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1 Introduction

Elementary particles and their interactions are described to a good accuracy within the frame-
work of relativistic quantum �eld theory. At least this is true for energies up to the order of 100
GeV. In relativistic quantum �eld theory the underlying symmetry group is the Poincar�e group,
and from this we can classify the elementary particles according to their spin. Furthermore,
the bosons, with integral spin, obey canonical commutation relations while the fermions, with
half-integral spin, obey canonical anti-commutation relations. The bosons and the fermions thus
constitute two distinct sectors of the Hilbert space. Supersymmetry is a symmetry that relates
bosons and fermions.

It is appealing to have symmetries that relates di�erent particles. For example, Grand
Unifying symmetries are appealing because they relate particles that are di�erent in the standard
model (and which have the same spin). In this sense, supersymmetry is more \reasonable" than
no supersymmetry.

If supersymmetry has anything to do with nature, it has to be broken at the low energies
of about 100 GeV that we have probed in experiments to date. This is because supersymmetry
predicts degenerate multiplets of particles with the same mass and quantum numbers, but with
di�erent spins. Such multiplets have not been observed.

However, this discrepancy between observation and exact supersymmetry could be a blessing
rather than a curse since it o�ers an explanation to the so-called \gauge hierarchy problem" [1].
This is the problem of why the scale of the standard model (�100 GeV) is many orders of
magnitude smaller than the GUT scale of about 1015 GeV (or the Planck scale of about 1019

GeV). Supersymmetry \explains" this by protecting the masses of scalar particles from receiving
quantum corrections in perturbation theory. Thus, if the mass term of the Higgs �eld { which
is related to the electroweak scale { is set to zero at the tree level, it will stay zero to all
orders of perturbation theory. If supersymmetry is spontaneously broken by non-perturbative
e�ects (perhaps instantons) this could give a small Higgs mass and thereby a small electroweak
scale, as well as lifting the degeneracy of the supersymmetry multiplets. The point is that non-
perturbative e�ects typically would involve numerical factors like e�1=�GUT , where �GUT is the
GUT �ne structure constant. The gauge hierarchy problem was one of the original motivations
for studying supersymmetric theories.

In this report we will be interested in supersymmetry for a di�erent reason, namely because it
provides us with toy models. There are two aspects of supersymmetry that are interesting in this
connection. First, supersymmetric theories often have better solvability properties than non-
supersymmetric theories. This has to do with the fact that supersymmetric Lagrangians can be
expressed in terms of holomorphic functions of the �elds and coupling constants of the theory.
In some cases one is able to determine these functions exactly [2]. And second, there exists
certain duality symmetries in many supersymmetric theories [3]. These symmetries are similar
to the duality between electricity and magnetism in the free Maxwell's equations (i.e. without
matter).

We will be occupied with one theory in particular. This is the so-called `N = 2 supersym-
metric Yang-Mills theory', in our case with gauge group SU(2). The `N ' refers to the \size" of
the degenerate supersymmetry multiplets, so `N = 2' means that they contain more particles
than a theory with simple { or `N = 1' { supersymmetry. It is a toy model which has both
of the properties described above. The exact solution of this model and a description of the
duality symmetry it possesses is treated in the already famous paper by Seiberg and Witten:
\Electric-Magnetic Duality, Monopole Condensation, and Con�nement in N = 2 Supersymmet-
ric Yang-Mills theory" [4]. The purpose of this report is to explain the important concepts of
this paper and to lay the necessary groundwork in order to do so.

1



The organization of the report is the following. In Chapter 2 we introduce the basic concepts
of supersymmetry: the supersymmetric extension of the Poincar�e algebra, its representations,
and superspace. We then work out some supersymmetric �eld theories. This will all be at tree
level.

In Chapter 3 we discuss quantum e�ects and renormalization. It turns out there are cer-
tain \non-renormalization" theorems in supersymmetric theories, which refers to the fact that
various terms in the Lagrangian (e.g. potential terms) does not receive quantum corrections
from renormalization. There are the \old" non-renormalization theorems which applies in per-
turbation theory (and which is relevant to the gauge hierarchy problem). Then there are the
\new" non-renormalization theorems which extends to non-perturbative e�ects as well. This
is where holomorphy and the exact solutions come in. We also introduce various \advanced
topics", such as moduli spaces and complex K�ahler geometry, and start our discussion of the
N = 2 supersymmetric Yang-Mills theory.

By Chapter 4 we break our line of development of the N = 2 theory to discuss duality. We
recall the electric-magnetic duality of Maxwell's equations, and we explain a famous conjecture
by Montonen and Olive about a duality of the Georgi-Glashow model. They stated that the
magnetic monopoles of positive and negative charge, which are solitons (the 't Hooft-Polyakov
monopoles), are duals of the W+- and W�-bosons. There would then be a dual Lagrangian with
the exact same form as the original one (at the tree level) where the heavy gauge bosons were
the magnetic monopoles and where the solitons were the W+- and W�-bosons. The conjecture
actually does not hold in the original formulation of Montonen and Olive, but in supersymmetric
theories this situation is improved, as we will explain.

Finally, in Chapter 5, we show how the two concepts of holomorphy and duality join together
to give an elegant \solution" of the N = 2 theory, which is both unique and exact. Moreover, as
a bonus, we see the phenomenon of con�nement of electric charge in a perturbed version of the
N = 2 theory, which we are then able to explain in terms of condensation of magnetic monopoles.
This explanation of con�nement coincides with ideas developed in the seventies. The N = 2
supersymmetric Yang-Mills theory is thus the �rst example of a quantum �eld theory where
con�nement is explained in an exact sense.

In Appendix A we review some basic representation theory of the Lorentz group, Appendix
B contains some background on spinors, in Appendix C we give the notational conventions, and
in Appendix D some useful formulae.

2 Basics of supersymmetry

2.1 The supersymmetry algebra

We will start our investigations of supersymmetric theories1 by writing down the extensions of
the Poincar�e algebra. Once we have done that, we can �nd the irreducible representations and
go on to construct invariant Lagrangians.

Supersymmetry transformations are generated by operators Q on the Hilbert space, which
map bosons into fermions and fermions into bosons:

Qjbosoni = jfermioni; Qjfermioni = jbosoni:
The Q's must be fermionic, i.e. they form sets of operators which transform among themselves
as spinor representations of the Lorentz group, and they obey anticommutation relations. By
the spin-statistics theorem this is the same thing. It is clear that an extension of the Poincar�e

1The general references on supersymmetry that has been used throughout this report, and in particular in this
chapter are Refs. [5]{[8].
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algebra with such Q's cannot be a Lie-algebra, which is characterized by commutation relations
only. It must be a structure that is characterized by both commutation and anticommutation
relations:

[Bi; Bj ] = ifkijBk; (1)

[Q�; Bi] = s��iQ�; (2)

fQ�; Q�g = 
i��Bi; (3)

Such a structure is a graded Lie algebra. The B's are the even elements and the Q's are the odd
elements of the algebra. They generate elements of a super Lie group in the following way:

G(�; c) = e�i��Q��iciBi

where �� are anticommuting (or Grassmann) parameters,

f��; ��g = 0; f��; Q�g = 0

The fact that thisa group is a consequence of the Baker-Campbell-Hausdor� formula. We will
return to this point in the next section.

The minimal extension of the Poincar�e algebra consists of the Poincar�e generators and one
spinorial generator2 Q�. We also include its hermitean adjoint �Q _� = (Q�)y to make the alge-
bra stable under hermitean conjugation. The Q's and �Q's transform as the (12 ; 0)- and (0; 12)-
representations of the Lorentz group3, respectively:

[Q�;M�� ] = 1
2(���) �

� Q�;

[ �Q _�;M�� ] = �1
2

�Q _�(����)
_�
_�:

This relation belongs under eq. (2) since the B's corresponds to the P 's and M 's of the Poincar�e
algebra

[P�; P� ] = 0;

[P�;M�� ] = i(g��P� � g��P�); (4)

[M�� ;M�� ] = i(g��M�� � g��M�� � g��M�� + g��M��);

which corresponds to eq. (1). Eq. (3) and the rest of eq. (2) is

fQ�; �Q _�g = 2(��)� _�P�; (5)

fQ�; Q�g = f �Q _�; �Q _�g = 0; (6)

[Q�; P�] = [ �Q _�; P�] = 0: (7)

This is the supersymmetry algebra.
Eqs. (5-7) can be deduced from transformation properties. For example, the anticommutator

(5) transforms as (12 ;
1
2), i.e. as a four-vector. By eq. (3) it must be an even element of the graded

Lie algebra, that is, it must be one of the Poincar�e generators. Since the only four-vector of the
Poincar�e algebra is the energy-momentum vector P�, the anticommutator must be proportional
to this. This gives us eq. (5), with only the factor `2' to explain. The numerical value of this
coe�cient is just a matter of normalization of the Q's, so we are left with the question of the
sign. However, by treating eq. (5) as a matrix equation in (�; _�)-space, we can take the trace
and obtainX

�

fQ�; (Q�)yg = 2Tr(��P�) = 4P0: (8)

2We are using two-component spinor notation, see Appendix B.
3Some elementary representation theory of the Lorentz group is given in Appendix A.
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The left-hand side is positive de�nite and so must the energy P0 be. Hence the sign in eq. (5).
By a similar argument we can see that eq. (6) must hold, while the most general expression for
the commutator (7) is

[Q�; P�] = c(��)
_�

�
�Q _�:

However, the constant c can be shown to be zero by commuting this expression with P�, and
using the generalized Jacobi identities that hold for a graded Lie algebra, i.e. identities of the
type

fA; fB;C]] � fB; fC;A]] � fC; fA;B]] = 0;

where f ; ] means either a commutator or an anticommutator, according to whether A, B and
C are even or odd.

Although these arguments are not very rigorous, they are in fact fragments of a proof of
a general theorem by Haag,  Lopusza�nski and Sohnius [9]. This theorem is an extension of an
earlier theorem by Coleman and Mandula about the symmetries of the S-matrix [10]. Coleman
and Mandula proved under some reasonable assumptions4 that the symmetries of the S-matrix
is the direct product of the Poincar�e group with some internal symmetry group. That is, the
Poincar�e algebra is expanded by

[Br; Bs] = ictrsBt;

[Br; P�] = [Br;M�� ] = 0; (9)

where the B's are generators of the internal symmetry. However, the Coleman-Mandula theo-
rem only deals with ordinary Lie groups. It is this situation that is generalized by the Haag-
 Lopusza�nski-Sohnius theorem, which states that if we allow graded Lie algebras, then the sym-
metries of the S-matrix are given by the Poincar�e algebra (4), the internal symmetry algebra
(9), and the extended supersymmetry algebra

[M�� ; Q�i] = 1
2(���) �

� Q�i; (10)

fQ�i; �Q j
_�
g = 2� j

i (��)� _�P�; (11)

fQ�i; Q�jg = 2���Zij ; (12)

[Q�i; P�] = 0; (13)

[Q�i; Br] = (br)
j
i Q�j: (14)

In addition come the hermitean adjoint expressions. The i = 1; : : : ; N means that the spinor
operators Q come in N copies, which are rotated by the internal symmetry generators Br

(eq. (14)). The Q's still commute with the P 's, but the anticommutators of the Q's with
themselves, are now not necessarily zero. fQ�i; Q�jg transforms as a (0; 0) � (1; 0), where the
(1; 0)-representation is an antisymmetric, selfdual tensor. The only tensor of this type in the
even part of the Lie algebra is the selfdual part of M�� , but fQ�i; Q�jg cannot contain a part
that is proportional to this since it would violate eq. (13). Hence we get an equation like (12),
where Zij is antisymmetric in i and j and in general a linear combination of the B's:

Zij = �Zji; Zij = arijBr:

Furthermore, it can be shown that such Z's commute with all the other generators,

[Zij ; anything] = 0;

4This includes Lorentz invariance and analytic dependence of elastic scattering amplitudes on the center-of-
mass energy s and the momentum transfer t.
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making them central charges. The possibility of having central charges, which requires N � 2
because of the antisymmetry of i and j, will become important for us later when we discuss
duality. We shall �nd such an operator by explicit construction in the N = 2 Yang-Mills theory,
where there is a single, complex central charge, and where the real and imaginary parts have
the interpretation of an electric and a magnetic charge, respectively. Eqs. (4), (9) and (10-14)
exhaust all the possible algebras of a supersymmetric theory if we exclude conformal symmetry.

Now that we have the supersymmetry algebra, we turn to �nd its representations of the one-
particle states. We will deal with representations on �elds in the next section. Let us �rst recall
how the irreducible representations of the Poincar�e group are found [11]. This was worked out
by Wigner in his famous paper from 1939 [12] by the method of \induced representations". The
Casimir operators of the Poincar�e group are P�P

� and W�W
� where W � is the Pauli-Lubanski

vector:

W � = 1
2�

����P�M��:

For an irreducible representation they are given by

P�P
� = M2; W�W

� = �M2J(J + 1);

where M is the mass and J is the spin { or helicity { that characterizes the representation. The
procedure is then to choose a frame of reference so that the momentum four-vector becomes,
say, P� = (M; 0; 0; 0) in the massive case or P� = (E; 0; 0; E), where E is the energy, in the
massless case. The subgroup of the Poincar�e group that leaves P� invariant, the \little group",
is represented irreducibly, and the full representation is given by applying all possible boosts on
these states.

We can �nd the irreducible representations of the supersymmetry algebra in a similar way.
P�P

� is still a Casimir operator since P� commutes with the Q's. This is the reason why all
the particles of an irreducible supersymmetry multiplet have the same mass. However, W�W

�

is no longer a Casimir operator because the algebra contains the operators Q�i which change
the spin of a state. Let us deal separately with the massive and massless cases without central
charges, and the massive case with central charges.

Massive case, no central charge. First we choose the rest frame where P� = (M; 0; 0; 0).
The algebra to be represented { the \little algebra" { is given by eqs. (11) and (12) (and the
hermitean adjoint of (12)). In the chosen frame and in the absence of central charges this is

fQ�i; �Q _�jg = 2M�� _��ij ;

fQ�i; Q�jg = f �Q _�i; �Q _�jg = 0:

If we rescale the Q's into

a�i =
1p
2M

Q�i; ay�i =
1p
2M

�Q _�i;

the algebra becomes

fa�i; ay�jg = ����ij ;

fa�i; a�jg = fay�i; ay�jg = 0;

which we recognize as a Cli�ord algebra of 2N creation and annihilation operators. Now we
choose a state jM;J; Jzi which corresponds to the rest frame, has spin J and spin component
Jz in the z-direction, and which further satis�es

a�ijM;J; Jzi = 0; all �; i:
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This last property makes jM;J; Jzi a Cli�ord ground state. The supersymmetry multiplet is
now constructed by applying the ay's on this Cli�ord ground state:

jM;J; Jzi; ay�ijM;J; Jzi; : : : ; ay�i � � � ay�jjM;J; Jzi; : : :
The full irreducible representation is obtained by applying boosts and rotations to these states.

The maximum number of ay's we can apply on the Cli�ord ground state is 2N because of
the Fermi statistics, and by working out the combinatorics the dimension of the representation
is:

d =
2NX
n=0

 
2N
n

!
= 22N :

The number of spin states is then (2J + 1)22N . If the Cli�ord ground state has spin J , the
largest spin in the multiplet is J +N=2, while the smallest spin is J �N=2, or 0 if J �N=2 < 0.

As an example, the simplest case is N = 1; J = 0, where the multiplet is

jM; 0; 0i 1 state of spin 0
ay�jM; 0; 0i 2 states of spin 1

2

ay1a
y
2jM; 0; 0i 1 state of spin 0

(15)

In fact, this is the only massive multiplet that will interest us, because all the other values of
N and J will give multiplets which contains spin 1 or more. In the corresponding �eld theory
we would then have massive vector �elds. Such a theory is not renormalizable unless there is a
Higgs mechanism, in which case the vector �eld is massless in the fundamental Lagrangian.

Massless case. When we deal with central charges in the next paragraph, we shall see that
these must be represented by zero in the massless sector. We can therefore assume that there
are no central charges in the superalgebra.

We now choose the frame of reference where P� = (E; 0; 0; E). Because

��
� _�
P� =

 
2E 0
0 0

!
;

the little algebra is

fQ�i; �Q _�jg = 2

 
2E 0
0 0

!
�ij ;

fQ�i; Q�jg = f �Q _�i; �Q _�jg = 0:

The operators Q2i and �Q _2i have vanishing anticommutators and must therefore be represented
by zero. This leaves us only with the Q1's and �Q _1's to represent. If we de�ne

ai =
1

2
p
E
Q1i; ayi =

1

2
p
E

�Q _1i;

the algebra becomes:

fai; ayjg = �ij ;

fai; ajg = fayi ; ayjg = 0;

which is a Cli�ord algebra of N creation and annihilation operators. Now the Cli�ord ground
state is characterized by a helicity h:

aijE; hi = 0; all i

6



The multiplet is again built by applying the ay's:

jE; hi; ayi jE; hi; : : : ; ayi � � � ayjjE; hi;
where the full representation is obtained by boosting. By the same combinatorics as in the
massive case, we �nd the dimension now to be d = 2N .

Some examples are:

1. N = 1; h = 0:

helicity: 0 1
2

states: 1 1

As it stands, this representation is not PCT -symmetric as it should be in a relativistic
�eld theory. Therefore we must also use the representation N = 1; h = �1

2 :

helicity: �1
2 0

states: 1 1

and "add" them together into the multiplet

helicity: �1
2 0 1

2
states: 1 2 1

It describes a scalar and a pseudoscalar with a massless fermion as supersymmetric partner.

2. N = 1; h = 1
2 :

helicity: 1
2 1

states: 1 1

To get a PCT -invariant multiplet we must add

helicity: �1 �1
2

states: 1 1

so that we get

helicity: �1 �1
2 0 1

2 1
states: 1 1 0 1 1

This describes a vector with a fermion as superpartner.

3. N = 2; h = 0: By adding PCT -conjugate states, we get

helicity: �1 �1
2 0 1

2 1
states: 1 2 2 2 1

Note that the multiplets of Examples 1 and 2 added together give the same helicity content
as this. This re
ects the fact that one can always decompose high-N multiplets into lower-
N multiplets.
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4. N = 2; h = �1
2 :

helicity: �1
2 0 1

2
states: 1 2 1

This is a PCT-self-conjugate representation.

5. N = 4; h = �1:

helicity: �1 �1
2 0 1

2 1
states: 1 4 6 4 1

This representation is also PCT -self-conjugate.

Massive case, with central charges. The central charges Zij commute with everything,
and it is therefore possible to �nd a basis in representation space where the Z's are diagonal,
so that they can be represented by complex numbers Zij . We assume that N is even. Odd N 's
can be worked out similarly, but only even N 's will be of interest to us. Since the Zij forms an
antisymmetric N �N matrix, it is possible to use a unitary transformation Zij ! Uk

i U
l
jZkl to

bring this into the standard form

Z =

 
0 D
�D 0

!
; (16)

where D is a real, positive N=2�N=2 matrix with eigenvalues Zr, r = 1; : : : ; N=2. Without loss
of generality we can assume that this has been done, and that the Q's have been rotated by the
same transformation. In accordance with eq. (16) we now break the index i down to i = (a; r),
where a = 1; 2, r = 1; : : : ; N=2, and the superalgebra in the rest frame becomes5:

fQ�ar; �Q _�bsg = 2M�ab�rs�� _�;

fQ�ar; Q�bsg = 2����ab�rsZr;

f �Q _�ar; �Q _�bsg = �2� _� _��ab�rsZr:

We need to disentangle these anticommutation relations. To do this, we note that the part of
the Poincar�e group we are supposed to represent is the spatial rotations, so that Q�ar and �Q _�ar

have the same transformation properties6. Then the linear combinations

a�r = 1
2 (Q�1r + �Q _�2r);

b�r = 1
2 (Q�1r � �Q _�2r);

have well de�ned transformation properties. Using these, one can rewrite the algebra into

fa�r; a�sg = fb�r; b�sg = fa�r; b�sg = 0;

fa�r; ay_�sg = �� _��rs(M + Zr);

fb�r; by_�sg = �� _��rs(M � Zr):

Viewed as matrices in (�; r)-space the last two anticommutators are positive. This means that

Zr �M; all r: (17)

5Recall that �ab =

�
0 1
�1 0

�
.

6See the comment in Appendix B
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Furthermore, if n Zr's are equal to M , n b's must be represented by zero. So we get a Cli�ord
algebra of 2(N � n) creation and annihilation operators, which we now know how to handle.
Eq. (17) shows that in the massless case all the Zr must be represented by zero.

Let us close this section by showing that a representation must contain an equal number of
fermionic and bosonic states. Consider the operator (�1)NF , where NF is the fermion number
operator. (�1)NF gives +1 on a bosonic state and �1 on a fermionic state. Because Qi

� changes
the fermion number, we have that

(�1)NFQi
� = �Qi

�(�1)NF :

For a �nite dimensional representation the trace is well-de�ned, so that we have

Tr[(�1)NF fQi
�;

�Qj
_�
g] = Tr[�Qi

�(�1)NF �Qj
_�
+ (�1)NF �Qj

_�
Qi
�]

= Tr[�Qi
�(�1)NF �Qj

_�
+Qi

�(�1)NF �Qj
_�
]

= 0;

where we have used the cyclic property of the trace. From this follows

2�ij��
� _�

Tr[(�1)NFP�] = Tr[(�1)NF fQi
�; Q

j
_�
g] = 0:

Thus, for �xed non-zero momentum P� we have

Tr(�1)NF = 0:

Since Tr(�1)NF = nB�nF , where nB is the number of bosons and nF is the number of fermions
in the representation, we get the desired result that nB = nF .

2.2 Superspace

In this report we will mostly deal with N = 1 and N = 2 supersymmetry, although we will
occasionally mention the N = 4 case. These N 's are the most relevant ones to four-dimensional
renormalizable �eld theories. N = 2 will be discussed in the next chapter, but for now we
restrict ourselves to N = 1. This will be su�cient to introduce the basic concepts.

The Poincar�e generators can be represented by the di�erential operators

P� = i@�; M�� = i(x�@� � x�@�)

which operate on scalar �elds on Minkowski space. In a similar way, we would like the super-
symmetry generators to be represented by di�erential operators as well. This can not be done
in Minkowski space because the Q's satisfy anticommutation relations while spacetime deriva-
tived do not. Therefore we will expand Minkowski space into a superspace with coordinates
(x�; ��; �� _�), where �� and �� _� are anticommuting spinors:

f��; ��g = f��; �� _�g = f�� _�; �� _�g = 0:

We shall see that the Q's can be written as di�erential operators in this space.
Let us �rst investigate the group of �nite supersymmetry transformations that corresponds

to the superalgebra. We introduce the anticommuting spinor parameter ��:

f��; ��g = f��; Q�g = � � � = [P�; ��] = 0

Then, with c� a four-vector parameter, an element G of this group is

G(c; �; ��) = ei(cP+�Q+
�� �Q);
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where cP = c�P�, �Q = ��Q�, �� �Q = �� _� �Q _�, and where �� _� = (��)�. The Q's enter in the
hermitean combination �Q+ �� �Q so that G is unitary. The P 's appear because they are needed
to close the algebra of the Q's. Products of such elements can be found by using the Baker-
Campbell-Hausdor� formula:

eAeB = eA+B+
1
2
[A;B]+��� (18)

By using spinor parameters �� and �� we can write the superalgebra in terms of commutators:

[�Q; �� �Q] = �Q�� �Q� �� �Q�Q

= ����
_�Q�

�Q _� � ��
_��� �Q _�Q�

= 2�����P�

[�Q; �Q] = [�� �Q; �� �Q] = 0

[P�; �Q] = [P�; �� �Q] = 0

From this we see that the dots in the exponent of formula (18) are actually zero: the next term
should be

1
2 [[A;B]; B] + 1

2 [A; [A;B]];

but this vanishes because [A;B] vanishes or is proportional to P�. We can now �nd the product
of two G's:

G(c; �; ��)G(d; �; ��) = ei(cP+�Q+
�� �Q)ei(dP+�Q+�� �Q)

= ei((c+d)P+(�+�)Q+(
��+��) �Q)� 1

2
[�Q+�� �Q;�Q+�� �Q]

= ei((c+d)P+(�+�)Q+(
��+��) �Q+ 1

2
i[�Q;�� �Q]+ 1

2
i[�� �Q;�Q]) (19)

= ei((c+d+i�����i��
��)P+(�+�)Q+(��+��) �Q)

= G(c+ d+ i���� � i����; � + �; �� + ��)

This shows that the supersymmetry transformations are a group.
Let us now return to superspace. Technically, we can think of superspace as the quotient of

the super-Poincar�e group and the Lorentz group, super-Poincar�e/Lorentz, which is a manifold
that is parametrized by one four-vector and a (complex) two-spinor. In fact, we can think of
Minkowski space as the quotient Poincar�e/Lorentz. Loosely we have:

Poincar�e/Lorentz = ei(xP+
1
2
!M)=e

1
2
i!M = eixP ;

so the quotient is parametrized by the four-vector x�. In the supersymmetry case this is (equally
loose):

super-Poincar�e/Lorentz = ei(xP+�Q+
�� �Q+ 1

2
!M)=e

1
2
i!M = ei(xP+�Q+

�� �Q):

Note that by the last exponential we have given the prescription for how we parametrize the
quotient manifold (i.e. superspace). We could have used the parametrizations ei(yP+�Q)ei

�� �Q

or ei(y
yP+�� �Q)ei�Q, where the relations between the di�erent parametrizations are y� = x� �

i����� and yy = x� + i�����, respectively7. A translation in Minkowski space is induced by left
multiplication on the quotient manifold:

eicP eixP = eix
0P ;

7Note that these de�nitions of y and yy are interchanged with respect to the ones of Ref. [5].
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where y is the translation and x0 = x + c. Supersymmetry transformations in superspace are
induced in the same way:

G(0; �; ��)G(x; �; ��) = G(x0; �0; ��0);

where � and �� are the parameters of the transformation and

x0 = x+ i���� � i����

�0 = � + � (20)

��0 = �� + ��

as follows from eq. (19).
Functions F (x; �; ��) on superspace are called super�elds. They may have spinor or vector

indices and carry some representation of the Lorentz group. If we expand a super�eld in a power
series in the spinor coordinates, it will terminate after a �nite number of terms, because terms of
the �fth power or higher in � and �� vanish on account of their anticommuting nature. A scalar
super�eld in its most general form is thus:

F (x; �; ��) = f(x) + ��(x) + ����(x)

+��m(x) + ����n(x) + �����v�(x)

+������(x) + ����� (x) + ������d(x);

The �elds f , m, n and d are (in general complex) scalars, �,  , �� and �� are spinors, and v� is a
vector. These �elds are called component �elds. It is clear that sums and products of super�elds
are again super�elds.

We are now ready to �nd the representations of the Q's as di�erential operators on super-
space. That is, we want to �nd Q and �Q such that an in�nitesimal supersymmetry transforma-
tion with parameter � is given by

��F = i(�Q+ �� �Q)F:

Because of eqs. (20), a scalar super�eld F regarded as an operator on the Hilbert space has the
transformation property:

G(0; �; ��)F (x; �; ��)G�1(0; �; ��) = F (x� i���� + i����; � + �; �� + ��):

For in�nitesimal � this means:

��F = i(����� � ��� ��)@�F + �
@

@�
F + ��

@

@��
F;

and so we can read o� the representations of the Q's to be:

Q� = �i @
@��

+ (����)�@�; �Q _� = i
@

@�� _�
� (���) _�@�:

The operators @=@�� and @=@�� _� are anticommuting spinors that operates to the right:

@

@��
�� = � �

� ;
@

@�� _�
��
_� = �

_�
_� :

One can check that the Q's satisfy the supersymmetry algebra:

fQ�; �Q _�g = 2i��
� _�
@�;

fQ�; Q�g = f �Q _�; �Q _�g = 0;

[P�; Q�] = [P�; �Q _�] = 0;
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where we also have represented P� by i@�.
The in�nitesimal supersymmetry transformations of the component �elds can be found from

the relation:

��F (x; �; ��) = i(�Q+ �� �Q)F (x; �; ��)

= ��f(x) + ����(x) + ������(x)

+����m(x) + ������n(x) + �������v�(x)

+��������(x) + ������� (x) + ��������d(x):

The component �elds of a super�eld does not in general form an irreducible representation
of the supersymmetry transformations. If this is to be the case, we need to impose \super-
covariant" constraints on the super�eld, i.e. constraints that are preserved under supersymmetry
transformations.

One covariant constraint is the reality constraint:

V = V y:

A super�eld that satis�es this can in general be written as:

V (x; �; ��) = C(x) + i��(x)� i����(x)

+1
2 i��[M(x) + iN(x)]� 1

2 i
����[M(x)� iN(x)]

+�����V�(x)� i����[��(x)� 1
2 i@��(x)��] (21)

+i�����[�(x) + 1
2 i�

�@� ��(x)] + 1
2��

����[D(x)� 1
22C(x)];

where the �elds C, D, M and N are real scalars, V� is a real vector, and � and � are spinors.
The presence of the vector �eld V� makes V the natural super�eld to use if we want to �nd
supersymmetric extensions of gauge theories. V is called the vector super�eld because of V�.
However, V is not irreducible. Some of the �elds are redundant and can be gauged away in a
certain sense. The particular combination of �elds in eq. (21) is chosen in light of this, and we
will return to the vector super�eld when we consider supersymmetric gauge theories.

Other types of constraints are e�ectuated by super-covariant di�erential operators with re-
spect to the spinor coordinates. Such operators D� and �D _� should obey the anticommutation
relations:

fD�; Q�g = fD�; �Q _�g = f �D _�; Q�g = f �D _�; �Q _�g = 0; (22)

or equavivalently

[D�; �Q+ �� �Q] = [ �D _�; �Q+ �� �Q] = 0;

for anticommuting parameters � and ��. In other words: the supercovariant derivatives commute
with supersymmetry transformations. This can be achieved by taking the D's to be:

D� =
@

@��
� i(����)�@�; �D _� = � @

@�� _�
+ i(���) _�@�:

We could also have found these D's as the generators of supersymmetry transformations induced
by right multiplication on the superspace quotient manifold. Left multiplication commutes with
right multiplication, so this would automatically give eqs. (22). This means that the D's satisfy
an algebra that is isomorphic to the one the Q's satisfy:

fD�; �D _�g = 2i��
� _�
@�

fD�;D�g = f �D _�; �D _�g = 0

[P�; D�] = [P�; �D _� ] = 0;

12



which can be checked by explicit calculation. Only a �nite number of covariant di�erential
operators can be formed by multiplying the D's together because of their anticommuting nature.

A constraint that will be useful to us is the so-called chiral constraint:

�D _�� = 0: (23)

If we use the coordinates y� = x� � i����� we see that

�D _�y
� = �D _�(x� � i�����) = 0; �D _�� = 0

Thus, any function of y and � will satisfy eq. (23):

� = A(y) + � (y) + ��F (y)

= A(x)� i�����@�A(x)� 1
4��

����2A(x)

+� (x) + 1
2 i��(����)@� (x) + ��F (x);

where we have expanded in x and used spinor identities like ���� = �1
2�

���� (see Appendix C).
Here, A and F are complex scalars and  is a two-spinor. That this is the most general function
that solves (23) can be seen by writing the D's in terms of y, � and ��:

D� =
@

@��
� 2i(�� ��)�

@

@y�
; �D _� = � @

@�� _�
:

The expression for �D _� shows that � cannot contain any ��'s. The fact that, in the y-coordinates,
� is a function only of ��, which is a spinor of de�nite chirality, is the reason that it is called a
chiral super�eld.

Analogously, the complex conjugate of �, the super�eld �y, can be written as:

�y = A�(yy) + �� � (yy) + ����F �(yy)

= A�(x) + i�����@�A
�(x)� 1

4��
����2A�(x)

+�� � (x)� 1
2 i

����(���)@� � (x) + ����F �(x);

where yy = x� + i�����. This is the most general �eld that satis�es:

D��y = 0;

as can be seen from the form of the D's in terms of yy, � and ��.
We can also �nd the supersymmetry transformations of the component �elds. The easiest

way is again to use the y-coordinates, and write down the corresponding Q's:

Q� = �i @
@��

; �Q _� = i
@

@�� _�
� 2(���) _�@�;

where @� = @=@y�. An in�nitesimal transformation is then:

��� = i(�Q+ �� �Q)�

= �
@

@�
� + ��

@

@��
�� 2i��� ��@��

= � + 2��F � 2i��� ��@�A� 2i(��� ��)�@� (24)

= � + �2�F � �2i(�� ��)@�A� ��i�����@� ;

and so the component �elds transform as:

��A = � 

�� = �2i(�� ��)@�A+ 2�F (25)

��F = �i�����@� 
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This is equally true if we use the x-coordinates, as can be checked by expanding eq. (24).
From eq. (25) we see that the highest component, or F -component, of the super�eld �

transforms into a space-time derivative of the �eld  . Actually, it is a general feature of the
supersymmetry transformations that the highest component �eld transforms into space-time
derivatives of the other �elds. This can be seen from the di�erential form of the supersymmetry
generators Q� and �Q _�: the �rst term reduces the power of the �'s while the second term { which
is a space-time derivative { increases it. So the only increments in the highest component are
space-time derivatives of next-to-highest components. This fact will be useful to us when we
construct manifestly supersymmetric Lagrangians out of super�elds.

We can make the mass dimensions of the component �elds coincide with the usual quan-
tum �eld theory dimensions by assigning appropriate dimensions to the super�elds. From the
anticommutator fQ; �Qg = 2��P�, we deduce that the Q's must have dimension 1

2 . Parameters
of supersymmetry transformations, �� and �� _�, must therefore have dimensions �1

2 in order to
make the expression �Q+ �� �Q (which appears in an exponent) dimensionless. The same goes for
�� and �� _�. Then, if the scalar super�eld � has dimension 1, the scalar component A also has
dimension 1 and the spinor  dimension 3

2 . The scalar �eld F , which is also a scalar, thus has
dimension 2, but this is all right, since, as we shall see, it will play the role of an auxiliary or
external �eld.

2.3 The Wess-Zumino model

We will now construct the Lagrangian of the simplest supersymmetric model { the Wess-Zumino
model [13]. It involves the massive multiplet (15), with one fermion and two real scalars. We
shall see that these �elds are components of the chiral super�eld � from the previous section.
This consists of the two-spinor  and the complex scalars A and F , where F is auxiliary. We
are going to use both four-component and two-component notation for the spinors. On the
mass-shell { where the equations of motion are satis�ed { this gives a �eld content of two real
scalars and one Majorana spinor.

Let us see what kind of super�elds we can build out of the chiral �elds �i. First of all we
have the products

�i�j = Ai(y)Aj(y) + �[ i(y)Aj(y) +Ai(y) j(y)]

+��[Ai(y)Fj(y) +Aj(y)Fi(y)� 1
2 i(y) j(y)]; (26)

and

�i�j�k = Ai(y)Aj(y)Ak(y)

+�[ iAjAk +  jAiAk +  kAiAj ]

+��[FiAjAk + FjAkAi + FkAiAj (27)

�1
2 i jAk � 1

2 j kAi � 1
2 k iAj ]:

These products are also chiral. Products of four or more chiral �elds will not give renormalizable
terms when we build Lagrangians, as we will see later. We can also multiply a chiral �eld with
an anti-chiral one:

�y
i�j = A�i (x)Aj(x) + � j(x)A�i (x) + �� � i(x)Aj(x)

+��A�i (x)Fj(x) + ����F �i (x)Aj(x)

+����
_�[i��

� _�
(@�A

�
iAj �A�i @�Aj)� � i _� j�]

+���� _�[12 i�
�
� _�(@�A

�
i 

�
j �A�i @� 

�
j )� Fj � i _�] (28)
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+������[�1
2 i�

�

� _�
(@� � 

_�
i Aj � � 

_�
i @�Aj) + F �i  j�]

+������[�1
4A

�
i2Aj � 1

42A
�
iAj + 1

2@�A
�
i @

�Aj

�1
4 i@�

� i��
� j + 1

4 i
� i��

�@� j + F �i Fj]

This super�eld is not chiral.
We have already noted that the highest components of super�elds transform into space-time

derivatives under the supersymmetry transformations. By looking at the highest components of
the product �elds, we see that the ������-coe�cient { called the \D-term" { of �y

i�j looks like a
kinetic term of a Lagrangian, the ��-term, or \F -term", of �i�j looks like a mass term, while the
F -term of �i�j�k is an interaction. Then the most general renormalizable and supersymmetric
Lagrangian built from chiral super�elds is of the form

L = �y
i�ij������ +

h
(�i�i + 1

2mij�i�j + 1
3gijk�i�j�k)j�� + h:c:

i
; (29)

where �i, mij and gijk are (in general complex) coupling constants symmetric in their indices.
We have added the hermitean conjugates of the chiral terms, in order to make the Lagrangian
real. The mass dimension of a Lagrangian is four, so in the light of the previous discussion, we
see that �i, mij and gijk have dimensions 2, 1 and 0, respectively. Now we see why products of
four or more chiral super�elds give non-renormalizable interactions: they would require coupling
coe�cients with negative mass dimensions in the Lagrangian.

We can write manifestly super-invariant Lagrangians { i.e. Lagrangians that involves su-
per�elds { in a more elegant (and, as it turns out, useful) way by introducing integration over
superspace. This can be done by the usual Berezin integral, well known from the path integral
treatment of Fermi �elds. By de�nition, we have for a single Grassmann variable �:Z

d� = 0;

Z
d�� = 1:

Then, for a function f(�) = a+ b� of �:Z
d�f(�) = b;

Z
d�f(�)� = a:

For the Grassmann variables �� and �� _� we de�ne

d2� = 1
4���d�

�d��;

d2�� = 1
4�

_� _�d�� _�d�� _�;

so thatZ
d2��� = 1;

Z
d2������ = 1: (30)

Furthermore, we de�ne

d4� � d2�d2��:

Recall that integration over Grassmann variables is the same as di�erentiation. Indeed,

1
4�

�� @

@��
@

@��
�� =

Z
d2��� = 1;

1
4� _� _�

@

@�� _�

@

@�� _�

���� =

Z
d2������ = 1: (31)
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The Lagrangian (29) now becomes:

L =

Z
d4��y

i�i +

Z
d2�(�i�i + 1

2mij�i�j + 1
3gijk�i�j�k) + h:c:

By eq. (30) the in�nitesimal volume elements d�� and d�� _� have dimension +1
2 . Note that the

Lagrangian contains integration over the whole of superspace in one term and over just half the
superspace in other terms. This general structure appears in other supersymmetric models as
well. The integral that goes over just half the superspace is called a chiral integral for obvious
reasons. If the corresponding integrand is a super-generalization of a potential, then it is called
a superpotential.

Let us consider the simplest case of a single chiral �eld �. We decompose the complex �elds
A and F into real and imaginary parts by writing

�(y; �) = 1
2(A(y) � iB(y)) + � (y) + 1

2��(F (y) + iG(y)) (32)

(hoping there will be no confusion between the complex �elds and their real parts). Here, A
and F are scalars while B and G are pseudoscalars. To see this, recall that a parity transforma-
tion takes the (0; 12 )-representation of the Lorentz group into the (12 ; 0)-representation and vice
versa. The chiral �eld (32) is then transformed into the anti-chiral �eld �y(yy; ��) because the
chiral constraint equation �D _�� = 0 is transformed into D��y = 0. This means that a parity
transformation changes the signs of B and G, that is, they are pseudoscalars. We also introduce
the Majorana spinor

	 =

 
 �
� _�

!
;

so that

�	
�@�	 =  ��@� � + � ���@� ;

�		 = � � +   ;

�	
5	 = � � �   ;

see Appendix C. Then we have:

Lkin = 2

Z
d4��y� = �1

2A
�
2A� 1

22A
�A+ @�A

�@�A

+1
2 i �

�@� � + 1
2 i

� ���@� + 2F �F

= 1
2(@�A)2 + 1

2 (@�B)2 + 1
2 i

�	@=	 + 1
2(F 2 +G2);

Lmass = m

�Z
d2��2 +

Z
d2���y2

�
= 2mFA� 1

2m  + 2mF �A� � 1
2m

� � 

= m(FA +GB)� 1
2m

�		;

Lint = 4
3g

�Z
d2�3 +

Z
d2���y3

�
= 4gFA2 � 2g  A + 4gF �A�2 � 2g � � A�

= g(FA2 � FB2 + 2GAB)� g �	(A+ i
5B)	;

where we have thrown away total derivatives. The numerical factors have been chosen to make
the expressions look more like the ones in the literature. The complete Lagrangian of the Wess-
Zumino model in components is then:

LWZ = Lkin + Lmass + Lint
= 1

2(@�A)2 + 1
2 (@�B)2 + 1

2 i
�	@=	 + 1

2(F 2 +G2)

+m(AF +BG)� 1
2m

�  (33)

+g(A2F �B2F + 2ABG)� g � (A+ i
5B) :
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One can also calculate the in�nitesimal transformations under supersymmetry of these compo-
nents, that is, the counterparts of eqs. (25). Using relations in Appendix C, we get:

�A = ��	

�B = �i��
5	
�	 = �i@=(A � i
5B)�+ (F � i
5G)� (34)

�F = �i��@=	
�G = ���
5@=	

where � is an in�nitesimal Majorana parameter.
The �elds F and G are auxiliary since they have no derivative terms. They can be eliminated

by using their equations of motion:

F = �mA� g(A2 �B2)

G = �mB � 2gAB (35)

We have

1
2(F 2 +G2) = 1

2m
2(A2 +B2) + 1

2g
2(A2 +B2)2 +mgA(A2 +B2)

m(AF +BG) = �m2(A2 +B2)�mgA(A2 +B2)

g(A2F �B2F + 2ABG) = �mgA(A2 +B2)� g2(A2 +B2)2

and the component Lagrangian becomes:

LWZ = 1
2(@�A)2 + 1

2 (@�B)2 � 1
2m

2A2 � 1
2m

2B2

+1
2 i

�	@=	� 1
2m

�		� g �	(A+ i
5B)	 (36)

�mgA(A2 +B2)� 1
2g

2(A2 +B2)2

Note that the scalar �elds have gotten mass terms with the same mass as the fermion. The
Lagrangian (33) is invariant under supersymmetry regardless of whether the equations of motion
(35) are satis�ed or not, i.e. it is o�-shell invariant. For eq. (36) to be invariant, the eqs. (35)
must hold, i.e. it is invariant only on-shell. What's more, the number of bosonic and fermionic
degrees of freedom match in both cases: four real scalar �elds and four components of a fermion
o�-shell, and two real �elds and two components of a Majorana fermion on-shell.

Lagrangians with chiral super�elds may have additional symmetries known as R-symmetries.
An R-symmetry acts on a chiral �eld with R-charge n as:

�(x; �) ! ein��(x; e�i��)

�y(x; ��) ! e�in��y(x; ei���): (37)

In components this is:

A ! ein�A

 ! ei(n�1)� 

F ! ei(n�2)�F:

Because the R-transformations acts on the �'s we also have:

d2� ! e�2i�d2�

d2�� ! e2i�d2��:
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From eq. (37) we see that the product of two chiral �elds with R-charges n1 and n2 has R-
charge n1 + n2. Thus, a chiral term in a Lagrangian is R-invariant if it is a product of �elds
with R-charges that adds up to n = 2.

One example is a model with three chiral �elds �0, �1 and �2 with R-charges n0 = 2, n1 = 0
and n2 = 2, respectively [14]. The most general renormalizable R-invariant interaction that we
can build from these �elds is:

Lint =

Z
d2�(�0�0 + �2�2 + (m0�0 +m2�2)�1

+(g0�0 + g2�2)�1�1) + h:c:

The Lagrangian can be restricted further if we require invariance under the discrete symmetry:

�1;2 ! ��1;2; �0 ! �0:

The result is:

Lint =

Z
d2�(�0�0 +m2�2�1 + g0�0�1�1) + h:c: (38)

This is known as the O'Raifeartaigh model.

2.4 The supercurrent

We started this chapter by taking the supersymmetry algebra to be the underlying symmetry
algebra of our theory. Then, from representations of this algebra on �elds we were able to
build invariant Lagrangians. By standard �eld theoretical arguments it is also possible to go
the other way. We start with a Lagrangian that depends on some �elds �i and their derivatives:
L = L(�i; @��i). A symmetry of the theory de�ned by this Lagrangian is a set of transformations
��i on the �elds such that

�L = @�K
�;

where K� is a function of the �elds that vanishes su�ciently fast at in�nity. This ensures that
the action is invariant:

�S =

Z
d4x�L = 0:

At the same time the increment in the Lagrangian can be written as

�L = @�

 
@L

@(@��i)
��i

!

by using the equations of motion, which enables us to de�ne a conserved current

Jr� =
@

@�r

�
@L

@(@��i)
��i �K�

�
;

where �r are in�nitesimal (possibly Grassmann) parameters of the transformation. The gener-
ators of the symmetry is given by the charges

Qr =

Z
d3xJr0 :

One can then go on to calculate the algebra of the generators by using the canonical equal-time
commutation relations

[�(x); @0�(y)] = i�(3)(x� y)
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for a scalar �eld �, and the anti-commutation relations

f �(x);  y�(y)g = ����
(3)(x� y)

for a (four) spinor  .
Let us try to calculate the supersymmetry current (the \supercurrent") J�� of the Wess-

Zumino model. The Lagrangian is given by eq. (33) and the �elds transform by eqs. (34). First
let us �nd �Lkin8:

�Lkin = @�A@��A+ @�B@��B

+1
2 i�

� 
�@� + 1
2 i

� 
�@�� 

+F�F +G�G:

The expression for � � is obtained from � by using the Majorana 
ip properties (see Appendix
B):

� � = i��@�(A� i
5B)
� + ��(F � i
5G):

Inserting this along with the other transformations we get

1
2 ��
�
�@�(A� i
5B)@� + 1

2 ��
�
�@�@�(A� i
5B) 

�1
2 i��(F � i
5G)
�@� � 1

2 i��

�@�(F + i
5G) ;

where we have used some more 
ip identities to write the expression entirely in terms of ��. We
have also used f
�; 
�g = 2g�� and the fact that 
�
�@�@� = @�@

� because of the symmetry in
� and �. All in all we get

�Lkin = 1
2 ��@�(
�
�@�(A� i
5B) � i(F � i
5G)
� ):

�Lmass and �Lint can be calculated in a similar way. We will only state the results, which are9:

�Lmass = �im��@�(
�(A+ i
5B) );

�Lint = �ig��@�(
�(A+ i
5B)2 ):

Thus we see that the Lagrangian transforms as a total divergence:

�L = @�K
�;

where

K� = 1
2 ��
�
�@�(A� i
5B) � 1

2 i��(F � i
5G)
� 

�im
�(A+ i
5B) � ig
�(A+ i
5B)2 :

We can now go on to calculate the supercurrent:

J� =
@

@ ��
(@�A�A+ @�B�B + 1

2 i
� 
�� �K�)

= 
�@�(A+ i
5B)
� + im
�(A+ i
5B) + ig
�(A+ i
5B)2 : (39)

This is a spinor, as we have already mentioned.
An important fact about the current (39) is that it exist in an interacting theory. It is

easy to construct conserved supersymmetry currents for free theories, but it is di�cult to pre-
serve this when interactions are added, unless we are dealing with \real" supersymmetry and

8The Majorana spinor 	 from the previous section is now just called ` '.
9To verify the expression for �Lint, we need the identity  ( �  ) = �
5 ( � 
5 ).
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supersymmetry preserving interactions. An example of this is the free �eld toy model de�ned
by

Ltoy = 1
2(@�A)2 + 1

2 i
� @= :

This theory has the supersymmetry

�A = �� ;

� = i@�A

��;

with the conserved supercurrent

J� = 1
2


�@�A

� ;

which can readily be veri�ed by using the equations of motion 2A = 0 and 
�@� = 0. The
supersymmetry is a trivial one in the sense that it cannot be maintained if we add interaction
terms to the Lagrangian. This should come as no surprise since the number of fermionic and
bosonic degrees of freedom are not the same.

2.5 Supersymmetric gauge theories

In this section we will generalize gauge theories to also have supersymmetry. This has the
consequence of introducing particles that are supersymmetric partners to the usual gauge bosons.
In the abelian case this is the \photino", and in the non-abelian case it is the \gluinos". These
particles are spin 1

2 fermions. Let us start with abelian gauge theories.
We want to �nd the supersymmetric generalization of the gauge transformation

V� ! V� + @��; (40)

where V� is the gauge �eld and � is a local phase. We have already noted that the real vector
super�eld V , which satis�es V = V y, generalizes the four-vector �eld V�. In order to maintain
invariance under supersymmetry, we must also generalize the �eld � to a super�eld. This can
be done with the chiral super�eld �, in which case the super-generalized gauge transformation
can be taken to be

V ! V + i(�� �y) (41)

This will also be called a gauge transformation. To see that this generalizes the transformation
(40), let us expand the �eld �, which is chiral, on its components. We have

� = 1
2(A� iB) + � + 1

2��(F + iG)� 1
2 i��

���@�(A� iB)

+1
2 i��

��(@� �
�)� 1

8��
����2(A� iB);

so that

i(�� �y) = B + i� � i�� � + 1
2 i��(F + iG)� 1

2 i
����(F � iG)

+�����@�A+ i����(12 i@� �
�) + i�����(12 i�

�@� � )� 1
4��

����2B:

Since we were so clever in our choice of component �elds in eq. (21), we can now read o� the
gauge transformations in components:

C ! C +B

� ! �+  

M ! M + F

N ! N +G

V� ! V� + @�A

� ! �

D ! D
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Now we see that the �eld V� transforms just like a gauge �eld should. The transformation leaves
� and D are invariant. C, �, M and N , however, can be gauged away by choosing

B = �C
 = ��
F = �M
G = �N

This choice of gauge is called the Wess-Zumino gauge, or WZ-gauge. In the WZ-gauge the
super�eld V becomes:

VWZ = �����V� � i������+ i������+ 1
2��

����D:

Note that after we have �xed the WZ-gauge, we still have the freedom of transforming the
V�-�eld by the usual gauge transformations.

Now that we have the super�eld that generalizes a gauge �eld, we must use this to �nd the
super�eld that generalizes a gauge invariant �eld strength. We will then be close to having a
Lagrangian that is both gauge invariant and super-invariant. One systematic way of �nding this
�eld would be to set up di�erential geometry in superspace and introduce �ber bundles. The
vector super�eld V would then be a connection and the �eld strength would be a curvature, just
like in the ordinary �ber bundle formulation of gauge theories. We will only give the result of
this investigation since we will anyhow see that the �eld strength super�eld contains the usual
�eld strength as a component. The �eld we are looking for is:

W� = �1
4

�D �DD�V: (42)

It is chiral because of the anticommutativity of the �D's:

�D _�W� = 0:

It is also gauge invariant, since, under gauge transformations:

W� !W 0
� = �1

4
�D �DD�(V + i(�� �y))

= �1
4

�D �DD�V � 1
4 i

�D �DD��

= �1
4

�D �DD�V � 1
4 i

�Df �D;D�g�
= �1

4
�D �DD�V = W�

The component form can be calculated most easily in the y-coordinates (and in the WZ-gauge),
where the �eld V is

V = �����V� � i������+ i������+ 1
2��

����(D � i@�V
�):

Now we have

D�V =

�
@

@��
� 2i(�� ��)�@�

�
V

= (����)�V� � 2i������+ i������ + ������(D � i@�V
�)

�i����(������)�@�V� + ������(��@���)�

= (����)�V� � 2i������+ i������ + ������D

+1
2

����(����)�F�� + ������(��@���)�;

where F�� = @�V� � @�V� is the usual �eld strength tensor, and we �nally get:

W� = �1
4

�D �DD�V = �1
4

@

@��

@

@��
D�V

= �i�� � ��D � 1
2(����)�F�� � ��(��@���)�:
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The Lagrangian is now found from

W�W�j�� = 2i���@���+D2 � 1
2F��F

�� � 1
2 iF��

~F �� ;

where ~F�� = 1
2�����F

��. The result is:

L = 1
4

Z
d2�W�W� + h:c:

= �1
4F

2
�� + 1

2 i
��@=� + 1

2D
2; (43)

where we have integrated by parts and introduced the Majorana spinor � which is built from
�. The integration by parts gets rid of the F ~F -term, which is �ne in an abelian theory, but
in non-abelian theories non-trivial �eld con�gurations exist which may not allow us to do this.
The spinor super�eld W� is gauge invariant, so using other gauges than the WZ-gauge will not
introduce any other components from the �eld V than the �elds F�� , � and D already present.
This re
ects the fact that these �elds only transforms into each other under supersymmetry and
so constitute an irreducible supermultiplet. While V� describes the photon and � the photino,
the �eld D is auxiliary, as we can see from the Lagrangian (43). In the pure gauge theory it
vanishes by the equations of motion, but it will couple to other �elds when we include matter.

We also note that W� and �W _� satisfy

D�W� = �D _�
�W _�;

which follows from the de�nition (42) and its conjugate since V is real. This equation also
appears in the �ber bundle treatment, where it is the super-generalized Bianchi-identity.

Matter is included by using two chiral �elds S1 and S2 in the complex combinations

S =
1p
2

(S1 + iS2) and T =
1p
2

( �S1 + i �S2);

where we have introduced the notation �Si for the complex conjugate of Si. Note that T is not
just the conjugate of S. It is needed in order to get a sensible gauge invariant mass term. The
fact that we use complex super�elds is analogous to ordinary �eld theory where e.g. charged
scalar �elds are complex. Global phase transformations by a parameter � is then given by:

S ! e�2ig�S; T ! e�2ig�T;

where g is the charge of the �elds. The Lagrangian

Lmatter = 2

Z
d4�( �SS + �TT ) +m

Z
d2� �TS + h:c: (44)

is invariant under this symmetry, which we now want to gauge. But making � a function of
space-time is not enough: if S0 and T 0 are to remain chiral super�elds, � must be promoted to
a chiral super�eld � in the following way:

S ! e�2ig�S; �D _�� = 0

T ! e�2ig�
y

T; D��y = 0:

With this de�nition of a gauge transformation, the mass terms of the Lagrangian (44) are still
invariant. The kinetic terms are not, however. Instead they transform by

�SS ! �SSe�2ig(���
y)

�TT ! �TTe2ig(���
y): (45)
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It is now clear that an invariant kinetic term is constructed by coupling this to the vector
super�eld V in the combination

�Se2gV S and �T�2gV T:

These terms look non-linear because of the exponentials. However, in the WZ-gauge,

V 2 = 1
2��

����V�V
�; V n = 0; n � 3;

so the expansion of the exponential will terminate and we have:

�Se2gV S + �Te�2gV T = �SS + �TT + 2gV ( �SS � �TT )

+2g2V 2( �SS + �TT )

= �S1S1 + �S2S2 + 2igV ( �S1S2 � �S2S1)

+2g2V 2( �S1S1 + �S2S2)

(in the WZ-gauge). The mass terms are:

m �TS = 1
2m(S21 + S22)

and its hermitean conjugate. The Lagrangian for the matter is obtained by taking the D-terms
of the kinetic terms and the F -terms of the mass terms,

Lmatter = 2

Z
d4�( �Se2gV S + �Te�2gV T ) +m

Z
d2� �TS + h:c:

In components this is:

Lmatter = 1
2 (@�A1)

2 + 1
2(@�A2)

2 + 1
2(@�B1)

2 + 1
2(@�B2)

2

+1
2 i

� 1@= 1 + 1
2 i

� 2@= 2 + 1
2(F 2

1 + F 2
2 +G2

1 +G2
2)

�g(A1

$

@�A2 +B1

$

@�B2)V
� � ig � 1


� 2V�

�1
2g

��(A2 � i
5B2) 1 + 1
2g

��(A1 � i
5B1) 2

+g(A1B2 �B1A2)D � 1
2g

2(A2
1 +A2

2 +B2
1 +B2

2)V 2
�

+m(A1F1 +B1G1 +A2F2 +B2G2)� 1
2m

� 1 1 � 1
2m

� 2 2;

where A
$

@�B � A(@�B)� (@�A)B. If we put this together with the gauge �eld Lagrangian (43)
and use the equations of motion:

D = �g(A1B2 �B1A2)

Fi = �mAi; Gi = �mBi; i = 1; 2

to eliminate the auxiliary �elds, we get:

L = �1

4
F 2
�� + 1

2 i
��@=�+ 1

2(@�A1)
2 + 1

2(@�A2)
2

+1
2(@�B1)

2 + 1
2(@�B2)

2 + 1
2 i

� 1@= 1 + 1
2 i

� 2@= 2

�g(A1

$

@�A2 +B1

$

@�B2 + i � 1
� 2)V
�

+1
2g

��(A1 � i
5B1) 2 � 1
2g

��(A2 � i
5B2) 1

�1
2g

2(A2
1 +A2

2 +B2
1 +B2

2)V 2
� � g2(A1B2 �B1A2)

2

�1
2m

2(A2
1 +A2

2 +B2
1 +B2

2)� 1
2m

� 1 1 � 1
2m

� 2 2

The Majorana fermions  1 and  2 can be thought of as the left- and right-handed parts of a
Dirac fermion { the electron. The supersymmetric scalar partners are the \selectrons".
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One can easily generalize all this to non-abelian gauge theories with compact gauge groups.
The transformation laws for the matter super�elds are now:

S ! e�ig�S; � = �aTa;

T ! eig�
y

T;

where � is Lie algebra valued and Ta are the generators of the gauge group in some representa-
tion. In this case, if the kinetic terms

�SegV S + �Te�gV T

are to be invariant, the following transformation law for the (Lie-algebra valued) super�eld V
must hold:

egV ! e�ig�
y

egV eig�;

or, for in�nitesimal �:

V ! V + i(�� �y)� 1
2 [� + �y; V ]:

The �eld strength super�eld is now:

W� = �1
4

�D �De�gVD�e
gV ;

which transforms covariantly:

W� ! e�ig�W�e
ig�:

A supersymmetric Lagrangian of the gauge �eld is then10:

L = 1
2

Z
d2�TrW�W� + h:c:

If the representation of the group is real in the sense that the generators T a are antisymmetric,
then

�T = �� and V T = �V;
and we can make the identi�cation

�T = S:

We have then the kinetic term �SegV S and the mass term mS2:

L =

Z
d4� �SegV S +

Z
d2�mS2 + h:c:

If, for example, the matter �eld S transforms as the adjoint representation, we have the La-
grangian:

L = �1
4F

a
��F

a�� + 1
2 i

��aD=�a + 1
2(D�A

a)2 + 1
2 (D�B

a)2 + 1
2 i

� aD= a

+1
2gTr��[A� i
5B; ] + 1

2g
2Tr[A;B]2 � 1

2m
2AaAa � 1

2m
2BaBa � 1

2m
� a a:

In the massless limit of this theory we have a new symmetry between � and  . If we de�ne
 1 � � and  2 �  , we get

L = �1
4F

a
��F

a�� + 1
2 i

� aiD= 
a
i + 1

2(D�A
a)2 + 1

2(D�B
a)2

+1
2g�ijTr([ � i; (A� i
5B) j] + 1

2g
2Tr[A;B]2;

10We will always use a normalization of the generators so that TrAB = 1
2
AaBa:
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where the new symmetry is realized as the SU(2) transformations of �i. This symmetry is
\another" supersymmetry so we really have N = 2. The SU(2) symmetry acts on the two
spinor supersymmetry generators of N = 2. In fact, with the gauge group SU(2) this is the
theory which plays a leading role in this report, and we will examine it in detail later on. Let
us just record the supersymmetry current in this model, which is

S�i = Tr(F���
��
�	i + �ijD=(A � i
5B)
�	j + ig
5[A;B]	i):

From this current one can calculate the N = 2 supersymmetry algebra.
Let us also record the Lagrangian of the pure N = 4 Yang-Mills theory for the sake of

completeness. In components it is [15]:

L = �1
4F

a
��F

a�� + 1
2 i

��aD=�a + 1
2 i

� aiD= 
a
i + 1

2(D�A
a
i )2 + 1

2 (D�B
a
i )2

�gTr � i[i�jAi + i�jBji
5;  i] + 1
2g

2Tr[Ai; Aj ][Ai; Aj ]

+1
2g

2Tr[Bi; Bj ][Bi; Bj ] + 1
2g

2Tr[Ai; bj ][Ai; Bj ];

where i; j = 1; 2; 3, and �i and �i are 4� 4 matrices that satisfy a certain algebra. All �elds are
in the adjoint of the gauge group. The �eld content of this theory corresponds to Ex. 5 in Sec.
2.1. In terms of N = 1 multiplets, it consistes of a gauge multiplet and three chiral multiplets.

3 Non-renormalization theorems and exact potentials

3.1 Renormalization and perturbation theory

So far we have only considered supersymmetry at the classical level. We will now discuss renor-
malization. It turns out that supersymmetric theories has \nice" renormalization properties.
Historically this was discovered in perturbation theory where one found that divergences were
at most logarithmic. Linear and higher order divergences were absent. This enabled people
to formulate perturbative non-renormalization theorems [16]. Eventually, however, one realized
that non-renormalization could be seen as a consequence of the fact that supersymmetric actions
are written in terms of holomorphic, or analytic, functions of the �elds and the parameters of
the theory [17]. This means that we can make statements of the renormalization properties
of a supersymmetric theory also non-perturbatively11. Let us start by discussing perturbation
theory.

Generally, if a Lagrangian possesses a symmetry, this improves its renormalization properties.
For instance, in QED, where the Lagrangian has a gauge symmetry, the Ward identities make
Z2, the wave function renormalization factor of the electron (the term Z2

� @= ), equal to Z1, the
renormalization factor of the gauge coupling (the term Z1i � A= ), just as it should be in order to
preserve the gauge invariance of the combination � D= = � @= + i � A= under renormalization.
A similar thing is true when the symmetry in question is a supersymmetry.

In perturbation theory, we can understand the nice renormalization properties of a super-
symmetric theory in the following heuristic way. In Feynman diagrams, closed fermion loops
have negative signs attached to them, whereas boson loops have positive signs. Because of su-
persymmetry the number of fermionic degrees of freedom is the same as the number of bosonic,
so the contributions to, say, Green's functions from loops tend to cancel out.

It is possible to set up perturbation theory in superspace in the sense that the propagating
�elds in the Feynman diagrams are super�elds. Thus one single Feynman supergraph \contains"
several ordinary diagrams. The machinery that is needed for this super-perturbation theory is

11A short review on these matters are Ref. [2].
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complicated and will not be dealt with in this report, but the lesson to be learned is that
quantum corrections in the e�ective action12 are of the formZ

d4�

Z
d4x1 � � � d4xnF1(x1; �; ��) � � �Fn(xn; �; ��)G(x1; : : : ; xn);

i.e. one single integration over the entire superspace [16]. This means that the parts of the
classical, or tree level, action that are given by chiral integrals over superspace is not renormalized
in perturbation theory. If we consider the Wess-Zumino model with a single chiral super�eld �,

LWZ =

Z
d4��y� +

Z
d2�

�
1
2m�2 + 1

3g�
3
�

+ h:c:;

we see that the mass and self-coupling term is expressed by such a chiral integration. When we
include the quantum corrections, this goes into

Z�

Z
d4��y� +

Z
d2�

�
1
2m�2 + 1

3g�
3
�

+ h:c:;

where Z� is the wave function renormalization factor, so by rescaling the �eld � we have

m! Z�1� m and g ! Z
�3=2
� g:

From standard renormalization theory we know that wave function renormalizations are only
logarithmically divergent, and so the renormalized mass and coupling constant diverges as a
logarithm (or as a power of a logarithm).

3.2 The Wilsonian e�ective action

As we have already mentioned, the renormalization properties of supersymmetric theories, e.g.
the non-renormalization theorems in perturbation theory, can be seen in a much wider per-
spective. This has to do with the structure of supersymmetric theories, in the sense that La-
grangians often can be expressed in terms of holomorphic functions [17, 2]. For example, in the
Wess-Zumino model, the superpotentialZ

d2�
�
1
2m�2 + 1

3g�3
�

(46)

is a function of � only and not a function of the conjugate �eld �y. The converse is true for the
\h.c."-term. But this is the de�nition of a holomorphic function:

@

@�z
f(z; �z) = 0 , f is holomorphic:

Eq. (46) can therefore be written asZ
d2�f(�);

where

f(z) = 1
2mz

2 + 1
3gz

3:

These circumstances form the basis of powerful non-renormalization theorems which are not
restricted to perturbation theory but contains the perturbative theorems as special cases. It is
important to understand that the non-renormalization theorems are statements about the so-
called Wilsonian e�ective action, which we will call SW , rather than the more familiar e�ective

12`E�ective action' is to be understood as Wilson's e�ective action, see below.
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action, the one-particle irreducible (1PI) action, usually called � [18]. We will therefore explain
what the Wilson action is, and what the di�erence between that and the 1PI-action is.

First of all, we are interested in calculating physical quantities such as scattering amplitudes,
i.e. Green's functions. We do this by regularizing our theory by introducing a large momentum
cuto� �. The Green's functions are then given in perturbation theory by expanding on all
possible Feynman diagrams and loop integrations are carried out only for momenta p up to
the cuto�: 0 � p � �. If we use the Feynman rules derived from the classical (or tree level)
Lagrangian for this, we are going to get results that depend on � in such a way that they diverge
as � is taken to in�nity. However, if we are dealing with renormalizable theories, it is possible
to add counterterms to the classical Lagrangian so that we can de�ne the bare Lagrangian

Lbare(�) = Ltree + counterterms

This new, bare Lagrangian has the same form as the tree level Lagrangian, but the coe�cients
in Lbare, such as coupling constants, are functions of � in such a way that the Green's functions
calculated from the corresponding Feynman rules are independent of �. � can then be taken
to in�nity without the Green's functions diverging. The bare action S(�) is de�ned as the
spacetime integral of Lbare(�):

S(�) =

Z
d4xLbare(�):

We should recall that an action is really a functional of a �eld con�guration: S(�)[�], where �
is the �eld13. A �eld � has a decomposition in terms of modes, or frequencies, but when the
theory is completely speci�ed by giving a cuto� �, the �eld � must contain only modes with
frequencies less than or equal to �. Alternatively, a �eld that is composed of a single mode of
frequency greater than � has action S(�) equal to zero. The Wilsonian e�ective action SW is
de�ned at a low energy �. Usually we have �� �. It is related to S by the path integral

eiSW (�)[�] =

Z
�<p��

d�eiS(�)[�+�] (47)

where p is the energy modes of the paths in the path integral and � is the �eld con�guration
on which SW is evaluated. � contains only modes with energy less than �. � is a �eld which
contains modes between � and �, and thus the high energy modes have been \integrated out"
to give an e�ective description of the physics at low energies. At low energies, SW (�) contains
the same amount of information as S(�).

Perturbatively we can think of SW as having an expansion in terms of Feynman diagrams,
just like �, but loop momenta run only from � to �. Thus the Wilsonian e�ective action contains
the same \structures" as the 1PI e�ective action, but the loop momenta of the latter run from
zero to �. The 1PI-action is also a function of a low energy scale �, namely the renormalization
point. The 1PI-action contains physical quantities such as coupling constants directly. If we
want to extract this information from SW we still need to do loop integrals where 0 � p � �.
Equivalently, this amounts to doing the \residual" path integral over the low energy modes.

The great bene�t of working with SW rather than � for the low energy e�ective description,
is the following: if S can be expressed in terms of holomorphic functions so can SW . This is true
because the process of extracting the Wilsonian action from the original action, as in (47), can
be done in a continuous way. The range of high energy modes from � to � can be divided into
in�nitesimal parts and then be path integrated over one by one. Clearly this conserves properties
of the action such as holomorphy. The same thing is not true for �, where infrared e�ects can

13Technically speaking, one should distinguish between the concept of a `�eld' and the concept of a `�eld
con�guration'. We use the symbol `�' for both in the text, trusting it will not cause any confusion.
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introduce \holomorphic anomalies" [18]. Such e�ects can be traced back to the presence of
massless interacting particles. In fact, in the absence of massless interacting particles the two
e�ective actions are the same. Since holomorphic functions are much more restricted than non-
holomorphic functions, we may sometimes be able to determine the e�ective action SW exactly.
This means that we have found all the quantum corrections to the tree level action to all orders
in perturbation theory and otherwise (i.e. non-perturbative e�ects).

3.3 Holomorphy and non-renormalization

We are now in condition to state the non-perturbative equivalent to the non-renormalization
theorem. This is a statement about the e�ective superpotential Weff in the Wilsonian action.
The Wilsonian action SW can be de�ned at any energy scale � � �cutoff , but usually � will be
some dynamical energy scale that exists in the theory: � = �dynamical. For example this can be
the scale set by the expectation value of a Higgs �eld. We will simply call this scale `�', as the
cuto�-energy is considered to be in�nitely large. Weff is then a function of the �elds �i of the
theory, the coupling parameters �I and the dynamical scale �:

Weff = Weff(�i; �I ;�):

Here, i and I are indices numbering the various �elds and coupling constants. We use the
terminology that `coupling constants' includes masses. Other examples are gauge coupling
constants or �-angles that measure CP -violation. We will �nd it useful to think of coupling
constants as (possibly complex) background �elds. These �elds will be full dynamical �elds if
we embed our theory in some hypothetical high energy theory. At the energies where our theory
is a relevant description of the physics, these �elds are \frozen" in their \vacuum" expectation
values, and thus appear to be constants. A well known example of a coupling constant that is
sometimes treated as a �eld is the axion, or Peccei-Quinn �eld, whose vacuum expectation value
is a �-angle. The statement of the theorem is now that Weff possesses the following properties
[17]:

1. Holomorphy: Weff is holomorphic in �i, �I and �.

2. Symmetries: We can assign transformation laws to the coupling constants such that the
tree level Lagrangian gets an enlarged symmetry. The e�ective Lagrangian must then also
be invariant under this enlarged symmetry. Anomalies can be taken care of in a similar
way by treating the scale � as a background �eld and assign appropriate transformation
laws to it.

3. Various limits: The behaviour of Weff can be determined for asymptotic values of its
arguments, e.g. the weak coupling limit.

Note that this \new" non-renormalization theorem works in a positive way, in the sense that
it narrows down the possible form of the e�ective superpotential, and it is often possible to
determine this exactly. Note also that although we have formulated it that way, the non-
renormalization theorem works for any chiral structure of the Lagrangian, like the gauge kinetic
terms, and not just the superpotential.

Let us use this on the simplest version of the Wess-Zumino model, that is, the one with
a single chiral �eld � [17]. In the previous section we saw that W is not renormalized in
perturbation theory (except for the common wave function factor). The tree level superpotential
is

Wtree = 1
2m�2 + 1

3g�3:
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The theory has an R-symmetry if the parameter g is charged under this symmetry. The point
is that W must have R-charge 2 if

R
d2�W is to be invariant. We can also identify another U(1)

symmetry. All in all, the various charges are as follows:

U(1) � U(1)R
� 1 1
m �2 0
g �3 �1

The fact that m and g appear as coupling constants in our theory means that the symmetries
under which they are charged are \spontaneously broken". It is easy to see that the most general
form of the e�ective superpotential that satis�es the symmetries and holomorphy is

Weff = 1
2m�2f

�
g�

m

�
;

where f is a holomorphic function. Since f is analytic, we can expand it in a power series. This
cannot contain negative powers of g because then the weak coupling limit of Weff would not be
well behaved. Thus we have

Weff =
1X
n=0

an
1

mn�1
gn�n+2:

The n'th term of this expansion has the interpretation of a tree diagram with n + 2 external
legs, n vertices and n� 1 propagators. For n > 1 this is not 1PI and it should not be included
in the e�ective superpotential. Note that structures that are absent from � must also be absent
from SW , while the converse is in general not true as a consequence of the possible \holomorphic
anomalies" previously mentioned. To conclude, the e�ective superpotential is

Weff = 1
2m

0�2 + 1
3g
0�3 = Wtree;

and so the superpotential is not renormalized neither perturbatively nor non-perturbatively.

3.4 SUSY QCD and moduli spaces

Supersymmetric QCD, or SUSY QCD for short, is the supersymmetric version of a theory with
a local color symmetry and a global 
avor symmetry. It o�ers a more complicated example of
the use of the non-renormalization theorem [19, 20]. It will also serve to introduce the concept
of `moduli space'.

In SUSY QCD it is customary to leave the number of colors Nc and the number of 
avors
Nf unspeci�ed. Expressing the quantities of the theory as functions of these parameters will
then give us information on the theory. We will see an example of this below, where we also
will realize that SUSY QCD has nothing to do with real QCD { it should be considered as a
toy model.

The theory has SU(Nc) as gauge group, with Nf chiral super�elds in the fundamental
representation and Nf in the antifundamental representation, i.e. the representation that is
carried by the �elds T from the section on gauge theories in the last chapter:

W� = �i�� � 1
2(����)�F�� � � � � ;

Qi = qi + � i + � � � ;
~Q~i = ~q~i + � ~ ~i + � � � ; i;~i = 1; : : : ; Nf

The color indices are not displayed. The super�eld W� consists of the gluinos �� and the gluon
�eld strength F�� , while the super�eld Qi consists of the \squarks" qi and quarks  i. The
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super�eld ~Q~i has the corresponding antisquarks and antiquarks as components. In the absence
of explicit mass terms the classical Lagrangian is

L =

Z
d4�( �QeVQ+ �~Qe�V ~Q) + 1

4

Z
d2�W�aW a

� + h:c:

Our task is now to determine the e�ective superpotential Weff of this theory by using the
non-renormalization theorem.

Before we do that, however, let us make a digression about scalar potentials and spontaneous
symmetry breaking in supersymmetric theories. In a sense this is a continuation of Chapter 2
on the elements of supersymmetry. From kinetic Lagrangians of the type

R
d4���ie

V �i we get
the term F a�

i F a
i , where F a

i are the auxiliary �elds in �a
i , see e.g. eq. (28). F a

i also enters in the
superpotential

R
d2�W (�i), if there is one. Let us analyze this. Suppose that W is any analytic

function of �i so that it has the power series expansion

W (�i) =
X
n

ci1���iN�i1 � � ��iN :

We are thinking of e�ective Lagrangians and not just bare Lagrangians. Two of the terms in
the expansion are given by eqs. (26) and (27). We can from this induce that the general form
of W is

W (�i) = W (Ai) + � i
@W (Ai)

@Ai
+ ��

"
Fi
@W (Ai)

@Ai
� 1

4 i j
@2W (Ai)

@Ai@Aj

#
;

when expanded on the spinor coordinates. What we then learn is that the equation of motion
for F a�

i is

F �i = �@W (Ai)

@Ai
;

so that the contribution to the scalar potential V (Ai) from the superpotential W is:

V (Ai) =
X
i

����@W@Ai

����2 :
There is also a contribution that originates from the gauge kinetic term

R
d2�W�W�, namely

the component

1
2

X
a

Da2;

see e.g. eq. (43). The auxiliary �elds Da also appear in the matter kinetic terms. This has the
result that the equation of motion is

Da = �g
X
i

A�i T
a
(i)Ai; (48)

where T a
(i) are the generators of the gauge symmetry in the representation of the �eld Ai. All

in all the complete scalar potential is

V (Ai) =
X
i

����@W@Ai

����
2

+ 1
2g

2
X
a

 X
i

A�iT
a
(i)Ai

!2

:

The presence of such a scalar potential in a theory may break the gauge or global symmetries,
and we need to know how this a�ects the supersymmetry. In this report we are interested in
e�ective theories with manifest supersymmetry at low energies. It is therefore necessary that
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supersymmetry is not spontaneously broken. Spontaneously broken supersymmetry means that
the vacuum is not annihilated by some of the generators of supersymmetry:

Q�j0i 6= 0; �Q _�j0i 6= 0; some � or _�:

The point is now that spontaneous breaking of supersymmetry does not happen if and only
if the minimum of the scalar potential is exactly zero. This can be seen from eq. (8). When
sandwiched between to vacuum states this gives

hEi = 1
4

X
�

kQ�j0ik2;

which proves the statement. Thus the spontaneous breaking of a gauge or global internal
symmetry and the spontaneous breaking of supersymmetry are independent phenomena. This
ends our digression.

We return now to SUSY QCD. At the tree level there is no superpotential so the only
contribution to the potential for the scalar �elds qi and ~q~i is the gauge D-terms of eq. (48).
They turn out to be

Da = g�qiT
aqi � g�~q~iT

a~q
~i:

The potential that is built from this is positive, so a zero of the potential is a minimum. Thus
we need to solve the equation Da = 0 to �nd the minima of the potential. To cut a long story
short we will only give the results. By using our freedom to perform gauge and global symmetry
transformations the results can be written in the form

q = ~q =

0
BBBB@
a1

a2
. . .

aNf

1
CCCCA ;

for Nf < Nc, and

q =

0
BBBBBB@

a1
a2

. . .

aNc

1
CCCCCCA
; ~q =

0
BBBBBB@

~a1
~a2

. . .

~aNc

1
CCCCCCA
;

for Nf � Nc. The notation here is that the color indices run along the columns of the matrices
and the 
avor indices run along the rows. Blank spaces means zero and the a's and ~a's are
arbitrary complex numbers. The fact that the zeros of the potential { i.e. the vacua of the
theory { are characterized by arbitrary numbers is very important. Note that the degeneracy of
the ground states of the theory that is a consequence of this arbitrariness has nothing to do with
the symmetries of the theory. This space of physically inequivalent ground states parametrized
by the a's and ~a's is the moduli space, sometimes called the 
at directions of the potential. The
actual ground state that the system chooses is not decided within the theory. In this sense the
moduli space is part of the parameter space of the theory.

Thus far we have been working at the classical level. We now turn to the quantum theory.
We are in particular interested in what happens to the degeneracy of the classical moduli space
when quantum corrections are included. To �nd out we must use the non-renormalization
theorem to see if a superpotential is generated that lifts this degeneracy (which would make the
degeneracy \accidental"). In the spirit of our non-renormalization theorem we must identify
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the symmetries of the theory. Classically, the global symmetry is U(Nf )L � U(Nf )R � U(1)X ,
where the U(Nf )L � U(Nf )R is a QCD-type symmetry that rotates separately the Q and ~Q
�elds. The two U(1)'s in this are a vector and axial vector symmetry, respectively. U(1)X is an
R-symmetry that acts by

W�(�) ! e�i�W�(ei��)

Q(�) ! Q(ei��)

~Q(�) ! ~Q(ei��)

At the level of the component fermions, this is

� ! e�i��

 ! ei� 

~ ! ei� ~ 

The point is now that this is a 
5-symmetry in the language of four-spinors. For instance, in
the case of the Majorana spinor � built from �:

� =

 
��
�� _�

!
!
 
e�i���
ei��� _�

!
= e�i�
5�:

This is a chiral symmetry, which is anomalous. The divergence of the current that belongs to
this symmetry is given by the standard expression

@�J
�
5 =

g2N

16�2
F a
��

~F a�� ;

where N is the number of fermions that contributes to the anomaly. For the U(1)X -symmetry
this number is Nf �Nc. The `Nf ' is the number of Dirac spinors that is constructed from the
 i and ~ ~i. The `Nc' is associated with the gluinos and is found by a proper investigation of the

relevant triangle graphs. There is a `�' in front of `Nc' because the �'s and the  's and ~ 's are
oppositely charged under U(1)X . A similar anomaly exists for the axial vector symmetry U(1)A.
We can actually make an anomaly free U(1)R-symmetry from U(1)X and U(1)A by taking an
appropriate linear combination of them so that

@�J
�
R = 0:

Without going into details, one then �nds that this symmetry acts by

W� ! e�i�W�(ei��)

Q(�) ! ei�(Nc�Nf )=NfQ(ei��)

~Q(�) ! ei�(Nc�Nf )=Nf ~Q(ei��)

Thus the global symmetry of the quantum theory is SU(Nf )� SU(Nf )� U(1)V � U(1)R.
By the non-renormalization theorem we must now construct the most general superpotential

that is holomorphic in Qi and ~Q~i and is invariant under the symmetries. This turns out to be
[19, 20]:

Weff = (Nc �Nf )
�

3Nc�Nf
Nc�Nf

(det ~QQ)
1

Nc�Nf

; (49)

where � is the dynamical scale (like the familiar �QCD) and the determinant is over the 
avor
indices. Only the numerical factor in front of this expression involves a choice, which corresponds
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to a choice of renormalization scheme. The functional form of Weff is deduced in the following
way. The combination ~Q~iQi (with contraction in the color indices) is needed for gauge invariance,
while the determinant is needed to get invariance under 
avor-rotations. Weff should have
U(1)R-charge 2, and this determines the power of det ~QQ. We are only left with the power of �,
which must then be chosen so that the mass dimension is correct. From the non-renormalization
theorem we now understand that if a superpotential is generated, it must have the form of eq.
(49), or it is not generated at all.

If Nf = Nc, the expression (49) makes no sense because of the powers in the exponents. If
Nf > Nc, the determinant vanishes identically. Either way, the potential (49) is not generated,
and there is a quantum moduli space. For a generic point in the classical moduli space, all
the symmetries of the theory are broken. In particular, there are massive gluons and gluinos
because of the Higgs mechanism. These particles can then be \integrated out" of the low energy
description by solving their equations of motion and inserting the solutions in the e�ective
Lagrangian. At some points (or hypersurfaces) of the moduli space, however, like the origin,
broken gauge symmetries are restored. The e�ective description where the gauge particles are
integrated out then becomes singular at these points. These points are therefore singularities
of the classical moduli space. One can investigate if similar properties exist for the quantum
moduli space. If one does this, one �nds that for Nf = Nc, the muduli space is smooth, or
singularity free. For Nf > Nc there are singularities, which in this case has the interpretation
that some composite objects become massless. The fact that it is not the gauge particles that
becomes massless means that the SU(Nc) gauge symmetry is completely broken in the quantum
theory!

If Nf < Nc the superpotential is generated. For Nf = Nc � 1 it is generated by instantons,
and for Nf < Nc�1 by gluino condensation, where `gluino condensation' means that h����i 6= 0.
Supersymmetry is then broken, but the potential does not have a minimum: it slopes to zero at
in�nity. Then there are no ground states, which does not make sense in quantum �eld theory!
This concludes our discussion of SUSY QCD.

3.5 N = 2 supersymmetry

In our pursuit of increasing complexity we have now come to the point where it is appropriate
to discuss the N = 2 supersymmetric theory in more detail. This is the theory of our main
interest. We have previously mentioned that the N = 1 gauge theory with massless matter
�elds in the adjoint has a \second supersymmetry". This turns out to be a pure N = 2 gauge
theory without matter.

The N = 2 theory can be developed in close analogy to the N = 1. We will not go into any
details { merely state some results that will be relevant to us. Superspace is introduced with
coordinates (x�; ��i; �� _�j ), where i; j = 1; 2 and the �'s anticommute

f��i; ��jg = f�� _�i ;
��j_�g = f��i; ��

_�
j g = 0:

In the general case, we would also have needed a complex coordinate corresponding to the central
charges, but in the situations where the N = 2 superspace formalism is relevant these are always
represented by zero. The supersymmetry generators Qi

� and �Qi
_� are then represented by

Qi
� = �i @

@��i
+ (����)i�@�;

�Qi
_� = i

@

@�� _�i
� (���)i_�@�
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and the di�erential operators Di
� and �Di

_� by

Di
� =

@

@��i
� i(����)i�@�

�Di
_� = � @

@��i_�
+ i(���)i_�@�

A super�eld, which is a function on the N = 2 superspace, is in general not irreducible and
should therefore be constrained. One possible constraint is the chiral constraint

�Di
_�	(x�; ��i; ��

_�
j ) = 0: (50)

A super�eld 	 which satis�es this is a function of the variables y� = x� � i��i��
� _�

��
_�
i and �i�

because

�Di
_�y

� = 0 and �Di
_��
j
� = 0:

Unlike the N = 1 case, however, an N = 2 chiral super�eld is still reducible and we need to
impose more constraints to make it irreducible. A good constraint turns out to be

D�
i D�j	 = �D _�i

�D _�
j 	y (51)

in which case 	 corresponds to the multiplet of Ex. 3 in the massless case of Sec. 2.1. By the
word `corresponds' we mean the following. The multiplet contains a vector �eld from which we
can build a �eld strength. 	 is the N = 2 supersymmetric generalization of this �eld strength.
The particle content of 	 is thus the vector A�, two spinors �i and one complex scalar C. In
addition comes a triplet of auxiliary scalars CA. Furthermore, 	, being a �eld strength will in
general belong to the adjoint representation of a gauge group. In other words, it is Lie algebra
valued. As a side-remark, let us mention that if we had followed a geometrical approach, we
would have obtained eq. (51) as a Bianchi identity.

We can write a chiral super�eld as a power series expansion in �i�. Because the �'s are
anticommuting, there are only sixteen non-vanishing products of �'s (including unity). The
non-trivial ones can be organized as [21]:

bA(�) = �1
2�

�
i (�A) i

j �
j
�; A = 1; 2; 3

a��(�) = 1
4�

�
i (���) �

� �i�;

�i�(�) =
@

@��i
u(�);

u(�) = �11�
1
2�

2
1�

2
2:

The �A-matrices are the Pauli-matrices which generate the SU(2)-rotations of the Q's and �'s.
The products bA and a�� are obtained by tensor decomposition. The most general super�eld 	
which satis�es the constraints has the expansion

	(y; �) = C(y) + ��i �
i
�(y)� bA(�)CA(y)

+a��(�)F ��(y) + ��i (�)�i�(y) + u(�)D(y)

where

F�� = @�A� � @�A�

C�A = �CA
�i� = �2i(��@���)i�

D = �42C�
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when the gauge group is abelian, and

F�� = @�A� � @�A� + ig[A�; A� ]

CyA = �CA
�i� = �2i(��D�

��)i� + i2g[�i�; C
y]

D = �4D�D
�Cy � i2gf��i�;

���i g � 4g2[Cy; [Cy; C]]

D� = @� + ig[A�; ]

when it is non-abelian. The Lagrangians for the two cases is now obtained from the highest com-
ponent, or u-component, of the super�elds 		 and Tr(		), respectively, and their hermitean
conjugates. In the non-abelian case it is

L = 1
4Tr(		ju + �	 �	j�u):

If we introduce volume elements in superspace so that14Z
d4�u = 1;

Z
d4���u = 1;

we have

L = 1
4

Z
d4�Tr(		) + 1

4

Z
d4��Tr( �	�	):

To �nd the component form we must go through a rather long calculation. We will only state
the intermediate results15

		ju = 2CD + 2CACA � F��F
�� � iF�� ~F �� + 2��i �

i
�;

�	 �	j�u = 2CyDy + 2CACA � F��F
�� + iF�� ~F �� � 2�� _�i

�� _�i: (52)

The �nal Lagrangian becomes

L = �1
4F

a
��F

a�� + 2(D�C�)a(D�C)a + i��ai ���D��
ai + 1

2C
a
AC

a
A

�2igTrCf��i; ��
ig � 2igTrCyf�i; �ig � 4g2Tr[C;Cy]2 (53)

The �elds CA are auxiliary and they vanish by their equations of motion in the pure Yang-Mills
theory. In the abelian case we have

L = 1
8

Z
d4�		 + 1

8

Z
d4�� �	 �	

= �1
4F

��F�� + i��i���@��i + 2@�C
�@�C + 1

2CACA (54)

Note that none of these �elds are charged under the U(1) group, whereas in the non-abelian
case, the �elds carry \adjoint charges" and are minimally coupled to the vector �eld.

Let us record how this looks in the N = 1 formalism. If we organize the component �elds
into the super-�eld strength W a = (�a; F a

�� ; : : :) and the chiral \matter" �eld �a = (�a;  a; : : :),

where we have de�ned the spinors �a � �a1 and  a � �a2 and the scalar �a � p
2Ca, then the

Lagrangian is

L =

Z
d2�d2���a(egV )ab ��b + 1

4

Z
d2�W aW a + h:c: (55)

14There are now two di�erent meanings of `d4�' depending on whether we are dealing with N = 1 or N = 2
superspace. We hope this will not cause any confusion.

15More details are given in Appendix A of Ref. [22].
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Of course, the �'s are not matter super�elds in the N = 2 sense: they are the \superpartners"
of the W 's. This is re
ected in the absence of a mass term and superpotential for the �'s.

We must also mention the N = 2 massive multiplet, or the hypermultiplet as it is sometimes
called. It will su�ce to use the N = 1 formalism, in which case the hypermultiplet is given by
two chiral super�elds:

Q = q + � q + ��F;

~Q = ~qy + � y~q + �� ~F y: (56)

As usual, the q's are complex scalars, the  's are two component fermions and the F 's are com-
plex auxiliary scalars. There are two comments to be made about this. First, the hypermultiplet
always appears in the context of gauge theories. Q then carries a representation of the gauge
group and ~Q carries the conjugate representation, hence the daggers in eq. (56). It has canonical
kinetic terms,

L =

Z
d2�d2��

�
�Qa(egV )abQ

b + �~Q
a
(e�gV )ab ~Qb

�
;

and it couples to the N = 2 gauge super�eld 	 through the N = 1 chiral �eld � by the
superpotential

W = g ~Qa�abQ
b:

� transforms in the adjoint of the gauge group so this works for any representation. A mass
term is given by

m ~QaQa:

Second, there are eight particle states in the multiplet. In Sec. 2.1 we saw that \ordinary" mas-
sive N = 2 multiplets have 24 = 16 states. The explanation can only be that the hypermultiplet
carries a representation of a central charge and so must belong to a small representation. This
means that Z = M in eq. (17) (there is only one `r' for N = 2), the algebra becomes e�ectively
that of the massless case, and thus the multiplet we are dealing with is actually the one of Ex.
4. This multiplet has four helicity states, but to represent the central charge we need two such
multiplets, giving a total of eight states.

Let us �nally say that the N = 2 chiral multiplet 	 does not have a central charge. This
follows directly from the chiral constraint (50) and the anticommutation relations for the �D's,
which are isomorphic to the ones for the �Q's. That is, we get an equation of the type

Dz	 = 0;

where Dz is a di�erential operator that represents the central charges. 	 is the only super�eld
we will see in the N = 2 superspace formalism, which is why we did not need to represent the
central charges by di�erential operators.

3.6 The SU(2) Yang-Mills theory

Let us now concentrate on the gauge group SU(2). Our aim is to extract information from it
by the methods developed in the previous sections. Before we do that, however, let us rewrite
the Lagrangian so that it becomes

L =
1

8g2

Z
d4�	a	a + h:c: (57)
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That is, we have taken the factor 1=g2 outside. This can be achieved by rescaling the gauge
�elds so that

D� = @� + i[A�; ];

and the spinors and scalars so that �i ! �i=g and C ! C=g. In the corresponding N = 1
formalism this is

L =
1

g2

�Z
d2�d2���a(eV )ab ��b + 1

4

Z
d2�W aW a + h:c:

�
;

and in components:

L =
1

g2

h
�1

4F
a
��F

a�� + (D��
�)a(D��)a + i��i��

�D��
i

�
p

2iTr�f��i; ��
ig �

p
2iTr�yf�i; �ig � Tr[�; �y]2

i
;

where we have used �a =
p

2Ca. The point in writing 1=g2 as a factor outside will become clear
in a moment.

We want to �nd the quantum corrections to eq. (57), that is, we want to �nd the e�ective
Lagrangian at low energies. The crucial observation is now that the Lagrangian (57) involves a
chiral integral over N = 2 superspace and that the integrand is a holomorphic function of the
�elds, namely

1

8g2
zaza; za 2 C3:

Thus, by the de�nition of the Wilsonian action, the e�ective Lagrangian must have the form
[23]

Leff =

Z
d4�F(Aa) + h:c:; (58)

where Aa is the N = 2 super-�eld strength that corresponds to 	a at low energies, and F is a
holomorphic function. This function \describes" the theory, and is the object we are going to
determine. We can also write this in the N = 1 formalism in the following way:

Leff =

Z
d2�d2��2K(Aa; �Aa; V a) +

Z
d2� 12fab(A

a)W aW b + h:c:; (59)

whereAa, V a andW a are the low energy chiral, vector and �eld strength super�elds, respectively,
and

K = 2@aF(eV )ab �Ab;

fab(A
a) = 2@a@bF :

This is trivially true in the special case when the Wilson action cuto� � is equal to the bare
cuto� �cutoff . Then we have

F(	a) =
1

8g2
	a	a

and so

K =
1

2g2
�a(eV )ab ��b;

fab =
1

2g2
�ab:
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To see that it is true in the general case, we could expand the two Lagrangians (58) and (59)
on their component �elds, like we did with the superpotential W in Sec. 3.4, and then compare
coe�cients. Note that the coe�cient fab of the term W aW b is related to the holomorphic
function F of the �elds of the theory. In the bare Lagrangian the coe�cient is (1=g2)�ab. This
means that the e�ective coupling constant at low energies is related to the holomorphic function
F . In fact, this was the reason for writing 1=g2 as an overall factor in the bare Lagrangian.

To proceed, we must determine the symmetries of the theory. Apart from the SU(2) gauge
symmetry there is a global SU(2)R � U(1)R R-symmetry. The SU(2)R acts on the two �'s by
rotating them, while the U(1)R acts by multiplying them with a phase. In the N = 1 formalism
only one of the three generators of SU(2)R is manifest. The symmetry it generates will be called
U(1)J . In terms of super�elds U(1)J and U(1)R acts by

U(1)J : �(�) ! �(e�i��); W�(�) ! ei�W�(e�i��)

U(1)R : �(�) ! e2i��(e�i��); W�(�) ! ei�W�(e�i��)

and at the component level this is

U(1)J : � ! �
 ! e�i� 
� ! ei��

U(1)R : � ! e2i��
 ! ei� 
� ! ei��

One can show from triangle graphs that the U(1)R symmetry is anomalous. The divergence of
the corresponding current is16

@�J
� =

1

4�2
F a
��

~F a�� ; (60)

and non-perturbative e�ects breaks U(1)R down to Z8. The U(1)J and U(1)R transformations
with � = � are the same. Thus the global symmetry of the quantum theory is (SU(2)R�Z8)=Z2.

In the classical Lagrangian, the scalar �eld �a in 	a has the potential

V (�) =
1

g2
Tr[�; �y]2: (61)

This is positive because17

Tr[�; �y]2 = Tr
�
�a��b

h
1
2�

a; 12�
b
i�2

= �1
2(�abc�b��c)2 = 1

2 j�abc�b��cj2 � 0

The ground state of the system is thus given by a constant � that makes the potential (61)
vanish, that is, for which

[�; �y] = 0: (62)

16The familiar number of 
avors Nf in the expression

@�J
� =

Nf

16�2
F ~F

is replaced by 2Nc when there are two \
avors" of fermions in the adjoint of SU(Nc). In the SU(2) case this
number is 4.

17Recall that for SU(2) we have [�
a

2
; �

b

2
] = i�abc �

c

2
and Tr(�

a

2
)(�

b

2
) = 1

2
�ab, where the �

2
's are the generators.
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One value of � which satis�es this is

� = 1
2a�

3 = (0; 0; a); (63)

where a is an arbitrary complex number. Any other � that satisfy eq. (62) can be brought on
the form (63) by a gauge transformation. This leaves us with a sign ambiguity in a because
the transformation that acts on a in (63) by a! �a is a gauge transformation. Therefore, the
complex number u, de�ned by

u = 1
2a

2 = Tr�2

is a gauge invariant parameter which labels the physically inequivalent ground states of the
system. Thus the complex plane, parametrized by u, is a classical moduli space. The U(1)R
charge of a is 2 so that the U(1)R charge of u is 4. Z8 acts then on u as u! �u, i.e. as a Z2. For
non-zero values of a, both this Z2 and the SU(2) gauge symmetry is spontaneously broken. The
SU(2) gauge group is broken to U(1) because we have a \Higgs �eld" in the adjoint. This means
that we have a Higgs mechanism where two of the three vector �elds become massive along with
their corresponding fermion superpartners. The ground state is a zero of the potential so by
an extension of the argument in Sec. 3.4, N = 2 supersymmetry is not broken. Therefore the
massless spectrum must be described by an abelian N = 2 multiplet 	 =

p
	a	a, containing a

photon A�, two uncharged fermions  and �, and an uncharged scalar �. If a = 0, the gauge
symmetry is intact and all the particles of the theory are massless, so there is a \singularity" at
the classical moduli space at u = 0.

For the quantum theory the most general form of the Lagrangian is given by eq. (59),
which does not contain a superpotential. Therefore, the scalar potential is not renormalized (in
the sense that only the coe�cient 1=g2 receive quantum corrections), and there is a quantum
moduli space. At a generic point in this moduli space the gauge symmetry is again spontaneously
broken with a Higgs mechanism as a consequence. At low energies well below the masses of the
gauge bosons, the e�ective Lagrangian describes a massless abelian N = 2 multiplet A. The
Lagrangian is that of eq. (54). Note that the Lagrangian does not contain massless interacting
particles, and so the Wilsonian action is the same as the 1PI one.

Let us make a remark about the Lagrangian (59) which is expressed by the two functions
K and fab. In the low energy theory, the Higgs �eld have picked out a direction in gauge space
so that all quantities with an adjoint index points in this same direction. This means that
(eV )ab = �ab because the vector super�eld couples together di�erent components in gauge space.
As a consequence we get

K = 2@aF �Aa

fab = 2@a@bF :
The point is now that we get the direct relation

fab = @a �@bK (64)

between the two. This is a useful property for the following reason. If we expand eq. (59) on
component �elds we �nd that the kinetic term of the complex scalar �eld �a is

fab(@��
�)a(@��)b:

This is a number and can be thought of as a scalar product in the sense that the �a takes values
in a complex manifold on which fab is a metric. The fact that there is a function K such that
fab is given by the relation (64) makes the complex manifold a K�ahler manifold and the metric
fab a K�ahler metric. The function K, which is not holomorphic, is called a K�ahler potential. In
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Sec. 3.4 when we investigated SUSY QCD, we were able to discuss the singularities of the moduli
space, which are properties of the topology of the moduli space. In the N = 2 Yang-Mills theory
we are able to discuss the metric on the moduli space as well, which is a geometric property.

We now return to the determination of the holomorphic function F . We will not �nish the
job in this section. In this section we will only �nd its asymptotic form for small values of
the coupling g, which means we are considering perturbation theory. We must wait until the
last chapter, where we will investigate the singularities of F , to �nd the exact solution. F is
a function of the low energy e�ective �elds, and in particular it is a function of the vacuum
expectation value a of �. In other words it is a function on the moduli space, where a is a local
coordinate. Before we carry out the perturbative evaluation of F , let us argue that small g is
equivalent to large jaj. First of all, the theory has asymptotic freedom. Intuitively this is clear
because there are too few fermions to turn the asymptotic behaviour of the theory18, but we will
explicitly demonstrate this by calculating the �-function at the end of this section. The theory
also has a Higgs mechanism and therefore we have dimensional transmutation in the sense that
the vacuum expectation value of the Higgs �eld sets the scale of the low energy e�ective coupling
constant. The point is that if we probe the physics of the bare, or microscopic, theory well above
the scale of the Higgs �eld, the asymptotic freedom is operative and the coupling is small. As
we go down in energy, the coupling constant grows until we reach energies of the order of the
vacuum expectation value of the Higgs �eld. At this scale the heavy �elds decouple, so the only
�elds that are left in the infrared are the ones of the neutral N = 2 multiplet. Because these
�elds are neutral, the coupling constant does not run in this range and is therefore \frozen" in
its value at the scale of the Higgs �eld. Thus, if jaj is much larger than the dynamical scale �
of the theory, the coupling is small in the infrared. One might say we have asymptotic freedom
without infrared slavery.

Now to the perturbative evaluation of F . The U(1)R symmetry is broken down to Z8 by
non-perturbative e�ects, but as long as we only consider perturbation theory it is still intact.
This symmetry acts on Aa by

A ! e2i�A(e�i��):

Now we can write down the most general form of the perturbative Fpert that is holomorphic
and has the correct symmetry properties. It is

Fpert =
1

8g2
A2

 
A1 +A2 ln

A2

�2

!
;

where A1 and A2 are two constants to be determined. We can choose A1 to be what we want by
suitably de�ning the scale �. We will pick � so that A1 = 0. A2 is determined in the following
way. The e�ective action is invariant under U(1)R, but the e�ective Lagrangian is not because
there is an anomaly. Under a U(1)R transformation we get

Fpert ! A2

8g2
e4i�A2 ln

A2

�2
+
i�A2

2g2
e4i�A2;

�Fpert ! A2

8g2
e�4i� �A2 ln

�A2

�2
� i�A2

2g2
e�4i� �A2:

The e�ective Lagrangian thus transforms by

�Lperteff =
i�A2

2g2

�Z
d4�A2 �

Z
d4�� �A2

�
:

18Recall that it takes 16:5 
avors of quarks to turn the asymptotic behaviour of QCD.
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Because of the minus sign in these brackets, and because of eq. (52), we have

�Lperteff =
�A2

g2
F a
��

~F a�� :

This is supposed to give �@�J
�, so comparing with eq. (60) we get

A2 =
g2

4�2
;

and we obtain the result

Fpert(A) =
1

32�2
A2 ln

A2

�2
:

Finally, we will compute the perturbative �-function, as promised. By de�nition the �-
function contains information about the running coupling constant as a function of the scale
at which we probe the physics. In our case, however, the same information is encoded in the
low energy e�ective coupling constant as a function of the scale set by the Higgs �eld. By
di�erentiating Fpert twice, we get

fpert = 2
@2Fpert(a)

@a2
=

3

8�2
+

1

8�2
ln
a2

�2
:

From this we get that

1

g2;perteff (a)
= 2fpert =

3

4�2
+

1

4�2
ln
a2

�2
: (65)

Di�erentiation with respect to ln(a=�) gives

� 2

g3;perteff

�(g) =
1

2�2
;

so that

�(g) = � 1

4�2
g3 + non-perturbative e�ects:

The sign of the �-function is negative, and so the asymptotic freedom is demonstrated.

4 Duality

4.1 Maxwell duality

In Sec. 3.6 we brought the N = 2 Yang-Mills theory as far as we could by using \na��ve" non-
renormalization techniques. To take the �nal step towards an exact solution we need some more
input by an interpretation of the physics of the theory. This is where duality comes in. We will
be more speci�c about what we mean by duality later, but the kind of duality we are thinking
about is a \high tech" version of the standard duality between electricity and magnetism in
Maxwell's equations without matter. We will start by discussing this relatively simple case.

Maxwell's equations in vacuum are

r � E = 0; r�B� @E

@t
= 0;

r �B = 0; r�E+
@B

@t
= 0: (66)
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They are invariant under the transformation

(E;B) ! (B;�E) (67)

of the electric and magnetic �elds. In other words, the transformation (67) is a symmetry of
(66). (67) is a duality transformation since if it is applied twice we end up with what we started
with19. For this reason the vacuum equations (66) are selfdual.

If we include electrically charged matter in the system, the situation is more complicated.
For example, an electrical point charge of strength e at rest at the origin of the coordinate
system has an electric �eld

E =
e

4�

r

r3
; r = jrj

which means that20

r � E = e�(3)(r):

This system is selfdual only if there are magnetically charged point particles of magnetic strength
g:

B =
g

4�

r

r3
;

such that

r �B = g�(3)(r)

in the rest frame of the particle, and (67) is accompanied by

e! g; g ! �e:
In relativistic notation the electric and magnetic �elds are described by the Maxwell tensor

F �� =

0
BBB@

0 �E1 �E2 �E3

E1 0 �B3 B2

E2 B3 0 �B1

E3 �B2 B1 0

1
CCCA ;

so that

Ei = F 0i; Bi = �1
2�

ijkF jk:

The Maxwell equations are

@�F
�� = �j�

@� ~F �� = �k� (68)

where ~F �� = 1
2�

����F�� is the dual of F �� , obtained by the substitution (67) in F �� , j� and k�

are the electric and magnetic current, respectively. Under duality transformations we have

F �� ! ~F �� ; ~F �� ! �F �� ;

and

j� ! k�; k� ! �j�;
19This holds up to a sign di�erence, which is not important because the Maxwell equations (66) are insensitive

to that. Alternatively we could de�ne the duality transformations to include multiplication with i.
20We recall the identity r� r

r3
= 4��(3)(r).
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which is a symmetry of eqs. (68).
Note that if we introduce a vector potential A� so that F�� = @�A� � @�A�, the duality is

lost, because the Bianchi identity is

@� ~F �� = 0:

This is relevant in the context of quantum mechanics, since the vector potential is then the
natural �eld to use in the description of the physics. Nevertheless, a quantum theory which
includes magnetically charged particles can be constructed. An attractive feature of such a
theory is the famous Dirac quantization condition [24]:

eg = 2�n; n = 0;�1;�2; : : : (69)

which implies quantization of electric charge. This formula, and its generalization to dyons,
which are particles of both electric and magnetic charge, will be discussed in the next section.

4.2 Magnetic monopoles and dyons in quantum mechanics

In this section we will mainly consider the quantum mechanics of monopoles and dyons. That is
to say, only at the end of the section will we refer to any internal structure that these particles
might have21.

Let us begin by deriving the Dirac quantization condition (69) in a heuristic way. We will
use an argument that originates from a paper by Saha in 1936 [26]. Suppose we have a magnetic
charge of strength g at the origin and an electric charge of strength e at r. The strategy will be to
calculate the total angular momentum of the electromagnetic �eld according to Maxwell's theory.
Then, by the further quantum mechanical requirement that angular momentum is quantized in
half-integer units, we will obtain the quantization condition.

The momentum density of the electromagnetic �eld is given by the Poynting vector

S = E�B:

The total angular momentum of the system is then given by the space integral

L =

Z
d3xx� (E�B):

By using the expression

B =
g

4�

x

x3

for the magnetic �eld and the vector identity

A� (B�C) = B(A �C)�C(A �B);

we get

L =

Z
d3x

g

4�x3
[E(x � x)� x(x � E)]

= �
Z
d3x

g

4�
E � r

�
x

x

�
=

Z
d3xr �E gx

4�x
(70)

=
eg

4�

r

r
;

21A useful review on magnetic monopoles that we have used throughout this chapter is [25].
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where we have used that

@ix̂j =
�ij � x̂ix̂j

x
; x̂i � xi

x
;

and

r � E = e�(3)(r):

From the quantum mechanical requirement that L is quantized in half-integer units along, say,
the r-axis:

r̂ � L = 1
2n; n = 0;�1;�2; : : :

we obtain Dirac's condition:

eg = 2�n; n = 0;�1;�2; : : : (71)

Note that if we make the somewhat bolder assumption that the angular momentum should be
quantized in integer units (after all we are dealing with electromagnetism), then the quantization
condition is

eg = 4�n: (72)

This is a more restrictive constraint than eq. (71), which follows from quantum mechanics only.
An immediate consequence of eq. (71) is that the existence of magnetic monopoles would

imply that electric charge was quantized. Even if there was only one single monopole in the
entire universe, it would mean that any electric charge would be a multiplum of 2�=g, where g
was the magnetic charge of this one monopole.

Suppose now that we introduced dyons into the theory, i.e. particles with electric and mag-
netic charge (e; g). It is then possible to generalize the quantization condition (71). If we have
two particles with electric and magnetic charges (e1; g1) and (e2; g2), respectively, then a simi-
lar argument that led to Dirac's quantization condition would give us the dyonic quantization
condition

e1g2 � e2g1 = 2�n: (73)

If there are particles of electric charge (e; 0) in the theory, then eq. (73) restricts the possible
magnetic charge of a dyon of charges (q; g) by eg = 2�n. The electric charge q of the dyon
is on the other hand not subjected to any restrictions. There is, however, a restriction on the
di�erence between the electric charges of two dyons. By the existence of a particle with (e; 0),
there is a minimum allowed magnetic charge g = 2�=e. The electric charges of two dyons with
(q; g) and (q0; g) must then satisfy (q � q0)g = 2�n, or

q � q0 = ne; (74)

i.e. the di�erence is quantized in units of e.
We can restrict the possible electric charges of a dyon further by the assumption that there

is CP conservation in the theory. Then, because magnetic �elds are even under a CP trans-
formation and electric �elds are odd, the respective charges are even and odd, too. Thus, a
(q; 2�=e) dyon must have a CP mirror image dyon with (�q; 2�=e). For these two particles, the
quantization condition gives 4�q=e = 2�n, so that

q = ne or q = (n+ 1
2)e: (75)
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Therefore, a dyon can have an electric charge which is an integer or half-integer multiplum of
the fundamental charge e, but not both possibilities are realized at the same time because of eq.
(74).

A more interesting situation is that when CP is violated, and in particular when the violation
is measured by a �-angle. This means that we are thinking about gauge theories where the gauge
symmetry is spontaneously broken down to the U(1) of electromagnetism, and where the CP
violation is given by the term

�e2

32�2
F a
��F

a��

in the Lagrangian. This violates CP because it is proportional to E �B, which is odd under a
CP transformation. The existence of magnetic monopoles and dyons in such a theory will be
discussed in the next section. We will close this one by recording the consequences of the CP
violating �-term [27]. The result is that the electric charge q of a dyon is quantized by

q = ne� �e

2�
:

This is known as the \Witten e�ect". Note that for a gauge theory, in the absence of a �-term,
it is the �rst one of the two possibilities in eq. (75) that is realized.

4.3 Magnetic monopoles and dyons in �eld theory

The existence of magnetic monopoles in a theory where electromagnetism is embedded in a larger
gauge group has been known since their explicit construction by 't Hooft [28] and Polyakov [30]
in 1974. The dyons were found by Julia and Zee [29] shortly afterwards. In this section we
will review these objects in the Georgi-Glashow model. This is the simplest model in which
these objects occur, and also the one in which they were �rst discovered. The fact that elec-
tromagnetism is embedded in a larger theory is clearly relevant with respect to duality. One
reason for looking at the Georgi-Glashow model, apart from simplicity, is that the N = 2, SU(2)
Yang-Mills theory is a \minimal extension" of this model.

We �rst recall some basic facts about the Georgi-Glashow model. It is an SU(2) gauge theory
with a scalar �eld (a Higgs �eld) in the adjoint, or triplet, representation. The Lagrangian is

L = �1
4G

a
��G

a�� + 1
2(D��)a(D��)a � 1

8�(�2 � �20)
2 (76)

where

Ga
�� = @�V

a
� � @�V

a
� + g�abcV b

�V
c
�

D��
a = @��

a + g�abcV b
��

c

We can also write this in terms of an expansion around the spontaneously broken vacuum by
using the unitary gauge

�a(x) = (0; 0; �0 + �(x)):

If we also de�ne the photon and the W -bosons by

A� = V a
� and W� =

1p
2

(V 1
� + iV 2

� );

we get

L = �1
4F��F

�� + 1
2(@��)2 � 1

2m
2
H�

2

�1
2 j �D�W� � �D�W�j2 �m2

W jW�j2 + Lint
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where

F�� = @�A� � @�A�;

�D� = @� � igA�;

Lint = �igF��F ��W ��W � � 1
4g

2(W �
�W� �W�W

�
� )2

�1
2(2g�0� + g2�2)jW�j2 � 1

8�(4�0�
3 + �4);

and the masses of the Higgs particle � and the W -bosons are

m2
H = ��20 and m2

W = g2�20;

respectively. The equations of motion found from eq. (76) are

D�G
a�� = �g�abc�bD��c

D�D
��a = �1

2�(�2 � �20)�
a (77)

The magnetic monopoles and dyons are then static solutions to these equations. The equations
are di�cult to solve in the general case because they are non-linear, second order equations, so
we need some kind of strategy. We will follow the approach of Bogomol'nyi [31], who managed
to rewrite the equations in the static case into �rst order equations by using some tricks. These
solutions can then be solved by using a sensible ansatz.

First of all, let us recall that the existence of monopoles and dyons is connected with the
possibility of having \unshrinkable" maps from the sphere at spatial in�nity into the vacuum
manifold of the Higgs �eld, which is a sphere in �eld space of radius �0. By `unshrinkable' we
mean that the maps are characterized by a winding number nm, so that the boundary conditions
of the Higgs �eld at in�nity can be speci�ed by

�a ! na�0 for x!1;

where na is a unit vector in �eld space de�ned by (�,�=spherical angles):

na = (sin � cosnm�; sin � sinnm�; cos �):

For example, if nm = 1, we have a \hedgehog" solution [30]. The number nm is a topologi-
cal quantum number and the fact that it is an integer ensures the stability under decay of a
con�guration of one value of nm into a con�guration of another value of nm.

Let us �nd the energy of a given �eld con�guration. It is given by the space integral of T00,
the 00-component of the energy momentum tensor T�� :

E =

Z
d3xT00

If we calculate the energy momentum tensor in the canonical way, we get (�i denotes all the
�elds in the Lagrangian, that is, �a and V a

� ):

T�� =
@L

@(@��i)
@��i � g��L

= Ga
��(@

�V�)a + (D��)a@��
a � g��L:

There is a problem with this form of the energy-momentum, however, as it is neither symmetric
nor gauge invariant [29, 32]. We must make use of our freedom to add improvement-terms to
it. Alternatively we can calculate T�� as one would in general relativity. We then let the metric
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g�� be an independent �eld, �nd the variation of the action S =
R
d4x

p�gL with respect to the
metric, and then take the 
at space limit of the result. That is,

T�� =
2p�g

@(Lp�g)

@g��
:

This will automatically give a symmetric and gauge invariant energy-momentum tensor. Either
way, the result is

T�� = Ga
��G

a�
� + (D��)a(D��)a � g��L

The 00-component of this is

T00 = (Ga
0i)

2 + (D0�)2 �L
= 1

4(Ga
ij)

2 + 1
2 (Ga

0i)
2 + 1

2(D0�)2 + 1
2(Di�)2 + 1

8�(�2 � �20)2

This expression would simplify if the last term, the Higgs potential, was not present. At the
same time, if we take the limit � ! 0, we obtain a lower bound on the energy because � is
the coe�cient of a positive term. It is not clear what this limit means because if there is no
potential, there is not a well-de�ned vacuum value �0 of the Higgs �eld. We will in this section,
however, assume that the limit �! 0 is taken in such a way that �0 remains unchanged. This
limit is called the BPS limit (after Bogomol'nyi, Prasad and Sommer�eld [31, 32]). It is usually
formulated in terms of the parameter � � �=g2 = M2

H=M
2
W , by � ! 0. We will say more about

the BPS limit later. Now the energy is

E =

Z
d3x

�
1

4
(Ga

ij)
2 + 1

2 (Ga
0i)

2 + 1
2(D0�)2 + 1

2(Di�)2
�
;

which we are supposed to minimize.
Let us �rst consider the magnetic monopole. This corresponds to boundary conditions

�0 ! na�0 for x!1;

V a
i ! 1

g
�abcna@in

c for x!1;

and where the time component V a
0 of the gauge �eld is zero. V a

0 6= 0 corresponds to a dyon, as
we shall see in a moment. Because we are considering static, or time independent, solutions, V a

0

means that Ga
0i and D0�

a = 0 so that the energy is

E =

Z
d3x

h
1
4(Ga

ij)
2 + 1

2(Di�)2
i

(78)

Now comes Bogomol'nyi's trick: we rewrite (78) as

E =

Z
d3x

h
1
4(Ga

ij � �ijkDk�
a)2 + 1

2�ijkG
a
ijDk�

a
i
;

where the last term is equal to the divergence of a vector:

1
2�ijkG

a
ijDk�

a = @iSi;

Si = 1
2�ijkG

a
jk�

a

The interpretation of this divergence term is the following. We consider the electromagnetic
�eld strength tensor given by 't Hooft [28], i.e. the �eld strength of the U(1) gauge �eld:

F�� =
1

j�j�
aGa

�� �
1

j�j3 �
abc�aD��

bD��
c
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This is gauge invariant and reduces to

F�� =
1

�0
�a0G

a
��

in a region where �a is equal to the vacuum value �a0 = na�0, for some unit vector na. When
we recall the de�nition of a magnetic �eld:

Bi = 1
2�ijkFjk

we see that

Si = �0Bi:

The space integral over the divergence of Bi is equal to the magnetic charge of the monopole.
Put di�erently, the magnetic charge is given by the surface integral

G =

Z
BidSi =

4�

g
nm: (79)

If we use this and the fact that MW = g�0, we get for the energy:

E =
4�MW

g2
nm +

Z
d3x

h
1
4 (Ga

ij � �ijkDk�
a)2
i

(80)

Note that the winding number nm is a measure of the magnetic charge of the monopole in units
of 4�=g.

The form (80) of the energy is a great progress, since for a given nm, what minimizes it is the
vanishing of the square in the space integral. That is, a minimum is a solution to the equation

Ga
ij = �ijkDk�

a (81)

which is a �rst order equation. If we consider the con�guration with magnetic charge nm = 1,
we could search for a solution of (81) of the form

�a = nas(r)�0

V a
i =

1

g
�abcnb@in

cv(r) (82)

By insertion of this ansatz in (81) we obtain the following system of equations

1

MW

dv

dr
= s(1� v);

ds

dr
=

v(2 � v)

MW r2
:

We also have the boundary conditions v ! 1, s! 1 for r !1. The solutions are

s(r) =
cosh r

sinh r
� 1

r
;

v(r) = 1� r

sinh r
;

where r is the distance measured in units of 1=MW .
Let us remark on the stability of the monopoles. If the magnetic charge nm is greater than

1, the energy is minimized by

Em =
4�MW

g2
nm
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in the BPS limit. Thus a monopole with charge nm has the same mass as nm monopoles of
charge 1 and so is marginally unstable under decay into nm monopoles.

We will now investigate the dyon. A dyon appears if we allow the time components of the
vector �eld to be di�erent from zero. The �elds still do not depend on time. If we separate the
space and time components in the equations of motion (77), we get

DiD
iV a0 = �g�abc�bD0�c;

DiG
aij = �g�abc�bDj�c + g�abcV b0DjV c0;

D0D
0�a +DiD

i�a = �1
2�(�2 � �20)�

a:

We have used that the time derivatives vanish. In the BPS limit � = �=g2 ! 0 the terms
involving � disappear and the equations gets easier to solve. Let us look for a solution where

V a
0 = C�a (83)

where C is a constant. This means that

D0�
a = @0�

a + g�abcC�b�c = 0:

The equations for V a
0 and �a are then the same and the equations we must solve is

DiG
aij = �g(1 �C2)�abc�bDj�c

DiD
i�a = 0 (84)

Had it not been for the factor (1 � C2) this would have been the same equations as for the
monopole case. We can make it disappear if we put

x� =
y�p

1� C2
:

Then we have

@

@xi
=
p

1�C2
@

@yi
:

In order to get a covariant derivative with respect to y, we de�ne ~V a
i (y) by the expression

(Di)
ab = @xi �

ab + ig�abcV c
i (x)

=
p

1� C2@yi �
ab + ig

p
1� C2�abc ~V c

i (y)

=
p

1� C2( ~Di)
ab;

where we also have de�ned ~Di. The corresponding �eld strength is related by

Ga
ij(x) = (1� C2) ~Ga

ij(y):

Finally we set

~�a(y) = �a(x)

and so eqs. (84) becomes equal to the monopole equations which has the solutions (82) and (83).
We can calculate the electric charge Q of the dyon from the 't Hooft electromagnetic tensor:

Q =

Z
dSiF0i =

Z
dSiC(Di�)ana

=
Cp

1� C2

Z
d ~Si( ~Di

~�)na =
4�nm
g

Cp
1� C2

:
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Note that Q is not necessarily an integer (in the classical theory) because C is arbitrary.
It is possible to obtain a lowest bound on the mass of a dyon of magnetic charge G and

electric charge Q. The bound is saturated in the BPS limit � ! 0. To �nd this bound we use
the energy in the form

E =

Z
d3x

�
1
4 (Ga

ij)
2 + 1

2(Di�)2 + (G2
0i)

2
�

and the form (83) of V0. The latter relation implies

(Ga
0i)

2 = C2(Di�)2:

Now the energy at the bound is

E =

Z
d3x

 
1
4(Ga

ij)
2 +

1 + C2

2
(Di�)2

!
:

In the y-coordinates this is

E =
p

1�C2

Z
d3y 14( ~Ga

ij)
2 +

1 + C2

p
1� C2

Z
d3y 12( ~Di

~�)2

The quantities with tildes are solutions of the monopole equations. In particular, they satisfy

~Ga
ij = �ijk ~Dk

~�a

which implies that

1
4( ~Ga

ij)
2 = 1

2( ~Di
~�)2 (85)

If Em denotes the energy of a monopole of charge nm (recall that nm is an integer) then eq.
(85) means thatZ

d3y 14( ~Ga
ij)

2 =

Z
d3y 12 ( ~Di

~�)2 =
Em

2
:

Thus the dyon energy becomes

E =
p

1�C2
Em

2
+

1 +C2

p
1� C2

Em

2
= Em

1p
1� C2

:

We have already found that

Em =
4�MW

g2
nm =

4�nm
g

�0:

Using the expression (85) for Q and G = 4�=g, can calculate that

E = �0

q
G2 +Q2;

which is the desired lower bound, known as the BPS bound. Because the energy of a ststic
solution is also the mass this solution, we get an inequality that any con�guration must satisfy:

M � �0

q
G2 +Q2: (86)

If this bound holds in the quantum theory, a state that satisfy the equality in eq. (86) is called
a BPS saturated state.
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4.4 The Olive-Montonen duality conjecture

We return now to the question of duality. The fact that objects with electric and magnetic
charges exist in non-abelian gauge theories is interesting, because such theories have proven to
be relevant to the description of nature. The Georgi-Glashow model is relatively simple, so it
seems to be a natural question to ask if there is some kind of electric-magnetic duality in this
theory. Montonen and Olive conjectured that there is [33].

The conjecture is the following. The dual quantum �eld theory is described by a Lagrangian
of the exact same form as eq. (76) but where the monopoles of positive and negative magnetic
charge play the same roles as the electrically charged heavy gauge bosons. Furthermore, the dual
theory would have the gauge bosons as solitons. This is a duality that bears some resemblance
to the equivalence between the Thirring and sine-Gordon models.

Montonen and Olive give three arguments in favour of their conjecture. 1) The \elementary"
states in the model have the only possible magnetic charges 0 and �G. This follows from the
requirement of spherical symmetry of the soliton solutions. A solution that was spherically non-
symmetric would be connected with a tower of rotational states in the quantum theory, much
like in molecular spectroscopy. Clearly, such a solution would violate any reasonable de�nition
of \elementarity". 2) The mass formula (86) is also valid for the W -bosons in the classical
theory. This might suggest that the W -bosons could be taken to be solitons. This argument is
wrong as we will see below. 3) The force between monopoles can be calculated in some idealized
situations to be equal the corresponding force between gauge bosons.

Montonen and Olive also recognized some problems with the conjecture. These are features
of the classical theory which they proposed would be di�erent in the quantized theory. First,
there is the problem of the dyons. By the \elementarity" requirement they have magnetic charges
of �G, but they also have electrical charges characterized by arbitrary integers. The problem is
that a dyon cannot decay into a magnetic monopole and electrically charged gauge bosons and
so does not �t into the duality scheme. The second problem was that the spin of a gauge boson
is 1, while the monopole solution has classically spin 0 since it is spherically symmetric. They
believed that this problem would disappear upon proper quantization.

There is actually a few other problems with the Olive-Montonen conjecture, that was not
recognized by them. Let us discuss these problems in some details, since we shall see that they
are \solved" by supersymmetry22. The four problems with the duality of the Georgi-Glashow
model in the Olive-Montonen sense are the following:

1. What is the scalar potential

V (�) = 1
8�(�2 � �20)

2

in the quantum theory? This is a version of the well known problems of Higgs �elds and
renormalization. The point is that the renormalization point is arbitrary and consequently
the zeros of the potential are not well de�ned.

2. What is the gauge coupling constant g? Duality acts on the coupling constant by g ! 4�=g
because of eq. (79), but the theory is known to have �(g) < 0, i.e. asymptotic freedom.
This means that g gets smaller as we probe the physics at larger energies and so 4�=g gets
larger. This violates duality because 4�=g is supposed to enter the dual Lagrangian in the
same way as g enters the original one.

22The following is essentially an account of one of Witten's lectures at the Jerusalem Winter School in Physics,
1994/95 [3].
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3. Why is the mass formula M = �0
p
G2 +Q2 for BPS saturated states valid quantum

mechanically? The point is that in the original formulation of the theory, this formula
is valid for the semiclassical approximation (i.e. for small g) both for the \fundamental"
heavy gauge bosons and for the magnetic monopoles, which are the solitons. The latter
have the mass Mm = 4�MW =g

2 where MW = �0g. Montonen and Olive then claims that
if one transforms g ! m � 4�=g, then, since the W -bosons now are the solitons, we should
have MW = 4�Mm=m

2 where Mm = �0m. This argument is not correct! The reason is
that the mass formulae are valid for small g (it is a semiclassical approximation) not for
small m = 4�=g. For large coupling, the soliton mass gets a relevant renormalization.

4. What about the spin of the monopole? The spin of the monopole is zero, because of the
spherical symmetry. The \elementarity" argument previously mentioned is not relevant
here. Lorentz transformation properties must show up at the classical level, like e.g. a
four-vector index, or not at all.

Let us now see how these problems are overcome. 1 and 3 is eliminated by going to N � 2
supersymmetry. Let us �rst address problem 1, the quantum meaning of V = 0. The minimal
extension of the Georgi-Glashow model to N = 2 SUSY is just the \pure" SU(2) Yang-Mills
theory. There is a complex scalar �a in the adjoint representation, or equivalently there are
two real scalars, related to each other by chirality transformations. There is a unique scalar
potential

V = Tr[�; �y]2;

which is not changed by renormalization. A zero of this potential at tree level remains therefore
a zero in the quantum theory. Also, there is a 
at direction in the sense that

� =
1p
2

 
a 0
0 �a

!

gives V = 0 for arbitrary complex a. This means that magnetic monopoles and dyons are
automatically BPS saturated.

Problem 3 is solved in the N � 2 theory because it is a consequence of the supersymmetry
algebra [34]. When one calculates the proper form of this algebra from the current (46), one
�nds the commutator (in Majorana notation)

fQ�i; �Q�jg = �ij

�
��P� + �ij���U + i�ij(
5)��V; (87)

where

U =

Z
d3x@i(A

aF a
0i +Ba 1

2�ijkF
a
jk);

V =

Z
d3x@i(A

a 1
2�ijkF

a
jk +BaF a

0i): (88)

Aa and Ba are the real and imaginary part of the Higgs �eld �a. U and V are central charges
because of eq. (87). They are also linear combinations of the electric and magnetic charges of
a state, as can be seen from their expressions (88). From the discussion of Sec. 2.1 on central
charges, we learn that we have the inequality

M2 � �20(Q
2 +G2) (89)

We also know that the representations that satisfy the equality in eq. (89) are \small" represen-
tations with four helicity states. From the discussion in the last section, we get that these are
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precisely the BPS saturated states. Conversely, representations that does not satisfy the equality
has sixteen helicity states. When we include quantum corrections, we expect the parameters of
the theory to change, but we do not expect the number of states in a representation to change.
Therefore, the equality in eq. (89) must hold for BPS saturated states in the quantum theory.

Problems 2 and 4 are eliminated in the N = 4 theory. Problem 2, which has to do with
the coupling constant g, is not a problem in the N = 4 Yang-Mills theory. It turns out that
this model has the right composition of �elds to make �(g) = 0. The theory is �nite and g is
a natural dimensionless parameter. There is also a �-parameter in the theory. By constructing
the \complex coupling constant"

� =
�

2�
+ i

4�

g2

it is possible to rede�ne the action of the inversion of the coupling constant g by the transfor-
mation

� ! �1=�

This coincides with g ! 4�=g for � = 0.
Neither is the fourth point a problem in the N = 4 theory. The Yang-Mills or gauge

multiplet is the smallest multiplet of this theory, with spins � 1. There are three scalar and
three pseudoscalar �elds in the theory, which all can form soliton con�gurations with the gauge
�elds. Such a soliton must, in the quantum theory, be contained in a multiplet of spins � 1
since there are no smaller multiplets in the theory. All the �elds in the same multiplet have the
same quantum numbers, and so there must be spin 1 particles with magnetic charge �G. These
are the possible duals to the W -bosons.

These circumstances suggests that the N = 4 theory possesses electric-magnetic duality more
or less in the sense of Montonen and Olive [15]. The two latter problems are not overcome in the
N = 2 case. Nevertheless, there is a duality of the N = 2 theory which bears some resemblance
to the Olive-Montonen duality. This shall be the subject of the last chapter.

5 The solution of Seiberg and Witten

5.1 Coordinates on the moduli space

We have now developed enough machinery to give convincing arguments for an exact solution to
the N = 2, SU(2) Yang-Mills theory [4]. We start by examining introducing a complex coupling
constant:

� =
�

2�
+ i

4�

g2
;

where g is the gauge coupling constant and � is the \vacuum angle" that measures the amount of
CP violation from non-trivial con�gurations of the gauge �elds. Duality will act on this object,
rather than just the gauge coupling g. From the theory of �-angles we know that � can always
be rotated to zero if there are massless fermions in the theory. We can now write the classical
action of the theory as

L =
1

4�
Im

Z
d4� 12�cl	

a	a;

where 	a, a = 1; 2; 3, is the N = 2 chiral �eld strength super�eld and �cl contains the classical
values of � and g.
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In this notation, the Wilsonian e�ective action at low energy becomes

L =
1

4�
Im

"Z
d4�

@F
@Aa

(eV )ab �Ab +

Z
d2� 12

@2F
@Aa@Ab

W aW b

#
:

We can simplify this further since we know that in general the gauge symmetry is broken. Let
us de�ne the function H so that

F(
p
A � A) = H(A �A)

This makes sense because it is always the gauge invariant combination A �A that appears in F .
Then we have that

@F
@Aa

=
@H
@Aa

= H0(A �A) � 2Aa;

@2F
@Aa@Ab

= +
@2H

@Aa@Ab
= H00(A �A) � 4AaAb +H0(A �A) � �ab;

and so

L =
1

2�
Im

�Z
d4�H0Aa(eV )ab �Ab

Z
d2� 12(H0�ab + 2H00AaAb)W aW b

�
(90)

By exposing the index structure like this it is clear what happens when we keep only the
component of the adjoint vectors Aa and W a that corresponds to the massless component of
Aa, the low energy equivalent of 	a. We can then drop the adjoint indices, and make the
replacements

Aa(eV )ab �Ab ! A �A

�abW aW b ! WW (91)

AaAbW aW b ! AAWW

In terms of F we then have the Lagrangian

L =
1

4�
Im

"Z
d4�

@F
@A

�A+

Z
d2� 12

@2F
@A2

WW

#
: (92)

By making the substitutions (91) we throw away mass and coupling terms for the massive �elds.
The e�ects of these terms in the low energy theory are taken into account by the function F
except for virtual processes with momenta below the Wilsonian action cuto� �, but the contri-
butions from these processes can be made arbitrarily small because of the smooth behaviour in
the infrared.

Now we note that the chiral super�eld A is the �eld whose scalar component is a { the
vacuum expectation value of �. Since a takes its values in the complex manifold that is the
moduli space, the K�ahler potential that we can read o� from (92),

K = Im

�
@F(A)

@A
�A

�
;

is the K�ahler potential on the moduli space. Thus the metric on the moduli space is

ds2 = Im
@2F(a)

@a2
dad�a:

At the same time, from the second term of (92) we can read o� the e�ective coupling constant

�(a) =
@2F
@a2

:
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This means that the low energy e�ective coupling constant is the metric on the moduli space:

ds2 = Im�(a)dad�a: (93)

Now, �(a), being the e�ective coupling constant is known to us for large values of jaj. We
calculated it in Sec. 3.6 to be23

�(a) � i

�

 
ln
a2

�2
+ 3

!
; (94)

This means that Im�(a) is single valued for large jaj. But then it is a harmonic function, which
does not have a minimum. Thus a cannot be a good coordinate everywhere on the moduli
space as it would give regions of negative metric. It is therefore necessary to operate with other
coordinate systems besides a. Let us de�ne

aD =
@F(a)

@a
:

It is then possible to write the metric as

ds2 = ImdaDd�a = � i
2

(daDd�a� dad�aD): (95)

This expression is symmetric in a and aD which implies that it is possible to use aD as a local
coordinate on the moduli space with another holomorphic function replacing � in eq. (93). If u
is an arbitrary local coordinate on the moduli space, we can write (95) as

ds2 = Im
daD
du

d�a

d�u
dud�u = � i

2

�
daD
du

d�a

d�u
� da

du

d�aD
d�u

�
dud�u: (96)

For instance, we can pick u = a and so we get (93). We can also pick u to be hTr�2i, which is
de�ned globally on the moduli space. This coincides at the classical level with the previously
de�ned u-parameter, viz. Trh�i2. By bringing both a(u) and aD(u) into play, it will be possible
to ensure the positivity of the metric. In the following we will use this last de�nition of u as the
global coordinate.

There is a set of symmetries of the metric. We can make them manifest by introducing the
notation a� = (aD; a), � = 1; 2. If ��� is the usual antisymmetric tensor, then

ds2 = � i
2
���

da�

du

d�a�

d�u
dud�u:

as can be obtained from (96). The invariance group of the metric is now seen to be SL(2;R)
(it cannot be SL(2;C) because it does not commute with complex conjugation). Soon we will
see that, for physical reasons, the symmetry group is actually SL(2;Z).

5.2 Duality transformations

We have seen that the metric is invariant under transformations of the group SL(2;R), which
is generated by the matrices

Tb =

 
1 b
0 1

!
and S =

 
0 1
�1 0

!
;

where b is real. Any element of SL(2;R) can be written as a product of powers of such matrices.
A matrix of the �rst type acts on the vector (aD; a) by

Tb : aD ! aD + ba; a! a:

23We did not consider the �-angle in chapter 3, but it is automatically included in (94) since a is complex.

55



Since � = @aD=@a = �=2� + i4�=g2 we have that � ! � + b, or � ! � + 2�b. We are only
changing coordinates on the moduli space and this should not a�ect the physics. This means
that b must be an integer as �, being an angle, is only de�ned modulo 2�. Thus the invariance
group of the metric is really SL(2;Z).

We now turn our attention to the transformation S. We shall see that this corresponds to an
electric-magnetic duality transformation. What we would like to do is to describe the physics at
low energies in terms of the gauge �eld A�, which is \handed down" to us from the microscopic
theory. Then by de�nition we have

F�� = @�A� � @�A�;

and so

@� ~F �� = 0

is identically true, being the Bianchi identity. This means that if we include electrically charged
matter in the system, duality is lost as a symmetry, since all magnetic charges would be iden-
tically zero. Duality transformations are still possible, however, if they are considered as a
mapping of one theory to another. That is, the theory with A� as gauge �eld, where @�F

�� = 0
is the equation of motion and @� ~F �� = 0 the Bianchi identity, is mapped into a theory with
another gauge �eld VD� such that ~F�� = @�VD� � @�VD�, @� ~F �� = 0 is the equation of motion
and @�F

�� = 0 is the Bianchi identity.
The duality transformation is e�ectuated at the path integral level as a change in variables

[35]. Recall that we have scaled the gauge �elds by absorbing the coupling constant such that
the covariant derivative is given by

D� = @� + iA�;

i.e. the gauge �eld couples to electrically charged matter with unit strength. The part of the
Lagrangian which involves the photon A� is then24

� 1

32�
Im[�(F + i ~F )2] = � 1

4g2
F 2 � �

32�2
F ~F ;

and the corresponding part of the path integral isZ
DA�e

i[� 1
32�

Im
R
�(F+i ~F )2]: (97)

Charged �elds are heavy and therefore does not appear in the low energy theory. We can write
(97) as a path integral over F �� instead of A� as long as we integrate only over those F 's that
satisfy the Bianchi identity25:Z

DF��ei[�
1

32�
Im
R
�(F+i ~F )2]�(@� ~F ��): (98)

The Bianchi constraint �-functional makes (98) equivalent to (97). The �-functional can be
represented by a path integral as

�(@� ~F ��) =

Z
DVD�ei[�

1
4�

R
VD�@� ~F

��]: (99)

24Some facts about the dual tensors are ~~F = �F and ~F 2 = �F 2.
25We are ignoring gauge �xing problems. In the abelian theory gauge �xing terms are just (in�nite) factors

that can be brought outside the path integral.

56



which is a functional version of

�(x) =

Z
dpp
2�
eipx:

The normalization of (99) is such that a magnetic monopole26

@� ~F �0 = �4��(3)(r) = �4�k0

couples to the �eld VD� with charge one. VD� can be thought of as a Lagrange multiplier �eld.
The exponent in (99) can be written

� 1

4�

Z
VD� � 12�����@�F�� =

1

8�

Z
FD�� � 12�����F��

=
1

8�

Z
~FDF =

1

16�
Re

Z
( ~FD � iFD)(F + i ~F );

where FD�� = @�VD� � @�VD� is equal to ~F�� on shell. The path integral (98) now becomesZ
DF��DVD�ei[�

1
32�

Im
R
�(F+i ~F )2+ 1

16�
Re
R
( ~FD�iFD)(F+i ~F )]:

We can now integrate over the F�� , obtaining the path integral in terms of the dual gauge �eld
VD�. To do this we note that the antisymmetric tensor F�� can be written as the sum

F�� = 1
2(F�� + i ~F��) + 1

2(F�� � i ~F��)

� (F+)�� + (F�)�� ;

where F �+ = F�, F �� = F+ and F+ and F� are orthogonal:

(F+)��(F�)�� = 0:

Therefore, DF�� = D(F+)��D(F�)�� , and the integral, because it is a gaussian, becomes
straightforward:Z

DFDVDei[�
1
8�

Im�F 2
++

1
4�

Re(�iFD+)F+]

=

Z
DFDVDe�

1
2( 1

8�
�)F 2

+�
1
2 (� 1

8�
��)F 2

�+( 1
8�
FD+)F++(� 1

8�
FD�)F�

=

Z
DVDe

1
2( 1

8� )
2
( 1
8� )

�1 1
�
F 2
D++

1
2(� 1

8� )
2
(� 1

8� )
�1 1

��
F 2
D�

=

Z
DVDei[�

1
8�

Im�1
�
F 2
D+]:

We have used the functional analogue ofZ
dxe�

1
2
ax2+bx = Ne

1
2( 1a)b2

and the fact that

Imz =
1

2i
(z � �z); Rez = 1

2(z + �z):

Thus the dual \photonic" action is

� 1

32�
Im

�1

�(a)
(FD + i ~FD)2:

26We are now using the convention that point charges are normalized to be B = r=r, which di�ers from the
convention of Chap. 4 by a factor g=4�.
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Note that the \dual coupling constant" is minus the inverse of the original one:

�D = �1=�:

This means that the dual of a weakly coupled theory is a strongly coupled theory and vice versa.
So far we have only been concentrating on the photonic part of the low energy action. What

we really want to do is to transform all of it by a duality transformation. This can be done by
�rst repeating the transformation of the action in (97) with its N = 1 generalizationZ

DV ei[ 1
8�

Im
R
d2��(A)W 2];

where the chiral super�eld W� is de�ned from the real super�eld V by

W� = �1
4

�D2D�V;

and satis�es the identity

DW = �D �W or ImDW = 0;

which is the super-generalized Bianchi identity. We now path integrate over the unconstrained
(but chiral) W and �W while we implement the Bianchi identity by a �-functional in the shape
of a path integral over the real Lagrange multiplier super�eld VD:Z

DWD �Wei[
1
8�

Im
R
d2��W 2]�(ImDW )

=

Z
DWD �WDVDei[

1
8�

Im
R
d2��W 2+ 1

4�
Im
R
d4�VDDW ]: (100)

The superspace integral in the last term in the exponent can be made to go over only half of
the superspace in the following way:Z

d4�VDDW = �
Z
d4�DVDW

=

Z
d2�

�
�1

4
�D2
�
DVDW

=

Z
d2�WDW;

where we have used that W is chiral, �DW = 0, and the fact that Grassmann integration is
equivalent to di�erentiation:Z

d2�� = �1
4

�D2:

Thus the expression (100) becomesZ
DWD �WDVDei[

1
8�

Im
R
d2��W 2+ 1

4�
Im
R
d2�WDW ]

=

Z
DWD �WDVDe�

1
2 (� 1

8� )�
R
d2�W 2� 1

2 ( 1
8� )��

R
d2 �� �W 2

�e( 1
8� )
R
d2�WDW+(� 1

8� )
R
d2 �� �WD

�W

=

Z
DVDe

1
2 ( 1

8� )
2
(� 1

8� )
�1 1

�

R
d2W 2

D
+ 1
2 (� 1

8� )
2
( 1
8� )

�1 1
��

R
d2 �� �W 2

D

=

Z
DVDei[

1
8�

Im
R
d2��1

�
W 2
D];
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and so the dual action is

1

8�
Im

Z
d2�

�1

�(A)
W 2

D:

What remains now is to �nd a chiral �eld AD which has aD as scalar component, and then
use this to rewrite the coupling coe�cient:

�1

�(A)
= �D(AD): (101)

Furthermore, if we de�ne

h(A) =
@F(A)

@A
;

then the kinetic term of the chiral �eld is

Im

Z
d4�h(A) �A; (102)

which we also need to express this in terms of AD. We can implement these changes by taking

AD = h(A);

hD(AD) = hD(h(A)) = �A;
Note that, from this, hD is minus the inverse of h. For the term (102) this gives

Im

Z
d4�h(A) �A = Im

Z
d4�AD

�A

= Im

Z
d4�(�A) �AD (103)

= Im

Z
d4�hD(AD) �AD:

Eq. (101) is true because

�D(AD) = h0D(AD) = � 1

h0(A)
=

�1

�(A)
:

Hence, from the second equality in (103), we see that the act of rewriting the action in terms of
AD (and in the same form) is the same as transforming (AD; A) with the matrix S.

We emphasize that the duality transformation is not a symmetry. It maps one description
of the low energy physics into another. Because of (101) we see that if one theory is weakly
coupled the other one is strongly coupled and vice versa.

Let us also remark on the way in which the coupling constant � is transformed under SL(2;Z).
The action of the generators

T =

 
1 1
0 1

!
and S =

 
0 1
�1 0

!

has the following e�ect on � :

T : � ! � + 1;

S : � ! �1=�:

In conclusion, the SL(2;Z) matrix

A =

 
a b
c d

!

59



acts on � by

A : � ! a� + b

c� + d
:

This coincides with the group of transformations that acts on the modular parameter � which
characterizes a torus, and which leaves the torus unchanged. This is one of the key mathematical
ingredients of �nding the exact expression for the metric. In a sense, it means that every
physically distinct ground state of our theory corresponds to a torus. The physical interpretation
of this is not known.

5.3 The mass formula

Classically the BPS saturated states of the theory, including monopoles and dyons, satisfy the
mass formula

M2 = jZj2; (104)

where classically

Zcl = a(ne + �clnm): (105)

ne and nm are the electric and magnetic charges of the state. They have integer values. We
have seen that the mass formula (104) is a consequence of the fact that we have central charges
in the supersymmetry algebra, which implies that it also should hold in the quantum theory.
The question is then what the \charge vector" Z will look like.

One way to �nd Z would be to calculate the supersymmetry algebra using the Wilsonian
action (90). This would give the result

Z = ane + aDnm; (106)

which reduces to (105) in the classical case. Another way of seeing this is to couple an N = 2 hy-
permultiplet with electric charge ne (and no magnetic charge) to the theory. In N = 1 language
this is described by two chiral super�elds E and ~E. This corresponds to a \small representation"
appropriate for BPS-saturated states. By N = 2 supersymmetry the superpotential must have
the form

neAE ~E +mEE ~E: (107)

The last term is a mass term which is connected to an ambiguity in the de�nition of A in the
low energy theory, i.e. it can be created by a shift in the �eld A. mE must be zero if we take
into account that (107) is the low energy limit of the full SU(2) theory and if A in (107) is to
be the massless remnant of the three �a (a=adjoint index). This is because an explicit mass
term for the �elds Ea and ~Ea will lift the degeneracy of the moduli space and so would give a
completely di�erent theory. Thus the superpotential for E and ~E is neAE ~E, and the charge
vector is Z = ane. A state with magnetic charge nm will then have Z = aDnm, as implied by
the duality transformation. The charge vector is then given by (106) for a general state with
electric and magnetic charges (ne; nm)

5.4 Singularities and monodromies

So far we have established that the complex plane labeled by the coordinate u is the manifold
of ground states of the theory { the moduli space. The theories that are built on ground states
at large u, juj � 1, are weakly coupled because large u means large a and thus small g. In this
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region, therefore, quantum corrections to tree level quantities are given to a good approximation
by their one-loop results. Also, u = hTr�2i � 1

2a
2. One such quantity is the function F :

Fone loop = i
A2

2�
ln
A2

�2
:

This implies that

aD =
@F
@a

� 2ia

�
ln
a

�
+
ia

�
; large a: (108)

Written like this it is clear that aD is not a single valued function on the u-plane (or the a-
plane) { the logarithm has in�nitely many branches. This ambiguity is in agreement with the
SL(2;Z) invariance of the metric on the moduli space in the following sense. Let us go around
the u-plane in a closed path in the large u region, circling the origin once in the counterclockwise
direction. Then physically nothing has changed since we start and end in the same vacuum. For
the coordinate u we have u ! e2�iu, so lnu ! lnu + 2�i, and therefore lna ! lna + �i. By
(108) this means that we have

aD ! �aD + 2a;

a ! �a; (109)

This transformation can be written as a matrix multiplied onto the vector (aD; a):

M1 =

 
�1 2
0 �1

!
: (110)

An e�ect of this type, i.e. a change in some functions on a manifold, induced by going around
a closed path on the manifold, is known as a monodromy. When a monodromy is written like
a matrix, it represents an element of the �rst homotopy group { the \fundamental group" { on
the manifold, which is the group of mappings of the circle to the manifold with the product
being \cutting and gluing" two mappings together. In this case the manifold in question is the
complex u-plane (or the Riemann sphere) with (at least) the point at in�nity removed. The
monodromy (110) is connected with this point and this is why we have indexed M1 with `1'.

It is obvious that the identity is represented by the matrix

I =

 
1 0
0 1

!
:

Then, because M1 is non-trivial, it is impossible to shrink the \large" closed path that led
to (109) into a point, and so there must be one or more holes in the u-plane. The holes
must be points. Larger regions are forbidden by holomorphy. We will speak of such points as
\singularities" because it can be shown that the u-plane parametrizes a one-complex parameter
family of curves (in fact, tori of the usual doughnut type) which becomes singular at these points.

There must be at least two singularities in the interior of the u-plane. If there was only
one, then any closed path that circled around it once could be continuously deformed into a big
circle at in�nity with the monodromy M1. This means that any closed path would leave a2

invariant, which by de�nition means that a2 would be a well de�ned function and consequently
a good global coordinate. But this would mean that the metric is given globally by (93), which
it is not as we have already argued. Hence we need two or more singularities. Moreover, the
remains of the chiral symmetry acts on the u-plane by u$ �u, so the singularities must come
in pairs in order to obey this symmetry. We will make the assumption that there are exactly
two singularities. Although this is an assumption, it will be argued that this leads to a very

61



non-trivial and unique exact solution of the theory (in the sense that aD and a will be given as
exact functions of u).

The singularities on the u-plane must have a physical interpretation. For example, in the
classical theory { the theory without quantum corrections { the point u = 0 is a singularity in
the sense that at this point we have a = 0 and so the full SU(2) gauge symmetry is restored.
Therefore all three gauge bosons are massless and the low energy description, where we have
integrated out two of the gauge bosons, breaks down. A singular point is a property of the
low energy description of the physics which means that quantum states that generically are
massive become massless at these points. What, then, are the states that become massless in
the quantum theory? It is possible to argue in a rigorous way that it is not the gauge bosons
in this case. By appealing to the N = 2 superconformal algebra, which is the extension of the
15 dimensional conformal algebra. The point is that massless gauge bosons means conformal
invariance in the infrared. We will not go into this here, but intuitively one might say that
conformal invariance is in con
ict with the fact that we have a spontaneously broken chiral
symmetry27 u! �u for u 6= 0.

If it is not the gauge bosons that become massless, it can not be any of the \fundamental"
�elds in the Lagrangian. Therefore it must only be some kind of bound states or collective
excitations. Two such possibilities are the monopoles and dyons. Indeed, we will take this to
be the case. We can not prove this rigorously. In fact, the statement that it is the monopoles
and dyons that become massless has the status of an assumption that passes many (non-trivial)
tests.

This leads us to the following strategy:
1. By using the information about the masslessness of monopoles and dyons, we determine

the fundamental group on the u-plane in terms of the monodromy matrices. The fact that this
can be done in a consistent way is an argument in favour of the monopole/dyon interpretation
of the singularities.

2. The monodromies and asymptotic values of the functions aD and a on the u-plane allows
us to determine unique and exact expressions for aD and a (and thereby, implicitly, the function
F). This is highly non-trivial.

3. We add a perturbation to the theory which has the e�ect of causing the monopoles
and dyons to develop vacuum expectation values. In the case of the monopoles this leads to
con�nement of electric charge by some standard arguments. This is in agreement with previous
investigations of the perturbed theory, where one has found indications of con�nement without
consideration of the monopole topological solutions of the �eld equations.

5.5 The monodromies

We will now see that the assumption that the two singular points in the interior of the moduli
space are points where monopoles and dyons become massless makes sense at the level of the
monodromies of the moduli space. We will do this by �rst using the duality transformation
to calculate explicitly the monodromy connected to the point where the monopoles become
massless. Then it is possible to obtain the monodromy at the other singularity, and it is checked
that this corresponds to massless dyons.

A magnetic monopole has ne = 0 and nm = 1, so if M = 0 then aD = 0 by the mass formula.
Let us call the point where this happens u0. The singular nature of u0 is due to the fact that
the monopoles are not included in the low energy theory. If we look at a small region around
the point u0, where the mass of the monopoles is very small, we can include them in the low

27For example, in QCD, chiral symmetry breaking appears together with mass terms, which breaks conformal
invariance.
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energy theory and all is �ne. This corresponds to path integrating out all high energy modes
that are larger than the monopole mass, including the ones that describes the heavy particles
such as W -bosons. If we also perform a duality transformation so that the physics is described
by the gauge vector �eld AD then we get an abelian gauge theory where the gauge �eld couples
to magnetic monopoles just like an ordinary photon would couple to electrons. In other words,
we have supersymmetric QED.

The fact that all things are magnetic does not make any di�erence. A person who lives in
a world with a ground state close to u0 would not know that the world was \magnetic". Only
someone who knew the full microscopic theory, including the entire moduli space, would know
that the electric low energy variables { by de�nition those that are \handed down" from the
microscopic theory { were dual to the magnetic ones.

The great virtue of having supersymmetric (in fact N = 1 supersymmetric) QED is that we
know many properties of this theory including the running of the Wilsonian coupling constant28

as a function of the low energy cuto� � [18]:

1

g2D
=

1

g2D0

+
1

4�2
ln

�

�
:

Here � is a large cuto� momentum and gD0 is the bare coupling constant at that scale. Since
we are using the monopole mass as the low energy cuto� and this is proportional to aD, we get
for the e�ective magnetic coupling constant �D(aD) when aD � 0:

�D � � i

�
ln
aD
�
: (111)

The term 1=g2D0 is omitted because it is small compared to the other terms. (111) also involves a
choice of �D-parameter. Note that when u! u0, and thereby aD ! 0, �D diverges. This means
that the magnetic coupling constant gD vanishes at this point. Conversely, since � = �1=�D,
the electric coupling constant g diverges.

Near u0 Im�D is a positive function of aD. Since this is the metric on the moduli space
expressed in the dual variables, it means that aD is a good complex coordinate near that point
and we can set

aD � c0(u� u0); (112)

with some complex constant c0. If we use the fact that �D = dhD=daD and a(u) = �hD(u), we
can also �nd

a(u) � a0 +
i

�
aD lnaD � a0 +

i

�
c0(u� u0) ln(u� u0) (113)

for some a0 = a(u0). This constant must be di�erent from zero otherwise the electrically charged
particles also become massless at u0 which would invalidate our expression (111) for �D.

From (112) and (113) we can now �nd the monodromy matrix at the point u0 where
monopoles become massless. When u�u0 ! e2�i(u�u0) we have ln(u�u0) ! ln(u�u0)+2�i,
and so

aD ! aD;

a ! a� 2aD:

In matrix notation this is

M1 =

 
1 0
�2 1

!

28This coupling constant is not the same as the 1PI one, as we have previously said, but it coincides with it at
one loop.
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The reason for the subscript `1' is that we now normalize the u-plane so that the two singularities
occur at �1.

From this monodromy we can �nd the last monodromy M�1 and then check if it corresponds
to a dyon. For the monodromies to match, one turn in the counterclockwise sense at in�nity
must equal �rst one turn around u = �1 and then one turn around u = 1 (see �g. (1)). That is,

Figure 1: The monodromies of the u-plane

M1 = M1M�1;

and so29

M�1 = M�1
1 M1 =

 
�1 2
�2 3

!
:

We note that M�1 can be obtained from M1 by conjugation with the matrix

A =

 
�1 1
�2 1

!
;

namely

M�1 = AM1A
�1:

Now we make an observation about the magnetic monopole. If we write this state, which
becomes massless at u = 1, as q1 = (1; 0), then a property of this state is that

q1M1 = q1

Conjugation with A gives

q1A
�1AM1A

�1 = q1A
�1

that is

q�1M�1 = q�1; q�1 = q1A
�1

Since we have that q�1 = (1;�1) this con�rms that dyons become massless at u = �1.

29Note that a choice of representation of the monodromies involves a choice of base point P in the moduli space.
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5.6 The exact solution

Let us collect the information that we have so far. We have the u-plane with singularities at
�1, 1 and 1. The u-plane is the base manifold of a vector bundle, where the vectors take
values in C2 modulo SL(2;Z). The vectors (aD(u); a(u)) are a section of this bundle. It has the
asymptotic values

a �
p

2u;

aD � i

p
2u

�
lnu;

near u = 1, and

aD � c0(u� 1);

a � a0 +
i

�
aD lnaD;

with some constants a0 and c0 near u = 1. The behaviour near u = �1 is similar and determined
in principle by the symmetry u$ �u. We have the monodromies around 1, 1 and �1:

M1 =

 
�1 2
0 �1

!
;

M1 =

 
1 0
�2 1

!
;

M�1 =

 
�1 2
�2 3

!
:

Besides this, the metric on the u-plane is

ds2 = Im� jdaj2;
with

� =
daD=du

da=du
;

and so Im� must be positive de�nite. With this information it is possible to �nd the unique
and exact expression for aD(u) and a(u). This also gives the function F(a) implicitly so in this
sense we have therefore \solved" the theory exactly!

In order to obtain the exact expressions for aD and a it is necessary to appeal to complicated
mathematics such as complex curve theory. It is beyond the scope of this report to do so. Instead
we will just state the exact expressions and then show that they have the desired asymptotic
behaviour. a and aD are given by the integrals

a =

p
2

�

Z 1

�1

dx
p
x� up

x2 � 1
;

aD =

p
2

�

Z u

1

dx
p
x� up

x2 � 1
: (114)

Let us check the asymptotic values of (114) near u = 1. We get

a �
p

2u

�

Z 1

�1

dxp
1� x2

=

p
2u

�
[arcsinx]1�1 =

p
2u:
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For aD we make the substitution x = uz:

aD =

p
2u

�

Z 1

1=u

dz
p
z � 1p

z2 � u�2
:

The integral has a logarithmic divergence in z = 0 as u!1. The divergent part is

aD �
p

2u

�
[�i ln z]j1=u = i

p
2u lnu

�
:

These are the desired expressions for aD and a. What about u = 1?

aD =

p
2u

�

Z 1

1=u

dz
p
z � 1q

z � 1
u

q
z + 1

u

� 1

�

Z 1

1=u

dz
p
z � 1q
z � 1

u

=
i

2
(1� 1

u
) � i

2
(u� 1):

a is �nite at u = 1:

a(u = 1) =

p
2

�

Z 1

�1

dxp
x+ 1

=

p
2

�
[2
p
x+ 1]1�1 =

4

�
:

This gives us a0. To get the u-dependence of a near u = 1, we di�erentiate to get the next term
in the Taylor expansion:

da

du
= �

p
2

2�

Z 1

�1

dxp
x+ 1

p
x� 1

p
x� u

: (115)

We have a logarithmic divergence at x = 1 when u! 1. In this region, the integrand is nearly

�1p
2(u� x)

:

(115) thus becomes

da

du
�
p

2

2�

��1p
2

ln(u� x)

�
x=1

= � ln(u� 1)

2�
;

and so the expression for a near u = 1 is

a =
4

�
� (u� 1) ln(u� 1)

2�
+ � � � :

This veri�es that (114) are indeed the exact expressions.
Let us also recall that a holomorphic function { or a holomorphic section of a bundle { is

essentially uniquely determined by its behaviour, so eqs. (114) are essentially unique.

5.7 Con�nement of electric charge

Our last consistency check concerns con�nement. Actually, we will perturb our N = 2 Yang-
Mills theory to an N = 1 theory by adding a matter term for the Higgs �eld �, and it is this
theory which has con�nement. The point is that this conclusion can be reached in two di�erent
ways. The �rst one was used by Witten in Ref. [36]. Here one puts the system in a box with
�nite volume and the gauge �eld is required to obey the so-called 't Hooft's twisted boundary
conditions. The topologically non-trivial con�gurations of the gauge �eld in such a set-up are
an integer number of color-electric and color-magnetic 
ux lines in the x-, y- or z-direction. One
can then show that the energy connected to a single electric 
ux line is �nite - that is, greater
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than zero. When the volume of the box is taken to in�nity, the energy of a single 
ux line also
goes to in�nity, which implies con�nement as will be explained below. Note that no mention of
magnetic monopoles has been made.

The second way has to do with the condensation of the magnetic monopoles. By writing
the low energy Lagrangian in terms of the dual, magnetic variables, it is a matter of solving the
equations for the vacuum expectation values of the monopoles in the presence of the perturbation
to see that they condense. Before we do that, however, let us see why monopole condensation
leads to con�nement of electric charge.

The prototypical problem of con�nement is that of quarks in QCD30. As a consequence of
their having a color charge, they are the sources of color electric 
ux lines. These 
ux lines
radiate inwards or outwards depending on whether one is dealing with a quark or an antiquark.
This is very similar to QED. However, it is believed that color electric 
ux lines are always
bunched together into thin stringlike tubes. One indication that it is in fact so is the observed
occurrence of the so-called Regge trajectories. Let us consider mesons for simplicity, i.e. bound
states of a quark and an antiquark. If we considered all the mesonic states that were observed
with exactly the same quantum numbers (such as isospin, strangeness etc.) except mass and
spin, they would fall on a straight line in a plot like the one in �g. (2). This is in agreement with
what one would calculate from a classical system consisting of a rotating \rod" with a uniform

Figure 2: Regge trajectory

energy density and two massless point particles at each end. Intuitively one sees that the faster
this (relativistic) system rotates the longer is the rod because of the centrifugal force on its ends,
and thus the mass increases with increasing spin. This tells us that color electric 
ux lines are
bunched together into tubes with a uniform energy density.

Color electric 
ux strings with uniform energy density implies con�nement because a single
free quark would sit at the end of an in�nitely long string which would then have an in�nitely
large energy. This does not make sense and must be ruled out. Alternatively we could start
with a bound state of a quark and an antiquark and then try to separate them by pulling them
away from each other. As we pulled, the 
ux string between them would grow longer and the
energy that resided in the string would increase. At one point, however, we would reach the
point where the energy of the string would be equal to the threshold of the creation of a new
quark-antiquark pair from the vacuum. Thus a new quark would pop out and stick to the old
quark and a new antiquark would pop out and stick to the old quark, forming two new bound
meson states. We could therefore separate a quark from an antiquark but we could not make

30The following account of con�nement is close to that of Huang, Ref. [37].
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them free.
So far we have established that quark con�nement is equivalent to the fact that color electric


ux lines are collected into thin strings. We still need to know the mechanism behind this. We
can get a hint to this by looking at another system with similar properties, namely a type II
superconductor. `Type II' means that if we take a sample of such a superconductor and place it
in a magnetic �eld, then the magnetic �eld is not altogether expelled from the sample, as it would
be in the type I case. Instead the magnetic �eld is con�ned into thin stringlike regions { the
Abrikosov vortices. Hence we have a system that bunches magnetic 
ux lines into tubes and thus
leads to con�nement of magnetic charge. There is a slight problem, of course, that it is magnetic
charge that is con�ned rather than electric31, but we shall see that the electric-magnetic duality
we have in our supersymmetric theory solves the problem. A progress lies in the fact that we
actually know the mechanism that collects the magnetic 
ux lines in a superconductor.

It turns out that we can describe a superconductor by a relativistic quantum �eld theory.
More precisely it is an abelian Higgs theory with an abelian gauge �eld coupled to a complex
scalar Higgs �eld. In the superconductor, the gauge �eld is just the photon, and the Higgs �eld
is the Cooper-pair condensate. The Higgs �eld feels a `Mexican hat' potential, i.e. V (j�j) =
(j�j2 � �20)

2. A well known topologically stable (and non-trivial) solution to the equations of
motion is a magnetic vortex line { a Nielsen-Olesen vortex. Obviously, since it is stable this
represents a local minimum of the energy, and so magnetic 
ux lines are bunched together
because it is energetically favourable. From this we deduce that magnetic charge is con�ned in a
(type II) superconductor. Note that con�nement is a property of the \vacuum", or in this case
the superconducting medium, and not a property of the dynamical quarks or charges themselves.
In a sense it is a statement about (possibly hypothetical) test charges.

Now we turn to the problem of the desired electrical con�nement. This has a natural solution
when we suitably perturb the N = 2 theory. In the unperturbed theory there are two dual and
equivalent descriptions of the physics at generic points of the moduli space. One is the `electrical'
one with the gauge super�eld W and chiral super�eld A that are remnants of the three W a and
�a in the microscopical theory. The other one is the dual `magnetic' one with gauge super�eld
WD and a chiral �eld AD. By construction, the gauge �eld VD� in WD couples to magnetic
charge just like an ordinary photon �eld would couple to electric charge. It is the electric
charge in the �rst description that we want to con�ne. The point is that we have a gauge �eld
that couples to magnetic charge, and near the point u = 1 we also have �elds that describes
the magnetic monopoles including two complex scalars of magnetic charge. Here we have used
that near the point u = 1 there must be a sensible �eld description of the monopoles, since at
exactly this point they become massless and so can be pair created en masse. These �elds must
constitute an N = 2 matter multiplet, or in N = 1 language, the chiral super�elds M and ~M
with one complex scalar each. All we need now in order to actually have the same situation as
in the abelian Higgs model, is a non-vanishing vacuum expectation value for one (or both) of
the scalars. This is where the perturbation to N = 1 comes in.

A mass term for the chiral �elds � is mTr�2. Since Tr�2 is the gauge invariant chiral �eld
whose scalar component expectation value is u, we will call it U . We add mU to the tree level
Lagrangian. The low energy e�ective theory expressed in the dual variables before we add the
perturbation has the Lagrangian

L =

Z
d2�d2��

h
ADe

VD �AD +MeVD �M + ~Me�VD �~M
i

31The fact that it is a U(1) (magnetic) charge rather than a, say, SU(2), charge that is con�ned in a super-
conductor will not bother us. We will take the con�nement of the U(1) electric charge to be the problem we are
interested in.
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+

Z
d2�

h
W 2

D +ADM ~M
i

+ h:c: (116)

The term ADM ~M is the superpotential and is required by N = 2. By adding the term mU at
the tree level this e�ective superpotential turns into

Ŵ = ADM ~M +mU(AD) (117)

The term `mU ' is in other words unchanged after the quantum corrections. Note that the
super�eld U is to be regarded as a (complicated) function of AD. U is a gauge independent �eld
and should thus not be sensitive to the gauge dependent �elds that are taken as \fundamental" in
the description of the (gauge independent) physics. (117) is found by considering the symmetries,
holomorphy and the small m limit, that is, by the non-renormalization theorem.

We are now interested in the ground state of this perturbed theory. We must therefore solve

dŴ

dAD
= 0; and

dŴ

dM
=
dŴ

d ~M
= 0

(cf. the discussion of potentials in Sec. 3.4). In addition, M and ~M , the scalar components of
the super�elds of the same name (!) satisfy

jM j2 � j ~M j2 = 0

from the D-terms. In other words jM j = j ~M j. We now get

p
2M ~M +m

du

daD
= 0;

aDM = aD ~M = 0:

These are the scalar �eld equations, and u0(aD) = du=daD is a component of a \derivative
super�eld" U 0(AD). Thus, when m 6= 0, we get

M = ~M =

s
�mu0(0)p

2
; aD = 0:

So M and ~M has a non-vanishing expectation value and we have con�nement. Note that aD = 0
in the ground state which means that only the point u = 1 remains of the moduli space (in the
region close to this point, where (116) is a relevant Lagrangian).

This concludes our discussion of the N = 2 supersymmetric Yang-Mills theory.

A Representations of the Lorentz group

We use the metric g�� = diag(+1;�1;�1;�1). The generators M�� of the Lorentz group obey
the algebra

[M�� ;M�� ] = i(g��M�� � g��M�� � g��M�� + g��M��)

This is also the algebra of the group SL(2;C) which is the covering group of the Lorentz group.
All �elds must transform according to a representation of this algebra, so we want to �nd these
representations starting with the irreducible ones32.

We introduce the generators Ji of spatial rotations and Ki of boosts by

Ji = 1
2�ijkMjk; Ki = M0i:

32See e.g. Ref. [11]
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They obey the commutation relations

[Ji; Jj ] = i�ijkJk;

[Ji;Kj ] = i�ijkKk;

[Ki;Kj ] = �i�ijkJk;
If we now de�ne

Ai = 1
2(Ji + iKi); Bi = 1

2(Ji � iKi);

we get the decoupled commutation relations

[Ai; Aj ] = i�ijkAk;

[Bi; Bj ] = i�ijkBk;

[Ai; Bj ] = 0:

The Ji and the Ki are hermitean operators so the Ai and the Bi are not { they are each others
adjoints:

Ayi = Bi; By
i = Ai:

Nevertheless, we have managed to write the algebra of SL(2; C) as the direct sum of two SU(2)
algebras, of which we know the irreducible representations. These are characterized by the
eigenvalues of the Casimir operators

A2 = a(a+ 1); a = 0; 12 ; 1; : : :

B2 = b(b+ 1); b = 0; 12 ; 1; : : :

I.e. an irreducible representation can be labelled by (a; b), and A2 and B2 acts within this
representation as a(a + 1) and b(b+ 1) times the identity, respectively. Since Ji = Ai +Bi, the
spin of a representation is a+ b.

The simplest representations are:

1. (0; 0): The scalar representation.

2. (12 ; 0): A left-handed spinor (the left-handedness is a convention). We would like to have
J i = 1

2�
i, because the spin is 1

2 . This can be done if we take

Ai = 1
2�

i; Bi = 0:

We then have

M0i � 1
2�

0i = �i(Ai �Bi) = �1
2 i�

i;

M ij � 1
2�

ij = �ijk(Ak +Bk) = 1
2�

ijk�k;

where we also have de�ned the matrices ��� . The ��� are antisymmetric in � and �, and
satisfy the selfduality relations

~��� � 1
2�

��
���

�� = i��� ; �0123 = 1:

A spinor  that transforms in this representation has two components labelled by an index
�; �; : : :, etc. (for the index structure, see Appendix B). A Lorentz transformation � with
the in�nitesimal parameters !�� = �!�� is given by

U(�) � I + 1
2 i!��M

�� ;
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and so from the expression

U(�) �U
�1(�) � (� �

� + 1
2 i!�� � 12 (���) �

� ) �

we �nd the transformation property of a left-handed spinor:

[M�� ;  �] = 1
2(���) �

�  � :

3. (0; 12 ): A right-handed spinor. Here we take

Ai = 0; Bi = 1
2�

i;

so that we have

M0i � 1
2 ��0i = �i(Ai �Bi) = 1

2 i�
i;

M ij � 1
2 ��ij = �ijk(Ak +Bk) = 1

2�
ijk�k:

We record that ���� = (���)y, which could have been anticipated because the (0; 12 ) is the
hermitean adjoint representation of (12 ; 0). We also have that ���� satisfy the selfduality
relations

~���� = �i���� :

A spinor � that transforms in this representation has dotted indices _�; _�; : : :, etc. Its
transformation properties are

[M�� ; � _�] = �1
2

� _�(����)
_�
_�:

Note that a parity transformation acts by

J i ! J i and Ki ! �Ki:

Thus the (12 ; 0) is the parity transform of (0; 12) and vice versa.

Other representations can be built from the spinor representations by addition or multiplication:

4. (0; 12 )� (12 ; 0): A Dirac spinor. The four components of the Dirac spinor 	 is organized as

	 =

 
 �
�� _�

!
;

where  and �� are its constituent left- and right-handed two-spinors, respectively. Its
four components are also labelled by (undotted) letters from the beginiing of the Greek
alphabet. We more to say about four-spinors in Appendix B.

5. (12 ; 0) 
 (0; 12 ) = (12 ;
1
2): A four-vector. This is true because it is a four dimensional

irreducible representation. The spin is also 1. The four vector V� _� can be written in the
conventional (Lorentz indexed) way by

V� _� = V��
�

� _�
;

where �� � (1; ~�).
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6. (12 ; 0)
 (12 ; 0) = (0; 0)� (1; 0): This is a sum of a scalar and an antisymmetric tensor with
de�nite selfduality properties. The tensor T�� has the expansion

T�� = T��� + T��(���)��:

Similarly, if T _� _� is an antisymmetric, anti-selfdual tensor in the representation (0; 1), then

T _� _� = T��(����) _� _�:

A second rank, antisymmetric Lorentz tensor without any selfduality properties thus trans-
forms in the (1; 0) � (0; 1) representation. An example of this is the Maxwell tensor F�� .

B Spinors

Two-spinors are anticommutins objects that transform under the group SL(2;C), which is the
covering group of the Lorentz group. The elements of SL(2;C) are the 2� 2 complex matrices
with determinant 1. There are four equivalent representations of SL(2;C) in the sense that if M
is a matrix that represents an element, then the hermitian conjugate M y, the transpose inverse
(MT )�1, and the hermiian conjugate inverse (M y)�1, represents the same element equivalently.
Upper or lower and dotted or undotted indices distinguish the various representations:

 0� = M �
�  �; � 0_� = M� _�

_�
� � ; (118)

 0� = M�1 �
�  � ; � 0 _� = (M�)�1 _�

_�
� 
_� : (119)

This is in contrast to e.g. the unitary group SU(2), where there are only two equivalent repre-
sentations:

x0i = U j
i xj ; x0i = U�1 i

j xj:

Just like for the unitary groups, we can raise and lower the two spinor indices by using �-tensors:

 � = ��� � ; � _� = � _�
_� � _�;

 � = ��� 
�; � _� = � _� = � _�

_� � _�:

The �-tensors are de�ned by

e�� =

 
0 1
�1 0

!
and ��� =

 
0 �1
1 0

!
;

and similarly for the dotted �-tensors. With these de�nitions we have ����
�
 = � 


� . Scalar
products between two two-spinors are de�ned by contraction of upper and lower indices:

 � �  ��� = � ��� = �� � = � ;

� �� � � _� �� _� = � � _� �� _� = ��� � _� = �� � :

We can go from undotted to undotted indices and vice versa by complex conjugation:

( �)� = � _�; ( �)� = � _�;

so that undotted spinors transform in the (12 ; 0)-representation and undotted spinors transform
in the (conjugate) (0; 12 )-representation of the Lorentz group. The �-matrices �� = (I; �i) and
��� = (I;��i) have the index structure

��
� _�

and ��� _��;
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so that  � �� _� and � _��� can be written into \manifest" four-vectors by

 ���
� _�
�
_� and � _���� _����:

There is also the relation

��� _�� = � _� _
������ _
 :

The generators ��� and ���� of the Lorentz transgormations, de�ned in Appendix A, can be
given in terms of the �-matrices by

��� �
� = 1

2 i(�
�
� _
 ��� _
� � ��� _
 ��� _
�);

���� _�_� = 1
2 i(��� _�
��


 _�
� �� _�
 ���


 _�
):

Four-spinors are given in terms of two-spinors by

	 =

 
 �
�� _�

!

to give the (12 ; 0) 
 (0; 12)-repreentation of the Lorentz group. We de�ne 
-matrices by


� =

 
0 ��

��� 0

!
; 
5 = i
0
1
2
3 =

 
�I 0
0 I

!
:

They satisfy f
�; 
�g = 2g�� and 
25 = I. A barred four-spinor is de�ned in the usual way by

�	 � 	y
0 = (��; � _�):

Thus, if

	 =

 
 �
�� _�

!
and � =

 
��
�� _�

!
;

we have the product

�	� = ��+ � ��:

Other bilinears are staightforward to work out. We can de�ne a charge conjugation matrix by

C =

 
��� 0

0 � _�
_�

!
;

and thereby a charge conjugate spinor

	c = C �	T ;

which is then the charge-conjugated of 	. A Majorana spinor is a self-conjugate spinor:

	 = 	c:

It contains only one two-spinor in the following way:

	 =

 
 �
� _�

!
:

Bilinear expressions in Majorana spinors have some properties which biliear expressions in non-
Majorana spinors does not have, which is often useful in calculations. These are the so-called
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`Majorana 
ip' properties. If � denotes I, 
5, 

�, 
�
5 or 
�
� , (� 6= �), then the majorana 
ip

properties are that

�	�� = �	~�	;

where

~� = +� for � = I; 
5 or 
�
5;

~� = �� for � = 
� or 
�
� (� 6= �)

(see also eqs. (149-153) in Appendix D).

C Notation and conventions

Metric: g�� = (1;�1;�1;�1) (120)

Levi-Civit�a tensor: �0123 = 1 (121)

�-tensor: ��� =

 
0 1
�1 0

!
; ��� =

 
0 �1
1 0

!
(122)

Spinor product:  � =  ���; � �� = � _� �� _� (123)

Hermitean conjugation of spinors: ( ���)y = �� _�
� _� (124)

�-matrices: �� = (I; �i); ��� = (I;��i) (125)


-matrices: 
� =

 
0 ��

��� 0

!
; 
5 = i
1
2
3
4 =

 
�I 0
0 I

!
(126)

Dirac spinor: 	 =

 
 �
�� _�

!
(127)

Charge conjugation matrix: C =

 
��� 0

0 � _�
_�

!
(128)

Majorana spinor: 	 =

 
 �
� _�

!
; 	 = 	c � C �	T (129)

Index raising and lowering:  � = ��� �;  � = ��� 
�;

� _� = � _�
_� � _�;

� _� = � _� _�
� 
_�
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D Useful fomulae

���� = �1
2�
����; ���� = 1

2�����; (130)

�� _���
_� = �1

2�
_� _� ����; �� _��� _� = 1

2� _� _�
���� (131)

����
�
 = � 


� (132)

���� = 1
2�

�
��� (133)

�� _��� _� = �1
2�

_�
_�
�� (134)

@

@��
�� = 2��;

@

@�� _�
���� = 2�� _� (135)

@

@�

@

@�
�� = �4 (136)

@

@��

@

@��
���� = 4 (137)

��� _�� = � _� _
������ _
 (138)

��� = 1
2 i(�

���� � �����) (139)

(�����) �
� = g��� �

� � i(���) �
� (140)

�
�(���) �
� = ���(���) �


 (141)

Tr����� = (�����) �
� = 2g�� (142)

Tr������ = 2(g��g�� � g��g��) + 2i����� (143)

(�����)(��� ��) = 1
2��

����g�� (144)

(��)(� ) = �1
2(� )(��) (145)

(�� ��)(�� � ) = �1
2(�� � )(����) (146)

��� � = � � ���� (147)

(��� � )y =  �� �� (148)

�	� = ��	 = � ��+  � (149)

�	
5� = ��
5	 = � ���  � (150)

�	
�� = ���
�	 =  �� ��+ � ���� (151)

�	
�
5� = ��
�
5	 =  �� ��� � ���� (152)

�	
�
�� = ���
�
�	 = �2 ������� 2 � ������ (153)
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