
J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

Published for SISSA by Springer

Received: September 6, 2021
Accepted: November 6, 2021

Published: November 29, 2021

Dijet impact factor in DIS at next-to-leading order in
the Color Glass Condensate

Paul Caucal,a Farid Salazara,b,c and Raju Venugopalana
aPhysics Department, Brookhaven National Laboratory,
Bldg. 510A, Upton, NY 11973, U.S.A.

bPhysics Department, Stony Brook University,
Stony Brook, NY 11794, U.S.A.

cCenter for Frontiers in Nuclear Science (CFNS), Stony Brook University,
Stony Brook, NY 11794, U.S.A.
E-mail: pcaucal@bnl.gov, farid.salazarwong@stonybrook.edu,
raju@bnl.gov

Abstract: We compute the next-to-leading order impact factor for inclusive dijet pro-
duction in deeply inelastic electron-nucleus scattering at small xBj. Our computation,
performed in the framework of the Color Glass Condensate effective field theory, includes
all real and virtual contributions in the gluon shock wave background of all-twist lightlike
Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these cor-
relators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When
combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact
factor improve the accuracy of the inclusive dijet cross-section to O(α2

s ln(xf/xBj)), where
xf is a rapidity factorization scale. These results are an essential ingredient in assessing
the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the
Electron-Ion Collider.

Keywords: Deep Inelastic Scattering (Phenomenology), NLO Computations

ArXiv ePrint: 2108.06347

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP11(2021)222

mailto:pcaucal@bnl.gov
mailto:farid.salazarwong@stonybrook.edu
mailto:raju@bnl.gov
https://arxiv.org/abs/2108.06347
https://doi.org/10.1007/JHEP11(2021)222


J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

Contents

1 Introduction 2

2 Review of the leading order dijet cross-section 4
2.1 The CGC effective field theory 4
2.2 Outline of the LO computation 6

3 General strategy for the NLO computation 10

4 Dijet at NLO: real corrections 14
4.1 Real gluon emission before the shock wave 15
4.2 Real gluon emission after the shock wave 20

5 Dijet at NLO: virtual corrections 22
5.1 Self energy diagrams 22

5.1.1 Dressed gluon propagator 23
5.1.2 Free gluon propagator 30
5.1.3 Self energy after the shock wave 31

5.2 Vertex diagrams 33
5.2.1 Dressed gluon propagator 33
5.2.2 Free gluon propagator before shock wave 37
5.2.3 Free gluon propagator after shock wave 38

5.3 Combining the UV divergent virtual diagrams 40

6 Slow gluon limit: JIMWLK factorization 42
6.1 Extracting the logarithmic slow divergence 42

6.1.1 Virtual contributions 43
6.1.2 Real unscattered contributions 47
6.1.3 Real scattered contributions 49

6.2 Proof of JIMWLK factorization 51
6.2.1 Combined result for all diagrams in the slow gluon limit 51
6.2.2 The JIMWLK Hamiltonian 53

7 Constructing the dijet cross-section in the small cone approximation 54
7.1 Structure of the parton-level NLO cross-section 54
7.2 Jet definition and small cone approximation 55
7.3 Cancellation of the collinear divergence 57

8 Inclusive dijet impact factor at NLO 59

9 Summary and outlook 64

– i –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

A Conventions and useful identities 66
A.1 Lightcone coordinates 66
A.2 Feynman rules 66
A.3 Color identities 68

B Dijet cross-section for transversely polarized virtual photon 69

C Dirac algebra 72
C.1 General identities 72

C.1.1 Product of transverse gamma matrices 72
C.1.2 Spinor contractions 73
C.1.3 Gluon tensor structure 74

C.2 Useful Dirac algebra tricks for gluon emission and absorption numerators 74

D Contour integrals 76
D.1 Generic l+ integrals 76

D.1.1 Two pole case 76
D.1.2 Three pole case 77

D.2 Application to self energy contribution SE1 and vertex correction V1 78
D.2.1 Contour integration for SE1 78
D.2.2 Contour integration for V1 79

E Useful transverse momentum integrals 80
E.1 Schwinger parametrization and multidimensional Gaussian integral 80
E.2 Fourier transforms 80

E.2.1 Gluon emission kernel 80
E.2.2 LO wavefunctions 81
E.2.3 NLO wavefunctions 82

F The integrals J�, J⊗ and JR 84
F.1 Integral representation of J⊗ and J� 84
F.2 Slow gluon limit of J� 85
F.3 Slow gluon limit of JR 87

G Details of the computation of diagram R2 89

H Details of the computation of diagram SE2 90

I Details of the computation of diagram V2 93

J Details of the computation of diagram V3 97

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

1 Introduction

High energy deeply inelastic scattering experiments at HERA, in the kinematics of fixed
large squared momentum transfer Q2, and small Bjorken xBj, revealed the rapid prolifera-
tion of gluons that carry small momentum fractions x inside the proton [1]. At sufficiently
small x (or high energies x ≥ xBj ∼ Q2/s, for fixed Q2 and large squared center-of-mass en-
ergies s), the nonlinear dynamics of quantum chromodynamics (QCD) leads to the screen-
ing and recombination of gluons. These emergent many-body effects can tame the growth
in the corresponding gluon distribution function [2, 3], a phenomenon known as gluon satu-
ration. Its discovery and characterization is one of the primary goals of the future Electron-
Ion Collider (EIC) [4–6]. In this saturation regime, gluons attain large occupation numbers
∼ 1/αs, for which the appropriate description is in terms of strong classical fields [7–9].
The Color Glass Condensate (CGC) is an effective field theory (EFT) describing the prop-
erties of these overoccupied small-x gluons and it has been employed to study numerous
observables in electron-nucleus, proton-nucleus and nucleus-nucleus collisions [10–15].

In the CGC EFT, the high energy scattering of color charged particles off the small-x
gluon fields is encoded in effective vertices that resum the multiple scatterings of these
colored charges off this background field and are expressed in terms of lightlike Wilson
lines. Analogously to the operator product expansion, physical observables can be written
as convolutions of perturbatively calculable (process dependent) impact factors with that
of correlators of these lightlike Wilson lines. Their n-point correlators obey a set of coupled
nonlinear renormalization group equations, the B-JIMWLK equations. The leading order
kernel of these evolution equations resums αns lnn(1/x) contributions, from each order in
perturbation theory, to cross-sections to leading logarithmic (LL) accuracy [16–22]. Like-
wise, the NLO kernel resums αn+1

s lnn(1/x) contributions at next-to-leading logarithmic
(NLL) accuracy [23–28]. The lowest two-point “dipole” correlator in this hierarchy, for
large Nc and atomic mass number A � 1, satisfies the Balitsky-Kovchegov (BK) equa-
tion describing the evolution of the fully inclusive DIS cross-section in the high energy
limit [16, 29]. The evolution kernel of this equation has recently been computed to NNLO
in the planar limit of N = 4 super Yang-Mills theory [30], with results that could be applied
towards eventual full QCD computations at this order.

For precision computations of physical processes, one also needs high order computa-
tions of the corresponding impact factors, commensurate with the increasing accuracy of
the evolution equations. Significant progress has been made in this direction for a variety
of processes at NLO in the CGC [31–48]. As an example of work in this direction, the
inclusive DIS cross-section has been computed recently by combining the corresponding
full NLO impact factor with the dominant subset [49] of NLO contributions to the BK
kernel and compared to HERA data [50].

A notable absence amongst the existing computations is the NLO impact factor for
inclusive dijet/dihadron production in deep-inelastic scattering (DIS) at small xBj. This
DIS process off the proton, and in large nuclei, is of great phenomenological interest at
the future EIC. The computation of the impact factor to NLO accuracy can provide novel
information on the effects of gluon saturation in back-to-back dihadron/dijets [51], the
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study of the Weizsäcker-Williams gluon distribution [52, 53] and in the extraction of a
fundamental building block of high energy QCD — the quadrupole correlator of Wilson
lines at small x [54, 55].

In this paper, we compute the inclusive production of dijets in electron-nucleus colli-
sions at NLO within the CGC EFT. We will follow the strategy for the NLO computation
of inclusive photons+dijets in [46, 47] by performing our computation using covariant per-
turbation theory following momentum space Feynman rules with CGC effective vertices
that represent the many-body dynamics inherent in the gluon shock wave.1 Our results
for the inclusive DIS cross-section are of O(α2

s ln(xf/xBj)) accuracy if the NLO impact
factor result is combined with NLL BK/JIMWLK evolution equations. Here xf represents
a scale that separates contributions to the impact factor from that of the rapidity evolution
of the target nucleus at high energies and plays a role analogous to the factorization scale
in collinear factorization computations.

Since the process we consider is simpler than the inclusive photon+dijet computation,
we will obtain results that are significantly more tractable analytically. In particular, we
are able to work out the Dirac algebra and the internal momentum integration of each
contribution. We will show that all divergences (soft, collinear and ultraviolet) cancel at
one loop order and shall demonstrate JIMWLK factorization of our result when the real
or virtual gluon is “slow”, namely, when it carries a small longitudinal momentum fraction
relative to the virtual photon. This allows us to isolate and obtain explicit expressions for
the NLO impact factor, which will be computed numerically in the future to make concrete
predictions for experiments at the EIC.

Another motivation for our work, besides its strong phenomenological relevance, is to
explore the power and efficiency of CGC computations using the techniques that we have
developed that employ covariant perturbation theory in contrast to lightcone perturbation
theory (LCPT) employed by many of the NLO computations in the literature. While at
NLO order the computations are of comparable complexity, the situation will likely be
different at NNLO [58].

The paper is organized as follows. For the discussion to be self-contained, we review
in section 2 the basic elements of the CGC EFT and employ them in the computation
of inclusive dijet production in DIS at leading order. In section 3, we write down the
Feynman diagrams for real and virtual (self energy and vertex) contributions at NLO
and outline the general strategy for the computation of these diagrams. In addition, we
briefly point out the connection to lightcone perturbation theory. We proceed to real gluon
emission contributions in section 4, where we compute the triple parton production qq̄ + g

amplitude. Virtual gluon contributions are discussed in section 5, where we first consider
the self energy contributions followed by vertex corrections. We show how ultraviolet
divergences associated with these contributions cancel. An infrared divergence survives
the sum of all virtual contributions, which will cancel with those in real emissions after we
introduce appropriate jet functions, leading to an infrared and collinear safe inclusive dijet

1For earlier applications of this particular momentum space approach in the context of proton-nucleus
collisions, we refer the reader to [56, 57].
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cross-section. We extract the slow gluon divergence of all the real and virtual contributions
in section 6, and show that the net result satisfies JIMWLK factorization. In section 7,
we implement the small-cone algorithm to show explicitly that our final result, as noted,
is IR and collinear safe. We present a compact final expression for the inclusive dijet NLO
impact factor of longitudinally polarized virtual photons in section 8. (The more elaborate
expressions for transversely polarized photons are presented in appendix B.) In section 9,
we conclude with a summary and outlook.

The paper is supplemented by appendices which are useful to the reader interested in
the details of the computation. Appendix A summarizes our conventions and the Feynman
rules in the CGC effective field theory. As noted, appendix B contains the NLO impact
factor for transversely polarized photons. In appendix C, we provide useful formulas for the
calculation of the Dirac algebra in the Feynman amplitudes. Appendix D presents examples
of the computation of relevant contour integrals and appendix E provides all the necessary
transverse momentum integrals in our calculation. In appendix F, we study analytically
the two transverse momentum integrals that appear in the free vertex correction after the
shock wave. Finally, appendices G, H, I and J provide details respectively of the calculation
of the diagrams labeled R2, SE2, V2 and V3.

2 Review of the leading order dijet cross-section

In this section, we will review the general formalism of the CGC effective field theory and
outline the computation of the leading order dijet cross-section in this framework, already
computed in [59].

2.1 The CGC effective field theory

The Color Glass Condensate is an effective field theory that describes the Regge limit of
QCD. It is formulated in terms of stochastic color sources ρaA which represent the large x
degrees of freedom inside the target A (a proton or a large nucleus) and a classical gauge
field Aµcl created by these sources, which represents the small x gluons that carry high
occupancy number. Sources and fields are related by the Yang-Mills equations [Dµ, F

µν ] =
Jν where Jµ is the 4-current associated with the large x sources. For a fast moving target
along the + lightcone direction, this current is independent of x+:

Jµ(x−,x⊥) = δµ+ρA(x−,x⊥) . (2.1)

The solution of the Yang-Mills equations in Lorenz gauge ∂µAµcl = 0 is

A+
cl(x) = α(x−,x⊥), A−cl = 0, Aicl = 0 , (2.2)

with α(x−,x⊥) a solution of the Poisson equation ∇2
⊥α = −ρA. For the present calculation,

it is convenient to work in the “wrong” lightcone gauge A−cl = 0 [60]. As shown in eq. (2.2),
the classical solution in this gauge is identical to the solution in Lorenz gauge. Even though
the wrong lightcone gauge, in contrast to the lightcone gauge A+

cl = 0, does not provide
a simple partonic interpretation of the target wavefunction, it simplifies tremendously the
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Figure 1. The effective vertex of the dressed quark propagator on the l.h.s. of the figure represents
the multiple scattering off the classical gauge fields A+

cl = O(1/g) of the nucleus shown on the r.h.s.
The n = 0 term represents the free quark propagator.

form of the propagators inside the background field for a fast moving projectile in the
“minus” lightcone direction. These propagators were computed previously in [9, 16, 61–
64]; the corresponding effective quark and gluon propagators are identical [65, 66] to the
quark-quark-reggeon and gluon-gluon-reggeon propagators in Lipatov’s reggeon effective
field theory [67, 68].

The dressed eikonal propagator of a quark in the classical background field of the
nuclear target (depicted in figure 1) is given by [9, 16, 61, 62, 64]

Sij(l′, l) = S0(l′)ik T qkl(l
′, l)S0

lj(l) , (2.3)

where i, j are the color indices for the outgoing and incoming quark which respectively
carry momenta l′ and l, and S0

ij(l) is the quark free propagator. The effective quark-gluon
vertex represented by a cross is given by

T qij(l
′, l) = (2π)δ(l− − l′−)γ−sgn(l−)

∫
d2x⊥e

−i(l′⊥−l⊥)·x⊥V
sgn(l−)
ij (x⊥) , (2.4)

where the Wilson line in the fundamental representation is given by the following path
ordered exponential along the lightcone time of the projectile x−:

Vij(x⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,a
cl (z−,x⊥)taij

)
, (2.5)

where ta are the generators of SU(3) in the fundamental representation, and the superscript
sgn(l−) in eq. (2.4) denotes whether the color matrix or its inverse (Hermitian conjugate).
As in the free propagator, the dressed propagator for the antiquark is obtained by following
the fermion line.

The Wilson line resums to all orders multiple interactions between the projectile and
the small-x gluons in the target, and ensures the unitarization of the cross-section in the
high-energy limit. This dressed propagator, and the corresponding dressed gluon propa-
gator, are represented in the standard momentum space Feynman rules with the effective
CGC vertex, symbolized respectively by a cross or a dot in diagrams. These rules are
summarized in appendix A.

In the CGC effective field theory, a path integral for any observable O at small x is
first computed for the charge configuration ρA of larger x sources (drawn from a stochastic
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Figure 2. Leading order contribution to the amplitude for dijet production. The cross symbol on
the quark and antiquark legs refers to the CGC quark effective vertex, as represented in figure 1
and defined in eq. (2.4).

distributionWY [ρA] of such sources) that is static on the dynamical time scales of the small
x gauge fields:

〈O[ρA]〉Y =
∫
DρAWY [ρA]O[ρA] . (2.6)

The expression on the r.h.s. for O[ρA] implicitly contains the QCD path integral in the
presence of these sources. In the gluon saturation regime, the path integral is dominated by
the classical “shock wave” configurations Acl(ρA) ∼ 1/√αs with lightcone momenta k+ �
P+ (where P+ →∞ is the lightcone momentum of the nucleus) or small x = Λ+/P+ � 1.
As we noted in eq. (2.2), they are determined by solving the Yang-Mills equations for the
eikonal sources Jµ = δµ+ρA(x⊥)δ(x−) in eq. (2.1) with k+ > Λ+ that are localized at
rapidities above Y = ln(Λ+/P+).

Quantum corrections to the CGC shock wave classical fields, specifically the small
fluctuations propagator, are computed in the shock wave background and are seen to
diverge in rapidity; they are however small as long as the window in rapidity is small, given
by αs ln(Λ′+/Λ+)� 1. These can be absorbed in the charge configuration ρA → ρ′A at the
new scale Λ′+ and the process iterated through a self-similar Wilsonian renormalization
group (RG) procedure, as the scale Λ′+ (or equivalently, the corresponding rapidity) is
varied. In particular, such quantum corrections to the operator O can, by an integration
by parts in eq. (2.6), be expressed as the RG evolution of WY [ρA] with the change in the
rapidity scale that separates sources from fields. This RG equation, to LL accuracy is
precisely the JIMWLK equation which generates the Balitsky-JIMWLK hierarchy for the
n-point Wilson line correlators; sub-leading quantum corrections α2

s ln(Λ′+/Λ+) to 〈O〉 can
likewise be reexpressed in terms of the NLO JIMWLK equation.2

2.2 Outline of the LO computation

We will work in the dipole frame, where the virtual photon exchanged between the electron
and the target is left moving with a large “minus” lightcone component q− > 0 of its four
momentum and a vanishing transverse momentum q⊥ = 0⊥. We denote the longitudinal

2We refer the reader to [36, 69–71] for discussions of the choice of the evolution rapidity variable Y in
NLO calculations.
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PA nucleus four-momentum
Pn nucleon four-momentum
ke (k′e) incoming (outgoing) electron four-momentum
q = ke − k′e virtual photon four-momentum
k, p quark (antiquark) four-momentum
zq, zq̄ quark (antiquark) longitudinal momentum fraction relative to q−

ηq, ηq̄ quark (antiquark) rapidity
k⊥,p⊥ quark (antiquark) transverse momentum
s = (Pn + ke)2 nucleon-electron system center of momentum energy squared
W 2 = (Pn + q)2 nucleon-virtual photon system center of momentum energy squared
m2
n = P 2

n nucleon invariant mass squared
Q2 = −q2 virtuality squared of the exchanged photon

Table 1. Kinematic variables.

polarization as λ = 0, and the two transverse polarizations as λ = ±1. The helicities
of the quark and antiquark are denoted σ and σ′ respectively. We shall also define zq =
k−/q− and zq̄ = p−/q−, the “minus” lightcone momentum fraction of the quark and the
antiquark relative to the virtual photon respectively. We neglect the masses of the quark,
the antiquark and the electron throughout the calculation. The notation for the kinematic
variables used in this paper are summarized table 1.

Using standard momentum space Feynman rules, together with the effective vertices
in the presence of the classical background field detailed in the previous subsection, one
can easily write the scattering amplitude3 of the LO diagram shown figure 2:

Sλσσ′LO =
∫ d4l

(2π)4 ū(k, σ)T q(k, l)S0(l) (−ieef/ε(q, λ))S0(l − q)T q(l − q,−p)v(p, σ′) . (2.7)

The effective CGC vertices include all possible scatterings of the quark or antiquark off
the target, including the possibility of no-scattering which has to be subtracted to obtain
the physical amplitude. As shown in [72], this can be done systematically by subtracting
from eq. (2.7) a term in which all the Wilson lines inside the effective CGC vertices are set
to unity. Factorizing further the overall delta function from “minus” lightcone momentum
conservation,4 the reduced amplitudeMλσσ′

LO is given by

Mλσσ′
LO = eefq

−

π

∫
d2x⊥d2y⊥e

−ik⊥·x⊥e−ip⊥·y⊥CLO(x⊥,y⊥)N λσσ′
LO (rxy) , (2.8)

3We have not included explicitly the internal color indices of propagators and outgoing particles, and
the momenta of the external particle (q, k, p) on the l.h.s. of eq. (2.7).

4In mathematical terms, (2π)δ(k− + p− − q−)MLO = SLO − SLO[Acl = 0]. An overall delta function
in the “minus” lightcone momentum is always present as a consequence of the eikonal interactions of the
effective CGC propagators.
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where we introduce the leading order color structure,

CLO(x⊥,y⊥) = V (x⊥)V †(y⊥)− 1 , (2.9)

and the leading order perturbative factor

N λσσ′
LO (rxy) = −i(2q−)

∫ d4l

(2π)2 e
il⊥·rxy Nλσσ′

LO (l)δ(k− − l−)
(l2 + iε)((l − q)2 + iε) . (2.10)

Throughout this paper, we will represent the difference between two transverse coordinates
with the notation rxy = x⊥ − y⊥ and its magnitude as rxy = |x⊥ − y⊥|.

When computing the NLO diagrams, we will also decompose the amplitude in terms
of its color structure and a similar perturbative factor. In the latter, the numerator NLO
contracts spinors and Dirac matrices,

Nλσσ′
LO (l) = [ū(k, σ)DλLO(l)v(p, σ′)] = 1

(2q−)2

[
ū(k, σ)γ−/l/ε(q, λ)(/l − /q)γ−v(p, σ′)

]
. (2.11)

For a longitudinally polarized virtual photon (/ε(q, λ = 0) = Q
q− γ

−) we find,

Dλ=0
LO (l) = −Q l−

q−

(
1− l−

q−

)
γ−

q−
. (2.12)

Likewise, in the transversely polarized case (/ε(q, λ = ±1) = −γiελ,i⊥ ) we have

Dλ=±1
LO (l) = ελ⊥ · l⊥

2

[(
1− 2l−

q−

)
− λΩ

]
γ−

q−
, (2.13)

where Ω = i
2 [γ1, γ2].

The subsequent computation of N λσσ′
LO is straightforward. We use Cauchy’s theorem to

perform the l+ contour integration while the remaining l⊥ integral is expressed in terms of
modified Bessel functions of the second kind Ki(z). For a longitudinally polarized virtual
photon, one obtains

N λ=0,σσ′
LO (r⊥) = −zqzq̄QK0(Q̄rxy)

[ū(k, σ)γ−v(p, σ′)]
q−

(2.14)

= −2(zqzq̄)3/2QK0(Q̄rxy)δσ,−σ
′
, (2.15)

with Q̄2 = zqzq̄Q
2. For the transverse polarization case, the leading order perturbative

factor reads,

N λ=±1,σσ′
LO (rxy) = iQ̄ελ⊥ · rxy

2rxy
K1(Q̄rxy)

{
ū(k, σ) [(zq̄ − zq)− λΩ] γ

−

q−
v(p, σ′)

}
(2.16)

= 2zqzq̄
iQελ⊥ · rxy

rxy
K1(Q̄rxy)Γσ,λγ∗T→qq̄(zq, zq̄)δ

σ,−σ′ , (2.17)

where Γγ∗T→qq̄ is the spin-helicity dependent splitting vertex defined as

Γσ,λγ∗T→qq̄(z1, z2) = z2δ
σ,λ − z1δ

σ,−λ . (2.18)

A more detailed discussion is provided in appendix C.

– 8 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

The next step is to compute the differential cross-section for the production of a qq̄
pair in the collision of a virtual photon γ∗λ with a nucleus A, given by

dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
LO

= 1
4(2π)6

1
2q− (2π)δ(k− + p− − q−)

∑
σσ′,colors

〈
Mλσσ′†

LO [ρA]Mλσσ′
LO [ρA]

〉
Y
,

(2.19)
where the sum over colors amounts to taking the trace over the product of Wilson lines (at
cross-section level). The rapidities5 of the quark and antiquark jets are given by

ηq = ln
(√

2zqq−/k⊥
)
, ηq̄ = ln

(√
2zq̄q−/p⊥

)
, (2.20)

where they are defined such that positive rapidities correspond to particles propagating in
the virtual photon-going direction.

When taking the squared modulus of the amplitude, one has to take care of the square
of the δ-function for “minus” lightcone momentum conservation by constructing a properly
normalized wave packet for the incoming virtual photon [73]. The 〈. . .〉Y notation in the
eq. (2.19) stands for the CGC averaging over all possible charge configurations inside the
target at rapidity scale Y . Introducing the following measure with Fourier phases,

dΠLO = d2x⊥d2y⊥d2x′⊥d2y′⊥e
−ik⊥·(x⊥−x′⊥)e−ip⊥·(y⊥−y

′
⊥) , (2.21)

the final result for the differential cross-section can be expressed as6

dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
LO
=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLOΞLO(x⊥,y⊥;y′⊥,x′⊥)RλLO(rxy, rx′y′) .

(2.22)
The final factor in this expression is the sum over the quark and antiquark helicities of the
square of the perturbative factor, defined as

RλLO(rxy, rx′y′) =
∑
σσ′

N λσσ′†
LO (rxy)N λσσ′

LO (rx′y′) . (2.23)

We find for longitudinally and transversely polarized photons:

RL
LO(rxy, rx′y′) = 8z3

qz
3
q̄Q

2K0(Q̄rxy)K0(Q̄rxy′) , (2.24)

RT
LO(rxy, rx′y′) = 2zqzq̄

[
z2
q + z2

q̄

] rxy · rx′y′
rxyrx′y′

Q̄2K1(Q̄rxy)K1(Q̄rx′y′) , (2.25)

where for the transversely polarized photon, we average over both polarizations λ = ±1.
The dynamics of strongly correlated gluons inside the target is encoded in the nonper-

turbative expression ΞLO, defined in terms of Wilson line correlators as

ΞLO(x⊥,y⊥;x′⊥,y′⊥) =
〈
Q(x⊥,y⊥;y′⊥,x′⊥)−D(x⊥,y⊥)−D(y′⊥,x′⊥) + 1

〉
Y , (2.26)

5Note that in the massless limit, the rapidity and pseudorapidity variables are identical.
6In this manuscript, we focus on the “diagonal” terms where the polarization λ is the same in the ampli-

tude and in the conjugate amplitude. The off-diagonal terms are important when considering correlations
with the electron plane [74].
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Figure 3. The effective vertex of the dressed gluon propagator on the l.h.s. of the figure represents
multiple scattering off the classical gauge fields A+

cl = O(1/g) of the nucleus shown on the r.h.s.
The n = 0 term represents the free gluon propagator.

where the dipole D and quadrupole Q operators are defined as

Dxy = D(x⊥,y⊥) = 1
Nc

Tr
(
V (x⊥)V †(y⊥)

)
, (2.27)

Qxy,y′x′ = Q(x⊥,y⊥;y′⊥,x′⊥) = 1
Nc

Tr
(
V (x⊥)V †(y⊥)V (y′⊥)V †(x′⊥)

)
. (2.28)

The LO expression in eq. (2.22) for inclusive dijet production was first derived in [59].
Thus far, we have focused on the hadronic part of the dijet cross-section in DIS.

For completeness, we will now explain how the DIS cross-section can be obtained from
the subprocess γ∗λ + A → qq̄ + X. The leptonic part is encoded in the longitudinal and
transverse photon fluxes defined as

fλ=L = αem
πQ2xBj

(1− y) , (2.29)

fλ=T = αem
2πQ2xBj

[1 + (1− y)2] , (2.30)

where y = Q2/(s xBj) denotes the inelasticity, and s is the center of mass energy squared of
the collision. For fixed s, the final expression for the LO e+A→ e′+ qq̄+X cross-section
is given by

dσe+A→e′+qq̄+X

dxBjdQ2d2k⊥d2p⊥dηqdηq̄
=

∑
λ=L,T

fλ
dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄
. (2.31)

At NLO in the strong coupling constant, an identical convolution occurs between the lepton
and hadron tensors, with the former remaining unchanged. We will therefore focus on the
latter in the following sections.

3 General strategy for the NLO computation

In this section, we present the general strategy that we will follow for the calculation of
the Feynman diagrams that contribute to the dijet NLO impact factor. Our discussion is
meant to guide the reader through the computations detailed in the next sections and to
highlight some of their general features.

At NLO in the inclusive dijet computation, one has both real and virtual gluon emis-
sion. The key ingredient is the dressed gluon propagator (shown in figure 3), which in the
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Figure 4. Feynman diagrams that appear in the production of dijets at NLO. Top: real gluon
emission diagrams. Middle: self energy diagrams. Bottom: vertex correction diagrams. As in the
LO case, the crossed dot denotes the effective quark CGC vertex. The bullet (full circle) denotes the
effective CGC gluon vertex, which for dijet production only appears at NLO. Diagrams obtained
from q ↔ q̄ interchange are not shown.

wrong lightcone gauge has a structure very similar to the dressed quark propagator. It is
given by [9, 16, 61–64],

Gµν;ab(l′, l) = G0
µρ;ac(l′) T g;ρσ,cd(l′, l)G0

σν;db(l) , (3.1)

where µ, ν and a, b are the Lorentz and adjoint color indices for the outgoing and incoming
gluon which respectively carry momenta l′ and l, and G0

µν;ab(l) is the gluon free propagator.
The effective vertex, represented by a filled circle, is given by

T gµν,ab(l
′, l) = −(2π)δ(l− − l′−)(2l−) gµν sgn(l−)

∫
d2z⊥e

−i(l′⊥−l⊥)·z⊥U
sgn(l−)
ab (z⊥) , (3.2)

where the Wilson line U(z⊥) lives in the adjoint representation of SU(3).

Uab(x⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,c
cl (z−,x⊥)T cab

)
, (3.3)

where T a are generators of SU(3) in the adjoint representation. This effective vertex also
encodes multiple scattering effects to all orders.

The Feynman graphs necessary for inclusive dijet production at NLO are gathered in
figure 4. The real diagrams are represented in the first line of figure 4 while the virtual
contributions are shown in the bottom two lines. (For brevity’s sake, we omitted drawing
the diagrams obtained by quark-antiquark interchange. The corresponding diagrams will
henceforth be labeled with a “prime” label, such as R1 → R1′, where R1′ correspond
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to the diagram in which the gluon is emitted from the antiquark before it scatters the
shock wave.) In principle, we have then 14 diagrams to compute, since diagram V2 and
V3 are invariant under this transformation. As symmetry arguments enable one to infer
the diagrams linked by (q ↔ q̄) interchange, only the diagrams represented in figure 4
have to be computed explicitly. For the cross-section at order αs, one separately takes the
modulus square of the real amplitudes and the product between the virtual amplitudes and
the complex conjugation of the LO amplitude. Schematically, one has

dσγ∗A→qq̄+X
∣∣∣
NLO
∝ (MvirtualM∗LO + c.c.) +

∫
dΩg MrealM∗real , (3.4)

where dΩg is the differential gluon phase space. The real part of the cross-section is thus
a sum of 16 terms, but only 6 of those need to be computed explicitly as the other 10
are related either by (q ↔ q̄) symmetry or by complex conjugation. The contribution
of virtual diagrams to the cross-section contain in total 20 terms, when one accounts for
complex conjugation.

The physical amplitude for a given diagram will be given by the convolution of its
color structure C and its perturbative factor N :

M = eefq
−

π

∫
d2x⊥d2y⊥d2z⊥P(x⊥,y⊥, z⊥)C(x⊥,y⊥, z⊥)N (x⊥,y⊥, z⊥) , (3.5)

where P(x⊥,y⊥, z⊥) denote the Fourier phases

P(x⊥,y⊥, z⊥) =

e−i(k⊥·x⊥+p⊥·y⊥) real contributions ,
e−i(k⊥·x⊥+p⊥·y⊥+kg⊥·z⊥) virtual contributions .

(3.6)

The transverse coordinate z⊥ corresponds to the location of the emitted real or virtual
gluon while crossing the shock wave.

The bulk of the computation is to find explicit expressions for the perturbative factors
N , which are obtained after internal (loop) momentum integrations; they have the generic
form:

N (x⊥,y⊥, z⊥) =
∫
l1,l2,...

NDirac
D1D2 . . . Dk

δeikonale
il1⊥·(...)+il2⊥·(...)+... , (3.7)

where NDirac contains the Dirac structure which depends on the internal momenta.7 The
factors Dj are the propagator denominators, which are quadratic function of the momenta
with a appropriate +iε prescription. The eikonal delta functions (one or more) are denoted
by δeikonal. The dependence on x⊥, y⊥ and z⊥ is fully contained in the phases (not explicitly
shown).

In order to proceed with the loop integration, we first perform the “minus” lightcone
momentum integrals using the delta functions arising from the eikonal vertices. For the
real gluon emission contributions, this is sufficient to fix all the “minus” lightcone momenta
in terms of the external variables k−, p− and k−g .

NR =
∫
l1⊥,l2⊥,...
eil1⊥·(...)+il2⊥·(...)+...

∫
l+1 ,l

+
2 ,...

NDirac
D1D2 . . . Dk

. (3.8)

7For convenience, we will drop the subscript Dirac in the following sections.

– 12 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

For virtual contributions, there will be a remaining integration (without loss of generality,
we will call it l−), corresponding to the longitudinal momentum of the virtual gluon. This
integral develops a divergence at l− → 0, which will be regulated with a cut-off Λ−0 .

NV =
∫

Λ−0
dl−

∫
l1⊥,l2⊥,...
eil1⊥·(...)+il2⊥·(...)+...

∫
l+1 ,l

+
2 ,...

NDirac
D1D2 . . . Dk

. (3.9)

As in the leading order case, the “plus” lightcone momentum integration is performed using
Cauchy’s theorem of residues. However unlike the LO case, the Dirac structure NDirac in
the numerator of the integrals will generally depend on l+1 , l

+
2 , . . . and thus the integration

must be done with care. Fortunately, it is always possible to decompose the Dirac structure
as follows:

NDirac = Nreg +D1Ninst1 +D2Ninst2 + . . .+DkNinstk , (3.10)

where Nreg and Ninstj ’s are independent of any “plus” lightcone momentum. All the “plus”
lightcone momentum dependence is contained in the prefactors Dj , which are precisely the
factors8 that enter the denominator in eqs. (3.8) and (3.9).

Inserting the expansion in eq. (3.10) into eq. (3.9) we find for the virtual contributions
(and analogous results for real contributions)

NV = NV,reg +NV,inst1 +NV,inst2 + . . .+NV,instk , (3.11)

where

NV,reg =
∫

Λ−0
dl−

∫
l1⊥,l2⊥,...
eil1⊥·(...)+il2⊥·(...)+...Ireg(l1⊥, l2⊥, . . . ; l−)Nreg(l1⊥, l2⊥, . . . ; l−) ,

(3.12)

NV,instj =
∫

Λ−0
dl−

∫
l1⊥,l2⊥,...
eil1⊥·(...)+il2⊥·(...)+...Iinstj(l1⊥, l2⊥, . . . ; l−)Ninstj(l1⊥, l2⊥, . . . ; l−) ,

and

Ireg(l1⊥, l2⊥, . . . ; l−) =
∫
l+1 ,l

+
2 ,...

1
D1D2 . . . Dk

, (3.13)

Iinstj(l1⊥, l2⊥, . . . ; l−) =
∫
l+1 ,l

+
2 ,...

��Dj

D1D2 . . .��Dj . . . Dk
. (3.14)

Note that eqs. (3.13) and (3.14) have different pole structures. General identities for such
contour integrals are provided in appendix D.

The terms in the r.h.s. of eq. (3.11) correspond to the contribution from different
diagrams in lightcone perturbation theory (LCPT). More precisely, the computation of the
NLO impact factor within LCPT involves regular propagators and instantaneous quark,
antiquark or gluon propagators. These diagrams are in one-to-one correspondence with
the instantaneous perturbative factors in eq. (3.11).

8We should point out that not all terms Ninst are nonzero, and only a subset of them will contribute to
the final result. Another caveat is that when a diagram has a “double propagator”, such as the free self
energy before the shock wave (in which the propagator squared (l21 + iε)2 appears in the denominator), the
regular term also has a prefactor which cancels one of the propagators in the denominator. This is discussed
below eq. (H.9)).
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Finally, the remaining transverse momentum integrals in eqs. (3.12) are performed
analytically. When a given diagram develops a UV divergence, the transverse momentum
integrations are carried out in dimensional regularization by going to 2 − ε dimension,
both in the internal momentum integration and in the transverse coordinate integration in
eq. (3.5). This is because of the fact that simple power counting in internal (loop) momenta
might not reveal the presence of a UV divergence, as we will see in the discussion of the
dressed self energy in section 5.1.1. Therefore one also needs to perform the coordinate
integrations in 2− ε dimensions, which could result in a UV divergence.

As explained at the beginning of this section, we do not compute explicitly the Feynman
amplitudes obtained from the graphs in figure 4 by quark-antiquark interchange. Once the
amplitude for the “quark diagram” is known, the “antiquark” amplitude can be obtained
straightforwardly from the following transformations:

i interchange the quark and antiquark four-momenta kµ ↔ pµ ,

ii interchange their transverse coordinates x⊥ ↔ y⊥ ,

iii flip the sign of the helicities σ → −σ, σ′ → −σ′ ,

iv take the Hermitian conjugate of the color structure C(x⊥,y⊥, z⊥)→ C†(y⊥,x⊥, z⊥) ,

v and for the real amplitudes, we observe that an additional overall minus sign is required.

4 Dijet at NLO: real corrections

We begin our NLO computation by computing the real corrections, specifically, the triple
parton production amplitude γ∗A→ qq̄+g+X. These were previously computed in [75, 76]
using spinor helicities techniques. We have checked that our results agree with those
obtained by the authors of [75, 76]. Our interest of rederiving these results in our approach
is that it enables us to use the same notation and techniques as the virtual corrections which
are novel.9 In addition, at the end of this section we will highlight a connection between
gluon emission before and after the shock wave, which was also pointed out in the context
of dijet production in p-A collisions in [48]. Not least, the slow gluon limit of our results are
straightforward to extract; as discussed in section 6, when combined with the corresponding
virtual corrections, they give rise to the JIMWLK rapidity evolution equations.

Our final results for the diagrams R1 and R2 are given by eqs. (4.2)–(4.3)–(4.32)–
(4.33) and eqs. (4.43)–(4.36)–(4.44)–(4.45) respectively, while diagrams R1′ and R2′ can be
obtained from R1 and R2 from quark-antiquark interchange, as explained in the previous
section.

9More specifically, we will use identities with Dirac matrices that allow us to separate regular and
instantaneous contributions, which will be later generalized to obtain expressions in 4− ε dimensions.
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Figure 5. Real gluon emission from quark before scattering from shock wave.

4.1 Real gluon emission before the shock wave

We denote by kµg and λ̄ the four momentum and the polarization of the outgoing gluon.
In particular, we call zg = k−g /q

− the longitudinal momentum fraction of the gluon with
respect to the longitudinal momentum of the virtual photon. The scattering amplitude for
qq̄ + gluon emission from quark before scattering from shock wave is given by

Sλλ̄σσ′R1 =
∫ d4l1

(2π)4
d4l2

(2π)4

[
ū(k, σ)T q(k, l1 − l2)S0(l1 − l2) (igtaγα)S0(l1) (−ieef/ε(q, λ))

× S0(l1 − q)T q(l1 − q,−p)v(p, σ′)
]
G0
αβ(l2)T g,βρab (kg, l2)ε∗ρ(kg, λ̄) . (4.1)

Subtracting the noninteracting piece and factoring the overall 2πδ(q−− k−− p−− k−g ), we
obtain the physical amplitude

Mλλ̄σσ′
R1 = eefq

−

π

∫
d2x⊥d2y⊥d2z⊥e

−ik⊥·x⊥e−ip⊥·y⊥e−ikg⊥·z⊥

× CR1(x⊥,y⊥, z⊥)N λλ̄σσ′
R1 (rxy, rzx) , (4.2)

with the color structure (employing the Fierz identity) is denoted by

CR1(x⊥,y⊥, z⊥) =
[
V (x⊥)V †(z⊥)taV (z⊥)V †(y⊥)− ta

]
, (4.3)

and the perturbative factor

N λλ̄σσ′
R1 (rxy, rzx) = −g(2q−)

∫ d4l1
(2π)3

d4l2
(2π)2 e

il1⊥·rxy+il2⊥·rzx

×
(2l−2 )Nλλ̄σσ′

R1 (l1, l2)δ(l−1 − q− + p−1 )δ(k−g − l−2 )
((l1 − l2)2 + iε)(l21 + iε)((l1 − q)2 + iε)(l22 + iε)

. (4.4)

The Dirac structure of this diagram which appears in the numerator of this integral reads as,

Nλλ̄σσ′
R1 = 1

(2q−)2

[
ū(k, σ)γ−(/l1 − /l2)/ε∗(l2, λ̄)/l1/ε(q, λ)(/l1 − /q)γ−v(p, σ′)

]
. (4.5)

The outgoing gluon polarization vector has been turned into an internal polarization vector
thanks to the identity Παβ(l2)gβρε∗ρ(kg, λ̄) = −ε∗α(l2, λ̄).
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Calculation of the Dirac structure NR1. The integrations over l−1 and l−2 are trivial
due to the presence of the delta functions δ(l−1 − q− + p−) and δ(l−2 − k−g ) which enforce

l−1 = q−(1− zq̄), l−2 = q−zg . (4.6)

Using equation (C.31) given in appendix C to simplify the component of the Dirac structure
coming from the gluon emission from the quark before the shock wave, one can express
Nλλ̄σσ′

R1 as
NR1(l1, l2) = NR1,reg(l1, l2) + l21NR1,qinst(l1, l2) . (4.7)

This decomposition follows the general strategy of the computation of the Dirac structure
outlined in section 3. Indeed, the second term corresponds to the instantaneous quark
contribution in LCPT, since the l21 factor in the numerator cancels the identical term from
the quark propagator. After some elementary algebra, the regular and instantaneous Dirac
structure can be expressed as

Nλλ̄σσ′
R1,reg = 2L2x⊥ · ελ̄∗⊥

x

{
ū(k, σ)

[(
1− x

2

)
+ λ̄

x

2 Ω
]
DλLO(l1)v(p, σ′)

}
, (4.8)

Nλλ̄σσ′
R1,qinst = −(1− x)ελ̄∗,i⊥

4(q−)2

[
ū(k, σ)γiγ−/ε(q, λ)(/l1 − /q)γ−v(p, σ′)

]
, (4.9)

where x = zg/(1 − zq̄), L2x⊥ = l2⊥ − xl1⊥, and DλLO(l) was defined in section 2. Recall
too that Ω = i

2 [γ1, γ2].
Let us consider the longitudinally polarized case with /ε(q, λ = 0) = Q

q− γ
−. Observe

that the instantaneous piece vanishes since (γ−)2 = 0:

Nλ=0,λ̄σσ′
R1,qinst = 0 . (4.10)

For the regular piece in eq. (4.8), we obtain after a little bit of algebra,

Nλ=0,λ̄σσ′
R1,reg = −zq̄(1− zq̄)Q

zg

{
ū(k, σ)

[
(2zq + zg) + zgλ̄Ω

] γ−
q−
v(p, σ′)

}
L2x⊥ · ελ̄∗⊥ . (4.11)

For the transversely polarized virtual photon, with /ε(q, λ = ±1) = −γjελ,j⊥ , the instanta-
neous terms result in

Nλ=±1,λ̄σσ′
R1,qinst = − zqzq̄

2(1− zq̄)

{
ū(k, σ)

[
1− λ̄Ω

] γ−
q−
v(p, σ′)

}
δλ,λ̄ , (4.12)

and the regular term can be written as

Nλ=±1,λ̄σσ′
R1,reg = (L2x⊥ · ελ̄∗⊥ )(l1⊥ · ελ⊥)

2zg

×
{
ū(k, σ)

[
(2zq + zg) + zgλ̄Ω

]
[(2zq̄ − 1)− λΩ] γ

−

q−
v(p, σ′)

}
. (4.13)
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Pole structure for the regular and instantaneous pieces. Note that the Dirac struc-
tures in eqs. (4.8) and (4.9) are independent of l+1 or l+2 . The decomposition of the Dirac
structure translates into a similar decomposition of the perturbative factor (eq. (4.4)) as

NR1(rxy, rzx) = NR1,reg(rxy, rzx) +NR1,qinst(rxy, rzx) , (4.14)

where

NR1,reg(rxy, rzx) = g

2π

∫ d2l1⊥d2l2⊥
(2π)2 eil1⊥·rxy+il2⊥·rzxNR1,regIR1,reg , (4.15)

NR1,qinst(rxy, rzx) = g

2π

∫ d2l1⊥d2l2⊥
(2π)2 eil1⊥·rxy+il2⊥·rzxNR1,qinstIR1,qinst . (4.16)

The pole structure is included in the two l+ integrals IR1reg and IR1,qinst which are respec-
tively defined to be

IR1,reg =
∫ dl+1

(2π)
dl+2
(2π)

−(2q−)(2l−2 )
((l1 − l2)2 + iε)(l21 + iε)((l1 − q)2 + iε)(l22 + iε)

, (4.17)

IR1,qinst =
∫ dl+1

(2π)
dl+2
(2π)

−(2q−)(2l−2 )
((l1 − l2)2 + iε)((l1 − q)2 + iε)(l22 + iε)

. (4.18)

Note that the pole structures in eqs. (4.17) and (4.18) differ; performing the integrals using
Cauchy’s theorem, and closing the contour in the upper half plane, they read respectively:

IR1,reg = 1
zq

1(
zq̄(1− zq̄)Q2 + l21⊥

) (
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

) , (4.19)

IR1,qinst = − 1
zqzq̄

1(
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

) . (4.20)

Transverse momentum integration: longitudinal photon. For the longitudinally
polarized photon, there is no instantaneous contribution and the regular term can be
expressed as,

N λ=0,λ̄σσ′
R1,reg (rxy, rzx) = − g

2π
zq̄(1− zq̄)Q

zgzq

{
ū(k, σ)

[
(2zq + zg) + zgλ̄Ω

] γ−
q−
v(p, σ′)

}

×
∫ d2l1⊥d2l2⊥

(2π)2
(L2x⊥ · ελ̄∗⊥ ) eil1⊥·rxy+il2⊥·rzx(

zq̄(1− zq̄)Q2 + l21⊥
) (
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

) . (4.21)

Remarkably, the l1⊥ and l2⊥ integration can be performed analytically [32], giving the
very compact result:

∫ d2l1⊥d2l2⊥
(2π)2

(
li2⊥ −

zg
(1−zq̄) l

i
1⊥

)
eil1⊥·rxy+il2⊥·rzx(

zq̄(1− zq̄)Q2 + l21⊥
) (
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

)
= izgzq

1− zq̄
rizx
r2
zx

K0(QXR) , (4.22)
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with XR defined by
X2

R = zqzq̄r
2
xy + zqzgr

2
zx + zq̄zgr

2
zy . (4.23)

This formula is derived in appendix E. The parameterXR can be interpreted as the effective
transverse size of the qq̄g dipole when it crosses the shock wave. It plays a role analogous
to the quantity zqzq̄rxy in the LO photon wavefunction.

Gathering all these results, one ends up with the following expression for the pertur-
bative factor:

N λ=0,λ̄σσ′
R1,reg (rxy, rzx) = ig

π

rzx · ελ̄∗⊥
r2
zx

(−zqzq̄)QK0(QXR)

× 1
2zq

{
ū(k, σ)

[
(2zq + zg) + zgλ̄Ω

] γ−
q−
v(p, σ′)

}
. (4.24)

The remaining contraction with the quark and antiquark spinors is performed in the last
paragraph of this section.

Transverse momentum integration: transversely polarized photon. We begin
with the instantaneous contribution given by

N λ=±1,λ̄σσ′
R1,qinst (rxy, rzx) = g

2π
1

2(1− zq̄)

{
ū(k, σ)

[
1− λ̄Ω

] γ−
q−
v(p, σ′)

}
δλ,λ̄

×
∫ d2l1⊥d2l2⊥

(2π)2
eil1⊥·rxy+il2⊥·rzx(

Q2 + l21⊥
zq̄

+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

) . (4.25)

The transverse momentum integration of the instantaneous term can be performed as well
using

∫ d2l1⊥d2l2⊥
(2π)2

eil1⊥·rxy+il2⊥·rzx(
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

) = zgzqzq̄
QK1(QXR)

XR
. (4.26)

Gathering these results, the instantaneous perturbative factor can be written as

N λ=±1,λ̄σσ′
R1,qinst (rxy, rzx) = g

π

zqzq̄zg
4(1− zq̄)

QK1(QXR)
XR

{
ū(k, σ)

[
1− λ̄Ω

] γ−
q−
v(p, σ′)

}
δλ,λ̄ .

(4.27)
The regular term reads

N λ=±1,λ̄σσ′
R1,reg (rxy,rzx) = g

2π
1

2zgzq

{
ū(k,σ)

[
(2zq+zg)+zgλ̄Ω

]
[(2zq̄−1)−λΩ] γ

−

q−
v(p,σ′)

}

×
∫ d2l1⊥d2l2⊥

(2π)2
(L2x⊥ ·ελ̄∗⊥ )(l1⊥ ·ελ⊥) eil1⊥·rxy+il2⊥·rzx(

zq̄(1−zq̄)Q2 + l21⊥
)(
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

) . (4.28)
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Using the same trick as previously, we obtain

∫ d2l1⊥d2l2⊥
(2π)2

(
li2⊥ −

zg
(1−zq̄) l

i
1⊥

)
ll1⊥e

il1⊥·rxy+il2⊥·rzx(
zq̄(1− zq̄)Q2 + l21⊥

) (
Q2 + l21⊥

zq̄
+ (l1⊥−l2⊥)2

zq
+ l22⊥

zg

)
= − zgzqzq̄

(1− zq̄)
rizx
r2
zx

[
(1− zq̄)rlxy + zgr

l
zx

] QK1(QXR)
XR

. (4.29)

Hence we find that the perturbative factor for the regular term is

N λ=±1,λ̄σσ′
R1,reg (rxy, rzx) = ig

π

rzx · ελ̄∗⊥
r2
zx

izqzq̄QRR · ελ⊥
2XR

K1(QXR) (4.30)

× 1
2zq

{
ū(k, σ)

[
(2zq + zg) + zgλ̄Ω

]
[(2zq̄ − 1)− λΩ] γ

−

q−
v(p, σ′)

}
,

where RR is the size of the qq̄ dipole before the emission of the gluon, defined to be

RR = rxy + zg
zg + zq

rzx . (4.31)

Spinor contractions. It is possible to simplify further our expressions for the pertur-
bative factor by performing the contraction with the spinors ū(k, σ) and v(p, σ′). We
will provide here expressions that sum both regular and instantaneous pieces. Using the
formulas given in appendix C, one gets

N λ=0,λ̄σσ′
R1 (rxy, rzx) = ig

π

rzx · ελ̄∗⊥
r2
zx

−2(zqzq̄)3/2

zq
QK0(QXR)δσ,−σ′Γσ,λ̄q→qg(zq, 1− zq̄) , (4.32)

for a longitudinally polarized photon.
For a transversely polarized photon, one can combine the regular and instantaneous

terms using rizxrizx/r2
zx = 1:

N λ=±1,λ̄σσ′
R1 (rxy, rzx) = ig

π

rizx
r2
zx

2(zqzq̄)3/2

zq

iQK1(QXR)
XR

δσ,−σ
′

×
{

Γσ,λ̄q→qg(zq, 1− zq̄)Γ
σ,λ
γ∗T→qq̄

(1− zq̄, zq̄)(RR · ελ⊥)ελ̄∗,i⊥ − zqzgr
i
zx

2(1− zq̄)
δσ,λδλ,λ̄

}
. (4.33)

The spin-helicity dependent splitting vertex has been defined in eq. (2.18). One notices the
appearance of another such vertex coming from the splitting of the quark into a quark-gluon
pair. Such a splitting is naturally related to the γ∗T → qq̄ splitting by crossing symmetry;
the transformation z2 → −z2 (where z2 is the longitudinal momentum fraction of the quark
before it emits the gluon) and λ̄→ −λ̄:

Γσ,λ̄q→qg(z1, z2) = −Γσ,−λ̄γ∗T→qq̄
(z1,−z2) = z1δσ,λ̄ + z2δσ,−λ̄ . (4.34)

We should also point out that when zg → 0, Γσ,λ̄q→qg(zq̄−1, zq)→ zq, which ensures that the
1/zq factor cancels in this limit. The expressions in eq. (4.32) and eq. (4.33) are our final
results for the perturbative factor in diagram R1.
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Figure 6. Real gluon emission from the quark after scattering off the shock wave.

4.2 Real gluon emission after the shock wave

We turn now to diagram R2 in which the real gluon is emitted after the shock wave.
The details of the calculation are provided in appendix G. As explained in section 3, the
amplitude can be organized as

Mλλ̄σσ′
R2 = eefq

−

π

∫
d2w⊥d2y⊥e

−i(k⊥+kg⊥)·w⊥e−ip⊥·y⊥CR2(w⊥,y⊥)N λλ̄σσ′
R2 (rwy) , (4.35)

with the color structure

CR2(w⊥,y⊥) =
[
taV (w⊥)V †(y⊥)− ta

]
. (4.36)

Since the radiated gluon does not scatter off the shock wave, the coordinate space integral
involves only the transverse coordinates w⊥ (to be distinguished from x⊥ as discussed
below) and y⊥ of the quark and the antiquark when they cross the shock wave.

We find for the perturbative factors,

N λ=0,λ̄σσ′
R2 (rwy) = 2g

(
kg⊥− zg

zq
k⊥
)
·ελ̄∗⊥(

kg⊥− zg
zq
k⊥
)2 zq̄(1−zq̄)QK0(Q̄R2 rwy)

× 1
2zq

{
ū(k,σ)

[
(2zq+zg)+zgλ̄Ω

] γ−
q−
v(p,σ′)

}
, (4.37)

N λ=±1,λ̄σσ′
R2 (rwy) =−2g

(
kg⊥− zg

zq
k⊥
)
·ελ̄∗⊥(

kg⊥− zg
zq
k⊥
)2

iQ̄R2ε
λ
⊥ ·rwy

2rwy
K1(Q̄R2 rwy)

× 1
2zq

{
ū(k,σ)

[
(2zq+zg)+zgλ̄Ω

]
[(1−2zq̄)−λΩ] γ

−

q−
v(p,σ′)

}
, (4.38)

where the LO Dirac structure DλLO(l1) was defined in eq. (2.11) and Q̄2
R2 = zq̄(1 − zq̄)Q2.
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After contraction with the quark and antiquark spinors, one gets

N λ=0,λ̄σσ′
R2 (rwy) = 4g

(
kg⊥ − zg

zq
k⊥
)
· ελ̄∗⊥(

kg⊥ − zg
zq
k⊥
)2

(zqzq̄)1/2zq̄(1− zq̄)
zq

QK0(Q̄R2rwy)

× Γσ,λ̄q→qg(zq, 1− zq̄)δσ,−σ
′
, (4.39)

N λ=±1,λ̄σσ′
R2 (rwy) = −4g

(
kg⊥ − zg

zq
k⊥
)
· ελ̄∗⊥(

kg⊥ − zg
zq
k⊥
)2

(zqzq̄)1/2

zq

iQ̄R2rwy · ελ⊥
rwy

K1(Q̄R2rwy)

× Γσ,λ̄q→qg(zq, 1− zq̄)Γ
σ,λ
γ∗T→qq̄

(1− zq̄, zq̄)δσ,−σ
′
, (4.40)

respectively for longitudinal and transverse virtual photons.

An alternative expression for the perturbative factors. The above expressions
are sufficient; however, it is useful to provide an alternative expression that more closely
resembles the result for real gluon emission before shock wave. Towards this aim, we
introduce an additional transverse coordinate integration using the identity,(

kig⊥ −
zg
zq
ki⊥

)
(
kg⊥ − zg

zq
k⊥
)2 = i

2π
zq

zq + zg

∫
d2R⊥

Ri
⊥

R2
⊥
e
−i
(
zqkg⊥−zgk⊥

zq+zg

)
·R⊥

, (4.41)

to transform the relative quark-gluon transverse momentum appearing in eq. (4.37) into
an integral over the extra transverse coordinate R⊥. After a change of variables

R⊥ = z⊥ − x⊥ , w⊥ = zqx⊥ + zgz⊥
zq + zg

, (4.42)

one gets

Mλλ̄σσ′
R2 = eefq

−

π

∫
d2x⊥d2y⊥d2z⊥e

−ik⊥·x⊥e−ip⊥·y⊥e−ikg⊥·z⊥CR2(w⊥,y⊥)N λλ̄σσ′
R2 (rwy, rzx) .

(4.43)
The alternative form for the perturbative factor depends now on the two transverse coor-
dinates rwy and rzx, and can be expressed as

N λ=0,λ̄σσ′
R2 (rwy, rzx) = (−ig)

π

rzx · ελ̄∗⊥
r2
zx

−2(zqzq̄)3/2

zq
QK0(Q̄R2rwy)

× Γσ,λ̄q→qg(zq, 1− zq̄)δσ,−σ
′
, (4.44)

N λ=±1,λ̄σσ′
R2 (rwy, rzx) = (−ig)

π

rzx · ελ̄∗⊥
r2
zx

2(zqzq̄)1/2

1− zq̄
iQ̄R2rwy · ελ⊥

rwy
K1(Q̄R2rwy)

× Γσ,λ̄q→qg(zq, 1− zq̄)Γ
σ,λ
γ∗T→qq̄

(1− zq̄, zq̄)δσ,−σ
′
. (4.45)

This has a nice pictorial representation in the language of LCPT. While rzx is the size of
the quark-gluon pair, the transverse coordinate rwy is the size of the qq̄ dipole right after
the photon splits. On the other hand, the transverse coordinate rxy corresponds, for this
diagram, to the size of the qq̄ after the emission of the gluon, and thus differs from rwy due
to the subsequent recoil of the pair.
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Relation between diagrams R1 and R2. Writing the amplitude for R2 as in eq. (4.43)
presents the additional advantage of highlighting the connection between gluon emission
before and after the shock wave. The perturbative factor for the amplitudes in diagrams 1
and 2 can be written as

N λλ̄σσ′
Rn (x⊥,y⊥ z⊥) = rizx

r2
zx

Ñ λλ̄σσ′,i
Rn (x⊥,y⊥ z⊥) . (4.46)

With this, it is not difficult to show that the perturbative factor for gluon emission after
the shock wave can be recovered from that for gluon emission before the shock wave from
the relation,

lim
x⊥→w⊥
z⊥→w⊥

Ñ λλ̄σσ′,i
R1 (x⊥,y⊥ z⊥) = −Ñ λλ̄σσ′,i

R2 (x⊥,y⊥ z⊥) . (4.47)

This also holds true for the color structures,

lim
x⊥→w⊥
z⊥→w⊥

CR1(x⊥,y⊥ z⊥) = CR2(x⊥,y⊥ z⊥) . (4.48)

These relations imply therefore that we can obtain the amplitude Mλ
R2 from Mλ

R1 by
taking the limits x⊥, z⊥ → w⊥, except in the phases and in the gluon emission kernel
rizx/r

2
zx. A similar observation was made in [48] for the computation of dijet production

in p-A collisions. The same holds true when gluon emission is off the antiquark. Notice
that this observation also implies that the sum of real emission diagrams is free of short
distance (UV) divergences in the limit z⊥ → x⊥,y⊥.

5 Dijet at NLO: virtual corrections

We now turn to the virtual corrections to the dijet cross-section and the calculation of the
perturbative factor N λ defined in eq. (3.5) for each diagram. As some diagrams develop
a UV divergence, we will use conventional dimensional regularization of the transverse
integration to extract the UV pole. It means that all the transverse coordinates and
gamma matrix representations are analytically continued to 2− ε dimension.

We shall not detail the calculation of each diagram. Only the dressed self energies and
dressed vertex corrections are computed in details in the following subsections. For the
other diagrams, we provide additional details in the appendices H, I, J or refer to extant
results in the literature.

5.1 Self energy diagrams

Let us consider first the self energy diagrams which are shown in the second line of figure 4.
They can be divided into two classes according to whether the virtual gluon scatters off
the shock wave or not. For the diagram with dressed gluon propagator, the final result for
the amplitude is given by eqs. (5.2)–(5.3)–(5.23)–(5.26)–(5.30) (see also our discussion on
UV and finite pieces). The free self energy before the shock wave is given by Eqs, (5.40)–
(5.41). While the self energy after the shock wave vanishes (for massless quarks) we show
the nature of this cancellation in eq. (5.46).
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Figure 7. Gluon self energy with gluon crossing the shock wave.

5.1.1 Dressed gluon propagator

For the dressed gluon self energy shown in figure 7, the extraction of its UV divergence and
finite part constitutes one of the principal results of this paper. Given that its computation
is new and quite subtle, we will provide details of some of the intermediate steps in the
computation.

The amplitude of diagram SE2 reads

Sλσσ′SE1 = µ3ε
∫ d4−εl1

(2π)4−ε
d4−εl2

(2π)4−ε
d4−εl3

(2π)4−ε

[
ū(k, σ)(igγµta)S0(k − l3)T q(k − l3, l1 − l2)

×S0(l1 − l2)(igγνtb)S0(l1)(−ie/ε(q, λ))S0(l1 − q)T q(l1 − q,−p)v(p, σ′)
]

×G0,ac
µρ (l3)T g,ρσcd (l3, l2)G0,db

σν (l2) . (5.1)

After subtraction of the noninteracting contribution and extracting the overall delta func-
tion 2πδ(q− − k− − p−), we find the physical amplitude

Mλσσ′
SE1 = eefq

−

π
µ−3ε

∫
d2−εx⊥d2−εy⊥d2−εz⊥e

−ik⊥·x⊥e−ip⊥·y⊥

× CSE1(x⊥,y⊥, z⊥)N λσσ′
SE1 (rxy, rzx) . (5.2)

The color structure of this diagram depends on the transverse coordinate z⊥ of the gluon
through the shock wave,

CSE1(x⊥,y⊥, z⊥) =
[
taV (x⊥)V †(z⊥)taV (z⊥)V †(y⊥)− tata

]
, (5.3)

and the perturbative factor reads

N λσσ′
SE1 (rxy, rzx) = g2

(2q−)µ
3ε
∫ d4−εl1

(2π)3−ε
d4−εl2

(2π)3−ε
d4−εl3

(2π)3−ε e
il1⊥·rxyei(l2⊥−l3⊥)·rzx

× −i(2l−3 )(2q−)2Nλσσ′
SE1 (l1, l2, l3)δ(k− − l−1 )δ(l−3 − l

−
2 )

[(l3 − k)2 + iε] [(l2 − l1)2 + iε]
[
l21 + iε

]
[(l1 − q)2 + iε]

[
l23 + iε

] [
l22 + iε

] , (5.4)

where the Dirac numerator is given by

Nλσσ′
SE1 = 1

(2q−)2

[
ū(k, σ)γµ(/k − /l3)γ−(/l1 − /l2)γν/l1/ε(q, λ)(/l1 − /q)γ−v(p, σ′)

]
Πµρ(l3)Πρν(l2) .

(5.5)
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Calculation of the Dirac numerator NSE1. Before we proceed with the Dirac nu-
merator computation, note that the integration over l−1 and l−2 can be easily done with the
delta functions resulting in l−2 = l−3 and l−1 = k−. Using the identity eqs. (C.21) to express
the product of the two gluon polarizations tensors in terms of gluon polarization vectors,
and then eqs. (C.24), (C.30) to simplify the gluon absorption and emission parts of the
Dirac structure in eq. (5.5), we can write the latter as

NSE1 = NSE1,reg + l21NSE1,qinst, (5.6)

with

Nλσσ′
SE1,reg=−4Li3x⊥Lk2x⊥

x2

{
ū(k,σ)

[(
1−x+

(
1−ε2

)
x2

2

)
δik

+
(
x−
(

1−ε2

)
x2

2

)
ωik
]
DλLO(l1)v(p,σ′)

}
, (5.7)

Nλσσ′
SE1,qinst= (1−y)Li3x⊥

2(q−)2x

{
ū(k,σ)

[(
1−x2

)
δij+x

2ω
ij
]
γjγ−/ε(q,λ)(/l1−/q)γ−v(p,σ′)

}
, (5.8)

where x = zg/zq, L3x⊥ = l3⊥ − xk⊥ and L2x⊥ = l2⊥ − xl1⊥, and ωij = 1
2 [γi, γj ]. One

notices that the leading order Dirac structure DλLO(l1) = γ−/l1/ε(q, λ)(/l1 − /q)γ− factorizes,
as a consequence of the topology of the self energy diagram. Since we are working in
dimensional regularization, we have included the O(ε) dependence of the Dirac numerator
that results from the identity eq. (C.4).

We first consider the longitudinally polarized case with /ε(q, λ) = Q
q− γ

−. Observe that
the instantaneous piece in eq. (5.8) vanishes since (γ−)2 = 0:

Nλ=0,σσ′
SE1,qinst = 0 . (5.9)

For the regular piece in eq. (5.7), we can write it as

Nλ=0,σσ′
SE1,reg =

4z3
qzq̄Q

z2
g

{[
1− zg

zq
+
(

1− ε

2

)
z2
g

2z2
q

]
[ū(k, σ)γ−v(p, σ′)]

q−
δik

+
[
zg
zq
−
(

1− ε

2

)
z2
g

2z2
q

] [
ū(k, σ)ωikγ−v(p, σ′)

]
q−

Li3x⊥Lk2x⊥ . (5.10)

For a transversely polarized virtual photon, the instantaneous term contributes, and
one obtains,

Nλ=±1,σσ′
SE1,qinst = −zq̄(zg − zq)

2

zgzq
L3x⊥ · ελ⊥

{
ū(k, σ)(1− λΩ)γ

−

q−
v(p, σ′)

}
. (5.11)

This instantaneous contribution is free of any ultraviolet divergence so that we do not have
to keep track of the ε dependencies in the Dirac algebra and we can use ωij = −iεijΩ.
Finally, the regular term for a transversely polarized virtual photon can be written as

Nλ=±1,σσ′
SE1,reg =−

2z2
q

z2
g

L3x⊥ ·L2x⊥

[
1− zg

zq
+
(

1− ε2

)
z2
g

2z2
q

]
(5.12)

×
{
ū(k,σ)[(zq̄−zq)δlm+ωlm]γ

−

q−
v(p,σ′)

}
ελ,l⊥ l

m
1⊥+Li3x⊥L

j
2x⊥[. . .]ωij [. . .] .
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To keep the r.h.s. compact, the argument of the last term proportional to Li3x⊥L
j
2x⊥ω

ij is
not shown since it vanishes anyway after transverse momentum integration.

Pole structure of the regular and instantaneous piece. The next step of the calcu-
lation consists in performing the “plus” lightcone momentum integration associated with
l1, l2 and l3. Since NSE1,reg does not depend explicitly on any “plus” component, this
integration can easily be done using standard techniques of contour integration and the
Cauchy theorem. Using the decomposition in eq. (5.6) we can express eq. (5.4) as

NSE1(rxy, rzx) = NSE1,reg(rxy, rzx) +NSE1,q̄inst(rxy, rzx) , (5.13)

with

NSE1,reg(rxy, rzx) = g2

2

∫
dzgµ3ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε

d2−εl3⊥
(2π)2−ε e

il1⊥·rxy+il2⊥·rzy−il3⊥·rzx

× ISE1,regNSE1,reg , (5.14)

NSE1,qinst(rxy, rzx) = g2

2

∫
dzgµ3ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε

d2−εl3⊥
(2π)2−ε e

il1⊥·rxy+il2⊥·rzy−il3⊥·rzx

× ISE1,qinstNSE1,qinst , (5.15)

where we encounter the pole structures

ISE1,reg =
∫ dl+1

(2π)

∫ dl+2
(2π)

∫ dl+3
(2π)

−i(2q−)2(2l−3 )
(l3 − k)2(l2 − l1)2l21(l1 − q)2l23l

2
2
, (5.16)

ISE1,qinst =
∫ dl+1

(2π)

∫ dl+2
(2π)

∫ dl+3
(2π)

−i(2q−)2(2l−3 )
(l3 − k)2(l2 − l1)2(l1 − q)2l23l

2
2
. (5.17)

To keep these integrals compact, we have omitted the +iε prescription which fixes the
location of the poles in the complex plane. Employing equations eqs. (D.7), (D.13) we can
write the integrals in eq. (5.16) and (5.17) as (see more details in appendix D.2.1)

ISE1,reg = −zg
z2
q

Θ(zg)Θ(zq − zg)(
l21⊥ + Q̄2

) [
ωSE1

(
l21⊥ + Q̄2

)
+L2

2x⊥

]
L2

3x⊥

, (5.18)

ISE1,q̄inst = zg
z2
qzq̄

Θ(zg)Θ(zq − zg)[
ωSE1

(
l21⊥ + Q̄2

)
+L2

2x⊥

]
L2

3x⊥

, (5.19)

where we introduced the kinematic variables

Q̄2 = zqzq̄Q
2 and ωSE1 = zg(zq − zg)

z2
qzq̄

. (5.20)

Transverse momentum integration. We are now ready to perform the integration
over the transverse components of the internal momenta. Given that the integrals depend
only on l1⊥, L2x⊥ and L3x⊥, we perform a change of variable in terms of these transverse
vectors. The phase in (5.14) and (5.15) reads then

eil1⊥·rxyeil2⊥·rzye−il3⊥·rzx = e
−i zg

zq
k⊥·rzxe

il1⊥·
(
rxy+ zg

zq
rzx

)
ei(L2x⊥−L3x⊥)·rzx . (5.21)
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Longitudinal polarization case. For a longitudinally polarized photon, there is no instan-
taneous contribution since the Dirac structure vanishes Nλ=0

SE1,qinst = 0. In the regular piece,
the Dirac structure in the numerator contains two terms with two different tensor struc-
tures, one proportional to δikLi3x⊥Lk2x⊥ and the other proportional to ωikLi3x⊥Lk2x⊥. The
latter vanishes since the integration over L3x⊥ and L2x⊥ is proportional to rizxrkzxωik = 0.
Therefore using eq. (5.18) and eq. (5.10), we find the regular contribution to be

N λ=0,σσ′
SE1,reg =−g

2

2

∫ zq

0

dzg
zg

4zqzq̄Q
[
1− zg

zq
+
(

1− ε2

)
z2
g

2z2
q

]
[ū(k,σ)γ−v(p,σ′)]

q−
δike

−i zg
zq
k⊥·rzx

×

µε
∫ d2−εl1⊥

(2π)2−ε
e
il1⊥·

(
rxy+ zg

zq
rzx

)
l21⊥+Q̄2 ×µε

∫ d2−εL2x⊥
(2π)2−ε

Li2x⊥e
iL2x⊥·rzx

ωSE1
(
l21⊥+Q̄2

)
+L2

2x⊥

×µε
∫ d2−εL3x⊥

(2π)2−ε
Lk3x⊥e

−iL3x⊥·rzx

L2
3x⊥

}
. (5.22)

Using the formulas eq. (E.5) and eq. (E.16) from appendix E, one can perform the transverse
integrals in 2− ε dimensions with the result

N λ=0,σσ′
SE1,reg = −αs

π2

∫ zq

0

dzg
zg
zqzq̄Q

[
1− zg

zq
+
(

1− ε

2

)
z2
g

2z2
q

]
[ū(k, σ)γ−v(p, σ′)]

q−

× µε
−εΓ

(
− ε

2
)

22+ε/2(2π)−3ε/2
(µ2r2

zx)ε

r2
zx

e
−i zg

zq
k⊥·rzx

×
∫ ∞

0

ds
s1−ε/2 e

−sQ̄2 exp

−
(
rxy + zg

zq
rzx
)2

4s

Γ
(

1− ε

2 ,
ωSE1r

2
zx

4s

)
, (5.23)

with Γ(a, x) the incomplete gamma function defined by

Γ(a, x) =
∫ ∞
x

dt ta−1e−t , (5.24)

which is related to the gamma function by

Γ(a) = Γ(a, 0) . (5.25)

The expression in eq. (5.23) is our final result for the regular perturbative factor in the
longitudinally polarized case, specifying the exact dependence on ε.

Transverse polarization case. We turn now to the transverse momentum integration for a
transversely polarized virtual photon. We need to consider the instantaneous contribution
in this case. As it is free of UV divergences, we can directly set ε = 0 and perform the
transverse integration in two dimensions. Inserting eq. (5.11) and (5.19) inside (5.15), one
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finds

N λ=±1,σσ′
SE1,qinst = −g

2

2

∫ zq

0
dzg

(zg − zq)2

z3
q

ελ,i⊥

{
ū(k, σ)(1− λΩ)γ

−

q−
v(p, σ′)

}
e
−i zg

zq
k⊥·rzx (5.26)

×


∫ d2l1⊥

(2π)2

∫ d2L2x⊥
(2π)2

e
il1⊥·

(
rxy+ zg

zq
rzx

)
eiL2x⊥·rzx

ωSE1
(
l21⊥ + Q̄2

)
+L2

2x⊥

∫ d2L3x⊥
(2π)2

Li3x⊥e
−iL3x⊥·rzx

L2
3x⊥

 .

Using the formula eq. (E.20) in appendix E, this integral can be expressed in terms of
modified Bessel functions as

N λ=±1,σσ′
SE1,qinst = αs

π2

∫ zq

0
dzg

i(zg − zq)2

4z3
q

e
−i zg

zq
k⊥·rzx Q̄√

R2
SE + ωSE1r2

zx

K1

(
Q̄
√
R2

SE + ωSE1r2
zx

)

× rzx · ε
λ
⊥

r2
zx

{
ū(k, σ)(1− λΩ)γ

−

q−
v(p, σ′)

}
, (5.27)

where RSE = rxy + zg
zq
rzx, is the size of the qq̄ dipole before the emission of the virtual

gluon. Performing the contraction over spinors, this expression can be further simplified
to read,

N λ=±1,σσ′
SE1,qinst = αs

π2

∫ zq

0
dzg e

−i zg
zq
k⊥·rzx (zg − zq)2zq̄

z2
q

δσ,−σ
′
δσ,λ

ελ⊥ · rzx
r2
zx

iQ̄K1 (QXV)
XV

, (5.28)

with
X2

V = zq̄(zq − zg)r2
xy + zg(zq − zg)r2

zx + zq̄zgr
2
zy . (5.29)

The parameter XV has a geometric interpretation similar to XR (see for example eq. (4.23))
in diagram R1. It is the effective transverse size of the virtual qq̄g dipole when it crosses
the shock wave.

We end this subsection with the computation of the regular perturbative factor for
the transversely polarized photon. As in the longitudinal case, the term proportional to
Li3x⊥L

k
2x⊥ω

ik does not contribute. Proceeding then similarly, and employing the integral
eq. (E.17) in appendix E, one obtains

N λ=±1,σσ′
SE1,reg = αs

π2

∫ zq

0

dzg
zg

[
1− zg

zq
+
(

1− ε

2

)
z2
g

2z2
q

]
µε

−iεΓ
(
− ε

2
)

24+ε/2(2π)−3ε/2

× e−i
zg
zq
k⊥·rzx (µ2r2

zx)ε

r2
zx

∫ ∞
0

ds
s2−ε/2 e

−sQ̄2
e−

R2
SE
4s Γ

(
1− ε

2 ,
ωSE1r

2
zx

4s

)

× ελ,l⊥ R
m
SE

{
ū(k, σ)[(zq̄ − zq)δlm + ωlm]γ

−

q−
v(p, σ′)

}
. (5.30)

This concludes the computation of the regular perturbative factors in 4− ε dimensions.

UV divergent and finite pieces. The perturbative factor NSE1 is convergent in 4
dimensions (ε = 0). Yet the amplitude MSE1 is UV divergent. This divergence appears
within the z⊥ integral because of the 1/r2

zx factor. In this section, we will first extract the
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UV pole and then choose a suitable subtraction term which enables one to express the finite
piece in a compact way. To illustrate the method, we choose to focus on the longitudinally
polarized case; the extension to a transversely polarized incoming photon is straightforward.

In order to isolate the finite term, we use a UV divergent subtraction term which
captures the leading singularity as rzx → 0, or equivalently, as z⊥ → x⊥. In dimensional
regularization, this singularity becomes a 1/ε pole. The UV singular part of the self energy
crossing the shock wave is unique up to finite terms. We thus have the freedom to choose
the UV divergent piece of the diagram in several ways. In mathematical terms, this can
be expressed as

MSE1 =MSE1 −MSE1,UV︸ ︷︷ ︸
finite

+MSE1,UV , (5.31)

withMSE1,UV chosen in such a way that the first two terms give a convergent z⊥ integral
and such that the integration over z⊥ in the UV divergent term can be computed analyt-
ically in 2 − ε dimensions. In order to simplify the discussion of the slow gluon limit of
the dressed self energy, an additional requirement is that the UV subtraction term should
subtract the UV divergence for all values of zg without bringing an additional infrared
singularity.

Following [35], we present one possible choice of the UV subtraction term which satisfies
these conditions. When z⊥ and x⊥ are close to each other, the color structure of the self
energy crossing the shock wave reduces to the color structure of the free self energies thanks
to the unitarity of Wilson lines. We thus replace CSE1 by CF CLO inside the amplitude.
Considering also eq. (5.23) in the limit rzx → 0, we can approximate

e−
R2

SE
4s Γ

(
1− ε

2 ,
ωSE1r

2
zx

4s

)
' e−

r2
xy
4s Γ

(
1− ε

2

)
e
− r2

zx
2ξ . (5.32)

The last exponential factor is harmless in the rzx → 0 limit, but ensures that no infrared
singularity is introduced as r2

zx →∞. It depends on a parameter ξ which will be fixed later.
The freedom of choosing ξ simply reflects the fact that the UV subtraction term is not

unique; the change inMSE1 −MSE1,UV induced by a variation of ξ is compensated for by
the change of the finite component of MSE1,UV. Note that using a zg independent ξ is a
sufficient condition for this Gaussian factor to cut off the infrared region of the z⊥ integral
for all zg values. To sum up, our choice forMSE1,UV is

Mλ=0,σσ′
SE1,UV = eefq

−

π
µ−2ε

∫
d2−εx⊥

∫
d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)

× −αsCF
π2

∫ zq

0

dzg
zg
zqzq̄Q

[
1− zg

zq
+
(

1− ε

2

)
z2
g

2z2
q

]
[ū(k, σ)γ−v(p, σ′)]

q−
−εΓ

(
− ε

2
)

22+ε/2(2π)−3ε/2

×
∫

d2−εrzx

∫ ∞
0

ds
s1−ε/2 e

−sQ̄2
e−

r2
xy
4s Γ

(
1− ε

2

)
exp

(
−r

2
zx

2ξ

)
(µ2r2

zx)ε

r2
zx

. (5.33)
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It is possible to perform the rzx integral in 2 − ε dimensions, as well as the integral over
the Schwinger parameter s, leading to

Mλ=0σσ′
SE1,UV = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)N λ=0,σσ′
LO,ε (rxy)

× αsCF
2π

{(
2 ln

(
zq
z0

)
− 3

2

)(2
ε

+ ln(2πµ2ξ)
)
− 1

2 +O(ε)
}
, (5.34)

with ε > 0. In this expression, the leading order perturbative factor computed in section 2.2
is generalized to 4− ε dimension using the integral eq. (E.12),

N λ=0,σσ′
LO,ε (rxy) = −zqzq̄Q

(
Q̄

2πrxyµ2

)−ε/2
K−ε/2

(
Q̄rxy

) [ū(k, σ)γ−v(p, σ′)]
q−

, (5.35)

which factors it out from the terms inside the curly bracket. Writing the result in this
way will enable us to demonstrate that the finite (rational) terms coming from the product
between the O(ε) term in the expansion of eq. (5.35) and the ε pole cancel at cross-section
level.

Finally, since the differenceMSE1−MSE1,UV is UV finite, one can freely take the limit
ε → 0. Remarkably, one can find an analytic expression for the s integral in eq. (5.23)
when ε = 0 (see the discussion of the formula eq. (E.18) in appendix E). Hence the finite
piece of the dressed self energy within our UV subtraction scheme reads,

Mλ=0,σσ′
SE1

∣∣∣
UV−fin.

= eefq
−

π

αs
π2

∫
d2x⊥d2y⊥e

−ik⊥·x⊥−ip⊥·y⊥
∫ zq

0

dzg
zg

(−2zqzq̄)Q̄δσ,−σ
′

×
[
1− zg

zq
+

z2
g

2z2
q

] ∫ d2z⊥
r2
zx

{
e
−i zg

zq
k⊥·rzxK0 (QXV) CSE1(x⊥,y⊥, z⊥)

−e−
r2
zx
2ξ K0

(
Q̄rxy

)
CFCLO(x⊥,y⊥)

}
. (5.36)

For a transversely polarized virtual photon (see eq. 5.30), one finds similarly,

Mλ=±1,σσ′
SE1,UV = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)N λ=±1,σσ′
LO,ε (rxy)

× αsCF
2π

{(
2 ln

(
zq
z0

)
− 3

2

)(2
ε

+ ln(2πµ2ξ)
)
− 1

2 +O(ε)
}
, (5.37)

with the LO perturbative factor in 4− ε dimensions given by

N λ=±1,σσ′
LO,ε (rxy) = i

2
Q̄ελ,i⊥ r

j
xy

rxy

(
Q̄

2πrxyµ2

)−ε/2
K1−ε/2(Q̄rxy)

× [ū(k, σ)((zq̄ − zq)δij + ωij)γ−v(p, σ′)]
q−

. (5.38)

Given that there is an ambiguity in the analytic continuation of the Levi-Civita tensor
to 4 − ε dimensions, we restricted ourselves to using the identity in eq. (C.1) to simplify
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Figure 8. Free self energy before the shock wave (left) and after (right).

the Dirac structure. In the end, the limit ε → 0 exists so this perturbative factor can be
evaluated in 4 dimensions. The UV finite piece then is given by

Mλ=±1,σσ′
SE1

∣∣∣
UV−fin.

= eefq
−

π

αs
π2

∫
d2x⊥d2y⊥e

−ik⊥·x⊥−ip⊥·y⊥
[
2zqzq̄Γσ,λγ∗T→qq̄(zq,zq̄)δ

σ,−σ′
]∫ zq

0

dzg
zg

[
1− zg

zq
+
z2
g

2z2
q

]

×
∫ d2z⊥
r2
zx

{
e
−i zg

zq
k⊥·rzx iQ̄ε

λ
⊥ ·RSE
XV

K1(QXV)CSE1−e−
r2
zx
2ξ
iQελ⊥ ·rxy

rxy
K1(Q̄rxy)CFCLO

}

+ eefq
−

π

αs
π2

∫
d2x⊥d2y⊥e

−ik⊥·x⊥−ip⊥·y⊥
[
δσ,−σ

′
δσ,λ

]∫ zq

0
dzg

(zg−zq)2zq̄
z2
q

×
∫

d2z⊥e
−i zg

zq
k⊥·rzx ε

λ
⊥ ·rzx
r2
zx

iQ̄K1(QXV)
XV

CSE1 , (5.39)

where we have omitted the transverse coordinate dependencies of the color structures CSE1
and CLO for compactness.

5.1.2 Free gluon propagator

We now consider the self energy diagrams with the free gluon propagator, either before
or after the shock wave. As we shall see, the self energies after the shock wave vanish in
dimensional regularization.

Self energy before the shock wave. We start with a brief discussion of the self energy
before the shock wave, whose Feynman diagram is pictured in figure 8-left. It is equal to the
sum of all the self energy diagrams contributing to the light-front wavefunction of the qq̄
Fock component inside an incoming virtual photon, including therefore the instantaneous
quark and antiquark diagrams. This calculation has been done previously in [33, 35] within
the LCPT framework. We rederived these results in standard covariant perturbation theory
and demonstrated the equivalence between the two approaches. Intermediate steps are
provided in appendix H.
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After integration over the internal momenta l1 and l2 in d = 4 − ε dimensions, the
subtracted amplitude reads

Mλ=0,σσ′
SE2 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)N λ=0,σσ′
LO,ε (rxy)

× αsCF
2π

{(
−2 ln

(
zq
z0

)
+ 3

2

)(2
ε

+ 1
2 ln

(
Q̄2r2

xy

4

)
+ γE − ln

(
zqQ

2

µ̃2

))

+
(

1
2 + 3− π2

3 − ln2
(
zq
z0

))
+O(ε)

}
, (5.40)

for a longitudinally polarized virtual photon, and

Mλ=±1,σσ′
SE2 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)N λ=±1,σσ′
LO,ε (rxy)

× αsCF
2π

{(
−2 ln

(
zq
z0

)
+ 3

2

)(2
ε

+ 1
2 ln

(
Q̄2r2

xy

4

)
+ γE − ln

(
zqQ

2

µ̃2

)
− 1
rxyQ̄

K0(Q̄rxy)
K1(Q̄rxy)

)

+
(

1
2 + 3− π2

3 − ln2
(
zq
z0

))
+O(ε)

}
, (5.41)

for a transversely polarized virtual photon. In these formulas, we use the notation µ̃2 =
4πe−γEµ2.

These expressions exhibit two types of divergences. The pole in 1/ε comes from the
UV divergence of the l2⊥ integral and factorizes from the LO amplitude. There is also a
slow gluon logarithmic divergence when the lower cut-off z0 = Λ−0 /q− for the zg integration
of the gluon goes to 0. In the last line, we keep separate the finite 1/2 term coming from
the product between the O(ε) term in Nλσσ′

SE2 and the 1/ε pole. Such a term arises in
dimensional regularization. We will check explicitly that all such finite terms cancel at the
level of the cross-section.

When compared to the longitudinal case, there is an additional term in eq. (5.41) which
depends on rxy via modified Bessel functions. At first sight, this term looks a little bit odd.
Indeed, it contributes to the slow gluon logarithmic divergence and we expect this diver-
gence to depend on the polarization of the virtual photon via the leading order perturbative
factor only. We shall see that it cancels against a similar term in the vertex correction be-
fore the shock wave. One should thus interpret with caution the results for each individual
diagram, since many nontrivial cancellations occur only once they are combined together.

5.1.3 Self energy after the shock wave

In the limit of massless quarks, the quark or antiquark self energy after the shock wave
vanishes in dimensional regularization. It is nevertheless enlightening to understand this
statement more deeply. When we sum the virtual diagrams (self energy and vertex con-
tributions) with the exception of the self energy after the shock wave, we observe that a
UV divergence survives. This is at first glance surprising since typically one expects UV
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divergences to cancel10 and only an IR divergence to remain. This IR divergence in turn
is expected to cancel with the collinear divergence in the real emission cross-section after
proper definition of an IR safe jet observable.

In this subsection, we will show that the self energy after the shock wave vanishes in
dimensional regularization because it contains both a UV pole and an IR pole with the same
prefactor but with opposite signs. Thus one can use this UV pole to cancel the surviving
UV pole from the sum of the other virtual diagrams and one then ends up keeping the
IR divergence, thereby resolving the apparent conundrum stated above and in line with
expectations from perturbative QCD.

More concretely, the subtracted amplitude for SE3 in d = 4− ε dimensions, and in the
massless limit, is

Mλσσ′
SE3 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CSE3(x⊥,y⊥)N λσσ′
SE3 (rxy) , (5.42)

with the color structure

CSE3(x⊥,y⊥) = CF
[
V (x⊥)V †(y⊥)− 1

]
, (5.43)

and the perturbative factor

N λσσ′
SE3 (rxy) = −4αsN λσσ′

LO,ε (rxy)
∫ zq

0

dzg
zg

[
1− zg

zq
+
(

1− ε

2

)
z2
g

2z2
q

]
µε
∫ d2−εL2x⊥

(2π)2−ε
1

L2
2x⊥

,

(5.44)
where zg = l−2 /q

− is the longitudinal momentum fraction of the gluon inside the loop. The
remaining transverse momentum integral is both UV and IR divergent in 2 dimensions.
In dimensional regularization, one takes care of such integral by introducing an arbitrary
scale Λ to divide the UV and IR regions:

µε
∫ d2−εL2x⊥

(2π)2−ε
1

L2
2x⊥

= (4π)ε/2µε

(2π)Γ
(
1− ε

2
) {∫ Λ

0

dL2x⊥

L1−ε
2x⊥

+
∫ ∞

Λ

dL2x⊥

L1−ε
2x⊥

}

= 1
4π

( 2
εUV

− 2
εIR

)
+O(ε) , (5.45)

where ε = εUV > 0 in the UV divergent term and ε = εIR < 0 in the IR divergent one.
Setting formally εUV = εIR = ε, one sees that this transverse momentum integral vanishes,
meaning that the full perturbative factor for SE3,

N λσσ′
SE3 (rxy) = −αs2πN

λσσ′
LO,ε (rxy)

( 2
εUV

− 2
εIR

){
2 ln

(
zq
z0

)
− 3

2

}
, (5.46)

is identically zero. The price to pay is that the nature of the divergence, either infrared or
ultraviolet, is lost when one takes the limit εIR = εUV. It also explains how the apparent
UV pole that we will obtain at the end of our computation of all the virtual amplitudes
can be “turned into” an IR pole when combined with the self energy after the shock wave.

10The physical reason for the cancellation of UV divergences is that (i) quarks are treated as being mass-
less, and (ii) the quark electric charge is not affected by QCD corrections. As a result, UV renormalization
is not required at this order in perturbation theory [77].
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Figure 9. Vertex correction from the gluon crossing the shock wave.

The final result for this amplitude is given by

Mλσσ′
SE3 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)

×−αsCF
2π N

λσσ′
LO,ε (rxy)

( 2
εUV

− 2
εIR

){
2 ln

(
zq
z0

)
− 3

2

}
. (5.47)

5.2 Vertex diagrams

We continue our computation of the virtual diagrams with the vertex corrections which are
listed in the third line of figure 4. As in the case of the self energy diagrams, the virtual
gluon can interact with the shock wave or propagate freely. For the diagram with dressed
gluon propagator, the final result for the amplitude is given in eqs. (5.49)–(5.50)–(5.70)–
(5.73)–(5.74). The free vertex correction before and after shock wave are respectively given
by eqs. (5.78)–(5.79) and eqs. (5.84)–(5.87).

5.2.1 Dressed gluon propagator

We detail now the calculation of the vertex correction with the gluon crossing the shock
wave and shall derive a compact expression for this diagram. The scattering amplitude for
this process is given by

Sλσσ
′

V1 =
∫ d4l1

(2π)4
d4l2

(2π)4
d4l3

(2π)4

[
ū(k, σ)(igγµta)S0(k − l3)T q(k − l3, l1)S0(l1)(−ie/ε(q, λ))

×S0(l1 − q)(igγνtb)S0(l1 − q + l2)T q(l1 − q + l2,−p)v(p, σ′)
]

×G0,ac
µρ (l3)T g,ρσcd (l3, l2)G0,db

σν (l2) . (5.48)

Note that we have written the amplitude now in d = 4 dimensions; this is because, as
we shall see, this diagram does not have ultraviolet divergences. After subtraction of the
noninteracting piece and factoring an overall delta function 2πδ(q−−p−−k−), we find the
physical amplitude

Mλσσ′
V1 = eefq

−

π

∫
d2−εx⊥d2y⊥d2z⊥e

−ik⊥·x⊥−ip⊥·y⊥CV1(x⊥,y⊥, z⊥)N λσσ′
V1 (rxy, rzy) ,

(5.49)
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with the color structure

CV1(x⊥,y⊥, z⊥) =
[
taV (x⊥)tbV †(y⊥)Uab(z⊥)− tata

]
=
[
taV (x⊥)V †(z⊥)taV (z⊥)V †(y⊥)− tata

]
, (5.50)

and the perturbative factor

N λσσ′
V1 = g2

(2q−)

∫ d4l1
(2π)3

d4l2
(2π)3

d4l3
(2π)3 e

il1⊥·rxyeil2⊥·rzye−il3⊥·rzx (5.51)

× −i(2q−)2(2l−3 )δ(l−3 − l
−
2 )δ(k− − l−3 − l

−
1 )Nλσσ′

V1 (l1, l2, l3)
[(l3 − k)2 + iε]

[
l21 + iε

]
[(l1 − q)2 + iε] [(l2 − q + l1)2 + iε]

[
l22 + iε

] [
l23 + iε

] ,
where the Dirac structure is given by

Nλσσ′
V1 = 1

(2q−)2

[
ū(k, σ)γµ(/k − /l3)γ−/l1/ε(q, λ)(/l1 − /q)γν(/l1 − /q + /l2)γ−v(p, σ′)

]
×Πµρ(l3)Πρν(l2) . (5.52)

Dirac structure. As usual, the integration over l−1 and l−2 can be easily done with
the delta functions that enforce l−2 = l−3 and l−1 = k− − l−3 . Using the identities in
eqs. (C.25), (C.33) and (C.21) from appendix C we can express the Dirac structure in
eq. (5.52) as

NV1 = NV1,reg + (l1 − q)2NV1,q̄inst , (5.53)

with

Nλσσ′
V1,reg=

4Li3x⊥Lk2y⊥
xy

{
ū(k,σ)

[(
1−x2

)
δij−ix2 ε

ijΩ
]
DλLO(l1)

×
[(

1−y2

)
δkj−iy2 ε

kjΩ
]
v(p,σ′)

}
, (5.54)

Nλσσ′
V1,q̄inst= (1−y)

2x(q−)2

{
ū(k,σ)

[(
1−x2

)
δik−ix2 ε

ikΩ
]
γ−/l1/ε(q,λ)γ−γkv(p,σ′)

}
Li3x⊥, (5.55)

where x = zg/zq, Li3x⊥ = li3⊥ − xki⊥, y = zg/(zq̄ + zg) and Li2y⊥ = li2⊥ + yli1⊥. In
the longitudinally polarized case, the instantaneous piece in eq. (5.55) vanishes, using
again(γ−)2 = 0,

Nλ=0,σσ′
V1,q̄inst = 0 . (5.56)

For the regular piece in eq. (5.54) one obtains, after some Dirac algebra,

Nλ=0,σσ′
V1,reg = −4zq(zq̄ + zg)2(zq − zg)Q

z2
g

{[
1− zg

2zq
− zg

2(zq̄ + zg)

]
[ū(k, σ)γ−v(p, σ′)]

q−
δik

−i
[
zg
2zq
− zg

2(zq̄ + zg)

]
[ū(k, σ)γ−Ωv(p, σ′)]

q−
εik
}
Li3x⊥L

k
2y⊥ . (5.57)

The transverse polarization case is worked out similarly, giving

Nλ=±1,σσ′
V1,q̄inst = −zqzq̄(zq − zg)

zg(zg + zq̄)

{
ū(k, σ)(1 + λΩ)γ

−

q−
v(p, σ′)

}
(L3x⊥ · ελ⊥) , (5.58)
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for the instantaneous antiquark piece, and

Nλ=±1,σσ′
V1,reg = 2zq(zq̄ + zg)

z2
g

Li3x⊥L
k
2y⊥(l1⊥ · ελ⊥) (5.59)

×
{[

1− zg
2zq
− zg

2(zq̄ + zg)

] [
ū(k, σ)((1− 2zq + 2zg)− λΩ)γ

−

q−
v(p, σ′)

]
δik

−i
[
zg
2zq
− zg

2(zq̄ + zg)

] [
ū(k, σ)((1− 2zq + 2zg)Ω− λ)γ

−

q−
v(p, σ′)

]
εik
}
,

for the regular Dirac piece.

Pole structure of the instantaneous and regular terms. The Dirac numerator
does not depend on l+1 , l

+
2 and l+3 . One can then perform the “plus” ligthcone momentum

integration using Cauchy’s theorem. Using the decomposition in eq. (5.53) we can express
eq. (5.51) as

NV1 = NV1,reg +NV1,q̄inst , (5.60)

with

NV1,reg = g2

2

∫
dzg

∫ d2l1⊥
(2π)2

d2l2⊥
(2π)2

d2l3⊥
(2π)2 e

il1⊥·rxy+il2⊥·rzy−il3⊥·rzxIV1,regNV1,reg , (5.61)

NV3,q̄inst = g2

2

∫
dzg

∫ d2l1⊥
(2π)2

d2l2⊥
(2π)2

d2l3⊥
(2π)2 e

il1⊥·rxy+il2⊥·rzy−il3⊥·rzxIV1,q̄instNV1,q̄inst , (5.62)

where we encounter the following pole structures (omitting again the +iε prescription for
the propagators):

IV1,reg =
∫ dl+1

(2π)
dl+2
(2π)

dl+3
(2π)

−i(2q−)2(2l−3 )
(l3 − k)2l21(l1 − q)2(l2 − q + l1)2l22l

2
3

= − zg
(zq̄ + zg)zq

Θ(zg)Θ(zq − zg)(
l21⊥ + ∆2

V3
) [
ωV1

(
l21⊥ + ∆2

V1
)

+L2
2y⊥

]
L2

3x⊥

, (5.63)

IV1,q̄inst =
∫ dl+1

(2π)
dl+2
(2π)

dl+3
(2π)

−i(2q−)2(2l−3 )
(l3 − k)2l21(l2 − q + l1)2l22l

2
3

= zg
(zq̄ + zg)(zq − zg)zq

Θ(zg)Θ(zq − zg)[
L2

2y⊥ + ωV1
(
l21⊥ + ∆2

V1
)]
L2

3x⊥

. (5.64)

The computation of these integrals is done using Cauchy’s theorem as outlined in ap-
pendix D. The definitions of the kinematic parameters which appear in the energy denom-
inators (in the language of LCPT) are

∆2
V1 = (zq − zg)(zq̄ + zg)Q2 , (5.65)

ωV1 = zgzq̄
(zq − zg)(zq̄ + zg)2 . (5.66)
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Transverse momentum integration. Before we proceed with the transverse momen-
tum integration, we will, as previously, write the expressions for the relevant phases in
terms of the momenta L3x⊥ and L2y⊥:

eil1⊥·rxyeil2⊥·rzye−il3⊥·rzx = e
−i zg

zq
k⊥·rzxe

il1⊥·
(
rxy−

zg
(zq̄+zg)rzy

)
eiL2y⊥·rzye−iL3x⊥·rzx . (5.67)

We will separately discuss the transverse momentum integrals for longitudinally polarized
and transversely polarized virtual photons.

Longitudinal polarization. Clearly, the instantaneous contribution (eq. (5.62)) again van-
ishes since the corresponding Dirac structure is identically zero (eq. (5.56)):

N λ=0,σσ′
V1,q̄inst = 0 . (5.68)

The regular piece is found by inserting eqs. (5.57), (5.63) and (5.67) in eq. (5.61); we find

N λ=0,σσ′
V1,reg = g2

2

∫ zq

0

dzg
zg
e
−i zg

zq
k⊥·rzx4(zq̄ + zg)(zq − zg)Q

×
{[

1− zg
2zq
− zg

2(zq̄ + zg)

]
[ū(k, σ)γ−v(p, σ′)]

q−
δik

−i
[
zg
2zq
− zg

2(zq̄ + zg)

]
[ū(k, σ)γ−Ωv(p, σ′)]

q−
εik
}

×
∫ d2l1⊥

(2π)2
e
il1⊥·

(
rxy−

zg
(zq̄+zg)rzy

)
(
l21⊥ + ∆2

V1
) ∫ d2L2y⊥

(2π)2
Li2y⊥e

iL2y⊥·rzy[
L2

2y⊥ + ωV1
(
l21⊥ + ∆2

V1
)]

×
∫ d2L3x⊥

(2π)2
Lk3x⊥e

−iL3x⊥·rzx

L2
3x⊥

. (5.69)

The transverse momentum integrals are performed using the formulas eq. (E.6) and
eq. (E.18) in appendix E. After contracting the remaining gamma matrices with the spinors,
one obtains the compact expression,

N λ=0,σσ′
V1,reg = αs

π2

∫ zq

0

dzg
zg
e
−i zg

zq
k⊥·rzx(2zqzq̄)Q̄δσ,−σ

′
K0 (QXV )

(
1− zg

zq

)(
1 + zg

zq̄

)
(5.70)

×
{[

1− zg
2zq
− zg

2(zq̄ + zg)

]
rzx · rzy
r2
zxr

2
zy

+ iσ

[
zg
2zq
− zg

2(zq̄ + zg)

]
rzx × rzy
r2
zxr

2
zy

}
,

with the qq̄g dipole effective size XV defined by

X2
V = zq̄(zq − zg)r2

xy + zg(zq − zg)r2
zx + zgzq̄r

2
zy , (5.71)

as for the quark dressed self energy.
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Transverse polarization. For a transversely polarized virtual photon, one needs to com-
pute the instantaneous antiquark term. Inserting the expressions for the instantaneous
Dirac structure eq. (5.58), and that for the contour integral in eq. (5.64), inside the equa-
tion (5.62), one gets

N λ=±1,σσ′
V1,q̄inst = −g

2

2

∫ zq

0
dzg e

−i zg
zq
k⊥·rzx zq̄

(zg + zq̄)2

{
ū(k, σ)(1 + λΩ)γ

−

q−
v(p, σ′)

}
ελ,i⊥ (5.72)

×


∫ d2l1⊥

(2π)2

∫ d2L2y⊥
(2π)2

e
il1⊥·

(
rxy−

zg
(zq̄+zg)rzy

)
eiL2y⊥·rzy[

L2
2y⊥ + ωV1

(
l21⊥ + ∆2

V1
)] ∫ d2L3x⊥

(2π)2
Li3x⊥e

−iL3x⊥·rzx

L2
3x⊥

 .

The three transverse momentum integrals can be performed analytically using eq. (E.6)
and eq. (E.20) in appendix E. The antiquark instantaneous term finally reads

N λ=±1,σσ′
V1,q̄inst = αs

π2

∫ zq

0
dzg e

−i zg
zq
k⊥·rzx zq̄(zq − zg)

zg + zq̄
δσ,−σ

′
δσ,−λ

rzx · ελ⊥
r2
zx

iQ̄K1 (QXV )
XV

. (5.73)

For the regular term, the steps are the same as in the longitudinal case. The only difference
comes from the additional l1⊥ dependence of the Dirac numerator. The relevant transverse
momentum integral with this additional factor is given in eq. (E.19) of appendix E. One
ends up with an expression which looks very similar in structure to eq. (5.70),

N λ=±1,σσ′
V1,reg = αs

π2

∫ zq

0

dzg
zg
e
−i zg

zq
k⊥·rzx(−2zqzq̄)δσ,−σ

′Γσ,λγ∗T→qq̄(zq − zg, zq̄ + zg) (5.74)

× (RV · ελ⊥) iQ̄K1 (QXV )
XV

(
1− zg

zq

)(
1 + zg

zq̄

)

×
{[

1− zg
2zq
− zg

2(zq̄ + zg)

]
rzx · rzy
r2
zxr

2
zy

+ iσ

[
zg
2zq
− zg

2(zq̄ + zg)

]
rzx × rzy
r2
zxr

2
zy

}
,

with the initial size of the qq̄ dipole (before gluon emission) defined by

RV = rxy −
zg

zq̄ + zg
rzy . (5.75)

This concludes our computation of the dressed vertex correction.

5.2.2 Free gluon propagator before shock wave

The free vertex correction before the shock wave was computed in [33, 35] using LCPT.
In our framework, the left diagram in figure 10 corresponds to the sum of all the vertex
corrections to the lightcone wavefunction of the incoming virtual photon. We have checked
these results and the main steps of the computation are outlined in appendix I . We quote
here only the final result:

Mλσσ′
V2 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥e−ip⊥·y⊥CV2(x⊥,y⊥)N λσσ′
V2 (rxy) , (5.76)
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Figure 10. Free vertex correction before the shock wave (left) and after (right).

with the color structure identical to the LO color structure, up to a CF factor (just as is
the case for the free self energies),

CV2(x⊥,y⊥) = CF
[
V (x⊥)V †(y⊥)− 1

]
. (5.77)

The perturbative factor for a longitudinally polarized photon reads,

N λ=0,σσ′
V2 (rxy) = αs

2πN
λ=0,σσ′
LO,ε (rxy)

{(
2
ε

+ ln
(
µ̃2

Q̄2

))[
ln
(
zq
z0

)
+ ln

(
zq̄
z0

)
− 3

2

]

+ ln2
(
zq
z0

)
+ ln2

(
zq̄
z0

)
+ 1

2 ln2
(
zq
zq̄

)
+ π2

2 (5.78)

+
(

2 ln
(
zq̄
z0

)
− 3

2

)
ln(zq) +

(
2 ln

(
zq
z0

)
− 3

2

)
ln(zq̄)−

7
2 −

1
2 +O(ε)

}
,

and for a transversely polarized photon,

N λ=±1,σσ′
V2 (rxy) = αs

2πN
λ=±1,σσ′
LO,ε (rxy)

×
{(

2
ε

+ ln
(
µ̃2

Q̄2

)
− 2
rxyQ̄

K0(Q̄rxy)
K1(Q̄rxy)

)[
ln
(
zq
z0

)
+ ln

(
zq̄
z0

)
− 3

2

]

+ ln2
(
zq
z0

)
+ ln2

(
zq̄
z0

)
+ 1

2 ln2
(
zq
zq̄

)
+ π2

2 (5.79)

+
(

2 ln
(
zq̄
z0

)
− 3

2

)
ln(zq) +

(
2 ln

(
zq
z0

)
− 3

2

)
ln(zq̄)−

7
2 −

1
2 +O(ε)

}
.

The last finite term in these expressions corresponds to the regularization scheme dependent
term from the ε dependence of the Dirac algebra. As discussed for the case of the gluon self
energy before the shock wave, such scheme dependent terms cancel at cross-section level.
This particular diagrams has a UV divergence in 4 dimension, manifest as a pole in 1/ε,
and a slow divergence which is cured by the cut-off z0 = Λ−0 /q−.

5.2.3 Free gluon propagator after shock wave

This diagram is free of UV divergences; it is therefore enough to compute it directly in 4
dimensions. The calculation is detailed in appendix J. We provide here the final expressions
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and additional comments. The physical amplitude reads

Mλσσ′
V3 = eefq

−

π

∫
d2x⊥d2y⊥ e

−ik⊥·x⊥−ip⊥·y⊥CV3(x⊥,y⊥)N λσσ′
V3 (rxy) , (5.80)

has the color structure

CV3(x⊥,y⊥) = taV (x⊥)V †(y⊥)ta − CF1 . (5.81)

Observe that it is different from the LO expression, despite being independent of z⊥. The
perturbative factor is written as an integral over the longitudinal momentum fraction zg
of the virtual gluon. In contrast to the other diagrams, we have not found closed analytic
expressions for the transverse momentum integrals. The perturbative factor involves the
functions,

J�(r⊥,K⊥,∆) =
∫ d2l⊥

(2π)
2l⊥ ·K⊥ eil⊥·r⊥

l2⊥ [(l⊥ −K⊥)2 −∆2 − iε]
, (5.82)

J⊗(r⊥,K⊥,∆) =
∫ d2l⊥

(2π)
(−i)l⊥ ×K⊥ eil⊥·r⊥

l2⊥ [(l⊥ −K⊥)2 −∆2 − iε]
, (5.83)

for all r⊥,K⊥ and ∆2 > K2
⊥. These transverse momentum integrals are computed and

their structure analyzed in appendix F. The final result contains scalar integrals over a
Feynman parameter, as can be seen in eqs. (F.7) and (F.8). The function J⊗ does not
have singularities, unlike J� which diverges near ∆2 = K2

⊥, which occurs in the slow gluon
limit zg → 0. We will return to this issue in the next section.

In terms of these two functions, the perturbative factor for a longitudinally polarized
photon reads

N λ=0,σσ′
V3 (rxy) = αs

π

∫ zq

0

dzg
zg

(−2)(zqzq̄)3/2δσ,−σ
′
QK0(Q̄rxy)

(
1− zg

zq

)(
1 + zg

zq̄

)

×
{[

(1 + zg)
(

1− zg
zq

)]
ei(P⊥+zg(k⊥+p⊥))·rxyK0(−i∆V3rxy)

−
[
1− zg

2zq
+ zg

2zq̄
−

z2
g

2zqzq̄

]
e
i
zg
zq
k⊥·rxyJ�

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)

+σ
[
zg
zq
− zg
zq̄

+
z2
g

zqzq̄

]
e
i
zg
zq
k⊥·rxyJ⊗

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)}
+ (q ↔ q̄) , (5.84)

with

P⊥ = zq̄k⊥ − zqp⊥ , (5.85)

∆2
V3 =

(
1− zg

zq

)(
1 + zg

zq̄

)
P 2
⊥ . (5.86)

In the argument of the K0 Bessel function of this expression, ∆V3 is positive, due to
the location of the poles in the integral over the virtual gluon momentum (see details in
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appendix J). One recognizes P⊥ as the relative transverse momentum between the two jets.
Note that ∆2

V3 → P 2
⊥ when zg → 0. In eq. (5.84), the quark-antiquark interchange amounts

to the following transformations: zq ↔ zq̄, P⊥ → −P⊥, k⊥ ↔ p⊥ and rxy → −rxy.
Finally, for completeness, we will state here the result (worked out in appendix J) for

the transversely polarized virtual photon:

N λ=±1,σσ′
V3 (rxy) = αs

π

∫ zq

0

dzg
zg

2zqzq̄δσ,−σ
′Γσ,λγ∗T→qq̄(zq − zg, zq̄ + zg)

iQrxy · ελ⊥
rxy

K1(Q̄rxy)

×
{[

(1 + zg)
(

1− zg
zq

)]
ei(P⊥+zg(k⊥+p⊥))·rxyK0(−i∆V3rxy)

−
[
1− zg

2zq
+ zg

2zq̄
−

z2
g

2zqzq̄

]
e
i
zg
zq
k⊥·rxyJ�

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)

+σ
[
zg
zq
− zg
zq̄

+
z2
g

zqzq̄

]
e
i
zg
zq
k⊥·rxyJ⊗

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)}
+ (q ↔ q̄) . (5.87)

In spite of the different spin-helicity structure and the leading order photon wave function,
one observes a strong similarity of this expression with the longitudinal polarization result;
indeed, the factor within the curly brackets is identical.

5.3 Combining the UV divergent virtual diagrams

We will now summarize here our results for the virtual amplitudes. We found that the
dressed vertex corrections (V1,V1′), and the vertex correction with gluon after the shock
wave (V3) are free of UV divergences. On the other hand, the dressed self energies
(SE1, SE1′), the free self energies before shock wave (SE2, SE2′), and the vertex correc-
tion before shock wave (V2) have a 1/ε UV pole (ε > 0). Given that they share the same
color structure as the LO amplitude (up to a CF factor), it is advantageous to combine all
these UV singular contributions:

MUV =MV2 + (MSE1,UV +MSE2 + q ↔ q̄) (5.88)

= eefq
−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)NLO,ε(rxy)

× αsCF
2π

{(
ln
(
zq
z0

)
+ ln

(
zq̄
z0

)
− 3

2

)(2
ε
− 2γE − ln

(
r2
xyµ̃

2

4

)
+ 2 ln(2πµ2ξ)

)

+1
2 ln2

(
zq̄
zq

)
− π2

6 + 5
2 −

1
2

}
, (5.89)

where ε > 0, and the second equality comes the combination of eqs. (5.34)–(5.40)–(5.78)
for a longitudinal photon and eqs. (5.37)–(5.41)–(5.79) for a transverse photon.

If in addition we include the contribution from self energies with gluon after the shock
wave (SE3, SE3′) in eq. (5.47), which formally vanished in dimensional regularization, we
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see that the surviving pole is infrared,MUV →MIR,

MIR =MV2 + (MSE1,UV +MSE2 +MSE3 + q ↔ q̄) (5.90)

= eefq
−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)NLO,ε(rxy)

× αsCF
2π

{(
ln
(
zq
z0

)
+ ln

(
zq̄
z0

)
− 3

2

)(2
ε
− 2γE − ln

(
r2
xyµ̃

2

4

)
+ 2 ln(2πµ2ξ)

)

+1
2 ln2

(
zq̄
zq

)
− π2

6 + 5
2 −

1
2

}
, (5.91)

where ε < 0 indicates the infrared nature of the divergence.

The results in eqs. (5.89)–(5.91) are valid for both longitudinally and transversely
polarized virtual photons. In other words, the dependence on the polarization of the
photon enters only through the leading order perturbative factor NLO,ε. This is nontrivial
given that diagrams SE2 and V2 do not independently satisfy this property because of
the term proportional to K0(Q̄rxy)/K1(Q̄rxy) in eq. (5.41) and (5.79). Another important
point relates to the cancellation of the double logarithmic divergence ln2(z0). Even though
each individual diagram exhibits such an unphysical divergence, the sum of the diagrams is
free of it. Since such double logarithmic terms would violate the small-x factorization into
the JIMWLK evolution equation, it is a crucial result of our calculation. Finally, the −1/2
term in eq. (5.91) is the scheme dependent rational term in dimensional regularization [33]
(see also [78] for an overview on the rational terms in the context of QCD loop calculations
in d dimensions and [35] for a detailed discussion of the dimensional regularization scheme
dependence of these rational terms in LCPT).

We remind the reader that the free parameter ξ in eq. (5.91) is arbitrary. Anticipating
in advance the discussion in the next section on the slow gluon limit, we choose

ξ =
r2
xye

γE

2 , (5.92)

in agreement with [35], leading to

MIR = eefq
−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)NLO,ε(rxy)

× αsCF
2π

{(
ln
(
zq
z0

)
+ ln

(
zq̄
z0

)
− 3

2

)(2
ε

+ ln(eγEπµ2r2
xy)
)

+ 1
2 ln2

(
zq̄
zq

)

−π
2

6 + 5
2 −

1
2

}
. (5.93)
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With the ξ above, the UV regularized amplitude eq. (5.36) for SE1 can be expressed as

Mλ=0,σσ′
SE1

∣∣∣
UV−fin.

=Mλ=0,σσ′
SE1 −Mλ=0,σσ′

SE1,UV

= eefq
−

π

αs
π2

∫
d2x⊥d2y⊥e

−ik⊥·x⊥−ip⊥·y⊥
∫ zq

0

dzg
zg

(−2zqzq̄)Q̄δσ,−σ
′

×
[
1− zg

zq
+

z2
g

2z2
q

] ∫ d2z⊥
r2
zx

{
e
−i zg

zq
k⊥·rzxK0 (QXV) CSE1(x⊥,y⊥, z⊥)

−e
− r2

zx
r2
xye

γE K0
(
Q̄rxy

)
CFCLO(x⊥,y⊥)

 , (5.94)

and similarly for a transversely polarized virtual photon. The diagrams V1 and V3 are
unchanged since they do not depend on ξ.

Thus eq. (5.93) combined with the expressions for V1,V1′, V3, and the UV finite pieces
of SE1, SE1′ in eq. (5.94) contain all the virtual contributions to our NLO computation.

6 Slow gluon limit: JIMWLK factorization

In this section, we will examine the slow gluon limit of our results, corresponding to the
logarithmic divergence of the cross-section as the longitudinal momentum fraction zg of
the (real or virtual) gluon goes to 0. This divergence is cured by introducing an arbitrary
cut-off z0 = Λ−0 /q−, with Λ−0 the longitudinal momentum separating the fast gluon modes
from the slow ones; the latter being described by the CGC classical field/shock wave. We
will then demonstrate that the dependence on this cut-off (z0, or equivalently Λ−0 ) can be
absorbed into the JIMWLK evolution of the leading order dijet cross-section.

6.1 Extracting the logarithmic slow divergence

At NLO, the real and virtual contributions to the differential cross-section can be generi-
cally written in the form

dσNLO =
∫ z

z0

dzg
zg
f(zg) , (6.1)

where the upper bound z can be either zq or zq̄.
In this section, we will show that the integrand f(zg) has the expansion:

f(zg) = a0 +
∞∑
n=1

anz
n
g . (6.2)

It is worth pointing that the expansion above holds only for the sum of all contributions,
and that individual contributions will develop terms proportional to ln(zg), which when
inserted in eq. (6.1) will generate squared logarithmic divergences. This property (eq. (6.2))
is essential to recover the JIMWLK factorization.

The a0 will generate the leading slow gluon singularity. In the same spirit as standard
DGLAP factorization, we introduce a rapidity factorization scale zf = Λ−f /q−, and use this
factorization scale to isolate the logarithmic divergence as∫ z

z0

dzg
zg
f(zg) = a0 ln

(
zf
z0

)
+
∫ z

0

dzg
zg

[f(zg)− a0Θ(zf − zg)] +O(z0) . (6.3)
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We will explicitly show that the first term on the right hand-side can be absorbed into the
leading logarithmic JIMWLK evolution, while the second term on the right hand side will
constitute the NLO impact factor. Note in order for the impact factor to be independent
of z0, we choose the lower limit in the second integral in the right-hand side of eq. (6.3) to
be 0, instead of z0. This approximation is valid up terms that are power suppressed in the
high energy limit, of O(z0).

6.1.1 Virtual contributions

We start our discussion of the slow gluon limit of the cross-section with the virtual cor-
rections summarized at the end of section 5.3. It is convenient to organize the calculation
as follows. We first take the slow gluon limit at the amplitude level for the singular term
with the 1/ε pole defined in eq. (5.90). We then consider separately the UV finite part of
SE1, and the vertex corrections V1 and V3, which are also free of UV divergences.

The pole term. Using eq. (5.93), it is straightforward to isolate the divergence, inte-
grated between z0 and zf (instead of integrating up to zq or zq̄). One finds

MIR|slow = eefq
−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)NLO,ε(rxy)

× ln
(
zf
z0

)
αsCF
π

[2
ε

+ ln(eγEπµ2r2
xy) +O(ε)

]
. (6.4)

Since the JIMWLK evolution equation is known not to have IR divergences, we expect
this 1/ε pole to cancel when combined with real emissions. Indeed, this would be the case,
as the collinear and slow contribution to real emissions will generate a similar pole (see
eq. (6.24) in a next section).

It is therefore useful to write the virtual slow gluon divergence at the cross-section
level. Defining

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
IR×LO

= 1
4(2π)6

1
2q− (2π)δ(q− − k− − p−)

×
∑

σσ′,color

〈
Mλσσ′†

IR [ρA]Mλσσ′
LO [ρA]

〉
Y

+ c.c. , (6.5)

and using eq. (6.4), one gets

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
IR×LO,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLO,εRλLO,ε(rxy, rx′y′)

× αsCF
π

ln
(
zf
z0

)
ΞLO(x⊥,y⊥;x′⊥,y′⊥)

[2
ε

+ ln(eγEπµ2r2
xy) +O(ε)

]
+ c.c. , (6.6)

where the ε subscript for the differential measure and RλLO accounts for the straightforward
generalization of the definitions eq. (2.21) and (2.25) to d = 4−ε dimensions. The “c.c.” no-
tation corresponds to the complex conjugate term and obtained by changing x⊥ → x′⊥ and
y⊥ → y′⊥ and performing complex conjugation, a transformation that leaves ΞLO invariant.
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UV finite piece of the dressed self energies. We turn now to the finite term of the
dressed quark or antiquark self energies, whose very explicit expression is given in eq. (5.94)
for longitudinally polarized photons and in eq. (5.39) for transversely polarized photons.
In the zg → 0 limit, one observes several simplifications: the effective qqg dipole size XV
goes to Q̄rxy and the phase in the exponential vanishes. The same simplifications occur for
a transversely polarized virtual photon, with the additional limit RSE → rxy when zg → 0
(note that the instantaneous contribution vanishes as well). One obtains as a result the
following expression for the logarithmic divergence:

MSE1|UV−fin.,slow = eefq
−

π

αs
π2 ln

(
zf
z0

)∫
d2x⊥d2y⊥e

−ik⊥·x⊥−ip⊥·y⊥NLO(rxy) (6.7)

×
∫ d2z⊥

r2
zx

CSE1(x⊥,y⊥, z⊥)− e
− r2

zx
r2
xye

γE CF CLO(x⊥,y⊥)

+ (q ↔ q̄) .

From the perspective of proving JIMWLK factorization of the slow gluon divergence, it is
convenient to further simplify this expression using the identity [35],

∫
d2z⊥

 r2
xy

r2
zxr

2
zy

− 1
r2
zx

e
− r2

zx
r2
xye

γE − 1
r2
zy

e
−

r2
zy

r2
xye

γE

 = 0 . (6.8)

This equation is derived in appendix E.2.1 and is crucial to simplify the slow gluon limit of
our results. This is the reason why the choice of ξ in eq. (5.92) is particularly convenient.
One finds then

MSE1|UV−fin.,slow = eefq
−

π

αs
π2 ln

(
zf
z0

)∫
d2x⊥d2y⊥e

−ik⊥·x⊥−ip⊥·y⊥NLO(rxy) (6.9)

×
∫

d2z⊥

[
1
r2
zx

CSE1(x⊥,y⊥, z⊥) + 1
r2
zy

CSE1′(x⊥,y⊥, z⊥)−
r2
xy

r2
zxr

2
zy

CFCLO(x⊥,y⊥)
]
.

The color factor CSE2′ of the antiquark dressed self energy

CSE1′(x⊥,y⊥, z⊥) = V (x⊥)V †(z⊥)taV (z⊥)V †(y⊥)ta − CF1 , (6.10)

is related to CSE1 defined in eq. (5.3) by x⊥ ↔ y⊥ interchange and taking the Hermitian
conjugate of this expression.

Finally, we obtain for the slow gluon limit the result,

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
SE1,UV−fin.×LO,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLORλLO(rxy, rx′y′)

× αs
π2 ln

(
zf
z0

)∫
d2z⊥

[
1
r2
zx

ΞNLO,1 + 1
r2
zy

ΞNLO,2 −
r2
xy

r2
zxr

2
zy

CFΞLO

]
+ c.c , (6.11)

– 44 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

with the color structures,

ΞNLO,1(x⊥,y⊥, z⊥;x′⊥,y′⊥) = 1
Nc

〈
Tr
[
CSE1(x⊥,y⊥, z⊥)C†LO(x′⊥,y′⊥)

]〉
Y

(6.12)

= Nc

2
〈
1−Dy′x′ +Qzy,y′x′Dxz −DxzDzy

〉
Y −

1
2Nc

ΞLO ,

ΞNLO,2(x⊥,y⊥, z⊥;x′⊥,y′⊥) = 1
Nc

〈
Tr
[
CSE1′(x⊥,y⊥, z⊥)C†LO(x′⊥,y′⊥)

]〉
Y

(6.13)

= Nc

2
〈
1−Dy′x′ +Qxz,y′x′Dzy −DxzDzy

〉
Y −

1
2Nc

ΞLO .

To obtain the “c.c” term above, one should replace x⊥ → x′⊥ and y⊥ → y′⊥, and then take
the complex conjugate of these color structures.

Eq. (6.11) deserves further commentary. Firstly, as for eq. (6.7), the z⊥ integral is free
of UV divergences when z⊥ → x⊥ or z⊥ → y⊥ because in these limits, ΞNLO,1 → CF ΞLO
(and likewise for ΞNLO,2). On the other hand, the first two terms in the square brackets
of eq. (6.11) are infrared divergent as |z⊥| → ∞. However we shall see that the IR
divergence cancels in the sum of all the diagrams. As shown in [79], this is a consequence
of considering the small x evolution of the gauge invariant operators in the leading order
cross-section. To avoid the IR divergence in the intermediate steps of the computation in
the slow gluon limit, one can regulate it by multiplying each z⊥-dependent color correlator
ΞNLO (associated with a diagram in which the gluon scatters off the shock wave) by an
exponentially decaying factor e−λ2z2

⊥ and then taking the limit λ → 0 at the end of the
calculation.11 Notice that the appearance of such IR divergences is specific to the slow
gluon limit. Indeed for finite zg, the K0 function in eq. (5.94) regulates the large |z⊥|
behaviour. Therefore even if the finite term defined by (6.3) may have IR singularity term
by term, the sum of all the contributions is also IR finite.

Free vertex correction after shock wave. The slow gluon limit of the amplitude V3
is nontrivial to extract from the results in eq. (5.84) and eq. (5.87) where the transverse
momentum integrations have been performed explicitly. If we undo these integrations,
one can find formally the slow gluon limit expected from the JIMWLK factorization. The
price to pay is that we lose analytic control over the impact factor — the finite piece
after subtraction of the slow divergence. For this reason, we will directly isolate from
eqs. (5.84)–(5.87) the leading slow gluon divergence. In Eq (5.84), the first two terms
contribute to the logarithmic divergence when zg → 0. Using the result eq. (F.20) from
appendix F, one first shows that

J�

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)
= ln

(
zg

2zqzq̄

)
+ 1

2 ln
(
P 2
⊥r

2
xy

)
− iπ

2 + γE

+ eiP⊥·rxyK0(−iP⊥rxy) +O(zg) . (6.14)

11A more rigorous way to proceed would be to compute all diagrams in d = 4− ε dimensions (even UV
finite ones), take the slow gluon limit of this result, and finally the limit ε → 0 once all the diagrams are
combined.
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Since in the first term of eq. (5.87), K0(−i∆V3rxy) = K0(−iP⊥rxy) + O(zg), the slow
gluon limit of V3 reads

MV3|slow = eefq
−

π

∫
d2x⊥d2y⊥ e

−ik⊥·x⊥−ip⊥·y⊥
[
taV (x⊥)V †(y⊥)ta − CF1

]
NLO(rxy)

× (−αs)
π

∫ zf

z0

dzg
zg

[
2 ln

(
zg

2zqzq̄

)
+ ln

(
P 2
⊥r

2
xy

)
− iπ + 2γE

]
. (6.15)

Finally, the contribution of this amplitude to the cross-section level in the z0 → 0 limit
can be expressed as

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
V3×LO,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLORλLO(rxy, rx′y′) (6.16)

× (−αs)
π

∫ zf

z0

dzg
zg

[
2 ln

(
zg

2zqzq̄

)
+ ln

(
P 2
⊥r

2
xy

)
+ 2γE

]
ΞNLO,3(x⊥,y⊥,x′⊥,y′⊥) + c.c. ,

with

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) = 1
Nc

〈
Tr
[
CV3(x⊥,y⊥)C†LO(x′⊥,y′⊥)

]〉
Y

= Nc

2
〈
1−Dxy −Dy′x′ +DxyDy′x′

〉
Y −

1
2Nc

ΞLO . (6.17)

The remaining integral over zg in eq. (6.16) can be performed analytically but we will
refrain from doing so in order to make more transparent the cancellation between various
terms in this expression and the soft divergences in the real cross-section. In fact, only the
ln(r2

xy) term in the square bracket of the zg integral in eq. (6.16) remains after combining
the slow gluon limit of V3 with the cross-term in the real cross-section where the emitted
gluon does not scatter off the shock wave (the contribution R2 × R2′). The other terms
are truly soft divergences, in the sense that they originate from an integration domain
where all the component of the virtual gluon are small.

Dressed vertex corrections. Finally, we will consider the slow gluon limit of the
dressed vertex corrections V1 and V1′; we include here the diagram with gluon exchange
from the quark to the antiquark. The cross product term in eq. (5.70) is sub-leading
in this limit and one easily sees that the transverse coordinate RV simplifies to rxy and
XV → Q̄rxy as zg → 0. Eventually, one obtains the simple result

MV1|slow = eefq
−

π

∫
d2x⊥d2y⊥e

−ik⊥·x⊥e−ip⊥·y⊥NLO(rxy) (6.18)

× −αs
π2 ln

(
zf
z0

)∫
dz⊥

rzx · rzy
r2
zxr

2
zy

[CV1′(x⊥,y⊥, z⊥) + CV1(x⊥,y⊥, z⊥)] ,

which is valid for both longitudinal and transversely polarized photons like the other di-
agrams. The color factor CV1′ corresponds to the color structure of the dressed vertex
correction with gluon exchange from the quark to the antiquark, and is related to CV1
by x⊥ ↔ y⊥ interchange and taking the Hermitian conjugation of this expression. Note
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that by definition, CV1 = CSE1, so that CV1′ = CSE1′ . At the cross-section level, the CGC
correlators are then identical to the ones associated with the dressed self energy, and one
obtains

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
V1×LO,slow

=
αeme

2
fNc

(2π)6 δ(1−zq−zq̄)
∫

dΠLORλLO(rxy,rx′y′) (6.19)

× (−αs)
π2 ln

(
zf
z0

)∫
d2z⊥

rzx ·rzy
r2
zxr

2
zy

[ΞNLO,1 +ΞNLO,2]+c.c. .

The same comment about the infrared divergence of the z⊥ integral applies here as that
for the UV finite piece of the dressed self energy.

In conclusion, combining equations eq. (6.6), eq. (6.11), eq. (6.16) and eq. (6.19), one
obtains the complete result for the virtual part of the NLO dijet cross-section in the slow
gluon limit.

6.1.2 Real unscattered contributions

We turn now to the slow gluon limit of the real corrections. Amongst these, there are
four terms that deserve special attention corresponding to the configurations where the
real gluon (emitted by quark or antiquark) does not scatter off the shock wave both in the
amplitude and in the complex conjugate amplitude. For these four terms, which we shall
now discuss, we will study the slow limit behaviour directly at cross-section level. The
γ∗ → qq̄g +X differential cross-section reads

dσγ∗λ+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg
= 1

8(2π)9
1

2q− (2π)δ(q− − k− − p− − k−g )

×
∑

λ̄σσ′,color

〈
Mλλ̄σσ′†

R [ρA]Mλλ̄σσ′
R [ρA]

〉
Y
. (6.20)

For the inclusive dijet cross-section, the gluon is integrated over the dijet phase space,
as will be discussed in the section 7.2. Here we focus on the gluon phase space with
zg = k−g /q

− � 1 and kg⊥ finite. In this limit, one can set zg = 0 in the delta function.
Formally, this approximation violates exact longitudinal momentum conservation, but this
violation can be corrected for systematically.

Direct terms. We start with the unscattered direct terms corresponding to gluon emis-
sion from either quark or antiquark in both the amplitude and complex conjugate ampli-
tude. To extract the slow gluon limit of their contribution to the cross-section, we shall
use the expressions for R2 and R2′ where no additional transverse momentum integral is
introduced. We generalize the expressions obtained in section 4 to d = 4− ε dimensions in
order to extract the infrared pole coming from slow and collinear gluon emissions.

In the limit zg → 0, the amplitude for R2 reduces to

MR2|slow = eefq
−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−i(k⊥+kg⊥)·x⊥−ip⊥·y⊥NLO,ε(rxy)

× CR2(x⊥,y⊥)(−2g)ε
λ̄∗
⊥ · (kg⊥ − zg/zqk⊥)
(kg⊥ − zg/zqk⊥)2 . (6.21)
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The slow gluon limit of R2′, with the gluon emitted from the quark, can be obtained
from eq. (6.21) by exchanging x⊥ ↔ y⊥ and k⊥ ↔ p⊥, replacing the color factor CR2 by
CR,2′(x⊥,y⊥) = V (x⊥)V †(y⊥)ta − ta and multiplying the result by an overall minus sign.

As we shall see, it is important to keep the zg dependence of the transverse momentum
kg⊥ − (zg/zq)k⊥ in the cross-term to properly account for the soft gluon phase space,
where kg⊥ � k⊥ is of the same order as (zg/zq)k⊥. Summing over gluon polarizations,
integrating over the slow gluon phase space z0 ≤ zg ≤ zf , and shifting kg⊥ → kg⊥−zg/zqk⊥
inside the kg⊥ integral, one finds

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R2×R2,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLO,εRλLO,ε(rxy, rx′y′)

× (4αsCF ) ΞLO(x⊥,y⊥;y′⊥,x′⊥)
∫ zf

z0

dzg
zg
e
i
zg
zq
k⊥·rxx′µε

∫ d2−εkg⊥
(2π)2−ε

e−ikg⊥·rxx′

k2
g⊥

. (6.22)

The exponential phase does not contribute to the logarithmic slow gluon divergence and
can thus be neglected. The last integral is infrared divergent in the kg⊥ → 0 limit. Since
we have already assumed that zg is small, this divergence comes physically from the soft
and collinear phase space for the gluon emission. We have indeed zg → 0 and kg⊥ → 0 so
that all the components of the four momentum of the gluon are small, and moreover, the
relative transverse momentum with respect to the quark, defined as zqkg⊥ − zgk⊥, is also
small. Using the following identity (see appendix E.2.1) for ε < 0,

µε
∫ d2−εkg⊥

(2π)2−ε
e−ikg⊥·rxx′

k2
g⊥

= − 1
4π

[2
ε

+ ln
(
eγEπµ2r2

xx′

)
+O(ε)

]
, (6.23)

one can write the previous expression under a form which resembles eq. (6.6):

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R2×R2,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLO,εRλLO,ε(rxy, rx′y′)

× (−αs)CF
π

ln
(
zf
z0

)
ΞLO(x⊥,y⊥;x′⊥,y′⊥)

[2
ε

+ ln
(
eγEπµ2r2

xx′

)
+O(ε)

]
. (6.24)

In particular, if we compare this result with eq. (6.6), we notice that the two ε poles will
cancel, demonstrating thus that the slow gluon limit is free of collinear divergences. The
direct term associated with an unscattered gluon emission from the antiquark and absorbed
by the antiquark, denoted as R2′ × R2′, can be obtained from eq. (6.24) with rxx′ → ryy′

in the logarithm inside the square brackets.

Cross-terms. The cross-term, which we label as R2×R2′, corresponds to an unscattered
gluon emitted from the quark in the amplitude and absorbed by the antiquark in the
complex conjugate amplitude. Using eq. (6.21), and the corresponding expression for R2′,
one finds

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R2×R2′,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLORλLO(rxy, rx′y′) (6.25)

× (−4αs) ΞNLO,3

∫ zf

z0

dzg
zg

∫ d2kg⊥
(2π)2 e

−ikg⊥·rxy′ (kg⊥ − (zg/zq)k⊥) · (kg⊥ − (zg/zq̄)p⊥)
(kg⊥ − (zg/zq)k⊥)2 (kg⊥ − (zg/zq̄)p⊥)2 .
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Observe that the color structure ΞNLO,3 here is the same as that in the V3×LO contribution
to the dijet cross-section given by eq. (6.17). Notice also that in this case, we have written
the result directly in d = 4 dimensions. Indeed the kg⊥ integral is convergent in two
dimensions as long as zg is not set exactly to 0. This explains why it is important to keep
the zg dependence in kg⊥−(zg/zq)k⊥ and kg⊥−(zg/zq̄)p⊥. To extract the slow behaviour
of this formula, we need then to understand how the kg⊥ integral diverges as zg goes to 0.

Towards that aim, we introduce the integral JR defined as

JR(r⊥,K⊥) =
∫ d2l⊥

(2π)2 e
−il⊥·r⊥ 4 l⊥ · (l⊥ +K⊥)

l2⊥(l⊥ +K⊥)2 . (6.26)

The kg⊥ integral in eq. (6.25) can be expressed in terms of JR as∫ d2kg⊥
(2π)2 e

−ikg⊥·rxy′ (kg⊥ − (zg/zq)k⊥) · (kg⊥ − (zg/zq̄)p⊥)
(kg⊥ − (zg/zq)k⊥)2(kg⊥ − (zg/zq̄)p⊥)2

= 1
4e
−i zg

zq
k⊥·rxy′JR

(
rxy′ ,

zg
zqzq̄

P⊥

)
. (6.27)

In appendix F.3, we show that

JR

(
r⊥,

zg
zqzq̄

P⊥

)
= 1

2π

[
−2 ln

(
z2
g

4z2
qz

2
q̄

P 2
⊥r

2
⊥

)
− 4γE − 2iπ

]
+O(zg) . (6.28)

Hence with the help of these identities, the cross-section for R2 × R2′ (plus its complex
conjugate) in the slow gluon limit can be expressed as

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R2×R2′,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLORλLO(rxy, rx′y′) (6.29)

× αs
π

∫ zf

z0

dzg
zg

[
2 ln

(
zg

2zqzq̄

)
+ ln

(
P 2
⊥r

2
xy′

)
+ 2γE

]
ΞNLO,3(x⊥,y⊥,x′⊥,y′⊥) + c.c. .

The attentive reader will notice the nice cancellations between terms inside the square
bracket of this expression with terms in the V3 × LO contribution in eq. (6.16). These
cancellations will be discussed further in next subsection.

6.1.3 Real scattered contributions

We end our discussion of the slow gluon limit of the NLO corrections to the dijet cross-
section from real gluon emissions by considering the case in which the gluon scatters off
the shock wave in the amplitude or in the complex conjugate amplitude. Since there are
overall 16 real emission diagrams, and 4 of these were just discussed, there are 12 such
contributions.

We will begin with the slow gluon limit of the amplitude with the gluon emitted from
the quark before the shock wave, which we label as R1. In the zg → 0 limit of the amplitude
given by eqs. (4.32)–(4.33), one finds

Mλ
R1

∣∣∣
slow

= eefq
−

π

∫
d2x⊥d2y⊥d2z⊥e

−ik⊥·x⊥−ip⊥·y⊥−ikg⊥·z⊥

×N λ
LO(rxy) CR2(x⊥,y⊥, z⊥) ig

π

rzx · ελ̄∗⊥
r2
zx

. (6.30)
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The slow gluon limit of gluon emission before the shock wave from the antiquark, labeled as
R2′ is obtained from q ↔ q̄ interchange, Hermitian conjugation of CR2 and multiplication
by an overall minus sign.

To compute the contribution to the cross-section of the product between real gluon
emission before the shock wave and after, it is convenient to consider the slow gluon limit
of the alternative expression we derived for the diagram R2, i.e. eqs. (4.44)–(4.45). Again
taking the brute force zg → 0 limit of this result, one gets

Mλ
R2

∣∣∣
slow

= eefq
−

π

∫
d2x⊥d2y⊥d2z⊥e

−ik⊥·x⊥−ip⊥·y⊥−ikg⊥·z⊥

×N λ
LO(rxy)CR2(x⊥,y⊥)(−ig)

π

rzx · ελ̄∗⊥
r2
zx

, (6.31)

and similarly for R2′.
With these results in hand, we can compute the product of the amplitudes and complex

conjugate amplitudes (without double counting the R2×R2, R2×R2′, R2′×R2′ and R2′×R2
terms computed in the previous subsection). The sum over the gluon polarizations gives
ελ̄∗,i⊥ ελ̄,j⊥ = δij and the integral over the gluon transverse momentum kg⊥ gives a δ function
which freezes its transverse coordinate in the amplitude and complex conjugate amplitude:∫ d2kg⊥

(2π)2 e
−ikg⊥·(z⊥−z′⊥) = δ(2)(z⊥ − z′⊥) . (6.32)

Finally integrating over the slow gluon phase space z0 ≤ zg ≤ zf , one finds

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
scatt.,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLORλLO(rxy, rx′y′)

× αs
π2 ln

(
zf
z0

)∫
d2z⊥

{[
rzy · rzx′
r2
zyr

2
zx′
− rzx · rzx

′

r2
zxr

2
zx′

]
ΞNLO,1 +

[
rzx · rzy′
r2
zxr

2
zy′
−
rzy · rzy′
r2
zyr

2
zy′

]
ΞNLO,2

+1
2

[
rzx · rzx′
r2
zxr

2
zx′
−
rzx · rzy′
r2
zxr

2
zy′

+ rzy · rzy′
r2
zyr

2
zy′
− rzy · rzx

′

r2
zyr

2
zx′

]
ΞNLO,4

}
+ c.c . (6.33)

The color correlators ΞNLO,1 and ΞNLO,2 were introduced in eq. (6.13). Since the product
of the amplitudes for gluon emission, from the quark before the shock wave and absorption
by the quark after, has the same color topology as the dressed self energy, it is natural to
find the same CGC correlator in both contributions.

The color correlator ΞNLO,4, on the other hand, is new. It comes from the product of the
color structure CR1 with itself, ΞNLO,4 = 1

Nc
Tr[CR1(x⊥,y⊥, z⊥)C†R1(x′⊥,y′⊥, z⊥)]; in other

words, an emission from the quark before and absorbed by the quark (or the antiquark)
before the shock wave. Expressed in terms of dipoles and quadrupoles, it reads as

ΞNLO,4 = Nc

2
〈
1−DxzDzy −Dy′zDzx′ +Dxx′Dy′y

〉
Y −

1
2Nc

ΞLO(x⊥,y⊥;x′⊥,y′⊥) . (6.34)

Eqs. (6.24), (6.29) and (6.33) constitute the slow gluon limit of the real corrections to
the NLO dijet cross-section.
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6.2 Proof of JIMWLK factorization

Now that we have extracted the leading slow gluon divergence of the NLO dijet cross-
section, diagram by diagram, we can put our results together. After doing so, we will
demonstrate that the same result can be obtained by applying the JIMWLK Hamiltonian to
the leading order cross-section, thereby providing an explicit proof of rapidity factorization
at leading logarithmic accuracy in x.

6.2.1 Combined result for all diagrams in the slow gluon limit

Let us first sum the term coming from the UV divergent pieces of the virtual cross-section,
(labeled previously as UV × LO) with the real unscattered direct terms (labeled R2× R2
and R2′ ×R2′). Adding eq. (6.6) and eq. (6.24) (plus the R2′ ×R2′ term), and taking the
limit ε→ 0, one finds

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
UV×LO,slow

+ dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R,direct,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)

×
∫

dΠLORλLO(rxy, rx′y′)
αsCF
π

ln
(
zf
z0

)
ΞLO

[
ln
(
r2
xy

r2
xx′

)
+ ln

(
r2
x′y′

r2
yy′

)]
. (6.35)

In order for the limit ε→ 0 from below to be unambiguous, it is important that both poles
in eqs. (6.6) and (6.24) are infrared poles, so that ε < 0 in both cases. Using an identity
derived in appendix E.2.1,

1
π

∫
d2z⊥

[
rzx · rzx′
r2
zxr

2
zx′
− rzx · rzy
r2
zxr

2
zy

]
= ln

(
r2
xy

r2
xx′

)
, (6.36)

one can write the factor inside the square bracket instead as

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
UV×LO,slow

+ dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R,direct,slow

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)

×
∫

dΠLORλLO(rxy, rx′y′)
αsCF
π2 ln

(
zf
z0

)
ΞLO(x⊥,y⊥;y′⊥,x′⊥)

×
∫

d2z⊥

[
rzx · rzx′
r2
zxr

2
zx′
− rzx · rzy
r2
zxr

2
zy

+ rzy · rzy′
r2
zyr

2
zy′
−
rzx′ · rzy′
r2
zx′rzy′

]
. (6.37)

The same kind of cancellation occurs between the V3 × LO terms and the unscat-
tered real emission cross-terms. Combining eqs. (6.16) and (6.29), and using the identity
eq. (6.36), we get

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
V3×LO,slow

+ dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
R2×R2′,slow

=
αeme

2
fNc

(2π)6 δ(1−zq−zq̄)

×
∫

dΠLORλLO(rxy,rx′y′)
αs
π2 ln

(
zf
z0

)
ΞNLO,3

∫
d2z⊥

[
rzx ·rzy
r2
zxr

2
zy

−
rzx ·rzy′
r2
zxr

2
zy′

]
+c.c. . (6.38)

At this stage, we have managed to express all the terms in terms of a “JIMWLK-like”
kernel, even for the diagrams in which the gluon does not scatter of the shock wave.
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CFΞLO(x⊥,y⊥;x′⊥,y′⊥) CF 〈1−Dxy −Dy′x′ +Qxy,y′x′〉
ΞNLO,1(x⊥,y⊥, z⊥;x′⊥,y′⊥) Nc

2 〈1−Dy′x′ +Qzy,y′x′Dxz −DxzDzy〉 − 1
2NcΞLO

ΞNLO,2(x⊥,y⊥, z⊥;x′⊥,y′⊥) Nc
2 〈1−Dy′x′ +Qxz,y′x′Dzy −DxzDzy〉 − 1

2NcΞLO

ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) Nc
2 〈1−Dxy −Dy′x′ +DxyDy′x′〉 − 1

2NcΞLO

ΞNLO,4(x⊥,y⊥, z⊥;x′⊥,y′⊥) Nc
2 〈1−DxzDzy −Dy′zDzx′ +Dxx′Dy′y〉 − 1

2NcΞLO

Table 2. Color correlators contributing to the next-to-leading order cross-section. Only ΞNLO,1 and
ΞNLO,2 are not invariant under complex conjugation and the x⊥ → x′⊥, y⊥ → y′⊥ transformations.

Common factor Color correlator Kernel
αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ CFΞLO(x⊥,y⊥;x′⊥,y′⊥) −Kxx′ −Kxy −Kyy′ −Kx′y′

αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ ΞNLO,1(x⊥,y⊥, z⊥;x′⊥,y′⊥) Kxy −Kx′y +Kxx′

αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ Ξ∗NLO,1(x′⊥,y′⊥, z⊥;x⊥,y⊥) Kx′y′ −Kxy′ +Kxx′

αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ ΞNLO,2(x⊥,y⊥, z⊥;x′⊥,y′⊥) Kxy −Kxy′ +Kyy′

αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ Ξ∗NLO,2(x′⊥,y′⊥, z⊥;x⊥,y⊥) Kx′y′ −Kx′y +Kyy′

αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥) −Kxy +Kxy′ −Kx′y′ +Kx′y

αsNc
2π2 ln

(
zf
z0

) ∫
d2z⊥ ΞNLO,4(x⊥,y⊥, z⊥;x′⊥,y′⊥) −Kxx′ +Kxy′ −Kyy′ +Kx′y

Table 3. Summary of the slow gluon limit color correlators and kernels.

As we have just seen, such a result is highly nontrivial given the delicate cancellations
which must occur between the different terms.

We are now ready to combine eqs. (6.11), (6.19), (6.33), (6.37) and (6.38). There are
five different color correlators at NLO represented by CFΞLO and ΞNLO,i=1...4. They are
summarized in table 2. We will now sum up the z⊥ kernels that appear in front of each
correlator using the identity,

rzx · rzy
r2
zxr

2
zy

= 1
2

[
−

r2
xy

r2
zxr

2
zy︸ ︷︷ ︸

=Kxy

+ 1
r2
zx

+ 1
r2
zy

]
. (6.39)

The result of this calculation is summarized in table 3. Each color structure contributing
to the cross-section is a sum of a 1/Nc suppressed term and a term proportional to Nc/2.
By summing all the rows in table 3, we first notice that all the 1/Nc suppressed terms
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cancel. For the leading Nc terms, it is convenient to organize the terms as follows:

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
slow

=
αeme

2
fNc

(2π)6 δ(1−zq−zq̄)ln
(
zf
z0

)
αsNc

4π2

∫
dΠLORλLO(rxy,rx′y′)

×
〈∫

d2z⊥

{
r2
xy

r2
zxr

2
zy

(2Dxy−2DxzDzy+DzyQy′x′,xz+DxzQy′x′,zy−Qxy,y′x′−DxyDy′x′)

+
r2
x′y′

r2
zx′r

2
zy′

(2Dy′x′−2Dy′zDzx′+Dzx′Qxy,y′z+Dy′zQxy,zx′−Qxy,y′x′−DxyDy′x′)

+ r2
xx′

r2
zxr

2
zx′

(Dzx′Qxy,y′z+DxzQy′x′,zy−Qxy,y′x′−Dxx′Dy′y)

+
r2
yy′

r2
zyr

2
zy′

(Dy′zQxy,zx′+DzyQy′x′,xz−Qxy,y′x′−Dxx′Dy′y)

+
r2
xy′

r2
zxr

2
zy′

(Dxx′Dy′y+DxyDy′x′−Dzx′Qxy,y′z−DzyQy′x′,xz)

+
r2
x′y

r2
zx′r

2
zy

(Dxx′Dy′y+DxyDy′x′−Dy′zQxy,zx′−DxzQy′x′,zy)
}〉

Y

. (6.40)

Written in this form, it is clear that even though each kernel is UV divergent, the divergence
is cured by the color structure which vanishes precisely at the location of the singularity.
On the other hand, there is no infrared divergence in the equation above because the z⊥-
dependent kernel that appears in each line decays like 1/z4

⊥ at large z⊥. A posteriori, it
explains why the infrared divergent z⊥ integrals were not a concern in our diagram-per-
diagram discussion of the slow gluon limit.

6.2.2 The JIMWLK Hamiltonian

One can now confirm that eq. (6.40) can be obtained by applying the leading-log JIMWLK
Hamiltonian,

HJIMWLK = 1
2

∫
d2u⊥d2v⊥

δ

δA+,a
cl (u⊥)

ηab(u⊥,v⊥) δ

δA+,b
cl (v⊥)

, (6.41)

acting on the leading order dijet cross-section. Note that in the above expression,

ηab(u⊥,v⊥) = 1
π

∫ d2z⊥
(2π)2

(u⊥ − z⊥)(v⊥ − z⊥)
(u⊥ − z⊥)2(v⊥ − z⊥)2

× [1 + U †(u⊥)U(v⊥)− U †(u⊥)U(z⊥)− U †(z⊥)U(v⊥)]ab , (6.42)

where the U are lightlike Wilson lines in the adjoint representation. To apply HJIMWLK to
the leading order cross-section in eq. (2.22), one needs the identity

δV (x⊥)
δA+,a

cl (u⊥)
= −igδ(2)(x⊥ − u⊥)V (x⊥)ta , (6.43)
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and the relations eq. (A.22) between adjoint and fundamental Wilson lines in appendix A.
After some algebraic manipulations, one recovers eq. (6.40), thereby establishing the non-
trivial result:

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
slow

= ln
(
zf
z0

)
HJIMWLK ⊗

dσγ∗λ+A→qq̄+X

d2k⊥dηqd2p⊥dηq̄

∣∣∣∣∣
LO
. (6.44)

Even if not manifest in (6.44), this expression is of order O(αs) as the application of the
JIMWLK Hamiltonian on the LO cross-section brings a g2 power thanks to eq. (6.43). The
identity (6.44) enables one to absorb the slow gluon logarithmic divergence into the rapidity
evolution of the leading order cross-section. More precisely, the leading order cross-section
depends on z0 via the CGC average over color charge configurations (see eq. (2.6)) inside
the target at the scale Λ−0 = z0 q

−.
Evolving this cross-section with the help of the JIMWLK Hamiltonian up to the factor-

ization scale zf enables one to cancel the z0 dependence of the NLO cross-section, provided
that the stochastic weight functional Wz0 [ρA] that defines the CGC average satisfies the
renormalization group (RG) equation,

∂WΛ− [ρA]
∂ ln(z0) = HJIMWLKWΛ− [ρA] . (6.45)

This RG equation, combined with eq. (2.6), provides the essence of the CGC EFT.

7 Constructing the dijet cross-section in the small cone approximation

In this section, we will show that our calculation leads to a cross-section for dijet produc-
tion which is infrared finite. To achieve this, one has to define an infrared and collinear
safe cross-section using jets instead of partons to define the final state. Another way to
proceed would be to consider the dihadron cross-section. In this latter case, the remaining
divergence left in the sum of the virtual qq̄+X and real qq̄g+X cross-section is absorbed
into the evolution of the fragmentation function into hadrons of the quark and antiquark,
as discussed for instance in [42, 48]. Our focus here will be on constructing infrared finite
dijet cross-sections in our framework.

7.1 Structure of the parton-level NLO cross-section

In the previous section, we introduced the factorization scale zf , extracted the slow gluon
(z0 ≤ zg ≤ zf ) logarithmic divergence, and expressed it as the action of the JIMWLK
Hamiltonian acting on the leading order result for the dijet cross-section. In this section, we
will explicitly show the cancellation of divergences when the gluon is fast (zf ≤ zg ≤ zq, zq̄).
This is required to demonstrate the finiteness of the impact factor.
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First, we observe that:

MIR|fast =MIR − MIR|slow

= eefq
−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CLO(x⊥,y⊥)NLO,ε(rxy)

× αsCF
2π

{(
ln
(
zq
zf

)
+ ln

(
zq̄
zf

)
− 3

2

)(2
ε

+ ln(eγEπµ2r2
xy)
)

+ 1
2 ln2

(
zq̄
zq

)

−π
2

6 + 5
2 −

1
2

}
. (7.1)

Note the presence of the factorization scale zf , which occurs since the slow gluon piece has
been subtracted.

Thus there is still a 1/ε pole in the virtual cross-section. At this stage, we can sum-
marize the full NLO calculation as:

αs
dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
NLO

= αsCF
π

(
ln
(
zq
zf

)
+ln

(
zq̄
zf

)
− 3

2

)
× 2
ε
× dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
LO

+ln
(
zf
z0

)
HJIMWLK⊗

dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
LO

(7.2)

+ dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
real,fast

+ dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
virtual,finite

.

The first term corresponds to the 1/ε pole surviving in the virtual cross-section. The
second term is the slow gluon divergence and its associated JIMWLK structure we discussed
previously. The “real, fast” term is the real contribution to the dijet cross-section, with the
slow gluon phase space excluded since it is already taken into account in HJIMWLK. This
contribution also contains a 1/ε pole as we will soon demonstrate. Finally, the last term
in eq. (7.2) is the finite piece of the virtual cross-section, namely, what is leftover after
subtraction of the slow gluon divergence and the 1/ε pole.

7.2 Jet definition and small cone approximation

We will discuss here how the dijet cross-section is obtained from the qq̄ +X and qq̄g +X

cross-sections at order αs. Without loss of generality, a jet algorithm is defined as a set
of measurement functions on the n-body phase space dΩn. For instance, at order αs (see
e.g. [80, 81]),

dσγ∗λ+A→2jet+X

dΩdijet
=
∫

dΩ2
dσγ∗λ+A→qq̄+X

dΩ2
Sjet;2(kµ, pµ)

+
∫

dΩ3
dσγ∗λ+A→qq̄g+X

dΩ3
Sjet;3(kµ, pµ, kµg ) . (7.3)

The jet definition is encoded in the functions Sjet;2,3 which relate the partonic phase space
to the jet phase space. The functions Sjet;i must be infrared and collinear safe.
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We shall now define our jet algorithm by specifying the form of Sjet;2(kµ, pµ) and
Sjet;3(kµ, pµ, kµg ). The dijet phase space dΩ2,jet is given by

dΩdijet = d2pJ dηJ d2pK dηK , (7.4)

where pJ (pK) and ηJ (ηK) are respectively the transverse momentum and rapidity of the
two jets. The form of Sjet;2 is

Sjet;2(pµ, kµ) = δ(k⊥ − pJ)δ(ηq − ηJ)δ(p⊥ − pK)δ(ηq̄ − ηK) , (7.5)

which simply means that the two jets are identified with the two final state partons. The
function Sjet;3 is more complicated, even though the physical interpretation is elementary:
for each pair of partons, the pair is recombined into one jet if the distance in the rapidity-
azimuth plane between the two partons is smaller than the parameter R, the jet radius.
This corresponds to the condition that if the distance

∆R2
i,k = ∆φ2

i,k + ∆η2
i,k < R2 , (7.6)

then partons i and k are recombined into the jet J with

pµJ = pµi + pµk , (7.7)

and the remaining third parton forms the jet K.
Our primary interest here is to demonstrate that the jet cross-section is finite. It is

sufficient then to work in the “small cone approximation” [82], as previously also employed
in [39, 46, 47], neglecting powers of R which are suppressed for small R. The final cross-
section takes then the form A ln(R) + B where the ln(R) behaviour is the remnant of the
singularity when the gluon becomes collinear to the quark or the antiquark.

In the small R limit, the condition in eq. (7.6) for the quark and gluon to lie inside
the same jet can be written in terms of the “collinearity” variable

Cqg,⊥ = zq
zJ

(
kg⊥ −

zg
zq
k⊥

)
, (7.8)

which satisfies
C2
qg,⊥ ≤ R2p2

J min
(
z2
g

z2
J

,
(zJ − zg)2

z2
J

)
+O(R4) . (7.9)

A similar condition holds when the gluon is inside the same jet as the antiquark.
The case where the qq̄ pair forms a jet and the gluon another is sub-leading in the small

cone approximation, because of the absence of the collinear singularity between the quark
and antiquark [47, 83]. Finally, for a three-jet event (where each out-going parton forms its
own jet), one has to integrate over one of the jets, typically the softer one. (For instance,
in a realistic dijet measurement, one might consider the leading and sub-leading jets only).

Such a configuration leads to an infrared divergence associated with a soft singularity
in real gluon emission. Strictly speaking, our jet definition does not cure this singularity.
However we remind the reader that slow gluons with zg ≤ zf have already been taken into
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account, via the rapidity evolution of the leading order cross-section. Since all soft gluons
are also slow, the rapidity factorization scale zf acts as a natural infrared cut-off of the soft
jet singularity, in such a way that no additional phase space constraint (such as a lower pT
cut) is required to ensure the cross-section is infrared finite. This interplay between rapidity
factorization and jet infrared safety, as previously noted in [46, 47], is at the heart of a pow-
erful spacelike-timelike correspondence in high energy QCD [84–86]. Indeed this correspon-
dence was exploited in [30] to compute conformal contributions to the NNLO BK kernel.

7.3 Cancellation of the collinear divergence

The infrared finiteness of the inclusive dijet cross-section at NLO relies on the cancellation
of the collinear divergence between the real and virtual terms, established using the jet def-
inition introduced in the previous subsection. Among all the real contributions, only the
direct unscattered gluon emissions from the quark or the antiquark develop a collinear diver-
gence. We will therefore focus on these terms here. We reemphasize that when integrating
over the phase space of the collinear gluon the logarithmic phase space z0 ≤ zg ≤ zf has al-
ready been taken into account in the real pieces contributing to the JIMWLK Hamiltonian.

We now apply the jet definitions in eqs. (7.9) and (7.7) to the R2×R2 contribution to
the qq̄g cross-section. To isolate the collinear divergence, we work in d = 4− ε dimensions.
Performing the change of variables

(zq,k⊥, zq̄,p⊥, zg,kg⊥)→ (zJ = zq + zg,pJ = k⊥ + kg⊥,pK = p⊥, zK = zq̄, zg, Cqg,⊥) ,
(7.10)

the R2× R2 contribution with gluon and quark inside the same jet reads

dσγ∗λ+A→ dijet+X

d2pJdηjd2pKdηK

∣∣∣∣∣
R2×R2,dijet

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO,εRλLO,ε(rxy, rx′y′)

× αsCF ΞLO(x⊥,y⊥;x′⊥,y′⊥)
∫ zJ

dzg

[
4
(

1
zg
− 1
zJ

)
+ (2− ε) zg

z2
J

]

× µε
∫ d2−εCqg,⊥

(2π)2−ε
1
C2
qg,⊥

Θ
(
C2
qg,⊥,max − C2

qg,⊥

)
. (7.11)

Note that we have restored the finite term in ε coming from the Dirac algebra in the R2
amplitude. The upper limit of the Cqg,⊥ integration is set by the small cone condition.
The lower limit of the zg integral was intentionally left unspecified. It should be zf for
the logarithmically divergent term in zg (since the phase space zg ≤ zf is part of the slow
gluon limit) and 0 for the finite piece; thus we can rewrite the above expression as

dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
R2×R2,dijet

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO,εRλLO,ε(rxy, rx′y′)

× αsCFΞLO(x⊥,y⊥;x′⊥,y′⊥)
{

4
∫ zJ

zf

dzg
zg
µε
∫ d2−εCqg,⊥

(2π)2−ε
1
C2
qg,⊥

Θ
(
C2
qg,⊥,max − C2

qg,⊥

)
+
∫ zJ

0
dzg

[
− 4
zJ

+ (2− ε) zg
z2
J

]
µε
∫ d2−εCqg,⊥

(2π)2−ε
1
C2
qg,⊥

Θ
(
C2
qg,⊥,max − C2

qg,⊥

)}
. (7.12)
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Using the result

µε
∫ C2

qg,⊥

∣∣
max d2−εCqg,⊥

(2π)2−ε
1
C2
qg,⊥

= − 1
4π

2
ε
− ln

 C2
qg,⊥

∣∣∣
max

µ̃2

+O(ε) , (7.13)

and integrating over zg, then leads to the result

dσγ∗λ+A→dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
R2×R2,dijet

= αsCF
π

dσγ∗λ+A→dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
LO,ε
×
{(

3
4− ln

(
zJ
zf

))
2
ε

+ln2(zJ)− ln2(zf )− π
2

6 +
(

ln
(
zJ
zf

)
− 3

4

)
ln
(
R2p2

J

µ̃2z2
J

)
+ 1

4 + 3
2

(
1− ln

(
zJ
2

))}
, (7.14)

where we used the condition in eq. (7.9) which neglects terms that are power suppressed
in the small cone approximation.

Combining this result with its R2′×R2′ counterpart, obtained from J ↔ K interchange,
one sees that the 1/ε pole cancels with eq. (7.2). The 1/4 term in the above expression
comes from the linear term in ε of the Dirac algebra multiplying the 1/ε pole. When
combined with the same term in the R2′×R2′ contribution, it gives a factor 1/2. This 1/2
term cancels with the finite contribution fromMIRM†LO given below by

dσγ∗λ+A→qq̄+X

d2k⊥d2p⊥dηqdηq̄

∣∣∣∣∣
IR×LO,finite

=
αeme

2
fNc

(2π)6 δ(1− zq − zq̄)
∫

dΠLORλLO(rxy, rx′y′)

×ΞLO(x⊥,y⊥;x′⊥,y′⊥)αsCF2π

{(
ln
(
zq
zf

)
+ ln

(
zq̄
zf

)
− 3

2

)
ln(eγEπµ2r2

xy)

+1
2 ln2

(
zq̄
zq

)
− π2

6 + 5
2 −

1
2

}
+ c.c. , (7.15)

where one should set zq,k⊥ → zJ ,pJ and zq̄,p⊥ → zK ,pK to translate this partonic cross-
section into a jet cross-section. A similar cancellation occurs for the µ2 dependence which
is what one would expect since our final results should not depend on this scale. These
two cancellations provide important cross-checks of our calculation.

In conclusion, we have demonstrated that our results provide an infrared finite dijet
cross-section at NLO which can be expressed as

αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
NLO

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLORλLO(rxy, rx′y′)ΞLO

× αsCF
π

{(
ln
(
zJ
zf

)
− 3

4

)
ln
(
R2p2

Jrxyrx′y′

4e−2γE

)
+
(

ln
(
zK
zf

)
− 3

4

)
ln
(
R2p2

Krxyrx′y′

4e−2γE

)

+2 ln(zf ) ln
(
zJzK
zf

)
− 1

2 ln2(zJzK) + ln(8) + 11
2 −

π2

2

}

+ ln
(
zf
z0

)
HJIMWLK ⊗

dσγ∗λ+A→2jet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
LO

+ other finite terms , (7.16)

after combining eqs. (7.2), (7.14) and (7.15). The other finite terms come from the diagrams
which are not included in the IR × LO term, and are displayed in the following section.
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Figure 11. Gluon emission (real or virtual) phase space. Fluctuations carrying “minus” (“plus”)
lightcone momentum P− < k−g < z0q

− ( P+ > k+
g > x0P

+) are accounted for in the sources. Emis-
sions in the interval z0q

− < k−g < zfq
− (or equivalently x0P

+ > k+
g > xfP

+) are logarithmically
enhanced αs ln(zf/z0) ≈ αs ln(x0/xf ) and are absorbed by renormalization of sources via JIMWLK
evolution. The emissions in the interval zfq

− < k−g < q− (or equivalently xfP
+ > k+

g > xBjP
+)

are not logarithmically enhanced and are part of the NLO impact factor. The value of xf can vary
depending on the kinematics of the final state. With each successive order in perturbation theory,
one expects the corresponding uncertainties to diminish allowing for increasingly quantitative com-
parisons with experiment.

8 Inclusive dijet impact factor at NLO

In this section, we will summarize our calculation of the inclusive dijet cross-section at
NLO in the CGC. We begin with a general discussion of the final result of the previous
section given by eq. (7.16). We represent pictorially in figure 11 the different contributions
to the DIS inclusive dijet contribution at next-to-leading order, identifying in particular the
contributions of fast and slow gluons with respect to the rapidity phase space encompassed
by the virtual photon and the nucleus.

As noted, the slow gluon divergence can be absorbed into the JIMWLK rapidity evo-
lution of the weight functional WLL

Y0
[ρA] → WLL

Yf
[ρA] with Yf = ln(zf/z0). On the target

side, this is equivalent to an evolution of the weight functional from the scale x0 of the
fast sources in the nucleus, up to a scale xf ∼ Λ2

⊥xBj/(zfQ2) with Λ⊥ some (perturbative)
transverse scale, as obtained for instance in [7, 8] for a large nucleus. One can further as-
sume rapidity factorization to hold to NLL accuracy, and promote WLL

Yf
[ρA]→WNLL

Yf
[ρA].

This enables one to correctly account for terms of order O(αn+1
s lnn(x0/xf )), to all orders.

With this NLL small-x resummation, the uncertainty in our result comes from two
loop contributions not contained in NLL JIMWLK that correspond to the NNLO impact
factor, of order O(α2

s ln(xf/xBj)). The factor ln(xf/xBj) provides the upper bound for the
magnitude of the NNLO impact factor, and it is understood that ln(xf/xBj) should be a
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number of order one and parametrically smaller12 than 1/αs. This condition constrains the
range of physical values for xf one should consider when evaluating the NLO impact factor.

Within this order of accuracy, up to terms of order O(α2
s ln(xf/xBj)), our result can

be expressed as

dσγ∗λ+A→ dijet+X =
∫
DρA WNLL

Yf
[ρA]

[
dσγ

∗
λ+A→dijet+X

LO + αsdσ
γ∗λ+A→dijet+X
NLO,i.f.

]
, (8.1)

where Yf = ln(x0/xf ).
The NLO impact factor is given by the sum of three contributions,

αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
NLO,i.f.

= αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
IRC,i.f.

+ αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
V,i.f.

+ αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
R,i.f.

. (8.2)

The first term in this expression is the finite piece that survives the cancellation of the
collinear divergence of the R2×R2 and R2′×R2′ real contributions, and the IR divergent
IR×LO + “c.c.” contribution. It depends on the polarization of the virtual photon via the
LO wave function only. In the small R limit, it is given by the first term in eq. (7.16):

αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
IRC,i.f.

=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLORλLO(rxy, rx′y′)ΞLO

× αsCF
π

{(
ln
(
zJ
zf

)
− 3

4

)
ln
(
R2p2

Jrxyrx′y′

4e−2γE

)
+
(

ln
(
zK
zf

)
− 3

4

)
ln
(
R2p2

Krxyrx′y′

4e−2γE

)

+2 ln(zf ) ln
(
zJzK
zf

)
− 1

2 ln2(zJzK) + ln(8) + 11
2 −

π2

2

}
. (8.3)

The second term is the contribution to the impact factor coming from the virtual
diagrams which are not included in the IR × LO + “c.c” contribution. These are the UV
finite part of SE1, V1 and V3. We will provide the explicit expression for this term shortly.

The last term in eq. (8.2) is the contribution from real gluon emissions (excluding
finite pieces from in-cone gluon emission) from the direct R2×R2 and R2′×R2′ diagrams.
This is because, as noted, their finite contributions are already included in the first term
in eq. (8.2). More precisely, this term can be obtained by integrating the gluon over
nonsingular regions of phase space which do not contain either slow or collinear divergences.
For completeness, and future numerical implementation of our results, we write the full

12If xf → x0, then because αs ln(x0/xBj) = O(1), the introduction of a rapidity factorization scale to
separate fast from slow modes is no longer meaningful.
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expression for the real γ∗λ +A→ dijet +X cross-section:

αs
dσγ∗λ+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
R,i.f.

=
∫

dΩ3

{
αs

dσγ∗λ+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R2×R2
Sg/∈q−jet(kµ, pµ, kµg )

+ αs
dσγ∗λ+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R2′×R2′
Sg/∈q̄−jet(kµ, pµ, kµg )

+αs
dσγ∗λ+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
other
Sjet,3(kµ, pµ, kµg )

}
. (8.4)

The expressions for the γ∗λ → qq̄g+X cross-sections which enter in the integrands of eq. (8.4)
are obtained by squaring the real amplitudes. The first two terms, labeled respectively
R2×R2 and R2′×R2′ come from the modulus squares of the amplitude R2 and R2′. The
jet functions Sg/∈q−jet ( Sg/∈q̄−jet) select configurations in which the gluon does not belong
to the quark (antiquark) jet, as such configurations are already accounted for in eq. (8.3),
computed here in the small R approximation. The contribution labeled “other” gathers all
the remaining terms; those coming from the direct R1 × R1 and R1′ × R1′ diagrams, the
cross-term diagrams R1×R1′, and likewise the contribution from the diagram R2×R2′. The
jet function Sjet;3(kµ, pµ, kµg ) was previously defined in section 7.2. We remind the reader
that the three functions Sg/∈q−jet, Sg/∈q̄−jet and Sjet;3 depend on the jet algorithm and the
event selection. Therefore the 3-body phase space integral is usually performed numerically.

We will now gather the expressions for the various terms which enter in eq. (8.2)
and eq. (8.4) in the case of a longitudinally polarized photon. The corresponding results
for a transversely polarized virtual photon, which are considerably lengthier, are given in
appendix B. To guide the reader, we also gather our intermediate notations in table 4.

The NLO impact factor contribution from the remaining virtual diagrams (in which
the jet definition is trivial) is

αs
dσγ∗L+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
V,i.f.

= αs
dσγ∗L+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
(a)

V,i.f.
+ αs

dσγ∗L+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
(b)

V,i.f.
,

(8.5)
where

αs
dσγ∗L+A→dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
(a)

V,i.f.
=
αeme

2
fNc

(2π)6 δ(1−zJ−zK)
∫

dΠLO8z3
Jz

3
KQ

2K0(Q̄rx′y′)
∫ zJ

0

dzg
zg

× αs
π

∫ d2z⊥
π

{
1
r2
zx

[(
1− zg

zJ
+
z2
g

2z2
J

)
e
−i zg

zJ
k⊥·rzxK0(QXV )−Θ(zf −zg)K0(Q̄rxy)

]
ΞNLO,1

− 1
r2
zx

(1− zg
zJ

+
z2
g

2z2
J

)
e
− r2

zx
r2
xye

γE K0(Q̄rxy)−Θ(zf −zg)e
− r2

zx
r2
xye

γE K0(Q̄rxy)

CFΞLO

− rzx ·rzy
r2
zxr

2
zy

[(
1− zg

zJ

)(
1+ zg

zK

)(
1− zg

2zJ
− zg

2(zK +zg)

)
e
−i zg

zJ
k⊥·rzxK0(QXV )

−Θ(zf −zg)K0(Q̄rxy)
]
ΞNLO,1 +(J↔K)

}
+c.c. , (8.6)

– 61 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

Q̄2 = zqzq̄Q
2 effective virtuality squared in LO

Q̄2
R2 = zq̄(1− zq̄)Q2 effective virtuality squared in R2

Q̄2
R2′ = zq(1− zq)Q2 effective virtuality squared in R2′

X2
R = zqzq̄r

2
xy + zqzgr

2
zx + zq̄zgr

2
zy effective qq̄g dipole size squared

in R1, R1′

w⊥ = (zqx⊥ + zgz⊥)/(zq + zg) quark transverse coordinate
before gluon emission in R2

w̄⊥ = (zq̄y⊥ + zgz⊥)/(zq̄ + zg) antiquark transverse coordinate
before gluon emission in R2′

X2
V = zq̄(zq − zg)r2

xy + zg(zq − zg)r2
zx + zq̄zgr

2
zy effective qq̄g dipole size squared

in SE1 and V1

X2
V′ = zq(zq̄ − zg)r2

xy + zg(zq̄ − zg)r2
zy + zqzgr

2
zx effective qq̄g dipole size squared

in SE1′ and V ′1
P⊥ = zq̄k⊥ − zqp⊥ quark-antiquark dijet relative

transverse momentum
∆⊥ = k⊥ + p⊥ quark-antiquark dijet transverse

momentum imbalance
∆2

V3 =
(
1− zg

zq

) (
1 + zg

zq̄

)
P 2
⊥

Table 4. Notations for the longitudinal DIS inclusive dijet cross-section.

contains the finite part of SE1 and V1, and

αs
dσγ∗L+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
(b)

V,i.f.
=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO8z3
Jz

3
KQ

2K0(Q̄rx′y′)
∫ zJ

0

dzg
zg

× αs
π

{[(
1− zg

zJ

)2 (
1 + zg

zK

)
(1 + zg)ei(P⊥+zg∆⊥)·rxyK0(−i∆V3rxy)

−
(

1− zg
2zJ

+ zg
2zK

− zg
2zJzK

)
e
i
zg
zJ
k⊥·rxyJ�

(
rxy,

(
1− zg

zJ

)
P⊥,∆V3

)

+ Θ(zf − zg) ln
(
zgP⊥rxye

γE

2zJzK

)]
K0(Q̄rxy)ΞNLO,3 + (J ↔ K)

}
+ c.c. , (8.7)

contains the finite part of V3. Recall that the other virtual pieces are implicitly contained
in eq. (8.3).

In this expression, we have set zq = zJ , zq̄ = zK , k⊥ = pJ and p⊥ = pK according
to the jet definition in eq. (7.5) for the 2-body phase space. We have omitted here the
dependence on transverse coordinates in the color structure ΞNLO. They are defined in
table 2. It should be understood that these color structures are defined without the CGC
average 〈. . .〉Y , since this average is performed within eq. (8.1).
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The (J ↔ K) contribution is obtained after quark-antiquark interchange (which also
applies to the boundaries of the zg integral) as explained in the previous sections for each di-
agram. In particular, the color structure ΞNLO,1 becomes ΞNLO,2 after this transformation,
while ΞNLO,3 is unchanged. We emphasize that this expression is free of all divergences.

For the γ∗L → qq̄g + X cross-sections which enter in the integrand of eq. (8.4), the
R2× R2 term was computed previously:

αs
dσγ∗L+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R2×R2

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)αs
∫

dΠLOCFΞLO

×
{

32zqz3
q̄ (1− zq̄)2Q2

(
1 + zg

zq
+

z2
g

2z2
q

)
K0(Q̄R2rxy)K0(Q̄R2rx′y′)

e−ikg⊥·(x⊥−x′⊥)

(kg⊥ − zg
zq
k⊥)2

}
. (8.8)

The R2′ × R2′ contribution is obtained from the R2 × R2 contribution after q ↔ q̄ inter-
change. In contrast to the virtual pieces, we do not subtract the slow gluon behaviour in or-
der to avoid lengthy expressions. One should therefore keep in mind that the slow behavior
has to be subtracted from these expressions (using a “+” prescription similar to what is done
in eq. (8.5)), since slow gluons are already accounted for in the second term of eq. (7.16).

Finally, the “other” contribution in eq. (8.4) is given by13

αs
dσγ∗L+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
other

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)αs
∫

dΠLO8z3
qz

3
q̄Q

2

×
∫ d2z⊥

π

d2z′⊥
π

e−ikg⊥·(z⊥−z′⊥)
{
−1

2
rzx · rz′y′
r2
zxr

2
z′y′

K0(Q̄R2rwy)K0(Q̄R,2′rw̄′x′)

×
(

1 + zg
2zq

+ zg
2zq̄

)
ΞNLO,3(w⊥,y⊥; w̄′⊥,y′⊥)− rzx · rz

′x′

r2
zxr

2
z′x′

K0(QXR)K0(Q̄R2rw′y′)

×
(

1 + zg
zq

+
z2
g

2z2
q

)
ΞNLO,1(x⊥,y⊥, z⊥;w′⊥,y′⊥) + rzy · rz′x′

r2
zyr

2
z′x′

K0(QXR)K0(Q̄R,2′rw′y′)

×
(

1 + zg
2zq

+ zg
2zq̄

)
ΞNLO,1(x⊥,y⊥, z⊥;w′⊥,y′⊥) + 1

2
rzx · rz′x′
r2
zxr

2
z′x′

K0(QXR)K0(QX ′R)

×
(

1 + zg
zq

+
z2
g

2z2
q

)
ΞNLO,4(x⊥,y⊥, z⊥;x′⊥,y′⊥, z′⊥)− 1

2
rzy · rz′x′
r2
zyr

2
z′x′

K0(QXR)K0(QX ′R)

×
(

1 + zg
2zq

+ zg
2zq̄

)
ΞNLO,4(x⊥,y⊥, z⊥;x′⊥,y′⊥, z′⊥) + (q ↔ q̄) + c.c.

}
. (8.9)

The expression in eq. (8.1) is the final result of our computation of the DIS inclusive
dijet cross-section. To compute the cross-section specifically for longitudinally polarized
photons, one needs the LO cross-section, the expression for which is given in eq. (2.22) and
the NLO impact factor given by eq. (8.2). The individual terms of the latter are,

13For the R2×R2′ term included in this formula, we used the alternative “symmetric” expression for real
gluon emission after the shock wave derived in section 4.2.
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i. Eq. (8.3) ,

ii. Eq. (8.4) (with explicit expressions for its individual parts contained in eq. (8.8) and
eq. (8.9)) ,

iii. Eq. (8.5) (with explicit expressions for its individual parts given in eqs. (8.6) and (8.7)).

9 Summary and outlook

In this work, we performed the first complete next-to-leading order computation of
inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. In
these small xBj kinematics, the dominant contribution to inclusive dijet production at
leading order comes from the splitting of longitudinally or transversely polarized virtual
photons into a quark-antiquark pair, which scatters off gluon fields in the nucleus. At
small momentum fractions x, the gluon fields have maximal occupancy characterized
by a saturation scale Qs � ΛQCD characterized by classical shock wave configurations
Acl[ρ]. In the CGC EFT, these shock wave fields are coupled to static color sources ρ at
larger x in the nuclear target, which are represented by a nonperturbative gauge invariant
stochastic weight functional WY [ρ]. The LO computation to inclusive dijet production
in this framework was first performed in [59] and was shown to be sensitive to both
dipole and quadrupole Wilson line correlators which contain information on all-twist
nonperturbative color correlations in the nuclear target.

Following the covariant perturbation theory framework of the computation of the pho-
ton+dijet NLO impact factor in [46, 47], we computed here all real and virtual gluon
emissions that constitute the NLO corrections to inclusive dijet production in the nuclear
shock wave background. We showed that in the slow gluon limit one obtains rapidity di-
vergences of order αs ln(x0/xf ), which can in principle become O(1) at sufficiently high
energies. Here x0 = Λ+

0 /P
+ is a scale characterizing the target color sources at the lon-

gitudinal momentum scale Λ+
0 . The rapidity factorization scale xf separates fast (relative

to q−) real and virtual gluon emissions which accompany the dijet from slow ones that
can be absorbed into the rapidity evolution of WYf [ρ] from its initial nonperturbative dis-
tribution specified at the momentum scale Λ+

0 . We showed explicitly that the JIMWLK
Hamiltonian describes this rapidity evolution, which resums the stated leading rapidity
logs (LLx) to all orders in perturbation theory. An immediate consequence is that one
obtains the LLx evolution equations for the dipole and quadrupole Wilson line correlators
in the Balitsky-JIMWLK hierarchy.

We also showed, employing a small-cone approximation, that a collinear divergence
that survives in the real emission diagrams and an infrared divergence that survives in the
virtual emission diagrams14 can be absorbed into infrared and collinear safe jet functions.
The finite O(αs) terms that remain constitute the next-to-leading order inclusive dijet
impact factor, for which we obtain explicit expressions that can be numerically evaluated.
When combined with LLx JIMWLK evolution of slow gluons, we see that our computation

14We demonstrated explicitly along the way that all other apparent ultraviolet, soft and collinear diver-
gences cancel in the intermediates steps of our computation.
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of the dijet cross-section is of O(αs ln(xf/xBj)) accuracy. These results are necessary
for quantitative comparisons of the CGC EFT to anticipated experimental results from
the EIC.

However if we assume that rapidity factorization holds at NNLO, our computation is
accurate, up to missing terms of O(α2

s ln(xf/xBj), if we combine our NLO impact factor
results with next-to-leading logs in x (NLLx) JIMWLK/BK evolution. As we noted in
the introduction, formal results for these evolution equations are available; their practical
implementation has seen significant developments as well. Missing at this order of accuracy
are O(α2

s) terms in the two-loop NNLO impact factor that combine with the LLx terms in
the rapidity evolution.

In particular, a measurement of great theoretical and phenomenological interest is the
limit in which the dijets are almost back-to-back in transverse space [59]. We anticipate
a significant reduction in the complexity of the numerical evaluation of our NLO results
in this kinematic limit. At small x, this regime15 has been extensively explored at NLO
within the transverse momentum dependent (TMD) parton distribution framework [89–92].
Recent numerical studies at leading order [55, 93–96] suggest the importance of kinematic
power [97–99] and genuine saturation effects [100–102] at kinematics accessible at current
and future colliders.

These contributions are included in our framework (CGC EFT) but absent in the
TMD formalism. With our results, it is therefore now feasible to promote these studies to
next-to-leading order, enabling more accurate predictions of the effects of gluon saturation
on azimuthal dijet correlations at the EIC [51–53]. We can also systematically explore the
appearance of Sudakov double logarithms (and their resummation [103, 104]). These arise
from the imperfect cancellation (in back-to-back kinematics) of virtual and real contribu-
tions and one can study their interplay with the effects from gluon saturation. Further, in
addition to such logarithmically enhanced terms, our expressions should contain genuine
αs suppressed contributions from the impact factor. We will pursue these studies in a
subsequent publication.

A further application of our results for the NLO impact factor is to the inclusive
production of a dijet pair in ultraperipheral nuclear collisions at RHIC and the LHC; this
limit of photon-nucleus collisions is obtained straightforwardly by taking the Q2 → 0 limit
of our results.

We conclude with an outlook on future theoretical studies that are suggested by our
work. It is in principle straightforward to extend our results for massless quarks to massive
quarks, whose collinear divergences are regulated by their mass. This could pave the way to
promote current LO studies of the inclusive production of open heavy flavors and quarkonia
to NLO+NLL accuracy. Similar studies are being carried out for the computation of charm
structure functions [37] and exclusive J/ψ production [41]. Another interesting possibility
is to integrate out one of the jets in our differential cross-section, and obtain the NLO
impact factor for single inclusive jet production. This computation is very similar to the
NLO studies of inclusive forward jet production in proton-nucleus collisions [105].

15The connection between linear evolution at moderate x and nonlinear evolution at small x was explored
in this context in [87, 88].
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A more ambitious program is to capitalize on the techniques employed in this paper
to extend the computation to two-loop order. At this order in perturbation theory it will
be possible to unambiguously test NLL JIMWLK factorization for semi-inclusive process,
determine how the coupling runs as a function of Qs, and extract the α2

s suppressed NNLO
impact factor.

Acknowledgments

We are grateful to Renaud Boussarie, Edmond Iancu, Yair Mulian, and Bowen Xiao for
valuable discussions. We thank Björn Schenke for carefully reading our manuscript and
providing feedback. F.S. also thanks Kaushik Roy for helpful discussions at the early stages
of this project.

This material is based on work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics, under Contracts No. de-sc0012704 and (for R.V.)
within the framework of the TMD Theory Topical Collaboration. F.S is also supported by
the joint Brookhaven National Laboratory-Stony Brook University Center for Frontiers in
Nuclear Science (CFNS).

A Conventions and useful identities

A.1 Lightcone coordinates

We work in lightcone coordinates,

x+ = 1√
2

(
x0 + x3

)
, x− = 1√

2

(
x0 − x3

)
, (A.1)

with the transverse momenta components the same as Minkowski space. Four-vectors are
defined as aµ = (a+, a−,a⊥), where a⊥ denote the two-dimensional transverse compo-
nents. The magnitude of the two-dimensional vector a⊥ is denoted as a⊥. Following these
conventions, the scalar product of two vectors is aµbµ = a+b− + a−b+ − a⊥ · b⊥.

The same convention is used for the gamma matrices γ+ and γ−, with the anti-
commutation relations satisfying

{γµ, γν} = 2gµν14 , (A.2)

where the only non-zero entries in the metric are g+− = g−+ = 1 and gij = −δij .
As a consequence of eq. (A.2), we have (γ−)2 = (γ+)2 = 0, which will be repeatedly

used in our computations. Another useful relation, resulting from the anti-commutation
relations of gamma matrices, is γ−/kγ− = 2k−γ−.

A.2 Feynman rules

We employ the standard Feynman rules of QCD+QED supplemented with the effective
vertices for the propagation of quarks and gluons in the classical back-ground of the CGC
shock wave. We choose to work in the lightcone gauge A− = 0 which drastically simplfies
computations (for nuclei with P+ →∞) in background fields [60, 64].
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We will label below spinor and vector indices respectively as (σ, σ′) and (µ, ν), and
color indices in SU(3) in the fundamental and adjoint presentation as (i, j) and (a, b, c)
respectively.

The free massless quark and gluon Feynman propagators are,

S0
σσ′,ij(l) = i/lσσ′

l2 + iε
δij , (A.3)

G0
µν,ab(l) = i

l2 + iε

(
−gµν + lµnν + nµlν

n.l

)
δab , (A.4)

where the lightcone vector n is defined as nµ = δµ+ satisfying n.A = A−. We also define
the gluon polarization tensor Πµν which appears in the free gluon propagator as

Πµν(l) = −gµν + lµnν + nµlν
n.l

. (A.5)

The polarization vector for a photon with zero transverse momentum q⊥ = 0 and
virtuality Q2 = −q2 is given by

εµ(q, λ = 0) =
(
Q

q−
, 0,0⊥

)
, (A.6)

εµ(q, λ = ±1) =
(
0, 0, ε±1

⊥

)
, (A.7)

where λ = 0 denotes the longitudinal polarization, λ = ±1 denote the two transverse
polarizations, and the two-dimensional vector ε±1

⊥ = 1√
2 (1,±i).

The polarization vector for an on-shell gluon with non-zero transverse momentum l⊥ is

εµ(l, λ = ±1) =
(
ε±1
⊥ · l⊥
l−

, 0, ε±1
⊥

)
, (A.8)

where we only have the two physical transverse polarizations. The transverse polarization
vector also satisfies the identity

εijελ,j⊥ = iλελ,i⊥ , (A.9)

which turns out to be very useful in performing spinor contractions in our calculation.
The photon quark-antiquark and the gluon-quark-antiquark vertices read

V γqq̄
µ,σσ′ = −ieqf (γµ)σσ′ ; V gqq̄,a

µ,σσ′,ij = ig(γµ)σσ′taij , (A.10)

where e is the electromagnetic coupling constant, qf is the fractional charge of the quark,
g is the strong coupling, and taij is a generator in the fundamental representation. At one
loop order in our computation we do not need the cubic and quartic gluon vertices except
in the cubic coupling of gluons to the background field, represented below by the gluon
effective vertex.

The CGC effective vertices for the eikonal interaction of the quark (moving with large
minus lightcone momentum component) with the background is given by

T qσσ′,ij(l
′, l) = (2π)δ(l− − l′−)γ−σσ′ sgn(l−)

∫
d2z⊥e

−i(l′⊥−l⊥)·z⊥V
sgn(l−)
ij (z⊥) , (A.11)
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and similarly the eikonal interaction of the gluon (moving with large minus lightcone mo-
mentum component) with the background reads

T gµν,ab(l
′, l) = −(2π)δ(l− − l′−)(2l−)gµν sgn(l−)

∫
d2z⊥e

−i(l′⊥−l⊥)·z⊥U
sgn(l−)
ab (z⊥) , (A.12)

where l′ and l are the outgoing and incoming momenta of the quark/gluon. The superscript
sgn(l−) denotes the color matrix or its inverse V +1(z⊥) = V (z⊥) and V −1(z⊥) = V †(z⊥),
where the latter follows from the unitarity of V (z⊥), and similarly for U(z⊥).

The lightlike Wilson lines in the fundamental and adjoint representations appearing
in the effective CGC vertices are given by the SU(3) matrices

Vij(z⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,c
cl (z−, z⊥)tcij

)
, (A.13)

Uab(z⊥) = P exp
(
ig

∫ ∞
−∞

dz−A+,c
cl (z−, z⊥)T cab

)
, (A.14)

where tcij and T cab are the generators of SU(3) in the fundamental and adjoint representations
respectively. A+

cl is the back-ground gauge field of the classical small x gluon field in Lorenz
gauge. Here P stands for path ordering such that the operator at z = −∞ is in the
rightmost position, while that at z = +∞ is in the leftmost position.

A.3 Color identities

The generators of SU(Nc) in the fundamental representation satisfy the commutation re-
lations [

ta, tb
]

= ifabctc ,
[
T a, T b

]
= ifabcT c , (A.15)

where fabc are the structure constants. We will not need the explicit expressions for these
objects. We normalize the generators such that they satisfy

Tr(tatb) = 1
2δ

ab ; Tr(T aT b) = Ncδ
ab . (A.16)

Then we find
tata = CF1Nc ; T aT a = CA1N2

c−1 , (A.17)

where the Casimirs in the fundamental and adjoint representation are defined as

CF = N2
c − 1
2Nc

; CA = Nc . (A.18)

A useful Fierz identity for the color structures follows from the completeness relation of
Hermitian matrices ({13, t

a} form a complete set) that

δilδjk = 2taijtakl + 1
Nc
δijδkl . (A.19)

The coefficients follow from the normalization. Then one can show that for any 3 by 3
matrices C and D satisfy:

Tr(C)Tr(D) = 2 Tr(CtaDta) + 1
Nc

Tr(CD) , (A.20)

Tr(CD) = 2 Tr(Cta)Tr(Dta) + 1
Nc

Tr(C)Tr(D) . (A.21)
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We close this section with a useful identity that related Wilson lines in the fundamental
and adjoint representations:

V (x⊥)taV †(x⊥) = tbUab(x⊥) . (A.22)

B Dijet cross-section for transversely polarized virtual photon

In this appendix, we provide the explicit expressions that enter inside the NLO impact
factor for transversely polarized photon, using the same notations as in the longitudinally
polarized case in section 8. The finite terms from the virtual diagrams of SE1 and V1 read:

αs
dσγ∗T+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
(a)

V,i.f.
=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

QK1(Q̄rx′y′)
rx′y′

× αs
π

{∫ zJ

0

dzg
zg

∫ d2z⊥
π

{
e
−i zg

zJ
k⊥rzx Q̄K1(QXV )

XV
ΞNLO,1

[
zg(zg − zJ)2zK

z3
J

rzx · rx′y′
r2
zx

+(z2
J + z2

K)
(

1− zg
zJ

+ zg
2z2
J

)
RSE · rxy
r2
zx

]
− (z2

J + z2
K)e

− r2
zx

r2
xye

γE

(
1− zg

zJ
+ zg

2z2
J

)
rxy · rx′y′
r2
zxrxy

×QK1(Q̄rxy)CFΞLO − e
−i zg

zJ
k⊥rzx Q̄K1(Q̄XV )

XV
ΞNLO,1

[
zg(zJ − zg)
zg + zK

rzx · rx′y′
r2
zx

+ ((zJ(zJ − zg) + zK(zK + zg))
(

1− zg
zJ

)(
1 + zg

zK

)((
1− zg

2zJ
− zg

2(zK + zg)

)

×
(RV · rx′y′)(rzx · rzy)

r2
zxr

2
zy

+
(
zg

2zJ
− zg

2(zK + zg)

)
(RV × rx′y′)(rzx × rzy)

r2
zxr

2
zy

)]}

+ (J ↔ K)
}

+ c.c. , (B.1)

where we introduce again the two transverse vectors:

RSE = rxy + zg
zq
rzx , (B.2)

RV = rxy −
zg

zq̄ + zg
rzy , (B.3)
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and the finite part of V3 reads

αs
dσγ∗T+A→ dijet+X

d2pJdηJd2pKdηK

∣∣∣∣∣
(b)

V,i.f.
=
αeme

2
fNc

(2π)6 δ(1− zJ − zK)
∫

dΠLO2z2
Jz

2
K

QK1(Q̄rx′y′)
rx′y′

× αs
π

{∫ zJ

0

dzg
zg

[zJ(zJ − zg) + zK(zK + zg)]
QK1(Q̄rxy)

rxy
ΞNLO,3

×
[
(1 + zg)

(
1− zg

zJ

)
ei(P⊥+zg∆⊥)·rxy(rxy · rx′y′)K0(−i∆V3rxy)

−
(

1− zg
2zJ

+ zg
2zK

− zg
2zJzK

)
e
i
zg
zq
k⊥·rxy(rxy · rx′y′)J�

(
rxy,

(
1− zg

zJ

)
P⊥,∆V3

)
−i
(
zg
zJ
− zg
zK

+
z2
g

zJzK

)
e
i
zg
zq
k⊥·rxy(rxy × rx′y′)J⊗

(
rxy,

(
1− zg

zJ

)
P⊥,∆V3

)]

+ (J ↔ K)
}

+ c.c. . (B.4)

Recall that, as in the longitudinally polarized case, the other virtual pieces are implicitly
contained in eq. (8.3). Contrary to (8.5), we have not included the subtraction terms of the
slow gluon divergence in order to keep this formula relatively short. It is straightforward to
put these terms back. The notations for the variables used in this expression are gathered
in table 4 for the kinematic parameters and table 2 for the color structures.

Following the notations of section 8, the real contributions to the γ∗T → qq̄g + X

cross-section read as,

dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R2×R2

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)αs
∫

dΠLO

× CFΞLO(x⊥,y⊥;x′⊥,y′⊥)
{

8zqzq̄Q̄2
R2

[
z2
q̄ + (1− zq̄)2

](
1 + zg

zq
+

z2
g

2z2
q

)
e−ikg⊥·(x⊥−x′⊥)

(kg⊥ − zg
zq
k⊥)2

×
rxy · rx′y′
rxyrx′y′

K1(Q̄R2rxy)K1(Q̄R2rx′y′)
}
, (B.5)

and

αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
other

= 1
2αs

dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R2×R2′

+ αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R2

+ αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R′2

+ 1
2αs

dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R1

+ 1
2αs

dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R′1

+ (q ↔ q̄) + c.c. , (B.6)
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with

αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R2×R2′

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)αs
∫

dΠLO

× ΞNLO,3(x⊥,y⊥;x′⊥,y′⊥)
{

8zqzq̄Q̄2
R2K1(Q̄R2rxy)K1(Q̄R2rx′y′)e−ikg⊥·(x⊥−x′⊥)

×

(zq + zq̄ − 2zqzq̄)
(

1 + zg
zq

+ zg
zq̄

) (
kg⊥ − zq

zg
k⊥
)
·
(
kg⊥ − zq̄

zg
p⊥
)

(
kg⊥ − zq

zg
k⊥
)2 (

kg⊥ − zq̄
zg
p⊥
)2
−rxy · rx′y′
rxyrx′y′

− zg
2zqzq̄

(zq − zq̄)2

(
kg⊥ − zq

zg
k⊥
)
×
(
kg⊥ − zq̄

zg
p⊥
)

(
kg⊥ − zq

zg
k⊥
)2 (

kg⊥ − zq̄
zg
p⊥
)2
−rxy × rx′y′
rxyrx′y′


 . (B.7)

For the other terms labeled R1 × R2, R1 × R2′, R1 × R1 and R1 × R1′, we do not fully
perform the spin-helicity sum, in order to avoid lengthy expressions. We refer the reader
to [106] for useful formulas related to the computation of such spin-helicity sums from
Dirac traces.

αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R2

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)
∫

dΠLO

×
∫

d2z⊥d2z′⊥e
−ikg⊥·(z⊥−z′⊥)ΞNLO,1(x⊥,y⊥, z⊥;w′⊥,y′⊥)

× 1
8π

∑
λ,λ̄,σ,σ′

N λ=±1,λ̄σσ′
R1 (rxy, rzx)N λ=±1,λ̄σσ′†

R2 (rw′y′ , rz′x′) , (B.8)

αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R2′

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)
∫

dΠLO

×
∫

d2z⊥d2z′⊥e
−ikg⊥·(z⊥−z′⊥)ΞNLO,1(x⊥,y⊥, z⊥;w′⊥,y′⊥)

× 1
8π

∑
λ,λ̄,σ,σ′

N λ=±1,λ̄σσ′
R1 (rxy, rzx)N λ=±1,λ̄σσ′†

R2′ (rw′y′ , rz′x′) , (B.9)

αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R1

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)
∫

dΠLO

×
∫

d2z⊥d2z′⊥e
−ikg⊥·(z⊥−z′⊥)ΞNLO,3(x⊥,y⊥, z⊥;x′⊥,y′⊥, z′⊥)

× 1
8π

∑
λ,λ̄,σ,σ′

N λ=±1,λ̄σσ′
R1 (rxy, rzx)N λ=±1,λ̄σσ′†

R1 (rx′y′ , rz′x′) , (B.10)

αs
dσγ∗T+A→qq̄g+X

d2k⊥dηqd2p⊥dηq̄d2kg⊥dηg

∣∣∣∣∣
R1×R1′

=
αeme

2
fNc

(2π)8 δ(1− zq − zq̄ − zg)
∫

dΠLO

×
∫

d2z⊥d2z′⊥e
−ikg⊥·(z⊥−z′⊥)ΞNLO,3(x⊥,y⊥, z⊥;x′⊥,y′⊥, z′⊥)

× 1
8π

∑
λ,λ̄,σ,σ′

N λ=±1,λ̄σσ′
R1 (rxy, rzx)N λ=±1,λ̄σσ′†

R1′ (rx′y′ , rz′x′) . (B.11)
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The expressions for the perturbative factors N λ̄=±1
R1 and N λ̄=±1

R2 are given respectively
by eq. (4.33) and eq. (4.45). Even though these formulas are very lengthy, they can be
implemented on a computer program for their subsequent numerical evaluation as can
eqs. (B.5) and (B.7).

C Dirac algebra

In this section, we provide various gamma matrix identities that are useful in the compu-
tations of the perturbative factors.

C.1 General identities

C.1.1 Product of transverse gamma matrices

It is advantageous to decompose the product of two transverse gamma matrices into sym-
metric and anti-symmetric components. In 4 dimensions (2 transverse dimensions), for
i, j ∈ {1, 2}, one has

γiγj = 1
2{γ

i, γj}+ 1
2[γi, γj ] = −δij − iεijΩ , (C.1)

with
Ω = i

2[γ1, γ2] . (C.2)

The matrix Ω satisfies Ω2 = 1 and [γ−,Ω] = [γ+,Ω] = 0.
In d = 2 + (2− ε) dimension, these identities are generalized to

γiγj = −δij + ωij , (C.3)

with ωij = 1
2 [γi, γj ]. The matrices ωij satisfy

ωijωjk = (1− ε)δik + εωik , (C.4)
[ωlm, ωij ] = 2(ωjlδim + ωmjδil + ωliδmj + ωimδjl) , (C.5)

and the commutation relation [γ±, ωij ] = 0. The ε terms in eq. (C.4) come from δii =
d − 2 = 2 − ε. In 4 dimensions, when ωij = −iεijΩ, one has [ωlm, ωij ] = 0. Therefore
[ωlm, ωij ] = O(ε). From these relations, one easily finds that

(A1δ
ij+A2ω

ij)γ−
(
C1δ

jk+C2ω
jk
)

=
[
(A1C1 +(1−ε)A2C2)δik+(A1C2 +A2C1 +εA2C2)ωik

]
γ− , (C.6)

(A1δ
ij+A2ω

ij)ωlmγ−
(
C1δ

jk+C2ω
jk
)

=ωlmγ−
[
(A1C1 +(1−ε)A2C2)δik+(A1C2 +A2C1 +εA2C2)ωik

]
+O(ε) . (C.7)

– 72 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

C.1.2 Spinor contractions

We begin by presenting explicit expressions for the gamma matrices in 4 dimensions and
explicit representation for the Dirac spinors.

We work in the Dirac basis for gamma matrices

γ0 =

1 0
0 −1

 , γi =

 0 σi

−σi 0

 , σ1 =

0 1
1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0
0 −1

 ,
(C.8)

where 1 is the two-by-two identity matrix.
The helicity operator h is defined as

h = 2~k · ~S
|~k|

, ~S = 1
2

~σ 0
0 ~σ

 , (C.9)

where ~k = (k⊥, k3) is the three momentum. The (massless) Dirac equation reads

/ku(k) = 0 , (C.10)

It has the following solutions16

u+(k) = v−(k) = 1
21/4



√
k+e−iφk
√
k−

√
k+e−iφk
√
k−

 , u−(k) = v+(k) = 1
21/4



√
k−

−
√
k+eiφk

−
√
k−

√
k+eiφk

 , (C.11)

where the subscripts ± denote the helicities,17 φk is the azimuthal angle of k⊥, and the
normalization is chosen so that

/k =
∑
σ

uσ(k)ūσ(k) , (C.12)

where the barred spinors are defined as usual by ū = u†γ0.
We provide here the relevant formulas for performing spinor contractions based on our

conventions. These relations are valid in 4 dimensions only.
In the LO computation, we need

ū(k, σ)γ−v(p, σ′) = 2
√
k−p−δσ,−σ

′
, (C.13)

ū(k, σ)γ−Ω v(p, σ′) = −2
√
k−p− σ δσ,−σ

′
, (C.14)

leading to

ū(k, σ) [A1 − λA2Ω] γ−v(p, σ′) = 2
√
k−p−Γσ,λγ∗T→qq̄(A2 −A1, A2 +A1)δσ,−σ′ . (C.15)

Recall that Γσ,λγ∗T→qq̄, defined in eq. (2.18), is the spin-helicity-dependent splitting vertex.

16In the massless case, the spinors corresponding to particle and anti-particle are the same, but correspond
to opposite helicities.

17Note that in this manuscript, p− is the large component of the spinor momenta; thus p3 < 0.
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For the NLO real emission computations, we have used

ū(k, σ)
[
B1 + λ̄B2Ω

]
γ−v(p, σ′) = 2

√
k−p−Γσ,λ̄q→qg(B1 −B2, B1 +B2)δσ,−σ′ , (C.16)

and

ū(k, σ)
[
B1 + λ̄B2Ω

]
[A1 − λA2Ω] γ−v(p, σ′)

= 2
√
k−p− Γσ,λ̄q→qg(B1 −B2, B1 +B2) Γσ,λγ∗T→qq̄(A2 −A1, A2 +A1) δσ,−σ′ . (C.17)

Finally, for the NLO virtual computations, the following relations are useful:

ū(k, σ)
[
B1δ

ij + iB2ε
ijΩ
]
γ−
[
C1δ

kj + iC2ε
kjΩ

]
v(p, σ′)

= 2
√
k−p−

[
(B1C1 −B2C2)δik + iσ(B1C2 −B2C1)εik

]
δσ,−σ

′
, (C.18)

and

ū(k, σ)
[
B1δ

ij + iB2ε
ijΩ
]

[A1 − λA2Ω] γ−
[
C1δ

kj + iC2ε
kjΩ

]
v(p, σ′) (C.19)

= 2
√
k−p−

[
(B1C1 −B2C2)δik + iσ(B1C2 −B2C1)εik

]
Γσ,λγ∗T→qq̄(A2 −A1, A2 +A1)δσ,−σ′ .

C.1.3 Gluon tensor structure

To simplify the Dirac algebra, it is very convenient to decompose the tensor structure for
the free gluon propagator in terms of polarization vectors as

Παβ(l) =
∑
λ̄=±1

εα(λ̄, l)ε∗β(l, λ̄) + l2

(l−)2nαnβ . (C.20)

The product of two such structure is given by

Παβ(l)Πβδ(l′) = −
∑
λ̄=±1

εα(λ̄, l; )εδ∗(l′, λ̄) . (C.21)

Note the piece proportional to n in eq. (C.20) drops out when inserted in eq. (C.20) since

nβΠβδ(l′) = 0 and ε∗β(l, λ̄)Πβδ(l′) = −εδ∗(l′, λ̄) . (C.22)

Physically, this means that longitudinal/instantaneous piece of the propagator drops out
in the product.

C.2 Useful Dirac algebra tricks for gluon emission and absorption numerators

In this subsection, we will collect useful algebraic identities that contribute to a significant
simplification of the Dirac numerators in the real and virtual amplitudes. They isolate the
contributions of the instantaneous terms and depend on the transverse coordinates which
also naturally appear in the contour integrations over “plus” momentum components. In
the following, we will employ

ε(l2, λ̄) =
(
ελ̄⊥ · l2⊥
l−2

, 0, ελ̄⊥

)
. (C.23)
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We point out further that in all of the following relations, the first equality is expressed
in a form (as per our previous discussions) that enables one to extract the O(ε) terms in
the Dirac structures; they can then be used in d = 4 − ε dimensions as well. However
the expression in the second equality is valid in 4 dimension only since it makes use of the
identity ωij = −iεijΩ.

Gluon absorption from quark after the shock wave.

ū(k, σ)/ε(l2, λ̄)(/k − /l2)γ− = 2
x
ū(k, σ)

(
δij + x

2γ
iγj
)
γ−Li⊥ε

λ̄,j
⊥ (C.24)

= 2L⊥ · ελ̄⊥
x

ū(k, σ)
[(

1− x

2

)
+ λ̄

x

2 Ω
]
γ− , (C.25)

where x = l−2
k− and L⊥ = l2⊥ − xk⊥.

Gluon absorption from quark before the shock wave.

γ−(/l1 + /l2)/ε(l2, λ̄)/l1

= 2
x

(
δij − x

2γ
jγi
)
γ−/l1L

i
⊥ε

λ̄,j
⊥ − (1 + x)l21γiγ−ε

λ̄,i
⊥ (C.26)

= 2L⊥ · ελ̄⊥
x

[(
1 + x

2

)
+ λ̄

x

2

]
γ−/l1 − (1 + x)γiγ−ελ̄,i⊥ l21 , (C.27)

where x = l−2
l−1

and L⊥ = l2⊥ − xl1⊥.

Gluon emission from quark after the shock wave.

ū(k, σ)
[
/ε∗(kg, λ̄)(/k + /kg)

]
γ−

= 2
x
ū(k, σ)

(
δij − x

2γ
iγj
)
γ−Li⊥ε

λ̄∗,j
⊥ (C.28)

= 2L⊥ · ελ̄∗⊥
x

ū(k, σ)
[(

1 + x

2

)
− λ̄x2 Ω

]
γ− , (C.29)

where x = k−g
k− and L⊥ = kg⊥ − xk⊥.

Gluon emission from quark before the shock wave.

γ−(/l1 − /l2)/ε∗(l2, λ̄)/l1

= 2
y

(
δij + x

2γ
jγi
)
γ−/l1L

i
⊥ε

λ̄∗,j
⊥ − (1− x)l21γiγ−ε

λ̄∗,i
⊥ (C.30)

= 2L⊥ · ελ̄∗⊥
x

[(
1− x

2

)
+ λ̄

x

2 Ω
]
γ−/l1 − (1− x)γiγ−ελ̄∗,i⊥ l21 , (C.31)

where x = l−2
l−1

and L⊥ = l2⊥ − xl1⊥.
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Gluon emission from antiquark before the shock wave.

(/l1 − /q)/ε∗(l2, λ̄)(/l1 − /q + /l2)γ−

= 2
x

(/q − /l1)γ−
(
δij + x

2γ
iγj
)
Li⊥ε

λ̄∗,j
⊥ − (1− x) (q − l1)2γ−γiελ̄∗,i⊥ (C.32)

= 2L⊥ · ελ̄∗⊥
x

(/q − /l1)γ−
[(

1− x

2

)
− λ̄x2 Ω

]
+ (1− x) γiγ−ελ̄∗,i⊥ (q − l1) , (C.33)

where x = l−2
q−−l−1

and L⊥ = l2⊥ − x(q⊥ − l1⊥).

Gluon emission from antiquark after the shock wave.

γ−(−/p− /l2)/ε∗(l2, λ̄)v(p, σ′)

= −2
x
γ−
(
δij − x

2γ
jγi
)
Li⊥ε

λ̄∗,j
⊥ v(p, σ′) (C.34)

= −2L⊥ · ελ̄∗⊥
x

γ−
[(

1 + x

2

)
− λ̄x2 Ω

]
v(p, σ′) , (C.35)

where x = l−2
p− and L⊥ = l2⊥ − xp⊥.

D Contour integrals

In this appendix, we will provide details of the computation of several of the contour
integrals appearing in the main text.

D.1 Generic l+ integrals

D.1.1 Two pole case

We first consider the following integral with two poles:

I =
∫ dl+

(2π)
1

[l2 + iε] [(l − l′)2 + iε] , (D.1)

where l′− > 0. The locations of the two poles follow from

l2 + iε= 2l−(l+− l+a ), with l+a = l2⊥
2l− −

iε

2l− , (D.2)

(l− l′)2 + iε=−2(l′−− l−)(l+− l+b ), with l+b = l′+− (l⊥− l′⊥)2

2(l′−− l−) + iε

2(l′−− l−) . (D.3)

We then have
I = − 1

4l−(l′− − l−)

∫ dl+

(2π)
1

(l+ − l+a )(l+ − l+b )
. (D.4)

It is not difficult to verify that the poles sit on opposite half-planes when 0 < l− < l′−.
Closing the integral in the upper-half plane, enclosing l+b , we find

I = − i

4l−(l′− − l−)
Θ(l−)Θ(l′− − l−)

(l+b − l
+
a )

. (D.5)
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It is advantageous to simplify the difference l+b −l+a by introducing the transverse momentum
vector l⊥ − xl′⊥, where x = l−/l′−, which gives

l+b − l
+
a = 1

2l−(1− x)
[
x(1− x)(l′2 + iε)−

(
l⊥ − xl′⊥

)2]
. (D.6)

The final result reads then

I = − i

2l′−
Θ(l−)Θ(l′− − l−)[

x(1− x)(l′2 + iε)− (l⊥ − xl′⊥)2] . (D.7)

In LCPT, these Θ functions are implicitly accounted for by considering different diagrams
with lightcone time orderings of the propagating particles.

D.1.2 Three pole case

A slight generalization of the equation above is

I2 =
∫ dl+

(2π)
1

[l2 + iε] [α1((l − l′)2 + iε) + β1] [α2((l − l′)2 + iε) + β2] , (D.8)

where α1, α2, β2 and β2 do not depend on l+, and as before l′− > 0. Using the definitions
of l+a and l+b as above, we find

I2 = 1
2l−

∫ dl+

(2π)
1

(l+ − l+a )
[
2α1(l− − l′−)(l+ − l+b ) + β1

] [
2α2(l− − l′−)(l+ − l+b ) + β2

] .
(D.9)

Closing the contour in the lower-half plane enclosing l+a , we find

I2 = 1
2l−

−iΘ(l−)Θ(l′− − l−)[
2α1(l′− − l−)(l+b − l

+
a ) + β1

] [
2α2(l′− − l−)(l+b − l

+
a ) + β2

] (D.10)

= 1
2l−

−iΘ(l−)Θ(l′− − l−){α1
x̄

[
x̄(1− x̄)l′2 − (l⊥ − x̄l′⊥)2]+ β1

} {α2
x̄

[
x̄(1− x̄)l′2 − (l⊥ − x̄l′⊥)2]+ β2

} ,
where x̄ = l−/l′−. Finally we end up with the expression for I2,

I2 = 1
2l−

−iΘ(l−)Θ(l′− − l−){α1
x̄

[
(l⊥ − x̄l′⊥)2 − x̄(1− x̄)l′2

]
− β1

} {α2
x̄

[
(l⊥ − x̄l′⊥)2 − x̄(1− x̄)l′2

]
− β2

} ,
(D.11)

where x̄ = l−/l′−.
Another generalization is

I3 =
∫ dl+

(2π)
1

[α1(l2 + iε) + β1] [α2(l2 + iε) + β2] [(l − l′)2 + iε] , (D.12)

where α1, α2, β2 and β2 do not depend on l+, and as before l′− > 0. Following the same
steps as for I2 but closing the contour in the upper-half plane to enclose l+b , we find

I3 = 1
2(l′− − l−)

−iΘ(l−)Θ(l′− − l−){
α1

1−x̄
[
(l⊥ − x̄l′⊥)2 − x̄(1− ȳ)l′2

]
− β1

}
× 1{

α2
1−x̄

[
(l⊥ − x̄l′⊥)2 − x̄(1− x̄)l′2

]
− β2

} , (D.13)

where x̄ = l−/l′−.
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D.2 Application to self energy contribution SE1 and vertex correction V1

D.2.1 Contour integration for SE1

We now compute the integrals in eq. (5.16) and eq. (5.17) for the regular and instantaneous
perturbative factor of diagram SE1. Using eq. (D.7), one finds that

∫ dl+2
(2π)

∫ dl+3
(2π)

(2q−)2

[(l2 − l1)2 + iε][l22 + iε][l23 + iε][(l3 − k)2 + iε]

= 1
z2
q

Θ(zg)Θ(zq − zg)
L2

3x⊥
[
x(1− x)(l21 + iε)−L2

2x⊥
] , (D.14)

where x = l−2 /l
−
1 = l−2 /k

− = l−3 /k
−. Now we can use eq. (D.13) with l′ = q, α1 = 1, β1 = 0,

α2 = x(1− x), and β2 = −L2
2x⊥. One finds that

∫ dl+1
(2π)

(2q−)[
l21 + iε

] [
x(1− x)(l21 + iε)−L2

2x⊥
]
[(l1 − q)2 + iε]

= −iΘ(l−1 )Θ(q− − l−1 )[
l21⊥ + ȳ(1− ȳ)Q2] {x(1−x)

1−ȳ
[
l21⊥ + ȳ(1− ȳ)Q2]+L2

2x⊥

} , (D.15)

where ȳ = l−1 /q
−. Since l−1 = k− and q− − l−1 = p−, we have ȳ = k−/q−, 1 − ȳ = p−/q−,

x = l−3 /k
−, and 1− x = (k− − l−3 )/k−. Therefore,

∫ dl+1
(2π)

(2q−)[
l21 + iε

] [
x(1− x)(l21 + iε)−L2

2x⊥
]
[(l1 − q)2 + iε]

= −iΘ(l−1 )Θ(q− − l−1 )(
l21⊥ + Q̄2

) [
ωSE1

(
l21⊥ + Q̄2

)
+L2

2x⊥

] , (D.16)

where

Q̄2 = k−p−

(q−)2Q
2 and ωSE1 = l−3 (k− − l3)q−

(k−)2p−
, (D.17)

which finally gives eq. (5.18).
For the instantaneous contribution, we use again eq. (D.13) with l′ = q, α1 = 0, β1 = 1,

α2 = y(1− y), and β2 = −L2
2x⊥, so that

∫ dl+1
(2π)

(2q−)
[(q − l1)2 + iε]

1[
x(1− x)(l21 + iε)−L2

2x⊥
]

= 2q−

2(q− − l−1 )
iΘ(l−1 )Θ(q− − l−1 ){

x(1−x)
1−ȳ

[
l21⊥ + ȳ(1− ȳ)Q2]+L2

2x⊥

}
= 1
zq̄

iΘ(l−1 )Θ(q− − l−1 )[
ωSE1

(
l21⊥ + Q̄2

)
+L2

2x⊥

] , (D.18)

leading to eq. (5.19).
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D.2.2 Contour integration for V1

Similarly, the equations eq. (5.63) and eq. (5.64) quoted in section 5.2.1 can be obtained
using eq. (D.11) with l′ = q, α1 = 1, β1 = 0, α2 = y(1 − y), and β2 = −L2

2y⊥. The l+2
and l+3 integration is the same as for diagram SE1 discussed above with y = l−3 /(p− + l−3 ).
Thus we have,

∫ dl+1
(2π)

(2q−)[
l21 + iε

]
[(q − l1)2 + iε]

1[
y(1− y)((q − l1)2 + iε)−L2

2y⊥

]
= 2q−

2l−1
−iΘ(l−1 )Θ(q− − l−1 ){

1
x̄

[
l21⊥ + x̄(1− x̄)Q2]} {y(1−y)

x̄

[
l21⊥ + x̄(1− x̄)Q2]+L2

2y⊥

}
= −iΘ(l−1 )Θ(q− − l−1 )[

l21⊥ + x̄(1− x̄)Q2] {y(1−y)
x̄

[
l21⊥ + x̄(1− x̄)Q2]+L2

2y⊥

} , (D.19)

where x̄ = l−1 /q
−. For V1, the delta functions constrain l−1 = k−−l−3 and q−−l−1 = p−+l−3 ,

giving x̄ = (k−− l−3 )/q−, 1− x̄ = (p−+ l−3 )/q−, y = l−3 /(p−+ l−3 ) and 1−y = p−/(p−+ l−3 ).
Finally, one gets

∫ dl+1
(2π)

(2q−)[
l21 + iε

]
[(q − l1)2 + iε]

1[
y(1− y)((q − l1)2 + iε)−L2

2y⊥

]
= −iΘ(l−1 )Θ(q− − l−1 )(

l21⊥ + ∆2
V1
) [
ωV1

(
l21⊥ + ∆2

V3
)

+L2
2y⊥

] , (D.20)

where

∆2
V1 = (k− − l−3 )(p− − l−3 )

(q−)2 Q2 and ωV1 = l−3 p
−q−

(k− − l−3 )(p− + l−3 )2 . (D.21)

This gives the result in eq. (5.63). For the antiquark instantaneous contribution, we use
eq. (D.11) with this time l′ = q, α1 = 0, β1 = 1, α2 = y(1− y), and β2 = −L2

2y⊥, so that

∫ dl+1
(2π)

(2q−)[
l21 + iε

] 1[
y(1− y)((q − l1)2 + iε)−L2

2y⊥

]
= 2q−

2l−1
iΘ(l−1 )Θ(q− − l−1 ){

y(1−y)
x

[
l21⊥ + x(1− x)Q2]+L2

2y⊥

}
= 1
zq − zg

iΘ(l−1 )Θ(q− − l−1 )[
ωV1

(
l21⊥ + ∆2

V1
)

+L2
2y⊥

] , (D.22)

where x = l−1 /q
−, which leads to eq. (5.64).
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E Useful transverse momentum integrals

E.1 Schwinger parametrization and multidimensional Gaussian integral

All the integrals considered in this appendix are computed using Schwinger’s parametriza-
tion of denominators as

1
Dβ

= 1
Γ(β)

∫ ∞
0

ds sβ−1 e−sD , (E.1)

for D > 0 and β > 0. We will also make use of the 2− ε dimensional Gaussian integral∫
d2−εr⊥e

−r2
⊥ = π1−ε/2. (E.2)

Finally, we will employ a very useful integral representation of modified Bessel functions
of order ν that naturally emerge following the Schwinger parametrization of denominators
in the amplitudes: ∫ ∞

0
ds sν−1e−r

2
⊥/se−sQ

2 = 2
(
Q

r⊥

)ν
K−ν(2Qr⊥) , (E.3)

for Q2, r2
⊥ > 0. We will extensively use this result in the computations of the LO and NLO

virtual photon “wavefunctions”.

E.2 Fourier transforms

E.2.1 Gluon emission kernel

The simplest transverse momentum integral encountered when evaluating self energies and
vertex corrections is

µε
∫ d2−εl⊥

(2π)2−ε
eil⊥·r⊥

l2⊥
= 2−1−ε/2

(2π)1−ε/2

(
1

µ2r2
⊥

)−ε/2
Γ
(
−ε2

)
= − 1

4π

{2
ε

+ ln(eγEπµ2r⊥) +O(ε)
}
, (E.4)

with ε < 0. Differentiating with respect to ri⊥, one easily gets the 2− ε integral represen-
tation of the gluon emission kernel

µε
∫ d2−εl⊥

(2π)2−ε
lk⊥e
−il⊥·r⊥

l2⊥
= 2−1−ε/2

(2π)1−ε/2

(
1

µ2r2
⊥

)−ε/2
εΓ
(
−ε2

)
irk⊥
r2
⊥
. (E.5)

In 2 dimensions, this reduces to ∫ d2l⊥
(2π)

lj⊥e
il⊥·r⊥

l2⊥
= irj⊥

r2
⊥
. (E.6)

Eq. (E.5) leads to a useful identity for the integral over z⊥ of the JIMWLK kernel rzx·rzy
r2
zxr

2
zy

in coordinate space. Using twice eq. (E.5), and integrating over z⊥, one gets

µε

π

∫
d2−εz⊥

rzx · rzy
[r2
zx]1−

ε
2 [r2

zy]1−
ε
2

= 4
ε2Γ

(
− ε

2
) ( π

µ2r2
xy

)−ε/2

= −2
ε
− ln

(
r2
xyµ

2

eγEπ

)
+O(ε) . (E.7)
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One can then show that the integral of the difference between two JIMWLK kernels reads as

1
π

∫
d2z⊥

[
rzx · rzx′
r2
zxr

2
zx′
− rzx · rzy
r2
zxr

2
zy

]
= ln

(
r2
xy

r2
xx′

)
. (E.8)

This relation follows from eq. (E.7) after taking the limit ε → 0− on both sides of the
equation.

We conclude this subsection with a proof of the identity in eq. (6.8). Using the
Schwinger parametrization, the integral of the UV singular JIMWLK kernel is

µ−ε

π

∫
d2−εz⊥

r2
xy

r2
zxr

2
zy

= µ−επ−ε/2r2
xy

∫ ∞
0

ds e−sr2
xy

∫ ∞
s

du e−s
2(irxy)2/u

u1−ε/2

= µ−επ−ε/2[r2
xy]1+ ε

2 iε
∫ ∞

0
ds e−sr2

xysε
[
Γ
(
−ε2

)
− Γ

(
−ε2 ,−sr

2
xy

)]
= µ−επ−ε/2[r2

xy]−ε/2Γ
(
−ε2

)
Γ(1 + ε)(iε + i−ε)

= 2
{
−2
ε

+ ln(eγEπµ2r2
xy) +O(ε)

}
. (E.9)

On the other hand, the integral of the ξ dependent regulator reads, for ε < 0,

µ−ε

π

∫
d2−εz⊥

1
r2
zx

e
− r2

zx
2ξ = −µ−ε(2ξπ)−ε/2 2

ε

= −2
ε

+ ln(2πµ2ξ) +O(ε) . (E.10)

Combining these equations, and choosing ξ = r2
xye

γE/2, one gets

1
π

∫
d2z⊥

 r2
xy

r2
zxr

2
zy

− 1
r2
zx

e
− r2

zx
r2
xye

γE − 1
r2
zy

e
−

r2
zy

r2
xye

γE

 = 0 , (E.11)

in the limit ε→ 0−.

E.2.2 LO wavefunctions

The LO amplitude in 4− ε dimensions involves the Fourier transforms:

µε
∫ d2−εl⊥

(2π)2−ε
eil⊥·r⊥

l2⊥ + ∆2 = 1
(2π)1−ε/2

( ∆
µ2r⊥

)−ε/2
K−ε/2(∆r⊥) , (E.12)

µε
∫ d2−εl⊥

(2π)2−ε
lj⊥e

il⊥·r⊥

l2⊥ + ∆2 = 1
(2π)1−ε/2

( ∆
µ2r⊥

)1−ε/2
irj⊥K1−ε/2(∆r⊥) . (E.13)

In two dimensions, one recovers the familiar expressions∫ d2l⊥
(2π)

eil⊥·r⊥

l2⊥ + ∆2 = K0(∆r⊥) , (E.14)

∫ d2l⊥
(2π)

lj⊥e
il⊥·r⊥

l2⊥ + ∆2 = i∆rj⊥
r⊥

K1(∆r⊥) . (E.15)
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E.2.3 NLO wavefunctions

Virtual diagrams. For the dressed self energies and vertex corrections, one needs results
which are straightforward to obtain using Schwinger’s parametrization. (A more detailed
derivation is given in [33, 35]). These are summarized here:

µ2ε
∫ d2−εl1⊥

(2π)2−ε

∫ d2−εl2⊥
(2π)2−ε

lk2⊥e
il1⊥·r1⊥eil2⊥r2⊥(

l21⊥ + ∆2) (l22⊥ + ω(l21⊥ + ∆2)
)

= µε

2
(µ2r2

2⊥)ε/2

(2π)2−ε
irk2⊥
r2

2⊥

∫ ∞
0

ds
s1−ε/2 e

−s∆2
e−

r2
1⊥
4s Γ

(
1− ε

2 ,
ωr2

2⊥
4s

)
, (E.16)

and

µ2ε
∫ d2−εl1⊥

(2π)2−ε

∫ d2−εl2⊥
(2π)2−ε

lj1⊥l
k
2⊥e

il1⊥·r1⊥eil2⊥r2⊥(
l21⊥ + ∆2) (l22⊥ + ω(l21⊥ + ∆2)

)
= −µ

ε

4
(µ2r2

2⊥)ε/2

(2π)2−ε
rj1⊥r

k
2⊥

r2
2⊥

∫ ∞
0

ds
s2−ε/2 e

−s∆2
e−

r2
1⊥
4s Γ

(
1− ε

2 ,
ωr2

2⊥
4s

)
. (E.17)

In two dimensions (ε = 0), the remaining integral over s can be expressed in terms of
modified Bessel functions, as in the LO case:

∫ d2l1⊥
(2π)2

∫ d2l2⊥
(2π)2

lk2⊥e
il1⊥·r1⊥eil2⊥·r2⊥(

l21⊥ + ∆2) [l22⊥ + ω
(
l21⊥ + ∆2)]

= 1
(2π)2

irk2⊥
r2

2⊥
K0

(
∆
√
r2

1⊥ + ωr2
2⊥

)
, (E.18)

∫ d2l1⊥
(2π)2

∫ d2l2⊥
(2π)2

lj1⊥l
k
2⊥e

il1⊥·r1⊥eil2⊥·r2⊥(
l21⊥ + ∆2) [l22⊥ + ω

(
l21⊥ + ∆2)]

= − 1
(2π)2

rj1⊥r
k
2⊥

r2
2⊥

∆√
r2

1⊥ + ωr2
2⊥

K1

(
∆
√
r2

1⊥ + ωr2
2⊥

)
. (E.19)

For instantaneous terms, we need

∫ d2l1⊥
(2π)2

d2l2⊥
(2π)2

eil1⊥r1⊥+il2⊥r2⊥

l22⊥ + ω(l21⊥ + ∆2)
= 1

(2π)2
∆√

r2
1⊥ + ωr2

2⊥

K1

(
∆
√
r2

1⊥ + ωr2
2⊥

)
.

(E.20)
For the free self energies, the following results are useful (with ε > 0):

µ2ε
∫ d2−εl1⊥

(2π)2−ε

∫ d2−εl2⊥
(2π)2−ε

eil1⊥·r⊥(
l21⊥ +Q2) (l22⊥ + ω(l21⊥ +Q2)

)
= 1

(2π)2−ε

(
ωQ2

µ4r2
⊥

)−ε/2 1
ε
K−ε(Qr⊥)

= 1
(2π)

(
Q

(2π)µ2r⊥

)−ε/2
K−ε/2(Qr⊥)× 1

4π

{
2
ε

+ 1
2 ln

(
4π2µ4r2

⊥
Q2ω2

)
+O(ε)

}
, (E.21)
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and

µ2ε
∫ d2−εl1⊥

(2π)2−ε

∫ d2−εl2⊥
(2π)2−ε

li1⊥e
il1⊥·r⊥(

l21⊥ +Q2) (l22⊥ + ω(l21⊥ +Q2)
)

= 1
(2π)2−ε

iQri⊥
r⊥

(
ωQ2

µ4r2
⊥

)−ε/2 1
ε
K1−ε(Qr⊥)

= 1
(2π)

iQri⊥
r⊥

(
Q

(2π)µ2r⊥

)−ε/2
K1−ε/2(Qr⊥)

× 1
4π

{
2
ε

+ 1
2 ln

(
4π2µ4r2

⊥
Q2ω2

)
− 1
Qr⊥

K0(Qr⊥)
K1(Qr⊥) +O(ε)

}
. (E.22)

To obtain the last line in each of the two expressions above, we used the identities

K−ε(Qr⊥) = K−ε/2(Qr⊥) +O(ε2) ,

K1−ε(Qr⊥) = K1−ε/2(Qr⊥)− ε

2 ∂νKν(Qr⊥)|ν=1 +O(ε2)

= K1−ε/2(Qr⊥)− ε

2
1

Qr⊥
K0(Qr⊥) +O(ε2) . (E.23)

Real diagrams. We turn now to the NLO wavefunctions appearing in the real diagrams.
In particular, we will derive the striking result in eq. (4.22), which appears in [32] without
detailed proof. It can be derived from the integral

Im1 (r1⊥,r2⊥) =
∫ d2l1⊥

2π

∫ d2l2⊥
2π

(
lm2⊥
z2

+ lm1⊥
1−z1

)
eil1⊥·r1⊥eil2⊥·r2⊥(

z1(1−z1)Q2 + l21⊥
)(
Q2 + (l1⊥+l2⊥)2

z0
+ l21⊥

z1
+ l22⊥

z2

) ,
(E.24)

where z0 + z1 + z2 = 1. One can obtain Im1 (r1⊥, r2⊥) by taking derivatives of the scalar
integral:

I0(r1⊥, r2⊥) =
∫ d2l1⊥

2π

∫ d2l2⊥
2π

eil1⊥·r1⊥eil2⊥·r2⊥(
z1(1− z1)Q2 + l21⊥

) (
Q2 + (l1⊥+l2⊥)2

z0
+ l21⊥

z1
+ l22⊥

z2

) .
(E.25)

Then

Im1 (r1⊥, r2⊥) = −i
(

1
z2

∂

∂rm2⊥
+ 1

1− z1

∂

∂rm1⊥

)
I0(r1⊥, r2⊥) . (E.26)

The scalar integral I0(r1⊥, r2⊥) does not have a fully analytical solution but Im1 (r1⊥, r2⊥)
will have one. After Schwinger parametrizing the two denominators and performing the
two Gaussian integrals over l1⊥ and l2⊥, one gets

I0(r1⊥, r2⊥) = z2z0z1
4z1(1− z1)

∫ ∞
0

ds e−sQ2
∫ ∞

0

dt
t

e−tQ
2
e
−
z2z0r2

2⊥
4t(1−z1)

(s+ t) e
−
z1(1−z1)

(
r1⊥−

z2
1−z1

r2⊥
)2

4(s+t) .

(E.27)
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This expression suggests the obvious change of variables u = s+ t and v = t, then we have

I0(r1⊥, r2⊥) = z2z0z1
4z1(1− z1)

∫ ∞
0

du
u
e−uQ

2
e
− z1(1−z1)

4u

(
r1⊥−

z2
1−z1

r2⊥

)2 ∫ u

0

dv
v
e
−
z2z0r2

2⊥
4(1−z1)v .

(E.28)
The integral over v leads to an incomplete gamma function with u as an argument and this
renders the analytic computation of the integral over u intractable. Therefore we switch
to Im1 (r1⊥, r2⊥) by taking the corresponding derivatives in eq. (E.26). We need:(

1
z2

∂

∂rm2⊥
+ 1

1− z1

∂

∂rm1⊥

)[
z1(1− z1)

4u

(
r1⊥ −

z2
1− z1

r2⊥

)2
+ z2z0r

2
2⊥

4(1− z1)v

]

=
(

1
z2

∂

∂rm2⊥
+ 1

1− z1

∂

∂rm1⊥

)[
z2z0r

2
2⊥

4(1− z1)v

]
= z0r

m
2⊥

2(1− z1)v . (E.29)

Amazingly, the derivatives acting on the first term cancel each other due to the 1/z2 and
1/(1− z1) weights, and only the action on the second term survives. This brings a factor
of 1

v , which now helps us obtain an analytic solution! We find

Im1 (r1⊥, r2⊥) = i
z2z

2
0r

m
2⊥

8(1− z1)2

∫ ∞
0

du
u
e−uQ

2
e
− z1(1−z1)

4u

(
r1⊥−

z2
1−z1

r2⊥

)2 ∫ u

0

dv
v2 e

−
z2z0r2

2⊥
4(1−z1)v .

(E.30)
The v and u integrals can be performed in terms of usual functions:

Im1 (r1⊥, r2⊥) = i
z0r

m
2⊥

2(1− z1)r2
2⊥
K0(QX) , (E.31)

where

X2 = z1(1− z1)
(
r1⊥ −

z2
1− z1

r2⊥

)2
+ z2z0

(1− z1)r
2
2⊥

= z0z1r
2
1⊥ + z1z2(r1⊥ − r2⊥)2 + z0z2r

2
2⊥ . (E.32)

In the last equality, we used 1− z1 = z0 + z2.

F The integrals J�, J⊗ and JR

F.1 Integral representation of J⊗ and J�

The two integrals J� and J⊗ can be derived from the scalar integral

J (r⊥,K⊥,∆) = µε
∫

d2−εl⊥
(2π)2−ε

eil⊥·r⊥

l2⊥ [(l⊥ −K⊥)2 −∆2 − iε]
, (F.1)

which has to be computed in dimensional regularization since it is infrared divergent in two
dimensions. For the numerical evaluation of this integral in the physical domain ∆2 >K2

⊥,
Feynman parametrization, supplemented by the analytic continuation to physical values of
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∆2, turns out to be the most convenient method. After Feynman parametrization of the
denominators, and completing the squares, one gets

J (r⊥,K⊥,∆) =
∫ 1

0
du eiuK⊥·r⊥µε

∫ d2−εL⊥
(2π)2−ε

eiL⊥·r⊥[
L2
⊥ + u(1− u)K2

⊥ − u∆2 − uiε
]2 . (F.2)

For ∆2 >K2
⊥ and u ∈ [0, 1] one has u(1− u)K2

⊥ − u∆2 < 0. Let us define

δV3 =
√
|u(1− u)K2

⊥ − u∆2| . (F.3)

Then we have

J (r⊥,K⊥,∆) = 2µε

(4π)1−ε/2

∫ 1

0
du i(−1)−ε/4

(
r2
⊥

4δ2
V3

) 1
2 + ε

4

eiuK⊥·r⊥K−1−ε/2 (−iδV3r⊥) ,

(F.4)
where we have analytically continued the modified Bessel function to imaginary values of
its argument (see the discussion below eq. (J.28) for a careful demonstration of the analytic
continuation). Differentiating with respect to ri⊥, and setting ε = 0 since the integral is
now convergent in two dimensions, one obtains the result,∫

d2l⊥
(2π)2

li⊥e
il⊥·r⊥

l2⊥ [(l⊥ −K⊥)2 −∆2]
= 1

4π

∫ 1

0
du eiuK⊥·r⊥K0 (−iδV3r⊥) iri⊥

+ 1
4π

∫ 1

0
du ur⊥e

iuK⊥·r⊥

(−iδV3) K1 (−iδV3r⊥)Ki
⊥ . (F.5)

In order to simplify the term proportional to ri⊥, we used the identity

K0(x) + 1
x
K1(x) = 1

2 (K0(x) +K2(x)) . (F.6)

The integrals J⊗ and J� can then be derived by taking the cross product or the dot
product of eq. (F.5) with −2πiKi

⊥ and (4π)K⊥ respectively, giving

J⊗(r⊥,K⊥,∆) = r⊥ ×K⊥
2

∫ 1

0
du eiuK⊥·r⊥K0 (−iδV3r⊥) , (F.7)

and

J�(r⊥,K⊥,∆) = ir⊥ ·K⊥
∫ 1

0
du eiuK⊥·r⊥K0 (−iδV3r⊥)

+K2
⊥

∫ 1

0
du eiuK⊥·r⊥ ur⊥K1 (−iδV3r⊥)

(−iδV3) . (F.8)

These two formulas are well suited for numerical evaluation.

F.2 Slow gluon limit of J�

Eq. (F.8) is not very practical if we want to extract the behaviour of J� near ∆2 = K2
⊥. In

this limit, the second term of eq. (F.8) diverges because of the u = 0 logarithmic divergence
of the modified Bessel function K1, but finding the asymptotic expansion around ∆2 = K2

⊥
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is difficult. Therefore we would like to find another analytic expression which enables the
extraction of the behaviour of J� as ∆2 →K2

⊥.
Our starting point is again the integral J but now computed using the Schwinger

parametrization of the denominator. Thus rigorously speaking, our calculation is valid for
∆2 <K2

⊥ only. Nevertheless, the asymptotic behaviour near ∆2 = K2
⊥ of eq. (F.8) that we

obtain after analytic continuation is the correct one. From the Schwinger parametrization
of the two denominators (and computing the corresponding Gaussian integrals), one gets

J (r⊥,K⊥,∆) = µε

(4π)1−ε/2

∫ ∞
0

dt e−t(K2
⊥−∆2)

∫ ∞
0

ds
exp

(
(ir⊥+2tK⊥)2

4(s+t)

)
(s+ t)1−ε/2

= 1
4π

2−ε/2

(2π)−ε/2
Γ
(
−ε2

)∫ ∞
0

dt e−t(K
2
⊥−∆2)

(µ2(r⊥ − 2itK⊥)2)−ε/2

− 1
4π

∫ ∞
0

dt e−t(K2
⊥−∆2)Γ

(
0, (r⊥ − 2itK⊥)2

4t

)
+O(ε) . (F.9)

Expanding the first term in powers of ε,

2−ε/2

(2π)−ε/2
Γ
(
−ε2

)( 1
µ2(r⊥−2itK⊥)2

)−ε/2
=−

[2
ε

+ln
(
eγEπµ2(r⊥−2itK⊥)2

)
+O(ε)

]
,

(F.10)
one finds

J (r⊥,K⊥,∆) = − 1
4π

1
K2
⊥ −∆2

[2
ε

+ ln
(
eγEπµ2r2

⊥

)]

− 1
4π

1
K2
⊥ −∆2

∫ ∞
0

dt e−t ln


(
r⊥ − 2iK⊥

K2
⊥−∆2 t

)2

r2
⊥


− 1

4π

∫ ∞
0

dt e−t(K2
⊥−∆2)Γ

(
0, (r⊥ − 2itK⊥)2

4t

)
+O(ε) . (F.11)

One can compute analytically the integral in the second term,

∫ ∞
0

dt e−t ln


(
r⊥ − 2iK⊥

K2
⊥−∆2 t

)2

r2
⊥

 = eχ+Γ (0, χ+) + eχ−Γ (0, χ−) , (F.12)

with

χ+(r⊥,K⊥,∆) = K2
⊥ −∆2

2K2
⊥

(
iK⊥ · r⊥ +

√
K2
⊥r

2
⊥ − (r⊥ ·K⊥)2

)
, (F.13)

χ−(r⊥,K⊥,∆) = K2
⊥ −∆2

2K2
⊥

(
iK⊥ · r⊥ −

√
K2
⊥r

2
⊥ − (r⊥ ·K⊥)2

)
. (F.14)
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Note that the Cauchy-Schwarz inequality, K2
⊥r

2
⊥ ≥ (K⊥ ·r⊥)2 ensures that the square-root

is real. Gathering all the pieces together, one finds

J (r⊥,K⊥,∆) = − 1
4π

1
K2
⊥ −∆2

[2
ε

+ ln
(
eγEπµ2r2

⊥

)
+ eχ+Γ (0, χ+) + eχ−Γ (0, χ−)

]

− 1
4π

∫ ∞
0

dt e−t(K2
⊥−∆2)Γ

(
0, (r⊥ − 2itK⊥)2

4t

)
+O(ε) . (F.15)

With this expression, it is now straightforward to compute the integral J�. Representing
the scalar product between l⊥ andK⊥ as 2l⊥ ·K⊥ = −[(l⊥−K⊥)2−∆2]+[K2

⊥−∆2]+ l2⊥,
one gets

J�(r⊥,K⊥,∆) = −(2π)µε
∫

d2−εl⊥
(2π)2−ε

eil⊥·r⊥

l2⊥
+ (2π)(K2

⊥ −∆2)J (r⊥,K⊥,∆)

+ (2π)µε
∫

d2−εl⊥
(2π)2−ε

eil⊥·r⊥

[(l⊥ −K⊥)2 −∆2] . (F.16)

Further, using

µε
∫

d2−εl⊥
(2π)2−ε

eil⊥·r⊥

l2⊥
= − 1

4π

[2
ε

+ ln
(
eγEπµ2r2

⊥

)]
+O(ε) , (F.17)

one sees that the infrared pole in 1/ε cancels, as it should, and one is left with a finite
expression in two dimensions

J�(r⊥,K⊥,∆) = −1
2 [eχ+Γ (0, χ+) + eχ−Γ (0, χ−)] + eiK⊥·r⊥K0(−i∆r⊥)

− K
2
⊥ −∆2

2

∫ ∞
0

dt e−t(K2
⊥−∆2)Γ

(
0, r

2
⊥

4t − iK⊥ · r⊥ − tK
2
⊥

)
. (F.18)

We can now determine the asymptotic behaviour of this expression, as a function of ∆, in
the limit ∆2 →K2

⊥. The last term vanishes in this limit and χ± → 0. Using

Γ(0, x) = −γE − ln(x) +O(x) , (F.19)

one finds

J�(r⊥,K⊥,∆) = ln
(
K2
⊥ −∆2

2K2
⊥

)
+ 1

2 ln(K2
⊥r

2
⊥) + iπ

2 + γE + eiK⊥·r⊥K0(−iK⊥r⊥)

+O(K2
⊥ −∆2) , (F.20)

with the imaginary part determined modulo 2π. We have checked numerically that this is
the expected asymptotic behaviour of eq. (F.8).

F.3 Slow gluon limit of JR
In this section, we will prove the identity stated in eq. (6.28). We recall that the transverse
momentum integral JR is defined by

JR(r⊥,K⊥) =
∫ d2l⊥

(2π)2 e
−il⊥·r⊥ 4l⊥ · (l⊥ +K⊥)

l2⊥(l⊥ +K⊥)2 , (F.21)
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for K⊥ > 0. We are looking for the asymptotic behaviour of this function as K⊥ goes to
0. Let us first write the numerator as a sum of square using 4l⊥ · (l⊥+K⊥) = 2(l2⊥+ (l⊥+
K⊥)2 −K2

⊥). Plugging this identity inside the definition of JR gives

JR(r⊥,K⊥) = 2
[(

1+eiK⊥·r⊥
)
µε
∫ d2−εl⊥

(2π)2−ε
e−il⊥·r⊥

l2⊥
−K2

⊥µ
ε
∫ d2−εl⊥

(2π)2−ε
e−il⊥·r⊥

l2⊥(l⊥+K⊥)2

]
,

(F.22)
where each integral has been analytically continued to 2 − ε dimensions (with ε < 0).
Indeed, even though the integral JR is convergent in 2 dimensions as long as K⊥ is non-
zero, each term in the expression above is IR divergent in 2 dimensions. The second integral
in eq. (F.22) can be evaluated using Schwinger parametrization:

µε
∫

d2−εl⊥
(2π)2−ε

e−il⊥·r⊥

l2⊥(l⊥ +K⊥)2 = 2−1−ε/2

(2π)1−ε/2 Γ
(
−ε2

)∫ ∞
0

dt e−tK
2
⊥

(µ2(r⊥ − 2itK⊥)2)−ε/2

− 2−1−ε/2

(2π)1−ε/2

∫ ∞
0

dt e−tK
2
⊥

(µ2(r⊥ − 2itK⊥)2)−ε/2
Γ
(
−ε2 ,

(r⊥ − 2itK⊥)2

4t

)
. (F.23)

The first term was computed in the previous section-see eq. (F.12). Setting ∆ = 0 in the
latter equation, one gets

2−1−ε/2

(2π)1−ε/2 Γ
(
−ε2

)∫ ∞
0

dt e−tK
2
⊥

(µ2(r⊥ − 2itK⊥)2)−ε/2

= − 1
4π

1
K2
⊥

(2
ε

+ ln
(
eγEπµ2r2

⊥

))
− 1

4π
1
K2
⊥

[
eχ+(r⊥,K⊥,0)Γ(0, χ+(r⊥,K⊥, 0)) + (χ+ ↔ χ−)

]
+O(ε) , (F.24)

with the functions χ± defined in eq. (F.14). The second term in eq. (F.23) requires special
care because it also contains a 1/ε pole. To extract this pole, we write it as

2−1−ε/2

(2π)1−ε/2

∫ ∞
0

dt e−tK2
⊥

 Γ
(
− ε

2 ,
(r⊥−2itK⊥)2

4t

)
(µ2(r⊥ − 2itK⊥)2)−ε/2

− eiK⊥·r⊥
Γ
(
− ε

2 ,−tK
2
⊥
)

(2itµK⊥)−ε


+ 2−1−ε/2

(2π)1−ε/2 e
iK⊥·r⊥

∫ ∞
0

dt e−tK
2
⊥

(2itµK⊥)−εΓ
(
−ε2 ,−tK

2
⊥

)

= 1
4π

∫ ∞
0

dt e−tK2
⊥

{
Γ
(

0, (r⊥ − 2itK⊥)2

4t

)
− eiK⊥·r⊥Γ

(
0,−tK2

⊥

)}

+ 2−1−ε/2

(2π)1−ε/2 e
iK⊥·r⊥

∫ ∞
0

dt e−tK
2
⊥

(2itµK⊥)−εΓ
(
−ε2 ,−tK

2
⊥

)
+O(ε) . (F.25)

To obtain the last line, we used the fact that the first integral is convergent when ε = 0. As
a consequence, one can set ε = 0 up to terms of order O(ε). Combining all of these results

– 88 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

inside eq. (F.22), performing a change of variable tK2
⊥ → t inside the t integrals, one gets

JR(r⊥,K⊥) = lim
ε→0

1
2π

{
−eiK⊥·r⊥

(2
ε

+ ln(eγEπµ2r2
⊥)
)

+ eχ+Γ(0, χ+) + eχ−Γ(0, χ−)

+
∫ ∞

0
dt e−t

[
Γ
(

0, r
2
⊥K

2
⊥

4t − ir⊥K⊥ − t
)
− eiK⊥·r⊥Γ (0,−t)

]

+
(
K⊥

2iµπ2

)−ε
eiK⊥·r⊥

∫ ∞
0

dt e−t tε Γ
(
−ε2 ,−t

)}
. (F.26)

The integral in the third term of the r.h.s. of this expression contains a pole of the form
2eiK⊥·r⊥/ε which exactly cancels the pole in the first term. This is to be expected since
JR(r⊥,K⊥) has no IR nor UV divergences. We have indeed
(
K⊥

2iµπ2

)−ε ∫ ∞
0

dt e−t tε Γ
(
−ε2 ,−t

)
= 2
ε
− 2γE − ln

(
K2
⊥

4πeγEµ2

)
− iπ +O(ε) , (F.27)

so our final expression for JR(r⊥,K⊥) reads

JR(r⊥,K⊥) = 1
2π

{
−eiK⊥·r⊥

[
ln
(
K2
⊥r

2
⊥

4

)
+ 2γE + iπ

]
+ eχ+Γ(0, χ+) + eχ−Γ(0, χ−)

+
∫ ∞

0
dt e−t

[
Γ
(

0, r
2
⊥K

2
⊥

4t − ir⊥K⊥ − t
)
− eiK⊥·r⊥Γ (0,−t)

]}
, (F.28)

with χ± = χ±(r⊥,K⊥, 0). It is now straightforward to obtain the asymptotic behaviour
of JR(r⊥,K⊥) in the limit K⊥ → 0. The integral in the second line goes to 0 at small
K⊥. Using eq. (F.19), one gets finally

JR(r⊥,K⊥) = 1
2π

{
−2 ln

(
K2
⊥r

2
⊥

4

)
− 4γE − 2iπ +O(K⊥)

}
, (F.29)

which completes our proof of eq. (6.28).

G Details of the computation of diagram R2

The scattering amplitude for qq̄ + g emission from a quark after scattering from the shock
wave is given by

Sλλ̄σσ′R2 =
∫ d4l

(2π)4 ū(k, σ)
(
igta/ε∗(kg, λ̄)

)
S0(k + kg)T q(k + kg, l)S0(l) (−ieef/ε(q, λ))

× S0(l − q)T q(l − q,−p)v(p, σ′) . (G.1)

As usual, we have subtracted the noninteracting term and factored out the overall 2πδ(q−−
k− − p− − k−g ) function, to obtain the physical amplitude

Mλλ̄σσ′
R2 = eefq

−

π

∫
d2w⊥d2y⊥e

−i(k⊥+kg⊥)·w⊥e−ip⊥·y⊥CR2(w⊥,y⊥)N λλ̄σσ′
R2 (rwy) , (G.2)
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with the color factor

CR2(w⊥,y⊥) =
[
taV (w⊥)V †(y⊥)− ta

]
, (G.3)

and the perturbative factor

N λλ̄σσ′
R2 (rwy) = ig

∫ d4l

(2π)2 e
il⊥·rwy (2q−)Nλλ̄σσ′

R2 (l)δ(l− − q− + p−)
(l2 + iε)((l − q)2 + iε) , (G.4)

with the Dirac numerator

Nλλ̄σσ′
R2 (l) = 1

(2q−)2
1

(2k.kg)
[
ū(k, σ)/ε∗(kg, λ̄)(/k + /kg)γ−/l/ε(q, λ)(/l − /q)γ−v(p, σ′)

]
. (G.5)

In the perturbative factor, the integration over l− is trivial due to the presence of the
delta function δ(l− − q− + p−), while the integration over l+ is performed using contour
integration employing Cauchy’s theorem. We note that due the location of the γ−, the
Dirac structure NR1 is independent of l+. Therefore the contour integral is the same as in
the LO calculation. We find then that eq. (G.4) becomes

N λλ̄σσ′
R2 (rwy) = −g

∫ d2l⊥
(2π)

Nλλ̄σσ′
R2 (l)eil⊥·rwy
l2⊥ + Q̄2

R2
, (G.6)

where Q̄2
R2 = zq̄(1 − zq̄)Q2. To proceed, we reexpress the Dirac structure in eq. (G.5)

employing the identity in eq. (C.29) and find

Nλλ̄σσ′
R2 (l) = (zqkg⊥ − zgk⊥) · ελ̄∗⊥

(zqkg⊥ − zgk⊥)2

{
ū(k, σ)

[
(2zq + zg) + zgλ̄Ω

]
DλLO(l)v(p, σ′)

}
. (G.7)

Combining eq. (G.7) and eq. (G.6) gives eq. (4.37) in the main text.

H Details of the computation of diagram SE2

The quark free self energy before the shock wave is UV divergent in 4 dimensions; we
will therefore compute it using dimensional regularization. The amplitude in d = 4 − ε
dimensions reads

Sλσσ′SE2 = µ2ε
∫ d4−εl1

(2π)4−ε
d4−εl2

(2π)4−ε

[
ū(k, σ)T q(k, l1)S0(l1)(igγµta)S0(l1 − l2)(igγνta)S0(l1)

× (−ieef/ε(q, λ)) S0(l1 − q)T q(l1 − q,−p)v(p, σ′)
]
G0
µν(l2) . (H.1)

Subtracting the noninteracting piece, and factoring out the overall delta function 2πδ(q−−
k− − p−), we find

Mλσσ′
SE2 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥e−ip⊥·y⊥CSE2(x⊥,y⊥)N λσσ′
SE2 (rxy) , (H.2)

with the color structure

CSE2(x⊥,y⊥) = CF
[
V (x⊥)V †(y⊥)− 1

]
, (H.3)
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and the perturbative factor

N λσσ′
SE2 (rxy) = g2µ2ε

∫ d4−εl1
(2π)3−ε

d4−εl2
(2π)3−ε e

il1⊥·rxy

× (2q−)Nλσσ′
SE2 (l1, l2)δ(k− − l−1 )

(l21 + iε)((l1 − l2)2 + iε)(l21 + iε)((l1 − q)2 + iε)(l22 + iε)
. (H.4)

The Dirac numerator for this diagram reads

Nλσσ′
SE2 = 1

(2q−)2

[
ū(k, σ)γ−/l1γµ(/l1 − /l2)γν/l1/ε(q, λ)(/l1 − /q)γ−v(p, σ′)

]
Πµν(l2) . (H.5)

Dirac numerator NSE2(l1, l2) in d = 4 − ε dimensions. Using the definition in
eq. (A.5) of the gluon polarization tensor Πµν , one finds that

γµ(/l1 − /l2)γνΠµν(l2) = γµ
[
2(l1,ν − l2,ν)− γν(/l1 − /l2)

]
Πµν(l2)

= 2γµ(l1,ν − l2,ν)
(
−gµν + 1

l−2
(lµ2nν + lν2n

µ)
)
− γµγν

(
−gµν + 1

l−2
(lµ2nν + lν2n

µ)
)

(/l1 − /l2)

= −2(/l1 − /l2) + 2
l−2

(
/l2(l−1 − l

−
2 ) + γ−(l1 − l2)l2

)
+
(

4− ε− 1
l−2

(/l2γ− + γ−/l2)
)

(/l1 − /l2)

= 2
l−2

(
/l2(l−1 − l

−
2 ) + γ−(l1 − l2)l2

)
− ε(/l1 − /l2) . (H.6)

In this expression, the O(ε) term comes from γµγµ = d = 4 − ε. Then using /l1/l2/l1 =
2l1l2/l1 − l21/l2 and 2l1l2 = l21 + l22 − (l1 − l2)2, the Dirac structure reads

Nλσσ′
SE2 =

{
−
(

4l−1
l−2
− 2 + ε

)
(l1 − l2)2 +

(
4l−1
l−2
− 2

)
l21 − (2− ε)l22

}
ū(k, σ)DλLO(l1)v(p, σ′)

− l21

(
2l−1
l−2
− 2 + ε

) [
ū(k, σ)γ−/l2/ε(q, λ)(/l1 − /q)v(p, σ′)

]
(2q−)2 . (H.7)

Finally, decomposing the l2 four-vector in the second term according to l2 =
(
l2 −

l−2
l−1
l1

)
+

l−2
l−1
l1, one gets

Nλσσ′
SE2 =

{(
2− ε− 4l−1

l−2

)
(l1 − l2)2 +

(
4l−1
l−2
− 4 + (2− ε) l

−
2
l−1

)
l21 − (2− ε)l22

}
× ū(k, σ)DλLO(l1)v(p, σ′)

+ l21L
i
2x⊥

(
2l−1
l−2
− 2 + ε

) [
ū(k, σ)γ−γi/ε(q, λ)(/l1 − /q)v(p, σ′)

]
(2q−)2 , (H.8)

with L2x⊥ = l2⊥ −
l−2
l−1
l1⊥. To sum up, the Dirac numerator of the diagram SE2 can be

expressed as

NSE2 = l21NSE2,reg + l21NSE2,qinst1 + (l1 − l2)2NSE2,qinst2 + l22NSE2,ginst . (H.9)
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The last two terms cancel the corresponding propagators in the denominator of the pertur-
bative factor. They do not contribute to the amplitude since they vanish after integration
over l+2 and l+1 . The regular term NSE2,reg can be written as

Nλσσ′
SE2,reg = 4zq

zg

[
1− zg

zq
+
(

1− ε

2

)
z2
g

2z2
q

]
ū(k, σ)DλLO(l1)v(p, σ′) , (H.10)

with zq = k−/q− and zg = l−2 /q
−. The quark instantaneous term Nλσσ′

SE2,qinst,1 is proportional
to Li2x⊥ and vanishes due to rotational invariance of the transverse integral. We do not
discuss its structure further. This term corresponds to the instantaneous quark self energy
diagram in LCPT, and is indeed identically zero by rotational invariance, as shown in [33].
The decomposition given by eq. (H.9) is slightly different from the general decomposition
of the Dirac structure outlined in section 3 since both the regular and the quark instanta-
neous contributions are multiplied by a factor l21. The reason is that strictly speaking, our
discussion in section 3 applies for diagrams without double propagators, which is not the
case of diagram SE2. In the regular term, the l21 factor cancels the quark propagator after
the virtual gluon emission, while in the instantaneous quark term Nλσσ′

SE2,qinst,1, the l21 factor
cancels the quark propagator before the virtual gluon emission.

Pole structure. As mentioned, the quark instantaneous term vanishes for both longi-
tudinal and transverse virtual photon polarization, because of rotational invariance of the
L2x⊥ integral. On the other hand, the regular perturbative factor does not depend on l+1
nor l+2 in the numerator. One can thus easily perform the l+1 and l+2 integrals by contour
integration, using the results of appendix D. The regular perturbative factor is then

NSE2,reg(rxy) = g2

2

∫
dzg µ2ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε e

il1⊥·rxyISE2,regNSE2,reg , (H.11)

with

ISE2,reg =
∫ dl+1

(2π)

∫ dl+2
(2π)

(2q−)2

[l21 + iε][(l1 − q)2 + iε][(l1 − l2)2 + iε][l22 + iε]
(H.12)

= − 1
zq

1(
l21⊥ + Q̄2

) Θ(zg)Θ(zq − zg)[
L2

2x⊥ + ωSE2(l21⊥ + Q̄2)
] , (H.13)

where Q̄2 = zqzq̄Q
2 and ωSE2 = zg(zq − zg)/(z2

qzq̄).

Transverse momentum integration. The next step consists in calculating the remain-
ing transverse momeentum integrals over l1⊥ and l2⊥ in 2−ε dimensions. For a longitudinal
virtual photon (λ = 0), the expression reads as

N λ=0,σσ′
SE2 (rxy)=2g2zqzq̄Q

∫ zq

0

dzg
zg

[
1−zg

zq
+
(

1−ε2

)
z2
g

2z2
q

]
[ū(k,σ)γ−v(p,σ′)]

q−

×
∫ d2−εl1⊥

(2π)2−ε
d2−εl2⊥
(2π)2−ε

eil1⊥·rxy(
l21⊥+Q̄2

)[
L2

2x⊥+ωSE2(l21⊥+Q̄2)
] (H.14)

=−αs
π
N λ=0,σσ′

LO,ε (rxy)
∫ zq

0

dzg
zg

[
1−zg

zq
+
(

1−ε2

)
z2
g

2z2
q

]{
2
ε

+1
2ln

(
4π2µ4r2

xy

Q̄2ω2
SE2

)
+O(ε)

}
. (H.15)
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To go from eq. (H.14) to eq. (H.15), we used the formula eq. (E.21). Similarly, for a
transversely polarized photon (λ = ±1), one finds

N λ=±1,σσ′
SE2 (rxy)=g2

∫ zq

0

dzg
zg

[
1−zg

zq
+
(

1−ε2

)
z2
g

2z2
q

]
[ū(k,σ)((zq̄−zq)δij+ωij)γ−v(p,σ′)]

q−
ελ,i⊥

×
∫ d2−εl1⊥

(2π)2−ε
d2−εl2⊥
(2π)2−ε

lj1⊥e
il1⊥·rxy(

l21⊥+Q̄2
)[
L2

2x⊥+ωSE2(l21⊥+Q̄2)
] (H.16)

=−αs
π
N λ=±1,σσ′

LO,ε (rxy)
∫ zq

0

dzg
zg

[
1−zg

zq
+
(

1−ε2

)
z2
g

2z2
q

]

×
{

2
ε

+1
2ln

(
4π2µ4r2

xy

Q̄2ω2
SE2

)
− K0(Q̄rxy)
Q̄rxyK1(Q̄rxy)

+O(ε)
}
, (H.17)

where we used eq. (E.22) to obtain the second line. Computing the remaining zg integrals
results in eq. (5.40) and eq. (5.41) in the main text.

I Details of the computation of diagram V2

This diagram is UV divergent, therefore we compute it in 4 − ε dimensions in order to
extract the 1/ε pole (when a given diagram is UV convergent, we compute it directly in 4
dimensions). The amplitude of the free vertex correction before the shock wave is given by

Sλσσ′V2 = µ2ε
∫ d4−εl1

(2π)4−ε
d4−εl2

(2π)4−ε

[
ū(k, σ)T q(k, l1)S0(l1)(igγµta)S0(l1 − l2)(−ie/ε(q, λ))

× S0(l1 − l2 − q)(igtbγν)S0(l1 − q)T q(l1 − q,−p)v(p, σ′)
]
G0,ab
µν (l2) . (I.1)

Subtracting the noninteracting piece, and factoring out the overall delta function 2πδ(q−−
k− − p−), we find

Mλσσ′
V2 = eefq

−

π
µ−2ε

∫
d2−εx⊥d2−εy⊥e

−ik⊥·x⊥−ip⊥·y⊥CV2(x⊥,y⊥)N λσσ′
V2 (rxy) , (I.2)

with the color structure

CV2(x⊥,y⊥, z⊥) = CF
[
V (x⊥)V †(y⊥)− 1

]
, (I.3)

and the perturbative factor

N λσσ′
V2 (rxy) = g2µ2ε

∫ d4−εl1
(2π)3−ε

d4−εl2
(2π)3−ε e

il1⊥·rxy (I.4)

× (2q−)δ(k− − l−1 )Nλσσ′
V2 (l1, l2)[

l21 + iε
]
[(l1 − l2)2 + iε] [(l1 − l2 − q)2 + iε] [(l1 − q)2 + iε]

[
l22 + iε

] ,
where the Dirac numerator is given by

Nλσσ′
V2 = 1

(2q−)2

[
ū(k, σ)γ−/l1γµ(/l1 − /l2)/ε(q, λ)(/l1 − /l2 − /q)γν(/l1 − /q)γ−v(p, σ′)

]
Πµν(l2).

(I.5)
As usual, the integration over l−1 is trivial with the delta function constraint resulting in
l−1 = k−.
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Dirac numerator NV2(l1, l2) in 4−ε dimensions. The Dirac algebra of diagram V2
is by far the most difficult of those encountered thus far. We used the formula provided
in appendix C to write the gluon emission and absorption pieces in eq. (I.5). To use the
identities in appendix C, one first expresses the gluon polarization tensor Πµν(l2) using
eq. (C.20). Then the gluon absorption piece of Nλ

V2(l1, l2), given by γ−/l1/ε(l2, λ̄)(/l1 − /l2),
is simplified using eq. (C.27) (after the change of variables l1 → l1 − l2). Similarly, the
gluon emission piece (/l1 − /l2 − /q)/ε∗(q, λ̄)(/l1 − /q)γ− is simplified using eq. (C.33). The
resulting expression for the Dirac numerator in eq. (I.5) can be decomposed into

NV2 = NV2,reg + l22NV2,ginst + (l1 − l2)2NV2,qinst + (l1 − l2 − q)2NV2,q̄inst . (I.6)

This expression, in mathematical terms, is the statement that we made in section 3
about the correspondence between our calculation and the LCPT approach. In the latter,
different instantaneous diagrams appear, either with an instantaneous gluon, quark or
antiquark. They correspond to the last three terms in the expression eq. (I.6). The Dirac
algebra computation associated with each contribution yields

Nλσσ′
V2,reg = −4(1 + x)(1− y)

xy
Li2x⊥L

k
2y⊥ (I.7)

×
{
ū(k, σ)

[(
1 + x

2

)
δij + x

2ω
ij
]
DλLO(l1 − l2)

[(
1− y

2

)
δjk − y

2ω
jk
]
v(p, σ′)

}
,

Nλ
V2,ginst = −4zqzq̄

z2
g

[
ū(k, σ)DλLO(l1 − l2)v(σ′)

]
, (I.8)

Nλσσ′
V2,qinst = 2(1 + x)(1− y)

y(2q−)2 (I.9)

×
[
ū(k, σ)γjγ−/ε(q, λ)(/l1 − /l2 − /q)γ−

(
δij + y

2γ
iγj
)
v(p, σ′)

]
Li2y⊥ ,

Nλσσ′
V2,q̄inst = −2(1 + x)(1− y)

x(2q−)2 (I.10)

×
[
ū(k, σ)

(
δij − x

2γ
jγi
)
γ−(/l1 − /l2)/ε(q, λ)γ−γjv(p, σ′)

]
Li2x⊥ .

Here x = l−2 /(l
−
1 − l

−
2 ) = zg/(zq − zg), L2x⊥ = l2⊥ − zg

zq
l1⊥, y = l−2 /(q− − l

−
1 + l−2 ) =

zg/(zq̄ + zg) and L2y⊥ = l2⊥ + zg
zq̄
l1⊥.

For a longitudinal photon (λ = 0), it is clear that the quark and antiquark instanta-
neous Dirac numerators vanish, because of the identity γ−/ε(q, λ = 0) = 0. In the transverse
polarization case, even though Nλ=±1

V2,qinst is non-zero, the corresponding perturbative factor
will vanish after the transverse momentum integration; this is a consequence of rotational
symmetry since the numerator18 is proportional to Li2y⊥. Therefore we do not discuss
further the quark and antiquark instantaneous Dirac numerators. Using

Dλ=0
LO (l1 − l2) = −(zq − zg)(zq̄ + zg)Q

γ−

q−
, (I.11)

Dλ=±1
LO (l1 − l2) = 1

2ε
λ,l
⊥ (lm1⊥ − lm2⊥)((zq̄ − zq + 2zg)δlm + ωlm)γ

−

q−
, (I.12)

18When λ = ±1, one has γ−/ε(q, λ)(/l1 − /l2 − /q)γ− = 2(l−1 − l
−
2 − q

−)ελ,k⊥ γkγ− and therefore, the Dirac
structure inside the square bracket of eq. (I.10) does not depend on the transverse momentum vector L2y⊥.
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and the identities eq. (C.6) and eq. (C.7), one finds that the instantaneous gluon and regular
Dirac numerators for a longitudinal and transverse photon in d = 2 + 2− ε dimensions are
given by

Nλ=0,σσ′
V2,ginst = 4zqzq̄Q(zq−zg)(zq̄+zg)

z2
g

[ū(k,σ)γ−v(p,σ′)]
q−

, (I.13)

Nλ=±1,σσ′
V2,ginst =−2zqzq̄

z2
g

ελ,l⊥ (lm1⊥−lm2⊥)ū(k,σ)
{

(zq̄−zq+2zg)δlm
γ−

q−
+ωlm γ

−

q−

}
v(p,σ′), (I.14)

Nλ=0,σσ′
V2,reg = 4zqzq̄Q(zq−zg)(zq̄+zg)

z2
g

Li2x⊥L
k
2y⊥

×ū(k,σ)
{[

1+ zg
2(zq−zg)

− zg
2(zq̄+zg)

−
(

1−ε2

)
z2
g

2(zq−zg)(zq̄+zg)

]
δik

γ−

q−

+
[

zg
2(zq−zg)

− zg
2(zq̄+zg)

−
(

1+ε

2

)
z2
g

2(zq−zg)(zq̄+zg)

]
ωik

γ−

q−

}
v(p,σ′), (I.15)

Nλ=±1,σσ′
V2,reg =−2zqzq̄

z2
g

ελ,l⊥ (lm1⊥−lm2⊥)Li2x⊥Lk2y⊥ū(k,σ)
{[

(zq̄−zq+2zg)δlm
γ−

q−
+ωlm γ

−

q−

]

×
[(

1+ zg
2(zq−zg)

− zg
2(zq̄+zg)

−
(

1−ε2

)
z2
g

2(zq−zg)(zq̄+zg)

)
δik

+
(

zg
2(zq−zg)

− zg
2(zq̄+zg)

−
(

1+ε

2

)
z2
g

2(zq−zg)(zq̄+zg)

)
ωik
]}
v(p,σ′)+O(ε). (I.16)

We do not perform the spinor contraction explicitly since we want our formulas to be valid
in d = 4 − ε dimensions. It is nevertheless straightforward to do so using ωij = −iεijΩ,
the identity eq. (A.9) and the formulas provided in appendix C.1.2. In eq. (I.16), the term
of order O(ε) arises from the commutator of [ωlm, ωij ] when using (C.7). The complete
set of O(ε) terms for the Dirac structure of V2 in the transversely polarized case can be
found in [33].

Pole structures of the perturbative factor. Given eq. (I.6), the perturbative factor
can be decomposed as

NV2(rxy) = NV2,reg(rxy) +NV2,ginst(rxy) +NV2,qinst(rxy) +NV2,q̄inst(rxy) , (I.17)

with

NV2,reg(rxy) = g2

2

∫
dzg µ2ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε e

il1⊥·rxyIV2,regNV2,reg , (I.18)

NV2,ginst(rxy) = g2

2

∫
dzg µ2ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε e

il1⊥·rxyIV2,ginstNV2,ginst , (I.19)

NV2,qins(rxy) = g2

2

∫
dzg µ2ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε e

il1⊥·rxyIV2,qinstNV2,qinst , (I.20)

NV2,q̄inst(rxy) = g2

2

∫
dzg µ2ε

∫ d2−εl1⊥
(2π)2−ε

d2−εl2⊥
(2π)2−ε e

il1⊥·rxyIV2,q̄instNV2,q̄inst . (I.21)
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The contour integrals IV2 are performed using Cauchy’s theorem:

IV2,reg =
∫ dl+1

(2π)
dl+2
(2π)

(2q−)2[
l21 + iε

]
[(l1 − l2)2 + iε] [(l1 − l2 − q)2 + iε] [(l1 − q)2 + iε]

[
l22 + iε

]
= (zq − zg)

zq

Θ(zg)Θ(zq − zg)[
l21⊥ + Q̄2

] [
(l2⊥ − l1⊥)2 + ∆2

V2,ginst

] [
L2

2x⊥ + ∆2
V2,q̄inst

]
+ (zg + zq̄)

zq̄

Θ(−zg)Θ(zg + zq̄)[
l21⊥ + Q̄2

] [
(l2⊥ − l1⊥)2 + ∆2

V2,ginst

] [
L2

2y⊥ + ∆2
V2,qinst

] , (I.22)

IV2,ginst =
∫ dl+1

(2π)
dl+2
(2π)

(2q−)2[
l21 + iε

]
[(l1 − l2)2 + iε] [(l1 − l2 − q)2 + iε] [(l1 − q)2 + iε]

= − Θ(zq − zg)Θ(zq̄ + zl)[
l21⊥ + Q̄2

] [
(l2⊥ − l1⊥)2 + ∆2

V2,ginst

] , (I.23)

IV2,qinst =
∫ dl+1

(2π)
dl+2
(2π)

(2q−)2[
l21 + iε

]
[(l1 − l2 − q)2 + iε] [(l1 − q)2 + iε]

[
l22 + iε

]
= zg + zq̄
zq̄(zg − zq)

Θ(−zg)Θ(zq̄ + zg)[
l21⊥ + Q̄2

] [
L2

2y⊥ + ∆V2,qinst
] , (I.24)

IV2,q̄inst =
∫ dl+1

(2π)
dl+2
(2π)

(2q−)2[
l21 + iε

]
[(l1 − l2)2 + iε] [(l1 − q)2 + iε]

[
l22 + iε

]
= zg − zq
zq(zg + zq̄)

Θ(zg)Θ(zq − zg)[
l21⊥ + Q̄2

] [
L2

2x⊥ + ∆V2,q̄inst
] . (I.25)

Here

∆2
V2,ginst = (zq − zg)(zq̄ + zg)Q2 , (I.26)

∆2
V2,qinst = −zg(zq̄ + zg)

z2
q̄zq

[
l21⊥ + Q̄2

]
, (I.27)

∆2
V2,q̄inst = zg(zq − zg)

zq̄z2
q

[
l21⊥ + Q̄2

]
. (I.28)

Transverse momentum integration. Combining the results for IV2,qinst and IV2,q̄inst
with the corresponding Dirac numerators NV2,qinst and NV2,q̄inst, one verifies that the quark
and antiquark instantaneous diagrams vanish due to rotational invariance. For the same
reason, the instantaneous gluon diagram vanishes when the virtual photon has transverse
polarization λ = ±1. To perform the transverse integrals in the gluon instantaneous
contribution for longitudinal photon and in the regular contribution, we have followed the
same method as in [33] and employed the Passarino-Veltman tensor reduction [107] of the
l2⊥ integrals. After the remaining integration over zg, one gets (5.78) and (5.79).

– 96 –



J
H
E
P
1
1
(
2
0
2
1
)
2
2
2

J Details of the computation of diagram V3

From the Feynman diagram in figure 10-right, one readily writes the amplitude

Sλσσ
′

V3 =
∫ d4l1

(2π)4
d4l2

(2π)4

[
ū(k,σ)(igγµta)S0(k− l2)T q(k− l2, l1)S0(l1) (J.1)

× (−ieef/ε(q,λ))S0(l1−q)T q(l1−q,−p− l2)S0(−p− l2)(igγνtb)v(p,σ′)
]
G0,µν
ab (l2) .

Subtracting the noninteracting piece, and factoring out the overall delta function 2πδ(q−−
k− − p−), we find

Mλσσ′
V3 = eefq

−

π

∫
d2x⊥d2y⊥ e

−ik⊥·x⊥−ip⊥·y⊥CV3(x⊥,y⊥)N λσσ′
V3 (rxy) , (J.2)

with color structure

CV3(x⊥,y⊥) = taV (x⊥)V †(y⊥)ta − CF1 , (J.3)

and perturbative factor

N λσσ′
V3 (rxy) = g2

∫ d4l1
(4π)3

d4l2
(4π)3 e

i(l1⊥+l2⊥)·rxyδ(k− − l−2 − l
−
1 )

× (2q−)Nλσσ′
V3 (l1, l2)

(l21 + iε)((l1 − q)2 + iε)((k − l2)2 + iε)((l2 + p)2 + iε)(l22 + iε)
. (J.4)

The Dirac structure of this diagrams reads

Nλσσ′
V3 = 1

(2q−)2

[
ū(k, σ)γµ(/k − /l2)γ−/l1/ε(q, λ)(/l1 − /q)γ−(−/p− /l2)γνv(p, σ′)

]
Πµν(l2) .

(J.5)

Dirac structure. Using the identities (C.20), (C.25), and (C.35), one decomposes the
Dirac numerator as

NV3 = NV3,reg + l22NV3,ginst , (J.6)

with

Nλσσ′
V3,reg =

−4Li2x⊥Lk2y⊥
xy

(J.7)

×
{
ū(k, σ)

[(
1− x

2

)
δij − ix2 ε

ijΩ
]
DLO(l1)

[(
1 + y

2

)
δjk + i

y

2 ε
jkΩ

]
v(p, σ′)

}
Nλσσ′

V3,ginst = −4(1− x)(1 + y)
xy

[
ū(k, σ)DLO(l1)v(p, σ′)

]
, (J.8)

with x = l−2 /k
−, y = l−2 /p

−, L2x⊥ = l2⊥ − xk⊥, L2y⊥ = l2⊥ − yp⊥. For a longitudinally
polarized photon, with /ε(q, λ = 0) = Q

q− γ
−, we find for the gluon instantaneous term

Nλ=0,σσ′
V3,ginst = 8Q(zg − zq)2(zg + zq̄)2

z2
g

√
zqzq̄δ

σ,−σ′ , (J.9)
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and for the regular term, using Eq (C.18),

Nλ=0,σσ′
V3,reg = −8(zqzq̄)3/2Q(zg − zq)(zg + zq̄)

z2
g

Li2x⊥L
k
2y⊥

×
{[

1− zg
2zq

+ zg
2zq̄
−

z2
g

2zqzq̄

]
δik + iσ

[
zg
2zq
− zg

2zq̄
+

z2
g

2zqzq̄

]
εik
}
. (J.10)

The transverse polarized case can be worked out in a similar fashion. The gluon instanta-
neous Dirac structure reads

Nλ=±1,,σσ′
V3,ginst = 8(zg − zq)(zg + zq̄)

z2
g

(l1⊥ · ελ⊥)Γσ,λγ∗T→qq̄(zq − zg, zq̄ + zg)δσ,−σ
′
, (J.11)

while the regular Dirac structure can be written as

Nλ=±1,,σσ′
V3,reg = −8zqzq̄

z2
g

Li2x⊥L
k
2y⊥(l1⊥ · ελ⊥)Γσ,λγ∗T→qq̄(zq − zg, zq̄ + zg)δσ,−σ

′

×
{[

1− zg
2zq

+ zg
2zq̄
−

z2
g

2zqzq̄

]
δik + iσ

[
zg
2zq
− zg

2zq̄
+

z2
g

2zqzq̄

]
εik
}
. (J.12)

Pole structure of the instantaneous and regular pieces. Using the decomposition
in eq. (J.6), we can express the perturbative factor as

NV3(rxy) = NV3,reg(rxy) +NV3,ginst(rxy) , (J.13)

with

NV3,reg(rxy) = g2

2

∫
dzg

∫ d2l1⊥
(2π)2

d2l2⊥
(2π)2 e

i(l1⊥+l2⊥)·rxyIV3,regNV3,reg , (J.14)

NV3,ginst(rxy) = g2

2

∫
dzg

∫ d2l1⊥
(2π)2

d2l2⊥
(2π)2 e

i(l1⊥+l2⊥)·rxyIV3,ginstNV3,ginst , (J.15)

with the pole structure:

IV3,reg =
∫ dl+1

(2π)
dl+2
(2π)

(2q−)2

(l1 − q)2l21(k − l2)2(p+ l2)2l22
, (J.16)

IV3,ginst =
∫ dl+1

(2π)
dl+2
(2π)

(2q−)2

(l1 − q)2l21(k − l2)2(p+ l2)2 , (J.17)

where we have again omitted the +iε prescription for the propagators. The computation
of these integrals is straightforward using Cauchy’s theorem. After a little bit of algebra,
we write them in the form:

IV3,reg = I>V3,regΘ(zg) + I<V3,regΘ(−zg) , (J.18)

I>V3,reg = −(zg − zq)
zq

1
l21⊥ + Q̄2

Θ(zq − zg)

L2
2x⊥

[(
L2x⊥ −

(
1− zg

zq

)
P⊥
)2
−∆2

V3 − iε
] , (J.19)

I<V3,reg = (zg + zq̄)
zq̄

1
l21⊥ + Q̄2

Θ(zq̄ + zg)

L2
2y⊥

[(
L2y⊥ −

(
1 + zg

zq̄

)
P⊥
)2
−∆2

V3 − iε
] , (J.20)
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with

P⊥ = zq̄k⊥ − zqp⊥ , (J.21)

∆2
V3 =

(
1− zg

zq

)(
1 + zg

zq̄

)
P 2
⊥ . (J.22)

The two contributions with either zq ≥ zg ≥ 0 or −zq̄ ≤ zg ≤ 0 are in one-to-one correspon-
dence with the two possible time ordering of the exchanged gluon in lightcone perturbation
theory. Similarly, the contour integration of the instantaneous term gives

IV3,ginst = − 1
l21⊥ + Q̄2

Θ(zq − zg)Θ(zq̄ + zg)[(
L2x⊥ −

(
1− zg

zq

)
P⊥
)2
−∆2

V3 − iε
] . (J.23)

It is convenient to decompose the instantaneous term into two pieces depending on the
sign of zg, as for the regular contribution,

IV3,ginst = I>V3,ginsΘ(zg) + I<V3,ginstΘ(−zg) , (J.24)

I>V3,ginst = − 1
l21⊥ + Q̄2

Θ(zq − zg)[(
L2x⊥ −

(
1− zg

zq

)
P⊥
)2
−∆2

V3 − iε
] , (J.25)

I<V3,ginst = − 1
l21⊥ + Q̄2

Θ(zq̄ + zg)[(
L2y⊥ −

(
1 + zg

zq̄

)
P⊥
)2
−∆2

V3 − iε
] . (J.26)

Transverse momentum integration. We consider only the > component of the per-
turbative factor since one can relate the < piece by q ↔ q̄ interchange. One should first
notice that given the topology of the free vertex correction after shock wave, the integrals
over l1⊥ and l2⊥ decouple. In the > component, it is convenient to do the change of
variable l2⊥ → L2x⊥ so that the exponential phase becomes

ei(l1⊥+l2⊥)·rxy = e
i
zg
zq
k⊥·rxyeil1⊥·rxyeiL2x⊥·rxy . (J.27)

This change of variable enables to simplify the Dirac numerator Nλ
V2,reg as well, since

L2y⊥ = L2x⊥+ zg
zqzq̄

P⊥. Indeed, in the cross-product term Li2x⊥L
k
2y⊥ε

ik, only L2x⊥×P⊥
contributes. On the other hand, the dot product term Li2x⊥L

k
2y⊥δ

ik gives two contribu-
tions, one proportional to L2

2x⊥ and the other proportional to L2x⊥ · P⊥. In the former,
the square cancels against the same square in the denominator of eq. (J.19) so that the
transverse momentum integral takes the form

K(rxy,K⊥,∆V3) =
∫ d2L2x⊥

(2π)2
eiL2x⊥·rxy[

(L2x⊥ −K⊥)2 −∆2
V3 − iε

] , (J.28)

where K⊥ =
(
1− zg

zq

)
P⊥.

Some care must be exercised to compute the integral in eq. (J.28). First we shift the
integration variable L2x⊥ → L2x⊥ +K⊥, and perform the angular integral

K(rxy,K⊥,∆V3) = eiK⊥·rxy

2π

∫ ∞
0

dL2x,⊥
L2x,⊥[

L2
2x,⊥ −∆2

V3 − iε
]J0(L2x,⊥rxy) . (J.29)
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The resulting integral over L2x,⊥ can be evaluated with the help of the identity
1

x± iε
= PV 1

x
∓ iπδ(x) , (J.30)

where PV denotes Cauchy’s principal value.19 The ensuing integrals are then

PV
∫ ∞

0
dL2x,⊥

L2x,⊥[
L2

2x,⊥ −∆2
V3

]J0(L2x,⊥rxy) = −π2Y0(∆V3rxy) , (J.31)

∫ ∞
0

dL2x,⊥δ(L2
2x,⊥ −∆2

V3)L2x,⊥J0(L2x,⊥rxy) = 1
2J0(∆V3rxy) . (J.32)

with ∆V3 ≥ 0. Thus, we find

K(rxy,K⊥,∆V3) = eiK⊥·rxy

2π

[
−π2Y0(∆V3rxy) + iπ

2 J0(∆V3rxy)
]

= eiK⊥·rxy

2π K0(−i∆V3rxy) , (J.33)

where the second equality defines the modified Bessel function K0 for imaginary values.
For the contributions arising from L2x⊥ ·P⊥ and L2x⊥×P⊥ terms we have not found

similar expressions in terms of standard functions. In terms of the functions J� and J⊗
defined respectively in eq. (5.82) and eq. (5.83), and computed using Feynman parametriza-
tion in appendix F, the regular perturbative factor for a longitudinal photon reads

N>,λ=0,σσ′
V3,reg = αs

π

∫ zq

0

dzg
zg

(−2)(zqzq̄)3/2δσ,−σ
′
QK0(Q̄rxy)

(
1− zg

zq

)(
1 + zg

zq̄

)

×
{

2zq̄(zg − zq)
zg

[
1− zg

2zq
+ zg

2zq̄
−

z2
g

2zqzq̄

]
ei(P⊥+zg∆⊥)·rxyK0(−i∆V3rxy)

−
[
1− zg

2zq
+ zg

2zq̄
−

z2
g

2zqzq̄

]
e
i
zg
zq
k⊥·rxyJ�

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)

+σ
[
zg
zq
− zg
zq̄

+
z2
g

zqzq̄

]
e
i
zg
zq
k⊥·rxyJ⊗

(
rxy,

(
1− zg

zq

)
P⊥,∆V3

)}
, (J.34)

with ∆⊥ = k⊥ + p⊥. In the first term of this expression, one notices a power divergence
in the zg integral, due to an overall 1/z2

g factor. In fact, this power divergence cancels
against a similar divergence in the instantaneous piece N>

V3,ginst, which reads

N>,λ=0,σσ′
V3,ginst = αs

π

∫ zq

0

dzg
zg

(−2)(zqzq̄)3/2δσ,−σ
′
QK0(Q̄rxy)

(
1− zg

zq

)(
1 + zg

zq̄

)

×
[

2(zq − zg)(zg + zq̄)
zg

]
ei(P⊥+zg∆⊥)·rxyK0(−i∆V3rxy) . (J.35)

Combining these two expressions together, and the < component related by q ↔ q̄

interchange, one finds eq. (5.84). The transversely polarized photon case is worked out in
a similar fashion, leading to eq. (5.87).

19For a real integral Cauchy’s principal value is defined as PV
∫∞

0 dx f(x)
x−a =

limε→0

[∫ a−ε
0 dx f(x)

x−a +
∫∞
a+ε dx f(x)

x−a

]
, where a > 0.
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