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ABSTRACT: We compute the next-to-leading order impact factor for inclusive dijet pro-
duction in deeply inelastic electron-nucleus scattering at small zp;. Our computation,
performed in the framework of the Color Glass Condensate effective field theory, includes
all real and virtual contributions in the gluon shock wave background of all-twist lightlike
Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these cor-
relators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When
combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact
factor improve the accuracy of the inclusive dijet cross-section to O(a?In(xs/xp;)), where
xy is a rapidity factorization scale. These results are an essential ingredient in assessing
the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the
Electron-Ion Collider.
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1 Introduction

High energy deeply inelastic scattering experiments at HERA, in the kinematics of fixed
large squared momentum transfer @2, and small Bjorken x;j, revealed the rapid prolifera-
tion of gluons that carry small momentum fractions z inside the proton [1]. At sufficiently
small = (or high energies x > xpg;j ~ Q?/s, for fixed Q% and large squared center-of-mass en-
ergies s), the nonlinear dynamics of quantum chromodynamics (QCD) leads to the screen-
ing and recombination of gluons. These emergent many-body effects can tame the growth
in the corresponding gluon distribution function [2, 3], a phenomenon known as gluon satu-
ration. Its discovery and characterization is one of the primary goals of the future Electron-
Ion Collider (EIC) [4-6]. In this saturation regime, gluons attain large occupation numbers
~ 1/ag, for which the appropriate description is in terms of strong classical fields [7-9].
The Color Glass Condensate (CGC) is an effective field theory (EFT) describing the prop-
erties of these overoccupied small-x gluons and it has been employed to study numerous
observables in electron-nucleus, proton-nucleus and nucleus-nucleus collisions [10-15].

In the CGC EFT, the high energy scattering of color charged particles off the small-x
gluon fields is encoded in effective vertices that resum the multiple scatterings of these
colored charges off this background field and are expressed in terms of lightlike Wilson
lines. Analogously to the operator product expansion, physical observables can be written
as convolutions of perturbatively calculable (process dependent) impact factors with that
of correlators of these lightlike Wilson lines. Their n-point correlators obey a set of coupled
nonlinear renormalization group equations, the B-JIMWLK equations. The leading order
kernel of these evolution equations resums « In"(1/x) contributions, from each order in
perturbation theory, to cross-sections to leading logarithmic (LL) accuracy [16-22]. Like-
wise, the NLO kernel resums o' In"(1/x) contributions at next-to-leading logarithmic
(NLL) accuracy [23-28]. The lowest two-point “dipole” correlator in this hierarchy, for
large N, and atomic mass number A > 1, satisfies the Balitsky-Kovchegov (BK) equa-
tion describing the evolution of the fully inclusive DIS cross-section in the high energy
limit [16, 29]. The evolution kernel of this equation has recently been computed to NNLO
in the planar limit of ' = 4 super Yang-Mills theory [30], with results that could be applied
towards eventual full QCD computations at this order.

For precision computations of physical processes, one also needs high order computa-
tions of the corresponding impact factors, commensurate with the increasing accuracy of
the evolution equations. Significant progress has been made in this direction for a variety
of processes at NLO in the CGC [31-48]. As an example of work in this direction, the
inclusive DIS cross-section has been computed recently by combining the corresponding
full NLO impact factor with the dominant subset [49] of NLO contributions to the BK
kernel and compared to HERA data [50].

A notable absence amongst the existing computations is the NLO impact factor for
inclusive dijet/dihadron production in deep-inelastic scattering (DIS) at small xg;. This
DIS process off the proton, and in large nuclei, is of great phenomenological interest at
the future EIC. The computation of the impact factor to NLO accuracy can provide novel
information on the effects of gluon saturation in back-to-back dihadron/dijets [51], the



study of the Weizsicker-Williams gluon distribution [52, 53] and in the extraction of a
fundamental building block of high energy QCD — the quadrupole correlator of Wilson
lines at small = [54, 55].

In this paper, we compute the inclusive production of dijets in electron-nucleus colli-
sions at NLO within the CGC EFT. We will follow the strategy for the NLO computation
of inclusive photons+dijets in [46, 47] by performing our computation using covariant per-
turbation theory following momentum space Feynman rules with CGC effective vertices

L Our results

that represent the many-body dynamics inherent in the gluon shock wave.
for the inclusive DIS cross-section are of O(a?In(z/xp;)) accuracy if the NLO impact
factor result is combined with NLL BK/JIMWLK evolution equations. Here x ¢ represents
a scale that separates contributions to the impact factor from that of the rapidity evolution
of the target nucleus at high energies and plays a role analogous to the factorization scale
in collinear factorization computations.

Since the process we consider is simpler than the inclusive photon-+dijet computation,
we will obtain results that are significantly more tractable analytically. In particular, we
are able to work out the Dirac algebra and the internal momentum integration of each
contribution. We will show that all divergences (soft, collinear and ultraviolet) cancel at
one loop order and shall demonstrate JIMWLK factorization of our result when the real
or virtual gluon is “slow”, namely, when it carries a small longitudinal momentum fraction
relative to the virtual photon. This allows us to isolate and obtain explicit expressions for
the NLO impact factor, which will be computed numerically in the future to make concrete
predictions for experiments at the EIC.

Another motivation for our work, besides its strong phenomenological relevance, is to
explore the power and efficiency of CGC computations using the techniques that we have
developed that employ covariant perturbation theory in contrast to lightcone perturbation
theory (LCPT) employed by many of the NLO computations in the literature. While at
NLO order the computations are of comparable complexity, the situation will likely be
different at NNLO [58].

The paper is organized as follows. For the discussion to be self-contained, we review
in section 2 the basic elements of the CGC EFT and employ them in the computation
of inclusive dijet production in DIS at leading order. In section 3, we write down the
Feynman diagrams for real and virtual (self energy and vertex) contributions at NLO
and outline the general strategy for the computation of these diagrams. In addition, we
briefly point out the connection to lightcone perturbation theory. We proceed to real gluon
emission contributions in section 4, where we compute the triple parton production qq + ¢
amplitude. Virtual gluon contributions are discussed in section 5, where we first consider
the self energy contributions followed by vertex corrections. We show how ultraviolet
divergences associated with these contributions cancel. An infrared divergence survives
the sum of all virtual contributions, which will cancel with those in real emissions after we
introduce appropriate jet functions, leading to an infrared and collinear safe inclusive dijet

IFor earlier applications of this particular momentum space approach in the context of proton-nucleus
collisions, we refer the reader to [56, 57].



cross-section. We extract the slow gluon divergence of all the real and virtual contributions
in section 6, and show that the net result satisfies JIMWLK factorization. In section 7,
we implement the small-cone algorithm to show explicitly that our final result, as noted,
is IR and collinear safe. We present a compact final expression for the inclusive dijet NLO
impact factor of longitudinally polarized virtual photons in section 8. (The more elaborate
expressions for transversely polarized photons are presented in appendix B.) In section 9,
we conclude with a summary and outlook.

The paper is supplemented by appendices which are useful to the reader interested in
the details of the computation. Appendix A summarizes our conventions and the Feynman
rules in the CGC effective field theory. As noted, appendix B contains the NLO impact
factor for transversely polarized photons. In appendix C, we provide useful formulas for the
calculation of the Dirac algebra in the Feynman amplitudes. Appendix D presents examples
of the computation of relevant contour integrals and appendix E provides all the necessary
transverse momentum integrals in our calculation. In appendix F, we study analytically
the two transverse momentum integrals that appear in the free vertex correction after the
shock wave. Finally, appendices G, H, I and J provide details respectively of the calculation
of the diagrams labeled R2, SE2, V2 and V3.

2 Review of the leading order dijet cross-section

In this section, we will review the general formalism of the CGC effective field theory and
outline the computation of the leading order dijet cross-section in this framework, already
computed in [59].

2.1 The CGC effective field theory

The Color Glass Condensate is an effective field theory that describes the Regge limit of
QCD. It is formulated in terms of stochastic color sources p% which represent the large x
degrees of freedom inside the target A (a proton or a large nucleus) and a classical gauge
field Af, created by these sources, which represents the small z gluons that carry high
occupancy number. Sources and fields are related by the Yang-Mills equations [D,,, F*] =
JY where J* is the 4-current associated with the large x sources. For a fast moving target
along the + lightcone direction, this current is independent of zT:

JHx ) =0"Tpalx,xy). (2.1)
The solution of the Yang-Mills equations in Lorenz gauge 9, AL = 0 is
Af(z) =a(z™,z)), A;=0, A,=0, (2.2)

with a(z™, x| ) a solution of the Poisson equation Via = —p4. For the present calculation,
it is convenient to work in the “wrong” lightcone gauge A = 0 [60]. As shown in eq. (2.2),
the classical solution in this gauge is identical to the solution in Lorenz gauge. Even though
the wrong lightcone gauge, in contrast to the lightcone gauge A:q = 0, does not provide
a simple partonic interpretation of the target wavefunction, it simplifies tremendously the
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Figure 1. The effective vertex of the dressed quark propagator on the L.h.s. of the figure represents
the multiple scattering off the classical gauge fields A}, = O(1/g) of the nucleus shown on the r.h.s.
The n = 0 term represents the free quark propagator.

form of the propagators inside the background field for a fast moving projectile in the
“minus” lightcone direction. These propagators were computed previously in [9, 16, 61—
64]; the corresponding effective quark and gluon propagators are identical [65, 66] to the
quark-quark-reggeon and gluon-gluon-reggeon propagators in Lipatov’s reggeon effective
field theory [67, 68].

The dressed eikonal propagator of a quark in the classical background field of the
nuclear target (depicted in figure 1) is given by [9, 16, 61, 62, 64]

Sij (1) = SO T, 1) S(1) (2.3)

where i, j are the color indices for the outgoing and incoming quark which respectively
carry momenta [’ and [, and S?j(l) is the quark free propagator. The effective quark-gluon
vertex represented by a cross is given by

THD) = @ms — 1)y sen(t) [ depe @myEO@y), 24

where the Wilson line in the fundamental representation is given by the following path
ordered exponential along the lightcone time of the projectile z~:

Vij(®1) =P exp <zg/ dz_Ag’a(z_, mL)tf’j> , (2.5)

where ¢t are the generators of SU(3) in the fundamental representation, and the superscript
sgn(l7) in eq. (2.4) denotes whether the color matrix or its inverse (Hermitian conjugate).
As in the free propagator, the dressed propagator for the antiquark is obtained by following
the fermion line.

The Wilson line resums to all orders multiple interactions between the projectile and
the small-x gluons in the target, and ensures the unitarization of the cross-section in the
high-energy limit. This dressed propagator, and the corresponding dressed gluon propa-
gator, are represented in the standard momentum space Feynman rules with the effective
CGC vertex, symbolized respectively by a cross or a dot in diagrams. These rules are
summarized in appendix A.

In the CGC effective field theory, a path integral for any observable O at small z is
first computed for the charge configuration p4 of larger = sources (drawn from a stochastic



o)

>
®
\

1

/
®
A
1

Figure 2. Leading order contribution to the amplitude for dijet production. The cross symbol on
the quark and antiquark legs refers to the CGC quark effective vertex, as represented in figure 1
and defined in eq. (2.4).

distribution Wy [p4] of such sources) that is static on the dynamical time scales of the small
x gauge fields:

(©lpal)y = [ DpaWylpa Olpal. (26)

The expression on the r.h.s. for O[p4] implicitly contains the QCD path integral in the
presence of these sources. In the gluon saturation regime, the path integral is dominated by
the classical “shock wave” configurations Ag(pa) ~ 1//as with lightcone momenta k™ <
Pt (where PT — oo is the lightcone momentum of the nucleus) or small z = AT /Pt <« 1.
As we noted in eq. (2.2), they are determined by solving the Yang-Mills equations for the
eikonal sources J* = T ps(x))d(z7) in eq. (2.1) with k™ > AT that are localized at
rapidities above Y = In(A*/PT).

Quantum corrections to the CGC shock wave classical fields, specifically the small
fluctuations propagator, are computed in the shock wave background and are seen to
diverge in rapidity; they are however small as long as the window in rapidity is small, given
by asIn(A’T/A+) < 1. These can be absorbed in the charge configuration pa — oy at the
new scale A’" and the process iterated through a self-similar Wilsonian renormalization
group (RG) procedure, as the scale A’ + (or equivalently, the corresponding rapidity) is
varied. In particular, such quantum corrections to the operator O can, by an integration
by parts in eq. (2.6), be expressed as the RG evolution of Wy [p4] with the change in the
rapidity scale that separates sources from fields. This RG equation, to LL accuracy is
precisely the JIMWLK equation which generates the Balitsky-JIMWLK hierarchy for the
n-point Wilson line correlators; sub-leading quantum corrections o2 In(A’* /A™*) to (O) can
likewise be reexpressed in terms of the NLO JIMWLK equation.?

2.2  Outline of the LO computation

We will work in the dipole frame, where the virtual photon exchanged between the electron
and the target is left moving with a large “minus” lightcone component ¢~ > 0 of its four
momentum and a vanishing transverse momentum gq; = 0;. We denote the longitudinal

*We refer the reader to [36, 69-71] for discussions of the choice of the evolution rapidity variable Y in
NLO calculations.



Py nucleus four-momentum

P, nucleon four-momentum

ke (kL) incoming (outgoing) electron four-momentum

q="Fke—k. virtual photon four-momentum

k,p quark (antiquark) four-momentum

2g, %G quark (antiquark) longitudinal momentum fraction relative to ¢~
Mg Mg quark (antiquark) rapidity

ki,p. quark (antiquark) transverse momentum

s=(P,+ke)? nucleon-electron system center of momentum energy squared

W? = (P, +q)? nucleon-virtual photon system center of momentum energy squared

m?2 = P2 nucleon invariant mass squared
Q? = —¢? virtuality squared of the exchanged photon

Table 1. Kinematic variables.

polarization as A = 0, and the two transverse polarizations as A\ = 1. The helicities
of the quark and antiquark are denoted o and ¢’ respectively. We shall also define z, =
k~/q~ and zz = p~/q~, the “minus” lightcone momentum fraction of the quark and the
antiquark relative to the virtual photon respectively. We neglect the masses of the quark,
the antiquark and the electron throughout the calculation. The notation for the kinematic
variables used in this paper are summarized table 1.

Using standard momentum space Feynman rules, together with the effective vertices
in the presence of the classical background field detailed in the previous subsection, one
can easily write the scattering amplitude® of the LO diagram shown figure 2:

4
S = [yl VT (. DSC0) (ieerf(a. ) S°U = )T = 0. =p)o(p.o'). (1)
The effective CGC vertices include all possible scatterings of the quark or antiquark off
the target, including the possibility of no-scattering which has to be subtracted to obtain
the physical amplitude. As shown in [72], this can be done systematically by subtracting
from eq. (2.7) a term in which all the Wilson lines inside the effective CGC vertices are set
to unity. Factorizing further the overall delta function from “minus” lightcone momentum

conservation,* the reduced amplitude Mﬁ%"/ is given by

/ eerq . . ’
Mﬁ((f)a = qu /dQ:BJ_deJ_e_Zkl"’ie_”’i'inLo(:vJ_, yJ_)/\/}ng (Tay) 5 (2.8)

3We have not included explicitly the internal color indices of propagators and outgoing particles, and
the momenta of the external particle (g, k,p) on the Lh.s. of eq. (2.7).

“In mathematical terms, (27)5(k~ + p~ — ¢~ )Mro = SLo — Sto[Aa = 0]. An overall delta function
in the “minus” lightcone momentum is always present as a consequence of the eikonal interactions of the
effective CGC propagators.



where we introduce the leading order color structure,
Cro(®i,y1) = V(e)Vi(y) -1, (2.9)
and the leading order perturbative factor

/ o a4l 4 . NSk -1
Nﬁ‘gﬂ (ray) = —1(2q )/ (271')26 11 T2y G ioie)(()(l (_ L Z)E) .

Throughout this paper, we will represent the difference between two transverse coordinates

(2.10)

with the notation r,, = x| — y, and its magnitude as r,, = |z, —y|.

When computing the NLO diagrams, we will also decompose the amplitude in terms
of its color structure and a similar perturbative factor. In the latter, the numerator Ny o
contracts spinors and Dirac matrices,

1
(2¢7)?

For a longitudinally polarized virtual photon (¢(¢, A = 0) = q@’y‘) we find,

NS (1) = [k, o) Dio ()v(p, o)] = [k, )7 1@, N = v o(p,0)] . (2.11)

_ I~ =\~
D) =-Q —[1-— | . 2.12
to (1) = ( q) = (2.12)
Likewise, in the transversely polarized case (¢(¢, A = £1) = —fyiei’i) we have
Al 21~ -
Pty =L (1 2 ) ol L 2.13
25t = <L > r (213)

where Q = £[y!,~%].

The subsequent computation of NI:\S‘T' is straightforward. We use Cauchy’s theorem to
perform the [T contour integration while the remaining I | integral is expressed in terms of
modified Bessel functions of the second kind K;(z). For a longitudinally polarized virtual
photon, one obtains

Nﬁ\g(),ao’ (”'J_) = —ZqZ(jQKO(QT’xy) [a(k’ 0)7_0(1?, OJ)] (2.14)

q
= _2(2(12:!?)3/2@}(0(ery)(sa’igl 5 (215)

with Q? = zqz[;QQ. For the transverse polarization case, the leading order perturbative
factor reads,
A=+1,00" 'LQG)L * Ty = _ o /
AT () = ST K (Qra) (ko) (25 - 29) — A0) opo’)y (210)
zy
; A
Qe -7 ~ A oo
= 2zqzqfﬁm(@rw)rjﬁqq(zq7z@)5 = (2.17)

where Dyxqq 18 the spin-helicity dependent splitting vertex defined as

F;;E’\_)qq(zl, ZQ) = Z2(5U’>‘ — 21(507_)\ . (2.18)

A more detailed discussion is provided in appendix C.



The next step is to compute the differential cross-section for the production of a qq
pair in the collision of a virtual photon ~} with a nucleus A, given by

dgwi—i-A—n]q—i-X
d2k d%p, dngdng

- 4(217T)6 2q1—(2”)5(k_ +p"—q7) Y (ML oAl MEE [pal)
LO

oo’ colors

(2.19)
where the sum over colors amounts to taking the trace over the product of Wilson lines (at
cross-section level). The rapidities® of the quark and antiquark jets are given by

g = In (ﬁzqq*/h) ;Mg =In (\/izqq*/m) : (2.20)

where they are defined such that positive rapidities correspond to particles propagating in
the virtual photon-going direction.

When taking the squared modulus of the amplitude, one has to take care of the square
of the d-function for “minus” lightcone momentum conservation by constructing a properly
normalized wave packet for the incoming virtual photon [73]. The (...)y notation in the
eq. (2.19) stands for the CGC averaging over all possible charge configurations inside the
target at rapidity scale Y. Introducing the following measure with Fourier phases,

dHLO — deLdeJ_delleyie—ikL~(ilTL—(E,J_)e—ipL‘(yL_yl) , (221)
the final result for the differential cross-section can be expressed as®

d07§+A—>qé+X Oéemefth
= 6(1— 24 — Z*)/dHLoELo(mL,yL;yLwl)Rfo(r s Tty -
d2k, d%p, dnydng Lo (2m)6 @ zys Tty
(2.22)

The final factor in this expression is the sum over the quark and antiquark helicities of the

square of the perturbative factor, defined as

)\O’O’l o'o'/
RioTay: Tary) = 3 NG T (ray)JNDET (141, (2.23)

oo’

We find for longitudinally and transversely polarized photons:

RE0(Pay: Tary) = 82020 Q° Ko (Qray) Ko(Qray) , (2.24)
T Tty = — _
REO(Pays Tary) = 2292 |22 + 2] Y QP K1 (Qray ) K1 (Qrary) (2.25)
TayTaly’

where for the transversely polarized photon, we average over both polarizations A = £1.
The dynamics of strongly correlated gluons inside the target is encoded in the nonper-
turbative expression =10, defined in terms of Wilson line correlators as

ELO(:UJ_>yJ_; wlj_a yl) = <Q(wL7yJ_; yﬁ_awl) - D(£L7yJ-) - D(yla le_) + 1>Y 5 (226)

®Note that in the massless limit, the rapidity and pseudorapidity variables are identical.

5In this manuscript, we focus on the “diagonal” terms where the polarization X is the same in the ampli-
tude and in the conjugate amplitude. The off-diagonal terms are important when considering correlations
with the electron plane [74].
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Figure 3. The effective vertex of the dressed gluon propagator on the l.h.s. of the figure represents
multiple scattering off the classical gauge fields Af, = O(1/g) of the nucleus shown on the r.h.s.
The n = 0 term represents the free gluon propagator.

where the dipole D and quadrupole ) operators are defined as

Doy = Dlesys) = T (Vi@o)Vi(wL) (2.27)
Quyye = Q1 Y1391, 7)) = ;cTr (VEoViyove)viE)). (228

The LO expression in eq. (2.22) for inclusive dijet production was first derived in [59].

Thus far, we have focused on the hadronic part of the dijet cross-section in DIS.
For completeness, we will now explain how the DIS cross-section can be obtained from
the subprocess 75 + A — ¢gq + X. The leptonic part is encoded in the longitudinal and
transverse photon fluxes defined as

Qem
fa=L = ~0%en, (1-y), (2.29)
_ Olem N2
Pt = g1+ (=), 230

where y = Q*/(s zp;) denotes the inelasticity, and s is the center of mass energy squared of
the collision. For fixed s, the final expression for the LO e+ A — €' + qq + X cross-section
is given by

do.e+A—>e’+q(j+X

dopdQ2d%k  ®p  dngdn; A:zL; T I d?k; d?p dnydng

dotA—e+X

(2.31)

At NLO in the strong coupling constant, an identical convolution occurs between the lepton
and hadron tensors, with the former remaining unchanged. We will therefore focus on the
latter in the following sections.

3 General strategy for the NLO computation

In this section, we present the general strategy that we will follow for the calculation of
the Feynman diagrams that contribute to the dijet NLO impact factor. Our discussion is
meant to guide the reader through the computations detailed in the next sections and to
highlight some of their general features.

At NLO in the inclusive dijet computation, one has both real and virtual gluon emis-
sion. The key ingredient is the dressed gluon propagator (shown in figure 3), which in the

~10 -
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Figure 4. Feynman diagrams that appear in the production of dijets at NLO. Top: real gluon
emission diagrams. Middle: self energy diagrams. Bottom: vertex correction diagrams. As in the
LO case, the crossed dot denotes the effective quark CGC vertex. The bullet (full circle) denotes the
effective CGC gluon vertex, which for dijet production only appears at NLO. Diagrams obtained
from g <> ¢ interchange are not shown.

wrong lightcone gauge has a structure very similar to the dressed quark propagator. It is
given by [9, 16, 61-64],

G/W;ab(l/’ l> = Gzp;ac(l/> Tg;med(l/a l) Ggu;db(l) ’ (3-1)

where i, v and a, b are the Lorentz and adjoint color indices for the outgoing and incoming

0
priab

The effective vertex, represented by a filled circle, is given by

gluon which respectively carry momenta !’ and [, and G (1) is the gluon free propagator.

Thall's1) = @m0 = 1)@ gusent) [ dzie@t0=u Oz, (32)

where the Wilson line U(z, ) lives in the adjoint representation of SU(3).
Uw(x1) =P exp (zg/ dZA;TC<Z7CCJ_)T;b> , (3.3)

where T are generators of SU(3) in the adjoint representation. This effective vertex also
encodes multiple scattering effects to all orders.

The Feynman graphs necessary for inclusive dijet production at NLO are gathered in
figure 4. The real diagrams are represented in the first line of figure 4 while the virtual
contributions are shown in the bottom two lines. (For brevity’s sake, we omitted drawing
the diagrams obtained by quark-antiquark interchange. The corresponding diagrams will
henceforth be labeled with a “prime” label, such as R1 — R1’, where R1’ correspond
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to the diagram in which the gluon is emitted from the antiquark before it scatters the
shock wave.) In principle, we have then 14 diagrams to compute, since diagram V2 and
V3 are invariant under this transformation. As symmetry arguments enable one to infer
the diagrams linked by (¢ «» ¢) interchange, only the diagrams represented in figure 4
have to be computed explicitly. For the cross-section at order «g, one separately takes the
modulus square of the real amplitudes and the product between the virtual amplitudes and
the complex conjugation of the LO amplitude. Schematically, one has

dO"Y*AHq‘j+X‘NLO X (MvirtualMiO + C'C') + /ng Ml“ealM;keal ) (34)

where df), is the differential gluon phase space. The real part of the cross-section is thus
a sum of 16 terms, but only 6 of those need to be computed explicitly as the other 10
are related either by (¢ > ¢) symmetry or by complex conjugation. The contribution
of virtual diagrams to the cross-section contain in total 20 terms, when one accounts for
complex conjugation.

The physical amplitude for a given diagram will be given by the convolution of its
color structure C and its perturbative factor N:

eerq
M = frq /d2aud2y¢d2zﬂ’(fm,ybZL)C(‘BLyLvZL)N(xl’yl’zl)’ (35)

where P(x_,y,, 21 ) denote the Fourier phases

e~k +plyL) real contributions,

e~k i+pLyi+kgi21)  virtual contributions .

Plxi,yi,z1)= (3.6)

The transverse coordinate z| corresponds to the location of the emitted real or virtual
gluon while crossing the shock wave.

The bulk of the computation is to find explicit expressions for the perturbative factors
N, which are obtained after internal (loop) momentum integrations; they have the generic
form:

Narwnm) = [ 5 et I a)

where Npjirac contains the Dirac structure which depends on the internal momenta.” The
factors D; are the propagator denominators, which are quadratic function of the momenta
with a appropriate +ie prescription. The eikonal delta functions (one or more) are denoted
by eikonal- The dependence on x| , y, and 2z is fully contained in the phases (not explicitly
shown).

In order to proceed with the loop integration, we first perform the “minus” lightcone
momentum integrals using the delta functions arising from the eikonal vertices. For the
real gluon emission contributions, this is sufficient to fix all the “minus” lightcone momenta
in terms of the external variables k™, p~ and k.

. . ND.
Ny — / g1 () Fila L ()t / _ NDirae 38
t liglay s .. Di1Dsy...Dy (3.8)

"For convenience, we will drop the subscript Dirac in the following sections.
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For virtual contributions, there will be a remaining integration (without loss of generality,
we will call it [7), corresponding to the longitudinal momentum of the virtual gluon. This
integral develops a divergence at [~ — 0, which will be regulated with a cut-off A .

Npj
N —/ di™ / iy () tilzy ()t / __ ‘'Dirac 3.9
v o l]_J_,lzJ_, l l+ DlDQDk ( )

10720

As in the leading order case, the “plus” lightcone momentum integration is performed using
Cauchy’s theorem of residues. However unlike the LO case, the Dirac structure Npjpac in
the numerator of the integrals will generally depend on [{, I5, ...and thus the integration
must be done with care. Fortunately, it is always possible to decompose the Dirac structure
as follows:

NDirac = Nreg + DlNinstl + D2Ninst2 +...+ DkNinstk ) (310)

where Nyee and Niygtj’s are independent of any “plus” lightcone momentum. All the “plus”
lightcone momentum dependence is contained in the prefactors D;, which are precisely the
factors® that enter the denominator in eqs. (3.8) and (3.9).

Inserting the expansion in eq. (3.10) into eq. (3.9) we find for the virtual contributions
(and analogous results for real contributions)

NV = NV,reg + NV,instl + NV,inst2 + ...+ NV,instk y (311)

where

Ny reg = / i /l il (¥l b T () Doy ) Neeg (bt bag s 1),
11

lag,...
(3.12)
My imstj = / i / il () bila s (b T () L) Nansg (B ba o5 10)
llJ_7l2J_7
and
Troglla 1,1 'r)—/ - (3.13)
reg\b1.1l,021,---, - T DlDQ...Dk’ .

19720

bi (3.14)

Tnsti (it dor, .. 17) = :
1nst]( 11,621, ) ) /lJr I+ D1D2PJ/D]€

1720

Note that egs. (3.13) and (3.14) have different pole structures. General identities for such
contour integrals are provided in appendix D.

The terms in the r.h.s. of eq. (3.11) correspond to the contribution from different
diagrams in lightcone perturbation theory (LCPT). More precisely, the computation of the
NLO impact factor within LCPT involves regular propagators and instantaneous quark,
antiquark or gluon propagators. These diagrams are in one-to-one correspondence with
the instantaneous perturbative factors in eq. (3.11).

8We should point out that not all terms Nins¢ are nonzero, and only a subset of them will contribute to
the final result. Another caveat is that when a diagram has a “double propagator”, such as the free self
energy before the shock wave (in which the propagator squared (I3 4 i¢)? appears in the denominator), the
regular term also has a prefactor which cancels one of the propagators in the denominator. This is discussed
below eq. (H.9)).
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Finally, the remaining transverse momentum integrals in eqs. (3.12) are performed
analytically. When a given diagram develops a UV divergence, the transverse momentum
integrations are carried out in dimensional regularization by going to 2 — ¢ dimension,
both in the internal momentum integration and in the transverse coordinate integration in
eq. (3.5). This is because of the fact that simple power counting in internal (loop) momenta
might not reveal the presence of a UV divergence, as we will see in the discussion of the
dressed self energy in section 5.1.1. Therefore one also needs to perform the coordinate
integrations in 2 — ¢ dimensions, which could result in a UV divergence.

As explained at the beginning of this section, we do not compute explicitly the Feynman
amplitudes obtained from the graphs in figure 4 by quark-antiquark interchange. Once the
amplitude for the “quark diagram” is known, the “antiquark” amplitude can be obtained
straightforwardly from the following transformations:

i interchange the quark and antiquark four-momenta k* <> p* |
ii interchange their transverse coordinates x| < ¥y, ,
iii flip the sign of the helicities ¢ — —0,0’ — —0’ |
iv take the Hermitian conjugate of the color structure C(x,y,,z,)— CT(yL, Ti,z1) ,

v and for the real amplitudes, we observe that an additional overall minus sign is required.

4 Dijet at NLO: real corrections

We begin our NLO computation by computing the real corrections, specifically, the triple
parton production amplitude v*A — ¢g+g+X. These were previously computed in [75, 76]
using spinor helicities techniques. We have checked that our results agree with those
obtained by the authors of [75, 76]. Our interest of rederiving these results in our approach
is that it enables us to use the same notation and techniques as the virtual corrections which
are novel.” In addition, at the end of this section we will highlight a connection between
gluon emission before and after the shock wave, which was also pointed out in the context
of dijet production in p-A collisions in [48]. Not least, the slow gluon limit of our results are
straightforward to extract; as discussed in section 6, when combined with the corresponding
virtual corrections, they give rise to the JIMWLK rapidity evolution equations.

Our final results for the diagrams R1 and R2 are given by eqgs. (4.2)—(4.3)—(4.32)—
(4.33) and eqs. (4.43)—(4.36)—(4.44)—(4.45) respectively, while diagrams R1” and R2’ can be
obtained from R1 and R2 from quark-antiquark interchange, as explained in the previous
section.

9More specifically, we will use identities with Dirac matrices that allow us to separate regular and
instantaneous contributions, which will be later generalized to obtain expressions in 4 — ¢ dimensions.
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Figure 5. Real gluon emission from quark before scattering from shock wave.

4.1 Real gluon emission before the shock wave

We denote by kf and A the four momentum and the polarization of the outgoing gluon.
In particular, we call z; = k:;/ g~ the longitudinal momentum fraction of the gluon with
respect to the longitudinal momentum of the virtual photon. The scattering amplitude for
qq + gluon emission from quark before scattering from shock wave is given by

_ 4 4
S = [ ot [800.0) Tk — 1)1 = 1) (igt*2) 5°0) (—ieef(a, V)
< S0 — T 0,20, 0)] G ) TG iy )5y, ) - (41

Subtracting the noninteracting piece and factoring the overall 2wd(¢q~ — k= —p~ — k:g_), we

obtain the physical amplitude
MY — eeiq_ /d2$Ld2yLd2zLe—ikLwLe—ipLyLe—ing_uzl
x Cr1 (wJ_a Y, zJ_)NfX\JUI(Twya ""za:) , (4'2)
with the color structure (employing the Fierz identity) is denoted by
Cri(@o,yr,z1) = V@)V )V OV -] (43)

and the perturbative factor

oo - iy dtly iy roytilal Tea
NRl (Pay, 7o) = —9(2¢7) (27)3 (27T)26 !

L LN (1, b)S( — g™ +py)dlky — 1)
(b =L +ie) (i +ie) (b — ) +ie)(B +ie)

(4.4)

The Dirac structure of this diagram which appears in the numerator of this integral reads as,

1
(2472
The outgoing gluon polarization vector has been turned into an internal polarization vector
thanks to the identity Tlag(l2)g” e} (kg A) = —€Z(l2, A).

Moo’ _
Ng1?% =

[a(k, )7~ (1 = L2)¢" (s Vs, (I = dyo(p, o)) - (45)
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Calculation of the Dirac structure Ngr;. The integrations over [; and [; are trivial
due to the presence of the delta functions d(l; — ¢~ +p~) and 6(l; — k, ) which enforce

Iy =q (1-2g), ly =q 2. (4.6)

Using equation (C.31) given in appendix C to simplify the component of the Dirac structure
coming from the gluon emission from the quark before the shock wave, one can express
NAS\O’O'I as
R1
NRl (l17 l2) = NRl,regUl; l2) + Z%NRl,qinst(lla l2) . (47)

This decomposition follows the general strategy of the computation of the Dirac structure
outlined in section 3. Indeed, the second term corresponds to the instantaneous quark
contribution in LCPT, since the [? factor in the numerator cancels the identical term from
the quark propagator. After some elementary algebra, the regular and instantaneous Dirac
structure can be expressed as

3 N T ~x
Mo = 22 ko) [ (1- 5 ) +250] Dlotvn o} (@)
B — GX*,i )
Nt = =S5 2 [alholy'y 40 N1 — e, (19)

where = 2,/(1 — 23), Lag1 = lay —xly,, and Dﬁo(l) was defined in section 2. Recall
too that Q = £[y!,+?].

Let us consider the longitudinally polarized case with ¢(¢g,A = 0) = q@fy_. Observe
that the instantaneous piece vanishes since (77)% = 0:
A=0,\c0’ _
NRl,qinstU =0. (410)

For the regular piece in eq. (4.8), we obtain after a little bit of algebra,
—0. 200" z5(1 — 25 _ - - T
N}){l’?é;og = 7761( . 2)Q {u(k:,a) {(22’(1 +zg) + zg)\Q} Ziv(p, a’)} Loy, - ei . (4.11)
g

For the transversely polarized virtual photon, with ¢(¢, A = £1) = - ei"j , the instanta-
neous terms result in

N)TELeol FaFa )y 1- 30| u(p, o) LM 4.12
R1,qginst 2(1 _ Zq) u(k70) [ A } q U(p,d) 0 ) ( )

and the regular term can be written as

retidoo’  (Logy - €)1y - €))
Rl,reg - 2
g

x {a(k,a) (224 + 25) + 270] [(225 — 1) = AQ)] Z_v(p, 0/)} . (413)
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Pole structure for the regular and instantaneous pieces. Note that the Dirac struc-
tures in eqs. (4.8) and (4.9) are independent of [ or I. The decomposition of the Dirac
structure translates into a similar decomposition of the perturbative factor (eq. (4.4)) as

NRl (Txyy T'zac) = NRl,reg(Txya rza:) + NRl,qinst (Tacyy T'zx) ’ (414)
where
d?ly 1 d%l . g
NRl,reg (’I“zy, ’I“Z:E) 27r # ’Ll1J_ Toy+ila ] Teg NRl,regZRl,reg , (4‘15)
Al dPlay gy it
NR1 ginst (Pay; Tzz) = Gy /22#)2 el ey tilal "** NR1 ginst LR1,ginst - (4.16)

The pole structure is included in the two [T integrals TRireg and IRy ginst Which are respec-
tively defined to be

_ i ~2q0)(2l5)
Tuses = | G G @R o a4

. / diy dig —(2¢7)(2ly)
R1,qinst (27T) (27T) ((ll _ 12)2 + 26)(( 1 — q) + Ze)(l% + ie) .

Note that the pole structures in eqs. (4.17) and (4.18) differ; performing the integrals using

(4.18)

Cauchy’s theorem, and closing the contour in the upper half plane, they read respectively:

1 1
ZRl,reg = 2

Z, 2 11 —lo )2 ’
" (aall - 2)Q2 4 B,) (@2 4 e 4 (raztau B )
1 1

2g2G 2 Lii—ls)? 12\
QQ(Q2+;;+(1 Zqz) +§7;_

(4.19)

IRl,qinst = - (420)

Transverse momentum integration: longitudinal photon. For the longitudinally
polarized photon, there is no instantaneous contribution and the regular term can be
expressed as,

Ngl ?eéaal ('rxyv 'Pza:) - ; M {a(k70) [(2211 + ZQ) + ZQAQ} q_ (p7 )}

Cor 2g2q

/ d?1y A%l (Lagy - €)F) i moytilaire

. 4.21
(271')2 2 2 o B (ti-121)? | B ( )
(2q(1 = 2g)@2 +17,) (@ + 22 + F2em + 520

Remarkably, the 13, and ly) integration can be performed analytically [32], giving the
very compact result:

/ d*l11d?lay (liu - (liigzq) 11L> el Toytila) Taa
2m)? 12 Iy L 2
(2m) (zg(1 = 2)Q* + 13 ,) (Q2+;j+(uzqu)+§:>
12¢%
i r;xK 0(QXR), (4.22)
q
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with Xg defined by

2 _ . .2 2 2
XR = 2q2qT5y + 2q%gT50 + 22T 5y - (4.23)

This formula is derived in appendix E. The parameter Xg can be interpreted as the effective
transverse size of the qgg dipole when it crosses the shock wave. It plays a role analogous
to the quantity z,z3rzy in the LO photon wavefunction.

Gathering all these results, one ends up with the following expression for the pertur-
bative factor:

A=0, o0’ 19 Tog 65\_*
NRl,reg (Tay, T2a) = P (—2427) QKo (QXR)
1 — 1ol Y /
x — < u(k, o) {(2zq +z4) + zg)\Q} —uv(p,a’)p . (4.24)
224 q

The remaining contraction with the quark and antiquark spinors is performed in the last
paragraph of this section.

Transverse momentum integration: transversely polarized photon. We begin
with the instantaneous contribution given by

A=+1,A00" g 1 B R .
Netgnic™” (o) = o5y {U<’f= 7) [1-30] o, a'>} 5
/ d2l1ld2l2l eillJ_'T'my-‘rilzJ_“r‘Zm

2 2 2 '
(27T) (Q2 + % + (llJ_;Lf2J_)2 _|_ l;;_)

(4.25)

The transverse momentum integration of the instantaneous term can be performed as well
using

d21 d2l il roytilo) Toa K X
/ 11d%l2) e v _ QK1(QXR) (4.26)

2 12 _ 12
(27[‘) (Q2+;j+ (l1J_Z(52J_)2 +§;)

Gathering these results, the instantaneous perturbative factor can be written as

A=1,200" 9 2¢23%7g QEK1(QXR) | _ 10l 7 NS
ins zys Vzax) — — k, 1-2Q| — s oM.
NRl,qlnst (’I“ ys T ) 7T4(1 _ Zq) XR u( U) [ } qiv(p U)

The regular term reads

= oo’ g 1 _ N N
Mitreg " (Tay,Tsa) = {U(kaa) 2207+ 2) +2,20] (225 = 1) = 0] vl a/>}

o 22424
/dQlIJ_dle_L (Lags-€))(li-€}) el mevtilasre (4.28)
2 1 2 ‘
(2m) (24(1— 25) Q2 +l%l) <Q2+l;j+(lll;j2u2+l§j>
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Using the same trick as previously, we obtain

/dQludQlu (lél - (12@)’ h) 1 et reytilaLree
2 2 2
B (- 2@ +22)) (QQ T % (el l?)
2977 Thy [y QK1(QXRr)
T -zl {(1 L oy T 29T zm} T xp (4.29)

Hence we find that the perturbative factor for the regular term is

i P
A==+1, o0’ Zg Trx * GJ_ ZZquQ Ry - GJ_
NRl reg ("“zya TZCL”) - T ,',_2 2XR K (QXR) (430)
1 _ < B v ’
x 5 S alk, 0) (22 + 29) + 22| (227 — 1) = A2 =v(p, ") ¢
2z4 q
where RpR is the size of the ¢q dipole before the emission of the gluon, defined to be
2g

Rg =1, - 4.31
R = Tay + 2y + zqr ( )

Spinor contractions. It is possible to simplify further our expressions for the pertur-
bative factor by performing the contraction with the spinors w(k,o) and v(p,o’). We
will provide here expressions that sum both regular and instantaneous pieces. Using the
formulas given in appendix C, one gets
: A% \3/2
1gTyy - € 2(zqz
NRTOA (g gy = 9T €8 220 G e )67 TR, (2l — 20), (4.32)

2 q—4q9
™ Tx Zq

for a longitudinally polarized photon.
For a transversely polarized photon, one can combine the regular and instantaneous
terms using r¢ r! /r? = 1:

ig T, 2(2429)%* iQK1 (QXR)

A==+1 )\o'cr o’
= 60’, ag
N (’ra:ya T‘zm) = Tgm 2 XR
A A Y4 ’ri 3
{Fq;qg(zq, 1= 2)T77, (1 — 24, 2) (R - e))e)y — Mé“&*} . (4.33)
q

The spin-helicity dependent splitting vertex has been defined in eq. (2.18). One notices the
appearance of another such vertex coming from the splitting of the quark into a quark-gluon
pair. Such a splitting is naturally related to the v — ¢¢ splitting by crossing symmetry;
the transformation zo — —z2 (where 23 is the longitudinal momentum fraction of the quark
before it emits the gluon) and A — —\:

FZ_)‘)qg(Zb 29) = —Fz ;‘qq(zl, —z9) = 210, 5 + 22507_5\ . (4.34)

We should also point out that when 2, — 0, I'7 i‘qg( —1,2z4) — 24, which ensures that the
1/z4 factor cancels in this limit. The expressions in eq. (4.32) and eq. (4.33) are our final

results for the perturbative factor in diagram R1.

~19 —



li—q R2 p, o’

Figure 6. Real gluon emission from the quark after scattering off the shock wave.

4.2 Real gluon emission after the shock wave
We turn now to diagram R2 in which the real gluon is emitted after the shock wave.

The details of the calculation are provided in appendix G. As explained in section 3, the
amplitude can be organized as

MM"U = ee:rq /d2'wld2yLe_i(kl+k9¢)'“’Le_ipLyLCRz('wL,yL)N)\ i (Pwy), (4.35)
with the color structure

Cra(wi,yL) = [taV(wL)VT(yL) - ta] : (4.36)

Since the radiated gluon does not scatter off the shock wave, the coordinate space integral
involves only the transverse coordinates w; (to be distinguished from @, as discussed
below) and y, of the quark and the antiquark when they cross the shock wave.

We find for the perturbative factors,

_Z X*
(kg: = k;) )2 24(1 = 29) QKo(Qra ruwy)
11— 2k

X 1 {ﬂ(k:,a) [(22q+zg)+zg)\9] _ v(p,o )} , (4.37)

2z4

A=0,\o0’
NR2 07 ago ('r’wy)ZQQ

(ng— - 7kl) GL* iQRQGj\_ :

r _
5 5 Y K1 (QraTwy)
(kg =22kt "

N)\ +1, oo’ (’rwy) _ —29

X 2; {ﬂ(k‘,a) [(2zq+zg)+295\9} [(1—225) — Q] Z_U(p’ 0/)} (4.38)

where the LO Dirac structure D{\4(l1) was defined in eq. (2.11) and Q%, = z5(1 — 25)Q?%.
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After contraction with the quark and antiquark spinors, one gets

(k L= ﬁkL) €1 (2429) 241 — 2g)

NA 0, o0’ (Tuwy) = 4g ( ) . QKO(QRQTwy)
gl — 2 q
x T'7 gqg(zq, — 2g)87 (4.39)
o' kg1 — ?gkl i z925) /2 iQR Tuy - € =
N)\ +1,) (Twy) — _49 ( qz ) . ( q Zq) 21_ Y J_Kl (QR2rwy)

T
o, o\ o,—o’

X Fq;\qg(zq, 1— zq)F%}%qq(l — 24, 2q)07 77, (4.40)

respectively for longitudinal and transverse virtual photons.

An alternative expression for the perturbative factors. The above expressions
are sufficient; however, it is useful to provide an alternative expression that more closely
resembles the result for real gluon emission before shock wave. Towards this aim, we
introduce an additional transverse coordinate integration using the identity,

zq+zg

R26 ’

Ry () m (4.41)

(gl_%ki):i Zq /d2

(k:gJ_ - %ZkL)Q 2T Zq T+ 2

to transform the relative quark-gluon transverse momentum appearing in eq. (4.37) into

an integral over the extra transverse coordinate R . After a change of variables
Zqx | + 292
R =z —x,, ’UJJ_:M, (4.42)
Zq + 24

one gets
X1 eerq . . . s
M%\éaa — frq /deJ—d2yLd2zJ—e—szwLe—zPLyLe—szLchRz(wJ—’ yL)Nﬁé\UU (,,,w% sz) )
(4.43)

The alternative form for the perturbative factor depends now on the two transverse coor-
dinates 7, and r.;, and can be expressed as

i CeM )3/2 _
N)\ 0, o0’ (""wyy"’zx) — ( Zg) Trr* €] 2(ZQZQ) QKO(QRQTwy)

™ ’l"gx Zq
,\ g

X Tglqq(2g, 1 = 29)0777 (4.44)

Xk 1/2
A=+1\00! _ (1) 70 - €17 2(24%) ZQRszy €}
N ('I“wy» ’l"Z:B) - T2 1 P Ty KI(QRQTwy)

b 9N — ’

r‘Z—>qg(zq’ 1- Zq)]‘—"y;ﬁqq(]‘ — 2g,25)0777 . (4.45)

This has a nice pictorial representation in the language of LCPT. While 7., is the size of
the quark-gluon pair, the transverse coordinate 7, is the size of the ¢g dipole right after
the photon splits. On the other hand, the transverse coordinate r,, corresponds, for this
diagram, to the size of the qq after the emission of the gluon, and thus differs from r,,, due
to the subsequent recoil of the pair.
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Relation between diagrams R1 and R2. Writing the amplitude for R2 as in eq. (4.43)
presents the additional advantage of highlighting the connection between gluon emission
before and after the shock wave. The perturbative factor for the amplitudes in diagrams 1
and 2 can be written as

NN (@) oy, z)) = ZxNMUU UCTRTTETNP (4.46)

With this, it is not difficult to show that the perturbative factor for gluon emission after
the shock wave can be recovered from that for gluon emission before the shock wave from
the relation,

lim ./\/')‘)‘M N,y z) = /\/’MW g,y z1). (4.47)

T —w
zZ|]—w

This also holds true for the color structures,

lim Cri(xi,y121)=Cre(xi,y121). (4.48)

iow!
These relations imply therefore that we can obtain the amplitude /\/lf‘{2 from Mﬁl by
taking the limits |,z — w,, except in the phases and in the gluon emission kernel
rl,/r2,. A similar observation was made in [48] for the computation of dijet production
in p-A collisions. The same holds true when gluon emission is off the antiquark. Notice
that this observation also implies that the sum of real emission diagrams is free of short
distance (UV) divergences in the limit z; — @,y .

5 Dijet at NLO: virtual corrections

We now turn to the virtual corrections to the dijet cross-section and the calculation of the
perturbative factor A defined in eq. (3.5) for each diagram. As some diagrams develop
a UV divergence, we will use conventional dimensional regularization of the transverse
integration to extract the UV pole. It means that all the transverse coordinates and
gamma matrix representations are analytically continued to 2 — ¢ dimension.

We shall not detail the calculation of each diagram. Only the dressed self energies and
dressed vertex corrections are computed in details in the following subsections. For the
other diagrams, we provide additional details in the appendices H, I, J or refer to extant
results in the literature.

5.1 Self energy diagrams

Let us consider first the self energy diagrams which are shown in the second line of figure 4.
They can be divided into two classes according to whether the virtual gluon scatters off
the shock wave or not. For the diagram with dressed gluon propagator, the final result for
the amplitude is given by egs. (5.2)—(5.3)—(5.23)—(5.26)—(5.30) (see also our discussion on
UV and finite pieces). The free self energy before the shock wave is given by Eqs, (5.40)—
(5.41). While the self energy after the shock wave vanishes (for massless quarks) we show
the nature of this cancellation in eq. (5.46).
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Figure 7. Gluon self energy with gluon crossing the shock wave.

5.1.1 Dressed gluon propagator

For the dressed gluon self energy shown in figure 7, the extraction of its UV divergence and
finite part constitutes one of the principal results of this paper. Given that its computation
is new and quite subtle, we will provide details of some of the intermediate steps in the
computation.

The amplitude of diagram SE2 reads

8)‘]‘3’”/ :Mgg/ d4*5l1 d4*5l2 d4*513
SE1 (27-(-)475 (2w)4—s (2ﬂ)4—s

xSY(I1 — 1) (ig" ") S° (I) (—ied (q, M) S° (L — )T (L — ¢, —p)v(p, a’)]
x GO (l3) TS (I, 12) GO (1) - (5.1)

C

[k, 0) (g7t S (k — 1) T (k — Iy, Iy — L)

After subtraction of the noninteracting contribution and extracting the overall delta func-
tion 27d(¢~ — k= — p~), we find the physical amplitude

/ eerq  _ _ _ _ ik - —ip | -
Mé\%({ _ );rq m 3€/d2 EdeZ eyld2 EZLG ’LkJ_mJ_e ipLYL
A /
X CSEl(wJ_v Yy, ZJ_)NS]S-la (rxyv Tz;v) . (52)

The color structure of this diagram depends on the transverse coordinate z, of the gluon
through the shock wave,

Csei(xi,y1,21) = [taV(ZBJ_)VT(ZJ_)taV(ZL)VT(yJ_) - tata} : (5.3)

and the perturbative factor reads

2 4—¢ 4—¢ 4—¢
oo o g 3¢ d ll d l2 d l3 11 Toy i(lay—l31 ) T2z
NREY (o) = eyt | e e e

) —i(205) (24 )P NAES (I, b )0k~ — 10085 — 1)
(I3 — k)2 +i€] [(Io — 1) +i€] [13 + i€] [(lh — q)2 + i€] [12 + i€] [I3 + i€

T (5.4)

where the Dirac numerator is given by

N3gY'= (qu)g [k, )" (= 13)7~ (U = L) wd £ (@, Nl = @7 0(p,0")] Ty ()T (1)

(5.5)
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Calculation of the Dirac numerator Nggi. Before we proceed with the Dirac nu-
merator computation, note that the integration over {; and l; can be easily done with the
delta functions resulting in [; =[5 and I; = k~. Using the identity egs. (C.21) to express
the product of the two gluon polarizations tensors in terms of gluon polarization vectors,
and then egs. (C.24), (C.30) to simplify the gluon absorption and emission parts of the
Dirac structure in eq. (5.5), we can write the latter as

NSEI = NSEl,rcg + Z%NSEl,qinsin (56)
with

4Lz Lk 2 )
N o= — 0L 2L 2“{u<k,a>[(1—x+( -5 )5““

( (1_) )M] Dﬁo(zl)v(p,a')}, (5.7)

N = 5228 L) (123 )99+ 2| o 4N Gh— ol ). 69

where = z,/z4, Laz1 = ls) — 2k, and Loy, = lay — 2ly,, and w = %[72%]. One
notices that the leading order Dirac structure D (I1) = v~ [1£(q, \)([1 — q)y~ factorizes,
as a consequence of the topology of the self energy diagram. Since we are working in
dimensional regularization, we have included the O(g) dependence of the Dirac numerator
that results from the identity eq. (C.4).

We first consider the longitudinally polarized case with ¢(g, \) = qQ_fy*. Observe that
the instantaneous piece in eq. (5.8) vanishes since (y7)? = 0:

A=0,
NSEI q(:gst 0. (59)
For the regular piece in eq. (5.7), we can write it as

o 4232 52 (e B .
NSAE_B}ZQ =1 qQ{[l—Zg_F(l_g) 91 [u(k, o)y v(p,a)]élk

2 2
z4 Zq 2 22q

q
u(k, o)w*~y~v(p, o’
%9 _ (1 - ;) ZZ] [ ) j v )} } LLsz (5.10)

Zq 222 q

_|_

For a transversely polarized virtual photon, the instantaneous term contributes, and
one obtains,

A=+1,00" 23(2g — 2¢)° B
NSEl,qlngsCtr = - i P L3, - EL {u(k U)(l - AQ) (p’ )} : (5'11)
9%q
This instantaneous contribution is free of any ultraviolet dlvergence so that we do not have
to keep track of the ¢ dependencies in the Dirac algebra and we can use w” = —ie’/().
Finally, the regular term for a transversely polarized virtual photon can be written as

_ / 222 z e\ 22

A==x1l,00" q g g
NSELreg __73L3mJ_‘L2mJ_ [ —Zq+ <1_2> ng (5.12)

X {u(;c,a)[(zq—zq)almﬂﬂm]zv(p,a’)}eL U+ Ly, L3 [ W)
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To keep the r.h.s. compact, the argument of the last term proportional to L3$ Lsz LW i s
not shown since it vanishes anyway after transverse momentum integration.

Pole structure of the regular and instantaneous piece. The next step of the calcu-
lation consists in performing the “plus” lightcone momentum integration associated with
l1, I3 and I3. Since Nsgireg does not depend explicitly on any “plus” component, this
integration can easily be done using standard techniques of contour integration and the
Cauchy theorem. Using the decomposition in eq. (5.6) we can express eq. (5.4) as

NSEl (rzya Tzzv) = NSEl,reg(Txya rzm) + NSEl,qinst (Txya Tza:) ) (513)

with

A2l A2 loy AP Cl3 1 g e il —ilg) -
NSEl,reg(r:vya'r'zm = /ng,u / eleJ_ Taytilzy Ty ~ilas Teo

2m)2=¢ (2m)2—¢ (27)2—¢

X ISEl regNSEl reg » (514)
A2y, d2lgy A% gy o
NSEl,qinst (Txy7 TZCL’ = 2 /d 27r)21 - (27_[_)22 - (271-)23_5 iy Teytilay Toy—ilz) Trx
X IsE1,qinst VSE1 ginst » (5.15)

where we encounter the pole structures

L opdif g oA —i(2¢7)2(203)
Bees= [ G | @) | G e o O

I U L g —i(2¢7)%(213)
Berns = | @y | oy ) o e wP e aEE 17

To keep these integrals compact, we have omitted the +ie prescription which fixes the

location of the poles in the complex plane. Employing equations egs. (D.7), (D.13) we can
write the integrals in eq. (5.16) and (5.17) as (see more details in appendix D.2.1)

z O(2,)0(zy — 2
ISE1 reg = zg 5 5 (20)9(z 29) P (5.18)
(l R, ) [WSEl ( 1L+@Q ) +L2m_L} L3,
z O(2,)0(z, — 2
TSELginst = —5— (20)0(2 — 20) — (5.19)
“q%a {WSEl ( 1t Q2> + Lz:u} L3,.
where we introduced the kinematic variables
Q? = zqz§Q2 and wsg] = m ) (5.20)

2,
Zqu

Transverse momentum integration. We are now ready to perform the integration
over the transverse components of the internal momenta. Given that the integrals depend
only on Iy, Lo, and L3, , we perform a change of variable in terms of these transverse
vectors. The phase in (5.14) and (5.15) reads then

z
. . . _s29 il r J,»—g'r ) .
el oy pilzy T2y o—ilal T2o _ o i kJ— oz 1L ( Tz 27 ) gi(Loay —Law1 ) Tar (5.21)
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Longitudinal polarization case. For a longitudinally polarized photon, there is no instan-
taneous contribution since the Dirac structure vanishes Né\E:fqinst = 0. In the regular piece,
the Dirac structure in the numerator contains two terms with two different tensor struc-
tures, one proportional to §°* L xJ_Lémj_ and the other proportional to w“‘iLfé,,mJ_L’c - The
latter vanishes since the integration over Lz,  and Lag, is proportional to i, 7 w* = 0.

Therefore using eq. (5.18) and eq. (5.10), we find the regular contribution to be

=0,00’ 2q dZ g k‘ o v(p,o i _iZap P
2 ] 3 ]

. z
ily - (rIeri

y ME/ d2_€l1J_ e M d2 8L2mJ_ Li iLzerm
(2m)2—e l%J_ +Q? (2m)2 WSE1 ( 1J_+Q2> +L2wJ_
><,u€/ d*“Lgz. L]:fc,xJ_e*iL?'u’T” ‘ (5.22)
(2m)2—= L%w_

Using the formulas eq. (E.5) and eq. (E.16) from appendix E, one can perform the transverse
integrals in 2 — ¢ dimensions with the result

27 1~ - /
A=0,00’ Qs % dzg Zg € Zg [u(k70)7 ’U(p,O’ )]
NSE1 g T2l 2q2qQ [1—%+ (1—2>223
e —e0(=5)  (Prd)” itk
22+€/2(27r)—36/2 T,gx

with I'(a, x) the incomplete gamma function defined by
o0
I'(a,x) :/ dt t* et (5.24)
x
which is related to the gamma function by
I'(a) =T(a,0). (5.25)
The expression in eq. (5.23) is our final result for the regular perturbative factor in the

longitudinally polarized case, specifying the exact dependence on e.

Transverse polarization case. We turn now to the transverse momentum integration for a
transversely polarized virtual photon. We need to consider the instantaneous contribution
in this case. As it is free of UV divergences, we can directly set ¢ = 0 and perform the
transverse integration in two dimensions. Inserting eq. (5.11) and (5.19) inside (5.15), one
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finds

2 2 2 - .

A==+1,00" g 4 Zg — % ANi ) - vy -2k rop

NSEquinst = _5/0 dzg( 5 3 o) € {U(k‘ao’)(l - AQ)qf_U(I% UI)} e T T (5.26)
q

/ d2l1J_ / dQLsz_ 61 1L (7‘ YT g " )eszmJ_.rm / d2L3mJ_ L?g,mJ_e_stzJ‘.r”
@2 O g (17, 4 Q)+ Ly, | @F DR,

Using the formula eq. (E.20) in appendix E, this integral can be expressed in terms of
modified Bessel functions as

A=+1,00' s Zq Z(Zg — Zq)Q 7iz—gk Tog Q =
NSEl,qinUs‘tj:p/O dZQ 425;, e \/mKl Q R%E+WSE1T,§$
zx
A _
Tow € | _ 7y
X ZiQ L {u(kzja)(l — AQ)qTU(p, U')} , (5.27)
2z

where Rsg = 74y + z—grm, is the size of the ¢q dipole before the emission of the virtual
q

gluon. Performing the contraction over spinors, this expression can be further simplified

to read,
N)x:il.,aal _ % % 5 e*i%kL-Tzz (Zg — ZQ)QZQ(;J,fU’(SG,/\ Ei ‘Tz ZQKl (QXV) (5 28)
SE1,qginst 2 0 g Zg rgm XV ’
with
X2 = 22(2g — 29)72, + 24(2g — 2 o 2 5.29
V = Rq\Zq — Zg)Tzy T 2glZq 29) T + 2g2gT7y - (5.29)

The parameter Xy has a geometric interpretation similar to Xy (see for example eq. (4.23))
in diagram R1. It is the effective transverse size of the virtual ¢gg dipole when it crosses
the shock wave.

We end this subsection with the computation of the regular perturbative factor for
the transversely polarized photon. As in the longitudinal case, the term proportional to
Lém J_Lgx J_wik does not contribute. Proceeding then similarly, and employing the integral
eq. (E.17) in appendix E, one obtains

2 . €
)\::tl,o'(f/ _ CkS Zq ng Zg g zg £ _7151—‘ (_E
NSEl,reg - ﬁ 0 Z [1 - Zq + 11— 5 @ K 24+g/2(27r)—38/2
—izikl'rzw (M2r§$)€ /Oo dS _8Q2 _RgE € wsElrgx
X # s |1 — -, —==
© 2, 0 5275/26 ‘ 27 4s
Alem = k _ 5lm Ilm £ / 5 30
X €, Iigp u(k,o)[(2g — 2q) +w ]q_ v(p, o) ¢ - (5.30)

This concludes the computation of the regular perturbative factors in 4 — ¢ dimensions.

UV divergent and finite pieces. The perturbative factor AMgg; is convergent in 4
dimensions (¢ = 0). Yet the amplitude Mgg; is UV divergent. This divergence appears

within the z, integral because of the 1/r2, factor. In this section, we will first extract the
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UV pole and then choose a suitable subtraction term which enables one to express the finite
piece in a compact way. To illustrate the method, we choose to focus on the longitudinally
polarized case; the extension to a transversely polarized incoming photon is straightforward.

In order to isolate the finite term, we use a UV divergent subtraction term which
captures the leading singularity as 7., — 0, or equivalently, as z; — x. In dimensional
regularization, this singularity becomes a 1/e pole. The UV singular part of the self energy
crossing the shock wave is unique up to finite terms. We thus have the freedom to choose
the UV divergent piece of the diagram in several ways. In mathematical terms, this can
be expressed as

Msg1 = Mgsg1 — Msg1,uv +Msge1,uv, (5.31)

finite

with Mgg1, uv chosen in such a way that the first two terms give a convergent z | integral
and such that the integration over z; in the UV divergent term can be computed analyt-
ically in 2 — ¢ dimensions. In order to simplify the discussion of the slow gluon limit of
the dressed self energy, an additional requirement is that the UV subtraction term should
subtract the UV divergence for all values of z, without bringing an additional infrared
singularity.

Following [35], we present one possible choice of the UV subtraction term which satisfies
these conditions. When z| and x| are close to each other, the color structure of the self
energy crossing the shock wave reduces to the color structure of the free self energies thanks
to the unitarity of Wilson lines. We thus replace Csg1 by Cg Cro inside the amplitude.
Considering also eq. (5.23) in the limit r,, — 0, we can approximate

e 2? 4s =€ 2 € ’ .

The last exponential factor is harmless in the r,, — 0 limit, but ensures that no infrared
singularity is introduced as 72, — co. It depends on a parameter & which will be fixed later.

The freedom of choosing £ simply reflects the fact that the UV subtraction term is not
unique; the change in Mgg; — Mgg1,uv induced by a variation of £ is compensated for by
the change of the finite component of Msg1 yv. Note that using a z, independent £ is a
sufficient condition for this Gaussian factor to cut off the infrared region of the z, integral
for all z4 values. To sum up, our choice for Mgg; yv is

A=0,00’ eefq o 2— 92— _ik\ @ —ip -
MGgiuv = — S dT ey [ ATy e T TPV o (2, y )

—asCp (% dz, 2g ( 5) z; [u(k, o)y~ v(p,0’)] —el'(=35)
9, 0129 1_-2) 29
X 3 / % 2q23Q [ 2 + 2) 2:2 = 92+</2(27r)—3¢/2
© ds 52 Ty € r\ (p?r2,)¢
2—e —sQ* _— zx zx
X /d sz/o =2 e o I (1 — 2) exp (— 2 ) 2 (5.33)
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It is possible to perform the r,, integral in 2 — ¢ dimensions, as well as the integral over
the Schwinger parameter s, leading to

A=000” eerq o 9_ 9 —ik,| x| —ip, - /\ 0,00’
Mg UV = —H S AT A Ty e PRV Cro (L, Y )N T (Tay)

X O‘QiF {(2 In CZ) - ;’) (i - ln(27r,u2§)> % +O(e )} (5.34)

with € > 0. In this expression, the leading order perturbative factor computed in section 2.2

is generalized to 4 — ¢ dimension using the integral eq. (E.12),

—e/2 B _ ,
NLAO?;M,(%@/) —Zq% qQ( Q ) K_ /o (ery) [tk o)y v(p’a)], (5.35)

27”‘9034# qa-

which factors it out from the terms inside the curly bracket. Writing the result in this
way will enable us to demonstrate that the finite (rational) terms coming from the product
between the O(¢e) term in the expansion of eq. (5.35) and the € pole cancel at cross-section
level.

Finally, since the difference Mgg1 — Mgg1,uv is UV finite, one can freely take the limit
¢ — 0. Remarkably, one can find an analytic expression for the s integral in eq. (5.23)
when € = 0 (see the discussion of the formula eq. (E.18) in appendix E). Hence the finite
piece of the dressed self energy within our UV subtraction scheme reads,

A=0,00" _ i Qs [ g2 ikiw—iplyL / "4 oo
Mgy ‘vaﬁn. = 7T2/d z dy. e ; Zg( 22,27)Q6
2 2
z z d?z| [ -2k, 7.,

X ll =+ 2g2 /2{6 T K (QX ) Cser (T, YL, 1)

z e
2y _
—e 2% Ko (Q%;;) CFCLO(wJ_ayJ_)} : (5.36)

For a transversely polarized virtual photon (see eq. 5.30), one finds similarly,

A==x1,00' eefq_ -2 2 29— _ik x| —ip | - A= :|:10'0‘
Mgproy. = — k7 [ dTTeidT Ty e PLYLCLo (1, Y1 )N o (Tay)

« O‘;iF {(2 In (Z) - 2) C + 111(27m2§)> - % + O(s)} , (5.37)

with the LO perturbative factor in 4 — ¢ dimensions given by

AN = —e/2
,o0! i Q€ Irg: Q ~
NS fl (ray) = 5——" ( 2) Ky_c/2(Qray)

2 Ty 27T gy
X [a(k’ O’)((zq — Zq)(;li + w’u)’y_v(z% U,)] . (538)
q

Given that there is an ambiguity in the analytic continuation of the Levi-Civita tensor
to 4 — € dimensions, we restricted ourselves to using the identity in eq. (C.1) to simplify
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Figure 8. Free self energy before the shock wave (left) and after (right).

the Dirac structure. In the end, the limit ¢ — 0 exists so this perturbative factor can be
evaluated in 4 dimensions. The UV finite piece then is given by

A==x1,00'
Mspr ‘UV—ﬁn.
_ 2
_Cerq s 2 2 _ikL‘iUL_ipL'yL[ oA _ 07—0/} Zq% _*g Zig
E—— /d x dy e 2zqzqfﬁ_>qg(zq,zq)(5 - 1 Zq+223
deJ_ —i 29 ZQGj\_ ‘Rsg i ZQEj\_ Ty A
X s—qe ——— K1 (QXv)Csp1—e % ————K1(Qryy)CrCro

rzm XV rxy

eerq o« . . , Zq 5 227

+ 4 7;/d2mJ—d2yl6*’LkJ_'$J_*lpJ_-yJ_ {50,*0 50,)\}/ ng ( g9 QQ) q

™ T 0 Zq

z )\ M)
ik v, €1 Tar 1Q K (QX
« /dQZLe ’qu kJ_ Tzx © | > zZT Q 1 (Q V) CSEl, (539)
rzac XV

where we have omitted the transverse coordinate dependencies of the color structures Csgy
and Cro for compactness.

5.1.2 Free gluon propagator

We now consider the self energy diagrams with the free gluon propagator, either before
or after the shock wave. As we shall see, the self energies after the shock wave vanish in
dimensional regularization.

Self energy before the shock wave. We start with a brief discussion of the self energy
before the shock wave, whose Feynman diagram is pictured in figure 8-left. It is equal to the
sum of all the self energy diagrams contributing to the light-front wavefunction of the qq
Fock component inside an incoming virtual photon, including therefore the instantaneous
quark and antiquark diagrams. This calculation has been done previously in [33, 35] within
the LCPT framework. We rederived these results in standard covariant perturbation theory
and demonstrated the equivalence between the two approaches. Intermediate steps are
provided in appendix H.
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After integration over the internal momenta [; and l» in d = 4 — & dimensions, the
subtracted amplitude reads

A=0,00" eequ _92 92— 92— —ik -z —ip ) - A=0,00’
Mggy™ = po AT ATy e T TP G o (1, Y )N . (Pay)

y af{(_m(z)g) (§+; (4 )w_l ( Q))
+<;+37§ NE ) } (5.40)

for a longitudinally polarized virtual photon, and

A==%1,00" eequ ) 2 2— —ik,| x| —ip, - A==1,00"
Mg, =K = ATt ATty e T TPV o (21, Y )N 77 (Tay)

asCr [ (o (2 3) (2,1, (@ (2@ 1 Ko(Qray)
X - {( 21n (z0> + 2) (5 + 5 1n< 1 +v9 —In 2 szQ K1(Q7“zy)
1 2
+ <2+3—7;—1n2 (Z)) +(’)(£)} : (5.41)

for a transversely polarized virtual photon. In these formulas, we use the notation ji? =

dmeVE 2,

These expressions exhibit two types of divergences. The pole in 1/e comes from the
UV divergence of the la, integral and factorizes from the LO amplitude. There is also a
slow gluon logarithmic divergence when the lower cut-off 29 = Ay /¢~ for the z, integration
of the gluon goes to 0. In the last line, we keep separate the finite 1/2 term coming from
the product between the O(e) term in N4g§ and the 1/e pole. Such a term arises in
dimensional regularization. We will check explicitly that all such finite terms cancel at the
level of the cross-section.

When compared to the longitudinal case, there is an additional term in eq. (5.41) which
depends on 7, via modified Bessel functions. At first sight, this term looks a little bit odd.
Indeed, it contributes to the slow gluon logarithmic divergence and we expect this diver-
gence to depend on the polarization of the virtual photon via the leading order perturbative
factor only. We shall see that it cancels against a similar term in the vertex correction be-
fore the shock wave. One should thus interpret with caution the results for each individual
diagram, since many nontrivial cancellations occur only once they are combined together.

5.1.3 Self energy after the shock wave

In the limit of massless quarks, the quark or antiquark self energy after the shock wave
vanishes in dimensional regularization. It is nevertheless enlightening to understand this
statement more deeply. When we sum the virtual diagrams (self energy and vertex con-
tributions) with the exception of the self energy after the shock wave, we observe that a
UV divergence survives. This is at first glance surprising since typically one expects UV
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divergences to cancel'” and only an IR divergence to remain. This IR divergence in turn
is expected to cancel with the collinear divergence in the real emission cross-section after
proper definition of an IR safe jet observable.

In this subsection, we will show that the self energy after the shock wave vanishes in
dimensional regularization because it contains both a UV pole and an IR pole with the same
prefactor but with opposite signs. Thus one can use this UV pole to cancel the surviving
UV pole from the sum of the other virtual diagrams and one then ends up keeping the
IR divergence, thereby resolving the apparent conundrum stated above and in line with
expectations from perturbative QCD.

More concretely, the subtracted amplitude for SE3 in d = 4 — ¢ dimensions, and in the
massless limit, is

’ eerq . . /
MG — frq M—Za/d2—€de2—€yLe—szmL—lPLyLCSES(mL’ y 1 )NDS (ray), (5.42)
with the color structure

Cses(xL,y1) =CF [V(fBL)VT(yL) - ]1} ; (5.43)

and the perturbative factor
: : Za dz P e\ 2 d>=°L 1
oo _ \oo g g g 2z L
A ) =t [0 [1 =2 (=) B [
(5.44)
where z, =I5 /¢~ is the longitudinal momentum fraction of the gluon inside the loop. The

remaining transverse momentum integral is both UV and IR divergent in 2 dimensions.
In dimensional regularization, one takes care of such integral by introducing an arbitrary
scale A to divide the UV and IR regions:

Ma/ d>fLgy, 1 _ (47T)E/2M€ /A dLoy | n /oo dLoz1
(@m)?e L, @mU(-35) [Jo Lyt o Lyt

1 2 2

where € = eyy > 0 in the UV divergent term and ¢ = g < 0 in the IR divergent one.
Setting formally eyy = er = €, one sees that this transverse momentum integral vanishes,
meaning that the full perturbative factor for SEs,

’ (6 ’ 2 2 Z 3
NGRS (Pay) = —— NG (1 ( - ) {2111 (q) - } , 5.46
is identically zero. The price to pay is that the nature of the divergence, either infrared or
ultraviolet, is lost when one takes the limit e;g = eyy. It also explains how the apparent
UV pole that we will obtain at the end of our computation of all the virtual amplitudes
can be “turned into” an IR pole when combined with the self energy after the shock wave.

10The physical reason for the cancellation of UV divergences is that (i) quarks are treated as being mass-
less, and (ii) the quark electric charge is not affected by QCD corrections. As a result, UV renormalization
is not required at this order in perturbation theory [77].
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Figure 9. Vertex correction from the gluon crossing the shock wave.

The final result for this amplitude is given by

x —asCFNﬁgj’;(rry) (2 - 2) {21n (2‘1) - 2} . (5.47)

2w Euv IR 20
5.2 Vertex diagrams

We continue our computation of the virtual diagrams with the vertex corrections which are
listed in the third line of figure 4. As in the case of the self energy diagrams, the virtual
gluon can interact with the shock wave or propagate freely. For the diagram with dressed
gluon propagator, the final result for the amplitude is given in egs. (5.49)—(5.50)—(5.70)—
(5.73)—(5.74). The free vertex correction before and after shock wave are respectively given
by egs. (5.78)—(5.79) and eqgs. (5.84)—(5.87).

5.2.1 Dressed gluon propagator

We detail now the calculation of the vertex correction with the gluon crossing the shock
wave and shall derive a compact expression for this diagram. The scattering amplitude for
this process is given by

4 4 4
S = [ gt igms [0 i)k — )T 1 1)5°(00) (et )

xS°(h — g)(igy"t")S° (b — g + L) T(l — g + b, —p)o(p, o')]

x GRe(I3)T5" (I3, 12) Gy (I2) (5.48)
Note that we have written the amplitude now in d = 4 dimensions; this is because, as
we shall see, this diagram does not have ultraviolet divergences. After subtraction of the

noninteracting piece and factoring an overall delta function 27§(¢~ —p~ — k™), we find the
physical amplitude

Aoo! _ €€Fq 2— 2, 12 —ik @, —ip,- Aoo’
MPT = - d“ e, d%y A%z e T TPLYLC (2, Y1, 20 )NGTT (Tays Tay)

(5.49)
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with the color structure

Cvi(@1,y1,20) = [V (@ )V (y 1) Us(21) — 1]

= [V@ VIOV (z0VY) - )] | (5.50)
and the perturbative factor
2 4 4 4
Moo’ g d*l; d7ly d¥ls i1y Ty ila) 1oy ,—ilg T
— x z zT . 1
M = iy | T ampame T 551

—i(2¢7)*(203)3(ly —15)3(k™ =I5 — 17 )N (I, Do, L)

R id [Btad (4 — @) + el (2 —q + 1) +ic) [B+ic] [B +i]

where the Dirac structure is given by

N7 = (2;> [k, )7 (k = 17~ T f (@ Vs — Dwlls — g+ 127 0(p,0")]
X T, (13) 117 (1) . (5.52)

Dirac structure. As usual, the integration over I; and [, can be easily done with
the delta functions that enforce [, = I3 and I = k= — [l3. Using the identities in
egs. (C.25), (C.33) and (C.21) from appendix C we can express the Dirac structure in
eq. (5.52) as

NVl = NVl,reg + (ll - Q)QNVl,(jinst ) (553)
with
4L%, | L% g .
oo’ __ 3xl 2yl | _ TN i T 3
NVl,reg_m/{u(k7U) |:<1—2>6 J—Z§€ ']Q:| DLO(ll)
Y\skj Y kj '
X [(1—2>6 —ige Q}v(p,a )}, (5.54)
/ 1—y) _ €T . X . _ _ .
N/\Uq_ _ ( 12 ik sz] k / }Lz )

V1,ginst 21_((]_)2 {u(kag) [( 2)5 Z26 v l1¢(q7)\)7 0 ’U(p,o‘) 3xLl> (5 55)

where © = z,/z,, Ly, | = 15, — 2k’ , y = 2z,/(25 + 24) and Lizyl =10 +yli,. In
the longitudinally polarized case, the instantaneous piece in eq. (5.55) vanishes, using
again(y7)? = 0,
A=0,00" __
NVl,qinst =0. (556)

For the regular piece in eq. (5.54) one obtains, after some Dirac algebra,

N/\:O,a'o’ _ _42(1(”2(7 + 29)2(”24 — ZQ)Q 1— Zg &z [ﬂ(k> U)va(pa U/)] 5ik
Vlreg 22 2z 2(zg+ zg) q-
_ Zig _ 29 [qj(l{,g)ﬁy*QU(n UI)]Eik

i Lk . (557
2Zq 2(th+zg) q } 3zl M2yl ( )

The transverse polarization case is worked out similarly, giving

A=%1,00" _ Zqzé(zq - Zg) — v ’ A
NMrginse = T (e ) {U(’fa o)(1+ )\Q)qTU(P,U )} (L3g1 -€1), (5.58)

~ 34—



for the instantaneous antiquark piece, and

A=+1,00’ 2z (Z + z ) A\
Mitreg = % o1 Ly  (l11 - €)) (5.59)
% % u gl NI sik
Y 1—-2 22,) — A\Q)—
X { [ 220 2t ) lu(k’, a)(( 2q +224) — A )q_ v(p, o )] B)

[U(kﬁ)((l — 22 +224)Q - >\) v(p, o )] ’k} :
for the regular Dirac piece.

Pole structure of the instantaneous and regular terms. The Dirac numerator
does not depend on I, I and lgr. One can then perform the “plus” ligthcone momentum
integration using Cauchy’s theorem. Using the decomposition in eq. (5.53) we can express
eq. (5.51) as

Nyvi = M1 reg + N1 ginst » (5.60)

with

A /d /d by oy s Zlu'rl'yﬂlu""Zy—iZSJ_-Tzval Ny (5.61)
T 2 ) (27T) (27T) ,reg ,reg s .

dQlu d2l2¢ PU3L 1 o il 1y —ilgy
Nvs,ginst = /d / 2m)? (27)? e ey TR L Ty ST Ty ainst NV ginst > (5.62)

where we encounter the following pole structures (omitting again the +ie prescription for
the propagators):

Totreg = / dif diy dif —i(2¢7)2(213)
(2m) (2m) (2m) (I3 — k)23 (I — @)%(l2 — q + 11)21313
_ %9 O(24)O(2¢ — 29) (5.63)
(2q T 29)2q (12, + A2,) wvi (B3, +A%) +L3,, | L3,
ot — / Ay di it —i(2q7)2(205)
(2m) (27) (2m) (I3 — k)23 (la — g + 11)21313
_ “g O(24)O(2g — 2g) . (5.64)

(25 + 24)(2q — 2g) 2 {L%yJ_ +wyr (13, + AVl)} L%,

The computation of these integrals is done using Cauchy’s theorem as outlined in ap-
pendix D. The definitions of the kinematic parameters which appear in the energy denom-
inators (in the language of LCPT) are

A%/1 = (2 — 2¢) (25 + Zg)Q2 ) (5.65)
Rg2q

(2g — 2¢) (27 + 24)?

wyil =
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Transverse momentum integration. Before we proceed with the transverse momen-
tum integration, we will, as previously, write the expressions for the relevant phases in
terms of the momenta L3, and Loy :

. . . 29 . il rgy——L—7 . .
elllL'rzyell2L‘sz€_Zl3¢‘rzz —e qu ki "'za:e 1L ( Ty (zg+zg) #Y €ZL2yL'sze_7'L3a:J"7'zz . (567)

We will separately discuss the transverse momentum integrals for longitudinally polarized
and transversely polarized virtual photons.

Longitudinal polarization. Clearly, the instantaneous contribution (eq. (5.62)) again van-
ishes since the corresponding Dirac structure is identically zero (eq. (5.56)):

A=0,00"'
Nt ginst =0 (5.68)

The regular piece is found by inserting egs. (5.57), (5.63) and (5.67) in eq. (5.61); we find

2 Z, .2

A=0,00" g q ng —i 2k ron

Mieg? =% [ 2T A g 4 20) (20— 20)Q
g9

S ) I A
2z 2(zg+ zg)

.| R z
_Zlg_ g

@k, o) o(p,0)] s
=

[u(k, o)y~ Qu(p,o’)] eik}

2z 2(zg+ zg) q

il 1 - ___*3 . .
/ d2l1J_ ezl1¢ (Tacy (zq+zg)7'zy) / d2L2yL LzzyLeszyJ_-rzy
(2m)? (13, +A%) (2m)? [LgyJ_ +wy (I3, + A%,l)}

/ d2L3mJ_ ngle_ilﬂzJ_'sz
(27T)2 Lng_ .

(5.69)

The transverse momentum integrals are performed using the formulas eq. (E.6) and
eq. (E.18) in appendix E. After contracting the remaining gamma matrices with the spinors,
one obtains the compact expression,

_ ’ Zq d _ ;29 . — ’
Néxl—ji)éga — Oé;/o q ﬁe lzq k. rm(QZqu*)Q(SU’_U KO (QXV) <1 _ ZQ) <1 + Z?) (570)

™ Zg Zq Zq

z z e z z Tog X T
X 1—- 29 _ 9 2T Zy—i—io‘ ~9 g 2T zy}7
{ [ 2z 2(zg+ zg) rgxrgy 2z 2(zg5+ zg) rgxrgy
with the gqg dipole effective size Xy defined by
XT = 25(zg — 29)12, + 24(2g — 24)72, + 292472 (5.71)
VvV = %q\%q 9)Tzy g\%q )T 2z 92qT 2y .

as for the quark dressed self energy.
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Transverse polarization. For a transversely polarized virtual photon, one needs to com-
pute the instantaneous antiquark term. Inserting the expressions for the instantaneous
Dirac structure eq. (5.58), and that for the contour integral in eq. (5.64), inside the equa-
tion (5.62), one gets

2 Z .2 -
A==%1,00" g a —Zzik “Tog Zq _ vy Ai
Nolgms, = -5 /0 dzge 7+ 7(% +qzq)2 {u(k, o)1+ )\Q)—q_ v(p, a')} e (5.72)

dzllJ_ d2L2yJ_ eil1J_' (T'zy_ (zqug)rzy> 6iL2yJ_"I‘zy dngmJ_ Lng_e—ingJ_""zz
8 / (2n)? / 2m? (12 2 A2 / (27)2 L2
{L2yl +ovi () + w)} 3zl

The three transverse momentum integrals can be performed analytically using eq. (E.6)
and eq. (E.20) in appendix E. The antiquark instantaneous term finally reads

.z A )
N}\::tl,o'a'/ — % /Zq dzg e—Z%kl""zw Z(j(zq - zg)(50'7—o"6o'7—A Trx - 6J_ ZQKI (QXV) .
™ Jo

- 5.73
V1,ginst Zg 4 2 rgx XV ( )

For the regular term, the steps are the same as in the longitudinal case. The only difference
comes from the additional 11 | dependence of the Dirac numerator. The relevant transverse
momentum integral with this additional factor is given in eq. (E.19) of appendix E. One
ends up with an expression which looks very similar in structure to eq. (5.70),

A=%1,00'_ COs *a ng 2k T o,—0’ o, A
/\/'Vl,]reg = ﬁ/o — € q (—22424)0 F%_H]q(zq — Zg, 25+ 24) (5.74)
g

< (Ry ) L) (1 - Zg) (1 + Zg)

Zq 2q

z z r T . z z r Xr
% 1_ 29 _ g z320 2zy Lo |2 — g zx2 : 2y 7
2Zq 2(’2‘? + Zg) T2zTzy 2Zq 2(’2@ + Zg) TeaTzy

with the initial size of the ¢g dipole (before gluon emission) defined by

Zg
z2g + 2g

Ry =71y — Tzy - (5.75)

This concludes our computation of the dressed vertex correction.

5.2.2 Free gluon propagator before shock wave

The free vertex correction before the shock wave was computed in [33, 35] using LCPT.
In our framework, the left diagram in figure 10 corresponds to the sum of all the vertex
corrections to the lightcone wavefunction of the incoming virtual photon. We have checked
these results and the main steps of the computation are outlined in appendix I . We quote
here only the final result:

M = eefr 4 -2 / A2 Sz d2 Sy e h Tl T PLYLC s () Yy ) NS (ray) ) (5.76)
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lh —qg—1s I —q po_l li—q

V2 V3

Figure 10. Free vertex correction before the shock wave (left) and after (right).

with the color structure identical to the LO color structure, up to a Cp factor (just as is
the case for the free self energies),

Cva(z1,y1) =CFr [V(‘BJ_)VT(Z’JJ_) - ﬂ} : (5.77)

The perturbative factor for a longitudinally polarized photon reads,
A=0,00" Qg \ A=0,00" 2 /-712 z Zq 3
(2 n (5)) o 5) ()3
_ 1 2
+ In? (”’q> + In? (”’q> 4o n? <2q> T (5.78)
20 20 2 Zq 2
Z) 3 % [
—|—<21n (Zo> 2>ln(zq)+(2ln <z

and for a transversely polarized photon,
A=+1 AA=EL
N o (Irwy) 2 LO ,€ oo (

y)
Ao (E) o) () () 3]
+ln< >+12( ) <Z>+7;2 (5.79)
+<21n(zg>—2>ln(zq) <21 (Z())_;)ln(zq)_;_;r@(g)}‘

The last finite term in these expressions corresponds to the regularization scheme dependent

@\‘tl
(V)

term from the £ dependence of the Dirac algebra. As discussed for the case of the gluon self
energy before the shock wave, such scheme dependent terms cancel at cross-section level.
This particular diagrams has a UV divergence in 4 dimension, manifest as a pole in 1/e,
and a slow divergence which is cured by the cut-off 29 = Ay /¢~

5.2.3 Free gluon propagator after shock wave

This diagram is free of UV divergences; it is therefore enough to compute it directly in 4
dimensions. The calculation is detailed in appendix J. We provide here the final expressions
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and additional comments. The physical amplitude reads

eerq

doa’
M =
V3 T

/ P Ay e R LTIV () Y YNDST (Tay) s (5.80)
has the color structure
C\/g($L, yL) = t“V(mL)VT(yL)ta - CFpl. (5.81)

Observe that it is different from the LO expression, despite being independent of z|. The
perturbative factor is written as an integral over the longitudinal momentum fraction z,
of the virtual gluon. In contrast to the other diagrams, we have not found closed analytic
expressions for the transverse momentum integrals. The perturbative factor involves the

functions,
i, 20 K el
KA — .82
Jo(rL, K1,A) / @m) 21— K;)2— A2 —id’ (582
L (i)l x K el
KA — 5.83
Jo(ri, Ki,A) / @m) B[l — K,)2— A% — e’ (5:83)

for all |, K| and A% > Ki These transverse momentum integrals are computed and
their structure analyzed in appendix F. The final result contains scalar integrals over a
Feynman parameter, as can be seen in eqs. (F.7) and (F.8). The function Jg does not
have singularities, unlike [J which diverges near A% = Ki, which occurs in the slow gluon
limit z, — 0. We will return to this issue in the next section.

In terms of these two functions, the perturbative factor for a longitudinally polarized
photon reads

=0,00"' s Z¢ d o —o' _
M ) = 22 [ D zy20)207 QKO(Qw( —f) (HZQ_)

T 2g
>< {
Zg I Zg 23 iigkL.,.wyj 1 Zg P A
— 11— 4+ I | r - = ,
2z 2z 2z425 O\ Zq Ly =vs

2
z z z iZ9 L - z
g g ZZ 1Tz qg
—+g] ez T Ty <r$y, (1—) PL,AV;),)}
Zg R *q*g Zq

+(@<q), (5.84)

q

+o

with

PJ_ = quJ_ — Z¢PL, (585)

AZ, = < - Zg) (1 + Zf’) P2, (5.86)
Zq <q

In the argument of the Ky Bessel function of this expression, Ays is positive, due to
the location of the poles in the integral over the virtual gluon momentum (see details in
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appendix J). One recognizes P as the relative transverse momentum between the two jets.
Note that A%g — Pf_ when z; — 0. In eq. (5.84), the quark-antiquark interchange amounts
to the following transformations: z; <+ 27, P| — —P|, k| <> p1 and gy — —T4y.

Finally, for completeness, we will state here the result (worked out in appendix J) for
the transversely polarized virtual photon:

. A
A=+1,00" Qg [*a dzg — o' oA ZQ"'JJy C €77 ~
Nys (Tay) = */ 22q2q07"° e —>qé(zq — 29,23 + 2g) K1 (Qray)
™ Jo Zg T Tzy

>< {
z z 22 ik, Z

_ S AW M N P ﬁyj® Trys 1-= P, Avys
22’q QZq 22(12’@ Zq

2
z Z Z 129k, ry, Z
g_g+g]ezq yj@ Txy, 1- = P, Ays
Zg R *q”g Zq

+(@+q). (5.87)

e (1 N ?)] Ptz Bu LT Ky (—i Avygray)
q

+o

In spite of the different spin-helicity structure and the leading order photon wave function,
one observes a strong similarity of this expression with the longitudinal polarization result;
indeed, the factor within the curly brackets is identical.

5.3 Combining the UV divergent virtual diagrams

We will now summarize here our results for the virtual amplitudes. We found that the
dressed vertex corrections (V1,V1’), and the vertex correction with gluon after the shock
wave (V3) are free of UV divergences. On the other hand, the dressed self energies
(SE1,SE1’), the free self energies before shock wave (SE2,SE2’), and the vertex correc-
tion before shock wave (V2) have a 1/e UV pole (¢ > 0). Given that they share the same
color structure as the LO amplitude (up to a C factor), it is advantageous to combine all
these UV singular contributions:

Muyy = Mya + (Msg1,uv + Msgz + ¢ < q) (5.88)

ee - . .
= 7;? M_ZE/d2_6$Ld2_€yL€_ZkL'mL_ZpLyLCLO(mLayL)NLO,e("'xy)

s q 2 3’ i
x & Cr <ln (zq> +In <,zq> - 3> - —2yg—In Tyl + 21n (27w p2€)
2m 20 20 2 € 4
1 AN
Bl (TN A T )
+51n <2q> ot 2}, (5.89)

where ¢ > 0, and the second equality comes the combination of eqs. (5.34)—(5.40)—(5.78)
for a longitudinal photon and eqs. (5.37)—(5.41)—(5.79) for a transverse photon.

If in addition we include the contribution from self energies with gluon after the shock
wave (SE3,SE3') in eq. (5.47), which formally vanished in dimensional regularization, we
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see that the surviving pole is infrared, Myy — MR,

Mig = My2 + (Msg1,uv + Mgsg2 + Msgs + ¢ < Q) (5.90)

ee - . .
= quM_2E/dQ_ECCLdz_EyLe_Z’”'M_’“'“CLO(CM,yL)/\/Lo,a(T:cy)

i 2 ~2
y a,Cr {(ln (Zq> T 1n <zq) _ 3) (2 —2vg —1In <W> + 21n(27r,u2§)>
21 20 20 2 € 4

1 , 2 5 1
q

where € < 0 indicates the infrared nature of the divergence.

The results in egs. (5.89)—(5.91) are valid for both longitudinally and transversely
polarized virtual photons. In other words, the dependence on the polarization of the
photon enters only through the leading order perturbative factor N0 .. This is nontrivial
given that diagrams SE2 and V2 do not independently satisfy this property because of
the term proportional to Ko(Qrzy)/K1(Qrsy) in eq. (5.41) and (5.79). Another important
point relates to the cancellation of the double logarithmic divergence 1112(20). Even though
each individual diagram exhibits such an unphysical divergence, the sum of the diagrams is
free of it. Since such double logarithmic terms would violate the small-z factorization into
the JIMWLK evolution equation, it is a crucial result of our calculation. Finally, the —1/2
term in eq. (5.91) is the scheme dependent rational term in dimensional regularization [33]
(see also [78] for an overview on the rational terms in the context of QCD loop calculations
in d dimensions and [35] for a detailed discussion of the dimensional regularization scheme
dependence of these rational terms in LCPT).

We remind the reader that the free parameter £ in eq. (5.91) is arbitrary. Anticipating
in advance the discussion in the next section on the slow gluon limit, we choose

2 oE
T'zye

E=—%5 (5.92)

in agreement with [35], leading to

Mg = T'uf% / dQ*EmldQ*EyJ—e*ikL'wl*ipj_-yJ_ Cro(x, yL)NLO,s (T'zy)

a,Cr zq) <zq> 3) (2 2 9 > 1. 5 (2
In{=]+In{=)—=)(=+In(e"" —In* | =
X {(n (Zo +1In . 5 )\ 2 +In(e"Erptry,) | + 5 10 n

2 5 1
—€+§—§ . (5.93)
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With the £ above, the UV regularized amplitude eq. (5.36) for SE1 can be expressed as

A=0,00’ A=0,00’ A=0,00’
MY = M3 — MY
SEL |gv_fin. SE1 SE1,UV

= cerq s 2 2 —ik-x —ipL YL /Zq % _95 Y059
i /d xz d*y e 0 2 (—22424)Q0

2 2
z Z d“z —i2 k|,
X ll—g+g]/ = {e T K (QX ) Cepr (T, Y1, 21)

sz _
—e rﬂ%yeWE KO (ery> CFCLO(mJ_a yl_)} ) (594)

and similarly for a transversely polarized virtual photon. The diagrams V1 and V3 are
unchanged since they do not depend on &.

Thus eq. (5.93) combined with the expressions for V1, V1’, V3, and the UV finite pieces
of SE1,SE1’ in eq. (5.94) contain all the virtual contributions to our NLO computation.

6 Slow gluon limit: JIMWLK factorization

In this section, we will examine the slow gluon limit of our results, corresponding to the
logarithmic divergence of the cross-section as the longitudinal momentum fraction z, of
the (real or virtual) gluon goes to 0. This divergence is cured by introducing an arbitrary
cut-off 29 = Ay /q~, with Ay the longitudinal momentum separating the fast gluon modes
from the slow ones; the latter being described by the CGC classical field/shock wave. We
will then demonstrate that the dependence on this cut-off (zp, or equivalently A;) can be
absorbed into the JIMWLK evolution of the leading order dijet cross-section.

6.1 Extracting the logarithmic slow divergence

At NLO, the real and virtual contributions to the differential cross-section can be generi-
cally written in the form

=TTy (6.1)

20 <g

donro =

where the upper bound z can be either z, or z;.
In this section, we will show that the integrand f(z,) has the expansion:

f(zg) = a0+ Z anZy - (6.2)

n=1
It is worth pointing that the expansion above holds only for the sum of all contributions,
and that individual contributions will develop terms proportional to In(z,), which when
inserted in eq. (6.1) will generate squared logarithmic divergences. This property (eq. (6.2))
is essential to recover the JIMWLK factorization.
The ag will generate the leading slow gluon singularity. In the same spirit as standard
DGLAP factorization, we introduce a rapidity factorization scale zy = A; /q~, and use this
factorization scale to isolate the logarithmic divergence as

[ i) = aom () & [T E2 15 - a0 — 2+ O0). (69

0 g Zg

— 492 —



We will explicitly show that the first term on the right hand-side can be absorbed into the
leading logarithmic JIMWLK evolution, while the second term on the right hand side will
constitute the NLO impact factor. Note in order for the impact factor to be independent
of 2z, we choose the lower limit in the second integral in the right-hand side of eq. (6.3) to
be 0, instead of zy. This approximation is valid up terms that are power suppressed in the
high energy limit, of O(zp).

6.1.1 Virtual contributions

We start our discussion of the slow gluon limit of the cross-section with the virtual cor-
rections summarized at the end of section 5.3. It is convenient to organize the calculation
as follows. We first take the slow gluon limit at the amplitude level for the singular term
with the 1/e pole defined in eq. (5.90). We then consider separately the UV finite part of
SE1, and the vertex corrections V1 and V3, which are also free of UV divergences.

The pole term. Using eq. (5.93), it is straightforward to isolate the divergence, inte-
grated between zp and zy (instead of integrating up to z, or zz). One finds

eerq  _ _ _ _ik x| —ip | -
MR gow = fr % 2€/d2 fx d* Yy e kL TLTIPLYLC o (2 Y )NLO £ (Tay)

X In <Z) % E + ln(eVEw,uzrfcy) +0(e)] . (6.4)
Since the JIMWLK evolution equation is known not to have IR divergences, we expect
this 1/e pole to cancel when combined with real emissions. Indeed, this would be the case,
as the collinear and slow contribution to real emissions will generate a similar pole (see
eq. (6.24) in a next section).

It is therefore useful to write the virtual slow gluon divergence at the cross-section
level. Defining

do-“{;\+A~>q(j+X 1 1 (2 )6( 3 - 7)
= ——2m)d(q” — k" —p
Pk idngd®prdng| 1o 4(2m)°02¢7
Aoo! /
< (MM [oal) e (65)
oo’ ,color
and using eq. (6.4), one gets
do +A—a+X aeme? N.
= 7(5(1 — Z —Z-)/dHLQ 'Rﬁo (’I‘ s Tyt /)
Ak L dngd?pLding |11 6 o (2m)° v S
C 2
< 2 () Biofer pial v) |2 + @ mitrd) + 00) e, (66

where the £ subscript for the differential measure and R{, accounts for the straightforward
generalization of the definitions eq. (2.21) and (2.25) to d = 4—e& dimensions. The “c.c.” no-
tation corresponds to the complex conjugate term and obtained by changing | — &/, and
y1 — ¢/, and performing complex conjugation, a transformation that leaves =p,o invariant.
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UV finite piece of the dressed self energies. We turn now to the finite term of the
dressed quark or antiquark self energies, whose very explicit expression is given in eq. (5.94)
for longitudinally polarized photons and in eq. (5.39) for transversely polarized photons.
In the z, — 0 limit, one observes several simplifications: the effective gqg dipole size Xy
goes to ery and the phase in the exponential vanishes. The same simplifications occur for
a transversely polarized virtual photon, with the additional limit Rgsg — 7, when 2, — 0
(note that the instantaneous contribution vanishes as well). One obtains as a result the
following expression for the logarithmic divergence:

eerq « z —ik, x| —ip) -
MSE1luv_fin. stlow = :r 7?; H(gﬁ) /dngdeLe kLTl =PLYLNG (7)) (6.7)

2
2T

dQZJ_ - _
></ = |Csp1(z 1, y1,21) —e " Crlro(®i,yl)| + (g4 ).

zx

ks

From the perspective of proving JIMWLK factorization of the slow gluon divergence, it is
convenient to further simplify this expression using the identity [35],

2 r2 2
r 1 —=%% 1 —=5%
d%z, W e "w? e 2P| =0, (6.8)
T2 7“2 ,,a2 ,,a2
zx' zy Zx 2y

This equation is derived in appendix E.2.1 and is crucial to simplify the slow gluon limit of
our results. This is the reason why the choice of ¢ in eq. (5.92) is particularly convenient.
One finds then

eerq” o z ik @ —ip | -
MsE1Uv_fin. stow = ; Tr*; In <2£> /d2$ﬂd2y¢€ kL@ L=PLYLNG 6 (7y) (6.9)
9 1 1 T%y
X /d 21 | 5 Csp1(xL, Y1, 21) + 5 Cspr (T, Y1, 21) — 55 CrCro(TL,y1)
T ’I’zy 2T Y
The color factor Cggor of the antiquark dressed self energy
Cspr (1, Y1, 21) = V(@ )VI(z )tV (2 )Vi(yL)ta — Cr1, (6.10)

is related to Cggy defined in eq. (5.3) by @, <> y, interchange and taking the Hermitian
conjugate of this expression.

Finally, we obtain for the slow gluon limit the result,

doatA—ea+X aemechc
=———0(1—=z —Z-)/dHLORA (Tays Tty )
2 2 _ 6 q q LO\'zy, Tz'y
d*k 1 dngd*p. dng SE1,UV—fin. xLO,slow (27)
o z 1 _ 1 _ 2 _
X % In (f) /d2zL —~=NLO,1 + —5 ENLO2 — 3 $y2 CrZ10| + c.c, (6.11)
™ 20 Tz T2y zx' 2y
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with the color structures,

- 1
Exvoa (T, Y1,z ,y)) = A <Tr [Csm (T, Yy, zL)CEO(m’L, yj_)] >Y (6.12)
C
N, 1 _
= 5 (1= Dyw + Quyyar Doz = Dz Dy )y — SN S0
_ 1
Envo2(®L, YL,z Y] ) = A <Tf {CSEl/(mLny_a 21)Cl o (@, yl)} >Y (6.13)
(&
N, 1 _
= 76 <1 — Dyl:r/ + sz7y/x/Dz,y — sz‘Dzy>Y — TJVC:'LO .

To obtain the “c.c” term above, one should replace | — &/, and y; — ¢/, and then take
the complex conjugate of these color structures.

Eq. (6.11) deserves further commentary. Firstly, as for eq. (6.7), the z integral is free
of UV divergences when z| — x| or z; — y| because in these limits, Exp,0,1 = Cr Zr0
(and likewise for Znr,0,2). On the other hand, the first two terms in the square brackets
of eq. (6.11) are infrared divergent as |z;| — oo. However we shall see that the IR
divergence cancels in the sum of all the diagrams. As shown in [79], this is a consequence
of considering the small = evolution of the gauge invariant operators in the leading order
cross-section. To avoid the IR divergence in the intermediate steps of the computation in
the slow gluon limit, one can regulate it by multiplying each z -dependent color correlator
Enpo (associated with a diagram in which the gluon scatters off the shock wave) by an
exponentially decaying factor e*#1 and then taking the limit A — 0 at the end of the
calculation.!’ Notice that the appearance of such IR divergences is specific to the slow
gluon limit. Indeed for finite z,, the Ky function in eq. (5.94) regulates the large |z, |
behaviour. Therefore even if the finite term defined by (6.3) may have IR singularity term
by term, the sum of all the contributions is also IR finite.

Free vertex correction after shock wave. The slow gluon limit of the amplitude V3
is nontrivial to extract from the results in eq. (5.84) and eq. (5.87) where the transverse
momentum integrations have been performed explicitly. If we undo these integrations,
one can find formally the slow gluon limit expected from the JIMWLK factorization. The
price to pay is that we lose analytic control over the impact factor — the finite piece
after subtraction of the slow divergence. For this reason, we will directly isolate from
egs. (5.84)—(5.87) the leading slow gluon divergence. In Eq (5.84), the first two terms
contribute to the logarithmic divergence when z; — 0. Using the result eq. (F.20) from
appendix F, one first shows that

2g _ 2g 1 9 9 v
oo 2) ) (i) )

q
+ &P Ko (—iP ryy) + O(z,) - (6.14)

A more rigorous way to proceed would be to compute all diagrams in d = 4 — ¢ dimensions (even UV
finite ones), take the slow gluon limit of this result, and finally the limit ¢ — 0 once all the diagrams are
combined.
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Since in the first term of eq. (5.87), Ko(—iAvsryy) = Ko(—iP14y) + O(24), the slow
gluon limit of V3 reads

€ee - . .
Mvslgow = frq /d2w¢d2y¢ e kL ELiPLYL [tQV(GA)VT(yL)ta — Cpill} Nro(Tay)
(—as) /Zf dz, 2g 2 9 .
- —= 121 In(P — 2 . 6.15
X = 0 2 n 22927 +In ( ery) T+ 2k ( )

Finally, the contribution of this amplitude to the cross-section level in the zg — 0 limit
can be expressed as

doratA—ag+X OéemG%Nc
=———0(1—2z,— zf)/dHLoRﬁo(r s Tery)  (6.16)
Pk dngd®pidng |y 16 gow (2T o ey
(—Ozs) = dzg g 2.2 —_ / !
X /20 Z 2In 2%a%a +In (Pery> +27E| Exvos(T L, Y1, ), Y ) +cc.,
with
_ 1
Envos(zi,y; 2, y)) = A <Tf [CVS(ZL‘L, y1)Cl o (@, yl)] >Y
C
N, I _
= ? <1 - .ny - Dy/a;/ + DwyDy'z’>y - W:LO . (617)
C

The remaining integral over z, in eq. (6.16) can be performed analytically but we will
refrain from doing so in order to make more transparent the cancellation between various
terms in this expression and the soft divergences in the real cross-section. In fact, only the
ln(rfgy) term in the square bracket of the z, integral in eq. (6.16) remains after combining
the slow gluon limit of V3 with the cross-term in the real cross-section where the emitted
gluon does not scatter off the shock wave (the contribution R2 x R2’). The other terms
are truly soft divergences, in the sense that they originate from an integration domain
where all the component of the virtual gluon are small.

Dressed vertex corrections. Finally, we will consider the slow gluon limit of the
dressed vertex corrections V1 and V1’; we include here the diagram with gluon exchange
from the quark to the antiquark. The cross product term in eq. (5.70) is sub-leading
in this limit and one easily sees that the transverse coordinate Ry simplifies to r;, and
Xy — ery as zg — 0. Eventually, one obtains the simple result

M\/l| _ €erq /deLdZyLe—ikLn’ELe—iPL/yLNLO (r:cy) (618)

slow T

— z T -r
X —5~In (f) /dzL% [Cvi(zi,y1,21) +Cvi(zL, y1,21)]
s 20 r2,r2,

which is valid for both longitudinal and transversely polarized photons like the other di-
agrams. The color factor Cyys corresponds to the color structure of the dressed vertex
correction with gluon exchange from the quark to the antiquark, and is related to Cy1
by x| < vy, interchange and taking the Hermitian conjugation of this expression. Note
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that by definition, Cy1 = Csg1, so that Cy1r = Csgrr. At the cross-section level, the CGC
correlators are then identical to the ones associated with the dressed self energy, and one
obtains

do Vs +A—ad+X Qeme} Ne

koLdnquPLdnq V1xLO,slow N (27T)6

(_as) 2f 2 Tz Try (— —_
X In(=) [d°z; ——7 [Enro,1 +EnL02] +Coc..
2 2 .2
™ 20 22T 2y

§(1—z4—27) / Ao Ry (Tay, Tary') (6.19)

The same comment about the infrared divergence of the z, integral applies here as that
for the UV finite piece of the dressed self energy.

In conclusion, combining equations eq. (6.6), eq. (6.11), eq. (6.16) and eq. (6.19), one
obtains the complete result for the virtual part of the NLO dijet cross-section in the slow
gluon limit.

6.1.2 Real unscattered contributions

We turn now to the slow gluon limit of the real corrections. Amongst these, there are
four terms that deserve special attention corresponding to the configurations where the
real gluon (emitted by quark or antiquark) does not scatter off the shock wave both in the
amplitude and in the complex conjugate amplitude. For these four terms, which we shall
now discuss, we will study the slow limit behaviour directly at cross-section level. The
v* — qqg + X differential cross-section reads

dgritA—aqg+X 1 1 s
koldnqdszdThjcpng_dﬁg - 8(27’1’)9 2q_ ( 7T) (q - —-—p — g )
Moo’ oo
x ) <MR flpal M [pA]>Y _ (6.20)
Aoo’ color

For the inclusive dijet cross-section, the gluon is integrated over the dijet phase space,
as will be discussed in the section 7.2. Here we focus on the gluon phase space with
2g = kg_/q_ < 1 and kg, finite. In this limit, one can set z; = 0 in the delta function.
Formally, this approximation violates exact longitudinal momentum conservation, but this
violation can be corrected for systematically.

Direct terms. We start with the unscattered direct terms corresponding to gluon emis-
sion from either quark or antiquark in both the amplitude and complex conjugate ampli-
tude. To extract the slow gluon limit of their contribution to the cross-section, we shall
use the expressions for R2 and R2’ where no additional transverse momentum integral is
introduced. We generalize the expressions obtained in section 4 to d = 4 — ¢ dimensions in
order to extract the infrared pole coming from slow and collinear gluon emissions.
In the limit z; — 0, the amplitude for R2 reduces to
_ eefq

slow

MRa| po / d*fx  d? oy e R tha L) @i —iPLYL AL (1)

53\_* (kgL — zg/24k1)
(k’gJ- - Zg/qu“l)2

x Cra(x 1, y1)(—29) (6.21)
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The slow gluon limit of R2’, with the gluon emitted from the quark, can be obtained
from eq. (6.21) by exchanging =, <> y, and k; < p,, replacing the color factor Cro by
Cro(z1,y1) =V(z)VIi(yL)t* — t* and multiplying the result by an overall minus sign.

As we shall see, it is important to keep the z, dependence of the transverse momentum
kg1 — (24/2q) k1 in the cross-term to properly account for the soft gluon phase space,
where kg < k| is of the same order as (z4/%4) k1. Summing over gluon polarizations,
integrating over the slow gluon phase space 2y < z4 < 2y, and shifting kg — kg1 —24/2¢k 1
inside the kg integral, one finds

do.'y§\+Aeqzj+X
d2k  dngd?p dng

Qem€> N,
= e(mTJ;(icé(l — Zg — 23) /dHLO’ERﬁQE(rwy, Tary')

R2xR2,slow

zf dzg z—qkj_ o s/ dZ—akg_L e*lng-‘Tm’

X (4asCF) ELO(mL7 Yi; yl? ml) / (271_)275 k2
gl

Y 7 (6.22)
The exponential phase does not contribute to the logarithmic slow gluon divergence and
can thus be neglected. The last integral is infrared divergent in the kg, — 0 limit. Since
we have already assumed that z, is small, this divergence comes physically from the soft
and collinear phase space for the gluon emission. We have indeed z, — 0 and kg, — 0 so
that all the components of the four momentum of the gluon are small, and moreover, the
relative transverse momentum with respect to the quark, defined as z;kg1 — 24k, is also

small. Using the following identity (see appendix E.2.1) for € < 0,

d2 el gl € —ikg1 Ty 1 72
_ B
e ) 527J_ =~ [ +In (e T ) + (9(5)} , (6.23)

one can write the previous expression under a form which resembles eq. (6.6):

do i TA—ag+X Oéeme?ch
= 75(1 — Zq — Z*)/dHLO’ 'Rﬁo (’I‘ , Tyt /)
Pk dngd®prdng| gy py g (27)° v Toben ey
(—as)Cr 2f\ = o 2 VE . 2,.2
X fln = Ero(xl,yi;x|,Y)) g—l—ln (e U rm,) +0(e)| - (6.24)

In particular, if we compare this result with eq. (6.6), we notice that the two & poles will
cancel, demonstrating thus that the slow gluon limit is free of collinear divergences. The
direct term associated with an unscattered gluon emission from the antiquark and absorbed
by the antiquark, denoted as R2' x R2', can be obtained from eq. (6.24) with 7y, — 7y,
in the logarithm inside the square brackets.

Cross-terms. The cross-term, which we label as R2 x R2’, corresponds to an unscattered
gluon emitted from the quark in the amplitude and absorbed by the antiquark in the
complex conjugate amplitude. Using eq. (6.21), and the corresponding expression for R2’,

one finds
do M tA—a+X aemB?ch
= 51—z, — z—)/dHLoRfo(r Tary)  (6.25)
dszdnquPLdné R2xR2’ slow (27T)6 I e w Y

2 dzy [ d2kg, kg, (Kgl = (29/2) k1) - (kgL — (29/2) PL)
X (—4as) Enro 3/ . / g (kggJ_ — (29/2q) k1)? (kggJ- — (2g/29) PL)*
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Observe that the color structure Ent,0,3 here is the same as that in the V3 xLO contribution

to the dijet cross-section given by eq. (6.17). Notice also that in this case, we have written

the result directly in d = 4 dimensions. Indeed the kg, integral is convergent in two

dimensions as long as z4 is not set exactly to 0. This explains why it is important to keep

the z4 dependence in kg —(24/24) k1 and kg1 —(24/23) p1. To extract the slow behaviour

of this formula, we need then to understand how the kg, integral diverges as z, goes to 0.
Towards that aim, we introduce the integral Jr defined as

Pl oy 4L+ Ky
K| = wLTL 6.26
Jr(rL, K1) /(%)26 2, + K. (6.26)
The kg integral in eq. (6.25) can be expressed in terms of Jr as
/ dgkgl o kgL Ty (kg1 — (29/2¢) k1) - (kgL — (24/73) P1)
(2m)? (kg1 — (29/2q) k1)* (kg1 — (24/23) P1)?
I —iZk r,, Zg
=-e * e ——P | . 2
46 a JIr <Txy ) P L (6 7)
In appendix F.3, we show that
Zg 1 % 2 2 :
jR T, %PJ_ = % —2In @PJ_TJ_ - 4"}/E — 2o | + O(Zg) . (628)

Hence with the help of these identities, the cross-section for R2 x R2" (plus its complex
conjugate) in the slow gluon limit can be expressed as

da'y§\+A—>q¢i+X aemechc
_ om0 — sy — z—)/dHLOR)‘ (Pogs o) (6.29)
2 2 _ 6 q q LO\"zy, Tx'y
d kj_d?’]qd pJ‘dnq R2xR2/ slow (271—)
as [ dZQ g 2,2 = / /
X g . 79 [2111 (22qzq +1In (Plrxy/) +2vg | Envos(® L, Y, x|,y )+ cc..

The attentive reader will notice the nice cancellations between terms inside the square
bracket of this expression with terms in the V3 x LO contribution in eq. (6.16). These
cancellations will be discussed further in next subsection.

6.1.3 Real scattered contributions

We end our discussion of the slow gluon limit of the NLO corrections to the dijet cross-
section from real gluon emissions by considering the case in which the gluon scatters off
the shock wave in the amplitude or in the complex conjugate amplitude. Since there are
overall 16 real emission diagrams, and 4 of these were just discussed, there are 12 such
contributions.

We will begin with the slow gluon limit of the amplitude with the gluon emitted from
the quark before the shock wave, which we label as R1. In the z; — 0 limit of the amplitude
given by egs. (4.32)—(4.33), one finds

M?{l _eerq /d2wJ_d2yJ_d22J_€7iku-'$J-7ipL'yJ_*'L'ng_'ZJ_
slow T
A 19 oy - e
zx " €]
X NLO(’"xy)CRZ(CELyLZL) ;T . (630)
zx
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The slow gluon limit of gluon emission before the shock wave from the antiquark, labeled as
R2’ is obtained from ¢ <+ ¢ interchange, Hermitian conjugation of Cro and multiplication
by an overall minus sign.

To compute the contribution to the cross-section of the product between real gluon
emission before the shock wave and after, it is convenient to consider the slow gluon limit
of the alternative expression we derived for the diagram R2, i.e. eqs. (4.44)—(4.45). Again
taking the brute force z; — 0 limit of this result, one gets

ee+rq . T )
MﬁQ — 14 /d2de2yLd2zLe ik -x) —ip) -y —ikgy -z|
slow T
; py
(—ig) as - 1"
2
Tz

x Mo (72y)Cra (2 1,y 1) : (6.31)
and similarly for R2'.

With these results in hand, we can compute the product of the amplitudes and complex
conjugate amplitudes (without double counting the R2xR2, R2xR2, R2’xR2’" and R2'xR2
terms computed in the previous subsection). The sum over the gluon polarizations gives
ei*’iei"j = 0% and the integral over the gluon transverse momentum kg, gives a ¢ function
which freezes its transverse coordinate in the amplitude and complex conjugate amplitude:

Phgt g (o)

Finally integrating over the slow gluon phase space zgp < 24 < 2y, one finds

do Vi +A—aa+X aemechcé(l ) /dH Rl )
=———01—2z,— 25 LO ) R
2 2 _ 6 q q LO\Tzy, T’y
d denqd pLdnq scatt.,slow (27T)
Qs zf 2 Tey Teza!  Taz T/ | o Tox * Toy Toy Tzy | =
X 7111 () /d ZL 2 .2 2.2 ENLO,1 T 5 .2 9 .9 =NLO,2
T 20 L o LS 2T oy Ty
1 |7y Togr  Tox Toy  Toy Toy  Toy: Togt
_ _ Y Y zy'  Tzy -
T3 | 22 rIe?, T gz 2 g2 [ SNLodpFec (6.33)
zx’ za! zx' zy 2y’ zy' zy" za!

The color correlators Enp,0,1 and Enp,0,2 were introduced in eq. (6.13). Since the product
of the amplitudes for gluon emission, from the quark before the shock wave and absorption
by the quark after, has the same color topology as the dressed self energy, it is natural to
find the same CGC correlator in both contributions.

The color correlator Zn1,0,4, on the other hand, is new. It comes from the product of the
color structure Cr; with itself, Exr,04 = N%Tr[CRl (x1,y.1, zJ_)Cgﬂ (@',,y,z1)]; in other
words, an emission from the quark before and absorbed by the quark (or the antiquark)
before the shock wave. Expressed in terms of dipoles and quadrupoles, it reads as

= _ N L _ ol
=NLO4 = 7 <1 - DaczDzy - Dy’zDza:’ + Dwm’Dy’y>y - TM:LO(:EJJ’.UL; T, yJ_) . (634)

Egs. (6.24), (6.29) and (6.33) constitute the slow gluon limit of the real corrections to

the NLO dijet cross-section.
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6.2 Proof of JIMWLK factorization

Now that we have extracted the leading slow gluon divergence of the NLO dijet cross-
section, diagram by diagram, we can put our results together. After doing so, we will
demonstrate that the same result can be obtained by applying the JIMWLK Hamiltonian to
the leading order cross-section, thereby providing an explicit proof of rapidity factorization
at leading logarithmic accuracy in x.

6.2.1 Combined result for all diagrams in the slow gluon limit

Let us first sum the term coming from the UV divergent pieces of the virtual cross-section,
(labeled previously as UV x LO) with the real unscattered direct terms (labeled R2 x R2
and R2' x R2’). Adding eq. (6.6) and eq. (6.24) (plus the R2' x R2’ term), and taking the
limit € — 0, one finds

doatA—aa+X doratA—aq+X aemG?Nc
2 2 + 5 2 = 6 6(1 — zq — 2q)
d denqd pldnq UV xLO,slow d kldnqd pLd"?zj R,direct,slow (27T)
o C z T2 T2/ ’
X /dHLORQO(ery,) Sﬁ Eln <Z£> ZLo [m <r§y> +In <:2y >] : (6.35)
zz! vy’

In order for the limit € — 0 from below to be unambiguous, it is important that both poles
in egs. (6.6) and (6.24) are infrared poles, so that e < 0 in both cases. Using an identity
derived in appendix E.2.1,

2
/d2 lr” et Ter gy] :1n<r§y> , (6.36)
T:T5y rs

ZCE zx rx

one can write the factor inside the square bracket instead as

do A tA=eG+X doatA—agtX aeme?ch ( )
+ = 75 1 — Zg — 2§
2 2 _ 2 2 _ 6 q q
d*k dned®p 1 dng UV xLO slow Ak L dngd*p 1 dig R,direct,slow (27r)
A aCr Zf\ = Lo /
X /dHLORLO (’l“xy, rx/y/) ) In <ZO Ero(TL,y1;9), )
Tow Toa!  Top T Toy Tay  Tag - Tay
e [rpnet rara  rr_rry] 057
ToeT zx rzxrzy szlrzy Vo T2y

The same kind of cancellation occurs between the V3 x LO terms and the unscat-
tered real emission cross-terms. Combining egs. (6.16) and (6.29), and using the identity
eq. (6.36), we get

dotA—e+X

d?k 1 dngd*p 1 dng

doi+A—=qq+X

n . O‘emeich
d?k dnyd?p dng

(2m)°

0(1—2q—23)

V3x LO,slow R2xR2/ slow

g Zf\ = 2 Tze Tzy Toze rzy
/dHLORLO(rw,rm ) —5 - In () .:.NLOyg/d 21| —5 5 +ce.. (6.38)
20 z:plrzy rz:crzy

At this stage, we have managed to express all the terms in terms of a “JIMWLK-like”
kernel, even for the diagrams in which the gluon does not scatter of the shock wave.
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CFELO(:DJ_ayJ_; mlj_ayﬁ_) CF<1 - ny - Dy’ac’ + Qxy,y’x’)

= ol / N, 1 =
:NLO,I("-BL’ Yi,z152, yJ_) Tc<1 - Dy’x’ + sz,y’:c’D:L‘z - D:):zDzy> ~— 2N.—LO
= ! / N, 1 =
:NLO,Q(mLa Yyi,z1,x, yL) 7c<1 - Dy’x’ + Q:cz,y/x’Dzy - D:chDzy> ~ 3N,—LO
= el / N, 1 =
:NLO,3(wJ_7yJ_7 mLayL) f(l - Dzy - Dy’:r’ + DmyDy’z’> — 2N.—LO

—_ A Ne 1 =
:NLO,4(:BJ_7 Yi,z1,¢, yJ_) TL<1 - DzzDzy - Dy’zDzm’ + Dmm’Dy’y> ~ aN.—LO

Table 2. Color correlators contributing to the next-to-leading order cross-section. Only Enr,0,1 and
ENLo,2 are not invariant under complex conjugation and the ©;, — «’,, y, — ¥/, transformations.

Common factor Color correlator Kernel
sl In (Zf) Jd?z1 | CrEro(®i,yi;®),Y)) | —Kew — Koy — Kyy — Kary

%2 In (%) J @z | Exvoa(zi,yi, 2152, y)) Kay = Kary + Kyar
“sNC In (%) [z | Epoq (@Y z020,91) Kary — Ky + Ko
a{,ﬁ“ In (%) Jd*z1 | Exvoa(®i, Y1, 29, y)) Koy = Kay + Kyy
a237£\2/c 1 (%) Jd?z1 S P CARE AREARE.ARYAD) Kary = Kary + Kyy
S (2) [d®2 | Envos@nyielyl) | —Key+ Koy — Koy + Koy
ajT]\zfc In (;f) Jd?z1 | Exvoa(®i,yi,20%,Y)) | Ko + Koy — Kyy + Kary

Table 3. Summary of the slow gluon limit color correlators and kernels.

As we have just seen, such a result is highly nontrivial given the delicate cancellations
which must occur between the different terms.

We are now ready to combine egs. (6.11), (6.19), (6.33), (6.37) and (6.38). There are
five different color correlators at NLO represented by CrZro and Enro,i=1..4. They are
summarized in table 2. We will now sum up the z| kernels that appear in front of each
correlator using the identity,

Top Toy 1 r2, 1 1
2 .2 20 P2 p2 7t 5 (6'39)
Tzzrzy T sz Tz sz
=Ky

The result of this calculation is summarized in table 3. Each color structure contributing
to the cross-section is a sum of a 1/N, suppressed term and a term proportional to N./2.
By summing all the rows in table 3, we first notice that all the 1/N, suppressed terms
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cancel. For the leading N, terms, it is convenient to organize the terms as follows:

dO"Y;\+A*>qq7+X aemeﬁch z agN,
= 0(1—z4—25 ln(f) - c/dHLOR)‘ Tay Pty
koLdnqdszd'r](j o (271.)6 ( q q) 20 ) LO( Ty ' x y)
2
r
X</d2ZL{7"2 ?2 (2D2y=2Dy-Dzy+ D2y Qyar 2ot DozQyiar 2y = Quyye) —Day Dyror)
zx'! zy
2
T,
+ 2963,/2 (2Dy’x’_2Dy’zDz:r’+sz’Qxy,y’z+Dy’zQa:y,z:v’_me,y’m’_DmyDy’z’)
rzm’rzy’
T‘2 ’
+r2 m2 (DZI’Qxy,y’z"‘chzQy’w’,zy_Qxy,y’x’_sz’ Dy’y)
zx' zax!
T‘2 ’
+ nyQ (Dy’zQxy,zx’+DzyQy’x’,x2_Qxy,y’x’_Dxx’Dy’y)
Ty
7'2 ’
T
+ 5 y2 (DII/Dy/y+D$yDy/I/_sz/Qxy,y’Z_DzyQy’z’,xz)
Ty
7"2/
T
+ 55 (D Dyy+ Doy Dy =Dy 2 Qy 2oy — Doz Q) . (6.40)
ToTy v

Written in this form, it is clear that even though each kernel is UV divergent, the divergence
is cured by the color structure which vanishes precisely at the location of the singularity.
On the other hand, there is no infrared divergence in the equation above because the z | -
dependent kernel that appears in each line decays like 1/ zi at large z,. A posteriori, it
explains why the infrared divergent z, integrals were not a concern in our diagram-per-
diagram discussion of the slow gluon limit.

6.2.2 The JIMWLK Hamiltonian

One can now confirm that eq. (6.40) can be obtained by applying the leading-log JIMWLK

Hamiltonian,
1 1) )
HimwLK = */dQULdZULTUQb(ULUL)77 (6.41)
2 SAL (uy) SAL (v))
acting on the leading order dijet cross-section. Note that in the above expression,
1 [d%z; (up —z1)(vl —21)
ab _ 1 1L 1L 1)(vL 1L
oL, oL) = 2 / 2m)2 (uy — 21)2(v) — 2. )2
X [1 + UT(’U;J_)U('UJ_) - UT(UL)U(ZJ_) — UT(ZJ_)U(’UJ_)}ab R (6.42)

where the U are lightlike Wilson lines in the adjoint representation. To apply HjmvwLk to
the leading order cross-section in eq. (2.22), one needs the identity

5V(mL)

— ) = g —u) )V (x ) )t 6.43
ATy (L —uy)V(zL) (6.43)
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and the relations eq. (A.22) between adjoint and fundamental Wilson lines in appendix A.
After some algebraic manipulations, one recovers eq. (6.40), thereby establishing the non-
trivial result:

da'yi +A—qq+X
d2k, dnyd?p 1 dng

dotA—e+X

(6.44)

_ “f

slow - <ZO> Pamiwik @ d?k dn,d?p, dng LO .
Even if not manifest in (6.44), this expression is of order O(«;) as the application of the
JIMWLK Hamiltonian on the LO cross-section brings a g? power thanks to eq. (6.43). The
identity (6.44) enables one to absorb the slow gluon logarithmic divergence into the rapidity
evolution of the leading order cross-section. More precisely, the leading order cross-section
depends on zg via the CGC average over color charge configurations (see eq. (2.6)) inside
the target at the scale Aj = z0q~.

Evolving this cross-section with the help of the JIMWLK Hamiltonian up to the factor-
ization scale zy enables one to cancel the zp dependence of the NLO cross-section, provided
that the stochastic weight functional W, [p4] that defines the CGC average satisfies the
renormalization group (RG) equation,

OW )~
81/1\1(2[2);4] = Himawrk Wa-[pa4] - (6.45)

This RG equation, combined with eq. (2.6), provides the essence of the CGC EFT.

7 Constructing the dijet cross-section in the small cone approximation

In this section, we will show that our calculation leads to a cross-section for dijet produc-
tion which is infrared finite. To achieve this, one has to define an infrared and collinear
safe cross-section using jets instead of partons to define the final state. Another way to
proceed would be to consider the dihadron cross-section. In this latter case, the remaining
divergence left in the sum of the virtual gqg + X and real gqg + X cross-section is absorbed
into the evolution of the fragmentation function into hadrons of the quark and antiquark,
as discussed for instance in [42, 48]. Our focus here will be on constructing infrared finite
dijet cross-sections in our framework.

7.1 Structure of the parton-level NLO cross-section

In the previous section, we introduced the factorization scale zy, extracted the slow gluon
(20 < zg < z5) logarithmic divergence, and expressed it as the action of the JIMWLK
Hamiltonian acting on the leading order result for the dijet cross-section. In this section, we
will explicitly show the cancellation of divergences when the gluon is fast (zy < 24 < 24, 27)-
This is required to demonstrate the finiteness of the impact factor.

~ 54 —



First, we observe that:

MiR|get = Mir — Mig|

slow

ee - . .
= quu_Qs/dQ_afCidz_eyLe_sz“_m'leLo(iL‘LyL)NLo,a(Txy)

a,Cp 2q 2g 3 (2 9 9 ) 1. o2
(2} pm (2] = 2) (2 4m(ew S22
* Ton {(n <2f> +h <Zf> 2) € (e mptry,) )+ P Zq
2 5 1
—7r+—}. (7.1)

Note the presence of the factorization scale z;, which occurs since the slow gluon piece has

been subtracted.
Thus there is still a 1/e pole in the virtual cross-section. At this stage, we can sum-
marize the full NLO calculation as:

da'y§+A—>qt7+X asCr P P 3 9 d07;+A—>qc7+X
as — 5 = In(Z ) +In(Z2 ) -2 xZx 5 5
d*k 1 d®p1dngdng | ™ 2f 25 2 e d*kpdipidngdng|,
zf do i +A—=qq+X
In{— |H 7.2
+In (Z()) JIMWLK & Pk, d2p, dngdig " (7.2)
doatA—aa+X doritA—a+X

+ d?k, d%p i dngdng + d?k, d%p, dnydng

real,fast virtual,finite

The first term corresponds to the 1/e pole surviving in the virtual cross-section. The
second term is the slow gluon divergence and its associated JIMWLK structure we discussed
previously. The “real, fast” term is the real contribution to the dijet cross-section, with the
slow gluon phase space excluded since it is already taken into account in Hjmwrk. This
contribution also contains a 1/¢ pole as we will soon demonstrate. Finally, the last term
in eq. (7.2) is the finite piece of the virtual cross-section, namely, what is leftover after
subtraction of the slow gluon divergence and the 1/e pole.

7.2 Jet definition and small cone approximation

We will discuss here how the dijet cross-section is obtained from the g + X and ¢gg + X
cross-sections at order a. Without loss of generality, a jet algorithm is defined as a set
of measurement functions on the n-body phase space d€2,. For instance, at order as (see
e.g. [80, 81]),

dgfy§+A—>2jet+X dgfy§+A—>qq+X
= / d€2s

Sicpea (K, p
dQgijet dQs jew2 (K7, ")

do+A—aqqg+X
+ /dQ3dQ38jet;3(ku7p“7k5) . (73)

The jet definition is encoded in the functions Sjet;2,3 which relate the partonic phase space
to the jet phase space. The functions Sjer;; must be infrared and collinear safe.
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We shall now define our jet algorithm by specifying the form of Sjer.2(k*,pH) and
Sjet;3(k*, p#, kly). The dijet phase space df2gjet is given by

dQqijer = d*py dny d*pr dng (7.4)

where p; (px) and 1y (nx) are respectively the transverse momentum and rapidity of the
two jets. The form of Sjet;2 is

Sjet2(p, k) = (k1L —ps)d(ng —ns)o(pL — Pr)d(ng — MK ) (7.5)

which simply means that the two jets are identified with the two final state partons. The
function Sjet;3 is more complicated, even though the physical interpretation is elementary:
for each pair of partons, the pair is recombined into one jet if the distance in the rapidity-
azimuth plane between the two partons is smaller than the parameter R, the jet radius.
This corresponds to the condition that if the distance

AR = A7, + Anfy < R?, (7.6)
then partons ¢ and k are recombined into the jet J with

= +pl, (7.7)

and the remaining third parton forms the jet K.

Our primary interest here is to demonstrate that the jet cross-section is finite. It is
sufficient then to work in the “small cone approximation” [82], as previously also employed
in [39, 46, 47|, neglecting powers of R which are suppressed for small R. The final cross-
section takes then the form Aln(R) + B where the In(R) behaviour is the remnant of the
singularity when the gluon becomes collinear to the quark or the antiquark.

In the small R limit, the condition in eq. (7.6) for the quark and gluon to lie inside
the same jet can be written in terms of the “collinearity” variable

z z
ng,J_ = = <ng_ - ng_> 9 (78)
ZJ 2q
which satisfies
2 2 9 . Z; (27 — 29)* 4
Cog. < RPpjmin | 5, ———5—— + O(R%). (7.9)
ZJ ZJ

A similar condition holds when the gluon is inside the same jet as the antiquark.

The case where the ¢¢ pair forms a jet and the gluon another is sub-leading in the small
cone approximation, because of the absence of the collinear singularity between the quark
and antiquark [47, 83]. Finally, for a three-jet event (where each out-going parton forms its
own jet), one has to integrate over one of the jets, typically the softer one. (For instance,
in a realistic dijet measurement, one might consider the leading and sub-leading jets only).

Such a configuration leads to an infrared divergence associated with a soft singularity
in real gluon emission. Strictly speaking, our jet definition does not cure this singularity.
However we remind the reader that slow gluons with z, < z; have already been taken into
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account, via the rapidity evolution of the leading order cross-section. Since all soft gluons
are also slow, the rapidity factorization scale zy acts as a natural infrared cut-off of the soft
jet singularity, in such a way that no additional phase space constraint (such as a lower pp
cut) is required to ensure the cross-section is infrared finite. This interplay between rapidity
factorization and jet infrared safety, as previously noted in [46, 47], is at the heart of a pow-
erful spacelike-timelike correspondence in high energy QCD [84-86]. Indeed this correspon-
dence was exploited in [30] to compute conformal contributions to the NNLO BK kernel.

7.3 Cancellation of the collinear divergence

The infrared finiteness of the inclusive dijet cross-section at NLO relies on the cancellation
of the collinear divergence between the real and virtual terms, established using the jet def-
inition introduced in the previous subsection. Among all the real contributions, only the
direct unscattered gluon emissions from the quark or the antiquark develop a collinear diver-
gence. We will therefore focus on these terms here. We reemphasize that when integrating
over the phase space of the collinear gluon the logarithmic phase space 29 < z4 < zy has al-
ready been taken into account in the real pieces contributing to the JIMWLK Hamiltonian.

We now apply the jet definitions in eqgs. (7.9) and (7.7) to the R2 x R2 contribution to
the gqg cross-section. To isolate the collinear divergence, we work in d = 4 — ¢ dimensions.
Performing the change of variables

(2g:k1,25:P 1, 2g:kg1) = (27 = 2g + 29,05 = k1 + kg1, PK = D1, 2K = 23, 29,Cqg, 1) ;

(7.10)
the R2 x R2 contribution with gluon and quark inside the same jet reads
doat+A— dijet+X aeme% N.
:7(51—,2]—2]( /dHLO"RA Toy,s Trly!
d®pydn;d®prdnk R2xR2,dijet (27)° ( ) Rioeraw Tory)
_ 2 1 1 z
x asCp :LO(wJ_ayJ_Qx/J_uyj_)/ dzg [4 < - ) +(2 - 5)3]
Zg zZJ 27
d2_6cqg¢ 1 2 2
x “5/(2#)26%@ (€2 Lmmax = Ct) - (7.11)

Note that we have restored the finite term in € coming from the Dirac algebra in the R2
amplitude. The upper limit of the Cy, | integration is set by the small cone condition.
The lower limit of the z, integral was intentionally left unspecified. It should be z; for
the logarithmically divergent term in z, (since the phase space z, < 25 is part of the slow
gluon limit) and 0 for the finite piece; thus we can rewrite the above expression as

doﬁf\ +A— dijet+X aemeﬁf N,
:75(1—ZJ—ZK)/(1HLO, Rﬁo (’I‘ , Tyt /)
d2de7IJd2pKd77K R2xR2,dijet (271‘)6 € e\tzy Tx'y
z1 dz d>=c,, . 1
« 0yCp= Ly 4/796/& o (c2 —c?
asUp LO(CUJ_ Yyiix yJ_){ o Zg H (271')2_5 ng,J_ ( qg,-L ,max qg,J_)
z7 4 z d><C,, . 1
dzg |-— +(2—-¢)% f/i e (c? ~C? : 7.12
+/0 Zg [ Py +( 5) 231 14 (27_[_)2,5 6397L ( qg,L ,max qg,J.) ( )
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Using the result

2
o [Coatlee 27Cg 1 1 _o 2 (Gt
a (2m)2— C2 | drm |e " a2

9,1
3 zZJ 2
X{<4_ln<%‘>>€
LO,e
+1n2(2)—ln2(z)—7ﬁ+ In |22 _3 In 1 —|-1—|-3<1—1n<z‘])> (7.14)
! 6 ) 4 222 ) a2 2 nn

where we used the condition in eq. (7.9) which neglects terms that are power suppressed

+0(e), (7.13)

and integrating over z,, then leads to the result

d07§+A—>dijet+X CVsCF d0_7§+A—>dijet+X

PpydnyPprdiK by po qiee T CPsdnsd®prdnx

in the small cone approximation.

Combining this result with its R2'xR2’ counterpart, obtained from J <+ K interchange,
one sees that the 1/e pole cancels with eq. (7.2). The 1/4 term in the above expression
comes from the linear term in e of the Dirac algebra multiplying the 1/e pole. When
combined with the same term in the R2’ x R2’ contribution, it gives a factor 1/2. This 1/2
term cancels with the finite contribution from MIRM}:O given below by

doratA—ag+X aeme?ch
= ——— 01— 25— 25 /dHLORA Ty Taley
Ak d2p 1 dngdng |y 1 6 e (2m)° s LolFay 7ty
xZro(x 1,y 2,y )QSCF In (2} (2 _3 In(e®mu’r2,)
LYL®LYL ) 2 2 9 zy
1 g\ w5 1
e c. 7.15
+2n (zq> 6+2 2}+cc, (7.15)

where one should set 24,k — 2z5,ps and 23,p| — 2Kk, Pk to translate this partonic cross-
section into a jet cross-section. A similar cancellation occurs for the 2 dependence which
is what one would expect since our final results should not depend on this scale. These
two cancellations provide important cross-checks of our calculation.

In conclusion, we have demonstrated that our results provide an infrared finite dijet
cross-section at NLO which can be expressed as

do " tA— dijet+X OéemG?eNc

= 75 1-— — /dH R)\ s 1ol E
s d2pydn;dP2prdnk NLO (2)6 (1—25—2x) LORLO(Tay, Tary)=L0

asCp ZJ 3 R2p3rmyrx/y/ ZK 3 R? p%(rmyrx/y/
X - { (ln (Zf> — 4) hl <46_27E + ln ; — Z ln —46_2'YE

1 11 2
+21In(zf) In <ZJZK> ~3 ln2(ZJzK) +In(8) 4+ — — 77}

zf 2 2
zf do.’y;‘\+A~>2jet+X
+In < > HIMWLK ® 3 3 + other finite terms, (716)
d*pydnyd*prdnk |}

after combining egs. (7.2), (7.14) and (7.15). The other finite terms come from the diagrams
which are not included in the IR x LO term, and are displayed in the following section.
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T+
q" = xpjP
Gluon emissions
(perturbative) NLO impact factor
At ==z $PT
Gluon emissions
(perturbative)
logarithmically ——p
enhanced
______________________ Renormalized sources |
(via LL and NLL JIMWLK)
A(J)r = Cl?()P +
Sources
(non-perturbative)
P- T T Pt

Figure 11. Gluon emission (real or virtual) phase space. Fluctuations carrying “minus” (“plus”)
lightcone momentum P~ <k~ < 20¢™ ( Pt > k:;‘ > 29 PT) are accounted for in the sources. Emis-
sions in the interval zo¢~ < k; < zpq~ (or equivalently zoP* > k}f > x;P") are logarithmically
enhanced o In(zy/20) = asIn(zo/z ) and are absorbed by renormalization of sources via JIMWLK
evolution. The emissions in the interval z;q~ < k,; < ¢~ (or equivalently zyP* > kf > ap;PY)
are not logarithmically enhanced and are part of the NLO impact factor. The value of z; can vary
depending on the kinematics of the final state. With each successive order in perturbation theory,
one expects the corresponding uncertainties to diminish allowing for increasingly quantitative com-
parisons with experiment.

8 Inclusive dijet impact factor at NLO

In this section, we will summarize our calculation of the inclusive dijet cross-section at
NLO in the CGC. We begin with a general discussion of the final result of the previous
section given by eq. (7.16). We represent pictorially in figure 11 the different contributions
to the DIS inclusive dijet contribution at next-to-leading order, identifying in particular the
contributions of fast and slow gluons with respect to the rapidity phase space encompassed
by the virtual photon and the nucleus.

As noted, the slow gluon divergence can be absorbed into the JIMWLK rapidity evo-
lution of the weight functional WXI;OL [pa] — Wg;fL [pa] with Yy = In(2f/29). On the target
side, this is equivalent to an evolution of the weight functional from the scale zg of the
fast sources in the nucleus, up to a scale x5 ~ A3 p;/(27Q?) with A some (perturbative)
transverse scale, as obtained for instance in [7, 8] for a large nucleus. One can further as-
sume rapidity factorization to hold to NLL accuracy, and promote Wg;fL [pa] — W%LL [pal.
This enables one to correctly account for terms of order O(a? ™! In™(zg/z¢)), to all orders.

With this NLL small-z resummation, the uncertainty in our result comes from two
loop contributions not contained in NLL JIMWLK that correspond to the NNLO impact
factor, of order O(a? In(x¢/xp;j)). The factor In(zs/xp;) provides the upper bound for the
magnitude of the NNLO impact factor, and it is understood that In(x¢/xp;) should be a
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number of order one and parametrically smaller'? than 1/a;. This condition constrains the
range of physical values for z; one should consider when evaluating the NLO impact factor.

Within this order of accuracy, up to terms of order O(a2In(z/zg;)), our result can
be expressed as

LA dijet+X NLL vi+A—dijet+X Vi +A—dijet+X
do " ije — /DpA Wy, [pa] [daL6 + asdoyi oy, , (8.1)

where Yy = In(zo/x¢).

The NLO impact factor is given by the sum of three contributions,

do VA +A— dijet+X doA+A— dijet+X doVATA— dijet+X
o =« +a
S Ppydndprdng | o,y EPpsdndprdng | PpsdnydPprdigy
doatA— dijet+X
+ « . 8.2
® d%pydnydPprdir | (82)

The first term in this expression is the finite piece that survives the cancellation of the
collinear divergence of the R2 x R2 and R2' x R2’ real contributions, and the IR divergent
IR x LO + “c.c.” contribution. It depends on the polarization of the virtual photon via the
LO wave function only. In the small R limit, it is given by the first term in eq. (7.16):

do " tA— dijet+X aemeiNC

« =———90(1— 25— zx /dHQRA Toy, Ty ) 2LO
* oo Pondie |, @A ) ] AMoRLo(Tay, Tty )1

a,Cp 27 3 R2p2rpyrary 2K 3 R2p3rayrary
X - { (hl (Zf> — 4) ]n (4627E + ln Z — Z hl —4672'YE

1 11 2
+21In(zf)In AR 2 In?(zy2x) +1In(8) + — — i, (8.3)
Py 2 2 2

The second term is the contribution to the impact factor coming from the virtual
diagrams which are not included in the IR x LO + “c.c” contribution. These are the UV
finite part of SE1, V1 and V3. We will provide the explicit expression for this term shortly.

The last term in eq. (8.2) is the contribution from real gluon emissions (excluding
finite pieces from in-cone gluon emission) from the direct R2 x R2 and R2’ x R2 diagrams.
This is because, as noted, their finite contributions are already included in the first term
in eq. (8.2). More precisely, this term can be obtained by integrating the gluon over
nonsingular regions of phase space which do not contain either slow or collinear divergences.
For completeness, and future numerical implementation of our results, we write the full

121f 2; — x0, then because asIn(zo/zp;) = O(1), the introduction of a rapidity factorization scale to
separate fast from slow modes is no longer meaningful.
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expression for the real v§ + A — dijet + X cross-section:

da’y§+A—>qz79+X
= / d€23 § as =5 2 2

RAE. d?k | dn,d“p  dngd=kg dng
do Vi tA—aedg+X

d?k  dngd?p dngd?kg  dng
doA+A—qqg+X

d?k | dngd?p  dngd?kg  dn,

dox +A— dijet+X

Sgéq—jet(kﬂa p,u’ k;)
R2xR2

(0%
* d2pydn;d2prdnk

+ Sg(ﬁ(jfjet(ku p“, kg)

R2'xR2/

Sjct,3(ku7p'u> kg)} : (84)

other

+as

The expressions for the 7§ — ggg+X cross-sections which enter in the integrands of eq. (8.4)
are obtained by squaring the real amplitudes. The first two terms, labeled respectively
R2 x R2 and R2’ x R2’ come from the modulus squares of the amplitude R2 and R2’. The
jet functions Sygq_jer (( Sy
to the quark (antiquark) jet, as such configurations are already accounted for in eq. (8.3),

géq—jet) select configurations in which the gluon does not belong

computed here in the small R approximation. The contribution labeled “other” gathers all
the remaining terms; those coming from the direct R1 x R1 and R1’ x R1’ diagrams, the
cross-term diagrams R1xR1’, and likewise the contribution from the diagram R2xR2’. The
jet function Sjer.3(kH, p*, k:g) was previously defined in section 7.2. We remind the reader
that the three functions Sg¢q_jer, S

g
event selection. Therefore the 3-body phase space integral is usually performed numerically.

¢i—jet and Sjet;3 depend on the jet algorithm and the

We will now gather the expressions for the various terms which enter in eq. (8.2)
and eq. (8.4) in the case of a longitudinally polarized photon. The corresponding results
for a transversely polarized virtual photon, which are considerably lengthier, are given in
appendix B. To guide the reader, we also gather our intermediate notations in table 4.

The NLO impact factor contribution from the remaining virtual diagrams (in which
the jet definition is trivial) is

Aot +A— dijet+X Aot +A— dijet+X (@) doitA— dijet+x |(0)
Q =« + « s
S BpydnyPprdix |, CpadyydPprdik |y, EPpydnyPprdix |y,
(8.5)
where
Ao +A— dijet+x|(@) Qe N, _ 21 dz
o =———0(1—z5—2x /dHL082323 Q*Ko(Qrary / —
s deJdan2pKd77K Vit (27T)6 ( ) J*K ( my) 0 Zg

as [dz 1 Z 22\ iZog, ., _ _
X = = { [(1_g+g> (& ZZJ Lr KO(QXV)—@(Zf—zg)KO(QTxy)‘| :NLOJ

2
1 z 22 -z _ _ T2z B _
2 [<1_g+ g2>€ e Ko(Qray) —O(z —zg)e e Ko(Qray) | CrELO
Tz zJ 2ZJ
Tex Tzy <1 Zg) <1 Zg) 2g Zg LY
N T +—= l-————F——e¢ J K, X
Tgwrgy [ zJ ZK 227 2(zk +24) 0(QXv)
@(Zfzg)Ko(me)] ENLO,1 +(J<—>K)} +c.c., (8.6)
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Q? = zqquQ effective virtuality squared in LO

Q% = 25(1 — 25)Q? effective virtuality squared in R2

Q%o = 24(1 — 2)Q? effective virtuality squared in R2’

XE = zquyr%y + zgzgT2, + zlyzgrzy effective qgg dipole size squared
in R1, Rl

w = (2gx 1 + 2921)/(2g + 2g) quark transverse coordinate

before gluon emission in R2

W = (2qy1 + 2921 )/ (2 + 29) antiquark transverse coordinate
before gluon emission in R2’

X3 = 2q(2q — 29)12, + 29(2g — 29)72, + 2q7472,  effective qgg dipole size squared
in SE1 and V;

X3 = 2q(2g — 29)12, + 29(2q — 29)72, + 247472,  effective qgg dipole size squared
in SE1" and V/

P, =2k —zp1 quark-antiquark dijet relative
transverse momentum

A =k +p, quark-antiquark dijet transverse

momentum imbalance

= (1-2) 0+ 2) 7

Table 4. Notations for the longitudinal DIS inclusive dijet cross-section.

contains the finite part of SE1 and V1, and

()

8 % { Kl - 2)2 (1 " sz() (14 zg) e Pri2e B0 Tew [ (—iAygryy)
+O(zf — zg) In <W) ]Ko(Qrzy)ENL(),g +(J + K)} + c.c., (8.7)

contains the finite part of V3. Recall that the other virtual pieces are implicitly contained
in eq. (8.3).

In this expression, we have set z, = 2, 2z = 2K, k1 = p; and p; = pgk according
to the jet definition in eq. (7.5) for the 2-body phase space. We have omitted here the
dependence on transverse coordinates in the color structure Znpo. They are defined in
table 2. It should be understood that these color structures are defined without the CGC
average (...)y, since this average is performed within eq. (8.1).
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The (J +» K) contribution is obtained after quark-antiquark interchange (which also
applies to the boundaries of the z, integral) as explained in the previous sections for each di-
agram. In particular, the color structure Zn1,0,1 becomes ZEny,0,2 after this transformation,
while Enp,0,3 is unchanged. We emphasize that this expression is free of all divergences.

For the 7f — ¢qqg + X cross-sections which enter in the integrand of eq. (8.4), the
R2 x R2 term was computed previously:

do i +A—aag+X
* A%k dngd?p | dngd?kg  dn,

2
aemech

= Wé(l — 2 — 25— zg)as/dHLoCFELO

R2xR2
2

) _ _ e kgL (zL—2')
{32Zq (1 — Zq> Q (1 + —= —|— 22) KO(QRQT:Ey)KO(QRQTx’y/)W} . (88)
q
The R2' x R2' contribution is obtained from the R2 x R2 contribution after ¢ ++ g inter-
change. In contrast to the virtual pieces, we do not subtract the slow gluon behaviour in or-
der to avoid lengthy expressions. One should therefore keep in mind that the slow behavior
has to be subtracted from these expressions (using a “+” prescription similar to what is done
in eq. (8.5)), since slow gluons are already accounted for in the second term of eq. (7.16).
Finally, the “other” contribution in eq. (8.4) is given by'?

do i +A—ea9+X
* d%k 1 dn,d?®pdngd?kg dn,

Qeme3 N,
= e(mTJ;SC(S(l — 2q— 2g — /dHLo823 3Q?

other

d2 d2 , 1 1oyl — A
/ Z1 zJ_ o—ikgL (21-2)) MKQ(QRQTwy)KO(QRZ’T@’w')
27202, |

— _ r Tt _
X |1+ 5 T35, Envos(wi,y;w),y)) — % Ko(QXRr)Ko(Qrarwy)
Zq TZJ)TZ x!

2
2 PTori * Tt s
i _
1+ —g 92> ENLo (T L, YL, 2w, Y ) + 55 Ko(QXR) Ko(Qr2Tury)
q 2yl ot
2 I U W /
1+ 2y + Exvo1(®L, Y1, 25w,y ) + 2 2 2 Ko(QXR)Ko(QXE)
Zq (j 2zl oy
1 M

2
2 rZyT Zz

Ko(QXRr)Ko(QXR)

2
X (1 + —g g2> ENLOA(wJ_,yJ_a Z1; mll)yia ZIL)
q

1+7+7 ENLOA(QJ_,:UJ_,ZJ_;iU/l,yi,zl)+(QHQ)+C-C- . (89)
2Zq 2Zq

The expression in eq. (8.1) is the final result of our computation of the DIS inclusive
dijet cross-section. To compute the cross-section specifically for longitudinally polarized
photons, one needs the LO cross-section, the expression for which is given in eq. (2.22) and

the NLO impact factor given by eq. (8.2). The individual terms of the latter are,

13For the R2 x R2’ term included in this formula, we used the alternative “symmetric” expression for real
gluon emission after the shock wave derived in section 4.2.
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i. Eq. (8.3),

ii. Eq. (8.4) (with explicit expressions for its individual parts contained in eq. (8.8) and
eq. (8.9)),

iii. Eq. (8.5) (with explicit expressions for its individual parts given in egs. (8.6) and (8.7)).

9 Summary and outlook

In this work, we performed the first complete next-to-leading order computation of
inclusive dijet production in deeply inelastic electron-nucleus scattering at small zp;. In
these small zg; kinematics, the dominant contribution to inclusive dijet production at
leading order comes from the splitting of longitudinally or transversely polarized virtual
photons into a quark-antiquark pair, which scatters off gluon fields in the nucleus. At
small momentum fractions x, the gluon fields have maximal occupancy characterized
by a saturation scale Qs > Aqcp characterized by classical shock wave configurations
Aalp]. In the CGC EFT, these shock wave fields are coupled to static color sources p at
larger = in the nuclear target, which are represented by a nonperturbative gauge invariant
stochastic weight functional Wy [p]. The LO computation to inclusive dijet production
in this framework was first performed in [59] and was shown to be sensitive to both
dipole and quadrupole Wilson line correlators which contain information on all-twist
nonperturbative color correlations in the nuclear target.

Following the covariant perturbation theory framework of the computation of the pho-
ton+dijet NLO impact factor in [46, 47], we computed here all real and virtual gluon
emissions that constitute the NLO corrections to inclusive dijet production in the nuclear
shock wave background. We showed that in the slow gluon limit one obtains rapidity di-
vergences of order o In(xg/x ), which can in principle become O(1) at sufficiently high
energies. Here zg = Ag /P is a scale characterizing the target color sources at the lon-
gitudinal momentum scale A(J{. The rapidity factorization scale z; separates fast (relative
to ¢7) real and virtual gluon emissions which accompany the dijet from slow ones that
can be absorbed into the rapidity evolution of Wy, [p] from its initial nonperturbative dis-
tribution specified at the momentum scale Aj. We showed explicitly that the JIMWLK
Hamiltonian describes this rapidity evolution, which resums the stated leading rapidity
logs (LLx) to all orders in perturbation theory. An immediate consequence is that one
obtains the LLx evolution equations for the dipole and quadrupole Wilson line correlators
in the Balitsky-JIMWLK hierarchy.

We also showed, employing a small-cone approximation, that a collinear divergence
that survives in the real emission diagrams and an infrared divergence that survives in the

14 can be absorbed into infrared and collinear safe jet functions.

virtual emission diagrams
The finite O(a;) terms that remain constitute the next-to-leading order inclusive dijet
impact factor, for which we obtain explicit expressions that can be numerically evaluated.

When combined with LLx JIMWLK evolution of slow gluons, we see that our computation

14YWe demonstrated explicitly along the way that all other apparent ultraviolet, soft and collinear diver-
gences cancel in the intermediates steps of our computation.
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of the dijet cross-section is of O(aslIn(xy/xpj)) accuracy. These results are necessary
for quantitative comparisons of the CGC EFT to anticipated experimental results from
the EIC.

However if we assume that rapidity factorization holds at NNLO, our computation is
accurate, up to missing terms of O(a?In(z¢/wg;), if we combine our NLO impact factor
results with next-to-leading logs in # (NLLx) JIMWLK/BK evolution. As we noted in
the introduction, formal results for these evolution equations are available; their practical
implementation has seen significant developments as well. Missing at this order of accuracy
are O(a?) terms in the two-loop NNLO impact factor that combine with the LLx terms in
the rapidity evolution.

In particular, a measurement of great theoretical and phenomenological interest is the
limit in which the dijets are almost back-to-back in transverse space [59]. We anticipate
a significant reduction in the complexity of the numerical evaluation of our NLO results
in this kinematic limit. At small z, this regime'® has been extensively explored at NLO
within the transverse momentum dependent (TMD) parton distribution framework [89-92].
Recent numerical studies at leading order [55, 93-96] suggest the importance of kinematic
power [97-99] and genuine saturation effects [100-102] at kinematics accessible at current
and future colliders.

These contributions are included in our framework (CGC EFT) but absent in the
TMD formalism. With our results, it is therefore now feasible to promote these studies to
next-to-leading order, enabling more accurate predictions of the effects of gluon saturation
on azimuthal dijet correlations at the EIC [51-53]. We can also systematically explore the
appearance of Sudakov double logarithms (and their resummation [103, 104]). These arise
from the imperfect cancellation (in back-to-back kinematics) of virtual and real contribu-
tions and one can study their interplay with the effects from gluon saturation. Further, in
addition to such logarithmically enhanced terms, our expressions should contain genuine
a suppressed contributions from the impact factor. We will pursue these studies in a
subsequent publication.

A further application of our results for the NLO impact factor is to the inclusive
production of a dijet pair in ultraperipheral nuclear collisions at RHIC and the LHC; this
limit of photon-nucleus collisions is obtained straightforwardly by taking the @? — 0 limit
of our results.

We conclude with an outlook on future theoretical studies that are suggested by our
work. It is in principle straightforward to extend our results for massless quarks to massive
quarks, whose collinear divergences are regulated by their mass. This could pave the way to
promote current LO studies of the inclusive production of open heavy flavors and quarkonia
to NLO+NLL accuracy. Similar studies are being carried out for the computation of charm
structure functions [37] and exclusive J/1¢ production [41]. Another interesting possibility
is to integrate out one of the jets in our differential cross-section, and obtain the NLO
impact factor for single inclusive jet production. This computation is very similar to the
NLO studies of inclusive forward jet production in proton-nucleus collisions [105].

15The connection between linear evolution at moderate z and nonlinear evolution at small = was explored
in this context in [87, 88].
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A more ambitious program is to capitalize on the techniques employed in this paper
to extend the computation to two-loop order. At this order in perturbation theory it will
be possible to unambiguously test NLL JIMWLK factorization for semi-inclusive process,
determine how the coupling runs as a function of @, and extract the a2 suppressed NNLO
impact factor.
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A Conventions and useful identities

A.1 Lightcone coordinates

We work in lightcone coordinates,

x+:\}§(0+x3>, x_:\}i(mo—xg’), (A.1)
with the transverse momenta components the same as Minkowski space. Four-vectors are
defined as a* = (a¥,a",a,), where a, denote the two-dimensional transverse compo-
nents. The magnitude of the two-dimensional vector a | is denoted as a | . Following these
conventions, the scalar product of two vectors is a,b* = a*b~ +a b —a -b).

The same convention is used for the gamma matrices v© and ~~, with the anti-
commutation relations satisfying

{IYH?/VV} = 2gNV]]_4’ (A2)

where the only non-zero entries in the metric are g7~ = ¢~ 7 =1 and ¢ = —6¥.
As a consequence of eq. (A.2), we have (y7)? = (y7)? = 0, which will be repeatedly
used in our computations. Another useful relation, resulting from the anti-commutation

relations of gamma matrices, is v fy~ = 2k~

A.2 Feynman rules

We employ the standard Feynman rules of QCD+QED supplemented with the effective
vertices for the propagation of quarks and gluons in the classical back-ground of the CGC
shock wave. We choose to work in the lightcone gauge A~ = 0 which drastically simplfies
computations (for nuclei with P+ — oo) in background fields [60, 64].

— 66 —



We will label below spinor and vector indices respectively as (o,0’) and (u,v), and
color indices in SU(3) in the fundamental and adjoint presentation as (i,j) and (a,b,c)
respectively.

The free massless quark and gluon Feynman propagators are,

0y Moo s

Soo’,z] (l) E + Z.E(szj ) (A?))
0 _ b (- lu”V”ulV)

G,ul/,ab(l) - 12 + e ( 9uv + nl 5ab7 (A4)

where the lightcone vector n is defined as n# = §** satisfying n.A = A~. We also define
the gluon polarization tensor II,, which appears in the free gluon propagator as

lyny +mnyuly

IL(I) = —gu
v () G + n.l

(A.5)
The polarization vector for a photon with zero transverse momentum q; = 0 and
virtuality Q% = —¢? is given by

(g, A =0) = <;%, 0, OL) , (A.6)

e(q, A = +1) = (0,0,€F") (A7)

where A\ = 0 denotes the longitudinal polarization, A = 41 denote the two transverse
polarizations, and the two-dimensional vector efl = % (1, £9).
The polarization vector for an on-shell gluon with non-zero transverse momentum 1, is

Efl'li +1
l,A=%£1) = E 0,677 ], (A.8)
where we only have the two physical transverse polarizations. The transverse polarization
vector also satisfies the identity
eijej_"j = i)\ej\_’l , (A.9)
which turns out to be very useful in performing spinor contractions in our calculation.
The photon quark-antiquark and the gluon-quark-antiquark vertices read
Vlg%/ = _ile('Yu)Ua’ ) V,Li],ltlch;?,ij = ig(’}/u)aa’t?j ) (AlO)
where e is the electromagnetic coupling constant, ¢y is the fractional charge of the quark,
g is the strong coupling, and ¢7; is a generator in the fundamental representation. At one
loop order in our computation we do not need the cubic and quartic gluon vertices except
in the cubic coupling of gluons to the background field, represented below by the gluon
effective vertex.
The CGC effective vertices for the eikonal interaction of the quark (moving with large
minus lightcone momentum component) with the background is given by

oo’ ij

T, (1) = (2m)6(1~ — 1)y, sen(l7) / Az ety 0 (AL
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and similarly the eikonal interaction of the gluon (moving with large minus lightcone mo-
mentum component) with the background reads

Tivapls 1) = =(2m)o (1" = 1"7)(207) g sgn(l”) / APz e Wtz el ) (A12)

where I” and [ are the outgoing and incoming momenta of the quark/gluon. The superscript
sgn(17) denotes the color matrix or its inverse V1 (z,) = V(z1) and V1(z,) = Vi(z}),
where the latter follows from the unitarity of V' (z, ), and similarly for U(z).

The lightlike Wilson lines in the fundamental and adjoint representations appearing
in the effective CGC vertices are given by the SU(3) matrices

Vij(z1) = Pexp (zg/ dz_A:E’C(z_, zJ_)tfj) , (A.13)
Uuwp(z1) = Pexp (zg/_ dz” ALC(27, 21) 51;) , (A.14)

where ¢7; and Ty, are the generators of SU(3) in the fundamental and adjoint representations
respectively. Ang is the back-ground gauge field of the classical small x gluon field in Lorenz
gauge. Here P stands for path ordering such that the operator at z = —oo is in the
rightmost position, while that at z = 400 is in the leftmost position.

A.3 Color identities

The generators of SU(N,) in the fundamental representation satisfy the commutation re-
lations
o] =petere, [T, 0] = ifebere, (A.15)

where f%¢ are the structure constants. We will not need the explicit expressions for these
objects. We normalize the generators such that they satisfy

Tr(t%%) = 5“ Tr(T°T?) = N6 (A.16)
Then we find
9" = Crlp,; TT = CA]lNCQ,1 , (A17)
where the Casimirs in the fundamental and adjoint representation are defined as
N2 -1
CF 2NC ’ CA c ( 8)

A wuseful Fierz identity for the color structures follows from the completeness relation of
Hermitian matrices ({13,¢*} form a complete set) that

a 4a 1
Oudjn = 23510 + ﬁcfﬂﬁkz : (A.19)

The coefficients follow from the normalization. Then one can show that for any 3 by 3
matrices C' and D satisfy:

Tr(C)Tr(D) = 2 Te(Ct*Dt®) + —Tr(CD), (A.20)
1
N,

1
Ne

Tr(CD) = 2 Tr(Ct*) Tr(Dt*) + —Tr(C)Tr(D). (A.21)
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We close this section with a useful identity that related Wilson lines in the fundamental
and adjoint representations:

V(e )tVi(x,) = U (x,). (A.22)

B Dijet cross-section for transversely polarized virtual photon

In this appendix, we provide the explicit expressions that enter inside the NLO impact
factor for transversely polarized photon, using the same notations as in the longitudinally
polarized case in section 8. The finite terms from the virtual diagrams of SE1 and V1 read:

do_’y;ri»AH dijet+X (a) aemQ?Nc QKI(QT:E’ /)
a = —0(1l —z5— 2K /dHL02z222 AL ALs R
y dzpjdnjdszdnK Vif. (27‘1’)6 ( ) JK 'I"Z,ly/
Qs 2 dzy [ APz | itk QK1(QXv) _ 2g(2g = 27)%2K Taa - Tary
X — — e =J —~  =NLO,1 3 2
T | Jo oz T Xv Z7 L

T2z

2
z zg \ Rsp-r - Z Zg \ Tay Ty
2 (1 -2+ 2% M — (B 2R R (120 4 ) Ty
zj 225 T zj 225 T oy
ijikLszQKl(QXV)H
7 ——.  ©SNLO,1
Xy ’

Zg(ZJ — Zg) Tyy * ’I’z/y/
29+ 2K r2,

+ ((z5(27 — 2¢) + 2K (2K + 24)) ( —5) <1+Z[9(> ((1_229]_2(ZKj_ZQ)>
X (Ry Ty ) (Tea - T2y) n < Zg Zg ) (Ry X Tyry ) (72 ¥ sz))] }

X QK1(Qray)CrZL0 — €

Tgxr,gy % 2(ZK + Zg) Tgmrgy
—|—(J<—>K)}+c.c., (B.1)

where we introduce again the two transverse vectors:

z
RSE =Ty + lrzx ) (BZ)
Zq
z
Ry = - _r.,,, B.3
V = Ty v+ Zgrzy (B.3)
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and the finite part of V3 reads

. i b) 2 )
dorr A= dijet+X ( aemech QK1 (Qryry)
o =4 " 6(1—25— 2 /dHL0222Z27y
* A2pydny;d2prdng Vif. (2m)° ( ) e Tty
« 21 dz QK1(Qray) —
X 8{ / — [21(27 = 2g) + 2K (2K + 29)] MZNLO,:&
m 0 Zg xy

zJ

Z Z z i 29k | g, Z
_ (1 e’ AT - 9) el 7L y(rxy . Tx’y’)jG (rmy, (1 — Z’i) PJ_,AV3>

2ZJ 22’[( QZJZK

2
|z z Z P19k, T, z
i (g -2+ 9 > e (Pay X Ty ) T (’I"xya ( - g) P, AV3>]

z2J 2K ZJRK zJ

+(J<—>K)}—|—c.c.. (B.4)

Recall that, as in the longitudinally polarized case, the other virtual pieces are implicitly
contained in eq. (8.3). Contrary to (8.5), we have not included the subtraction terms of the
slow gluon divergence in order to keep this formula relatively short. It is straightforward to
put these terms back. The notations for the variables used in this expression are gathered
in table 4 for the kinematic parameters and table 2 for the color structures.

Following the notations of section 8, the real contributions to the v — ¢gqg + X
cross-section read as,

dorrtA—adgt+X

aeme?‘Ncéa ) /dH
= — — 2y — 25 — Zg)X LO
Ak dngd?p) dngd®hg dng |y o (27)8 R
2 —ikgy (x1—'))
- o ! 32 2 2 Zg zg € N +
X CrELo(T 1, y1;%),Y]) {SZchiQRQ [Zq + (1 —2g) } <1 + Za + 223) (kgL — 2k, )2
q
/”a:y . ’r‘x/y, — —
><K1(QR2?“xy)K1(QR2Tx'y’)} ; (B.5)
TayTaly
and
dorit+A—adg+X 1 dorrtA—adgtX
o = s«
* A%k dngd?pydngd®kgidng| - 27 d2kidngd?pidngdkgidng |, Lo
doVetA—adg+X dorrtA=aagtX
+a Ta
* A2k, dn,d?p, dngd2ky dn, - ® A2k dngd?p 1 dngd2kg drg RIXR}
. 1 dorntA—adg+X N 1 dorrtA—aedg+X
iy —Q
2 ° d2k, dn,d2p, dngd2k,, dn, RixR, 2 * d2k dn,d2p, dngd2k,, dn, RIxR,
+ (g q) +cc, (B.6)
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with
dorrtA—adg+X

ozemefch
s
d2k | dn,d?p | dngd2kg, dn,

= W(S(l — 2g — 25 — Zg) Qs /dHLO

R2xR2/

— A~ =~ A~ —A . —_ /
X :NL0,3($L,?JL;$Lyl){SZqu‘Q%mfﬁ(QRzmy)Kl(QRﬂx'y/)e tkgL (@1 —2,)

z
X | (2q + 25 — 224%3) <1+g—|— (k o )2 (k: - )2 e
gL — z, RL gJ_—gPJ_ Ty

2 %7
_ Za _Z
2 (ng‘ g kJ‘) X (ng‘ ngJ‘) “Tay X Ty
2 2
Z, Zq T T el oyt
T LN CTE

For the other terms labeled R1 x R2, R1 x R2/, R1 x R1 and R1 x R1’, we do not fully
perform the spin-helicity sum, in order to avoid lengthy expressions. We refer the reader

Zg

— 2 B.
QZqzq(Zq 2q (B.7)

to [106] for useful formulas related to the computation of such spin-helicity sums from
Dirac traces.

dortA—adg+X

aeme?ch
g
d?k, dngd?p | dngd2kg  dn,

= Wé(l —R2q — 2q — Zg) /dHLO

R1xR2
2 21 —ikgi (2] —2" )= —y !
X /d z1d"z e gL (z1 J-):NLO,l(wJ_ayJ_sz_awLayl)

1 A=+1,)00" A=+1, 00"
X & Z N&T LAoo (Tay, T22)NL5 L MT(rw/y/,rz/m/), (B.8)
AA,0,07

d(fﬁ“ +A—qq9+X

aemechc
As
d?k, dnyd?p | dngd2kg  dn,

= W(s(l — Zq — Z(j — Zg) /dHLO

R1xR2’

2 2 1 —ikgy (21 -2 )= o /
X /d z d*z e gL (21 J-):NLO,l(xJ_ayJ_azJ_an_vyi)

1 A==+1,Ao0’ A=+1,Aoc’
X g Z NRI ’ ('r'xya'r'zm)NRQ/ ’ T('rw/yl,rz/x/), (Bg)
AA,0,07
dorrtA—aqg+X aeme?ch

Qs = ———01—2,— 27 — 2 /dH
d?k | dngd?p | dngd?kg ., dng . (27)8 ( ¢~ %q — %) LO

2 2 1 —ikgy (21 -2 )= B / /
X /d z d*z e gL (21 J-):NLO,S("BJJyJ_azJ_axJ_ayJJzJ_)

1 A=+1,\ oo’ A==+1\oo’
X g Z NRI ’ (T:rya T'zz)NRl ’ T(Tx/y/, Tz’:p’) , (Bl())
A\o,0!
dortA—adg+X aemechc

Qs = ———0(1 —zy — 25 — 2 /dH
Pk dngd?pydngd®kgrdng |, b0 (27)° (1= 20 = 20 = 29) Lo

2 21 _—ikg - -2/ )= ! ! /
X /d z 1 d*2 e et (=1 ZL):NLO,g(fBL,yL,ZstL,ylazl)
1 A=+1. oo’ A=+1\oo’
X — E NRI e (T:charza:)NRll ’ UUT(T:E’yUTZ’:Jc’)' (B'll)

8mr 4
A\ 0,07
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The expressions for the perturbative factors Néfﬂ and ./\/'é; *1 are given respectively
by eq. (4.33) and eq. (4.45). Even though these formulas are very lengthy, they can be
implemented on a computer program for their subsequent numerical evaluation as can

egs. (B.5) and (B.7).

C Dirac algebra

In this section, we provide various gamma matrix identities that are useful in the compu-

tations of the perturbative factors.

C.1 General identities
C.1.1 Product of transverse gamma matrices

It is advantageous to decompose the product of two transverse gamma matrices into sym-
metric and anti-symmetric components. In 4 dimensions (2 transverse dimensions), for
i,7 € {1,2}, one has

vy =51 4 50 = =0 i, (C.1)
with

i

=3

A7 (C.2)

The matrix € satisfies Q2 = 1 and [y~,Q] = [y, Q] = 0.

In d =2+ (2 — ¢) dimension, these identities are generalized to
ind = 81 4 i (C.3)

with w¥ = %[yi,'yj ]. The matrices w¥ satisfy

wiw® = (1 — )6 + ew'® (C.4)

[wlm,wij] _ 2(wjl5im + wmjéil + wliémj + wiméjl) ’ (C5)

and the commutation relation [y*,w¥] = 0. The € terms in eq. (C.4) come from §% =
d—2 =2 —¢c. In 4 dimensions, when w” = —ic¥Q, one has [w'™,w¥”] = 0. Therefore

[w'™, W] = O(e). From these relations, one easily finds that
(A167+Agw)y~ (C187* + o)
= |:(A101 + (1 *8)14202) 5zk + (A102 + A5C1 +€A202)wik] Y, (CG)
(Aléij—i—Agwij)wlmfy_ (Cldjk + C’gwjk)
=My~ [(A101 +(1—€)AyCy) 0% + (A1 Co+ Ay Cy +5A202)w“1 +0(). (C.7)
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C.1.2 Spinor contractions

We begin by presenting explicit expressions for the gamma matrices in 4 dimensions and
explicit representation for the Dirac spinors.
We work in the Dirac basis for gamma matrices

10 , 0 o 01 0 —i 10

70 = : v = I , o’= s = :
0—1 —o' 0 10 i 0 0 -1

(C

.8)
where 1 is the two-by-two identity matrix.
The helicity operator h is defined as
2%-5 5 1(60
h=—— ; S=_ 7 ) (Cg)
K| 2104
where k = (k_, k%) is the three momentum. The (massless) Dirac equation reads
Fu(k) =0, (C.10)
It has the following solutions'®
kte ik VEk~
1 NI 1 | =Vktei®x

_(k) = k)= —+
k‘"‘eii(ﬁk ) U ( ) U+( ) 21/4 _ /7/-6_ )
NI k+eiok

where the subscripts + denote the helicities,!” ¢y, is the azimuthal angle of k|, and the
normalization is chosen so that

=Y ug(k)ug(k), (C.12)

where the barred spinors are defined as usual by % = uf~Y.

We provide here the relevant formulas for performing spinor contractions based on our
conventions. These relations are valid in 4 dimensions only.

In the LO computation, we need

u(k, o)y v(p,o’) = 2\/k—p=67"7 (C.13)
ik, o)y Qu(p,o’) = =2y/k—p= 06777, (C.14)
leading to

ﬂ(k, O') [Al — )\AQQ] fy*v(p, 0/) =2 k_p_PJ’A (AQ — Ay, As + A1)(50’7a/ . (C15)

Yr—aq

Recall that I‘:’g‘ g defined in eq. (2.18), is the spin-helicity-dependent splitting vertex.

1611 the massless case, the spinors corresponding to particle and anti-particle are the same, but correspond
to opposite helicities.
"Note that in this manuscript, p~ is the large component of the spinor momenta; thus p® < 0.
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For the NLO real emission computations, we have used

a(k, o) [ Bt + ABsQ| v v(p,0”) = 2k p T2y (Br = Ba, B+ B2)d™ ™7, (C.16)

and
a(k, o) [By + AB2| [A1 — AM20] 77 v(p, o)

=2\/k~p~ o)

q—>qg(Bl — By, B + Bg) FU’)\ (A2 — Al, Ay + Al) 50’_0/ . (017)

Y99
Finally, for the NLO virtual computations, the following relations are useful:
a(k, o) [B16Y +iBae Q] 77 [C10M +iCae® Q) v(p, o)
= 2/kp [(BiC1 — BaC)d™ + io(B1Ch — ByCr)e*| 6777, (C.18)

and

i(k, 0) [ B16Y + iBae Q| [A1 — AA20] 7~ [C10M +iCae" Q) v(p, o) (C.19)

= 2/k7p~ [(BiC1 = BaCo)d™ + io(BiCy — ByCh)e¥| TN, 1(As — Ay, Ay + A1)6777"
C.1.3 Gluon tensor structure

To simplify the Dirac algebra, it is very convenient to decompose the tensor structure for
the free gluon propagator in terms of polarization vectors as

s 12
Haﬁ<l) = 72 Ea()\,l)e/g(l, )\) -+ Wnanﬁ . (CZO)
A==1
The product of two such structure is given by
MNP (1) = = > ea(N )™ (U, N) (C.21)

A==1

Note the piece proportional to n in eq. (C.20) drops out when inserted in eq. (C.20) since
ngll?(I') =0 and e5(l, NP (1) = =2 (1, N). (C.22)

Physically, this means that longitudinal /instantaneous piece of the propagator drops out
in the product.

C.2 Useful Dirac algebra tricks for gluon emission and absorption numerators

In this subsection, we will collect useful algebraic identities that contribute to a significant
simplification of the Dirac numerators in the real and virtual amplitudes. They isolate the
contributions of the instantaneous terms and depend on the transverse coordinates which
also naturally appear in the contour integrations over “plus” momentum components. In
the following, we will employ

_ A -
€(la, \) = (Eil_u,o,ei> . (C.23)
2
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We point out further that in all of the following relations, the first equality is expressed

in a form (as per our previous discussions) that enables one to extract the O(e) terms in

the Dirac structures; they can then be used in d = 4 — ¢ dimensions as well. However

the expression in the second equality is valid in 4 dimension only since it makes use of the

identity w¥ = —ie Q).

Gluon absorption from quark after the shock wave.

a(k,o)¢(l2, \)(F — [2)y™ = %ﬁ(/ﬁa) (5” - gfﬁ) v L€

T 2

oL, - € _
=L o) [(1-5) +359)

-
where x = ;%= and L, =13 —zk,.

Gluon absorption from quark before the shock wave.

Y (I + 12)¢ (2, N4

2 .. T - . _ Ly Sy
== <5” — 27”7’) v LY — 1+ )iy ey’

_2L.-€ KH»’C)”;

_ i — A
. 5 vl = A+ )y et 1,

-
Wherex:l%andLl:lﬂ_—xllJ_.
1

Gluon emission from quark after the shock wave.
(ko) [¢ (kg N K+ K,)| 7
2 . o s
= —u(k,0) (5” - gv’vj ) v Lie™
T

2Ll-ei‘*, x - _
= —— = 1+—=)-X2=0Q
" u(k, o) K +2> A2 }v ;

k
where x = £ and L, = kg, —zk,.

Gluon emission from quark before the shock wave.

(I = L) ¢ (12, M]3
2 .. T . . _ i s i ki
=5 (5“+27W>7 L™ —(1-a)liy'y e

_2LJ_'€j‘jk
x

-
wherex:l%andLl:lgj_—xllJ_.
1
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(C.25)

(C.26)

(C.27)
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(C.29)

(C.30)
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Gluon emission from antiquark before the shock wave.

(I = D (2. (= g + 127

2 —(5ij L i g i _Ax i Ak,d
=*(¢—l1)'y (5j+277j>13 Ad (1—w)(q—l1)7'yei

2LL 2L, e} (¢— 17 Kl - w) - A:;Q} +(1-2)7r e (g - 1),

2

z andLL:lzl—x(qL—lll).

where x = ;
-1

Gluon emission from antiquark after the shock wave.

Y (=p = L2)f (I, M(p, o)

2 - 1, 7
=-27 (63—2 )L eL Tu(p, o)

_ 2Ll-ei* _ x T p
= ~ {(1#—2) —)\QQ} v(p,0'),
Wherex:;%:andLJ_:lzJ_—pr_.

D Contour integrals

(C.32)

(C.33)

(C.34)

(C.35)

In this appendix, we will provide details of the computation of several of the contour

integrals appearing in the main text.

D.1 Generic It integrals
D.1.1 Two pole case

We first consider the following integral with two poles:

I /dﬁ 1
[12 4+ i€ [(I = )% +i€]

where '~ > 0. The locations of the two poles follow from

12 pie =20~ (I — 1) Wlthﬁ_ﬁ e
“ 21— 20

L —1,)? :

(=1 ie=—=2('"=17)(IT =1), with l;:l/+_(¢ VD e

20— —17) 20 -

We then have

1 i+ 1
I:_Mww—kq/@mu+_ww+—¢y

It is not difficult to verify that the poles sit on opposite half-planes when 0 < [~

Closing the integral in the upper-half plane, enclosing [;" , we find

i el e~ —17)

7=
A== —17) (L —1d)
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It is advantageous to simplify the difference l;r —I by introducing the transverse momentum
vector 1| — xl,, where x =~ /I"", which gives

+_ - - 1 2 SN 70 \2 D
T 21— @)1 +ie) = (L —2ly)?] (D.6)
The final result reads then
. p— /7 _ p—
T _ 1 o(7)e(l [7) (D.7)

20 [x(1 —a)(l"? +ie) — (L —2l')?]
In LCPT, these © functions are implicitly accounted for by considering different diagrams
with lightcone time orderings of the propagating particles.
D.1.2 Three pole case

A slight generalization of the equation above is

dit 1
12 = / (27) [12 + i€ [an (I = 1)2 +i€) + B1] [a((l = U')2 + i€) + Ba] (D.8)

where a1, as, B2 and B2 do not depend on [T, and as before I’ > 0. Using the definitions

of I and [ as above, we find

1 di* 1
L2 = 2?/ (27) + / + / + '
) (1 = 1) 200 (17 = V) = 1) + Bi] [200(7 = U) (I = 1) + B
(D.9)
Closing the contour in the lower-half plane enclosing [, we find
I,= - —10(T)e” —17) (D.10)
A 200 (1= = 17) (@ = 1) + ] [200( = 1) — 1) + B
1 —i0I)el —-17)

T (B EA - — (L — A + B {2 F(1— a2 — (1, — 2l )?] + B}
where Z = [~ /I'". Finally we end up with the expression for Zs,
1 —iO(7)el'= —17)

Bt 3 (T N s L R Y 3 [ (R e

where z =17 /I'".
Another generalization is
dit 1
Ty = / : D.12
3 (27) [a1 (12 + i€) + B1] [ (12 + i€) + Bo] [(1 — I')? + i€] ( )

where a1, g, B2 and B2 do not depend on [T, and as before I’~ > 0. Following the same

steps as for Zs but closing the contour in the upper-half plane to enclose l{f, we find

B 1 —i0(7)el"™ —17)

S =) e [ - )2 - 21— )R] - By )
1

{5 (0 -at 2 -2 -2 - g}

13

x (D.13)

where z =17 /I'".
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D.2 Application to self energy contribution SE1 and vertex correction V1

D.2.1 Contour integration for SE1

We now compute the integrals in eq. (5.16) and eq. (5.17) for the regular and instantaneous
perturbative factor of diagram SE1. Using eq. (D.7), one finds that

/ diy / dif (2¢7)
(2m) J (27) [(la — 11)2 + i€][13 + i€][13 + i€][(I3 — k)2 + i€]
_ 1 O(29)O(2g — 29)

22 L3, [v(1—2)(1f +ie) — L3, ]’

(D.14)

where x =15 /IT =15 /k~ =15 /k~. Now we can use eq. (D.13) with ' = ¢, a1 =1, 51 = 0,
as =z(1 — ), and B2 = —L3, | . One finds that

/ diy (2¢7)
() [+ ie] [o(1— ) +i€) — L, ] [0 — 0> T id
1000l — ;)

B - p@) {5 B, 10 - 9@ + L3, )

, (D.15)

where y =1 /q~. Since l] =k~ and ¢~ — 1] =p ,wehavey =k~ /¢, 1 —y=p"/q~,
x=I3/k7,and 1 —2z = (k= —l3)/k™. Therefore,

/ iy (2¢7)
(@) [B + ie] [o(1 — 2)(FF +ie) - L3, ] [(lh — q)% + ic]
—i0()0( — ;)

- _ , (D.16)
(li + Q2> [WSEl ( 1t QQ) + L2a:J_}
where
~ k=p~ I3 (k= —1
Q? = (q‘%2Q2 and wspy = > ((k_)ng_) ) (D.17)

which finally gives eq. (5.18).

For the instantaneous contribution we use again eq. (D.13) with ' = ¢, a1 =0, 51 =1

as =y(1—y), and B = —L3, |, so that
/ i (297) 1
(2m) [(q = 1)? +ie] [2(1 — 2) (1} + ie) — L3, ]
2¢~ ©(,)0(q” = 1))

200~ 1) {#=2 @, + 50 - Q2 + L3, |
108 —h)

7 [WSEl ( 2 Q2) i Lsz_} ) (D.IS)

leading to eq. (5.19).
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D.2.2 Contour integration for V1

Similarly, the equations eq. (5.63) and eq. (5.64) quoted in section 5.2.1 can be obtained
using eq. (D.11) with ' = ¢, a1 =1, 81 = 0, ag = y(1 — y), and B2 = —L%yl. The 15
and [ integration is the same as for diagram SE1 discussed above with y = I3 /(p™ + 13 ).
Thus we have,

/ dif (2¢7) 1
(2m) [ +ie] [(q = 1) +ie] [y(1 = y)((q — 1) +ie) — L3, ]
_ 29 —i0(l1)0(¢” — 1)
2 {13, +20 -0 {1, + 20 - 5)Q2) + L3, }
_ ~i0()0(” ~11) (D.19)

12, +20-2)Q) {U 2, +201-2)Q2) + L3, }

where =[] /¢~ . For V1, the delta functions constrain [ = k™ —I3 and ¢~ =1} =p~ +I3,
givingz = (k™ —13)/q", 1-2= (" +l3) /¢, y=13/(p”+l3)and L -y =p~ /(p™ +13).
Finally, one gets

/ drf (2¢7) 1
(2m) [ + €] [(g = 1)? + de] [y(1 = y)((q — )2 + die) — L3, ]

_ _’L@(ll_)@(qi — ll_) (D.QO)

(B3, +A%,) [wvi (1B, +A%) + 13, |

where

=) ) _ Is3p~q~
AYy = é’)qf)Q 3702 and wyy = " —lij)(p— vl (D.21)

This gives the result in eq. (5.63). For the antiquark instantaneous contribution we use

eq. (D.11) with this time I = ¢, a1 =0, f1 = 1, aa = y(1 — y), and By = —L3, |, so that
/ dlf‘ (2¢7) 1
(2m) [I1F + ie] [y(l —y)((g —11)* +ie) — L%yL}
_2g” O, )0(¢” —1y)
207 (M0 [+ (- 0)Q7 + I3, )
_ 1 ©()e —h) (D.22)

Fq ~ *g [le (13, +4%) + L%yi-} ,

where x =[] /q~, which leads to eq. (5.64).
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E Useful transverse momentum integrals

E.1 Schwinger parametrization and multidimensional Gaussian integral

All the integrals considered in this appendix are computed using Schwinger’s parametriza-

1 1 oo
— = = ds P71 e E.1
5~ 9 =

for D > 0 and 8 > 0. We will also make use of the 2 — ¢ dimensional Gaussian integral

tion of denominators as

/dz_‘gm_e_’"2l = ql=e/?, (E.2)

Finally, we will employ a very useful integral representation of modified Bessel functions
of order v that naturally emerge following the Schwinger parametrization of denominators
in the amplitudes:

o0 1 2 Je —sO2 Q\
/ ds s""leTm1/5e799" = 9 () K_,(2Qr,), (E.3)
0 T
for Q2,72 > 0. We will extensively use this result in the computations of the LO and NLO

virtual photon “wavefunctions”.
E.2 Fourier transforms

E.2.1 Gluon emission kernel

The simplest transverse momentum integral encountered when evaluating self energies and

vertex corrections is

s/ d27€lJ_ eilJ_‘TJ_ B 27175/2 1 _6/21*\ <€)
O e N O AV 2
1

= {i + In(e"Emplr, ) + O(E)} ; (E.4)

with € < 0. Differentiating with respect to ri, one easily gets the 2 — ¢ integral represen-
tation of the gluon emission kernel

K (2m)2—= 2 o (2m)te/2 \ p2r? 2) r2 ’

In 2 dimensions, this reduces to

d2l l] ilLrL y ]
/7L e- - T (E.6)
(2m) 13 L
Eq. (E.5) leads to a useful identity for the integral over z, of the JIMWLK kernel Z5-72v
zx' zy
in coordinate space. Using twice eq. (E.5), and integrating over z, , one gets
—e/2
m [r2, ) 52 e (=5) \wPrdy
9 2, 12
=—"—In|-ZX—]+0(). E.7
- n(mm>+ (©) (E.7)
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One can then show that the integral of the difference between two JIMWLK kernels reads as

2
T T Ty T r
d2 2T zz! Tz 2y | In Yy ) (ES)
2 22 2
z:p zm/ szrzy L

This relation follows from eq. (E.7) after taking the limit ¢ — 0~ on both sides of the

equation.
We conclude this subsection with a proof of the identity in eq. (6.8). Using the
Schwinger parametrization, the integral of the UV singular JIMWLK kernel is

—82(1'7"%, )2 /Ju
zm zy

= M_aﬂ_a/z[ﬁ%y]hr%f/ ds e_srgysa {F (—;) -T (—;, —srgyﬂ

= p Pl 5/2F< 2) (14 ¢)(i +i°)
_9 {_i +In(e ) + 0(5)} . (E.9)

On the other hand, the integral of the £ dependent regulator reads, for € < 0,

€ 1 _r 2
o e = e

zx €

= —g + ln(27‘r,u2£) +O(e). (E.10)

Combining these equations, and choosing £ = r%yem /2, one gets

2 2
2 rxy 1~ L - TQTZ;{YE
d°z — ——e "t — ——e Tiy =0 (E.11)
2 2 2 2 ’
r2,r r r
zx' zy zx 2y

in the limit € — 0.

E.2.2 LO wavefunctions

The LO amplitude in 4 — ¢ dimensions involves the Fourier transforms:

d?- el ey 1 A\ €/2
- K_./2(A E.12
w (2m)2—= 12 + A2 (27)1-¢/2 (N2m> _es2(Ary), ( )
d?- el Voeitirs 1 A \1—g/2
€ 1 o .
a / 2m)2= 12 + A2~ (27)1-</2 <M2U> i Ky cpp(Ary). (E.13)

In two dimensions, one recovers the familiar expressions

d2ll eilL'TL

/WM = Ko(Ar.), (E.14)
A2 Veltme A,

/ T B TAT = ). (E.15)
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E.2.3 NLO wavefunctions

Virtual diagrams. For the dressed self energies and vertex corrections, one needs results
which are straightforward to obtain using Schwinger’s parametrization. (A more detailed
derivation is given in [33, 35]). These are summarized here:

o / d2_8l1J_ / dz_alzJ_ llzcleilugru_eilzLTzL
(2m)2= J (2m)%= (17 + A?) (l%J_ + w(li + A?))

_ E(N’QT%J_)E/Q lréJ_ /OO ds efsAz — 48 T o E WT%J_ (E 16)
= r2 ) ) .

2 (2m)2c sl—e/2 2’ 4s

and

0 / d2_€l]_J_ / d2_6l2_|_ llJ_lg ethiimis gil21m21

(27)2—¢ (27r)2—E (13, +A%) (13, +w(l3, + A2))
_lui (:LLQT%J_)E/Q TlJ_TZ_L /OO ds 678A2671§7J‘F o E wr%l (E 17)
4 (2m)2—< v Jo s2e/? 27 4s ) ’

In two dimensions (¢ = 0), the remaining integral over s can be expressed in terms of
modified Bessel functions, as in the LO case:

/ A%, / d?ly, 1k ehimiseilairay
P | Cr)? L+ AN [, +w (@, + 7))

1 ZT’ZCJ_ /.2 2
(27r) T‘ZJ_ — =Ko | Ay/ry, +wry, ), (E.18)

/dQllJ_ / d?ly) l{ngLe“u""ueﬂu"’u
e | G 0y + A9 [, 7o (7 A7)

1 7 rk A
=~ P 1;-2 2L - - K (A\/T%J_ + wr%J_> : (E.19)
2L 4 /ry twry

For instantaneous terms, we need

d2l1J_ d2l2J_ eillJ_"'lJ_-‘r’ilzJ_'er_ 1 A
= K, (A\/m ) .
/ (2m)? (2m)? 13, +w(li, +A2)  (2m)? m el
(E.20)
For the free self energies, the following results are useful (with € > 0):

za/dQElu/dQEIM ethire
(2m)2== ) (2m)?== (3 + Q%) (I3, +w(li, + Q%)

1 w@? %
- (27-(-)275 <M TL) 5 —e(Qr1)

—&/2 72142
- (2177) ((277)?6271> Koepp(Qro)x 417r {2 + %hl <4Qétw2L> + 0(8)} ,  (E21)
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and

e
) - (2m) 2 (lal/Jé+Q ) (3, +w(lf, +@%)
= (2752—5 Z?Il <5€L> Kl (Qry)
B (217r) mi:l ((%)Ci%)_E/Q Kioepa(Qr)
X i {i + 11n (47254;{) - Qjm ?1’8:3 + O(s)} . (E.22)

To obtain the last line in each of the two expressions above, we used the identities

K _(Qry) = K—a/Q(QTJ_) + 0(52) )
Ki-o(Qr1) = Kipp(Qri) = 5 0,K,(Qro)l,—y + O()

€

=Ky .pp(Qry) — §Q7K0(QM) +0(%). (E.23)
Real diagrams. We turn now to the NLO wavefunctions appearing in the real diagrams.
In particular, we will derive the striking result in eq. (4.22), which appears in [32] without
detailed proof. It can be derived from the integral

13 i il 7T ilg | 7
d2l dl 27J__|_17J_ eW1LT1L pth21T21
I (ry1,ra1) / 1L 21 ( 23 1 ) ’
(21(1—21)Q2+l%l) <Q2+ llJ_+l2J_) + 1J__|_ 2J_)
(E.24)
where zg + z1 + zo0 = 1. One can obtain I7*(r11,721 ) by taking derivatives of the scalar
1
integral:
d2l1J_ d2l2J_ etliiriy pilzy T2y
Io(r11,721) / / .
_ 2 2 2 (lu_-i-lzJ_) 1J_ 2_L
(11— 21)Q%2+13 ) Q%+ + +
(E.25)
Then

1 0 1 0

Im’l";u_ T2 =—1|—
"(ris,m21) 0P 1—z 0P

) I()(T']_J_, er_) . (E26)

The scalar integral Ip(r1., 72, ) does not have a fully analytical solution but I7*(r11, 72, )
will have one. After Schwinger parametrizing the two denominators and performing the
two Gaussian integrals over Iy, and lp , one gets

Z2ZOT' 1 Z2 2
2720”41 _o2 [ dt e*tQ e 2t(—z1) zl) Al _Zl)(TlJ_—ﬁer_)
ds e 5@

- e 4(s+t)
4z1(1 = 2z1) t (s+1)

Ip(r11,721) =

(E.27)
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This expression suggests the obvious change of variables u = s+t and v = t, then we have

In(ri1,721) =

2
1— 2
222021 /OO du qug—% (ru— =2 r2J_> v dy 2270731
)Jo w 0 v

- u© P

(E.28)
The integral over v leads to an incomplete gamma function with u as an argument and this
renders the analytic computation of the integral over u intractable. Therefore we switch
to I7"(r11, 721 ) by taking the corresponding derivatives in eq. (E.26). We need:

1 9 1 0 z1(1 —z z 2 292072
19 a 1( 1) (TU_ 2 "°2J_> LT
2 0ryy 1 — 2z 0r]" 4u 1—2 41— z)v

(L 0 L+ 1 0 22073 | _ Ty . (F.29)
z0ryy 1=z 0r] | [4(1 —2z)v 2(1 =z )v

Amazingly, the derivatives acting on the first term cancel each other due to the 1/z9 and
1/(1 — z1) weights, and only the action on the second term survives. This brings a factor
of %, which now helps us obtain an analytic solution! We find

2
2,..m [e’e) 751(1*21) __Z2 u Z2ZOT2L
. 2220T2 / du ouQ?, T (T’u 1721’“2l> / dv el
0o u 0

" =
1 (T'IJ_, TZJ—) 7/8(1 _ 21)2 1)2
(E.30)
The v and v integrals can be performed in terms of usual functions:

. ZoTgl
VEE =7—==""Ky(QX E.31
1 (7"1J_, T2_L) 22<1 _ ZI)T%J_ O(Q ) ) ( )

where

2
Z9 2920 2
X2 = 1-— <r — r > + —7r

= zozlr%L + z129(r1) — 7‘%_)2 + z0227’§J_ . (E.32)

In the last equality, we used 1 — 21 = 2 + 2.

F The integrals J5, Jg and Jgr
F.1 Integral representation of Jg and Jg
The two integrals Jz and Jg can be derived from the scalar integral

d2—alL eilLrL
(2m)2= 13 (1L — K1)?— A% —ie]’

T(r K., A) = m/ (F.1)

which has to be computed in dimensional regularization since it is infrared divergent in two
dimensions. For the numerical evaluation of this integral in the physical domain A% > K f_,
Feynman parametrization, supplemented by the analytic continuation to physical values of
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A? turns out to be the most convenient method. After Feynman parametrization of the
denominators, and completing the squares, one gets

d2 ELL iLlﬂ‘L
Jr, K|, A / duy e Erre / . (F.2
(re, Ko : 2m)2—e (L% +u(l —u) K2 — AQ—uie]2 (-2)

For A? > K? and u € [0,1] one has u(1 — u)K? —uA? < 0. Let us define

bvs = \/lu(l —u)K? — uA?|. (F.3)

Then we have

1 £
2 \2t3
K . A d 8/4 ry iuKL"r'LK_ B —is
J(ri, K, A)= (an- 5/2/ u i (46\2,3 e 1-¢/2 (—idvsri) ,
(F.4)

where we have analytically continued the modified Bessel function to imaginary values of
its argument (see the discussion below eq. (J.28) for a careful demonstration of the analytic
continuation). Differentiating with respect to rﬁ_, and setting € = 0 since the integral is
now convergent in two dimensions, one obtains the result,

d*l, vetrs 1 /1 WK .
= — [ du ™" Ky (—idysry ) ir}
/ (2m)2 13 [(1L — K1)? = A?] 4w Jo o (=idvri)iry
1 1 UTJ_emKJ-'”- )
A ———— K1 (—i0 K. F.5
Jr47r/ (—idv3) 1 (=idvar,) K (F.5)

In order to simplify the term proportional to ri, we used the identity

Ko(e) + —Ka(e) = 5 (Ko(a) + Kae) (F.6)

The integrals Jg and J» can then be derived by taking the cross product or the dot
product of eq. (F.5) with —2mi K and (47)K | respectively, giving

K 1 -
j@(’I’J_, KJ_, A) = m%/o du QWKJ"TJ'KO (—Z‘(Svgm_) s (F7)
and

1 .
j@(’T’J_,KJ_, A) = Z"I“J_ : KJ_/ du BWKJ"TLKO (—Z‘(Svg'lj_)
0

ur | Ky (—idyary)
(—idvs)

1
—i—Ki/ du KLy
0
These two formulas are well suited for numerical evaluation.

F.2 Slow gluon limit of Jg

Eq. (F.8) is not very practical if we want to extract the behaviour of J near A? = K?. In
this limit, the second term of eq. (F.8) diverges because of the u = 0 logarithmic divergence
of the modified Bessel function K, but finding the asymptotic expansion around A? = K JQ_
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is difficult. Therefore we would like to find another analytic expression which enables the
extraction of the behaviour of Jg as AZ KJQ_

Our starting point is again the integral J but now computed using the Schwinger
parametrization of the denominator. Thus rigorously speaking, our calculation is valid for
A? < K? only. Nevertheless, the asymptotic behaviour near A? = K? of eq. (F.8) that we
obtain after analytic continuation is the correct one. From the Schwinger parametrization
of the two denominators (and computing the corresponding Gaussian integrals), one gets

(i’l"L—‘r2tKl)2>
00 exp | —7—5h—
N S t(K2 -A?) ( 4(s+t)
J(ri, K, A) ()i 5/2/ dt e~ /0 ds 510

1 9-¢/2 —t(K2—A2)
dt
= @ o ( 2) ] G ke

/ dt e tEI-AYT (0 UMKU) +0(e). (F.9)

4t

Expanding the first term in powers of ¢,

——5l (-3 = — | —41 VE 2 —%tK 2 :l
(2m)—¢/2 ( 2) <M2(7‘L—2itKL)2> [5+ n(e mps(ry —2itK, ) )—i—(’)(e) ,

(F.10)
one finds
1 1 2
_ vE
J(r, Ki,A)=— K- AQ[ +ln(e T )}
2K 2
| (2 5
dt
471' K2 A2 / ¢l 2
1 [ — 2itK | )?
_ 7/ dt e~ HE2 =A%) <0, M) +0(e). (F.11)
T Jo 4t
One can compute analytically the integral in the second term,
00 (TJ_ - K?;KL t)
/ dt e 'In 5 =T (0, x4) +eXT(0,x) , (F.12)
0 r
with
K2 — A2/,
X+(re, K, A) = <l (1K¢ T+ \/Kiri —(re- K¢)2> ) (F.13)
K? — A%/,
Xf(TJ_,KJ_,A) = JQ_T (ZKJ_ r) — \/KiTi — (TJ_ 'KJ_)2> . (F14)
1
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Note that the Cauchy-Schwarz inequality, K? J_7" 1> (K r 1)? ensures that the square-root
is real. Gathering all the pieces together, one finds

1 1 2
J(r, K ,A)=— 47TK2 AQ{ +ln(67E7r,ur )+6X+F(O X+)+ eI (0,x-)
— 9 2
7/ dt e tE L= (07 mm) +0(). (F.15)
7 Jo 4t

With this expression, it is now straightforward to compute the integral J. Representing
the scalar product between 1| and K| as2l, - K| = —[(l, — K )?—A?]|+[K? - A?]+13,
one gets

. d2—€lL ezlLrL 5 9
j@(TJ-v K., A) = _(271-)” / (271.)275 12 + (2W)(KL -A )j(TL7 Ky, A)
1

d2 le eilJ_'TJ_
(2 . F.1
”“/%26 (1 — K.)2— A7 (F-16)

Further, using

2l e%h 12
1 ) = L +1n (e”“%r;fri)} + O(e), (F.17)

one sees that the infrared pole in 1/e cancels, as it should, and one is left with a finite
expression in two dimensions

1 ,
Jo(ri, Ki, A) = =2 [T (0,x4) + €T (0, x-)] + -7 Ko (—idry)

K2 _ AQ 0o 2
- LT/ dt e !KI-A%p (0, % —iK, v, —tK2 | . (F.18)
0

We can now determine the asymptotic behaviour of this expression, as a function of A, in
the limit A? - K i The last term vanishes in this limit and y+ — 0. Using

I'0,z) = —yg — In(z) + O(z), (F.19)
one finds
K? — A? 1 i — ‘
Jo(r, K;,A)=1n <§K2> 3 In(K3iri)+ 5 Tet BT Ko (—iK 7))
1
+ O(K? — A?), (F.20)

with the imaginary part determined modulo 27. We have checked numerically that this is
the expected asymptotic behaviour of eq. (F.8).

F.3 Slow gluon limit of Jr
In this section, we will prove the identity stated in eq. (6.28). We recall that the transverse

momentum integral Jg is defined by

d21,

Bl +K,.)?’

(F.21)
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for K| > 0. We are looking for the asymptotic behaviour of this function as K| goes to
0. Let us first write the numerator as a sum of square using 41, - (1, + K ) =2(12 + (I, +
K|)? - K?). Plugging this identity inside the definition of Jg gives

) dele e*ilJ_"rJ_ d276ll e*ill"rj_
L) [ ke |
( ),u (2m)2—= 12 L8 (2m)2=c 12 (1L + K )?
(F.22)
where each integral has been analytically continued to 2 — ¢ dimensions (with € < 0).

Tr(ri, K)=2

Indeed, even though the integral Jg is convergent in 2 dimensions as long as K| is non-
zero, each term in the expression above is IR divergent in 2 dimensions. The second integral
in eq. (F.22) can be evaluated using Schwinger parametrization:

d2 ElJ_ —zll Ty 2 1—¢/2 e—t‘I{2
o 2—¢ 72 - P( )/ dt
(2m)2== 5 (1 + Kl) (271')1 €/2 p(r; — QZtKL) ) €/2

(27‘(’1 €/2 (T‘L—QZtKL) ) e/2 2’ 4t ' '

The first term was computed in the previous section-see eq. (F.12). Setting A = 0 in the

latter equation, one gets

9—1-¢/2 e 00 —tK?2
N T ——
(271')1_5/2 2 0 (/L2(TJ_ — QZtKJ_)z)_‘E/Q

e (oo

1 1
= x4+ (rL,K1,0)
47 KJQ_ [6 PR F(()?X—F(TJ_:KJ_yO)) + (X-|- — X_)} + 0(6), (F24)

with the functions x4+ defined in eq. (F.14). The second term in eq. (F.23) requires special
care because it also contains a 1/¢ pole. To extract this pole, we write it as

(2m) (9\1—¢/2 2(p; —2itK,)? )~ /2 (2ituK )¢

e £ (TL—QitKL)2
2-1-¢/2 / dt e—tE2 { ( 3 4t ) _eiKlMF(—%_tKi)
(p

91 €/2 K oo e—th_ €

R ST R N VR o —tKZ)
™ gyt (o
B 1 e8] K2 (TL - QitKL)Q iK | -r 2
—E/O dt e L{F <0,4t — et J‘]?(O,—t.l:{'l)

9—1-¢/2 K 00 eftKi c ,
+ W@Z 1Ty /0 dtmf (—2, —tKJ_> —+ (/)(5) . (F.25)

To obtain the last line, we used the fact that the first integral is convergent when € = 0. As
a consequence, one can set ¢ = 0 up to terms of order O(e). Combining all of these results

— 88 —



inside eq. (F.22), performing a change of variable th_ — ¢ inside the ¢ integrals, one gets

1 : 2
Jr(ri, K1) =lim — {—eZKl'” (5 . ln(eVEwu2ri)> + e T(0, x+) + X I'(0, x-)

e—=0 27
+/ dt et |T [0, L4tL—irLKL—t — eELrir (0, —t)
0
KJ_ N e 0 —t g
dt t*T|(—=,—t . F.26
+(2i/m?> e /0 e ( % > ( )

The integral in the third term of the r.h.s. of this expression contains a pole of the form
2eKL L /e which exactly cancels the pole in the first term. This is to be expected since
Jr(r1, K, ) has no IR nor UV divergences. We have indeed

—€ o0 2
( Ky > / dte ' t°T (—Z, —t) = g —2yg—1In (Kl> —ir+0O(e), (F.27)
0

2ipum? AmeVe p?

so our final expression for Jr(r,, K ) reads

1 ) K2 2
Tr(ri, Ki|)=— {—e’KL'” [hl (m) +2vp +im| 4+ X0, x4) + X" T(0,x-)

27 4
o0 r2 K2 .

+/ dt et [T |0, L4tL—irLKL—t — B0, —t)| b, (F.28)
0

with x+ = x+(r1, K1,0). It is now straightforward to obtain the asymptotic behaviour
of Jr(ry,K ) in the limit K| — 0. The integral in the second line goes to 0 at small
K . Using eq. (F.19), one gets finally

1 Kirf_ .
jR(TL,KL) = % —21In 1 —4vg —2Z7T+O<KJ_) s (F29)
which completes our proof of eq. (6.28).

G Details of the computation of diagram R2

The scattering amplitude for ¢¢g + ¢g emission from a quark after scattering from the shock
wave is given by

_ 4
S = [ et ) (it g 0) SOk + ) T+ by (D) (s (0.)
x S = )Tl = g, —p)v(p,0’). (G.1)

As usual, we have subtracted the noninteracting term and factored out the overall 275(q~ —
kW —p — k;) function, to obtain the physical amplitude

N eerq . . <
Mﬁéw - frq /d2'de2yL6_z(kL+k9¢)'wle_wLyLCm('wb’yL)Nﬁ%M (ruy), (G.2)
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with the color factor
Cra(w,y1) = [V (w)Vi(y) -] , (G.3)
and the perturbative factor

ity COONRT DO —q” +p7)
(12 +ie)((1 — q)2 + ie) ’

Y / . d4l
NQSUJ (Twy) = Zg/ W (G'4)

with the Dirac numerator
1 1
(297)% (2k-kg)

In the perturbative factor, the integration over [~ is trivial due to the presence of the

N7 (1) = [k, )¢ g Nk + k)7~ 1#(@, N = §)7 v(p,0")] - (G.5)

delta function 6(I~ — ¢~ + p~), while the integration over [T is performed using contour
integration employing Cauchy’s theorem. We note that due the location of the v~, the
Dirac structure Ng; is independent of I*. Therefore the contour integral is the same as in
the LO calculation. We find then that eq. (G.4) becomes

<, d2lJ_ N)\S\oa/ (l)eilL'Twy
NA)\JU (Tw ) — _g/ R2 b

, (G.6)

where Q%{Q = 23(1 — 25)Q? To proceed, we reexpress the Dirac structure in eq. (G.5)
employing the identity in eq. (C.29) and find

5 2 -2 e 3
Ve () = G SR ko) (22 + 20 + 23] Do (ulp. o)} (@1
“qfgl — Zg

Combining eq. (G.7) and eq. (G.6) gives eq. (4.37) in the main text.

H Details of the computation of diagram SE2

The quark free self energy before the shock wave is UV divergent in 4 dimensions; we
will therefore compute it using dimensional regularization. The amplitude in d = 4 — ¢
dimensions reads

oo! d*=¢1, d*El _ . a . via
S5 = 1% [ Gorie gy [0 0T 0 1) S(0) i97"4) S — o) i #)°(0)

x (—ieepf(g, ) S°(h — ) T(l = ¢, ~p)o(p,0)] G5, (I2) (H.1)

Subtracting the noninteracting piece, and factoring out the overall delta function 27wé (¢~ —
k= —p~), we find

’ eerq . . /
MRS = frq /fze/dzfgchd%EyLeﬂkl'“671“'“CSE2(SCL,yL)NS’\E?éT (rey), (H.2)
with the color structure

Csp2(x1,y1) =CF [V(wJ_)VT(yJ_) - 1} ; (H.3)
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and the perturbative factor

N)\Uo" 2 2 d4_€l1 d4_al2 i1 Tay
SE2 (TJ»‘y) =g u (27.‘.)3—5 (27()3_56

(207 )NQZS (11, 12)6(k~ — 1)

X . H.A4
G- bR+ i0@ i -2 tioBGre oY
The Dirac numerator for this diagram reads
, 1 - , -
Nggg = TRE {U(k‘aa)’Y T (I = TV Tig(a, N (L — )y o(p, U’)} M(l2) . (H.5)
Dirac numerator Ngg2(l1,l2) in d = 4 — ¢ dimensions. Using the definition in

eq. (A.5) of the gluon polarization tensor II*”, one finds that
7#(11 - 12)%Hw(l2) = Tu [2([17,, - l2,u) - %(ll - 12)] Hw(l2)

1 1
= Q'Yu(ll,z/ - l2,u) <_g'uy + F(l’;n” + llglnu)> — Yu v <_g'uy + F(l’ﬁn” + llglnu)> (ll - lQ)
2 2

=21 —I2) + lz_ (12(lf —ly)+v (= l2)l2> + (4—5 - li_(lﬂ_ +7_12)> (I1—12)
2 2

= 2 (Bally — 1)+ (1 = )l —=(fy — fa). (H.6)
2

In this expression, the O(e) term comes from ¥y, = d = 4 —e. Then using [/1/2/, =
2] — l%lg and 2{1ly = l% + l% — (1 — l2)2, the Dirac structure reads

Nogg' = {— (‘”f oy ) (h— 1)’ + (‘”f - ) 2 (2- e>z%} a(k, 0)DYo ()v(p, o)

Iy Iy
oIy [k, )7~ Laf (g, M) (11 = d)v(p, o)
2 (l oy ) — | (1.7)

Finally, decomposing the [o four-vector in the second term according to lo = (lg — EQ_Z1> +
1

-
l%ll, one gets
1

, Aly Aly Iy
N385 ={(2—s—_1> (h—12)* + (1—4+(2—e)l2_> zf—(2—e)z§}
1
X

ly

. (2; _2+5> [k, )7 ¢ (@, (1 = o, o) s

(2¢7)? ’

with Loy = 1ls) — %lu_- To sum up, the Dirac numerator of the diagram SE2 can be

expressed as

NSE2 = Z%NSEQ,reg + Z%NSEQ,qinstl + (ll - 12)2NSE2,qinst2 + Z%NSEQ,ginst . (Hg)
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The last two terms cancel the corresponding propagators in the denominator of the pertur-
bative factor. They do not contribute to the amplitude since they vanish after integration
over l; and lf. The regular term Nsga e can be written as
4z
A
NSggreg — [1 -
Zg

Zg

2
(1) 5n ] ik o)Dho(h)e(p '), (H10)
with 2z, = k7 /¢~ and zy =[5 /q~. The quark instantaneous term N§§§ /qinSm is proportional
to L5, and vanishes due to rotational invariance of the transverse integral. We do not
discuss its structure further. This term corresponds to the instantaneous quark self energy
diagram in LCPT, and is indeed identically zero by rotational invariance, as shown in [33].
The decomposition given by eq. (H.9) is slightly different from the general decomposition
of the Dirac structure outlined in section 3 since both the regular and the quark instanta-
neous contributions are multiplied by a factor I2. The reason is that strictly speaking, our
discussion in section 3 applies for diagrams without double propagators, which is not the
case of diagram SEs. In the regular term, the 2 factor cancels the quark propagator after
the virtual gluon emission, while in the instantaneous quark term Ns)‘gg ginst, 17 the 17 factor
cancels the quark propagator before the virtual gluon emission.

Pole structure. As mentioned, the quark instantaneous term vanishes for both longi-
tudinal and transverse virtual photon polarization, because of rotational invariance of the
Lo, | integral. On the other hand, the regular perturbative factor does not depend on lf
nor [ in the numerator. One can thus easily perform the i and [ integrals by contour
integration, using the results of appendix D. The regular perturbative factor is then

/dZ d?- ‘EllJ_dQ €ly
g M 271')2 € (271-)275

i
E2,reg acy ! " E2,reg E2reg » .
Ns (r e 1L ey g Ng (H.11)

with
_ (A dy (247)°
Beses = | Gy | Grymram oG werAE
1 1 O(2¢)O(2¢ — 24)

- - _ S— (H.13)
“q (li + Q2) [L%mJ_ +wsp2(l3 | + QZ)}
where Q? = 2,25Q% and wsgs = 24(zq — 2¢)/(2224).-

Transverse momentum integration. The next step consists in calculating the remain-
ing transverse momeentum integrals over I3 and la; in 2—e dimensions. For a longitudinal
virtual photon (A = 0), the expression reads as

oo’ 29dz z 5 22 u(k,0)y v ,O'/
Nigs' (sz)ZQQQZquQ/ — [1—9"‘(1_) 292] Akl v
0 “q
/dQ—sllJ_ d2_6l2J_ 1L Tay
(2m)*== 2m)° (12, +Q?) [13, | +wsea (13, +Q2)]
2
g

A=0,00" % ng Zg < E) 2 1 4W2M4rgy
- — |14+ 1—= | == In| —— . (H1
AL ) [ 12 (125 o | S Gt ) rOE) - (13

q

(H.14)

~ 92—



To go from eq. (H.14) to eq. (H.15), we used the formula eq. (E.21). Similarly, for a
transversely polarized photon (A = £1), one finds

N)\:il,oa’(rxy):g2/zqdzg ll_zg+<1_5> % ] [ﬂ(kaff)((Zé—zq)5ij+wij)7_v(p70’/)]GA,i

SE2 2, 2 2/ 222 q- -
2—¢ 2—¢ J o il s
X/d él_td éz_J_ _ _hye i _ (H.16)
(2m)*== 2m*° (12, +Q?) [13, | +wsea (13, +Q2)]
2
Qs \ A=+1,00 Fadzg Zg < 5) g
== 7 (g, o4 (1-2) 2L
ENGE T ) [ %[ a3
90 1 [4n?ulir? Ko(O
x{+ln< 7*r2u2 v) - LolQre) +0(e) ¢ (H.17)
e 2 Q W3E2 QT’a:yKl(QTary)

where we used eq. (E.22) to obtain the second line. Computing the remaining z, integrals
results in eq. (5.40) and eq. (5.41) in the main text.

I Details of the computation of diagram V2

This diagram is UV divergent, therefore we compute it in 4 — ¢ dimensions in order to
extract the 1/¢ pole (when a given diagram is UV convergent, we compute it directly in 4
dimensions). The amplitude of the free vertex correction before the shock wave is given by

4—e 4—¢
S0 =y / éw)flg (gw)fi [0k, )Tk, 1)S° (1) (g7 1) S (11 — o) (—ief (g, )

x SOy — I — q)(igt"y")S° (Il — )T (L — q, —p)v(p, U’)] Gt (1) (I.1)

Subtracting the noninteracting piece, and factoring out the overall delta function 27wd(q~ —
k= —p~), we find

’ eerq : . ’
M%/Oéo' — f_{_q /14725 /d27€de275yL671kl'wL7’LPJ_'yJ_CV2(wJ_’ yl)/\/‘éga (rxy) , (12)
with the color structure

Cva(@r,y1,21) = Cr [V(@)Viy) 1], (L3)

and the perturbative factor
/ d*=ely d*el
oo _ 2 2e 1 2
NG37 (Tay) = 971 /(27T)35 (2m)3—=
(207)0(k~ — 17)NQ3” (I, I2)
[+ ie] (1 — )7 + €] (b — 2 — q)2 + €] (L — @)% + ie] [ + ie]

eit1L Tay (1.4)

X

)

where the Dirac numerator is given by

N = o [0, s = AN~ fa = 97" = 977 (0. 0")] ).

(I.5)
As usual, the integration over [ is trivial with the delta function constraint resulting in
L=k
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Dirac numerator Nvyz(l1,1l2) in 4 — e dimensions. The Dirac algebra of diagram V2
is by far the most difficult of those encountered thus far. We used the formula provided
in appendix C to write the gluon emission and absorption pieces in eq. (I.5). To use the
identities in appendix C, one first expresses the gluon polarization tensor II#¥(ly) using
eq. (C.20). Then the gluon absorption piece of N{}Q(ll,lg), given by v~ [1¢(la, \)([1 — [),
is simplified using eq. (C.27) (after the change of variables I3 — I3 — l3). Similarly, the
gluon emission piece (/1 — [ — g);é*(q,;\)(ll — ¢)y~ is simplified using eq. (C.33). The
resulting expression for the Dirac numerator in eq. (I.5) can be decomposed into

Nva = Nyareg + BNV ginst + (11 — 12)>Nva ginst + (11 — o — ) Nvaginst - (1.6)

This expression, in mathematical terms, is the statement that we made in section 3
about the correspondence between our calculation and the LCPT approach. In the latter,
different instantaneous diagrams appear, either with an instantaneous gluon, quark or
antiquark. They correspond to the last three terms in the expression eq. (1.6). The Dirac
algebra computation associated with each contribution yields

A0+ ) —y) o,

N\égzeg = Ty x_LL2yL (17)
y {a(k,a) [(1 + ";") 59 4 58| Do (i —1o) [(1 - Z) 5k Zwﬂf} o(p, a')} ,
42025 T_
N\)}2,ginst == qu 4 [u(k7U)DﬁO(ll - ZQ)U(O-/)} ’ (18)
g
201+ 2)(1—y)
Aoo’
NV2 ,ginst — y(2q_)2 (19)

<[t oyy e N = L= 97 (07 4+ 5027 ) (0.0 By
2(1 +z)(1—vy)
x(2q7)?
[ o) (37 = 599°) 7 (= ) Ay (00| L
Here x =I5 /(I7 —15) = 2¢/(2q — 29), Lag1 = l21 — %hL y=1UL/¢ -l +13) =

zg/(2g+ z4) and Loy, =la) + z—glu_.
For a longitudinal photon (A = 0), it is clear that the quark and antiquark instanta-

N\)}ggpnst (I 10)

neous Dirac numerators vanish, because of the identity v~ ¢(¢, A = 0) = 0. In the transverse
polarization case, even though N{>2 ;tnljst is non-zero, the corresponding perturbative factor
will vanish after the transverse momentum integration; this is a consequence of rotational
symmetry since the numerator'® is proportional to L yl- Therefore we do not discuss

further the quark and antiquark instantaneous Dirac numerators. Using

DS — lo) = —(2q — 2)(2q + zg>@’;—_, (L11)
= 1 m m mfyi
D5 — ) = el UTL — B )((og = 2+ 220)0" + ™) (112)

When A = 41, one has v~ ¢(g, \) (/1 — [5 — )y =20 =15 —q )ej‘_k'yk'y and therefore, the Dirac
structure inside the square bracket of eq. (I1.10) does not depend on the transverse momentum vector Loy .
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and the identities eq. (C.6) and eq. (C.7), one finds that the instantaneous gluon and regular
Dirac numerators for a longitudinal and transverse photon in d = 2 + 2 — ¢ dimensions are

given by
oo A2 Qzg—2) (7g+2) [a(k,0)y 0(p,0”)]
A=0, ) 3
N2 ginst = = ngg = = ) (I.13)
g

_ P —=2z.25 - -
Ny =—— eyt iy, 1y ><ko>{<zq—zq+2zg>6lmg+wlmz}v<p,o'>7 (1.14)

A\=0,00" 4242Q(2g—24) (2g+24) 74

V2;reg 22 xJ_LZyJ_
g
2 _
_ zZ zZ £ z Y
xi(ko)] [14-—9 —(1—) i 5k
( ){ 2(2g—29) 2(zg+zg) 2) 2(zg—2¢)(2q+24) q-
2 _
Z Z € z ik /
+ g - g __— <1+) g w’k}v(p,a )s (I.15)
[z(zq_zg) 2(zq+2g) 2/ 2(2q—24)(2q+2) q-
A=+1 —2z423 A1 v '
NV2 regaa - qu qEJ_ ( Tan__ gnJ_) wLL2yLu(k70){ [(zq_zq+2zg)5lmf+wlmf
g
2
1+ Zg o Zg _<1_€) Zg (')"Lk
2(zg—24) 2(27t2g) 2/ 2(2q—24)(2q+29)
2
z z € z .
T —(1+> g | Voo +0(e). (L.16)
<2(zq—zg) 2(zg+24) 2) 2(zg—24)(23+24)

We do not perform the spinor contraction explicitly since we want our formulas to be valid
in d = 4 — ¢ dimensions. It is nevertheless straightforward to do so using w” = —ie¥(),
the identity eq. (A.9) and the formulas provided in appendix C.1.2. In eq. (I.16), the term
of order O(¢g) arises from the commutator of [w'™,w¥] when using (C.7). The complete
set of O(e) terms for the Dirac structure of V2 in the transversely polarized case can be
found in [33].

Pole structures of the perturbative factor. Given eq. (1.6), the perturbative factor
can be decomposed as

NV2 (Ta:y) - NVQ,reg(Txy> + NVQ,ginst (Tacy) + NVQ,qinst(Tmy) + NVQ,(jinst ('rxy) ) <117)
with
d2 Ell_L dQ l2J_ il T
NV2 reg 'ra:y /dzg M / 271')2 - (271_)275 € zyIV2,rcgNV2,rcg7 (118)
d?=¢ely, d*Cly, . .
M2 ginst (Pay) /dzg 277)21 = (2ﬁ)22—5 et "V T2, ginst NV2,ginst » (I.19)
A%~y d* "y, . .
NV27q1nS 'I’zy /dzg 271')21 € (271')22_5 ellll TIyIVQ,qinstN\/?,qinst y (I'2O)
A%~y >y, . .
Nv2,ginst (Py) /dzg 27T)21 c (27r>22_5 LT Ty dinst N2, ginst - (I.21)

— 95 —



The contour integrals Zyo are performed using Cauchy’s theorem:

e [ BT
’ (2m) (2m) [13 + €] [(Ih — 12)% + €] [(lh — 1o — q)2 + i€] [(I1 — q)% + i€] [13 + ie]
_ (2g — 2g) O(24)O(24 — 2g)
“q [Z%J_ + QQ} [(lu —li1)* + A%, glnst} {LQ 1+ A% qlnst}
i (29 + 2q) _ O(—24)O(24 + 27) ’ (1.22)
“a {li + QQ] {(lu —h1)? + Ay, gmst} [L%yJ_ + A%, qlnst]
Zv2,ginst = / iy diy . ‘ (24" . ‘
’ (2m) (27) [13 + €] [(I1 — 12)% + €] [(I1 — 12 — q)% +ie] [(I1 — q)? + i€]
B A e N o)
[li + Q2] [(lu —l1)*+ A%/Z,ginst}
v qinst = / dlf dl+ (2q._)2 - :
’ (2m) (2m) (1§ +de] [(lh — lo — @)% + ie] [(l — @)% + ie] [13 + ie]
_ RgtZg O(—24)0O(z5 + 7) (1.24)
2q(2g — 7q) [l%l + Q2 } [ Syl T AVQ,qmst] ’
L2 ginst = / dif diy . (2q i . .
’ (2m) (27) [13 + €] [(I1 — 12)% + €] [(I1 — q)? + i€] [13 + i€]
_ 9T *q O(29)0(24 — 2) . (1.25)
2q(2g + 2g) [l%J_ + Qﬂ (L, + Avaginst]
Here
A%/Q,ginst = (2q — 2¢) (25 + ZQ)QQ ) (1.26)
A2 ginst = —Zg(i%:;z‘(]) [l%J_ + QQ} ; (1.27)
A2 ginst = W {lh + Q2] : (I.28)

Transverse momentum integration. Combining the results for Zvs ginst and Zyz ginst
with the corresponding Dirac numerators N2 ginst and Ny ginst, one verifies that the quark
and antiquark instantaneous diagrams vanish due to rotational invariance. For the same
reason, the instantaneous gluon diagram vanishes when the virtual photon has transverse
polarization A = +1. To perform the transverse integrals in the gluon instantaneous
contribution for longitudinal photon and in the regular contribution, we have followed the
same method as in [33] and employed the Passarino-Veltman tensor reduction [107] of the
l2, integrals. After the remaining integration over z,, one gets (5.78) and (5.79).
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J Details of the computation of diagram V3

From the Feynman diagram in figure 10-right, one readily writes the amplitude

4 4
S = [ tamtttgm [AR. )it = )T~ 1, 1)5°(0) (11)
x (—ieepd(q,1)S (L — )Tl —q,—p— 12)50(—19—52)(i97utb)v(p70/)] Goi (12).

Subtracting the noninteracting piece, and factoring out the overall delta function 27wé (¢~ —

k= —p7), we find

eerq . . /
M)“m = qu / d2xid2yL e‘lkL'ml_’pL’yLCvg(ml, yL)N\)/‘gU (Tay) , (J.2)
with color structure

Cvs(zi,y1) =t"V(z)Vi(yL)te — CFL, (J.3)

and perturbative factor

4
N/\aa Try =g / d ll d l2 l1J_+l2J_)'l'zy(5(k_ _ 12_ — ll_)

(247)NG3” (I, 12)

R (e Y el P e Bl R

The Dirac structure of this diagrams reads

N)\JU _

[k, o)k — L)y~ g (@ N = D7 (—p — L) wo(p, o) 117 (1)
(J.5)

1
(2¢7)?

Dirac structure. Using the identities (C.20), (C.25), and (C.35), one decomposes the
Dirac numerator as
Nys = N3 reg + 15NV ginst » (J.6)

with

—4L% | Lk
Ly

x {a(k,a) K ;) 5 — ige”ﬂ Dro(l1) [(1 + g) 57 + igeij] v(p, a’)}

—4{ —;;(1 Y Lk, 0)Dro () v(p, )] | (7.8)

oo’
N V3,reg —

Aoo’
NVS,glnst

with e =15 /k~, y=15/p", Loz, =121 —xki, Loy =1z, —yp,. For a longitudinally
polarized photon, with ¢(¢g, A =0) = q@’)ﬁ, we find for the gluon instantaneous term

A=0,00’ 8Q(Z — Z )2(Z +Z*)2 o,—o'
NV&giigt = 7 1 7 . VZqu(S ’ ) (J,Q)

2
2y
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and for the regular term, using Eq (C.18),

A=0,00" —8(zqzr7)3/2Q(Zg - Zq)(% + Zq) Lk
V3,reg 22 mJ_ 2yl
g

6 +io

2 2
z z 2g z z z A
x{|1-2L 42 9 S99 4 D9 | R (J.10)
2zg 225 2z425 2z 225 22425
The transverse polarized case can be worked out in a similar fashion. The gluon instanta-
neous Dirac structure reads

A==1,,00’ 8(2 — Z )(Z +Z*) A L
V3,gins1(;70 = ? (;2 5 1 (ll )Fg —>qq( q Zg7zq+zg)5a’ 7 ’ (Jll)
g
while the regular Dirac structure can be written as
A==1,,00’ 825 2q k A A o,—0
NVS,reg 7 = Zq qL mJ_LZyJ_(llJ_ : GJ_)FT{ qu( ¢ — %gy2g T+ 29)5
g
z zZ 22 k zZ z 22 ik
x{|1l—2L 4 29 79 ko | 2L - 29 4 9 kL ()12)
2z 225 22425 2z 225 22425

Pole structure of the instantaneous and regular pieces. Using the decomposition
in eq. (J.6), we can express the perturbative factor as

NV3(rccy) = NV3,reg("'xy) + NV3,ginst(r:cy) ) (J13)
with
d21 d l
N3 reg (Tzy) 2 / / ll ZL (lquL)"’zyIv:s,rengs,reg7 (J.14)
d2l1J_ d l2J_ a(l 1 .
NV3,ginst(Tl"y) = 5 /ng / (271')2 (271')2 € (iitlal) szIVS,ginstNV?),ginst ) (J15)
with the pole structure:
Al dif (2q*)2
T3 rep = / 1L -2 , J.16
vaues = | ) (2m) (6 — PRk — BP0+ LR (316)
dif dif (Zq*)2
Tv3.ginst = / 12 , J.17
V3,ginst (271‘) (27‘(‘) (ll — q)%%(k} — 12)2(]7 + 12)2 ( )

where we have again omitted the +ie prescription for the propagators. The computation
of these integrals is straightforward using Cauchy’s theorem. After a little bit of algebra,
we write them in the form:

IV37reg = I§3,reg®(zg) + Ié&reg@(_zg) ’ (J'18)
7> (29— 2) 1 O(2q — 29) (7.19)
V3,reg — 2q 4 Q2 9 9 ) ’ .
L L3, |(Laar — ( ——)PL) — A2, — e
_ 1 O(z-
T eg = 220 et 5 SENCEY

a BT L3y. {(Lzyi -(1+%) Pi>2 St ie]
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with

PL:thkl_quL7 (J.Ql)

= (1-2) (12) e o
q q

The two contributions with either z; > z; > 0 or —z3 < 24 < 0 are in one-to-one correspon-
dence with the two possible time ordering of the exchanged gluon in lightcone perturbation
theory. Similarly, the contour integration of the instantaneous term gives

_ 1 O(zq — 29)O(25 + 24)
2 2 . 2 1
i, +@ |:(L2wJ_ - ( - i) PJ_) — A2, — ze}

It is convenient to decompose the instantaneous term into two pieces depending on the

ZVS,ginst = (J23)

sign of z4, as for the regular contribution,

IV3,ginst = I\??),gins@(zg) + I\f3,ginst®(_zg) ) (J24)
o= b Oz ~ 29) (3.25)
V3,ginst l%J_ + Q2 - o 2 N2 )
Lowl —(1-3) P A4 — i€
Ty = — Oz + 2) . (J.26)
,ginst I%J_ 4 Qz B 29 2 A2
Ly, 1+ P P, Ay — i€

Transverse momentum integration. We consider only the > component of the per-
turbative factor since one can relate the < piece by ¢ <+ ¢ interchange. One should first
notice that given the topology of the free vertex correction after shock wave, the integrals
over Iy, and ly; decouple. In the > component, it is convenient to do the change of
variable lo, — Lo, so that the exponential phase becomes

iZ2ky

ei(llJ_+l2L)‘rzy —e ArwyeillL'rzyeiL2wJ_'rzy . (J27)

This change of variable enables to simplify the Dirac numerator N\>}2,reg as well, since
LZyJ_ = LZ:I:J_ + -

contributes. On the other hand, the dot product term L5, J_Lgy lé’k gives two contribu-

Zq P, . Indeed, in the cross-product term ngngyLeik, only Lo, X P|

tions, one proportional to L%w | and the other proportional to L, - P . In the former,
the square cancels against the same square in the denominator of eq. (J.19) so that the
transverse momentum integral takes the form

dQLZmJ_ eiL2zJ_'sz

(M) [(Lap1 — K1)* = A3, — ic]

K (1 K 1, Ays) = / , (J.28)

where K| = (1 — Z—g) P, .

%q
Some care must be exercised to compute the integral in eq. (J.28). First we shift the

integration variable Loy, — Lo, + K |, and perform the angular integral

e Tey oo Loy, 1
K:(’I’xy7 KJ_, Avg) = - / dLQI’J_ - JQ(LQLJ_Tmy) . (J.QQ)
2 Jo [Lgx LA - Zf}
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The resulting integral over Lo, | can be evaluated with the help of the identity

1
T =+ 1€

1
= PVE Fimd(x), (J.30)

where PV denotes Cauchy’s principal value.'® The ensuing integrals are then

0 L s
PV/ szz,L22—“2JO(L2$,my) = —5Yo(Avsray) (J.31)
0 [ 22,1 Avs}
o0 1
/0 AL 1 8(Ths 1 — Ads) Lo, 1 o(Laz, 172y) = 5J0(Aviray) (J.32)
with Avys > 0. Thus, we find
eBirey 1o i
K:(T:Cya K, AV3) = T |:_2%(Av3rzy) + ?JO(AVST;ty)
eiKL'TQCy )

where the second equality defines the modified Bessel function K for imaginary values.

For the contributions arising from Lo, - P and Lo, X P terms we have not found
similar expressions in terms of standard functions. In terms of the functions J and Jg
defined respectively in eq. (5.82) and eq. (5.83), and computed using Feynman parametriza-
tion in appendix F, the regular perturbative factor for a longitudinal photon reads

=0,00’ s [*adz oo’ _ z 2
B O @Ko@rxy)( ‘5> <”g>

T Jo &g q Zq

2
% 223(2g — 2¢) 1— Zi+ﬁ g ei(PL'FZgAL)'TxyKO(_Z'Av3rx )
2g 22g 225 2z425 Y

2
Zg Zg Zg iﬁkL""xy Zg
— R S e Tey, | 1 — = | P, A
[ 224 + 223 2zqzq] j®< vy ( zq> L V3>

2
z i 29k .
Zg_ % g] iR g (my, <1 - 9) P, Av3>} , (J.34)
¢ Fq *q*q &

with A | = k| + p. In the first term of this expression, one notices a power divergence

+o

in the z, integral, due to an overall 1/ zg factor. In fact, this power divergence cancels
against a similar divergence in the instantaneous piece N\?& ginst? which reads

™ Jo Zg q Zq

=0,00’ as [*adz o—o! = z z
Nigmd” == | =2 (=2)(2429)**07 7 QKo (Qray) (1 - zg> <1 i 9)

ei(Pl—’_ZgAi)'szK()(—iAVSsz) . (J35)

% [2(73(1 — 2g)(2g + 2g)

Combining these two expressions together, and the < component related by ¢ < ¢
interchange, one finds eq. (5.84). The transversely polarized photon case is worked out in
a similar fashion, leading to eq. (5.87).

For a real integral Cauchy’s principal value is defined as PV fooo dz ifc{z =
lime_y0 [fa_e dz % + [ dx f(”}, where a > 0.

0 a+te r—a
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