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Abstract

In this thesis high-statistics π−π− and π+π+ femtoscopy data are presented
for Au + Au collisions at √

sNN = 2.4 GeV, measured with the High Ac-
ceptance Di-Electron Spectrometer HADES located at the heavy-ion syn-
chrotron SIS18 at GSI.
Due to space-momentum correlations the technique of intensity interferom-
etry allows only to measure regions of homogeneity where pairs of particles
with certain momentum origin. The determination of the space-time extent
of the corresponding emission sources is then only possible via a comparison
to models. The purpose of this thesis is to provide a multi-differential data
set as input for such models and calculations, to draw conclusions from the
total spatial and temporal extension of the pion emitting source.
More than two billion events of the 45 % most central collisions are analysed.
A complex data-driven pair cut is established to account for the close-track
deficits in the non-trivial hexagonal geometry of the HADES setup. The cor-
relation function is studied in the longitudinally co-moving system using the
Bertsch-Pratt parametrisation. The region of homogeneity, parametrised as
three-dimensional Gaussian distribution, is studied in dependence on pair
transverse momentum, rapidity, azimuthal emission angle with respect to
the event plane, collision centrality, and beam energy. For all centralities
and transverse momenta, a geometrical distribution of ellipsoidal shape is
found in the plane perpendicular to the beam direction with the larger ex-
tension perpendicular to the reaction plane. For large transverse momenta,
the corresponding eccentricity approaches the initial eccentricity. The ec-
centricity is smallest for most central collisions, where the shape is almost
circular. Furthermore, a tilt of the source w.r.t. the beam axis is found. The
magnitude of the tilt angle of the emission ellipsoid in the reaction plane de-
creases with increasing centrality and increasing transverse momentum. All
source radii increase with centrality, largely exhibiting a linear rise with the
cubic root of the number of participants. A substantial charge-sign difference
of the source radii is found, appearing most pronounced at low transverse
momentum, which is addressed to the central Coulomb potential generated
by the electrical charge of the participating nucleons in the collision. The
extracted source parameters agree well with a smooth extrapolation of the
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center-of-mass energy dependence established at higher energies, extending
the corresponding excitation functions down towards a very low energy.

iv



Kurzdarstellung

In dieser Arbeit werden femtoskopische π−π−- und π+π+-Daten mit hoher
Statistik präsentiert, welche in Kollisionen von Au + Au bei einer Schwer-
punktsenergie von √

sNN = 2.4 GeV pro Nukleonpaar mithilfe von HADES
(Zwei-Elektronen Spektrometer mit hoher Akzeptanz) am Schwerionen-Syn-
chrotron an der GSI gemessen wurden.
Aufgrund von Orts-Impuls-Korrelationen können mittels der Methode der
Intensitäts-Interferometry nur Homogenitätsbereiche gemessen werden, aus
welchen Teilchenpaare mit bestimmten Impuls entspringen. Die Bestim-
mung der raum-zeitlichen Ausdehnung der entsprechenden Emissionsquelle
ist dann nur über die Hinzunahme von Modellvergleichen möglich. Die Ab-
sicht dieser Arbeit ist es, einen multi-differenziellen Daten-Satz zur Ver-
fügung zustellen, welcher als Eingabe für solche Modelle und Rechnungen
genutzt werden kann, um dann Rückschlüsse auf die absolute räumliche und
zeitliche Ausdehnung der Pionen-emittierenden Quelle ziehen zu können.
Mehr als zwei Milliarden Ereignisse der 45 % zentralsten Kollisionen werden
analysiert. Eine komplexe Daten-basierende Paarselektion wird eingeführt,
um die Verluste nah beieinander verlaufender Teilchenspuren innerhalb des
nicht-trivialen hexa-geometrischen HADES-Aufbaus zu berücksichtigen. Die
Korrelationsfunktion wird im longitudinal mitbewegten Inertialsystem in
Bertsch-Pratt-Parametrisierung untersucht. Der als dreidimensionales Ellip-
soid parametrisierte Homogenitätsbereich wird in Abhängigkeit von Trans-
versalimpuls, azimuthalem Emissionswinkel relativ zur Reaktionsebene und
Rapidität des Paares sowie Zentralität der Kollision und der Strahlenergie
untersucht. In allen Zentralitäts- und Transversalimpulsbereichen wird eine
geometrische Verteilung mit elliptischer Form innerhalb der auf die Strahl-
achse bezogenen transversalen Ebene beobachtet, wobei die größte Aus-
dehnung senkrecht zur Reaktionsebene zeigt. Für große Transversalim-
pulse stimmt die zugehörige Exzentrizität mit derjenigen der initialen Nuk-
leonenverteilung überein. Die Exzentrizität ist am kleinsten für die zen-
tralsten Kollisionen, bei denen eine fast kreisrunde Form beobachtet wird.
Des Weiteren ist eine Neigung der Emissionsquelle relativ zur Strahlachse
feststellbar. Der Wert des Neigungswinkels des Ellipsoids innerhalb der
Reaktionsebene verringert sich mit zunehmend zentraleren Kollisionen und
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steigendem Transversalimpuls. Alle Quellradien werden größer mit zuneh-
mender Zentralität und zeigen einen nahezu linearen Anstieg mit der Ku-
bikwurzel der Anzahl der Partizipanten. Ein beträchtlicher Unterschied der
Quellradien bezogen auf das Ladungsvorzeichen der Pionen wird beobachtet,
welcher am prägnantesten bei kleinen Transversalimpulsen auftritt. Dieser
wird dem zentralem Coulomb-Potential zugeschrieben, welches durch die
elektrische Ladung der an der Kollision teilnehmenden Nukleonen generiert
wird. Die extrahierten Quellparameter stimmen gut mit glatten Extrapola-
tionen der Schwerpunktsenergie-Abhängigkeit überein, welche bei höheren
Strahlenergien fixiert wurden, und erweitern diese hinab bis zu sehr kleinen
Energien.
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1 | Introduction

The known world can be described by the four fundamental interactions:
electro-magnetism, weak interaction, strong interaction and gravitation. Be-
side the last one this fundamental forces of nature are described by quantum-
field theories, quantum electrodynamics (QED), quantum-flavour dynamics
(QFD) and quantum chromodynamics (QCD). They are unified in the Stan-
dard Model of particle physics, which is the most proven and imperishable
theory up to today. It contains 17 named elementary particles, 12 fermions
and 5 bosons, where the Higgs boson discovered in 2012 is the most re-
cent. Quantum chromodynamics is the quantum field theory for describing
strong interaction phenomena. It can be seen as an analogon to QED con-
taining instead of leptons and photons quarks and gluons and describing
the interaction among them. Furthermore QED is an Abelian gauge theory
with symmetry group U(1), while QCD is a non-Abelian gauge theory with
symmetry group SU(3), which results in eight gauge bosons, called gluons,
and leads to the self interaction of them. A consequence of the latter is
the different behaviour of the running coupling compared to QED. Running
coupling means, that the interaction strength depends on the energy scale of
the examined processes. In QED the interaction is weak at low energies. In
QCD the interaction is weak at large energies, which is known as asymptotic
freedom. In that regime processes can be evaluated by perturbation theory
(pQCD) very well. For low energies the interaction strength of QCD be-
comes very large, which results in confinement. It can be visualised in such
a manner that the force between quarks rises if one tries to separate them and
the energy of the gluon field increases until it is high enough to create a new
quark-antiquark pair, so the quarks will never appear free but are always
bound into bound states. The bound states of the strong interaction are
called hadrons. They are composite objects containing two or more quarks
and anti-quarks, respectively. They can contain three quarks (baryons),
three anti-quarks (anti-baryons), one quark and one anti-quark (mesons)
or higher numbered combinations of quarks and anti-quarks (exotica, like
tetra-quarks or penta-quarks). The lightest charged meson is the pion with
a mass of 139.57 MeV. Analogously to atomic physics these bound states ex-
ist not only as ground states, but can appear as excited states or resonances
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1. Introduction

with certain decay width and lifetime. To account for the phenomena at
low energies several approaches exist. Lattice QCD (lQCD) evaluates the
strong interaction numerically on a finitely sized grid and by-passes the leak
of perturbation calculations. In contrast the use of Dyson-Schwinger equa-
tions delivers a self-contained system of integral equations describing exactly
the propagators of quarks and gluons with self interaction. However, the first
approach depends on the size of the underlying grid, and evaluations require
immediately more resources of numerical calculation power when increasing
the grid number. The second approach depends strongly on the truncations
of the integral equations, since otherwise a practical evaluation is not pos-
sible. The description of strongly interacting particles becomes even more
complicated when the couple of considered quarks and gluons is not located
in vacuum, but surrounded by a medium of strongly interacting matter, es-
pecially if this surrounding medium is not in the ground state, like in nuclei
of heavy particles, but very hot and/or dense. In a thermodynamical ap-
proach this medium can be characterised by a temperature T , describing
the average energy of the particles, and a baryonic chemical potential µB,
being a measure for the baryon density. Masses and propagators of the par-
ticles change as well as lifetimes, cross-sections and production thresholds
of resonances, since the medium offers additional energy for the particular
interaction processes. In nature such a medium is supposed to exist in the
early stage of the universe a few microseconds after the big bang as well as
in compact stellar objects like neutron stars. For a deeper understanding of
the early stage of the universe and the physics within the high mass collapse
products of giant stars one is interested in the equation of state (EoS) of the
nucleonic matter. For developing meaningful models and effective theories
and for testing of them it is inevitable to generate data of experimental ob-
servables, which can be used for adjusting the theoretical approaches. The
most useful tool up to date to generate such a hot and/or dense medium in
the laboratory is a heavy-ion collision (HIC).
In Section 1.1 the physics of heavy-ion collisions will be explained. In Sec-
tion 1.2 a tool for measuring the extension of the collision area will be
presented. Finally in Section 1.3 the aim of this thesis will be exemplified.

1.1 Heavy-Ion Collisions

Nuclei of heavy elements like gold, lead or uranium are accessible objects
with the highest aggregation of baryons in one place with densities around
ρ0 ≈ 0.16 nucleons/fm3. To create matter with even higher baryonic den-
sity and high energy one aims at collisions of two of these nuclei. For that
purpose ion accelerators are used, boosting the ions to relativistic energies,
i.e. kinetic energies as high as their rest energy or even higher. The achiev-
able energy of actually operating facilities for heavy-ions ranges from about
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1.1 Heavy-Ion Collisions

1A GeV at the heavy-ion synchrotron SIS18 over the Alternating Gradient
Synchrotron (AGS), Super Proton Synchrotron (SPS), Relativistic Heavy
Ion Collider (RHIC) up to 5A TeV at the Large Hadron Collider (LHC).
There exist two general types of relativistic heavy-ion collision experiments.
First the so-called fixed target experiments, where the ion beam is focused on
a target at rest in form of e.g. a thin foil. The produced particles are emit-
ted in forward direction and measured by a particle spectrometer around
the beam axis. Secondly the collider experiments, where bunches of ions are
moving in opposite directions inside a storage ring. At dedicated interac-
tion points the bunches are directed to cross each other allowing the ions
to collide with each other. The characteristic cylindrically symmetric spec-
trometers are constructed around these interaction areas. While in collider
experiments much higher nucleon-nucleon energies are achievable within the
same accelerator rigidity, fixed target experiments are characterised by much
higher interaction rates.

Figure 1.1: Scheme of the evolution of a relativistic heavy-ion col-
lision at SIS energies generated with the transport model SMASH [1]
(https://smash-transport.github.io/ ).

The evolution of a heavy-ion collision is illustrated in Figure 1.1. The two
nuclei are moving towards each other with Lorentz-contracted extension in
beam direction. The moment they meet each other is characterised by first-
chance nucleon-nucleon collisions. It follows the stage of high density, where
at SIS18 energies the matter is assumed to be compressed up to ρ ≈ 3ρ0
with temperatures around T = 80 − 100 MeV. Depending on the initial
energy of the ions a quark-gluon plasma (QGP) can be created, i.e. a state
of deconfined quarks and gluons. It was predicted as a consequence of the
asymptotic freedom for sufficiently high temperatures and densities and is of
special interest in heavy-ion collisions at ultra-relativistic energies, i.e. larger
than 10 − 20A GeV. With or without a QGP a hydro-dynamical expansion
follows, where the so-called ’fireball’ cools down until no inelastic processes
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1. Introduction

take place and produced stable particles do not transform anymore. This
point of the evolution is called the chemical freeze-out. The fireball continues
to expand and the particles can still interact elastically with each other until
the kinetic freeze-out. At that point the last interaction takes place, and
the particles move away with constant momenta, eventually affected by the
Coulomb potential created by the sum of all charged particles.
Besides the chosen size and the adjustable kinetic energy of the nuclei, the
collision geometry is important for the product of the heavy-ion collision.
The closest distance between the centers of the nuclei is defined as the impact
parameter b. It characterises the centrality of a collision, i.e. a small value
of the impact parameter is related to central collisions. If the value of b is
large the collision is called a peripheral collision. Nucleons inside the overlap
region which take place in the collision are called participants. The other
nucleons, passing by without interaction, are called spectators. The impact
parameter can not be determined directly, but is, e.g., related to the sum
of emitted particles, called multiplicity, or to the total energy released in
direction transverse to the beam. The vector of the direction of b and the
beam axis span the reaction plane of the collision.
The temperature and the baryonic density of heavy-ion collisions in the
1A GeV energy region are comparable to those of neutron star mergers or
the formation of a supernova. Thus they can be used to study the equa-
tion of state in this hot and dense hadronic medium, assuming to have for
a short time a system at equilibrium. The EoS is implemented in hydro-
dynamical models (e.g. UrQMD), which are used to simulate a heavy-ion
collision. The outcome of these simulations is compared to experimental
data allowing for adjusting the parameters and the EoS. Typical observables
are particle yields, which can be studied multi-differentially, e.g. in trans-
verse momentum, rapidity and azimuthally direction. Of special interest is
also the volume of the fireball, since it is another extensive state variable
in the EoS. If it is possible to determine it independently from the particle
yields, one has direct experimental access to one intesive state variable via
the ratio of those two.
Furthermore, a hydrodynamical expansion of the fireball, driven by high
pressure gradients, implicates a collective motion of the particles, known
as collective flow. It is mainly directed in outward direction, called radial
flow, but can have higher moments with preferred angular direction due
to the initial collision geometry of the nuclei. At SIS energies especially
the so-called ’elliptic flow’ is of interest, pointing out of the reaction plane
and forming a squeeze-out at the early stage of the collision, illustrated in
Figure 1.2. In contrast, the opposite is observed at SPS and higher energies,
where the expansion is more directed inside the reaction plane. Indications
of the collective motion will be visible in the angular distributions of the
momentum dependent particle yields and higher order observables. It can
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1.2 Intensity Interferometry

Figure 1.2: Illustration of a heavy-ion collision at SIS energies with
long spectator passing times and the typical squeeze-out. Figure taken
from [2].

also be expected that this collective flow influences the configuration of the
spatial extension of the source at freeze-out.
Thus, it is inevitable to have knowledge about the spatio-temporal size of
the fireball region for discussing dynamical processes. The length scales
of heavy-collisions are in the order of 1 × 10−14 m and the time scales in
the order of 1 × 10−22 s, which is highly non-trivial to measure. Here, the
technique of intensity interferometry emerges.

1.2 Intensity Interferometry

Two-particle intensity interferometry of hadrons is widely used to study
the spatio-temporal size, shape and evolution of their source in heavy-ion
collisions or other similar reactions. A detailed review is given in [3].

1.2.1 History

The technique of intensity interferometry was pioneered by Hanbury Brown
and Twiss [4], based on the quantum-statistical interference of identical par-
ticles. In 1956 they measured correlations of photons emitted from star
Sirius in their intensities without collecting the phase information. After
publishing the measured angular radii of stars claiming excellent resolu-
tion, the technique later on was named HBT interferometry. Independently
and nearly the same time Goldhaber et al. [5, 6] first applied intensity
interferometry to hadrons. In 1959, when discovering the ρ0 resonance in
proton-antiproton collisions, they found an unexpected angular correlation
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1. Introduction

between identical pions. In the 1970s many effort was invested by Russian
scientists, e.g. Kopylov and Podgoretsky [7–9], to refine the known meth-
ods for source-size measurements of excited nucleonic systems. Next to the
quantum-statistical effect also other correlations, like Coulomb or strong in-
teractions, were shown to be useful for measuring source sizes [10]. Although
stars and excited heavy ions can be hardly more different in sense of life-
time, size and distance to the detector, the notion HBT is well established
in the community of heavy-ion physics as term for identical-particle interfer-
ometry. The term femtoscopy was embossed by Lednicky [11] including all
kinds of measurements providing access to the spatio-temporal information
of nucleonic systems.

1.2.2 Length of homogeneity

Figure 1.3: The source sizes measured by intensity interferometry are
influenced by momentum-space correlations leading to reduced lengths
of homogeneity. Figure taken from [3].

In heavy-ion collisions, the intensity interferometry does not allow to mea-
sure directly the reaction volume, as the emission zone, changing shape and
size in the course of the collision, is affected by dynamically generated space-
momentum correlations, e.g. radial expansion after the compression phase
or resonance decays. Thus, intensity interferometry generally does not yield
the proper source size, but rather an effective ’length of homogeneity’ [3],
illustrated in Figure 1.3. It measures source regions in which particle pairs
are close in momentum, so that they are correlated as a consequence of
their quantum statistics or due to their two-body interaction. At energies
in the GeV region, the measured particles can originate from many different
processes. Therefore, the intensity interferometry may provide additional
information to the understanding of reaction mechanisms which finally de-
termine the particle emission sources.
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1.2 Intensity Interferometry

1.2.3 Overview

In general, the sign and strength of the correlation are affected by (i) the
strong interaction, (ii) the Coulomb interaction if charged particles are
involved, and (iii) the quantum statistics in the case of identical parti-
cles (Fermi-Dirac suppression for fermions, Bose-Einstein enhancement for
bosons). In the case of ππ correlations, when probed by small momentum
differences, the mutual strong interaction appears to be negligible [11, 12]
compared to the effects (ii) and (iii).
Source size measurements with pairs of the lightest mesons for heavy systems
like Au + Au, Au + Pb and Pb + Pb have been performed over three orders
of magnitude in center of mass energy at AGS [13, 14], SPS [15, 16], RHIC
[17] and LHC [18]. They combine to an excitation function of the source ex-
tensions both in longitudinal and transverse directions relative to the beam
axis. A slightly increasing trend in longitudinal, but nearly no dependence
of correlation measures in transverse direction as a function of center of mass
energy have been observed. Additionally, a strongly increasing source size
at small energies in both directions is postdicted, as derived by the data of
E895. Of special interest are the azimuthally dependent HBT measurements
provided by E895 [19], CERES [20], STAR [17] and ALICE [21]. Especially
at the lowest beam energies between 2 and 6A GeV a tilt of the ellipsoidal
source within the reaction plane was extracted. For the somewhat smaller
system La + La, studied at 1.2A GeV with the HISS spectrometer at the
Lawrence Berkeley Laboratory (LBL) Bevalac, pion correlation data were
reported by Christie et al. [22, 23]. An oblate shape of the pion source
and a correlation of the source size with the system size were found. Also,
pion intensity interferometry for small systems (Ar + KCl, Ne + NaF) was
studied at 1.8A GeV at the LBL Bevalac using the Janus spectrometer by
Zajc et al. [24]. Both groups made first attempts to correct the influence of
the pion-nuclear Coulomb interaction on the pion momenta. The effect on
the source radii, however, was found negligible for their experiments.
Further investigations of the charge-sign dependence in heavier systems, but
at larger beam energies, have been done by [14, 25]. The source extension for
negatively charged pairs was found to be slightly larger than for positive pion
pairs, but results are overlapping within their statistical uncertainties. An
opposite effect is reported by [26], also having large statistical uncertainties
giving the effect a significance of less than 2σ.
Not only ππ correlations are studied, but also two-kaon correlations [28],
proton-proton correlations or higher mass particles interacting via the strong
interaction are used to extract source sizes. A scaling of the source extension
with the transverse mass of the testing particles, mt = (m2 + k2

t )1/2 with
transverse momentum kt, has been found. This is illustrated in Figure 1.4
[27] and known as mt-scaling of the HBT radius parameters. One can also
invert the strategy of HBT interferometry, i.e. fixing the source size by model
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1. Introduction

Figure 1.4: Illustration of the so-called mt-scaling: The source radius
Rinv inversely scales with the transverse mass of different testing parti-
cles. Figure taken from [27].

calculations or reference measurements and then to study the potential of the
strong two-particle interaction [29–33]. Such investigations can be extended
to unlike-sign pairs of particles [34] or even pairs of unequal mass particles
[35–37].

1.3 Motivation of this work

The purpose of this work is to measure the extension of the fireball generated
in fixed-target heavy-ion collisions at a beam energy of 1.23A GeV using
the technique of intensity interferometry applied to pairs of charged pions.
Pions are ideal candidates for imaging the hot and dense fireball generated
in heavy-ion collisions in the 1A GeV regime, because

- produced-only particles, i.e. vanishing contributions from the initial
state,

- mt-scaling, see Figure 1.4, i.e. space-momentum correlations are the
smallest for the lightest particles,

- up to 20 measured pions per event in central collisions,

- the mutual strong interaction appears to be negligible [11, 12],

- the mutual Coulomb interaction is correctable [38],

- an eventual Coulomb effect from the interaction with the positively
charged fireball can be taken into account by considering π− and π+

separately,

8



1.3 Motivation of this work

- no jet contributions as seen at higher beam energies [39].

The measurement performed with the HADES setup at SIS18 provides a
data set with excellent purity and very high statistics. This allows to perform
a multi-differential HBT analysis, being sensitive within the three spatial di-
rections and studying the dependence on the momentum of the pion pairs
and on the impact parameter of the collision. Imaging the fireball as three-
dimensional tilted ellipsoid allows a precise calculation of the volume of ho-
mogeneity, which has direct impact on the equation of state of hot and dense
matter in an extensive description. Furthermore, the mt-dependence of the
source extension gives access to dynamical effects, like space-momentum cor-
relations and resonance contributions. On the one hand this can be used for
determining the dynamical parameters of certain models like temperatures
or flow velocities [40]. On the other hand, the dependencies on mt can be
used to trace back the measured lengths of homogeneity to the geometrical
size of the fireball. Studying the tilt angle and the out-off-plane eccentricities
in an azimuthally sensitive analysis in dependence on transverse momentum
will allow to make predictions for the temporal evolution of the collision.
The results can be used for gauging existing simulation tools and help to
fine-tune certain parameters of them.
It is worth emphasising that, prior the measurement presented in this thesis,
only preliminary data [41] of identical-pion HBT data existed for large sym-
metric collision systems, like Au + Au or Pb + Pb, at beam kinetic energies
of about 1A GeV. The results of this work are therefore of high interest for
extending the existing excitation functions [17] of the HBT radius parame-
ters and the connected volume of homogeneity, as well as the one of derived
quantities like the freeze-out duration, eccentricities or the tilt angle relative
to the beam axis. Also the question of an influence of the central Coulomb
potential on the HBT results will be looked at. The system Au + Au carries
a much higher Coulomb charge compared to the previously studied La + La
system [22, 23]. With the much better statistics of both, negatively and
positively charged pions, the Coulomb-related effects might be visible.
This thesis is structured as follows. In Chapter 2, a brief outline is pre-
sented, how the quantum-statistical effect between identical particles can be
used for measuring source extensions in coordinate space. HADES, the fixed
target experiment with high acceptance and excellent performance, which
provided the data for this thesis, will be introduced with its components in
Chapter 3. Afterwards all necessary steps for transforming the electronic
signals of the sub-detectors into physical quantities will be explained. The
properties of the collision like centrality, event plane and primary vertex as
well as expressions for the one- and three-dimensional experimental correla-
tion functions are obtained in Chapter 4. Combining theory and experiment
in Chapter 5 the results are shown, starting with the correlation functions
and continuing with the HBT radius parameters, divided into two sections,

9



1. Introduction

one for the azimuthally integrated and one for the azimuthally sensitive anal-
ysis. In both sections the impact of the HADES results on the excitation
functions will be shown, while in the azimuthally sensitive investigation the
focus is on the derived quantities like eccentricities and tilt angles. Finally
in Chapter 6, the thesis ends with a summary, and an outlook will be given.
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2 | Two-particle interferom-
etry

2.1 Quantum-statistic effects

x1
x1'

p2x2

x2'

p1a)

a)

b)
b)

Figure 2.1: Illustration of measuring two identical particles emitted
from locations in a source. When the particles arrive at the detectors
x′

1,2 it is not possible to decide whether they took the paths a) or the
paths b), and a superposition of both possibilities must be considered.

The starting point of the description of two-particle interferometry of identi-
cal particles is quantum statistics. The elementary particles can be divided
into two groups, on the one hand bosons, having a whole-number spin quan-
tum number, and on the other hand, fermions with a half-integral spin quan-
tum number. Following the spin-statistics theorem a bosonic two-particle
state is symmetric, while a fermionic two-particle state is anti-symmetric.
That means, considering the general two-particle wave function,

Φ1,2(x1, x2) = Φ1(x1) Φ2(x2), (2.1)

and exchanging the particles one and two by swapping the indices 1 and 2,
the sign in front of the wave function changes if fermions are described, but
for bosons not. If the particles are identical it is not possible to assign the
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2. Two-particle interferometry

indices to one or the other particle, but the squared wave function should
not change under this exchange. Therefore one uses a linear combination of
both cases for describing the two-particle state,

Φ1,2(x1, x2) = 1√
2

(Φ1(x1) Φ2(x2) + Φ1(x2) Φ2(x1)) for bosons, (2.2)

Φ1,2(x1, x2) = 1√
2

(Φ1(x1) Φ2(x2) − Φ1(x2) Φ2(x1)) for fermions. (2.3)

Equation (2.3) leads directly to the Pauli principle: two fermions can not
have the same quantum mechanical state, if they conform in all their quan-
tum numbers. If two bosons are emitted with a distance to each other of
∆x = |x1 − x2| and measured at x′

1 with momentum p1 and at x′
2 with mo-

mentum p2, respectively, their wave function is written according to Equa-
tion (2.2):

Φ1,2(x1, x2, x
′
1, x

′
2) = 1√

2
[e

i
ℏ (x′

1−x1)p1e
i
ℏ (x′

2−x2)p2 + e
i
ℏ (x′

1−x2)p1e
i
ℏ (x′

2−x1)p2 ].
(2.4)

It is worth to mention that the momentum difference ∆p = |p1 − p2| and
the displacement ∆x should obey ∆p∆x ≃ ℏ to keep the argument of in-
distinguishability (this condition is comparable with the coherence criteria
of electromagnetic radiation for showing interference effects). The possible
paths of the two identical bosons are depicted in Figure 2.1. Inserting ∆x
and ∆p into Equation (2.4), the expectation value of the two-boson state
Φ1,2 reads

|Φ1,2|2 = |Φ2,1|2 = 1 + cos
∆x∆p

ℏ


. (2.5)

For vanishing relative distance in phase space the argument of the cosine in
Equation (2.5) vanishes and the expected value reaches a maximum at two.
This means that the probability of measuring simultaneously two identical
bosons with vanishing momentum difference from a given source is twice as
large as measuring two uncorrelated particles. The maxima of the cosine
term in Equation (2.5) at higher arguments are suppressed by the coherence
condition ∆p∆x ≃ ℏ.

The larger the source is the smaller the momentum difference has to be
to measure the correlation. This implies that the measurement of relative
momenta of two identical particles is equivalent to the measurement of the
inverse size of the particle emitting source. For that reason, source sizes
in the femtometer regime are accessible with particle interferometry by mo-
mentum differences in the order of magnitude of a few MeV/c.
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2.2 Two-particle correlation-function

2.2 Two-particle correlation-function

2.2.1 Finite source: Wigner density distributions

To construct the two-particle correlation function for heavy-ion collisions
one has to know the source distribution of the emitted particles. In Equa-
tion (2.5) only certain values of x1,2 and p1,2 have been considered. The
complete two-particle distribution P1,2(p1, p2) from an extended source is
obtained by summing over all possible emission places and emission proba-
bilities,

P2(p1, p2) =

d4x1d

4x2S(x1, p1)S(x2, p2)|Φ1,2|2, (2.6)

with the Wigner density distribution S(x, p) [42], which will be referred to
as the source function. The latter one gives the emission probability of
a particle dependent on its origin and its momentum. It is also used for
calculating the single particle distribution P1(p),

P1(p) =

d4xS(x, p)|Φi|2, (2.7)

since |Φi|2 = 1 by convention. The two-particle distribution (2.6) contains
in addition to the correlated pairs also the uncorrelated pairs. If the cor-
relation vanishes, i.e. the term |Φ1,2|2 becomes one, the pair distribution
factorises, P2(p1, p2) = P1(p1)P1(p2), and is expressed by the single parti-
cle distributions. To be sensitive to the correlations of Equation (2.6) one
divides it by the product of P1(p1) and P1(p2) and defines the correlation
function as

C(p1, p2) = P2(p1, p2)
P1(p1)P1(p2) . (2.8)

2.2.2 Correlation with relative coordinates

The expectation value (2.5) depends only on ∆x and ∆p and therefore im-
plies the usage of pair momentum k = (p1 + p2)/2 and relative momentum
q = (p1 − p2)/2. The correlation function (2.8) reads then

C(q, k) = 1 + |

d4xS(x, k)ei2qx|2

d4xS(x1, p1)

d4yS(x2, p2) . (2.9)

Assuming the emission function to have a very smooth momentum depen-
dence one can replace

S(x, k − q)S(y, k + q) ≈ S(x, k)S(y, k). (2.10)
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2. Two-particle interferometry

This relation is called the smoothness approximation [40]. Inserting it into
Equation (2.9) leads to

C(q, k) ≈ 1 + |

d4xS(x, k)ei2qx|2

|

d4xS(x, k)|2 . (2.11)

In principle, the emission function S(x, k) depends on the off-shell momen-
tum k with k0 = (E1 +E2)/2. In practise, one uses the on-shell approxima-
tion S(x, k0, k⃗) ≈ S(x,Ek, k⃗), Ek = [m2 + k⃗

2]1/2 with m being the particle
rest mass. The corrections to this form were shown to be small [43].

The correlation function (2.11) can be reformulated with relative spatial
coordinates X = (x1 + x2), r = (x1 − x2)/2 and a normalised relative
distance distribution [40],

d(r, k) =

d4X s(X/2 + r, k) s(X/2 − r, k), (2.12)

s(r, k) = S(r, k)
d4r S(r, k) , (2.13)

with the normalised emission function s(r, k). The relative distance function
is an even function of r, d(−r, k) = d(r, k). Writing the mass shell constraint
as q0 = β⃗ · q⃗ the correlation function can be written as:

C(q, k⃗) = 1 +

d4r cos (q · r) d(r, k),

= 1 +

d3r cos (q⃗ · r⃗)


dt d(r⃗ + β⃗t, t, k). (2.14)

If the pair of particles is in the rest frame (β⃗ = 0), the time structure is
completely integrated out,

C(q⃗, k⃗) = 1 +

d3r cos (q⃗ · r⃗)S

k⃗
(r⃗), (2.15)

and the relative source function S
k⃗
(r⃗) is simply the integral over the time

argument of d(r, k).

2.2.3 Static and dynamic sources

If no collective motion is present and the momentum of the emitted particle
does not depend on the emission time, the particle emitting source is called a
static source, and the spatial part factorises with the momentum dependent
part,

S(x, p) = ρ(x)g(p), (2.16)
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2.2 Two-particle correlation-function

with the normalised spatial emission function ρ(x). With Equation (2.7) the
single particle distribution is then simply:

P1(p) = g(p), (2.17)

and the two-particle distribution becomes:

P2(p1, p2) = g(p1)g(p2)

d4x1d

4x2ρ(x1)ρ(x2)|Φ1,2|2,

= g(p1)g(p2)(1 + |ρ̃(q)|2). (2.18)

Inserting the one- and two-particle distributions into Equation (2.8), one
gets

C(q) = 1 + |ρ̃(q)|2, (2.19)

where |ρ̃(q)|2 can be identified with the Fourier transform of ρ(x). Since in
general the inversion of a Fourier transform is not unambiguous, the source
function can not be read off directly from |ρ̃(q)|2. Not least this follows from
the mass-shell constraint,

k · q = p2
1 − p2

2 = m2
1 −m2

2 = 0, (2.20)

which means that only three of the four relative momentum components
are kinematically independent [40]. This introduces an inevitable model
dependence not resolvable with the information from identical two-particle
interferometry. In practise a realistic assumption is made for the source func-
tion S(x, p), which can then be compared to experimental data for proving it.

A more realistic expanding source model for relativistic heavy-ion collisions
does not simply factorise into a spatial part and a momentum dependent
part. The correlation between space and momentum can lead to much higher
relative momenta and obviously smaller source sizes. The overall coherence
condition ∆x∆p ≃ ℏ is not fulfilled for all particle pairs and only in small
regions, where the gradients of emission velocities are not too large, inter-
ference can be observed. The investigation of the correlation function has
therefore to be done differentially in the pair particle momenta, and the
obtained source sizes are called lengths of homogeneity. The emission ve-
locity gradients depend for example on the collective velocity gradients, the
temperature gradients and the transverse mass, which are included in the
explicit model expressions of S(x, p). A few examples will be introduced in
Section 2.5.

2.2.4 Partial coherence: the λ parameter

From quantum optics it is known that the HBT effect according to Bose-
Einstein statistics does not appear for pairs of particles emitted with phase
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2. Two-particle interferometry

Figure 2.2: Illustration of the correlation signal at small relative mo-
menta q. For an ideal chaotic bosonic source (red), the probability of
registering the pair increases up to two at vanishing q. For a partially
coherent source (blue), the correlation signal is reduced. For an ideal co-
herent source the correlations signal vanishes just as for distinguishable
particles. An ideal fermionic source (lower black curve) can be described
with coherence parameter λ = −1 and vanishing probability at q = 0.

coherence [44]. Instead a chaotic source is required. A possible partial phase
coherence would weaken the measured correlation signals. To illustrate this
consequence one could split the source function into a coherent and a chaotic
part,

S(q⃗, k⃗) = Scoh(q⃗, k⃗) + Scha(q⃗, k⃗). (2.21)

Inserting Equation (2.21) into Equation (2.11) and assuming only Scha(q⃗, k⃗)
to contain the HBT effect introduces a weighting λ(k⃗) for the correlated
term [45],

λ(k⃗) = 1 −D2(k⃗),

D(k⃗) = ncoh(k⃗)
ncoh(k̃) + ncha(k⃗)

, (2.22)
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2.3 Final state interactions

where ncoh(cha) denotes the number of coherently (chaotically) emitted par-
ticles. Equation (2.22) enters in Equation (2.19) in the form

C(q) = 1 + λ|ρ̃(q)|2. (2.23)

The experimentally determinable intercept parameter λ(k⃗) is therefore often
referred to as the incoherence parameter. It is always found to be between
zero and unity. However, in practise other effects like misidentified particles,
resonance decays or final state interactions contribute to the deviation of
λ(k⃗) from unity. In Figure 2.2 the impact of the incoherence parameter on
the correlation function is shown. In the ideal case λ(k⃗) = 1, the correlation
function depicted by the red curve reaches at q = 0 twice the value of
uncorrelated pairs; for λ(k⃗) < 1 this value is reduced.

2.3 Final state interactions

Besides the quantum statistical effects, correlations between multiple par-
ticles can origin from the fundamental forces and conservation laws. The
latter ones become less important the higher the multiplicities of produced
particles are and the more degrees of freedom are involved in the considered
process. Therefore, for high-multiplicity heavy-ion collisions the constraints
by energy-momentum conservation or isospin and charge conservation are
often supposed to be negligibly small concerning particle pairs. At least
particles from resonance decays are strongly correlated, but they only rarely
produce two identical charged particles at the same time. Therefore, this
effect does not matter in practical investigations. Hence the final state in-
teractions (FSI) caused by the strong force and the Coulomb force are left
over. While the strong interaction dominates the region of small relative
momenta for pairs of heavier particles (like protons), it is negligible in the
consideration of like-sign pions [12]. 1 In contrast, the long-range Coulomb
interaction significantly enters the two-pion correlation function and mixes
with the quantum statistical effect at low relative momenta.

1In that reference a scattering length of 0.2 fm is predicted, where around 1% of the
source is affected. Note that on a more precise level the effect of the strong FSI can change
the correlation function, as shown in [46].
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2. Two-particle interferometry

2.3.1 Two-particle Coulomb interaction for extended sources

For taking into account the Coulomb force between two emitted particles,
a relative Coulomb wave function part modifies the wave functions Φ1,2 in
Equations (2.6) and (2.18):

Φcoul(r⃗) = Γ(1 + iη)e− 1
2 πηe

i
2 q⃗r⃗F (−iη; 1; z−), (2.24)

z± = 1
2(qr ± q⃗r⃗) = 1

2qr(1 ± cos θ), (2.25)

with r = |r⃗|, q = |q⃗|, and θ denotes the opening angle between the vectors
r⃗ and q⃗. The analytical expression (cf. [38] for the rationale) uses the
confluent hyper-geometrical function F and the Gamma function Γ. The
Sommerfeld parameter η is given by

η± = ±me2

8πq , (2.26)

containing the dependence on the particle mass m and the electromagnetic
coupling strength e. The plus signs are for pairs with unlike-sign particles
and the minus signs apply for like-sign pairs. For particle emission from a
point-like source, the correlator simplifies to

|Φcoul(0)|2 = |Γ(1 + iη)e− 1
2 πη|2 = 2πη

e2πη − 1 =: G(η), (2.27)

with G(η) being known as the Gamow factor. For an extended source, the
Coulomb interaction will always be weaker, and the Gamow factor (2.27)
can be considered as upper limit.

2.3.2 N-particle Coulomb interaction

Besides the Coulomb interaction within the pair of charged particles the
Coulomb interaction with the remaining cloud of charged particles is of inter-
est. The Coulomb charge carried by the participating protons of a heavy-ion
collision leads to an effective potential of the fireball, which pushes positively
charged particles away in radial direction and pulls back negatively charged
particles. The net effect will be therefore referred to as the central Coulomb
potential. The effect scales with the total charge inside the interaction re-
gion of the colliding nuclei and with the spatio-temporal extension of the
charge distribution. Therefore it becomes important for heavy-ion collisions
of large systems, like Au+Au at lower beam energies producing fireballs with
high baryonic density. In [47, 48], the effect was quantified by an effective
potential Veff , which changes the “initial energy” ei(pi) of a single particle
by

ef(pf) = ei(pi) ± Veff , (2.28)
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2.4 Gaussian approximation

where ef is the “final energy” of the measured particle with momentum
pf , and the plus (minus) sign belongs to positively (negatively) charged
particles. This leads to a distortion of the relative momentum spectra and
hence to a change of the width of the correlation signal. Especially for
relative momenta pointing perpendicular to the emission direction one finds

qi
qf

= |p⃗i|
|p⃗f |

=

1 ∓ 2Veff
|p⃗f |


1 + m2

π

p⃗ 2
f

+ V 2
eff
p⃗ 2

f
, (2.29)

with qi (qf) being the initial (final) relative momentum of the pair. A dif-
ferent ansatz is made in [49, 50], where the effective Coulomb potential is
already included in the pion wave-function and propagated through the cal-
culations ending up in significant changes of extracted source sizes. The
evaluation of the central Coulomb potential in [49, 50] goes more in de-
tail and seems more accurate, but does not deliver a simple expression for
correcting the correlation signal. For non-central collisions, the problem be-
comes even more complicated, since next to the effective potential in the
collision center the contributions of the spectators have to be included. Es-
pecially for small freeze-out times, when the spectators are still close to the
participants, their impact can not be neglected. Reference [24] made an
assumption including three charged fragments of the collision nuclei (one
participant zone and two spectator areas) and to correct accordingly the
final momenta p⃗ of the charged pions.
Nevertheless, the treatment of the central Coulomb potential in two-particle
correlation functions still is an important open question, which becomes
relevant if new experimental data with well-distinguished π+π+ and π−π−

correlation data appears.

2.4 Gaussian approximation

As mentioned above in Section 2.2.3, the complete source function S(x, k)
can not be reconstructed from the correlation signal without further con-
straints. Therefore, the assumption of a Gaussian distribution around the
point of maximum emission probability xµ(k) is made [51]:

S(x, k) = N(k)S(x(k), k) exp [−1
2 x̃

µ(k)Bµν(k⃗)x̃ν(k)], (2.30)

where N(k) is a normalisation constant and Bµν(k) is the symmetric curva-
ture tensor

Bµν(k⃗) = −∂µ∂ν lnS(x, k). (2.31)
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2. Two-particle interferometry

The relative coordinates x̃µ(k) are given by

x̃µ(k) = xµ − xµ(k), xµ(k) = ⟨xµ⟩(k), (2.32)

where the brackets ⟨· · · ⟩ stand for the spatial average over the emission
function S(x, k),

⟨g⟩(k) =

d4x g(x)S(x, k)
d4xS(x, k) . (2.33)

The point of maximum emission xµ(k) is a space-time saddle point and can
be formally defined as

∂

∂xµ
lnS(x, k)|x = 0. (2.34)

The introduced formalism is referred to as the quadratic saddle-point ap-
proximation, where Bµν(k) is defined via

(B−1)µν(k) = ⟨x̃µx̃ν⟩(k). (2.35)

The choice of a Gaussian form of the source function is on the one hand
reliable, since it describes the data quite good and conforms with a particle
emitting thermal source. On the other hand, the Fourier transform of a
Gaussian function has also a Gaussian shape, which makes the translation
of the correlation signal into a source width quite easy, cp. Equation (2.19).
Furthermore, the Gaussian widths in both, the source function and the
correlation function, are convenient for a comparison with results delivered
by other theoretical and experimental studies. Inserting Equation (2.30) into
the relation (2.11) one obtains for the correlation function the expression

C(q⃗, k⃗) = 1 + exp [−4qµqν⟨x̃µx̃ν⟩(k⃗)]. (2.36)

Since the smoothness and the on-shell approximations are already included
here, the space-time variances ⟨x̃µx̃ν⟩ can be written as a function of k⃗ only.

2.4.1 Bertsch-Pratt parametrisation

To find a relation between Equation (2.36) and the experimental data, one
of the four relative momentum components has to be eliminated via the
mass-shell constraint (2.20). Then one has to choose a parametrisation for
the other three components. A common choice is the out-side-longitudinal
(osl) coordinate system, where the temporal component is eliminated by
using

q0 = β⃗ · q⃗, β⃗ = k⃗/k0,

β⃗ = (βt, 0, βl), q⃗ = (qout, qside, qlong). (2.37)
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2.4 Gaussian approximation

Figure 2.3: Illustration of the osl coordinate system: ’long’ points along
the beam axis, ’out’ is parallel to the transverse pair momentum kt of the
two particles with momentum p1 and p2, and ’side’ points perpendicu-
larly to the other two components, completing a right-handed orthonor-
mal coordinate system.

The relative momentum component qlong points along the beam direction,
qout points into the same direction as the pair transverse momentum kt
and qside is perpendicular to the other two components as illustrated in
Figure 2.3. This choice is known as the Bertsch-Pratt parametrisation [52–
54], sometimes it is also called the Cartesian parametrisation [40]. Inserting
this parametrisation into Equation (2.36) delivers the relation

C(q⃗, k⃗) = 1 + exp [−

i,j

4qiqjR
2
ij ], (2.38)

where the sum runs over ’out’, ’side’ and ’long’ and the quantities R2
ij are

the six HBT radius parameters. They can be seen as a symmetric 3 × 3
matrix with six independent entries. With Equation (2.38) the correlation
function has now a form, which can be compared to experimental data. In
the following sections, the relation between the HBT radius parameters and
the space-time extension of the source will be discussed.

For completeness it should be mentioned that, apart from the introduced
Bertsch-Pratt parametrisation, other coordinate systems and restrictions
made with the mass-shell constraint are possible. The most prominent is
the Yano-Koonin-Podgoretsky parametrisation [55, 56], which includes di-
rectly the temporal component q0. Details can be found in [40]. Within the
analysis of this thesis, the Yano-Koonin-Podgoretsky parametrisation has
not been used.
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2.4.2 Azimuthally symmetric collisions

Figure 2.4: Illustration of a relativistic heavy-ion collision creating a
particle emitting source (red, in the centre). The impact parameter b
points perpendicular to the beam direction z. Both directions span the
reaction plane of the collision. A finite value of b causes the source to be
more extended in y than in x direction. Figure taken from [57].

The formal introduction of the osl system (2.37) includes explicit kt and
kl dependences. However, in addition a dependence on the azimuthal ori-
entation ϕ12 of the pair momentum can appear, if azimuthal symmetry of
the particle emitting source is not explicitly required. In the context of
heavy-ion collisions, an asymmetry is caused by the finite impact parameter
b, illustrated in Figure 2.4. With the assumption of spherically distributed
nucleons in the colliding nuclei moving on parallel trajectories against each
other one can at least require the source to be symmetric relative to the
orientation ϕ

b⃗
of the impact parameter b in azimuthal direction:

S(x, kt, (ϕb⃗
+ ϕ12), kl) = S(x, kt, (ϕb⃗

− ϕ12), kl). (2.39)

Since in experiments the impact parameter b is randomly distributed in the
laboratory system, one integrates over all azimuthal configurations when not
considering ϕ12 − ϕ

b⃗
explicitly. In this case, the ϕ12 dependence vanishes

automatically and an obvious cylindrical symmetric source remains. This
consideration would be exact for |b⃗| = 0 and is still reasonable for very
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2.4 Gaussian approximation

central collisions with small impact parameters. One obtains a reflection
symmetry in ’side’ direction,

Slab(x, kt, ϕ12, kl) = Slab(x, kt, ϕ12 + δϕ12, kl),
⇔ Sosl(x, y, z, t, kt, kl) = Sosl(x,−y, z, t, kt, kl), (2.40)

and due to this the following relations for the HBT radius parameters from
Equation (2.38) arise [58]:

R2
out(k⃗) = ⟨(x̃− βtt̃)2⟩(k⃗),

R2
side(k⃗) = ⟨ỹ2⟩(k⃗),

R2
long(k⃗) = ⟨(z̃ − βlt̃)2⟩(k⃗),

R2
out long(k⃗) = ⟨(z̃ − βlt̃)(x̃− βtt̃)⟩(k⃗),
R2

out side(k⃗) = 0,
R2

side long(k⃗) = 0. (2.41)

The two non-diagonal parameters R2
out side andR2

side long vanish for azimuthal-
ly symmetric collisions. The more symmetries are applied to the source
function the simpler are the expressions for the HBT parameters. Assuming
at mid-rapidity the reflection symmetry in longitudinal direction z̃ → −z̃ in
the longitudinally co-moving system (LCMS) another simplifications can be
made:

R2
long = ⟨z̃2⟩(k⃗),

R2
out long = 0. (2.42)

The LCMS is defined as the system of the pair, where its longitudinal ve-
locity vanishes, βl = 0. If momentum-space correlations, mentioned in Sec-
tion 2.2.3, are sufficiently weak and the emission duration is sufficiently
large, i.e. the explicit k⃗-dependence dominates [40], then the following rela-
tion between the ’out’ and the ’side’ direction holds:

R2
out(k⃗) −R2

side(k⃗) ≈ β2
t ⟨t̃⟩. (2.43)

With Equations (2.41) and (2.42) a simple interpretation of the HBT pa-
rameters appears: Rside measures the width of the source in direction of
’side’, Rout is a measure of the width in ’out’ direction plus an additional
contribution from the emission duration, and Rlong is the width in longi-
tudinal direction. Since for an azimuthally symmetric source the widths in
’side’ and ’out’ directions should be equal, the emission duration can be
directly extracted with Equation (2.43).
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2. Two-particle interferometry

The interpretation of a finite value R2
out long is not that trivial and of kine-

matically nature [59]. One can introduce the linear correlation coefficient

ρol = −
R2

out long(k⃗)
Rout(k⃗)Rlong(k⃗)

, (2.44)

which is a normalised quantity bound to |ρol| ≤ 1 and relates R2
out long to

the diagonal HBT radius parameters Rout and Rlong.

2.4.3 Finite impact parameter

If the azimuthal symmetry is explicitly broken, the HBT radius parameters
have to be considered in dependence on the direction of the emitted pairs.
The coordinates x, y, z are now aligned with the impact parameter-fixed
system, where x points into the direction of b, and DΦ describes the rotation
into the osl coordinate system [60],

R2
ij(k⃗) = ⟨[(DΦx̃)i − (DΦβ⃗)it̃][(DΦx̃)j − (DΦβ⃗)j t̃]⟩,

(DΦβ⃗) = (βt, 0, βl). (2.45)

The pair azimuthal angle Φ is defined relative to the impact parameter,
Φ = ϕ12 − ϕb. Hence, the expressions for the HBT parameters follow:

R2
side(k⃗) = ⟨x̃2⟩ sin2 Φ + ⟨ỹ2⟩ cos2 Φ − ⟨x̃ỹ⟩ sin 2Φ,
R2

out(k⃗) = ⟨x̃2⟩ cos2 Φ + ⟨ỹ2⟩ sin2 Φ + ⟨x̃ỹ⟩ sin 2Φ
− 2βt⟨t̃x̃⟩ cos Φ − 2βt⟨t̃ỹ⟩ sin Φ + β2

t ⟨t̃2⟩,

R2
out side(k⃗) = ⟨x̃ỹ⟩ cos 2ϕ+ 1

2(⟨ỹ2⟩ − ⟨x̃2⟩) sin 2Φ

+ βt⟨t̃x̃⟩ sin Φ − βt⟨t̃ỹ⟩ cos Φ,
R2

long(k⃗) = ⟨(z̃ − βlt̃)2⟩,

R2
out long(k⃗) = ⟨(z̃ − βlt̃)(x̃ cos Φ + ỹ sin Φ − βtt̃)⟩,

R2
side long(k⃗) = ⟨(z̃ − βlt̃)(ỹ cos Φ − x̃ sin Φ)⟩. (2.46)

The explicit Φ dependence is a purely geometrical consequence arising from
the rotation of the reaction plane-fixed xyz system to the osl system via
DΦ, i.e. the rotation of the x axis from the direction of b⃗ to the direction
of k⃗t, respectively. In addition, an implicit Φ dependence exists, which de-
scribes the dynamical correlations (higher order flow) between the direction
of emitted particles and the size of the region of homogeneity from where
they originate.
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2.5 Models for the source distribution

2.5 Models for the source distribution

Figure 2.5: Scheme of two collision settings: Landau scenario (left) with
total stopping of the participants and expanding fireball and Bjorken sce-
nario (right) with partly transparent nuclei and longitudinally extended
fireball region.

The choice of the explicit form of the source function S(x, k) depends on the
assumptions one makes for the collision dynamics and is governed by the
geometry, the beam energy, system size and others. A basic differentiation
between two types of collision scenarios in relativistic heavy-ion collisions as
a function of beam energy is customary. At high energies, e.g. larger than
about 10-20 GeV in kinetic energy per nucleon, the nuclei are deformed in
beam direction to oblate ellipsoids with decreased nucleonic cross section.
When passing each other the nuclei are partly transparent, moving through
each other and span a “firetube” region of high energy density in-between
them with relatively large longitudinal expansion as compared to the trans-
verse extension. This situation is referred to as the Bjorken scenario [61],
illustrated at the right hand side of Figure 2.5. For lower energies the par-
ticipating nucleons stop almost completely at mid-rapidity, which is also
known as baryon stopping, and form an expanding fireball. The spectators
continue their motion and leave a baryon-dense particle-emitting source be-
hind. This picture is called the Landau scenario, depicted on the left side
of Figure 2.5. Both scenarios are extreme cases, assuming a fast transi-
tion to thermal equilibrium and following (isotropic) expansion. However,
they predict basic constraints for the modelling of S(x, k). In the Bjorken
scenario, one can assume a much faster expansion in longitudinal direction
with relativistic longitudinal flow. In the Landau scenario, the expansion
in longitudinal and transverse direction can be treated similarly due to the
stopping, but still differentially according to different pressure gradients into
the different directions.
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2. Two-particle interferometry

For the mt-scaling of the three HBT radius parameters Rout, Rside and Rlong,
the following common dependencies are used [62]:

R2
side = R2

G
1 + v2

tmt/T
, (2.47)

R2
out = R2

side + β2
t (∆τ)2, (2.48)

R2
long =


τ2

0
T

mt
w/o transverse flow, LO, mt ≫ T,

τ2
0

T
mt

K2(mt/T )
K1(mt/T ) w/o transverse flow, NLO,

τ2
0

T
mt

1
1+ T

mt
( 1

∆η2 −1) with transverse flow, LO,
(2.49)

= L2
G

1 + v2
l mt/T

+ β2
l (∆τ)2 stopping szenario, (2.50)

where RG is the Gaussian radius of the fireball in transverse direction, and
LG the Gaussian radius in longitudinal direction. The lifetime of the fireball
is given by τ0, which can be transfered into the longitudinal extension by
multiplying with the squared width ∆η2 of the longitudinal rapidity dis-
tribution. vt(l) stands for the transverse (longitudinal) flow velocity, which
needs to be non-relativistic, v ≪ c. T is the temperature at freeze-out
and K1,2 are the modified Bessel functions of second kind. A ’leading or-
der’ expression is denoted by LO and a ’next-to leading order’ expression
by NLO. As discussed above, the longitudinal expansion depends highly on
the underlying model and therefore a couple of fit functions arises. For
the transverse directions very elementary expressions are obtained. In Ap-
pendix C the commonly used basic Gaussian assumptions for S(x, k) are
further specified.
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3 | The HADES experiment
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Figure 3.1: Left: Photograph of the HADES setup in operation mode
from downstream (Jan Michael Hosan/HA Hessen Agentur GmbH ).
Right: Transverse cross section of the spectrometer with all sub-
detectors. Following the beam the components are (i) the target sur-
rounded by the Start and Veto detector, (ii) the Ring Imaging CHerenkov
(RICH) detector, (iii) the Mini Drift Chambers (MDC) with the super-
conducting magnet in between, (iv) the Time-Of-Flight (TOF) wall, RPC
and Pre-shower detectors, combined in the Multiplicity Electron Trigger-
ing Area (META), and (v) the forward wall.

The High Acceptance Di-Electron Spectrometer (HADES) is a fixed target
experiment located at the heavy-ion synchrotron SIS18 at the GSI Helmholtz-
zentrum für Schwerionenforschung in Darmstadt, Germany. Since starting of
operation in 2002 HADES was used for investigating elementary, elementary
+ nucleus, nucleus + nucleus, and pion + nucleus collisions. The Au+Au
experiment took place in April 2012 with a beam kinetic energy of 1.23A
GeV. One of the main purposes was to measure the in-medium modifications
of the light vector mesons ω, ρ, ϕ with e+e− pairs. The HADES setup was
designed and optimised for detecting pairs of the lightest leptons. Compared
to other test particles the information carried by the leptons is not affected
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3. The HADES experiment

by the strong interaction. Unfortunately, the leptonic decay channels of the
vector mesons are strongly supressed w.r.t. hadronic decays by typical fac-
tors of 10−4 − 10−5. Therefore, a lot of statistics is required, realised by
fast sub-detectors for high event rates and high angular acceptance. Fur-
thermore, a low material budget is essential to reduce background electrons,
e.g. from conversion electrons, as much as possible. An important issue is
also the discrimination of the electrons and positrons against the lightest
hadrons, since their distributions are close to each other in most common
particle identification processes. Under these boundary conditions a setup
has been build up using the following sub-detectors (in beam direction):

• Target + START/VETO-detector,

• Ring Imaging CHerenkov detector (RICH), the central element of
HADES for discriminating lightest leptons against hadrons,

• Magnetic spectrometer,

• Multiplicity Electron Trigger Array (META) detectors, forming to-
gether with the START detector the time-of-flight system of the spec-
trometer,

• Forward-wall measuring the projectile spectators.

A photograph of the spectrometer in compact form without the forward wall
is shown on the left side of Figure 3.1; on the right side, a transverse profile
view is drawn. An unique characteristics of HADES compared to other high
energy experiments is its hexagonal symmetry around the beam direction.
Most of the above mentioned components are arranged in six identical sec-
tors, symmetric around the beam axis. With its high momentum resolution
and large geometrical acceptance HADES provides also an excellent tool
for identifying hadrons, as used for the investigations in this thesis. A de-
tailed description of the experimental setup can be found in [63]; other very
illustrative descriptions of the Au+Au experiment are given by [64, 65].

3.1 Target

For the experiment related to the investigated data a segmented Au-target
[66] has been used, see Figure 3.2. It contains 15 gold foils with a diam-
eter of 3 mm and a thickness of 25µm glued on 7µm thick Kapton foils
with a distance of 4 mm to the next one. The holder is made of carbon.
The segmentation is needed for reducing small-angle scattering and keep-
ing simultaneously the total interaction probability at an optimum value of
2.0 %.
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3.2 RICH

Figure 3.2: Photograph of the segmented Au-target. It consists of 15
gold foils glued on Kapton bands for reducing the effect of small-angle
scattering.

3.2 RICH

Figure 3.3: Scheme of the RICH detector. The passing electron (red
down-pointing arrow) generates a light cone (blue) inside the radiator
gas, which is mirrored onto a panel of photon detectors and appears as
a ring. Figure taken from [67].

The RICH detector is a gas detector for identifying electrons and positrons.
The passing leptons emit a cone of photons if their velocity v is faster than
the speed of light c′ = c/n inside the gaseous medium with the refractivity
n, which is known as the Cherenkov effect. The emission angle of the cone
is given by

θ = arccos

c

v n


. (3.1)
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3. The HADES experiment

The radiator gas C4F10 with n = 1.00151 is optimized for leptons in the
momentum range of 0.1 to 1.5 MeV, where only electrons and positrons
exceed the threshold velocity to generate Cherenkov light. The light cones
are mirrored backwards onto a panel of photon detectors with 28272 pads
in total, see Figure 3.3. The registered ring-shaped signals are finally used
for discriminating the lightest leptons from other particles.

3.3 Magnetic spectrometer

Figure 3.4: Left: Layout of the magnet spectrometer part of HADES
consisting of a superconducting magnet with six coils generating a
toroidal magnetic field, two mini drift chambers before (MDC I, MDC
II) and two behind (MDC III, MDC IV) the magnet. Right: Section
of the hexagonal arrangement of the magnetic coils and the mini drift
chambers, including the origin where they were produced. The MDC I
chambers were first build at GSI, but later exchanged by chambers built
at Forschungszentrum Rossendorf (FZR) due to their high radiation ex-
posure. MDC III chambers, also built in FZR, are in operation from the
very beginning. Figures taken from [63, 67].

The magnetic spectrometer consists of 24 Mini Drift Chambers arranged
symmetrically in two planes before and two behind a superconducting mag-
net, see Figure 3.4. Its main purpose is the determination of the momentum
vector of the passing particles before the field by using the bending direction
and the curvature of the tracks in the toroidal magnetic field.

3.3.1 Magnet

The superconducting magnet ILSE (Iron Less Superconducting Electromag-
net), which is exhibited in Figure 3.5, consists of six NbTi-coils arranged
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3.3 Magnetic spectrometer

Figure 3.5: Technical illustration of the magnet ILSE (iron less super-
conducting electromagnet) in direction of the beam (right) and perpen-
dicular from the side (left). Visible are the six coils and on top the supply
slots for power supply and liquid helium cooling. Figure taken from [63].

symmetrically at the edges of the sectors between the inner and the outer
MDC planes, see right panel of Figure 3.4. It generates a toroidal magnetic
field, which deflects charged particles mainly in polar direction. This leads
to a curvature of the particle track, from which the momentum can be
determined. The geometry of the coils and the maximum current up to
3464 A was chosen such that the impact on the electronic components of the
sub-detectors is as small as possible. The field strength of the magnetic field
covers the range from 3.7 T at the surface of the coils down to 0.8 T in the
center of the MDC sectors. To reach superconductivity the coils are cooled
with liquid helium down to 4.6 K.

3.3.2 Mini Drift Chambers

The 24 trapezoidally shaped mini drift chambers are arranged downstream
in four planes and azimuthally oriented in six sectors. Each sector covers
an azimuthal angle of 60° with a few degrees gap of about 10° to the next
sector. In polar direction the range from 18° to 85° is covered.
The smallest unit in a drift chamber is the drift cell, consisting of an anode
wire (also called sense wire), two field wires and a couple of cathode wires.
A transverse section of a drift cell with a traversing particle is depicted in
the left panel of Figure 3.6. A passing charged particle ionises the atoms
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3. The HADES experiment

Figure 3.6: Left: Depiction of the transverse section of a smallest
drift cell, containing one sense wire in the center (cyan dot), two field
wires (red dots) and several cathode wires (dark-green dots). Red curves
illustrate the electric field inside the cell. A traversing ionising parti-
cle (yellow curve) induces free charges in form of electrons (small green
points), which drift in direction of the sense wire (yellow struggled curves)
and were amplified in the grey area leading to a measurable signal.
Right: Scheme of the six-stacked layers of mini drift chambers within
one trapezoidal module with stereo angles of 0°, ±20° and ±40° between
the detector-system fixed x axis and the parallel arranged sense wires.
Figures taken from [63, 65].

or molecules of the gas-filled chambers and a bias voltage accelerates the
produced electrons in direction of the sense wire. They follow the field lines
and drift with nearly constant velocity until they reach the amplification
area close to the anode, where the field strength becomes high enough to
ionise more atoms and create an avalanche of secondary electrons. This
amplification is essential to measure very short electric pulses. In addition
the drift time of the electrons between the entering of the charged particle
and the arrival of the electron cloud at the anode can be measured. With
the calculated drift velocity the minimal distance between particle trajectory
and anode is determined. This delivers a very high spatial resolution of
around 100 − 200µm. The equidistant parallel sense wires are aligned in six
layers per MDC with different stereo angles, where the wires are inclined
by ± 40° for the outermost over ± 20° to 0° as depicted in the right panel
of Figure 3.6. The wires of the 0° layers are shifted by half a drift cell
relative to each other. This setup allows to detect the traversing points of
charged particles by projections of the fired wires on a convenient plane for
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3.4 Time-of-flight system

deducing their intersection points. The gas mixture for the Au+Au run was
70% argon and 30% carbon dioxide for MDC I, which are the mini drift
chambers of the first plane in beam direction. The other planes MDC II -
IV were operated with a mixture of 84% argon and 16% isobutane. Argon
is the counting gas, while the CO2 and the isobutane are used as quenching
gases for absorbing the UV radiation of the excited gas ions after relaxation.
Furthermore, it is also possible to use the time-over-threshold in the MDC
front-end (preamplifier + time-to-digital converter) to deduce the energy
loss dE/dx of ionising particles in the gaseous chambers [67]. It is strongly
related to the momentum of the passing particles, described by the Bethe-
Bloch equation ([68], Eq. (32.5)). As a consequence one has an additional
information for the particle identification besides the time-of-flight measure-
ment, see Section 3.4. However, for the pion identification in the present
analysis it has not been used.

3.4 Time-of-flight system

Besides the magnetic spectrometer the time-of-f light system is the second
essential part of the particle identification. The time-of-flight signal is de-
duced from the time difference between the start and the end time of tracks.
The first is measured by a high-precise diamond START detector, the sec-
ond by the META detectors, consisting of TOF scintillator stripes at large
polar angles θ and layers of Resistive Plate Chamber (RPC) cells at lower
polar angles.

3.4.1 META detectors

Figure 3.7: Scheme
of the time-of-flight
wall TOF with hexag-
onal symmetry and
eight modules per sec-
tor, covering the polar
angle range from 44°
to 88°. Figure taken
from [67].

The META detectors are located downstream behind the outer mini drift
chambers and are divided into two groups of sub-detectors. The first one is
the TOF wall, covering polar angles θ between 44° and 88°. It is arranged
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in six sectors symmetrically around the beam axis, and each sector consists
of eight overlapping modules in polar direction, as depicted in Figure 3.7.
Each module again is divided into eight plastic scintillator stripes, arranged
in azimuthal direction at the center of the rods, possessing a connection to a
photo multiplier tube (PMT) on each end. Passing charged particles excite
the scintillator atoms, which emit photons at relaxation. The photon signals
are amplified by the PMTs to measure an electric signal. The achievable
time resolution is up to 150 ps. With the time difference of both PMTs the
interaction point of the particle with the TOF strip can be deduced with
a spatial resolution of 2-3 cm in azimuthal direction. In polar direction the
resolution is limited by the granularity of the modules at about 2.5 cm. Same
as for the MDCs the read-out signal can be used for determining the energy
loss dE/dx of the ionising particles.

Figure 3.8: Top: Picture of the layer alignment of the RPCs of one
sector. Bottom: Photographs of one RPC cell consisting of three stacked
aluminum plates separated by two glass plates. On top the read-out
electronics is installed. Figures taken from [64, 69].

The second group of META detectors are the resistive plate chambers (RPCs).
They are again arranged in six sectors following the hexagonal symmetry
of the other sub-detectors. Each sector contains 187 cells, arranged in rows
in transverse direction and divided into three columns and two layers in
downstream direction of the particle tracks, depicted in the top panel of
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3.4 Time-of-flight system

Figure 3.8. One cell is build up of three vertically stacked aluminum elec-
trodes separated with two glass plates as shown by the photographs in the
bottom panels of Figure 3.8. The gaps in between are filled with a gas
mixture of 90% Freon and 10% Sulfur Hexafluoride [70]. A passing charged
particle ionises the gas atoms and creates an avalanche of electrons, leading
to a measurable discharge with a time resolution of about 70 ps. The spatial
resolution in transverse direction is between 22 and 42 mm depending on
the cell width at different location. In azimuthal direction the position res-
olution is 8 mm and the efficiency for detecting minimal ionising particles is
around 95%. The RPCs cover the polar angles θ between 18° and 45°, which
is the inner region of the spectrometer closer to the beam axis. There the
track densities in Au+Au collisions are comparatively high and the choice
of the RPC system with higher granularity as compared to the TOF wall
was inevitable. For more technical details see also [70, 71].

Figure 3.9: Cross
section of one of the
1024 pads of one
module of the hadron-
blind Pre-Shower
detector. Elec-
trons and positrons
generate an elec-
tromagnetic shower
when passing the lead
converters, measured
with three drift cham-
bers. Figure taken
from [64].

Directly behind the RPC detectors six modules of shower detectors are in-
stalled with the same polar angle coverage. Each module covers one sector
and consists of 1042 pads. One pad consists of three stacked drift chambers
with two lead converters in between, having a width larger than twice the
radiation length of the electrons in this material. A depiction is shown in Fig-
ure 3.9. In contrast to hadrons the lightest leptons create an electromagnetic
shower when passing the lead converters, which is used for discriminating
them from each other at momenta larger than 300 MeV/c.

3.4.2 START and VETO detector

About 2 cm in front of the target, a 4.7 mm broad and 70µm thick monocrys-
talline CVD diamond semiconductor [72] is installed, called START detec-
tor. It is divided into 16 stripes in both x and y directions and measures
the passing time of the gold ions with a resolution of around 50 ps. For
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Figure 3.10: Photograph of the Start (left) and the Veto (right) detec-
tors within their supports and a depiction of their orientation in front
and behind the gold target. Figure taken from [63].

avoiding efficiency losses it was switched between nine disjunct beam spots
and the efficiency was above 95%. A 100µm thick polycrystalline CVD dia-
mond VETO-detector is installed 70 cm behind the target. If a signal from
the VETO detector follows a signal from the START detector within a rea-
sonable time difference (∼ 10 ns) one can be sure that no reaction between
projectile and target nucleons took place. This information allowed to re-
duce the dead time of the HADES setup. If no VETO hit is detected, the
times from the START detector are taken as the start times of the Au+Au
reactions. A scheme of the alignment of START and VETO detector is
shown in Figure 3.10.

3.5 Forward hodoscope

Seven meters behind the target the forward wall is installed. Its main pur-
pose is to measure the charged spectators of the projectiles for reconstructing
the event plane of a collision. The hodoscope covers in total an area of 1.8
× 1.8 m2 and consists of 288 scintillator cells. Each cell has a thickness
of 2.58 cm and an area between 4 × 4 cm2 (closest to the beam) and 16
× 16 cm2 (outermost region) to account for different track densities, as de-
picted in Figure 3.11. Each cell is connected to one PMT. The measured
energy deposit together with the time-of-flight information allow to identify
the charge and the velocity of the incoming particles.
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Figure 3.11: The forward hodoscope with the arrangement of scintil-
lator cells surrounding the beam axis. Dimensions of the blocks are 4
× 4 cm2 (red), 8 × 8 cm2 (green) and 16 × 16 cm2 (blue). Figure taken
from [64].

3.6 Data acquisition and trigger

The data acquisition (DAQ) is performed by 500 modules of Field Pro-
grammable Gate Array (FPGA) based platforms. It satisfies the require-
ment of handling high data and event rates up to 8 kHz at 50% duty cycle.
During measurement around 400 MByte/s are written to storage. Further-
more, the used DAQ system provides very low electromagnetic noise. The
HADES DAQ sytem makes use of Trigger and Read-out Boards (TRB)
developed at GSI. All sub-detector systems and the steps from read-out
are combined in the dedicated network TrbNet, developed specifically for
HADES [69]. All data is streamed via Gigabit Ethernet to the event builders,
where the preparation for long time storage and the following analysis is per-
formed. A scheme of the data processing is depicted in Figure 3.12.
Several triggers are installed to reduce the dead time of the data acquisition
and to preserve the storage capacity for events with potential good quality.
They are combined in the Central Trigger System (CTS) of HADES. The
first level trigger (LVL1) selects only events with at least a certain track
multiplicity. The track multiplicity is correlated to the centrality of the
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Figure 3.12: Scheme of the complete HADES DAQ network consisting
of several network nodes (violet), read-out moduls (green) and additional
front-end modules (grey). All modules are connected via a dedicated
network protocol (TrbNet). Data transfer to several servers is streamed
via the Gigabit Ethernet. Figure taken from [69].

collisions, therefore most of the peripheral collisions and collisions with de-
tector material outside the target are excluded. The decision time of this
trigger of about 100 ns is much faster than the average time in between two
collisions. In the Au+Au experiment, a minimal track multiplicity of 20
in the TOF wall was required by the so-called PT3 trigger. In addition, a
minimum bias trigger, called PT2, selected collisions with at leasts five hits
in the TOF wall, but reduced by a scaling factor of ten. All selected events
were then written from the buffer memory into Hades List Data (HLD) files.

3.7 UrQMD simulations

In addition to the collected experimental data of Au+Au collisions a sam-
ple of 100 million events of UrQMD simulations has been produced. The
ultra-relativistic quantum-molecular dynamics model is a transport imple-
mentation, introduced in [73]. The event tracks are propagated virtually
through the HADES setup using the package HGEANT, which is an exten-
sion of the CERN software GEANT 3.21 [74] including the specific HADES
geometry. It contains the magnetic field and all volumes and materials of
the sub-detectors. Detector hits are generated along the particle tracks ac-
cording to known physical processes. Then all detector hits are digitised
analogously to experimental events and can be used for the analysis similar
as the HLD files.
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The data analysed in this thesis was taken in April 2012 at GSI in Darmstadt
with the experimental setup described in the previous chapter. The heavy-
ion synchrotron SIS18 provides the beam with bunches of gold nuclei with
kinetic energy of 1.23AGeV and intensities between 1.2 and 1.5 × 106 ions
per second. The nucleon-nucleon center-of-mass energy √

sNN
1 is 2.4 GeV

and the corresponding mid-rapidity ycm is 0.74. Within 557 beam hours and
with a trigger rate of up to 8 kHz, 7.3×109 events are collected in total. This
corresponds to a data volume of 140 TByte written with a maximum data
rate of 400 MByte/s and 50 % duty cycle. During the last 48 hours of data
taking the magnetic field of ILSE was inverted (same amplitude, opposite
direction). The generated reversed-field data can be used for cross-checks.

4.1 Event characterization

The analysis of the HADES data is done event-by-event. Within these events
the fundamental parameters of the collision differ. Since the system size of
the single nuclei is fixed by the choice of Au+Au, the remaining variables of
interest are:

• the place of collision: primary event vertex,

• number of participating nucleons Apart,

• the closest distance of the nuclei: impact parameter b,

• orientation of the impact parameter: event plane / reaction plane.

In this section, the relevant steps for determining these physical properties
are introduced. Furthermore, a general selection on the quality of the event
data is performed. Detailed summaries with comparable content can be
found in [64, 65].

1The invariant center-of-mass energy is defined as the square root of the sum of squared
components of the four vector of all participating particles. For fixed-target experiments
it can be calculated by √

sNN = (2Ekin, beammtarget + m2
target + m2

beam)1/2 with the kinetic
energy of the projectile Ekin, beam.
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4.1.1 Event Vertex

Figure 4.1: Reconstructed event vertices in x and z direction in units
of mm. The 15 separated gold segments of the target are clearly visible.

The event vertex is determined in three steps. A first approximation uses
the center of each target segment as projection point for the hits in the
inner mini drift chambers MDC I and MDC II. Assuming straight lines
the segment with the best projection resolution is considered as primary
target slice. Although this approximation delivers with high efficiency the
correct segment it is only sensitive to the position along the beam direction.
In a second step, the inner segments found from the track reconstruction
are extrapolated to the target region, and then, the geometrical center-of-
gravity of acceptable points provides the vertex point. The last method
uses the fully reconstructed tracks and delivers the most precise primary
target vertices. Since the vertex reconstruction is an iterative procedure it
is inevitable to anticipate the description of the track reconstruction already
in this section. All of these methods are highly correlated to the total
charged particle multiplicity per event and, therefore, they are more precise
for higher track densities. In Figure 4.1 the primary vertex distribution in
x and z direction is shown for an exemplary data set. The 15 target slices
can be well distinguished.

4.1.2 Event cleaning

To make sure that only Au+Au events with good quality and meaningful
physical content are used for the analysis, all recorded events have to pass
a sequence of event conditions. Relevant criteria are:

• certain stability of the mini drift chamber operation,

• PT3 trigger,
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• event vertex in the target region,

• no event pile-up, i.e. no temporal superpositions of two or more nucleus-
nucleus reactions,

• well separable events in time.

Stable MDCs

Figure 4.2: Mean number of charged pions per event (symbols, averaged
per file) compared to the mean value (solid lines) for one day, individually
for each sector (different colors in the legend). Dashed lines delineate a
± 5 % range around the corresponding means, symbols with error bars
are outside this range. Figure taken from [75].

During the measurement it turned out that the counting rates of the mini
drift chambers were not completely stable all the time. Reasons for that
are too high currents and corresponding high voltage changes during the
beam-on time, which automatically ends up in different efficiencies of the
sub-detectors over measuring time. Especially sector 2 was working properly
only a few days and most of the time had to be turned off, which leads to
a general exclusion of the region of azimuthal angles of ϕ between 240° and
300°. For that reasons a careful and individual inspection of the files over
the whole beam time was inevitable. To account for the inefficiencies of the
sub-detectors, a time dependent day-by-day analysis of the counting rates
of electrons, protons and pions per sector has been done. The values are
compared to the average values, illustrated in Figure 4.2 exemplary for day
109. The dashed lines represent a ±5% window around the mean values. If
the counting rate in a certain HLD file is outside this window (depicted by
symbols with error bars), the sector is declared as non-stable. Since sector
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2 is already excluded for the whole measurement no other sector is allowed
to work inappropriate and files with another non-stable sector are excluded
completely from the analysis.

Temporal and spatial location

For the further analysis only PT3 triggered events are used. Step-by-step
selections are applied mostly related to the Start and Veto system and to the
event vertex, hence imperfect events are removed if the following conditions
are not fulfilled:

• selectStart: Only events with at least one hit in the Start detector
segments and with no hit in the Veto detectors are used.

• StartPileUp: In a time interval of −5 ns to 15 ns around the hit cluster
in the Start detector no other hit took place. Otherwise the event
cannot be clearly assigned to the exact start time, which leads to
uncertainties in the time-of-flight determination of the particle tracks.

• GoodClusterVertex : The reconstructed event vertex is required to be
located within −65 < z < 0 mm, i.e. the position of the gold target. In
addition at least one reconstructed track and two identified particles
(GoodCandVertex) have to be found.

• NoVeto: Events with a measured Veto hit in the time interval ±15 ns
around the Start time are excluded. This second cut on the Veto infor-
mation reduces the probability of having a second projectile nucleus
in a time window of 30 ns. Due to the finite efficiency of the Start
detector the starting signal of one particle could get lost, but may be
given by another beam particle, which would disturb the time-of-flight
evaluation.

• VetoStart: To account for the limited Veto efficiency, events are dis-
carded with a subsequent Start hit in the time interval from 15 to
350 ns without a corresponding Veto hit.

• StartMeta: Events with a delayed Start hit and correlated signals in
the META detectors in the time window of 80 to 350 ns after the
measured start time are removed to avoid pile-ups caused by other re-
actions. The lower time limit corresponds to the spectrometer passing
time of the slowest particles. The upper time was chosen according to
the data processing time through the electronic devices of the largest
drift chambers.

Finally about 2.1 × 109 events remain with high quality, which is around
50 % of the PT3 triggered data and about 42 % of the initial events after
excluding inappropriate sectors.
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4.1.3 Centrality
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Figure 4.3: Distributions of the modelled nuclei A and B, with 197
nucleons each, in the Glauber approach with an impact parameter b =
6 fm. The color of the nucleons correspond to the number of inelastic
collisions they will experience. Figure taken from [76].

The physical parameters of heavy-ion collisions like overlap volume, particle
yield, etc., are not independent of the impact parameter b and scale with
the number of participating nucleons Apart. Both, impact parameter and
number of participants, are correlated to the number of produced particles
(really produced particles, especially leptons, pions and kaons + scattered
nucleons and fragments) and scale with the centrality of the collision. Only
charged particles in the acceptance of the spectrometer can be measured by
HADES. However, one can asume that the number of these particles scale
with the total number of particles in accordance to the wounded nucleon
model [77]. One can use either the number of reconstructed tracks from
the MDCs, Ntracks, or the total number of hits in the META detectors,
NTOF+RPC. The first one has the advantage of being less contaminated
by background hits. However, only fully reconstructed tracks from appro-
priately working sectors are taken into account, and tracks which are too
close to each other are not resolvable. The total number of reconstructed
tracks is clearly reduced w.r.t. the number of hits in the TOF wall and the
RPCs. Without further good calibration, Ntracks is only hardly usable over
the whole beam time. Therefore, for the rest of the present investigation
only NTOF+RPC is used as charged particle multiplicity, since it is measured
very stably over the whole beam time. It must be taken into account that
the complete distribution is truncated at low numbers of charged particles
by the multiplicity triggers PT3 and PT2. Models have to be used for both,
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Figure 4.4: Cross section as a function of NTOF+RPC
hits . Minimum bias

(blue) and PT3 (green) data compared to the Glauber MC model (red
histogram). Figure taken from [76].

estimating the shape of the whole distribution and the connection between
the centrality classes and the average impact parameter and number of par-
ticipating nucleons. Here a Glauber Monte-Carlo model [78] is used, imple-
mented like in [79]. The model assumes two spherical nuclei with randomly
distributed nucleons following a Fermi distribution of the density ρ,

ρ(r) = ρ0
1 + w(r/R)2

1 + exp( r2−R2

a2 )
(4.1)

and having a minimal seperation distance dmin of their centers. The radius
parameter is set to R = 6.55 fm and the skin depth a = 0.52 fm. The pa-
rameter w is set to zero asuming a homogeneous radial density profile inside
the nuclei. For more details see [76]. The centers of the nuclei are displaced
in transverse direction by the impact parameter b, randomly distributed up
to bmax = 2R, following the distribution P (b) ∼ b db. It is asumed that the
nuclei and the nucleons as well follow straight lines parallel to the beam
axis moving in direction of each other. The longitudinal position does not
play a role within this approach. An illustration of the modelled nuclei is
shown in Figure 4.3. If the distance of a nucleon from nucleus A to a nu-
cleon of nucleus B is smaller than the interaction length D =


σNN/π in
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Figure 4.5: Left: Anti-correlation between charged particle multiplicity
NTOF+RPC

hits and impact parameter b delivered by Glauber MC simula-
tions. Right: Distributions of the impact parameter. Colored distribu-
tions belong to defined centrality classes (blue: 0 − 10 %, red: 10 − 20 %,
green: 20 − 30 %, yellow: 30 − 40 %). Figures taken from [76].

the transverse plane, the two nucleons are asumed to collide and treated
as participants. This criterion is checked for all possible combinations of
nucleons. The isospin averaged inelastic cross section σNN is set to 23.8 mb
[76].

The introduced Glauber model was applied in a simulation of a sample of at
least one million events and then compared to the charged particle multiplic-
ity given by NTOF+RPC. As mentioned above, the number of charged parti-
cles should be proportional to the number of participants, ⟨Nch⟩ = µ⟨Apart⟩.
To account for event-by-event fluctuations, the number of charged particles
per participant is sampled with a negative binomial probability distribution
(NBD),

Pµ,k(n) = Γ(n+ k)
Γ(n+ 1)Γ(k)

(µ/k)n

(µ/k + 1)n+k
, (4.2)

with the mean value µ, the gamma function Γ, and k being related to the
relative width of the distribution, σ/µ =


1/µ+ 1/k. The parameters

µ and k take into account the acceptance, reconstruction efficiency and
the resolution of Nch. A further efficiency function ϵ(α) takes into account
non-linear multiplicity-dependent inefficiencies. Finally, the distribution of
NTOF+RPC is fitted by

NTOF+RPC = GlauberMC × NBD(µ, k) × ϵ(α), (4.3)
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which is illustrated in Figure 4.4. For more details and the used values
of µ, k and α see [76]. As also illustrated in Figure 4.4, the events can be
divided into intervals of centrality as function of NTOF+RPC for experimental
data. Since the experimental data is reduced at low values of NTOF+RPC
due to the multiplicity triggers, the values at the edges of these centrality
intervals are determined from the Glauber MC data and translated after the
fit to the experimental data. Within a chosen centrality interval the mean
impact parameter and the mean number of participants can be deduced
from the Glauber model and easily adapted to the experimental data. On
the left hand side of Figure 4.5, the correlation between impact parameter
b and NTOF+RPC from the Glauber MC data is exhibited. On the right
hand side of the same figure, the distribution of the impact parameter for
different centrality classes is shown. The grey shaded area illustrates the
total distribution. One finds clearly the dependency σ ∼ b db with Gaussian
smearing.

4.1.4 Event plane

Figure 4.6: Illustration of the event plane reconstruction. The projec-
tile spectators hit the forward wall and the sum of all hits relative to the
beam center define the event plane vector Q⃗EP. Figure taken from [2].

The reaction plane of a heavy-ion collision is defined as the plane spanned
by the impact parameter vector b⃗ and the beam axis. The strong directed
flow in the SIS18 energy regime [80] allows to use the projectile spectators
for determining the event plane with high resolution. The charged nuclei
and fragments within the polar angle range of 0.3° to 7.3° hit the cells of
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Figure 4.7: Distribution of the event plane angle for one day.

the forward wall. Adding all the vectors u⃗i between the beam center and
the centers of the hit scintillators one gets the Q-vector,

Q⃗EP =
N

i=0
u⃗iωi, (4.4)

see Figure 4.6. The event plane angle ϕEP is defined by the direction of the
Q-vector. The signals from the scintillator cells of the forward hodoscope
are sensitive to the charge of the hits, incorporated by the weighting factor
ωi taking into account charge states up to Z = 6. For this thesis, Q⃗EP
goes along with the x coordinate of the reaction-plane-fixed xyz coordinate
system (while z goes along the beam axis and y is perpendicular to the re-
action plane). The accuracy of the event-plane reconstruction is increased
by a day-by-day re-arrangement of the beam center relative to the scintilla-
tor blocks with correct scaling, individually for all chosen centrality classes
(for details see [2]). For the further analysis, only events with reconstructed
event plane are considered, since the event plane angle will be used as one
criterion for the combinatorial background determination in Section 4.3.3.

The estimated event plane angle differs from the underlying true physi-
cal reaction plane angle ϕRP by ∆ϕ. On the one hand, the finite-number
nucleon distribution inside the colliding nuclei is not homogeneous, but fluc-
tuates from event to event around the ideal cylindric symmetry. On the
other hand, the finite granularity of the forward wall has to be taken into
account. Both, implicit and explicit aspects, lead to a finite resolution of the
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Figure 4.8: Distribution of the difference between the event plane angles
of two sub-events A and B for different centrality classes.

event plane. One method for deducing the implicit resolution is introduced
in [81] and described in the following.
For the general problem one starts with is a normalised azimuthal distribu-
tion, expressed as Fourier series,

dN

dϕ
= 1

2π


1 + 2


n≥1

cn cosnϕ

, (4.5)

where it does not matter whether N describes a particle yield, a source
radius or any other angular dependent measure. The Fourier coefficients
cn = ⟨cosnϕ⟩ of the measured distribution are related to the true coefficients
by

⟨cosnϕEP⟩ = ⟨cosnϕRP⟩⟨cosn∆ϕ⟩. (4.6)

On can show, that the distribution of ∆ϕ is an universal function depending
only on one real parameter χ, which is a measure of the accuracy of the
reaction plane determination [81]. It can be expressed as

⟨cosn∆ϕ⟩ =
√
π

2 χe−χ2/2

In−1

2


χ2

2


+ In+1

2


χ2

2


, (4.7)

where Ij is the modified Bessel function of order j. The value of χ can
be extracted from experimental data. A widely used method is dividing
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each event randomly into two sub-events A and B containing half of the
particle number and calculating Q⃗EP by Equation (4.4) for each of them.
One constructs the distribution of the relative angle ∆ϕR = |ϕEP, A −ϕEP, B|
and uses then the simple expression

N(90° < ∆ϕR < 180°)
N(0° < ∆ϕR < 180°) = exp(−χ2/2)

2 (4.8)

to obtain the value of χ. In Figure 4.8 the experimental distributions of ∆ϕR
are exhibited for several centrality intervals, exemplary for an event sample
of one day beam time. This procedure is called the sub-event method and
has solely been used for deducing the event plane resolution in the present
analysis.

4.1.5 Event selection

Table 4.1: Centrality classes used in the azimuthally integrated anal-
ysis, corresponding boundary values of the charged particle multiplicity,
correlated mean value of the impact parameter, and mean number of
participating nucleons in Au+Au collisions at 1.23A GeV.

centr. (%) NTOF+RPC
hits, min NTOF+RPC

hits, max ⟨b⟩ [fm] ⟨Apart⟩

0-10 157 250 3.1 303
10-20 117 156 5.7 213
20-30 82 116 7.4 150
30-40 55 81 8.7 103

Table 4.2: Centrality classes used in the azimuthally dependent analy-
sis, mean number of the impact parameter, the number of participants,
and the event plane resolutions for the first and second order Fourier
coefficients.

centr. (%) ⟨b⟩ [fm] ⟨Apart⟩ ⟨cos ∆ϕ⟩ ⟨cos 2∆ϕ⟩

0-10 3.1 303 0.648 0.298
10-20 5.7 213 0.847 0.572
20-30 7.4 150 0.887 0.653
25-35 8.1 125 0.886 0.651
30-45 9.0 93 0.871 0.620
10-30 6.5 181 0.866 0.609

The final analysis of the pion pairs is performed differentially w.r.t. collision
centrality using intervals of the charged particle multiplicity NTOF+RPC

hits .
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The boundary values of these intervals and the corresponding values of the
mean impact parameter b and number of participants Apart are summarised
in Table 4.1. For more peripheral collisions, the intervals for the azimuthally
dependent analysis are chosen slightly different. Overlapping intervals are
chosen (25 − 35 %) to check, if the results of the analysis show a smooth
behaviour in direction of centrality. The more peripheral the collisions is
the less is the number of the produced pions per event and even less are the
combinations of pion pairs. The choice of the interval 30 − 45 % improves the
statistics a bit. However, due to the PT3 trigger it is implicitly shifted more
to 30 − 43 %, visible in Figure 4.4. Furthermore, a larger semi-peripheral
interval 10 − 30 % is considered with respect to existing results at larger
beam energies, which will be discussed later.

4.2 Particle identification

Now the event-by-event particle identification is introduced leading finally to
the single pion spectrum for the subsequent two-particle analysis. A detailed
description of the content of this section can be found in [64, 65].

4.2.1 Tracking

Charged particles passing the active detector volume of the MDCs induce
electronic signals in the sense wires of drift cells, and the corresponding wires
are called ’fired’. Combining the signals of ’fired’ wires of all six layers with
different orientation of the stereo angles allows to deduce potential track hit
points in the chamber. A pair of one hit in MDC I and one in MDC II form
a linear inner track segment neglecting the almost vanishing magnetic field
inside the MDC area. Analogously, one hit in MDC III and one in MDC
IV form a linear outer track segment. The inner and outer segments are
then matched to each other considering the magnetic field in between. The
found tracks are finally extrapolated to the META layer and matched with
the hits in TOF or RPC/SHOWER, respectively. Since the charged parti-
cle multiplicities in Au+Au collisions are relatively high, a lot of possible
combinations between the hit points occur and a large number of so-called
’fake-tracks’ or ’ghost-tracks’ appear. To account for the high occupancy
in the detector system a refined algorithm is needed, to search for the most
probable selection of track candidates and reject efficiently the ’ghost-tracks’.
The relevant steps of this algorithm are depicted schematically in Figure 4.9
and listed in the following with a few annotations:

• Cluster Vertex Finder
In a first approximation the target segment is determined. Each seg-
ment is taken as view point for a projection of the wire distribution
of MDC I and II on a virtual projection plane, see Figure 4.10. The
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Figure 4.9: Flow chart of track reconstruction. Figure taken from [65].

segment with the best projection resolution (which is related to the
cluster size) and the biggest amount of clusters is taken as the event
vertex. Additionally, the information of the drift time is used to re-
duce the projected cell volume and to increase the spatial resolution
(see right panel of Figure 4.10).

• Cluster Finder Inner MDCs
For the chosen target vertex, the fired wire clusters of MDC I and II are
projected on the binned projection plane introduced in the first step.
A fired wire increases the bins along its projection by one, and regions,
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Figure 4.10: Left: Illustration of the vertex finder. Right: Illustra-
tion of the use of the drift time for reducing the projected volume and
increasing the spatial resolution of the vertex finder procedure. Figure
taken from [64].

where fired wires cross, form a local maximum. If the number in this
maximum exceeds a dynamically set threshold (typically Nthr ≥ 9)
it is accepted as a wire cluster. If the threshold is set too low, more
ghost-tracks enter due to randomly crossing wires, while a too high
threshold reduces the efficiency of the cluster-finding procedure. On
the right side of Figure 4.11, an example for a clear local maximum
formed by fired wires is exhibited.

• Removal of ghost-tracks
There are several distinctive features of ghost-tracks compared to real
tracks, which can be used to clean the track sample:

– smaller average amplitude of the local maxima of the projected
wires,

– smaller average number of wires contributing uniquely to the clus-
ters, i.e. wires which do not contribute to more than one cluster,

– smaller average cluster size w.r.t. the bins contributing to the
maximum of the cluster.

In a first step those clusters are removed, which are practically formed
by an identical set of wires as the real tracks. Secondly ghost-tracks
formed by fired wires of different clusters are removed.

• Pre-fit Procedure for Inner Segment and Inner Segment Fit-
ter
The list of fired wires is now used for fitting all inner segments as-
suming a straight line from target vertex over the hit point in MDC I

52



4.2 Particle identification

Figure 4.11: Left: Illustration of the segment finding process. Right:
Projection of fired wires in the projection plane with a clear local maxi-
mum. Figure taken from [64].

to the hit point in MDC II. Using a Garfield2 simulation the distance
between the closest approach of the assumed line and the fired wires
is translated into a drift time tdrift, which is used for minimising the
functional F in the form

F =


i

(tidrift + toff + tiTDC)2

(∆tidrift)2 wi, (4.9)

where toff is the time-of-flight of the particle from the target to the
drift chamber, tTDC is the drift time measured by the TDC minus the
signal propagation time in the wire (tmeasured − twire), wi is a weighting
constant, and the error of the drift time measurement ∆tidrift is deter-
mined from Garfield simulations. More details concerning drift time
simulations can be found in [67]. The sum runs over all contributing
fired wires, and minimisation is done using the χ2-method. The devi-
ation between the fit and the hit points is given by χ2

inner, which acts
as a quality parameter and can later be used to select the best track
candidates.

Afterwards this procedure can be repeated with the previously lost
wires and with giving up the restriction of a primary target vertex,

2Garfield is the name of a software from CERN for simulating two- and three-
dimensional drift chambers
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which allows to collect also off-vertex tracks coming from different
resonance decays.

• Hit Point in Virtual Kick Plane
Extending the inner segments towards the outer detector regions they
cross an almost flat virtual kick plane, which is located in the region
of maximal magnetic field. It approximates the continuous influence
of the magnetic field on the charged particles by a deflection of their
momenta in one single point. This procedure is illustrated in the left
panel of Figure 4.11. The hit point inside the kick plane is the starting
point for the tracking through the outer drift chambers, MDC III and
IV.

• Cluster Finder Outer MDCs
The cluster finding for the outer MDCs is very similar compared to
the inner MDCs. Instead of the target vertex the intercept between
inner segment and kick plane is used as view point for the projection
of fired wires in MDC III and IV. Furthermore, only the range of
physical correlations of the momenta and the charge of the tracks are
considered. Again, also the procedure for removing ghost-tracks is
applied similarly to the inner segments. The outer cluster finding is
repeated for each intersection point of the inner segments individually.

• Outer Segment Fitter
Analogue to the inner segment fitter, the outer segment fitter uses
a χ2-minimisation procedure for fitting the outer segments w.r.t. the
drift time from the TDCs and delivers a quality parameter χ2

outer for
a later selection of the best track candidates.

• META Matching
Finally, the outer segments are roughly matched to a registered META
hit within a 5σ resolution range, while a more precise matching is done
in line with the momentum reconstruction described in the following
section.

4.2.2 Momentum reconstruction

The momentum of the charged particle tracks is determined by their curva-
ture in the magnetic field. The Lorentz force F⃗L is defined as

F⃗L = q(v⃗ × B⃗), (4.10)

with the particle having charge q and propagating through the magnetic
field B⃗ with velocity v⃗. The deflection ∆p⃗kick of the momentum follows then

∆p⃗kick = p⃗out − p⃗in =

dp⃗ =


F⃗ dt =


q(v⃗× B⃗)dt = −q


B⃗×ds⃗, (4.11)
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Figure 4.12: Illustration of the momentum reconstruction. The de-
flection of the particle in the magnetic field is first approximated by a
single kick of the momentum calculated with Equation (4.11). A spline
method is used afterwards for solving the equation of motion at some
points between the inner and outer segment. This solution is used as
input for an iterative Runge-Kutta procedure solving the equation of
motion numerically. Figure taken from [64].

where p⃗in is the incoming and p⃗out the outgoing momentum vector of the
particle. The deflection angle ∆θ can be approximately calculated using

sin(∆θ/2) = |∆p⃗kick|
2|p⃗|

, (4.12)

with |p⃗in| = |p⃗out| = |p⃗|. In the following, three relevant procedures for
the momentum reconstruction used in the HADES Au+Au analyses are
explained:

• Kick-plane method
The deflection angle is deduced using the inner segment of the track
and the straight connection of its interception point on the virtual
kick plane with a hit in the META detector. With Equation (4.12)
and the momentum kick calculated with Equation (4.11), one gets an
absolute value of the momentum. For given ∆θ and p⃗kick, the values of
the particles momentum are stored in a look-up table in the HADES
detector simulation software HGeant. For more details see [63].
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• Spline method
For increasing the momentum resolution the equation of motion is
solved using a spline method on several points between MDC II and
III using the well known (by Hall probe measurements) magnetic field
in each point (denoted as orange dots in Figure 4.12). This method (as
well as the kick plane method) neglects the influence of the magnetic
field inside the inner and outer segments and still uses the approxima-
tion of straight track segments. This is not exact and leads especially
for low momenta to significant uncertainties in the reconstructed mo-
menta. Further details are discussed in [63].

• Runge-Kutta method
The solution of the spline method is used as input for an iterative
numerical Runge-Kutta procedure. The equation of motion is solved
taking into account the magnetic field over the whole track distance.
The trajectory recursively determined in a first step is fitted in a second
step to the measured hit points. This procedure is iterated up to
eleven times and the finally provided quality parameter χ2

RK can be
used for selecting tracks with best momentum reconstruction. The
Runge-Kutta method provides a better treatment of effects like curly
tracks, deflection of tracks close to the coils of the magnet, and energy-
loss of the particles passing through. The momentum obtained from
this method has a resolution of up to 1 %. For more details see again
[63].

4.2.3 TOF/RPC-META matching

The particle trajectory deduced by the Runge-Kutta method is extrapolated
to the META detector plane. The distance between the interception point
and a nearby real META hit is parametrised in absolute xy-coordinates by
dx and dy and the quality parameter is given by

χMM =

dx2

σ2
x

+ dy2

σ2
y

, (4.13)

with the associated uncertainties σx and σy. A more detailed description
can be found in [64].

4.2.4 Identification using time-of-flight

The momentum p of the charged particles has been determined by the cur-
vature of their tracks in the magnetic field. The orientation of the magnetic
field is such that positively charged particles are deviated in direction of
the beam axis while negatively charged particles are deviated away from it.
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4.2 Particle identification

Figure 4.13: Scatter plot of particle velocities β in dependence of the
rigidity p/Z. Black curves show the theoretical loci of several particle
species calculated with Equation (4.17). Figure taken from [64].

Hence, the polarity q of the particles is also known. Combining this infor-
mation with the time-of-flight measurement the species of the particle can
be identified. The time-of-flight is given by

∆t = tMETA − tSTART, (4.14)

where tMETA is the time signal from the META detectors and tSTART the
time signal from the START detector. Together with the track distance s,
which is the length of the reconstructed track derived from the Runge-Kutta
procedure, the velocity of the particle can be calculated:

β = v

c
= s

c∆t . (4.15)

The mass of the particle can then be determined by using

m/q = p/q

βγc
, (4.16)
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Figure 4.14: Slice in rigidity p/Z of Figure 4.13. The π− distribution
is fitted by a Gaussian distribution. Its mean value follows with high
precision the calculated value from Equation (4.17). Figure taken from
[64].

with the Lorentz-factor γ = 1/(1 − β2) 1
2 . In Figure 4.13 the correlation

between velocity β and the rigidity p/Z of the particles is plotted. Trans-
forming Equation (4.16) and setting c = 1 yields

β2 = 1
m/q
p/q

2
+ 1

. (4.17)

Using Equation (4.17) theoretical dependencies of several particles can be
add in Figure 4.13, denoted by the labeled black curves. For the pions depen-
dence the mass mπ± = 139.57 MeV [68] is taken as input in Equation (4.16).
The distribution in Figure 4.13 is sliced into narrow bins in p/Z and the
pion velocity-distributions are fitted with a Gaussian distribution, depicted
exemplary in Figure 4.14. The mean of this distributions matches with high
accuracy with the calculated values from Equation (4.16). For each slice a
3σ cut is applied according to this Gaussian distribution and the particles
inside this selected area are the identified pions for the ongoing analysis.

4.2.5 Single particle selection

As minimal conditions on the single particle tracks of the pions the following
selections are applied:

• 0 < χ2
inner,

• 0 < χ2
outer,
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4.2 Particle identification

Figure 4.15: Possibilities for track candidates sharing same detector
hits. One found inner segment can be matched to two different outer
segments with two different META hits (A) or even the same META hit
(B). The combination of one inner and one outer segment can have two
different META hits (C) or, the other way around, two inner segments
matched to separately two outer segments share the same META hit (D).
Figure taken from [82].

• 0 < χ2
RK < 1000,

• 0 < χ2
MM < 20.

Furthermore, only pions with unique detector hits are allowed, i.e. no com-
bination of two pion tracks is allowed to share either the same inner or outer
segment or the same META hit. The forbidden constellations are depicted
in Figure 4.15 (in the next section, an even more strict condition will be
defined). Unfortunately, the drift chambers in sector 2 did not work stably
during the whole beam time. Mainly only on one day all MDCs worked sta-
bly and data with six active sectors is available. For all other days mostly
five sectors delivered stable data output. Mixing together data from five
sectors and six sectors with different acceptance and efficiency, respectively,
would lead to biased distributions. Therefore, one has to decide either to
take the data with all six active sectors only or the data with one sector less.
Since for the aim of investigating correlation functions the total yield of the
pions and the related efficiencies are not existential (the total yield cancels
when considering the combinatorial background within the same acceptance
and efficiency, compare Equation (2.9)), it was decided to take the data of
all beam time days, but remove all tracks from sector 2. In Figure 4.16
the phase-space distribution in transverse mass mt less rest mass m0 and
rapidity y−ycm of the selected negative pions (upper panel) and positive pi-
ons (lower panel) is shown. The dashed black curves give the corresponding
polar angles in the laboratory system. Next to the HADES angular accep-
tance limits a clear shift between the reconstructed π+ and π− spectrum is
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Figure 4.16: Phase-space distribution in reduced transverse mass
mt − m0 and rapidity y relative to mid-rapidity, ycm = 0.74, of negative
(upper panel) and positive (lower panel) pions measured with HADES
and summed over all selected events. Dashed black curves are the cor-
responding polar angles in the laboratory system, gray dashed curves
represent the total momentum of the pions. Figure taken from [83].
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visible, due to the opposite curvature in the magnetic field. Contrary to the
restriction on pion momentum p ≤ 1300 MeV/c applied in Figure 4.16, in
the present investigation no upper momentum cut was set.
The total number of measured π− mesons is by around a factor 1.86 larger
than the number of measured π+. The main reason is the initial π+/π− ratio
governed by the isospin ratio, i.e. the ratio between protons and neutrons in
the target and projectile nuclei, and the possible pion production processes.
Since at beam energies around 1A GeV pions are mainly produced via ∆
resonances (∆−,∆0,∆+,∆++), one has to consider all possible branching
ratios with respect to the initial proton-to-neutron ratio of 79/118. In addi-
tion, the different cross sections of nn, np and pp contribute. The expected
value of the initial charge-sign pion ratio is calculated, e.g. in [84], with
1.85 by skipping the ∆ resonances, but taking directly the nucleon-nucleon
cross sections for pion production from [85]. These values can deviate from
the true ones due to higher order effects. An example is the so called neu-
tron skin effect [86], a non-homogeneous proton-neutron distribution with
a proton depletion near the surface caused by neutron balance and Pauli
blocking. But also the contribution from other sub-threshold pion produc-
tion processes can lead to deviations from the predicted number.
Another possible reason for the charge-sign difference of the yields of identi-
fied pions is the acceptance and efficiency of the spectrometer, which differs
for each particle species. Since positive particles are deflected by the mag-
netic field into direction of the beam axis, π+ at low values of transverse
momentum smaller than about 100 MeV/c are outside the region covered
by the mini drift chambers. Contrary, negatively charged particles are de-
flected away from the beam axis and π− with transverse momenta down to
50 MeV/c at mid-rapidity are still inside the acceptance of the spectrometer.
This effect is clearly visible in Figure 4.16, when one compares the color map
of the pion yields with the dashed black curves representing the polar angles
in the laboratory frame. The opposite effect is visible at large polar angles,
where positive pions beyond 84° are captured, but not negative pions, and
equivalently near 45° visible at high pion momenta.
A full acceptance and efficiency corrected pion analysis of the present ex-
periment was performed in [83], providing a normalised ratio of 1.83 ± 0.17.

4.3 Experimental correlation function

4.3.1 Construction

Generally, the two-particle correlation function is defined as the ratio of the
probability P2(p⃗1, p⃗2) to measure simultaneously two particles with momenta
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Figure 4.17: Upper panel: true distribution (black) and mixed distri-
bution (red) of negatively charged pion pairs as function of the invariant
relative momentum qinv for centrality 0-5%. The gray shaded region in-
dicates the range used for normalisation. Lower panel: Corresponding
invariant correlation function, Equation (4.20), without further correc-
tions.

p⃗1 and p⃗2 and the product of the corresponding single-particle probabilities
P1(p⃗1) and P1(p⃗2) [3],

C(p⃗1, p⃗2) = P2(p⃗1, p⃗2)
P1(p⃗1)P1(p⃗2) , (4.18)

already introduced above in Equation (2.8). Experimentally, the correlated
numerator of Equation (4.18) is formed by the distribution of all pairs of
particles coming from the same event, A(q⃗ ), as function of the relative
momentum3, q⃗ = (p⃗1 − p⃗2)/2. The denominator is formed constructing
a combinatorial background using the method of event mixing, which was
introduced first in [9]. Particles from different events are used to form the
distribution B(q⃗ ) of uncorrelated pairs having the same average phase-space
distribution like the distribution of correlated pairs. Having high event
statistics this mixed distribution can be filled with a much larger number of
pairs than the true distribution to make its contribution to the statistical
uncertainty negligible. For that reason a normalisation constant N has to

3Note that this definition for the relative momentum is often used in elementary colli-
sions, see e.g. [87], but investigating heavy-ion collisions usually q⃗ ′ = p⃗1 − p⃗2 = 2q⃗ is used,
e.g. in [17]
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be introduced, and finally the experimental two-particle correlation function
reads

C(qout, qside, qlong) = N A(qout, qside, qlong)
B(qout, qside, qlong) . (4.19)

The three-dimensional relative momentum is decomposed into components
qout, qside and qlong using the Bertsch-Pratt parametrisation, introduced in
Section 2.4.2. The normalisation constant is fixed by the requirement C → 1
at large values of |q⃗| [88], where the correlation function is expected to
flatten out at unity. Analogously to Equation (4.19), the experimental one-
dimensional correlation function

C(qinv) = N A(qinv)
B(qinv) , (4.20)

is generated by projecting Equation (4.18) onto the Lorentz-invariant rela-
tive momentum,

qinv = 1
2


(p⃗1 − p⃗2)2 − (E1 − E2)2, (4.21)

with Ei =

p2

i +m2
i and mi (i = 1, 2) are the total energies and the rest

masses of the particles forming the pair, respectively. An example for the
true two-particle distribution, the normalised mixed distribution and the
correlation as function of the invariant relative momentum is plotted in
Figure 4.17. Furthermore, one-dimensional projections of Equation (4.19)
are constructed by projecting A(qout, qside, qlong) and B(qout, qside, qlong) onto
one of the components qout, qside or qlong and integrating over the other two
directions within chosen limits:

Cproj(qi) = N

 qj,max

qj,min

 qk,max

qk,min
A(qout, qside, qlong)


 qj,max

qj,min

 qk,max

qk,min
B(qout, qside, qlong)

 , i, j, k = {out, side, long}.

(4.22)
Analogously, two-dimensional projections can be constructed, integrating
only over one component of qout, qside and qlong:

Cproj(qi, qj) = N

 qk,max

qk,min
A(qout, qside, qlong)


 qk,max

qk,min
B(qout, qside, qlong)

 , i, j, k = {out, side, long}.

(4.23)

Worth to mention is that performing one- or two-dimensional projections
by integrating just the correlation function (4.19) itself over the desired q⃗
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sub-range leads to incorrect values. But Equations (4.22) and (4.23) provide
the exact way to do it (as also stated in appendix of [89]).

4.3.2 Pair selection

To fill the true distributions A(q⃗ ) introduced in the previous section, the
particles identified in Section 4.2.5 have to be paired. For all selected events
of Section 4.1.5, a list of identified pions is created, separately for π−and π+.
Then the pions in that list are paired with each other pion of the list and the
pairs are stored in another list regarding not to collect pairs with contribu-
tion of the same tracks more than once. When all pairs within one event are
collected, the next event follows and finally all true pairs are well arranged
event-by-event. The pairs are stored with all necessary event and single
particle track information for the subsequent analysis. Then the list of pairs
is looped, where the relative momenta are calculated both, the invariantly
and in the longitudinal co-moving system (LCMS), and filled in histograms,
one-dimensional for the invariant distribution and three-dimensional for the
LCMS frame using the coordinates qout, qside and qlong as mentioned in
the previous section. Moreover, the values of pair transverse momentum
pt,12 = |p⃗t,1 + p⃗t,2|, pair rapidity y12 and pair azimuthal angle relative to
the event plane Φ = ϕ12 − ϕEP are calculated, and for individually chosen
intervals of them separate histograms are used. Later in the analysis a few
histograms can be combined (e.g. all histograms of different values Φ in the
azimuthally integrated analysis, choosing a smaller or larger rapidity inter-
val in y12, etc.). In the present analysis, the intervals of pair transverse
momentum have been explicitely chosen with a width of 100 MeV/c start-
ing at 0 MeV/c. For Φ eight equidistant intervals have been chosen with
a width of 45°, where the first interval is located symmetrically around 0°.
The pair rapidity is binned in intervals of 0.1, where the central one is lo-
cated symmetrically arround mid-rapidity ycm = 0.74. The same differential
treatment as on level of the histograms is done for the different centrality
classes defined in Tables 4.1 and 4.2.
When calculating the relative momentum and decomposing into a chosen
coordinate system (here: qout, qside, qlong) one has to take into account the
permutability of particles 1 and 2, i.e. the freedom of choosing the sign
of q⃗. It allows to restrict the three-dimensional coordinate space to either
the negative or the positive hemisphere of one explicit coordinate and ro-
tate/mirror the q-vectors of the other hemisphere into the chosen one. Since
the single particle tracks follow an implicit arrangement (due to the regular-
ities applied in the DAQ, storing-algorithm in the DSTs or sorting after the
tracking sector wise, etc.), they are not randomly listed. Hence the men-
tioned freedom is less a possibility, but more a necessity to avoid a biased
pair distribution, see Figure 4.18 for illustration.
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Figure 4.18: π+π+ pair distribution from UrQMD as a function of qout
and qlong for small values of qside < 10 MeV/c, ignoring the permutabil-
ity of particles 1 and 2. The red dashed line depicts the edge of the
hemisphere with most of the entries. Data shown for exemplary chosen
pair transverse momentum range of 200 to 300 MeV/c and events within
the centrality class 0 - 10 %.

4.3.3 Mixing

The combinatorial background is formed by taking pair-wise pions from
different events. In this manner, it is excluded that the two particles are
directly correlated to each other by quantum-statistical effects or the funda-
mental forces. A pointer moves through the list of all pairs with a constant
step size controlled by a parameter istep and collects all pairs along this way
in a new array. Then all pions from the pairs of this new array are combined
with each other forming the total sample of mixed pairs, wherein never two
pions from the same event are combined. The parameter istep is used to
guarantee that in each phase space region at least ten times more mixed
pairs are generated than true pairs are available. Thus the contribution of
the combinatorial background to the statistical uncertainties is less than 5 %.
Further, istep is always chosen high enough to make sure that at maximum
only one pair per event contributes to the event mixing. Even if the pions
within the same event are not allowed to be combined, too large samples
from one event can also bias the final distribution. Typical values of istep
are 150-200 for the most central events and 50-80 for the most peripheral
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ones. These numbers are reasonable, since the number of pairs scales with
n (n − 1)/2, and the typical number n of pions per event is less than 10.
However, one also has to take into account the different implicit single pion
distribution event by event:

• different charged-particle multiplicities Nch, directly correlated with
the total pion production, belong to different impact parameters or
fluctuations in the initial nucleonic state,

• different event-plane angles ϕEP change the pion distributions in the
detector-fixed coordinate system due to the collective motion modes
of the pions, quantified, e.g., by elliptic flow,

• varying the primary event vertex in longitudinal, but also transverse
direction, leads to slight differences in the angular distributions of
acceptance and detecting efficiency of the pions.

The mentioned influences might change the shape of the distribution of all
mixed pairs compared to the distribution of the true pairs and therefore
disturb the baseline of the correlation function expected at unity. For that
reason a couple of restrictions is applied to the mixed pairs:

• |Nch,1 −Nch,2| < 10,

• |ϕEP,1 − ϕEP,2| < 30° in the azimuthally integrated analysis, and
|ϕEP,1 − ϕEP,2| < 10° for the analysis with azimuthal angle sensitivity,

• |zprim,1 − zprim,2| < 1.2 mm,

where the indices 1 and 2 refer to the different events the two pions belong to.
Since the data set is already divided into classes of centrality, the cut on the
difference of the charged particle multiplicities Nch is of minor impact. More
important is the cut on the reaction plane angle, which can be chosen coarse
for azimuthally integrated central events, where the event plane resolution is
quite low. But especially for peripheral events in the azimuthally dependent
analysis, the difference should be low enough to keep additional uncertainties
small. The cut on the primary vertex in z direction is especially important
when considering inefficiencies due to the detector geometry. Details of that
issue will be part of the next section. A cut on the transverse localisation of
the primary vertex can be added, but turned out not that significant as the
other selections. Finally, the cuts can not be set arbitrarily narrow, since
the mixing statistics is limited at some point.

4.3.4 Accounting for non-physical correlations

Besides the Bose-Einstein (wave function symmetrisation) effect and final-
state interactions related to strong and electromagnetic forces, introduced
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in Section 2.3.1, further correlations are possibly observed, and one has to
clarify either if they have a physical origin or if they appear only for technical
reasons. A prominent candidate for physical long-range correlations, i.e.
vissible at larger values of |q⃗|, are global conservation laws [90]. The relative-
momentum dependent spectrum of two particles is influenced by the total
number of degrees of freedom of the initial N particle system. This effects
becomes important in small systems, like p+ p or e+ e, but is negligible in
symmetric heavy-ion collisions with gold or lead nuclei. More interesting are
non-physical correlations emerging from an unappropriate treatment of the
detector signals. These correlations may enter the correlation function at
very low values of |q⃗| and disturb the quantum-statistical signal. Therefore
such effects have to be removed.
Acceptance and efficiency losses are included in both, the true pair distribu-
tions and the mixed ones. However, there are losses of particle tracks caused
by the presence of a secondary particles due to dead time of the detectors or
just signal generations in one detector segment, which can not clearly be as-
signed to the one or the other or to both particle tracks. The probability of
such losses depends on the localisation and the direction of the tracks inside
the spectrometer. This effect increases with the total particle multiplicity
and still applies to both, true and mixed distribution, but it becomes cru-
cial, if it is related to the considered pair. In this case, pairs from the same
event are affected, but mixed pairs are not, since the particles of them are
temporally displaced. These losses are related to pairs with lower relative
momenta and smaller opening angles in the laboratory system, therefore
these problems are also known as close-track effects or close-track deficits.
Their strength and range in the q-spectrum depend highly on the structure
of the spectrometer. Therefore, different methods are used in different ex-
periments to account for close-track effects. In the following, the important
steps for their successful treatment are discussed.

UrQMD Simulation data

The close-track deficit appears at low values of |q⃗| or qinv, respectively, which
is the same region where the quantum-statistical correlations and the final-
state interactions are expected. For that reason, the simulated UrQMD
data is useful, since it was tracked through the realistic detector simulation
HGEANT and should therefore contain also the detector effects. On the
other hand, the UrQMD simulations do not include final-state interactions
and Bose-Einstein correlations, as mentioned in Section 3.7. The simulations
are assumed therefore to act as a good indicator for the close-track effects.
In the middle panel of Figure 4.19, the invariant correlation function is
plotted (open red symbols) for a sample of the 5 % most central events.
It matches the experimental correlation function at relative momenta above
50 MeV/c. For decreasing qinv, the correlation function is steadily decreasing,
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Figure 4.19: Top: Same as Figure 4.17, but for another data sam-
ple. Middle: Corresponding invariant correlation function (4.20) for ex-
perimental data (blue) and UrQMD+HGEANT simulation data (red).
Bottom: Experimental correlation function divided by the simulated cor-
relation function, yielding the so-called double-ratio correlation function.
The physical correlations not included in the simulations remain at low
values of qinv.

as expected, since smaller relative momenta are correlated to smaller opening
angles of the pairs, implying a higher probability of hitting the same sub-
detector cells and reducing the two-track resolution.

Double-ratio method

The most simple way to account for these close-track deficits is to divide
the experimental correlation function by the simulated one. The deficits
caused by the finite efficiency and resolution of the detector are removed.
Also the correction for finite momentum resolution is included (discussed
more in detail in Section 4.4.2), since it enters both, the measured and
the simulated particle distributions. Only the wanted physical correlations,
namely the Bose-Einstein correlations and final-state interactions, remain

68



4.3 Experimental correlation function

at low relative momenta, as shown in the lower panel of Figure 4.19. This
procedure is called the double-ratio (DR) method and has been used, e.g. in
[91]. However, the accuracy of the DR method is based on the assumption
that the used simulation describes the experimental data precisely, especially
at low relative momenta. Unfortunately, the sample of achievable simulated
data in the present analysis was always less than the experimental data by
a factor of about 20, which implicates that the statistical error of the final
correlation function (and further derived quantities) is determined by the
statistical uncertainty of the simulations. Following the error propagation
of Poissonian distributions this ends up in an enhancement of the statistical
uncertainty of the experimental DR correlation function by a factor of about
4.6.

Opening-angle selection

Figure 4.20:
Correlation func-
tion equivalent to
Equations (4.19)
and (4.20), but as
function of the an-
gle differences ∆ϕ
and ∆ cos(θ) for
UrQMD+HGeant
simulation data.
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Instead of using the double-ratio method for correcting the close-track deficits
at low values of qinv one can try to identify the properties of the paired pi-
ons which repeatedly show a bad resolution. Then one can extract them out
of both the true and the mixed distribution to restore the baseline of the
correlation function at unity.
The relative momentum of a pair is correlated to the opening angle between
the two pions. Assuming the deficits origin from sub-detector inefficiencies,
they should appear more frequently the closer the pair tracks are to each
other in local position space. Therefore, the suppressed pair distribution at
low values of qinv compared to the mixed distribution should be visible also in
the opening-angle dependent correlation function. Figure 4.20 displays the
correlation function for π−π− pairs of the simulated data in dependence of
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Figure 4.21: Examples for opening angle distributions of the correla-
tion function from CERES [92] (top panels) and PHENIX [93] (bottom
panels). For details see the text.

the angular difference between the pions in azimuthal direction (ordinate)
and polar direction (abscissa), given by ∆ϕ = |ϕ1 − ϕ2| and ∆ cos(θ) =
| cos(θ1)−cos(θ2)|. The correlation function is equal to one within statistical
fluctuations over a wide range in ∆ϕ and ∆ cos(θ). However, for small values
of the angular differences a decrease of the correlation function below unity is
visible. The reduction becomes stronger the smaller the angular differences
are.
Similar investigations are done in HBT investigations of other experiments,
e.g. at PHENIX [93] or CERES [92]. The first one is a collider experi-
ment containing a cylindrically shaped time projecting chamber (TPC) as
one main component for the particle identification. Therefore, cylindrical
coordinates are more convenient, and instead of ∆ cos(θ) the difference in
beam direction ∆z is considered. The second one is also TPC based, but
as it is a fixed target experiment, spherical coordinates are useful as well.
However, in both examples it can be well distinguished between the ’good’
area, where the correlation vanishes, and a ’bad’ region, where a reduction in
pairs resolvability is settled. By applying simple rectangle-shaped selection
criteria the pair distributions are efficiently cleaned, cf. Figure 4.21. For
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the present HADES data, this is not the case. Comparing with Figure 4.20,
there is a region around ∆ cos(θ) < 0.05 and ∆ϕ < 30°, where larger reduc-
tions are visible. But besides this region there is a bigger triangle-shaped
region with smaller, but still clearly visible deficits, separated from the re-
gion of unity by a virtual line between (0, 0°) and (0.4, 40°) in coordinates
of (∆ cos(θ),∆ϕ). The origin of this unusually shaped area of deficits is
mainly related to the alignment within stereo angles of the MDC detectors
mentioned in Section 3.3.2, which introduces a correlation between ∆ cos(θ)
and ∆ϕ (mainly caused by the ±20° and ±40° wires, secondary smeared
out by the merging of the considered quantities in spherical symmetry with
the hexagonal symmetry of the sub-detectors). One could either apply a
hard cut on the opening angles by parametrising the whole area of reduc-
tions by a triangular or trapezoidal form, or one applies only a soft cut of
rectangular form choosing maximum values [∆ cos(θ)]max and [∆ϕ]max. In
the first case, the part of discarded good resolved pion pairs containing the
Bose-Einstein information at low relative momenta is too high. In the sec-
ond case, still too many pairs enter the mixing distribution which are not
resolvable within the same event and therefore disturb the correct shape of
the correlation function.

Pair topologies

Figure 4.22: Illustra-
tion of the considered pair
topologies following [92].
Left: tracks which possibly
tend to cross each other are
referred as cowboys (CB).
Right: tracks with increas-
ing distance over flight
time and no crossing are
referred as sailors (SA).

The tracks of identical particles moving close to each other are deflected by
the magnetic field nearly into the same direction. Whether the trajectories
of them cross each other inside the spectrometer depends on the momentum
difference and the initial emission angle at the target. Since the magnetic
force acts mainly in transverse direction, the initial polar angle is of spe-
cial interest. In [92] the idea has been introduced, to differentiate between
two topologies of particle pairs, the one which tend to cross each other and
the other one without crossing, considering an azimuthal projection on each
other. The decision for selecting the one or the other is chosen accord-
ingly to the impact of the magnetic field. Assuming the local differences
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Figure 4.23: True pair distribution dN
d∆ϕ d∆ cos θ (left) and correlation

function equivalent to Equations (4.19) and (4.20) (right) as a func-
tion of the opening angle differences ∆ϕ and ∆ cos(θ) for data from
UrQMD+HGeant. Top panels represent pairs with cowboy (CB) topol-
ogy, and bottom panels represent pairs with saylor (SA) topology follow-
ing Equation (4.25).

of the strength of the magnetic field for particles moving closely together is
very small, the faster particle “moves stiffer” through the field with smaller
curvature and experiences less change of its polar angle. If a negatively
charged particle with higher momentum is emitted closer to the beam axis,
as compared to the other one, after passing the region of MDCs, the dis-
tance between the particles can only increase without a crossing of their
trajectories. The other way around, if the particle with lower momentum is
emitted closer to the beam axis, it is bend to higher final polar angle than
the other one, and at some point the azimuthally projected trajectories may
cross. Due to the shape of the particle tracks of the different topologies,
the first one is called sailor (SA) and the latter one is called cowboy (CB)
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topology, illustrated in Figure 4.22. To estimate these considerations taking
into account all possible particle charges, the functional fSC is defined,

fSC = (Q1Q2)(Q2p2 −Q1p1)(θ2 − θ1), (4.24)

with Qi, θi and pi being the charge, the polar angle and the momentum
of particle i = {1, 2}. If fSC is larger than zero, the pair is assigned to
the sailor topology; if fSC is smaller than zero, it is considered to be in the
cowboy topology. Tracks of pion pairs being considered as sailors along with
Equation (4.24) are definitely not crossing each other. Contrary, the defined
cowboy characteristic opens the possibility of crossing tracks. If the bending
by the magnetic field changes the polar angle too less, or if the finitely
sized spectrometer ends before the particle trajectories would merge each
other, the pair should in principle be good resolvable. For that reason the
topologies of sailors and cowboys are here defined a bit differently compared
to [92], i.e. using additionally the information from the META detectors,
which are the last sub-detectors in flight direction of the identified particles.
The cells in both, the RPC detector and the TOF wall, are enumerated
in transverse direction by an increasing number Nmetacell. The notions of
sailors and cowboys are kept and a new functional, fMETA

SC , is defined,

fMETA
SC = (Nmetacell

2 −Nmetacell
1 )(θ2 − θ1), (4.25)

defining similarly sailors if fMETA
SC is larger than zero and cowboys if fMETA

SC
is smaller than zero. Figure 4.23 (right) shows the correlation function
similarly to Figure 4.20, but split into the CB topology (top) and the SA
topology (bottom), using the definition given by Equation (4.25). In addi-
tion, the left panels show the total true particle distributions as a function
of ∆ cos(θ) and ∆ϕ. As expected, the CB pairs are located at small val-
ues of ∆ cos(θ), since the bending power of the magnet is limited. Looking
at the left panels one can clearly see the larger deficits for the CB topol-
ogy at ∆ϕ smaller than 40° compared to the SA topology. However, for
the sailor pairs still the triangular or trapezoidal shaped region of smaller
reduction described in the last section is visible. This is not astonishing,
since it was related to the alignment of the MDC detectors and, within the
present consideration of pair topologies, no further restriction concerning
the drift chambers has been applied. Finally, keeping only the sailor pairs
and discarding the cowboy pairs would improve the quality of the correla-
tion function with reasonably low loss of correlated pairs at low qinv, but
the remaining shortcomings are still significantly disturbing the correlation
function, comparable to the effects mentioned above in the paragraph before.
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Figure 4.24: True (left) and mixed (right) pair distribution dN
dNshared

wires dqinv

in dependence of qinv and number of shared wires N shared
wires , cf. text.

Low-level data-driven pair cut

With the above findings, an investigation on the level of MDC wire layers
seems to be inevitable. For that reason, for each particle per pair the hits
in the 24 MDC layers (four planes and six layers per plane) are explicitly
considered and compared to the hits of the partner track. A hit is counted
if a fired wire in the corresponding layer contributes to the reconstruction
of the particles track. The wires are sorted with consecutive numbers in
transverse direction of their stereo angles.
Now it is checked layer-by-layer whether both tracks of a pair have hits
belonging to the same wire. The total number of layers where this is the
case is stored as number of shared wires N shared

wires . Figure 4.24 displays the
distribution over qinv and N shared

wires for true pairs (left) and for mixed pairs
(right). Both distributions are most distinctive at smallest values of N shared

wires ,
cp. the blue regions. While both distributions look very similar for rela-
tive momenta larger than 150 MeV/c, clear differences at smaller values are
visible. Sharing too many wires at small relative momenta within the same
event would mean that the two tracks are not resolvable separately, but
merge to one track. The influence on the correlation function is illustrated
in Figure 4.25, where the correlation function as a function of qinv, as given
by Equation (4.20), is plotted for simulated data with different selections on
N shared

wires . The black data points are drawn without further restriction (cp.
Figure 4.19), the violet and the blue data points represent pairs with at most
two or one shared wires, respectively, and in red the correlation function for
pairs without shared wires is drawn. The increase of C(qinv) at low relative
momenta with decreasing number of shared wires is remarkable. Compar-
ing the red to the black data points, around 20 % of pion pairs with qinv
smaller than 40 MeV/c are discarded, but 89 % of the deficits in the range of
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10 to 100 MeV/c relative to the baseline are removed (considering the area
between the data points of the correlation function and the virtual baseline
fixed at large relative momenta).
Besides a small negative slope of the overall baseline, the distribution of the
red symbols is flat down to around 35 MeV/c in qinv. The remaining deficits
at lower relative momenta are tried to be removed by further conditions on
the wire hits of the particle tracks. The condition on shared wires is expected
to work best for a situation where as many as possible layers with well defined
fired wire per particle are available, since for layers without found hit no
decision can be made. It was mentioned already in Section 4.2.1 that at least
four of six wire planes per chambers have to be fired for acceptable single
particle reconstruction. Therefore, it is possible that, in worst case, a pion
pair has only eight layers contributing to N shared

wires . In Figure 4.26 on the right
side, the yield of pairs with N shared

wires = 0 is displayed as function of qinv and
the number of MDC layers Nboth

layers, where both tracks have an attributed fired
wire. A maximum of Nboth

layers is found at 22 and an illustration of which layers
are contributing to this number is shown on the left side of Figure 4.26. The
resulting correlation functions C(qinv), when setting lower limits on Nboth

layers,
are exhibited in Figure 4.27, again for a data sample from the UrQMD
simulations. Black symbols are generated without any restriction, for all
other colored data points N shared

wires is set to zero. The violet sample covers the
whole range of Nboth

layers, while the blue points only include pairs with at least
22 layers with hits from both particles. Finally, the red data belongs to the
ideal case, that is, each track of a pair was reconstructed with 24 well defined
hits in the MDC layers without using twice any contributing fired wire. The
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Figure 4.26: Left: Illustration of acceptable layers (marked by ’ok’),
where both tracks of the pair have a registered hit (black circles), con-
tributing to Nboth

layers as described in the text. Right: True pair distribution
over the qinv-Nboth

layers plane for the selection N shared
wires = 0.

figure shows that making a rough selection on Nboth
layers, whereat the maximum

of the pair distribution is barely kept, delivers only a small improvement,
comparing blue and violet data points. Applying an even harder cut may
possibly restore the correlation function at low relative momenta completely,
see the red data points. However, the large uncertainties caused by the tiny
amount of remaining pairs does not allow to make a clear decision about
that. Furthermore, the left over statistics is too low to move on with a
meaningful investigation of the Bose-Einstein correlations.
Another ansatz would be to not only consider shared wires, but in addition
a window of neighboring wires. One motivation for that idea is that par-
ticles can pass the MDC drift cell close to the boarder to the neighboring
drift cell and may induce signals in either both cells or accidentally only in
one of them. Another motivation is the finite accuracy of the specific event
parameters in the event mixing operation, which leads to slightly different
projected detector geometries visible by the pairs. The resulting smearing
of the mixed distribution allows a couple of pairs to fulfil the selection on
N shared

wires , which would be not possible if the same particles are detected within
the same event. A so called sliding wire window (SWW) is introduced con-
sisting of an odd number, larger or equal one, describing how many wires
around the fired wire of the first particle the hit of the second particle of the
pair are excluded from giving a count to N shared

wires . Explicitly, this means, if
SWW has the number one, particle two is only forbidden to hit exactly the
same wire as particle one. If SWW has the number three, then particle two
is also forbidden to have a hit in two neighboring wires of the fired wire of
particle one and, with increasing number of SWW by two, in addition the
next neighboring wires are also vetoed. In the top panels of Figure 4.28 the
sliding wire windows are illustrated, on the left for a width of three wires and
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on the right for five wires, always within one MDC layer. Associated with
that, on bottom of Figure 4.28, the correlation functions with the applied
sliding wire windows are plotted with red symbols. Additionally, in blue,
the case of SWW = 1 wire and in black the case without restrictions are
plotted. For the results shown in the left plot with SWW = 3, the reduction
of the remaining deficits between data points and baseline compared to the
blue points is very effective. Within the error bars, the finally remaining
deviation is smaller than 1 % down to relative momenta of 20 MeV/c and
less than 2 % down to 6 MeV/c. For the sliding wire window of SWW = 5,
a similar observation is made, and on a first glance the correlation function
looks even more flat. The tiny overall negative slope turns into a marginal
positive slope at large relative momenta. The statistical fluctuations at
smallest values of qinv increase, which indicates the stronger reduction of
pion pairs in this region. Within this higher uncertainty it is not possible to
state that the quality of the correlation function improves for the right plot
when compared to the left one.

Note that a similar investigation has been introduced in [94] for the TPC
based spectrometer in the STAR experiment with focus on both, merged and
split tracks. Split tracks are tracks induced by one particle, but counted af-
ter data aquisition and track reconstruction as two particles. The treatment
of the former is comparable to the explanations of this paragraph. The lat-
ter one was found not to play a significant role in HADES. The high number
of required signals of fired wires per track (four wires per layer ends up in
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Figure 4.28: Top: Illustration of the sliding wire window (SWW) with
width of three (left) and five (right) wires. A registered hit of track one
(red circle) in one of the parallel aligned wires of one MDC layer restricts
track two not to have a fired wire in a symmetric window around this wire
(marked with crosses). Bottom: Invariant correlation function (4.20) for
different selections: no restriction (black), N shared

wires = 0 (blue) and in
addition SWW of size three (red, left panel) or SWW of size five (red,
right panel), respectively.

at least 16 wires per track) makes it practically impossible to divide these
hits for generating another one close by.

Remaining long-range correlations

Besides the previously discussed detector-based correlations related mainly
to low relative momenta, also correlations at high relative momenta can
be observed, visible as overall slope leading to deviations in the order of
10−3 − 10−2 w.r.t. the baseline. For the correlation function C(qinv), a posi-
tive slope at high qinv is observed with magnitude between 4 × 10−5 c/MeV
at high transverse momenta and 1.4 × 10−4 c/MeV at low transverse mo-
menta. An example is shown in Figure 4.29. Such an observation is dis-
cussed in [95] as so called non-femtoscopic correlations and explained as
broadening of the mixing yield due to a combination of collective pion flow
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modes with preferred transverse direction and a finite event-plane resolution,
which shifts small relative momenta slightly towards larger values. Unfor-
tunately, this ends up in a correlation function with overall negative slope,
which is opposite to the observation in Figure 4.29. A further experimen-
tal observation is that the slopes at high qinv decrease, if the event mixing
condition on the primary vertex, |zprim,1 − zprim,2|, is changed to smaller
distances or if an additional condition is set on the transverse directions,
|x(y)prim,1 − x(y)prim,2|, respectively. The combination of the finite reso-
lution of the primary-vertex determination and event-to-event fluctuations
passing the low-level data-driven pair cut leads to a reduced mixing pair
yield at slightly higher values of qinv compared to the true yield. This ends
up in an increase of the correlation function with increasing relative mo-
mentum. This second mentioned effect is expected to dominate. Finally,
one could decide to include this effects by a global slope or a second-order
polynomial function in the subsequent fitting procedures.

Final low-level detector cuts

To summarise the findings of the above paragraphs, the finally applied con-
ditions on the pion pairs and the remaining relative statistics are listed:

• META cut: both pions must have hits in different META cells
→ ∼ 86% remaining statistics,

• MDC cut I: no shared wires of the pions are allowed
→ ∼ 69% remaining statistics,

• MDC cut II: no neighboring wires of shared wires of one pion are
shared with the wires of the other pion (SWW = 3)
→ ∼ 59% remaining statistics.

These so-called low-level close-track cuts are applied to both the distribu-
tions of true and mixed pairs (cf. Section 4.3.3).
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Figure 4.29: A zoom of the correlation function as a function of qinv,
at higher values of qinv, for pt,12 ∈ [500, 600] MeV/c. The Bose-Einstein
signal is visible up to 100 MeV/c. Top: no condition on primary vertex
in transverse direction; for larger relative momenta a linear trend with
non-zero positive slope is observed. Bottom: primary vertex differences
in x and y direction of mixed pairs required to be less than 0.2 mm; no
slope at high relative momenta visible. The black dashed-dotted curves
are parametrisations for guiding the eyes.
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4.4 Extracting the local space informations

The two-pion correlation signals are used to extract the geometrical proper-
ties like spatial extensions of the fireball region of the Au+Au collisions at
particle freeze-out. Assuming a three-dimensional Gaussian source distribu-
tion as introduced in Section 2.4, one expects the experimental correlation
function to have a Gaussian shape, affected by the final state interactions
and eventually smeared by the finite relative momentum resolution of the
detector set-up.

4.4.1 Two-particle correlation function including FSI
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Figure 4.30: Top: true (black) and mixed (red) yields of pion pairs
for pt,12 ∈ [200, 300] MeV/c as a function of qinv. The shaded region
marked by ’N’ depicts the region used for the normalisation. Bottom:
corresponding correlation function, Equation (4.20), (red circles) fitted
with Equation (4.26) (red line). The green dashed curve represents the
separable final-state interaction Coulomb part. The black squares corre-
spond to the Coulomb-corrected correlation function. The black dotted
curve shows the fit function, Equation (4.26), after the Coulomb cor-
rection. The blue long-dashed curve gives the pure Bose-Einstein part,
Equation (4.27), of the correlation function.
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After removing all the non-physical correlations discussed in some detail
in Section 4.3.4, the experimental correlation functions Equations (4.19)
and (4.20) should only differ from unity due to Bose-Einstein correlations
(2.11) and final state interactions, mainly Coulomb interaction as discussed
in Section 2.3. Following [38] the one-dimensional correlation function can
be fit using

C(qinv) = N [1 − λinv + λinvKC(qinv, Rinv)Cqs(qinv)] , (4.26)
Cqs(qinv) = 1 + exp (−(2qinvRinv)2), (4.27)

with a second normalisation constant N and the incoherence parameter λinv
introduced in Section 2.2.4. Cqs is the pure quantum-statistical part with
a Gaussian form derived from Equation (2.15) assuming a Gaussian source
distribution. It contains the invariant source size parameter Rinv, which can
be seen as an average width of the area of homogeneity integrated over the
whole emission duration. The two-particle Coulomb interaction factorises
and is covered by KC(qinv, Rinv), calculated with Equation (2.24). Since
the evaluation of the confluent hyper-geometrical function F has to be done
numerically and is time consuming, the expression |Φcoul(r⃗)|2 is evaluated
only once on a grid of discrete values of qinv and Rinv and stored in a two-
dimensional histogram, which is later on used as a look-up table. The step
size is fixed with 1 c/MeV in qinv and 1 × 10−3 fm in Rinv, which is always
below the chosen interval size in relative momentum and much smaller than
the typical uncertainties of HBT radius parameters. At the beginning the
the value of Rinv from the Coulomb correction histogram is set to 6 fm. After
the first fit, it is adjusted to the value from the Bose-Einstein part (4.27).
Then, the fit is repeated iteratively until the value of Rinv does not change
by more than 10−3 fm. The three-dimensional correlation function (4.19) is
fitted using the ansatz

C(qout, qside, qlong) =
N

1 − λosl + λoslKC(q̂, Rinv)Cqs(qout, qside, qlong)


, (4.28)

with the corresponding incoherence parameter λosl and again a second nor-
malisation constant N (can be different from the N in Equation (4.26)). The
Coulomb correction term KC(q̂, Rinv) uses the former determined invariant
HBT radius and the average invariant relative momentum q̂ depending on
qout, qside and qlong, which can be calculated by

q̂ = qinv(qout, qside, qlong, k̄t) =

q2

out(1 − β2
t ) + q2

side + q2
long. (4.29)
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The transverse pair velocity βt = 2k̄t/(E1 +E2) is calculated with the mean
value of kt for the chosen interval of pair transverse momenta. The Bose-
Einstein part is separated and can be written as

Cqs(qout, qside, qlong) =
1 + exp (−(2qoutRout)2 − (2qsideRside)2 − (2qlongRlong)2), (4.30)

with the three HBT radii Rout, Rside and Rlong. Expression (4.30) is valid
in the LCMS as long as it is integrated over all azimuthal angles of the
pairs and a symmetric rapidity interval around mid-rapidity is considered.
The functional form is used for the azimuthally integrated analysis with an
interval of pair rapidity of ycm ± 0.35.
Actually, Equation (4.30) can be written in a more general way introduced
already in Equation (2.38),

Cqs = 1 + exp (−4

i, j

qiRijqj), (4.31)

where the indices i and j run over the three directions ’out’, ’side’ and ’long’.
The three already introduced HBT radii are the diagonal components of
this matrix representation Rij , and additionally three non-diagonal HBT
variances appear, R2

out side, R2
out long and R2

side long. The parameter R2
out long

can already have finite values in the azimuthally integrated investigation, if
for example the rapidity distribution is not symmetric w.r.t. mid-rapidity.
In the azimuthally dependent analysis all six HBT variances can have finite
values and must be included in the fits applied to the correlation function.
From theoretical considerations, the parameters λinv and λosl should be
equal unity for an ideal chaotic source. However, in practice the incoher-
ence parameter enters with a value between zero and unity, as mentioned
in Section 2.2.4. Contaminations of other particle species contributing to
the reconstructed pion yields lead to a decrease of the BE amplitude, since
the fraction of these particles have no quantum-statistical correlation with
the pions. The purity of the pion yields in the used transverse momentum
and rapidity range is between 97 and 99 %, intensively studied in [64] (p.
106). The influence of long-living pion-emitting resonances [48] with cτ >
20 fm (e.g. η, Σ0, J/ψ, ...) producing an unresolvable spike at low values of
q should be negligible at beam energies of around 1A GeV.
One can try to account for eventually long-range correlations mentioned in
the penultimate paragraph of Section 4.3.4 by changing the normalisation
in Equation (4.26) to N → N ′ = N (1 + f(qinv)), where the functional is in
the simpliest case linear, f(qinv) = α qinv. This part is determined at higher
values of qinv and might improve the estimate of the baseline down to low
relative momenta, which leads to a slight change of the fit parameters. This
extension of Equation (4.26) has been used for example in [96]. Since the
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physical origin of the remaining slope is not completely clarified and the
functional form f(qinv) is not neccessarily the same at low and high values
of qinv, one should be careful when using the advanced term, i.e. one should
treat deviations at most as contributions to the systematic uncertainties.
All fits with Equations (4.26) to (4.31) are performed using the gMinuit
package included in the ROOT framework. The used estimators are both,
χ2 and maximum logarithmic likelihood, and both methods deliver the same
fit parameters with the same statistical uncertainties. For more details on
the minimisation procedures see Appendix A.1.

4.4.2 Finite relative momentum resolution

PLUTO HGeant
pseudo-part.
fixed mass
   fixed qinv

decay in typical
HADES phase space

T = 200 MeV

Figure 4.31: Scheme of the procedure used for determining the rel-
ative momentum resolution. Pion pairs are generated with the Pluto
event generator being distributed in phase space comparable to the ex-
perimental distributions. The pairs are then tracked through HGeant to
simulate acceptance, resolution, and efficiency of the detector.

Figure 4.32: PLUTO
phase space distribu-
tion of one of the pions
for one million pion
pairs. The value of the
fireball temperature T
is set to 200 MeV, the
polar angle is restricted
to [16°, 88°], the trans-
verse momentum to
values larger than
50 MeV/c and the total
momentum to values
smaller than 1 GeV/c.
The invariant relative
momentum of all pairs
is 30 MeV/c

In Sections 3.3.2 and 3.4.1, the resolution of the detector components used
for the particle identification has been mentioned. This causes a finite reso-
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Figure 4.33: Relative momentum distributions as a function of qinv
(top row), qout (second row), qside (third row) and qlong (bottom row)
for pion pairs generated with PLUTO with initial relative momentum of
qinv = 30 MeV/c after tracking through HGeant. The distributions are
plotted for different intervals of pt,12 (increasing from left to right) and
fitted with Gaussians (red curves).

lution of the determined momenta of the identified pions. In [63] the phase-
space dependent momentum resolution of HADES is discussed and exhibited
in some detail. However, for the present analysis of two-particle correlation
functions, one has to know the resolution of the relative momentum of both
pions. For that reason, several ensembles of 107 pion pairs have been gener-
ated using the PLUTO event generator [97]. Each ensemble is characterised
by a well defined relative momentum of the two pions. In PLUTO, this
is achieved by creating a pseudo-particle with a fixed mass decaying into
two pions. To get a statistical distribution like the typical HADES phase
space distribution, compared to Figure 4.16, one can use the (inverse Boltz-
mann slope) temperature parameter T within the event generator. Setting
its value to 200 MeV and setting limits for minimum and maximum polar
angles and momenta, respectively, delivers a quite realistic phase-space dis-
tribution, see Figure 4.32. Then, the two-particle events are propagated
through HGEANT, which imitates the acceptance, granularity (resolution),
and efficiency of the whole HADES set-up. Afterwards, the momenta of the
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Figure 4.34: Relative momentum resolution in dependence of qinv (top
row), qout (second row), qside (third row) and qlong (bottom row) for
different intervals of pt,12 (increasing from left to right) for π−π−. Red
curves are parametrisations with a polynomial of second order.

pions can be reconstructed in the same way as for the experimental data.
The relative momentum of each pair is calculated and the distributions of
qinv, qout, qside and qlong are compared to the initial values as plotted in
Figure 4.33 exemplary for initial relative momentum of 30 MeV/c. These
distributions are fitted with a standard Gaussian and the extracted width is
taken as the relative momentum resolution. Repeating this for all intervals
of pt,12 and all ensembles of initial relative momenta one gets the q and pt,12
dependent relative momentum resolution σ as plotted in Figure 4.34. Here,
four ensembles for initial relative momenta qini

inv = {10, 20, 30, 40} MeV/c
have been used. The dependence of the relative momentum resolution on
the initial relative momentum is small for nearly all pt,12 intervals and all
directions. The distribution has been fitted with a second order polynomial
of the form n0 + mqi + a q2

i . Overall, a slight increase of σ with increasing
qini

inv is visible. With the found parametrisations of the approximate Gaus-
sian resolutions, one can correct the experimental correlation functions or
the fit results, respectively. Below, three possible approaches how to do this
are considered.

86



4.4 Extracting the local space informations

Unfolding of the measured correlation function

The convolution of the correlation function with the finite relative momen-
tum resolution can formally be written as

Cmeas(q) =

Creal(q′)F(q, q′)dq′, (4.32)

with the measured (real) correlation function Cmeas (Creal), and the resolu-
tion function F(q, q′), which here is a normalised Gaussian with q-dependent
width given by the parametrisations of Figure 4.34. For a finite binning in
q, the integral formula (4.32) can be translated into a matrix description,

Cmeas(qi) = Mij · Creal(qj), (4.33)

with the convolution matrix Mij . The best and most accurate way of ac-
counting for the finite relative momentum resolution would be to use the
previously described procedure to fill the complete convolution matrix Mij

describing the smearing of the measured correlation function for the chosen
binning. The task is then to invert Mij and reconstruct the real correlation
function,

Creal(qi) = M−1
ij · Cmeas(qj). (4.34)

This procedure is cumbersome, especially when considering the three-dimen-
sional correlation function, and very time-consuming. With focus on the
results and the knowledge, that the effect of the finite relative momentum
resolution will be relatively small, a simplified approach is considered below.

Gaussian subtraction

Since both the correlation signal Cqs and the relative momentum resolu-
tion are approximately Gaussian, and since a Gaussian convolution of a
Gaussian function results also in a Gaussian function (see Appendix A.2) a
consequence is in a very simple consideration

σ2
true = σ2

meas − σ2
res, (4.35)

where σres is the relative momentum resolution or the width of the Gaussian
approximation to the resolution, respectively. σmeas is the width of the Bose-
Einstein part of the measured correlation signal and can be extracted from
Equations (4.26) and (4.28) as

σmeas,i = 197.327 fm MeV√
8Ri

(i = inv, out, side, long). (4.36)
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4. Analysis

Inverting Equation (4.36) allows to calculate the unbiased HBT radii from
the true Bose-Einstein correlation-width σtrue:

Ri = 197.327 fm MeV√
8σmeas,i

(i = inv, out, side, long). (4.37)

However, both the superposition of the Bose-Einstein correlation signal with
the non-Gaussian FSI Coulomb part and the appearance of non-diagonal
HBT parameters in the exponent of Equation (4.31) disturb the validity of
Equation (4.35). One has to check carefully, whether it can be used and
how big the systematic uncertainties are compared to the exact treatment
using Equation (4.34).

Convolution of fit function

Instead of unfolding the measured correlation signal and fitting it with Equa-
tions (4.26) and (4.28) one can also imagine a convolution of the fit functions
with the Gaussian momentum resolution and use these expressions for fitting
the uncorrected correlation functions. This procedure is less cumbersome
than the first approach, but treats the superposing Coulomb interaction and
deviations due to finite non-diagonal HBT parameters correctly. The con-
volution of the fit functions is done numerically using a mesh of sufficiently
large number of Gaussian nodes4 for each direction. For the one-dimensional
case (C(qinv) and 1D-projections of C(qout, qside, qlong)) this approach works
very good, delivering correct results after a reasonable time. For the three-
dimensional case, however, it turned out to be highly time-consuming, and
fits could not be performed that comfortably, especially if one has a big
amount of correlation functions in a multi-differential phase-space distribu-
tion.
However, it turned out that comparing this approach and the simple Gaus-
sian subtraction approach described in the previous paragraph one finds
the same relative momentum resolution correction in the order of several
10−1 fm, while the difference between both methods is less by factor of ten,
i.e. in the order of magnitude of 10−2 fm only. This means, that finally
the very simple Gaussian subtraction method can be used for correcting
the finite relative momentum resolution of the three-dimensional correlation
functions, while an additional 10 % systematic uncertainty enters the total
amount of systematic uncertainties. Later on, it will turn out that this ad-
ditional contribution is negligible when compared to the other systematic
uncertainties.

4In numerical Gaussian integration procedures, nodes are essentially roots of an ade-
quate polynomial, e.g. the Legendre polynomials.
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4.4 Extracting the local space informations

4.4.3 Fit range

As obvious from Equations (4.26) and (4.28), the Bose-Einstein correlation
signal and the final state interactions are located at low relative momenta
and approaches unity for high relative momenta. Typically, the extracted
radius parameters are in the range of 3 − 8 fm, which translates (using Equa-
tion (4.36)) into Bose-Einstein correlation widths not larger than 25 MeV/c.
The upper limit of the fit range is chosen to 80 MeV/c to guarantee that the
expected deviation between baseline and correlation function is less than
0.5 %. Changes of the fit parameters under variation of the upper fit limit
are treated as systematic uncertainties. The lower limit of the fit range is
not zero, but set to 6 MeV/c. It accounts for possible contributions from the
strong FSI, mentioned in Section 2.3, and for remaining close-track deficits
not catched by the cut introduced in Section 4.3.4. In the three-dimensional
correlation function for each interval of qout, qside and qlong it is checked,
whether the corresponding value of qinv calculated with Equation (4.29) is
inside the chosen fit range. Otherwise, the outlying interval is excluded from
the fit by setting the corresponding bin error in the histogram virtually to
infinity.

4.4.4 Direct imaging: deviations from Gaussian sources

According to Equation (2.19), one could try to image the source in coordi-
nate space by modelling and fixing the two-pion interaction and performing
directly a Fourier transformation of the correlation function. With existing
imaging codes [98–101] this can be done numerically for the one-dimensional
correlation functions. However, there are still a lot of parameters to set
(e.g. for constraining the shape of the outcoming source function, the lim-
its at vanishing radius or large radii, respectively, etc.), and the calcula-
tions depend strongly on the considered range of qinv, and the procedure
becomes quite cumbersome when going to three dimensions. Exemplary
results for the imaged source function S(r) are shown in Figure 4.35 for 5
% most central events and intervals of pair transverse momentum from 200
to 300 MeV/c (top left), 300 to 400 MeV/c (top right), 400 to 500 MeV/c
(bottom left) and 500 to 800 MeV/c (bottom right). The red curves corre-
spond to Gaussian distributions drawn with the parameters extracted from
Equation (4.20) using the fit functions given by Equation (4.26). The blue
curves are Gaussian fits to S(r) at small radii up to 15 fm. The figure shows
that the Gaussian asumption of the source function is reasonable in lead-
ing order. It also shows that there are deviations from the Gaussian form,
increasing with average transverse momentum of the considered pion pairs.
The deviations are most obvious at larger values of r, corresponding to the
range of lower qinv. But also at low values of the source radius deviations
are visible, corresponding to the larger relative momenta, especially for the
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Figure 4.35: Source function S(r) constructed using the invariant cor-
relation function and the imaging code HBTprogs from [98–100]. Re-
sults are for 5 % most central events and different intervals of pair trans-
verse momentum. Blue curves represent Gaussian fits using the range
of r ∈ [0, 15] fm, red curves are Gaussian distributions using the pa-
rameters from fits with Equation (4.26) applied directly to the invariant
correlation function Equation (4.20).

largest transverse momentum window. Due to the logarithmic scale of the
ordinate, the latter ones look smaller, but they are as significant as the
tail-like structure at large radii.
A more detailed study of deviations from a Gaussian source shape goes
beyond this thesis. Here, the focus is on an average Gaussian width of
the fireball region, but three-dimensional in shape and multi-differentially
investigating the dependence on centrality, transverse momentum, charge-
sign, azimuthal angle relative to the reaction plane and rapidity. Albeit
it should be mentioned that the high statistics of the HADES data would
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4.5 Including the azimuthal dependence

allow such investigations. A lot of progress was achieved using Levy-stable
distributions [102], which provide an easy extension of the Gaussian model
and contains for example the more tail-like structure seen in Figure 4.35.
At the moment, only PHENIX [96] provides published systematic studies
on those non-Gaussian source shapes in heavy-ion collisions. Nonetheless,
there exist preliminary results from STAR [103].

4.5 Including the azimuthal dependence

The azimuthal dependence of the HBT radius parameters can be used to
get a more detailed picture of the three-dimensional shape of the area of ho-
mogeneity. Of special interest is the eccentricity of the transverse extension
and a tilt of the particle emitting source relative to the beam axis.

4.5.1 Accounting for the explicite Φ dependence

Figure 4.36: Illustration of the dependence of Rside and Rout on the
azimuthal angle of the pair relative to the event plane Φ = |ϕ − ϕRP|
(from left to right 0°, 45° and 90°), following from the initial elliptic
overlap region perpendicular to the beam direction (yellow shaded) of the
Au+Au collision at finite impact parameter. For Φ = 0°, Rside (Rout) has
a maximum (minimum) and decreases (increases) until Φ = 90°, where it
has a minimum (maximum) and the other way around for larger angles.

As introduced in Section 2.4.3, the Φ dependence of the six HBT variances
deduced with Equation (4.31) originates mainly from a rotation of the pion-
pair fixed out-side-long system relative to the reaction plane fixed xyz sys-
tem. Metaphorically speaking, for a three-dimensional fireball with different
extensions in x and y direction one can see a different picture, depending
from which position relative to the event plane one is observing the collision,

91



4. Analysis

see Figure 4.36. This is the so-called explicit Φ dependence which can be
taken into account by using the following set of fit functions:

R2
out = 1

2(S11 + S22) + 1
2(S22 − S11) cos 2Φ + S12 sin 2Φ

− 2βt(S01 cos Φ + S02 sin Φ) + β2
t S00,

R2
side = 1

2(S11 + S22) + 1
2(S22 − S11) cos 2Φ − S12 sin 2Φ,

R2
out side = 1

2(S22 − S11) sin 2Φ + S12 cos 2Φ + βt(S01 sin Φ − S02 cos Φ),

R2
long = S33 − 2βlS03 + β2

l S00,

R2
out long = (S13 − βlS01) cos Φ + (S23 − βlS02) sin Φ − βtS03 + βlβtS00,

R2
side long = − (S13 − βlS01) sin Φ + (S23 − βlS02) cos Φ, (4.38)

with the pair transverse velocity βt and Sµν forming a 4×4 matrix containing
the information about the extension of the 3+1 dimensional ellipsoid of
the region of homogeneity. When applying this set of equations to results
taken in the LCMS at a small window around mid-rapidity (y = ycm)
the longitudinal velocity βl vanishes. The functions (4.38) are fitted to all
six HBT parameters simultaneously and respect additionally the difference
between Rside and Rout as stated in Equation (2.43). Due to symmetry
constraints [104] within the present symmetric collision system of Au+Au
and the consideration at mid-rapidity, the set of Equations (4.38) simplifies
to

R2
out = 1

2(S11 + S22) + 1
2(S22 − S11) cos 2Φ + β2

t S00,

R2
side = 1

2(S11 + S22) + 1
2(S22 − S11) cos 2Φ,

R2
out side = 1

2(S22 − S11) sin 2Φ,

R2
long = S33 + β2

l S00,

R2
out long = S13 cos Φ,

R2
side long = − S13 sin Φ. (4.39)

However, keeping the full set (4.38) with all 10 components of Sµν allows to
check for the validity of this combined fit and provides the opportunity to
see influences of implicit Φ dependences of the considered variances.

4.5.2 Finite event plane resolution

The sets of Equations (4.38) and (4.39) for fitting the oscillations of the
measured azimuthally dependent variances are always evaluated at a certain
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Figure 4.37: Illustration of the finite bin width effect acting on an
oscillating function. The harmonic oscillation cos(2x) (red solid curve)
is sampled by four (eight) equal sized intervals in the upper (lower) panel
within a total range of 2π. The centers of the intervals (black dots) are
used for reconstructing the oscillation (red dashed curves), which leads
to a reduction of the amplitudes, taken into account by Equation (4.40).

value of Φ. In practice, this is not always the case for the experimental
data. On the one hand, the pairs of pions are divided in direction of Φ
into bins of finite size. Variances obtained for such bins are averaged values
integrated over the bin range, but finally assigned to the weighted bin center.
Figure 4.37 illustrates this effect acting on a harmonic oscillation. On the
other hand, the range of Φ is implicitly enlarged since the value of the
reaction plane angle ϕRP of the events is determined only up to a finite
event plane resolution as introduced in Section 4.1.4. The correction of
both, the finite reaction-plane resolution and the finite azimuthal bin width,
is performed by using

R2,corr
i,n = R2,meas

i,n
n ∆/2

Fn sin(n∆/2) , (4.40)

where ∆ = π/4 is the present Φ bin width, and the quantity Fn = ⟨cosn∆ϕ⟩
represents the n-th event-plane resolution as defined in Section 4.1.4 (see
also Table 4.2). The measured Fourier coefficients R2,meas

i,n are traced back
to the underlying true coefficients R2,corr

i,n of a Fourier expansion of the radius
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Figure 4.38: Event plane resolution Fn of 1st (red) and 2nd (blue) order
calculated using Equations (4.7) and (4.8).

parameter R2
i as defined by Equation (4.5). Practically, the matrix elements

Sij from Equations (4.38) and (4.39) or combinations of them appear as well-
defined Fourier coefficients in front of an oscillation term cos(nΦ) or sin(nΦ).
They are corrected according to the order of oscillation they appear with:

(S22 + S11), S00, S33, S03 → no correction, (4.41)
S01, S02, S13, S23 → 1st order correction, (4.42)
(S22 − S11), S12 → 2nd order correction. (4.43)

Figure 4.38 displays Fn for n = 1 and n = 2 as function of the collision
centrality. The values of F1 and F2 for the four centrality classes investigated
in the present analysis are given in table 4.2.

4.5.3 Final observables in the RP-fixed coordinate system

The dynamics within the fireball after the collision at finite impact param-
eter causes the elliptic region of homogeneity to be not neccessarily aligned
with the beam axis and the impact parameter, i.e. a tilted source distribu-
tion is possible. A tilt pointing outwards the reaction plane is prohibited
due to symmetry reasons. Therefore, only a tilt within this plane needs to
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4.5 Including the azimuthal dependence

Figure 4.39: Left: Illustration of the finite tilt angle θs of the ellipsoid
within the reaction plane, defined between the z axis of the ellipsoid and
the beam axis (long). Right: As consequence of the finite tilt angle, the
smaller semi-axis tends to be measured too large and the larger semi-axis
too small, respectively.

be considered. From Equations (4.38) and (4.40), the spatial tilt angle in
the reaction plane can be calculated as

θs = 1
2 tan−1

 2S corr
13

S corr
33 − S corr

11


, (4.44)

which is defined as the angle between the beam axis and the z coordinate
of the described ellipsoid in counterclockwise direction; θs is determined
modulo 180°, see Figure 4.39. Rotating S corr by the angle −θs around the
y axis, i.e. applying the corresponding rotation matrix Gy(θs),

S diag = G−1
y (θs)S corrGy(θs), (4.45)

yields a diagonal tensor S diag whose eigenvalues are the temporal and geo-
metrical variances σ2

t , σ
2
x, σ

2
y, σ

2
z .

A further handy variable for comparing the semi-axes of an ellipsoid relative
to each other is the eccentricity. In this thesis, it is used to compare the
in-plane extensions to the out-of-plane extension. The xy-eccentricity is
defined by

εxy =
σ2

y − σ2
x

σ2
x + σ2

y
, (4.46)
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and in similar manner the zy-eccentricity,

εzy =
σ2

y − σ2
z

σ2
y + σ2

z
. (4.47)

Note that the coordinate system ’xzy’ is reserved in the ongoing analysis for
the alignment of the semi-axes of the ellipsoids of the fireball regions, where
y points always outside the reaction plane, but x and z are exchangeable
with respect to Equation (4.44), i.e. an interchange of the coordinates leads
to a shift in θs by ±90°. This degree of freedom later on is removed by
physical and logical constraints.

’Simplified’ consideration without tilt

To improve the consideration of Section 4.5.1 one can use the full Fourier ex-
pansion of the azimuthal dependence and calculate the harmonic coefficients
[60],

Rc 2
ij,m = 1

2π

 π

−π
R2

ij cos(mΦ)dΦ, (4.48)

Rs 2
ij,m = 1

2π

 π

−π
R2

ij sin(mΦ)dΦ, (4.49)

which include both, the explicit and the implicit Φ-dependences. With fits
including these harmonics up to order two, used for example in [17],

R2
side = R2

side, 0 +R2
side, 1 cos(Φ) +R2

side, 2 cos(2Φ), (4.50)

one is able to identify the approximate variances by

σ2
x ≈ σ′2

x = R2
side, 0 − 2R2

side, 2,

σ2
y ≈ σ′2

y = R2
side, 0 + 2R2

side, 2,

σ2
z ≈ σ′2

z = R2
long, 0 (4.51)

and calculate the xy-eccentricity in simplified form as

εxy ≈ ε′
xy =

σ′2
y − σ′2

x

σ′2
y + σ′2

x

=
2R2

side, 2
R2

side, 0
, (4.52)

and the zy-eccentricity as

εzy ≈ ε′
zy =

σ′2
y − σ′2

z

σ′2
y + σ′2

z

= 1 −
2R2

long, 0
R2

side, 0 + 2R2
side, 2 +R2

long, 0
. (4.53)

Equations (4.52) and (4.53) require at least a small tilt angle θs. Its effect
is illustrated in Appendix B.6.
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The presentation of the results is structured into three parts. First, the
correlation functions are presented in general. After that, the extracted HBT
parameters within the azimuthally integrated analysis are considered. Last,
the azimuthally dependent HBT radius parameters and derived geometrical
quantities are presented.

5.1 Correlation functions

In this section, the experimental correlation functions (4.19) and (4.20) are
exhibited. While for the invariant two-pion distributions one can easily plot
the correlation functions, for the three-dimensional case projections, either
one- or two-dimensional given by Equations (4.22) and (4.23), respectively,
have to be used. Although such projections can break the Gaussian form of
the correlation signal and never should be used for fitting, they can somehow
illustrate the quality of the experimental correlation functions and show
potential sources of systematic uncertainties.

5.1.1 One-dimensional correlation function

In Figures 5.1 and 5.2, the invariant correlation function (4.20) for low val-
ues of qinv between 0 and 100 MeV/c of the 10 % most central events are
plotted. On the left side, the results for π−π− pairs are shown and on the
right side the results for π+π+ pairs, respectively. The panels belong to
different intervals of pair transverse momentum pt,12 with increasing values
in downwards direction, starting at 100 MeV/c on top of Figure 5.1 and
ending at 900 MeV/c at bottom of Figure 5.2. All plots show clearly a cor-
relation signal at lower values of qinv, which flattens out towards unity for
higher relative momenta. For the larger pair transverse momenta, the cor-
relation (as deviation from unity) is visible up to values of qinv ≈ 50 MeV/c,
while for low pt,12 the enhencement of C(qinv) vanishes obviously already at
qinv ≈ 40 MeV/c for π+π+ and at qinv ≈ 30 MeV/c for π−π−, respectively.
The red solid curves show the fits with Equation (4.26) to the experimental
correlation function, which can be separated into the Coulomb part (green
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Figure 5.1: The correlation function C(qinv), Equation (4.20), for π−π−

(left panels) and π+π+ (right panels) and transverse pair momenta pt,12
from 100 to 500 MeV/c (increasing from top to bottom) in the 0 − 10 %
centrality class. Black circles are experimental data, the red solid curve
is a fit with Equation (4.26) containing the BE part (dotted black curve)
and the Coulomb part (dashed green curve).

dashed curves) and the quantum-statistical Bose-Einstein part (dotted black
curves). Apparently, the fit function describes the data quite good for val-
ues of qinv larger than 15 MeV/c in all panels. However, for qinv < 15 MeV/c
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Figure 5.2: Same as Figure 5.1, but for pt,12 from 500 to 900 MeV/c
(increasing from top to bottom).

only for the highest and the lowest exhibited intervall of kt = pt,12/2 the fit
reproduces all the data points within their statistical uncertainties. For the
other intervals, the fitted curves do slightly underestimate the data. This
might hint at deviations from a Gaussian source, caused e.g. by a superposi-
tion of directly emitted thermal pions with contributions from pion emitting
resonances like ∆’s. But before one considers physical reasons for this non-
Gaussian behaviour one should be sure on the fact that the source can have
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different extensions in the 3+1 space-time directions with highly varying
widths. In this case, one can not expect to get a reasonable description
of the source size by the one-dimensionally averaged invariant correlation
function and one should step forwards and continue with the explicit three-
dimensional consideration.

5.1.2 Three-dimensional correlation function
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Figure 5.3: One-dimensional projections of the Coulomb-corrected
three-dimensional correlation function C(qout, qside, qlong) for π−π− and
pt,12 from 0 to 400 MeV/c in the 0 − 10 % centrality class. The two other
components of q⃗ are integrated over the interval 0 to 12 MeV/c. The red
curves depict Gaussian fits.

In Figures 5.3 and 5.4 one-dimensional projections (4.22) of the final-state
Coulomb-corrected three-dimensional correlation function C(qout, qside, qlong)
are plotted in direction of qout (left column), qside (center column) and qlong
(right column) for π−π− and pt,12 from 0 to 800 MeV/c in the 0 − 10 %
centrality class. In Figure 5.5 the same is shown, but for π+π+ and pt,12
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Figure 5.4: Same as Figure 5.3, but for pt,12 from 400 to 800 MeV/c

from 100 to 800 MeV/c. The projections are formed by integrating the true
and the mixed pair distributions A(q⃗ ) and B(q⃗ ) over two of the three rela-
tive distances from 0 to 12 MeV/c. The two-particle Coulomb contribution
introduced in Section 2.3.1 was subtracted point by point according to Equa-
tions (4.28) to (4.30). The red curves are Gaussian fits to the bare projection
data points. Except the points nearest to qi = 0 data is fitted quit well by
these curves, supporting the assumption of a three-dimensional Gaussian
correlation signal.
In Figures 5.6 and 5.7, two-dimensional projections (4.23) of the three-di-
mensional correlation function C(qout, qside, qlong) are plotted (without Cou-
lomb correction), qout vs. qside (left column), qout vs. qlong (center column)
and qside vs. qlong (right column), for π−π− and pt,12 from 0 (top of Fig-
ure 5.6) to 800 MeV/c (bottom of Figure 5.7) for 0 − 10 % centrality. In
Figures 5.8 and 5.9, the same is shown for π+π+ and pt,12 from 100 to
800 MeV/c. The projections are formed by integrating the true and the
mixed distributions A(q⃗ ) and B(q⃗ ) over the corresponding third relative
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Figure 5.5: Same as Figure 5.3, but for π+π+ and pt,12 from 100 to
800 MeV/c
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Figure 5.6: Two-dimensional projections of the three-dimensional
correlation function C(qout, qside, qlong) for π−π− and pt,12 from 0 to
400 MeV/c for 0 − 10 % centrality (left: qout-qsideplane, middle: qout-
qlongplane, right: qside-qlongplane). The third component of q⃗ is inte-
grated from 0 to 12 MeV/c.

distances from 0 to 12 MeV/c. The two-dimensional projections show a
clear correlation signal at small values of |qi| and mainly a flat distribution
at higher values of |qi|, typically at |qi| > 50 MeV/c. The maxima of the
correlation signals are mostly not in the bins with smallest values of |qi|,
but one or two bins outside due to the underlying two-particle final-state
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Figure 5.7: Same as Figure 5.6, but for pt,12 from 400 to 800 MeV/c

Coulomb repulsion, introduced in Section 2.3.1. However, there are at least
two perturbations of the ideal picture of the correlation function. First, a
region of vanishing pair statistics, visible at lower values of pt,12 and more
intense in the π+π+ plots, and secondly a line-shaped valley, visible in the
left and central columns of Figures 5.6 to 5.9, changing its position slightly
with pt,12. This second perturbation is also obvious in Figures 5.3 to 5.5,
prominent at low values of qlong and in the disappearing statistics of qside at
higher values of pt,12. The first feature is explainable with the acceptance
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Figure 5.8: Same as Figure 5.6, but for π+π+ and pt,12 from 100 to
400 MeV/c.

of the HADES set-up and a sharp cut in phase space of the pion pairs. As
consequence one has to look carefully from one phase-space bin to the next,
whether the region with the correlation signal is influenced and whether
still a region with enough pair statistics for the normalisation is available.
The second issue is related to the data-driven closed-pair cut introduced in
Section 4.3.4 and again a sharp phase-space cut, e.g. in pt,12, which leads
to suppressed regions in the three-dimensional q⃗-space. Not visible in Fig-
ures 5.6 to 5.9 are the statistical errors of the data, which are more than
a factor 2 higher in these critical regions, up to enormously high values for
low statistics bins. That means, examining only the two-dimensional pro-
jections of C(qout, qside, qlong) this issue is overestimated and has practically
no influence on subsequent fits with Equation (4.28).
Figures 5.10 and 5.11 show two-dimensional projections of the three-dimen-
sional correlation function C(qout, qside, qlong) over the qout vs. qside plane
(left column), qout vs. qlong plane (center column) and qside vs. qlong plane
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Figure 5.9: Same as Figure 5.8, but for pt,12 from 400 to 800 MeV/c

(right column), for π−π− integrated over pt,12 from 200 to 500 MeV/c for
0 − 10 % centrality for the eight Φ bins defined in Section 4.3.2 (see figure
captions for the actual intervals of Φ). Again, a flat distribution at higher
values of |qi| and a clear correlation signal at small values of |qi| can be
seen. Going from one projection to the next in direction of the azimuthal
angle relative to the event plane Φ, the elliptic correlation region changes
smoothly its orientation. The above mentioned 2nd perturbation is even less
visible here, since it is smeared out with respect to the larger pt,12 range.
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Figure 5.10: Two dimensional projections of the three-dimensional
correlation function C(qout, qside, qlong) for π−π− and pt,12 integrated
from 200 to 500 MeV/c for 0 − 10 % centrality for mean azimuthal an-
gles Φ = {0°, 45°, 90°, 135°} (from top to bottom) relative to the event
plane. The third component of q⃗ is integrated over 0 to 12 MeV/c.
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Figure 5.11: Same as Figure 5.10, but for mean azimuthal angles Φ =
{180°, 225°, 270°, 315°} (from top to bottom) relative to the event plane.
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5.2 Azimuthally integrated correlations

5.2 Azimuthally integrated correlations

In this section exclusively results of Φ-integrated correlation functions are
considered. Attention is payed to the dependence on pt,12 of the femtoscopic
radii Rinv, Rout, Rside and Rlong, the scaling with centrality, differences
related to the pion polarity and the comparison with results available at
other beam energies.

5.2.1 Dependence on pt,12 and centrality
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Figure 5.12: Rinv (top left), Rout (top right), Rside (bottom left) and
Rlong (bottom right) for π−π− and centrality classes 0 − 10 % (blue cir-
cles), 10 − 20 % (green up-pointing triangles), 20 − 30 % (violet down-
pointing triangles), 30 − 40 % (brown boxes) in dependence on mt =
(k2

t +m2
π)1/2. Error bars contain only statistical uncertainties.
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Figure 5.13: Same as Fig. 5.12, but for π+π+.

In the previous section, it has been shown that the correlation functions
C(qinv) and C(qout, qside, qlong) can be well fitted with Equations (4.26) and
(4.28), i.e. pointing to a Gaussian correlation signal flattening out towards
C = 1 for large values of |qi|. In Figure 5.12, the fit results of Rinv, Rout,
Rside and Rlong in dependence on mt = (k2

t + m2
π)1/2 are plotted for π−π−

and four 10 % centrality classes within 0 − 40 %. All radii decrease with in-
creasing values of mt and for higher centrality. The spreading in direction of
centrality is best visible in Rside. The overall hierarchy Rout > Rside > Rlong
can be observed, except for most central collisions and large values of mt,
where Rside almost equals Rout or can even be larger. The value of Rinv is al-
ways within the span of the values of Rout, Rside and Rlong and seems to give
an average length of homogeneity. In Figure 5.13, the same as Figure 5.12,
but for π+π+ is plotted. The π+π+ radii have the same trends w.r.t. the
mtdependence and centrality as the π−π− radii, but are found to be smaller.
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Figure 5.14: λ parameters from fits of Eq. (4.26) to C(qinv) (left) and
Eq. (4.28) to C(qout, qside, qlong) (right) as a function of pt,12 for π−π−

(black boxes) and π+π+ (red circles) for 0 − 10 % centrality.

This charge-sign difference will be considered more in detail in Section 5.2.4.
In Figure 5.14, the parameters λinv from the fit with Equation (4.26) (left
panel) and λosl from the three-dimensional fit with Equation (4.28) (right
panel) are plotted in dependence of pt,12 for the centrality 0 − 10 %. Black
boxes belong to π−π− and red circles to π+π+ data. While λosl decreases
only less with increasing values of pt,12 and has mainly values between 0.8
and 0.9, λinv displays a stronger dependence on pt,12 with values arround
0.9 at low pt,12 decreasing down to values of about 0.45 for high transverse
pair momenta. The deviations between λosl and λinv with increasing values
of pt,12 are a hint at the failure of a Gaussian invariant correlation function
ansatz for describing the extension of the homogeneity regions correctly. Al-
ready in the expression (4.29) one could see that, for βt → 1, qinv can be
small, even if qout is not small, and then Rinv may overestimate the average
radius [105]. The trends of π−π− and π+π+ data are similar and mainly
overlap with each other, but still there are a few points with a deviation
of more than one sigma. One could argue for possible reasons for that, for
instance anchored in charge-sign differences of the origins of a non-unique
coherence parameter mentioned in Section 2.2.4. However, since Figure 5.14
does not include systematic errors, there is no substantial support for the
conjecture of a difference between the λ parameters of π−π− and π+π+

data. Figure 5.15 shows the same data as Figures 5.12 and 5.13, but in
dependence of the cubic root of the number of participants, A1/3

part, for dif-
ferent values of pt,12 for π−π− (left column) and π+π+ (right column). All
freeze-out radii follow mainly a linear trend in direction of A1/3

part, as one
would expect since Apart is supposed to be proportional to the freeze-out
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Figure 5.15: Rinv (black circles), Rout (red up-pointing triangles), Rside
(green down-pointing triangles) and Rlong (blue boxes) for π−π− (left
panel) and π+π+ (right panel) for pt,12 from 200 to 300 MeV/c (upper
panels), 300 to 400 MeV/c (middle panels), 400 to 500 MeV/c (lower pan-
els), as a function of the cubic root of the number of participants, A1/3

part.
Dashed lines are linear regressions to the data. Error bars contain only
statistical uncertainties.
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5.2 Azimuthally integrated correlations

volume of the fireball. In all panels of Figure 5.15, it is clearly visible that
Rside changes significantly with A

1/3
part and is therefore the most centrality

dependent radius.

5.2.2 The cross-term R2
out long under variation of y12
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Figure 5.16: Cross-term R2
out long from Equation (4.31) as a function

of pair transverse momentum for 0 − 10 % centrality for π−π− (filled
symbols) and π+π+ (open symbols). Black circles represent the rapidity
window y12 ∈ [0.39, 1.09], grey up-pointing triangles y12 ∈ [0.29, 0.69]
and brown down-pointing triangels y12 ∈ [0.79, 1.19], respectively.

In the previous section, only the diagonal HBT radius parameters of Equa-
tion (4.28) are shown, since at mid-rapidity all other components of Rij

should vanish due to symmetry constraints. In Figure 5.16 the non-diagonal
parameter R2

out long is exhibited for the 10% most central events in depen-
dence on pt,12. Filled symbols represent π−π− data and open symbols data
of π+π+ pairs. The black circles are results for the above chosen window
around mid-rapidity. In addition, the brown down-pointing triangles show
results at forward-rapidity with values between 0.79 and 1.19 and the grey
up-pointing triangles the results at backward-rapidity with values between
0.29 and 0.69, respectively. The values of R2

out long are close to zero at mid-
rapidity, while at forward rapidity, finite positive values and, at backward
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Figure 5.17: Correlation coefficient ρol, defined in Equation (2.44),
and the mean value of the choosen rapidity window (right scale) for
π−π− (left panel) and π+π+ (right panel) as a function of pair tranverse
momentum for 0 − 10 % centrality. Red squares represent fits without
the cross-term R2

out long; other symbols and colors as in Figure 5.16. The
blue curves belong to the rapidity intervals y12 ∈ [0.29, 0.69] (dashed),
y12 ∈ [0.39, 1.09] (solid) and y12 ∈ [0.79, 1.19] (dashed-dotted).

rapidity, finite negative values are obtained. Although all pairs are boosted
into the LCMS, where βl of each pair vanishes, the mean value of the longi-
tudinal velocity relative to mid-rapidity is finite. Therefore, Equation (2.41)
delivers a positive value for R2

out long at forward-rapidity and a negative value
at backward-rapidity. There are only small differences between π−π− and
π+π+ data at high values of pt,12, while at lower transverse momenta the
data of π+π+ pairs are significantly below those of π−π− pairs. To discuss
the non-monotonious behaviour of R2

out long, the linear correlation coefficient
ρol (2.44) is considered, exhibited in Figure 5.17. Colors and symbols are
choosen in the same way as in Figure 5.16, and additional red boxes rep-
resent a vanishing correlation coefficient. The left panel belongs to π−π−

and the right panel to π+π+ pairs. In addition, the mean values of y12 in
the chosen rapidity intervals at low values of q⃗ are inserted as blue curves
with the scale on the right side of the diagrams. The solid curve belongs to
mid-rapidity, the dotted curve to backward rapidity, and the dashed curve
to forward rapidity. If the average rapidity within the fixed rapidity inter-
vals changes from one pair transverse momentum interval to the next one,
one can expect that the values of ρol or R2

out long, respectively, are changing,
too. Obviously, the trends of ρol barely follow the trends of ⟨y12⟩. However,
taking a closer look one finds a correlation between them. If the correlation
coefficient is constant or slightly decreasing one finds a clearly decreasing
average pair rapidity like for the black circles and grey up-pointing triangles
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5.2 Azimuthally integrated correlations

in the π−π− panel of Figure 5.17. If ρol is slightly increasing, like for back-
ward rapidity of π+π+ or forward rapidity of π−π− pairs, the dependences
of pt,12 on ⟨y12⟩ are more or less negligible. Finally, for a strong increase
at low values of pt,12, visible in the trends of forward and mid-rapidity of
π+π+ pairs, one can see at least a small increase in the corresponding mean
rapidity values. From this observations one can conclude that a correlation
between ⟨y12⟩ and ρol exists, but in addition something more affects the de-
termination of R2

out long, becoming significant especially at low values of pt,12.
Note that the diagonal HBT radius parameters depend only weakly on y12.
Setting R2

out long explicitely to zero at mid-rapidity delivers no significant
change of the HBT radius parameters, see Appendix B.1.

5.2.3 Other systematic influences

As visible for example in Figures 5.1 and 5.2, the fit functions (4.26) and
(4.28) assuming a Gaussian source distribution do not perfectly match all
experimental data points. Therefore, the fitted HBT parameters are affected
by the choice of the fit intervals of the respective relative momentum quanti-
ties. To account for the possible fit-range dependence, a couple of variations
has been applied to the fit range, listed in Table 5.1.

Table 5.1: Fit range variations in Equations (4.26) and (4.28) and
possible constraints as well for generating Figures 5.18 to 5.20, used for
systematic error investigations. In the three-dimensional case, qinv is
determined by Equation (4.29).

# qfit, min
inv [MeV/c] qfit, max

inv [MeV/c] constraints
0 10 80 –
1 10 60 –
2 10 100 –
3 6 60 –
4 6 100 –
5 6 32 Cnorm = 1
6 10 32 Cnorm = 1

The results for Rinv, Rout, Rside and Rlong are exhibited in Figure 5.18 for
π−π− pairs and in Figure 5.19 for π+π+ pairs, respectively. Apparently,
the resulting fluctuations of the HBT radius parameters are small, typically
within 0.1 to 0.3 fm. Only for Rinv of π+π+ pairs, the changes are a bit
larger, around 0.5 fm. This is the main contribution for the systematic un-
certainties. Next to the fit range variations, a change of the pair rapidity
interval is considered, one for backward-rapidity with y12 ∈ [0.39, 0.74] and
one for forward-rapidity with y12 ∈ [0.74, 1.09], depicted in Figures 5.18
and 5.19 as open downpointing triangles and open diamonds, respectively.
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Figure 5.18: Systematic variations of the HBT radius parameters of
the azimuthally integrated analysis in dependence of pt,12 for π−π− and
0 − 10 % centrality. In addition to the standard configuaration (red filled
boxes) the following settings are chosen: fit range of qinv in units of MeV/c
changed to [10,60] (open boxes), [10,100] (filled circles), [6,60] (open cir-
cles), [6,100] (filled up-pointing triangles), [6,32] (open up-pointing tri-
angles), [10,32] (filled down-pointing triangles), where for the latter two
ones an explicit condition is set on the second normalisation constant
C = 1, see also Table 5.1. Open down-pointing triangles (open diamonds)
denote a changed pair rapidity interval of [0.39,0.74] ([0.74,1.09]). Filled
green diamonds belong to an increased sliding wire window (SWW) of
size 5, see Section 4.3.4.

There are small differences compared to the interval which is symmetric
around mid-rapidity, which can not be excluded by a physical motivation.
However, due to the symmetry z → −z in the LCMS, the HBT parameters
in backward and forward rapidities should be the same if the intervals of y12
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Figure 5.19: Same as Figure 5.18, but for π+π+.

are equally sized and the mean values of them relative to mid-rapidity are
the same. For that reason, the differences of the HBT fit parameters within
these two intervals off mid-rapidty are treated as further contribution to the
systematic uncertainties. Typical systematic variations of the fit radii of
0.03 − 0.1 fm for Rinv, Rside and Rlong or 0.03 − 0.2 fm for Rout, respectively,
are observed. The remaining green filled diamonds in Figures 5.18 and 5.19
belong to a variation of the size of the sliding wire window (SWW) intro-
duced in Section 4.3.4, increased from three to five. The impact on the radii
of this variation compared to the red filled boxes is very small (with values
smaller 0.1 fm) and legitimates the usage of a selection on that quantity with
SWW of size 3. The differences between SWW = 5 and SWW = 3 give a
further contribution to the systematic uncertainties.
The influence of possible impurities entering the charged pion samples was
tested with stronger cuts on the quality parameters of the particle identifi-
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Figure 5.20: Same as Figure 5.18, but for the parameters λinv (left
panels) and λosl (right panels). π−π− (π+π+) data is plotted in the top
(bottom) row.

cation, see Section 4.2, i.e. by a ± 30 MeV mass window around the most
probable pion mass. About two third of the pairs survived this cut. No
systematic differences with respect to the full data sample are found within
the statistical uncertainties. Varying Rinv in the Coulomb correction of
Equations (4.26) and (4.28) results in systematic uncertainties of around ±
0.01 fm. The finite size of the q averaging intervals in Equation (4.29) yields
systematic uncertainties of even smaller size. The uncertainty of the momen-
tum resolution correction described in Section 4.4.2 appears to be an order
of magnitude smaller than the absolute source radius shift, i.e. typical values
of ± 0.01 − 0.03 fm are considered. For the fit of the azimuthally integrated
three-dimensional correlation function, the slight differences of the results
when switching on and off the ’out long’ component in the fit function, see
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5.2 Azimuthally integrated correlations

Appendix B.1, are taken as further systematic uncertainty. Typically these
differences are smaller than ± 0.1 fm.
In Figure 5.20 the above considerations are applied to the incoherence pa-
rameters λinv and λosl for both π−π− and π+π+ pairs. Typical differences
are ≤ 0.1 with a few outliers. Only for positive pion pairs, the differences for
λinv are up to ± 0.15 with the main contributions coming from the smallest
fit ranges in qinv.
As an additional cross check, the stability of the results with respect to a
reversed setting (for about 10 % of the beam time) of the magnetic field
has been investigated. Within the larger statistical errors, the results for
π+π+ (π−π−) in the reversed field are found identical to the π+π+ (π−π−)
results, see Appendix B.2. Finally, all systematic error contributions are
added quadratically. The values can be found as upper and lower labels in
the second brackets in Tables D.1 and D.2 in Appendix D.

5.2.4 Dependence on polarity for central collisions

In Section 5.2.1 π−π− and π+π+ results were shown separately. In Fig-
ure 5.21 Rinv, Rout, Rside and Rlong and the incoherence parameters λinv
and λosl of both π−π− (red circles) and π+π+ (black boxes) are plotted in
dependence of mt for 10 % most central collisions. The systematic uncertain-
ties, discussed in Section 5.2.3, are added as hatched bands. A substantial
charge-sign difference is visible in Rside and Rlong, becoming larger for low
values of mt and smaller at high transverse momenta. Also Rinv shows this
difference, but less significantly due to the larger systematic uncertainties.
The effect is only visible in Rout at very low values of mt and vanishes at
intermediate and high transverse momenta. No significant charge-sign split-
ting is visible in the incoherence parameters, since the large systematic error
bands overlap at all values of mt. Applying Equation (2.29) to the polarity
dependent freeze-out radii allows to construct the emission radii of pairs of
two uncharged fiducial pions, π̃0π̃0, as

R2
π̃0π̃0 ≈ 1

2

R2

π+π+ +R2
π−π−


, (5.1)

where Rπ̃0π̃0 is the initial source size shifted by the attracting (repulsing)
effective Coulomb potential Veff to Rπ−π− (Rπ+π+), under the asumption
that the HBT radius parameters are proportional to the inverse width of
the correlation signal in relative momentum space. Furthermore, Veff has
to be small compared to the energy related to the transverse momentum,
ktc, of the considered pairs. Since the π−π− and π+π+ data points have
different bin centers of transverse momentum, the radii have been interpo-
lated and each experimental point was compared to the interpolated value
of the opposite polarity. It has been used both, a cubic spline and a linear
interpolation, and differences of both curves are added to the uncertainties
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Figure 5.21: Source radii Rinv (top left), Rout (top right), Rside (center
left), Rlong (center right), as well as parameters λinv (bottom left) and
λosl (bottom right) as function of mt for π−π− (black boxes) and π+π+

(red circles) in 0 − 10 % centrality. Error bars contain statistical errors,
hatched bands denote systematic uncertainties. Blue dashed curves rep-
resent radii of constructed fiducial π̃0π̃0.
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(red circles), 10 − 20 % (violet boxes), 20 − 30 % (blue up-pointing tri-
angles), 30 − 40 % (green down-pointing triangles) in dependence on
mt =


k2

t +m2
π for constructed fiducial π̃0π̃0. Dashed curves repre-

sent parametrisations with Equation (5.3).

of the derived quantities of Equation (5.1). The constructed π̃0π̃0 radii are
drawn as blue dashed curves in the four upper panels of Figure 5.21.
Accordingly, also the effective potential Veff can be determined. From Equa-
tion (2.29) one derives

Veff(mt) = (m2
t −m2

π)
4mt

(R2
π−π− −R2

π+π+)
R2

π̃0π̃0
. (5.2)

The values of Veff were obtained with the same interpolation scheme as for
the constructed π̃0π̃0radii. They can be found for all centrality classes in
Appendix B.3.
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Equation (5.3) applied to the data in Figure 5.22 in dependence on A1/3

part,
i = {inv (black circles), out (red up-pointing triangles), side (green down-
pointing triangles), long (blue boxes)}. Dashed lines are straight-line fits
to the data points.

Figure 5.22 exhibits the constructed π̃0π̃0 radii in dependence of mt for all
considered centrality classes, similarly to Figures 5.12 and 5.13. The dashed
lines represent a parametrisation with

Ri = Ri,0
mt
mπ

αi

, (5.3)

where i ={’inv’,’out’,’side’,’long’}. Equation (5.3) has been used previously
in [94] as power law ansatz for Rout, Rside and Rlong fits. This power-law
function ansatz delivers rather good fits of Rside and Rlong, while for Rout
it seems not to be the best choice. The fit parameters of Equation (5.3)
are plotted in Figure 5.23: Ri,0 in the left panel and αi in the right panel.
Despite the fact that Equation (5.3) is not motivated from basic physical
principles, one can discuss the parameters of this function. Ri,0 increases
with A

1/3
part, except for Rlong in most central collisions, and can be used as

rough approximation for Ri at kt = 0, where dynamical effects vanish. The
parameters αi are measures of the mt slope of the freeze-out radii, where
αside ≈ −0.5 is found for all centralities. This coincides with AMPT calcula-
tions performed at ultra-relativistic beam energies [3, 106]. The parameter
|αlong| is always larger than 0.5, increasing for more peripheral collisions
with values between 0.78 and 0.96. The non-constancy of αlong would indi-
cate a non-constant longitudinal flow over different centralities. It can be
interpreted with an increasing stopping power for more central collisions.
In a similar investigation at √

sNN = 200 GeV [94], the opposite case was
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5.2 Azimuthally integrated correlations

observed, i.e. αlong was found to be constant and |αside| decreasing for more
peripheral collisions. Overall, all values of αi were found to be smaller than
those in the present investigation.

5.2.5 Interpretation of the kt dependence

Figure 5.24: Illustration of the interplay of thermal motion and collec-
tive flow. Figure taken from [107]. See text for details.

A couple of possible reasons exists for the decrease of all HBT radii with
increasing transverse momentum. The most prominent one is radial flow [3,
108], i.e. a directed collective motion of the pions emitted from the fireball.
At least in transverse direction the collective flow is directly related to the
pressure gradient and the viscosity of the hot and dense matter. It is su-
perposed with the randomly distributed thermal motion of the pions, which
is essential for detecting the Bose-Einstein signal as noted in Section 2.2.4.
The magnitude of collective flow can be represented by the flow velocity v
(vt in transverse and vl in longitudinal direction), while the thermal mo-
tion is quantified by the temperature T . In Figure 5.24, the influence of
the flow on the measured radii is illustrated. A pion emitted from the fire-
ball has locally a randomly distributed velocity direction, which is modified
in dependence of the emission point by the collective flow vector pointing
outward in radial direction. Two pions coming from different regions of
the fireball can combine to small pair momentum and point into any di-
rection, since the thermal motion might be strong enough to change the
direction of emission. Large pair momenta are only achieved, if the pions
pointing along each other origin from the same region of the fireball, since
only then the contributions to the total momentum from the single pions
are large enough. In principle, much more combinations for forming large
and low pair momenta can be found, but only pion pairs with small relative
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5. Results

Figure 5.25: Acceptance- and efficiency-corrected transverse mass spec-
tra of π− (left) and π+ (right) at mid-rapidity. Blue curves represent a
double-slope Boltzmann fit, red (green) lines denote the fraction of this
fit function with larger (smaller) slope parameter. Figure taken from
[83].

momentum moving into the same direction carry the wanted femtoscopic
information delivering the source size. Furthermore, the mass of the parti-
cles affects the sensitivity to the dynamical changes of the momentum, i.e.
heavier particles are more confined to the collective motion and less affected
by the thermal one [108]. Therefore, one finds a scaling for the HBT radii
with mt = (k2

t + m2)1/2, proportional to the collective flow effects, which
can be formally implemented, as e.g. in Equation (2.47), depending on the
modelling of the source distribution. Fitting the mt dependence of Rside
in Figures 5.21 and 5.22 with the hydro-dynamically motivated expression
(2.47) leads to values of η2

t /T of about 1 − 2 × 10−2 MeV−1 for π−π−, π+π+

and π̃0π̃0, when limiting the geometrical radius parameter RG to reasonable
values smaller than 20 fm. Inserting a typical kinetical freeze-out tempera-
ture of about 60 − 70 MeV [64, 109] leads to transverse flow velocities larger
than 0.7 − 0.8. These are quite large values compared to the values found
in [109] ([64]) with vt ∼ 0.2(0.3) − 0.4. Furthermore, these large values
interfere with the small-velocity expansions vt ≪ 1 made in Section 2.5 for
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5.2 Azimuthally integrated correlations

obtaining e.g. Equation (2.47). A similar case occurs when fitting the mt
dependence of Rlong with Equation (2.49), which do not match the whole
data set, since the slope of the experimental data is too large. A fit with
Equation (2.50) delivers a longitudinal flow velocity vl close to unity, which
points to an inconsistency of this fit function with a non-relativistic longi-
tudinal expansion. Consequently, one has to state that radial or transverse
flow can not explain the strong mt dependence of the HBT radii alone.

Figure 5.26: Illustration of the impact of a finite pion mean free path
λmfp on the measurement of the source size. Only pions emitted from the
sickle-like red area are detected, decreasing mainly the measured width
in ’out’ direction and increasing obviously the Gaussian width in ’side’
direction.

A second possible reason for the decrease of the HBT radius parameters with
increasing transverse momentum is the influence of resonance decay contri-
butions with kt dependent fractions. At beam energies of 1A GeV mainly
∆ resonances emit pions, since higher resonances have masses beyond the
threshold of direct production. This contribution can be separated against
the contribution of early or direct pions produced in a hotter phase of the
evolution of the fireball with - by trend - higher momenta. For illustrat-
ing this statement, in Figure 5.25 the single particle yields of π− and π+

mesons measured with HADES are distributed. They are well fitted with
a Boltzmann-function (Eq. (3) in [83]) containing explicitely two fractions
with two different slope parameters. The interpretation is that the fraction
with the smaller slope parameter, i.e. with the higher temperature, repre-
sents the direct pions from the earlier stage, and the fraction with the larger
slope (smaller temperature) belongs to the temporally delayed ∆-decay pi-
ons with smaller transverse momentum. A similar picture exists at slightly
higher beam energies within the measurments of E810 at AGS [110]. Taking
now the ratio of direct pions relative to so-called decay pions, ndirect/ndecay,
one obtains different values of that quantity at different values of mt or
kt, respectively. Since the single particle yields are related to the observ-
ables of the two-particle correlation function via Equations (2.6) to (2.8)
and (2.33), this two-slope behaviour ought to be implicitely included e.g. in
the kt-dependence of Rside and Rlong. Applying with brute force this ansatz
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of two Boltzmann slopes within a pion emitting source containing explicitely
two fractions, one obtains formulae for source distributions and radii,

S(x, p) = Sdec(x, p) + Sdir(x, p), (5.4)

Ri(kt) = ⟨x̃i⟩(kt) =

d4xxi(Sdec(x, kt) + Sdir(x, kt))
d4x (Sdec(x, kt) + Sdir(x, kt))

= [ partial integration, substitutions ]

= Ri,dec(kt)P dec
1 (kt) +Ri,dir(kt)P dir

1 (kt)
P dec

1 (kt) + P dir
1 (kt)

, (5.5)

with two implicit HBT radius parameters per explicit parameter, Ri,dec and
Ri,dir, weighted with the single particle distributions. Note that a more
refined treatment should be implemented already on the level of the correla-
tion function C(q⃗ ), fitting explicitely with Ri,dec and Ri,dir. A consideration
taking also into account the decay widths of the resonances can be found
in [111]. However, Equation (5.5) illustrates the impact of resonance decay
contributions to the slopes of the mt-dependent HBT radii. Since it is the
most obvious effect besides radial flow being able to generate a sufficiently
large mt slope, one can state that the transverse momentum dependence
of the HBT radius parameters is given at least partly by the correspond-
ing fraction of decay pions and direct pions. The fraction of early emitted
direct pions is larger at high values of kt and the fraction of later emitted
∆-decay pions is larger at small values of kt. As a last consequence, the
HBT radii inherit this intrinsic time dependence, meaning radii obtained at
higher transverse momentum are correlated with earlier times of the fireball
evolution and the other way round (also supported by the findings of [112]).

For a quantitative treatment one should be able to combine collective flow,
resonance contributions and the charge-sign dependence of Section 5.2.4
in an appropriate formalism, since Equation (2.29) needs not necessarily
to factorise into a form like Equation (5.5). Finally, the possibility of the
influence of the finite mean free path of the pions, λmfp, in the hot and dense
matter should be considered. If λmfp is in or below the order of magnitude of
the source extension then the fireball has to be considered as partly opaque
with the emission points of pions shifted more to the surface. From this
consideration, a slight increase of Rside and a significant decrease of Rout
can be expected [50, 113]. When studying Rside this can be seen as small
systematic uncertainty. However, especially for the difference of Rside and
Rout, the opaqueness can have a crucial impact.1

1To make a decision of how large the effect of opaqueness is, in [114] the usage of the
YKP parametrisation is suggested, since there the influence of λmfp is highest in one given
direction.
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Figure 5.27: Excitation function of Rout (upper panel), Rside (central
panel), and Rlong (lower panel) for π−π− and π+π+ with mt = 300 MeV
in central collisions of Au + Au, Pb + Au or Pb + Pb. Squares represent
data by ALICE (π+π+) [18], full triangles STAR (π−π−+π+π+) [17], di-
amonds are for CERES (π−π−+π+π+) [15], open triangles are for NA49
(π−π−) [16], open circles are π−π− data by E895 [13], and open (full)
crosses involve π−π− (π+π+) data of E866 [14], respectively. HADES
data for π−π− (π+π+) are given as open (full) stars.
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Figure 5.28: Same as Figure 5.27, but for the approximate freeze-out
volume Vfo according to Equation (5.6).

5.2.6 Excitation functions

In the previous sections 5.2.1 and 5.2.4, multi-differential freeze-out radii
are presented, depending highly on transverse momentum, centrality and
polarity of the pion pairs. Now, this data can be compared to femtoscopic
radii from other experiments at higher beam energies to study excitation
functions. Figure 5.27 displays Rout (top), Rside (middle) and Rlong for cen-
tral (0 − 10 %) collisions in dependence on √

sNN . The data is taken from
Au+Au, Pb+Au and Pb+Pb collisions. All shown radius parameters have
been obtained by interpolating the existing measured data points to the
same transverse mass of mt = 300 MeV (kt = 265 MeV/c). The statisti-
cal uncertainties are properly propagated and quadratically added with the
differences of linear and cubic spline interpolations. Extrapolations were
not necessary at this mt value. Corresponding excitation functions at other
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Figure 5.29: Same as Figure 5.27, but for the quantity R2
out − R2

side.

transverse masses show similar dependencies [115, 116]. Surprisingly, Rout
and Rside vary hardly more than 40 % over three orders of magnitude in
center-of-mass energy. Only Rlong exhibits a systematic increase by about
a factor of two when going in energy from SIS18 via AGS, SPS, RHIC to
LHC. Note that in the excitation functions of ref. [17] not all, (on particular,
AGS) data points were properly corrected for their kt dependence.
The excitation function of the approximate freeze-out volume,

Vfo = (2π)3/2R2
sideRlong, (5.6)

for central collisions is given in Figure 5.28. Note that this definition of
a three-dimensional Gaussian volume does not incorporate Rout, since this
length is potentially extended due to a finite value of the aforementioned
emission duration. From the above HADES data, a volume of about 850 fm3
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for constructed fiducial π̃0π̃0 pairs is estimated. This volume of homogeneity
steadily increases with beam energy, but appears merely a factor four larger
at LHC. Extrapolating Vfo to kt = 0 yields a value of about 3.900 fm3.
The excitation function of R2

out −R2
side for an average transverse momentum

of the pion pairs of kt = 265 MeV/c in central collisions is shown in Fig-
ure 5.29. Up to now almost all measurements below 10 GeV beam energy
are characterized by large errors and scatter sizeably. The new HADES data
show that the difference of the source parameters in the transverse plane al-
most vanishes at low collision energies. Since this quantity is related to the
emission duration ∆τ in leading order via (compare Equation (2.43))

β2(∆τ)2 ≈ R2
out −R2

side, (5.7)

one would conclude that, in the 1 A GeV beam energy region, the observed
pions are emitted into free space during a short time span of less than a
few fm/c. However, also the opaqueness of the source affects R2

out − R2
side,

discussed in Section 5.2.5 and illustrated in Figure 5.26, which could cause
it to become negative, thus compensating the positive contribution from
the emission time [50]. It should also be emphasized that, with increasing
available energy, this quantity reaches a local maximum at √

sNN ∼ 20 −
30 GeV and afterwards decreases towards zero at LHC energies.

5.3 Azimuthally dependent correlations

In this section the full results of azimuthally sensitive correlation functions
in the ’osl’-system are considered. Furthermore, derived quantities with
respect to the reaction-plane fixed ’xyz’-system are presented and compared
to observations of other experiments at higher beam energies.

5.3.1 Oscillations of the femtoscopic variances

In Figure 5.30, the fit results applying Equations (4.28) and (4.31) to the
azimuthally sensitive correlation functions are displayed, as a function of the
azimuthal angle relative to the event plane Φ for five intervals of transverse
momenta of π−π− for 10 − 30 % centrality. In the left panels, the diagonal
variances R2

out, R2
side and R2

long (from top to bottom) are plotted. All these
squared radii display a systematic dependence of kt, in accordance to the
trends of Figure 5.12. R2

out and R2
side show clearly oscillations, while R2

long is
constant apart a few fluctuations, the more for lower values of kt. In the right
panels the non-diagonal variances R2

out side, R2
out long and R2

side long (from top
to bottom) are plotted. They show also clear oscillations: R2

out side with two
cycles and R2

out long and R2
side long with one cycle within 2π. The amplitudes

of all oscillations are larger for smaller values of kt in accordance with the
correspondingly larger diagonal radii. The curves represent global fits with
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Figure 5.30: HBT radius parameters R2
out (top left), R2

side (middle
left), R2

long (bottom left), R2
out side (top right), R2

out long (middle right)
and R2

side long (bottom right) resulting from the fit of Eqs. (4.28) and
(4.31) to the three-dimensional correlation functions for π−π− for dif-
ferent values of kt and centrality 10 − 30 % as a function of Φ. Error
bars include only statistical uncertainties. Full curves represent global
fits with Equation (4.38).
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Figure 5.31: Same as Figure 5.30, but for π+π+.

Equation (4.38) to the six variances, i.e. the combined set of fit functions
is fitted to all data points of all panels for each value of kt simultaneously.
While for the lowest kt intervals some fluctuations are visible, for the higher
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Figure 5.32: The ten independent fit parameter Sµν from Equa-
tion (4.38) as function of pair transverse momentum pt,12 for π−π− for
10 − 30 % centrality. Temporal components are on the left column, di-
agonal (non-diagonal) pure spatial components on the middle (right)
column. Open circles are the direct outcoming from the fits, full circles
are EP-resolution corrected according to Equation (4.40).

ones the fit describes the data quantitatively very good. Overall all fits
describe the trends also quite good. In Figure 5.31, the same is shown for
π+π+. Since the pair statistics is significantly smaller for positive pions, data
points are only available for four classes of kt starting at 100 MeV/c. While
the absolute values of the diagonal variances are smaller and change less
with pt,12, compared to π−π−, the non-diagonal variances and the oscillation
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Figure 5.33: Same as Figure 5.32, but for π+π+.

amplitudes of all variances are very similar. Apart from a few fluctuations
the fit reproduces the data again quite good.
The fit parameters of Equation (4.38) from the global fits are exhibited in
Figure 5.32 for π−π− and in Figure 5.33 for π+π+, respectively. In the
left column from top to bottom, the temporal element S00 and the spatio-
temporal elements S01, S02 and S03 are displayed; in the middle column,
the spatial diagonal elements S11, S22 and S33 are listed, and in the right
column, the spatial non-diagonal elements S12, S23 and S13 are exhibited.
Open circles are for the values coming directly from the combined fit, the
filled smaller circles are the event-plane resolution corrected values according
to Equation (4.40). Only the elements S00, S11, S22, S33 and S13 are signif-
icantly different from zero, as already expected from symmetry constraints,
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5.3 Azimuthally dependent correlations

see Equation (4.39). S12 and S23 are mostly zero within one standard devi-
ation and vanish completely within two standard deviations for both, π−π−

and π+π+. The same statement is valid for S03, except one outlier at the
smallest value of pt,12 for π−π−, which is in the range of three standard
deviations around zero. For S01 and S02, the case is a bit different. Even
if S02 vanishes again within two standard deviations, all values are found
to be smaller or at least equal to zero without fluctuations into the positive
area. The same case occurs for S01, but the difference to zero is even larger,
up to five standard deviations for π−π−. Despite the fact that the absolute
values are still small compared to S00, S11 or S22, this might be a hint for
an implicit Φ dependence of the source function. Following [104] it could be
a reflection of the spatial manifestation of elliptic flow. Since S00, S33 and
S03 are not influenced by azimuthal oscillations, they are also not affected
by the ebent-plane resolution. The correction is biggest for S11 and S22
and enters with opposite sign, that means, S22 is (like all other affected ele-
ments) enlarged, while S11 is reduced. Therefore the right handling of this
correction is most important for derived quantities, where the difference of
both elements is used, e.g. the xy-eccentricity, see Equation (4.46). Worth
to mention is that S11 and S22 are determined by the trends of R2

out, R2
side

and R2
out side, which means that even a drastic fluctuation in one of the HBT

parameters can be compensated by the other ones, which makes the corre-
sponding elements of Sµν much more stable and their values more reliable.
The same reasoning holds for S13, which is determined by the oscillation of
R2

out long and R2
side long.

The values inferred from Figures 5.32 and 5.33 are employed to calculate
with Equation (4.44) the tilt angle θs within the reaction plane and to use it
for tilting back the measured ellipsoid of the fireball region, as described in
Section 4.5.3. In Figure 5.34, the geometrical variances σx, σy and σz (left
column), which are the semi-axes of the upstanding ellipsoid, are plotted. In
the right column, the tilt angle θs (top), the eccentricities εxy (middle, see
Equation (4.46), filled symbols) and εzy (middle, see Equation (4.47), open
symbols), and the emission duration σt (bottom) are exhibited. Black boxes
represent π−π− data and red squares the data of π+π+. In leading order,
the trends of σx, σy and σz are similar compared to Rside and Rlong in the
azimuthally integrated analysis, see Figures 5.12 and 5.13. The variances
decrease with pt,12 and one finds the hierarchy σy > σx > σz, i.e. a three-
dimensional almond-shape. Furthermore, the gap between the values of
π−π− and π+π+ is clearly visible, which is related to the Coulomb potential
of the charged participants, similar to what was discussed in Section 5.2.4.
Probably, also the charged spectators contribute to the charge-sign depen-
dence of these geometrical variances, since there are more spectators for pe-
ripheral and semi-peripheral collisions than for central collisions, and they
are close-by due to short evolution times of the fireball expected at SIS en-
ergies. In contrast, the tilt angle θs shows no dependence on the polarity of
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Figure 5.34: The spatial semi-axes (left panels), the tilt angle w.r.t. the
beam axis in the reaction plane (Eq. (4.44), top right), the xy-eccentricity
(full, Eq. (4.46)) and the zy-eccentricity (empty, Eq. (4.47), middle right)
and the emission duration σt (bottom right) of the Gaussian emission
ellipsoid of π−π− (boxes) and π+π+ (circles) as function of transverse
momentum for 10 − 30 % centrality. Error bars include only statistical
uncertainties. The dotted line (to be compared to εxy) represents the
initial nucleonic eccentricity derived from Glauber simulations.
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5.3 Azimuthally dependent correlations

the pion pairs. It has negative values, which means that the tip of the longer
semi-axes in the xz plane is pointing to the spectators. The tilt angle has its
largest magnitude at the small values of pt,12, increases smoothly with pt,12
and tends to vanish at high pair transverse momenta. The eccentricities
depend also only less on the polarity of the pion pairs. Only for the smallest
and the largest values of pt,12, a small difference is present, but not more
than two standard deviations. The xy-eccentricity is always positive; it is
small for small values of pt,12 and increases for large transverse momenta
up to the initial eccentricity εini, which was extracted from Glauber sim-
ulations, depicted as dashed line in Figure 5.34 (right middle panel). The
zy-eccentricity is only less dependent on pt,12; it is almost constant around
0.4 for low transverse momenta and seems to increase slightly with higher
values of pt,12. The emission duration σt, identified with

√
S00, decreases

with increasing transverse momenta. A significant charge-sign difference is
visible only at small values of pt,12 (smaller than 300 MeV/c).

5.3.2 Excitation functions

The results of the previous section can be compared to the experimental
findings of other experiments at different beam kinetic energies and √

sNN ,
respectively.

Comparison with E895@AGS

In Figure 5.35, results of this work are compared to results from E895 [19]
for π−π− correlations in dependence on √

sNN . In the left column from top
to bottom, σx (red), σy (green) and σz (blue), in the right column from top
to bottom θs (black), εxy and εzy (blue filled and red open, one panel) and σt

(violet) are displayed. Error bars include only statistical uncertainties. Data
from E895 is given for a large interval of kt from 0 to 400 MeV/c with average
value kt = 110 MeV/c of small pair relative momenta. Accordingly, HADES
data points are taken from linear interpolations at pt,12 = 220 MeV/c of
the dependences shown in Figure 5.34. The trends of σx, σy and σz are
smooth, and the values are decreasing with larger values of √

sNN . When
compared with the excitation function for central ϕ-integrated results (see
Figure 5.27), this seems a bit misleading, since it was emphasized that there
is no rising of the radii with lower beam energy. However, one should take
into account that here only π−π− data is compared and that the influence of
the central Coulomb potential is very large at such small values of kt, com-
pare also with Figure 5.21. Fixing the interval of kt as been done by E895,
delivers for HADES an average transverse momentum of kt ≈ 150 MeV/c
and corresponding results are plotted as boxes. Except σx, the semi-axes at
this slightly larger transverse momentum describe also good the curvature
of the AGS trends. For θs, εxy and εzy, one finds also very smooth trends
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Figure 5.35: The spatial principal axes (left column), the tilt angle
w.r.t. the beam axis in the reaction plane (see Equation (4.44), top
right), the xy-eccentricity (empty) and the zy-eccentricity (filled sym-
bols, Equations (4.46) and (4.47), right middle) and the emission dura-
tion σt (bottom right) of the Gaussian emission ellipsoid for π−π− as
function of √

sNN for semi-peripheral Au + Au collisions. Circles repre-
sent data of E895 at AGS [19] for 7.4 − 30 % centrality at average kt of
110 MeV/c, HADES data interpolated to this value of kt using the data
of Figure 5.34 is given by stars. Boxes represent HADES interpolated
data at kt = 150 MeV/c. Error bars include only statistical uncertainties.
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5.3 Azimuthally dependent correlations

with decreasing values for higher values of √
sNN . The same holds finally for

σt, but increasing with √
sNN . Looking at θs, the box fits even better into

the trend of E895 than the star, indicating that the higher transverse mo-
menta are the more reliable ones. However, the uncertainties of the HADES
data are by a significant factor smaller than those from E895 data, therefore
a possible kink of θs is not reliably confirmable when comparing with the
published value of kt = 110 MeV/c.

Eccentricities

Unfortunately, E895 is the one and only experiment which provides pub-
lished results from a comparable analysis considering tilt angles θs, although
there is work in progress at STAR [117]. Going to higher energies one can
compare εxy and εzy with those extracted with the simplified form of Equa-
tions (4.52) and (4.53), under the assumption that θs is small. In Figure 5.36,
the values of εxy (εzy) from Figure 5.35 are kept as blue open (filled) symbols,
stars are again HADES data points and circles represent data from E895.
In addition, data of CERES at SPS [20] (diamonds), STAR at RHIC [17]
(triangles), and ALICE at LHC [21] (boxes) are included; open symbols are
calculated using Equation (4.52) and filled symbols using Equation (4.53). If
data was available only for the more narrow centrality classes 10 − 20 % and
20 − 30 % (especially for ALICE) it has been averaged over both. Since all
data √

sNN ≥ 7 GeV is not available at the same value of kt of 110 MeV/c as
for E895, different colors are chosen for the presentation, and corresponding
HADES points are added. The CERES data is given at an average value
of kt of 230 MeV/c (colored in green). STAR and ALICE data is available
over a wide range in kt starting at around 260 MeV/c. Since in [17, 118]
a study of εfinal has been done using kt = 310 MeV/c, this value is kept
here for having a better comparison, using black color. The long- (short-
) dashed colored curves are ’guiding-eyes’ curves with a parametrisation
a exp[−b log(√sNN)] + c without direct physical motivation. Overall, both
eccentricities decline monotonously for all considered values of kt. The vari-
ation of the data points for higher values of √

sNN , i.e. larger than 10 GeV, is
relatively low as compared to the variations at smaller energies. The values
of εzy are always larger than those of εxy. The arrow on the ordinate gives
the final eccentricity εfinal extracted from Glauber simulations for HADES
energies, which decreases slightly over three orders of magnitude in √

sNN

from 0.271 to 0.224. In [17, 118] the larger eccentricity εzy (there defined
as εxy) is associated with the initial eccentricity εini, while in the present
work εxy is linked to εini, which becomes clear following the systematics in
pt,12 (and in centrality, see the next section). This indicates a crossing of
trends in the region of √

sNN = 4 − 7 GeV. A hint for that is visible at the
lowest data points of STAR at 7.7 GeV, where εxy seems to be a bit above
the overall trend and εzy a bit below. However, this is most properly related
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Figure 5.36: Excitation function of the approximate π−π− freeze-out
eccentricity for semi-peripheral Au + Au, Pb + Au, or Pb + Pb collisions.
Stars are HADES π−π−data for three different transverse momentum
regions with average values of k̄t = 110, 230, and 260 MeV/c. Filled
(open) symbols represent εzy (εxy); for details see the text. The circles,
diamonds, triangles, and squares are corresponding data by E895 at AGS
[19], CERES at SPS [20], STAR at RHIC [17], and ALICE at LHC [21],
respectively. The arrow on the ordinate denotes the aproximate (not
constant) value of εini, the dashed curves are for guiding the eyes without
physical motivation. Error bars include only statistical uncertainties.

to the fact that θs is not anymore small enough for the simple consideration
yielding Equations (4.52) and (4.53). This idea is also supported by [119],
where UrQMD model calculations confirm the trend of εzy in Figure 5.36
and indicate that for the lowest STAR energies the tilt angle θs has already
values significantly different from 0° and 90°, respectively. A few illustra-
tions concerning this particular aspect can be found in Appendix B.6.

Emission duration ∆τ

The values of σt from the lower right panel of Figure 5.35 can be identified
with the freeze-out duration ∆τ , which can be calculated by using Equa-
tions (2.43) and (5.7) in an azimuthally integrated analysis. By replacing
Rout by Rout, 0 and Rside by Rside, 0 comparable values can be determined
for the azimuthally dependent analysis of STAR, ALICE and CERES. The

140



5.3 Azimuthally dependent correlations

 [GeV]NNs
10 210 310

]2
/c2

 [
fm

2 )τ∆(

0

5

10

15

20
=110 MeV/c, 7.4-30%

t
E895,     k

=110 MeV/c, 10-30%
t

HADES, k

=230 MeV/c, 15-25%
t

CERES, k

=230 MeV/c, 10-30%
t

HADES, k

=310 MeV/c, 10-30%
t

STAR,    k

=310 MeV/c, 10-30%
t

ALICE,   k

=310 MeV/c, 10-30%
t

HADES, k

Figure 5.37: Excitation function of the squared emission duration, ei-
ther directly taken from the corresponding fit parameter of the spatial
correlation tensor, σ2

t = S00 (cf. Equation (4.38)), or derived from the
difference of the ’out’ and ’side’ radii, (∆τ)2 = (R2

out − R2
side)/⟨β2

t ⟩, for
semi-peripheral (10 − 30 % ) Au + Au, Pb + Au, or Pb + Pb collisions.
Stars are HADES π−π−data of σ2

t for three different transverse momen-
tum regions with average values of k̄t = 110, 230, and 310 MeV/c. The
circles are corresponding σ2

t data by E895 at AGS [19]. The diamond,
triangles and square represent data of (∆τ)2 by CERES at SPS [20],
STAR at RHIC [17], and ALICE at LHC [21], respectively. Error bars
include only statistical uncertainties.

squared results are exhibited in Figure 5.37 in dependence on √
sNN . Colors

and symbols belong to the same experiments and values of kt as in Fig-
ure 5.36. Considering the black triangle data points one finds a weak local
maximum at √

sNN ≈ 10 − 20 GeV. For larger and lower energies, (∆τ)2

decreases, the HADES value even becomes negative. As already discussed
in Section 5.2.6, this is a hint that the measure of Equation (2.43) is highly
influenced by momentum-space correlations, the finite pion mean-free path
[50], or other similar aspects. A strong kt dependence is not only visible
for HADES: Continuing the trend of blue symbols with kt = 110 MeV/c
from low energies to higher ones and comparing with the black symbols,
one finds that (∆τ)2 decreases with higher transverse momentum. Only the
CERES data point is an outlier in this systematics, which is a direct con-
sequence of the systematics of Rout in the azimuthal integrated analysis in
Figure 5.27, where the CERES values are slightly below the overall trend.
Although Figure 5.37 considers only π−π− data, the charge-sign of the pion
pairs is important at low energies, especially at low values of kt. Comparing
with Figures 5.32 and 5.33 one finds that the HADES value for π+π+ is
up to 10 fm2/c2 larger at kt = 110 MeV/c, which means that the freeze-out
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duration is not affected by this Coulomb effect and can be about 5 fm2/c2

higher.
However, regarding Figures 5.36 and 5.37 it turned out that the results
obtained for HADES match very good the existing systematics. Especially
in view of previously existing compilations [17, 119], the kt-differential data
of this thesis helps to connect the data points from E895, CERES, STAR
and ALICE and acts as a key to combine them in one picture.

Tilt angle θs

Figure 5.38: Avail-
able published and
preliminary data for
the tilt angle θs in de-
pendence on pt,12 for
semi-peripheral colli-
sions of Au+Au. Er-
ror bars include only
statistical uncertain-
ties.
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The experimental values of E895 plotted in Figure 5.35 are the only pub-
lished data of the tilt angle θs. Preliminary data is available only from STAR
at √

sNN = 200 GeV for 10 − 50 % centrality [117, 120]. The dependence on
centrality was found to be small at that energy and therefore one can com-
pare it with the HADES data for 10 − 30 % centrality. In Figure 5.38, the
pt,12 dependence of θs is plotted. The tilt angles obtained by STAR devi-
ate only less from −90°. For all data sets a decrease of the tilt magnitude
with increasing transverse momentum is visible. At pt,12 = O(600 MeV/c),
the ellipsoids of homogeneity from both, STAR and HADES, show no tilt
relative to the beam axis. Indeed, they have opposite orientations w.r.t. the
larger semi-axis within the reaction plane. Metaphorically spoken the el-
lipsoid is upright at HADES energy and lying flat at STAR energy. One
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5.3 Azimuthally dependent correlations

can asume that the gap between the plotted dependencies can be filled with
data extracted at energies between SIS18 and the highest RHIC energy. This
asumption is supported by UrQMD calculations [119], predicting a smooth
transition of the tilt angle over three orders of magnitude in beam energy.

Semi-axes and volume of homogeneity
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Figure 5.39: Excitation function of the volume of homogeneity V ′
fo ac-

cording to Equation (5.8) as a function of √
sNN . Symbols and colors are

the same as in Figure 5.37. Error bars include only statistical uncertain-
ties.

Last but not least, the three semi-axes σx, σy and σz (σx’, σy’ and σz’ from
Equation (4.51), respectively) and the resulting volume of homogeneity,

V ′
fo = (2π)3/2σxσyσz, (5.8)

are discussed as a function of √
sNN , see Figure 5.39 with colors and sym-

bols the same as in Figure 5.37. For large values of available kt, one finds
a smooth increase of V ′

fo for changing √
sNN over three orders of magnitude

from HADES over STAR up to ALICE (black symbols for kt = 310 MeV/c).
A comparable slope of V ′

fo(√sNN) is found when comparing the two HADES
and CERES data points at medium transverse momentum (kt = 230 MeV/c,
green symbols). However, at small values of kt the volume of homogeneity
is strongly decreasing with energy, e.g. in the region from 2 − 4 GeV by more
than a factor of two (kt = 230 MeV/c, blue symbols). Since in this excitation
function again only negative charged pions are considered, the effective vol-
ume – unbiased by the Coulomb potential of participants and spectators –
is expected slightly reduced. Using the corresponding semi-axes of π+π+ as
input for Equation (5.8) one gets a value of V ′

fo which is about 1000 fm3 lower
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Figure 5.40: Excitation function of the semi-axes σx (upper panel), σy

(middle panel) and σz (lower panel) as a function of √
sNN . Symbols and

colors are the same as in Figure 5.37. Values are taken from Figure 5.35
(Equation (4.51)) for √

sNN lower (higher) than 5 GeV. Dashed guiding-
eye curves represent trends if possible tilt angles θs are taken into account.
Error bars include only statistical uncertainties.
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5.3 Azimuthally dependent correlations

than the value of V ′
fo obtained for π−π−. This means the unbiased volume is

about 500 − 600 fm3 smaller compared to what is displayed in Figure 5.39.
This is still larger than the E895 volume at highest beam energy. Since
one can expect that all AGS data points are also affected by the charge-
sign effect, the negative slope of the trajectory through the blue points is
not explainable with Coulomb potential effects alone (, at most the half).
However, contrary to what was found in Figure 5.28 for central collisions,
HADES confirms the trend of E895 very good for semi-peripheral collisions,
supposed the chosen value of kt = 110 MeV/c is correct. This decreasing
trend is found simultaneously for all three semi-axes, exhibited in Figure 5.40
(σx upper, σy middle, and σz lower panel), which means that there is no pre-
ferred direction of the fireball expansion at lower energies. This is different
for the higher transverse momenta. Considering kt = 310 MeV/c, σx and σz

increase very smoothly with √
sNN , although there are small shifts at lowest

energies of STAR due to a possible disregard of the tilt angle θs, i.e. missing
major-axis transformation (see also Appendix B.6). In contrast, σy(√sNN)
is decreasing first, acquires a local minimum at about 10 GeV, and then
starts to increase smoothly up to ALICE energies, similar as in the other
two directions. This observation is confirmed by the comparison of HADES
and CERES data points at kt = 230 MeV/c, where σx and σz of HADES are
smaller than that of CERES at lower energy, but σy is larger. This is the
most interesting point here, since it could be seen as geometrical manifesta-
tion of the so called ’squeeze-out’, i.e. a strong out-of-plane particle emission
around mid-rapidity in the early stage of the collision observed at low beam
energies. At beam energies smaller than 10 GeV, the region of homogeneity
tends to expand more out of the reaction plane, while at energies higher
than 20 GeV, the expansion continues equally distributed in all three spatial
directions, although the in-plane elliptic flow at high beam energies [121]
might cause σy to increase a bit less than σx and σz at next-to-leading or-
der. Finally, these findings also complement quite well Figure 5.27, bearing
in mind the different centralities. This also highlights the advantage of an
azimuthally sensitive analysis compared to the Φ-integrated investigation.
While Rside as quadratic average of σy and σx (and partially an admixture
of σz, dependent on θs) was found to be almost independent of √

sNN (ex-
cept at LHC energies), it turned out that this is due to the counterbalance
of rising σy by decreasing σx or σz, respectively. Furthermore, Rlong, which
shows the largest dependence on √

sNN , can be related to σx at high energies
and with σz at low energies, under the condition of vanishing θs (as in the
case at large values of kt), and as a mixture of both semi-axes in regions of√
sNN and kt, where a sufficiently large tilt angle must not be ignored.
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5.3.3 Dependence on centrality

After studying the transverse momentum dependence and the excitation
function of the spatial parameters of the three-dimensional source model for
semi-peripheral collisions, the systematics in classes of centrality is consid-
ered.

Spatial parameters

In Figure 5.41, the semi-axes σx, σy and σz, the tilt angle θs and the out-
of-plane eccentricities εxy and εzy for π−π− are displayed similarly to Fig-
ure 5.34, but here for different classes of centrality. Red circles correspond to
0 − 10 %, violet boxes to 10 − 20 % , blue up-pointing triangles to 20 − 30 %,
cyan diamonds to 25 − 35 % and green down-pointing triangles to 30 − 45 %.
The trends of all source extensions change systematically with centrality:
the more central the collision is the larger is the deduced source size. Fur-
thermore, the source sizes are decreasing with higher values of pt,12, which
is best seen in σx, where the slope is the steepest. In σy and σz, the slope
is larger for more central collisions, while for most peripheral collisions, σz

seems to be almost independent of pt,12. The tilt angle in the reaction plane
seems to vanish for all centralities at large transverse momenta, i.e. θs = 0°
or −90°, respectively. It is always negative, which means that the source
ellipsoid is tilted to the front, i.e. inside the reaction plane the larger semi-
axis points into the direction of the spectators. The magnitude of the tilt
becomes largest at lowest transverse momenta. For all centralities, the xy-
eccentricity increases with higher values of pt,12, seems to vanish at very
low transverse momenta, and reaches at highest measurable pt,12 the corre-
sponding value of the initial eccentricity εini, the latter one depending on
the impact parameter of the collision and derived from Glauber Monte-Carlo
simulations. The more peripheral the collision is the more pronounced are
the overall trends of εxy. The zy-eccentricity does not show a clear depen-
dence on pt,12 or centrality of the collisions. It varies a bit at low transverse
momenta and seems to increase at higher values. For more central colli-
sions, εzy becomes on average smaller, and in general its values are larger
than those of εxy. The point of centrality 25 − 35 % at highest value of pt,12
is to be considered as an outlier.
In Figure 5.42, the same systematics is plotted for π+π+. Due to the re-
duced pair statistics by a factor of about 5, there are less data points com-
pared to π−π−. Overall, the values of the semi-axes are smaller compared
to π−π−, which has to be addressed to the Coulomb force of participants
and spectators, similar as introduced in Section 5.2.4. The decrease with
higher transverse momenta is weaker compared to π−π−, and the separa-
tion of the trends in the dependence on centrality is not visible that clear
anymore. In general, the observation of larger source extensions for more
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Figure 5.41: The spatial semi-axes (left columns), the tilt angle
w.r.t. the beam axis in the reaction plane (Equation (4.44), top right),
the xy-eccentricıty (Equation (4.46), right middle) and the zy-eccen-
tricity (Equation (4.47), bottom right) of the Gaussian emission ellip-
soid of π−π− as function of transverse momentum for 0 − 10 % (cir-
cles), 10 − 20 % (boxes), 20 − 30 % (up-pointing triangles), 25 − 35 % (di-
amonds), and 30 − 45 % (down-pointing triangles), respectively. Error
bars include only statistical uncertainties. Dotted lines represent the
initial nucleonic eccentricities for the corresponding centrality classes de-
rived from Glauber simulations.
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Figure 5.42: Same as Figure 5.41, but for π+π+.

central collisions does not longer apply. This is also a consequence of the
central Coulomb potential introduced in Section 2.3.2, which has a larger in-
fluence at lower transverse momenta. Comparing with Equation (2.29) one
finds a flattening of the decreasing pt,12-slopes for π+π+ and a compression
of data points in direction of centrality with respect to the smaller effective
Coulomb potential in more peripheral collisions, see Appendix B.3. The
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Figure 5.43: Final eccentricity εfinal (xy-eccentricity) plotted against
initial nucleonic eccentricity εini derived from Glauber simulations for
different values of pair transverse momenta of negatively charged pion
pairs. The dashed line depicts εfinal = εini. Error bars include only
statistical uncertainties.

trends of the tilt angle are similar as in Figure 5.41 for all centrality classes,
which confirms the statement already made w.r.t. Figure 5.34 that θs shows
no significant dependence on the pion polarity. Also the zy-eccentricity has,
similar to π−π−, no clear trend. For all measured transverse momenta and
centrality classes it has values of about 0.4 ± 0.1. The xy-eccentricity for
semi-peripheral collisions is again increasing with pt,12, but does not reach
the corresponding values of εini like for π−π−. For the central collisions
(0 − 10 %), there is almost no dependence on transverse momentum, and
εxy is approximately the same as the initial value from Glauber calculations.
There are two special points breaking the specified systematics of εxy: the
points for centralities 0 − 10 % and 10 − 20 % at about pt,12 = 440 MeV/c.
The reduction of the red point might be a consequence of the charge-sign
difference of σx and σy, since σy has a wider gap between π−π− and π+π+

values over the whole range of pt,12, while for σx this gap appears only at
lower transverse momenta and vanishes already at exactly this position of
pt,12 = 440 MeV/c. The upward shift of the violet box at this transverse
momentum is not that clear and it might be an outlier.
One should comment here on the arrangement of the data points. Due to
the freedom in the coordinate-system definition, the tilt angle, defined as
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Figure 5.44: Tilt angle θs in dependence on the impact parameter b
derived from Glauber simulations for different values of pair transverse
momenta. Filled (open) crosses denote π−π− (π+π+) pairs; for better
visibility data points are shifted slightly to the right (left).

the angle between the z coordinate (directed along the shortest principal
axis in our case) and the beam direction, can be changed from θs to θs −90°,
while σx and σz (and accordingly εxy and εzy) interchange, see the com-
ment at the end of Section 4.5.3. Thus, there are quite some possibilities
of arranging the data points in Figures 5.41 and 5.42 relative to each other.
The arrangement of the data was chosen such that both dependences, on
transverse momentum and on centrality, show smooth trends, i.e. no alter-
nating series of data points exist. Furthermore, smaller values of |θs| for
more central collisions are ensured, as one would expect from the collision
geometry. However, at more peripheral collisions and large values of pt,12,
a different configuration is conceivably, i.e. requiring θs = 0 at high trans-
verse momenta, which becomes relevant here only for the data points at
pt,12 = 440 MeV/c and centrality 25 − 35 % for π−π−. Within the statisti-
cal and systematic uncertainties in this analysis one is not able to decide
which arrangement is the better one. An illustration with overlapping trans-
verse momentum intervals can be found in Appendix B.4. Note also that
near pt,12 = 400 MeV/c and for centralities larger than 20 %, σx and σz are
about the same size, which disturbes the picture of a well defined tilt angle,
possibly represented by large uncertainties of this quantity.
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5.3 Azimuthally dependent correlations

In Figure 5.43, the final eccentricity, meanwhile the xy eccentricity, is related
to the initial nucleonic eccentricity εini derived from Glauber simulations.
Different colors represent different mean values of pt,12. The dependencies
are nicely ordered in direction of pair transverse momenta. At small values
of pt,12 the final eccentricity becomes smallest and the shape of the emis-
sion ellipsoid in the xy plane is close to a circle. For increasing transverse
momenta, εfinal becomes larger, and at large transverse momenta the source
eccentricity derived from the present identical-pion HBT analysis recovers
the inital eccentricity. This can be interpreted as an temporal evolution with
an anti-correlation of kt and time, i.e. high transverse momenta are related
more to the early stage of the fireball evolution and low transverse momenta
to the later stage. It confirms the discussion made in Section 5.2.5.
To study the centrality dependence of the tilt angle in more detail, Fig-
ure 5.44 displays θs for π−π− (full symbols) and π+π+ (open symbols) pairs
as function of the impact parameter b, see Table 4.2, for different average
transverse momentum values. No charge-sign difference is observed in the
centrality dependence of θs. While for lower momenta the magnitude of θs
is proportional to b, this dependence gets weaker with increasing pair trans-
verse momentum until the tilt is close to zero for the highest momentum
classes. A crucial change happens at impact parameter b ≈ 8 fm, where
the hierarchy in direction of transverse momentum is flipped, i.e. the tilt
angle decreases with increasing values of pt,12. A more detailed study of
this critical point can be found in Appendix B.4. With the interpretation of
anti-correlated transverse momentum and evolution time of the fireball one
estimates an elliptic region of homogeneity without tilt at the early stage
and the highest magnitude of θs at the final stage.

Volume of homogeneity and comparison to azimuthally integrated
results

The volume of homogeneity Vfo in the azimuthally dependent analysis is cal-
culated using Equation (5.8), which is the exact expression for a model with
three-dimensional ellipsoid with three independent semi-axes and Gaussian
density distribution. In Figure 5.45, Vfo is exhibited by filled symbols for
four different centrality classes in dependence on pt,12. Black boxes rep-
resent data of π−π− and red circles those of π+π+. One finds the strong
dependence of the volume on the transverse momentum and also the depen-
dence on the charge of the pion pairs. The latter one becomes weaker the
more peripheral the collisions are, which implies that the charge-sign split-
ting is more related to the central Coulomb potential, i.e. the bulk charge
of the participants, than to the Coulomb effect of the spectators. The exact
three-dimensional volume model can be compared to the corresponding val-
ues of the azimuthally integrated analysis, calculated with Equation (5.6)
and depicted as open symbols. On a first glance they match good to each
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Figure 5.45: Comparison of the freeze-out volumes calculated with
Equation (5.8) (full symbols) and using the azimuthally integrated ap-
proximation given by Equation (5.6) (empty symbols) for different cen-
tralities (top left: 0 − 10 %, top right: 10 − 20 %, bottom left: 20 − 30 %
, bottom right: 30 − 40 %) for π−π−(black boxes) and π+π+(red circles)
in dependence on pair transverse momentum.

other. For π+π+, almost no deviations are visible, but for π−π− the values
of the azimuthally integrated analysis become larger than the others with
decreasing transverse momenta. The deviations rise up to 10 − 20 % . Since
Equation (5.6) does not account for the tilt angle θs, and because Rside is
taken as the average of σx and σy, it is clear that one could not always
expect a coincidence of the results of both expressions. In Appendix B.7 the
expected deviations are quantified in more detail.
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Figure 5.46: Temporal (S00, respectively σ2
t ) and spatio-temporal com-

ponents (S01, S02, S03) of fits with Equation (4.38) to the six freeze-out
variances R2

ij,i ̸=j (i, j = ’out’, ’side’, ’long’) for π−π− in dependence on
pair transverse momentum for centralities of 0 − 10 % (circles), 10 − 20 %
(boxes), 20 − 30 % (up-pointing triangles), 25 − 35 % (diamonds) and
30 − 45 % (down-pointing triangles). Error bars include only statistical
uncertainties.

Temporal parameters

The temporal components S00, S01, S02 and S03 derived from the set of
equations (4.38) are exhibited in Figure 5.46 for pairs of negative pions in
dependence on pt,12. Different colors denote different classes of centrality.
The diagonal component S00 is related to σ2

t . Similarly as shown in Fig-
ure 5.32, σ2

t is mainly decreasing with increasing pair transverse momentum
for all centralities. Especially for 0 − 10 % centrality, the values of σ2

t be-
come negative, which makes the definition as a squared duration difficult to
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Figure 5.47: Same as Figure 5.46, but for π+π+.

understand. In Section 5.2.5, the influence of opacity has been discussed,
and in [50] it was shown that the influence of an opaque source on the mea-
sured source extensions increases with increasing transverse momentum. As
illustrated in Figure 5.26, Rout decreases and Rside increases as a result of a
finite pion mean free path, resulting in a reduced value of σ2

t according to
Equation (5.7). Furthermore, the temporal components are also influenced
by the Coulomb potential of the participants and spectators. For that reason
the data of π−π− should be considered together with those of π+π+ pairs,
exhibited in Figure 5.47. Adding the quadratic values of both polarities and
looking at the average values one finds at small transverse momenta the val-
ues of σt ≈ 1 fm/c for central collisions, for details see Appendix B.5. The
temporal extension of the source is increasing for more peripheral collisions,
visible for both pairs of negative and positive pions. Considering again the
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quadratic averaged values of both polarities one finds σt ≈ 3 − 4 fm/c for
semi-peripheral collisions at low values of pt,12, see again Appendix B.5.
Caused by the symmetry constraints [104], implemented in Equation (4.39),
the non-diagonal temporal elements S01, S02 and S03 should vanish. Obvi-
ously, these elements are small and mostly close to zero. However, especially
at small transverse momenta trends are visible departing from zero. S01 and
S02 are slightly decreasing for decreasing values of pt,12, while S03 is increas-
ing. This behaviour is visible in both figures, Figures 5.46 and 5.47, for
π−π− and π+π+ pairs. Although the statistical uncertainties of data points
of different centrality classes are overlapping, the amplitude of this devi-
ation from zero becomes larger for more central collisions. The increase
of S03 with lower transverse momenta confirms the consideration in Sec-
tion 5.2.2, since the expression of R2

out long in the set of equations (4.38) can
be identified with −S03 when ignoring the explicit dependence on Φ. As
discussed already w.r.t. Figures 5.32 and 5.33 within the centrality class of
10 − 30 %, the non-vanishing elements S01 and S02 can indicate an implicit
Φ dependence, which may arise as consequence of elliptic flow. However, in
the chosen approach the non-vanishing non-diagonal matrix elements imply
a systematic inadequacy. Differences between the results when fitting with
Equation (4.39) and those of the fits performed with Equation (4.38) are
added to the systematic uncertainties.
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6 | Conclusion and Outlook

In this thesis the two-particle correlation function of identically charged
pions emitted from the fireball in Au+Au collisions at √

sNN = 2.41 GeV
was investigated. With the technique of intensity interferometry the area
of homogeneity was imaged. A multi-differential analysis has been done
to uncover the underlying physics and to initiate the visualisation of the
pion-emitting source.

Summary

The data was taken with the HADES setup in April 2012 with gold pro-
jectiles with 1.23AGeV kinetic energy impinging on a gold target. A high
quality and high statistics data set of more than two billion events for in-
vestigating 0 − 45 % of the most central collisions was obtained. The pions
were paired with each other per event and distributed as function of rel-
ative momenta. A detector based close-track selection on the level of hits
in the sub-detectors was elaborated for the HADES setup, to account for
the deficits of unresolvable pion pairs. A combinatorial background was
formed by pairing pions from different events with similar event characteris-
tics, and the correlation functions were constructed as the normalised ratio
of true and mixed pair distributions. The invariant one-dimensional and
three-dimensional correlation functions in the ’out-side-long’ system were
studied. The Bose-Einstein correlation signals were fitted with a Gaussian
form, taking into account the mutual Coulomb interaction of the pairs. The
extracted HBT radius and the incoherence parameters were studied in de-
pendence on pair transverse momenta, centrality, charge sign of the pions,
rapidities, and pair azimuthal angles relative to the event plane. From the
azimuthal dependence of the HBT radius parameters, the temporal and ge-
ometric variances of the presumed ellipsoidal region of homogeneity, as well
as a tilt angle relative to the beam axis were extracted. The results were
compared to existing experimental data at other beam energies. Various
excitation functions were studied.
In the explicit azimuthally integrated analysis an increase of the source pa-
rameters Rinv, Rout, Rside and Rlong linear with A

1/3
part was found. This con-

forms with a linear dependence of the volume of homogeneity at freeze-out on
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the number of participants Apart. A decrease of all HBT radii with increas-
ing pair transverse momenta was observed, which was found in experiments
at higher energies, too, and is usually explained with space-momentum cor-
relations due to radial flow. Nonetheless, the slope of these kt dependencies
was found steeper than models including radial or transversal flow can pre-
dict. Therefore, at least a part of this dependency is related for instance to
resonance decay contributions of short-living resonances like ∆’s. This hy-
pothesis is supported by two-slope pion single-particle distributions within
the same HADES data set, assigning direct thermal pions to higher trans-
verse momenta and resonance-decay pions to lower ones. A substantial dif-
ference has been observed between the HBT radii of π−π− and π+π+ pairs,
becoming largest at low values of transverse momenta. While this charge-
sign difference is small in Rout, it becomes clearly visible for the other radii.
Especially for Rside and Rlong, where the systematic uncertainties are com-
parably small, the gap is reasonably non-neglectable. It is noteworthy that
such a significant difference in π−π− and π+π+ HBT data has never been
reported before. If there was any difference, it was covered by statistical
and systematic uncertainties. This charge-sign splitting was assigned to a
central Coulomb potential, i.e. the Coulomb force of the positively charged
participant region, dominated by the initial number of protons in the spatial
overlap region. Also, the influence of the positively charged spectators can
contribute to this effect. This Coulomb potential leads to a shift in the rela-
tive momentum spectrum of the pairs and obviously to appearently smaller
π+ and larger π− sources, respectively. A simple formula was derived to
account for this shift, delivering the length of homogeneity of constructed
fiducial uncharged pion pairs and an effective Coulomb potential. The ef-
fective potentials have values of about 12 MeV.However, for a more precise
treatment, all these effects (collective flow, resonance decay contributions,
Coulomb potential from participants and spectators), complemented by a
possible finite pion mean free path, should be combined in one consistent
framework to obtain a measure for the real size of the pion source. With the
experimental data provided here this task can be addressed to theoreticians.
The comparison of the radii Rout and Rside with corresponding values ob-
tained by other experiments over three orders of magnitude in √

sNN shows a
very weak dependence on the beam energy. Only Rlong increases by slightly
more than a factor two when comparing the HADES data at the lower en-
ergy edge with the ALICE data at the higher one. Furthermore, the HADES
radii are in good agreement with the extrapolated trends of RHIC and SPS
data down to lower energies (except Rout from CERES), but do not confirm
the increasing trend in Rside and Rlong as indicated by the AGS data. This
structure becomes even more visible in the excitation function of the vol-
ume of homogeneity at freeze-out. A similar compilation already exists [17],
where the opposite trend of the AGS data was even more pronounced, but
without taking care of comparing values at the same mean value of trans-
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verse momentum. The compilation of this thesis moderates this structure
and gives the hint that a part of it arises from the influence of the central
Coulomb potential, manifestly not affecting the HBT radii at larger beam
energies.
The HBT radius parameters in the azimuthally dependent analysis showed
clearly the oscillations expected from symmetry considerations, allowing the
extraction of the spatio-temporal semi-axes of the emission ellipsoid and the
tilt angle within the reaction plane. As never done before, the dependence
on pair transverse momentum, centrality and pion polarity was studied si-
multaneously. For the semi-axes σx, σy and σz, the same qualitative trends
were observed as in the azimuthally integrated analysis for Rout, Rside and
Rlong. A three-dimensional almond shape with σy > σx > σz was found.
The eccentric source in the xy plane matches at high transverse momenta
the initial participant overlap region and becomes more circular at low values
of transverse momentum. The magnitude of the tilt angle becomes highest
at low transverse momenta and vanishes at very large ones. This can be
interpreted as a temporal evolution, with the early stage of the fireball im-
aged with higher transverse momenta and the final stage visible when going
to low momenta. Furthermore, the tilt angle showed no dependence on the
charge sign of the pions, and its magnitude increases with increasing impact
parameter, as one would expect from geometric considerations.
The comparison with the results of azimuthally sensitive analyses avail-
able at other beam energies showed a very nice confirmation of the existing
trends. Again, it was emphasised to compare data points only at the same
mean value of transverse momentum. In that sense, variables like σx, σy,
σz, σt, Vfo, εxy or εzy from E895, CERES, STAR and ALICE can be com-
bined in a meaningful way with the HADES results acting as a link. From
the observed trends, hints for a non-vanishing tilt angle at lowest STAR
energies were found. The separation of the two transversely expanding di-
rections shows an out-of-plane extension increasing with decreasing beam
energies, not visible in an azimuthally integrated analysis. The freeze-out
duration was found to be small at a level of about ∆τ ≈ 0 − 1 fm/c for cen-
tral (0 − 10 %) collisions and ∆τ ≈ 3 − 4 fm/c for semi-peripheral collisions
up to 45% centrality. In contrast to previous findings, ∆τ becomes non-
negative for all centrality classes when considering both, π−π− and π+π+,
and extracting it at low transverse momentum only.

Outlook

The presented dependencies of the HBT radius parameters on pair transverse
momentum and centrality are ready to be compared to adequate theoretical
approaches treating the known dynamic effects. Thus, transport models,
like UrQMD or iQMD, can be tested by comparing their output with the
observables presented here. The found experimental dependencies can be
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used to adjust sensitive parameters within the models. From that hopefully
one can learn more about the equation of state or other parameters entering
implicitely the transport or explicitly the hydrodynamical approaches in the
1A GeV energy regime.
From the excitation functions presented in this thesis, a high interest arises
for the energy range above HADES up to √

sNN of about 10 GeV. The
energy dependencies of Rside and Rlong reported by E895@AGS as well as
the appearance of a finite tilt angle have to be studied. Also, the influence
of the central nucleonic Coulomb potential on the HBT radii and derived
quantities has to be clarified in this energy range by a differential π−π− and
π+π+ investigation. Fortunately, a couple of facilities exists, which aim at
studying the physics of heavy-ion collisions in this energy region. In the
following three promising facilities are picked out. First, the already started
STAR Fixed-Target (FT) program should be mentioned, which uses the
existing facility at RHIC, inserting a 1 mm thick gold target at one edge of
the spectrometer. A test run in 2014 already provided 1.3 million events
at √

sNN = 4.5 GeV, the full run starting in 2018 covers the range from 3.0
to 7.7 GeV. Secondly, there are the BM@N fixed-target and MPD collider
experiments at the NICA facility, covering the energy range for heavy-ions
of 2.0 to 3.5 GeV and 2.7 to 11 GeV, respectively. While the former one
is already going to start operation with a gold beam in 2021, MPD plans
to start with the physical program in 2023. Thirdly, SIS100 at the FAIR
facility will provide HADES and the CBM experiments with a gold beam
of up to 11A GeV, which allows to study the energy range of √

sNN between
2.7 and 5 GeV. Although the latter one will not start operating before 2025,
the CBM experiment will be able to reach interaction rates of up to 1010 Hz,
delivering unprecedented high statistics of Au+Au (or other A+A) data.
Finally, the HADES beam time with the system Ag+Ag@1.65A and 1.23A
GeV performed successfully in March 2019 should be mentioned, providing
more than twice as much recorded events compared to the Au+Au HADES
experiment. With this data a complementary system size dependence of
the HBT radius parameters can be studied, which is linked directly to the
central Coulomb potential, the centrality dependence and the impact of col-
lective flow. The almost finished HADES upgrade with an electromagnetic
calorimeter will allow to detect direct photons from the collisions. With
that it might be possible to perform additionally a two-photon HBT analy-
sis, useful for a comparison with the two-pion results and for investigating of
the source of probes not strongly interacting with the surrounding hadronic
environment.
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A | Details on analysis

A.1 Minimisation procedures

For finding the best set of parameters (and their uncertainties) of a func-
tion describing a couple of data points, the gMinuit package included in the
ROOT framework is used. Different choices for the so called ’estimator’,
which is the part to be minimised, are possible. Below, two common esti-
mators are described in view of the essential part of this thesis, i.e. fitting
correlation functions.

A.1.1 Least χ2 method

Within the least χ2 method, the sum of squared differences between a given
data set with N entries and a fit function, weighted by the Gaussian statis-
tical uncertainties of the data points, is formed,

χ2 =
N

i=0

(Cexp,i − Cmodel)2

(∆Cexp,i)2

 N
i=0

1
(∆Cexp,i)2 , (A.1)

and normalised by the sum of weights. Cexp,i is the i-th experimental data
point, ∆Cexp,i the corresponding statistical error, and Cmodel a fit function
with a couple of parameters. The method works for Poisson-distributed
quantities. However, a correlation function C = A/B formed by two Poisson
distributions A andB is not neccessarily itself Poisson-distributed, especially
at low statistics.

A.1.2 Maximum-likelihood method

Within the Maximum-Likelihood method one tries to minimise the condi-
tional probability of a quantity in dependence on other defective quantities.
It is used to bypass the problem that C as ratio of A and B is not Poisson-
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distributed and Gaussian error propagation is only valid for large numbers
of A and B. One starts with the following formalism [122]:

P (A) = A
A
e−A

A! , P (B) = B
B
e−B

B! , (A.2)

P (C|AB) =
 

dµdν
µAe−µ

A!
νBe−ν

B! δ(C − µ/ν), (A.3)

= CA

A!B!
(A+B + 1)!

(C + 1)A+B+2 . (A.4)

Here, P (A) is the Poisson distribution for number of events A, P (C|AB) is
the conditional probability of C in dependence on A and B and A and B, or
µ and ν, respectively, are the mean values of the single Poisson distributions.
The likelihood function χ2

ML is defined as twice the negative logarithm of
the conditional probability,

χ2
ML = −2 ln


P (C|AB)


(A.5)

≈ −2

A ln


C(A+B)
A(C + 1)


+B ln


A+B

B(C + 1)


. (A.6)

Its value summed over all entries has to be minimised. Here, one uses the
property that the logarithm of a function has the same monotonicity as the
function itself. For deriving the approximation (A.6) one uses the formula
of Stirling (ln(n!) ≈ n lnn− n) keeping only leading terms. This estimator
is correct as long as one has the same amount of entries for A and B. If
instead B > A, the δ distributions change, δ(C − µ/ν) → δ(C − Nµ/ν),
where N is a normalisation constant equivalent to Equation (4.20), treated
as exact value without uncertainty compared to the yields A and B. The
likelihood function changes to

χ2
ML(B>A) = −2


A ln


C(A+B + 1)
A(C +N)


+B ln


A+B + 1
B(C/N + 1)


+ ln


A+B + 1

N(1 + C/N)2


− 1


, (A.7)

≈ −2

A ln


C(A+B)
A(C +N)


+B ln


A+B

B(C/N + 1)


. (A.8)

In the investigations of the correlation function in this thesis, both estima-
tors, Equations (A.1) and (A.8), were used, obtaining similar results with
the same statistical uncertainties.
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A.2 Gaussian convolution

In this section, expressions for the Gaussian convolution discussed in Sec-
tion 4.4.2 are derived. The HBT radius parameters Ri are translated back
into Gaussian widths σi in relative momentum space (as given by the ex-
pression (4.36)),

σi = 197.327 fm MeV√
8Ri

. (A.9)

The convolution is given in one dimension by

h(x) =
 ∞

−∞
dx′f(x′)g(x− x′), (A.10)

f(x) = 1 + λ e
− x2

2σ2
f , (A.11)

g(x) = 1√
2πσg

e
− x2

2σ2
g , (A.12)

(A.13)

with f(x) being the initial Bose-Einstein signal of interest, g(x) the relative
momentum resolution and h(x) the measured convoluted signal. Evaluating
h(x) leads to

h(x) =
 ∞

−∞
g(x− x′)dx′ + λ√

2πσg

 ∞

−∞
e

−( 1
2σ2

f

+ 1
2σ2

f

)x′2+ (2xx′−x′2)
2σ2

g , (A.14)

= 1 + λ
σ2

g

σ2
f

+ 1
e

− x2
2

1
σ2

g+σ2
f , (A.15)

: = 1 + λh e
− x2

2σ2
h , (A.16)

(A.17)

where the measured HBT parameters λh and σ2
h can be identified as func-

tions of λ, σ2
f and σ2

g . The resulting expressions for the initial parameters
are

λ = λh
1 − σ2

g

σ2
h

, (A.18)

σ2
f = σ2

h − σ2
g . (A.19)
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Extending this scheme to three dimensions is straightforward, if no non-
diagonal HBT radii are considered:

f(x) = 1 + λ e
− x2

2σ2
f,x e

− y2

2σ2
f,y e

− z2
2σ2

f,z , (A.20)

λ = λh
1 − σ2

g,x

σ2
h,x


1 − σ2

g,y

σ2
h,y


1 − σ2

g,z

σ2
h,z

, (A.21)

with the abbreviations

σ2
f,x = σ2

h,x − σ2
g,x, (A.22)

σ2
f,y = σ2

h,y − σ2
g,y, (A.23)

σ2
f,z = σ2

h,z − σ2
g,z. (A.24)

Considering the three-dimensional convolution with one additional non-
diagonal element σxz yields

f(x) = 1 + λ e
− x2

2σ2
f,x e

− y2

2σ2
f,y e

− z2
2σ2

f,z e
− 2xz

2σ2
f,xz , (A.25)

λh = λ
1 + σ2

g,y

σ2
f,y


(1 + σ2

g,x

σ2
f,x

)(1 + σ2
g,z

σ2
f,z

) − σ2
g,xσ2

g,z

σ4
xz

, (A.26)

σ2
h,xz = σ2

xz


(1 +

σ2
g,x

σ2
x

)(1 +
σ2

g,z

σ2
z

) −
σ2

g,xσ
2
g,z

σ4
xz


(A.27)

= σ2
xz


1 +

σ2
g,x

σ2
x

+
σ2

g,z

σ2
z

+ σ2
g,xσ

2
g,z( 1

σ2
xσ

2
z

− 1
σ4

xz

)

, (A.28)

σ2
h,y = σ2

f,y + σ2
g,y, (A.29)

σ2
h,x = (σ2

x + σ2
g,x)


1 + 1

σ2
g,x

σ2
x

((σ2
xz

σ2
x

+ σ2
xz

σ2
g,x

)(σ2
xz

σ2
z

+ σ2
xz

σ2
g,z

) − 1) − 1


, (A.30)

σ2
h,z = (σ2

z + σ2
g,z)

1 + 1

σ2
g,z

σ2
z

((σ2
xz

σ2
x

+ σ2
xz

σ2
g,x

)(σ2
xz

σ2
z

+ σ2
xz

σ2
g,z

) − 1) − 1


. (A.31)

(A.32)

One defines a term ω2 by

ω2
x(z) := 1

σ2
g,z

σ2
x(z)

((σ2
xz

σ2
x

+ σ2
xz

σ2
g,x

)(σ2
xz

σ2
z

+ σ2
xz

σ2
g,z

) − 1) − 1
, (A.33)
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which is used as a control parameter. If ω2
x(z) is very small, given mainly

by σ2
f,xz ≫ σ2

g,x, σ
2
g,z, the expressions Equations (A.21) to (A.24) remain the

same for the λ parameter and the three diagonal HBT radius parameters as
well. The non-diagonal element σ2

xz follows as

σ2
f,xz =

σ2
h,xz

(1 + σ2
g,x

σ2
x

)(1 + σ2
g,z

σ2
z

)
. (A.34)

This formalism can be extended to three non-diagonal elements by using
Equation (4.31) in the fits of the correlation functions, going along with three
control parameters defined in the spirit of Equation (A.33). In the practical
evaluations within this thesis, these control parameters were always small
enough to keep the introduced formalism.
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B | Further systematics

B.1 R2
out long in Φ-integrated analyses
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Figure B.1: HBT radius parameters and λosl of the azimuthally inte-
grated analysis in dependence on pt,12 for π−π− and 0 − 10 % central-
ity and different intervals of pair rapidity: [0.29,0.69] (grey up-pointing
rectangles), [0.39,1.09] (black circles), [0.79,1.19] (brown down-pointing
rectangles). Red boxes show results at mid-rapidity setting explicitly
R2

out long = 0. Error bars contain only statistical uncertainties.

In Figure B.1, the π−π− HBT radius parameters Rinv, Rout, Rside, Rlong, the
non-diagonal variance R2

out long and parameter λosl for 0 − 10 % centrality in
dependence on pt,12 are shown. Red boxes represent results fitted without
and black circles with R2

out long in the fit. Grey up-pointing triangles denote
results obtained for a changed rapidity window of y12 ∈ [0.29, 0.69] and
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Figure B.2: Same as Figure B.1, but for π+π+.

brown down-pointing triangles for y12 ∈ [0.79, 1.19]. The plots show that
the HBT radius parameters hardly depent on the choice of y12 and are not
influenced by switching on or off the term R2

out long in the three-dimensional
fits of the azimuthally integrated analysis. The same is shown for π+π+ pairs
in Figure B.2. Here only at lowest values of pt,12, where statistics becomes
an issue, differences in direction of y12 are visible. Also, a strong decrease
of R2

out long is observable at low transverse momenta for all rapidity bins. A
possible relation to a non-symmetric rapidity range has been discussed in
Section 5.2.2.

B.2 Results for reversed magnetic field

The last two measuring days of the Au+Au beam time were reserved for
a measurement with reversed field, i.e. the direction of the polarity of the
magnetic field was inverted. In this configuration, negatively charged par-
ticles are deflected into direction of the beam axis and positively charged
particles away from it. In Figure B.3, results derived with the normal mag-
netic field configuration are compared to the observables from the inverse
configuration for the azimuthally integrated analysis. For both π−π− and
π+π+ pairs, a very good confirmation of the pt,12 dependencies of Rinv, Rout,
Rside, Rlong and the λ parameters was found for the centrality 0 − 10 %. The
statistical uncertainties of the reversed-field results are larger compared to
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Figure B.3: HBT radius parameters and λ parameters of the az-
imuthally integrated analysis in dependence on pt,12 for π−π− (black
boxes) and π+π+ (red circles) and 0 − 10 % centrality. Open symbols
represent reversed-field data (magnetic field with same strength, but op-
posite direction), filled symbols display data for normal magnetic field
configuration. Error bars contain only statistical uncertainties.

the normal field results, the latter ones are derived from a factor of ten larger
statistics. The accordance of the trends excludes a technical insufficiency
as explaination of the charge-sign difference of π−π− and π+π+ results and
substantiates further the found influence of the central Coulomb potential.

B.3 Effective potentials

In Figure B.4, the effective Coulomb potential Veff (in the plots denoted by
Vcoul) is exhibited, extracted with Equation (5.2). Due to the real geometry,
the derived formula is inadequate for the ’out’ direction, and the obtained
values of Veff based on Rout definitely underestimate the potential. Further-
more, the effective potential has a contribution both from the participant
region and from the spectators. Identifying the obtained values with a cen-
tral Coulomb potential is therefore more reliable for central collisions. All
values at small transverse mass are significantly influenced by the non-static
proton distribution during the collision evolution and after the freeze-out.
The protons carry the main charge contributing to the effective potential
and move in average outwards, describable with an inverse Boltzmann slope
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Figure B.4: Effective Coulomb potentials extracted with Eq. (5.2) using
Rinv (black circles), Rout (red boxes), Rside (green up-pointing triangles)
and Rlong (blue down-pointing triangles) for centralities of 0 − 10 % (top
right), 10 − 20 % (top left), 20 − 30 % (bottom left) and 30 − 40 % (bot-
tom right), respectively. Error bars contain only statistical uncertainties.

parameter of 130 MeV when not including explicitely the collective flow [64].
Especially the low-energy pions are not able to pass by all the protons. Us-
ing the ansatz of [123] one can correct for this, finding a change only for the
data points at the two lowest values of transverse mass.
In [124] a Coulomb potential of about 10 MeV at pion kinetic energy arround
200 MeV (measured in center-of-mass frame) is reported for central collisions.
This is conform with the effective potentials in Figure B.4 extracted at the
values of mt − m0 = 200 MeV. Overall, for central collisions, the effective
potential extracted via Rinv, Rside and Rlong amounts about 12 MeV. This is
not in agreement with the systematic studies of [123], where a Coulomb po-
tential of VC = 27 MeV is predicted from an analysis of inclusive single-pion
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Figure B.5: Applying Equation (5.2) to the calculated curves of Rside
from [50] (top and bottom left). Red circles correspond to a mean radial-
flow velocity ⟨β⟩ = 0.32, green crosses to ⟨β⟩ = 0.5, and blue boxes repre-
sent the case without radial flow. Data points were extracted with Web-
PlotDigitizer (https://apps.automeris.io/wpd/). The initial Gaus-
sian radius is R0 = 4.47 fm, and the corresponding initial Coulomb po-
tential is 26.4 MeV. The extracted effective Coulomb potentials Veff are
exhibited in the bottom right.

phase space distributions for heavy-ion collisions with a projectile kinetic
energy of 1.23A GeV.
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Figure B.6: Comparing calculations of Rside from [50] to experimental
data of Figure 5.21. Calculated values of [50] (blue curves) are scaled
with R0 = 4.47 fm (R0 = 5.5 fm) in the left (right) panel.

A comparison with calculations from [50] is shown in Figure B.5. The calcu-
lations were performed inserting a Gaussian shaped central Coulomb poten-
tial in the pion wave functions with the value of 26.4 MeV at the Gaussian
initial radius R0 = 4.5 fm, see [50]. Results for Rside and Rout are available
for different settings of an average radial flow velocity ⟨β⟩. The relation
(5.2) was applied to the calculated curves of Rside for a couple of sampling
points. The obtained values of Veff are plotted in the lower right panel as a
function of kt. Apparently, the effective potentials decrease with increasing
transverse momentum when switching on a radial collective motion. This
fits into the picture illustrated by Figures 1.3 and 5.24 of observing regions
of homogeneity with a smaller volume and moving towards the surface of
the fireball for increasing kt. If the average emission points of the pions are
located more outside of the fireball volume, the effective potential becomes
weaker. Ignoring the influence of radial flow, an effective potential of about
17 − 18 MeV is obtained, significantly different from the initial value. This
puts into perspective that either Equation (5.2) does not precisely enough
uncover the real situation and has to be extended, or – besides the explaina-
tion introduced in Section 2.3.2 – another effect contributes to the deduced
different extents of the area of homogeneity of π−π−and π+π+ pairs. For
that reason, a more appropriate consideration (as discussed in Section 5.2.5)
has to be done to obtain realistic values of the Coulomb potential of the fire-
ball.
Figure B.6 compares the experimental data of Rside shown already in Fig-
ure 5.21 with the calculated curves from [50]. In the left plot, the actual
parameter R0 = 4.5 fm has been used for scaling the calculated results to the
experimental ones. Obviously, the charge-sign splitting deduced from exper-
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imental data is not that large. Nonetheless, the trends of the data and the
calculations of [50] match only at highest transverse momenta and become
very different at low values of kt. In the right plot, the scaling parameter was
chosen as R0 = 5.5 fm, which causes the trends to match (accidentally) at
medium kt. However, the charge-sign difference becomes apparently larger,
since one can not account for the implicitly weaker Coulomb potential when
increasing the extension of the source by just changing R0 alone.

B.4 Tilt angle systematics

At the end of Section 4.5.3, the freedom of interchanging the coordinates
x and z was mentioned, with a corresponding shift of θs by 90°, which al-
lows a couple of arrangements of the kt and centrality dependent data. The
final arrangement depends on the chosen constraints. In the standard anal-
ysis, the most important requirement of getting a smooth trend was chosen,
together with smaller |θs| for more central collisions. For this standard sce-
nario, results are displayed in Figure B.7 for 24 − 34 % and in Figure B.8
for 26 − 36 % centrality. All exhibited dependences show a very smooth be-
haviour and especially θs follows nicely a curve within the high statistical
uncertainty of a possible outlier. However, the crucial point of this standard
scenario is that the trend of θs for high transverse momenta and centralities
more peripheral than 25 − 35 % does not point in direction of zero, as ob-
served for more central collisions. Therefore one could think of an alternative
scenario, where explicitly a vanishing tilt angle at high transverse momenta
is required, exhibited in Figure B.9 for 26 − 36 % centrality. All trends, ex-
cept for θs, are very smooth in this scenario, too. For the trend of the tilt
angle a ’knee’-like structure is vissible around pt,12 = 350 MeV/c. Even if
this structure disturbes the smoothness of the pt,12 dependency, one can
argue, that this ’knee’ is already visible at more central collisons (compare
with Figure B.7).
In Figure B.10, the tilt angle is plotted as a function of the impact parameter
b for different mean values of pt,12. In the standard scenario on the left
side, smooth trends are visible up to a critical value of b ≈ 8 fm, where
the orientation of the tilt evolution with pt,12 changes the direction. In the
alternative scenario on the right side for all values of transverse momentum,
smooth trends are observed, though the green data points at 300−350 MeV/c
are clearly crossing the other trends of the data points at lower values of
pt,12. In Figure B.11 the final eccentricity, also called the xy eccentricity, is
plotted in dependence on the initial eccentricity εini. The additional data
points of the overlapping bins in pt,12 and centrality fit very nicely into the
previous systematics of Figure 5.43 and complete the picture. Clearly visible
is that the final eccentricity reaches its maximum not at highest transverse
momenta, but slightly before that and seems to decrease again for higher
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Figure B.7: The spatial principal axes (left column), the tilt angle
w.r.t. the beam axis in the reaction plane (Equation (4.44), top right),
the xy eccentricity (Equation (4.46), middle right) and the yz eccentric-
ity (Equation (4.46), bottom right) of the Gaussian emission ellipsoid of
π−π− as function of pair transverse momentum for 24 − 34 % central-
ity. Data of standard intervals of pt,12 (black boxes) and that shifted
by 50 MeV/c (red circles) is separated. Error bars include statistical un-
certainties only. The dotted line depicts the initial nucleon eccentricity
from Glauber simulations.
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Figure B.8: Same as Figure B.7, but for 26 − 36 % centrality.

values of pt,12. Note that here only π−π− data is considered. The standard
scenario in the left panel only differs from the alternative scenario in the
right panel in the yellow data points at high initial eccentricities. Here,
the alternative scenario shows smoother trends without outliers within the
statistical uncertainties.
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Figure B.9: Same as Figure B.7, but for 26 − 36 % centrality and the
alternative scenario described in the text.
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Figure B.10: Tilt angle θs in dependence of the impact parameter b,
the latter one derived from Glauber simulations, for π−π− pairs and
different values of pair transverse momenta. Left panel represents the
standard scenario, while in the right panel the arrangement of the data
follows an alternative scenario with details are given in the text. Error
bars include only statistical uncertainties.
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Figure B.11: Final eccentricity εfinal (xy eccentricity) plotted against
initial nucleon eccentricity εini derived from Glauber simulations for dif-
ferent values of pair transverse momenta of negatively charged pion pairs.
Left panel represents the standard scenario, while in the right panel the
arrangement of the data follows an alternative scenario with details are
given in the text. The dashed line denotes εfinal = εini. Error bars include
only statistical uncertainties.
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B. Further systematics

B.5 Charge-sign corrected extensions of the emis-
sion ellipsoid
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Figure B.12: Constructed charge-sign corrected temporal and spatial
variances according to Equation (B.1) for different centralities in depen-
dence on pt,12: σ2

t (top left), σx (top right), σy (bottom left) and σz

(bottom right). Error bars include only statistical uncertainties.

With the most simple assumption, the charge-sign dependence of the az-
imuthally dependent data can be corrected using a similar form like Equa-
tion (2.29),

σ2
π̃0π̃0(kt) ≈ 1

2


σ2

π−π−(kt) + σ2
π+π+(kt)


. (B.1)

Since results for σ2
π−π− and σ2

π+π+ are obtained at different values of mean kt,
a window of ∆pt,12 = 60 MeV/c is defined. Then, each semi-axis from π+π+

data is compared to all values of the same semi-axis from π−π− data within
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B.6 Eccentricity - different calculations

the same centrality class. If the difference in pt,12 of a pair of semi-axes is
smaller than ∆pt,12, Equation (B.1) is applied delivering a value for σ2

i, π̃0π̃0 .
The real difference in pt,12 of the corresponding values of σ2

π−π− and σ2
π+π+

is added to the uncertainties. The results obtained for σ2
π̃0π̃0 according to

the data points shown in Figures 5.41, 5.42, 5.46 and 5.47 are exhibited
in Figure B.12. Obviously, the semi-axis in x direction within the reaction
plane depends strongest on centrality. But the most interesting observation
is that, at low transverse momenta, the time component σt has positive
values for all classes of centrality. Identifying the values at smallest values
of pt,12 with the squared freeze-out duration one obtains ∆t ≈ 0−1 fm/c for
most central collisions and ∆t ≈ 3−4 fm/c for the semi-peripheral collisions
achievable in this analysis.

B.6 Eccentricity - different calculations
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Figure B.13: Final ccentricity εxy in dependence on pt,12 for π−π−

for 10 − 30 % centrality. Filled (open) brown circles represent εxy (εzy)
calculated with Equation (4.46) (Equation (4.47)). Green (blue) boxes
are for the values calculated with Equation (4.52) (Eq. (4.53)). The black
dashed line gives the initial eccentricity εini determined from GlauberMC
simulations.
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B. Further systematics

Figure B.13 shows the final eccentricity in dependence on pt,12 for π−π− for
10 − 30 % centrality. The brown filled circles represent the eccentricity εxy

calculated with Equation (4.46), the open brown circles are for εzy calculated
using Equation (4.47), which is equivalent to εxy, if the tilt angle θs is
shifted by 90° and the directions x and z are exchanged (compare with
Equation (4.44)). The green (blue) boxes give the values for εxy’ (εzy’)
calculated with the simplified formula Equation (4.52) (Equation (4.53)).
The figure illustrates the influence of θs on the different ways of calculating
the eccentricities. While for all brown data points the tilt of the ellipsoid
is treated accurately, the simplified formulae of Equations (4.52) and (4.53)
require a vanishing tilt angle and therefore the boxes deviate strongly from
the circles for values of pt,12, where θs is clearly non-zero, see top right
panel of Figure 5.34. At high values of pt,12, deviations are small, and
boxes and circles are the same within their uncertainties. At around pt,12
values of 300 MeV/c, the trajectories of the colored boxes cross each other,
as expected, since there the magnitude of the tilt angle reaches 45°. For
lower values of pt,12, the approximate xy-eccentricity is even larger than the
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HADESzσ
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Figure B.14: σx (σz) of π−π− pairs as a function of √
sNN for kt=

310 MeV/c and 10 − 30 % centrality. Red dashed-dotted curves indicate
the correct trends when determining θs and performing a major-axis
transformation. Blue dashed curves show the trends obtained when ig-
noring a finite tilt angle.
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B.7 Volume calculation

approximate zy-eccentricity. If one could extend this trends to a region,
where |θs| = 90°, the complete and the simplified formalism would describe
exactly the opposite kind of eccentricity. Note that part of the deviations
between green boxes and filled circles also could come from the fact that for
the approximation only Rside is taken into account, while for the description
with the complete formalism the oscillations of R2

side, R2
out and R2

out side are
considered simultaneously.
In Figure B.14, the above discussed aspect is illustrated by comparing σx

and σz as function of √
sNN . The trends from STAR, calculated with Equa-

tion (4.51), can be extended by eye to the HADES energy, depicted as blue
dashed curves. These extensions match the HADES data points, which cor-
respond to a vanishing tilt angle shifted by 90° compared to the STAR data
points at highest energies, see Figure 5.38. Extracting the tilt angle θs and
performing the major-axis transformation one could expect that the data
points follow the trend given by the red dashed-dotted curves, where the
open (filled) triangles match the open (filled) stars. This indicates that, for
the two lowest energies available from STAR, a finite tilt of the ellipsoid
must be present, which is significantly different from 0° modulo 90°.

B.7 Volume calculation

In this section, the difference between Equation (5.6) and Equation (5.8) is
quantified with respect to (i) the finite eccentricity transverse to the beam
and (ii) the finite tilt angle θs.

Finite eccentricity εxy (θs = 0)

In Equation (5.6) one assumes that R2
side = σx σy, which is exact for εxy = 0.

For a finite xy-eccentricity and neglecting any influence of the tilt angle θs,
one finds

σ2
x = R2

side, 0(1 − εxy), (B.2)
σ2

y = R2
side, 0(1 + εxy), (B.3)

→ σ2
x σ

2
y = R4

side, 0(1 − ε2
xy), (B.4)

σx σy = R2
side, 0


1 − ε2

xy, (B.5)

(ε2
xy << 1) → σx σy ≈ R2

side, 0


1 −

ε2
xy

2


. (B.6)

Identifying Rside ≈ Rside, 0, which is disturbed only slightly by a non-ho-
mogeneous phase-space weighting in direction of Φ (elliptic flow and higher
order flow modes), there remains the leading order term (1 − ε2

xy

2 ) for small
values of εxy. If the eccentricity is smaller than 0.2, this causes a deviation
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B. Further systematics

of less than 2%. For relatively large values of εxy, such as 0.4, it can cause
already a deviation by 8%.

Finite tilt angle θs (εxy = 0)

A finite tilt of the ellipsoid within the xz-plane causes the larger semi-
axis to appear a bit smaller and the smaller semi-axis to appear a bit
larger when projected onto the transverse and longitudinal axes relative
to the beam. Then one is interested in the difference between σx σz and
Rside


1 − εxy Rlong. For simplicity εxy can be set to zero. Reducing the

matrix formalism to two dimensions one gets

G†
y(θs)S Gy(θs) =


cos θs − sin θs
sin θs cos θs

 
σx 0
0 σz

 
cos θs sin θs

− sin θs cos θs


(B.7)

=


cos2 θs σ
2
x + sin2 θs σ

2
z cos θs sin θs (σ2

x − σ2
z)

cos θs sin θs (σ2
x − σ2

z) cos2 θs σ
2
z + sin2 θs σ

2
x


, (B.8)

which means that, one measures in the azimuthally integrated analysis the
diagonal terms only:

R2
sideR

2
long = (cos2 θs σ

2
x + sin2 θs σ

2
z) (cos2 θs σ

2
z + sin2 θs σ

2
x), (B.9)

= cos2 θs sin2 θs (σ4
x + σ4

z) + (cos4 θs + sin4 θs)σ2
x σ

2
z , (B.10)

= cos2 θs sin2 θs (σ2
x + σ2

z)2 + (cos2 θs − sin2 θs)2 σ2
x σ

2
z . (B.11)

Inserting certain values for θs into Equation (B.11) one finds

θs = 0 (90)° : RsideRlong = σx σz, (B.12)

θs = 45° : RsideRlong = σ2
x + σ2

z

2 , (B.13)

θs = 30 (60)° : RsideRlong =


3
16(σ2

x + σ2
z)2 + 1

4σ
2
x σ

2
z . (B.14)

This means, if θs vanishes (0° or 90°), there remains the trivial exact case.
With rising tilt, a deviation appears scaling with (σ2

x+σ2
z)/2, which becomes

largest at θs = 45°. Of course, if σx = σz holds, there remains also the exact
case, since a circle has no well-defined tilt angle. The relative deviation for
the most extreme case θs = 45° can be quantified as

σ2
x + σ2

z

2 − σxσz


/σxσz = (σx − σz)2

2σx σz
. (B.15)

If the ratio of σx and σz is, for example, 3/2 the deviation calculated with
Equation (B.15) is 8.3% (the same for θs = 30° gives only a deviation of
3.2%).
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C | Explicit models for the
source distribution

C.1 Three-dimensional Gaussian source with flow

A simple Gaussian parametrisation for a cylindrically symmetric fireball is
given in [62]:

S(x, k) = 1
4π2R2

GLG∆τ C1(k)e−ku(x)/T −ρ2/2R2
G−z2/2L2

G−(t−τ0)2/(∆τ)2 (C.1)

with linear radial velocity profile,

u(x) =

1 + 1

2


vtρ

RG

2
+ 1

2


vlz

LG

2
,
vtx

RG
,
vty

RG
,
vlz

LG


, (C.2)

and the transverse coordinate ρ2 = x2 + y2. The geometrical extensions of
the fireball are given by RG in transverse direction and LG in longitudinal
direction, τ0 is the freeze-out time and ∆τ denotes the freeze-out duration.
The freeze-out temperature T is also referred to as the inverse slope param-
eter of the single particle spectra.

According to Equations (2.33) and (2.41) one obtains the following expres-
sions for the HBT radii (terms ∝ v4

{R,L} ignored):

R2
side = R2

G

1 + v2
t mt
T

, (C.3)

R2
out = R2

G

1 + v2
t mt
T

+ β2
t (∆τ)2, (C.4)

R2
long = L2

G

1 + v2
l
mt
T

+ β2
l (∆τ)2, (C.5)

R2
out long = βlβt(∆τ)2. (C.6)
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C. Explicit models for the source distribution

Note that (∆τ)2 can be eliminated, and for finite longitudinal velocity βl ̸= 0
one gets

R2
out = R2

side + βt
βl
R2

out long ⇒ βt
βl

= R2
side −R2

out
R2

out long
, (C.7)

R2
long = L2

G

1 + β2
l mt
T

+ βl
βt
R2

out long. (C.8)

This formalism might be a good starting point for describing heavy-ion col-
lisions at beam energies in the order of 1A GeV in the deep Landau scenario
and delivers the common basic expressions for Rside and Rout. However, the
high pressure gradients in longitudinal directions can end up in relativistic
flow velocities, which break the series expansion when calculating e.g. R2

l .
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C.2 Boost-invariant blast-wave

C.2 Boost-invariant blast-wave

In ultra-relativistic heavy ion collisions at very large beam energies (achieved
e.g. at LHC), so-called boost-invariant sources are used for modelling the
source function S(x, k). The longitudinal flow velocity is set to vl = z/t
(Bjorken scaling), and the finite source extension in beam direction ∆η is
assumed to be uncovered with the parametrisation by Milne coordinates
which employ the proper time τ =

√
t2 − z2 and the rapidity η = 1

2 ln( t+z
t−z ).

Then the source parametrisation reads [62]

S(x, k) = τ0
(2π)3τ

mt cosh (η − y)e− ku(x)
T e−ρ2/2R2

G−η2/2(∆η)2
H(τ), (C.9)

H(τ) = 1√
2π∆τ2

e−(τ−τ0)2/(2∆τ2), (C.10)

u(x) =


cosh η


1 + v2
t ρ

2

R2
G
,
vtx

RG
,
vty

RG
, sinh η


1 + v2

t ρ
2

R2
G


, (C.11)

with ρ2 = x2 + y2, the radial flow velocity vt, transverse source radius RG,
freeze-out temperature T and the freeze-out time τ0. For the mt dependence
of the HBT radii one finds

R2
out = R2

G
1 + v2

tmt/T
+ (βt∆τ)2, (C.12)

R2
side = R2

G
1 + v2

tmt/T
, (C.13)

R2
long =


τ2

0
T

mt
w/o transverse flow, LO, mt ≫ T,

τ2
0

T
mt

K2(mt/T )
K1(mt/T ) w/o transverse flow, NLO,

τ2
0

T
mt

1
1+ T

mt
( 1

∆η2 −1) with transverse flow, LO,
(C.14)

with the Bessel functions K1 and K2. Note, that k and u in Equation (C.9)
are four-vectors and ku is the scalar product.
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D | Data summary tables

In the following, the data summary tables of various quantities are provided.

D.1 Azimuthally integrated

Table D.1: Source parameters resulting from fits with Equations (4.26)
and (4.28) for π−π− pairs in dependence on centrality and average trans-
verse momentum k̄t. Values in the 1st (2nd) brackets represent the cor-
responding statistical (systematic) errors in units of the last digit of the
respective quantity.

centrality k̄t Rinv λinv Rout Rside Rlong λosl
% MeV/c fm fm fm fm

0-10 43 7.03(23)(+17
−10) 0.904(84)(+42

−38) 7.03(60)(+31
−8 ) 7.44(27)(+23

−0 ) 5.50(34)(+21
−2 ) 0.872(74)(+59

−0 )
0-10 81 6.54(4)(+20

−0 ) 0.801(12)(+30
−0 ) 6.88(9)(+17

−1 ) 7.15(10)(+16
−1 ) 5.53(5)(+11

−1 ) 0.904(19)(+18
−2 )

0-10 125 5.88(2)(+28
−4 ) 0.710(7)(+59

−6 ) 6.22(5)(+23
−1 ) 6.27(6)(+21

−1 ) 4.81(3)(+15
−0 ) 0.848(11)(+36

−1 )
0-10 172 5.37(2)(+28

−14) 0.662(7)(+65
−21) 5.59(6)(+26

−8 ) 5.75(5)(+15
−7 ) 4.17(2)(+15

−5 ) 0.840(12)(+40
−13)

0-10 221 5.01(3)(+26
−17) 0.628(9)(+72

−26) 5.16(10)(+18
−9 ) 5.26(6)(+13

−8 ) 3.61(3)(+12
−5 ) 0.847(19)(+39

−17)
0-10 271 4.57(4)(+22

−17) 0.565(12)(+74
−24) 4.69(34)(+16

−13) 4.80(8)(+11
−10) 3.11(3)(+11

−6 ) 0.836(62)(+43
−24)

0-10 321 4.25(6)(+15
−15) 0.530(18)(+67

−20) 4.27(11)(+12
−8 ) 4.32(9)(+8

−6) 2.80(5)(+8
−11) 0.846(26)(+15

−15)
0-10 370 3.91(10)(+35

−14) 0.462(27)(+110
−19 ) 3.84(27)(+20

−12) 3.95(13)(+14
−8 ) 2.50(7)(+15

−5 ) 0.776(57)(+57
−20)

0-10 420 3.84(15)(+28
−11) 0.494(44)(+73

−15) 3.04(19)(+25
−4 ) 3.57(19)(+25

−12) 2.33(9)(+18
−0 ) 0.725(52)(+68

−3 )
10-20 43 6.08(23)(+28

−15) 0.734(75)(+82
−31) 4.82(73)(+69

−26) 6.24(24)(+14
−12) 5.73(39)(+37

−13) 0.740(72)(+30
−30)

10-20 81 6.16(4)(+9
−1) 0.770(13)(+28

−1 ) 6.29(8)(+8
−0) 6.09(8)(+5

−0) 5.57(6)(+8
−0) 0.849(18)(+17

−0 )
10-20 125 5.71(3)(+22

−2 ) 0.702(9)(+50
−3 ) 5.94(5)(+17

−1 ) 5.73(5)(+11
−0 ) 4.89(3)(+11

−0 ) 0.829(12)(+26
−1 )

10-20 172 5.21(3)(+22
−7 ) 0.666(9)(+61

−10) 5.57(6)(+17
−2 ) 5.09(5)(+12

−2 ) 4.14(3)(+12
−1 ) 0.845(13)(+34

−3 )
10-20 221 4.78(4)(+24

−13) 0.629(12)(+73
−19) 5.06(10)(+17

−7 ) 4.66(6)(+7
−6) 3.60(3)(+8

−4) 0.868(20)(+31
−14)

10-20 270 4.32(5)(+25
−11) 0.585(16)(+88

−17) 4.62(33)(+15
−11) 4.19(8)(+10

−7 ) 3.03(4)(+6
−4) 0.885(65)(+49

−19)
10-20 320 4.03(8)(+29

−10) 0.529(25)(+100
−15 ) 4.11(13)(+23

−9 ) 3.62(10)(+30
−6 ) 2.73(6)(+11

−4 ) 0.827(31)(+81
−18)

10-20 370 3.52(14)(+60
−4 ) 0.435(35)(+118

−5 ) 3.37(23)(+44
−15) 3.27(15)(+11

−4 ) 2.43(8)(+38
−2 ) 0.736(53)(+133

−10 )
20-30 43 5.62(22)(+27

−13) 0.821(86)(+56
−40) 4.22(74)(+118

−4 ) 5.49(22)(+27
−2 ) 5.76(44)(+55

−2 ) 0.790(80)(+108
−4 )

20-30 81 5.69(4)(+16
−0 ) 0.745(14)(+34

−0 ) 5.76(8)(+16
−0 ) 5.46(7)(+9

−0) 5.39(6)(+17
−0 ) 0.823(18)(+22

−0 )
20-30 124 5.28(3)(+24

−2 ) 0.701(10)(+48
−2 ) 5.56(5)(+20

−0 ) 5.06(5)(+13
−0 ) 4.62(4)(+16

−0 ) 0.822(12)(+29
−0 )

20-30 172 4.87(3)(+22
−9 ) 0.670(10)(+62

−13) 5.37(6)(+16
−3 ) 4.53(5)(+13

−2 ) 3.89(3)(+12
−2 ) 0.851(14)(+34

−4 )
20-30 221 4.45(4)(+24

−13) 0.622(14)(+81
−19) 4.84(10)(+10

−6 ) 4.21(6)(+9
−4) 3.32(4)(+5

−3) 0.861(21)(+16
−10)

20-30 270 4.03(7)(+34
−17) 0.543(20)(+104

−24 ) 4.68(35)(+22
−9 ) 3.65(8)(+16

−5 ) 2.80(5)(+10
−3 ) 0.867(66)(+65

−16)
20-30 320 3.98(10)(+21

−9 ) 0.565(34)(+72
−14) 4.13(16)(+25

−18) 3.42(12)(+15
−9 ) 2.58(7)(+4

−5) 0.868(40)(+60
−23)

20-30 370 3.57(18)(+73
−9 ) 0.480(50)(+180

−12 ) 3.74(31)(+38
−18) 3.03(15)(+7

−0) 2.41(10)(+3
−8) 0.932(82)(+9

−6)
30-40 43 5.02(23)(+26

−9 ) 0.711(89)(+42
−14) 3.74(45)(+17

−12) 5.18(23)(+12
−0 ) 4.96(58)(+44

−9 ) 0.721(86)(+42
−10)

30-40 81 5.10(5)(+26
−0 ) 0.707(16)(+36

−0 ) 5.22(8)(+18
−2 ) 4.85(7)(+12

−2 ) 4.98(7)(+24
−2 ) 0.784(19)(+20

−3 )
30-40 125 4.89(3)(+24

−1 ) 0.691(12)(+41
−1 ) 5.26(6)(+19

−0 ) 4.53(5)(+9
−0) 4.34(4)(+15

−0 ) 0.811(14)(+20
−0 )

30-40 172 4.52(4)(+27
−6 ) 0.664(13)(+73

−10) 5.10(7)(+19
−3 ) 4.11(5)(+19

−2 ) 3.64(4)(+17
−2 ) 0.849(16)(+44

−4 )
30-40 221 4.20(5)(+24

−12) 0.648(17)(+81
−18) 4.64(10)(+13

−3 ) 3.72(6)(+16
−2 ) 3.07(4)(+6

−2) 0.872(23)(+17
−6 )

30-40 270 3.81(8)(+37
−18) 0.562(25)(+129

−26 ) 4.24(28)(+41
−7 ) 3.24(9)(+15

−4 ) 2.66(6)(+11
−2 ) 0.851(58)(+75

−11)
30-40 320 3.38(13)(+61

−8 ) 0.480(36)(+155
−11 ) 4.03(19)(+30

−18) 2.86(12)(+38
−8 ) 2.37(8)(+11

−12) 0.855(47)(+39
−23)
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D. Data summary tables

Table D.2: The same as table D.1, but for π+π+ pairs.

centrality k̄t Rinv λinv Rout Rside Rlong λosl
% MeV/c fm fm fm fm

0-10 92 4.81(16)(+39
−0 ) 0.870(65)(+80

−0 ) 5.67(40)(+51
−3 ) 5.45(24)(+22

−4 ) 4.04(17)(+26
−2 ) 0.973(71)(+23

−5 )
0-10 130 4.70(4)(+39

−5 ) 0.697(14)(+81
−7 ) 5.32(7)(+40

−1 ) 5.05(7)(+20
−1 ) 3.87(4)(+22

−1 ) 0.876(17)(+40
−1 )

0-10 175 4.54(3)(+31
−14) 0.614(10)(+89

−20) 5.23(7)(+36
−8 ) 4.79(6)(+16

−7 ) 3.39(3)(+20
−4 ) 0.830(14)(+60

−12)
0-10 223 4.37(4)(+36

−17) 0.556(11)(+104
−23 ) 4.86(9)(+26

−11) 4.62(6)(+14
−9 ) 3.13(3)(+13

−6 ) 0.815(19)(+43
−17)

0-10 272 4.17(5)(+34
−19) 0.525(15)(+101

−25 ) 4.44(9)(+40
−9 ) 4.28(8)(+15

−7 ) 2.82(4)(+14
−4 ) 0.809(22)(+65

−15)
0-10 321 3.86(7)(+37

−17) 0.489(19)(+111
−23 ) 4.16(12)(+30

−17) 4.06(9)(+10
−9 ) 2.55(5)(+8

−5) 0.835(28)(+66
−21)

0-10 371 3.57(10)(+35
−12) 0.440(26)(+71

−14) 3.71(17)(+65
−27) 3.78(12)(+22

−7 ) 2.23(6)(+11
−6 ) 0.817(37)(+114

−25 )
0-10 421 3.46(17)(+26

−9 ) 0.376(37)(+54
−9 ) 3.28(22)(+48

−24) 3.55(19)(+10
−12) 2.12(9)(+4

−14) 0.723(48)(+17
−0 )

10-20 92 4.86(18)(+9
−3) 0.851(70)(+25

−6 ) 5.47(46)(+11
−6 ) 5.07(21)(+2

−15) 4.48(24)(+15
−5 ) 0.963(83)(+28

−10)
10-20 129 4.63(5)(+33

−5 ) 0.678(16)(+77
−6 ) 5.32(8)(+24

−2 ) 4.52(7)(+11
−1 ) 3.88(5)(+22

−1 ) 0.836(19)(+42
−2 )

10-20 174 4.53(4)(+26
−10) 0.635(13)(+71

−14) 5.08(7)(+24
−5 ) 4.42(6)(+14

−4 ) 3.54(4)(+15
−3 ) 0.833(16)(+50

−6 )
10-20 222 4.31(5)(+27

−15) 0.587(15)(+84
−20) 4.78(10)(+21

−6 ) 4.04(6)(+16
−4 ) 3.14(4)(+10

−3 ) 0.828(21)(+43
−9 )

10-20 271 4.05(6)(+22
−15) 0.549(19)(+76

−20) 4.38(11)(+28
−8 ) 3.87(8)(+11

−6 ) 2.80(5)(+10
−4 ) 0.837(26)(+42

−15)
10-20 321 3.71(10)(+43

−8 ) 0.477(27)(+111
−11 ) 4.05(14)(+4

−16) 3.49(11)(+9
−4) 2.40(6)(+3

−2) 0.796(33)(+25
−10)

10-20 371 3.80(16)(+25
−28) 0.474(44)(+41

−35) 4.51(33)(+34
−73) 3.38(16)(+0

−14) 2.35(9)(+16
−6 ) 0.951(63)(+121

−34 )
20-30 92 4.29(19)(+45

−1 ) 0.721(67)(+91
−1 ) 4.71(54)(+23

−1 ) 4.34(21)(+15
−1 ) 4.01(25)(+19

−1 ) 0.774(76)(+34
−0 )

20-30 129 4.36(6)(+39
−2 ) 0.653(18)(+88

−2 ) 5.10(9)(+24
−0 ) 4.11(7)(+7

−0) 3.85(6)(+18
−0 ) 0.825(21)(+30

−0 )
20-30 174 4.23(5)(+30

−9 ) 0.623(15)(+79
−12) 4.92(8)(+24

−5 ) 3.86(6)(+17
−3 ) 3.37(4)(+13

−3 ) 0.828(18)(+50
−7 )

20-30 222 4.02(6)(+33
−15) 0.571(18)(+94

−21) 4.70(11)(+21
−9 ) 3.68(7)(+20

−6 ) 3.01(4)(+8
−4) 0.843(25)(+41

−14)
20-30 271 3.98(9)(+37

−23) 0.570(27)(+130
−34 ) 4.40(13)(+26

−4 ) 3.36(9)(+26
−2 ) 2.72(6)(+13

−2 ) 0.879(33)(+71
−6 )

20-30 321 3.50(12)(+34
−7 ) 0.497(34)(+52

−9 ) 4.26(19)(+12
−24) 3.14(12)(+6

−10) 2.48(8)(+5
−12) 0.920(48)(+20

−30)
20-30 370 3.15(19)(+50

−3 ) 0.416(47)(+122
−2 ) 4.27(38)(+22

−86) 2.69(16)(+9
−18) 2.24(11)(+9

−18) 0.985(77)(+47
−75)

30-40 92 4.16(23)(+46
−16) 0.767(86)(+132

−27 ) 5.33(67)(+39
−7 ) 3.84(21)(+12

−6 ) 4.46(29)(+21
−6 ) 0.936(106)(+32

−11)
30-40 128 4.09(6)(+33

−5 ) 0.659(21)(+73
−5 ) 4.68(10)(+25

−0 ) 3.75(7)(+4
−0) 3.73(7)(+24

−0 ) 0.816(25)(+32
−0 )

30-40 173 3.95(6)(+44
−10) 0.621(18)(+115

−13 ) 4.52(8)(+17
−1 ) 3.50(6)(+15

−1 ) 3.22(5)(+18
−0 ) 0.820(21)(+30

−0 )
30-40 222 3.86(7)(+31

−14) 0.592(23)(+89
−20) 4.59(12)(+5

−5) 3.26(7)(+9
−3) 2.79(5)(+6

−2) 0.858(29)(+13
−7 )

30-40 271 3.54(11)(+45
−22) 0.505(31)(+129

−29 ) 4.17(15)(+32
−8 ) 3.07(11)(+37

−5 ) 2.46(7)(+9
−2) 0.808(38)(+73

−9 )
30-40 321 3.44(15)(+20

−9 ) 0.517(47)(+58
−11) 3.76(22)(+5

−13) 2.94(15)(+0
−42) 2.34(10)(+10

−16) 0.867(59)(+19
−40)
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D.1 Azimuthally integrated

Table D.3: The same as table D.1, but for constructed fiducial π̃0π̃0

pairs without systematic uncertainties and replacing the columns of the
λ parameters by the effective potentials Veff .

centrality k̄t Rinv V eff
inv Rout Rside Rlong V eff

out V eff
side V eff

long
% MeV/c fm MeV fm fm fm MeV MeV MeV

0-10 87 5.70(4) 7.0(5) 6.30(27) 6.32(18) 4.81(12) 3.1(14) 5.5(6) 5.3(11)
0-10 127 5.30(3) 9.7(3) 5.78(6) 5.67(9) 4.35(5) 5.5(6) 9.1(5) 7.3(4)
0-10 174 4.97(3) 10.9(4) 5.41(6) 5.29(8) 3.80(4) 3.8(9) 11.7(6) 13.0(4)
0-10 222 4.70(4) 11.0(7) 5.01(10) 4.94(9) 3.38(4) 2.8(21) 11.0(10) 11.6(7)
0-10 271 4.38(6) 9.0(13) 4.57(26) 4.55(11) 2.97(5) -0.1(61) 12.8(16) 10.4(13)
0-10 321 4.06(8) 13.1(24) 4.21(11) 4.19(13) 2.68(7) 2.1(69) 9.2(27) 12.4(24)
0-10 371 3.75(13) 16.9(47) 3.77(23) 3.87(18) 2.37(9) 5.0(92) 10.3(49) 17.6(48)
0-10 421 3.55(21) 26.5(87) 3.24(20) 3.55(26) 2.15(14) -3.2(155) 1.4(91) 27.6(93)
10-20 87 5.54(4) 5.0(6) 5.92(31) 5.63(16) 5.07(16) 0.7(18) 3.7(7) 2.3(13)
10-20 127 5.19(3) 8.5(4) 5.63(7) 5.15(8) 4.40(6) 4.4(7) 9.5(5) 7.7(4)
10-20 173 4.88(4) 9.2(5) 5.33(7) 4.76(8) 3.85(5) 5.0(10) 9.0(6) 9.3(5)
10-20 221 4.55(5) 9.5(9) 4.92(10) 4.36(9) 3.38(5) 5.4(22) 12.8(10) 12.2(9)
10-20 271 4.19(8) 7.4(17) 4.50(25) 4.03(11) 2.92(6) -0.6(63) 8.5(19) 8.0(17)
10-20 321 3.88(13) 12.0(35) 4.08(14) 3.56(14) 2.57(9) 5.3(77) 7.5(34) 21.5(35)
10-20 370 3.66(21) -13.1(71) 3.98(30) 3.33(22) 2.39(13) -11.5(121) -4.0(66) 17.9(69)
20-30 86 5.02(5) 6.2(7) 5.25(35) 4.93(15) 4.71(17) 2.6(23) 5.0(7) 4.7(17)
20-30 127 4.83(4) 8.0(4) 5.32(7) 4.60(8) 4.24(7) 3.5(8) 8.4(5) 6.1(5)
20-30 173 4.56(5) 9.3(6) 5.15(7) 4.21(7) 3.64(5) 6.1(11) 10.6(7) 8.7(6)
20-30 221 4.24(7) 9.5(11) 4.77(10) 3.95(9) 3.17(6) 0.8(24) 12.3(12) 7.4(11)
20-30 271 4.01(9) 1.4(23) 4.54(27) 3.50(12) 2.76(7) 0.8(67) 9.0(22) 1.0(23)
20-30 320 3.75(15) 18.9(43) 4.19(18) 3.28(16) 2.53(11) -3.4(93) 13.3(42) 2.2(46)
20-30 370 3.37(25) 21.7(96) 4.01(35) 2.86(22) 2.33(14) -8.8(142) 22.1(76) 22.5(79)
30-40 86 4.65(6) 4.5(10) 5.37(47) 4.35(15) 4.76(21) 2.3(33) 4.7(8) 0.3(27)
30-40 126 4.51(5) 7.3(5) 4.98(8) 4.15(8) 4.04(8) 5.3(10) 7.4(5) 5.1(7)
30-40 173 4.24(6) 8.9(8) 4.81(8) 3.81(8) 3.43(6) 6.5(14) 10.1(8) 7.0(8)
30-40 221 4.03(8) 7.7(15) 4.61(11) 3.49(9) 2.94(7) 1.8(28) 12.0(13) 7.2(15)
30-40 271 3.68(12) 8.8(31) 4.21(22) 3.15(14) 2.56(9) -6.7(71) 6.3(27) 4.7(29)
30-40 321 3.41(23) -2.7(61) 3.90(21) 2.90(19) 2.36(13) 10.4(109) -6.2(52) 11.9(61)
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D. Data summary tables

D.2 Azimuthally dependent

Table D.4: Source extensions in the xyz-coordinate system of the emis-
sion ellipsoid and the corresponding tilt angels θs resulting from fits with
Equation (4.44) for π−π− pairs in dependence on centrality and average
transverse momentum k̄t. Values in the 1st (2nd) brackets represent the
corresponding statistical (systematic) errors in units of the last digit of
the respective quantity.

Centrality k̄t σ2
x σ2

y σ2
z σ2

t θs
(%) (MeV/c) (fm2) (fm2) (fm2) (fm2/c2) (deg)
0-10 82 48.1(14)(+6

−7) 55.4(16)(+15
−6 ) 23.9(8)(+3

−3) −11.2(35)(+14
−22) −27(2)(+0

−0)
0-10 126 38.1(9)(+18

−9 ) 43.8(9)(+22
−7 ) 21.0(4)(+9

−4) −1.8(12)(+4
−6) −20(1)(+0

−1)
0-10 173 31.5(8)(+21

−12) 38.8(8)(+25
−14) 17.0(2)(+10

−6 ) −3.2(8)(+1
−3) −12(1)(+0

−0)
0-10 222 26.2(9)(+17

−12) 33.2(9)(+23
−15) 12.5(2)(+7

−5) −3.2(7)(+1
−1) −8(1)(+0

−0)
0-10 271 22.0(10)(+14

−13) 29.5(11)(+20
−16) 9.0(1)(+5

−5) −9.2(7)(+3
−3) −5(1)(+0

−0)
10-20 82 41.8(7)(+10

−5 ) 43.7(9)(+10
−7 ) 18.9(7)(+4

−4) 11.1(30)(+13
−19) −46(1)(+0

−0)
10-20 125 29.7(5)(+15

−7 ) 39.5(7)(+19
−7 ) 18.0(4)(+9

−3) 7.0(12)(+3
−4) −40(2)(+0

−0)
10-20 173 23.0(5)(+13

−7 ) 33.4(6)(+16
−9 ) 15.4(3)(+8

−4) 7.6(9)(+6
−4) −27(2)(+0

−0)
10-20 221 18.7(6)(+10

−9 ) 30.0(7)(+15
−12) 11.4(2)(+6

−5) 2.5(8)(+4
−3) −14(2)(+0

−0)
20-30 82 33.5(6)(+7

−5) 37.3(8)(+14
−6 ) 14.7(7)(+2

−5) 14.6(28)(+20
−27) −58(1)(+0

−0)
20-30 125 22.1(3)(+11

−5 ) 35.0(6)(+15
−8 ) 13.6(5)(+6

−3) 11.9(11)(+8
−8) −60(2)(+0

−0)
20-30 172 15.2(4)(+10

−6 ) 30.0(6)(+13
−9 ) 12.9(3)(+7

−5) 10.3(8)(+11
−8 ) −42(6)(+1

−4)
20-30 221 13.8(6)(+7

−7) 26.7(7)(+13
−12) 9.8(2)(+5

−4) 3.5(8)(+7
−3) −7(3)(+0

−1)
25-35 82 29.1(6)(+8

−7) 34.4(8)(+10
−5 ) 12.8(7)(+4

−3) 17.4(28)(+28
−13) −63(1)(+0

−0)
25-35 125 19.4(3)(+11

−5 ) 31.0(6)(+17
−9 ) 12.1(5)(+6

−3) 15.2(11)(+13
−6 ) −66(2)(+0

−0)
25-35 172 12.7(2)(+9

−5) 27.5(5)(+15
−9 ) 11.1(5)(+8

−5) 11.1(8)(+13
−8 ) −75(7)(+2

−2)
25-35 221 10.5(2)(+3

−5) 22.8(7)(+8
−7) 12.0(6)(+4

−3) 6.6(9)(+9
−8) −94(7)(+3

−0)
30-45 82 27.0(6)(+1

−11) 32.6(8)(+6
−8) 11.2(8)(+0

−5) 20.2(29)(+30
−43) −69(2)(+0

−1)
30-45 125 16.3(3)(+10

−3 ) 26.9(5)(+15
−5 ) 10.6(5)(+6

−4) 15.5(11)(+13
−11) −75(2)(+0

−1)
30-45 172 11.1(2)(+7

−4) 25.5(5)(+15
−8 ) 8.8(5)(+6

−4) 10.4(8)(+12
−6 ) −94(4)(+1

−1)
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D.2 Azimuthally dependent

Table D.5: The same as table D.4, but for π+π+ pairs.

Centrality k̄t σ2
x σ2

y σ2
z σ2

t θs
(%) (MeV/c) (fm2) (fm2) (fm2) (fm2/c2) (deg)
0-10 132 24.3(11)(+1

−5) 30.5(12)(+35
−7 ) 12.9(4)(+2

−4) 2.9(15)(+5
−22) −18(2)(+0

−4)
0-10 175 22.2(8)(+20

−14) 26.8(9)(+23
−13) 10.9(2)(+9

−6) 4.5(9)(+7
−8) −12(1)(+0

−1)
0-10 223 22.7(8)(+18

−14) 21.9(8)(+18
−13) 8.8(1)(+8

−6) 0.3(7)(+5
−4) −6(1)(+0

−0)
0-10 272 17.1(9)(+10

−9 ) 21.6(9)(+17
−10) 7.4(2)(+6

−4) −2.8(7)(+5
−3) −6(1)(+0

−1)
10-20 131 22.2(7)(+14
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