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The world is indeed full of peril, and in it there are many dark places; but still there is
much that is fair, and though in all lands love is now mingled with grief, it grows perhaps
the greater.

J. R. R. Tolkien: The Lord of the Rings
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Abstract

Black-hole thermodynamics is probably one of the most active fields of research in The-
oretical Physics. It interconnects seemingly disparate areas of Physics such as Gravity,
Quantum Field Theory, and Information Theory, providing deep insights in all of them.
While initially valid only for General Relativity, Wald and collaborators developed a new
approach to demonstrate the first law of black hole mechanics in general diffeomorphism-
invariant theories, beyond General Relativity. As a by-product, this approach lead to the
identification of an expression that plays the role of entropy (Wald entropy) in the first law
in theories beyond General Relativity. However, the first laws and the entropy formulas
derived in the literature with this formalism (the Iyer-Wald prescription) present severe
shortcomings in certain string theories, such as missing work terms in the first laws and
lack of gauge invariance of the entropy formula. This prevents a fair comparison with the
microscopic entropy computed using other techniques (AdS/CFT correspondence etc.).
The main goal of this thesis is to identify the roots of these problems and fix them. As we
will see, the root of these problems is the inadequate treatment of the fields that exhibit
some kind of gauge freedom. These are, as a matter of fact, all fields except for scalars
and the metric (if one does not use the vielbein formalism).

This thesis is divided into two parts. The first section will involve compactifying
the heterotic string action on S', allowing us to compute re-derive the Buscher rules and
prove T duality. We will then use the Iyer-Wald formula in the dimensionally reduced
action to derive an entropy formula that can be applied to black-hole solutions which can
be obtained by a single non-trivial compactification on a circle and discuss its invariance
under the o/-corrected T duality transformations. Specifically, we shall apply it to the
Strominger-Vafa extremal black hole. We will demonstrate that in addition to the lack
of gauge invariance, there exists an ambiguity in applying the formula, as applying it to
d =10 and d = 5 yields two different results that differ by a factor of 2.

As previously mentioned, Iyer-Wald formula cannot be applied unambiguously in
the case of the heterotic string case, as one of the main assumptions was that all fields
behaved as tensors. However, all fields apart from the metric and scalars possess gauge
freedoms, and their transformations under diffeomorphisms are always coupled to gauge
transformations. This serves as motivation for the second section of the thesis, where we
determine the first law of black hole thermodynamics in a gauge-invariant way, introducing
gauge-covariant transformations under diffeomorphisms (gauge covariant Lie derivatives).
The construction of these transformations involves the definition of “momentum maps”
associated to field strengths and the vectors that generate their symmetries. These objects
play the role of generalized thermodynamical potentials in the first law and satisfy the
restricted generalized zeroth laws.

After testing our ideas on the d-dimensional Reissner-Nordstréom-Tangherlini black
hole in the context of the Einstein-Maxwell theory, we turn our focus to the heterotic
string case. Initially, we examine the case of the heterotic string theory up to zeroth
order o compactified on a torus. This theory is interesting because of the black-hole
solutions it admits, and because of the Abelian Chern-Simons terms present in the Kalb-
Ramond 3-form field strength. The presence of those terms induces the so-called Nicolai-
Townsend gauge transformations of the Kalb-Ramond 2-form. These terms and gauge
transformations, appear in the 10-dimensional theory at first order in o’ in a much more
complicated way (non-Abelian, gravitational) and this model can be used as a toy model
to test our ideas. We show how to deal with all these gauge symmetries deriving the



first law in terms of manifestly gauge-invariant quantities. Explicitly, we will demonstrate
this in the case of a non-extremal, charged, black ring solution of pure N =1, d = 5
supergravity embedded in the Heterotic Superstring effective field theory.

In the final chapter, we arrive at our main result, based on the work of the previous
chapters. We derive the first law of black hole mechanics in the context of the Heterotic
Superstring effective action to first order in o/ using Wald’s formalism, taking into account
all the symmetries of the theory. This requires additional care due to the presence of
the non-Abelian Lorentz and Yang-Mills Chern-Simon terms found in the Kalb-Ramond
field strength. As a result, we obtain a manifestly gauge- and Lorentz-invariant entropy
formula in which all the terms can be computed explicitly. An entropy formula with these
properties allows unambiguous calculations of macroscopic black-hole entropies to first
order in o that can be reliably used in a comparison with the microscopic ones. Such a
formula was still lacking in the literature



Resumen

La termodindmica de los agujeros negros es probablemente uno de los campos de investi-
gacion mas activos de la Fisica Teorica. Interconecta areas de la Fisica tan aparentemente
dispares como la Gravedad, la Teoria Cuantica de Campos y la Teoria de la Informacién,
proporcionando una vision profunda de todas ellas. Si bien inicialmente solo era valida
para la Relatividad General, Wald y sus colaboradores desarrollaron un nuevo enfoque
para demostrar la primera ley de la mecanica de los agujeros negros en teorias generales
invariantes bajo difeomorfismos més generales que la Relatividad General. Como sub-
producto, este enfoque condujo a la identificacién de una expresion que juega el papel
de entropia (entropia de Wald) en la primera ley en teorias més alld de la Relatividad
General.

Sin embargo, las primeras leyes y las féormulas de entropia derivadas en la liter-
atura con este formalismo (la prescripcién de Iyer-Wald, en concreto) presentan graves
deficiencias en ciertas teorias de cuerdas, como la falta de términos de trabajo en las
primeras leyes y la falta de invariancia de gauge de la formula de entropia. Esto impide
una comparacion justa con la entropia microscépica calculada utilizando otras técnicas
(correspondencia AdS/CFT, etc.). El objetivo principal de esta tesis es identificar las
raices de estos problemas y solucionarlos. Como veremos, la raiz de estos problemas es
el tratamiento inadecuado de los campos que exhiben algin tipo de libertad de gauge.
Estos son, de hecho, todos los campos excepto los escalares y la métrica (si no se usa el
formalismo de tétradas).

Esta tésis estd dividida en dos partes. En la primera seccién se realiza la compact-
ificacion de la accién efectiva de la cuerda heterdtica en S' a primer orden en o, lo que
nos permitird volver a calcular las reglas de Buscher y demostrar que es invariante bajo
T dualidad. Luego usaremos la férmula de Iyer-Wald en la accién del modelo dimension-
almente reducido para derivar una férmula de entropia que se puede aplicar a soluciones
de agujeros negros que pueden ser obtenidos por una sola compactificién no trivial en un
circulo y discutiremos su invariancia bajo las transformaciones de T dualidad corregidas
por o’. En concreto, lo aplicaremos al agujero negro extremo de Strominger-Vafa. De-
mostraremos que, ademas de la falta de invariancia de gauge, existe una ambigiiedad en
la aplicacion de la férmula, ya que al aplicarla a d = 10 y d = 5 produce dos resultados
diferentes que difieren por un factor de 2.

Como se menciond anteriormente, la formula de Iyer-Wald no se puede aplicar sin
ambigiiedades en el caso de la cuerda heterética, ya que una de las suposiciones principales
en su derivacién era que todos los campos se comportaban como tensores y todos los
campos, excepto el métrico y el escalar, poseen libertades de gauge y sus transformaciones
bajo difeomorfismos siempre estdn acoplados a transformaciones de gauge. Esto sirve
de motivacién para la segunda seccién de la tesis en la que probamos la primera ley de
la termodinamica de agujeros negros de una manera invariante de gauge, introduciendo
transformaciones bajo difeomorfismos covariantes de gauge (derivadas de Lie covariantes
de gauge). La construccién de estas transformaciones implica la definicién de momentum
maps asociados a los campos y a los vectores que generan sus simetrias. Estos objetos
juegan el papel de potenciales termodinamicos generalizados en la primera ley y satisfacen
las “leyes cero generalizadas restringidas”.

Después de haber puesto a prueba nuestras ideas sobre el agujero negro Reissner-
Nordstrém-Tangherlini en el contexto de la teoria de Einstein-Maxwell d-dimensional, nos
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centramos en el caso de la cuerda heterética. Inicialmente, examinamos el caso de la teoria
efectiva de la cuerda heterética hasta orden cero en o compactificada sobre un toro. Esta
teoria es interesante debido a las soluciones de agujeros negros que admite, y debido a los
términos abelianos de Chern-Simons presentes en la intensidades de campo de la 3 forma
de Kalb-Ramond. La presencia de esos términos induce las llamadas transformaciones de
gauge de Nicolai-Townsend de la 2-forma de Kalb-Ramond. Estos términos y transfor-
maciones de gauge aparecen en la teorfa de 10 dimensiones a primer orden en o’ de una
manera mucho més complicada (no-abeliana, gravitacional) y este modelo puede usarse
como un modelo de juguete para poner a prueba nuestras ideas. Asi, explicamos cémo
hay que tratar todas estas simetrias de gauge y derivamos la primera ley en términos de
cantidades manifiestamente invariantes de gauge. Explicitamente, demostraremos esto en
el caso de una solucién de anillo negro cargada no-extrema de supergravedad pura N' =
1, d = 5 que se puede ver tambi’en como solucién de la teoria efectiva de supercuerda
heterotica.

En el capitulo final, llegamos a nuestro resultado principal, basado en el trabajo
de los capitulos anteriores. En él demostramos la primera ley de la mecanica de los
agujeros negros en el contexto de la accién efectiva de la supercuerda heterética a primer
orden en o utilizando el formalismo de Wald, teniendo en cuenta correctamente todas
las simetrias de la teoria. Esto requiere un cuidado adicional debido a la presencia de
los términos no-abelianos de Lorentz y Yang-Mills Chern-Simons que se encuentran en
la intensidad de campo de Kalb-Ramond. Como resultado, obtenemos una férmula de
entropia manifiestamente invariante de gauge (incluyendo transformaciones de Lorentz
locales) en la que todos los términos puede calcularse explicitamente. Una férmula de
entropia con estas propiedades permite célculos inambiguos de entropias de agujeros negros
macroscopicos de primer orden en o que pueden usarse de forma fiable en una comparacién
con los microscépicos. Tal férmula atn faltaba en la literatura.
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Introduction

Black holes remain one of the most enigmatic objects in our universe. Interest from sci-
entists and the public has grown within the last few years, due to the recent discovery of
the black hole shadow detected by the Event Horizon Telescope: the first direct obser-
vation. Formed from the collapse of massive stars, black holes are regions of space with
gravity so strong that light cannot escape. There is evidence that at the center of most
galaxies, including our galaxy, there are supermassive black holes, possessing masses of
M ~ 105 — 10'9M . There are even suggestions that primordial black holes could have
been formed in the early universe. Black holes present many useful research opportunities,
allowing us to probe extreme regions of general relativity (GR), as well as observing grav-
itational waves, which may help us better understand what truly is the nature of gravity.
In 2015, the first observation of gravitational waves occurred, which were produced by the
merging of two black holes [1], with additional discoveries made in the following years.
These detections have been used to perform precision tests of GR [2-6], as well as to
constrain the parameter space of its possible extensions [7—11].

One of the most important aspects of black holes, though, is that they present one
of the few known regimes where GR and quantum field theory both play a significant role.
While the gravitational effects of black holes can be described by GR, a true theory of
quantum gravity is necessary in order to deal with various issues, such as the black hole
information paradox, or the presence of gravitational singularities.

One particular aspect that has received attention in the past decades is black hole
thermodynamics. It has been found that, classically, the geometric properties of the
black hole horizon can be interpreted as thermodynamic properties. This allows a test
to help determine a theory of quantum gravity, as any prospective theory should provide
an explanation for the black hole entropy from a counting of microscopic states. One of
the most prominent of these theories is string theory, in which particles are replaced by
1-dimensional strings, which we will examine in detail in 1.3.

Before we examine the quantum aspects of black holes and how they appear in string
theory, we will begin discussing black holes in the most classical sense, as described by GR.
We will first provide a general description of black holes (focusing on the simplest example
of the Schwarzschild case), before examining the laws of black hole thermodynamics in
detail.



Chapter 1. Introduction

1.1 Black Holes

Defined more rigorously, a black hole region B in an asymptotically-flat spacetime (M, g,
is defined as the set of events from which outgoing null geodesics cannot reach future null
infinity, .# . The event horizon, defined as the boundary of the black hole region H = 91,
is a null hypersurface generated by null geodesics that have no future end points [12].

One further assumption that we shall make is that the black hole spacetime is
stationary. This means that the metric g, admits a one-parameter family of isometries
generated by a Killing vector which is timelike in the asymptotic region. In this case,
the rigidity theorems [13,14] establish that the event horizon is a Killing horizon: a null
hypersurface whose normal vector k* is a Killing vector of guyl. Consequently, the null
generators of the horizon are given by the integral curves of k*, satisfying

KV k= Kk (1.1)

on the horizon. k can be defined as the surface gravity of the black hole. If x # 0, then the
Killing horizon contains a (D2)-dimensional spacelike cross section B on which the Killing
field k* vanishes. B is then known as a bifurcation surface. The fact that s is constant
on the horizon H is known as the zeroth law of black hole thermodynamics (explained in
section 1.1.1).

The simplest example of a black hole is the Schwarzschild black hole, a black hole
possessing no rotation, electric, or magnetic charge. The line element of this case can be
presented as (using the (+4,--,-) signature)

s dr?
ds? = (1 Deygz - 4
r 1— o

—r2dQ?, (1.2)

where dQ? = df? + sin? 0d¢?, and R, is the Schwarzschild radius Ry = 2GM (assuming
natural units of ¢ = h = 1, where G is the Newton’s constant).

It is noted that two singularities occur at 7 = 0 and » = Ry in the above metric (a
component blows up in each case). The former case is known as a curvature singularity.
These singularities are properties of the spacetime itself, and as such are present in the
metric regardless of which coordinate system we choose; they are physical singularities.
The simplest way to see this is to check that at least one curvature invariant diverges there.
In the case of the Schwarzschild solution, the simplest non-trivial curvature invariant is
the Kretschmann invariant,

A8 M? cos? 6
_ _|._

RHPO —
76

R,uupo‘ 0(7’78)7 (13)
which also possesses a singularity at » = 0. The latter singularity at r = R, is a coordinate
singularity, which can be removed from the metric by changing our coordinate system. In
this case, r = R coincides with the event horizon of the black hole. This singularity arises

due to a poor choice of coordinates.

One of the best ways of removing this singularity is through the use of the Kruskal-
Szekeres’ coordinates. We wish for the two coordinates to be a linear combination of the

LA Killing vector is defined as a vector k, that satisfies the Killing equation, V(uk,y = 0. This means
the metric does not change along the integral curves of k*, and that the metric possesses an isometry along
k*. This can also be expressed in terms of the Lie derivative £ as Lrgu = V (k) =0

2



Chapter 1. Introduction

Figure 1.1: Penrose diagram of the extended Schwarzschild metric. Region I corresponds
to the area outside the black hole, while region II corresponds to the inside of the black
hole. Region IV is the white hole that arises in the new coordinates, and region III
corresponds to an alternative universe.

temporal and spatial coordinates. Defining the functions U,V implicitly by

Uv =(1- RLS)eT/Rs (1.4)
% = —el/Rs, (1.5)
our metric now reads as
4 3 _—r/Rs
ds? = M5 gy 202, (1.6)

Only the physical singularity at » = 0 remains in the metric. In addition, this
new form of our metric gives us a wider spacetime patch. The original Schwarzschild
coordinates only were valid for the region where r > R, the area outside the event
horizon. Our maximally extended spacetime includes the region of 0 < r < R,, as well as
two other regions, separated by the null hypersurfaces V = 0.

The best way to illustrate the black hole in the new coordinate system is through
the use of a Penrose diagram, where infinities are brought into a finite distance through
conformal transformations, as seen in figure 1.1. These transformations preserve light
cones, so light propagates at 45° in the diagram. Region I corresponds to the black hole
exterior, r > Rs. Region II corresponds to the region beyond the event horizon. Here, we
can see that any observer in II will always be doomed to reach the singularity, which is a
spacelike hypersurface instead of a timelike one. One notable consequence of the change
in coordinates is the appearance of two additional regions, due to the range of values U, V'
can take. We can visualize this by picturing the constant r curves as hyperbolas with two
branches, one occurring in Regions I/II, and the other in Regions III/IV. In the latter
case, III can be described as an alternative universe, while IV takes the form of a white
hole, where it is impossible for an object to enter, and everything inside is eventually
dispersed. The event horizon consists of the case of the two null hypersurfaces: U = 0 and
V' = 0. These divide into the future and past event horizons, with the future (past) horizon

3



Chapter 1. Introduction

occurring at U = 0 (V = 0) in Region I and at V' =0 (U = 0) in Region III. These null
surfaces intersect at the bifurcation 2-sphere, where k* = 0, which plays an important role
in some black hole calculations. Explicitly, in Kruskal-Szekeres’ coordinates, this Killing
vector takes the form k = x(Voy — Udy).

1.1.1 Black Hole Thermodynamics

Black-hole thermodynamics originates in the analogy between the behaviour of the area of
the event horizon A and the second law obeyed by the thermodynamic entropy S noticed by
Bekenstein [15,16] in the results obtained by Christodoulou and Hawking [13,17,18]. The
non-decreasing area of the black hole as a function of time, known as the Area theorem,
was first proposed by Hawking [19]. Shortly afterwards, Bardeen, Carter and Hawking [20]
extended this by proving another two laws of black hole mechanics, as well as conjecturing
a third, similar to the other three laws of thermodynamics involving the event horizon’s
surface gravity s, the angular velocity ) and angular momentum J, and the black hole’s
mass M. However, the analogy was only taken seriously after Hawking’s discovery that
black holes radiate as black bodies with a temperature T' = /27 [21], which implied the
relation S = A/4 (when we work in ¢ = Gy = h = k = 1 units). These laws can be
expressed in the following form

0. The surface gravity x is constant across the event horizon. This was initially proven
using the Einstein equations. Later on, it would be proven using the geometric
properties of the event horizon without the Einstein equations by Racz and Wald
[22]. This is analogous to the zeroth law of thermodynamic, which states that the
temperature is constant through a body in thermal equilibrium.

1. The variation of the mass is equal to the variation of the area of the black hole horizon
multiplied by the surface gravity, plus additional work terms: 6M = ¢-dA + QdJ,
where M is the total spacetime energy computed from the Hamiltonian, 2 is the
angular velocity of the horizon, and J is the angular momentum. This is similar to
the standard first law: 6 = T'dS + VdP + work terms. This is true as long as the
black hole is stationary, axisymmetric, and asymptotically flat.

2. The area of the black hole horizon is a non-decreasing function of time, which is the
area theorem proved by Hawking: dA > 0 assuming the weak energy condition: that
for all non-spacelike vector fields k%, T,pk®k? > 0 for the stress tensor Typ. This is
analogous to the second law of thermodynamics, which states that the entropy of an
isolated system will be given by AS > 0. This suggests the association of entropy
with the black hole area.

3. No method can reduce k to zero in a finite time. This conjecture was proved later
by Israel [23]. This is analogous to the third law in thermodynamics, which states
that T'= 0 cannot be reached in a finite number of steps.

Shortly after the publication of the black hole thermodynamic laws, Hawking discovered
that quantum fluctations of the vacuum in the presence of black holes caused them to
behave as black bodies, emitting a steady flux of radiation of temperature.

Ak

Ty = &
H 27r7

(1.7)
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This allowed the fixing of the constants in the Bekenstein Hawking entropy, utilizing

the first law:
An

T 4Gy

Spu (1.8)

The physical mechanism behind particle creation by black holes is analogous to the
Schwinger pair production in strong electric fields [24]. In the case of black holes, pairs of
virtual particles are created just outside the event horizon. One member of the pair has
positive energy and escapes to infinity to become part of the Hawking radiation, while
the other has negative energy and falls into the black-hole interior, to the region where it
can exist as a real particle. The net effect is that the mass and the area of the black hole
decrease, hence violating the second law of black-hole mechanics. Still, the evaporation
process does not violate the generalized second law of thermodynamics [25], which states
that the total entropy, i.e. the sum of the black-hole entropy and the entropy of the matter
fields in the exterior region, never decreases [26]. One consequence of the particle emission
is that black holes evaporate over time. Since the temperature is inversely proportional
to the mass in the case of a Schwarzchild black hole, the black hole will get hotter as it
evaporates.

Ever since the formulation of these four laws, attempts have been made to extend
their original domain of application. Since the surface gravity relation to the Hawking
temperature only depends on generic geometric properties of the event horizon, the quan-
tity whose variation it multiplies in the first law is naturally associated to the entropy
S. The Bekenstein-Hawking entropy however is derived from GR, and as such, is not
necessarily valid in other cases.

In Refs. [22,27,28] Wald and collaborators developed a new approach based on the
Noether charge, in order to demonstrate the first law of black hole mechanics in general
diffeomorphism-invariant theories, beyond and including GR. They introduced the concept
of the Iyer- Wald entropy, which in GR can be reduced to the Bekenstein-Hawking entropy
% However, in the presence of o corrections in Superstring Theories (or any higher
order curvature corrections in general), the entropy is no longer solely determined by the
area [29-34].

The explicit form of this Iyer-Wald entropy formula is generally written as [22]
(taking h=1)

S = —271'/ dP2z/ |h|5j'§b6deabecd, (1.9)

pX
where we define |h| as the determinant of the metric on the bifurcation surface ¥, €,y is the
binormal on the horizon defined such that e,,¢®® = —2, and Sj‘fszd represents the equivalent

of the equation of motion for the Riemann tensor if it was treated as an independent
variable:

abed __ i )
" \/§ 5Rabcd .

(1.10)

When Iyer and Wald derived their entropy formula, they made a few assumptions,
some of which we will address in detail later. Their derivation looked at Lagrangian
theories on an n-dimensional oriented manifold M, with dynamic fields consisting of a
Lorentz signature gq,, along with other fields ¢. A major assumption that was made,
which we shall discuss later, is that for simplicity, all fields ¥ were assumed to be tensor

5



Chapter 1. Introduction

fields on M. In addition, they were only interested in diffeomorphic invariant theories,
and all fields and spacetimes were assumed to be smooth.

1.2 Conservation laws

In order to understand the Wald entropy, one must first understand the notion of symme-
tries and conserved charges.

Recall that for some action S written in the form S = [ d?zL(¢, 8¢, d%¢,...), the
arbitrary infinitesimal variation of the field d¢ takes the form

oL oL oL
_ d
0S8 = /Ed x [8¢5¢ + 788u¢58”¢ +

55,0, 000t | (1.11)

By assumption, the variation of the coordinates is zero. This means that the deriva-
tives commute with the variation of the field. We then must integrate by parts, and
use Stokes theorem to express the integral of the total derivative as an integral over the
boundary.

In theories without higher order derivatives, L£(¢,d¢), if we impose the condition
that the variation of the fields vanishes over the boundary, the boundary terms will vanish.
However, if higher order derivatives are present, we require to either impose boundary
conditions on the derivative of the variation of the field, or we must introduce boundary
terms to the action that keep the equation of motion, but eliminate the 0d¢ terms in
the total derivative. Once these are satisfied, and assuming that the action is stationary
65 = 0, we arrive at the Euler-Lagrange formula, which is utilized to find the equations
of motion:

08 oL oLr oL
T
)+ 0"0 (86#6%

) — ... (1.12)

From here, we will derive an extremely important concept of physics: the notion of a
conserved charge. A conserved quantity remains invariant along the classical trajectories
of a given dynamical system. For example, in an isolated system, energy is conserved.
Mathematically, this can be represented by the continuity equation d,J" = 0. In this
case, JH is called the conserved current, because it is used to define a quantity (charge)
that is conserved in time: @ = fz: J for an arbitrary Cauchy surface 3.

1.2.1 Noether’s first theorem

Conserved charges can be related to the symmetries via Noether’s theorems (see [35] for
original formulation). Noether’s first theorem states that for every global symmetry of
an action, there exists an associated conserved charge. Global symmetry transformations
apply the same transformation to each point in spacetime. In other words, for some
infinitesimal transformation for coordinates and fields z, ¢ respectively, dz# = o442
and 0¢ = 045 4¢, where d4x* and d4¢ are given functions of the coordinates and ¢, and
O'A, A=1,...,n are constant transformation parameters.

Generally, the variation of any action S which is a function of dynamical fields ¢
can be written in the form

55 = / 2 (B¢ + 9,0" (6, 66)], (1.13)
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where summation is understood over all fields. Here, E are the various equations of motion,
and 0,0 are the additional total derivative terms.

Let ¢(x) be a general set of coordinates; then a transformation of the coordinates
®)(x) to new coordinates ¢’ (x) is a symmetry if the action functional does not change when
we evaluate it in these two different sets of coordinates. We want to find the consequences
of the invariance, possibly up to a total derivative that depends on the variations, of the
action under the above infinitesimal changes of the field d5¢ (which are, then, symmetry
transformations). Therefore, we define ds¢(x) such that for any ¢(x),

355[p(2)] = S[o(x) + ds¢(x)] — S[é(2)]
= / A%z, K" (1.14)

Note that we have not imposed the equations of motion.

We can now prove the first Noether theorem by utilizing the variation (1.14) and
combining with (1.13). Since equation (1.13) holds for all variation d¢, including ds¢, we
can use the infinitesimal symmetry transformation d;¢ so that

5,5 = / (5,0 + 0,0"(6, 6:0))
_ / 0120, K" (1.15)

Using the fact that the domain of integration is arbitrary, we can therefore subtract the
equations and arrive at a total derivative term. This yields the conservation law

9,J" = By (1.16)
Th = —0,0M(¢, 550) + K" (¢, 550). (1.17)

J# is what is known as the Noether current, or the conserved current. In the onshell
case (when the equations of motion are satisfied), then 9,J* = 0. This is Noether’s first
theorem: that given a symmetry ds¢(x), there must exist a conserved current J given by
(1.16).

1.2.2 Noether’s second theorem

By contrast, Noether’s second theorem is applied to local symmetries, which depend on
the given point of the manifold (for a more detailed discussion, see for example [36] and
references therein). Consider some fields ¢ and a Lagrangian £(¢). The generating set
of non-trivial gauge symmetries of ¢ are given by d;¢° = RL(f*) = R’J}. Here, R!, =
Y ko Ra(“ Lot k)(?m ... 0y, are operators, and f, are arbitrary local functions of coordinates
and fields. By definition of gauge symmetry, R’ (f®) must satisfy

oL
dpt

Ro(f*) 5 = 8uJ}, (1.18)
oL
5pt
J}‘ are simply the Noether currents associated to the symmetry ;. From this, we can

where

is the Euler-Lagrange derivative of £(¢), and J]‘f are a set of local functions.

7



Chapter 1. Introduction

arrive at Noether’s second theorem, which states that for the Euler-Lagrange equations of
motion, there exist associated offshell identities

i+ 0L _
RJ&@'_O (1.19)
R (Qi) =D (—1)F0,, ... 0 [RIF-9)Q;), (1.20)
k=0

where Q; are local functions. Our operator R%" is obtained from the original operator R?,
by integrating by parts and ignoring the boundary terms. Noether’s second theorem also
leads to conserved charges, as we shall see below.

We shall show how this theorem applies in our specific case and notation. We shall
follow the calculations done in [28] and [22]. It is most useful in our case to convert the
coordinate notation to differential forms, using the standard convention:

1
w® — memwdzm Ao Adahe (1.21)

In this case, the variation of our Lagrangian takes the d form 0L = Ed¢p+dO®(¢, d¢),
while the second Noether’s theorem then takes the form Zle D'E; = 0, where D’ are the
differential operators and E; are the equations of motion.

Consider some vector field {* on a manifold M, as well as the field variation d¢¢ =
—L¢¢p. Here, we define L as the Lie derivative with respect to {. Due to the diffeomorphic
invariance of L, we can express the variation of our action as

5eS = / 5eL

_—/m@, (1.22)
where we utilize the Cartan relation

,CgA = lfdA + d(lgA), (1.23)
where A is a generic differential form.”

Let us then consider the transformations of f 0¢L:

3¢S = / 5eL

- / [Ede¢ + dO)]. (1.24)

By integrating equation (1.24) by parts, as well as by employing the Noether iden-
tities, we arrive at an expression where only the total derivative does not vanish. It can
therefore be written as

*In our conventions, for a p-form w® with components w® ..., 2w is the (p — 1)-form with

components (160 ® )y, s, = €0y, -
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/ [Béed + dOJE]) = / 10'[¢]
= 55 (1.25)

Note that ® = © onshell (when the equations of motion are satisfied).

By combining equations (1.22) and (1.25), we arrive at

/ d(©/[¢] + 1L) = 0
O'[¢] + 1L = J[¢]. (1.26)

This n — 1 form J[¢] is the Noether current. As this is independent of the equation
of motion, dJ = 0 identically offshell and in the domain of integration. Since our current
is closed for all £ locally, then there must exist some n — 2 form Q such that

J =dQ. (1.27)

Q is known as the Wald-Noether charge relative to our vector field £¢.

1.2.3 Issues with the Iyer-Wald formula

In the presence of matter fields, Wald’s proof of the first law of black-hole mechanics had to
be re-examined because one of the main assumptions of Refs. [22,28] is that all matter fields
behave as tensors and, simply put, there are no tensor fields in the Standard Model apart
from the metric; all of them have some sort of gauge freedom and their transformations
under diffeomorphisms are always coupled to gauge transformations. Indeed, as is well-
known, fermionic fields coupled to gravity transform under the local Lorentz group as
spinors and bosonic fields must transform under some gauge group if unwanted, typically
negative-energy, states are to be eliminated. The only scalar in the Standard Model, the
Higgs field, is, in fact, an SU(2) doublet.

The simplest matter field that, coupled to gravity, allows for black-hole solutions
is the Maxwell field [37,38]. The presence of this field introduces an additional term of
the form ®d(@) in the first law which takes into account the changes in the mass of the
black hole when its electric charge Q@ changes. In this term & is the electric potential on
the horizon and a generalized zeroth law states that it takes a constant value over the
horizon. The value of ® is customarily taken to be k#*A,, where k* is the Killing vector
for which the event horizon is its associated Killing horizon and where it is assumed that
the electromagnetic field is in a gauge in which & is, indeed, constant.

This definition of ® is clearly not gauge-invariant. This is a problem of principle,?
which, as we are going to show, is related to the more fundamental problem we were
discussing: the fact that Wald’s proof of the first law does not deal properly with fields
which have some kind of gauge freedom. In Wald’s proof, one considers diffeomorphisms

3There are other problems as well: in Wald’s approach, the Noether charge, which contains a term in
which ® occurs, is evaluated over the bifurcation surface, but the Maxwell field of the Reissner-Nordstréom
black hole turns out to be singular there in the traditional gauge [39].

9
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which are symmetries of all the dynamical fields, but the naive definition of invariance of
fields with gauge freedom under diffeomorphisms through the standard Lie derivative is
not gauge invariant. This problem affects the gravitational field itself when it is described
in terms of the Vielbein instead of the metric.

This problem was first noticed and solved by Jacobson and Mohd in Ref. [40] for the
Einstein-Hilbert action written in terms of the Vielbein. The solution consists of going
back to the basic formalism of [27,28] and dealing carefully with the gauge (local Lorentz)
symmetry. In practice, this means taking into account the gauge transformations induced
by the diffeomorphisms on the Vielbein. This can be done, for instance, by defining a
Lorentz-covariant Lie derivative (Lie-Lorentz derivative) which can be decomposed into a
standard Lie derivative and a local Lorentz transformation. Apart from being covariant
under local Lorentz transformations, this derivative vanishes identically when the diffeo-
morphism is an isometry of the metric (see Refs. [41,42]* which build on earlier work by
Lichnerowicz, Kosmann and others [44-50]). Gauge-covariant derivatives arise naturally
in the commutator of two local supersymmetry transformations and in the construction
of Lie superalgebras of supersymmetric backgrounds [42,48-50].

A more general mathematically rigorous approach was proposed in [51] using the
formalism of principal gauge bundles which encompasses Yang-Mills and Lorentz fields
but, unfortunately, not the Kalb-Ramond (KR) field or higher-rank form fields of string
theory.” Perhaps the most interesting result in that paper is the realization that all the
zeroth-laws (the constancy of the surface gravity, electric potential etc.) on the horizon fit
a common pattern.

In Chapters 3-5, we shall make use of these covariant Lie derivatives, which will be
constructed from momentum maps, which we will discuss in detail. We shall also illustrate
how the Lie-Lorentz derivatives can be used to extend the proof of the first law of black
hole mechanics to supergravity.

1.2.4 Momentum maps

One of the main ingredients in the proofs of the first law of black hole mechanics using
Wald’s formalism [22, 28] is the use of infinitesimal diffeomorphisms that leave invariant
all the dynamical fields.

If we use the metric g,,, as dynamical field, since the metric is just a tensor, its

transformation under infinitesimal diffeomorphisms d¢z# = £#(x) is given by (minus) the
standard Lie derivative

559#1/ = _£§guu = _2v(p,§1/) ) (1'28)

which vanishes when £ is a Killing vector of g,,,,, that we denote by k*.

If, as we want to do here, we use as dynamical field the Vielbein e, instead of g,
in order to define its symmetries, we face the well-known problem of the gauge freedom of
e®,, which in this context has been treated in Refs. [40,51]. The same happens with the
electromagnetic potential A,,, which also has been treated in this context in Refs. [51].

1See also Ref. [43] for a more mathematically rigorous point of view.
®The first law has been proved for theories including one scalar and one p-form field in [52], although
the gauge-invariance problem has not been discussed in it.

10
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One way to deal with this problem is to define a gauge-covariant notion of Lie deriva-
tive. The Lie derivative in the corresponding principal bundle, used in Ref. [51] provides
the most rigorous definition of such a derivative. Here we will introduce a less sophisti-
cated version that makes use of the so-called momentum map and which can be defined for
more general fields such as the Kalb-Ramond 2-form of the Heterotic Superstring, which
cannot be described in the framework of a principal bundle [53]. Due to its simplicity, we
start with the Maxwell field.

The electromagnetic field A, is a field with gauge freedom: we must consider phys-
ically equivalent two configurations that are related by the gauge transformation

OnAu = 0uX s (1.29)

and, furthermore, as a general rule, it is not possible to give a globally regular expression of
the electromagnetic field in a single gauge.® However, the standard Lie derivative does not
commute with these gauge transformations and gives different results in different gauges.
This is why a gauge-covariant notion of Lie derivative is needed in this case.

In the subsequent discussion it is convenient to use differential-form language. In
terms of the electromagnetic 1-form potential A = A,dz", we define the electromagnetic
field strength 2-form by F = dA so that it satisfies the Bianchi identity dF" = 0. In
components we have

F = 5F,dzt A da” Fu, = 20,A, . (1.30)

The field strength is invariant under the gauge transformations 6, A = dx and we can
treat it as a standard 2-form whose transformation under infinitesimal diffeomorphisms
generated by & is given by (minus) the standard Lie derivative which, on p-forms, acts
as £¢ = 1¢d + die. Using the Bianchi identity we find that

5eF = —diF . (1.31)

If k& generates a symmetry of all the dynamical fields, we have that 6z F = 0 and
the above equation implies that, locally, there is a gauge-invariant function P called
momentum map such that”

wF = —dPy. (1.32)

Py, is defined by this equation up to an additive constant.

Let us now consider the variation of A under infinitesimal diffeomorphisms, which,
according to general arguments (see e.g. Refs. [42,51]) has to be given locally by a combi-
nation of (minus) the Lie derivative and a “compensating” gauge transformation generated
by a &-dependent parameter x¢ which is to be determined by demanding that 6,A = 0
when 6, F = 0:

5EA = —££A + dX§ = _ZfF + d(Xg — ZgA) . (133)

Then, taking into account Eq. (1.32), we conclude that

5The main example of this situation is the magnetic monopole [54].
"The sign of Py, is purely conventional.
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Xe = 1A = Pe, (1.34)

where P¢ is a function of £ which satisfies Eq. (1.32) when £ = k and generates a symmetry
of all the dynamical fields.

It is natural to identify the above transformation d¢ A with (minus) a gauge-covariant
Lie derivative of A that we can call Lie-Mazwell derivative

(5514 = —LEA, ]LgA = lfF + dpg . (1.35)

While this derivative does not enjoy the most important property of Lie derivatives
[£e, £9] = Lig ) for generic vector fields £, 7, it is clear that it does for those that generate
symmetries of A, F' and g,,, and annihilates them. This is sufficient for our purposes.

For stationary asymptotically-flat black holes, when the Killing vector k is the one
normal to the event horizon, the momentum map can be understood as the electric poten-
tial ® which, evaluated on the horizon ®4,, appears in the first law.® In the early literature
(see e.g. Section 6.3.5 of Ref. [56]) it was assumed from the start that there is a gauge in
which

£ A=1,dA+ diy,A=0. (1.36)

Then, the electric potential & was identified with 2 A because, according to the above
equation, d® = —1, F', which can be defined as the electric field for an observer associated
to the time direction defined by k.

It is clear that Py can be identified with ® (both satisfy the same equation). However,
in a general gauge, it will not be given simply by ;A and we will have to compute it.
Nevertheless, the main property of @, namely the fact that it is constant over the horizon
(sometimes called generalized zeroth law) still holds because it is, actually, a property
of —1;F' based on the properties of k, the Einstein equations and the assumption that
the energy-momentum tensor of the electromagnetic field satisfies the dominant energy
condition.

For a more complex example, we can consider the KR field of the effective string
action compactified on the torus, whose field strength is given by
H=dB - 1A NdA, (1.37)

where A consists of the Kaluza Klein and winding vectors:

Al = ( o ) . Fl—adl. (1.38)

The O(n,n) indices are raised as A; = QA7 where Q;; is the off-diagonal form
of the O(n,n) metric

Q) = ( 1 0 ]lnoxn ) : (1.39)

nxn

8See, for instance Ref. [55] for a proof of the first law in the context of 5-dimensional supergravity and
the role that ® plays in it.
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It is convenient to start by considering the transformation of the 3-form field strength
H defined in Eq.(1.37) under diffeomorphisms. We start by defining the gauge transfor-
mations that leave H and F! invariant.

S A =dx!, (1.40)

6B = (65 + 0y)B = dA + Sxsd A", (1.41)

where x!(z) is an O(n, n) vector if scalar gauge parameters and A = A, (z)dz* is a 1-form
gauge parameter

Since H is gauge invariant, upon use of its Bianchi identity
6¢H = —LeH = —1edH — digH = 1 Fy ANF! — dueH . (1.42)

When ¢ = k, this expression must vanish by assumption, and we can use Eq. (1.32),
which leads to the identity

6¢H = —d (y,H + Py F') =0, (1.43)

which, in turn, implies the local existence of a gauge-invariant 1-form that we will also
call a momentum map, satisfying

—yH — Py Fl = dPy. (1.44)

The KR momentum map plays a fundamental role in the definition of the variation
of the KR 2-form B under diffeomorphisms which should be of the general form

0B = —£cB+ (0a, +0y) B, (1.45)

where x¢ and A¢ are scalar and 1-form parameters of compensating gauge transformations.
They will generically depend on A’ and B as well as on &. Xgl has to be the same
parameter used in the definition of the Lie-Maxwell derivative Eq. (1.34) and we just have
to determine A¢. Now, the Maxwell and Lorentz cases suggest that we try

A¢ =14B - P, (1.46)

which leads to

0¢B = —£eB+d(1eB — Pe) + Sxerd A
(1.47)
= — (ZgH + P&[.FI + dpg) + %A] A\ Zg.FI + %’ng./_"l .
When ¢ = k, though,
6B =d (3P, 1 AT) . (1.48)

This is not zero but it can be absorbed into a redefinition of Ag:

13
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Ae = 1B — P — 1Py AL, (1.49)

which gives the variation

6¢B = — (1eH + Pe [ F' +dP) — A1 A G AT (1.50)

This form of the variation makes it evident that ;B = 0, because 6z A! = 0 and because
of the definition of the KR momentum map 1-form Eq. (1.44).

It remains to check that the vanishing of this variation is a gauge-invariant statement.
Indeed, if we perform a gauge transformation in J¢B, taking into account that all the
momentum maps and (55./41 are gauge-invariant, we find

Ogaugede B = — 1 6gaugeAr A 6 AT (1.51)
which vanishes identically for £ = k.

Much like the electrostatic potential, we find that since the field strengths are regular
on the horizon,

wF 2o, (1.52a)

wH 2 0. (1.52b)

It is possible to prove the first law using Wald’s formalism working on the bifurcation
sphere BH, where the Killing vector k associated to the horizon vanishes. This restricts
the necessity of the proof to bifurcate horizon but, on the other hand, it makes it possible
to carry out the proof of the first law using a more restricted form of the (generalized)
zeroth laws which states the closedness of the electrostatic potential and its higher-rank
generalizations on BH. We shall illustrate this proof for our specific example in Chapter
4. In general, our calculations take place on BH, so this restriction does not prove to be
a problem.

1.3 String theory

String theory” is one of the leading candidates in the attempt to unify quantum field theory
with GR. In this theory, point-like particles are replaced with one-dimensional “strings”.
These strings possess a Regge slope parameter o/, which sets the fundamental length and
mass of the theory, the string length I and string mass my, as o' = I2 = m 2. Besides o/,
there is also a dimensionless string coupling constant gs, defined as the vacuum expectation
value of the dilaton: gs =< e? >. The spectrum of ordinary particles is then believed
to emerge as the spectrum of different string vibrational modes, remarkably leading to a
massless graviton, which is the particle that mediates gravitational interaction.

The most basic example of an action describing a free string in a d-dimensional
curved background with a metric g, is given by the Nambu-Goto action:

1 2
_ n 1.
Sna o /Sd £/ 1951 (1.53)

9For a review of string theory, see for example [57-59)
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where ¢ : i = 0,1, are the worldsheet coordinates and gij is the induced metric on the
worldsheet, given by
gij = g#,,(X)BiX“an”. (154)

X*(E) : p=0,...,d —1 are the spacetime coordinates of the string. It is convenient to

introduce the string tension 7', which is given as ﬁ

The Nambu-Goto action is highly non-linear and therefore very difficult to quantize
even in Minkowski space. Therefore, it is generally convenient to work with a theory that
is quadratic in derivatives, by introducing a worldsheet metric «;;. This is known as the
Polyakov action, and takes the form

T g

Sp = —2/W 2N 1YY g (X) 0, XH0; XV (1.55)
The equation of motion of the worldsheet metric gives the vanishing of the energy-
momentum tensor,

1
9 (X) 0; X410, X" — §’yz~j’yklgu,,(X) WX XY =0, (1.56)

which can be used to obtain the following (onshell) relation between the worldsheet metric
and the pullback of the background metric:

Yij = —, where gk = gu - (1.57)
9k
If we substitute this solution into equation (1.55), we simply arrive at the Nambu-Goto
action(1.53), showing that the two are classically equivalent.

In addition to being invariant under the worldsheet reparametrizations, the Polyakov
action is also invariant under the following local scale transformations of the worldsheet
metric, known as Weyl transformations:

Yij = P (E)vij - (1.58)

This symmetry has very important consequences, specifically in terms of the quantization
of the Polyakov action: it allows one to gauge away the worldsheet metric completely.

It is also possible to add another Weyl-invariant term to the Polyakov action without
an additional field: the Einstein-Hilbert term:

Soute = —32 [ 6 VRIR() = dox. (1.59)

However, this is a total derivative term, and as such does not change the classical
equations of motion. This term is actually just ¢ multiplied by a topological invariant y;,
where y = 2 — 29 — b — c is the Euler characteristic. Here, g is the genus, b the number of
boundaries, and ¢ the number of crosscaps (in the case of a non-orientable theory). This
$o term is used in the exponential for the coupling constant g5 = e®. In particular, ¢q is
just the VEV of ¢. To see this, consider the calculation of the string amplitudes, which
are defined as path integrals over all embeddings X* and all worldsheet metrics «;; with
given boundaries and boundary data that determine the string states that are scattered.
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The boundary data are included as vertex operators in the path integral. Without vertex
operators, we have vacuum amplitudes, given by the path integral

7 = / DX Dre~ 9P Seuler, (1.60)

The sum over metrics can be decomposed into a sum of path integrals over worldsheets
with given topologies. The topology of two-dimensional surfaces can be characterized
completely by g, b, and ¢, which are combined into the Euler characteristic . Therefore,
our result takes the form

Z =Y (e) X" / DX Drye 5P, (1.61)
t

where ¢ stands for the given topologies and {¥;} are the spaces of surfaces with topology
t. The above sum can be understood as a perturbative expansion, where e® plays the
role of the string coupling constant g.

Let us discuss the canonical quantization of a free bosonic string. To do this, we
must first examine the boundary conditions of the bosonic string. The variation of the
Polyakov action (1.55) yields the following boundary term

/ AW S X 9, X" g (1.62)
ow

which does not vanish for open strings. In order to make it vanish, one can impose
Neumann (N) boundary conditions

%X ow =0 (1.63)

For a free open string, imposing the Neumann boundary conditions is equivalent to
the case of no momentum flowing through the endpoints of the strings,

61X'“|£1:0’g - 0 (164)

Alternatively, one could impose Dirichlet (D) boundary conditions,

X |ow = (1.65)

where ¢# are constants. This explicitly breaks translation invariance.

These boundary conditions determine the different possible spectra. In a relativistic
theory, the polarization states belong to representations of the little group, the subgroup of
the Lorentz group preserving the particle momenta.'’ An analysis of the spectra of closed
and open bosonic strings reveals that this only occurs in d = 26 spacetime dimensions,
which is known as the anomalous dimension. We are generally interested in the lightest
states of the spectra, which govern the low-energy dynamics. In the case of the closed
string, the lightest (non-tachyonic) states are massless, and they fit into representations
of SO(24), represented by fields that fit into representation SO(1,25). These are a spin-2
state, the graviton, represented by a symmetric tensor field (metric) g,., a spin 1 state,

10The little group is SO(d — 1) for massive particles and SO(d — 2) for massless particles.
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represented by the KR 2-form B,,,, and the dilaton, represented by a scalar field ¢. In
the open-string sector with NN boundary conditions (where both sides possess Neumann
boundary conditions), the lightest state is also massless, a spin 1 state, represented by
the vector field A,. In the case of a DD boundary condition (with both sides possessing
Dirichlet boundary conditions), the mass of the lightest state is dependent upon the sepa-
ration between the D-branes which the string endpoints are allowed to move. For example,
if the boundary conditions are imposed on a single spacelike direction X with both ends
of the string lying on the same hypersurface (X|¢,—o = X|¢ —¢), the spectrum contains
a massless vector field and a massless scalar. The scalar corresponds to the Goldstone
boson, and is associated with the breaking of the translational invariance of the vacuum
due to the presence of the D-brane. The vacuum expectation value of the boson gives
the position of the brane in the x axis, and its profile describes fluctuation of the brane
around this position.

However, in addition to the massless modes, there also arises a tachyonic scalar.
These tachyons signal that the bosonic string theory is quantum-mechanically unstable.
This can be solved by the addition of supersymmetry (though it should be noted that su-
persymmetry is not necessary do eliminate the tachyons). In addition, we want spacetime
fermions to appear in the spectrum.

1.3.1 Superstring theory

The generalization of the Polyakov action, which is also invariant under local worldsheet
supersymmetry transformations, is [60,61]

T y _ o 1 _
S = 3 /W d2§€ [’YZJaiXHanM - “/’ﬂuTW + X0 p' (2 wuanu + 5ij‘%) , (1.66)

where ¥* and y; are the worldsheet spinors, e®; is the vielbein and p’ = p®e,’ are the
two-dimensional gamma matrices. Due to the invariance of this action under super-Weyl
transformations, it is possible to eliminate the vielbein and the gravitino x; completely.
This gives rise to the Ramond-Neveu-Schwarz (RNS) action [62,63],

T . _
Srns = —5 /W d2¢ (nwa,;X“an# - w"awu) . (1.67)

Varying with respect to the spinor, a non-trivial boundary term arises. In order to
cancel this, we need to impose appropriate boundary conditions. The possibilities depend
on whether we are considering open or closed strings, with each having either Ramond(R)
or Neveu-Schwarz(NS) conditions, which correspond to .

String type R NS
Open Vlleizo = Vhleico, Vileme = Vgleize | Vile—0 = Ylei—0, Vflei—e = —Vhle—e
Closed VL rlei=0 = V7 ple= VL plei=0 = Y7 ple=

Table 1.1: Boundary conditions for RNS action

Here, gb]“% ;, denote the right- and left-moving components of the fields. Notice that
in the case of the closed string, the boundary conditions for the left and right moving
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Chapter 1. Introduction

fields are determined independently of each other. As a result, there are four possible
cases compared to the two cases of the open string: NSNS, NSR, RNS, and RR.

Superstring theories are Poincaré invariant only in the critical dimension d = 10. It
is necessary to introduce the worldvolume fermion number F, defined modulo 2. The R
and NS sectors are separated into Ry and NS subsectors with respect to the operator
e™F' Then, consistency and the absence of tachyons require the combination of these
subsectors (GSO projection) in very precise ways. A total of five different theories arise:
Type ITA, Type IIB, Type I, and the two heterotic theories SO(32) and Eg x Eg. The first
two preserve N = 2 spacetime supersymmetry, and correspond to the non-chiral (ITA) and
chiral (IIB) theories. By contrast, the other theories only preserve N’ = 1 supersymmetry.
The heterotic string is composed of right moving fields of a type II superstring, with a left-
moving fields of a closed bosonic string (propagating in 26 dimensions). The 26 dimensions
that normally appear in the bosonic theories are compactified down to ten dimensions,
with the 16 compactified spacetime dimensions giving rise to the gaugini x and vector
fields A4. The difference between the two heterotic theories depends on the gauge group,
and the two are related to each other via T duality. Finally, the type I string theory also
possesses the vector fields, but is constructed differently, consisting of unoriented strings
as well as both closed and open strings, and also possesses the SO(32) gauge group. A
summary of the massless excitations of the theories can be seen in Table 1.2.

Theory NSNS RR Chiral | Non-chiral Vector
fermions | fermions | multiplets
Type ITA | g, By, ¢ cW,,Cc®,,, Py A
Type IB | g, B, ¢ | C©,C? ,,,CH ., LA
Typel Guvs P C(z)uu Yy A AAa XA
Heterotic | guu, Buv, Uy A AL A

Table 1.2: Massless excitations of various superstring theories.

1.3.2 Effective string action

It is helpful to examine the low energy limit, which corresponds to o/ — 0, the limit
where strings become infinitely small, and 7" — oco. These effective theories are useful, as
this scenario corresponds to point-like particles, so a field theory must be recovered. In
addition, the effective theory corresponds only to the massless modes, as the massive modes
decouple from the low energy dynamics, due to their masses being given as proportional
to \/107 To determine the effective field theories, one traditionally constructs a field theory
that reproduces the string amplitudes as o/ — 0. Higher order terms of o’ are occasionally
used for additional corrections, they are higher order derivative terms, though often these

are dropped to the lowest order, as the complexity grows rapidly at higher order.

The orthodox procedure to find these effective actions would be to construct a field
theory reproducing the string amplitudes in the o/ — 0 limit; however, there are other
approaches which ultimately yield the same result. A particularly interesting one, which
reflects how crucial conformal invariance is in string theory, consists of coupling a string
to general background fields and studying which conditions must be satisfied by the latter
in order to preserve conformal invariance at the quantum level.
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To visualize this, consider a closed bosonic string, whose coupling to the background
fields g, By, and ¢ (the graviton, the KR form, and the dilaton respectively) is given
by the generalized Polyakov action:

|’7 { [’Y g/ux - (_CZ]B#\/%AX)] aiXuanV —|—O/¢(X)R(’7)} . (1.68)

The conditions under which conformal invariance is preserved were studied in [64], where
it was shown that they boil down to the vanishing of the following 3-functionals:'!

9, = o (RW —2V,0,¢ + iHﬂp"H,,pg> +0(?), (1.69)
/
B %e%w (e—%HW) +O®?), (1.70)
/
B? = —% (v% — (0¢)? — fR — 48H2> + 0(a?), (1.71)

where H,,, = 30),B,, is the 3-form field strength of the Kalb-Ramond 2-form B,,. At
leading order, this is equivalent to the equations of motion that can be derived from

_ d 2 IR
S = o Gd)/d x\/|gle” [R 4(0¢)? uby 3'H} (1.72)

with the addition of a term

2
2(d — 26
gd/ddx lg] e 2?[=2(d—2)A] A= ¥
167G 3a/(d - 2)
which vanishes at d = 26 for bosonic string theories. Thus, we see that quantum conformal
invariance leads (in the critical dimension) to the same effective action for the string
common sector.

(1.73)

This can also be expanded to higher orders of /. If w® = w#“bd:r“ is the Levi-Civita
spin connection,'” we define the zeroth-order torsionful spin connections'

N0

(£)ab = = wep = zbzaH(o), (1.74)

and their corresponding zeroth-order curvature 2-forms and Chern-Simons 3-forms

(0) a ©ab _ O a 5O

R = anf) et — o) A ), (1.75a)
(DO) _ 0 a n @b | 100 a \ 06 A o0«

wi)” = R % AL e+ 3L % A L e A D (1.75b)

' As recently showed in [65], these are a set of sufficient but not necessary conditions.

121f ¢ = ¢*,dx" are the Vielbein, the spin connection is defined to satisfy the Cartan structure equation
De® = de® —w, Aeb = 0.

BWe denote by 2, A the inner product of e, = e,"0, (ea“ebH = 0%) with the differential form A. If A
is a p-form with components Ay, .., 2aA is the (p — 1) form with components eq” Aupy - pu,_; -
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w(i) 9) is known as the Lorentz Chern-Simon 3-form at zeroth order.

When we expand the d = 26 bosonic string theory to this higher order, the action
will take the form (ignoring the prefactor for convenience) '

S = /ddx lg] e [R — 4(89)* + 1 e

2-3!
(1.76)
o vab vab
iy <R<—)uuabR(—)“ + Ry wan R ) + 0(0/2)] :
where now the 3-form field strength is defined as
_ o (L L

When we examine superstring theories, the effective actions are fixed by spacetime-
supersymmetry up to redefinitions, which strongly limits the possibilities. In the case
of d = 10, the possibilities vary depending on if N' = 1,2. For theories with N = 2
supersymmetry, there are two possibilities: the so-called N' = 24 and N' = 2B [68-71],
which describe the low-energy dynamics of type IIA and type IIB theories respectively at
lowest order. Then there is the A” = 1 supergravity theory, which describes both the low-
energy effective actions of heterotic and type I theories. In this theory, the supergravity
multiplet consists of the vielbein e?,, the dilaton ¢, the gravitino ,, the dilatino A
and a 2-form, which can be either the KR 2-form B, or the RR 2-form c® uvs Whose
main difference at the level of the low-energy action lies on the coupling to the dilaton.
This supergravity multiplet can be consistently coupled to a Yang-Mills vector multiplet,
which contains a vector field AAH and a gaugino x* needed for the heterotic and type I
superstring effective actions.

Normally, N = 1 supergravity possesses gauge and gravitational anomalies. How-
ever, it has been shown [72] that in the case of the SO(32) and Eg x Eg gauge groups,
these can be cancelled by adjusting our definitions. For this work, we will focus solely on
the bosonic portion of the heterotic string.

Making the necessary field redefinitions, the Heterotic Superstring effective action

can be described at first order in o/ as follows [73]:'° we start by defining the zeroth-order

Kalb-Ramond (KR) field strength H(®) and its components H® ,,, as

HO = dB = LH) da A dat A da? (1.78)

where B = %B,Wd:z“ A dx* is the KR 2-form potential. Next, we define the gauge field
strength 2-form and the Chern-Simons 3-form for the YM field A4 = A4 pdx? by

A = dAY + Lt AP A A, (1.79)

w™ = FyNAY — Lfapc At A AB A AC, (1.80)

See also [66,67].
15We use the conventions of Ref. [42], reviewed for the zeroth-order case in Ref. [74]. In particular, the
relation with the fields in Ref. [73] can be found in Ref. [75].
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where we have lowered the adjoint group indices A, B,C,... in the structure constants
fag® and gauge fields using the Killing metric.

Then, we can define the first-order KR field strength 3-form as

!
HO = BO 4 % (0 4 (B0 | (1.81)

Where w'® is the Lorentz Chern Simon 3-form defined in (5.3b). Its Bianchi identity

takes the well-known form

/
dHW = O‘Z (FA AFA+ RO A Rgﬂ))ba) : (1.82)

Having made these definitions and adding the dilaton field ¢, we can write the
Heterotic Superstring effective action to first-order in o' as

(d)2
SWe?, B, A%, ¢] = 987@ /e—2¢ [(—1)4—1 * (€® A e?) A Ryp — 4dp A *dp
167Gy

O[/

FIHW AHD 4 (71)dz (FA AxFA 4 RO ab/\*R(O))ba)] (1.83)

(=) (=
= /L(l).

1.3.3 Dualities

While initially thought to be distinct from each other, it was discovered that the five
superstring theories were in fact related to each other via various dualities, suggesting
they could be just different limits of the same theory.

The first duality, S-duality, is a strong-weak coupling duality, which relates a theory
with a coupling constant gs; to a theory with a coupling g%. By definition, these are non-
perturbative, and as a result, their existence was inferred by the properties of the effective
action and the non-perturbative states. One example is the IIB theory: it possesses a
global symmetry SL(2,R) that is broken to SL(2,Z) by quantum effects [76]. In IIB,
the complex field 7 = C© 4+ je=¢ (for a RR 0-form C(® and a dilaton ¢) transforms
nonlinearly under SL(2,R). Taking C°) = 0, we see that the transformation 7 — —%
changes ¢ — —¢. This corresponds to the coupling constant gs being inverted. Another

example relates the Type I theory to the SO(32) heterotic theory.

The second duality, and the one which we shall focus on, is the T duality (see for
example [77] for a review). It corresponds to the symmetry of the perturbative spectrum,
exchanging the winding and momentum modes. The simplest example of this involves the
closed bosonic string where one spacetime coordinate X%~! = Z is compactified on the
circle: Z ~ Z 4+ 2w R,. This results in two different modes: the momentum modes, and
the winding modes.

The momentum modes, also known as the Kaluza-Klein modes, are present in field
theory, and are inversely proportional to the size of the internal dimension. The spatial
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momentum of the string in the circle direction is constrained to these modes as p = - for
an integer n. The winding modes by contrast are purely stringy effects, which corresponds
to the ability of closed strings to be wrapped in the compactified dimension. When we
go around a string once, &' — &' + 27, we wind w times around the compact dimension.
These two new modes modify the mass operator and the level matching constraint as

n?  Rw? 2 - -
o ;g’ +J(N+N—2>, with N =N+nw, (1.84)
z

M? =

where N and N are the level operators. This shows, for example, that for a string with
n > 0 units of momentum gain a mass contribution of z-. It is straightforward to check
that (1.84) is invariant under the following transformations

/

o
n—n =w, w—w =n, RZ—>R2:R—. (1.85)

z
This is actually a symmetry of the full spectrum which, furthermore, has been proven
to hold at all orders in perturbation theory [78]. It turns out that it is related to the
invariance of the Polyakov action under Poincaré dualization of the embedding coordinate

Z, see e.g. [42] and references therein.

We are mostly interested in the manifestation of T-duality at the level of the ef-
fective action. In order to study it, we first need to introduce the basics of the Kaluza-
Klein (KK) dimensional reduction [79,80]. The original idea was to unify gravity and
electromagnetism by assuming that the spacetime has an extra dimension so that both
four-dimensional spacetime and gauge symmetries arise from spacetime symmetries in five
dimensions. Although abandoned for its original purpose, this theory remains an extraor-
dinarily powerful tool in the general context of theoretical physics and particularly in
string theory, where it is crucial in order to make contact with the four-dimensional world
that we experience.

We will follow the modern Scherk-Schwarz formalism [81], which makes use of the
vielbein and which is therefore well adapted to describe the dimensional reduction of
theories with fermionic degrees of freedom, such as supergravity theories. We will always
assume that none of the fields depend on the coordinate z ~ z + 27 R, that parametrizes
the compact dimension S..

As an example, we shall now carry out the dimensional reduction of the Einstein-
Hilbert action. We start by decomposing the (d)-dimensional vielbein, él 1, and its inverse,
é3", in terms of the lower-dimensional fields as follows, noting that by using local Lorentz
rotations, we can always choose a vielbein expressed in an upper triangular form'®

~ € N
(éﬂa): g t <é@“>: " (1.86)

where A, = e,* A, and k is the KK scalar. The latter measures the radius of the circle St
as a function of the non-compact coordinates x*:

16The d-dimensional fields and indices will be denoted with hats. Then, we have @ = (a, z) for flat indices
and fi = (u, z) for world indices.
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1 2R,
= —_— = . 1.
D=5 [ dflaal = Rk(e) (187

Our choice of vielbein breaks the d-dimensional Lorentz invariance intoa d =d — 1
dimensional one.

We can express this using the Palantini identity

/ ddz \/[g| KR = / dz /51K [f%%ééd — a0, + 20,70, log K} . (1.88)

In order to apply it, we must first compute the spin connection. In the vielbein basis we
have chosen, one obtains

d-)abc = Wabc, wabz = ikFabv (:)zbc = _§kaa Uf)zbz = _ab Ink (189)

where Fyp = 2V, Ay is the field strength of the KK vector field A, = e, 4,,.

Then, making use of (1.88), one obtains

5 1
. /z / d* 1z \/ lg| & [—wbbawcca — wa"wp® + 2wp"*8, log k — Zk2F2

SEH = ¥
16mGY

1
% /dd L2/l k‘[ 4k2F2} .
16rG@
(1.90)
In the general case in which a (d+n)-dimensional manifold M(@+") contains a n-dimensional
compact space C(™, the relation between the Newton’s constants is

(d+n)
@ _ Gx
G = 1.91

where V,, is the volume of C(").

Rewriting the action (1.90) in terms of the metric in the Einstein frame, gg ,, =

2
I3 17
kd*zgw/a

(d 1)

1 d—1
Sen = [ e/ [RE+<alogk> - (1.92)
16mGy d—2

we clearly see that the KK scalar is dynamical and cannot be truncated to a fixed value
without imposing the corresponding constraint derived from its equation of motion (F? = 0
in this case).

"The Einstein frame is the one in which there is no conformal factor multiplying the Ricci scalar.
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Once we know how to reduce the Einstein-Hilbert term, the last piece of information
needed is to learn how to reduce p-forms. The dimensional reduction of a p-form C (P) i iy
on a circle gives raise to a p-form C'(p)m__up and to a (p — 1)-form C’(p_l)m_._up_1 ind
dimensions:

A —1
C(p)m...up = C(p)mm#p +pA[u1C(p )uz---up} ’
(1.93)

(j(p)mmup_lg — C(p_l)ﬂl~'~ﬂp—l .

This is, however, subject to field redefinitions. In the case of the Kalb-Ramond 2-form,
we find convenient to define

A~

By =B — ApB,, with B, = By, (1.94)

where B, is the winding vector.

We can begin by defining the lower-dimensional dilaton,
~ 1
¢:¢—§logk, (1.95)

Using Eq. (1.94) and the dimensional reduction of the Einstein-Hilbert term, one
finds that the dimensional reduction on a circle of the effective action of the closed bosonic
string (1.72) is

1

4k—2G2 , (1.96)

S ~ /ddx lg] e 2 [R — 4(0¢)* + H? 4+ (dlog k)? — ikQFQ —

2.3l

where GEB,) = 28[uB(0) is the field strength of the winding vector, and H is the KR field

V]
strength written as

79, =30,B9,, 34,69, ,-3BOF, . (1.97)

As one can easily check, the action is invariant under the following transformations
-1
AM%AL:BM, Bu—>Bl’L:AH, k—kK=k", (1.98)

which expressed in terms of the higher-dimensional fields lead to

g;z - 1/.@@ ) B;/@ = g#&/gﬁa
T = Buz/ges, Bl, = Bu +20p:B.:/8z (1.99)
g,lw = @;w - (guggug - Bugéug)/ﬁga e 2 = 6_2¢|§z| .

These are known as the Buscher rules [82] [83], and they show that from the per-
spective of string theory, two backgrounds related by T duality are equivalent, and are
both solutions to the classical string effective action, if one of them is only at O(1) in /.
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While these rules are derived for two backgrounds in the same (bosonic) theory, this does
not necessarily need to be the case. For example, these rules can be generalized to relate
type IIA and type IIB superstring theories [84].

In our case, we are interested in the heterotic string case. At zeroth order of o/,
the Buscher rules are identical to that of the bosonic string; we need to modify the rules
to take into account the o’ corrections. The specific rules for the higher order heterotic
string will be discussed in later chapters (see [85] as well).

1.4 Summary of Thesis

We will end this introduction with a brief summary of the chapters and their most impor-
tant results.

Part I: T-duality and dimensional reduction of the heterotic string on S*

In the first part, consisting of Chapter 2 (based on paper [33]), we will examine one method
of calculating the entropy of the heterotic string effective action up to order o/, through
dimensional reduction of the action on S*.

This is achieved through the use of the Scherk-Schwarz formalism, where we split the
world indices and field indices into the compactified and remaining dimensions through use
of the vielbein. We begin by revisit the dimensional reduction on a circle of the action at
zeroth order in o/ as a warm-up exercise and also because we will need some of the results
when we consider the higher-order terms. We will show that the compactified action takes
the form (same as equation (1.96))

2(2mls
S = Lﬂl) /d% lg]e2¢ {R — 4(9¢)% + (Dlog k)® — LKPF? — 152G0)2 4 f—2H<0>2} :
167G (Y
N
(1.100)
We will also determine the T-duality transformations and corresponding Buscher

rules (see equation (2.29)).

This will then be followed by the dimensionally-reduced action to first order in «o’.
This reduction requires additional calculations due to the presence of the Chern-Simons
terms. From this reduced action, we will recover the T duality rules found in Janssen et
al. [85] and we will prove the invariance of the action under those T duality rules. The
main difference between this work and [85] is that in the latter, the complete dimensionally
reduced action was not given.

The main result of this chapter illustrates that by dimensionally reducing the T
duality-invariant action, it is possible to derive Iyer-Wald entropy for the heterotic version
of the o/-corrected Strominger-Vafa black hole of Ref. [29], given by the equations
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2 o
ds® = 5 du (dv = §Z4du) — Zo(dp® + p*dQy) —dy'dy’,  i=1,...,4, (1.101a)

HY = dz=' Adu A dv + *4d 2, (1.101b)

e 2 =Wz 7z, (1.101c)

where x4 stands for the Hodge dual in the 4-dimensional Euclidean space with metric
dp® + pde%g), and where the Z functions take the values'®

~ 2 ~
2

0 1 0(?), 1.102a
p? (p? + qo)* @) ( )

z —1+L 1 0?), (1.102b)

Zy =1+ +2d/ = + O0(a?). (1.102c)

Using this, we arrive at the following entropy formula

A 2/
§ = {1+ - } . (1.103)

This matches the entropy found by microscopic entropy calculations found in [87]
once the relations between integration constants and asymptotic brane charges have been
correctly taken into account.

Part 11

The second part of this thesis will examine how to modify the Iyer-Wald formalism such
that non-tensor fields can be considered. All the fields of the Standard Model, except
for the metric, have some kind of gauge freedom and do not transform as tensors under
diffeomorphisms. As such, the formalism needs to be adjusted such that it can be applied
in these theories.

o In Chapter 3 (which we base on paper [88]), we utilize covariant Lie derivatives, as
well as the momentum maps previously discussed in section 1.2.4 in order to deter-
mine the Wald entropy of the Reissner-Nordstrom-Tangherlini black holes. We will
consider the Einstein Maxwell theory in d dimensions, which is written in differential

8The Regge slope parameter o in Refs. [29,86] has been replaced by a’/8 here to obtain the correct
form of the action and solutions.
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form language as

—1)4-1 1
S[ea’A} - ( 16)71— / [(d— 2)!Ra1a2 A e®3 /\.../\eadeal...ad — %F/\*F] = /L,
(1.104)

although it is more convenient to rewrite the first (Einstein-Hilbert) term as

1

WRW2 AeB A Ae%eq.q, = %€ Ne®) ARy . (1.105)

We will then compute the Wald-Noether charge for this theory, using the transfor-
mations based on the gauge-covariant Lie derivatives. Specifically, we see that the
final Wald-Noether charge can be written in terms of the momentum maps and the
field strength as

-1 d—1
Q[¢] = (ng [*F.Pg — x(e® A e’)Peap| (1.106)
where P = V[aﬁb} is the Lorentz momentum map and 1 F' = —dP;, is the Maxwell

momentum map.

Finally, we shall verify the first law for this system, identifying the Wald entropy,
which we compute for the Reissner-Nordstrom-Tangherlini black hole solutions. We
see that, as expected, the entropy that arises is given by S = f, where A is the area
of the horizon, which arises through proof of the first law.

Chapter 4 (based on paper [74]) focuses on applying these momentum maps to a
non-trivial case: the heterotic string black hole at zeroth-order o/. We will study the
heterotic string compactified on a torus, and study the various symmetries that arise.
Using the momentum map basics defined in the previous chapter, these symmetries
will be used to determine the parameters which leaves all the transformations in-
variant, which in turn allows us to find the conserved Noether charges. We find that
the Noether charge takes the form

Qle) = (~1)" ¢ (" A ) [Py — 2uade™ )
(1.107)
+ (=) (6_2¢M1J *.7:J> — P A (6_2¢ *H) ,

where 7351 and P4, are the Maxwell and Lorentz momentum maps as in the pre-
vious chapter, the momentum map Py is given by —u,H — Py 1 FL = dPy, My is a
symmetric O(n,n) matrix, and F' is the O(n, n) vector of the 2-form field strengths
of the KK and winding vectors

}"I:<Z ) F™=dA™, G, =dB,. (1.108)

Using the momentum maps, it is possible to prove the restricted generalized zeroth
law. Finally, utilizing the generalized zeroth law as well as our explicit expression of
the Noether charge, we are able to prove the first law. We conclude by considering
as an example the charged, non-extremal, 5-dimensional black ring solution of pure
N = 1, d = 5 supergravity of Ref. [46] and compute its momentum maps.
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o Chapter 5 (based on paper [53]) will deal with a more complex example: the heterotic
string effective action up to order o/. The additional terms proportional to o’ will
yield additional complexities, due to the presence of the Chern-Simons terms. We
will once more study how the fields of the heterotic string theory change under
gauge and general coordinate transformations. We construct variations of the fields
that vanish when the parameters of the transformations generate a symmetry of
the field configuration and we find the integrals that give the associated conserved
charges. The conserved charge associated to the invariance under diffeomorphisms
is the Noether-Wald charge. As we have discussed, the correct identification of the
conserved charges is essential to obtain for the correct identification of the entropy in
the first law. We discuss the restricted generalized zeroth laws of this theory, which
also play an essential role in the proof of the first law. Finally, we shall prove the first
law using the results obtained in the previous sections, which leads us to identify
the Wald entropy formula. We discover that the Wald entropy can be written as

g(d)2 o 0 o
S=(-1)"=— / e 2 { {*(ea Aeb)+ —e 2% RE_))‘“’ nap + (1) =TI, A *H(O)} ,
3G\ Jn 2 2

(1.109)

where we have defined the 1-form II,, (vertical Lorentz momentum map associated
to the binormal) on the bifurcation sphere

art,, 3 RE?)abnab : (1.110)

This is the main result of this thesis, and what the previous chapters have built up
towards. We recover the correct form of the Wald entropy, where the last term in
(5.102) possesses an additional factor of 2 that is missing in previous derivations.

Notes on conventions

Throughout this thesis, we will make use of the traditional natural units: ¢ = h = 1. The
gravitational Newton’s constant G%)
from intermediate calculations in order to simplify computations. Furthermore, all our
calculations will be using the convention g = (+,—, —,...,—)

will remain, though we shall occasionally remove it
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Dimensional reduction of the
Heterotic string at o
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T duality and Wald entropy formula in the
Heterotic Superstring effective action at first-order
: /

n «

Superstring Theory is expected to be a consistent theory of Quantum Gravity. Therefore,
one would like to use it to study gravitational systems in which quantum-mechanical
effects are believed to play an important role, such as black holes. In particular, one of
the results that we expect from Superstring Theory is a microscopical accounting of the
entropy attributed to them by macroscopic (thermodynamic) laws and calculations.

Achieving this result demands, first of all, black-hole solutions of Superstring Theory
whose macroscopic entropy can be computed. These are classical solutions of the Super-
string effective action. Then, if one manages to associate the black-hole solution to a good
Superstring Theory background on which the theory can be quantized, the microscopic
entropy can be associated to the density of string states in that background.

In a seminal paper, [89] Strominger and Vafa completed the above program for a
extremal, static, 3-charge 5-dimensional black-hole solution of the type IIB Superstring
Theory at lowest order in the Regge slope parameter o/, identifying the associated type IIB
string background as one with intersecting D1- and D5-branes with momentum flowing
along the intersection. Strominger and Vafa argued that, although the black hole only
solved the zeroth-order in o/ equations of motion, the higher-order corrections could be
made small enough by imposing conditions on the charges carried by the black hole. Under
those conditions, the microscopic and macroscopic entropies (the later given simply by the
one fourth of the area of the event horizon) matched to lowest order in /.

Since o is the square of the string length, the higher-order in o’ corrections to the
string effective action, its solutions, and the properties of the solutions, describe char-
acteristic “stringy” deviations and this makes their study most interesting. This study
requires:

1. The knowledge of the higher-order terms in the string effective field-theory actions.

2. The construction of solutions of those effective actions with higher-order terms.
These solutions can often be viewed as o'-corrected zeroth-order solutions (recovered
by setting o/ = 0).

3. The computation of the physical properties of the a’-corrected solutions.

Terms of higher-order in o/ are terms of higher order in curvatures and their com-
plexity grows rapidly with the power of /. This makes them very difficult to compute
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Chapter 2. T duality and Wald entropy formula

and, consequently, our knowledge of the o’ corrections to the effective field theory actions
of different Superstring Theories is very limited. The o’ corrections to the Heterotic Su-
perstring effective action are probably the best known, and they have only been computed
to cubic order (quartic in curvatures) in Ref. [73], using supersymmetry completion of the
Lorentz Chern-Simons terms [90].!

We can use, then, the Heterotic Superstring effective action given in Ref. [73] for
the next step: computing o’ corrections to black-hole solutions. As a matter of fact, the
black-hole solution studied by Strominger and Vafa in Ref. [89] can also be considered as a
zeroth-order solution of the Heterotic Superstring effective action and it would certainly be
interesting to compute its o’ corrections, at least to first order. Finding these corrections,
though, is a complicated problem. One of the problems is that the complete Heterotic
Superstring effective action with higher-order corrections has not been compactified down
to the 5 dimensions in which the black hole lives.? Effective actions which would capture
what are believed to be the most relevant o’ corrections in lower dimensions have been
proposed and used to compute corrections to black-hole solutions (see, e.g. Ref. [98] and
references therein). Alternatively, in order to simplify the problem, it has been proposed
to work only with the near-horizon solution (see e.g. Refs. [99,100] and references therein
and more recent work in the Type ITA compactified on K3 setup [101,102]). It is fair to
say that each of these simplified approaches has problems of its own and that they do not
offer a complete picture of what the o’-corrected black-hole solutions are like.

Recently, a different approach for computing o’ corrections without making assump-
tions about the lower-dimensional effective actions or considering only near-horizon lim-
its has been proposed in Ref. [29]: since the 10-dimensional first-order in o/ Heterotic
Superstring effective action is known without any ambiguities (beyond possible field re-
definitions), first-order in o corrections to solutions should be directly computed in 10
dimensions using the uplift of 4- or 5-dimensional solutions. Then, the o’-corrected solu-
tions can be compactified back to 4- or 5-dimensions. This approach has been successfully
used to compute the first-order in o’ corrections to 5- and 4-dimensional extremal black
holes in Refs. [29] and [30,86, 103], respectively and, more recently, to 4-dimensional non-
extremal Reissner-Nordstrom black holes in Ref. [32]. The question of the regularity of
the so-called small black holes has also been reviewed in Ref. [104, 105] in light of those
results.

Having the o’-corrected solutions we can compute their physical properties. For
black holes, these are their conserved charges and their thermodynamical properties: en-
tropy and temperature. The Hawking temperature is always determined by the value of
the surface gravity of the metric. While the metric can receive o’ corrections, the relation
between Hawking temperature and surface gravity does not change. This is not the case
for the Bekenstein-Hawking entropy, which, in presence of o/ corrections (higher-order
in curvature corrections in general) is no longer determined by the area of the horizon
which also receives o’ corrections coming from those of the metric. Based on previous

!The equivalence of this effective action with previous results obtained in Refs. [64,91-93] was established
in Ref. [94].

2A toroidal compactification to first order in o/ but with no Yang-Mills fields has been recently con-
structed in Ref. [95]. The toroidal compactification with only Abelian Yang-Mills fields (which occur at
first order in o) and no terms involving the torsionful spin connection (so the 10-dimensional action is
that of N =1, d = 10 supergravity coupled to Abelian vector supermultiplets) was carried out in [96]. An
earlier compactification of the Heterotic Superstring effective action to just d = 4 at zeroth-order in o’ (so
the 10-dimensional action is that of pure N’ = 1,d = 10 supergravity) was carried out in [97].
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Chapter 2. T duality and Wald entropy formula

work [27,28], in Ref. [22] Tyer and Wald gave a prescription to derive an entropy formula
in diffeomorphism-invariant theories. The main fact that characterizes this prescription is
that the entropy computed using it satisfies the first law of black-hole mechanics [20].

Iyer and Wald’s prescription is based on a series of assumptions about the field
content, which has to consist of tensor fields only. The only tensor field in our current
understanding of Nature is the metric, the rest being connections and sections of different
gauge bundles or, in other words, field with some kind of gauge freedom. The validity
of Iyer and Wald’s prescription has subsequently extended to theories that include fields
with gauge freedoms in Refs. [40,51, 106], but the Heterotic Superstring effective action
(and many other string effective actions) include a field which is not a connection or a
section of some gauge bundle: the Kalb-Ramond field. This complication has been ignored
in most of the string literature® and the Iyer-Wald prescription has been naively applied
with results that seem to be compatible with the microscopic calculations of the entropy.*

For instance, in Ref. [29], the entropy of the (heterotic version of the) o'-corrected
Strominger-Vafa black hole was computed using the Iyer-Wald prescription directly in the
10-dimensional action. The result obtained was compatible with that of the microscopic
calculation carried out in Ref. [87] to first-order in o/, with an appropriate identification
between the charges carried by the black hole and associated string background [107].
More precisely, the entropy obtained was interpreted in Ref. [29] as the O(a’) truncation
of the expansion in powers of o’ of the exact result found in Ref. [87].

This interpretation, however, was a bit puzzling, because in Ref. [29], it was argued
that the near-horizon region of the black-hole solution, which determines the entropy,
should not receive further o/ corrections.” Furthermore, an explicit calculation shows that
at least the O(a’?) corrections to the entropy vanish identically. All this suggests that
the result obtained for the entropy in Ref. [29] should be exact to all orders in o’ and,
therefore, it should be identical to the result of the microscopic calculation of Ref. [87].

This puzzle was solved in Ref. [107], where it was observed that the dependence of the
action on the Riemann curvature® in the Lorentz Chern-Simons term of the Kalb-Ramond
field strength is changed by dimensional reduction. Taking into account this change,
which amounts to a factor of 2 with respect to the result of Ref. [29], the macroscopic
entropy computed at first order in o/, naively using the Iyer-Wald formula, matches the
exact microscopic result. This gives further support to the conjecture that the black-hole
solution does not receive further o/ corrections and may be considered an exact Heterotic
Superstring solution.

3 An independent derivation of an entropy formula using Wald’s formalism and dealing with some of the
problems that the presence of the Kalb-Ramond field raises has been made in Ref. [31]. The final entropy
formula derived there depends on a compensating gauge parameter which was left undetermined. This
makes a comparison with the entropy formula we will derive impossible. For instance, it is not possible to
compute the entropy of the Strominger-Vafa black hole using this formula, unless one can prove that the
unknown term does not contribute to it. Although in that reference it is argued that, at least in certain
relevant cases, this is indeed the case. In the same reference it is also shown that the invariance of their
entropy formula under local Lorentz transformations depends on it, which seems contradictory.

4Wald’s formalism’s first step consists in the proof of a first law of black-hole mechanics for the theory
under consideration. A first law for the Heterotic Superstring effective action to first order in o’ has not
yet been proven, although it is widely assumed to exist (for instance, in the derivation of the entropy
formula of Ref. [31]).

5The complete black-hole solution may receive further corrections.

S According to the Iyer-Wald prescription, the entropy formula only depends on the occurrences of the
Riemann tensor in the action.
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The results of Ref. [107] made clear that, in the case of the Heterotic Superstring
effective action, the entropy formula has to be derived from the dimensionally-reduced
action in order to determine correctly the dependence of the action of the lower-dimensional
Riemann tensor. One of our goals in this chapter is to perform the dimensional reduction
of the Heterotic Superstring effective action to first order in o’ over a circle to apply to it
the Iyer-Wald prescription and obtain an entropy formula. This entropy formula can only
be applied to d-dimensional black holes that can be obtained by trivial compactification
on T97% and a non-trivial compactification on a circle. For instance, it can be applied
to the heterotic version of the Strominger-Vafa black hole because it can be obtained
from a 10-dimensional solution by trivial compactification on T*, to 6 dimensions and a
non-trivial compactification on a circle from 6 to 5 dimensions. It can also be applied
to the non-supersymmetric 4-dimensional Reissner-Nordstrom black hole of Ref. [108],
which can be obtained from pure 5-dimensional gravity and, therefore, can be obtained
from a purely gravitational 10-dimensional solution by trivial compactification on T° to 5
dimensions and, then, by a non-trivial compactification on a circle from 5 to 4 dimensions.
Actually, the entropy formula Eq. (2.69b) that we are going to derive in Section 2.4 has
been applied to a non-extremal version of the 4-dimensional Reissner-Nordstréom black
hole we just discussed, in Ref. [32]. While the microscopic interpretation of the entropy
of this black hole is unknown, being a black hole with finite temperature, one can check
that the first law of thermodynamics is indeed satisfied because the temperature computed
from the o’-corrected metric and the entropy computed from the o'-corrected metric with
the o'-corrected entropy formula are related by the thermodynamic relation

95 _ 1 (2.1)
oM T

This paper’s second goal has to do with one of the most interesting and characteristic
properties of String Theory: T duality.” T duality relates two string theories compactified
in circles of dual radii. The spectra of the two theories can be put into one-to-one corre-
spondence and, from the lower dimensional point of view, they are essentially identical, up
to charge identifications.® More generally, Buscher [82,83] showed that two string back-
grounds with one isometry whose background fields are related by the so-called Buscher
T duality rules are equivalent.

Perhaps not surprisingly, the Buscher rules can be derived from the string effective
action: the dual’ Kaluza-Klein compactifications of two effective actions on a circle give
the same (d — 1)-dimensional action and the same equations of motion. In practice, one
can perform identical Kaluza-Klein compactifications, determine the relation between the
(d — 1)-dimensional fields of the two actions (which is usually very simple because it does
not involve the (d — 1)-dimensional string metric or Kalb-Ramond field) and rewrite this
relation in terms of the components of the original d-dimensional fields [109]. This relation
is just the Buscher T duality rules. This strategy has been successfully used to find the
extension of the Buscher T duality rules that relates equivalent type IIA and type I1B
superstring backgrounds [110] and higher-rank Ramond-Ramond potentials [84].

In the context of the Heterotic Superstring, this strategy was used in [85] to find

"For a review with many early references see Ref. [77].

8Charges related to Kaluza-Klein momentum and charges related to the winding number along the
compact direction should be interchanged.

9That is, with fields related by the Buscher rules.
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the first-order in o/ corrections to the Buscher rules.!” Only the Yang-Mills fields were
included at order o/, but, taking into account that the torsionful spin connection enters
the action in exactly the same way as the Yang-Mills fields [90], it was possible to find the
o’ corrections to the Buscher rules.

The o/-corrected Buscher rules are of no use if there are no o/-corrected solutions at
one’s disposal to generate new solutions or to check their equivalence. For this reason, the
results of Ref. [85] were sleeping the “sleep of the just”'! until quite recently, when they
were first applied to o/-corrected self-T-dual solutions, providing a highly non-trivial test
of both the o’ corrections of the solutions and of the T duality rules.

Our second goal will be to study the T duality invariance of the complete dimensionally-
reduced Heterotic Superstring effective action and of the entropy formula that follows from
it. While the o/-corrected Buscher rules will be those of Ref. [85], the complete reduced
action will have many more O(«’) terms than the action obtained there. The invari-
ance of the action under T duality suggests that they will contribute to the entropy in a
T duality-invariant form, and we will prove that this is the case.'?

This chapter is organized as follows: we introduce the Heterotic Superstring effective
action to first order in o following Ref. [73] in Section 2.1. In Section 2.2, we revisit the
dimensional reduction on a circle of the action at zeroth order in o/ as a warm-up exercise
and also because we will need some of the results when we consider the higher-order terms
in Section 2.3. In that section we will obtain the complete dimensionally-reduced action
to first order in o, we will find the T duality rules and we will prove the invariance of the
action under those T duality rules. In Section 2.4, we will use the dimensionally-reduced
T duality-invariant action to derive an entropy formula using the Iyer-Wald prescription
and we will apply it to the heterotic version of the o'-corrected Strominger-Vafa black
hole of Ref. [29]. We will end by discussing our results and future work on these topics in
Section 5.7.

2.1 The Heterotic Superstring effective action to O(d/)

Let us start by reviewing the Heterotic Superstring effective action to O(a’). We will use
the formulation given in Ref. [73], but written in the conventions of Ref. [42].13 In this
formulation, the action is constructed recursively order by order in o’.

The zeroth-order 3-form field strength of the Kalb-Ramond 2-form B is defined as

10 At zeroth-order in o/, the Heterotic Superstring effective action only describes the so-called common
sector of Neveu-Schwarz-Neveu-Schwarz fields, so the Buscher rules are just those found by Buscher.

1 As a matter of fact, they have partially re-derived several times [111,112]. Other studies of the effect
of a’ corrections on T duality and O(d,d) transformations in toroidal compactifications, sometimes in
extended set-ups (such as Double Field Theory) can be found [66,67,95,113-115].

12 Tt follows trivially from the invariance of the lower-dimensional string metric and dilaton under
T duality that the zeroth-order in o’ temperature and entropy (the area) are also T duality invariant.
This property was proven by Horowitz and Welch in Ref. [116] before the relation between the Buscher
rules and dimensional reduction was established in Ref. [109]. Recently, it has been investigated again from
the same point of view in Refs. [31,117] to first order in o, but, again, the relation between dimensional
reduction and T duality and the invariance of the lower-dimensional string metric and dilaton field lead,
trivially, to the invariance of the o/-corrected temperature. The invariance of the action under T duality
at this order implies that of the entropy formula using the Iyer-Wald prescription because the Riemann
curvature is T duality invariant.

13The relation with the fields in Ref. [73] can be found in Ref. [75].
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0 _
H )Wp =30, By, (2.2)
and it contributes as torsion to the zeroth-order torsionful spin connections
(+) uab =w,"p & %H(O)uabv (2.3)
where w,?, is the (torsionless, metric-compatible) Levi-Civita spin connection 1-form.

The corresponding zeroth-order Lorentz curvature 2-forms and Chern-Simons 3-
forms are defined as

© o _ © a © 0 o0 e
Ry s = 20085y 0 = 290 1 e a1 (2.4)
LO _ p0 (0) (0) © b o0 o
Wiy = 3R v 10 e T 20 1" U o) e U ) (2:5)

The gauge field 1-form is AAM, where A, B,C,... are the adjoint gauge indices of
some group that we will not specify. The gauge field strength and the Chern-Simons
3-forms are defined by

FAL = 20,A%, + fec? AP, A, (2.6)

W™ = 3F,, A%, — fapcAt AP, AC (2.7)

where we have lowered the adjoint group indices using the Killing metric of Kap: fapc =
fapP Kpc and of the gauge fields Fauw = KABFBW.
Then, at first order

/

H(l)w = 30yBy, + % (wYMWP +w?—(§)2wp> ’ (2.8)
QY = wux THODY, (2.9)
B, = 20000 1% — 290 e o) 1% (2.10)

o = 3RE D "0 + 22 b XD e U g% (211)
H(z)wp = 36[MBVP] + Z/ (wYMWP +W<L—(>1Lup) ’ (2.12)

etc.

Only Qgi))u’ RE% W“ w?i(;)iwp and H(l)w,p (plus the Yang-Mills fields) occur in the
action. In practice, though, it is more convenient to work with the higher-order objects,
neglecting the terms of higher order in o/ when necessary. Thus, from now on we will

suppress the (n) upper indices when they do not play a relevant role.
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In terms of all these objects, the Heterotic Superstring effective action in the string
frame and to first-order in o’ can be written as

2 /

Js 10 -2 2 2 @ A a b

S:(lo)/d xzy/|gle ¢{R—4(8¢) +LH —g[FA‘F +R(_)b'R(—)a]}a
167Gy

(2.13)

where G%O) is the 10-dimensional Newton constant, ¢ is the dilaton field, the vacuum
expectation value of e? is the Heterotic Superstring coupling constant g, R is the Ricci
scalar of the string-frame metric g,,, and the dot indicates the contraction of the indices
of 2-forms: Fy - F4 = FAWFA‘“’.

2.2 Dimensional reduction on S! at zeroth order in o’

As a warm-up exercise (and also because of the recursive definition of the action that
will make necessary the zeroth-order fields in the first-order action), we review the well-
known dimensional reduction of the action at zeroth order in o’ using the Scherk-Schwarz
formalism [81]. We add hats to all the 10-dimensional objects (fields, indices, coordinates)
and split the 10-dimensional world indices as (ft) = (i, z) and the 10-dimensional indices
as (a) = (a, 2).

The Zehnbein and inverse-Zehnbein components éﬂ& and é; can be put in an upper-
triangular form by a local Lorentz transformation and, then, they can be decomposed in
terms of the 9-dimensional Vielbein and inverse Vielbein components e %, e,*, Kaluza-
Klein (KK) vector A, and KK scalar k as

kAN eau _Aa

R I BN GO S e

where A, = e,"*A,,. We will always assume that all the 9-dimensional fields with Lorentz
indices are 9-dimensional world tensors contracted with the 9-dimensional Vielbeins. For
instance, the KK fields strength F,; is

Fab = ea“eb”Fw/, Fl“’ = 28[MAV}, (215)

The components of the 10-dimensional spin connection w,;. decompose into those
of the 9-dimensional one wgy,. and Fy, as

~ ~ 1
Wabe = Wabc) Wabz = §kFab,

(2.16)
N 1 N
Webe = _§ka(37 Wz = —Oplnk.

Then, using the Palatini identity, it is not difficult to see that the first two terms in
the action Eq. (2.13) take the following 9-dimensional form (up to a total derivative):
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/dl% gle2 {R—4(06)*} =

(2.17)
/dz/dgx lgle 2 {R — 4(0¢)* + (0logk)* — 1K*F* |
where the 9-dimensional dilaton field is related to the 10-dimensional one by
¢=¢— Llogk. (2.18)

At zeroth order in o/, the last term that we have to reduce is the kinetic term of the
Kalb-Ramond 2-form ~ H(©2 Following Scherk and Schwarz, we consider the Lorentz
components of the 3-form field strength, because they are automatically gauge-invariant
combinations. The H(© abz components give

HO =k ea ey HO = ke 20,8, - (2.19)

It is, then, appropriate to define the zeroth-order “winding”'* vector field B(®) p and
its field strength G(©) ,,, by

B9, =B, ¢, =29,BY,, (2.20)

so that

HO = k7160, . (2.21)
The second gauge-invariant combination is

H(O)abc = €a“€b’/€cp (IfI(O)qu — SA[HEIT(O)VP]&) N (2.22)

which suggests the definition

H®,,=H,,-34,H°,,. =30,B,, —64,0,B,. (2.23)

We could simply identify Eyp with the 9-dimensional Kalb-Ramond field, but it
is customary (and convenient) to use a T duality-invariant definition. T duality will
interchange KK momentum and winding, and therefore, will interchange A, with BO s
modifying the Chern-Simons term in the above form of H,,,. We can, however, rewrite
it in the form

(2.24)

0 > 0 0 0
HO =30, (Bup] + Ay, B! )p}) — 34,60, = 3BOLE,,,

and identify the T duality-invariant 9-dimensional Kalb-Ramond 2-form

This vector couples electrically to the string modes with non-vanishing winding numbers, just as the
KK vector field couples to those with non-vanishing momentum in the internal direction.
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BY,, =B, + A,BY,, (2.25)
with the final result

H(O)/WP = 38[#3(0)1//)] - %A[uG(O)Vp] - %B(O) ) - (2.26)

Then, after integrating over the length of the compact coordinate z (27¢s by con-
vention) the 9-dimensional action to zeroth order in o/ takes the form

2
5 = 5.02mls) /d% gl {R—4(20)" + (9logh)? — TPF* — k202 4 LHO?].

167G}
(2.27)
This action is invariant under the T duality transformations
A, =BO,, B = 4,, K =1/k. (2.28)

Taking into account the relations between the 10- and 9-dimensional fields, collected
in Appendix A.1, it is easy to see that the above T duality transformations correspond to
the following transformations of the 10-dimensional fields known as Buscher rules [82,83]:

g,/zz = 1/@@7 B;@ = gﬂg/gﬁa

g;@ = BH&/Q@? B/IJJ/ = BMV_’_QQ[;LIQBV]g/g@v (2'29)

Q:Lu = G — (Guzfvz — BﬂéBVé)/gﬁ7 ¢ = ¢-— %hl |922] -

2.3 Dimensional reduction on S! at O(ca/)

The reduction of the first two terms in the effective action is not modified by the inclusion
of o corrections. The definitions of 9-dimensional metric, dilaton and KK vector and
scalar in terms of the 10-dimensional fields are not modified by them either. We expect
modifications in the definitions of the 9-dimensional Kalb-Ramond 2-form and of the
winding vector, though, because of the presence of the Lorentz and Yang-Mills Chern-
Simons 3-forms in H®.

It is convenient to start by studying the dimensional reduction of the Yang-Mills
fields. The Lorentz-indices decomposition of the gauge field is

A, = k1A (2.30a)

A, = e H(AN, — AMLA)), (2.30b)
which leads to the definition of the 9-dimensional adjoint scalars ¢4 and gauge vectors
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ot = k1A, (2.31a)

At = A4, - At A, (2.31b)

In terms of these variables, it is not difficult to see that the components of 10-
dimensional gauge field strength are given by

FAaz = ga@A + @Aaa log k, (232&)

FA = FA + ko Fuy, (2.32b)

where FA uv is the standard Yang-Mills gauge field strength for the 9-dimensional gauge
fields A%,

The reduction of the first, second and fourth terms in the action Eq. (2.13) gives
(up to a total derivative)

/

[ [ e {r-a002 + (14 54 @1ogh? + S (@07
(2.33)

Oé,

8

o o
—i (1 + 2(,02) K*F? + Zﬁa log k9%? —

(Fa- FA 4+ 2p4F 4 kF)} :
where ©? = pap?d, D 0% = 0,04 + fpctAB ¢ ete.

Let us now consider the reduction of the Kalb-Ramond 3-form field strength H O
starting with the gauge-invariant combination

_ A _ » - o /. ~L(0
HW = kleg ey HWY . = ke ey {Za[qu}z Ry (wYMWz +w(—())/wz>} - (234

Using the above results for the Yang-Mills fields we find that

C:)YMuyg = k@A (2FA;UJ + SOAk'Fyy) - 28[;” (kQOAAﬁ}) . (235)

The last term is a total derivative that can be absorbed into the definition of the 9-
dimensional vector field B p and the remaining terms are manifestly gauge-invariant
2-forms.

We can use this result in the reduction of the Lorentz Chern-Simons 3-form; after
all, the only difference with the Yang-Mills Chern-Simons 3-form is the gauge group, which
now is the 10-dimensional Lorentz group. This is, nevertheless, an important difference
because this group is broken down to the 9-dimensional Lorentz group times U(1) and we
will have to take this fact into account in a second step.
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In order to profit from the previous result, we introduce the following notation

jab - (0) b
Abﬂ:Q()Ab

Then, a straightforward application of Eq. (2.35) gives

o9, = ke (QF%W + go%kFW) — 20, (W%A‘?&‘V]) ,

where

QO

ab ab A0) &b
A%y () w — A2 z

(=)

(2.36a)

(2.36b)

(2.37)

(2.38a)

(2.38D)

and where F di’/“, is the standard field strength of the gauge field A&gu defined above.

Decomposing now the Lorentz indices, we obtain

~L(0)
Y uz

— 20y [k (¢"3A% ) |

The components of these fields are

SOab — _% (kFab + k_lG(O) ab) ’

% = 0%logk,

ab ab ab _— 0) ab
ATy = wy _%H(O)u :QE—)) ’

I

A0, =1 (k:FM“ _ k—lG(O)ua> ’

Fabw/ — RO ab_ % (kF[Ma _ O [Ma) (kFV]b _ k—lG(O)V]b) 7

(=) pv

oz, — —p©

O (F” = 71600
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(2.39)

(2.40a)

(2.40D)

(2.40¢)

(2.40d)

(2.40e)

(2.40f)
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where R, @ is the standard Lorentz curvature and DEOJ)“ is the standard Lorentz-
0) ab

(=) pv
covariant derivative with respect to the 9-dimensional torsionful spin connection Q(*)u

Replacing the above expressions in Eq. (2.39) we obtain

(e = =3k (b +k71GO%) f2RO) 00— (kE" = KT1GOLY) (kB — K7GO),),)

Wiy =

-1 (kaa RGO ba) kFW} — 209 [2798)) ” (kFV] .~ kGO, a) - 8a/~cFW]
— 20y [k (¢"34%01) ] -
(2.41)

and

/

& - v ». - a_ b
H(l)cdz =k 1€CM€d {28[N |:BV]Z B Zk (@AAAW] +¢ I;Abd|u}):|

/
«
+ ks (2F*, + ¢ kF )

= 3k (B + k71GO%) 2RO 0 — (KE" = KGO (kB — K7GO),),)

v @

-1 (kaa F RGO ba) /.cFW} — 20 [217& ” (kFV]a — kGO, a) - aak;FW} }
(2.42)

Since the right-hand side has to be a gauge-invariant combination, it is natural to define
the first-order in o/ winding vector and its field strength by

— 7 o A a_pb
B(l)u:Bug—zk (SOAA u"‘@ Z;A d'u>

— B _%Tir i 50) a 30 b
=Buz =4 [A pAaz +00) 500 e
_ AA A 50) a_30) b
Ay (A 2Aaz+ Q(_)g bQ(_)g a)} ) (2.43a)
G, =20,BY,,. (2.43b)
Furthermore, it is also natural to define the combinations
K%, =kF, +k'c¢O0,,. (2.44)
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K, is invariant under the zeroth-order T duality transformations Eq. (2.28) while
K®) uv gets a minus sign under the same transformations. With this notation, we can
finally write

/
AW gy, = k7 G W+ T {20aF 0 + [0 = JED?2 1+ 2(010g k)2 ko
(2.45)

+RO) K g — LKO KO Ky — 4D Ky 0¢l0g k;} .

This term contributes as —%PAI (1)ab21:[ (1)abz, which, at first order in o’ gives

1(1) | Fr(1)ab 17.-2(1)2
_ZH()asz() .= —1k a®

/

- % {2¢AFA kGO |2 — LKH2 4 2(9logk)?| F - GO
+ k—lRE(i)) adeK(-‘r)ch(O) ab %k—lG(O) abK(—)aCK(—)bdK(+)cd

_4k71G(0) abD(O)

) [aK(*)b} 0°log k:} .

(2.46)

Let us now move to the gauge-invariant combination H @ b, that we will identify
with the 9-dimensional Kalb-Ramond 3-form field strength. Using the zeroth-order result,
we get

/
H(l)abc = H(O)abc + az (wYMabC + djL (O)ch) : (247)

Using Eqgs. (2.32) it is almost immediately seen that

UDYMabc = WYMabc + 3k’§0AF[abAAc} : (248)

Half of the last term should be integrated by parts, and the final result is

) ) 3
O Mape = 0 Mape +3ea e e’ |0 (KA 0a A ) + A0y (kpad?yy) + zk‘PAAﬁFupl] '
(2.49)

The second term in the above expression, a total derivative, will combine with BW (and
terms coming from N (O)Gbc) to give B 1) uv and the third term, as we know, combines with
B,.; (and terms coming from W40 ) to give B(l)u.

The above result can be applied to & (© 4., using the definitions Eq. (2.38). We get
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‘Z}L (O)abc = WL (O)abc + 3€auebyecp [Dgg))[MK(_)VeK(_)p} et 8[.“ (kAV“OéfAfé ‘P})

(2.50)

A8, (Kt AT Lyseal,

+Ap V\(‘pf élp]>+§90 elutvpl| -
Defining
BO = B+ Ay, | By + Sk (A4 An, + 00 60O b 2.51
pv = By + A | Bz T < wAdz T3 50 (—)§&> ; (2.51)
we find

ﬁ(l)abc = H(l)abca (252&)

1 _ 1 1

H );wp = 38[MB( )Vp} - %A[MG(DW’] - %B( )[MFVP]
o L (0) ) epe(-

+ 1 (wYMHVP—i_w(f)uup +3D(_)[MK( ) K )p]e> : (2.52b)

Summarizing, the reduction of all the terms in the action but the last one gives, to

O(a/)7

/ / /
/dz/dga: lgle™ 2 {R — 4(0¢)* + (1 + i(p2> (Dlogk)? + az(@cp)Q + O[Z&l log k0%¢?

/ /
~1 <1 n O;<p2> K2F2 4+ LHM? - 1p2g2 % [FA CFA 4 oo FA L K

+ [@2 — L2 £ 2(dlog kﬂ F-GO 4+ RO AR gk GO

~ LGOI P KO O )y — 4k GO DD KOy 6 log k} } .
(2.53)

Now, we must deal with the last term. We deal with it in the same way as we dealt
with the Yang-Mills kinetic term:
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_ ( Foo4 kgp@,;ch> <F3&Cd + k‘gpi’&FCd) (2.54)

-2 (chodg + (p&l;ac log k:) <DC 3@ + (pl;&ac log k) .

The Lorentz-covariant derivatives in the last line must be taken with respect to the con-
nection A&b#, which means that the ab components contain contributions from A%%, etc.
Taking this fact into account, if we split the hatted indices into unhatted indices and z
components, we get

(F s s ) (F2a g 0™ ) 2 (F o e Fy) (Fa™ + ™)
-9 (,Dc(Pab o Aazc@bz + Abzc(PaZ + (Pabac log k‘) <DCSOba . Abzc(paz + Aazc(PbZ + SObaac log ]{)

—4 (Dcsoaz + Abch@ab + QOaZac log k‘) (DCSOaZ + AbZCSOab + (pazac log kj) 7
(2.55)
where, now D, is the Lorentz-covariant derivative with respect to the connection Aab#.

Substituting the components A“b#, A%, 0™, % by their values, we get

(R(O) a, _ %K(_)[MQK(_)V] ) — %K(—’_)abka/) (Rg(i) b %K(—)ub[{(—) vo_ %K(+)bakF“”)

(=) pv )

+2 (D’

) [HK(*)V} W — 0o logk kFW> (DED—)) bl () Ma _ galog i kFuu)

+ % <DEO_))CK(+) ab _ 2K(—)c[aab} log k + K(+) abac log ]{3)

(D

O KO~ 2KO), 0y logk + K 40, log k:)

—4 (DEO_))CE)“ logk — KO PKH),9 1 510g kd° log k:)

(D

O Balogk — LEO) LSy, + 9, log ko, log k) .

(2.56)
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Operating, we finally get
RO a RO écil%d — pO a pO)

urvb (0)
(yed b (o oF e B

( )/WabK(f) uaK(f) Vo+ R(D) abK(Jr)abkF;w

(=) p
+ %K(*) MGK(*)QVK(*)ly}bK(*)bM _ %K(*)WK(*)VZ)KH) abp. puv

_ 1ligr(4)\27.2 2 (0) [u] (=) |¥] a-5(0)
(KK F +2D(_)“K D(_)H

wE

- 4175‘1))“1((—) Y49, log kkF, + 2(0log k)*k> F?

+ lfDE(i))cK(-&-) aeré(i)) CK(+)ab _ QIDEOJ)CK(-&-) abK(_)ca,ab log k

[\

i Dg(i))cK(Jr) abK(+)abac log k + oK (—)claghl log kK(*)Caﬁb log k
_ ZK(_) caab log kK(+)abac log k + %(K(+))2(8 lOg k)2

+4D(?) 0" log kD" da log k + 2D 0" log kK ) P (F)y,

+ 2K K199, log kd, log k — 1K 4K k(e g(Hd,

_ 8D(0)

(_)Caa log k9, log kd.log k — 4((0log k)?)? .

(2.57)
With all these terms, the action takes the form
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g§(27r€3)

(10)

/
/ dz+/|gle™?¢ {R — 4(86)% + Z (D)2 — Dk 97ED
167Gy, 4

— %k(l)QFQ — %k—QG*(l)Q + %(1 — kW HF.GW + %H(l)Q

O/
-2 [FA CFA 4 RE@)ab : R@)”a n R@) x ( KO g | g#)ab K(+)cd)

+2p4 P4 K
_ %K(ﬂabK(—)chH—) c,K(d 4 %K(_)abK(_)ch(_)ch(_)da -1 (K(—) . K(_)>
4K abpgﬂ)) K00 l0gk — 2K “bpg‘i)) K, 0010g k

(0) cp(+) abD(O) KH&)

(0) [a] 7-(—) |b] c-5(0)
+ 2D K D ) (e ab

— 1
() O K et 3D

— 4D 9 10g kD) B log k + 2K )k D) DO 9y log
—|—2K(_) ¢ [“81’} log kK(_)caab IOg k:| } )
(2.58)
where we have defined
/
KD =k [1 + % (@2 —1K®2 1 2(9log k)(“)} , (2.59)

and we have added some O(a'?) terms in order to obtain nicer or simpler expressions.

2.3.1 T duality
All the O() terms of the reduced action Eq. (2.58) are invariant under the zeroth-order

T duality transformations Eqgs. (2.28), and the whole action is invariant to O(a/) under
the transformations

A, =BY,, BWY = 4,, K =1/kM (2.60)

which reduce to the zeroth-order ones in Egs. (2.28) when we set o/ = 0. Furthermore,
observe that
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L7 — [1+‘3‘/( 2_1K(+)2+2(610 k)Q)}
= 1 %) 1 g

/

— (1)-1 Q9 1(4)2 2 (2.61)

k {1+ ; (4,0 L2 4 92(9log k) )]
=k [1+0(?)].

Using the relation between the higher- and lower-dimensional fields, these transfor-
mations can be expressed in terms of the higher-dimensional ones in the form

gzzﬁ(l)zuﬁ(l)zv Qé(l)z(ugl/)g

N BN zz 2 _
G = G &2, &0,
B =B 6(1)5[N®(1)V}5
124 124 é(l)zz )
q = 9z 9226, B = _ By _ 6., (2.62)
2 Q}(l)ﬂ 65(1)%2 ’ 2 65(1)@ 65(1)2
N gzz —24/ —2d1 5
%= G, 2 = e 60,
AA AA; AA — jA AA;éj(l) 2p
= é(l)ﬁ’ Bk 65(1)@ ’
where the tensor &) ap is defined by
/
(1) — A > QO [ RAA G A0) a 30 b
6( )[U;:gﬂ,;—Bﬂ,;—Z{A ﬂAAz?‘f—Q(_)ﬂ EQ(—)Q a} . (263)

These are the o/-corrected Buscher rules first found in Ref. [85] and later rediscovered
elsewhere [111,112].

It is well known that ' = 1,d = 10 supergravity [118,119] coupled to ny Abelian
vector multiplets [118,119] and dimensionally reduced on a T" has a global O(n,n + ny)
symmetry which was shown in Ref. [96] to be related to string T duality. In the case at
hand, the YM vectors are, generically, non-Abelian, which reduces the symmetry to just
O(n,n) [115] or just O(1,1) here. This group consists of the discrete transformation that

give rise to the Buscher rules Eq. (2.60) and rescalings of just certain lower-dimensional
fields:

Al =X"T1A,, BW’, =ABW’ | K = \k. (2.64)
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Under these rescalings K&, H!) and the Lorentz curvature terms remain invariant
while

ED = A (2.65)

It can be checked that the dimensionally-reduced action Eq. (2.58) is invariant under
these transformations and, therefore, under the whole O(1, 1) group.

We observe that the kinetic term of the KK and winding vectors is the sum of two
separately O(1, 1)-invariant terms

ED2 o Frv
~YF,, 6V, +i1 kYR F-cW, (2.66)
0 1/k? GO

and that the diagonal kinetic matrix transforms consistently under O(1, 1) transformations
even though, as different to the zeroth-order case, the kinetic matrix is not an O(1,1)
matrix itself. The consistency is related to the fact that it is part of a O(1, 1+ny ) matrix.

2.4 Entropy formula

We can use the dimensionally reduced action we have obtained to calculate the entropy of
some d-dimensional heterotic string black holes using the Iyer-Wald prescription [22,28].
These black holes must be solutions of the theory defined by the action Eq. (2.58) under-
stood as a d-dimensional action. Therefore, they must be solutions of the theory defined by
the action Eq. (2.13) understood as a (d + 1)-dimensional action'® admitting an isometry.
Since this (d+1)-dimensional action can be obtained from the 10-dimensional one by a triv-
ial compactification on a 10 — (d 4 1)-dimensional torus, the metrics of the 10-dimensional
solutions corresponding to the d-dimensional black holes are the direct products of non-
trivial (d+ 1)-dimensional metrics and the metric of a 10 — (d + 1)-dimensional torus. The
non-extremal 4-dimensional Reissner-Nordstrom black hole of Ref. [32] or the heterotic
version of the 5-dimensional Strominger-Vafa black hole of Ref. [29] are two interesting
examples of this kind of solution.

Applying directly the Iyer-Wald prescription to the d-dimensional action Eq. (2.58)
we obtain the following entropy formula expressed in string-frame variables:

5The constant in front of the action should now contain the volume of a (10 — d)-dimensional torus
instead of that of circle, that is
- d
gi(2mt,) =" (gi%)°

167610 167G

(2.67)

where g§d> is the d-dimensional string coupling constant or the vacuum expected value of the d-dimensional

dilaton < e® >= e®~ and Ggf,l) the d-dimensional Newton constant. The relations of the 10-dimensional
and d-dimensional ones with the volume of the (10 — d)-dimensional compact space, Vig_q is

g2 = Vio—a/(2ml)' " gD 2, (2.68a)
Gg\%o) _ GE\(/i)Vlo—d ) (2.68b)
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oL

S = —277/ A2/ |h| ———€apce , 2.69a
[ a2 Tl o (2.692)
oL _ 6*2@)*@500) { ab,cd gl |:H(O) abg (wgcd _ H(O)Cd)
ORapea 167G 8 g
_2RE(1))abcd+K(—)[a\cK(—)\b]d+K(+) abK(+)cd” ’ (2.69h)

where |h| is the absolute value of the determinant of the metric induced over the event
horizon, g?¢¢ = %(g“cgbd —g%gb), € is the event horizon’s binormal normalized so that
ab _

€ap€™ = —2 and Rgpeq is the Riemann tensor.

2.4.1 The Wald entropy of the o/-corrected Strominger-Vafa black hole

The entropy formula Eq. (2.69b) has been shown in Ref. [32] to give an entropy which is
related to the Hawking temperature by the thermodynamic relation

95 _ 1 (2.70)
oM T

for the particular case of o/-corrected, 4-dimensional, non-extremal Reissner-Nordstrém
black holes. In this section we want to recalculate the Wald entropy of the o/-corrected
Strominger-Vafa black hole. Being an extremal black hole, we will not be able to check
that the entropy obtained is related to the temperature as above, but, instead, we will
be able to compare with other results obtained in the literature and with the microscopic
calculations.

The 5-dimensional o'-corrected Strominger-Vafa black hole corresponds to the 10-
dimensional solution of the Heterotic Superstring effective action [29, 86]

2 o
ds® = < du (dv = 3Z1du) — Zo(dp® + p2d0y)) —dy'dy’,  i=1,....4, (2.71a)

HWY = dZ=Y Adu A dv 4 x4d 2y, (2.71Db)

e 2 =Wz [z (2.71c)

where %4 stands for the Hodge dual in the 4-dimensional Euclidean space with metric

dp? + deQé), and where the Z functions take the values'

16The Regge slope parameter o in Refs. [29,86] has been replaced by a’/8 here to obtain the correct
form of the action and solutions.
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~ 2 ~
do , P°+2q0 2
Zo=1+2 ¢ 2 T2 4 0?), 2.72a
0 p? (P? + Go)? (o) ( )
Z =1+ %; +0(a), (2.72b)

@+ (P* + o+ q-)

2
Go(p* + o) (p* +G-) +0(7). (2.72¢)

Zy =1+ 120
p

Compactifying this solution in a T4 parameterized by the coordinates y; is trivial.
Then, we just have to compactify the resulting 6-dimensional solution to d = 5 using the
results obtained here along the coordinate z = u/k~, where ko is the asymptotic value
of the KK scalar k. It is helpful to rewrite the 6-dimensional solution in the form

2= gz e R (L ) (2.73a)

= — — — z — .
Z.2_ 0GP TP T T 70 koo, )

. ko

a0 _yg (—Zdt A dz) twgdZy (2.73b)

e = 2wz /z, (2.73¢)

where we have set v = t, to identify immediately the following 5-dimensional fields:'”

ds® = z dt?* — Zo(dp® + p*dQy) , (2.74a)
HWY = w,dZ,, (2.74b)
Fed(—— a (2.74¢)
B ko2 ) '
GO = a-Feg
=d(-Z=dt ), (2.74d)
e H0) =\ [Z Z_ /2, (2.74e)

k/koo = /2] 2_, (2.74f)

"We have only computed G and not G because of its complication and because it is unnecessary to
do it for the calculation of the entropy. On the other hand, the Kalb-Ramond field is customarily dualized
into another vector field to which the third charge Go is associated.
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and the T duality even and odd 2-forms

R éiZ—L dp A dt (2.75)
Tz z\z, Tz ) ‘

where a prime indicates derivative with respect to p.
In the Vielbein basis

1 / ) / %
60 = ﬁdt, 61 = Zodp, e = % Zop9 y (276)

where the #° are the left-invariant SU(2) Maurer-Cartan 1-forms that satisfy dQQ(g) =

i@zﬂi, the binormal is given by just ¢”! = +1 and the entropy formula in Eqs. (2.69a) and
(2.69b) becomes

1
§5=—05
AGY

/
/ dBae=2¢=9)  /]j] {1 + O‘Z [—2R0101 + (K02 4 (K<+>01)2” . (277)
>

The fields in the integrand are only functions of p and we can perform the integral
over S3. Evaluating the zeroth-order term at p = 0, where the horizon is located, we get

i lm ()]

1
S=—— {AH + o'n? lim PP 202, 2
p—

4G

1 (Z\° 1 [(2\?
+—(22F) + = (== :
Zo \ Z, Zo\Z_

where Ay, the area of the horizon, is given by

Ay = 2m? flg% PN 202, 2 = 27%\/G0d4 G- . (2.79)

Finally, we arrive at

A 20/
527(-[5){14-?}. (2.80)

In order to compare this result with the microscopic entropy in Ref. [87], we have
to express the charges ¢4, {_,Go in terms of the asymptotic charges'®. First, we have to
take into account the relation between ¢y, G_, Go and the numbers of fundamental strings
n, momentum w and S5-branes N

_d?g*n
4+ = Rz )

G =dg’w, Go=dN. (2.81)

18See Refs. [29,107], specially Egs. (2.18),(2.20),(2.21) of the later.
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Second, 10-dimensional Newton constant G%l,o) is given in terms of the Regge slope pa-

rameter o = ¢2 and the 10-dimensional string coupling constant g, by

G\ = 8nbg2a/t . (2.82)

This and Eq. (4.7b) allow us to rewrite the entropy Eq. (2.80) in the form

S = 2mvVnwN <1 + ;) . (2.83)

Finally, in terms of the asymptotic charges Q4+, Q—,Qo, which are related to the
numbers of branes by

Q+:n(1+;> Q*:wv Q(]:N_lv (284)

the entropy takes the final form that can be compared with the microscopic formula

S =2m/Q:Q_(Qo+3). (2.85)

2.5 Discussion

In this chapter we have performed the complete dimensional reduction of the Heterotic
Superstring effective action to first order in o’ using the formulation based on the super-
symmetry completion of the Lorentz Chern-Simons terms that occur in the Kalb-Ramond
field strength [73,90]. We have found a Zj transformation of the dimensionally-reduced
action that leaves it invariant and that is an O(«’) generalization of the standard trans-
formations that interchange KK and winding vectors and invert the KK scalar. In 10-
dimensional variables (the components of the 10-dimensional fields) these transformations
are nothing but the o/-corrected Buscher rules of the Heterotic Superstring theory, first
found in [85].

Then, we used the dimensionally-reduced action to find, following the Iyer-Wald
prescription [22,28] an entropy formula for stringy black holes that can be obtained from
a 10-dimensional solution by a single non-trivial compactification on a circle, supplemented
by a trivial compactification on a torus. This formula was successfully applied to a non-
extremal 4-dimensional Reissner-Nordstrom black hole in Ref. [32] and, in this chapter, we
have applied it to the o'-corrected heterotic version of the Strominger-Vafa black hole of
Ref. [29] obtaining an entropy formula that matches the microscopic result obtained in [87]
once the relations between integration constants and asymptotic brane charges have been
correctly taken into account. As explained in Ref. [107], the result obtained in Ref. [29]
misses a factor of 2 that we recover here.
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Part 11

Black Hole Thermodynamics
through Momentum Maps
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The first law of black hole thermodynamics in
Einstein-Maxwell theory

3.1 Introduction

Black-hole thermodynamics originate in the analogy between the behaviour of the area of
the event horizon A and the second law obeyed by the thermodynamic entropy S noticed
by Bekenstein [15,16] in the results obtained by Christodoulou and Hawking [13,17-19].
Shortly afterwards, in Ref. [20] Bardeen, Carter and Hawking extended this analogy by
proving another three laws of black hole mechanics similar to the other three laws of
thermodynamics involving the event horizon’s surface gravity « and angular velocity 2 and
the black hole’s mass M. The analogy, however, was only taken seriously after Hawking’s
discovery that black holes radiate as black bodies with a temperature T' = x/27 [21],
which implied the relation S = A/4, both in ¢ = Gy = h =k = 1 units.

Ever since the formulation of these four laws, it has been tried to extend their domain
of application and validity with the inclusion of matter fields and terms of higher-order in
the curvature, for instance. In Refs. [22,27,28] Wald and collaborators developed a new
approach to demonstrate the first law of black hole mechanics in general diffeomorphism-
invariant theories, beyond General Relativity. Since the surface gravity relation to the
Hawking temperature only depends on generic properties of the event horizon, the quantity
whose variation it multiplies in the first law is naturally associated to the Bekenstein-
Hawking entropy S. This quantity, often called Wald entropy, is just A/4 in General
Relativity but, in more general theories, there can be additional terms which can be
understood, for instance, as o corrections in Superstring Theories [29-34].

In the presence of matter fields, Wald’s proof of the first law of black-hole mechanics
had to be re-examined because one of the main assumptions Refs. [22,28] is that all matter
fields behave as tensors and, simply put, there are no tensor fields in nature apart form
the metric and scalar fields (if any); all of them have some sort of gauge freedom and their
transformations under diffeomorphisms are always coupled to gauge transformations. In-
deed, as is well-known, fermionic fields coupled to gravity transform under a local Lorentz
group as spinors and bosonic fields must transform under some gauge group if unwanted,
typically negative-energy, states are to be eliminated. The only scalar in the Standard
Model, the Higgs field, is, in fact, SU(2) doublet.

The simplest matter field that, coupled to gravity, allows for black-hole solutions is
the Maxwell field [37,38]. The presence of the field introduces an additional term of the
form ®dQ in the first law which takes into account the changes in the mass of the black
hole when its charge @) changes. In this term ® is the electric potential on the horizon and
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a generalized zeroth law states that it takes a constant value over the horizon. The value
of ® is customarily taken to be k#A,, where k# is the Killing vector for which the event
horizon is its associated Killing horizon and where it is assumed that the electromagnetic
field is in a gauge in which ® is, indeed, constant.

This definition of ® is clearly not gauge-invariant. This is a problem of principle,’
which, as we are going to show, is related to the more fundamental problem we were
discussing: the fact that Wald’s proof of the first law does not deal properly with fields
which have some kind of gauge freedom. In Wald’s proof, one considers diffeomorphisms
which are symmetries of all the dynamical fields, but the naive definition of invariance of
fields with gauge freedom under diffeomorphsisms through the standard Lie derivative is
not gauge invariant. This problem affects the gravitational field itself when it is described
in terms of the Vielbein instead of the metric.

A solution for this particular case was provided in Ref. [40] by defining the variation
of the Vielbein under diffeomorphisms through the Lie-Lorentz derivative Refs. [41, 44—
47] which can be understood as a generalization of the Lie derivative which transforms
covariantly under local Lorentz transformations. If the Vielbein is annihilated by the Lie-
Lorentz derivative with respect to some vector field in some gauge it will be annihilated
in any gauge and, as a matter of fact, the vector field will be a Killing vector field of the
metric. The Lie-Lorentz derivative can be defined on all fields with Lorentz (spinor or
vector) indices, a fact that has been used to extend the proof of the first law of black hole
mechanics to supergravity in Ref. [106].

A more general mathematically rigorous approach was proposed in [51] using the
formalism of principal gauge bundles which encompasses Yang-Mills and Lorentz fields
but, unfortunately, not the Kalb-Ramond field or higher-rank form fields of string theory.”
Perhaps the most interesting result in that paper is the realization that all the zeroth-laws
(the constancy of the surface gravity, electric potential, etc.) on the horizon fit into a
common pattern. In this chapter we are going to recover and reformulate this result in
terms of the momentum map, using gauge-covariant derivatives in which this object plays
a crucial role.?

Although gauge-covariant Lie derivatives are, perhaps, not the most mathematically
rigorous tool one can use, they can be generalized to frameworks other than principal gauge
bundles.* Our goal in this chapter is to show they can be consistently used in a simpler
context (the Einstein-Maxwell theory described in terms of Vielbeins) and the objects to
which the generalized zeroth law applies (here the surface temperature and the electric
potential) are the gauge-invariant momentum maps associated to each gauge symmetry
(Lorentz and U(1)) evaluated over the horizon.

!There are other problems as well: in Wald’s approach, the Noether charge, which contains a term in
which ® occurs, is evaluated over the bifurcation surface, but the Maxwell field of the Reissner-Nordstrém
black hole turns out to be singular there in the traditional gauge [39].

2The first law has been proved for theories including one scalar and one p-form field in [52], although
the gauge-invariance problem has not been discussed in it.

3In Refs. [120,121], which covers some of the topics studied here this object emerges as an “improved
gauge transformation”.

4In this chapter, we will not consider those more complicated cases involving higher-rank p-form fields
with Chern-Simons terms which typically arise in Superstring/Supergravity theories. We will consider the
case of the Kalb-Ramond field with Yang-Mills and Lorentz Chern-Simons terms in its field strength in
Chapter 5, where we will show how the gauge-covariant derivative approach with momentum maps that
we introduce here provides a gauge-covariant, unambiguous results for the Wald-Noether charge.
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Chapter 3. The first law of black hole thermodynamics in Finstein-Mazwell theory

The emergence of the momentum map in this context may seem a bit strange;
for instance, there is no mention of it in Ref. [40] in spite of their use of the (gauge-
covariant) Lie-Lorentz derivative. As we will show, however, the momentum map is indeed
present in the Lie-Lorentz derivative and plays the same role that the momentum map
(change) we will introduce for the Maxwell case. As a matter of fact, gauge-covariant
derivatives and the momentum map arise most naturally in the study of superalgebras
of symmetry, when all the dynamical fields of a supergravity theory are left invariant
by a set of supersymmetry and bosonic transformations that combine diffeomorphisms,
gauge, local-Lorentz and local-supersymmetry transformations [42,48-50]. This object also
plays a very interesting geometrical role in symmetric Riemannian spaces and in certain
spaces of special holonomy when they admit Killing vectors that preserve their geometrical
structures. When one wants to gauge the corresponding symmetries in theories with o-
models of that kind (typically supergravity theories) the momentum map plays an essential
role in the definition of the gauge-covariant derivative [122].

This chapter is organized as follows: in Section 3.2 we introduce the gauge-covariant
derivatives that we are going to use: Lie-Maxwell in Section 3.2.1 and Lie-Lorentz in Sec-
tion 5.3.3. We also discuss the zeroth laws the respective momentum maps obey. This last
section is essentially a review of the literature on the subject where we re-derive the for-
mulae we are going to use in the main part of this chapter using our conventions (those of
Ref. [42]). In Section 3.3 we describe the Einstein-Maxwell theory in d dimensions (action
and equations of motion) in differential-form language and the d-dimensional Reissner-
Nordstrom-Tangherlini black hole solutions. In Section 3.4 we compute the Wald-Noether
charge for this theory using the transformations based on the gauge-covariant Lie deriva-
tives defined in Section 3.2. Then, in Section 3.5 we prove the first law for this system,
identifying the Wald entropy, which we compute for the Reissner-Nordstrém-Tangherlini
black hole solutions. In Section 5.7 we briefly discuss our results and future directions of
research.

3.2 Covariant Lie derivatives and momentum maps

One of the main ingredients in the proofs of the first law of black hole mechanics using
Wald’s formalism [22, 28] is the use of infinitesimal diffeomorphisms that leave invariant
all the dynamical fields.

If we use the metric g, as dynamical field, since the metric is just a tensor, its
transformation under infinitesimal diffeomorphisms d¢z# = £#(x) is given by (minus) the
standard Lie derivative

559;11/ = _££guu = —QV(“&,) ) (31)

which vanishes when &£ is a Killing vector of g,,,. We will distinguish Killing vectors from
generic vectors £# denoting them by k*.

If, as we want to do here, we use as dynamical field the Vielbein e, instead of g,
in order to define its symmetries, we face the well-known problem of the gauge freedom of
e, which in this context has been treated in Refs. [40,51]. The same happens with the
electromagnetic potential A, which also has been treated in this context in Refs. [51].

One way to deal with this problem is to define a gauge-covariant notion of Lie deriva-
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Chapter 3. The first law of black hole thermodynamics in Einstein-Mazwell theory

tive. The Lie derivative in the corresponding principal bundle, used in Ref. [51] provides
the most rigorous definition such a derivative. Here we will introduce a less sophisticated
version that makes use of the so-called momentum map and which can be defined for more
general fields such as the Kalb-Ramond 2-form of the Heterotic Superstring, which can-
not be described in the framework of a principal bundle [53]. Gauge-covariant derivatives
arise naturally in the commutator of two local supersymmetry transformations and in the
construction of Lie superalgebras of supersymmetric backgrounds [42,48-50].

Due to its simplicity, we start with the Maxwell field.

3.2.1 Lie-Maxwell derivatives

The electromagnetic field A, is a field with gauge freedom: we must consider physically
equivalent two configurations that are related by the gauge transformation

OAu = 0uX s (3.2)

and, furthermore, as a general rule, it is not possible to give a globally regular expression of
the electromagnetic field in a single gauge.” However, the standard Lie derivative does not
commute with these gauge transformations and gives different results in different gauges.
This is why a gauge-covariant notion of Lie derivative is needed in this case.

In the subsequent discussion it is convenient to use differential-form language. In
terms of the electromagnetic 1-form potential A = A,dz", we define the electromagnetic
field strength 2-form by F = dA so that it satisfies the Bianchi identity dF" = 0. In
components we have

F = 1F,da" Ada” Fu = 20,4, . (3.3)

The field strength is invariant under the gauge transformations 6, A = dx and we can
treat it as a standard 2-form whose transformation under infinitesimal diffeomorphisms
generated by & is given by (minus) the standard Lie derivative which, on p-forms, acts
as L¢ = 1ed + dz£.6

Using the Bianchi identity we find that

0eF = —die F. (3.4)
If £ is a symmetry of all the dynamical fields, in which case we will denote it by k, we

have that 6 F' = 0 and the above equation implies that, locally, there is a gauge-invariant
function P, called momentum map such that”

lkF = —de . (35)

Py, is defined by this equation up to an additive constant that we will discuss later.

5The main example of this situation is the magnetic monopole [54].

In our conventions, for a p-form w® with components w(p)muﬂp, 1ew® is the (p — 1)-form with
components (z§w<p))#l.#p_1 = §”w(p)w1%p_1.

"The sign of Py is purely conventional.

60



Chapter 3. The first law of black hole thermodynamics in Finstein-Mazwell theory

Let us now consider the variation of A under infinitesimal diffeomorphisms, which,
according to general arguments (see e.g. Refs. [42,51]) has to be given locally by a combi-
nation of (minus) the Lie derivative and a “compensating” gauge transformation generated
by a {-dependent parameter x¢ which is to be determined by demanding that d;A = 0
when 6, F = 0:

(5514 = —.fEA + dX{ = —ZgF +d (Xg — ZgA) . (3.6)

Then, taking into account Eq. (3.5), we conclude that

xe = 1A — P, (3.7)

where P is a function of { which satisfies Eq. (3.5) when { = k and generates a symmetry
of all the dynamical fields.

It is natural to identify the above transformation d¢ A with (minus) a gauge-covariant
Lie derivative of A that we can call Lie-Mazwell derivative

(SgA = —LgA, LgA = ZgF + dP,g . (38)

While this derivative does not enjoy the most important property of Lie derivatives
[Le, £4] = Li¢ ) for generic vector fields £, 7, it is clear that it does for those that generate
symmetries of A and F' and annihilates them. This is certainly enough for us.

For stationary asymptotically-flat black holes, when the Killing vector k is the one
normal to the event horizon, the momentum map can be understood as the electric poten-
tial ® which, evaluated on the horizon ®4,, appears in the first law.® In the early literature
(see e.g. Section 6.3.5 of Ref. [56]) it was assumed from the start that there is a gauge in
which

£ A =1, dA + d(ZkA) =0. (3.9)

Then, the electric potential & was identified with 2 A because, according to the above
equation, d® = —1,. F', which can be defined as the electric field for an observer associated
to the time direction defined by k.

It is clear that Py can be identified with ® (both satisfy the same equation). However,
in a general gauge, it will not be given by just 1A and we will have to compute it.
Nevertheless, the main property of ®, namely the fact that it is constant over the horizon
(sometimes called generalized zeroth law) still holds because it is, actually, a property
of —1;F based on the properties of k, the Einstein equations and the assumption that
the energy-momentum tensor of the electromagnetic field satisfies the dominant energy
condition.

3.2.2 Lie-Lorentz derivatives

The original motivation for the definition of a derivative covariant under local Lorentz
transformations, often called the Lie-Lorentz derivative, was its need for the proper treat-

8See, for instance Ref. [55] for a proof of the first law in the context of 5-dimensional supergravity and
the role that ® plays in it.
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Chapter 3. The first law of black hole thermodynamics in Einstein-Mazwell theory

ment of spinorial fields in curved spaces in such a way that the flat-space results were
correctly recovered.

In Minkowski spacetime, fermionic fields transform in spinorial representations of
the Lorentz group, which leaves invariant the spacetime metric (1) = diag(+ — -+ —).
Since generic spacetime metrics g,,,, do not have any isometries, the Lorentz group will not
be realized as a group of general coordinate transformations (g.c.t.s) leaving invariant the
spacetime metric. Weyl realized that, if one introduces an orthonormal base in cotangent
space at a given point in spacetime

{e" =€, da"}, ea#eb,,g’”’ = n“b, (3.10)

the Lorentz group arises naturally as the group of linear transformations of the base

e = A%e® ~ (0% + 0%)e’, (3.11)

(0%, are the infinitesimal transformations) that preserves orthonormality.

AN =t = glogpble = gl — ¢ (3.12)

In Ref. [123], Weyl proposed to define fermionic fields 1) as fields transforming in
the spinorial representation of the Lorentz group that acts in the tangent and cotangent
space, that is

S0t = 39T s (Map)1) (3.13)

where I'; (M) stands for the matrices that represent the generators of the Lorentz group
{Myp} in the representation r. As is well-known, the generators in the spinorial repre-
sentation can be constructed taking antisymmetrized products of the gamma matrices ¢,

,}/ab =~ [a,yb}

Fs(Mgy) = %'Yaba = O = iaab%zblﬁ . (3.14)

Since these transformations can be different at each point, the Lorentz parameters
0% take different values at different points of the spacetime and become functions ¢ (x)
which will be smooth if the bases of the tangent and cotangent space are assumed to vary
smoothly so that they are smooth vector and 1-form fields.

Theories containing fermionic fields in curved spacetimes are required to be invariant
under these local Lorentz transformations. Their construction demands the introduction
of a gauge field, the so-called spin connection 1-form, conventionally denoted by w® =
wuabda:“. The spin connection enters the Lorentz-covariant derivatives of any field T
(indices not shown) transforming in the representation r of the Lorentz group as follows:

DT = [d - %w“bFT(Mab)] 7 (3.15)

The transformation properties of T(") are preserved by the covariant derivative if, under
infinitesimal local Lorentz transformations,

Syw™ = Do — [d — Loer Adj(Mcd)] ot = do® — oula glelt] (3.16)
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From now on V, will denote the full (affine plus Lorentz) covariant derivative sat-
isfying the first Vielbein postulate

0=V e" =0,e", — w,ﬁbeb,, —Turle?,. (3.17)

On pure Lorentz tensors V = D.
Now, how do spinors and general Lorentz tensors transform under infinitesimal g.c.t.s
generated by an vector field £7

Customarily, these fields are treated as scalars, so that, if £¢ stands for the standard
Lie derivative,

(ng = —££T = —ZédT. (3.18)

There are many reasons why this has to be wrong. For starters, if we consider the
particular case of a vector field £ generating a global Lorentz transformation in Minkowski
spacetime £#* = ot ,x¥ 4 a*, the transformation in Eq. (3.18) is completely different from
the transformation of a Lorentz tensor

3,1 = 20T, (Ma)T . (3.19)

However, it should reduce to this if the Fermionic fields introduced in curved spacetimes via
Weyl’s prescription have anything to do with the standard special-relativistic Fermionic
fields.

Furthermore, it is clear that the effect of the g.c.t. Eq. (3.18) on T" depends on the
gauge, or, equivalently, on the choice of tangent space basis. In other words the expression
for §¢ in Eq. (3.18) is not covariant under local Lorentz transformations.

Indeed, Lorentz tensors are not scalar nor tensor fields under g.c.t.s. They are
sections of some bundle or, at a more pedestrian level, they are fields that, under g.c.t.s,
transform as world tensors up to a local Lorentz transformation whose parameter depends
on the field and on the generator of the g.c.t. Ugb.

Then, instead of Eq. (3.18) we must write

(SéT = —££T + (SgsT, (3.20)

where Ugab makes 65T covariant under further local Lorentz transformations.

The parameter of the compensating local Lorentz transformation that renders 6¢7
covariant turns out to be given by’

0e® = 1ew® — vlagh (3.22)

and it should be compared with the parameter of the compensating U(1) gauge transfor-
mation x¢ in Eq. (3.7). By analogy we can define the Lorentz-algebra-valued momentum
map

9 After Ref. [40], this parameter is often written in the equivalent, but less transparent, form

0 = —£eel® e (3.21)
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P = vlagtl, (3.23)

We will see that this object satisfies a generalization of the equation that defines the
momentum map in the Maxwell case Eq. (3.5).

It is natural to define the Lorentz-covariant Lie derivative (or Lie-Lorentz derivative)
of any tensor T" with Lorentz and world indices with respect to a vector field £ as (minus)
this transformation:'"

]LgT = —6£T = £§T — (5U§T . (3.24)

The properties of the Lie-Lorentz derivative on spinors are reviewed in Refs. [41,42].
Here we are mainly interested in the Lie-Lorentz derivatives of the Vielbein and the spin
connection, specially with respect to Killing vectors. According to the general definition,
and after trivial manipulations, we find that the Lie-Lorentz derivative of the Vielbein is
proportional to the Killing equation

Leey = 5 (Vu€® + V&) = 3¢ (Vuby + Vi&y) | (3.25)

and, therefore, it vanishes when £ is a Killing vector field, independently of the basis
chosen, as we should have expected.

We will use this equivalent differential-form expression for the above equation:

Lee® = DE® + Pe%e’. (3.26)

Let us now consider the Lie-Lorentz derivative of the spin connection w®. Taking
into account the inhomogeneous form of the compensating Lorentz transformation for the
spin connection Eq. (3.16) we get!!

ngab e £€wab — ’DUgab y (3.27)

where agab is with the same parameter Eq. (3.22). After some massaging, we can rewrite
it in a much more suggestive form

Lew™ = 1 R® + DP;" (3.28)

where the Lorentz curvature 2-form R = %Rwabdm“ A dx¥ is defined as

RY® = dw® — . Aw®, (3.29)

and where we have replaced V¢ by Pgab, according to the definition of Eq. (3.23).

The left-hand side of Eq. (3.28) can be shown to vanish identically when ¢ is a Killing
vector field, because of the identity

0The Lie-Lorentz derivative was originally introduced for spinor fields in Refs. [44-47] and its definition
was later extended to more general Lorentz tensors T' transforming in an arbitrary representation r [41]

HThe same expression can be found if one considers the variation of the Levi-Civita spin connection as
a function of the variation of the Vielbein, given by (minus) the Lie-Lorentz derivative in Eq. (4.46a).
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£ R,,» + V,(VIagth) = yle (Vb]ﬁu + Wf”) : (3.30)

As desired, for Killing vectors k we have Lipe® = 0 and Lyw® = 0 and both statements
are Lorentz-invariant.'?

For Killing vectors, Eq. (3.30) can also be written in the form

1w RY® = —DP (3.31)

which is the generalization of Eq. (3.5) and justifies our definition of momentum map
Eq. (3.23) for Killing vectors. The main difference with the Lie-Maxwell case is that here
we have an explicit expression for Pgab for any £.

In the context of asymptotically-flat stationary black holes, it is known that, when
evaluated on the event (Killing) horizon

Pt = vlaghl 2 b (3.32)

where £ is the surface gravity and n® is the binormal, normalized to satisfy n®ng, = —2.
The constant'® « is related to the Lorentz momentum map just as the electric potential
on the horizon was shown to be related to the Maxwell momentum map in Section 3.2.1.
This parallelism between zeroth laws was observed in [51].

3.3 The Einstein-Maxwell action and the RNT solutions

In this section we present the d-dimensional Einstein theory and the d-dimensional Reissner-
Nordstrom-Tangherlini (RNT) solutions we are going to study, in order to fix the conven-
tions. We will first give the action and equations of motion in the standard tensorial
form, and will then rewrite them in the differential-language form that we will use in the
following section.

3.3.1 Action and equations of motion

Setting GS\‘? = 1 for simplicity, and choosing as basic dynamical fields the Vielbein e, and
the Maxwell field A,,, the action of the Einstein-Maxwell theory in d spacetime dimensions

1

Sleu, Al = T6n

/ddxe [R(w,e) — 1F?] . (3.33)

where e = det(e®,), R(w,e) is the Ricci scalar, defined in terms of the Levi-Civita spin
connection w,ﬂb,M that is

R(w,e) = eqey” R (w), (3.34)

120bserve that Lew?® transforms as a Lorentz tensor even though w® is not (it is a connection).

13See Ref. [124] for a proof of the constancy of x over the horizon (the standard zeroth law of black hole
mechanics [20]) that makes use of the Einstein equations and the dominant energy condition and Ref. [125]
for a proof that does not, relying only on the assumption of geodesic completeness of the null generators
of the event horizon.

YWe are using the second-order formalism.
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where Rwab(w) is the curvature 2-form of the Levi-Civita spin connection, defined in
Eq. (3.29). The Levi-Civita spin connection (metric compatible and torsion-free, that is
De? = 0) is given by

Wabe = eauwuba = —Qape + Qca — Qeas Qabe = ea'uebya[,u\edu] : (335)

Finally, F? = FF% F = eqt'ey” Fyy and F),,, is defined in Eq. (3.3).

The equations of motion are

0S e

Bt = =—— (GHF =117 3.36
56&# 871'( a 2 #) ’ ( a)
58 1

Et=_—""=_"_9,(eF"") .36b
A O (eF™) (3.36b)

where
T, = Fp " — e ' F?, (3.37)

is the electromagnetic field’s energy-momentum tensor.

In differential-form language, the action Eq. (3.33) is usually written in this form

a (_1)d_1 1 aia a a _
Sle®, Al = (d_2)!R12/\63/\-~-/\edea1...ad—%F/\*F = [ L, (3.38)

although it is more convenient to rewrite the first (Einstein-Hilbert) term as

1

- 2)!Ra1“2 Ae™ A Aeeq.q, =x(e® Ae?) A Ryp. (3.39)

The (d — 1)-form equations of motion (which we write in boldface) are given by

1

Bu= o {za* (€ Ae®) A Reg + 3 (1aF A+F — F /\ZQ*F)} , (3.40a)

E———dxF (3.40b)
- 167 ’ '

where 1. stands for i.., where e, = e,/ 0,,.

3.3.2 The Reissner-Nordstrom-Tangherlini solutions

The d-dimensional RNT solutions with rationalized mass M and electric charge ¢ are
described by the following metric and electromagnetic fields [37,38, 126]:
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dr? 16w ¢
ds? = \dt* — — — r?dQ? Fyp = —o 3.41
8 A gy " oy TR (3.41)
where dQ? i—2) is the metric of the round (d — 2)-sphere of unit radius, w(y_9) is its volume

and

(Tdf?; _ Ti—?))(rdf?) _ 74d_—3)

A= S , (3.42a)
N DL L Y (3.42b)
(d—2)w(g—2)
_ 8m 2(d —2)
d—3
ry = [ M?% — —— ¢ 3.42¢
0 = @ 2o \/ (@-3) (3.420)

The origin of the annoying normalization factors lies in the standard normalization factor
(16m)~! of the action, which should be replaced by [2(d — 2)w(g_2)]~!. Instead, we can
just define

8 167w
M=, 0= 7, 3.43
(d = 2)wa—2) W(d—2) (3.43)

getting somewhat simpler expressions

Fir = Td% , (3.44a)
rf? = Mg, (3.44b)
2
d—3 — 2 Q
0 \/./\/l NA—2)d—3) (3.44c)

The event horizon of these solutions exists when M > [2(d — 2)(d — 3)]~'/2|Q| and
then it is located at » = r4 and its surface gravity is given by

ko= (d—3)ri3/ri 2. (3.45)

The surface gravity vanishes in the extremal limit rg = 0, which is reached when M =
2(d — 2)(d — 3)]~Y/?|Q|. We will always assume that x # 0.

The timelike Killing vector that becomes null on the horizon is £k = 0; in these
coordinates, but they do not cover the bifurcate sphere because this expression for k never
vanishes. In the region covered by these coordinates we find that

P = VIR = —9. 00" 0 2 k| (3.46)
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where the binormal takes the value

= 29" = nMny, = —2. (3.47)

On the other hand, 1. F = F},.dr and

_Q/d=3) n Q/(d—3)
B

Py — 0. (3.48)

In order to reach the bifurcation sphere we need to use Kruskal-Szekeres coordinates.
For d = 4 the change from r,t to Kruskal-Szekeres’s U,V is known and given explicitly,
for instance, in Ref. [14]. To work in arbitrary d we will just work near the event horizon:
expanding the solution in Eq. (3.41) around r = r and ignoring terms of second or higher
order in r — r4 we get

dr?
ds® = 2k(r — 1y )dt? — el —1) 1+ 2(r —74) /74 dQ%dﬁ) +O(r —ry)?,
(3.49a)
Fy =2 2
= [1—(d—=2)(r—ry)/re]+ O —ry)=. (3.49Db)
+
The tortoise coordinate 7, is
_ 1 =Ty 2
e =5 log < o > +C+0O(r—ry)*, (3.50)

where C'is an integration constant that we set to zero for the sake of convenience. Defining

v=t4ry, u=t—ry, (3.51)
the solution takes the form
ds® = 2kr eV dudv — ri [1 + 26’{(”*“)} dﬂ%dfz) +0O(r —ry)?, (3.52a)
Fyy = 52— | 0 2 3.52b
wy — K’r‘iige + (T’ - T+) . ( : )

Finally, we define the coordinates U, V

V=\ry/ke™, U= —\/ry/ce ™, (3.53)

in terms of which the solution takes the form
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ds? = =2dUdV —r3 [1 = 26UV /ry]dQ3; o + OUV)?, (3.54a)
Q 2
Ty

The Killing vector k = 0; becomes, in these coordinates

k=r(Voy —Udy) +OUV)?, k= kyda' =k (VAU — UdV) + O(UV)?. (3.55)

In these coordinates, the hypersurface U = 0 is the past event horizon H ™, generated
by k|- = kV Oy = 0,. The hypersurface V' = 0 is the future event horizon H* generated
by kly+ = —skU0y = 0y. They cross at the bifurcation sphere, which is defined by
U =V = 0 and can also be characterized as the spatial cross section of the horizon at
which k£ = 0.

On the other hand,

Py jwdat A dz” = dk = 2kdV A dU + O(UV)? = 2kgvy wdat Adz” + O(UV)?,
(3.56)

= Ny = _29UV,,uu-

On the other hand,

WF = i 2 (VU + UdV) + OUV)?,
Ty
(3.57)
= B.=C+ H%UV +OUV)?.
T+

The constant C' clearly has to be identified with the electric potential over the horizon ®
in Eq. (3.48). As observed in Ref. [39], if we use the simplest choice of electromagnetic
potential

Q/(d—3)
we obtain,
Q 9 (dV dU)
A= ———— 114+ (d— — = — .
2= 3T (14 (d—3)kUV/ry + O(UV)?] T ) (3.59)

which is singular at the horizon.
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3.4 'Wald-Noether charge for the E-M theory

The general variation of the action of the Einstein-Maxwell theory Eq. (3.38) is

5S = / {Ey Ade® + EAGA+dO(e, A, de,5A)} (3.60)

where E, and E are, respectively, the (d — 1)-form Einstein (3.40a) and Maxwell (3.36b)
equations multiplied by the volume form d%z and

1
O(e, A, de,0A) = T *(e® N €) A Sway — *xF ASA| | (3.61)
T

is the presymplectic (d — 1)-form defined in Ref. [27] and x stands for the Hodge dual. For
the transformations given by (minus) the covariant Lie derivatives in Egs. (3.8), (3.26)
and (3.28)

565 = / {~Ea A (DE"+ Poe) ~ B A (1F +dPe) + dO(e, A, bee, 5eA) L, (3.62)

with

|
(e, A, dge, 0 A) = 1~ [*(ea Aeb) A <z§Rab + ngab) — «F A (1F + dPg)] . (3.63)

Let us consider the first term. It is not difficult to see that E, A engab = 0 because
the tensor contracted with the Lorentz momentum map give the Einstein equations, which
are symmetric in the indices a and b. The rest can be integrated by parts,

— Eq ADEY = —(—1)T 1 (Bu) + (—1)41¢DE, . (3.64)

Using the Bianchi identity DR = 0,

1
§"DEq = 33-€"D (1aF A+F = F A 1q % F)
T
(3.65)
1
= 3Té“[VzaF/\*F—zaF/\V*F—VF/\ZQ*F—F/\Vza*F] ,
T

where we have replaced D by V is the exterior total covariant derivative operator which
satisfies the first Vielbein postulate. Then, using the property

Vigw = —tqdw + Vew, (3.66)

and replacing V by the exterior derivative when it acts on differential forms with no
indices, as well as using the Bianchi identity dF = 0, we get

1
§'DEy = o0& [VaF AXF — 1aF Ndx F + F N1gdx F — F ANV % F] . (3.67)
s
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Since V, commutes with the Hodge dual and F' A xG is symmetric in F' and G for any
2-forms F, G, the two terms with V, cancel each other. Furthermore,

FNigd*xF =1(FANd*xF)—1,FNdxF, (3.68)

and

MW = 1ew , (3.69)

for any p-form, we arrive at
(-1)¢"1¢*DE, = —m%d* F AwF. (3.70)
The second term in Eq. (3.62) gives
—EA (eF +dP:) = %d*F/\ng— (-)d(EP) , (3.71)
and, collecting the partial results, we get
0S¢ = /d@’(e,A,ége,(SgA), (3.72)

where
O'(e, A, d¢e,5cA) = O(e, A, 5¢e, 5 A) + (= 1) (B, + EF;)

= 5o [*(e" A e?) A (1 Rap + DPeap) — xF A (1 F + dPe)
7'['

—1)¢
+(—1)dz£*(ea/\eb)/\Rab+( 2) (eF AXF — F NgxF)  (3.73)

+(—1)d*1d*FP4

(_1 d—1

= L4+~
et 167

d [*FP5 — x(e" A €") Pey
The action of the Einstein-Maxwell theory Eq. (3.38) is exactly invariant under
local Lorentz and electromagnetic gauge transformations and it is invariant up to a total

derivative under diffeomorphisms. Therefore, under the combined transformations d¢ =
—IL¢ with the covariant Lie derivatives defined in Eqgs. (3.8), (3.26) and (3.28),

5eS = —/dzEL. (3.74)
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Chapter 3. The first law of black hole thermodynamics in Einstein-Mazwell theory

Taking into account the result in Eq. (3.72), the arbitrariness of the domain of integration,
of the parameter £, and the fact that we have not used the equations of motion, we conclude
that, if we define the (d — 1)-form

J= @/(6, A, 556, 55./4) + ZgL , (375)
it satisfies

dJ =0, (3.76)

identically, off-shell. This, in its turn, implies the existence of a (d — 2)-form Q[¢] (the
Wald-Noether charge) such that

J =dQl. (3.77)

The last line of Eq. (3.73) gives the following expression for the Wald-Noether charge:

_1\d—1
Q[g]:( 116)7T [*FPg—*(e“/\eb)Pgab : (3.78)

3.5 The first law of black hole mechanics in the E-M theory

Following Ref. [27] we define the pre-symplectic (d — 1)-form

w(d)v 51¢a 52¢) = 51®(¢7 52¢) - 52®(¢7 51¢) 3 (379)

where ¢ stands for the Vielbein and Maxwell fields, and the symplectic form relative to
the Cauchy surface X

(6,610, 820) = /Z (6,516, 624) . (3.80)

Following now Ref. [22], when ¢ solves the equations of motion E4 = 0, for any
variation of the fields d1¢ = d¢ and the variations under diffeomorphisms do¢ = d¢¢

w(p,06¢,0¢¢) = 63 + d1e® = 6dQ[€] + d1e®’ (3.81)
where, in our case, J is given by Eq. (3.77), ©® is given in Eq. (3.73) and we observe that,
on-shell, ® = @’. Then, if §¢ satisfies the linearized equations of motion 6dQ = déQ.

Furthermore, if the parameter £ = k generates a transformation that leaves invariant all
the fields of the theory, dxd = 0, w(p, d¢, dpp) = 0, and we arrive at

d(6Q[k] +u®') =0, (3.82)
which, when integrated over a hypersurface 3 with boundary 0%, gives
/ (6Q[k] +u©") =0. (3.83)
0%
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In our case, we are dealing with asymptotically flat, static black holes. k is the
timelike Killing vector whose Killing horizon coincides with the event horizon and the
hypersurface ¥ is the space between infinity and the bifurcation sphere (BH) on which
k = 0. Infinity and the bifurcate horizon are the two disconnected components of 6% and
taking into account that £ = 0 on the bifurcation sphere, we obtain

0 Q[k] :/ (6Qk] + 4, ©') . (3.84)
BH 9]
As explained in Ref. [22], the right-hand side can be identified with M, where M
is the total mass of the black-hole spacetime. Using Eq. (3.78), we find

) Q[k]—ﬂ «FP +(_1)d5 *(e A )P, (3.85)
BH T 16 Jm 0 167 S wab .

According to the discussion at the end of Section 3.2.1, P, can be identified with the
electric potential ® and it is constant over the horizon. The electric charge contained
inside the horizon is given by

_ (=p*!
0="0 /BH*F, (3.86)

and the first term just gives +®JQ, which implies that we get a first-law-like relation if
the second term gives T9S. Let us study that term. Using Eq. (3.32) we get

(—1)x

(1),

an b P _ 5 an b
6r 0 s *x(e* N e’) Py ap T6m - *(e* N e’ )ngp
_ _id dd—?snabnab (387)
167 BH
=T0A/4,
where we have used the normalization of the binormal n,n® = —2, A is the area of the

horizon and T' = /27 is the Hawking temperature.

Thus, we recover the first law of black hole mechanics if we identify the black hole
entropy with one quarter of the area of the horizon.

3.6 Discussion

In this chapter, we have showed how to define gauge-covariant Lie derivatives with the
momentum map and how to use these derivatives in the proof of the first law of black-
hole mechanics in the simple case of the Einstein-Maxwell theory with the Vielbein as the
gravitational field. We have also shown that the momentum maps we have introduced in
this case satisfy (well known) zeroth laws.

While the formulation of the first law of black-hole mechanics in the Einstein-
Maxwell theory is certainly not new, our proposal for dealing with fields with gauge
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freedoms is a first step towards a generalization of the first law to more complex cases
involving p-form fields with Chern-Simons terms such as those occurring in the Heterotic
Superstring effective action. The first law in heterotic superstring effective action will be
examined in chapters 4 (in the case of zeroth order o’) and 5 (at first order).
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The first law of heterotic stringy black hole
mechanics at zeroth order in o

4.1 Introduction

In Ref. [28], Wald showed that, in a theory of gravity invariant under diffeomorphisms,
the black hole entropy is essentially the Noether charge associated to that invariance. The
proof consists in showing that this charge plays the role of entropy in the first law of black
hole mechanics [20]. As we have previously discussed in Section 1.2.3 though, in presence
of matter, some terms in the total Noether charge are identified with other terms in the
first law. Therefore, only the “gravitational” part of the Noether charge can be identified
with the entropy and, in principle, it is necessary to go through the proof of the first law
in order to identify the entropy.

A more general and mathematically rigorous treatment based on the theory of prin-
cipal bundles was given in Ref. [51] by Prabhu, who was motivated by the problems found
by Gao in Ref. [39]. However, String and Supergravity theories have p-form fields with
gauge freedom that cannot be described in that framework. Furthermore, the effective
action and the field strengths often contain Chern-Simons terms which make the action
invariant only up to total derivatives and complicate the gauge transformations of the
p-form fields. When the Chern-Simons terms depend on the spin (Lorentz) connection,
gauge invariance and diffeomorphism invariance become entangled in a very complex form.

One of the simplest theories with a Chern-Simons term in the action is “minimal”
(N = 1) 5-dimensional supergravity [127], which only contains a 1-form coupled to gravity.
In order to deal with the lack of exact gauge invariance one has to take into account
the total derivative in the definition of the Noether current [128]. However, the entropy
obtained by this method in Ref. [129] in the case of the “gravitational” Chern-Simons terms
(both in the action or in the Kalb-Ramond field strength) of the Heterotic Superstring
effective action turned out to be gauge-dependent.! This problem was dealt with in
Ref. [130], albeit in a rather complicated form.

In the previous chapter, we studied the use of gauge-covariant Lie derivatives in the
context of the Einstein-Maxwell theory using momentum maps to construct the derivatives.
Momentum maps arise naturally wherever symmetries of a base manifold have to be
related to gauge transformations [42,122] and they are unsurprisingly ubiquitous in gauged
supergravity. As a matter of fact, the Lie-Lorentz derivative can be constructed in terms
of a Lorentz momentum map and, as previously mentioned in Chapter 3, we also used a

'The same happens when one naively uses the Iyer-Wald prescription, as noticed in [33,34].
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Mazwell momentum map to construct a Lie-Maxwell derivative, covariant under the gauge
transformations of the Maxwell field.

This procedure guarantees the gauge-invariance of the results and, as a byproduct,
we found a very interesting relation between momentum maps and generalized zeroth laws
also observed, in a completely different language by Prabhu in Ref. [51].

In this chapter, we extend this method to a theory with Abelian Chern-Simons terms
in a field strength: the effective action of the Heterotic Superstring compactified on a torus
to zeroth order in /. This theory can be seen as a generalization of the theory considered
by Compere in Ref. [52] and as a first step towards dealing with the effective action of
the Heterotic Superstring to first order in o/, which contains non-Abelian and Lorentz
(“gravitational”) Chern-Simons terms of the kind considered by Tachikawa [73,90]. The
introduction of momentum maps will allow us to obtain invariant results in a rather simple
form, basically because they allow us to determine explicitly the gauge parameters that
leave invariant all the fields of a given solution [36]. They also allow us to construct forms
which are closed on the bifurcation sphere, from which the definitions of the potentials
that appear in the first law will follow [52,131]. The closedness of those forms, therefore,
plays the role of the generalized zeroth law, albeit restricted to the bifurcation sphere.
Hence, we will refer to these properties as the restricted generalized zeroth laws.

As we are going to see in the proof of the first law, there is a very precise, almost
clockwork, relation between the closed forms that satisfy the restricted generalized zeroth
laws and the definitions of the conserved charges [36,132-134]. Only when both have been
correctly identified is it possible to find the first law and identify the entropy.

In theories with Chern-Simons terms, several different definitions of charges have
been proposed and used in the literature (see, for instance, Ref. [135] and references
therein). The proof of the first law demands that we use the so-called Page charge, which
in this context is conserved, localized and on-shell gauge invariant. Only when we use this
charge definition for the 1-forms, the closed 1-form associated to the KR potentials ®°
over the bifurcation sphere appears [52,131] and the term ®'§Q; of the first law associated
to the “dipole charges” [52,131,136-139] can be identified.

In theories with “gravitational” Chern-Simons terms, such as the effective action of
the Heterotic Superstring at first order in o/, the same mechanism should play a role in the
proof of the first law, but the terms that modify the gravitational charges will contribute
to the entropy instead [53]. It is in this precise sense that this work is a first step towards
the proof of the first law and the determination of a gauge-invariant entropy formula for
that theory. The previous discussion should have made clear that such a formula is not yet
available, as we have also explained in Refs. [33,34]. Even though the calculations of some
black-hole entropies using the Iyer-Wald prescription seem to give the right value of the
entropy in some cases,” it is clear that the results obtained using an entropy formula which
is not gauge-invariant cannot be trusted in general. It is also clear that the comparison

2In Ref. [32] it was shown that the entropy of the a/-corrected non-extremal Reissner-Nordstrém black
hole based in the string embedding of Ref. [108], computed with the entropy formula derived in Ref. [33]
using the Iyer-Wald prescription satisfies the thermodynamic relation 9S/0M = T~!. That entropy
formula is not invariant under Lorentz transformations, though. In a general frame it will give wrong
values for the entropy and the reason why it gives the right value in that particular case, in the particular
frame in which the calculation was carried out, sill needs to be explained [53]. The same entropy formula
has been used to compute the entropy of some o’-corrected extremal black holes and the results, although
reasonable, cannot be tested using the same relation.
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between entropies computed through macroscopic and microscopic methods [89] only make
sense if both computations are reliable, and furthermore, only if the relation between the
parameters of the black hole solution and of the microscopic theory is well understood.
At first order in o/, there is no full-proof entropy formula, as we have explained, and the
identification of the parameters of the black-hole solutions (charges) with the numbers of
branes and other parameters that appear in the microscopic entropy, has issues that still
have not been fully understood [107]. This is one of the main motivations for this work.

This chapter is organized as follows: in Section 4.2 we introduce the effective action
of the Heterotic Superstring compactified on a torus at leading order in o/. In Section 4.3
we study the action of the symmetries of the theory on the fields, the parameters of the
transformations that leave all of them invariant, and compute the associated conserved
charges, including the Wald-Noether charge. In Section 4.4 we study the restricted gener-
alized zeroth laws that we will use in the proof of the first law in Section 4.5. In Section 4.6
we consider as an example the charged, non-extremal, 5-dimensional black ring solution of
pure N' = 1,d = 5 supergravity of Ref. [140] and compute its momentum maps. Section 4.7
contains a brief discussion of our results. In the appendix we show how the Heterotic Su-
perstring effective action compactified on T*xS! (trivial compactification on T#) can be
understood as a model N’ = 1,d = 5 supergravity coupled to two vector supermultiplets,
which provides an embedding of this model into the Heterotic Superstring effective action.
We also show how this model can be consistently trunctated to pure N' = 1,d = 5 su-
pergravity. Again, this provides an embedding of pure N'= 1,d = 5 supergravity and, in
particular of the black ring solution of Ref. [140], into the Heterotic Superstring effective
action, so we can apply the formulae and results obtained in the main body of the chapter
to that solution.

4.2 The Heterotic Superstring effective action on T" at ze-
roth order in o/

When the effective action of the Heterotic Superstring at leading order in o is compactified
on a T", it describes the dynamics of the (10 — n)-dimensional (string-frame) metric g,
Kalb-Ramond 2-form B,,,, dilaton field ¢, Kaluza-Klein (KK) and winding 1-forms A™,
and By, ,, respectively, and the scalars that parametrize the O(n,n)/O(n)xO(n) coset
space, collected in the symmetric O(n,n) matrix M that we will write with upper O(n, n)
indices I, J,... as M/, This means that M satisfies

MY Qe MELQ = 610, (4.1)

where

Q1) = ( 1 0 LLOX" > : (4.2)

nxn

is the off-diagonal form of the O(n,n) metric. Eq. (4.1) implies that
M=M= QeMf Q. (4.3)
Using the notation and conventions of Refs. [34,42] (in particular, for differential
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forms, we use those of Ref. [88]), and calling the physical scalars in M7y ¢*, the action of
the d = (10 — n)-dimensional takes the form

(d) 2
Sle?, B, ¢, AL, "] = 987@ /e—2¢ [(—1)4—1 * (€ A €’) A Ryp — 4dep A\ xdp
167Gy

— 1AMy AxdMY 4 (=D)L M FA«F + LH A *H] (4.4)

= [L.

In this action e* = e?,dx* are the string-frame Vielbeins, x stands for the Hodge dual
and, therefore

1
* (ea VAN eb) = mﬁcl...cd_2abecl Ao A efi2 (45)

Furthermore, w® = wuabdx“ is the Levi-Civita spin connection® and R% = %R#yabd:ﬁ“ A

dzV is its field strength (the curvature) 2-form, defined as

R® = dw® — wi, Aw®. (4.6)

ggd) and Ggf,l) are, respectively, the d = (10 — n)-dimensional string coupling and Newton
constant. *

FI'is the O(n, n) vector of the 2-form field strengths of the KK and winding vectors

ffz<g ) F™=dA™, G, =dB,,, (4.8)

which can also be defined in terms of the O(n,n) vector of 1-forms denoted by A’

Al = ( gm ) . Fl—aAl (4.9)

H is the Kalb-Ramond 3-form field strength, defined by

H=dB - %.A[ A\ d.AI, Ar = Q[J.AJ. (4.10)

b

3Tt is antisymmetric w®® = —wb® and satisfies De® = de® — w® Ae® = 0. We are using the second-order

formalism.
4They are related to the 10-dimensional constants through the volume of the T", V,,, by

g2 = Vn/(2ml)"giP 2 (4.7a)

G\ =cPv,. (4.7b)
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The kinetic term of the scalars ¢* that parametrize the O(n,n)/(O(n)x0O(n)) coset
space can also be written in the form

— dMpy AxdM = 1g,,de" A xdgY (4.11)

where the metric g,,(¢) is given by

Gy = % (6$M[KMKJ) (6yMJKMKI) . (412)

Under a general variation of the fields, the action varies as

S = / {Eq A 6e® + Ep ASB + Eydp + Ef ASAT + E,06° +dO(p,6p) ,  (4.13)

where, suppressing the factors of ¢(%) 2(167rG§g))1 for simplicity, the Einstein equations E,
are given by

E, = e 215 % (€° A ed) A Reg — 2D (1pde™2%) A *(e” A €)gea

+ (=1)414e72 (1,dep % dop + dp N 14 * dp)

+ (_;)de_%gxy (1add™ *x d¥ + dd™ N 14 * dp?) (4.14)
+ %e_%MI 7 (F AxF = FL A g« F7)
+ (_21)de_2¢ (tueH AN*xH + H N1g*x H) |
the equations of motion of the matter fields are given by
Ep= —d (e*% X H) : (4.15a)
E, = 8d (e—2¢ X d¢) _ 9L, (4.15D)
E;=E;+1EgnAf, (4.15¢)
Er=— {d (6_2¢M1J *}"‘]) F(—1)% e 2 5 [ A ff} , (4.15d)

(=1°

o€ My F AKF

(4.15¢)

E; = —0ay [d <672¢ * d¢y) + 672¢szyd¢2 A *d(ﬁw} +
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and

O(p,00) = —e 2% % (e* A €) A dwap + 214de™? % (2 A €¥) A dey,
— 8¢ e dpdp — Le 2 x dM! 5 My, (4.16)

+e My xFINSAT + e 2P HA (6B + 3A ASAT)

The equations of motion of the 1-forms E; can be written in the alternative form

EI:—d{e‘2¢M1J*.FJ+*H/\AI}—%EB/\.A]. (4.17)

This form appears naturally in the definition of the electric charges Eq. (4.32).

Here, and in what follows, ¢ stands for all the fields of the theory. E, denotes
collectively all their equations of motion.

4.3 Variations of the fields

In this section we are going to study the transformations of the fields under the different
symmetries of the action and determine which parameters of the transformations leave
a complete field configuration invariant. The conserved charges of those configurations
will be associated to those parameters. As a general rule, only if one combines several
transformations can one find parameters that simultaneously leave all the fields invariant.

The simplest case in which this happens will involve the gauge transformations of the
1-form fields: the parameters that leave them invariant do not leave the KR field invariant
at the same time, unless we perform a KR gauge transformation with a parameter related
to that of the other gauge symmetry. As a result, there is an additional term in the
formula that gives the electric charges, but it is the presence of this additional term that
guarantees the conservation of the charge and the independence of the integration surface
(as long as we do not include sources, that is, on-shell).

The transformation of several fields under diffeomorphisms must also be supple-
mented by “compensating” gauge transformations, including local Lorentz transformations
if we want all the fields to be left invariant by those generating isometries (Killing vectors).
There are several ways of understanding this need but we believe that the most funda-
mental is to realize that fields with gauge freedoms (i.e. all fields except for the metric and
the dilaton field) are not tensors and do not transform as such under diffeomorphisms.
The “compensating gauge transformations” can be seen as gauge transformations induced
by the diffeomorphisms. Only when they are properly taken into account can one find
Killing vector fields that leave all the fields invariant. Furthermore, only then the van-
ishing of the variations of the fields is invariant under gauge transformations. A more
detailed discussion and additional references to this topic can be found in Ref. [88]. The
conserved charge associated to diffeomorphisms, the Wald-Noether charge, will therefore
include terms related to gauge symmetries and their associated conserved charges, which
will ultimately contribute to the first law.
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As we will see, only when all these details are properly taken into account can the
first law be proven and the entropy identified.

We start by describing the gauge symmetries of the theory (other than diffeomor-
phisms) and the associated conserved charges.

4.3.1 Gauge transformations

The gauge transformations of the fields are

bpe® = o%e’, (4.18a)
S A =dx!, (4.18b)
6B = (65 + 0y)B = dA + Sxsd A", (4.18c)

where o(®) (1) = 0 are the parameters of local Lorentz transformations, x!(z) is a O(n, n)
vector if scalar gauge parameters and A = A, (x)dz* is a 1-form gauge parameter. They
leave invariant the field strengths ! and H, but they induce the following transformations
on the spin connection and curvature

5gwab — Do — do® — 2w[a|60'c|b] , (419&)

6, R%® = 2059l RV (4.19D)

For the sake of completeness and later use, we quote the Ricci identity in our con-
ventions:

DDO'ab — _2R[a|co-c|b] — 50_Rab . (420)

The action is manifestly invariant under these gauge transformations. This leads to
the following Noether identities

El nefl =0, (4.21a)
dE; + (-1)YEg A F;1 =0, (4.21D)
dEp =0, (4.21c¢)

4.3.2 Gauge charges

Let us study the conserved charges associated to the gauge transformations d,,dx and, for
the sake of completeness, d,, starting with d,, which is simpler to deal with.
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The variation of the action under d, transformations follows from Egs. (4.13) and
(4.16)

AS = / {EB AGAB +d (e—%*HAaAB)}

(4.22)
:/{EB/\dA+d<62¢*H/\dA>} .
Integrating by parts the first term and using the Noether identity Eq. (4.21¢)
6AS:/d(A/\EB+e_2¢*H/\dA) E/dJ[A]. (4.23)

The invariance of the action under these gauge transformations indicates that the current
J[A] must be locally exact, so that, locally, there is a Q[A] such that J[A] = dQ[A]. It is
easy to see that

Q[A] = A A (e—2¢ " H) . (4.24)

The conserved charge is given by the integral of the conserved (d—2)-form Q[A] over
(d — 2)-dimensional compact surfaces Sg_o for As that leave invariant the KR field Bs.
These are closed 1-forms. Following [52,131], using the Hodge decomposition theorem,
these closed 1-forms A can be written as the sum of an exact and a harmonic form A, = d\
and Ay, respectively. The exact form A, will not contribute to the integral on-shell because

Q(Ae):/Sd dAA<e*2¢*H) :/Sd d[M(ﬂ@S*H)} —/S ANEgp.  (4.25)

d—2

Therefore,

QM) = /S A (e‘2¢*H> . (4.26)

Then, using the duality between homology and cohomology, if Cy, is the (d — 3)-cycle
dual to Ay, we arrive at the charges

(d)2
Q(A) = —gsw)/ e 2« H (4.27)
167Gy /Ca,,

where we have added a conventional sign and recovered the factor of ggd) 2( IGWG%))*l that
we have omitted. From the string theory point of view, these charges are just winding
numbers of strings whose transverse space is the cycle Cy,. Two homologically equivalent
cycles give the same value of the charge on-shell, that is, if there are no sources of the KR
field in the (d — 2)-dimensional volume whose boundary is the union of the two properly

oriented (d — 3)-cycles.
Let us now consider the conserved charges associated to the invariance under J,.
This transformation acts on the 1-forms A’ and on the KR 2-form B. Transformations
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with constant x! (closed 0-forms) leave invariant the 1-forms, but they do not leave in-
variant B. They only change it by an exact 2-form d (%XIAI ) Thus, we must add a
compensating A gauge transformation with parameter A, = —%X[AI and consider the
transformation of B

0B = —3d (xrA") + pxd A" = —gdx; N AT (4.28)

Then, from Eqgs. (4.13) and (4.16) and the modified transformation rule Eq. (5.35), we get
5yS = / {Ep A6yB+E;Ad AT
+d {e*Qd’Mu * FT NS AL + €72« H A (6B + L A1 A 5XAI)} } :

:/{(E1+ TEg ANA) Adx! +d Ke—%MU*FJJFe—?MHAAI) Adxf}} .
(4.29)

Integrating by parts the first term and using the Noether identities Egs. (4.21b) and (4.21c¢)
we get

5,8 = /d {00 (B + 3B A Ay + (M« F e w HAA) nax' }

(4.30)
The usual argument leads to the conserved (d — 2)-form
Q[X] = (—l)dXI (672¢M1J*f‘] +€72¢*HAA1) R (4.31)
and the definition of electric charges
-1 d—1 gd)2
Q; = ()72‘7@ / (6—2¢M1J *F) 4 e 2% H A AI) , (4.32)
167TGN S(d_g)

where we have added a conventional sign. Again, this charge is on-shell invariant under
homologically-equivalent deformations of S(4_2). This follows from the equation of motion
written in the alternative form Eq. (4.17). It is also on-shell invariant under the 6,
transformations, in spite of the explicit occurrence of the vector fields A;: the second
term in the integrand has the same structure as the integrand of the KR charge and, for
the same reason, it is invariant on-shell when we add to A; exact 1-forms.

This charge is, in the terminology used by Marolf in Ref. [135], a Page charge but, as
we have explained, apart from localized and conserved, it is also gauge invariant on-shell.
The formalism leads us to use precisely this charge, which will be the one occurring in the
first law of black hole mechanics.

Finally, let us consider the charge associated to the invariance under local Lorentz
transformations d,, which act on the Vielbein and on all the fields derived from it: spin
connection and curvature. Let us postpone for the time being the conditions that the
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parameters that leave all of them invariant have to satisfy and lets study the transformation
of the action. From Egs. (4.13) and (4.16) we find

0,8 = / {Ea Abge® +d|—e 2% x (e A eb) A Spwap + 20qde™2? % (e A eb) A (5061,} } ,
(4.33)

and using Egs. (4.18a) and (4.19a) and the Noether identity Eq. (4.21a), we find that the
integrand immediately reduces to a total derivative,

9.8 = [ dJ[o],
/ (4.34)

J[o] = (=1)¥ e ™2 Dagy A x(e® A €P) + 20pc10de 2P % (e A eb) A e

The standard argument tells us that J[o] = dQ|o]. Integrating by parts the first term

Jo]=d {(—l)dflefwaab * (e% A eb)} +3 (U[bcza]defw) * (e A eP) Ael. (4.35)
The last term vanishes identically because® (e A €?) A e = 2% x ¥l and we arrive at

Qo] = (—1)T e ™20 & (2 Ae®) Aoy - (4.37)

Now we have to consider Lorentz parameters that leave all the fields invariant. The
spin connection and curvature are left invariant by covariantly constant parameters

Do% =0, (4.38)

but the invariance of the Vielbein 0%, = 0 can only be satisfied for ¢%, = 0, and would
automatically imply the vanishing of Q[o].

The (d—2)-form, though, reappears in the proof of the first law for a Lorentz param-
eter that is covariantly constant over the bifurcation surface. We also notice that terms of
higher order in the Lorentz curvature, such as those which arise with o’ corrections, lead
to a non-vanishing Lorentz charge Ref. [53] .

4.3.3 Diffeomorphisms and covariant Lie derivatives

As we have discussed in the introduction, out of the fundamental fields of our theory,
only the dilaton ¢ and the O(n,n)/(O(n)xO(n)) scalars ¢* transform as a tensor under

5Here we use the property .
xw® A= *z§w(p) , (4.36)

which is valid for any p-form w® and any vector field £ = £"0, and its dual 1-form £ = Eudat.
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diffeomorphisms dez# = £#, that isf

bed = — L = —do, (4.400)

5€¢w = _£€¢x = —ng(ﬁw . (4.40b)

The Vielbein e?, the vectors (1-forms), A, and the KR 2-form, B, have gauge free-
doms and transform as tensors up to compensating gauge transformations. These com-
pensating gauge transformations can be determined by

1. Requiring gauge-covariance of the complete transformation law (which can then be
interpreted as a gauge-covariant Lie derivative) and

2. Imposing that, for diffeomorphisms which are symmetries of the field configuration
that we are considering (in particular, for isometries), the complete transformation
(covariant Lie derivative) vanishes. The first condition ensures that this vanishing
is gauge-invariant.

In what follows we will denote by k the vector fields £ that generate diffeomorphisms
that leave invariant the complete field configuration. k is, in particular, a Killing vector
of the metric.

In Chapter 3, we reviewed the construction of a Lie derivative of the Vielbein,
spin connection and curvature covariant under local Lorentz transformations (Lie-Lorentz
derivative) of Refs. [41,42] that build upon earlier work by Lichnerowicz, Kosmann and
others [44-47]. We also dealt with Abelian vector fields in similar terms. It is convenient to
quickly review these results starting with the Abelian vector case, adapted to the present
situation.

The transformation of the Abelian vector fields A’ under diffeomorphisms can be
defined as

Se Al = —LeAT (4.41)

where ]LgAI is the Lie-Mazwell derivative, defined by

LeA! = o F! + dP! . (4.42)

Here 7751 is a gauge-invariant O(n,n) vector of functions that depends on A’ and on the
generator of diffeomorphisms £ and it is assumed to have the property that, when & = k,
it satisfies the equation

®The metric gu, = nape® e’y and the 2- and 3-form field strengths F, H also transform as tensors:

Oegur = —Legu = =2V (&) (4.39a)
0cF = —LeF = —(’Lgd—‘r dlg)}—, (4.39b)
5§H = —£§H = —(ng-i— d’Lg)H. (4.39C)
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dpl = — FL. (4.43)

The invariance of the 2-form F! guarantees the local existence of P;!, which is known
as the momentum map associated to k. On the other hand, Eq. (4.43) ensures that the two
properties of the variations of the fields under diffeomorphisms that we have demanded
are satisfied. Finally, observe that the Lie-Maxwell derivative is just a combination of the
standard Lie derivative plus a compensating gauge transformation with parameter

xe! =1 AT =P (4.44)

For fields with Lorentz indices (Vielbein, spin connection and curvature), the varia-
tion under diffeomorphisms is also given by (minus) a Lorentz-covariant generalization of
the Lie derivative ¢ = —LL¢ usually called Lie-Lorentz derivative Refs. [41,42,44-47]. This
derivative can also be constructed by adding to the standard Lie derivative a compensating
Lorentz transformation with the parameter

Ugab = Zgwab — V[afb] . (4.45)

For the Vielbein, the Lie-Lorentz derivative can be expressed in several equivalent
and manifestly Lorentz-covariant forms

Lee®, = 2 (V& + Vi€yu) (4.46a)
Lee® = DE* + Pe%e, (4.46b)

where
P = vlagtl (4.47)

satisfies, when £ = k, the equation

1 R® = —DP, (4.48)

that shows that we can view P, as a momentum map as well.”

In the form Eq. (4.46a) we immediately see that the Lie-Lorentz derivative of the
Vielbein vanishes when ¢ = k, a Killing vector. The same is true for the connection and
curvature.

Observe that Pg“b transforms covariantly under local Lorentz transformations.

The above transformation of the Vielbein induce the following transformations of
the spin connection and curvature that we quote for later use:

5£wab — _ngab — _ <Z£Rab + ngab> , (4498.)

5§Rab = —]L{Rab = — <DZ§Rab — 2P§[acRb]c> . (449b)

"Compare this equation to Eq. (4.43).
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Observe that the Lie-Lorentz derivative of the spin connection has the same structure
as that of the Abelian connection A’ in Eq. (4.42), i.e. the inner product of ¢ with the
curvature plus the derivative of the momentum map.

In asymptotically-flat stationary black-hole spacetimes with bifurcate horizon, if k
is the Killing vector whose Killing horizon coincides with the event horizon and BH is the
bifurcation sphere,

P = ylaghl B opab (4.50)

where k is the surface gravity and n® is the binormal to the event horizon, with the
normalization n%®ng,, = —2. The zeroth law of black-hole mechanics stating that x is
constant over the horizon [20,125] is associated to the Lorentz momentum map, just as
the generalized zeroth law that states that the electric potential is also constant over the
horizon in the Einstein-Maxwell theory is associated to the Maxwell momentum map [88].8
We are going to see that further “generalized zeroth laws” are also associated to momentum
maps when we restrict ourselves to the bifurcation surface. We will call them restricted
generalized zeroth laws.

Let us now consider the KR field. It is convenient to start by considering the
transformation of the 3-form field strength H defined in Eq. (4.10) under diffeomorphisms.
Since it is gauge invariant, upon use of its Bianchi identity

0¢H = —L£eH = —1edH — digH = 1 Fy NF' — dicH . (4.51)

When & = k, this expression must vanish and we can use Eq. (4.43), which leads to
the identity

0eH = —d (i H + Py 1 F') =0, (4.52)

which, in turn, implies the local existence of a gauge-invariant 1-form that we will also
call a momentum map, satisfying

—wH — Py Fl =dp,. (4.53)

The KR momentum map plays a fundamental role in the definition of the variation
of the KR 2-form B under diffeomorphisms which should be of the general form

0¢B = —£eB + (0, +6y,) B, (4.54)

where x¢ and A¢ are scalar and 1-form parameters of compensating gauge transformations.
They will generically depend on A’ and B as well as on &. Xgl has to be the same
parameter used in the definition of the Lie-Maxwell derivative Eq. (4.44) and we just have
to determine A¢. Now, the Maxwell and Lorentz cases suggest that we try

Ag = Z{B - Pf 5 (455)

which leads to

8This parallelism between zeroth laws was observed in [51], also in the wider context of Einstein-Yang-
Mills theories.
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0¢B=—£:B+d(1weB — Pr) + %Xg]d.AI

(4.56)
= — (1eH + Pe 1 F' +dPe) + LA N F + 1P FL
When ¢ = k, though,
5pB =d (3Pr1A") . (4.57)
This is not zero but it can be absorbed into a redefinition of Ag:
A¢ =B — P — P AL, (4.58)
which gives the variation
6B = — (1¢H + Pe  F! + dPe) — LA A G AL (4.59)

This form of the variation makes it evident that 6B = 0, because 03 A’ = 0 and because
of the definition of the KR momentum map 1-form Eq. (4.53).

It remains to check that the vanishing of this variation is a gauge-invariant statement.
Indeed, if we perform a gauge transformation in d¢B, taking into account that all the
momentum maps and (55.,41 are gauge-invariant, we find

5gauge5£B = _%5gaugeAI A 5{»'4[7 (460)

which vanishes identically for £ = k.

4.3.4 The Wald-Noether charge

The Wald-Noether charge is the conserved (d — 2)-form associated to the invariance of
the action under diffeomorphisms [28]. The transformations that we are going to consider
(combinations of standard Lie derivative and gauge transformations, as we have explained)
are
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0¢p = —1edep, (4.61a)

e = —1edg” . (4.61b)

Se Al = — (1 F +dPeT) (4.61c)

bee” = — (DE™ + Petye’) | (4.61d)

de™ = — (1R + DR (4.61¢)

0eB+ LA NS Al = — (14 H + P FP+ dPy) . (4.61f)

From Eq. (4.13), and using the definition of E; in Egs. (4.15¢) and (4.15d) to cancel
the terms of the form Eg A A; A (55.,4[, we get

555 = — / {Ea A (Dz§ea + Pgabeb) +EgA (ZgH + 'ngfl + dPg)

FEL A (1F + dPe!) + Byred + Byredo® (4.62)
—dO(p,0¢p)}
while, from Eq. (4.16), we get
O(p,6c0) = e 2% (e* N e®) A (1 Rap + D P ap)
— 21,de™2? x (e A eb) N (D&, + Pepee?)
+ 862 % dngdp — €720 gy x dpYredg” (4.63)

— 6_2¢M[J * FIA (25.7:[ + dP§I>

—e 2% HA (ZgH—i—Pg[]'—I —|—dP§) .

Next, we consider the terms in 6¢S that contain momentum maps, integrating by
parts those which involve their derivatives:
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Eq A Py’ + Er AdPe + Ep A (Pe FP + dE)

= El AP+ PedEg + (—1)%P¢ g [dEI +(-1)Ep A ff] (4.64)

+d(PAEp+ (1) PE )

The terms in the first line vanish as a consequence of the Noether identities Egs. (4.21a)-
(4.21c) and we are left with the total derivative which will be added to ©(¢p, d¢p). Thus,
the variation of the action takes the form

5eS = — / {Ea ADye® +Ep AgH + Ep A e F! + Egred + Epredd®
(4.65)
—d {@(907 d¢p) — Pe NEp + (_1)d,P£IEI} } :
Integrating the first term of Eq. (4.65) by parts we get another total derivative to add to
O (¢, 0¢p) and (1ge” = £°)
(~1)9DE£* + Ep A eH + Ef AeF! 4 Egredd + Epredg™ = 0, (4.66)

by virtue of the Noether identity associated to the invariance under diffeomorphisms and,
therefore,

0gsS = / d®' (¢, dew) , (4.67)

where

O'(p,5c0) = O(p,6¢0) + (—1)Ee” — P NEp + (—1)*P:E; . (4.68)

Usually, the last three terms, which are proportional to equations of motion and
vanish on-shell, are ignored for this very reason. However, we have found that keeping
them is actually quite useful for finding the Wald-Noether charge, because they are exactly
what is needed to write J as a total derivative. Without them, we would have had to
guess which combinations of the equations of motion should be added to achieve that
goal. Furthermore, the result that we will obtain will be valid off-shell.

Since the action is exactly invariant under the gauge transformations Eq. (4.18), but
it is only invariant up to a total derivative under standard infinitesimal diffeomorphisms,
under the combined transformations Eqs. (4.61)

555’ = —/ngL, (4.69)
which, combined with Eq. (4.67), leads to the identity
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dJ =0, (4.70)

which holds off-shell for arbitrary £ with

J= @/(tp, dep) + 1Ll (4.71)

Eq. (4.70) implies the local existence of a (d — 2)-form Q[£] such that

J =dQlg. (4.72)

Using the previous results we find that, up to total derivatives and up to the overall
factor (ggd)2167rG§3))*1 that we are suppressing to get simpler expressions

QI = (~1) s (e A ") [€720 Py — 2uade %6,
(4.73)
+ (—1)d1p ! (6—2¢MH*]_—J> —PeA <6—2¢*H) _

4.4 Zeroth laws

The zeroth law and its generalizations, ensuring that the surface gravity and the electro-
static potential are constant over the event (Killing) horizon H are important ingredients
in the standard derivation of the first law of black-hole mechanics in the context of the
Einstein-Maxwell theory [20]. In presence of higher-rank p-form fields, it is not clear how
these laws should be further generalized. However, it is possible to prove the first law
using Wald’s formalism working on the bifurcation sphere BH, where the Killing vector
k associated to the horizon vanishes. This restricts the validity of the proof to bifur-
cate horizons but, on the other hand, it makes it possible to carry out the proof using a
more restricted form of the (generalized) zeroth laws which states the closedness of the
electrostatic potential and its higher-rank generalizations on BH. Since the electrostatic
potential is a scalar, its closedness implies that it is constant on BH, which is a restricted
version of the generalized zeroth law. For higher-rank potentials closedness is, actually,
all we need, as we will see in the next section.

We start by assuming that all the field strengths of the theory are regular on the
horizon.” This implies that

wF 2o, (4.74a)

wH 2. (4.74D)

The first equation directly implies the closedness of the components of the momentum
map Plg on BH on account of its definition Eq. (4.43), and, hence, its constancy on BH, a

90bserve that in this theory in which all the field strengths are gauge-invariant, this is a gauge-invariant
statement that should be valid in a regular coordinate patch.

91



Chapter 4. The first law of heterotic stringy black hole mechanics at zeroth order in o

statement that we can call restricted generalized zeroth law after the natural identification
of P,g with the electrostatic black-hole potential ®/. Observe that, our gauge-invariant
definition of the electrostatic black-hole potential guarantees that it is fully defined up
to an additive constant that can be determined by setting the value of the potential at
infinity to zero.

Using Eq. (4.74b) and the constancy of P} on on BH in the definition of the KR
momentum map Eq. (4.53) we find that

0 B4 —H = dPy + Py 1 F! Ly (Pk + Pk[AI) . (4.75)

We can call the combination P, + P Al that is closed on BH the KR black-hole
potential ® and its closedness can be understood as another restricted generalized zeroth
law of black-hole mechanics in this theory. Observe that ® is not gauge-invariant, but Py
is only defined up to shifts by exact 1-forms anyway and, when we use ® as the 1-form
A in the calculation of the KR charge Eq. (4.26), the addition of exact 1-forms does not
change the value of the associated KR charge Eq. (4.27). The fact that this ® occurs in
the expressions leading to the first law precisely plays this role is quite a non-trivial check
of the consistency of our results.

4.5 The first law

We start by defining the pre-symplectic (d — 1)-form [27]

w(p, 01, 02p) = 01O(ip, dap) — 62O (¢p, 61¢) (4.76)

and the symplectic form relative to the Cauchy surface X

Qp, 019, 00p) = / w(p, 010, 020) . (4.77)
>

Now, following Ref. [22], when ¢ solves the equations of motion E, = 0if 610 = dp is
an arbitrary variation of the fields and d2¢ = d¢ ¢ is their variation under diffeomorphisms,
we have that

w(p, 8¢, 0¢p) = 63 + d1g®' = 6dQ[¢] + dre®' (4.78)

where, in our case, J = dQ, where Q is given by Eq. (4.73) and @’ is given in Eq. (4.68).
Since, on-shell, ® = @', we have that, if dp satisfies the linearized equations of motion,
0dQ = déQ. Furthermore, if the parameter £ = k generates a transformation that leaves
invariant the field configuration, &, = 0,'” linearity implies that w(yp, 6p, drp) = 0, and

d (6Q[K] + 4:©') = 0. (4.79)

Integrating this expression over a hypersurface > with boundary 6% and using Stokes’
theorem we arrive at

1We have constructed variations of the fields &¢ for which this is possible.
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/5 § (6Q[k] +u®") = 0. (4.80)

We are interested in asymptotically flat, stationary, black-hole spacetimes and we
choose k as the Killing vector whose Killing horizon coincides with the event horizon
‘H, which we assume to be a bifurcate horizon. This Killing vector k is assumed to be
linear combination with constant coefficients 2" of the timelike Killing vector associated
to stationarity, t#8,, and the [1(d — 1)] inequivalent rotations ¢},0,,

kM =t Qg (4.81)

Furthermore, we choose the hypersurface ¥ to be the space between infinity and the
bifurcation sphere (BH) on which £ = 0. Then, its boundary ¥ has two disconnected
pieces: a (d — 2)-sphere at infinity, S¢2, and the bifurcation sphere BH. Then, taking
into account that £k = 0 on BH, we obtain the relation

) Qlk] = /S » (6Q[k] + u©') . (4.82)

BH

As explained in Ref. [22,52], the right-hand side can be identified with M —Q™d.J,,,
where M is the total mass of the black-hole spacetime and J, are the independent com-
ponents of the angular momentum.

Using the explicit form of Q[k], Eq. (4.73), and restoring the overall factor ggd) 2 (167TG§$))*1,
we find

-1 d—1 gd)Z
5/ Q[k'] - ()'(Z)(S/ Pkl (6_2¢M1J*.7:J)
BH 167Gy BH

(d)2
— Lo | P (e wn) (4.83)
167Gy’ JBH
1 d gd)Q
+ ()79@5 *(e® A eb) |:€_2¢Pkab - 2zade_2¢kb} )
167Gy BH

The last term vanishes over the bifurcation sphere and will be removed from now
on.

As it is, this expression has two problems that make it difficult for us to obtain the
kind of terms that occur in the first law. In the first line, we have an expression that we
should be able to interpret in terms of the electric charges Q7. However, when we compare
this with Eq. (4.32) we see that the second term in the integrand is missing. Without that
term, the charge is not conserved. On the other hand, in the second line, we have an
expression that we should be able to interpret in terms of the KR charge using Eq. (4.26).
However, the 1-form Py is not closed on BH.
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The solution to these two problems is unique: the addition and subtraction of the
term Py AL A (6_2¢ * H ) in the integrand, so that the integral to evaluate on BH takes
the form

(_1)dflg(d)2
(5/ Qk) = ——2—95 P! [e_%MIJ*}"J%—e_%*H/\.AI}
BH

167rG§\[?) BH
g2
SR L Pe+PriAD) A (e« H (4.84)
167G I ( ) ( )

_1 d gd)2
%5 e 2 % (e“ VAN eb)Pkab .

_|_
167G\ Jn

Now, using the generalized zeroth law that ensures that P! = ®/ is constant over
H, in particular on BH, and the definition of electric charge Eq. (4.32), the first term in
the right-hand side takes the form

150 . (4.85)

Next, from the closedness of the combination ® = P; + Py Al on BH, (the restricted
generalized zeroth law) using the Hodge decomposition

Py + P r AL B de + @Ay, (4.86)

where the Aj; are harmonic 1-forms on BH and the ®! are constants that have the
interpretation of potentials associated to the charge of the KR field (the dipole charge of
Ref. [136] in particular), and using the definition Eq. (4.27), we find that the second term
in the right-hand side takes the form

6Q; , Qi = Q[Ani]. (4.87)

Observe that the addition and subtraction of the term Py 1. AL A (e_2¢’ * H ) has been
crucial to recover the correct definition of the charges which, in particular, demands the
occurrence of the closed 1-form Pj, + Py, 1 A”.

Now, let us consider the third integral. Before we compute it explicitly, we notice
that the integrand is identical, up to a sign, to the Lorentz charge Eq. (4.37) computed
for the Lorentz parameter Pp%, which is covariantly constant over the bifurcation surface.
This coincidence is very intriguing and will be further explored in Ref. [53].

Using Eq. (4.50)
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—1)¢
()% )(:)5/ e 207P%) (e A e)ngy = — S (d)é/ e~ HI=d)paby
167Gy JBH 167Gy JBH
(4.88)
=19 A?d) ’
where we have used the normalization of the binormal ngn® = —2, T = k/2m is the
Hawking temperature and
Ay = / d42Ge2P=0) (4.89)
B

is the area of the horizon measured with the modified Einstein frame metric [141] which is
obtained from the string one by multiplying by the conformal factor e=4(¢—¢=)/(d=2) "and
computed using the spatial section BH.

We finally get the following expression for the first law of black hole mechanics in
the Heterotic Superstring effective action to leading order in o

SM = T&L’fi + Q5 + D6Q; + D150, (4.90)
4G5

which leads to the interpretation of the area of the horizon divided by 4G§\U,l) as the black-
hole entropy.

4.6 Momentum Maps for Black Rings in d =5

In this section we are goin to illustrate how the definitions made and the properties
proven in the previous sections work in an explicit example. In particular, we are going to
determine the values of the momentum maps, checking the restricted generalized zeroth
laws.

The solution we are going to consider is a non-extremal, charged, black ring solution
of pure N = 1,d = 5 supergravity which can be easily embedded in the toroidally-
compactified Heterotic Superstring effective field theory using the results in Appendix B.
This embedding is necessary because all the definitions and formulae that we have devel-
oped are adapted to that theory. In Appendix B we show how the action Eq. (4.4), for
d = 5 can be consistently truncated to that of pure N' = 1,d = 5 supergravity Eq. B.26
in two steps:

1. A direct truncation of some fields of the Heterotic theory, to obtain a model of
N = 1,d = 5 supergravity coupled to two vector multiplets. The Kalb-Ramond
2-form has to be dualized into a 1-form in order to obtain the supergravity theory
in the standard form, with 3 1-forms which can be treated on the same footing and
which may be linearly combined.
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2. A consistent truncation of the two vector supermultiplets. In this truncation, rather
than setting two of the vector fields to zero, they are identified with the surviving
vector, up to numerical factors. This allows the scalars in the vecort supermultiplets
to take their vacuum values.

Given a solution of pure N' = 1,d = 5 supergravity, one can easily retrace those
steps, restoring, first, the two “matter” vector fields so the solution becomes now a solution
of N = 1,d = 5 supergravity coupled to two vector multiplets. Then, dualizing the
vector in the supergravity multiplet to recover the Kalb-Ramond 2-form, the solution can
immediately be interpreted as a solution of the Heterotic Superstring effective field theory
in which many other fields simply take their vacuum values.

The non-extremal, charged, black ring solution that we are going to consider is the
one given in Section 4 of Ref. [140]. This solution belongs to a more general family of
non-supersymmetric black rings with three charges «;, three dipoles p;, with ¢ = 1,2, 3,
and two angular momenta J, and Jy in the theory with two vector supermultiplets. The
solution above corresponds to setting all three charges and three dipoles equal, a; = «
and pu; = p for all 4. This identification of the charges and dipoles coprresponds to the
identification between the vector fields that leads from the supergravity theory with matter
to the theory of pure supergravity. Let us review the solution and its main features.

The physical fields of the solution (the metric and the Abelian connection A) can
be written in terms of the five parameters (R, «, 1, A, v) (all of them dimensionless except
for the length scale R) and the three functions, F'(£), H(§) and G(&), given by

H(E) =1—pg, F(&) =1+ )¢, GE) = (1-€)(1+ve). (4.91)

The line element is

5 = 1 P (A )0 + (@) = o) P H ) H 0
% R2 |:_ G(y) de _ dy2 + de + G(JJ) d9021| (4 92)
(—y)* | FlyH(y)? Gly) Gx) F@)H@)?* " |’ '

where we use the shorthand notation s = sinh « and ¢ = cosh «, the following combinations
of the fundamental parameters

1+ A 1—
5 Gi=c plp+v)—LE ey, ==+1, (4.93)

Cy =exy/A(A—v) T

and the following combinations of the fundamental functions in Eq. (4.91)
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H(z) F(y)
U(z,y) = , 4.94a
2 9) = Hy) Fla) (4.942)
A+ )@ —y) o
ho(z,y) =1+ ——=—7—5", 4.94b
) F(e)H() (4.910)
wy(y) = R(1+y) [ ! Oy — iC’ 032} (4.94c¢)
v Fly) ™ Hy) " ] '
() = —R(1 + 2)s [ ——Chs? — —>— (1,2 (4.94d)
wp(x) = s Fa) \S ) fcall I .
Finally, the gauge field reads
U(z,y)—1
—A/V3 = =2 esdt
/ ha(.%', y)
R(l+y) [Ulxy) o o Uy ., 3 2 2 }
Chc's — Cus® — ——C,c°s| dy
ha(wy) | Fly) 7 H) " Hy) "
R(l+z) [ U(z,y) 2 1 2 1 3
2 - — dp. 4.
o) |2 HE) Cycs F(x)CACS + @) Che’| dy (4.95a)
The parameters of the solution must satisfy the constraints
O<r<A<l, 0<p<l1, (4.96)

to avoid naked singularities. Additional constraints arise from the codition of absence of
Dirac-Misner strings and conical sigularities, as we are going to see.

The coordinates x,y take values in

—co<y<—1, —1<z<1. (4.97)

The surfaces of constant y have the topology S?xS'. z is a polar coordinate on the S?
(essentially,  ~ cos @), which is also parametrized by ¢, which plays the role of azymuthal
angle. 1) parametrizes the S', see Fig. 4.1. Spatial infinity is approached when both x
and y go to —1, although the coordinates are ill-defined in that limit.'" The orbits of the
vector 0, close off at = —1, but do not do the same at z = 1 unless w,(x = +1) = 0,
which can forces us to require

C
A 2 — 3Ou 02,
14+ A 1—p

(4.98)

" Good coordinates at infinity can be found in Ref. [140].
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which removes any possible Dirac-Misner strings. (The same constraint makes A, (z = +1)
independent of y.) Then, the fixed point sets of 9, and 0, are, respectively, y = —1 (axis
of the ring) and z = 1, —1 (inner and outer axes of the S?).

= constant

¢ = constant T B

y=-1

Figure 4.1: Sketch of a section of constant ¢ and ¢ of the black ring (figure based on
Ref. [136]). The disc at = = 1 and infinite annulus at x = —1 are the axes (fixed points) of
0,, while the axis of the ring is at y = —1 (fixed points of dy,). Surfaces of constant y have
topology S! x S%2. y = —1/v corresponds to the horizon (shaded surface) while surfaces
of constant y € (—1/v, —1) are fatter rings containing the horizon in their interior.

Finally, the periods of ¢ and ¢ must be chosen appropriately so as to avoid conical
singularities. The axes y = —1 and x = —1 (which extend to infinity) are regular for the
periods

V1—2A

1—v

A = Ap = 2r (1+p)>? . (4.99)

For generic values of the parameters, though, the period of ¢ required by smoothness
at the inner axis, x = 1, differs from the above Ap. Making both periods coincide
(“balancing” the ring) is possible only when the following constraint holds

1—v\2 1-)/1+u\°
=—F|— . 4.100
<1 + V> 1+A <1 — i ( )
Henceforth we shall assume that Eqgs. (4.98) and (4.100) hold, so that, effectively,
we will be dealing with a three-parameter family of solutions. As shown in Ref. [140],
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the mass, the two independent angular momenta and the area of the event horizon of the
solution read

_3TR? (A + p) (14 p)?

M = h2 4.101
4G§\5,) T cosh 2« ( a)
TR (1=N32A+w? [ Oy 5 30, ,
Jy = 6) Y G et I (4.101b)
2G'y (1-v) p
SVI—X (14 p)72(A
J, = —SM: ( +2“) A+1) o 2, (4.101c)
o -0 p)
L=\ =)20+p)3 v +p)3?  Cy 3C
_ gn2ps 3 Es?c . 4.101d
Aw = 8 01— 201+ ) o ot ( )
There is an ergosurface at y = —1/\, where the norm of 9, vanishes, and the event
horizon lies at y = —1/v. It is a Killing horizon of
k = 0y + Q0y, (4.102)

where €, the angular velocity of the horizon in the direction ¢, can be conveniently written
as Q = —1/wy(—1/v)."? A rather unusual property of this solution is that the horizon
has no angular velocity in the direction ¢ even though J, # 0. Finally, the horizon
temperature is

VA—v(p+v)3? Cy o 3C, o

T;' =4nR
H m v(l+v) A—v V—i—,u,s

¢ . (4.103)

This solution of pure N' = 1,d = 5 supergravity corresponds to a following solution
of the Heterotic Superstring effective field theory compactified on T*xS! with the same
metric and the non-trivial matter fields given by'3

2Notice we work with coordinates ¢, 1) whose periods are not the standard ones, but those given in
Eq. (4.99).

13The fields that arise in the compactification over T? and which are set to their vacuum values (they
are trivial) have not been considered. In particular, the index I takes only two values because the fields
corresponding to the other values are trivial.
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¢ = ¢ (4.104a)
k2 0
My = ( 0 koo2> ; (4.104b)
]{7_1
Al = < i > A, (4.104c)
H=dB - A NF' =xF (4.104d)

where, for convenience, we have introduced A = —A/+/3 and its field strength F = dA.
Let us obtain the vector and KR momentum maps asociated to the Killing vector k£ in
Eq. (4.102) for this solution, denoted, respectively, as Px! and Py. In the following we
consider a constant ¢ surface ¥ defined by which extends from the bifurcate surface (here,
aring) BH at y = —1/v to infinity (analogously to one leaf of the Einstein-Rosen bridge).
The vector momentum maps P,g can be written as

k_l
Pi = (k‘;‘;) Pr (4.105)

where P}, satisfies the equation

APy = —u. F . (4.106)

Since in our gauge £xA = 0 it is clear that a solution (as a matter of fact, any
solution) of the above equation is provided by

Pr=uA+C, (4.107)

for some constant C'. Notice, though, that this is not the definition of the momentum map,
but rather a particular form of P, which is available in the gauge in which the black-ring
solution is given. The momentum map is, by definition, gauge invariant. The constant C
is determined by demanding Py (which will be interpreted as the black ring’s electrostatic
potential @) to vanish at infinity, and it is not difficult to see that C' = 0.

This solution admits an analytic prolongation to the bifurcate ring BH at y = —1/v
(and actually beyond that) and, in agreement with the generalised zeroth law, it is a
constant over the whole event horizon H that we will denote by ®4

Pr 2 Pr(z,—1/v)

cosh2a [Cy(pu +v) +3C, (A =v)] + Cr(p+v) + Cu(XA — 1)

= — tanh 4.108
cosh 2 [Cr(p + v) + 3C, (A —v)] + Ca(p+v) = 3C, (A —v) sho | )
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Observe that, in the gauge in which the solution is given, the potential A is ill-
defined over BH: ;A is a non-vanishing constant there and k vanishes, which implies that
A must diverge there. It is worth stressing that the momentum map is unaffected by such
gauge pathologies since the solution Eq. (4.107) extends from infinity all the way down to
BH (and beyond). This is a consequence of the fact that, although the momentum maps
may only exist locally, they are defined by a gauge invariant equation.

The KR momentum map 1-form, Py, is defined by Eq. (4.53), and, for this particular
solution

APy = — (wH + Pl Fr) = — ( x F + 2P F) . (4.109)

If we knew the KR potential B in a gauge in which £xB = 0, using Py = 1.4, we
would obtain the KR, momentum map 1-form

Pk = ZkB - Pk.A +a, (4.110)

where « is an arbitrary closed 1-form, da = 0, that could be determined by imposing
regularity: smoothness of P both at the axis of the ring, Py(xz,y = —1) = 0, and at the
outer axis of the spheres, P,(x = —1,y) = 0, so that it is well defined when approaching
infinity). Finding B is, however, as hard as finding P directly from Eq. (4.109), which is
what we are going to do, taking into account that we are only interested in the pullback
of P, to the constant-t surface Y, which must be of the form

b
Py = Py (x,y)de + Py, y)dy (4.111)

because of the general form of the solution.

The two functions P,io(a:, y) and P,ip (z,y) are given by

y
szcp(x, y) = — / (e * F + 2PpF),, dy + fo(2)
= —2P, A, + /y I (x,y)dy + fo(x), (4.112a)
y
Y, (x.y) = — / (16 % F + 2PLF)  dy + ()

2P+ [ Iyl + ula). (4.112b)

where
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I (x,y) = 2A, (0yAr + Q0yAy)

R*QF (2)G(2)H (y)h(z,y)* | F(y)G (@) H(y)wy(y)(Quwy(y) +1)
o (G s e )
L (H@ )
ot (e )
B F(y)G(z)H (y)(Qwy(y) +1) QH (x)*w,(2) .
R el 1 R (07 I
7)? (wy(x ¢ — O
Iy(z,y) = H(z) ;@;?Lﬁ m OuAy) + 24y (8, A + QO,Ay) (4.113b)
for some functions f,(x) and fy(x) to be determined.
In this form, the functions are well defined at y = —1/v (and beyond), and we can

analytically prolongate P there.

The functions f,(z) and fy(x) can be readily fixed from the fact that the combina-
tion P + 2Py.A is closed on BH (the restricted generalized zeroth law). Indeed, pulling
back on BH the KR momentum map Eq. (4.109), one has

d (P +205.A4) 2 0. (4.114)

Thus, a solution of the form (4.111) that is well defined at y = —1/v must satisfy the
boundary condition

P 20y A+ Cdp + Cydy (4.115)

for some constants C,, and Cy. This implies that our solution reads

Y
Py (x,y) = —2PpA, + / y I(z,y)dy + Cy, (4.116a)
)

Remarkably,
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y
/1/ I,(=1,y)dy =0, vy # -1, (4.117a)
/_1 Ly gy = cosh 20 [Cr(p+v) + Cu(v = N + Cr(u+v) + CuA —v)
Y vi® Y)Y cosh2a [Cy\(p + v) + 3C, (A — v)] + Cx(p + v) — 3C, (A —v)
v—1
X CuR secha, vV, (4.117b)
MtV

so regularity at y = —1 and z = —1 is achieved by setting

C,=0, (4.118)

o= cosh2a [Ch(p+v) + Culv =N+ Cr(p+v)+ Cu(A—v) 1_VC’Rsecha
Y™ cosh2a [Ca(p+v) +3C,(A—v)]|+Ch(p+v) —3C,A—v)u+v *

1—
= C(\, v, a)ﬁCMR sech a, (4.119)

which completes the solution.

We conclude by noticing that the associated KR potential 1-form at BH is purely
harmonic and given by,

where 1) = (2w /A))1) is the angular coordinate with canonical period Y ~ )+ 27 and

VI= XA+ p)3/?

At v

Ay

Prpy = ng =C(\ p,v, @)

C,R secho. (4.121)

For a = 0, ®xp coincides with the potential given in Ref. [136] up to (parameter-
independent) numerical prefactors.

4.7 Discussion

In this paper we have derived the first law of black hole mechanics in the context of the
effective action of the Heterotic Superstring compactified on a torus at leading order in /.
The first law includes the variations of the conserved charges of the 1-forms, Q;, and of
the charges associated to the KR field, Q;, multiplied by the potentials ®' and ®* which
are constants that we have computed on the bifurcation surface.'*

141t is not hard to prove that the potentials ®!, defined as the momentum maps Q’ are constant over
the complete event horizon using the dominant energy condition and the Einstein equations as it is done
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The main ingredients in this proof are the identification of the parameters of the
gauge transformations that generate symmetries of the complete field configurations, the
careful definitions of the associated charges and the corresponding potentials through what
we have called restricted generalized zeroth laws. Due to the interactions between 1-forms
and the KR 2-form induced by the Chern-Simons terms, all the terms involving charges
and potentials in the first law are interrelated and all their definitions are either right or
wrong simultaneously. This can be seen as a test of our definitions and of the final result.

In the theory considered in this chapter we have arrived at the well-known result
that the entropy is one quarter of the area. In theories of higher order in the curvature it is
known that there are additional contributions from the terms that contain the curvature,
as the Iyer-Wald prescription makes manifest. However, as explained in the introduction,
in the case of the Heterotic Superstring effective action at first order in o/, we also expect
that the need to have well-defined charges and, simultaneously, closed forms over the
bifurcation sphere will result in the need to include additional terms in the “gravitational
charge” that, in the end, will give us the entropy. Work in this direction is well under
way [53].

Finally, we would like to comment upon two apparent shortcomings of Wald’s for-
malism: it is not clear how to include the variation of the scalar charges and the mod-
uli [142,143] in the first law. In 5 dimensions, for instance, the KR field is dual to a 1-form
and black-hole solutions electrically charged with respect to this dual 1-form exist. If we
describe the theory in terms of the KR 2-form, it is not clear how to make the variation
of this electric charge appear in the first law following this procedure. In this particular
case, the electric charge of the 1-forms would be associated to S5-branes wrapped on T°
and it would be very interesting to see the precise definition of this kind of charge to try
to solve the ambiguities detected in Ref. [107].

for a single 1-form field in Ref. [56]. It is not clear, though, how definition of the potentials ®' may
be extended using other sections of the event horizon different from the bifurcation sphere because the

closedness of P, + P, 1 F! is based on the property 1, H 0. It is not clear how to extend this property
to other sections of the event horizon different from the bifurcation surface BH.
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Wald entropy formula for Heterotic Superstring
effective action at first-order in o/

5.1 Introduction

The interpretation of the black-hole entropy in terms of the degeneracy of string mi-
crostates is, beyond any doubt, one of the main achievements of String Theory [89]. This
interpretation relies, on the one hand, on the correct identification of the black-hole charges
in terms of branes whose presence affects the quantization of the string. On the other, it
depends on a correct calculation of the macroscopic entropy. In more complicated cases,
the couplings can make the identification of the brane sources through the charges more
complicated [107] and, beyond leading order in o/, the presence of terms of higher order
in the curvature and, in the Heterotic Superstring case, of complicated Yang-Mills (YM)
and Lorentz Chern-Simons terms [73], can also make the calculation of the macroscopic
entropy very difficult. This is the problem we will deal with in this chapter.

The standard method to calculate the black-hole entropy in theories of higher order
in the curvature is to use Wald’s formalism [27,28], usually applying directly the Iyer-Wald
prescription [22]. As we have discussed in the previous two chapters (see also Refs. [33,34,
88] and the references therein), the Iyer-Wald prescription was derived assuming that all
the fields of the theory behave as tensors under diffeomorphisms which, as matter of fact,
is only true for the metric and uncharged scalars. All the fields of the Standard Model,
except for the metric, have some kind of gauge freedom and do not transform as tensors
under diffeomorphisms. Even the gravitational field, if it is described by a Vielbein instead
of by a metric, has a gauge freedom, as it transforms under local Lorentz transformations.
In theories with fermions, Vielbeins are necessary to work with the spinorial fields in
curved space time.

In the previous two chapters (see also Ref. [88]), we proposed a simple solution,
based on the construction of covariant Lie derivatives of all the fields with gauge freedom.
This construction is based on the introduction of momentum maps [42,122] which play a
crucial role in this chapter and which we will define later. The Lie-Lorentz derivative can
also be seen as based on the definition of a Lorentz momentum map.'

In Chapter 4, we have shown how to use momentum maps to construct covariant
Lie derivatives in the Heterotic Superstring Effective action compactified in a torus at
zeroth order in o/. The KR field of that theory contains Abelian Chern-Simons terms?

n Refs. [120,121], momentum maps emerge as “improved gauge transformations”.
20Only the Kaluza-Klein and winding vector fields appear there at zeroth order in o'.
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which induce Nicolai-Townsend transformations of the 2-form [144]. These terms modify
the definitions of the conserved charges which ultimately appear in the first law of black
hole mechanics along the lines of the classical Refs. [36,132-134].

In this chapter, we are going to use the same technique quite extensively to deal with
the variety of fields and couplings that occur in the Heterotic Superstring effective action
at first order in o/ and prove the first law of black hole mechanics, identifying the entropy.
As we are going to see, the entropy formula obtained is manifestly gauge-invariant and
contains only terms which are known and can be computed explicitly. This is the first
entropy formula proposed for this theory that satisfies all these properties. It allows us
to compute reliably the entropy of black hole solutions to first order in o/ and compare
the result with the entropy computed through microstate counting. As we will show in
the last section, it gives the same results as the non-gauge-invariant formulae used in
Refs. [32-34] in certain basis.® This confirms the values of the entropies obtained in those
references, and shows why, in spite of the manifest deficiencies of the entropy formulae
used, we obtained the right result.

A very interesting aspect of the momentum maps is that they are related to the
zeroth law of black hole mechanics and its generalizations.? For higher-rank fields, Copsey
and Horowitz [131] and, afterwards, Compere [52] proved a restricted form of the general-
ized zeroth law (restricted because it refers only to the bifurcation sphere) which follows
from the closedness of certain differential forms on it. In Chapter 4, we proved that these
closed forms are related to the momentum maps and we will call these statements re-
stricted generalized zeroth laws. Here we will extend the results of Chapter 4 to YM and
KR fields and to the more complicated couplings of the Heterotic Superstring effective

action at first order in o/.°

The restricted generalized zeroth laws play a crucial role in the proof of the first law
and in the identification of the entropy, and they are intimately related to the definitions
of conserved charges. In Wald’s formalism, the entropy is identified only after the terms
~ ®/Q have been identified in the first law. As in Chapter 4, this identification requires
the addition and subtraction of several terms as demanded by the definitions of the charges
Q and the potentials ® on account of the restricted generalized zeroth laws. However, in
this case, some of the terms added and subtracted will be shown to contribute to the
entropy.

This chapter is organized as follows: in Section 5.2 we introduce the effective action
of the Heterotic Superstring to first order in o’ and find how it changes under an arbitrary
variation of the fields, which allows us to determine the equations of motion. In Section 5.3
we study how the fields change under gauge and general coordinate transformations. We
construct variations of the fields that vanish when the parameters of the transformations
generate a symmetry of the field configuration and we find the integrals that give the
associated conserved charges. The conserved charges associated to the invariance under
diffeomorphisms are the Wald-Noether charges. As we have discussed, the correct identi-

3These results differ slightly from the results obtained in Refs. [29,30] using the Iyer-Wald prescription in
the higher-dimensional action before dimensional reduction. As pointed out in Ref. [107], the dependence
on the Riemann tensor changes after dimensional reduction and the formulae in Refs. [32-34] have been
found using the dimensionally-reduced action. The formula that we give here does not suffer of any of
these problems. See the discussion in Section 5.7.

4This was first noticed by Prabhu, albeit in a completely different language [51].

5Some of these couplings have been discussed before in the literature, specially in Ref. [129] (see also
references therein). See the discussion in Section 5.7.
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fication of the conserved charges is essential to obtain for the correct identification of the
entropy in the first law. In Section 5.4 we discuss the restricted generalized zeroth laws of
this theory, which also play an essential role in the proof of the first law. In Section 5.5
we prove the first law using the results obtained in the previous sections, which leads us
to identify the Wald entropy formula in Section 5.6. Section 5.7 contains a discussion of
our results, comparing them with the existing literature.

5.2 The HST effective action at first order in o/

The Heterotic Superstring effective action can be described at first order in o’ as follows
[73]:% we start by defining the zeroth-order KR field strength H ) and its components
HO pvp a8

HY =dB = LH,,,dz" A dat A da? (5.1)

where B = %dea:“ A dz* is the KR 2-form potential. Then, if w® = wuabdx“ is the
Levi-Civita spin connection,” we define the zeroth-order torsionful spin connections®

N0

(+) ab = Wab + %zbzaH(O) , (5.2)

and their corresponding zeroth-order curvature 2-forms and Chern-Simons 3-forms

0) ab _ (0) ab 0) a 0) ¢b
R =d0 )" — e A0, (5.3a)
(0) _ p(0)a (0) b 100 a 0) b 0) ¢
wit) = B A 0 + 300 % A P A 2 % (5.3b)

Next, we define the gauge field strength 2-form and the Chern-Simons 3-forms for
the YM field A4 = A4, dx# by

FAY = dAY 4+ L it AP A AC (5.4)
w™M = FyNAY = Lfapc At A AB A AC, (5.5)
where we have lowered the adjoint group indices A, B,C,... in the structure constants

fag® and gauge fields using the Killing metric.
Then, we can define the first-order KR field strength 3-form as

/
W = g & (Ym0
HO = O + 5 (w —I—w(_)) . (5.6)

5We use the conventions of Ref. [42], reviewed for the zeroth-order case in Ref. [74]. In particular, the
relation with the fields in Ref. [73] can be found in Ref. [75].

If e* = e, dz* are the Vielbein, the spin connection is defined to satisfy the Cartan structure equation
De® = de® —w, Aeb = 0.

8We denote by 2, A the inner product of e, = e,"0, (ea“ebH = 0%) with the differential form A. If A
is a p-form with components Ay, .., 2aA is the (p — 1) form with components eq” Aupy - pu,_; -
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Its Bianchi identity takes the well-known form

/
1 _ & A 0) a 0) b
aHY = % (FA/\F + R % AR, a) . (5.7)

Having made these definitions and adding the dilaton field ¢, we can write the
Heterotic Superstring effective action to first-order in o' as

(d)2
SWea B AA ¢l = -9 [ o720 [(Z1)81 & (% A eP) A R,y — 4ddd A xd
[ s Dy a¢] ( ) ( ) ab ¢ ¢

167G\

/
+IHD AKHD 4 (—1)daZ (FA AxFA+ RO % AR ba)} (5.8)

(=)
_ / L.

Although this action is defined in 10 dimensions, we have left the dimension arbitrary
(d) because that allows us to use the results in other dimensions after trivial dimensional
reduction on a torus. In this action, Gn@ is the d-dimensional Newton constant and
ggd) is the d-dimensional string coupling constant, identified with the vacuum expectation
value of the exponential of the d-dimensional dilaton field ggd) =< e? >. In solutions such

as black holes that asymptote to a vacuum solution at infinity e? — e?> =< e? >= ggd).

This is a very complex action. Due to this complexity and to the lemma proven in
Ref. [73] which we will explain later, it is convenient to perform a general variation of the
action in two steps: first, we only vary the action with respect to the explicit occurrences
of the fields, where we define “explicit occurrences” as those which do not take place in the

torsionful spin connection Q@). Then, we vary the action with respect to the occurrences

of the fields via Qé(i)) using the chain rule. All the occurrences of the dilaton and YM fields

are explicit, but those of the Vielbein and KR field are not, because they (and only they)
(0)
(=)

Thus, setting ggd) 2(167rG§f,l))_1 = 1 for the time being in order to simplify the
formulae, we find that under a general variation of the “explicit” occurrences of the fields,
the action transforms as follows:

are present in €

5exp5(1) = / {E(l) A det + ES) AOB + Ef;)5¢ + EE41)5AA

expa xp B

1
+dO) (¢, 5@)} ,

where ¢ stands for all the fields of the theory,
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E() = e 2% % (¢ A e?) A Reg — 2D(1pde™ %) A x(€® A %) gea

exp a

+ (=1)4e72% (14dp * dp + dp N 1q * dp)

(=D 26 (, 570 n 2 rr @ o D) )
+Te (zaH ANxHYY + HYY Nogx H )

/

+ ST (1P AR = Fa Aig x FA

+1a RO\ AR — RO A g % RE%%) (5.10a)
Bl = —d (e 2+ HD) (5.10D)
E<(¢>1) —8d (e—2¢ « d¢) — oL | (5.10c¢)
o o
By =-% {D (e—zqs X FA) + (1)l 20 % HO A FA} - JBlps A4, (5100)
and

OW (p,80) = =22 % (e A €®) A Swap + 2tade ™2 x (e A €?) A ey, — 8e 2% % dpde)

exp

/
+e 2% HU NGB+ %e‘2¢ (*FA —1%gW /\AA) AGA™,
(5.11)

An alternative form of the YM equations that arises in the calculations is

/ /
B — _%D (e—w W By — =2 5 HO) A AA) ¥ (_1)d—10‘ze—2¢ *HONdA,.  (5.12)

Observe that neither the YM equations of motion transform covariantly nor @,Si)p is
invariant under YM gauge transformations. For the YM equations this is not a big problem
since the troublesome term is proportional to the KR equation of motion, but there is no
obvious fix for the pre-symplectic potential. Nevertheless, we will see that, in the end, we
will get gauge-invariant charges and, in particular a gauge-invariant Wald-Noether charge.

An important property of the HST effective action is that the YM fields and the
torsionful spin connection occur in it exactly on the same footing [90]. The variation of the
action with respect to the torsionful spin connection takes exactly the same form as the
YM equation, the only difference being the group indices and their contractions. Thus,
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expa exp B (=)

5%”:/{ﬂ”xw&+ﬁ” 3B +EN 56+ EY 7oAt + BOY, A 500,
(5.13)

+d@(1)(s0,5s0)} :

where the variation with respect to the torsionful spin connection is given by

E(l) ba = —g/ {D(_) <€_2¢ *R(O)

/
5 ) + ()72 HO A ROP, L - TEG) pa

b
4 exp B (=) @»
(5.14)

or

/ /
My _ @ —2¢ ©b _ _—2¢ (0) 0)b yd—19% (0) (0)
EWY, = 2D(,) (e * R a—e 0 H /\Q(_)a)—F( 1) 4*H /\dQ(_)
(5.15)

b
a
and the pre-symplectic (d — 1)-form is given by

o 0 0 0a
OW(p,80) = O, (,0¢) + e (xR)La = § x HO A QO ) n 0%, (5.16)
with @.(323(@, dp) given in Eq. (5.11).

The parallelism between the YM and torsionful spin connection terms also leads to
the same problems of non-covariance of E(M?, and non-invariance of the additional term

in @),

An important difference between the equations of motion of these two connections
is that, according to the lemma proven in Ref. [73], E(Ma, is proportional to o’ and to
a combination of the zeroth-order equations E((IO),ESBO) and Efbo). This means that field
configurations that solve the equations Eg()pa =0, Eg()p =0, E((;) =0 and ES) =0 are
solutions of the complete first-order equations, to that order in o’. This crucial property

effectively reduces the degree of the differential equations to 2, avoiding the problems that
arise with dynamical equations that involve derivatives of the fields of higher order.

5.3 Variations of the fields

It is convenient to start by describing the gauge transformations of the fields and the
associated Noether identities to be able to compute the associated conserved charges.
Afterwards, we will discuss the transformations of the fields under diffeomorphisms and
the associated Wald-Noether charge.

5.3.1 Gauge transformations

The fields occurring in the effective action Eq. (5.8) transform under 3 kinds of gauge
transformations:
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1. KR gauge transformations with 1-form parameter A, §5, which only act on B.

2. YM gauge transformations with parameter y*, dy, which act on the YM fields and
on B as Nicolai-Townsend transformations.

3. Local Lorentz transformations with parameter ¢%, §,, which act on the Vielbein
and induce transformations of spin connections and curvature and which also act on
B as Nicolai-Townsend transformations.

The transformation rules are

bpet = a%el, (5.17a)

5, AN = Dy = dx? + fec ABXC, (5.17b)

/ /
5B = (6p + 0y + 6,)B = dA — %x adA? — %a“bdﬂg(i))ba . (5.17¢)

The induced local Lorentz transformations of the connections are

Jow® = Do® = do® — 2ulal 5el¥) | (5.18a)

5,00 = D 0 = g — 200 ¥l 0 (5.18b)

and the transformations of the curvatures are

= P I (5199
5. R — 2ol pebl (5.19b)
50'RE0_))ab — 20-[Q|CRE(1))C|I7] . (519(3)

Finally, for the sake of completeness and their later use, we quote the gauge trans-
formations of the Chern-Simons 3-forms

/

5w ™ = O‘Zd (xadA™) (5.20a)

0 _ | @ a 0) b
5gw(_) = +—4 d <O‘ bdQ(_) a) , (5.20Db)
and the Ricci identities
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DDx* = — fpcXPFC = 5, F4, (5.21a)

©) 50 ab _ o0 [a] et _ 5 p(0) ab
DD 0™ = 2R [0 = 5, R (5.21b)

The exact invariance of the action S™) in Eq. (5.8) under the above gauge transfor-
mations leads, in a rather trivial way, to the following Noether identities [75]

dE((ai)pB =0, (5.22a)
/
DE(AI) 4 (_1)(171%]32203 ANdAs =0, (5.22b)
/
rDE(i))E(l)ba n (—1)d_1azE((a,2>B A ng(i)) ,4=0, (5.22¢)

/
BO A+ TBY ;A da® 4 (—1) D) BO® — 0. (5.220)

Eq. (5.22¢) is just a particular case of Eq. (5.22b) with adjoint Lorentz indices.
Furthermore, the last two identities imply the symmetry of the Einstein equation, which
in the language f differential forms and Vielbeins, is expressed in the form

EQ A =0. (5.23)

5.3.2 Gauge charges

For ths sake of simplicity, we are going to start by the charge associated to the §p trans-
formations, that we are going to call Kalb-Ramond charge.

Kalb-Ramond charge

Let us consider the transformation of the action Eq. (5.8) under the gauge transformations
dx. Taking into account that this symmetry only acts on B,” Eqs. (5.13) and (5.16) we
get

a5 = / {BQ s ndn+ale®wm®nan)}. (5.24)

Integrating by parts the first term and using the Noether identity Eq. (5.22a)

528 = /d {(—1)dE<1> s AA+e 20 HO A dA} = /dJ[A} . (5.25)

exp

9We consider the variation of the torsionful spin connection to be zero under this transformation.

112



Chapter 5.  Wald entropy formula at first-order in o

Since 95 SM) = 0, the integrand must vanish, which means that J[A] must be locally
exact. Indeed,

J[A] = dQ[A], with Q[A] =AA (e‘Qd’*H(l)) . (5.26)

Integrating the (d — 2)-form Q[A] over (d — 2)-dimensional compact surfaces S;_o for
As that leave invariant the KR field B we get conserved charges associated to those As.
These As are simply closed 1-forms.'” The Hodge decomposition theorem allows us to
write each of them as the sum of an exact and a harmonic form that we denote by A, and
Ay, respectively. On-shell, the exact form A, = d\ will not contribute to the integral and
the charge will be given by

Q(Ah):/s_ Ap A <6_2¢*H) . (5.27)

Now we can use duality between homology and cohomology: if Cy, is the (d — 3)-cycle
dual to Aj, we arrive at the charges

(d)2
Q(Ap) :_gsw)/ e 2% H, (5.28)
167Gy JCn,

where we have recovered the factor of ggd) 2(167TG§$))_1 and added a conventional sign.

Yang-Mills charge

Now, let us consider the charges associated to the YM gauge transformations d,. Again,
from Eqgs. (5.13) and (5.16), taking into account that this symmetry acts on the YM fields
A4 but also on the KR 2-form B, we have

1) _ (1) (1) A
5,5 _/{EexpB NGB +EV AS A
(5.29)
/
+d [e_% * HY A6, B+ %e‘2¢ <*FA — 1w HW A AA) A 6XAA] } .
The parameters x** that we will use are those that preserve the field configuration,

leaving A4 and B invariant. The YM fields are left invariant by covariantly constant y“s,
i.e. xs that we will denote by x* satisfying

Drt =0. (5.30)

We can call these parameters vertical Killing vector fields from he principal bundle point of
view, with the standard Killing vectors of the base manifold playing the role of horizontal
Killing vector fields.

%Here we follow Refs. [52,131]. This discussion is identical to the discussion we made for the zeroth-order
case in Ref. [74].
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The integrability condition of the vertical Killing vector equation is, according to
Eq. (5.21a),

6. F = —fpckBFCY =0, (5.31)

so they also leave invariant the field strengths, as expected.

The vertical Killing vector fields x%s will not leave B invariant, though, but we can
rewrite the transformation in the form

/ / /
5B = _%,{AdAA = _%F.;AFA +d <ZI€AAA> . (5.32)
Now we observe that, due to the YM Bianchi identity DF4 = 0, k4 F4 is a closed 2-form
and, locally, there is a 1-form W, such that

AU, = —kaFA, (5.33)

and which we will call vertical YM momentum map.'!

Then, we define the parameter of a compensating A transformation

/ O/

o
Ay = =50y — —xad?, (5.34)
2 4
where ¥, is a 1-form such that, when x4 = k4 (i.e. when it is a vertical Killing vector
field), it satisfies Eq. (5.33). Combining the original §, transformation with the com-
pensating d,, transformation we find a new J, B that vanishes for covariantly constant
A
X“s:

O[,

/
5B =~ (d¥y + xaF") — TDxa N A™. (5.35)

The vanishing of 4, B for covariantly constant x“s is gauge invariant because

8,16y ~ Dx. (5.36)

Substituting the transformation Eq. (5.35) and the standard gauge transformation
of the YM fields into Eq. (5.29) we get

/ / /
5,8 = / {ES) ADX*+E) [—d <a‘1’x + OéxAAA) - aXAdAA]

2 4 4
/ ! /
+d {e—2¢ « HD A [—d (02‘\15( + iXAAA> - ZXAdAA} (5.37)

!
+%e‘2¢ (*FA —1%mW /\AA> /\DXA}} .

1 Compare this equation with the equation satisfied by the standard (horizontal) YM momentum map
Eq. (5.59).
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Integrating by parts the first terms and combining the different terms in an appro-
priate way we can rewrite the variation in the form

a/
5)(5(1) _ / {(—l)dXA (DES) + (_1)d—1ZE‘(3?{)pB AN dAA)

/ /
= <O‘2\11X + ZXAAA> NAEY)
/
+d{(n¢4XA<E§>+(ndiermﬁkHW>AdAA)
(5.38)

o o A 0)
_ <2\I’X + ZXAA > VAN EexpB

/

/
+e 2% HD A [—d (a2\I/X + (ZXAAA)}

/
+%6_2¢ <*FA —1xHW /\AA) /\DXA}} .

The terms in the first and second lines vanish identically because of the Noether identities
Egs. (5.22b) and (5.22a), respectively, and we arrive to

/
5,8 = / d {(—1)d—1xA <ESP + (1) Te  HO A dAA>

o o A 0)
_ <2\Ifx + ZXAA > A EexpB

/

/
—d (O;\I/X + ZXAAA> A <e_2¢ * H(0)> (5.39)

/
+%e‘2¢ <*FA — 3 HW A AA) A DXA}

E/MM.

The same arguments we made in the previous case lead to the existence of a (d —2)-
form Q[x] such that J[x] = dQJx]. The (d — 2)-form is given by

CNX]Z‘—C—Ddzl{€4¢*(—XAFA)+(—1WQQJ\(64¢*fﬂm)}. (5.40)
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For Abelian vector fields the x4s are constant and U, = kA4 (up to a total
derivative) and we recover immediately the Q[x] found in Ref. [74]. On the other hand,
when we change ¥,; by a total derivative, Q[x] is invariant on-shell up to a total derivative
which will not contribute to the charge which is now given by the integral

(d)2

/
Q] = ——*— / (15 {2 waw, + ()W A (2 HO) L (5.41)
167Gy Jsi—2 2

where we have made use of the definition of the vertical momentum map ¥, in Eq. (5.33).

Lorentz charge

Let us now consider local Lorentz transformations. As we have stressed repeatedly we can
treat the local Lorentz transformations and the torsionful spin connection in parallel to
the YM gauge transformations and the gauge fields. The only difference is the presence of
one additional term in the Lorentz case: the Einstein-Hilbert case. If we follow the same
steps as in the YM case we arrive to

Qo] = (_1)d_16_2¢*(6a/\6b)0ab_(_1)dC;/ {e—2¢ X (—a“bR(O) ba) + (=1, A <6—2¢ *H<0))} 7
(5.42)

where I, is a 1-form that becomes a wvertical Lorentz momentum map whan the Lorentz
parameter o%, = k%, a Lorentz parameter that generates a symmetry of the field con-
figuration, i.e. a vertical Killing vector. This happens when the Vielbein and the spin
connection are left invariant

k%e’ =0, (5.43a)

Dk = 0. (5.43b)

These two conditions imply the invariance of the torsion %zbzaH (0) Hence, they also implies

the invariance of the torsionful spin connection QE‘?)%,

DY)k, = 0. (5.44)

These conditions can be used to modify the transformation of the KR field so that
it is also left invariant, as we did in the YM case. We just quote the final form:

a/

/
3,8 = (dHU + kRO )) - %D(O)

=-3 O, D, n a0, (5.45)

where the vertical Lorentz momentum map Il, is such that, when %, = k%

dll,; = k% R\, (5.46)
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The conserved charge is the integral of the (d —2)-form Eq. (5.42) for vertical Killing
vector fields k%, satisfying Eqgs. (5.43) and (5.43b). The first condition annihilates the first
term, corresponding to the Einstein-Hilbert term in the action but the rest of the terms
survive in this case and we get the non-vanishing Lorentz charge

(d)2

Qpﬂ::lé;?%)]QiQ{(—1y“§F2¢*dnﬁ4-c—ndnﬁn\gz2¢*fﬂm)]}. (5.47)

In the proof of the first law we will find the integral of (d — 2)-form Eq. (5.42) for a
Lorentz parameter that satisfies Eq. (5.43b) only. This integral give, precisely, the entropy.

5.3.3 The transformations under diffeomorphisms

Now we turn our attention to the diffeomorphisms. Our treatment is similar to the treat-
ment of the d, gauge transformations, although the use of compensating gauge transforma-
tions admits a more general justification in terms of the gauge covariance of the modified
transformations (covariant Lie derivatives). Since we have discussed at length these mod-
ifications in Refs. [74, 88] we will only discuss the aspects not covered there: torsionful
spin connections, non-Abelian gauge fields and the more complicated transformations of
the KR 2-form.

In this section k will always be a (horizontal) Killing vector which generates a
symmetry of the complete field configuration.

Lie-Lorentz derivatives

The transformations of the Vielbeins, the Levi-Civita spin connection and its curvature
2-form have been discussed in Refs. [74, 88|, but it is convenient to adapt some of the
formulae to the torsionful spin connection. They are generically given in terms of the Lie-
Lorentz (or Lorentz-covariant Lie derivative Refs. [41,42,44-47]) by ¢ = —L¢. Therefore,
we will continue this discussion in terms of the latter.

The parameter of the compensating local Lorentz transformation that appears in

the Lie-Lorentz derivative of Qg(l))ab is still given by

oe® = qew® — vlagh (5.48)

(0) ab

but it is useful to rewrite it using 2 in the covariant derivatives. Due to the complete

antisymmetry of the torsion, it takes the simple form

a 0) ab 0) [a
o =1 Q)" — DY) log!. (5.49)

Observe that the presence of fully antisymmetric torsion does not modify the Killing
equation'?

0 o _
2D ) = 0. (5.50)

12The presence of generic torsion does modify the Killing equation.
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Notice that Eqs. (5.49) and (5.50) are completely independent of H(® even if we

have formally rewritten them in terms of the torsionful spin connection QEE)).

The Lie-Lorentz derivative of the torsion #,H® follows the general formula while
that of the Levi-Civita connection w® is given by

ngab = £€wab — ’DOgab y (5.51)

and, therefore, it is easy to see that

52

and it is equally easy to see that it can be rewritten in the form

0) ab 0) ab a
L\ = 1cRO)™ + D Py, (5.53)

with

Py =D lee", (5.54)

The identity

&RY),, @+ D) Py =D (Vg + V,e") = 3y, (B

) ) leo]) €€, (5.55)

proves that 55(28))(11) = —}Lgﬂgg))ab vanishes when £# = k*, because, in that case,

(0)ab _ 1(0) ab
—u R =D Py (5.56)

Because P(,)kab satisfies this equation, we will call it the horizontal Lorentz momentum

map associated to the torsionful spin connection.

k, then, generates a diffeomorphism that leaves invariant the metric and the KR
3-form field strength.

ab (0) ab _ _L£Q(O) ab

Again, P_)* is a Lorentz tensor and 5§Q(_) ) is a Lorentz tensor

although Qg(i))ab is a connection. When it vanishes, it vanishes in all Lorentz frames.

Lie-Yang-Mills derivatives

Since the spin connection is just the connection of the Lorentz group, this case is very
similar to the previous one, the main difference being that the YM fields are fundamental
fields while the spin connection is a composite field. Apart from this, in many (but not
all, because of the absence of a YM analogue of the Vielbein) instances we may just apply
the same formulae with the sole change of the adjoint group indices, as we are going to
see.

In order to find the gauge-covariant Lie derivative of YM fields it is convenient to
consider the Lie-Lorentz derivative of the curvature tensor first. In this case, since we do
not know the form of the parameter of the compensating gauge transformation, we can
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simply consider the standard Lie derivative of the gauge field strength 2-form defined in
Eq. (5.4):

LeFA = (1ed + dig) FA = D FA — fpeie APFC (5.57)

where we have used the Bianchi identity DF4 = 0.

When & = k this expression should vanish up to an infinitesimal gauge transforma-
tion with some parameter that we denote by ¥z“*. Then,

DieF* = fpe® (16AP + 0P) FO = fpe?*PPFC, (5.58)

which, upon use of the Ricci identity Eq. (5.21a), can be solved by a P,# that we call the
(horizontal) Yang-Mills momentum map satisfying the equation

—yF4=DpA. (5.59)

Eq. (5.56) is nothing by a particular case of this equation for which the momentum
map is explicitly known. This happens because we know how to express the gauge field in
terms of a more fundamental field (the Vielbein). In general, the general form of P is
not known but is determined up to a covariantly-constant gauge parameter. We will use a
PgA which is undetermined except for the fact that it reduces to P,4 satisfying Eq. (5.59)
for Killing vectors.

Now, we can use as definition of the Lie-Yang-Mills derivative of F4 the following
expression which is guaranteed to vanish when £ = k on account of Eq. (5.58):

LeFA = Doy P4 — fpe*PPFC = £ FA — 6, F4, (5.60)

where the gauge compensating parameter XgA is given by the (now usual) expression

XgA = Zé‘AA — PéA . (561)

The Lie-Yang-Mills derivative of the gauge field is, then

LeAd = £:AY — Dy = 1. FA + DPA, (5.62)

and, by construction, it vanishes automatically when ¢ is a Killing vector field k* and P,4
is the momentum map satisfying Eq. (5.59).

The Kalb-Ramond field

The parameters of the compensating YM and local Lorentz transformations of the KR
field are the same transformations XgA and Ugab that we perform on other fields with YM
and Lorentz indices, given by Eqgs. (5.61) and (5.48). Thus, if we want to construct a
transformation of this field under diffeomorphisms that annihilates it when & = k£ by com-
bining its standard Lie derivative with gauge transformations, the only gauge parameter
we can still play with is the 1-form A because the rest are already completely determined.
We have
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(SéB = — £§B + (5/\5 + 5X§ + (505)B
(5.63)

/ /
= — £:B+dA¢ — %X,E AdA? — O‘Zagabdgg(?)”a.

Again, it is convenient to start by considering the transformation of the 3-form field
strength H (1) defined in Eq. (5.6) under diffeomorphisms, because it is gauge invariant:

5eHWY = — £,HW

/

— ) _ @ A (0) 0) b

= —dicHW - < (2§FA AFA 4RO\ A RY) a) :

where we have used the Bianchi identity Eq. (5.7).
(

When ¢ = k we can use Egs. (5.56) and
Bianchi identities for the curvatures, getting:

7)
5.59), integrate by parts, and use now the

O[,

6. HY = — dy HY + = (DPkA NFA + D) Py A R@)”a)

(5.65)

2 (=)k b (-) @ .

By assumption, the above expression must vanish identically. Therefore, locally, there
must exist a gauge-invariant 1-form, the horizontal Kalb-Ramond momentum map Pk,
satisfying

a/
—nHY + 5 (Pk AFA 4 P, kabR@)ba) — 4P, . (5.66)

Then, if we apply the rule of thumb that the parameter of the compensating gauge trans-
formation is the inner product of the vector that generates the diffeomorphisms with the
“connection” (here B) minus the momentum map (here some 1-form Pe that in this case
satisfies Eq. (5.66) when & = k)

Ag = Z{B - Pf 5 (567)

we arrive at the following candidate to d¢B:
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/

5§B = — £§B + dAg — az (Xg AdAA + O'gabdﬂg(i))ba>

/

— gL _ %
i 1

(AA A ’LgFA + Qg(l))ab VAN ZgRE(l))ba> (5.68)

O/ A a 0)b
—dPe+ (PgAdA + Py e ) .

Let us see if, with this definition, §; B = 0. Using Egs. (5.66), (5.59) and (5.56) we
get, instead of zero, a total derivative

o A a ~0)b
0B = — Zd (PkAA + Py bQ(,) a) ) (5.69)

which we can simple absorb in redefinition of A¢ in Eq. (5.67):

O/
A¢ =1¢B - Pe+ Td (Pead™ + PO - (5.70)

With this new parameter,

of a_ 9 a0 6O
5§B = — ££B + dAg — ZXSAdA - ZO‘g bdQ(i) a

/
S [%H(l) - % (Pf AFA 4 P, gabRET)”a) + de]
(5.71)

/

@ A (0)a (0)b

=-L¢B,

that vanishes identically when £ = k by virtue of the definition of the KR momentum map
Eq. (5.66) and of d¢A% = 6:0(", = 0.

The behavior of this variation under gauge transformations is far from obvious. A
direct calculation gives

/

gougedeB = - (da A oAt + oy A 020 ) | (5.72)

with 5§AA = —LgAA with the Lie-Yang-Mills covariant derivative given by Eq. (5.62) and
with 65(28))@ = —LgQE(l))ab, with the Lie-Lorentz derivative given by Eq. (5.53). Therefore,
although the 6¢B defined above is not gauge-invariant, d; B vanishes in a gauge-invariant
way.
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5.3.4 The Wald-Noether charge

Now we consider the variation of the action S(!) given in Eq. (5.8) under the transforma-
tions ¢ = —IL¢ for all the fields, where LL¢ is the gauge-covariant derivative which, for the
Vielbein is given by [88]

Lee® = DE® + Pe%e?, (5.73)

for the torsionful spin connection in Eq. (5.53), for the YM fields in Eq. (5.62) and for the
KR field in Eq. (5.71).
From Eq. (5.13)

5eSW = — / {Egg)a A (Dzse“ + Pgabeb> + Eé,l)lgdfﬁ

+EY A (1cFA+DPA) + BLY, A (ZER@)QZ’ + D(*)P(*)ﬁab)

/

1 « 0)a 0)b
+ED 5 A [@H(” + 7 (Aanaert o0 ()

/

« 4 a 1) o A a (0
v <P£Ad14 + P(,)g bdQ( ) a) +d |:P§ -7 (PgAA + P(,)g bQ(f) a>:|:|

—d@(l)(so,égcp)} :
(5.74)
where @) (¢, dewp) is given by

@(1)(g0, Sep) —=e 20 & (e* A eb) A (1¢Rap + DPe opy) — qde™2? % (e A eb) N (Digep + Prepee”)

+ 8¢ 2% % dgnedg

/
—e 2% HU A {ZgH W4 % (Aa nreFt+ Q0 AR )

o A @ a(0)b o A a (0)b
— & (Peadat + Py a?)) +d [P5 — 5 (Pead? + PO e )a)

/
_ %e_2¢ (*FA _ %*H(O) /\AA> A (ZEFA —i—DPgA) .
/
~ e (xR~ b HO A 0O ) A (1RO + D P

2 &) ( ()
(5.75)
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Integrating by parts and using the Noether identities Egs. (5.22a), (5.22b), (5.22c¢),
(5.23) and the Noether identity associated to the invariance under diffeomorphisms

(~1)IDEWY), siee® + ES) 5 A HD + B redo

/ /
T (Egp + OB A AA> AreFA 4 <E<l>ba + VB A ng;¢> AR, (5:76)

:07

we can see that the volume term in the variation of the action Eq. (5.74) reduces to another
total derivative

eS8 = /de@)'(@, Se) (5.77)
with

OW (¢, d¢p) = ©W(p, 5¢p)

+ (~1)EQ) yree® + (~1)EL) 5 A P

expa e

1, o0 (5.78)
+ (_1>d (EA + ZEexpB A AA) PfA
d ) (0)b o
+ (_1) (E(l) at ZEexpB A Q(,) a) P(_)g b-
The usual reasoning leads us to the off-shell identity
dIWe] =0, (5.79)
where

IO = 40 (i, bep) + 1LV, (5.80)

and to the local existence of a (d — 2)-form QM [¢] such that JM[¢] = dQM[¢].
A straightforward calculation leads to the fully gauge-invariant Wald-Noether charge

QU] =(=1)"x (e A e”) [eizd)P& ab — 2zade*2¢§b}

1o - A a (.- (0)b
+ () [Peac @ w P+ PO (25 RON) | (581)

— P A (efw " H<1>) ,
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which is one of the main results of this chapter.

5.4 Restricted generalized zeroth laws

One of the main ingredients in Wald’s approach to the first law of black hole mechanics
is the zeroth law stating that k is constant over the horizon [20]. Originally, this law was
proved using the Einstein equations and the dominant energy condition (see, for instance,
Ref. [124]) but a completely geometrical proof was presented in Ref. [125].

In presence of an electromagnetic field one also needs to use the generalized zeroth law
that guarantees that the electrostatic potential is also constant over the whole horizon.
There is no purely geometrical proof of this law, though, and the standard proof also
makes use of the Einstein equations and of the dominant energy condition. In Ref. [74]
we have explained how this proof can be extended to a theory containing an arbitrary
number of Abelian vector fields and the KR field coupled to them via Chern-Simons terms.
Essentially one gets a sum of non-negative terms containing the contribution of each field,
and each of them has to vanish. Extending this proof to the non-Abelian case, as long
as we restrict ourselves to a gauge group with definite positive Killing metric because one
gets sums of non-negative terms. However, the Rg(i)f term of our theory is of YM type,
but with non-definite Killing metric because of the non-compactness of the Lorentz group
and the proof cannot be extended to this case in a streightforward manner.

It is, however, possible to proof the first law in bifurcate horizons if one can proof
generalized zeroth laws for the matter fields restricted to the bifurcation sphere BH where
the Killing vector associated to the event horizon, k, vanishes identically. These restricted
generalized zeroth laws state the closedness of certain differential forms on BH. The
definitions of the potentials as certain constants follow from them as we are going to
explain.

Assuming all the fields are regular over the horizon, it is clear that the inner products
of their field strengths with & must vanish on BH:

wdo 20, (5.82a)
wH 2o, (5.82b)
wFA %, (5.82¢)
wR" 20, (5.82d)
(5.82€)

Eq. (5.82a) is actually true over the whole spacetime, by assumption. From Eq. (5.82c¢)
and the definition of the YM momentum map P,” we find that

A BH

ppA 2o, (5.83)
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which tells us that the horizontal YM momentum map P, is, at the same time, a vertical
Killing vector field on BH. This is what we need in order to have an associated conserved
charge there (see the discussion in Section 5.3.2).

Analogously, from Eq. (5.82d) and the definition of the momentum map P_),%
Eq. (5.56) we get

P Py 2o, (5.84)

which tells us that the horizontal Lorentz momentum map P,” is, also, a vertical Killing
vector field on BH.

Observe that the last two equations have as consequence the existence of the gauge-
invariant 1-forms ¥p,_ and IIp, defined by

0)

ditp, 2 Py RO, (5.85a)

dvp, 2 PPt (5.85b)

The closedness of the right-hand sides of these equations on BH, which guarantee the local
existence of Wp, and IIp, there are the restricted generalized zeroth laws for the YM and
torsionful spin connecton fields.

Finally, from Eq. (5.82b) and the definition of the KR momentum map Eq. (5.66)
plus the above two equations that define ¥p,_ and IIp, we get

/

d Pk—%(\l’pk-f—ﬂpk) 2, (5.86)

which is the restricted generalized zeroth law of the KR field.

5.5 The first law
Following Wald [28], we start by defining the pre-symplectic (d — 1)-form [27]

wW (0,010, 820) = 5101 (ip,520) — 5,01 (0, 10) (5.87)
and the symplectic form relative to the Cauchy surface %

QD (¢, 6100, 69¢p) = / wW (¢, 810,85 . (5.88)
>

When ¢ is a solution of the equations of motion E, = 0, 610 = d¢ is an arbitrary
variation of the fields and da¢p = d¢¢ is their variation under diffeomorphisms [22]

wW(p,80,0c0) = 63Y + 1@V’ = 54QW[¢] + dre OV (5.89)

where, in our case, the Noether-Wald (d — 2)-form charge Q") is given by Eq. (5.81) and
@’ is given in Eq. (5.78). Since, on-shell, ®1) = @)’ we have that, if §p satisfies the
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linearized equations of motion, 6dQ™ = d6QW. Furthermore, if the parameter & = k
generates a transformation that leaves invariant the field configuration, 6z = 0,'? linearity
implies that w™ (p, 5, drp) = 0, and

d <6Q(1)[k] + zk@(l)/) ~0. (5.90)

Integrating this expression over a hypersurface ¥ with boundary 6% and using Stokes’
theorem we arrive at

/52 <5Q(1>[k] + zk(-)(l)’) =0. (5.91)

We consider field configurations that describe asymptotically flat, stationary, black-
hole spacetimes with bifurcate horizons H and the Killing vector k£ is the one whose Killing
horizon is the black hole’s event horizon. k, then, will be given by a linear combination
with constant coefficients Q" of the timelike Killing vector associated to stationarity, t#0,,
and the [3(d — 1)] generators of inequivalent rotations in d spacetime dimensions ¢},

k=t 4+ QR (5.92)

The constant coeflicients (2" are the angular velocities of the horizon.
The hypersurface ¥ to be the space bounded by infinity and the bifurcation sphere
BH on which k = 0, so §% has two disconnected pieces: a (d — 2)-sphere at infinity, S92,

and the bifurcation sphere BH. Then, taking into account that £ = 0 on BH, we obtain
the relation

o QWK = /S L, (@WK + e ). (5.93)

BH

As explained in Ref. [22,52], the right-hand side can be identified with M —Q™d.J,,,
where M is the total mass of the black-hole spacetime and J, are the independent com-
ponents of the angular momentum.

Using the explicit form of QM[k], Eq. (5.81), noticing that —2i,de™ 2%k, 5% () and

BNotice that our goal in Section 5.3.3 was, precisely, to construct variations of the fields 0¢ with that
property.

MWhen the spacetime has compact dimensions, the d-dimensional mass M is a combination of the
lower-dimensional mass and Kaluza-Klein charges. The details depend on the compactification and will
be studied elsewhere.
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restoring the overall factor ggd) 2(167TG§?))*1, we find

(d)2

) Q(l)[k] — gsw)/ (_1)d672¢ * (6a A eb)Pkab
BH 167Gy /BH

(d)2 /
9s _\d—19Y a (,—2¢6, p0)b
+ /BH( 1) B P(—)k b (e *R(i) a)

(5.94)
g(d)Q o
+Sd/ (-1)d71kaA672¢*FA
167rG§\,) BH 2

(d)2
_ gSW)/ P A <6_2¢*H(1)> )
167Gy’ /BH

The right-hand side of this identity is expected to be of the form 765+ ®JQ for some
charges Q and potentials ®. However, when we compare the third and fourth integrals in
the right-hand side with the definitions of the YM and KR charges Eqs. (5.41) and (5.28)
we see that some terms are missing in the integrand of the first and that, in the second,
there is no closed or harmonic form in the integrand, since the horizontal KR, momentum
map is not necessarily closed on BH. We found a similar problem in Ref. [74] and the
solution is essentially the same: add and subtract the same term in different integrals in
order to complete the integrand of the definition of YM charge and in order to construct
a 1-form which is closed in BH.

The 1-form shich is closed on BH and which contains P}, follows from the restricted
generalized zeroth law of the KR field, Eq. (5.86). We must add a term —%I\I/ p, to the
fourth integral and substract the same term to the third, which now contains all the terms
associated to the YM charge becuase of the restricted generalized zeroth law Eq. (5.83).
However, Eq. (5.86) also tells us to add another term —%/Hpk to the fourth integral and
we can only compensate by subtracting it to the second. This completes the closed 1-form
in the fourth integral and completes the integrand of the Lorentz charge according to
Eq. (5.47) and thanks to the restricted generalized zeroth law Eq. (5.84).

The result of these additions and subtractions is
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(d)2

5[ QW= e e ) P
BH 167Gy /BH

(d)2

gs a1 —2¢ d —2¢ (0)
+/ -1 — e *xdllp, + (—1)Ip, A (e * H
e | A+ (1) A )]

(d)2

Js . o 3 )
+ M/ (—1)¢ 15 [e 2 % dUp, + (=1)4Wp, A (e 2¢*H(0))]
nGy JBH

(d)2

_gs(d/ |:Pk_0/(\IlPk+HPk):| A <872¢*H(1)> .
167rGN) BH 2

(5.95)
where Wp, and Ilp, satisfy Eqgs. (5.85b) and (5.85a), respectively, whose integrability is
guaranteed by the fact that the YM and Lorentz momentum maps are covariantly constant
on BH (the restricted generalized zeroth laws).

Now, let us assume that the particular field configuration under consideration admits
a set of covariantly constant YM parameters on BH that we label with an index I, x4

Pt o, = pA el (5.96)

where the constants ® will be interpreted as the potentials associated to the YM charges
Q7 computed with the parameter k4 Eq. (5.41)

(d)2

!
Q; = Qlki] = gu-z)/ (1)L (6726 4 qw; 1 (1) A (e*%*H(O))] . (5.97)
167Gy /BH 2

AU = —kp s FA. (5.98)
As a result, the third line in Eq. (5.95) becomes ®5Q);.

Now, following Refs. [52,131], as a consequence of the KR restricted generalized
zeroth law Eq. (5.86), we can write (Hodge decomposition)

/

Py — % (Up, +10p,) 2 de + DAy, (5.99)

where e is some function, the Ay ; are the harmonic 1-forms of the bifurcation sphere and
the ® are constants that can be interpreted as the potentials associated to the KR charges
Qi = Q(Ani) Eq. (5.28)
(d)2
Q; = —gsw)/ e 2% H, (5.100)
167Gy’ JCa,,
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where C), , is the (d — 3)-cycle dual to the harmonic 1-form Aj; in BH.

As a result, the fourth line in Eq. (5.95) becomes ®'6Q; and we are left with the
first two, which are linear in the Lorentz momentum map P, which, on BH, is given
by kn®, where n® is the binormal to the horizon. The terms in those two lines must,
therefore, be interpreted as those giving rise to the term 79,5 in the first law

SM =T6S + ®'6Q; + '6Q; + Q"0J,, . (5.101)
5.6 Wald entropy
It follows from the results of the previous section that the entropy is given by

g(d)2 O[, 0 Oé/
S = (-1)?E y / e 2 { [*(e“ Aeb) + —e 2 *RE_))“b Nap + (—1)1—=1II,, A *H(O)} ,
8G\" Jn 2 2

(5.102)

where we have the defined the 1-form II,, (vertical Lorentz momentum map associated to
the binormal) on the bifurcation sphere

d,, 2

R g (5.103)

This is the main result of this chapter, and the thesis as a whole, which we will
discuss in the next section. It is worth stressing that the term that involves II,,, and
which has been shown to given an important contribution to the entropy of well-known
black-hole solutions Refs. [29, 30, 32-34] occurs in the entropy formula just to cancel an
equivalent term that we had to add to get the correct definition of the KR charge and
the associated potential. Without a detailed knowledge of the conserved charges, the
restricted generalized zeroth laws and the potentials associated, the presence of that term

in the entropy formula could not have been guessed.

5.7 Discussion

In this chapter we have derived an entropy formula for the black-hole solutions of the
Heterotic Superstring effective action to first order in o/ using Wald’s formalism [27, 28]
taking carefully into account all the symmetries of the theory. As a result, our entropy
formula Eq. (5.102) is manifestly gauge invariant. In particular, it is manifestly invariant
under local Lorentz transformations.

It is interesting to compare this result with the one that would follow form the
direct (and naive) application of the Iyer-Wald prescription [22]. The first two terms in
Eq. (5.102) can be obtained from Eq. (5.8) by varying the Einstein-Hilbert term and the
R%_) term with respect to the Riemann curvature tensor, but the third term cannot be

obtained in that way from the H? term. As stressed in Refs. [32-34], the variation of this
term with respect to the Riemann tensor gives a term of the form

/
O‘Ze—% (QET)“bnab) AxHO (5.104)
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which is not Lorentz-covariant. The coefficient of this term differs from the last term in
Eq. (5.102) if we associate II,, to Qgti))abnab, which is the right thing to do as we are going
to show. But this coefficient changes after dimensional reduction, as observed in Ref. [107].
The explicit calculation in Ref. [32] shows that the right coefficient is the one that arises
after dimensional reduction,'® but, certainly, there are ambiguities in the way in which
the Chern-Simons terms are defined in lower dimensions.

It is interesting to observe that because Dngyp el 0,

ai, 2 g (QE?)abnab) + 002 A gy, (5.106)

For the non-extremal Reissner-Nordstrom black hole of Ref. [108], whose o/ correc-
tions were computed in Ref. [32], the second term vanishes identically in the tangent space
basis used (see Appendix C). This shows that, in that basis, our entropy formula and the
entropy formula obtained via the Iyer-Wald prescription (after dimensional reduction) give
the same result. Of course, our formula is valid in any basis.

Our entropy formula seems to differ from the entropy formula obtained in Ref. [31],
but a detailed comparison is not possible since that formula contains undetermined pa-
rameters that guarantee its invariance under Lorentz transformations. In Ref. [31] it was
argued that those undetermined parameters do not contribute to the entropy in certain
cases but, without an explicit expression, it is difficult to understand why or when this
may happen. Furthermore, as we have shown, the identification of the entropy formula
can only be made after the first law of black hole mechanics has been proven and this re-
quires a careful identification of the conserved charges of the theory: some terms (the one
involving II,,) occur in the entropy formula only because they are needed to compensate
other terms that have to appear in the correct definition of the KR charge. This analysis
was simply not carried out in Ref. [31].

Our entropy formula (the contribution due to the presence of Lorentz- or gravita-
tional Chern-Simons terms in H(") also differs from the one found in Ref. [129]. Ob-
serve that Eq. (40) in Ref. [129], similar to the terms contains in the formulae derived in
Refs. [33,34] and to Eq. (5.104) is not covariant. Thus, it may give the right result in
certain basis, if at all.'® The problems in the derivation of Ref. [129] are having overlooked
the KR conserved charge and the determination of the gauge parameters that generate
symmetries of the complete field configuration.

Finally, it is interesting to notice that the entropy formula looks like the charge
associated to the Lorentz transformations generated by the binormal to the horizon. These

(0)

transformations preserve the connections w and £2; '\ on the bifurcation sphere, but they

do not preserve the Vielbein, as we assumed in Section 5.3.2 (Eq. (5.43)), which produces
an additional term associated to the Einstein-Hilbert term.

The main use of the entropy formula that we have found is to put in solid ground

15The entropy calculated in this way satisfies the first law or, equivalently, the thermodynamic relation

oS 1
—— 1
T (5.105)
1%the non-covariance of Tachikawa’s entropy formula was observed in Ref. [130], where an alternative
method was devised to deal with this problem. Nevertheless, the formula obtained in Ref. [130] reduces to
Tachikawa’s in BH, apparently losing the covariance, while ours does not.
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the calculations of the macroscopic entropies of o/-corrected black holes, an ineluctable
condition for a fair comparison with the microscopic ones. More o'-corrected solutions
will be available to this end [145]. As mentioned in the introduction, another necessary
ingredient for this comparison is the correct identification of the relation between the
charges of the black hole and the branes in the string background. These results and those
of our previous work [74] single out a very precise definition of the conserved charges,
which turn out to be of Page type, conserved and gauge-invariant under the assumptions
made. This fact should shed light on this problem and we intend to pursue this line of
research in future work.
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Conclusions

The main objective of this thesis has been better our understanding of black hole entropy in
theories beyond General Relativity, specifically in the case of the heterotic string effective
action up to first order in o'.

The first part of the thesis focused on dimensionally reducing the heterotic string
theory up to o/ using the formulation based on the supersymmetry completion of the
Lorentz Chern-Simons terms that occur in the Kalb-Ramond field strength. We have found
a transformation Zs of the fields left invariant by the action dimensionally reduced to first
order in o/ and that generalize and, in the limit o/ — 0, reduces to the transformations
of Standard T duality (Buscher’s rules [82,83,109]), which exchange the Kaluza-Klein
vectors and winding vectors and invert the Kaluza-Klein scalar. These transformations
had been proposed by [85] but here we give the explicit form of the action and prove its
invariance.

Then, we used the dimensionally-reduced action to find, following the Iyer-Wald
prescription, an entropy formula for stringy black holes that can be obtained from a 10-
dimensional solution by a single non-trivial compactification on a circle, supplemented by a
trivial compactification on a torus, which we applied to the o/-corrected heterotic version
of the Strominger-Vafa black hole, obtaining an entropy that matched the microscopic
entropy result previously calculated. An important point is that the entropy calculated,
apparently corrected, differs by a factor of 2 in a term of the one obtained by applying
the prescription from Iyer-Wald to 10-dimensional action. This factor of 2 is necessary to
obtain an entropy that satisfies the thermodynamic relation,

0S 1
— == 6.1
as had been checked in [32]. Besides this problem, the value of the entropy depends on the
choice of base of 1-forms in cotangent space. Removing these ambiguities were the main
motivations for the rest of the thesis.

In the second section, we focused on the main goal of this thesis: the proof of the first
law and calculate the Iyer-Wald entropy for the Heterotic string action. This was done in
a piecewise fashion, focusing first on a toy model of the Reissner-Nordstrém-Tangherlini
black hole in the Einstein-Maxwell d-dimensional theory, and then the effective theory of
the compactified heterotic superstring to zeroth-order in o on a torus, before moving to
the much more complex case we were interested in.

To deal with fields with gauge freedoms, we define the gauge covariant Lie derivatives
as combinations of the standard Lie derivatives and compensating gauge transformations
built with the momentum maps. This has allowed us demonstrate the first laws of black
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hole mechanics, including terms of work that do not appear in the treatment of Iyer-Wald,
and identify a Wald entropy formula manifestly invariant under gauge transformations
(including local Lorentz transformations).

To reach these results, it was necessary to develop a generalization valid for differ-
ential forms of order greater than 1 for the generalized zeroth law, valid for the Maxwell
field, which states that the electrostatic potential is constant over the horizon. This gen-
eralization states that certain differential forms that generalize the electrostatic potential
are closed. These differential forms are closely related (or coincide) with the momentum
maps. However, we have only been able to test them on bifurcation surfaces, so we refer
to them as generalized zero laws constrained (to the bifurcation surface). The restriction
did not prevent reaching the final results. We have studied how these laws hold in the
non-trivial case of supergravity black rings pure N' =1, d = 5.

Comparing our entropy formula with the one we obtained in our first chapter from
the Iyer-Wald prescription we have seen that, in the chosen 1-form basis, our formula gives
the same result as the Iyer-Wald prescription, except for the factor of 2 that the latter
only includes if we work with the action compactified. Our formula therefore leads to
entropy macroscopic that coincide with the microscopic entropy and that they satisfy the
thermodynamic relation Eq. (6.1).

Comparing the terms of work that appear in the first law that we have obtained
with those appearing in, for example, [142], we see that our treatment recovers the work
terms proportional to the variations of electric-type charges, but not those proportional
to the variations of the magnetic charges, the variations of the moduli or the cosmological
constant [146] [147], because in the theories we consider there is no gauge symmetries
associated with them. These absences can be considered as an inadequacy of the methods
proposed in this thesis. Nevertheless, in two recent papers [148] [149], it has been shown
that the techniques developed in this thesis can be used to find the work terms proportional
to the variations of the cosmological constant if one describes is as the electric charge of
a (d — 1)-form potential and the terms proportional to the magnetic charges in Smarr
formulae. Although more work is needed to understand and repair the absence of the
terms of work associated with the variations of the magnetic charges and those of the
moduli in the first law, we believe that the ideas and methods presented in this thesis lay
a foundation on which fund the necessary advances to solve these problems.
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Relationship between 10 and 9 dimensional fields

In this appendix, we demonstrate how the 10 dimensional fields in our heterotic theory,
introduced in Chapter 2, can be decomposed into 9 dimensional fields. Section A.1 corre-
sponds to the zeroth order case, while section A.2 corresponds to the O(a/) case.

A.1 Relation between 10- and 9-dimensional fields at zeroth
order in o/

At zeroth order in o/, the 10-dimensional fields can be expressed in terms of the 9-
dimensional ones as follows:

(A1)

The inverse relations are
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uv = g,ul/ - gguggu/gﬁa
Ay = guz/ﬁzv

k = ‘gﬁ‘l/Qv
(A.2)
B(O),uz/ = B,uu + gg[,uBy}g/gza

A.2 Relation between 10- and 9-dimensional fields at O(a/)
At first order in o/, the 10-dimensional fields can be expressed in terms of the 9-dimensional
ones as follows:

g;w = Guv — sz,uAl/ )

Guz = _kZAu )

gzz = _k27

5 _ pl 1 o A 0)  ab ), a
B;w = B( );w —A[M |:B( )l,] + 51(5 ((pAA V] + %Q(_)M K(+)ab - K( )\y] Galogk)} ,

/
B = BY, + Tk (pad, + 300 KDy — KO 00, logk) |

¢=¢+3logk,
1A A A
A%, =A%, + ket A,
/AlAé = k.
The inverse relations are
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Juv = guu - quggu/gﬁv

Au = f]uz/gzz ,
k= 1g.l"?,
1 - o oA g A0) 6 30 b X
B = By + Gz [BV]Z + a (A pAaz + 01" "“)} /922
/
BY, =B, -5 (A% Aaz+00) 500 B, (A4)
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A truncation of the d = 5 theory to a
N =1,d = 5 supergravity

A very useful, almost algorithmic, procedure has been developed in Refs. [150-152] to
construct supersymmetric solutions (black holes and black rings, in particular) of N' =
1,d = 5 supergravity coupled to vector supermultiplets.! We can use this procedure in
the context of the Heterotic Superstring Effective action compactified on a T? if we find
a consistent truncation that produces a model N' = 1,d = 5 supergravity. A very simple
truncation with this property has been used, for instance, in Ref. [29]. It can be described
more conveniently as a trivial dimensional reduction on a T* (with all the fields that arise
in the reduction set to their vacuum values) followed by a non-trivial compactification
on a circle. The only fields that survive are the KR 2-form (which can be dualized into
a vector field), the KK and winding vectors and the dilaton and KK scalars. This field
content fits into N' = 1,d = 5 supergravity (metric and graviphoton vector field) coupled
to two vector multiplets (one vector and one real scalar field each).

In order to profit from the solution-generating techniques developed for N ' =1,d =5
supergravity theories, we need to rewrite this truncated version of the Heterotic Super-
string effective action in the appropriate form: first, we rewrite the action in the Einstein
frame and then we will dualize the KR field into a vector. After that, we will identify the
scalar manifold etc.

The action of the truncated theory is

(5)2

Sle®, B, ¢, k, A, B] = % /e—2¢ [*(ea A €®) A Ry, — 4dgp A *dp
677G N (B.1)
+1k72dk A xdk — $K°F A+F — 3k 2G A«G + LH AxH| |
where H is simply
H=dB—-3ANG—4iBAF. (B.2)

The string-frame Vielbein e is related to the (modified) Einstein-frame Vielbein é*
by

!These are supergravities invariant under 8 independent supersymmetry transformations, which are
combined in a minimal 5-dimensional spinor. Often, they are referred to as N' = 2,d = 5 supergravities.
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e = 62((1)*4700)/3&(1 , gs = e¢°° , (BS)

and the action in the (modified) Einstein frame takes the form (removing the tildes for
simplicity)

1
S[e®. B, ¢, k, A, B] — (5)/ [5(6% A %) A Rap + 4 A 6 + Sk2dk A xd
167Gy

SRS AP W2 TG XG4 S A H |
(B.4)

The next step is the dualization of the KR 2-form. As usual, we consider the above
action as a functional of the 3-form field strength H and add a Lagrange-multiplier term
to enforce its Bianchi identity dH = —%]—' T AF!

1

S[€QJH7¢7k7A7 B} = T
167rG§3)

/ [*(ea A €Y A Rap + Sdp A xds + Lk~ 2l A xdk

(B.5)

L2 OBE A SF — L2 BG A XG4 Le OB H A xH

—~CAdH+FAG),

where C' is the 1-form dual to the 2-form B. Varying this action with respect to H, we
get

35S

s = P H —dC =0, (B.6)

which is solved by

H=e%P K, K =dC. (B.7)

Substituting this solution into the action Eq. (B.5) we find the dual action

1
Sle®, ¢k, A, B,C] = — / [*(ea Ae’) A Rap + 3dp A xdp + Lk~ 2dk A xdk
167Gy

B.8
— L2 E ANKF — L2 19BG A xG — LB K A KK (B2)

—FAGAC].

The final step consists in finding the relation between the fields of this action and
those of a N' = 1,d = 5 theory with two vector supermultiplets written in the standard
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form?
1
Sle?, ¢%, Al = — / [*(e“ A €)Y A Rap + 39uydd™ Axdd? — Lap FT A *F7
167Gy
(B.9)
+33%C[JKFI/\FJ/\AK ,
where the indices I, J,... = 0, 1,2 and the indices z,y, ... = 1,2. The metrics gy (¢), ars ()

are defined in terms of the symmetric, constant tensor Cjyx which fully characterizes the
theory and the real special geometry of the scalar manifold as follows: we start by defining
3 combinations of the 2 scalars h!(¢) that satisfy the constraint

Crixh! (9)h7 (¢)h" (¢) = 1. (B.10)
Next, we define
hr = Cryh’h®, = hih; =1, (B.11)
and
I _— I ahl — I I
hl=—v3nl .= -3 hiz = +V3hre, = hihl =h'h, =0. (B.12)

9"
Then, ay; is defined implicitly by the relations

h[ = a]JhI, h]x = a[Jth. (B.13)

It can be checked that

arj = —2C]JKhK+3h[hJ. (B.14)

The metric of the scalar manifold g, (¢), which we will use to raise and lower z,y
indices is (proportional to) the pullback of ay;

oy = arsh’sh’y = —2C 1 chLh) W (B.15)

If we make the identifications

A° = —\/3C, Al = —/34, A% = /3B, (B.16)

we find that

C012 == 1/6 y apgo — 68¢/3/3, a1l = k2€_4¢/3/3 s a2 — ki_26_4¢/3/3 . (B17)

?Here we are using the notation and conventions of Ref. [153] with minor changes explained in Ap-
pendix A of Ref. [154]. See also Ref. [42].
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Since, for this Crjyi, the only non-vanishing components of ay; are the diagonal
ones with a;; = 3(h;)? we find that

ho = e*9/3/3, hy = ke 29/3/3, hy = k~le2¢/3/3, (B.18)

which, in its turn, implies that

RO = e40/3 Rl = 129/ h? = ke*?/3 . (B.19)

Finally, the non-vanishing components of the scalar metric are

oo = 8/3, grk = k2. (B.20)

The equations of motion of a general N’ = 1,d = 5 theory are (up to a global factor
of (167TG§3))_1 that we omit for simplicity)

Eq =15 % (e° A ) A Reg — 300y (1ad¢" % dg¥ + do™ A 1q % dpY)

+ Lars (WF' ANxF7 — FI nagx F7) | (B.21a)
E, = —guy {d* d¢¥ + T.,Yd¢* A xd¢™ + 30%ar, F AxF7 (B.21b)
E; = —d(aryx F’) +%CUKFJAFK. (B.21c)

In this action, ¢ stands, actually, for ¢—¢@. In other words: the field ¢ is constrained
to vanish at infinity.

For the particular model that we have obtained as a truncation of the compacti-
fied Heterotic Superstring effective action in d = 5 dimensions, these equations take the
particular form
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E, =14 % (e A e?) A Reg — % (1add * dp + dp N 14 * dop)
— 2572 (tadk * dk + dk A g % dk) + 165973 (1,0 A% FO — FO A g+ FP)

2

+ %6_4¢/3k2 (zaF1 AxFY — F' Aay, *Fl) + %6_4¢/3k_2 (zaF2 A*xF% — F% A, *Fz) ,
(B.22a)

E, = —% {d*dd) + %68¢/3F0 A*FY — 1—12674‘”31&’2171 AxF1 — 5674‘25/3/(2172 A *F2} ,
(B.22b)

E, = k2 {d* dk — k™Ldk A xk + e 4933 LA < FL — g le49/3 p2 *F2} , (B.22¢)

1
E0:7%d (68¢/3*F0)+WF1/\F2, (B22d)
1
E, = —%d (e*4¢>/3k2 *F1> + 273 FONF?, (B.22e¢)
1
B, = —ld (e*4¢/3k’2 « F2> + R FOAF (B.22f)

B.1 Further truncation to pure A’ = 1,d = 5 supergravity

We can truncate this theory further, to minimal (pure) supergravity as follows: if the two
scalars are constant, taking into account that for ¢ this constant value must be ¢ = 0, (we
call ko, the constant value of k) their equations become the constraints

0=FYAXF" — $kZ F' A+FY — Lk 2F? AxF? (B.23a)
0=k3 F'AXF! — k F2 AxF? (B.23D)
whose simplest solution is this relation between vector field strengths

FO=k Fl =k F?=F. (B.24)

Substituting this solution into the Einstein and vector equations we get only these two
independent equations
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Eo =1, % (€“ AN e?) AReg+ 2 (1aF AN¥F — F Nigx F) (B.25a)
2E=—1idxF 1 FAF B.25b

which follow from the action of minimal d = 5 supergravity [127]

1

Sle* Al = ———
167G

/[*(ea/\eb)ARab_%F/\*F+6\1/§F/\F/\A . (B.26)

The truncation procedure we have followed to arrive to this action starting from
the 10-dimensional Heterotic Superstring effective action can be easily reversed to embed
solutions of pure N’ = 1, d = 5 supergravity into the 10-dimensional Heterotic Superstring
effective theory. In particular, we apply this recipe to the charged, non-extremal, black
ring solution of Ref. [140] in Section 4.6.

144



Resumen

La termodinamica de los agujeros negros es probablemente uno de los campos de investi-
gacién mas activos de la Fisica Teérica. Interconecta areas de la Fisica tan aparentemente
dispares como la Gravedad, la Teoria Cuantica de Campos y la Teoria de la Informacién,
proporcionando una visién profunda de todas ellas. Si bien inicialmente solo era valida
para la Relatividad General, Wald y sus colaboradores desarrollaron un nuevo enfoque
para demostrar la primera ley de la mecanica de los agujeros negros en teorias generales
invariantes bajo difeomorfismos méas generales que la Relatividad General. Como sub-
producto, este enfoque condujo a la identificacién de una expresién que juega el papel
de entropia (entropia de Wald) en la primera ley en teorfas mas alld de la Relatividad
General.

Sin embargo, las primeras leyes y las formulas de entropia derivadas en la liter-
atura con este formalismo (la prescripcién de Iyer-Wald, en concreto) presentan graves
deficiencias en ciertas teorias de cuerdas, como la falta de términos de trabajo en las
primeras leyes y la falta de invariancia de gauge de la formula de entropia. Esto impide
una comparacion justa con la entropia microscépica calculada utilizando otras técnicas
(correspondencia AdS/CFT, etc.). El objetivo principal de esta tesis es identificar las
raices de estos problemas y solucionarlos. Como veremos, la raiz de estos problemas es
el tratamiento inadecuado de los campos que exhiben algin tipo de libertad de gauge.
Estos son, de hecho, todos los campos excepto los escalares y la métrica (si no se usa el
formalismo de tétradas).

Esta tésis esta dividida en dos partes. En la primera seccién se realiza la compact-
ificacion de la accién efectiva de la cuerda heterética en S a primer orden en o/, lo que
nos permitird volver a calcular las reglas de Buscher y demostrar que es invariante bajo
T dualidad. Luego usaremos la féormula de Iyer-Wald en la accién del modelo dimension-
almente reducido para derivar una férmula de entropia que se puede aplicar a soluciones
de agujeros negros que pueden ser obtenidos por una sola compactificién no trivial en un
circulo y discutiremos su invariancia bajo las transformaciones de T dualidad corregidas
por o’. En concreto, lo aplicaremos al agujero negro extremo de Strominger-Vafa. De-
mostraremos que, ademas de la falta de invariancia de gauge, existe una ambigiiedad en
la aplicacion de la férmula, ya que al aplicarla a d = 10 y d = 5 produce dos resultados
diferentes que difieren por un factor de 2.

Como se menciond anteriormente, la formula de Iyer-Wald no se puede aplicar sin
ambigiiedades en el caso de la cuerda heterdtica, ya que una de las suposiciones principales
en su derivacién era que todos los campos se comportaban como tensores y todos los
campos, excepto el métrico y el escalar, poseen libertades de gauge y sus transformaciones
bajo difeomorfismos siempre estan acoplados a transformaciones de gauge. Esto sirve
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de motivacién para la segunda seccién de la tesis en la que probamos la primera ley de
la termodinamica de agujeros negros de una manera invariante de gauge, introduciendo
transformaciones bajo difeomorfismos covariantes de gauge (derivadas de Lie covariantes
de gauge). La construccién de estas transformaciones implica la definicién de momentum
maps asociados a los campos y a los vectores que generan sus simetrias. Estos objetos
juegan el papel de potenciales termodindmicos generalizados en la primera ley y satisfacen
las “leyes cero generalizadas restringidas”.

Después de haber puesto a prueba nuestras ideas sobre el agujero negro Reissner-
Nordstrom-Tangherlini en el contexto de la teoria de Einstein-Maxwell d-dimensional, nos
centramos en el caso de la cuerda heterética. Inicialmente, examinamos el caso de la teoria
efectiva de la cuerda heterdtica hasta orden cero en o compactificada sobre un toro. Esta
teoria es interesante debido a las soluciones de agujeros negros que admite, y debido a los
términos abelianos de Chern-Simons presentes en la intensidades de campo de la 3 forma
de Kalb-Ramond. La presencia de esos términos induce las llamadas transformaciones de
gauge de Nicolai-Townsend de la 2-forma de Kalb-Ramond. Estos términos y transfor-
maciones de gauge aparecen en la teorfa de 10 dimensiones a primer orden en o’ de una
manera mucho més complicada (no-abeliana, gravitacional) y este modelo puede usarse
como un modelo de juguete para poner a prueba nuestras ideas. Asi, explicamos cémo
hay que tratar todas estas simetrias de gauge y derivamos la primera ley en términos de
cantidades manifiestamente invariantes de gauge. Explicitamente, demostraremos esto en
el caso de una solucién de anillo negro cargada no-extrema de supergravedad pura N' =
1, d = 5 que se puede ver tambi’en como solucién de la teoria efectiva de supercuerda
heterdtica.

En el capitulo final, llegamos a nuestro resultado principal, basado en el trabajo
de los capitulos anteriores. En él demostramos la primera ley de la mecanica de los
agujeros negros en el contexto de la accién efectiva de la supercuerda heterética a primer
orden en o utilizando el formalismo de Wald, teniendo en cuenta correctamente todas
las simetrias de la teoria. Esto requiere un cuidado adicional debido a la presencia de
los términos no-abelianos de Lorentz y Yang-Mills Chern-Simons que se encuentran en
la intensidad de campo de Kalb-Ramond. Como resultado, obtenemos una férmula de
entropia manifiestamente invariante de gauge (incluyendo transformaciones de Lorentz
locales) en la que todos los términos puede calcularse explicitamente. Una férmula de
entropia con estas propiedades permite célculos inambiguos de entropias de agujeros negros
macroscépicos de primer orden en o que pueden usarse de forma fiable en una comparacién
con los microscépicos. Tal férmula atn faltaba en la literatura.
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Conclusiones

El principal objetivo de esta tesis ha sido mejorar nuestra comprensién de la entropia de
los agujeros negros en teorfas mas alld de la Relatividad General y, en particular, en el
caso de la accidon efectiva de la supercuerda heterdtica a primer orden en o'.

La primera parte de la tesis se centré en reducir dimensionalmente la accién de
la teoria de la supercuerda heterética a primer orden en o' usando la formulacién de
Bersghoeft-de Roo basada en la supersimetrizaciéon de los términos de Lorentz Chern-
Simons presentes en la intensidad de campo de Kalb-Ramond. Hemos encontrado una
transformacion Zs de los campos que deja invariante la accién dimensionalmente reducida a
primer orden en o y que generalizan y en el limite o/ — 0 se reducen a las transformaciones
de T dualidad estédndar (reglas de Buscher [82,83,109]) que intercambian los vectores de
Kaluza-Klein y winding e invierten el escalar de Kaluza-Klein. FEstas transformaciones
habian sido propuestas por [85] pero aqui nosotros damos la forma explicita de la accién
y demostramos su invariancia.

Después, usamos la accién dimensionalmente reducida obtenida anteriormente para
encontrar, siguiendo la prescripcién de Iyer-Wald, una férmula de entropia para aquellos
agujeros negros que se pueden obtener a partir de una solucién 10-dimensional medi-
ante una sola compactacién no trivial en un circulo, complementada mediante una com-
pactaciéon trivial sobre un toro. Aplicando esta férmula a la versién heterdtica con cor-
recciones de primer orden en o' del agujero negro de Strominger-Vafa obtuvimos una
entropia que coincidia con el resultado de entropia microscopica calculado en la literatura.
Un punto importante es que la entropia asi calculada, aparentemente correcta, difiere por
un factor de 2 en un término de la que se obtiene al aplicar la prescripcion de Iyer-Wald
a la accion 10-dimensional. Que este factor de 2 es necesario para obtener una entropia
que satisfaga la relacién termodindmica

5 _1
oM T’
habia sido comprobado en [32]. Ademads de este problema, el valor de la entropia depende

de la eleccién de base de 1-formas en el espacio cotangente. Eliminar estas ambigiiedades
fue la motivacién principal del resto de la tesis.

(D.1)

En la segunda parte, nos centramos en el objetivo principal de esta tesis: la de-
mostracién de la primera ley y el cdlculo de la entropia de Wald en la teoria efectiva de la
supercuerda heterdtica a primer orden en o'. Esto se hizo por partes, tratando primero
un caso muy simple: el agujero negro de Reissner-Nordstrom-Tangherlini en la teoria de
Einstein-Maxwell d-dimensional y luego la teoria efectiva de la supercuerda heterética
compactificada en un toro a orden cero en o/ antes de pasar al caso que nos interesaba,
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mucho mas complejo.

Para lidiar con los campos con libertades gauge definimos las derivadas de Lie covari-
antes de gauge como combinaciones de las derivadas de Lie estandar y transformaciones
de gauge compensatorias construidas con los momentum maps. Esto nos ha permitido
demostrar las primeras leyes de la mecanica de los agujeros negros incluyendo términos
de trabajo que no aparecen en el tratamiento de Iyer-Wald e identificar una férmula de
entropia de Wald manifiestamente invariante bajo transformaciones de gauge (incluyendo
las transformaciones Lorentz locales).

Para llegar a estos resultados fue necesario elaborar una generalizacion valida para
formas diferenciales de orden superior a 1 de la ley cero generalizada, valida para el campo
de Maxwell, que establece que el potencial electrostatico es constante sobre el horizonte.
Esta generalizacién establece que ciertas formas diferenciales que generalizan el potencial
electrostatico son cerradas. Estas formas diferenciales estan estrechamente relacionadas
(o coinciden) con los momentum maps. Sin embargo, s6lo hemos podido probarlas en las
superficies de bifurcacién, por lo que nos referimos a ellas como leyes cero generalizadas
restringidas (a la superficie de bifurcacién). La restriccién no nos ha impedido llegar a los
resultados finales. Hemos estudiado cémo estas leyes se cumplen en el caso no trivial de
los anillos negros de supergravedad pura N =1, d = 5.

Al comparar nuestra féormula de entropia con la que obtuvimos en nuestro primer
articulo a partir de la prescripcién de Iyer-Wald hemos visto que, en la base de 1-formas
elegida, nuestra formula da el mismo resultado que la prescripciéon de Iyer-Wald, excepto
por el factor de 2 que esta ultima sélo incluye si trabajamos con la acciéon compactificada.
Nuestra formula, por lo tanto, lleva a entropias macroscépicas que coinciden con la entropia
microscépica y que satisfacen la relacién termodindmica Eq. (D.1).

Al comparar los términos de trabajo que aparecen en la primera ley que hemos
obtenido con los que aparecen, por ejemplo, en [142], vemos que en la nuestra aparecen
los términos proporcionales a las variaciones de las cargas de tipo eléctrico, pero no los
proporcionales a las variaciones de cargas de tipo magnético ni los proporcionales a las
variaciones de los moduli o a la constante cosmologica [146,147], debido a que en la teorias
que consideramos no hay simetrias de gauge asociadas a ellos. Estas ausencias pueden
considerarse como una insuficiencia de los métodos propuestos en esta tesis. Sin embargo,
en dos trabajos recientes [148,149], se ha demostrado que las técnicas desarrolladas en esta
tesis pueden usarse para encontrar el término de trabajo proporcional a las variaciones de
la constante cosmoldgica si ésta se describe como la carga eléctrica de una (d — 1)-forma y
que los términos proporcionales a las cargas magnéticas si que aparecen de forma natural
en las férmulas de Smarr. Aunque se necesita mas trabajo para comprender y reparar la
ausencia de los términos de trabajo asociados a las variaciones de las cargas magnéticas y
las de los moduli en la primera ley, creemos que las ideas y métodos presentados en esta
tesis sientan una base sobre la que se pueden fundar los avances necesarios para resolver
estos problemas.
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