 The problems in the derivation of Ref. [129] are having overlooked 
the KR conserved charge and the determination of the gauge parameters that generate 
symmetries of the complete field configuration. 

Finally, it is interesting to notice that the entropy formula looks like the charge 
associated to the Lorentz transformations generated by the binormal to the horizon. These 
transformations preserve the connections ω and Ω(0) on the bifurcation sphere, but they (−) 
do not preserve the Vielbein, as we assumed in Section 5.3.2 (Eq. (5.43)), which produces 
an additional term associated to the Einstein-Hilbert term. 

The main use of the entropy formula that we have found is to put in solid ground 

15The entropy calculated in this way satisfies the first law or, equivalently, the thermodynamic relation 

∂S 
=

1 
. (5.105)

∂M T 

16the non-covariance of Tachikawa’s entropy formula was observed in Ref. [130], where an alternative 
method was devised to deal with this problem. Nevertheless, the formula obtained in Ref. [130] reduces to 
Tachikawa’s in BH, apparently losing the covariance, while ours does not. 
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the calculations of the macroscopic entropies of α0-corrected black holes, an ineluctable 
condition for a fair comparison with the microscopic ones. More α0-corrected solutions 
will be available to this end [145]. As mentioned in the introduction, another necessary 
ingredient for this comparison is the correct identification of the relation between the 
charges of the black hole and the branes in the string background. These results and those 
of our previous work [74] single out a very precise definition of the conserved charges, 
which turn out to be of Page type, conserved and gauge-invariant under the assumptions 
made. This fact should shed light on this problem and we intend to pursue this line of 
research in future work. 
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6 
Conclusions 

The main objective of this thesis has been better our understanding of black hole entropy in 
theories beyond General Relativity, specifically in the case of the heterotic string effective 
action up to first order in α0 . 

The first part of the thesis focused on dimensionally reducing the heterotic string 
theory up to α0 using the formulation based on the supersymmetry completion of the 
Lorentz Chern-Simons terms that occur in the Kalb-Ramond field strength. We have found 
a transformation Z2 of the fields left invariant by the action dimensionally reduced to first 
order in α0 and that generalize and, in the limit α0 → 0, reduces to the transformations 
of Standard T duality (Buscher’s rules [82, 83, 109]), which exchange the Kaluza-Klein 
vectors and winding vectors and invert the Kaluza-Klein scalar. These transformations 
had been proposed by [85] but here we give the explicit form of the action and prove its 
invariance. 

Then, we used the dimensionally-reduced action to find, following the Iyer-Wald 
prescription, an entropy formula for stringy black holes that can be obtained from a 10-
dimensional solution by a single non-trivial compactification on a circle, supplemented by a 
trivial compactification on a torus, which we applied to the α0-corrected heterotic version 
of the Strominger-Vafa black hole, obtaining an entropy that matched the microscopic 
entropy result previously calculated. An important point is that the entropy calculated, 
apparently corrected, differs by a factor of 2 in a term of the one obtained by applying 
the prescription from Iyer-Wald to 10-dimensional action. This factor of 2 is necessary to 
obtain an entropy that satisfies the thermodynamic relation, 

∂S 
=

1 
, (6.1)

∂M T 

as had been checked in [32]. Besides this problem, the value of the entropy depends on the 
choice of base of 1-forms in cotangent space. Removing these ambiguities were the main 
motivations for the rest of the thesis. 

In the second section, we focused on the main goal of this thesis: the proof of the first 
law and calculate the Iyer-Wald entropy for the Heterotic string action. This was done in 
a piecewise fashion, focusing first on a toy model of the Reissner-Nordström-Tangherlini 
black hole in the Einstein-Maxwell d-dimensional theory, and then the effective theory of 
the compactified heterotic superstring to zeroth-order in α0 on a torus, before moving to 
the much more complex case we were interested in. 

To deal with fields with gauge freedoms, we define the gauge covariant Lie derivatives 
as combinations of the standard Lie derivatives and compensating gauge transformations 
built with the momentum maps. This has allowed us demonstrate the first laws of black 
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hole mechanics, including terms of work that do not appear in the treatment of Iyer-Wald, 
and identify a Wald entropy formula manifestly invariant under gauge transformations 
(including local Lorentz transformations). 

To reach these results, it was necessary to develop a generalization valid for differ-
ential forms of order greater than 1 for the generalized zeroth law, valid for the Maxwell 
field, which states that the electrostatic potential is constant over the horizon. This gen-
eralization states that certain differential forms that generalize the electrostatic potential 
are closed. These differential forms are closely related (or coincide) with the momentum 
maps. However, we have only been able to test them on bifurcation surfaces, so we refer 
to them as generalized zero laws constrained (to the bifurcation surface). The restriction 
did not prevent reaching the final results. We have studied how these laws hold in the 
non-trivial case of supergravity black rings pure N = 1, d = 5. 

Comparing our entropy formula with the one we obtained in our first chapter from 
the Iyer-Wald prescription we have seen that, in the chosen 1-form basis, our formula gives 
the same result as the Iyer-Wald prescription, except for the factor of 2 that the latter 
only includes if we work with the action compactified. Our formula therefore leads to 
entropy macroscopic that coincide with the microscopic entropy and that they satisfy the 
thermodynamic relation Eq. (6.1). 

Comparing the terms of work that appear in the first law that we have obtained 
with those appearing in, for example, [142], we see that our treatment recovers the work 
terms proportional to the variations of electric-type charges, but not those proportional 
to the variations of the magnetic charges, the variations of the moduli or the cosmological 
constant [146] [147], because in the theories we consider there is no gauge symmetries 
associated with them. These absences can be considered as an inadequacy of the methods 
proposed in this thesis. Nevertheless, in two recent papers [148] [149], it has been shown 
that the techniques developed in this thesis can be used to find the work terms proportional 
to the variations of the cosmological constant if one describes is as the electric charge of 
a (d − 1)-form potential and the terms proportional to the magnetic charges in Smarr 
formulae. Although more work is needed to understand and repair the absence of the 
terms of work associated with the variations of the magnetic charges and those of the 
moduli in the first law, we believe that the ideas and methods presented in this thesis lay 
a foundation on which fund the necessary advances to solve these problems. 
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A 
Relationship between 10 and 9 dimensional fields 

In this appendix, we demonstrate how the 10 dimensional fields in our heterotic theory, 
introduced in Chapter 2, can be decomposed into 9 dimensional fields. Section A.1 corre-
sponds to the zeroth order case, while section A.2 corresponds to the O(α0) case. 

A.1 Relation between 10- and 9-dimensional fields at zeroth 
order in α0 

At zeroth order in α0 , the 10-dimensional fields can be expressed in terms of the 9-
dimensional ones as follows: 

ĝµν = gµν − k2AµAν , 

ĝµz = −k2Aµ , 

ĝzz = −k2 , 

(A.1) 
ˆ = B(0) B(0)Bµν µν − A[µ ν] , 

ˆ = B(0)Bµz µ , 

φ̂ = φ + 12 log k . 

The inverse relations are 
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gµν = ĝµν − ĝzµĝzν /ĝzz , 

Aµ = ĝµz/ĝzz , 

k = |ĝzz|1/2 , 

(A.2) 
B(0) ˆ ˆ

µν = Bµν + ĝz[µBν]z/ĝzz , 

B(0) ˆ 
µ = Bµz , 

φ̂ − 1φ = log (−ĝzz) .4 

A.2 Relation between 10- and 9-dimensional fields at O(α0) 

At first order in α0, the 10-dimensional fields can be expressed in terms of the 9-dimensional 
ones as follows: 

ĝµν = gµν − k2AµAν , 

ĝµz = −k2Aµ , 

ĝzz = −k2 , 

� ���α0 
= B(1) B(1) 1 (0) abK(+)B̂µν µν − A[µ ν] + k ϕAA

A 
|ν] + 2 Ω(−) |ν] ab − K(−) 

|ν] 
a∂a log k ,

2 

� �α0 
ˆ = B(1) 1 (0) abK(+)Bµz µ + k ϕAA

A
µ + Ω ab − K(−) 

µ
a∂a log k ,2 (−) µ4 

ˆ 1φ = φ + 2 log k , 

ÂAµ = AAµ + kϕAAµ , 

ÂA 
z = kϕA . 

(A.3) 
The inverse relations are 
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gµν = ĝµν − ĝzµĝzν /ĝzz , 

Aµ = ĝµz/ĝzz , 

k = |ĝzz|1/2 , 

� � �� 
B(1) ˆ ˆ α0 

ÂA ˆ (0) â ˆ (0) b̂ = + Ω Ω /ˆµν Bµν + ĝz[µ B|ν] z |ν]AAz + ˆ 
(−) |ν] b̂ (−) z â gzz ,

4 

h 
B(1) = ˆ − 

α0 
ÂA ˆ Ω

(0) â Ω̂
(0) b̂ (A.4)

µ Bµ z µAAz + ˆ 
(−) µ b̂ (−) z â

4 

� � i 
(0) â (0) b̂−ĝµz Â

A
zÂAz + Ω̂ 

ˆΩ̂ 
â /ĝzz ,(−) z b (−) z 

φ = φ̂ − 1 log (−ĝzz) ,4 

AA ÂA − ÂA 
µ = µ z ĝµz/ĝzz , 

ϕA = ÂAz/(−ĝzz)1/2 . 
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B 
A truncation of the d = 5 theory to a 

N = 1, d = 5 supergravity 

A very useful, almost algorithmic, procedure has been developed in Refs. [150–152] to 
construct supersymmetric solutions (black holes and black rings, in particular) of N = 
1, d = 5 supergravity coupled to vector supermultiplets.1 We can use this procedure in 
the context of the Heterotic Superstring Effective action compactified on a T5 if we find 
a consistent truncation that produces a model N = 1, d = 5 supergravity. A very simple 
truncation with this property has been used, for instance, in Ref. [29]. It can be described 
more conveniently as a trivial dimensional reduction on a T4 (with all the fields that arise 
in the reduction set to their vacuum values) followed by a non-trivial compactification 
on a circle. The only fields that survive are the KR 2-form (which can be dualized into 
a vector field), the KK and winding vectors and the dilaton and KK scalars. This field 
content fits into N = 1, d = 5 supergravity (metric and graviphoton vector field) coupled 
to two vector multiplets (one vector and one real scalar field each). 

In order to profit from the solution-generating techniques developed for N = 1, d = 5 
supergravity theories, we need to rewrite this truncated version of the Heterotic Super-
string effective action in the appropriate form: first, we rewrite the action in the Einstein 
frame and then we will dualize the KR field into a vector. After that, we will identify the 
scalar manifold etc. 

The action of the truncated theory is 

(5) 2 Z h gs −2φS[e a, B, φ, k, A, B] = 
(5) e ?(e a ∧ e b) ∧ Rab − 4dφ ∧ ?dφ 
N16πG (B.1) �

1 1+ k−2dk ∧ ?dk − 1 k2F ∧ ?F − 1 k−2G ∧ ?G + H ∧ ?H ,2 2 2 2 

where H is simply 

H = dB − 1 A ∧ G − 1 B ∧ F . (B.2)2 2 

a aThe string-frame Vielbein e is related to the (modified) Einstein-frame Vielbein ẽ 
by 

1These are supergravities invariant under 8 independent supersymmetry transformations, which are 
combined in a minimal 5-dimensional spinor. Often, they are referred to as N = 2, d = 5 supergravities. 

139 



Appendix B. A truncation of the d = 5 theory to a N = 1, d = 5 supergravity 

a 2(φ−φ∞)/3˜a φ∞e = e e , gs = e , (B.3) 

and the action in the (modified) Einstein frame takes the form (removing the tildes for 
simplicity) 

Z h 
a ∧ e 4 1S[e a, B, φ, k, A, B] = 

1 
?(e b) ∧ Rab + dφ ∧ ?dφ + k−2dk ∧ ?dk 

(5) 3 2 
16πGN 

i 
−1 k2 −4φ/3F ∧ ?F − 1 k−2 −4φ/3G ∧ ?G + 1 −8φ/3H ∧ ?He e e .2 2 2 

(B.4) 
The next step is the dualization of the KR 2-form. As usual, we consider the above 

action as a functional of the 3-form field strength H and add a Lagrange-multiplier term 
to enforce its Bianchi identity dH = −1 FI ∧ F I 

2 

Z h 
4 1S[e a, H, φ, k, A, B] = 

1 
?(e a ∧ e dφ ∧ ?dφ + k−2dk ∧ ?dk 

(5) 
b) ∧ Rab + 3 2 

16πGN 

(B.5)
− 1 k2 −4φ/3F ∧ ?F − 1 k−2 −4φ/3G ∧ ?G + 1 −8φ/3H ∧ ?He e e2 2 2 

−C ∧ (dH + F ∧ G)] , 

where C is the 1-form dual to the 2-form B. Varying this action with respect to H, we 
get 

δS 
= e −8φ/3 ? H − dC = 0 , (B.6)

δH 

which is solved by 

H = e 8φ/3 ? K , K ≡ dC . (B.7) 

Substituting this solution into the action Eq. (B.5) we find the dual action 

Z h 
4 1S[e a, φ, k, A, B, C] = 

1 
?(e a ∧ e b) ∧ Rab + dφ ∧ ?dφ + k−2dk ∧ ?dk 

(5) 3 2 
16πGN 

(B.8)
− 1 k2 −4φ/3F ∧ ?F − 1 k−2 −4φ/3G ∧ ?G − 1 8φ/3K ∧ ?Ke e e2 2 2 

−F ∧ G ∧ C] . 

The final step consists in finding the relation between the fields of this action and 
those of a N = 1, d = 5 theory with two vector supermultiplets written in the standard 

140 



Appendix B. A truncation of the d = 5 theory to a N = 1, d = 5 supergravity 

form2 

Z h1 1S[e a, φx, AI ] = ?(e a ∧ e b) ∧ Rab + gxydφx ∧ ?dφy − 1 aIJ F I ∧ ?F J 
(5) 2 2 

16πGN 
(B.9) i 

+ 
33 
1 
/2 CIJK F I ∧ F J ∧ AK , 

where the indices I, J, . . . = 0, 1, 2 and the indices x, y, . . . = 1, 2. The metrics gxy(φ), aIJ (φ) 
are defined in terms of the symmetric, constant tensor CIJK which fully characterizes the 
theory and the real special geometry of the scalar manifold as follows: we start by defining 
3 combinations of the 2 scalars hI (φ) that satisfy the constraint 

CIJK h
I (φ)hJ (φ)hK (φ) = 1 . (B.10) 

Next, we define 

hI ≡ CIJK h
J hK , ⇒ hI hI = 1, (B.11) 

and 

√ √ ∂hI √ 
hI ≡ − 3hI ,x ≡ − 3 , hIx ≡ + 3hI,x, ⇒ hI h

I = hI hIx = 0. (B.12)x x∂φx 

Then, aIJ is defined implicitly by the relations 

hI = aIJ h
I , hIx = aIJ h

J
x. (B.13) 

It can be checked that 

aIJ = −2CIJK h
K + 3hI hJ . (B.14) 

The metric of the scalar manifold gxy(φ), which we will use to raise and lower x, y 
indices is (proportional to) the pullback of aIJ 

gxy ≡ aIJ h
I
xh

J
y = −2CIJK h

I hJ hK . (B.15)x y 

If we make the identifications 

√ √ √ 
A0 = − 3C , A1 = − 3A , A2 = − 3B , (B.16) 

we find that 

8φ/3/3 , −4φ/3/3 , = k−2 −4φ/3/3 .C012 = 1/6 , a00 = e a11 = k2 e a22 e (B.17) 
2Here we are using the notation and conventions of Ref. [153] with minor changes explained in Ap-

pendix A of Ref. [154]. See also Ref. [42]. 
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Since, for this CIJK , the only non-vanishing components of aIJ are the diagonal 
ones with aII = 3(hI )2 we find that 

4φ/3/3 , = ke−2φ/3/3 , = k−1 −2φ/3/3 ,h0 = e h1 h2 e (B.18) 

which, in its turn, implies that 

h0 −4φ/3 h1 = k−1 2φ/3 h2 = ke2φ/3 = e , e , . (B.19) 

Finally, the non-vanishing components of the scalar metric are 

gφφ = 8/3 , gkk = k−2 . (B.20) 

The equations of motion of a general N = 1, d = 5 theory are (up to a global factor 
of (16πG(5)

)−1 that we omit for simplicity) N 

Ea = ıa ? (e c ∧ e d) ∧ Rcd − 1 gxy (ıadφ
x ? dφy + dφx ∧ ıa ? dφy)2 

� �
1+ 2 aIJ ıaF I ∧ ?F J − F I ∧ ıa ? F J , (B.21a) 

� 
1 ∂yEx = −gxy d ? dφy + Γzw 

ydφz ∧ ?dφw + aIJ F I ∧ ?F J , (B.21b)2 

� � 
1EI = −d aIJ ? F J + √ CIJK F J ∧ F K . (B.21c)
3 

In this action, φ stands, actually, for φ−φ∞. In other words: the field φ is constrained 
to vanish at infinity. 

For the particular model that we have obtained as a truncation of the compacti-
fied Heterotic Superstring effective action in d = 5 dimensions, these equations take the 
particular form 
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Ea = ıa ? (e c ∧ e d) ∧ Rcd − 43 (ıadφ ? dφ + dφ ∧ ıa ? dφ) 

� � 
− 1 k−2 (ıa 

8φ/3 
2 dk ? dk + dk ∧ ıa ? dk) + 6

1 e ıaF 0 ∧ ?F 0 − F 0 ∧ ıa ? F 0 

� � � �
1 −4φ/3k2 1 −4φ/3k−2+ e ıaF 1 ∧ ?F 1 − F 1 ∧ ıa ? F 1 + e ıaF 2 ∧ ?F 2 − F 2 ∧ ıa ? F 2 ,6 6 

(B.22a) 

n o 
= −8 1 8φ/3F 0 ∧ ?F 0 − 1 −4φ/3k2F 1 ∧ ?F 1 − 1 −4φ/3k−2F 2 ∧ ?F 2d ? dφ + e e eEφ 3 6 12 12 , 

(B.22b) 

n o 
Ek = −k−2 d ? dk − k−1dk ∧ ?k + e −4φ/3k3F 1 ∧ ?F 1 − k−1 e −4φ/3F 2 ∧ ?F 2 , (B.22c) 

� � 
E0 = −3

1 d e 8φ/3 ? F 0 +
33 
1 
/2 F 1 ∧ F 2 , (B.22d) 

� � 
E1 = −1 d e −4φ/3k2 ? F 1 +

1 
F 0 ∧ F 2 , (B.22e)3 33/2 

� � 
E2 = −3

1 d e −4φ/3k−2 ? F 2 +
33 
1 
/2 F 0 ∧ F 1 . (B.22f) 

B.1 Further truncation to pure N = 1, d = 5 supergravity 

We can truncate this theory further, to minimal (pure) supergravity as follows: if the two 
scalars are constant, taking into account that for φ this constant value must be φ = 0, (we 
call k∞ the constant value of k) their equations become the constraints 

k−20 = F 0 ∧ ?F 0 − 1 k2 
∞ F 2 ∧ ?F 2 (B.23a)∞F 1 ∧ ?F 1 − 1 ,2 2 

0 = k3 
∞ F 2 ∧ ?F 2 (B.23b)∞F 1 ∧ ?F 1 − k−1 , 

whose simplest solution is this relation between vector field strengths 

F 0 = k−1 = k∞F 1 
∞ F 2 ≡ F . (B.24) 

Substituting this solution into the Einstein and vector equations we get only these two 
independent equations 
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d) ∧ Rcd +
1 
2 (ıaF ∧ ?F − F ∧ ıa ? F ) (B.25a)c ∧ eEa = ıa ? (e 

1 
F ∧ F , (B.25b)2 

3E = −1 
3− d ? F + 

33/2 

which follow from the action of minimal d = 5 supergravity [127] 

Z h i1 
?(e a ∧ e b) ∧ Rab − 1 

2F ∧ ?F + 
3 

1 
6 
√ F ∧ F ∧ AS[e a, A] = . (B.26)(5)

16πGN 

The truncation procedure we have followed to arrive to this action starting from 
the 10-dimensional Heterotic Superstring effective action can be easily reversed to embed 
solutions of pure N = 1, d = 5 supergravity into the 10-dimensional Heterotic Superstring 
effective theory. In particular, we apply this recipe to the charged, non-extremal, black 
ring solution of Ref. [140] in Section 4.6. 
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C 
Resumen 

La termodinámica de los agujeros negros es probablemente uno de los campos de investi-
gación más activos de la Física Teórica. Interconecta áreas de la Física tan aparentemente 
dispares como la Gravedad, la Teoría Cuántica de Campos y la Teoría de la Información, 
proporcionando una visión profunda de todas ellas. Si bien inicialmente solo era válida 
para la Relatividad General, Wald y sus colaboradores desarrollaron un nuevo enfoque 
para demostrar la primera ley de la mecánica de los agujeros negros en teorías generales 
invariantes bajo difeomorfismos más generales que la Relatividad General. Como sub-
producto, este enfoque condujo a la identificación de una expresión que juega el papel 
de entropía (entropía de Wald) en la primera ley en teorías más allá de la Relatividad 
General. 

Sin embargo, las primeras leyes y las fórmulas de entropía derivadas en la liter-
atura con este formalismo (la prescripción de Iyer-Wald, en concreto) presentan graves 
deficiencias en ciertas teorías de cuerdas, como la falta de términos de trabajo en las 
primeras leyes y la falta de invariancia de gauge de la fórmula de entropía. Esto impide 
una comparación justa con la entropía microscópica calculada utilizando otras técnicas 
(correspondencia AdS/CFT, etc.). El objetivo principal de esta tesis es identificar las 
raíces de estos problemas y solucionarlos. Como veremos, la raíz de estos problemas es 
el tratamiento inadecuado de los campos que exhiben algún tipo de libertad de gauge. 
Estos son, de hecho, todos los campos excepto los escalares y la métrica (si no se usa el 
formalismo de tétradas). 

Esta tésis está dividida en dos partes. En la primera sección se realiza la compact-
ificación de la acción efectiva de la cuerda heterótica en S1 a primer orden en α0 , lo que 
nos permitirá volver a calcular las reglas de Buscher y demostrar que es invariante bajo 
T dualidad. Luego usaremos la fórmula de Iyer-Wald en la acción del modelo dimension-
almente reducido para derivar una fórmula de entropía que se puede aplicar a soluciones 
de agujeros negros que pueden ser obtenidos por una sola compactifición no trivial en un 
círculo y discutiremos su invariancia bajo las transformaciones de T dualidad corregidas 
por α0 . En concreto, lo aplicaremos al agujero negro extremo de Strominger-Vafa. De-
mostraremos que, además de la falta de invariancia de gauge, existe una ambigüedad en 
la aplicación de la fórmula, ya que al aplicarla a d = 10 y d = 5 produce dos resultados 
diferentes que difieren por un factor de 2. 

Como se mencionó anteriormente, la fórmula de Iyer-Wald no se puede aplicar sin 
ambigüedades en el caso de la cuerda heterótica, ya que una de las suposiciones principales 
en su derivación era que todos los campos se comportaban como tensores y todos los 
campos, excepto el métrico y el escalar, poseen libertades de gauge y sus transformaciones 
bajo difeomorfismos siempre están acoplados a transformaciones de gauge. Esto sirve 
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de motivación para la segunda sección de la tesis en la que probamos la primera ley de 
la termodinámica de agujeros negros de una manera invariante de gauge, introduciendo 
transformaciones bajo difeomorfismos covariantes de gauge (derivadas de Lie covariantes 
de gauge). La construcción de estas transformaciones implica la definición de momentum 
maps asociados a los campos y a los vectores que generan sus simetrías. Estos objetos 
juegan el papel de potenciales termodinámicos generalizados en la primera ley y satisfacen 
las “leyes cero generalizadas restringidas”. 

Después de haber puesto a prueba nuestras ideas sobre el agujero negro Reissner-
Nordström-Tangherlini en el contexto de la teoría de Einstein-Maxwell d-dimensional, nos 
centramos en el caso de la cuerda heterótica. Inicialmente, examinamos el caso de la teoría 
efectiva de la cuerda heterótica hasta orden cero en α0 compactificada sobre un toro. Esta 
teoría es interesante debido a las soluciones de agujeros negros que admite, y debido a los 
términos abelianos de Chern-Simons presentes en la intensidades de campo de la 3 forma 
de Kalb-Ramond. La presencia de esos términos induce las llamadas transformaciones de 
gauge de Nicolai-Townsend de la 2-forma de Kalb-Ramond. Estos términos y transfor-
maciones de gauge aparecen en la teoría de 10 dimensiones a primer orden en α0 de una 
manera mucho más complicada (no-abeliana, gravitacional) y este modelo puede usarse 
como un modelo de juguete para poner a prueba nuestras ideas. Así, explicamos cómo 
hay que tratar todas estas simetrías de gauge y derivamos la primera ley en términos de 
cantidades manifiestamente invariantes de gauge. Explícitamente, demostraremos esto en 
el caso de una solución de anillo negro cargada no-extrema de supergravedad pura N = 
1, d = 5 que se puede ver tambi’en como solución de la teoría efectiva de supercuerda 
heterótica. 

En el capítulo final, llegamos a nuestro resultado principal, basado en el trabajo 
de los capítulos anteriores. En él demostramos la primera ley de la mecánica de los 
agujeros negros en el contexto de la acción efectiva de la supercuerda heterótica a primer 
orden en α0 utilizando el formalismo de Wald, teniendo en cuenta correctamente todas 
las simetrías de la teoría. Esto requiere un cuidado adicional debido a la presencia de 
los términos no-abelianos de Lorentz y Yang-Mills Chern-Simons que se encuentran en 
la intensidad de campo de Kalb-Ramond. Como resultado, obtenemos una fórmula de 
entropía manifiestamente invariante de gauge (incluyendo transformaciones de Lorentz 
locales) en la que todos los términos puede calcularse explícitamente. Una fórmula de 
entropía con estas propiedades permite cálculos inambiguos de entropías de agujeros negros 
macroscópicos de primer orden en α0 que pueden usarse de forma fiable en una comparación 
con los microscópicos. Tal fórmula aún faltaba en la literatura. 
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El principal objetivo de esta tesis ha sido mejorar nuestra comprensión de la entropía de 
los agujeros negros en teorías más allá de la Relatividad General y, en particular, en el 
caso de la acción efectiva de la supercuerda heterótica a primer orden en α0 . 

La primera parte de la tesis se centró en reducir dimensionalmente la acción de 
la teoría de la supercuerda heterótica a primer orden en α0 usando la formulación de 
Bersghoeff-de Roo basada en la supersimetrización de los términos de Lorentz Chern-
Simons presentes en la intensidad de campo de Kalb-Ramond. Hemos encontrado una 
transformación Z2 de los campos que deja invariante la acción dimensionalmente reducida a 
primer orden en α0 y que generalizan y en el límite α0 → 0 se reducen a las transformaciones 
de T dualidad estándar (reglas de Buscher [82, 83, 109]) que intercambian los vectores de 
Kaluza-Klein y winding e invierten el escalar de Kaluza-Klein. Estas transformaciones 
habían sido propuestas por [85] pero aquí nosotros damos la forma explícita de la acción 
y demostramos su invariancia. 

Después, usamos la acción dimensionalmente reducida obtenida anteriormente para 
encontrar, siguiendo la prescripción de Iyer-Wald, una fórmula de entropía para aquellos 
agujeros negros que se pueden obtener a partir de una solución 10-dimensional medi-
ante una sola compactación no trivial en un círculo, complementada mediante una com-
pactación trivial sobre un toro. Aplicando esta fórmula a la versión heterótica con cor-
recciones de primer orden en α0 del agujero negro de Strominger-Vafa obtuvimos una 
entropía que coincidía con el resultado de entropía microscópica calculado en la literatura. 
Un punto importante es que la entropía así calculada, aparentemente correcta, difiere por 
un factor de 2 en un término de la que se obtiene al aplicar la prescripción de Iyer-Wald 
a la acción 10-dimensional. Que este factor de 2 es necesario para obtener una entropía 
que satisfaga la relación termodinámica 

∂S 
=

1 
, (D.1)

∂M T 

había sido comprobado en [32]. Además de este problema, el valor de la entropía depende 
de la elección de base de 1-formas en el espacio cotangente. Eliminar estas ambigüedades 
fue la motivación principal del resto de la tesis. 

En la segunda parte, nos centramos en el objetivo principal de esta tesis: la de-
mostración de la primera ley y el cálculo de la entropía de Wald en la teoría efectiva de la 
supercuerda heterótica a primer orden en α0 . Esto se hizo por partes, tratando primero 
un caso muy simple: el agujero negro de Reissner-Nordström-Tangherlini en la teoría de 
Einstein-Maxwell d-dimensional y luego la teoría efectiva de la supercuerda heterótica 
compactificada en un toro a orden cero en α0 antes de pasar al caso que nos interesaba, 
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mucho más complejo. 
Para lidiar con los campos con libertades gauge definimos las derivadas de Lie covari-

antes de gauge como combinaciones de las derivadas de Lie estándar y transformaciones 
de gauge compensatorias construidas con los momentum maps. Esto nos ha permitido 
demostrar las primeras leyes de la mecánica de los agujeros negros incluyendo términos 
de trabajo que no aparecen en el tratamiento de Iyer-Wald e identificar una fórmula de 
entropía de Wald manifiestamente invariante bajo transformaciones de gauge (incluyendo 
las transformaciones Lorentz locales). 

Para llegar a estos resultados fue necesario elaborar una generalización válida para 
formas diferenciales de orden superior a 1 de la ley cero generalizada, válida para el campo 
de Maxwell, que establece que el potencial electrostático es constante sobre el horizonte. 
Esta generalización establece que ciertas formas diferenciales que generalizan el potencial 
electrostático son cerradas. Estas formas diferenciales están estrechamente relacionadas 
(o coinciden) con los momentum maps. Sin embargo, sólo hemos podido probarlas en las 
superficies de bifurcación, por lo que nos referimos a ellas como leyes cero generalizadas 
restringidas (a la superficie de bifurcación). La restricción no nos ha impedido llegar a los 
resultados finales. Hemos estudiado cómo estas leyes se cumplen en el caso no trivial de 
los anillos negros de supergravedad pura N = 1, d = 5. 

Al comparar nuestra fórmula de entropía con la que obtuvimos en nuestro primer 
artículo a partir de la prescripción de Iyer-Wald hemos visto que, en la base de 1-formas 
elegida, nuestra fórmula da el mismo resultado que la prescripción de Iyer-Wald, excepto 
por el factor de 2 que esta última sólo incluye si trabajamos con la acción compactificada. 
Nuestra fórmula, por lo tanto, lleva a entropías macroscópicas que coinciden con la entropía 
microscópica y que satisfacen la relación termodinámica Eq. (D.1). 

Al comparar los términos de trabajo que aparecen en la primera ley que hemos 
obtenido con los que aparecen, por ejemplo, en [142], vemos que en la nuestra aparecen 
los términos proporcionales a las variaciones de las cargas de tipo eléctrico, pero no los 
proporcionales a las variaciones de cargas de tipo magnético ni los proporcionales a las 
variaciones de los moduli o a la constante cosmológica [146,147], debido a que en la teorías 
que consideramos no hay simetrías de gauge asociadas a ellos. Estas ausencias pueden 
considerarse como una insuficiencia de los métodos propuestos en esta tesis. Sin embargo, 
en dos trabajos recientes [148,149], se ha demostrado que las técnicas desarrolladas en esta 
tesis pueden usarse para encontrar el término de trabajo proporcional a las variaciones de 
la constante cosmológica si ésta se describe como la carga eléctrica de una (d − 1)-forma y 
que los términos proporcionales a las cargas magnéticas sí que aparecen de forma natural 
en las fórmulas de Smarr. Aunque se necesita más trabajo para comprender y reparar la 
ausencia de los términos de trabajo asociados a las variaciones de las cargas magnéticas y 
las de los moduli en la primera ley, creemos que las ideas y métodos presentados en esta 
tesis sientan una base sobre la que se pueden fundar los avances necesarios para resolver 
estos problemas. 

148 



Bibliography 

[1] LIGO Scientific Collaboration and Virgo Collaboration collaboration, 
B. Abbott et al., Observation of gravitational waves from a binary black hole 
merger, Phys. Rev. Lett. 116 (Feb, 2016) 061102. 

[2] LIGO Scientific, Virgo collaboration, B. Abbott et al., Tests of general 
relativity with GW150914, Phys. Rev. Lett. 116 (2016) 221101, [1602.03841]. 

[3] N. Yunes, K. Yagi and F. Pretorius, Theoretical Physics Implications of the Binary 
Black-Hole Mergers GW150914 and GW151226, Phys. Rev. D 94 (2016) 084002, 
[1603.08955]. 

[4] LIGO Scientific, Virgo collaboration, B. Abbott et al., GW170817: 
Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. 
Rev. Lett. 119 (2017) 161101, [1710.05832]. 

[5] E. Berti, K. Yagi and N. Yunes, Extreme Gravity Tests with Gravitational Waves 
from Compact Binary Coalescences: (I) Inspiral-Merger, Gen. Rel. Grav. 50 
(2018) 46, [1801.03208]. 

[6] E. Berti, K. Yagi, H. Yang and N. Yunes, Extreme Gravity Tests with Gravitational 
Waves from Compact Binary Coalescences: (II) Ringdown, Gen. Rel. Grav. 50 
(2018) 49, [1801.03587]. 

[7] N. Sennett, R. Brito, A. Buonanno, V. Gorbenko and L. Senatore, 
Gravitational-Wave Constraints on an Effective–Field-Theory Extension of General 
Relativity, 1912.09917. 

[8] Z. Carson and K. Yagi, Probing beyond-Kerr spacetimes with inspiral-ringdown 
corrections to gravitational waves, Phys. Rev. D 101 (2020) 084050, [2003.02374]. 

[9] Z. Carson and K. Yagi, Probing Einstein-dilaton Gauss-Bonnet Gravity with the 
inspiral and ringdown of gravitational waves, Phys. Rev. D 101 (2020) 104030, 
[2003.00286]. 

[10] M. Okounkova, Numerical relativity simulation of GW150914 in Einstein dilaton 
Gauss-Bonnet gravity, 2001.03571. 

[11] S. Endlich, V. Gorbenko, J. Huang and L. Senatore, An effective formalism for 
testing extensions to General Relativity with gravitational waves, JHEP 09 (2017) 
122, [1704.01590]. 

[12] R. Penrose, Structure of space-time, in Battelle rencontres - 1967 lectures in 
mathematics and physics: Seattle, WA, USA, 16 - 31 July 1967, pp. 121–235, 1968. 

[13] S. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 
152–166. 

[14] S. Hawking and G. Ellis, The Large Scale Structure of Space-Time. Cambridge 
Monographs on Mathematical Physics. Cambridge University Press, 2, 2011, 
10.1017/CBO9780511524646. 

149 

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.221101
http://arxiv.org/abs/1602.03841
http://dx.doi.org/10.1103/PhysRevD.94.084002
http://arxiv.org/abs/1603.08955
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832
http://dx.doi.org/10.1007/s10714-018-2362-8
http://dx.doi.org/10.1007/s10714-018-2362-8
http://arxiv.org/abs/1801.03208
http://dx.doi.org/10.1007/s10714-018-2372-6
http://dx.doi.org/10.1007/s10714-018-2372-6
http://arxiv.org/abs/1801.03587
http://arxiv.org/abs/1912.09917
http://dx.doi.org/10.1103/PhysRevD.101.084050
http://arxiv.org/abs/2003.02374
http://dx.doi.org/10.1103/PhysRevD.101.104030
http://arxiv.org/abs/2003.00286
http://arxiv.org/abs/2001.03571
http://dx.doi.org/10.1007/JHEP09(2017)122
http://dx.doi.org/10.1007/JHEP09(2017)122
http://arxiv.org/abs/1704.01590
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1017/CBO9780511524646


Bibliography 

[15] J. D. Bekenstein, Black holes and the second law, Lettere al Nuovo Cimento 4 
(1972) . 

[16] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333–2346. 

[17] D. Christodoulou, Reversible and irreversible transformations in black-hole physics, 
Phys. Rev. Lett. 25 (Nov, 1970) 1596–1597. 

[18] D. Christodoulou and R. Ruffini, Reversible transformations of a charged black 
hole, Phys. Rev. D 4 (Dec, 1971) 3552–3555. 

[19] S. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 
(1971) 1344–1346. 

[20] J. M. Bardeen, B. Carter and S. Hawking, The four laws of black hole mechanics, 
Phys. Commun. Math 31 (1973) 161–170. 

[21] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 
(1975) 199–220. 

[22] V. Iyer and R. M. Wald, Some properties of noether charge and a proposal for 
dynamical black hole entropy, Phys. Rev D 50 (1994) . 

[23] W. Israel, Third Law of Black-Hole Dynamics: A Formulation and Proof, Phys. 
Rev. Lett. 57 (1986) 397. 

[24] J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 
(1951) 664–679. 

[25] J. D. Bekenstein, Generalized second law of thermodynamics in black hole physics, 
Phys. Rev. D9 (1974) 3292–3300. 

[26] A. C. Wall, A proof of the generalized second law for rapidly changing fields and 
arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049, [1105.3445]. 

[27] J. Lee and R. M. Wald, Local symmetries and constraints, J. Math 31 (1990) 
725–743. 

[28] R. M. Wald, Black hole entropy is the noether charge, Phys. Rev D 48 (1993) . 

[29] P. A. Cano, P. Meessen, T. Ortín and P. F. Ramírez, α0-corrected black holes in 
string theory, JHEP 2018 (2018) . 

[30] P. A. Cano, S. Chimento, P. Meessen, T. Ortín, P. F. Ramírez and A. Ruipérez, 
Beyond the near-horizon limit: Stringy corrections to heterotic black holes, JHEP 
2019 (2019) . 

[31] J. D. Edelstein, K. Sfetsos, J. A. Sierra-García and A. V. López, T-duality 
equivalences beyond string theory, JHEP 2019 (2019) . 

[32] P. A. Cano, S. Chimento, R. Linares, T. Ortín and P. F. Ramírez, α0 corrections of 
reissner-nordström black holes, JHEP 2020 (2020) . 

[33] Z. Elgood and T. Ortín, T duality and wald entropy formula in the heterotic 
superstring effective action at first order in α0 , JHEP 10 (2020) . 

150 

http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevLett.25.1596
http://dx.doi.org/10.1103/PhysRevD.4.3552
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevLett.57.397
http://dx.doi.org/10.1103/PhysRevLett.57.397
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1103/PhysRevD.85.104049
http://arxiv.org/abs/1105.3445
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.1063/1.528801
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1007/JHEP05(2018)110
http://dx.doi.org/10.1007/JHEP02(2019)192
http://dx.doi.org/10.1007/JHEP02(2019)192
http://dx.doi.org/10.1007/JHEP05(2019)082
http://dx.doi.org/10.1007/JHEP02(2020)031
http://dx.doi.org/10.1007/JHEP10097


Bibliography 

[34] T. Ortin, O(n,n) invariance and Wald entropy formula in the Heterotic Superstring 
effective action at first order in alpha’, JHEP 01 (2021) 187. 

[35] E. Noether, Invariant variation problems, Transport Theory and Statistical Physics 
1 (1971) 186–207. 

[36] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, 
conservation laws and central charges, Nucl. Phys B 633 (2002) 3–82. 

[37] H. Reissner, Über die eigengravitation des elektrischen feldes nach der 
einsteinschen theorie, Annalen der Physik 355 (1916) 106–120, 
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19163550905]. 

[38] G. Nordström, On the Energy of the Gravitation field in Einstein’s Theory, 
Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B 
Physical Sciences 20 (Jan., 1918) 1238–1245. 

[39] S. Gao, The First law of black hole mechanics in Einstein-Maxwell and 
Einstein-Yang-Mills theories, Phys. Rev. D 68 (2003) , [gr-qc/0304094]. 

[40] T. Jacobson and A. Mohd, Black hole entropy and lorentz-diffeomorphism noether 
charge, Phys. Rev D 92 (2015) . 

[41] T. Ortín, A note on lie-lorentz derivatives, Class Quant. Grav 19 (2002) 264–9381. 

[42] T. Ortín, Gravity and Strings. Cambridge University Press, 2nd ed., 2015. 

[43] L. Fatibene and M. Francaviglia, General theory of lie derivatives for lorentz 
tensors, Communications in Mathematics 19 (2011) 11–25. 

[44] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci Paris 257 (1963) 7–9. 

[45] Y. Kosmann, Dérivées de lie des spineurs, C. R. Acad. Sci 262 (1966) A289–A292. 

[46] Y. Kosmann, Dérivées de lie des spineurs, Annali Mat Pura Appl (IV) 91 (1972) 
317–395. 

[47] D. J. Hurley and M. A. Vandyck, On the concepts of lie and covariant derivatives 
of spinors. part 1, J. Phys A 27 (1994) . 

[48] M. A. Vandyck, On the problem of space-time symmetries in the theory of 
supergravity, Gen. Rel. Grav 20 (1988) . 

[49] M. A. Vandyck, On the problem of space-time symmetries in the theory of 
supergravity. part 2: N=2 supergravity and spinorial lie derivatives, Gen. Rel. Grav 
20 (1988) . 

[50] J. M. Figueroa-O’Farrill, On the supersymmetries of anti de sitter vacua, Class 
Quant. Grav 16 (2043) . 

[51] K. Prabhu, The first law of black hole mechanics for fields with internal gauge 
freedom, Class Quant. Grav 34 (2017) . 

[52] G. Compère, Note on the first law with p-form potentials, Phys. Rev D 75 (2007) . 

151 

http://dx.doi.org/10.1007/JHEP01(2021)187
http://dx.doi.org/10.1080/00411457108231446
http://dx.doi.org/10.1080/00411457108231446
http://dx.doi.org/10.1016/S0550-3213(02)00251-1
http://dx.doi.org/https://doi.org/10.1002/andp.19163550905
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19163550905
http://dx.doi.org/10.1103/PhysRevD.68.044016
http://arxiv.org/abs/gr-qc/0304094
http://dx.doi.org/10.1103/PhysRevD.92.124010
http://dx.doi.org/10.1088/0/19/15/101
http://dx.doi.org/10.48550/arXiv.0904.0258
http://dx.doi.org/10.1007/BF02428822
http://dx.doi.org/10.1007/BF02428822
http://dx.doi.org/10.1007/BF00759185
http://dx.doi.org/10.1007/BF00760090
http://dx.doi.org/10.1007/BF00760090
http://dx.doi.org/10.1088/0264-9381/16/6/330
http://dx.doi.org/10.1088/0264-9381/16/6/330
http://dx.doi.org/10.1088/1361-6382/aa536b
http://dx.doi.org/10.1103/PhysRevD.75.124020


Bibliography 

[53] Z. Elgood, T. Ortín and D. Pereñíguez, The first law and Wald entropy formula of 
heterotic stringy black holes at first order in α0 , JHEP 05 (2021) , [2012.14892]. 

[54] T. T. Wu and C. N. Yang, Concept of nonintegrable phase factors and global 
formulation of gauge fields, Phys. Rev. D 12 (Dec, 1975) 3845–3857. 

[55] H. K. Kunduri and J. Lucietti, The first law of soliton and black hole mechanics in 
five dimensions, Classical and Quantum Gravity 31 (jan, 2014) 032001. 

[56] V. P. Frolov and I. D. Novikov, eds., Black hole physics: Basic concepts and new 
developments. 1998, 10.1007/978-94-011-5139-9. 

[57] J. Polchinski, String Theory, vol. 1 of Cambridge Monographs on Mathematical 
Physics. Cambridge University Press, 1998, 10.1017/CBO9780511816079. 

[58] T. Ortin, Gravity and strings. Cambridge Univ. Press, 2004. 

[59] K. Becker, M. Becker and J. H. Schwarz, String theory and M-theory: A modern 
introduction. Cambridge University Press, 12, 2006, 10.1017/CBO9780511816086. 

[60] L. Brink, P. Di Vecchia and P. S. Howe, A Locally Supersymmetric and 
Reparametrization Invariant Action for the Spinning String, Phys. Lett. B 65 
(1976) 471–474. 

[61] S. Deser and B. Zumino, A Complete Action for the Spinning String, Phys. Lett. B 
65 (1976) 369–373. 

[62] A. Neveu and J. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 
(1971) 86–112. 

[63] P. Ramond, Dual Theory for Free Fermions, Phys. Rev. D 3 (1971) 2415–2418. 

[64] C. Callan, D. Friedan, E. Martinec and M. Perry, Strings in background fields, 
Nuclear Physics B 262 (1985) 593–609. 

[65] J. J. Fernández-Melgarejo, J.-I. Sakamoto, Y. Sakatani and K. Yoshida, Weyl 
invariance of string theories in generalized supergravity backgrounds, Phys. Rev. 
Lett. 122 (2019) 111602, [1811.10600]. 

[66] D. Marqués and C. A. N. nez, T duality and α0-corrections, JHEP 1510 (2015) . 

[67] W. H. Baron, J. J. Fernández-Melgarejo, D. Marqués and C. N. nez, The odd story 
of α0-corrections, JHEP 04 (2017) . 

[68] P. S. Howe and P. C. West, The Complete N=2, D=10 Supergravity, Nucl. Phys. B 
238 (1984) 181–220. 

[69] I. Campbell and P. C. West, N=2 D=10 Nonchiral Supergravity and Its 
Spontaneous Compactification, Nucl. Phys. B 243 (1984) 112–124. 

[70] F. Giani and M. Pernici, N=2 SUPERGRAVITY IN TEN-DIMENSIONS, Phys. 
Rev. D 30 (1984) 325–333. 

[71] J. H. Schwarz, Covariant Field Equations of Chiral N=2 D=10 Supergravity, Nucl. 
Phys. B 226 (1983) 269. 

152 

http://dx.doi.org/10.1007/JHEP05(2021)110
http://arxiv.org/abs/2012.14892
http://dx.doi.org/10.1103/PhysRevD.12.3845
http://dx.doi.org/10.1088/0264-9381/31/3/032001
http://dx.doi.org/10.1007/978-94-011-5139-9
http://dx.doi.org/10.1017/CBO9780511816079
http://dx.doi.org/10.1017/CBO9780511816086
http://dx.doi.org/10.1016/0370-2693(76)90445-7
http://dx.doi.org/10.1016/0370-2693(76)90445-7
http://dx.doi.org/10.1016/0370-2693(76)90245-8
http://dx.doi.org/10.1016/0370-2693(76)90245-8
http://dx.doi.org/10.1016/0550-3213(71)90448-2
http://dx.doi.org/10.1016/0550-3213(71)90448-2
http://dx.doi.org/10.1103/PhysRevD.3.2415
http://dx.doi.org/10.1016/0550-3213(85)90506-1
http://dx.doi.org/10.1103/PhysRevLett.122.111602
http://dx.doi.org/10.1103/PhysRevLett.122.111602
http://arxiv.org/abs/1811.10600
http://dx.doi.org/10.1007/JHEP10(2015)084
http://dx.doi.org/10.1007/JHEP04(2017)078
http://dx.doi.org/10.1016/0550-3213(84)90472-3
http://dx.doi.org/10.1016/0550-3213(84)90472-3
http://dx.doi.org/10.1016/0550-3213(84)90388-2
http://dx.doi.org/10.1103/PhysRevD.30.325
http://dx.doi.org/10.1103/PhysRevD.30.325
http://dx.doi.org/10.1016/0550-3213(83)90192-X
http://dx.doi.org/10.1016/0550-3213(83)90192-X


Bibliography 

[72] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 
Gauge Theory and Superstring Theory, Phys. Lett. 149B (1984) 117–122. 

[73] E. A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string 
and supersymmetry, Nucl. Phys B 328 (1989) . 

[74] Z. Elgood, D. Mitsios, T. Ortín and D. P. níguez, The first law of heterotic stringy 
black hole mechanics at zeroth order in α0 , JHEP 7 (2021) . 

[75] A. Fontanella and T. Ortín, On the supersymmetric solutions of the heterotic 
superstring effective action, JHEP 2020 (2020) . 

[76] C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 
109–137, [hep-th/9410167]. 

[77] E. Alvarez, L. Alvarez-Gaume and Y. Lozano, An introduction to t-duality in 
string theory, Nuclear Physics B - Proceedings Supplements 41 (1995) 1–20. 

[78] E. Álvarez and M. Osorio, Duality Is an Exact Symmetry of String Perturbation 
Theory, Phys. Rev. D 40 (1989) 1150. 

[79] T. Kaluza, Zum Unitätsproblem der Physik, Int. J. Mod. Phys. D 27 (2018) 
1870001, [1803.08616]. 

[80] O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In 
German and English), Z. Phys. 37 (1926) 895–906. 

[81] J. Scherk and J. H. Schwarz, How to get masses from extra dimensions, Nucl. Phys 
B 153 (1979) . 

[82] T. H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 
194 (1987) . 

[83] T. H. Buscher, Path integral derivation of quantum duality in nonlinear sigma 
models, Phys. Lett. B 201 (1988) . 

[84] P. Meessen and T. Ortín, An sl(2,z) multiplet of nine-dimensional type ii 
supergravity theories, Nucl. Phys B 541 (1999) . 

[85] E. Bergshoeff, B. Janssen and T. Ortín, Solution generating transformations and 
the string effective action, Class Quant. Grav 13 (1996) . 

[86] S. Chimento, P. Meessen, T. Ortín, P. F. Ramírez and A. Ruipérez, On a family of 
α0-corrected solutions of the heterotic superstring effective action, JHEP 07 (2018) . 

[87] P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) , 
[hep-th/0508218]. 

[88] Z. Elgood, P. Meessen and T. Ortín, The first law of black hole mechanics in the 
einstein-maxwell theory revisited, JHEP 09 (2020) . 

[89] A. Strominger and C. Vafa, Microscopic origin of the bekenstein-hawking entropy, 
Phys. Lett. B 379 (1996) 99–104. 

153 

http://dx.doi.org/10.1016/0370-2693(84)91565-X
http://dx.doi.org/10.1016/0550-3213(89)90336-2
http://dx.doi.org/10.1007/JHEP07(2021)007
http://dx.doi.org/10.1007/JHEP06(2020)106
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://arxiv.org/abs/hep-th/9410167
http://dx.doi.org/10.1016/0920-5632(95)00429-D
http://dx.doi.org/10.1103/PhysRevD.40.1150
http://dx.doi.org/10.1142/S0218271818700017
http://dx.doi.org/10.1142/S0218271818700017
http://arxiv.org/abs/1803.08616
http://dx.doi.org/10.1007/BF01397481
http://dx.doi.org/10.1016/0550-3213(79)90592-3
http://dx.doi.org/10.1016/0550-3213(79)90592-3
http://dx.doi.org/10.1016/0370-2693(87)90769-6
http://dx.doi.org/10.1016/0370-2693(87)90769-6
http://dx.doi.org/10.1016/0370-2693(88)90602-8
http://dx.doi.org/10.1016/S0550-3213(98)00780-9
http://dx.doi.org/10.1088/0264-9381/13/3/002
http://dx.doi.org/10.1007/JHEP07(2018)080
http://dx.doi.org/10.1088/1126-6708/2006/01/022
http://arxiv.org/abs/hep-th/0508218
http://dx.doi.org/10.1007/JHEP09026
http://dx.doi.org/10.1016/0370-2693(96)00345-0


Bibliography 

[90] E. Bergshoeff and M. de Roo, Supersymmetric chern-simons terms in 
ten-dimensions, Phys. Lett. B 218 (1989) . 

[91] D. J. Gross and J. H. Sloan, The quartic effective action for the heterotic string, 
Nuclear Physics B 291 (Jan, 1987) 41–89. 

[92] R. Metsaev and A. Tseytlin, Order α0 (two-loop) equivalence of the string equations 
of motion and the σ-model weyl invariance conditions: Dependence on the dilaton 
and the antisymmetric tensor, Nuclear Physics B 293 (1987) 385–419. 

[93] C. Hull and P. Townsend, The two-loop β-function for σ-models with torsion, 
Physics Letters B 191 (1987) 115–121. 

[94] W. Chemissany, M. de Roo and S. Panda, α0-corrections to heterotic superstring 
effective action revisited, JHEP 2007 (2007) . 

[95] C. Eloy, O. Hohm and H. Samtleben, Duality invariance and higher derivatives, 
Phys. Rev D 101 (2020) . 

[96] J. Maharana and J. H. Schwarz, Noncompact symmetries in string theory, Nucl. 
Phys B 390 (1993) 3–32. 

[97] A. H. Chamseddine, N=4 supergravity coupled to n=4 matter, Nucl. Phys B 185 
(1981) . 

[98] T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys 49 
(2001) . 

[99] A. Sen, Black hole entropy function, attractors and precision counting of 
microstates, Gen. Rel. Grav 40 (2008) . 

[100] P. D. Prester, α0-corrections and heterotic black holes, 2010. 1001.1452. 

[101] Y. Pang, Extended attractor mechanism and non-renormalization theorem in 6d 
(1,0) supergravity, Phys. Rev D 103 (2021) . 

[102] D. D. Chow and Y. Pang, Rotating strings in six-dimensional higher-derivative 
supergravity, Phys. Rev D 100 (2019) . 

[103] P. A. Cano, T. Ortín and P. F. Ramírez, On the extremality bound of stringy black 
holes, JHEP 2020 (2020) . 

[104] P. A. Cano, P. F. Ramírez and A. Ruipérez, The small black hole illusion, JHEP 
03 (2020) . 

[105] A. Ruipérez, Higher-derivative corrections to small black rings, Class Quant. Grav 
38 (2021) . 

[106] P. Aneesh, S. Chakraborty, S. J. Hoque and A. Virmani, First law of black hole 
mechanics with fermions, Class Quant. Grav 37 (2020) 1361–6382. 

[107] F. Faedo and P. F. Ramírez, Exact charges from heterotic black holes, JHEP 
(2019) . 

154 

http://dx.doi.org/10.1016/0370-2693(89)91420-2
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://dx.doi.org/https://doi.org/10.1016/0550-3213(87)90077-0
http://dx.doi.org/https://doi.org/10.1016/0370-2693(87)91331-1
http://dx.doi.org/10.1088/1126-6708/2007/08/037
http://dx.doi.org/10.1103/PhysRevD.101.126018
http://dx.doi.org/10.1016/0550-3213(93)90387-5
http://dx.doi.org/10.1016/0550-3213(93)90387-5
http://dx.doi.org/10.1016/0550-3213(81)90326-6
http://dx.doi.org/10.1016/0550-3213(81)90326-6
http://dx.doi.org/10.1002/1521-3978(200102)49
http://dx.doi.org/10.1002/1521-3978(200102)49
http://dx.doi.org/10.1007/s10714-008-0626-4
http://arxiv.org/abs/1001.1452
http://dx.doi.org/10.1103/PhysRevD.103.026018
http://dx.doi.org/10.1103/PhysRevD.100.106004
http://dx.doi.org/10.1007/JHEP02(2020)175
http://dx.doi.org/10.1007/JHEP03(2020)115
http://dx.doi.org/10.1007/JHEP03(2020)115
http://dx.doi.org/10.1088/1361-6382/abff9b
http://dx.doi.org/10.1088/1361-6382/abff9b
http://dx.doi.org/10.1088/1361-6382/aba5ab
http://dx.doi.org/10.1007/JHEP10(2019)033
http://dx.doi.org/10.1007/JHEP10(2019)033


Bibliography 

[108] R. R. Khuri and T. Ortín, A nonsupersymmetric dyonic extreme 
reissner-nordstrom black hole, Phys. Lett. B 373 (1996) 56–60. 

[109] E. Bergshoeff, I. Entrop and R. Kallosh, Exact duality in string effective action, 
Phys. Rev D 49 (1994) . 

[110] E. Bergshoeff, C. M. Hull and T. Ortín, Duality in the type ii superstring effective 
action, Nucl. Phys B 451 (1995) . 

[111] M. Serone and M. Trapletti, A note on t-duality in heterotic string theory, Phys. 
Lett. B 637 (2006) 331–337. 

[112] O. A. Bedoya, D. Marqués and C. N. nez, Heterotic α’-corrections in double field 
theory, JHEP 12 (2014) . 

[113] K. A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 
392 (1997) . 

[114] N. Kaloper and K. A. Meissner, Duality beyond the first loop, Phys. Rev D 56 
(1997) . 

[115] O. Hohm and B. Zwiebach, Green-schwarz mechanism and α0-deformed courant 
brackets, JHEP 1501 (2015) . 

[116] G. T. Horowitz and D. L. Welch, Duality invariance of the hawking temperature 
and entropy, Phys. Rev D 49 (1994) . 

[117] J. D. Edelstein, K. Sfetsos, J. A. Sierra-García and A. V. López, T duality and 
high-derivative gravity theories: the btz black hole/string paradigm, JHEP 1806 
(2018) . 

[118] E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-dimensional 
maxwell-einstein supergravity, its currents, and the issue of its auxiliary fields, 
Nucl. Phys B 195 (1982) . 

[119] G. F. Chapline and N. S. Manton, Unification of yang-mills theory and 
supergravity in ten-dimensions, Phys. Lett. B 120 (1983) . 

[120] E. Frodden and D. Hidalgo, Surface charges for gravity and electromagnetism in 
the first order formalism, Class Quant. Grav 35 (2018) . 

[121] E. Frodden and D. Hidalgo, Surface charges toolkit for gravity, International 
Journal of Modern Physics D 29 (2019) . 

[122] I. A. Bandos and T. Ortín, On the dualization of scalars into (d-2)-forms in 
supergravity. momentum maps, r-symmetry and gauged supergravity, JHEP 1608 
(2016) . 

[123] H. Weyl, Electron and Gravitation. 1. (In German), Z. Phys. 56 (1929) 330–352. 

[124] R. M. Wald, General Relativity. The University of Chigago Press, 1992. 

[125] I. Racz and R. M. Wald, Global extensions of space-times describing asymptotic 
final states of black holes, Class Quant. Grav 13 (1996) 539–553. 

155 

http://dx.doi.org/10.1016/0370-2693(96)00139-6
http://dx.doi.org/10.1103/PhysRevD.49.6663
http://dx.doi.org/10.1016/0550-3213(95)00367-2
http://dx.doi.org/10.1016/j.physletb.2006.03.081
http://dx.doi.org/10.1016/j.physletb.2006.03.081
http://dx.doi.org/10.1007/JHEP12(2014)074
http://dx.doi.org/10.1016/S0370-2693(96)01556-0
http://dx.doi.org/10.1016/S0370-2693(96)01556-0
http://dx.doi.org/10.1103/PhysRevD.56.7940
http://dx.doi.org/10.1103/PhysRevD.56.7940
http://dx.doi.org/10.1007/JHEP01(2015)012
http://dx.doi.org/10.1103/PhysRevD.49.R590
http://dx.doi.org/10.1007/JHEP06(2018)142
http://dx.doi.org/10.1007/JHEP06(2018)142
http://dx.doi.org/10.1016/0550-3213(82)90050-5
http://dx.doi.org/10.1016/0370-2693(83)90633-0
http://dx.doi.org/10.1088/1361-6382/aa9ba5
http://dx.doi.org/10.1142/S0218271820500406
http://dx.doi.org/10.1142/S0218271820500406
http://dx.doi.org/10.1007/JHEP08135
http://dx.doi.org/10.1007/JHEP08135
http://dx.doi.org/10.1007/BF01339504
http://dx.doi.org/10.1088/0264-9381/13/3/017


Bibliography 

[126] F. R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of 
space problem, Nuovo Cim. 27 (1963) 636–651. 

[127] E. Cremmer, Supergravities in 5 Dimensions, 8, 1980. 

[128] G. Barnich and G. Compère, Conserved charges and thermodynamics of the 
spinning gödel black hole, Phys. Rev. Lett. 95 (Jul, 2005) 031302. 

[129] Y. Tachikawa, Black hole entropy in the presence of chern-simons terms, Class 
Quant. Grav 24 (2007) . 

[130] T. Azeyanagi, R. Loganayagam, G. S. Ng and M. J. Rodríguez, Covariant noether 
charge for higher dimensional chern-simons terms, JHEP 2015 (2015) . 

[131] K. Copsey and G. T. Horowitz, The role of dipole charges in black hole 
thermodynamics, Phys. Rev D 73 (2006) . 

[132] T. Regge and C. Teitelboim, Role of surface integrals in the hamiltonian 
formulation of general relativity, Annals Phys 88 (1974) . 

[133] L. F. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. 
Phys B 195 (1982) 76–96. 

[134] G. Barnich, Boundary charges in gauge theories: Using stokes theorem in the bulk, 
Class Quant. Grav 20 (2003) 3685–3698. 

[135] D. Marolf, Chern-Simons terms and the three notions of charge, in Quantization, 
gauge theory, and strings. Proceedings, International Conference dedicated to the 
memory of Professor Efim Fradkin, Moscow, Russia, June 5-10, 2000. Vol. 1+2, 
pp. 312–320, 2000. hep-th/0006117. 

[136] R. Emparan, Rotating circular strings, and infinite non-uniqueness of black rings, 
Journal of High Energy Physics 2004 (mar, 2004) 064–064. 

[137] D. Astefanesei and E. Radu, Quasilocal formalism and black-ring thermodynamics, 
Phys. Rev. D 73 (Feb, 2006) 044014. 

[138] M. Rogatko, Black rings and the physical process version of the first law of 
thermodynamics, Phys. Rev. D 72 (Oct, 2005) 074008. 

[139] M. Rogatko, First law of black ring thermodynamics in higher dimensional dilaton 
gravity with p + 1 strength forms, Phys. Rev. D 73 (Jan, 2006) 024022. 

[140] H. Elvang, R. Emparan and P. Figueras, Non-supersymmetric black rings as 
thermally excited supertubes, Journal of High Energy Physics 2005 (feb, 2005) 
031–031. 

[141] J. M. Maldacena, Black holes in string theory. PhD thesis, Princeton U., 1996. 
hep-th/9607235. 

[142] G. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges, and the first law of 
black hole thermodynamics, Phys. Rev. Lett. 77 (Dec, 1996) 4992–4995. 

156 

http://dx.doi.org/10.1007/BF02784569
http://dx.doi.org/10.1103/PhysRevLett.95.031302
http://dx.doi.org/10.1088/0264-9381/24/3/014
http://dx.doi.org/10.1088/0264-9381/24/3/014
http://dx.doi.org/10.1007/JHEP05(2015)041
http://dx.doi.org/10.1103/PhysRevD.73.024015
http://dx.doi.org/10.1016/0003-4916(74)90404-7
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1088/0/20/16/310264-9381
http://arxiv.org/abs/hep-th/0006117
http://dx.doi.org/10.1088/1126-6708/2004/03/064
http://dx.doi.org/10.1103/PhysRevD.73.044014
http://dx.doi.org/10.1103/PhysRevD.72.074008
http://dx.doi.org/10.1103/PhysRevD.73.024022
http://arxiv.org/abs/hep-th/9607235
http://dx.doi.org/10.1103/PhysRevLett.77.4992


Bibliography 

[143] D. Astefanesei, R. Ballesteros, D. Choque and R. Rojas, Scalar charges and the 
first law of black hole thermodynamics, Physics Letters B 782 (2018) 47–54. 

[144] H. Nicolai and P. Townsend, N=3 supersymmetry multiplets with vanishing trace 
anomaly: Building blocks of the n>3 supergravities, Phys. Lett. B 98 (1981) 
257–260. 

[145] P. A. Cano, T. Ortín, A. Ruipérez and M. Zatti, Non-supersymmetric black holes 
with α’ corrections, JHEP 03 (2022) 103. 

[146] D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black 
Holes, Class. Quant. Grav. 26 (2009) 195011, [0904.2765]. 

[147] D. Kubizňák, R. B. Mann and M. Teo, Black hole chemistry: thermodynamics with 
lambda, Classical and Quantum Gravity 34 (mar, 2017) 063001. 

[148] T. Ortín, Komar integrals for theories of higher order in the Riemann curvature 
and black-hole chemistry, JHEP 08 (2021) 023. 

[149] D. Mitsios, T. Ortín and D. Pereñíguez, Komar integral and Smarr formula for 
axion-dilaton black holes versus S duality, JHEP 08 (2021) 019. 

[150] J. P. Gauntlett and J. B. Gutowski, General concentric black rings, Phys. Rev. D 
71 (2005) 045002, [hep-th/0408122]. 

[151] J. Bellorin and T. Ortin, Characterization of all the supersymmetric solutions of 
gauged N=1, d=5 supergravity, JHEP 08 (2007) 096, [0705.2567]. 

[152] J. Bellorin, Supersymmetric solutions of gauged five-dimensional supergravity with 
general matter couplings, Class. Quant. Grav. 26 (2009) 195012, [0810.0527]. 

[153] E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren and 
A. Van Proeyen, N = 2 supergravity in five-dimensions revisited, Class. Quant. 
Grav. 21 (2004) 3015–3042, [hep-th/0403045]. 

[154] J. Bellorin, P. Meessen and T. Ortin, All the supersymmetric solutions of N=1,d=5 
ungauged supergravity, JHEP 01 (2007) 020, [hep-th/0610196]. 

157 

http://dx.doi.org/10.1016/j.physletb.2018.05.005
http://dx.doi.org/10.1016/0370-2693(81)90009-5
http://dx.doi.org/10.1016/0370-2693(81)90009-5
http://dx.doi.org/10.1007/JHEP03(2022)103
http://dx.doi.org/10.1088/0264-9381/26/19/195011
http://arxiv.org/abs/0904.2765
http://dx.doi.org/10.1088/1361-6382/aa5c69
http://dx.doi.org/10.1007/JHEP08(2021)023
http://dx.doi.org/10.1007/JHEP08(2021)019
http://dx.doi.org/10.1103/PhysRevD.71.045002
http://dx.doi.org/10.1103/PhysRevD.71.045002
http://arxiv.org/abs/hep-th/0408122
http://dx.doi.org/10.1088/1126-6708/2007/08/096
http://arxiv.org/abs/0705.2567
http://dx.doi.org/10.1088/0264-9381/26/19/195012
http://arxiv.org/abs/0810.0527
http://dx.doi.org/10.1088/0264-9381/23/23/C01, 10.1088/0264-9381/21/12/013
http://dx.doi.org/10.1088/0264-9381/23/23/C01, 10.1088/0264-9381/21/12/013
http://arxiv.org/abs/hep-th/0403045
http://dx.doi.org/10.1088/1126-6708/2007/01/020
http://arxiv.org/abs/hep-th/0610196

	1 Introduction
	1.1 Black Holes
	1.1.1 Black Hole Thermodynamics

	1.2 Conservation laws
	1.2.1 Noether's first theorem
	1.2.2 Noether's second theorem
	1.2.3 Issues with the Iyer-Wald formula
	1.2.4 Momentum maps

	1.3 String theory
	1.3.1 Superstring theory
	1.3.2 Effective string action
	1.3.3 Dualities

	1.4 Summary of Thesis

	I Dimensional reduction of the Heterotic string at '
	2 T duality and Wald entropy formula in the Heterotic Superstring effective action at first-order in '
	2.1 The Heterotic Superstring effective action to O(α')
	2.2 Dimensional reduction on S1 at zeroth order in '
	2.3 Dimensional reduction on S1 at O(')
	2.3.1 T duality

	2.4 Entropy formula
	2.4.1 The Wald entropy of the '-corrected Strominger-Vafa black hole

	2.5 Discussion


	II Black Hole Thermodynamics through Momentum Maps
	3 The first law of black hole thermodynamics in Einstein-Maxwell theory
	3.1 Introduction
	3.2 Covariant Lie derivatives and momentum maps
	3.2.1 Lie-Maxwell derivatives
	3.2.2 Lie-Lorentz derivatives

	3.3 The Einstein-Maxwell action and the RNT solutions
	3.3.1 Action and equations of motion
	3.3.2 The Reissner-Nordström-Tangherlini solutions

	3.4 Wald-Noether charge for the E-M theory
	3.5 The first law of black hole mechanics in the E-M theory
	3.6 Discussion

	4 The first law of heterotic stringy black hole mechanics at zeroth order in '
	4.1 Introduction
	4.2 The Heterotic Superstring effective action on Tn at zeroth order in '
	4.3 Variations of the fields
	4.3.1 Gauge transformations
	4.3.2 Gauge charges
	4.3.3 Diffeomorphisms and covariant Lie derivatives
	4.3.4 The Wald-Noether charge

	4.4 Zeroth laws
	4.5 The first law
	4.6 Momentum Maps for Black Rings in d=5
	4.7 Discussion

	5  Wald entropy formula for Heterotic Superstring effective action at first-order in '
	5.1 Introduction
	5.2 The HST effective action at first order in '
	5.3 Variations of the fields
	5.3.1 Gauge transformations
	5.3.2 Gauge charges
	5.3.3 The transformations under diffeomorphisms
	5.3.4 The Wald-Noether charge

	5.4 Restricted generalized zeroth laws
	5.5 The first law
	5.6 Wald entropy
	5.7 Discussion

	6 Conclusions
	A Relationship between 10 and 9 dimensional fields
	A.1 Relation between 10- and 9-dimensional fields at zeroth order in '
	A.2 Relation between 10- and 9-dimensional fields at O(')

	B A truncation of the d=5 theory to a N=1,d=5 supergravity
	B.1 Further truncation to pure N=1,d=5 supergravity

	C Resumen
	D Conclusiones
	Bibliography




