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Abstract. The effects of the tensor force on the charge-exchange Gamow-Teller (GT)

and spin-dipole (SD) states are studied by using the self-consistent Hartree-Fock plus

Random Phase Approximation (HF+RPA) approach based on Skyrme zero-range forces.

We have found, not surprisingly, that the tensor force has a large effect on the GT strength.

In the case of the SD excitations, the tensor force produces a softening of the 1− states,

but a hardening of 0− and 2− states: these effects improve the agreement with the experi-

mental findings. We have also studied how to constrain the magnitude of the tensor terms

of the Skyrme interaction by using the empirical information on the collective GT and

SD excited states in 90Zr and 208Pb.

1 Introduction

An effective zero-range tensor interaction has been proposed by Skyrme, at the same time as the well-

known central and spin-orbit terms, in the 1950s [1]. There exist different strategies to fix the tensor

part of the interaction. One possibility is to mimick a bare or a G-matrix tensor interaction [2, 3].

Since the tensor force affects the spin-orbit splittings of finite nuclei, another possibility is to add it to

some existing Skyrme parameter set and to fit the tensor terms so to reproduce at best the evolution

of single-particle states along isotopic or isotonic chains [4, 5]. Another plausible way to obtain an

effective interaction with tensor terms is to implement a full variational procedure and fit the tensor

and the central terms of the Skyrme interaction on equal footing [6]. In all these attempts, not much

attention has been paid to check the effects of the tensor terms on the collective nuclear modes. We

deem this subject is of interest, and in particular we have studied the spin-isospin modes by including

the tensor terms in the self-consistent HF plus charge-exchange RPA approach [7, 8]. The reader who

needs a general introduction to charge-exchange modes - and also to the RPA modelling of this kind

of excitations - can consult review papers [9, 10] or the references quoted in [7, 8].

The present paper is organized as follows. The effects of the Skyrme tensor force on the GT and

SD excitations will be discussed in Section 2, whereas the resulting constraints on the parameters
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Figure 1. The GT− strength in 90Zr and 208Pb is shown, respectively, in panels (a) and (b). The RPA results are

smoothed by a Lorentzian functions with 1 MeV width. The result labelled by (00) corresponds to neglecting

tensor terms both in HF and RPA; (10) corresponds to including the tensor terms in HF but neglecting them

in RPA; finally, (11) corresponds to including the tensor terms both in HF and RPA. The arrows denote the

experimental peak energies of the GT resonance.

associated with the tensor terms will be shown in Section 3. Finally, a brief summary is given in

section 4.

2 Results for the spin-isospin excitations in 90Zr and 208Pb

In this Section, we show the effects of the Skyrme tensor terms on the strength distributions associated

with the GT and SD operators in the closed-shell nuclei 90Zr and 208Pb [7, 8]. In Figure. 1, the results

for GT− channel are obtained with a tensor force which was added perturbatively to set SIII so as to

reproduce at best the evolution of single-particle states along isotopic or isotonic chains [5].

The most prominent effect induced by the tensor correlations is that the main GT− peaks are shifted

downwards by about 2 MeV; as a result, their energies are somewhat lower than the experimental

result (this can be improved by choosing different tensor parameters as will be discussed in Section 3)

and this points to the necessity of refitting the Skyrme parameters after adding tensor terms. Another

strong effect is associated with marked changes of the low-energy strength: this can have a strong

impact on the β-decay half-lives of unstable-nuclei as shown in Ref. [11].

The effects of the tensor force on the charge-exchange SD− states having different Jπ in 208Pb

have been studied in Ref. [12]. The numerical results of the HF+RPA calculations performed with

specific parameter sets (T43 [6] and SLy5+Tw) are shown in Fig. 2. The tensor terms produce a

softening of the 1− states, but a hardening of 0− and 2− states: this improves the overall agreement

with experiment. A similar multipole-dependent effect has been found in the light nucleus 16O [14].

From the above discussion of this section, it is shown that the tensor force has strong effect on the

main peak of GT and SD transitions, which indicate that the main peak energy of both GT and SD

transition can be used to constrain the tensor parameters.

3 Quantitative Constraints to the Tensor Force

Based on the gained understanding, we can attempt to set quantitative constraints on the tensor force

parameters, that is, we can see which values of the tensor-even and tensor-odd force parameters (T

and U respectively) allow reproducing the observed properties of the GT− and SD− excitations in 90Zr
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Figure 2. (Color online) Charge-exchange SD−
strength distributions in 208Pb. The RPA results with

the interaction T43 for the multipoles 0− , 1−, 2− are

displayed in the panels (a), (b) and (c), respectively.

In panel (d) the total strength distribution is shown.

Panels (e), (f), (g) and (h) are the same as panels

(a)-(d) but with the parameter set SLy5+Tw. All

discrete RPA results have been smoothed out by

using Lorentzian functions with a width of 2 MeV.

The excitation energies are referred to the ground

state of 208Bi and the experimental data are taken

from Ref. [13].

and 208Pb [15]. We have found that the 1− SD− state plays a crucial role to constrain the triplet-even

parameter T , while the range for the triplet-odd parameter U can be restricted by the GT− peak energy.

It should be also noticed that the 0− state is very sensitive to the U parameter [14].

In the study of Ref. [15], we have adopted the following criterion on acceptable interactions, i.e.,

for them, the discrepancy between calculated and experimental energies, δE ≡ |Eth − Eexp|, should be

smaller than 2.5 MeV for the GT− resonance in 90Zr and 208Pb and for the 1− SD− resonance in 208Pb.

Among the 36 TIJ parameter sets introduced in [6], only four (T21, T32, T43 and T54) fulfil this

criterion. We were also interested in determining optimal values of the parameters T and U when the

tensor terms are added in a perturbative fashion on top of existing Skyrme sets like SGII or SLy5. In

general, we have found that the triplet-even T -term can be constrained in a rather narrow region, while

the triplet-odd U-term is still not well constrained by the data. As an illustration, we show in Fig. 3

our result if the tensor force is added to SLy4. The value of U can range from -400 to -50 MeV·fm5

but for each value of U we see that T varies either between 200 and 300 MeV·fm5, or between 400

and 500 MeV·fm5 (cf. the shaded area in Fig. 3). We can require a stronger criterion (δE ≤ 2.0 MeV),

so that the ranges are smaller (doubly shaded area in Fig. 3).

4 Summary

In this contribution, we have summarised our understanding of the effects of the tensor forces on

GT and SD excitations in 90Zr and 208Pb, within the framework of self-consistent Skyrme HF+RPA

calculations. Tensor correlations shift the main GT− peak downward, and change the low-energy

tail of the strength while producing at the same time some spread of small amount of strength at

(even very) high energies. In the case of SD− excitations, the tensor correlations have a pronounced

multipole-dependent effect, that is, they give a softening of the 1− states, and a hardening of 0− and

2− states: their effects improve the agreement with experimental data.

We have used these facts to set quantitative constraints on the parameters of the tensor force. The

triplet-even part can be constrained in a narrow range of values, while the available experimental data

are not enough to pin down the value of the triplet-odd part of the tensor interaction. This argument has
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Figure 3. The range of values for the T and U

parameters constrained by the data of the GT− in
90Zr and 208Pb and of the SD 1− resonance in
208Pb, through the conditions δE ≤ 2.5 MeV

(δE ≤ 2.0 MeV), are shown with the shaded

(double-shaded) area, respectively. The tensor

terms are added on top of the central part of the

SLy4 interaction.

been illustrated by adding the tensor force perturbatively on top of an existing central (and spin-orbit)

set; since all these terms are not independent, when the tensor terms are added in the perturbative way

the accepted range of their values may depend on the adopted central part of the interaction. A more

consistent procedure amounts to fitting on equal footing every term of the interaction like in the case

of the TIJ sets. However, both in this case and in the case of forces like SLy4 and SLy5, we have

obtained that the triplet-even tensor strength coefficient must be positive and the triplet-odd tensor

strength coefficient must be negative. In the case of SGII, the triplet-even tensor strength coefficient

must be positive while the triplet-odd tensor can be either negative or positive. Further empirical data

such as 0− states are needed for a constraint of the triplet-odd term of the tensor interaction.
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