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Applications of perturbative QCD to deeply virtual Compton scatter-
ing and hard exclusive electroproduction processes require a generalization
of usual parton distributions for the case when long-distance information is
accumulated in nonforward matrix elements of quark and gluon light-cone
operators. We describe two types of nonperturbative functions parametriz-
ing such matrix elements: double distributions F'(z,y;t) and skewed dis-
tribution functions F¢(X;t), discuss their properties, and basic uses in the
QCD description of hard exclusive processes.

PACS numbers: 12.38.Bx, 13.60.Fz, 13.60.Le

1. Introduction

The standard feature of applications of perturbative QCD to hard pro-
cesses is the introduction of phenomenological functions accumulating in-
formation about nonperturbative long-distance dynamics. The well-known
examples are the parton distribution functions f, g (z) [1] used in pertur-
bative QCD approaches to hard inclusive processes and distribution ampli-
tudes or(x), pn (21,22, x3), which naturally emerge in the asymptotic QCD
analyses of hard exclusive processes [2-7].

The cases of deeply virtual Compton scattering (DVCS) and hard exclu-
sive electroproduction processes [8-13] involve nonforward matrix elements
(p'|...|p). The important feature (noticed long ago [14,15]) is that kinemat-
ics of hard elastic electroproduction processes (DVCS can be also treated as
one of them) requires the presence of the longitudinal component in the mo-
mentum transfer »r = p — p’ from the initial hadron to the final: r* = (p™.
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For DVCS and p-electroproduction in the region Q? > |t|,m?%, the longitu-
dinal momentum asymmetry (or “skewedness”) parameter ¢ coincides with
the Bjorken variable zp; = Q*/2(pq) associated with the virtual photon
momentum ¢ [16]. This means that the nonperturbative matrix element
(p'|...|p) is nonsymmetric (skewed), and the distributions which appear in
the hard elastic electroproduction amplitudes differ from those studied in in-
clusive processes. In the latter case, one has a symmetric situation when the
same momentum p appears in both brackets of the hadronic matrix element
(... Ip)-

To parametrize nonforward matrix elements (p — r|O(0, 2) | p) | ,2—q of
quark and gluon light-cone operators one can use two basic types of nonper-
turbative functions. The double distributions (DDs) F(z,y;t) [9,11,17,18]
specify the Sudakov light-cone “plus” fractions zp* and yr™ of the initial
hadron momentum p and the momentum transfer r carried by the initial
parton. The other possibility is to treat the proportionality coefficient ( as
an independent parameter and introduce an alternative description in terms

of the nonforward parton distributions (NFPDs) ?g(X; t) with X =z +y¢
being the total fraction of the initial hadron momentum taken by the ini-
tial parton. The shape of NFPDs explicitly depends on the parameter ¢
characterizing the skewedness of the relevant nonforward matrix element.

This parametrization of nonforward matrix elements by %)C(X ;1) is similar
to that proposed by Ji [8] who introduced off-forward parton distributions
(OFPDs) H(Z,&;t) in which the parton momenta and the skewedness param-
eter £ = rt/2P" are measured in units of the average hadron momentum
P = (p+p')/2. OFPDs and NFPDs [11,12] can be treated as particu-
lar forms of skewed parton distributions (SPDs). One can also introduce
the version of DDs (“a-DDs” [18]) in which the active parton momentum is
written in terms of symmetric variables k = P + (1 4+ «)r/2.

The basics of the pQCD approaches incorporating skewed parton distri-
butions were formulated in Refs. [8-11]. A detailed analysis of pQCD fac-
torization for hard meson electroproduction processes was given in Ref. [12].
Our goal in the present lectures is to give a description of the approach
outlined in our papers [9-11,17,18].

2. Double distributions and their symmetries

In the pQCD factorization treatment of hard electroproduction pro-
cesses, the nonperturbative information is accumulated in the nonforward
matrix elements (p—r | O(0, 2) | p) of light cone operators O(0, z). For 22 = (
the matrix elements depend on the relative coordinate z through two Lorentz
invariant variables (pz) and (rz). In the forward case, when r = 0, one ob-
tains the usual quark helicity-averaged densities by Fourier transforming the
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relevant matrix element with respect to (pz)

(0,8 | Pa(0)2E(0, 2 A)ha(2) | p,8) ] 2=
1

= a(p.s)2ulp,) [ (50 (o) = O fola)) da, ()

0

where E(0, z; A) is the gauge link, @(p’, s'), u(p, s) are the Dirac spinors and
we use the notation v,2% = 2.

a) b) c)

Fig. 1. a) Parton picture in terms of y-DDs; b,c) Fi/-type contributions.

The parameter z in this representation has an evident interpretation: it
characterizes the fraction of the initial hadron momentum which is carried
by the active parton.

In the nonforward case, we can use the double Fourier representation
with respect to both (pz) and (rz):

(p' 5" | $a(0)2E(0, 2; A)ha(2) | p;s) | 1220

1 1
= [y [ e {a(ﬂ,s')zu(p,s)ﬁm,y;t)
0 —1

v, )ﬂ}fﬁm )f%(x,y;t)}emswygl)dx
1
+%up s") /eZ y;t) dy, (2)

where M is the nucleon mass and s, s’ specify the nucleon polarization. We
use the “hat” (rather than “slash”) convention Z = z#v,. The parametriza-
tion of nonforward matrix elements must include both the nonflip term de-
scribed here by the functions Fy(z,y;t) and the spin-flip term characterized
by the functions K, (z,y;t).
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The parameters z, y tell us that the active parton carries the fractions x
of the initial momentum p and the fraction y of the momentum transfer r.
Using the approach [19] based on the a-representation analysis it is possible
to prove [11] that double distributions F'(z,%) have a natural property that
both z and y satisfy the “parton” constraints 0 < z < 1, 0 < y < 1 for
any Feynman diagram contributing to F'(z,y). A less obvious restriction
0 < z+y < 1 guarantees that the argument X = z + y({ of the skewed
distribution F¢(X) also changes between the limits 0 < X < 1. The support

area for the double distribution F,(x,y;t) is shown on Fig. 2a.

y a

b)

Fig.2. a) Support region and symmetry line y = Z/2 for y-DDs F(z,y;t); b)
support region for a-DDs f(x, a).

_In principle, we cannot exclude also the possibility that the functions
F(z,y;t) have singular terms at £ = 0 proportional to d(x) or its deriva-
tive(s). Such terms have no projection onto the usual parton densities. We
will denote them by Fys(x,y;t) — they may be interpreted as coming from
the t-channel meson-exchange type contributions (see Fig. 1b). In this case,
the partons just share the plus component of the momentum transfer r: in-
formation about the magnitude of the initial hadron momentum is lost if the
exchanged particle can be described by a pole propagator ~ 1/(t — m3,).
Hence, the meson-exchange contributions to a double distribution may look
like

+ j—
= Y o Yy
Ffwyit) ~ o) 1Y o Byt ~ @) S e (3)
M M

where @f/[(y) are the functions related to the distribution amplitudes of the
relevant mesons M*. The two examples above correspond to z-even and
z-odd parts of the double distribution F'(z,y;t). Another type of terms in
which the dependence on (pz) is lost can be produced by diagrams contain-
ing a quartic pion vertex (Fig. 1c). As shown by Polyakov and Weiss [20],
such terms correspond to an independent (rz)a(p’, s )u(p,s)@((rz)) type



Skewed Parton Distributions 3651

contribution which can be parametrized by a single integral over y involving
an effective distribution amplitude ¥(y;t). The meson-exchange terms in
F(z,y;t) and K (z,y;t) as well as Polyakov—Weiss terms are invisible in the
forward limit, hence the existing knowledge of the usual parton densities
cannot be used to constrain these terms. Later, describing the models for
skewed distributions, we discuss only the “forward visible parts” of SPDs
which are obtained by scanning the x # 0 parts of the relevant DDs.

Comparing Eq. (1) with the 7 = 0 limit of the DD definition (2) gives
the “reduction formulas” relating the double distribution F’a(x,y; t =0) to
the quark and antiquark parton densities

11—z 1
Fu(z,y;t = 0)|as0 dy = fa(z) ; /ﬁ’a(w,y;t =0)|p<o dy = —fa(—2x).
0 —z

(4)

Hence, the positive-r and negative-z components of the double distribu-

tion F,(z,y;t) can be treated as nonforward generalizations of quark and
antiquark densities, respectively. If we define the “untilded” DDs by

Fo(w,y;t) = Fa(@,y)|as0 3 Falz,yit) = —Fo(=2,1 = yit)laco,  (5)

then z is always positive and the reduction formulas have the same form

[y

—I

Foa(z,y;t = 0)|p20dy = faa(z) (6)

o

in both cases. The new antiquark distributions also “live” on the triangle
0<z,y<1,0< z+y <1 Taking z in the lightcone “minus” direction,
we arrive at the parton interpretation of functions F, z(z,y;t) as probabil-
ity amplitudes for an outgoing parton to carry the fractions zp™ and yr+
of the external momenta r and p. The double distributions F(z,y;t) are
universal functions describing the flux of p™ and r* independently of the
ratio 7t /p*. Note, that extraction of two separate components Fy(z,y;t)
and Fjy(z,y;t) from the quark DD F,(x,y;t) as its positive-z and negative-z
parts is unambiguous.
Taking the O(z) term of the Taylor expansion gives the sum rules

1 1—2
/ di / [F(a,y3t) — F(z,y;1)] dy = FA (1), (7)
0 0

1 11—z
/ di / (K, y3t) — Kz, y:0)] dy = F3(t). (8)
0 0
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relating the double distributions F,(x,y;t), K,(x,y;t) to the a-flavor com-
ponents of the Dirac and Pauli form factors:

YoeaFi(t) = Fi(t) , Y eaFy(t) = Fa(t), (9)

respectively.
A common element of the reduction formulas given above is an integra-
tion over y. Hence, it is convenient to introduce intermediate functions

1-z I-=
Fxit) = /F“(w,y;t)dy; K (z;t) = /Ka(w,y;t)dy- (10)
0 0

They satisfy the reduction formulas

1
Flz;t=0) = fo(x); Zea/ []—'a(x;t) — fﬁ(m;t)] dzx = Fi(t) (11)
a 0

1
S e, / (K () — K% (3 1)] dae = Fo(t) (12)
a 0

which show that these functions are the simplest hybrids of the usual parton
densities and form factors. For this reason, one can call them nonforward
parton densities (NDs) [21].

The spin-flip terms disappear only if r = 0. In the weaker 7> =t = 0
limit, they survive, e.g., F§(0) = k® is the a-flavor contribution to the
nucleon anomalous magnetic moment. In other words, the ¢ = 0 limit of the
“magnetic” NDs exists: K*(z;t = 0) = kq(z), and the integral

1
S e / ka(2) — ka(2)] di = (13)
a 0

gives the anomalous magnetic moment of the proton. The knowledge of the
z-moment of k,(z)’s is needed to determine the contribution of the quark
orbital angular momentum to the proton spin [8]. Since the K-type DDs are
always accompanied by the r, = p, — pL factor, they are invisible in deep
inelastic scattering and other inclusive processes related to strictly forward
r = 0 matrix elements.

There are also parton-helicity sensitive double distributions G®(z,y;t)
and P%(z,y;t). The first one reduces to the usual spin-dependent densities
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XP+(1+a ) 1/2 xP-(1-q) /2

P+1/2 P-r/2

d)

Fig. 3. Parton picture in terms of a-DDs

Afy(z) in the r = 0 limit and gives the axial form factor F4(t) after the
x,y-integration. The second one involves hadron helicity flip and is related
to the pseudoscalar form factor Fp(t).

It is worth mentioning here that for a massive target (nucleons in our
case) there is a kinematic restriction [16]

—t> CQé_W : (14)

Hence, for fixed (, the formal limit £ — 0 is not physically reachable. How-
ever, many results (evolution equations being the most important example)
obtained in the formal ¢ = 0, M = 0 limit are still applicable.

To make the description more symmetric with respect to the initial and
final hadron momenta, we can treat nonforward matrix elements as functions
of (Pz) and (rz), where P = (p 4 p')/2 is the average hadron momentum.
The relevant double distributions f,(z,;t) [which we will call a-DDs to
distinguish them from y-DDs F(z,y;t)] are defined by

e (=3) 20 (D))

1 1-|z|
= u(p")2u(p) / dx / em@(P2)=ia(r2)/2 f (1 o:1) da + O(r) terms.(15)
-1 —1+|z|

The support area for fo(z,o;t) is shown in Fig. 2b. Again, the usual for-
ward densities f,(z) and fz(2) are given by integrating fo(z, a; t = 0) over
vertical lines z = const for z > 0 and z < 0, respectively. Hence, we can
split fo(z, a5 t) into three components

fa((I},C(; t) = fa(xaa; t) 9((1} > 0) - fﬁ(_xa_a; t) 9((1,' < 0) +fM(x70‘; t)a
(16)
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where fyr(z,a; t) is a singular term with support at £ = 0 only. Due
to hermiticity and time-reversal invariance properties of nonforward matrix
elements, the a-DDs are even functions of «a:

fa(.’L‘,Oé;t) = fa(ma —Oé;t) .

For our original y-DDs F, 5(z,y;t), this corresponds to symmetry with re-
spect to the interchange y <> 1 — z — y (“Munich” symmetry, established
in Ref. [22]). In particular, the functions ¢7,(y) for singular contributions
F]\%[(x,y; t) are symmetric @ﬁ(y) = @ﬁ(l — y) both for z-even and x-odd
parts. The a-quark contribution into the ﬂavor—singlet operator

0 (-55) =3 [0 (-3) 28 (-5 5 4) va (5) - 1= =)

can be parametrized either by y-DDs F(z,y:t) or by a-DDs f2 (z, ; t)

(#5105 (-3,

ZZ

1 1-z
— a(y, s 2u(p, s) / dz / %(efm(pz)fayfl/?)(m)
0 0

—eix(pz)“(y_l/g)(”)) F3(z,y;t) dy + O(r) terms
1 1-]z|
=u(p',s')2u(p, s) /dm / e~ @(P2)=ia(r2)/2 £5 (1 oy 1) da 4 O(r) .
-1 —1+]z|
(17)

In the second and third lines here we have used the fact that positive-z and
negative-z parts in this case are described by the same untilded function

Ff(fﬂ,y;t”x#o:Fa(IE,y, )+F (‘IL‘ Y; )

The a-DDs ff(m, a; t) are even functions of « and, according to Eq. (17),
odd functions of z:

fo (@ ast) = {fallz], lalst) + fa(|2], |af; )} sign(e) + fir(z, a5t) . (18)
Finally, the valence quark functions f;/ (z,a; t) related to the operators

0! (-5:3) =5l (-5) 8 (55 4) v (5) + o= -

are even functions of both « and z:

fo (wy05t) = fa(l2], |al;t) = fallzl, |alst) + fip(@, e5t). (19)
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3. Models for double and skewed distributions

The reduction formulas and interpretation of the z-variable as the frac-
tion of p (or P) momentum suggest that the profile of F(z,y) (or f(z,«))
in z-direction is basically determined by the shape of f(z). On the other
hand, the profile in y (or «) direction characterizes the spread of the parton
momentum induced by the momentum transfer r. In particular, since the
a-DDs f(z,«a) are even functions of «a, it make sense to write

f(z, @) = h(z,a) f(2), (20)
where h(z,a) is an even function of a normalized by

1—lz|

/ h(z,a)da = 1. (21)

—1+|z|

We may expect that the a-profile of h(x, «) is similar to that of a symmet-
ric distribution amplitude (DA) ¢(«). Since |a| < 1 — |z|, to get a more
complete analogy with DA’s, it makes sense to rescale a as a = (1 — |z])
introducing the variable 8 with z-independent limits: —1 < 8 < 1. The
simplest model is to assume that the profile in the §-direction is a universal
function g(f) for all z. Possible simple choices for g(8) may be §(3) (no
spread in fS-direction), %(1 — f32) (characteristic shape for asymptotic limit
of nonsinglet quark distribution amplitudes), %(1 — %)? (asymptotic shape
of gluon distribution amplitudes), etc. In the variables z, c, this gives

—|zD? — o2
1) =0 100 = S P

)2 — o212
h<2>($,a):%[(1 (1|_|)|x|)5 I (22)

These models can be treated as specific cases of the general profile function

O D@2b+2) [(1-z)?-a?)
- 22b+1p2(b + 1) (1 _ |$|)2b+1 ’

hO) (z, ) (23)

whose width is governed by the parameter b.

The coefficient of proportionality ¢ = 7t /p* (or & = r+/2P") between
the plus components of the momentum transfer and initial (or average) mo-
mentum specifies the skewedness of the matrix elements. The characteristic
feature implied by representations for double distributions [see, e.g., Eq. (2)]
is the absence of the (-dependence in the DDs F(z,y) and ¢-dependence in
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a) b)

Fig. 4. Integration lines for integrals relating SPDs and DDs.

f(z,a). An alternative way to parametrize nonforward matrix elements of
light-cone operators is to use ¢ (or ¢) and the total momentum fractions
X =z+y( (or £ =z + &a) as independent variables. Integrating each par-
ticular double distribution over y gives the nonforward parton distributions

[y

—X

1
Fix) = [ da [ 8+ CyX) Fay)dy
0 0

X/C X/¢
=0(Xz<)/m(x—yc,y)dyw(xso/E(X—yc,y)dy, (24)
0 0

where ¢ = 1 — ¢. The two components of NFPDs correspond to positive
(X > () and negative (X < () values of the fraction X’ = X — ( associ-
ated with the “returning” parton. As explained in Refs. [9,11], the second
component can be interpreted as the probability amplitude for the initial
hadron with momentum p to split into the final hadron with momentum
(1 — {)p and the two-parton state with total momentum r = (p shared by
the partons in fractions Yr and (1 — Y)r, where Y = X/(.

The relation between “untilded” NFPDs and DDs can be illustrated on
the “DD-life triangle” defined by 0 < z,y,z +y < 1 (see Fig. 4a). Specifi-
cally, to get F¢(X), one should integrate F'(z,y) over y along a straight line
z = X — (y. Fixing some value of {, one deals with a set of parallel lines
intersecting the z-axis at £ = X. The upper limit of the y-integration is
determined by intersection of this line either with the line z +y = 1 (this
happens if X > () or with the y-axis (if X < ). The line corresponding to
X = ( separates the triangle into two parts generating the two components
of the nonforward parton distribution.



Skewed Parton Distributions 3657

In a similar way, we can write the relation between OFPDs H(Z,&;t)
and the a-DDs f(z, a;t)

1 1-|z|
H(:E,f;t):/ldx_H/H Mz +éa—17) f(z,a5t) da (25)

The delta-function in Eq. (25) specifies the line of integration in the {z, a}
plane. For definiteness, we will assume below that £ is positive.

Information contained in SPDs originates from two physically different
sources: meson-exchange type contributions ‘7:CM (X) coming from the sin-
gular z = 0 parts of DDs and the functions F¢(X), ]—'g(X) obtained by
scanning the z # 0 parts of DDs F%(z,y), F%(z,y). The support of ex-
change contributions is restricted to 0 < X < (. Up to rescaling, the
function FM(X) has the same shape for all ¢. For any nonvanishing X,
these exchange terms become invisible in the forward limit ¢ — 0. On the
other hand, the support of functions F¢(X), fg(X ) in general covers the
whole 0 < X < 1 region. Furthermore, the forward limit of such SPDs as
Tg “(X) is rather well known from inclusive measurements. Hence, infor-
mation contained in the usual (forward) densities f(x), f%(x) can be used
to restrict the models for ¢ (X), fg(X).

Let us consider SPDs constructed using simple models of DDs speci-
fied above. In particular, the model f(%)(z, a) = 6(a)f(x) (equivalent to
F)(z,y) = d(y — 2/2)f(x)), gives the simplest model H(*®)(z,&;t = 0) =
f(x) in which OFPDs at ¢ = 0 have no ¢-dependence. For NFPDs this gives

() o O(X >¢/2) , (X —(/2
70 =20 (o) (26)

i.e., NFPDs for non-zero ¢ are obtained from the forward distribution f(X) =
Fe—o(X) by shift and rescaling.

In the case of the b = 1 and b = 2 models, simple analytic results can
be obtained only for some explicit forms of f(z). For the “valence quark’-
oriented ansatz f () (z, ), the following choice of a normalized distribution

z (1 —xz)? (27)

is both close to phenomenological quark distributions and produces a simple
expression for the double distribution since the denominator (1—z)? factor in
Eq. (22) is cancelled. As a result, the integral in Eq. (25) is easily performed
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and we get

for |Z| > ¢ and
@ Olee = g (1- ) {2 [0 - et -9+ € - o)

H(E - —:z)} (29)

in the middle —¢ < z < ¢ region. We use here the notation
1= (@Z4+&/(14+¢) and 29 = (2 — €)/(1 — &) [23]. To extend these ex-
pressions onto negative values of &, one should substitute £ by |£]. One can
check, however, that no odd powers of |¢| would appear in the #" moments
of H'V (%,¢). Furthermore, these expressions are explicitly non-analytic for
x = +£. This is true even if ¢ is integer. Discontinuity at z = ££, however,
appears only in the second derivative of H'V(%,¢), i.e., the model curves
for H' (%,€) look very smooth (see Fig. 5). The explicit expressions for
NFPDs in this model were given in Ref. [17]. The relevant curves are also
shown in Fig. 5.

14
12

10

N A o ®

Fig.5. Valence quark distributions: untilded NFPDs F/(z) (left) and OFPDs
H{ (%,€) (right) with a = 0.5 for several values of ¢, namely, 0.1, 0.2, 0.4, 0.6,
0.8 and corresponding values of £ = (/(2 — (). Lower curves correspond to larger
values of (.

For a = 0, the z > £ part of OFPD has the same z-dependence as its
forward limit, differing from it by an overall £-dependent factor only:

£+2-3%
(1+¢)?

— |3
H1V<f,s)|a_o=4%e<m >€) 42 0 <£). (30)
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The (1 — |#|)® behaviour can be trivially continued into the || < & region.
However, the actual behaviour of H'V(%,&)|4—o in this region is given by
a different function. In other words, H'V (%, £)|,—o can be represented as a
sum of a function analytic at border points and a contribution whose support
is restricted by |z| < £. It should be emphasized that despite its DA-like
appearance, this contribution should not be treated as an exchange-type
term. It is generated by regular x # 0 part of DD, and, unlike ¢(Z/&)/¢&
functions changes its shape with { and becomes very small for small &.

For the singlet quark distribution, the a-DDs f%(x, «) should be odd
functions of z. Still, we can use the model like (27) for the z > 0 part,
but take f%(z,a)|sz0 = A f((|2|, @) sign(z). Note, that the integral (25)
producing H®(Z,£) in the |Z| < ¢ region would diverge for a — /¢ if
a > 1, which is the usual case for standard parametrizations of singlet quark
distributions for sufficiently large (Q>. However, due to the antisymmetry
of f3(x,a) wrt x — —z and its symmetry wrt & — —a, the singularity at
a = /& can be integrated using the principal value prescription which in
this case produces the £ — —z antisymmetric version of Eqgs.(28) and (29).
For a = 0, its middle part reduces to

352 - 2x25 — 2
£(1+¢)?

The shape of singlet SPDs in this model is shown in Fig. 6

(31)

H'Y(2,8)]jz1<¢.0m0 = 2

10/
s \=,
) ST
0.75 -0 5==Q 25 - 0.25 0.5 0.75
\._\ /
\__/_
O,

Fig.6. Singlet quark distribution H(%,€) for several ¢ values 0.1, 0.25, 0.4.
Lower curves correspond to larger values of £. Forward distribution is modelled by
(1—2)3/x.
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4. SPDs and deeply virtual Compton scattering

In the lowest order, the DVCS amplitude T""(p, q,q') is given by two
handbag diagrams. In particular, the invariant amplitude containing the F
functions is given by

]‘ a+a .
#(p: 4, q Z /[X Tt T FEHUX;t)dX . (32)

An important feature of the DVCS amplitude is that for large Q? and fixed
t it depends only on the ratio Q%/2(pq) = zp; = {: DVCS is an ezclusive
process exhibiting the Bjorken scaling. Note that the imaginary part of
the DVCS amplitude is proportional to .7:a+a(C t). In this function, the
parameter  appears twice: first as the skewedness of the process and then
as the fraction X = ¢ at which the imaginary part is generated.

One may ask which Q? are large enough to ensure the dominance of the
lowest-twist handbag contribution. In DIS, approximate Bjorken scaling
starts at Q? ~ 2GeV2. Another example is given by the exclusive process
Y(q1)7*(g2) — 7° studied at ete™ colliders. If one of the photons is highly
virtual ¢ = —Q? while another is (almost) real g2 ~ 0, the process is kine-
matically similar to DVCS. In the leading order, the F,W*ﬂo(QQ) transition
form factor is given by a handbag diagram again. The recent measurements
by CLEO [24] show that the pQCD prediction F.,.. 0(Q%) ~ 1/Q? again
works starting from Q? ~ 2 GeV2. The yy*n° vertex (for a virtual pion) can
be also measured on a fixed-target machine like CEBAF in which case it
is just a part of the DVCS amplitude corresponding to the 4th skewed dis-
tribution P¢(X,t) (which is related to the pseudoscalar form factor Gp(t)
of the nucleon). Hence, CLEO data give an evidence that DVCS may be
handbag-dominated for Q? as low as 2 GeVZ.

The main problem for studying DVCS is the contamination by the Bethe—
Heitler process in which the final photon is emitted from the initial or final
electron. The Bethe-Heitler amplitude is enhanced at small . On the other
hand, the virtual photon flux for fixed Q? and z Bj increases when the elec-
tron beam energy increases. Hence, the energy upgrade would make the
DVCS studies at Jefferson Lab more feasible. Experimental aspects of vir-
tual Compton scattering studies at Jefferson Lab are discussed in Refs. [25].

The skewed parton distributions can be also measured in hard meson
electroproduction processes [11,12,22,25]. The leading-twist pQCD contri-
bution in this case involves a one-gluon exchange, which means that the hard
subprocess is suppressed by as/m ~ 0.1 factor. The competing soft mecha-
nism corresponds to a triple overlap of hadronic wave functions and has a
relative suppression M2/Q? by a power of Q?, with M2 ~ 1 GeV? being a
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characteristic hadronic scale. Hence, to clearly see the one-gluon-exchange
signal one needs Q% above 10 GeV?. Numerical pQCD-based estimates and
comparison of DVCS and hard meson electroprodution cross sections can be
found in Ref. [25].

5. SPD enhancement factor

The imaginary part of hard exclusive meson electroproduction amplitude
is determined by the skewed distributions at the border point. For this
reason, the magnitude of F¢(¢) [or H (&, )| and its relation to the forward
densities f(z) has a practical interest. This example also gives a possibility
to study the sensititivity of the results to the choice of the profile function.
Assuming the infinitely narrow weight p(a) = §(«a), we have F¢(X) = f(X —
¢/2)+...and H(z,&) = f(z). Hence, both F¢(¢) and H (¢, &) are given by
f(xBj/2) since ( = xp; and £ = xp;/2 +.... Since the argument of f(z) is
twice smaller than in deep inelastic scattering, this results in an enhancement
factor. In particular, if f(x) ~ 2~ for small z, the ratio R({) = F¢(¢)/f(C)
is 2. The use of a wider profile function p(«) produces further enhancement.
For example, taking the normalized profile function

ro+3) r(2b+2)

pp(a) = m( —a?)b = m(l —a?) (33)

and f(x) ~ 7% we get

B fé")(C) b+ 2)I'(b—a+1)
RO = FO T T@b—a+2)I(b+1) (34)

which is larger than 2¢ for any finite b and 0 < a < 2. The 2% enhancement
appears as the b — oo limit of Eq. (33). For small integer b, Eq. (33) reduces
to simple formulas obtained in Refs. [17,18|. For b = 1, we have

FE@) 1
O S a-9a-9 (%)

which gives the factor of 3 for the enhancement if ¢ = 1. For b = 2, the ratio
(33) becomes

b=2
FO) 1 -
& (-5 (-9 1-5)
producing a smaller enhancement factor 5/2 for ¢ = 1. Calculating the en-
hancement factors, one should remember that the gluon SPD F¢(X) reduces
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to X fg(X) in the ¢ = 0 limit. Hence, to get the enhancement factor corre-
sponding to the fy(z) ~ 2~ small-z behavior of the forward gluon density,
one should take a = A — 1 in Eq. (33), i.e., despite the fact that the 1/z
behavior of the singlet quark distribution gives the factor of 3 for the R (¢)
ratio, the same shape of the gluon distribution results in no enhancement.

Due to evolution, the effective parameter a characterizing the small-z
behavior of the forward distribution is an increasing function of Q2. As a
result, for fixed b, the R() () ratio increases with Q2. In general, the profile
of f(.fc,a) in the a-direction is also affected by the pQCD evolution. In
particular, in Ref. [17] it was shown that if one takes an ansatz corresponding
to an extremely asymmetric profile function p(a) ~ §(1+ «), the shift of the
profile function to a more symmetric shape is clearly visible in the evolution
of the relevant SPD. Recently, it was demonstrated [26,27] that evolution to
sufficiently large Q? enforces a direct relation b = a between the parameter
a characterizing the small-z behavior of DDs and the parameter b governing
the shape of their a profile. This gives

I'(2a+2)
I'la+2)I'(a+1)

RE=9)(¢) = (37)

for the R((¢) ratio. For a =1, e.g., the SPD enhancement factor in this case
equals 3.

6. Compton scattering

6.1. General Compton amplitude

The Compton scattering in its various versions provides a unique tool for
studying hadronic structure. The Compton amplitude probes the hadrons
through a coupling of two electromagnetic currents and in this aspect it can
be considered as a generalization of hadronic form factors. In QCD, the
photons interact with the quarks of a hadron through a vertex which, in
the lowest approximation, has a pointlike structure. However, in the soft
regime, strong interactions produce large corrections uncalculable within
the perturbative QCD framework. To take advantage of the basic pointlike
structure of the photon—quark coupling and the asymptotic freedom feature
of QCD, one should choose a specific kinematics in which the behavior of
the relevant amplitude is dominated by short (or, being more precise, light-
like) distances. The general feature of all such types of kinematics is the
presence of a large momentum transfer. For Compton amplitudes, there
are several situations when large momentum transfer induces dominance of
configurations involving lightlike distances:
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i) both photons are far off-shell and have equal spacelike virtuality: vir-
tual forward Compton amplitude, its imaginary part determines struc-
ture functions of deep inelastic scattering (DIS);

i1) initial photon is highly virtual, the final one is real and the momentum
transfer to the hadron is small: deeply virtual Compton scattering
(DVCS) amplitude;

i11) both photons are real but the momentum transfer is large: wide-angle
Compton scattering (WACS) amplitude.

Our main statement made in Ref. [21] is that, at accessible momentum
transfers |t| < 10 GeV2, the WACS amplitude is dominated by handbag dia-
grams, just like in DIS and DVCS. In the most general case, the nonpertur-
bative part of the handbag contribution is described by double distributions
(DDs) F(z,y;t),G(z,y;t), etc., which can be related to the usual parton
densities f(z), Af(z) and nucleon form factors like Fy(t), G 4(t). Among
the arguments of DDs, z is the fraction of the initial hadron momentum
carried by the active parton and y is the fraction of the momentum trans-
fer r. The description of WACS amplitude simplifies when one can neglect
the y-dependence of the hard part and integrate out the y-dependence of the
double distributions. In that case, the long-distance dynamics is described
by nonforward parton densities (NDs) F(x;t),G(x;t), etc. The latter can
be interpreted as the usual parton densities f(x) supplemented by a form
factor type t-dependence. We proposed in [21] a simple model for the rele-
vant NDs which both satisfies the relation between F(z;¢) and usual parton
densities f(z) and produces a good description of the Fy(t) form factor up to
t ~ —10 GeV2. We have used this model to calculate the WACS amplitude
and obtained the results which are rather close to existing data.

6.2. Deep inelastic scattering

The forward virtual Compton amplitude whose imaginary part gives
structure functions of deep inelastic scattering (see, e.g., [1]) is the clas-
sic example of a light cone dominated Compton amplitude. In this case,
the “final” photon has momentum ¢’ = ¢ coinciding with that of the ini-
tial one. The momenta p,p’ of the initial and final hadrons also coincide.
The total cm energy of the photon-hadron system s = (p 4+ ¢)? should
be above resonance region, and the Bjorken ratio zp; = Q%/2(pq) is fi-
nite. The light cone dominance is secured by high virtuality of the photons:
—¢%> = Q? > 1 GeV2. In the large-Q? limit, the leading contribution in the
lowest «, order is given by handbag diagrams in which the perturbatively
calculable hard quark propagator is convoluted with parton distribution
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functions f,(z) (& = u,d,s,...) which describe/parametrize nonperturba-
tive information about hadronic structure.

6.3. Deeply virtual Compton scattering

The condition that both photons are highly virtual may be relaxed by
taking a real photon in the final state. Keeping the momentum transfer
t = (p—p')? to the hadron as small as possible, one arrives at kinematics of
the deeply virtual Compton scattering (DVCS) the importance of which was
recently emphasized by Ji [8] (see also [9]). Having large virtuality Q? of the
initial photon is sufficient to guarantee that in the Bjorken limit the leading
power contributions in 1/Q? are generated by the strongest light cone singu-
larities [8,11,28,29], with the handbag diagrams being the starting point of
the ag expansion. The most important contribution to the DVCS amplitude
is given by a convolution of a hard quark propagator and a nonperturbative
function describing long-distance dynamics, which in the most general case
is given by double distributions (DDs) F(z,y;t), G(z,y;t),... [9,11].

In the DVCS kinematics, |¢| is assumed to be small compared to @2, and
for this reason the - and m%—dependence of the short-distance amplitude in
Refs. [8,9,11,23] was neglected!. This is equivalent to approximating the
active parton momentum k by its plus component alone: k — xp™ + yr™.

7. Modeling NDs

Our final goal in the present paper is to get an estimate of the hand-
bag contributions for the large-t real Compton scattering. Since the initial
photon in that case is also real: Q* = 0 (and hence zp; = 0), it is nat-
ural to expect that the nonperturbative functions which appear in WACS
correspond to the ¢ = 0 limit of the skewed parton distributions? Fg(x; t).
It is easy to see from Eq. (10) that in this limit the SPDs reduce to the
nonforward parton densities F%(x;t) introduced above:

Fizolm;t) = F(z;1) . (38)

Note that NDs depend on “only two” variables x and ¢, with this dependence
constrained by reduction formulas (11),(12). Furthermore, it is possible to
give an interpretation of nonforward densities in terms of the light-cone wave
functions.

! One should not think that such a dependence is necessarily a higher twist effect: the
lowest twist contribution has a calculable dependence on ¢t and m;, analogous to the
Nachtmann—Georgi-Politzer O(m2/Q?) target mass corrections in DIS [30,31].

2 Provided that one can neglect the ¢-dependence of the hard part.
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a) b) ©)

Fig. 7. a) General Compton amplitude; b) s-channel handbag diagram; c) u-channel
handbag diagram.

Consider for simplicity a two-body bound state whose lowest Fock com-
ponent is described by a light cone wave function ¥(z,k,). Choosing a
frame where the momentum transfer r is purely transverse r = r|, we can
write the two-body contribution into the form factor as [32]

d’k

16723 (39)

1
F(“’)(t):/dx/w*(x,kL—l—a_crL)W(x,kL)
0

where Z = 1 — z. Comparing this expression with the reduction formula
(11), we conclude that

d%k,

1673 (40)

F) (g, ) = / T ok, 70, ) Uk, )

is the two-body contribution into the nonforward parton density F(x,t).

a) b)

Fig.8. a) Structure of the effective two-body contribution to form factor in the light
cone formalism. b) Form factor as an z-integral of nonforward parton densities.
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Assuming a Gaussian dependence on the transverse momentum k; (cf. [32])

U(w,ky) = B(w)e FL/2TN (41)
we get
FO(,t) = f (@)™, (42)
where )
TN
f(2) = Te 5 93(a) = FO) (a1 = 0) (43)

is the two-body part of the relevant parton density. Within the light-cone
approach, to get the total result for either usual f(z) or nonforward par-
ton densities F(z,t), one should add the contributions due to higher Fock
components. By no means these contributions are small, e.g., the valence
du contribution into the normalization of the 7+ form factor at t = 0 is less
than 25% [32]. In the absence of a formalism providing explicit expressions
for an infinite tower of light-cone wave functions we choose to treat Eq. (42)
as a guide for fixing interplay between the ¢ and z dependences of NDs and
propose to model them by

Fo(z,t) = fa(x)e:f:t/4m)\2 _ fa(z) / ef(ki+(1€J_+Em_)2)/21:i)\2koL . (44)

TTTA2

The functions f,(z) here are the usual parton densities assumed to be taken
from existing parametrizations like GRV, MRS, CTEQ), etc. In the t =0
limit (recall that ¢ is negative) this model, by construction, satisfies the
first of reduction formulas (11). Within the Gaussian ansatz (44), the basic
scale A specifies the average transverse momentum carried by the quarks. In
particular, for valence quarks

1

)\2

()0 = 5 [ 5w ds. (45)
a

0

where N, = 2, N; = 1 are the numbers of the valence a-quarks in the proton.

To fix the magnitude of A, we use the second reduction formula in (11)
relating F?(z,t)’s to the Fi(¢) form factor. To this end, we take the following
simple expressions for the valence distributions

val(2) = 1.89 2794 (1 — 2)>5(1 + 6z) (46)

fral(z) = 0.542 61 — 2)*2(1 + 8x) . (47)
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They closely reproduce the relevant curves given by the GRV parametriza-
tion [33] at a low normalization point Q? ~ 1 GeV2. The best agreement
between our model

1
FP () = [ [e @) + ea £ @) o4V ds (15)
0

and experimental data [34] in the moderately large ¢ region
1 GeV? < |t| < 10 GeV? is reached for A2 = 0.7 GeV? (see Fig. 9). This
value gives a reasonable magnitude

(k2)% = (290MeV)?,  (k2)% = (250 MeV)? (49)

for the average transverse momentum of the valence u and d quarks in the
proton.

—t(Gev?)

Fig.9. Ratio F{(t)/D(t) of the Ff(t) form factor to the dipole fit D(t) = 1/(1 —
t/0.71 GeV?)2. Curve is based on Eq. (47) with \* = 0.7 GeV?. Experimental data
are taken from Ref. [34].

Similarly, building a model for the parton helicity sensitive NDs G*(z, t)
one can take their ¢ = 0 shape from existing parametrizations for spin-
dependent parton distributions A f,(z) and then fix the relevant A parameter
by fitting the G 4(¢) form factor. The case of hadron spin-flip distributions
K®(xz,t) and P?(x;t) is more complicated since the distributions k4 (z), pa(z)
are unknown.
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At t = 0, our model by construction gives a correct normalization
FP(t = 0) = 1 for the form factor. However, if one would try to find the
derivative (d/dt)FP(t) at t = 0 by expanding the exponential exp[Zt/z\?]
into the Taylor series under the integral (48), one would get a divergent
expression. An analogous problem is well known in applications of QCD
sum rules to form factors at small ¢ [35-38]. The divergence is related to
the long-distance propagation of massless quarks in the ¢-channel. Formally,
this is revealed by singularities starting at ¢ = 0. However, FP(¢) should
not have singularities for timelike ¢ up to 4m?2, with the p-meson peak at
t= mf, ~ 0.6 GeV? being the most prominent feature of the #-channel spec-
trum. Technically, the singularities of the original expression are singled out
into the bilocal correlators [39] which are substituted by their realistic ver-
sion with correct spectral properties (usually the simplest model with p and
p' terms is used). An important point is that such a modification is needed
only when one calculates form factors in the small-¢ region: for —t > 1 GeV?,
the correction terms should vanish faster than any power of 1/¢ [37]. In our
case, the maximum deviation of the curve for F!'(¢) given by Eq. (48) from
the experimental data in the small-¢ region —t < 1GeV? is 15%. Hence, if
one is willing to tolerate such an inaccuracy, one can use our model starting
with £ = 0.

Our curve is within 5% from the data points [34] for 1 GeV? < —t < 6
GeV? and does not deviate from them by more than 10% up to 9 GeV?2.
Modeling the ¢-dependence by a more complicated formula (e.g., assuming
a slower decrease at large ¢, and/or choosing different \’s for u and d quarks
and/or splitting NDs into several components with different \’s, etc., see
Ref. [40] for an example of such an attempt) or changing the shape of parton
densities f,(x) one can improve the quality of the fit and extend agreement
with the data to higher . Such a fine-tuning is not our goal here. We
just want to emphasize that a reasonable description of the F(¢) data in
a wide region 1 GeV? < |t| < 10 GeV? was obtained by fixing just a single
parameter A reflecting the proton size. Moreover, we could fix A from the
requirement that (k2) ~ (300 MeV)? and present our curve for F(t) as a
successful prediction of the model. We interpret this success as an evidence
that the model correctly catches the gross features of the underlying physics.

Since our model implies a Gaussian dependence on the transverse mo-
mentum, it includes only what is usually referred to as an overlap of soft wave
functions. It completely neglects effects due to hard pQCD gluon exchanges
generating the power-law O((as/7)%/t?) tail of the nonforward densities at
large t. It is worth pointing out here that though we take nonforward den-
sities F*(x,t) with an exponential dependence on t, the Fi(t) form factor
in our model has a power-law asymptotics F{°ft () ~ (=42 /t)"*! dictated

by the (1 — 2)™ behavior of the parton densities for x close to 1. This con-
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nection arises because the integral (48) over z is dominated at large ¢ by
the region Z ~ 4X2/|t|. In other words, the large-t behavior of Fy(t) in
our model is governed by the Feynman mechanism [1]. One should realize,
however, that the relevant scale 4\? = 2.8 GeV? is rather large. For this
reason, when [t| < 10 GeV?, it is premature to rely on asymptotic estimates
for the soft contribution. Indeed, with n = 3.5, the asymptotic estimate is
Ff‘oft (t) ~ t=*5 in an apparent contradiction with the ability of our curve
to follow the dipole behavior. The resolution of this paradox is very sim-
ple: the maxima of nonforward densities F¢(z,t) for [t| < 10 GeV? are at
rather low z-values # < 0.5. Hence, the z-integrals producing F§°t(t) are
not dominated by the z ~ 1 region yet and the asymptotic estimates are
not applicable: the functional dependence of F$°'(¢) in our model is much
more complicated than a simple power of 1/%.

The fact that our model closely reproduces the experimentally observed
dipole-like behavior of the proton form factor is a clear demonstration that
such a behavior may have nothing to do with the quark counting rules
FP(t) ~ 1/t? [41,42] valid for the asymptotic behavior of the hard gluon
exchange contributions. Our explanation of the observed magnitude and
the t-dependence of Fj(t) by a purely soft contribution is in strong contrast
with that of the hard pQCD approach to this problem.

8. Wide-angle Compton scattering

With both photons real, it is not sufficient to have large photon energy to
ensure short-distance dominance: large-s, small-£ region is strongly affected
by Regge contributions. Hence, having large |[t| > 1GeV? is a necessary
condition for revealing short-distance dynamics.

The simplest contributions for the WACS amplitude are given by the
s- and u-channel handbag diagrams Fig. 7b,c. The nonperturbative part in
this case is given by the proton DDs which determine the ¢-dependence of
the total contribution. Just like in the form factor case, the contribution
dominating in the formal asymptotic limit s, |t],|u| — oo, is given by dia-
grams corresponding to the pure SD regime, see Fig. 10a. The hard subraph
then involves two hard gluon exchanges which results in a suppression factor
(as/m)? ~ 1/100 absent in the handbag term. The total contribution of all
two-gluon exchnange contributions was calculated by Farrar and Zhang [43]
and then recalculated by Kronfeld and Nizi¢ [44]. A sufficiently large contri-
bution is only obtained if one uses humpy DAs and 1/k? propagators with
no finite-size effects included. Even with such propagators, the WACS am-
plitude calculated with the asymptotic DA is negligibly small [45] compared
to existing data. As argued in Ref. [21], the enhancements generated by
the humpy DAs should not be taken at face value both for form factors and
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wide-angle Compton scattering amplitudes. For these reasons, we ignore
hard contributions to the WACS amplitude as negligibly small.

00000

L

a)

Fig. 10. Configurations involving double and single gluon exchange.

Another type of configurations containing hard gluon exchange is shown
in Fig. 10b. There are also the diagrams with photons coupled to different
quarks (“cat’s ears”, Fig. 10c). Such contributions have both higher order and
higher twist. This brings in the a,/m factor and an extra 1/s suppression.
The latter is partially compensated by a slower fall-off of the four-quark DDs
with ¢ since only one valence quark should change its momentum.

For simplicity, we neglect all the suppressed terms and deal only with the
handbag contributions Fig. 7b,c in which the highly virtual quark propagator
connecting the photon vertices is convoluted with proton DDs parametrizing
the overlap of soft wave functions. Since the basic scale 4\? characterizing
the t-dependence of DDs in our model is 2.8 GeV?, while existing data are all
at momentum transfers ¢ below 5 GeV?2, we deal with the region where the
asymptotic estimate (Feynman mechanism) for the overlap contribution is
not working yet. In the coordinate representation, the sum of two handbag
contributions to the Compton amplitude can be written as

M"™(p,p';q,q Z / @) (/| %( )’Y”SC( )Y ta (——)
+a (—g) 78 (=20 (5)) o) ' (50)

where Q = (¢+¢')/2 and S¢(z) = i2/2n%(2%)? is the hard quark propagator
(throughout, we use the “hat” notation 2 = z,7®). The summation over
the twist-0 longitudinal gluons adds the usual gauge link between the 1)1
fields which we do not write down explicitly (gauge link disappears, e.g., in
the Fock—Schwinger gauge 2% A,(z) = 0). Because of the symmetry of the
problem, it is convenient to use P = (p + p')/2 (¢f. [8]) and r = p — p’ as
the basic momenta. Applying the Fiertz transformation and introducing the
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double distributions by

1 T

W10 (=3) 200 () 19) = a6zup) [ do [ [0 2w,
0 -z

=8 2, 0ct)] dj () (5~ 72l

/diﬁ/ i(kz) ka iE L t) _ei(kz)kﬁ(x’a; t)] da+0(z2) terms (51)

(we use here the shorthand notation &k = P + ar/2) and similarly for the
parton helicity sensitive operators

1 T
(p|¢a< )zwﬁa (g) Ip) = u(p')2y5u(p) / da / [e‘i(kz)g“(w,a;t)
0 —T

ety (3, 51) | da+ ") &0/ yysue)

My

/ dx/ (z,5; ) + F)p? (2, o t)] da+ O(2%) terms,  (52)

we arrive at a leading-twist QCD parton picture with a-DDs serving as func-
tions describing long-distance dynamics. The a-DDs f%(z, «;t), etc., are
related to the original y-DDs F(z,y;t) by the shift y = (1—z+ «)/2. Inte-
grating f(z, a;t) over o one obtains the same nonforward densities F(x;t).
The hard quark propagators for the s and u channel handbag diagrams in
this picture look like

xf’—i—oz%—i—@ _ x]s—i—af—i—Q (53)
(zP+ a5 +Q)?  z5— (2% — a?)% + z?m?
and . o . o
P+ a5 —Q _ P +ag —Q (54)
(P +a5-Q)?  zt— (22 —a?); +22m]’

respectively. We denote 5 = 2(pq) = s—m? and @& = —2(pq’) = u—m?. Since
a-DDs are even functions of « [22], the af terms in the numerators can be
dropped. It is legitimate to keep O(m2) and O(t) terms in the denominators:

the dependence of hard propagators on target parameters m?

> and t can be
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calculated exactly because of the effect analogous to the &-scaling in DIS [31]
(see also [46]). Note that the ¢-correction to hard propagators disappears
in the large-t limit dominated by the z ~ 1 integration. The t-corrections
are the largest for y = 0. At this value and for z = 1/2 and ¢t = u (cm
angle of 90°), the ¢t-term in the denominator of the most important second
propagator is only 1/8 of the u term. This ratio increases to 1/3 for x = 1/3.
However, at nonzero a-values, the t-corrections are smaller. Hence, the t-
corrections in the denominators of hard propagators can produce 10%-20%
effects and should be included in a complete analysis. Here, we consider an
approximation in which these terms are neglected and hard propagators are
given by g-independent expressions (zP + Q)/z3 and (zP + Q)/zi. As a
result, the a-integration acts only on the DDs f(xz, «;t) and converts them
into nonforward densities F(xz,t). The latter would appear then through
two types of integrals

1

/fa(x,t) dr = F{'(t) and /17-““(:10,75)
0

0

dx
Tomm, )
and similarly for &, G, P. The functions F{(¢) are the flavor components of
the usual F(¢) form factor while R{(¢) are the flavor components of a new
form factor specific to the wide-angle Compton scattering. In the formal
asymptotic limit |[¢| — oo, the z integrals for F{(¢) and R{(¢) are both
dominated in our model by the £ ~ 1 region: the large-t behavior of these
functions is governed by the Feynman mechanism and their ratio tends to
1 as |t| increases (see Fig. 11a). However, due to large value of the effective
scale 42?2 = 2.8 GeV?, the accessible momentum transfers ¢ < 5 GeV? are
very far from being asymptotic.

In Fig. 11b we plot F%(z;t) and F¥(z;t)/z at t = —2.5 GeV?2. It is clear
that the relevant integrals are dominated by rather small = values z < 0.4
which results in a strong enhancement of RY(¢) compared to Fy'(t) for [t| < 5
GeV2. Note also that the (p'|...zP ... |p) matrix elements can produce only
t as a large variable while (p/[...Q...|p) gives s. As a result, the enhanced
form factors R{(t) are accompanied by extra s/t enhancement factors com-
pared to the F{*(t) terms. In the cross section, these enhancements are
squared, i.e., the contributions due to the non-enhanced form factors F{ ()
are always accompanied by #2/s? factors which are smaller than 1/4 for cm
angles below 90°. Because of double suppression, we neglect F{(t) terms in
the present simplified approach.

The contribution due to the K functions appears through the flavor com-
ponents Fg(t) of the Fy(t) form factor and their enhanced analogues R(t).
The major part of contributions due to the K-type NDs appears in the com-
bination R}(t) — (t/4m2)R3(t). Experimentally, F5(t)/Fi(t) ~ 1GeV?/|t].
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Fig.11. a) Ratio R} (t)/F{"(t); b) Functions F*(z;t) (solid line) and F“(z;t)/x
(dashed line) at t = —2.5 GeV?.

Since Ry/Fy ~ Ry/Fy ~ 1/{z), Ra(t) is similarly suppressed compared to
R;(t), and we neglect contributions due to the R$(¢) form factors. We also
neglect here the terms with another spin-flip distribution P related to the
pseudoscalar form factor Gp(t) which is dominated by the ¢-channel pion
exchange. Our calculations show that the contribution due to the parton
helicity sensitive densities G¢ is suppressed by the factor t?/2s% compared to
that due to the F* densities. This factor only reaches 1/8 for the cm angle of
90°, and hence the G* contributions are not very significant numerically. For
simplicity, we approximate G*(x,t) by F%(x,t). After these approximations,
the WACS cross section is given by the product

do _ 2rmo’ [(pq) (pd')
a 2 [(pd) (pg)

]ﬁm, (56)

of the Klein—Nishina cross section (in which we dropped O(m?) and O(m*)
terms) and the square of the R;(¢) form factor

Ry(t) = es [RI(t) + Ri(t)] - (57)

a

In our model, R;(t) is given by
/ d
W= [ e z)+e z)+2(e +es+e z)|e” gy
R i Jal ?ifc\i,al 92 i 3 g fsea zt/4zA " 58
0

We included here the sea distributions assuming that they are all equal

[ (z) = fiiis(x) = fy,a5(2) and using a simplified parametrization

5°(z) = 0.52 %™ (1 — z)7 (59)

which accurately reproduces the GRV formula for Q% ~ 1 GeV2. Due to
suppression of the small-z region by the exponential exp[zt/4x)?], the sea
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Fig. 12. WACS cross section versus ¢: comparison of results based on Eq. (56) with
experimental data.

quark contribution is rather small (~ 10%) even for —t ~ 1 GeV? and is
invisible for —¢ > 3 GeV?2.

Comparison with existing data [47] is shown in Fig. 12. Our curves fol-
low the data pattern but are systematically lower by a factor of 2, with
disagreement becoming more pronounced as the scattering angle increases.
Since we neglected several terms each capable of producing up to a 20%
correction in the amplitude, we consider the agreement between our curves
and the data as encouraging. The most important corrections which should
be included in a more detailed investigation are the ¢-corrections in the de-
nominators of hard propagators and contributions due to the “non-leading”
K,G,P nonforward densities. The latter, as noted above, are usually ac-
companied by ¢/s and ¢/u factors, i.e., their contribution becomes more
significant at larger angles. The t-correction in the most important hard
propagator term 1/[z@ — (% — ?)t/4 + x? M?] also enhances the amplitude
at large angles.
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Fig. 13. Angular dependence of the combination s%(do /dt).

The angular dependence of our results for the combination s%(do/dt)
is shown on Fig. 13. All the curves for initial photon ehergies 2,3,4,5 and
6 GeV intersect each other at 0., ~ 60°. This is in good agreement with
experimental data of Ref. [47] where the differential cross section at fixed cm
angles was fitted by powers of s: do/dt ~ s~ with n®P(60°) = 5.9 4 0.3.
Our curves correspond to n®™(60°) ~ 6.1 and n*°™(90°) ~ 6.7 which also
agrees with the experimental result n®P(90°) = 7.1 £ 0.4.

This can be compared with the scaling behavior of the asymptotic hard
contribution: modulo logarithms contained in the a4 factors, they have a
universal angle-independent power n"®4(g) = 6. For 0., = 105°, the exper-
imental result based on just two data points is n®*P(105°) = 6.2 £ 1.4, while
our model gives n®(105°) ~ 7.0. Clearly, better data are needed to draw
any conclusions here.
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Fig. 14. s-dependence of the combination s6do /dt for § = 60° (dotted line), § = 90°
(dashed line) and € = 105° (solid line).

9. Conclusions

The hard exclusive electroproduction processes provide new information
about hadronic structure accumulated in skewed parton distributions. The
SPDs are universal hybrid functions having the properties of parton densi-
ties, hadronic form factors and distribution amplitudes. They give a uni-
fied description of various hard exclusive and inclusive reactions. The basic
supplier of information about skewed parton distributions is deeply virtual
Compton scattering which offers a remarkable example of Bjorken scaling
phenomena in exclusive processes. Furthermore, wide-angle real Compton
scattering is an ideal tool to test angle-dependent scaling laws characteristic
for soft overlap mechanism.

I am grateful to A. Bialas and M. Praszatowicz for hospitality in
Zakopane and support. I thank K. Golec-Biernat for discussions. This
work was supported by the U.S. Department of Energy under Contract No.
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