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1 Introduction

Elementary particles and their interactions are described to a good accuracy within the frame-
work of relativistic quantum field theory. At least this is true for energies up to the order of 100
GeV. In relativistic quantum field theory the underlying symmetry group is the Poincaré group,
and from this we can classify the elementary particles according to their spin. Furthermore,
the bosons, with integral spin, obey canonical commutation relations while the fermions, with
half-integral spin, obey canonical anti-commutation relations. The bosons and the fermions thus
constitute two distinct sectors of the Hilbert space. Supersymmetry is a symmetry that relates
bosons and fermions.

It is appealing to have symmetries that relates different particles. For example, Grand
Unifying symmetries are appealing because they relate particles that are different in the standard
model (and which have the same spin). In this sense, supersymmetry is more “reasonable” than
no supersymmetry.

If supersymmetry has anything to do with nature, it has to be broken at the low energies
of about 100 GeV that we have probed in experiments to date. This is because supersymmetry
predicts degenerate multiplets of particles with the same mass and quantum numbers, but with
different spins. Such multiplets have not been observed.

However, this discrepancy between observation and exact supersymmetry could be a blessing
rather than a curse since it offers an explanation to the so-called “gauge hierarchy problem” [1].
This is the problem of why the scale of the standard model (~100 GeV) is many orders of
magnitude smaller than the GUT scale of about 10> GeV (or the Planck scale of about 10'°
GeV). Supersymmetry “explains” this by protecting the masses of scalar particles from receiving
quantum corrections in perturbation theory. Thus, if the mass term of the Higgs field — which
is related to the electroweak scale — is set to zero at the tree level, it will stay zero to all
orders of perturbation theory. If supersymmetry is spontaneously broken by non-perturbative
effects (perhaps instantons) this could give a small Higgs mass and thereby a small electroweak
scale, as well as lifting the degeneracy of the supersymmetry multiplets. The point is that non-
perturbative effects typically would involve numerical factors like e=1/@GUT | where agyr is the
GUT fine structure constant. The gauge hierarchy problem was one of the original motivations
for studying supersymmetric theories.

In this report we will be interested in supersymmetry for a different reason, namely because it
provides us with toy models. There are two aspects of supersymmetry that are interesting in this
connection. First, supersymmetric theories often have better solvability properties than non-
supersymmetric theories. This has to do with the fact that supersymmetric Lagrangians can be
expressed in terms of holomorphic functions of the fields and coupling constants of the theory.
In some cases one is able to determine these functions ezactly [2]. And second, there exists
certain duality symmetries in many supersymmetric theories [3]. These symmetries are similar
to the duality between electricity and magnetism in the free Maxwell’s equations (i.e. without
matter).

We will be occupied with one theory in particular. This is the so-called ‘N = 2 supersym-
metric Yang-Mills theory’, in our case with gauge group SU(2). The ‘N’ refers to the “size” of
the degenerate supersymmetry multiplets, so ‘N = 2’ means that they contain more particles
than a theory with simple — or ‘N = 1’ — supersymmetry. It is a toy model which has both
of the properties described above. The exact solution of this model and a description of the
duality symmetry it possesses is treated in the already famous paper by Seiberg and Witten:
“Electric-Magnetic Duality, Monopole Condensation, and Confinement in N = 2 Supersymmet-
ric Yang-Mills theory” [4]. The purpose of this report is to explain the important concepts of
this paper and to lay the necessary groundwork in order to do so.



The organization of the report is the following. In Chapter 2 we introduce the basic concepts
of supersymmetry: the supersymmetric extension of the Poincaré algebra, its representations,
and superspace. We then work out some supersymmetric field theories. This will all be at tree
level.

In Chapter 3 we discuss quantum effects and renormalization. It turns out there are cer-
tain “non-renormalization” theorems in supersymmetric theories, which refers to the fact that
various terms in the Lagrangian (e.g. potential terms) does not receive quantum corrections
from renormalization. There are the “old” non-renormalization theorems which applies in per-
turbation theory (and which is relevant to the gauge hierarchy problem). Then there are the
” non-renormalization theorems which extends to non-perturbative effects as well. This
is where holomorphy and the exact solutions come in. We also introduce various “advanced
topics”, such as moduli spaces and complex Kéahler geometry, and start our discussion of the
N = 2 supersymmetric Yang-Mills theory.

By Chapter 4 we break our line of development of the N = 2 theory to discuss duality. We
recall the electric-magnetic duality of Maxwell’s equations, and we explain a famous conjecture
by Montonen and Olive about a duality of the Georgi-Glashow model. They stated that the
magnetic monopoles of positive and negative charge, which are solitons (the 't Hooft-Polyakov
monopoles), are duals of the W - and W -bosons. There would then be a dual Lagrangian with
the exact same form as the original one (at the tree level) where the heavy gauge bosons were
the magnetic monopoles and where the solitons were the W - and W ~-bosons. The conjecture
actually does not hold in the original formulation of Montonen and Olive, but in supersymmetric
theories this situation is improved, as we will explain.

Finally, in Chapter 5, we show how the two concepts of holomorphy and duality join together
to give an elegant “solution” of the N = 2 theory, which is both unique and exact. Moreover, as
a bonus, we see the phenomenon of confinement of electric charge in a perturbed version of the
N = 2 theory, which we are then able to explain in terms of condensation of magnetic monopoles.
This explanation of confinement coincides with ideas developed in the seventies. The N = 2
supersymmetric Yang-Mills theory is thus the first example of a quantum field theory where
confinement is explained in an exact sense.

In Appendix A we review some basic representation theory of the Lorentz group, Appendix
B contains some background on spinors, in Appendix C we give the notational conventions, and
in Appendix D some useful formulae.

“new7

2 Basics of supersymmetry

2.1 The supersymmetry algebra

We will start our investigations of supersymmetric theories' by writing down the extensions of
the Poincaré algebra. Once we have done that, we can find the irreducible representations and
go on to construct invariant Lagrangians.

Supersymmetry transformations are generated by operators Q on the Hilbert space, which
map bosons into fermions and fermions into bosons:

Qlboson) = | fermion), Q| fermion) = |boson).

The @’s must be fermionic, i.e. they form sets of operators which transform among themselves
as spinor representations of the Lorentz group, and they obey anticommutation relations. By
the spin-statistics theorem this is the same thing. It is clear that an extension of the Poincaré

!The general references on supersymmetry that has been used throughout this report, and in particular in this
chapter are Refs. [5]-[8].



algebra with such @’s cannot be a Lie-algebra, which is characterized by commutation relations
only. It must be a structure that is characterized by both commutation and anticommutation
relations:

[Bi,B;] = iffB, (1)
Qo Bil = 50 Qs, (2)

Such a structure is a graded Lie algebra. The B’s are the even elements and the @Q’s are the odd
elements of the algebra. They generate elements of a super Lie group in the following way:

G(,c) = e~ aQa—ic;B;
where (, are anticommuting (or Grassmann) parameters,

{CaaCﬂ} =0, {CaaQﬂ} =0

The fact that thisa group is a consequence of the Baker-Campbell-Hausdorff formula. We will
return to this point in the next section.

The minimal extension of the Poincaré algebra consists of the Poincaré generators and one
spinorial generator? @,. We also include its hermitean adjoint Q4 = (Q4) to make the alge-
bra stable under hermitean conJugatlon The @’s and @’s transform as the (3,0)- and (0, 5)-
representations of the Lorentz group?, respectively:

[QaaMuu] = (Uuu) Q,Ba
[QdaMuu] = %Qﬂ(auu)ﬁo’f

This relation belongs under eq. (2) since the B’s corresponds to the P’s and M’s of the Poincaré
algebra

29

[P, P)] = 0,
[Py Myps] = i(gupPo ©GusFp), (4)
[Myv, Mps] = i(gupMyuo < gvoMyup ©gupMyo + GuoMyy),
which corresponds to eq. (1). Eq. (3) and the rest of eq. (2) is
{Qa, Qs} = 2(0") 3P0 (5)
(@@} = 1Qw Qs =0, (6)
[Qas Pu] = [Qéw PJ=0. (7)

This is the supersymmetry algebra.

Eqgs. (5-7) can be deduced from transformation properties. For example, the anticommutator
(5) transforms as (3, 3), i.e. as a four-vector. By eq. (3) it must be an even element of the graded
Lie algebra, that is, it must be one of the Poincaré generators. Since the only four-vector of the
Poincaré algebra is the energy-momentum vector P, the anticommutator must be proportional
to this. This gives us eq. (5), with only the factor ‘2’ to explain. The numerical value of this
coefficient is just a matter of normalization of the @)’s, so we are left with the question of the
sign. However, by treating eq. (5) as a matrix equation in (o, 8)-space, we can take the trace
and obtain

Z{Qaa (Qa)T} = 2Tr(UuPu) =4PF. (8)

2We are using two-component spinor notation, see Appendix B.
8Some elementary representation theory of the Lorentz group is given in Appendix A.



The left-hand side is positive definite and so must the energy P, be. Hence the sign in eq. (5).
By a similar argument we can see that eq. (6) must hold, while the most general expression for
the commutator (7) is

Qs Bl = €(0,)Q;

However, the constant ¢ can be shown to be zero by commuting this expression with P, and
using the generalized Jacobi identities that hold for a graded Lie algebra, i.e. identities of the

type
{A, {B’ C]] + {B’ {Ov A]] + {Ov {A’ B]] =0,

where { , | means either a commutator or an anticommutator, according to whether A, B and
C are even or odd.

Although these arguments are not very rigorous, they are in fact fragments of a proof of
a general theorem by Haag, Lopuszanski and Sohnius [9]. This theorem is an extension of an
earlier theorem by Coleman and Mandula about the symmetries of the S-matrix [10]. Coleman
and Mandula proved under some reasonable assumptions* that the symmetries of the S-matrix
is the direct product of the Poincaré group with some internal symmetry group. That is, the
Poincaré algebra is expanded by

[B,,Bs] = ic., B,
[B,,P,)] = [Br,M,]=0, 9)

where the B’s are generators of the internal symmetry. However, the Coleman-Mandula theo-
rem only deals with ordinary Lie groups. It is this situation that is generalized by the Haag-
Lopuszanski-Sohnius theorem, which states that if we allow graded Lie algebras, then the sym-
metries of the S-matrix are given by the Poincaré algebra (4), the internal symmetry algebra
(9), and the extended supersymmetry algebra

(M, Quil = 3(ow)d”Qsis (10)
{QaiaQBj} = 25ij(0”)agpua (11)
{Qair Qi = 2€437;;, (12)
[Qais Pu] = 0, (13)

(Qai Brl = (br);' Qaj- (14)

In addition come the hermitean adjoint expressions. The ¢ = 1,..., N means that the spinor

operators () come in N copies, which are rotated by the internal symmetry generators B,
(eq. (14)). The @’s still commute with the P’s, but the anticommutators of the @Q’s with
themselves, are now not necessarily zero. {Qqi, Qs;} transforms as a (0,0) @ (1,0), where the
(1,0)-representation is an antisymmetric, selfdual tensor. The only tensor of this type in the
even part of the Lie algebra is the selfdual part of M), but {Qa:, @3} cannot contain a part
that is proportional to this since it would violate eq. (13). Hence we get an equation like (12),
where Z;; is antisymmetric in 4 and j and in general a linear combination of the B’s:

Zij = <=>Zji, Zz'j = a%BT.
Furthermore, it can be shown that such Z’s commute with all the other generators,

[Zi;,anything] = 0,

“This includes Lorentz invariance and analytic dependence of elastic scattering amplitudes on the center-of-
mass energy s and the momentum transfer ¢.



making them central charges. The possibility of having central charges, which requires N > 2
because of the antisymmetry of 7 and j, will become important for us later when we discuss
duality. We shall find such an operator by explicit construction in the N = 2 Yang-Mills theory,
where there is a single, complex central charge, and where the real and imaginary parts have
the interpretation of an electric and a magnetic charge, respectively. Eqgs. (4), (9) and (10-14)
exhaust all the possible algebras of a supersymmetric theory if we exclude conformal symmetry.

Now that we have the supersymmetry algebra, we turn to find its representations of the one-
particle states. We will deal with representations on fields in the next section. Let us first recall
how the irreducible representations of the Poincaré group are found [11]. This was worked out
by Wigner in his famous paper from 1939 [12] by the method of “induced representations”. The
Casimir operators of the Poincaré group are P, P* and W,W*# where W* is the Pauli-Lubanski
vector:

WH = 3?7 P, M,,.
For an irreducible representation they are given by
PPt =M W,WF=eM?J(J]+1),

where M is the mass and J is the spin — or helicity — that characterizes the representation. The
procedure is then to choose a frame of reference so that the momentum four-vector becomes,
say, P, = (M,0,0,0) in the massive case or P, = (F,0,0,E), where E is the energy, in the
massless case. The subgroup of the Poincaré group that leaves P, invariant, the “little group”,
is represented irreducibly, and the full representation is given by applying all possible boosts on
these states.

We can find the irreducible representations of the supersymmetry algebra in a similar way.
P, P*" is still a Casimir operator since P, commutes with the ()’s. This is the reason why all
the particles of an irreducible supersymmetry multiplet have the same mass. However, W, W#
is no longer a Casimir operator because the algebra contains the operators (Jn; which change
the spin of a state. Let us deal separately with the massive and massless cases without central
charges, and the massive case with central charges.

Massive case, no central charge. First we choose the rest frame where P, = (M,0,0,0).
The algebra to be represented — the “little algebra” — is given by egs. (11) and (12) (and the
hermitean adjoint of (12)). In the chosen frame and in the absence of central charges this is

{Qais Qg3 = 2M4, 505,
{Qai, @i} = {QaiQg;} =0.
If we rescale the Q’s into

a . =

——Q ——Q
Gqi = iy i iy
(6%) \/W at ol \/m (0%)
the algebra becomes
{aai,a};j} = dapdij;
{acisagi} = {al;al} =0,
which we recognize as a Clifford algebra of 2N creation and annihilation operators. Now we

choose a state |M,J, J,) which corresponds to the rest frame, has spin J and spin component
J, in the z-direction, and which further satisfies

agi|M, J, J,) =0, all a, 1.



This last property makes |M, J, J,) a Clifford ground state. The supersymmetry multiplet is
now constructed by applying the a’s on this Clifford ground state:

IM,J, L), el IMLTL), ekl ML),

i

The full irreducible representation is obtained by applying boosts and rotations to these states.
The maximum number of a’s we can apply on the Clifford ground state is 2N because of
the Fermi statistics, and by working out the combinatorics the dimension of the representation

1S:
2N
N 2N \ _ on
d_z< i >_2 :

n=0

The number of spin states is then (2J + 1)22V. If the Clifford ground state has spin J, the
largest spin in the multiplet is J + N/2, while the smallest spin is J <N/2, or 0 if J<N/2 < 0.
As an example, the simplest case is N = 1,J = 0, where the multiplet is

|M,0,0) 1 state of spin 0
al|M,0,0) 2 states of spin % (15)
alal|M,0,0) 1 state of spin 0

In fact, this is the only massive multiplet that will interest us, because all the other values of
N and J will give multiplets which contains spin 1 or more. In the corresponding field theory
we would then have massive vector fields. Such a theory is not renormalizable unless there is a
Higgs mechanism, in which case the vector field is massless in the fundamental Lagrangian.

Massless case. When we deal with central charges in the next paragraph, we shall see that
these must be represented by zero in the massless sector. We can therefore assume that there
are no central charges in the superalgebra.

We now choose the frame of reference where P, = (£,0,0, £). Because

2E 0
I -
st = ( 0 0 ) ’
the little algebra is
= 2E 0

The operators (Qo; and Qéi have vanishing anticommutators and must therefore be represented
by zero. This leaves us only with the Q1’s and Q;’s to represent. If we define

1 t 1 =
a; = —=Q14, a;, = —=Q;.,
7 2\/EQ17, ) 2\/EQ11
the algebra becomes:
{ai,al} = 4y,
{a’iaa’j} = {agaa;’} =0,

which is a Clifford algebra of N creation and annihilation operators. Now the Clifford ground
state is characterized by a helicity h:

a;|E,h) =0, all 4



The multiplet is again built by applying the a!’s:
IB,R), allE,h), ..., al---dl|E, ),

where the full representation is obtained by boosting. By the same combinatorics as in the
massive case, we find the dimension now to be d = 2%
Some examples are:

1. N=1,h=0:
helicity: 0 3
states: 1 1

As it stands, this representation is not PCT-symmetric as it should be in a relativistic

field theory. Therefore we must also use the representation N = 1,h = @%:

helicity: <1 0

states: 1 1

and "add” them together into the multiplet

2

helicity: <% 0
states: 1 2

— N0

It describes a scalar and a pseudoscalar with a massless fermion as supersymmetric partner.

_ _ 1.

2. N=1,h=1
helicity: § 1
states: 1 1

To get a PCT-invariant multiplet we must add

helicity: <1 <l

2
states: 1 1
so that we get

helicity: <1 <f 0
states: 1 1 0

= pol—

This describes a vector with a fermion as superpartner.

3. N =2,h =0: By adding PCT-conjugate states, we get

2

helicity: <1 <l 0
states: 1 2 2

[NeRNIE

1
1
Note that the multiplets of Examples 1 and 2 added together give the same helicity content

as this. This reflects the fact that one can always decompose high- N multiplets into lower-
N multiplets.



4. N=2h=s}:

2

helicity: <1 0
states: 1 2

— ol —

This is a PCT-self-conjugate representation.
5. N=4h=4l:

1

helicity: <1 <f 0
6 1

states: 1 4

IS NI

This representation is also PCT-self-conjugate.

Massive case, with central charges. The central charges Z;; commute with everything,
and it is therefore possible to find a basis in representation space where the Z’s are diagonal,
so that they can be represented by complex numbers Z;;. We assume that N is even. Odd N’s
can be worked out similarly, but only even N’s will be of interest to us. Since the Z;; forms an
antisymmetric N x N matrix, it is possible to use a unitary transformation Z;; — UikU]l- Zy to
bring this into the standard form

0 D
z;(@D 0), (16)

where D is a real, positive N/2 x N/2 matrix with eigenvalues Z,, r = 1,..., N/2. Without loss
of generality we can assume that this has been done, and that the ()’s have been rotated by the
same transformation. In accordance with eq. (16) we now break the index ¢ down to i = (a,r),
where a = 1,2, r = 1,...,N/2, and the superalgebra in the rest frame becomes®:

{Qaara Qﬁbs} = 2M5ab6rs(5a5a
{Qaara Qﬁbs} = 2€aﬁ€ab5rszra
{Qdara Qﬁbs} = <:>2€d56ab6rszr-

We need to disentangle these anticommutation relations. To do this, we note that the part of
the Poincaré group we are supposed to represent is the spatial rotations, so that Qe and Q**"
have the same transformation properties®. Then the linear combinations

Gar = %(Qa1r+Qd2r)a
bar = %(Qalr <:>QC.(2T),

have well defined transformation properties. Using these, one can rewrite the algebra into

{aara aﬂs} = {bara bﬁs} = {aara bﬂs} =0,
1 _
{aar,aﬂs} = 5a35rs(M + Z,),

{bar, b5} = 8,500 (M 7).
Viewed as matrices in (o, r)-space the last two anticommutators are positive. This means that

Z, <M, alr (17)

0 1
-1 0
See the comment in Appendix B

SRecall that eqp =



Furthermore, if n Z,’s are equal to M, n b’s must be represented by zero. So we get a Clifford
algebra of 2(N <n) creation and annihilation operators, which we now know how to handle.
Eq. (17) shows that in the massless case all the Z, must be represented by zero.

Let us close this section by showing that a representation must contain an equal number of
fermionic and bosonic states. Consider the operator (<1)VF, where Np is the fermion number
operator. (<1)NF gives +1 on a bosonic state and <1 on a fermionic state. Because @, changes
the fermion number, we have that

()M Q;, = <L ()M
For a finite dimensional representation the trace is well-defined, so that we have
Tr[(<1) Y {Q4, Q‘é}] = Tr[ﬁQZ(@l)NFQ;- + (@I)NFQ‘EQZ]
= Tk ()Y QL + Qi ()Y Q)
= 0,
where we have used the cyclic property of the trace. From this follows
265 Tx((451) V7 1] = Te{(1) V7 {QL, @%}] = 0.
Thus, for fixed non-zero momentum P,, we have
Tr(<1)MF =0.

Since Tr(<1)VF = npenp, where np is the number of bosons and n is the number of fermions
in the representation, we get the desired result that ng = np.

2.2 Superspace

In this report we will mostly deal with N = 1 and N = 2 supersymmetry, although we will
occasionally mention the N = 4 case. These N’s are the most relevant ones to four-dimensional
renormalizable field theories. N = 2 will be discussed in the next chapter, but for now we
restrict ourselves to N = 1. This will be sufficient to introduce the basic concepts.

The Poincaré generators can be represented by the differential operators

Py =iy, M, =i(z,0, ©x,0,)

which operate on scalar fields on Minkowski space. In a similar way, we would like the super-
symmetry generators to be represented by differential operators as well. This can not be done
in Minkowski space because the (Q’s satisfy anticommutation relations while spacetime deriva-
tived do not. Therefore we will expand Minkowski space into a superspace with coordinates
(z*,04,04), where 0, and 0, are anticommuting spinors:

{60,035} = {00,05} = (04,05} = 0.

We shall see that the Q’s can be written as differential operators in this space.
Let us first investigate the group of finite supersymmetry transformations that corresponds
to the superalgebra. We introduce the anticommuting spinor parameter &,:

{¢a,88} = {60, Qp} =+ =[Py, ] =0

Then, with ¢* a four-vector parameter, an element G of this group is



where cP = c*P,, £Q = £%Qq, £Q = £,Q%, and where &, = (£,)*. The Q’s enter in the
hermitean combination £€Q + £Q so that G is unitary. The P’s appear because they are needed
to close the algebra of the @’s. Products of such elements can be found by using the Baker-
Campbell-Hausdorff formula:

eAeB — pA+B+3[AB+- (18)

By using spinor parameters &, and 7, we can write the superalgebra in terms of commutators:

[€Q.7Q] = £QnQ &NQLQ

= £7°QuQ; ¢T€°Q;Qa
= 20'nP,
€Q.nQ) = [€Q,1Q) =0

[Pu€Q] = [Pu,6Q1 =0

From this we see that the dots in the exponent of formula (18) are actually zero: the next term
should be

3[4, B, B] + 3[4, (4, B,

but this vanishes because [A, B] vanishes or is proportional to P,. We can now find the product
of two G’s:

G(c,&,6)G(d,n,n) = elePHEQHEQ)idP+1Q+7Q)
i((c+d) P+(E+mQ+(E+1)Q) — 3[6Q+EQnQ+7Q]
i((c+d) PH(E+NQ+(E+MNQ+5ilEQ.1Q1+5ilEQnQ)) (19)
((
(

|
o

2

|
o

7

_  il(c+d+igon—inad) P+(E+m)Q+(E+M)Q)

= Glc+d+itoneinoé, & +n,6+7)

This shows that the supersymmetry transformations are a group.

Let us now return to superspace. Technically, we can think of superspace as the quotient of
the super-Poincaré group and the Lorentz group, super-Poincaré/Lorentz, which is a manifold
that is parametrized by one four-vector and a (complex) two-spinor. In fact, we can think of
Minkowski space as the quotient Poincaré/Lorentz. Loosely we have:

(:vP-i— wM) /62 wM iz P

Poincaré/Lorentz = e =e",

so the quotient is parametrized by the four-vector z#. In the supersymmetry case this is (equally
loose):

super-Poincaré/Lorentz = e i(@P+0Q+0Q+5wM) /65“’"M el(@P+0Q+0Q)

Note that by the last exponential we have given the prescription for how we parametrize the
quotient manifold (i.e. superspace). We could have used the parametrizations elyP+0Q) ¢ifQ
or ¢lW'P +0Q)ei0Q  where the relations between the different parametrizations are y# = z# <
ilo"0 and yt = z# + io"0, respectively’. A translation in Minkowski space is induced by left
multiplication on the quotient manifold:

- - T
echemP — T P’

"Note that these definitions of y and y are interchanged with respect to the ones of Ref. [5].

10



where y is the translation and z’ = z 4 ¢. Supersymmetry transformations in superspace are
induced in the same way:

G(O’ g’ E)G(‘II;’ 0’ é) = G(xI’ 0” 9_1)’

where ¢ and € are the parameters of the transformation and

' = z+4ifoh <ifof
0 = 0+¢ (20)
i = 6+

as follows from eq. (19).

Functions F(z,6,0) on superspace are called superfields. They may have spinor or vector
indices and carry some representation of the Lorentz group. If we expand a superfield in a power
series in the spinor coordinates, it will terminate after a finite number of terms, because terms of
the fifth power or higher in 6 and 6 vanish on account of their anticommuting nature. A scalar
superfield in its most general form is thus:

F(z,0,0) = f(z)+0¢(z)+0x(z)

+00m(z) + 00n(z) + 05" v, ()

+000X(x) + 000¢(x) + 0000d(z),
The fields f, m, n and d are (in general complex) scalars, ¢, ¢, x¥ and X are spinors, and vy is a
vector. These fields are called component fields. It is clear that sums and products of superfields
are again superfields.

We are now ready to find the representations of the @’s as differential operators on super-

space. That is, we want to find @ and @ such that an infinitesimal supersymmetry transforma-
tion with parameter £ is given by

5eF = i(6Q +EQ)F.

Because of egs. (20), a scalar superfield F’ regarded as an operator on the Hilbert space has the
transformation property:

G(0,&,€)F (2,0,0)G™1(0,¢,8) = F(x ©itod +if0, 0 + £,0 + £).
For infinitesimal £ this means:
_ _ 0 -0
— i(Egt 1 —_ —
0eF =i(§0"0 <00 f)auF—l—faoF-i—faoF,

and so we can read off the representations of the @Q’s to be:

Qo = (:ni + (6"0) a0y, Qa = li— < (00")a0y.

00 002
The operators 9/00% and 0/00% are anticommuting spinors that operates to the right:
a 8 - .
— 97 =50, —=0°=4".
00 a’ 00 @

One can check that the @’s satisfy the supersymmetry algebra:
{Qaa@ﬂ} = 27:0—536113
{QCUQ,B} = {QO'MQB} = 07
[PLHQOA] = [Pand] :Oa

11



where we also have represented P, by i0,,.
The infinitesimal supersymmetry transformations of the component fields can be found from
the relation:

5cF(2,6,0) = i(6Q+EQ)F(x.6,0)
= Ocf(z) + 00cp(z) + 00 A(z)
+005¢m(z) + 005¢n(z) + 0ot 05¢v,,(z)
+00§5§5\(ac) + 559551/)(:16) + 00§§6§d(x).
The component fields of a superfield does not in general form an irreducible representation
of the supersymmetry transformations. If this is to be the case, we need to impose “super-
covariant” constraints on the superfield, i.e. constraints that are preserved under supersymmetry

transformations.
One covariant constraint is the reality constraint:

vV =vl
A superfield that satisfies this can in general be written as:

V(z,0,0) = C(x)+i0x(z) <ifx(z)
+3i00[M (z) + iN(z)] ©1i00[M (z) <iN (z)]
+00"0V), (z) <i000[\(z) < 3i0,x(z)0"] (21)
+i000[\(z) + 3ic" 9, x(z)] + 30000[D(z) <10C(z)],

where the fields C, D, M and N are real scalars, V), is a real vector, and A and x are spinors.
The presence of the vector field V,, makes V' the natural superfield to use if we want to find
supersymimetric extensions of gauge theories. V' is called the vector superfield because of V.
However, V is not irreducible. Some of the fields are redundant and can be gauged away in a
certain sense. The particular combination of fields in eq. (21) is chosen in light of this, and we
will return to the vector superfield when we consider supersymmetric gauge theories.

Other types of constraints are effectuated by super-covariant differential operators with re-
spect to the spinor coordinates. Such operators D, and Dy should obey the anticommutation
relations:

{Da;Qp} = {Da, @3} = {Ds, Qp} = {Da, @3} =0, (22)

or equavivalently
I:DOHSQ + EQ] = [DO.HSQ + gQ] = 07

for anticommuting parameters ¢ and €. In other words: the supercovariant derivatives commute
with supersymmetry transformations. This can be achieved by taking the D’s to be:

0 . un ~ 0 .
-Da = % <:>z(0”0)a3#, Dd = % + 'L(ogu)dau.
We could also have found these D’s as the generators of supersymmetry transformations induced
by right multiplication on the superspace quotient manifold. Left multiplication commutes with
right multiplication, so this would automatically give eqs. (22). This means that the D’s satisfy
an algebra that is isomorphic to the one the @’s satisfy:

{Da, Dy} = 22‘055@
{Da,Dg} = {D4 Dy} =0
[PuaDa] = [PuaD,é]:Oa
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which can be checked by explicit calculation. Only a finite number of covariant differential
operators can be formed by multiplying the D’s together because of their anticommuting nature.
A constraint that will be useful to us is the so-called chiral constraint:

Dy® = 0. (23)
If we use the coordinates y* = z* <ifo"0 we see that

Day" = Dg(z" <i0o"0) = 0, Dy =0
Thus, any function of y and 0 will satisfy eq. (23):

@ = A(y)+0y(y) +00F (y)
= A(z) ©i00"00,A(z) 100000 A(z)
+0(z) + 1i00(0"0)0,1p(x) + OOF (z),
where we have expanded in z and used spinor identities like %0 = @%eaﬂ 06 (see Appendix C).

Here, A and F are complex scalars and v is a two-spinor. That this is the most general function
that solves (23) can be seen by writing the D’s in terms of y, # and 6:

0 _ 0 _ 0
-7 (o™0), —— = Z
D, 900 <2i(o Q)Qay#, Dy, %

The expression for Dg shows that ® cannot contain any 6’s. The fact that, in the y-coordinates,
® is a function only of 6., which is a spinor of definite chirality, is the reason that it is called a
chiral superfield.
Analogously, the complex conjugate of ®, the superfield ', can be written as:
o = A*(y") + 04 (y") + 00F* (y")
= A*(z) +i00"00,A*(z) < 100000 A* (z)
L0 (x) & 1i00(00)0, B () + FIF* (),
where yf = 2# 4 ifo#f. This is the most general field that satisfies:
D,®" =0,

as can be seen from the form of the D’s in terms of y', 6 and 6.
We can also find the supersymmetry transformations of the component fields. The easiest
way is again to use the y-coordinates, and write down the corresponding @)’s:

0 - 0
= o5 — e "y,
Qa @300" Qa 289‘5‘ <:>2(90- )aa;u
where 0, = 0/0y*. An infinitesimal transformation is then:
0P = i(6Q +EQ)P
0 -0 -
= ¢{— — 0ot
589@4_560@@21070 £0,® )
= &+ 206F <2i00"£0,A <2i(00"€)00,4 (24)
= &+ 02LF ©02i(0"8)0,A <00i6" 0,1,
and so the component fields transform as:
0eA = &
Sep = &Ri(ohE)I,A+2F (25)
(5§F = @E&“a,ﬂ/)
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This is equally true if we use the z-coordinates, as can be checked by expanding eq. (24).

From eq. (25) we see that the highest component, or F-component, of the superfield ®
transforms into a space-time derivative of the field . Actually, it is a general feature of the
supersymmetry transformations that the highest component field transforms into space-time
derivatives of the other fields. This can be seen from the differential form of the supersymmetry
generators O, and Q%: the first term reduces the power of the #’s while the second term — which
is a space-time derivative — increases it. So the only increments in the highest component are
space-time derivatives of next-to-highest components. This fact will be useful to us when we
construct manifestly supersymmetric Lagrangians out of superfields.

We can make the mass dimensions of the component fields coincide with the usual quan-
tum field theory dimensions by assigning appropriate dimensions to the superfields. From the
anticommutator {Q,Q} = 20#P,, we deduce that the ’s must have dimension % Parameters
of supersymmetry transformations, &, and &4, must therefore have dimensions @% in order to
make the expression £Q + £Q) (which appears in an exponent) dimensionless. The same goes for
6 and 4. Then, if the scalar superfield ® has dimension 1, the scalar component A also has
dimension 1 and the spinor 1 dimension % The scalar field F', which is also a scalar, thus has
dimension 2, but this is all right, since, as we shall see, it will play the role of an auxiliary or
external field.

2.3 The Wess-Zumino model

We will now construct the Lagrangian of the simplest supersymmetric model — the Wess-Zumino
model [13]. It involves the massive multiplet (15), with one fermion and two real scalars. We
shall see that these fields are components of the chiral superfield ® from the previous section.
This consists of the two-spinor ¢ and the complex scalars A and F', where F' is auxiliary. We
are going to use both four-component and two-component notation for the spinors. On the
mass-shell — where the equations of motion are satisfied — this gives a field content of two real
scalars and one Majorana spinor.

Let us see what kind of superfields we can build out of the chiral fields ®;. First of all we
have the products

Q0 = Ai(y)A;(y) +0li(y)Aj(y) + Ai(y)v; (v)]
+00[Ai(y) Fi (y) + A; () Fi(y) ©5¢%i(y); (y)], (26)

and
2,20, = Ai(y)A;(y)Ax(y)
+0[hi Aj Ay, + b Ai Ak, + b Ai Ayl
+99[FZ‘AjAk + FjALA; + F A Aj (27)
2P A S3pibrAi SSbppiAj).
These products are also chiral. Products of four or more chiral fields will not give renormalizable

terms when we build Lagrangians, as we will see later. We can also multiply a chiral field with
an anti-chiral one:

BID; = Af(2)A;(x) + b (2) A} (2) + i (2) A; ()
+00 A7 (z) Fj(z) + ééﬂ*(x)Aj (x)
+0°0°lio! (9, AT Aj ©A;0,4;) S 5j0]
000 Jiol (0, A7) < A;9,4)7) & Fjia] (28)
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+000° (i (94 Ay 9] 0uAg) + F bl
+0000[<L ATOA; < 10ATA; + 10,A70" A;
STi0upiT"; + JithiG" Ou; + F} F]

This superfield is not chiral.

We have already noted that the highest components of superfields transform into space-time
derivatives under the supersymmetry transformations. By looking at the highest components of
the product fields, we see that the 0000-coeflicient — called the “D-term” — of CI)lT@j looks like a,
kinetic term of a Lagrangian, the 66-term, or “F-term”, of ®;®; looks like a mass term, while the

F-term of ®;®;®;, is an interaction. Then the most general renormalizable and supersymmetric
Lagrangian built from chiral superfields is of the form

L= (I);[(I)ﬂgggg + [()\i(l)i + %mijq)iq)j + %gijkq)i@‘j@kﬂga + h.c.] , (29)

where \;, m;; and g;;;, are (in general complex) coupling constants symmetric in their indices.
We have added the hermitean conjugates of the chiral terms, in order to make the Lagrangian
real. The mass dimension of a Lagrangian is four, so in the light of the previous discussion, we
see that \;, m;; and g;;; have dimensions 2, 1 and 0, respectively. Now we see why products of
four or more chiral superfields give non-renormalizable interactions: they would require coupling
coefficients with negative mass dimensions in the Lagrangian.

We can write manifestly super-invariant Lagrangians — i.e. Lagrangians that involves su-
perfields — in a more elegant (and, as it turns out, useful) way by introducing integration over
superspace. This can be done by the usual Berezin integral, well known from the path integral
treatment of Fermi fields. By definition, we have for a single Grassmann variable 6:

/d0:0, /d00:1.

Then, for a function f(0) = a + b of 6:

/def(e) — b, /dof(o)e —a
For the Grassmann variables 6, and 05 we define
d’0 = teqpdd*do”,
9 = Le¥dfda,,
so that
/d2999 =1, /d2ééé =1. (30)
Furthermore, we define
d*0 = d*0d*0.
Recall that integration over Grassmann variables is the same as differentiation. Indeed,

o 0
Leaf = = pp— 2000 —
Le 89a89ﬁ00_/d999_1,

L0 0

le . — — 00 = [ d?060 = 1. 1
%689, 08 / (31
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The Lagrangian (29) now becomes:
L = /d40@}@i + /d20(>\iq)i + %mij@i@j + %gijk(i'icbj(bk) + h.c.

By eq. (30) the infinitesimal volume elements df, and df; have dimension +3. Note that the
Lagrangian contains integration over the whole of superspace in one term and over just half the
superspace in other terms. This general structure appears in other supersymmetric models as
well. The integral that goes over just half the superspace is called a chiral integral for obvious
reasons. If the corresponding integrand is a super-generalization of a potential, then it is called
a superpotential.

Let us consider the simplest case of a single chiral field ®. We decompose the complex fields
A and F into real and imaginary parts by writing

D(y,0) = 5(A(y) ©iB(y)) + 09 (y) + 500(F (y) +iG(y)) (32)

(hoping there will be no confusion between the complex fields and their real parts). Here, A
and F are scalars while B and G are pseudoscalars. To see this, recall that a parity transforma-
tion takes the (0, 3)-representation of the Lorentz group into the (3,0)-representation and vice
versa. The chiral field (32) is then transformed into the anti-chiral field ®'(yf,8) because the
chiral constraint equation Dg® = 0 is transformed into D,®' = 0. This means that a parity
transformation changes the signs of B and G, that is, they are pseudoscalars. We also introduce

the Majorana spinor

_ | ¥a
= (%),

so that
U9, U = ot dunh + pat o,
VU = P+,
Uy U = pip &,

see Appendix C. Then we have:
Liin = 2/d40q>’rc1> = elA'0A=I0A A+ 9,A"0"A
+3itpot Oyip + Sipa"O1p + 2F*F
= 1(0,4)° + £(0,B)* + TPV + L(F* + G?),
Linass = m < / d*00? + / d29<1>f2> = 2mFA Symyp +2mF* A* & gmyp
= m(FA+ GB)&imUT,

Lot = 4g ( / P03 + / d29<I>T3> — UgFA? S2gpA + AgF* A e2giip A*
= g(FA? ©FB? + 2GAB) ©g¥(A + ivsB)U,
where we have thrown away total derivatives. The numerical factors have been chosen to make
the expressions look more like the ones in the literature. The complete Lagrangian of the Wess-
Zumino model in components is then:
['WZ = Ekm + ['mass + Eint
= 1(8,4)%* + 3(0,B)* + LivgU + L(F? + G?)
+m(AF + BG) & imarp (33)
+9(A%F ©B?*F 4+ 2ABG) <gi)(A + iv5B).
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One can also calculate the infinitesimal transformations under supersymmetry of these compo-
nents, that is, the counterparts of eqs. (25). Using relations in Appendix C, we get:

0A = av
0B = <iayV
SO = wig(A sivsB)a+ (F oivs@)a (34)

0F = <iad¥
0G = @@75@\11
where « is an infinitesimal Majorana parameter.

The fields F' and G are auxiliary since they have no derivative terms. They can be eliminated
by using their equations of motion:

F = &mAsg(A* <B?)
G = &mB&29AB (35)
We have
%(F2 + GZ) — %mZ(AZ +B2) + %92(A2 +BZ)2 —I—mgA(AZ —i—BZ)
m(AF + BG) = em?(A% 4+ B?) emgA(A? + B?)
g(A’F ©B?F 4+ 2ABG) = <«mgA(A% + B?) ©¢%(A% + B?)?

and the component Lagrangian becomes:
Lwz = 3(0,4)*+1(0,B)? &im?A* «im?B?
+3i0P¥ SimIT <gU(A +ivsB)¥ (36)
emgA(A? + B?) @%92(A2 + B?)?
Note that the scalar fields have gotten mass terms with the same mass as the fermion. The
Lagrangian (33) is invariant under supersymmetry regardless of whether the equations of motion
(35) are satisfied or not, i.e. it is off-shell invariant. For eq. (36) to be invariant, the eqs. (35)
must hold, i.e. it is invariant only on-shell. What’s more, the number of bosonic and fermionic
degrees of freedom match in both cases: four real scalar fields and four components of a fermion
off-shell, and two real fields and two components of a Majorana fermion on-shell.

Lagrangians with chiral superfields may have additional symmetries known as R-symmetries.
An R-symmetry acts on a chiral field with R-charge n as:

O(z,0) — "D (z,e 0)

o (z,0) — e (1, 0). (37)
In components this is:

A — "4

- ei(n—l)al/)

F — 0 2aep

Because the R-transformations acts on the 0’s we also have:

d?0 — e %29
d’0 — e d%h.
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From eq. (37) we see that the product of two chiral fields with R-charges n; and ng has R-
charge n; 4+ ne. Thus, a chiral term in a Lagrangian is R-invariant if it is a product of fields
with R-charges that adds up to n = 2.

One example is a model with three chiral fields ®q, ®; and ®5 with R-charges ng =2, n; =0
and ny = 2, respectively [14]. The most general renormalizable R-invariant interaction that we
can build from these fields is:

Lot = /d29(>\0<1>0 Aoy + (mo®y + ma®y)®,
+(90Po + g2P2)P1P1) + h.c.
The Lagrangian can be restricted further if we require invariance under the discrete symmetry:
D19 — D19, Dy — Py.
The result is:

['z'nt = /d20(>\0(1)0 + mgq)Q(I)l + go<I>0<I>1<I>1) + h.c. (38)

This is known as the O’Raifeartaigh model.

2.4 The supercurrent

We started this chapter by taking the supersymmetry algebra to be the underlying symmetry
algebra of our theory. Then, from representations of this algebra on fields we were able to
build invariant Lagrangians. By standard field theoretical arguments it is also possible to go
the other way. We start with a Lagrangian that depends on some fields ¢; and their derivatives:
L = L(¢;,0u¢i). A symmetry of the theory defined by this Lagrangian is a set of transformations
d¢; on the fields such that

L = 9,K",

where K* is a function of the fields that vanishes sufficiently fast at infinity. This ensures that
the action is invariant:

58 = / dwoL = 0.

At the same time the increment in the Lagrangian can be written as

5L = 0, (Laq)i)

8(aﬂ¢i)
by using the equations of motion, which enables us to define a conserved current
0 oL
L= ——0¢p; &K
B dar <8(8/‘¢Z~) b ) ’

where o are infinitesimal (possibly Grassmann) parameters of the transformation. The gener-
ators of the symmetry is given by the charges

Q" = / dBzJy.

One can then go on to calculate the algebra of the generators by using the canonical equal-time
commutation relations

[B(2), Doply)] = i6®) (z <)
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for a scalar field ¢, and the anti-commutation relations

{$a(2), 8 ()} = 6ap0® (& <)
for a (four) spinor .

Let us try to calculate the supersymmetry current (the “supercurrent”) J¥ of the Wess-
Zumino model. The Lagrangian is given by eq. (33) and the fields transform by eqs. (34). First
let us find 0L,

0Lpyin, = O0"A0 A+ 0"BO,OB
+5i0Py"Outp + Lty 0,00
+FiF + GéG.

The expression for §¢) is obtained from 4 by using the Majorana flip properties (see Appendix
B):

01p = iady\(A iy B)y + a(F <ivsG).
Inserting this along with the other transformations we get
Lay" v O\(A ©iv5B)Outp + 2av"+*0,0\(A <ivs B)y
elia(F <ivsG)y oy etian"0,(F + ivsG)p,
where we have used some more flip identities to write the expression entirely in terms of a. We

have also used {y#,7} = 2¢g** and the fact that 7“7AOM6A = 0,,0" because of the symmetry in
i and A. All in all we get

0Lpin = 300, (V' O\(A ©ivs B)tp <i(F <ivsG)y"y).
8Lmass and 6L;n; can be calculated in a similar way. We will only state the results, which are®:
0Lmass = €imad,(v'(A +iysB)p),
WLint = ©igadu(v"(A +ivsB)*).
Thus we see that the Lagrangian transforms as a total divergence:
0L = 0, KH,
where
Kt = Jay"y 0\(A iy By &5ia(F <iysG)y'y
simy" (A +ivsB)y <igy" (A +ivsB)*.
We can now go on to calculate the supercurrent:

0 _
JH = 8—_(8“A6A + 0"BOB + Lipy"syp < KH)
o
= V(A +ins By + imy" (A +ins B)ip + igy" (A + ins B) 4. (39)
This is a spinor, as we have already mentioned.
An important fact about the current (39) is that it exist in an interacting theory. It is
easy to construct conserved supersymmetry currents for free theories, but it is difficult to pre-
serve this when interactions are added, unless we are dealing with “real” supersymmetry and

8The Majorana spinor ¥ from the previous section is now just called ‘¢)".
9To verify the expression for §L;n:, we need the identity (1)) = —v5(Ppys1)).
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supersymmetry preserving interactions. An example of this is the free field toy model defined
by

Lioy = 5(0uA)" + 3ipPip.
This theory has the supersymmetry

0A = ap,

& = i0,Av"a,
with the conserved supercurrent

Ji = Lo, Ay,
which can readily be verified by using the equations of motion OA = 0 and y*d,1 = 0. The
supersymmetry is a trivial one in the sense that it cannot be maintained if we add interaction

terms to the Lagrangian. This should come as no surprise since the number of fermionic and
bosonic degrees of freedom are not the same.

2.5 Supersymmetric gauge theories

In this section we will generalize gauge theories to also have supersymmetry. This has the
consequence of introducing particles that are supersymmetric partners to the usual gauge bosons.
In the abelian case this is the “photino”, and in the non-abelian case it is the “gluinos”. These
particles are spin % fermions. Let us start with abelian gauge theories.

We want to find the supersymmetric generalization of the gauge transformation

V=V + 0, (40)

where V), is the gauge field and « is a local phase. We have already noted that the real vector
superfield V, which satisfies V' = VT, generalizes the four-vector field V,. In order to maintain
invariance under supersymmetry, we must also generalize the field a to a superfield. This can
be done with the chiral superfield A, in which case the super-generalized gauge transformation
can be taken to be

V = V +i(A oAl (41)
This will also be called a gauge transformation. To see that this generalizes the transformation
(40), let us expand the field A, which is chiral, on its components. We have

A = L(A&iB)+ 0y + 300(F +iG) ©L1i05"00,(A <iB)

+5i000(0,1pot) 200000(A <iB),
so that
i(AeA) = B4y <ibp + Lid0(F + iG) ©1i00(F <iG)
+00"00, A +i000(3i0,pat) +i000(3ic" 0,¢) <100000B.
Since we were so clever in our choice of component fields in eq. (21), we can now read off the
gauge transformations in components:

C C+B
X+
M+ F
N+G
V,+0,A
A
D

1

9> 22
R
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Now we see that the field V,, transforms just like a gauge field should. The transformation leaves
A and D are invariant. C, x, M and N, however, can be gauged away by choosing

B = «C
Y o= ex
F = &M
G = &N

This choice of gauge is called the Wess-Zumino gauge, or WZ-gauge. In the WZ-gauge the
superfield V' becomes:

Vivz = 000V, <i000X + i000 + $0000D.
Note that after we have fixed the WZ-gauge, we still have the freedom of transforming the
V,-field by the usual gauge transformations.

Now that we have the superfield that generalizes a gauge field, we must use this to find the
superfield that generalizes a gauge invariant field strength. We will then be close to having a
Lagrangian that is both gauge invariant and super-invariant. One systematic way of finding this
field would be to set up differential geometry in superspace and introduce fiber bundles. The
vector superfield V' would then be a connection and the field strength would be a curvature, just
like in the ordinary fiber bundle formulation of gauge theories. We will only give the result of
this investigation since we will anyhow see that the field strength superfield contains the usual
field strength as a component. The field we are looking for is:

Wo =<tDDD,V. (42)
It is chiral because of the anticommutativity of the D’s:
D;Wa = 0.
It is also gauge invariant, since, under gauge transformations:
Wo — W, = &IDDD.(V +i(A <Ah)
= ©IDDD,V <1iDDDyA
= ©IDDD,V <1iD{D, Dy }A
= ©1DDD,V =W,
The component form can be calculated most easily in the y-coordinates (and in the WZ-gauge),
where the field V' is
V = 00"0V,, <i000X + 000X + 10000(D <id, V").

Now we have

002
= (0"0)aV, ©2i0,0) +i00X, + 0,00(D <id, V")
i00(0"5"0)00,V, + 0000(c" 9\ )
= (0"0)aV, ©2i0,0\ +i00X, + 0,00D
+300(5"0) o Fpu + 0000(" 0N ) o,

D,V = (i @27:(0—“6)@8“)‘/

where F),, = d,V, <0,V is the usual field strength tensor, and we finally get:

0 0

29 p,v

2600 ° )
= ©i\g ©0,D &1(0"0)oF,, <00(5"9u)\)a.

Wo = ©iDDD,V =&
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The Lagrangian is now found from
W Walgg = 2iA0" 0\ + D* &5 F,, FM <1iF,, F",
where F’W = %EWMF”". The result is:

L = i/dQQW“Wa + hee.
= ©LF2, + 5iAA + §D?, (43)

where we have integrated by parts and introduced the Majorana spinor A which is built from
A. The integration by parts gets rid of the FF-term, which is fine in an abelian theory, but
in non-abelian theories non-trivial field configurations exist which may not allow us to do this.
The spinor superfield W, is gauge invariant, so using other gauges than the WZ-gauge will not
introduce any other components from the field V' than the fields F},,, A and D already present.
This reflects the fact that these fields only transforms into each other under supersymmetry and
so constitute an irreducible supermultiplet. While V), describes the photon and A the photino,
the field D is auxiliary, as we can see from the Lagrangian (43). In the pure gauge theory it
vanishes by the equations of motion, but it will couple to other fields when we include matter.
We also note that W, and W satisfy

DWW, = DyW¢,

which follows from the definition (42) and its conjugate since V' is real. This equation also
appears in the fiber bundle treatment, where it is the super-generalized Bianchi-identity.
Matter is included by using two chiral fields S; and S5 in the complex combinations

1 1

V2 V2

where we have introduced the notation S; for the complex conjugate of S;. Note that T is not
just the conjugate of S. It is needed in order to get a sensible gauge invariant mass term. The
fact that we use complex superfields is analogous to ordinary field theory where e.g. charged
scalar fields are complex. Global phase transformations by a parameter A is then given by:

S (Sl + ZSQ) and T (§1 + igg),

S — e7290G, T — e 29T,

where g is the charge of the fields. The Lagrangian
Lonatter = 2 / d*0(SS +TT)+m / d*0TS + h.c. (44)

is invariant under this symmetry, which we now want to gauge. But making A\ a function of
space-time is not enough: if S’ and T" are to remain chiral superfields, A must be promoted to
a chiral superfield A in the following way:

S — e 29Mg  DLA=0
T — e 29hp  poAT=o0.

With this definition of a gauge transformation, the mass terms of the Lagrangian (44) are still
invariant. The kinetic terms are not, however. Instead they transform by

SS — S§Se 2ig(A-AT)
TT — TTe2e(A AN, (45)
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It is now clear that an invariant kinetic term is constructed by coupling this to the vector
superfield V' in the combination

Se?V's  and  TVT.
These terms look non-linear because of the exponentials. However, in the WZ-gauge,
V2= 10000V, V", ~ V"=0, n>3,
so the expansion of the exponential will terminate and we have:
Se?V' S + Te VT = SS+TT+ 29V (55 <TT)
+2¢*V3(8S +TT)
= 9151 + 5'282 + QiQV(Sl;SQ @9251)
+2Q2V2(§151 + gQSQ)
(in the WZ-gauge). The mass terms are:
mTS = Im(S} + S3)
and its hermitean conjugate. The Lagrangian for the matter is obtained by taking the D-terms
of the kinetic terms and the F-terms of the mass terms,
Lonatier = 2 / 4*0(529V S + Te 29V T) +m / Q0TS + h.c.
In components this is:
Lmatter = %(auAl)Q + %(auA2)2 + %(8MBI)2 + %(8MB2)2
b1 P + giaPs + 3 (FY + F5 + G + GY)
<~ xd _
©9(A10, Az + By 0y Bo)VF &igp1yH eV,
SEgA (Ao iy Bo)r + 59A (A1 <iys Br)io
+9(A1By ©B1A3)D <1g%(A] + A3 + Bf + B3)V,?
+m(A1Fy + B1Gy + Ao Fy + ByGy) & smapiipy < Smapaips,

ud
where A0, B = A(0,B) <(0,A)B. If we put this together with the gauge field Lagrangian (43)
and use the equations of motion:

D = <:>g(A1B2 <:>BlA2)
F;, = <:>mAZ-, Gl = <:>ITLBZ', 1= 1,2
to eliminate the auxiliary fields, we get:
L = @Zij LidA + (9, 41)% + 1(9,42)?
+3(0y B1) + 2(0,B2)? + it 1 + Sihaipo
“ _
( 8” Ay + By 8” By + Z.I/)l’}’”l/)Q)VM
)\(Al <=>’i’Y5Bl)1/)2 @%gA(AQ <:>'i’Y5BQ)1/)1
2(A2 + A + B% + .B%)V;L2 <=>92(A132 <=>BlA2)2
m? (A7 + A3 + B} + B3) ©5mibiihr & 5mibaihy

The Majorana fermions t; and 5 can be thought of as the left- and right-handed parts of a
Dirac fermion — the electron. The supersymmetric scalar partners are the “selectrons”.

% Fob
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One can easily generalize all this to non-abelian gauge theories with compact gauge groups.
The transformation laws for the matter superfields are now:

S = WA A= AT,
T — eigATT,

where A is Lie algebra valued and T, are the generators of the gauge group in some representa-
tion. In this case, if the kinetic terms

SedV S + Te VT

are to be invariant, the following transformation law for the (Lie-algebra valued) superfield V'
must hold:

IV e—igAT egVeigA’
or, for infinitesimal A:
V =V +i(A eAl) el[A+ AT V).
The field strength superfield is now:
W = @iDDefgvDaegV,
which transforms covariantly:
W, — e AW, e,
A supersymmetric Lagrangian of the gauge field is then!V:

L=1 /dZQTrWaWa + hee.

If the representation of the group is real in the sense that the generators 7% are antisymmetric,
then

AT=eA and V!'=sV,
and we can make the identification

T=25.
We have then the kinetic term Se?" S and the mass term mS?:

L= / d195e9V S + / d20mS? + h.c.
If, for example, the matter field S transforms as the adjoint representation, we have the La-
grangian:

L= SLFLF™ 1 LN DA + (DAY + J(D,BY)? + big* Py

+3gTrA[A ©iys B, ) + 3¢°Tr[A, B> ©im?A°A® ©1im? BB < Limy "y

In the massless limit of this theory we have a new symmetry between A and . If we define
1 = X and Yy = 1, we get
L = &pF P 4 gl Pp? + 5(DuAY)? + 5(Dy BY)?
+39¢i; Tr([', (A ©ivsB)y’] + 39°Tr[A, B],

'"%We will always use a normalization of the generators so that TrAB = $A*B®.
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where the new symmetry is realized as the SU(2) transformations of ¢;. This symmetry is
“another” supersymmetry so we really have N = 2. The SU(2) symmetry acts on the two
spinor supersymmetry generators of N = 2. In fact, with the gauge group SU(2) this is the
theory which plays a leading role in this report, and we will examine it in detail later on. Let
us just record the supersymmetry current in this model, which is

St = Tr(Fpoo” v U; + €A Sivs B)y" U + igys[A, B]U;).

)

From this current one can calculate the N = 2 supersymmetry algebra.
Let us also record the Lagrangian of the pure N = 4 Yang-Mills theory for the sake of
completeness. In components it is [15]:

L = &LFLF™ 4 LXDA + Ligf Py + (D, AL + 3(D,Bf)?
@gTrz/_)i[iain + ’iﬁiji’)/5, 1/)11 + %gZTr[Ai, Aj][Ai, A]’]
+359°Tx[B;, Bj][B;, B;] + 59°Tr[A;, bj][As, By,

where 4,7 = 1,2,3, and «; and §; are 4 X 4 matrices that satisfy a certain algebra. All fields are
in the adjoint of the gauge group. The field content of this theory corresponds to Ex. 5 in Sec.
2.1. In terms of N = 1 multiplets, it consistes of a gauge multiplet and three chiral multiplets.

3 Non-renormalization theorems and exact potentials

3.1 Renormalization and perturbation theory

So far we have only considered supersymmetry at the classical level. We will now discuss renor-
malization. It turns out that supersymmetric theories has “nice” renormalization properties.
Historically this was discovered in perturbation theory where one found that divergences were
at most logarithmic. Linear and higher order divergences were absent. This enabled people
to formulate perturbative non-renormalization theorems [16]. Eventually, however, one realized
that non-renormalization could be seen as a consequence of the fact that supersymmetric actions
are written in terms of holomorphic, or analytic, functions of the fields and the parameters of
the theory [17]. This means that we can make statements of the renormalization properties
of a supersymmetric theory also non-perturbatively''. Let us start by discussing perturbation
theory.

Generally, if a Lagrangian possesses a symmetry, this improves its renormalization properties.
For instance, in QED, where the Lagrangian has a gauge symmetry, the Ward identities make
Z3, the wave function renormalization factor of the electron (the term Zth@ip), equal to Zy, the
renormalization factor of the gauge coupling (the term Zyish As)), just as it should be in order to
preserve the gauge invariance of the combination Iy = 1@ + itp A+p under renormalization.
A similar thing is true when the symmetry in question is a supersymmetry.

In perturbation theory, we can understand the nice renormalization properties of a super-
symmetric theory in the following heuristic way. In Feynman diagrams, closed fermion loops
have negative signs attached to them, whereas boson loops have positive signs. Because of su-
persymmetry the number of fermionic degrees of freedom is the same as the number of bosonic,
so the contributions to, say, Green’s functions from loops tend to cancel out.

It is possible to set up perturbation theory in superspace in the sense that the propagating
fields in the Feynman diagrams are superfields. Thus one single Feynman supergraph “contains”
several ordinary diagrams. The machinery that is needed for this super-perturbation theory is

"I A short review on these matters are Ref. [2].

25



complicated and will not be dealt with in this report, but the lesson to be learned is that
quantum corrections in the effective action'? are of the form

/d49/d4m1---d4:1:nF1(:1:1,9,9)---Fn(mn,ﬁ,é)G’(ml,...,mn),

i.e. one single integration over the entire superspace [16]. This means that the parts of the
classical, or tree level, action that are given by chiral integrals over superspace is not renormalized
in perturbation theory. If we consider the Wess-Zumino model with a single chiral superfield @,

Ly = /d49q)fq) + /d20 (%m(l)Z + %9@3) + h.c.,

we see that the mass and self-coupling term is expressed by such a chiral integration. When we
include the quantum corrections, this goes into

Zo [ d'0010 + [ @2 (3md? + 3g0") + hc.

where Zg is the wave function renormalization factor, so by rescaling the field ® we have

m — qulm and g — Z;?’/Qg.

From standard renormalization theory we know that wave function renormalizations are only
logarithmically divergent, and so the renormalized mass and coupling constant diverges as a
logarithm (or as a power of a logarithm).

3.2 The Wilsonian effective action

As we have already mentioned, the renormalization properties of supersymmetric theories, e.g.
the non-renormalization theorems in perturbation theory, can be seen in a much wider per-
spective. This has to do with the structure of supersymmetric theories, in the sense that La-
grangians often can be expressed in terms of holomorphic functions [17, 2]. For example, in the
Wess-Zumino model, the superpotential

/d20 (%mqﬂ + %gfb?’) (46)

is a function of ® only and not a function of the conjugate field ®'. The converse is true for the
“h.c.”-term. But this is the definition of a holomorphic function:

0
£f(z, Z) = 0 < f is holomorphic.

46) can therefore be written as
[ o5 (@),

where

Eq. (

f(z) = %mz2 + %gz3.

These circumstances form the basis of powerful non-renormalization theorems which are not
restricted to perturbation theory but contains the perturbative theorems as special cases. It is
important to understand that the non-renormalization theorems are statements about the so-
called Wilsonian effective action, which we will call Sy, rather than the more familiar effective

12(Effective action’ is to be understood as Wilson’s effective action, see below.
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action, the one-particle irreducible (1PI) action, usually called , [18]. We will therefore explain
what the Wilson action is, and what the difference between that and the 1PI-action is.

First of all, we are interested in calculating physical quantities such as scattering amplitudes,
i.e. Green’s functions. We do this by regularizing our theory by introducing a large momentum
cutoff A. The Green’s functions are then given in perturbation theory by expanding on all
possible Feynman diagrams and loop integrations are carried out only for momenta p up to
the cutoff: 0 < p < A. If we use the Feynman rules derived from the classical (or tree level)
Lagrangian for this, we are going to get results that depend on A in such a way that they diverge
as A is taken to infinity. However, if we are dealing with renormalizable theories, it is possible
to add counterterms to the classical Lagrangian so that we can define the bare Lagrangian

['bare(A) = Liree + counterterms

This new, bare Lagrangian has the same form as the tree level Lagrangian, but the coefficients
in Lpgre, such as coupling constants, are functions of A in such a way that the Green’s functions
calculated from the corresponding Feynman rules are independent of A. A can then be taken
to infinity without the Green’s functions diverging. The bare action S(A) is defined as the
spacetime integral of Lyge(A):

S(A) = / 4“2 Lore(A).

We should recall that an action is really a functional of a field configuration: S(A)[n], where n
is the field'3. A field 5 has a decomposition in terms of modes, or frequencies, but when the
theory is completely specified by giving a cutoff A, the field  must contain only modes with
frequencies less than or equal to A. Alternatively, a field that is composed of a single mode of
frequency greater than A has action S(A) equal to zero. The Wilsonian effective action Sy is
defined at a low energy p. Usually we have p < A. Tt is related to S by the path integral

ciSw (4] — / dneiSVB+] (47)
u<p<A

where p is the energy modes of the paths in the path integral and ¢ is the field configuration
on which Sy is evaluated. ¢ contains only modes with energy less than p. 7 is a field which
contains modes between i and A, and thus the high energy modes have been “integrated out”
to give an effective description of the physics at low energies. At low energies, Sy (i) contains
the same amount of information as S(A).

Perturbatively we can think of Sy as having an expansion in terms of Feynman diagrams,
just like , , but loop momenta run only from u to A. Thus the Wilsonian effective action contains
the same “structures” as the 1PI effective action, but the loop momenta of the latter run from
zero to A. The 1PI-action is also a function of a low energy scale i, namely the renormalization
point. The 1PI-action contains physical quantities such as coupling constants directly. If we
want to extract this information from Sy we still need to do loop integrals where 0 < p < p.
Equivalently, this amounts to doing the “residual” path integral over the low energy modes.

The great benefit of working with Sy rather than , for the low energy effective description,
is the following: if S can be expressed in terms of holomorphic functions so can Syy. This is true
because the process of extracting the Wilsonian action from the original action, as in (47), can
be done in a continuous way. The range of high energy modes from p to A can be divided into
infinitesimal parts and then be path integrated over one by one. Clearly this conserves properties
of the action such as holomorphy. The same thing is not true for , , where infrared effects can

13Technically speaking, one should distinguish between the concept of a ‘field’ and the concept of a “field
configuration’. We use the symbol ‘n’ for both in the text, trusting it will not cause any confusion.
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introduce “holomorphic anomalies” [18]. Such effects can be traced back to the presence of
massless interacting particles. In fact, in the absence of massless interacting particles the two
effective actions are the same. Since holomorphic functions are much more restricted than non-
holomorphic functions, we may sometimes be able to determine the effective action Sy exactly.
This means that we have found all the quantum corrections to the tree level action to all orders
in perturbation theory and otherwise (i.e. non-perturbative effects).

3.3 Holomorphy and non-renormalization

We are now in condition to state the non-perturbative equivalent to the non-renormalization
theorem. This is a statement about the effective superpotential W,z in the Wilsonian action.
The Wilsonian action Sy can be defined at any energy scale u < Acytopr, but usually p will be
some dynamical energy scale that exists in the theory: p = Agynamicar- For example this can be
the scale set by the expectation value of a Higgs field. We will simply call this scale ‘A’, as the
cutoff-energy is considered to be infinitely large. W,; is then a function of the fields ®; of the
theory, the coupling parameters A; and the dynamical scale A:

Wepr = Wepr (@i, A1, A).

Here, ¢+ and I are indices numbering the various fields and coupling constants. We use the
terminology that ‘coupling constants’ includes masses. Other examples are gauge coupling
constants or f-angles that measure CP-violation. We will find it useful to think of coupling
constants as (possibly complex) background fields. These fields will be full dynamical fields if
we embed our theory in some hypothetical high energy theory. At the energies where our theory
is a relevant description of the physics, these fields are “frozen” in their “vacuum” expectation
values, and thus appear to be constants. A well known example of a coupling constant that is
sometimes treated as a field is the axion, or Peccei-Quinn field, whose vacuum expectation value
is a f-angle. The statement of the theorem is now that W, s possesses the following properties
[17]:

1. Holomorphy: W,y is holomorphic in ®;, A\; and A.

2. Symmetries: We can assign transformation laws to the coupling constants such that the
tree level Lagrangian gets an enlarged symmetry. The effective Lagrangian must then also
be invariant under this enlarged symmetry. Anomalies can be taken care of in a similar
way by treating the scale A as a background field and assign appropriate transformation
laws to it.

3. Various limits: The behaviour of Wy can be determined for asymptotic values of its
arguments, e.g. the weak coupling limit.

Note that this “new” non-renormalization theorem works in a positive way, in the sense that
it narrows down the possible form of the effective superpotential, and it is often possible to
determine this ezactly. Note also that although we have formulated it that way, the non-
renormalization theorem works for any chiral structure of the Lagrangian, like the gauge kinetic
terms, and not just the superpotential.

Let us use this on the simplest version of the Wess-Zumino model, that is, the one with
a single chiral field ® [17]. In the previous section we saw that W is not renormalized in
perturbation theory (except for the common wave function factor). The tree level superpotential
is

Wiree = 3m®? + 1g®3.
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The theory has an R-symmetry if the parameter ¢ is charged under this symmetry. The point
is that W must have R-charge 2 if [ d?0W is to be invariant. We can also identify another U(1)
symmetry. All in all, the various charges are as follows:

U(l) x U@1)g

d 1 1
m <2 0
g <3 sl

The fact that m and g appear as coupling constants in our theory means that the symmetries
under which they are charged are “spontaneously broken”. It is easy to see that the most general
form of the effective superpotential that satisfies the symmetries and holomorphy is

g®
Wosr = 4t ().

where f is a holomorphic function. Since f is analytic, we can expand it in a power series. This
cannot contain negative powers of g because then the weak coupling limit of W, would not be
well behaved. Thus we have

o0
Weypr = Z an

n=0

n(I)n-i-Q

mn—l g
The n’th term of this expansion has the interpretation of a tree diagram with n + 2 external
legs, n vertices and n <1 propagators. For n > 1 this is not 1PI and it should not be included
in the effective superpotential. Note that structures that are absent from , must also be absent
from Sy, while the converse is in general not true as a consequence of the possible “holomorphic
anomalies” previously mentioned. To conclude, the effective superpotential is

Weff = %mI(I)Q + %91@3 = Wiree,

and so the superpotential is not renormalized neither perturbatively nor non-perturbatively.

3.4 SUSY QCD and moduli spaces

Supersymmetric QCD, or SUSY QCD for short, is the supersymmetric version of a theory with
a local color symmetry and a global flavor symmetry. It offers a more complicated example of
the use of the non-renormalization theorem [19, 20]. It will also serve to introduce the concept
of ‘moduli space’.

In SUSY QCD it is customary to leave the number of colors N, and the number of flavors
Ny unspecified. Expressing the quantities of the theory as functions of these parameters will
then give us information on the theory. We will see an example of this below, where we also
will realize that SUSY QCD has nothing to do with real QCD - it should be considered as a
toy model.

The theory has SU(N.) as gauge group, with Ny chiral superfields in the fundamental
representation and Ny in the antifundamental representation, i.e. the representation that is
carried by the fields T' from the section on gauge theories in the last chapter:

Wa = {:}iAa @%(U'UVH)QFHV A )
Qi = ¢+0p;i+---,
Q; = G+Oy+--, dGi=1...,Ny

The color indices are not displayed. The superfield W, consists of the gluinos A, and the gluon
field strength F),,, while the superfield @Q; consists of the “squarks” ¢; and quarks ;. The
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superfield Q; has the corresponding antisquarks and antiquarks as components. In the absence
of explicit mass terms the classical Lagrangian is

L= / d0(QeVQ + Qe V Q) + 1 / POW W 4 h.c.

Our task is now to determine the effective superpotential W,y of this theory by using the
non-renormalization theorem.

Before we do that, however, let us make a digression about scalar potentials and spontaneous
symmetry breaking in supersymmetric theories. In a sense this is a continuation of Chapter 2
on the elements of supersymmetry. From kinetic Lagrangians of the type [ d*0®;e" ®; we get
the term F™ F?, where F}* are the auxiliary fields in ®{, see e.g. eq. (28). F;* also enters in the
superpotential [ d20W (®;), if there is one. Let us analyze this. Suppose that W is any analytic
function of ®; so that it has the power series expansion

W((I)l) = Zcil"'izvq)il s (I)iN-
n

We are thinking of effective Lagrangians and not just bare Lagrangians. Two of the terms in
the expansion are given by egs. (26) and (27). We can from this induce that the general form
of W is

oW (4;)
0A;

OW (4)

W (4;)

0
@iz/)ﬂ/{jaj

i04;

when expanded on the spinor coordinates. What we then learn is that the equation of motion
for F{"* is

Fy = W,

so that the contribution to the scalar potential V' (A;) from the superpotential W is:

Vi =555,

There is also a contribution that originates from the gauge kinetic term [ d20W*W,, namely
the component

iy o
a

see e.g. eq. (43). The auxiliary fields D® also appear in the matter kinetic terms. This has the
result that the equation of motion is

where T, are the generators of the gauge symmetry in the representation of the field A;. All
in all the complete scalar potential is

ow 2 1.2 *rpa ’

The presence of such a scalar potential in a theory may break the gauge or global symmetries,
and we need to know how this affects the supersymmetry. In this report we are interested in
effective theories with manifest supersymmetry at low energies. It is therefore necessary that
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supersymmetry is not spontaneously broken. Spontaneously broken supersymmetry means that
the vacuum is not annihilated by some of the generators of supersymmetry:

Qa|0) # 0, Q4|0) #0, some a Or d.

The point is now that spontaneous breaking of supersymmetry does not happen if and only
if the minimum of the scalar potential is ezactly zero. This can be seen from eq. (8). When
sandwiched between to vacuum states this gives

(B) =1 1Qal0}]I%,

which proves the statement. Thus the spontaneous breaking of a gauge or global internal
symmetry and the spontaneous breaking of supersymmetry are independent phenomena. This
ends our digression.

We return now to SUSY QCD. At the tree level there is no superpotential so the only
contribution to the potential for the scalar fields ¢; and ¢; is the gauge D-terms of eq. (48).
They turn out to be

D" = gq,Tq' @gEng“qf.

The potential that is built from this is positive, so a zero of the potential is a minimum. Thus
we need to solve the equation D = 0 to find the minima of the potential. To cut a long story
short we will only give the results. By using our freedom to perform gauge and global symmetry
transformations the results can be written in the form

ai
~ a2
¢=q= . :
aNf
for Ny < N, and
al Z7!1
a9 C~12
q = ) q = ?
an, ch

for Ny > N.. The notation here is that the color indices run along the columns of the matrices
and the flavor indices run along the rows. Blank spaces means zero and the a’s and a’s are
arbitrary complex numbers. The fact that the zeros of the potential — i.e. the vacua of the
theory — are characterized by arbitrary numbers is very important. Note that the degeneracy of
the ground states of the theory that is a consequence of this arbitrariness has nothing to do with
the symmetries of the theory. This space of physically inequivalent ground states parametrized
by the a’s and &’s is the moduli space, sometimes called the flat directions of the potential. The
actual ground state that the system chooses is not decided within the theory. In this sense the
moduli space is part of the parameter space of the theory.

Thus far we have been working at the classical level. We now turn to the quantum theory.
We are in particular interested in what happens to the degeneracy of the classical moduli space
when quantum corrections are included. To find out we must use the non-renormalization
theorem to see if a superpotential is generated that lifts this degeneracy (which would make the
degeneracy “accidental”). In the spirit of our non-renormalization theorem we must identify
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the symmetries of the theory. Classically, the global symmetry is U(Ny)r, x U(Ng)r x U(1)x,
where the U(Ny);, x U(Ny)g is a QCD-type symmetry that rotates separately the @ and Q
fields. The two U(1)’s in this are a vector and axial vector symmetry, respectively. U(1)x is an
R-symmetry that acts by

Wa(0) — e W, (e0)
Q) - Q)
Q) — Qo)
At the level of the component fermions, this is
A o ety
b = €Y
b = &
The point is now that this is a y5-symmetry in the language of four-spinors. For instance, in
the case of the Majorana spinor A built from A:

[ A e N, | —ias

This is a chiral symmetry, which is anomalous. The divergence of the current that belongs to
this symmetry is given by the standard expression
9°N

Oult = TS F B,

where N is the number of fermions that contributes to the anomaly. For the U(1) xy-symmetry
this number is Ny & N,.. The ‘N’ is the number of Dirac spinors that is constructed from the
1; and z/;;. The ‘N, is associated with the gluinos and is found by a proper investigation of the
relevant triangle graphs. There is a ‘<’ in front of ‘IV.’ because the A’s and the ’s and 1/;’8 are
oppositely charged under U(1) x. A similar anomaly exists for the axial vector symmetry U(1) 4.
We can actually make an anomaly free U(1)g-symmetry from U(1)x and U(1)4 by taking an
appropriate linear combination of them so that

Oy = 0.
Without going into details, one then finds that this symmetry acts by
Wo — e W, ()
Q(Q) N eia(chNf)/NfQ(eiag)
Q(Q) N eia(chNf)/NfQ(eiag)
Thus the global symmetry of the quantum theory is SU(Ny) x SU(Ny) x U(1)y x U(1)g.

By the non-renormalization theorem we must now construct the most general superpotential
that is holomorphic in (); and @Q; and is invariant under the symmetries. This turns out to be
[19, 20]:

3Nc—Nj

A NNy
. 1
(det QQ) s
where A is the dynamical scale (like the familiar Agcp) and the determinant is over the flavor
indices. Only the numerical factor in front of this expression involves a choice, which corresponds

Wesr = (Ne < Ny) (49)
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to a choice of renormalization scheme. The functional form of W, is deduced in the following
way. The combination QzQi (with contraction in the color indices) is needed for gauge invariance,
while the determinant is needed to get invariance under flavor-rotations. W,z should have
U (1) g-charge 2, and this determines the power of det QQ. We are only left with the power of A,
which must then be chosen so that the mass dimension is correct. From the non-renormalization
theorem we now understand that if a superpotential is generated, it must have the form of eq.
(49), or it is not generated at all.

If Ny = N, the expression (49) makes no sense because of the powers in the exponents. If
Ny > N, the determinant vanishes identically. Either way, the potential (49) is not generated,
and there is a quantum moduli space. For a generic point in the classical moduli space, all
the symmetries of the theory are broken. In particular, there are massive gluons and gluinos
because of the Higgs mechanism. These particles can then be “integrated out” of the low energy
description by solving their equations of motion and inserting the solutions in the effective
Lagrangian. At some points (or hypersurfaces) of the moduli space, however, like the origin,
broken gauge symmetries are restored. The effective description where the gauge particles are
integrated out then becomes singular at these points. These points are therefore singularities
of the classical moduli space. One can investigate if similar properties exist for the quantum
moduli space. If one does this, one finds that for Ny = N,, the muduli space is smooth, or
singularity free. For Ny > N, there are singularities, which in this case has the interpretation
that some composite objects become massless. The fact that it is not the gauge particles that
becomes massless means that the SU(N,) gauge symmetry is completely broken in the quantum
theory!

If Ny < N, the superpotential is generated. For Ny = N, <1 it is generated by instantons,
and for Ny < N.<1 by gluino condensation, where ‘gluino condensation’ means that (A*\,) # 0.
Supersymmetry is then broken, but the potential does not have a minimum: it slopes to zero at
infinity. Then there are no ground states, which does not make sense in quantum field theory!
This concludes our discussion of SUSY QCD.

3.5 N =2 supersymmetry

In our pursuit of increasing complexity we have now come to the point where it is appropriate
to discuss the N = 2 supersymmetric theory in more detail. This is the theory of our main
interest. We have previously mentioned that the NV = 1 gauge theory with massless matter
fields in the adjoint has a “second supersymmetry”. This turns out to be a pure N = 2 gauge
theory without matter.

The N = 2 theory can be developed in close analogy to the N = 1. We will not go into any
details — merely state some results that will be relevant to us. Superspace is introduced with
coordinates (z*,0%, éf‘), where 7,7 = 1,2 and the 8’s anticommute

(0,07} = (5,01} = (6,8} =0.

In the general case, we would also have needed a complex coordinate corresponding to the central
charges, but in the situations where the N = 2 superspace formalism is relevant these are always
represented by zero. The supersymmetry generators )%, and ()% are then represented by

Qa = 42)%8#0?4—(0#9)048‘“

_ 9 .
Qa = iggs <(00")a0,
)
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and the differential operators D and D% by

. o o
Dy = oz @ild"0)40,
Di = 0 L)
a = WJFZ( )60
[0

A superfield, which is a function on the N = 2 superspace, is in general not irreducible and
should therefore be constrained. One possible constraint is the chiral constraint

DL (a",6%,07) = 0. (50)

A superfield ¥ which satisfies this is a function of the variables y* = z# @iHO‘iUg Béiﬁ and 67,
because

Diy* =0 and Dé% =0.

Unlike the N = 1 case, however, an N = 2 chiral superfield is still reducible and we need to
impose more constraints to make it irreducible. A good constraint turns out to be

D{'Doj ¥ = Dg; D! (51)

in which case ¥ corresponds to the multiplet of Ex. 3 in the massless case of Sec. 2.1. By the
word ‘corresponds’ we mean the following. The multiplet contains a vector field from which we
can build a field strength. ¥ is the N = 2 supersymmetric generalization of this field strength.
The particle content of ¥ is thus the vector A, two spinors M\ and one complex scalar C. In
addition comes a triplet of auxiliary scalars C'4. Furthermore, ¥, being a field strength will in
general belong to the adjoint representation of a gauge group. In other words, it is Lie algebra
valued. As a side-remark, let us mention that if we had followed a geometrical approach, we
would have obtained eq. (51) as a Bianchi identity.

We can write a chiral superfield as a power series expansion in 93. Because the 0’s are
anticommuting, there are only sixteen non-vanishing products of €’s (including unity). The
non-trivial ones can be organized as [21]:

ba(0) = ©307(ra);'0h, A=123
aW(H) = %oia(guu)aﬁg,i@a
0

Xa(0) = GT?Z.O‘U(H)’
u(d) = 016036263
The T4-matrices are the Pauli-matrices which generate the SU(2)-rotations of the @’s and 6’s.

The products b4 and a,, are obtained by tensor decomposition. The most general superfield ¥
which satisfies the constraints has the expansion

T(y,0) = Cly)+07N,(y) ©ba(0)Caly)
+a,u (0)F" (y) + X7 (0)po(y) +u(0)D(y)

where
F., = 0,A,<0A,
le = &0y
L= &2i(a" N}
D = &400*
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when the gauge group is abelian, and

Fon = 0,A,©0,A, +ig[A,,A)]
cl = <0
¢h, = €Ri(c"D,N); + 29[\, CT]
D = ©AD,D'C' i2g{)\},, \} <4g°[CT,[CT, O]
D, = 0,+ig[Au, ]
when it is non-abelian. The Lagrangians for the two cases is now obtained from the highest com-

ponent, or u-component, of the superfields YW and Tr(¥W¥), respectively, and their hermitean
conjugates. In the non-abelian case it is

L=1Tr(VT|, + TT|y).

If we introduce volume elements in superspace so that!*

/d40u —1, /d4§ﬂ —1,

we have
L= i/d‘lefﬁ(W) +1 /d‘lm(w).

To find the component form we must go through a rather long calculation. We will only state
the intermediate results'®

U], = 20D +204Cs S F, F" &iF,, FMY 4+ 2024},
UU|; = 20'DT+ 20404 &F,, F* +iF,, F" <2X8¢™. (52)
The final Lagrangian becomes
L = ©iF,F" 42(D,Cx)"(D"C)" 4+ iAjo" DA™ + 3C4CY
&2igTrC{ )\, '} ©2igTrCT{\;, X'} <4¢°Tx[C, CT)? (53)
The fields C4 are auxiliary and they vanish by their equations of motion in the pure Yang-Mills
theory. In the abelian case we have
£ o= & [aovwt [atond
= ©AFME,, +iXo" 0\ +20,C70"C + 1CaCy (54)
Note that none of these fields are charged under the U(1) group, whereas in the non-abelian
case, the fields carry “adjoint charges” and are minimally coupled to the vector field.

Let us record how this looks in the N = 1 formalism. If we organize the component fields

into the super-field strength W = (A%, Fjg,,,...) and the chiral “matter” field ®* = (¢%,%°,...),
where we have defined the spinors A* = A¢ and ¢® = \$ and the scalar ¢* = /20, then the

Lagrangian is

L / d20d200%(c9" ) " + 1 / POW W 4 h.c. (55)

YThere are now two different meanings of ‘d*6’ depending on whether we are dealing with N =1 or N = 2
superspace. We hope this will not cause any confusion.
5More details are given in Appendix A of Ref. [22].
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Of course, the ®’s are not matter superfields in the N = 2 sense: they are the “superpartners”
of the W’s. This is reflected in the absence of a mass term and superpotential for the ®’s.

We must also mention the N = 2 massive multiplet, or the hypermultiplet as it is sometimes
called. It will suffice to use the N = 1 formalism, in which case the hypermultiplet is given by
two chiral superfields:

Q = q+0y,+00F,

Q = ¢ +oyl+o0Ft. (56)

As usual, the ¢’s are complex scalars, the 1’s are two component fermions and the F’s are com-
plex auxiliary scalars. There are two comments to be made about this. First, the hypermultiplet
always appears in the context of gauge theories. () then carries a representation of the gauge
group and @ carries the conjugate representation, hence the daggers in eq. (56). It has canonical
kinetic terms,

L= [ a0 (@)@ + Q' (e )u@).

and it couples to the N = 2 gauge superfield ¥ through the N = 1 chiral field ® by the
superpotential

W = gQ"®,Q".

® transforms in the adjoint of the gauge group so this works for any representation. A mass
term is given by

mQaQa.

Second, there are eight particle states in the multiplet. In Sec. 2.1 we saw that “ordinary” mas-
sive N = 2 multiplets have 2* = 16 states. The explanation can only be that the hypermultiplet
carries a representation of a central charge and so must belong to a small representation. This
means that Z = M in eq. (17) (there is only one ‘v’ for N = 2), the algebra becomes effectively
that of the massless case, and thus the multiplet we are dealing with is actually the one of Ex.
4. This multiplet has four helicity states, but to represent the central charge we need two such
multiplets, giving a total of eight states.

Let us finally say that the NV = 2 chiral multiplet ¥ does not have a central charge. This
follows directly from the chiral constraint (50) and the anticommutation relations for the D’s,
which are isomorphic to the ones for the Q’s. That is, we get an equation of the type

D, =0,

where D, is a differential operator that represents the central charges. W is the only superfield
we will see in the NV = 2 superspace formalism, which is why we did not need to represent the
central charges by differential operators.

3.6 The SU(2) Yang-Mills theory

Let us now concentrate on the gauge group SU(2). Our aim is to extract information from it
by the methods developed in the previous sections. Before we do that, however, let us rewrite
the Lagrangian so that it becomes

1
L= &2 / d*OTeT 4 h.c. (57)
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That is, we have taken the factor 1/g% outside. This can be achieved by rescaling the gauge
fields so that

Dy =0+ i[Ay, |,
and the spinors and scalars so that A\; — );/¢g and C — C/g. In the corresponding N = 1
formalism this is
1 _ _
=~ { / 20d209%(c" ) 8 + 1 / LOWOW + h.c.] ,
g
and in components:
1 v * -y = 3
L = 2 [‘:%Fﬁ,,F“” + (Dpg*)* (D ) + iNig" Dy
SV2UTr{Ai, N} &V2iTrgt N, AT} < Trlg, 617

where we have used ¢* = v/2C?. The point in writing 1/¢? as a factor outside will become clear
in a moment.

We want to find the quantum corrections to eq. (57), that is, we want to find the effective
Lagrangian at low energies. The crucial observation is now that the Lagrangian (57) involves a
chiral integral over NV = 2 superspace and that the integrand is a holomorphic function of the

fields, namely
L a._a = CS
892z z°, z .

Thus, by the definition of the Wilsonian action, the effective Lagrangian must have the form
[23]
Log = / d*OF (A% + hec., (58)

where A% is the N = 2 super-field strength that corresponds to U® at low energies, and F is a
holomorphic function. This function “describes” the theory, and is the object we are going to
determine. We can also write this in the N = 1 formalism in the following way:

ﬁeff = /d20d2§2K(Aa,Aa,Va) + /dQH%fab(Aa)WaWb + hec., (59)
where A® V% and W are the low energy chiral, vector and field strength superfields, respectively,
and

K = 200F(e")pA,
Fu(AY) = 20,0,F.

This is trivially true in the special case when the Wilson action cutoff i is equal to the bare
cutoff Acysopr- Then we have

1
F(U?) = —0*p°
and so
1 _
K = @@“(ev)abqﬂ’,
1
fab = @fsab-
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To see that it is true in the general case, we could expand the two Lagrangians (58) and (59)
on their component fields, like we did with the superpotential W in Sec. 3.4, and then compare
coefficients. Note that the coefficient fy, of the term WeW? is related to the holomorphic
function F of the fields of the theory. In the bare Lagrangian the coefficient is (1/¢%)d4. This
means that the effective coupling constant at low energies is related to the holomorphic function
F. In fact, this was the reason for writing 1/¢? as an overall factor in the bare Lagrangian.

To proceed, we must determine the symmetries of the theory. Apart from the SU(2) gauge
symmetry there is a global SU(2)g x U(1)g R-symmetry. The SU(2)g acts on the two 0’s by
rotating them, while the U(1)% acts by multiplying them with a phase. In the N = 1 formalism
only one of the three generators of SU(2) g is manifest. The symmetry it generates will be called
U(1);. In terms of superfields U(1); and U(1)r acts by

U)y: ®(0) > B(e ™0),  Wal0) = " Wale™0)
U)r: @(0) = e¥®(e 0), Wa(0) — e“Wa(e0)
and at the component level this is

Ul)s: ¢ = ¢
p oo ey

A= el

U1z ¢ - edeg
b - ey
A = o)

One can show from triangle graphs that the U(1)z symmetry is anomalous. The divergence of
the corresponding current is'®

1 QY
0" = 5 F F, (60)

and non-perturbative effects breaks U(1)zr down to Zg. The U(1); and U(1)g transformations
with @ = 7 are the same. Thus the global symmetry of the quantum theory is (SU (2)r X Zs)/Zs.
In the classical Lagrangian, the scalar field ¢% in ¥ has the potential

wwzéﬁmwﬁ (61)

This is positive because!”

T‘I‘[qﬁ, ¢T]2 — Tr (¢a¢*b I:%O_g,, %O_b])Q _ <:%(ea,bcqbbqé*C)Z _ %|6abc¢b¢*0|2 >0

The ground state of the system is thus given by a constant ¢ that makes the potential (61)
vanish, that is, for which

[, ¢'] = 0. (62)

6The familiar number of flavors Ny in the expression

N -
B !
o J" = 6.2 FF

is replaced by 2N, when there are two “flavors” of fermions in the adjoint of SU(N.). In the SU(2) case this

number is 4.

b

"Recall that for SU(2) we have [%, 5= ie“bc"—; and Tr(%)(%) = 1%, where the Z’s are the generators.
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One value of ¢ which satisfies this is
¢ = %a03 = (0,0,a), (63)

where @ is an arbitrary complex number. Any other ¢ that satisfy eq. (62) can be brought on
the form (63) by a gauge transformation. This leaves us with a sign ambiguity in a because
the transformation that acts on a in (63) by a — <a is a gauge transformation. Therefore, the
complex number u, defined by

a? = Tr¢?

N

u =

is a gauge invariant parameter which labels the physically inequivalent ground states of the
system. Thus the complex plane, parametrized by u, is a classical moduli space. The U(1)r
charge of a is 2 so that the U(1)z charge of u is 4. Zg acts then on u as u — <u, i.e. as a Zy. For
non-zero values of a, both this Zs and the SU(2) gauge symmetry is spontaneously broken. The
SU(2) gauge group is broken to U(1) because we have a “Higgs field” in the adjoint. This means
that we have a Higgs mechanism where two of the three vector fields become massive along with
their corresponding fermion superpartners. The ground state is a zero of the potential so by
an extension of the argument in Sec. 3.4, N = 2 supersymmetry is not broken. Therefore the
massless spectrum must be described by an abelian N = 2 multiplet ¥ = +/¥*0¢  containing a
photon A, two uncharged fermions ¢) and X, and an uncharged scalar ¢. If a = 0, the gauge
symmetry is intact and all the particles of the theory are massless, so there is a “singularity” at
the classical moduli space at u = 0.

For the quantum theory the most general form of the Lagrangian is given by eq. (59),
which does not contain a superpotential. Therefore, the scalar potential is not renormalized (in
the sense that only the coefficient 1/¢g? receive quantum corrections), and there is a quantum
moduli space. At a generic point in this moduli space the gauge symmetry is again spontaneously
broken with a Higgs mechanism as a consequence. At low energies well below the masses of the
gauge bosons, the effective Lagrangian describes a massless abelian N = 2 multiplet A. The
Lagrangian is that of eq. (54). Note that the Lagrangian does not contain massless interacting
particles, and so the Wilsonian action is the same as the 1PI one.

Let us make a remark about the Lagrangian (59) which is expressed by the two functions
K and fgp. In the low energy theory, the Higgs field have picked out a direction in gauge space
so that all quantities with an adjoint index points in this same direction. This means that
(€")ap = dap because the vector superfield couples together different components in gauge space.
As a consequence we get

K = 20,FA,
fao = 20,0,F.

The point is now that we get the direct relation
fab = 80.5()[{ (64)

between the two. This is a useful property for the following reason. If we expand eq. (59) on
component fields we find that the kinetic term of the complex scalar field ¢® is

Fab(0u")" (9" 9)".

This is a number and can be thought of as a scalar product in the sense that the ¢* takes values
in a complex manifold on which f,; is a metric. The fact that there is a function K such that
fab is given by the relation (64) makes the complex manifold a Kdhler manifold and the metric
fap a Kdhler metric. The function K, which is not holomorphic, is called a Kdhler potential. In
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Sec. 3.4 when we investigated SUSY QCD, we were able to discuss the singularities of the moduli
space, which are properties of the topology of the moduli space. In the N = 2 Yang-Mills theory
we are able to discuss the metric on the moduli space as well, which is a geometric property.

We now return to the determination of the holomorphic function F. We will not finish the
job in this section. In this section we will only find its asymptotic form for small values of
the coupling g, which means we are considering perturbation theory. We must wait until the
last chapter, where we will investigate the singularities of F, to find the exact solution. F is
a function of the low energy effective fields, and in particular it is a function of the vacuum
expectation value a of ¢. In other words it is a function on the moduli space, where a is a local
coordinate. Before we carry out the perturbative evaluation of F, let us argue that small g is
equivalent to large |a|. First of all, the theory has asymptotic freedom. Intuitively this is clear
because there are too few fermions to turn the asymptotic behaviour of the theory'8, but we will
explicitly demonstrate this by calculating the S-function at the end of this section. The theory
also has a Higgs mechanism and therefore we have dimensional transmutation in the sense that
the vacuum expectation value of the Higgs field sets the scale of the low energy effective coupling
constant. The point is that if we probe the physics of the bare, or microscopic, theory well above
the scale of the Higgs field, the asymptotic freedom is operative and the coupling is small. As
we go down in energy, the coupling constant grows until we reach energies of the order of the
vacuum expectation value of the Higgs field. At this scale the heavy fields decouple, so the only
fields that are left in the infrared are the ones of the neutral N = 2 multiplet. Because these
fields are neutral, the coupling constant does not run in this range and is therefore “frozen” in
its value at the scale of the Higgs field. Thus, if |a| is much larger than the dynamical scale A
of the theory, the coupling is small in the infrared. One might say we have asymptotic freedom
without infrared slavery.

Now to the perturbative evaluation of . The U(1)z symmetry is broken down to Zg by
non-perturbative effects, but as long as we only consider perturbation theory it is still intact.
This symmetry acts on A% by

A = 2 A(e70).
Now we can write down the most general form of the perturbative FP¢'* that is holomorphic
and has the correct symmetry properties. It is

1 A?
t __ 2
f‘per — 8—92./4 (Al + A2 In F) y

where A1 and A, are two constants to be determined. We can choose A1 to be what we want by
suitably defining the scale A. We will pick A so that A; = 0. Ay is determined in the following
way. The effective action is invariant under U (1), but the effective Lagrangian is not because
there is an anomaly. Under a U(1)z transformation we get

f‘pert N ?—2264““./42 lnj\l—z + Zgé? €4iau42,
g g
— A o A% iaA P
t 2 4 2 2 _—4 2
fper — @6 zaA lnp = 292 e zaA .

The effective Lagrangian thus transforms by

sLPe = 22‘;2 ( / A% & / d40fl2> .

18Recall that it takes 16.5 flavors of quarks to turn the asymptotic behaviour of QCD.
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Because of the minus sign in these brackets, and because of eq. (52), we have

pert aly

oL = —
eff g2

a rapy
Fo, Fon,

This is supposed to give ad,J#, so comparing with eq. (60) we get

2
g
Ay = 7=
2 471'2 )
and we obtain the result
1 A?
pert — 2 vt
FPEt(A) 39,2 A”In iz

Finally, we will compute the perturbative (-function, as promised. By definition the (-
function contains information about the running coupling constant as a function of the scale
at which we probe the physics. In our case, however, the same information is encoded in the
low energy effective coupling constant as a function of the scale set by the Higgs field. By
differentiating P twice, we get

LPFa) 3 1 a?

pert _ - 1 .
/ Oa? 872 + 8r2 A2
From this we get that
1 3 1 a’
_ pert _ Y = -
75}’?”((1) =2f =12 + e In i (65)

Differentiation with respect to In(a/A) gives

2 1
gg}z}ert ﬁ(g) ﬁa

so that

1
B(g) = @mg?’ + non-perturbative effects.

The sign of the G-function is negative, and so the asymptotic freedom is demonstrated.

4 Duality

4.1 Maxwell duality

In Sec. 3.6 we brought the N = 2 Yang-Mills theory as far as we could by using “naive” non-

renormalization techniques. To take the final step towards an exact solution we need some more

input by an interpretation of the physics of the theory. This is where duality comes in. We will

be more specific about what we mean by duality later, but the kind of duality we are thinking

about is a “high tech” version of the standard duality between electricity and magnetism in

Maxwell’s equations without matter. We will start by discussing this relatively simple case.
Maxwell’s equations in vacuum are

V-E =0, VxB@a—Ezo,
ot
V-B=0, V><E+aa—]?:0. (66)
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They are invariant under the transformation
(E,B) — (B,<E) (67)

of the electric and magnetic fields. In other words, the transformation (67) is a symmetry of
(66). (67) is a duality transformation since if it is applied twice we end up with what we started
with'?. For this reason the vacuum equations (66) are selfdual.

If we include electrically charged matter in the system, the situation is more complicated.
For example, an electrical point charge of strength e at rest at the origin of the coordinate

system has an electric field
er |
= — — T =|r

4 3’

which means that2°

V-E=es®(r).
This system is selfdual only if there are magnetically charged point particles of magnetic strength
g:
_9r
C An oy’
such that
V-B=gi®(r)
in the rest frame of the particle, and (67) is accompanied by

e —g, g — <e.

In relativistic notation the electric and magnetic fields are described by the Maxwell tensor

0 ©FE' <FE? <3
E' 0 eB? B2

FH =
E? B3 0 B! |’
E? &B?> B! 0
so that

The Maxwell equations are

9, F" = <5”
0, FM = <k” (68)

where F = %e‘“’p”Fp(,— is the dual of F*¥, obtained by the substitution (67) in F*¥, j* and k"
are the electric and magnetic current, respectively. Under duality transformations we have

[ TR TN
and

R

19This holds up to a sign difference, which is not important because the Maxwell equations (66) are insensitive
to that. Alternatively we could define the duality transformations to include multiplication with i.
*OWe recall the identity V-5 = 476 (r).
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which is a symmetry of eqs. (68).
Note that if we introduce a vector potential A, so that F,, = 0,4, ©0,A,, the duality is
lost, because the Bianchi identity is

0, F" = 0.

This is relevant in the context of quantum mechanics, since the vector potential is then the
natural field to use in the description of the physics. Nevertheless, a quantum theory which
includes magnetically charged particles can be constructed. An attractive feature of such a
theory is the famous Dirac quantization condition [24]:

eq = 2mn, n=0,+1,+2,... (69)

which implies quantization of electric charge. This formula, and its generalization to dyons,
which are particles of both electric and magnetic charge, will be discussed in the next section.

4.2 Magnetic monopoles and dyons in quantum mechanics

In this section we will mainly consider the quantum mechanics of monopoles and dyons. That is
to say, only at the end of the section will we refer to any internal structure that these particles
might have?!

Let us begin by deriving the Dirac quantization condition (69) in a heuristic way. We will
use an argument that originates from a paper by Saha in 1936 [26]. Suppose we have a magnetic
charge of strength ¢ at the origin and an electric charge of strength e at r. The strategy will be to
calculate the total angular momentum of the electromagnetic field according to Maxwell’s theory.
Then, by the further quantum mechanical requirement that angular momentum is quantized in
half-integer units, we will obtain the quantization condition.

The momentum density of the electromagnetic field is given by the Poynting vector

S=E x B.

The total angular momentum of the system is then given by the space integral
L:/d3:1:x><(E><B).

By using the expression
_9 X
47 23
for the magnetic field and the vector identity
A x(BxC)=B(A:-C)<C(A-B),

we get

L — /d3x47fx3 [E(x - x) &x(x - B)]

= @/d%—E v( ) /d3 V- E— (70)

egr
Ay’

LA useful review on magnetic monopoles that we have used throughout this chapter is [25].
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where we have used that

N L= ) gt
') = ———, T =—
X X

and
V-E=e®(r).

From the quantum mechanical requirement that L is quantized in half-integer units along, say,
the r-axis:

f-L=1In  n=0+1,42,...

we obtain Dirac’s condition:
eg = 2mn, n=0,+1,4+2,... (71)

Note that if we make the somewhat bolder assumption that the angular momentum should be
quantized in integer units (after all we are dealing with electromagnetism), then the quantization
condition is

eg = 4mn. (72)

This is a more restrictive constraint than eq. (71), which follows from quantum mechanics only.

An immediate consequence of eq. (71) is that the existence of magnetic monopoles would
imply that electric charge was quantized. Even if there was only one single monopole in the
entire universe, it would mean that any electric charge would be a multiplum of 27/g, where g
was the magnetic charge of this one monopole.

Suppose now that we introduced dyons into the theory, i.e. particles with electric and mag-
netic charge (e, g). It is then possible to generalize the quantization condition (71). If we have
two particles with electric and magnetic charges (e1, g1) and (e, g2), respectively, then a simi-
lar argument that led to Dirac’s quantization condition would give us the dyonic quantization
condition

€192 Seag) = 27mn. (73)

If there are particles of electric charge (e,0) in the theory, then eq. (73) restricts the possible
magnetic charge of a dyon of charges (q,g) by eg = 2mn. The electric charge ¢ of the dyon
is on the other hand not subjected to any restrictions. There is, however, a restriction on the
difference between the electric charges of two dyons. By the existence of a particle with (e, 0),
there is a minimum allowed magnetic charge g = 2m/e. The electric charges of two dyons with
(q,9) and (¢, g) must then satisfy (¢ <¢')g = 27n, or

q&q =mne, (74)

i.e. the difference is quantized in units of e.

We can restrict the possible electric charges of a dyon further by the assumption that there
is CP conservation in the theory. Then, because magnetic fields are even under a CP trans-
formation and electric fields are odd, the respective charges are even and odd, too. Thus, a
(q,2m/e) dyon must have a CP mirror image dyon with (<q,27/e). For these two particles, the
quantization condition gives 4wq/e = 27n, so that

g=ne or q=(n+3e. (75)
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Therefore, a dyon can have an electric charge which is an integer or half-integer multiplum of
the fundamental charge e, but not both possibilities are realized at the same time because of eq.
(74).

A more interesting situation is that when CP is violated, and in particular when the violation
is measured by a f-angle. This means that we are thinking about gauge theories where the gauge
symmetry is spontaneously broken down to the U(1) of electromagnetism, and where the CP
violation is given by the term

2
fe a prapy
3272 1

in the Lagrangian. This violates C'P because it is proportional to E - B, which is odd under a
CP transformation. The existence of magnetic monopoles and dyons in such a theory will be
discussed in the next section. We will close this one by recording the consequences of the CP
violating -term [27]. The result is that the electric charge ¢ of a dyon is quantized by

fe

=ne&&—.
q 2T

This is known as the “Witten effect”. Note that for a gauge theory, in the absence of a #-term,
it is the first one of the two possibilities in eq. (75) that is realized.

4.3 Magnetic monopoles and dyons in field theory

The existence of magnetic monopoles in a theory where electromagnetism is embedded in a larger
gauge group has been known since their explicit construction by ’t Hooft [28] and Polyakov [30]
in 1974. The dyons were found by Julia and Zee [29] shortly afterwards. In this section we
will review these objects in the Georgi-Glashow model. This is the simplest model in which
these objects occur, and also the one in which they were first discovered. The fact that elec-
tromagnetism is embedded in a larger theory is clearly relevant with respect to duality. One
reason for looking at the Georgi-Glashow model, apart from simplicity, is that the N =2, SU(2)
Yang-Mills theory is a “minimal extension” of this model.

We first recall some basic facts about the Georgi-Glashow model. It is an SU(2) gauge theory
with a scalar field (a Higgs field) in the adjoint, or triplet, representation. The Lagrangian is

L=e1G%G" + L(Dud)*(D"$)* <A <d5) (76)
where
Gy, = 0V SOV +ge VIV
Du¢a — au¢a + geabcvlf¢c

We can also write this in terms of an expansion around the spontaneously broken vacuum by
using the unitary gauge

¢“(z) = (0,0, ¢ + o(z)).
If we also define the photon and the W-bosons by
1

A, =V] and W, =
V2

p (V) +iV2),

L = %FMVF‘W + %(aMO')Z @%qudz

&5 D W, D, W, |* ©my (WL + Lin
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F, = 0,A, &0,A,,

D, = 0,%1i94,,

SigF, FPWWHWY < Lg®(Wiw, W, W)’
5 (29000 + g°0%) W, &M (4o’ + o),

H

S

s
I

and the masses of the Higgs particle o and the W-bosons are
miy =g and  miy = g”¢g,
respectively. The equations of motion found from eq. (76) are

DuGauu — <:,\geal7c¢bl)1/¢c
D,D"¢" = <3¢ dp)e" (77)

The magnetic monopoles and dyons are then static solutions to these equations. The equations
are difficult to solve in the general case because they are non-linear, second order equations, so
we need some kind of strategy. We will follow the approach of Bogomol’'nyi [31], who managed
to rewrite the equations in the static case into first order equations by using some tricks. These
solutions can then be solved by using a sensible ansatz.

First of all, let us recall that the existence of monopoles and dyons is connected with the
possibility of having “unshrinkable” maps from the sphere at spatial infinity into the vacuum
manifold of the Higgs field, which is a sphere in field space of radius ¢y. By ‘unshrinkable’ we
mean that the maps are characterized by a winding number n,,, so that the boundary conditions
of the Higgs field at infinity can be specified by

P — nhy for = — o0,
where n® is a unit vector in field space defined by (0,¢=spherical angles):
n® = (sin 6 cos ny, ¢, sin O sin n,, ¢, cos ).

For example, if n,, = 1, we have a “hedgehog” solution [30]. The number n,, is a topologi-
cal quantum number and the fact that it is an integer ensures the stability under decay of a
configuration of one value of n,, into a configuration of another value of n,,.

Let us find the energy of a given field configuration. It is given by the space integral of Ty,
the 00-component of the energy momentum tensor 7j,,:

E = /d3513T00

If we calculate the energy momentum tensor in the canonical way, we get (7; denotes all the
fields in the Lagrangian, that is, ¢* and V7):
oL
T, = ———0n 9wl
w T (o) I
= Gzp(apvy)a + (D) 0,9" g L.

There is a problem with this form of the energy-momentum, however, as it is neither symmetric
nor gauge invariant [29, 32]. We must make use of our freedom to add improvement-terms to
it. Alternatively we can calculate T),, as one would in general relativity. We then let the metric
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guv be an independent field, find the variation of the action S = [ d*z\/EgL with respect to the
metric, and then take the flat space limit of the result. That is,

T 2 B(EN/ )
1222 \/_ ag’uy N
This will automatically give a symmetric and gauge invariant energy-momentum tensor. Either
way, the result is

V—Ga G, + (D) (Dyd)* gl

The 00-component of this is

(GG:)* + (D0<i5)2
_ ﬂgw +1(Ge)? + %u)@ 1(Dig)? + A (” ©¢5)’

This expression would simplify if the last term, the Higgs potential, was not present. At the
same time, if we take the limit A — 0, we obtain a lower bound on the energy because A is
the coefficient of a positive term. It is not clear what this limit means because if there is no
potential, there is not a well-defined vacuum value ¢ of the Higgs field. We will in this section,
however, assume that the limit A — 0 is taken in such a way that ¢p remains unchanged. This
limit is called the BPS limit (after Bogomol'nyi, Prasad and Sommerfield [31, 32]). It is usually
formulated in terms of the parameter 8 = \/g? = M% /M3, by 8 — 0. We will say more about
the BPS limit later. Now the energy is

B = [ @5 |G+ H(GE + H(Dud)® + H(Dig)?

Too

which we are supposed to minimize.
Let us first consider the magnetic monopole. This corresponds to boundary conditions

b0 — ny for 1z — oo,
1
Ve = Zentgint  for oz — oo,
g
and where the time component V' of the gauge field is zero. V' # 0 corresponds to a dyon, as

we shall see in a moment. Because we are considering static, or time independent, solutions, V'
means that Gj; and Dy¢® = 0 so that the energy is

E:/ﬁﬂﬂ@ + 5(Dig)?] (78)
Now comes Bogomol'nyi’s trick: we rewrite (78) as
E= /d3$ [i(G?j SeijrDrg)” + %Gz’jkG%Dkéa] :
where the last term is equal to the divergence of a vector:
s€iikGiDpd" = 0i5i,
Si = SeGho”

The interpretation of this divergence term is the following. We consider the electromagnetic
field strength tensor given by 't Hooft [28], i.e. the field strength of the U(1) gauge field:
1
F/u/ — aGa <:>_6abc¢a, M¢b V¢c

[¢] B
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This is gauge invariant and reduces to
1
bo

in a region where ¢® is equal to the vacuum value ¢j = n%pp, for some unit vector n®. When
we recall the definition of a magnetic field:

F, uy = ng GZV

Bi = z€ijiFji
we see that
S; = ¢oB;.

The space integral over the divergence of B* is equal to the magnetic charge of the monopole.
Put differently, the magnetic charge is given by the surface integral

T
G = /B’dS’ = ?an. (79)
If we use this and the fact that My = g¢o, we get for the energy:
47FMW
R / @ [L(GY seDis”)] (80)

Note that the winding number n,, is a measure of the magnetic charge of the monopole in units
of 4m/g.

The form (80) of the energy is a great progress, since for a given n,,, what minimizes it is the
vanishing of the square in the space integral. That is, a minimum is a solution to the equation

G = €k Did” (81)

which is a first order equation. If we consider the configuration with magnetic charge n,, = 1,
we could search for a solution of (81) of the form

¢t = ns(r)do

1
Ve = Ze®enbgincu(r) (82)
g
By insertion of this ansatz in (81) we obtain the following system of equations
1 dv
— 2 - s1e
My dr s(1 &v),
ds  v(2sv)
dr Myr?’
We also have the boundary conditions v — 1, s — 1 for 7 — oco. The solutions are
(r) coshr @1
s(r) = -
sinhr "7’
r
o(r) = sinhr’

where 7 is the distance measured in units of 1/Myy.
Let us remark on the stability of the monopoles. If the magnetic charge n,, is greater than
1, the energy is minimized by

47TMW

E =
m 92

N'm
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in the BPS limit. Thus a monopole with charge n,, has the same mass as n,, monopoles of
charge 1 and so is marginally unstable under decay into n,, monopoles.

We will now investigate the dyon. A dyon appears if we allow the time components of the
vector field to be different from zero. The fields still do not depend on time. If we separate the
space and time components in the equations of motion (77), we get

DiDiVaO — <:>geabc¢bD0¢C’
DiGaij — <:}geabc(bbl)jqéc + geabCVbODjVCO,
DoD°¢" + DiD'¢" = 3)(¢° &¢)¢".
We have used that the time derivatives vanish. In the BPS limit 8 = A/g? — 0 the terms
involving A disappear and the equations gets easier to solve. Let us look for a solution where

Vo' =C¢* (83)
where C is a constant. This means that

Do = dy® + ge®C¢'¢° = 0.
The equations for Vj/' and ¢ are then the same and the equations we must solve is

DiGUT = eg(1 &0?)etedb Dige

D;Di¢* = 0 (84)

Had it not been for the factor (1 < C?) this would have been the same equations as for the
monopole case. We can make it disappear if we put

p y"

V1ielc?

Then we have

8_ =1 4:)021..
ozt oy’

In order to get a covariant derivative with respect to y, we define IN/z“(y) by the expression
(D)™ = 9769 4 jge™Ve(z)
= V10295 +igV/1 & C2% ™ Ve (y)
= V1 (D))",
where we also have defined D;. The corresponding field strength is related by
Gii(z) = (1 @CQ)CNJ%(y).

Finally we set

¢ (y) = ¢*(x)

and so egs. (84) becomes equal to the monopole equations which has the solutions (82) and (83).
We can calculate the electric charge @ of the dyon from the 't Hooft electromagnetic tensor:

Q = / dS;Foi = / d8;C(Dgp)*n’
Ay, C

C I
——— [ dS;(D;¢)n® —_—.
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Note that @ is not necessarily an integer (in the classical theory) because C' is arbitrary.

It is possible to obtain a lowest bound on the mass of a dyon of magnetic charge G and
electric charge ). The bound is saturated in the BPS limit 8 — 0. To find this bound we use
the energy in the form

E= [ (1G5 + 4 (D) + (GB)?)
and the form (83) of Vj. The latter relation implies
(G5 = CX(Dig”.

Now the energy at the bound is

b= /d?’x <i(ng)2 + 1+202 (Di¢)2> :

In the y-coordinates this is

- 1+ C? .
E=v1 @CZ/dgyi(Gg])z + ﬁ day%(ngb)Q

The quantities with tildes are solutions of the monopole equations. In particular, they satisfy
GY = €jrDyg"

which implies that
LG = H(Did)? (55)

If E,, denotes the energy of a monopole of charge n,, (recall that n,, is an integer) then eq.
(85) means that

- L E
[ kG = [ @by ==
Thus the dyon energy becomes

1+C? B, 1

) .
V1iac? 2 "V1a0?

We have already found that

E
E= 1@027"%

. 47TMW . 471"er

E,, 5 m, =
[Y [Y

Po.

Using the expression (85) for @) and G = 4w/g, can calculate that

E = ¢0\/G? +Q2,

which is the desired lower bound, known as the BPS bound. Because the energy of a ststic
solution is also the mass this solution, we get an inequality that any configuration must satisfy:

M > ¢oy/G? + Q2. (86)

If this bound holds in the quantum theory, a state that satisfy the equality in eq. (86) is called
a BPS saturated state.
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4.4 The Olive-Montonen duality conjecture

We return now to the question of duality. The fact that objects with electric and magnetic
charges exist in non-abelian gauge theories is interesting, because such theories have proven to
be relevant to the description of nature. The Georgi-Glashow model is relatively simple, so it
seems to be a natural question to ask if there is some kind of electric-magnetic duality in this
theory. Montonen and Olive conjectured that there is [33].

The conjecture is the following. The dual quantum field theory is described by a Lagrangian
of the exact same form as eq. (76) but where the monopoles of positive and negative magnetic
charge play the same roles as the electrically charged heavy gauge bosons. Furthermore, the dual
theory would have the gauge bosons as solitons. This is a duality that bears some resemblance
to the equivalence between the Thirring and sine-Gordon models.

Montonen and Olive give three arguments in favour of their conjecture. 1) The “elementary”
states in the model have the only possible magnetic charges 0 and +£G. This follows from the
requirement of spherical symmetry of the soliton solutions. A solution that was spherically non-
symmetric would be connected with a tower of rotational states in the quantum theory, much
like in molecular spectroscopy. Clearly, such a solution would violate any reasonable definition
of “elementarity”. 2) The mass formula (86) is also valid for the W-bosons in the classical
theory. This might suggest that the W-bosons could be taken to be solitons. This argument is
wrong as we will see below. 3) The force between monopoles can be calculated in some idealized
situations to be equal the corresponding force between gauge bosons.

Montonen and Olive also recognized some problems with the conjecture. These are features
of the classical theory which they proposed would be different in the quantized theory. First,
there is the problem of the dyons. By the “elementarity” requirement they have magnetic charges
of +G, but they also have electrical charges characterized by arbitrary integers. The problem is
that a dyon cannot decay into a magnetic monopole and electrically charged gauge bosons and
so does not fit into the duality scheme. The second problem was that the spin of a gauge boson
is 1, while the monopole solution has classically spin 0 since it is spherically symmetric. They
believed that this problem would disappear upon proper quantization.

There is actually a few other problems with the Olive-Montonen conjecture, that was not
recognized by them. Let us discuss these problems in some details, since we shall see that they
are “solved” by supersymmetry?2. The four problems with the duality of the Georgi-Glashow
model in the Olive-Montonen sense are the following:

1. What is the scalar potential
V(¢) = gA(¢* ©¢))*

in the quantum theory? This is a version of the well known problems of Higgs fields and
renormalization. The point is that the renormalization point is arbitrary and consequently
the zeros of the potential are not well defined.

2. What is the gauge coupling constant g? Duality acts on the coupling constant by g — 47/g
because of eq. (79), but the theory is known to have ((g) < 0, i.e. asymptotic freedom.
This means that g gets smaller as we probe the physics at larger energies and so 47/g gets
larger. This violates duality because 47/g is supposed to enter the dual Lagrangian in the
same way as g enters the original one.

22The following is essentially an account of one of Witten’s lectures at the Jerusalem Winter School in Physics,
1994/95 [3].
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3. Why is the mass formula M = ¢g/G? + Q? for BPS saturated states valid quantum
mechanically? The point is that in the original formulation of the theory, this formula
is valid for the semiclassical approximation (i.e. for small g) both for the “fundamental”
heavy gauge bosons and for the magnetic monopoles, which are the solitons. The latter
have the mass M,, = 4r My / g®> where My = ¢og. Montonen and Olive then claims that
if one transforms g — m = 47 /g, then, since the W-bosons now are the solitons, we should
have My = 4w M,, /m2 where M,,, = ¢gm. This argument is not correct! The reason is
that the mass formulae are valid for small g (it is a semiclassical approximation) not for
small m = 47 /g. For large coupling, the soliton mass gets a relevant renormalization.

4. What about the spin of the monopole? The spin of the monopole is zero, because of the
spherical symmetry. The “elementarity” argument previously mentioned is not relevant
here. Lorentz transformation properties must show up at the classical level, like e.g. a
four-vector index, or not at all.

Let us now see how these problems are overcome. 1 and 3 is eliminated by going to N > 2
supersymmetry. Let us first address problem 1, the quantum meaning of V' = 0. The minimal
extension of the Georgi-Glashow model to N = 2 SUSY is just the “pure” SU(2) Yang-Mills
theory. There is a complex scalar ¢® in the adjoint representation, or equivalently there are
two real scalars, related to each other by chirality transformations. There is a unique scalar
potential

V = Ti[g, ¢']?,

which is not changed by renormalization. A zero of this potential at tree level remains therefore
a zero in the quantum theory. Also, there is a flat direction in the sense that

¢ = L fa 0
V20 «a
gives V' = 0 for arbitrary complex a. This means that magnetic monopoles and dyons are
automatically BPS saturated.
Problem 3 is solved in the NV > 2 theory because it is a consequence of the supersymmetry

algebra [34]. When one calculates the proper form of this algebra from the current (46), one
finds the commutator (in Majorana notation)

{Quis Qpj} = 0ijvhsPu + €ijdapU +i€ij(V5)apV, (87)
where

U = /d%@i(A“F&- +Ba%6iij]@k)’

v o= / B 20,(A*Seiji Fl + BUFS). (88)

A% and B? are the real and imaginary part of the Higgs field ¢*. U and V are central charges
because of eq. (87). They are also linear combinations of the electric and magnetic charges of
a state, as can be seen from their expressions (88). From the discussion of Sec. 2.1 on central
charges, we learn that we have the inequality

M? > ¢3(Q* + G?) (89)

We also know that the representations that satisfy the equality in eq. (89) are “small” represen-
tations with four helicity states. From the discussion in the last section, we get that these are
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precisely the BPS saturated states. Conversely, representations that does not satisfy the equality
has sixteen helicity states. When we include quantum corrections, we expect the parameters of
the theory to change, but we do not expect the number of states in a representation to change.
Therefore, the equality in eq. (89) must hold for BPS saturated states in the quantum theory.
Problems 2 and 4 are eliminated in the N = 4 theory. Problem 2, which has to do with
the coupling constant g, is not a problem in the N = 4 Yang-Mills theory. It turns out that
this model has the right composition of fields to make 3(g) = 0. The theory is finite and g is
a natural dimensionless parameter. There is also a f-parameter in the theory. By constructing
the “complex coupling constant”
0 A
T = % + ’Lg—2
it is possible to redefine the action of the inversion of the coupling constant g by the transfor-
mation

T—sl/T

This coincides with g — 47/g for 6 = 0.

Neither is the fourth point a problem in the N = 4 theory. The Yang-Mills or gauge
multiplet is the smallest multiplet of this theory, with spins < 1. There are three scalar and
three pseudoscalar fields in the theory, which all can form soliton configurations with the gauge
fields. Such a soliton must, in the quantum theory, be contained in a multiplet of spins < 1
since there are no smaller multiplets in the theory. All the fields in the same multiplet have the
same quantum numbers, and so there must be spin 1 particles with magnetic charge £G. These
are the possible duals to the W-bosons.

These circumstances suggests that the N = 4 theory possesses electric-magnetic duality more
or less in the sense of Montonen and Olive [15]. The two latter problems are not overcome in the
N = 2 case. Nevertheless, there is a duality of the N = 2 theory which bears some resemblance
to the Olive-Montonen duality. This shall be the subject of the last chapter.

5 The solution of Seiberg and Witten

5.1 Coordinates on the moduli space

We have now developed enough machinery to give convincing arguments for an exact solution to
the N =2, SU(2) Yang-Mills theory [4]. We start by examining introducing a complex coupling
constant:

0 A
T = % + ’Lg—Z,
where g is the gauge coupling constant and  is the “vacuum angle” that measures the amount of
CP violation from non-trivial configurations of the gauge fields. Duality will act on this object,
rather than just the gauge coupling g. From the theory of #-angles we know that 6 can always
be rotated to zero if there are massless fermions in the theory. We can now write the classical
action of the theory as

1
L= Elm/d‘*e%mww,

where V% a = 1,2,3, is the N = 2 chiral field strength superfield and 7,; contains the classical
values of 8 and g.
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In this notation, the Wilsonian effective action at low energy becomes

L[ [ 02 0+ [ e
[,—47r1m[/d08Aa(e A+ [ 20yt

We can simplify this further since we know that in general the gauge symmetry is broken. Let
us define the function H so that

F(VA-A)=H(A- A)

This makes sense because it is always the gauge invariant combination A - A that appears in F.
Then we have that

oF oH ., .
gAe = gae -4
92 F 0*H b b
ol = Taaeam = (A A) 4 L H (A 4) 5",
and so
L= gilm [/ d'OH A (e") p A / d*05(H'6™ + 21" A A YW W' (90)
T

By exposing the index structure like this it is clear what happens when we keep only the
component of the adjoint vectors A* and W® that corresponds to the massless component of
A?, the low energy equivalent of U®. We can then drop the adjoint indices, and make the
replacements

A% pAb - AA
Stwewt —» ww (91)
A AWeW?e 5 AAWW

In terms of F we then have the Lagrangian

2
L= ﬁlm l/ d%g—iA + /dQH%%WW] . (92)
By making the substitutions (91) we throw away mass and coupling terms for the massive fields.
The effects of these terms in the low energy theory are taken into account by the function F
except for virtual processes with momenta below the Wilsonian action cutoff u, but the contri-
butions from these processes can be made arbitrarily small because of the smooth behaviour in
the infrared.

Now we note that the chiral superfield A is the field whose scalar component is ¢ — the
vacuum expectation value of ¢. Since a takes its values in the complex manifold that is the
moduli space, the Kahler potential that we can read off from (92),

K:1m<aL(A)A>,

0A
is the Kahler potential on the moduli space. Thus the metric on the moduli space is
0*F(a)
2 _
ds® =1Im 92 dada.
At the same time, from the second term of (92) we can read off the effective coupling constant
0*F
T(a) = 9
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This means that the low energy effective coupling constant is the metric on the moduli space:
ds®> = Im7(a)dada. (93)

Now, 7(a), being the effective coupling constant is known to us for large values of |a|. We
calculated it in Sec. 3.6 to be?

1 a?
T(a)%; lnﬁ—i—?) ) (94)
This means that Im7(a) is single valued for large |a|. But then it is a harmonic function, which
does not have a minimum. Thus a cannot be a good coordinate everywhere on the moduli
space as it would give regions of negative metric. It is therefore necessary to operate with other
coordinate systems besides a. Let us define

0F (a)

aD:—aa .

It is then possible to write the metric as
ds? = Imdapda = @%(dal)dd sdadap). (95)

This expression is symmetric in ¢ and ap which implies that it is possible to use ap as a local
coordinate on the moduli space with another holomorphic function replacing 7 in eq. (93). If u
is an arbitrary local coordinate on the moduli space, we can write (95) as

dap da 1 (da[) da da dap

ds® = Tm—= —dudi = —
soo ua du du _ du da

T 4o <5 ) dudii. (96)

For instance, we can pick u = a and so we get (93). We can also pick u to be (Tr¢?), which is
defined globally on the moduli space. This coincides at the classical level with the previously
defined u-parameter, viz. Tr(¢)2. By bringing both a(u) and ap(u) into play, it will be possible
to ensure the positivity of the metric. In the following we will use this last definition of u as the
global coordinate.

There is a set of symmetries of the metric. We can make them manifest by introducing the
notation a® = (ap,a), a = 1,2. If €,3 is the usual antisymmetric tensor, then

. 5% _ﬁ
ds?® = @%ea/g%%dudﬁ.

as can be obtained from (96). The invariance group of the metric is now seen to be SL(2,R)
(it cannot be SL(2,C) because it does not commute with complex conjugation). Soon we will
see that, for physical reasons, the symmetry group is actually SL(2,Z).

5.2 Duality transformations

We have seen that the metric is invariant under transformations of the group SL(2,R), which
is generated by the matrices

1 b 0 1
T”‘(o 1> and S_<<:>10>’
where b is real. Any element of SL(2,R) can be written as a product of powers of such matrices.

A matrix of the first type acts on the vector (ap,a) by

Ty : ap — ap + ba, a— a.

Z3We did not consider the -angle in chapter 3, but it is automatically included in (94) since a is complex.
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Since 7 = dap/da = 0/27 + idw/g*> we have that 7 — 7 + b, or & — 6 + 27b. We are only
changing coordinates on the moduli space and this should not affect the physics. This means
that b must be an integer as 0, being an angle, is only defined modulo 27. Thus the invariance
group of the metric is really SL(2,Z).

We now turn our attention to the transformation S. We shall see that this corresponds to an
electric-magnetic duality transformation. What we would like to do is to describe the physics at
low energies in terms of the gauge field A,, which is “handed down” to us from the microscopic
theory. Then by definition we have

F., =0,A, ©0,A,,
and so
O F™ =0

is identically true, being the Bianchi identity. This means that if we include electrically charged
matter in the system, duality is lost as a symmetry, since all magnetic charges would be iden-
tically zero. Duality transformations are still possible, however, if they are considered as a
mapping of one theory to another. That is, the theory with A, as gauge field, where 0, F*" = 0
is the equation of motion and 8MF #” = 0 the Bianchi identity, is mapped into a theory with
another gauge field Vp,, such that F’W = 0,Vpy, ©0,Vpy, 8HF”V = 0 is the equation of motion
and 0, F" = 0 is the Bianchi identity.

The duality transformation is effectuated at the path integral level as a change in variables
[35]. Recall that we have scaled the gauge fields by absorbing the coupling constant such that
the covariant derivative is given by

D, =0, +1iA,,

i.e. the gauge field couples to electrically charged matter with unit strength. The part of the
Lagrangian which involves the photon A, is then?*

FF,

1 ~ 1
o1 F+iFY|=e—F’s
Son T HIF)] = S 3272

and the corresponding part of the path integral is
/:DAuei[fﬁImf‘r(F‘HF)ﬂ‘ (97)

Charged fields are heavy and therefore does not appear in the low energy theory. We can write
(97) as a path integral over F'* instead of A, as long as we integrate only over those F’s that
satisfy the Bianchi identity?:

/DFuVei[—ﬁImfT(F+iF~')2]5(a”Fuu). (98)

The Bianchi constraint d-functional makes (98) equivalent to (97). The d-functional can be
represented by a path integral as

5(9, 1) = / DVpell 2 [ Voude P, (99)

?4Some facts about the dual tensors are F = —F and F? = —F?.
?We are ignoring gauge fixing problems. In the abelian theory gauge fixing terms are just (infinite) factors
that can be brought outside the path integral.
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which is a functional version of

3(z) = \Z’_ﬂ

The normalization of (99) is such that a magnetic monopole?6

e,

8, F" = e4nd® (r) = ednk®

couples to the field Vp, with charge one. Vp, can be thought of as a Lagrange multiplier field.
The exponent in (99) can be written

1 1
S— /VDH . %e”‘“’”&,Fpg = g/FDIW . %ep‘”‘”Fpg
. 1 . . .
where Fp,, = 0,Vp, <0,Vp, is equal to ﬁ’,“, on shell. The path integral (98) now becomes

/ DFWDVDue"[*ﬁImf T(F+iF)*+ - Re [(Fp—iFp)(F+iF)]

We can now integrate over the F),,, obtaining the path integral in terms of the dual gauge field
Vpu- To do this we note that the antisymmetric tensor F),, can be written as the sum

Fu = $(Fu +iFu)+ 5(Fu <iFu,)
= (Fo)w + (F)uw,
where F{ = F_, F* = F and Fy and F_ are orthogonal:
(F4 ) (F2) = 0.

Therefore, DF,, = D(F})uD(F_)u., and the integral, because it is a gaussian, becomes
straightforward:

/DFDVDei[—%ImTF_%_-i-ﬁRe(—iFDJF)FJF]
— /DFDVDG—%(%T)Fi—%(-%f)FE+(%FD+)F++(—$FD—)F7
= [DVpes ) ) ) )
— /DVDei[*ilm%F&]_
We have used the functional analogue of
/dxe—%axz—l—bx _ Nes (2
and the fact that
Imzz%(z@i), Rez = 3(z + 2).
Thus the dual “photonic” action is

1 1 ~
<=)>—III1i (FD + ’iFD)2.
327 7(a)

26We are now using the convention that point charges are normalized to be B = r/r, which differs from the
convention of Chap. 4 by a factor g/4x.

o7



Note that the “dual coupling constant” is minus the inverse of the original one:
™ =<1 / T.

This means that the dual of a weakly coupled theory is a strongly coupled theory and vice versa.

So far we have only been concentrating on the photonic part of the low energy action. What
we really want to do is to transform all of it by a duality transformation. This can be done by
first repeating the transformation of the action in (97) with its N = 1 generalization

/Dvei[éImfdzﬂr(A)WQ]

where the chiral superfield W, is defined from the real superfield V' by
Wo = <1D?D,V,

and satisfies the identity
DW =DW  or ImDW =0,

which is the super-generalized Bianchi identity. We now path integrate over the unconstrained
(but chiral) W and W while we implement the Bianchi identity by a d-functional in the shape
of a path integral over the real Lagrange multiplier superfield Vp:

/ DWDW ils=1m ] *07W?] 51 DY)
/ DWDWDVeila=1m [ ¢0rw2+3-1m [ atovpDW] (100)

The superspace integral in the last term in the exponent can be made to go over only half of
the superspace in the following way:

/d40VDDW @/ d*ODVpW
_ /d20 (#1D?) DVpW
= / d20W pW,

where we have used that W is chiral, DW = 0, and the fact that Grassmann integration is
equivalent to differentiation:

2 1
J =i

Thus the expression (100) becomes
/DWDWDVDei[éImfd20rwz+ﬁ1mfd20WDW]

— [ DWDI DYy ) o o
welss )fd20WDW+( L) [ a2, W
= /DVDe% =) (—s) 11deWZ-i- (- %)2(%)—1%11‘12615/%

- /DVDe’ srim [ 02w
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and so the dual action is

1 =
—Im [ d*0
T T(A)

W3,

What remains now is to find a chiral field Ap which has ap as scalar component, and then
use this to rewrite the coupling coefficient:
<l (
=T
() "

Ap). (101)

Furthermore, if we define

() = 21,

then the kinetic term of the chiral field is
Tm / d*0n(A)A, (102)
which we also need to express this in terms of Ap. We can implement these changes by taking

AD = h(A)a
hp(Ap) = hp(h(A4)) = <A,

Note that, from this, hp is minus the inverse of h. For the term (102) this gives

Tm / (M)A = Tm / d*0ApA

— Im / d*0(=A)Ap (103)
= Im/d40hD(AD)AD
Eq. (101) is true because
1 <l
Ap) =hp(Ap) = =—.
™0(Ap) = hp(Ap) ) " (@A)

Hence, from the second equality in (103), we see that the act of rewriting the action in terms of
Ap (and in the same form) is the same as transforming (Ap, A) with the matrix S.

We emphasize that the duality transformation is not a symmetry. It maps one description
of the low energy physics into another. Because of (101) we see that if one theory is weakly
coupled the other one is strongly coupled and vice versa.

Let us also remark on the way in which the coupling constant 7 is transformed under SL(2,Z).
The action of the generators

11 0 1
e (01) e s=(40)
has the following effect on 7:

T: T — 741,
S T — slfT

In conclusion, the SL(2,Z) matrix

=(11)
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acts on 7 by

at +b
et +d

A: T —

This coincides with the group of transformations that acts on the modular parameter 7 which
characterizes a torus, and which leaves the torus unchanged. This is one of the key mathematical
ingredients of finding the exact expression for the metric. In a sense, it means that every
physically distinct ground state of our theory corresponds to a torus. The physical interpretation
of this is not known.

5.3 The mass formula

Classically the BPS saturated states of the theory, including monopoles and dyons, satisfy the
mass formula

M? =|Z?, (104)
where classically
Zep = a(ne + Tenoy,)- (105)

ne and n,, are the electric and magnetic charges of the state. They have integer values. We
have seen that the mass formula (104) is a consequence of the fact that we have central charges
in the supersymmetry algebra, which implies that it also should hold in the quantum theory.
The question is then what the “charge vector” Z will look like.

One way to find Z would be to calculate the supersymmetry algebra using the Wilsonian
action (90). This would give the result

7Z = ane + apnpm, (106)

which reduces to (105) in the classical case. Another way of seeing this is to couple an N = 2 hy-
permultiplet with electric charge n, (and no magnetic charge) to the theory. In N = 1 language
this is described by two chiral superfields E and E. This corresponds to a “small representation”
appropriate for BPS-saturated states. By N = 2 supersymmetry the superpotential must have
the form

n.AEE +mpEE. (107)

The last term is a mass term which is connected to an ambiguity in the definition of A in the
low energy theory, i.e. it can be created by a shift in the field A. mpg must be zero if we take
into account that (107) is the low energy limit of the full SU(2) theory and if A in (107) is to
be the massless remnant of the three ®® (a=adjoint index). This is because an explicit mass
term for the fields E, and E, will lift the degeneracy of the moduli space and so would give a
completely different theory. Thus the superpotential for E and E is n,AEE, and the charge
vector is Z = an,. A state with magnetic charge n,, will then have Z = apn,,, as implied by
the duality transformation. The charge vector is then given by (106) for a general state with
electric and magnetic charges (ne, 1)

5.4 Singularities and monodromies

So far we have established that the complex plane labeled by the coordinate u is the manifold
of ground states of the theory — the moduli space. The theories that are built on ground states
at large u, |u| > 1, are weakly coupled because large v means large a and thus small g. In this
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region, therefore, quantum corrections to tree level quantities are given to a good approximation
by their one-loop results. Also, u = (Tr¢?) ~ %aQ. One such quantity is the function F:

A2 A2
Fone loop = Zg In F
This implies that
9 .
ap = g—f = %ln% + %, large a. (108)

Written like this it is clear that ap is not a single valued function on the wu-plane (or the a-
plane) — the logarithm has infinitely many branches. This ambiguity is in agreement with the
SL(2,Z) invariance of the metric on the moduli space in the following sense. Let us go around
the u-plane in a closed path in the large u region, circling the origin once in the counterclockwise
direction. Then physically nothing has changed since we start and end in the same vacuum. For
the coordinate u we have u — e*™u, so Inu — Inu + 27, and therefore Ina — Ina + 7i. By
(108) this means that we have

ap — <ap + 2a,
a — <a, (109)

This transformation can be written as a matrix multiplied onto the vector (ap,a):

sl 2
Moo:< 0 @1>. (110)

An effect of this type, i.e. a change in some functions on a manifold, induced by going around
a closed path on the manifold, is known as a monodromy. When a monodromy is written like
a matrix, it represents an element of the first homotopy group — the “fundamental group” — on
the manifold, which is the group of mappings of the circle to the manifold with the product
being “cutting and gluing” two mappings together. In this case the manifold in question is the
complex u-plane (or the Riemann sphere) with (at least) the point at infinity removed. The
monodromy (110) is connected with this point and this is why we have indexed M, with ‘c0’.
It is obvious that the identity is represented by the matrix

~(40)

Then, because M, is non-trivial, it is impossible to shrink the “large” closed path that led
to (109) into a point, and so there must be one or more holes in the w-plane. The holes
must be points. Larger regions are forbidden by holomorphy. We will speak of such points as
“singularities” because it can be shown that the u-plane parametrizes a one-complex parameter
family of curves (in fact, tori of the usual doughnut type) which becomes singular at these points.

There must be at least two singularities in the interior of the u-plane. If there was only
one, then any closed path that circled around it once could be continuously deformed into a big
circle at infinity with the monodromy M,,. This means that any closed path would leave a?
invariant, which by definition means that a?> would be a well defined function and consequently
a good global coordinate. But this would mean that the metric is given globally by (93), which
it is not as we have already argued. Hence we need two or more singularities. Moreover, the
remains of the chiral symmetry acts on the u-plane by u <+ <u, so the singularities must come
in pairs in order to obey this symmetry. We will make the assumption that there are exactly
two singularities. Although this is an assumption, it will be argued that this leads to a very
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non-trivial and unique exact solution of the theory (in the sense that ap and a will be given as
exact functions of u).

The singularities on the u-plane must have a physical interpretation. For example, in the
classical theory — the theory without quantum corrections — the point v = 0 is a singularity in
the sense that at this point we have a = 0 and so the full SU(2) gauge symmetry is restored.
Therefore all three gauge bosons are massless and the low energy description, where we have
integrated out two of the gauge bosons, breaks down. A singular point is a property of the
low energy description of the physics which means that quantum states that generically are
massive become massless at these points. What, then, are the states that become massless in
the quantum theory? It is possible to argue in a rigorous way that it is not the gauge bosons
in this case. By appealing to the N = 2 superconformal algebra, which is the extension of the
15 dimensional conformal algebra. The point is that massless gauge bosons means conformal
invariance in the infrared. We will not go into this here, but intuitively one might say that
conformal invariance is in conflict with the fact that we have a spontaneously broken chiral
symmetry?” u — <u for u # 0.

If it is not the gauge bosons that become massless, it can not be any of the “fundamental”
fields in the Lagrangian. Therefore it must only be some kind of bound states or collective
excitations. Two such possibilities are the monopoles and dyons. Indeed, we will take this to
be the case. We can not prove this rigorously. In fact, the statement that it is the monopoles
and dyons that become massless has the status of an assumption that passes many (non-trivial)
tests.

This leads us to the following strategy:

1. By using the information about the masslessness of monopoles and dyons, we determine
the fundamental group on the u-plane in terms of the monodromy matrices. The fact that this
can be done in a consistent way is an argument in favour of the monopole/dyon interpretation
of the singularities.

2. The monodromies and asymptotic values of the functions ap and a on the u-plane allows
us to determine unique and exact expressions for ap and a (and thereby, implicitly, the function
F). This is highly non-trivial.

3. We add a perturbation to the theory which has the effect of causing the monopoles
and dyons to develop vacuum expectation values. In the case of the monopoles this leads to
confinement of electric charge by some standard arguments. This is in agreement with previous
investigations of the perturbed theory, where one has found indications of confinement without
consideration of the monopole topological solutions of the field equations.

5.5 The monodromies

We will now see that the assumption that the two singular points in the interior of the moduli
space are points where monopoles and dyons become massless makes sense at the level of the
monodromies of the moduli space. We will do this by first using the duality transformation
to calculate explicitly the monodromy connected to the point where the monopoles become
massless. Then it is possible to obtain the monodromy at the other singularity, and it is checked
that this corresponds to massless dyons.

A magnetic monopole has n, = 0 and n,, = 1, so if M = 0 then ap = 0 by the mass formula.
Let us call the point where this happens ug. The singular nature of ug is due to the fact that
the monopoles are not included in the low energy theory. If we look at a small region around
the point ug, where the mass of the monopoles is very small, we can include them in the low

2"For example, in QCD, chiral symmetry breaking appears together with mass terms, which breaks conformal
invariance.
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energy theory and all is fine. This corresponds to path integrating out all high energy modes
that are larger than the monopole mass, including the ones that describes the heavy particles
such as W-bosons. If we also perform a duality transformation so that the physics is described
by the gauge vector field Ap then we get an abelian gauge theory where the gauge field couples
to magnetic monopoles just like an ordinary photon would couple to electrons. In other words,
we have supersymmetric QED.

The fact that all things are magnetic does not make any difference. A person who lives in
a world with a ground state close to uy would not know that the world was “magnetic”. Only
someone who knew the full microscopic theory, including the entire moduli space, would know
that the electric low energy variables — by definition those that are “handed down” from the
microscopic theory — were dual to the magnetic ones.

The great virtue of having supersymmetric (in fact N = 1 supersymmetric) QED is that we
know many properties of this theory including the running of the Wilsonian coupling constant?®
as a function of the low energy cutoff p [18]:

1 1 n 1 1 A

- =—+-—In—.

9b  9bo AT p
Here A is a large cutoff momentum and gpg is the bare coupling constant at that scale. Since
we are using the monopole mass as the low energy cutoff and this is proportional to ap, we get

for the effective magnetic coupling constant 7p(ap) when ap =~ 0:

IPPELE M (111)
T A
The term 1/g%,, is omitted because it is small compared to the other terms. (111) also involves a
choice of fp-parameter. Note that when u — wg, and thereby ap — 0, 7p diverges. This means
that the magnetic coupling constant gp vanishes at this point. Conversely, since 7 = <1 /7p,
the electric coupling constant g diverges.
Near ug Im7p is a positive function of ap. Since this is the metric on the moduli space
expressed in the dual variables, it means that ap is a good complex coordinate near that point
and we can set

ap = co(u Sup), (112)
with some complex constant cy. If we use the fact that 7p = dhp/dap and a(u) = <hp(u), we
can also find

a(u) = ag + ZaD lnap ~ ag + ico(u Sug) In(u Sug) (113)
T T

for some ay = a(ug). This constant must be different from zero otherwise the electrically charged
particles also become massless at uy which would invalidate our expression (111) for 7p.

From (112) and (113) we can now find the monodromy matrix at the point wy where
monopoles become massless. When u <ug — 2™ (u<ug) we have In(u<ug) — In(u Sug) + 27,
and so

ap — ap,
a — aS2ap.

In matrix notation this is

1 0
M1_<<:>2 1)

28This coupling constant is not the same as the 1PI one, as we have previously said, but it coincides with it at
one loop.
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The reason for the subscript ‘1’ is that we now normalize the u-plane so that the two singularities
occur at +1.

From this monodromy we can find the last monodromy M_; and then check if it corresponds
to a dyon. For the monodromies to match, one turn in the counterclockwise sense at infinity
must equal first one turn around v = <1 and then one turn around v = 1 (see fig. (1)). That is,

Figure 1: The monodromies of the u-plane

My = MiM 4,
and so??
i 1 i sl 2
M =M, Moo—<@2 3>.

We note that M_; can be obtained from M; by conjugation with the matrix

sl
A= ( 2 01 ) ’
namely

M_, = AM, A7,

Now we make an observation about the magnetic monopole. If we write this state, which
becomes massless at u = 1, as g1 = (1,0), then a property of this state is that

oM =q
Conjugation with A gives
@ ATTAM AT = g AT
that is
G- M_y=q_1, qi=qA"

Since we have that q_; = (1, <1) this confirms that dyons become massless at u = <1.

ZNote that a choice of representation of the monodromies involves a choice of base point P in the moduli space.
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5.6 The exact solution

Let us collect the information that we have so far. We have the u-plane with singularities at
<1, 1 and oco. The u-plane is the base manifold of a vector bundle, where the vectors take
values in C? modulo SL(2,Z). The vectors (ap(u),a(u)) are a section of this bundle. It has the
asymptotic values

a = 2u,
V2u
m

ap ~ i In w,
near v = 0o, and
ap =~ co(u<el),

1
a = ayg+ —aplnap,
T

with some constants ag and ¢y near © = 1. The behaviour near u = <1 is similar and determined
in principle by the symmetry u <> <u. We have the monodromies around oo, 1 and <1:

sl 2
Moo = (0 @1)’

1 0
My = (@21)’

ol 2
Moy = <<:>2 3)‘

Besides this, the metric on the u-plane is
ds®> = Tmr|dal?,

with

_ dap/du

~ da/du’
and so Im7 must be positive definite. With this information it is possible to find the unique
and exact expression for ap(u) and a(u). This also gives the function F(a) implicitly so in this
sense we have therefore “solved” the theory exactly!

In order to obtain the exact expressions for ap and a it is necessary to appeal to complicated

mathematics such as complex curve theory. It is beyond the scope of this report to do so. Instead

we will just state the exact expressions and then show that they have the desired asymptotic
behaviour. a and ap are given by the integrals

_fldxx
- L s
f/dxx
NS

Let us check the asymptotic values of (114) near u = oco. We get

\/ﬂ

ap (114)

_ V2u

/ \/— - [arcsin z]' | = V2u.
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For ap we make the substitution x = uz:

\/@ dz\/z <1
1/u V2% <=U -2

The integral has a logarithmic divergence in z = 0 as v — oo. The divergent part is

V2u \/ 2ulnu

ap R = — —[®ilnz],, =

™

These are the desired expressions for ap and a. What about v =17

\/2u/ dz/z &1 dz/z &1

Vzel
Vu [y el \/z—l- /1/u \/z<:>11L

= —(1 @%) ~

ap =

2(u <1).

a 1s finite at v = 1:

1):Q/1 dx :@

“1vr+1 ™

[2\/£E + 1]1_1 -

a(u =

This gives us ag. To get the u-dependence of a near u = 1, we differentiate to get the next term
in the Taylor expansion:

da V2 ot dz
du 21 J1Vr+ 1V elVzeu

(115)

We have a logarithmic divergence at £ = 1 when v — 1. In this region, the integrand is nearly
<l
(115) thus becomes

da V2 [<l In(u <1)
—r~ — |—=In(u <) =c—
du 21 [\/2 S 27

and so the expression for a near v =1 is

4 (uel)ln(uel)
i +
T 2m

a =

This verifies that (114) are indeed the exact expressions.
Let us also recall that a holomorphic function — or a holomorphic section of a bundle — is
essentially uniquely determined by its behaviour, so eqs. (114) are essentially unique.

5.7 Confinement of electric charge

Our last consistency check concerns confinement. Actually, we will perturb our N = 2 Yang-
Mills theory to an N = 1 theory by adding a matter term for the Higgs field ®, and it is this
theory which has confinement. The point is that this conclusion can be reached in two different
ways. The first one was used by Witten in Ref. [36]. Here one puts the system in a box with
finite volume and the gauge field is required to obey the so-called 't Hooft’s twisted boundary
conditions. The topologically non-trivial configurations of the gauge field in such a set-up are
an integer number of color-electric and color-magnetic flux lines in the z-, y- or z-direction. One
can then show that the energy connected to a single electric flux line is finite - that is, greater
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than zero. When the volume of the box is taken to infinity, the energy of a single flux line also
goes to infinity, which implies confinement as will be explained below. Note that no mention of
magnetic monopoles has been made.

The second way has to do with the condensation of the magnetic monopoles. By writing
the low energy Lagrangian in terms of the dual, magnetic variables, it is a matter of solving the
equations for the vacuum expectation values of the monopoles in the presence of the perturbation
to see that they condense. Before we do that, however, let us see why monopole condensation
leads to confinement of electric charge.

The prototypical problem of confinement is that of quarks in QCD?. As a consequence of
their having a color charge, they are the sources of color electric flux lines. These flux lines
radiate inwards or outwards depending on whether one is dealing with a quark or an antiquark.
This is very similar to QED. However, it is believed that color electric flux lines are always
bunched together into thin stringlike tubes. One indication that it is in fact so is the observed
occurrence of the so-called Regge trajectories. Let us consider mesons for simplicity, i.e. bound
states of a quark and an antiquark. If we considered all the mesonic states that were observed
with exactly the same quantum numbers (such as isospin, strangeness etc.) except mass and
spin, they would fall on a straight line in a plot like the one in fig. (2). This is in agreement with
what one would calculate from a classical system consisting of a rotating “rod” with a uniform

Figure 2: Regge trajectory

energy density and two massless point particles at each end. Intuitively one sees that the faster
this (relativistic) system rotates the longer is the rod because of the centrifugal force on its ends,
and thus the mass increases with increasing spin. This tells us that color electric flux lines are
bunched together into tubes with a uniform energy density.

Color electric flux strings with uniform energy density implies confinement because a single
free quark would sit at the end of an infinitely long string which would then have an infinitely
large energy. This does not make sense and must be ruled out. Alternatively we could start
with a bound state of a quark and an antiquark and then try to separate them by pulling them
away from each other. As we pulled, the flux string between them would grow longer and the
energy that resided in the string would increase. At one point, however, we would reach the
point where the energy of the string would be equal to the threshold of the creation of a new
quark-antiquark pair from the vacuum. Thus a new quark would pop out and stick to the old
quark and a new antiquark would pop out and stick to the old quark, forming two new bound
meson states. We could therefore separate a quark from an antiquark but we could not make

30The following account of confinement is close to that of Huang, Ref. [37].

67



them free.

So far we have established that quark confinement is equivalent to the fact that color electric
flux lines are collected into thin strings. We still need to know the mechanism behind this. We
can get a hint to this by looking at another system with similar properties, namely a type Il
superconductor. ‘T'ype II’ means that if we take a sample of such a superconductor and place it
in a magnetic field, then the magnetic field is not altogether expelled from the sample, as it would
be in the type I case. Instead the magnetic field is confined into thin stringlike regions — the
Abrikosov vortices. Hence we have a system that bunches magnetic flux lines into tubes and thus
leads to confinement of magnetic charge. There is a slight problem, of course, that it is magnetic
charge that is confined rather than electric?!, but we shall see that the electric-magnetic duality
we have in our supersymmetric theory solves the problem. A progress lies in the fact that we
actually know the mechanism that collects the magnetic flux lines in a superconductor.

It turns out that we can describe a superconductor by a relativistic quantum field theory.
More precisely it is an abelian Higgs theory with an abelian gauge field coupled to a complex
scalar Higgs field. In the superconductor, the gauge field is just the photon, and the Higgs field
is the Cooper-pair condensate. The Higgs field feels a ‘Mexican hat’ potential, i.e. V(|¢|) =
(|¢|? ©¢2)2. A well known topologically stable (and non-trivial) solution to the equations of
motion is a magnetic vortex line — a Nielsen-Olesen vortex. Obviously, since it is stable this
represents a local minimum of the energy, and so magnetic flux lines are bunched together
because it is energetically favourable. From this we deduce that magnetic charge is confined in a
(type II) superconductor. Note that confinement is a property of the “vacuum”, or in this case
the superconducting medium, and not a property of the dynamical quarks or charges themselves.
In a sense it is a statement about (possibly hypothetical) test charges.

Now we turn to the problem of the desired electrical confinement. This has a natural solution
when we suitably perturb the N = 2 theory. In the unperturbed theory there are two dual and
equivalent descriptions of the physics at generic points of the moduli space. One is the ‘electrical’
one with the gauge superfield W and chiral superfield A that are remnants of the three W* and
®® in the microscopical theory. The other one is the dual ‘magnetic’ one with gauge superfield
Wp and a chiral field Ap. By construction, the gauge field Vp, in Wp couples to magnetic
charge just like an ordinary photon field would couple to electric charge. It is the electric
charge in the first description that we want to confine. The point is that we have a gauge field
that couples to magnetic charge, and near the point © = 1 we also have fields that describes
the magnetic monopoles including two complex scalars of magnetic charge. Here we have used
that near the point v = 1 there must be a sensible field description of the monopoles, since at
exactly this point they become massless and so can be pair created en masse. These fields must
constitute an N = 2 matter multiplet, or in N = 1 language, the chiral superfields M and M
with one complex scalar each. All we need now in order to actually have the same situation as
in the abelian Higgs model, is a non-vanishing vacuum expectation value for one (or both) of
the scalars. This is where the perturbation to N = 1 comes in.

A mass term for the chiral fields ® is mTr®2. Since Tr®? is the gauge invariant chiral field
whose scalar component expectation value is u, we will call it U. We add mU to the tree level
Lagrangian. The low energy effective theory expressed in the dual variables before we add the
perturbation has the Lagrangian

L = /d20d2§ [ADeVD;lD + MeYP M + Me_VD]\:i

31The fact that it is a U(1) (magnetic) charge rather than a, say, SU(2), charge that is confined in a super-
conductor will not bother us. We will take the confinement of the U(1) electric charge to be the problem we are
interested in.
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+/d20 (W3 + ApMM| + h.c. (116)

The term ApMM is the superpotential and is required by N = 2. By adding the term mU at
the tree level this effective superpotential turns into

W = ApMM + mU (Ap) (117)

The term ‘mU’ is in other words unchanged after the quantum corrections. Note that the
superfield U is to be regarded as a (complicated) function of Ap. U is a gauge independent field
and should thus not be sensitive to the gauge dependent fields that are taken as “fundamental” in
the description of the (gauge independent) physics. (117) is found by considering the symmetries,
holomorphy and the small m limit, that is, by the non-renormalization theorem.
We are now interested in the ground state of this perturbed theory. We must therefore solve
aw
dAp —

dM ~— dM

0, and

(cf. the discussion of potentials in Sec. 3.4). In addition, M and M, the scalar components of
the superfields of the same name (!) satisfy

|M|? <|M|*=0

from the D-terms. In other words |M| = |M|. We now get

_ d
VIMM +m = o,
dap

aDM:aDM = 0.

These are the scalar field equations, and u'(ap) = du/dap is a component of a “derivative
superfield” U'(Ap). Thus, when m # 0, we get
~ Smau/ (0
M= = TR0,
V2
So M and M has a non-vanishing expectation value and we have confinement. Note that ap =0
in the ground state which means that only the point u = 1 remains of the moduli space (in the
region close to this point, where (116) is a relevant Lagrangian).
This concludes our discussion of the N = 2 supersymmetric Yang-Mills theory.

A Representations of the Lorentz group

We use the metric g, = diag(+1, <1, <1, <1). The generators My, of the Lorentz group obey
the algebra

[Muua Mptr] = i(gupMutr <:}gl/or]\4up <:;’gup]\fwr + g,urrMup)

This is also the algebra of the group SL(2, C) which is the covering group of the Lorentz group.
All fields must transform according to a representation of this algebra, so we want to find these
representations starting with the irreducible ones®?.

We introduce the generators J; of spatial rotations and K; of boosts by

|
Ji = g€ipMj,  Ki = Mo.

32See e.g. Ref. [11]
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They obey the commutation relations
i, Jj] = i€ijidi,

i, K] = €Ky,

(K, K] = <ieijrd,
If we now define

A; = %(Jl + iKi), B, = %(Jl <=>iKZ'),
we get the decoupled commutation relations

[Ai, Al = ideijiAg,

(B, Bj] = i€;jiBy,

[4;,B;] = 0.

The J; and the K; are hermitean operators so the A; and the B; are not — they are each others
adjoints:

Al=B;, Bl =4,

Nevertheless, we have managed to write the algebra of SL(2,C') as the direct sum of two SU(2)
algebras, of which we know the irreducible representations. These are characterized by the
eigenvalues of the Casimir operators

A’ = qla+1), a=0,11,...

B?> = b(b+1), b=0,3,1,...
Le. an irreducible representation can be labelled by (a,b), and A? and B? acts within this
representation as a(a + 1) and b(b + 1) times the identity, respectively. Since J; = A; + B;, the
spin of a representation is a + b.

The simplest representations are:

1. (0,0): The scalar representation.

2. (3,0): A left-handed spinor (the left-handedness is a convention). We would like to have

Jh = %O'i, because the spin is % This can be done if we take

At=1Lst B =0.

N[

We then have

MY = 1% =<i(4A' B = slid,
MY = %O’i‘j = eijk(Alc + Bk) = %eijkak,

where we also have defined the matrices o#”. The o#*¥ are antisymmetric in g and v, and
satisfy the selfduality relations

ot et of? =gt 123 = 1.

po

NO[—

A spinor 9 that transforms in this representation has two components labelled by an index
a,B3,..., etc. (for the index structure, see Appendix B). A Lorentz transformation A with
the infinitesimal parameters w, = <w,, is given by

U(A) = I+ Jiwy, M™,
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and so from the expression
UM)$aU M (A) = (6.7 + 3iw - 5(0™) )5
we find the transformation property of a left-handed spinor:
(MM 0] = (") o 5.
3. (0,3): A right-handed spinor. Here we take
A'=0, B'=1id,
so that we have

MY =
MY =

¥ = &i(A' &B') = Lio',
i _ eijk(Alc + Bk:) _ %eijko_k.

N[—= N[
Q Ql

We record that 5* = (o*)T, which could have been anticipated because the (0, 3) is the
hermitean adjoint representation of (%,0). We also have that ¥ satisfy the selfduality
relations

o = sigh” .

A spinor ¢ that transforms in this representation has dotted indices d,B,..., etc. Its
transformation properties are

(M, ] = iy (0) .

Note that a parity transformation acts by
J'—=J"  and K'— &K'
Thus the (3,0) is the parity transform of (0, ) and vice versa.

Other representations can be built from the spinor representations by addition or multiplication:

4. (0,5) ® (5,0): A Dirac spinor. The four components of the Dirac spinor U is organized as

= (%),
X

where 9 and x are its constituent left- and right-handed two-spinors, respectively. Its
four components are also labelled by (undotted) letters from the beginiing of the Greek
alphabet. We more to say about four-spinors in Appendix B.

5. (3,0) ® (0,1) = (3,3): A four-vector. This is true because it is a four dimensional
irreducible representation. The spin is also 1. The four vector V,_ ;4 can be written in the
conventional (Lorentz indexed) way by

- 1
V, 5= Vuaa B

where ot = (1, 7).
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6. (3,0)®(3,0) = (0,0) & (1,0): This is a sum of a scalar and an antisymmetric tensor with

definite selfduality properties. The tensor T;, 3 has the expansion
Top = Teap + T (0")as-
Similarly, if T} ; is an antisymmetric, anti-selfdual tensor in the representation (0, 1), then

T.;= le(aw)

aB
A second rank, antisymmetric Lorentz tensor without any selfduality properties thus trans-
forms in the (1,0) @ (0, 1) representation. An example of this is the Maxwell tensor F),,.

B Spinors

Two-spinors are anticommutins objects that transform under the group SL(2, C), which is the
covering group of the Lorentz group. The elements of SL(2,C) are the 2 x 2 complex matrices
with determinant 1. There are four equivalent representations of SL(2, C) in the sense that if M
is a matrix that represents an element, then the hermitian conjugate M1, the transpose inverse
(MT)~!, and the hermiian conjugate inverse (M), represents the same element equivalently.
Upper or lower and dotted or undotted indices distinguish the various representations:

1/)& = Maﬂz/)ﬁa QZ)& = M*dﬂl/;ﬂa (118)

P o= Myt g = (M) (119)
This is in contrast to e.g. the unitary group SU(2), where there are only two equivalent repre-
sentations:

z; = U, jxj, g = U_lj gl
Just like for the unitary groups, we can raise and lower the two spinor indices by using e-tensors:

R
Yo = cagh?, G = et =

The e-tensors are defined by

0 1 0 <1
ea,8:<<:>1 0) and 6aﬁ2<1 0)7
and similarly for the dotted e-tensors. With these definitions we have e,ge?’ = §,7. Scalar
products between two two-spinors are defined by contraction of upper and lower indices:

PX = PXa = ShaX” = X o = X1,
PX = PaX” = Xa = Xa¥" = X
We can go from undotted to undotted indices and vice versa by complex conjugation:
@) =9% (%) = a4
so that undotted spinors transform in the (%, 0)-representation and undotted spinors transform

in the (conjugate) (0, 3)-representation of the Lorentz group. The o-matrices o = (I,0%) and
ot = (I,<0") have the index structure

o and ghaB.
ap
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so that 1, and 10X, can be written into “manifest” four-vectors by
X3 X
I/JO‘UZBXﬁ and @dﬁ”dﬁxg.
There is also the relation
ghal — eo.‘;yeﬂ‘sagﬂy.

The generators o*” and 6 of the Lorentz transgormations, defined in Appendix A, can be
given in terms of the o-matrices by

we B Lo B SviB o
otV = 22(00@0 S0q;017),
— Ve 1:(=pay, v vary [
o ", = si(cheY, <" a" ).

B 20 B vﬁ)

Four-spinors are given in terms of two-spinors by

-(3)

to give the (1,0) ® (0, 2)-repreentation of the Lorentz group. We define y-matrices by
g 2 2 g v

0 ot <l 0
wo__ s 0.1 .2 3
’y_<o_u 0)7 75_27777_<0 I)

They satisfy {y*,v"} = 2¢g"” and 42 = I. A barred four-spinor is defined in the usual way by

U =00 = (xa,9%).
Thus, if

\1,:<1/’g> and @:(‘7)3),
X 1

we have the product
TP = x¢ + .

Other bilinears are staightforward to work out. We can define a charge conjugation matrix by

C= ( Egﬁ 62[; ) ,

and thereby a charge conjugate spinor
ve =t

which is then the charge-conjugated of W. A Majorana spinor is a self-conjugate spinor:
U =0°

It contains only one two-spinor in the following way:

o ()

Bilinear expressions in Majorana spinors have some properties which biliear expressions in non-
Majorana spinors does not have, which is often useful in calculations. These are the so-called
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‘Majorana flip’ properties. If , denotes I, v5, v, y"v5 or y*~", (u # v), then the majorana flip
properties are that

U, d=0, T,
where

y =+, for y — 1775 or 7“757
, =& for =gt oryy (u#v)
(see also eqgs. (149-153) in Appendix D).

C Notation and conventions

Metric: g, = (1,81, &1, 1) (120)
Levi-Civita tensor: €123 =1 (121)
_ (01 ws [0 &l
e-tensor: €4 = < ol 0 ) , € = < 1 0 > (122)
Spinor product:  gx = ¢°Xas X = DaX’ (123)
Hermitean conjugation of spinors: (I/JOéXa)Jr = Xo'ﬂ/;d (124)
o-matrices: ot = (I,0"), ot = (I,<0') (125)
0 ot <l 0
: o no_ 12,3 4

~v-matrices: vy ( . ) , Y5 =iy Yy ( 0 I ) (126)
Dirac spinor: ¥ = Ya 127
pinor: = | & (127)

. . . €ag 0
Charge conjugation matrix: C = . (128)

0 €
Majorana spinor: U = < 1,1//_))3‘ ) , U =9‘=Cu’ (129)

Index raising and lowering: P = eaﬁz/)g, Yo = Eaﬁl/)ﬁ ,
5= B o= el
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Useful fomulae

0°0° = <5000, 0,05 = seaptt,
0498 — @%eaﬁgg, 0.0 —
Eaﬂeﬂv =6,

6°05 = 16°400

0 o
a0 =200, 5700 =20;
0 0

555570 =

0 0 -

555500 =4

gheB — eo.‘;ye’&saf;7

oM = %i(a“&” So’at)
(U”&V)aﬁ — guv(ga,@ @i(o‘“’)aﬁ
€16(0")o" = €apl0?”),”
Trotg" = (o*5"),* = 2¢g"

Tro" P = 2(g"° " gh7 g"?) + 2P

(00"0)(05"0) = 100009

(06)(09) = <5($)(00)
(66)(0) = <5 (¢¢) (60)
xotp = <apaty

TP = OV = hp + ¢

Uys® = D5 U = b S

TP = <Py T = pop + Ppate
Uylys® = Byl U = ot <Patd

Ty’ ® = DyIy' U = «2ipot'c" 2ot 0" ¢

7

(130)
(131)
(132)
(133)

(134)

(135)

(136)

(137)

(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)

(153)
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