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Resumo

Estuda-se a possibilidade, do ponto de vista fenomonológico, de unificar a matéria

escura e a energia escura numa só componente isentrópica (‘quartessence’ canónica),

no contexto da Relatividade Geral. Em particular, estuda-se o gás de Chaplygin

generalizado (gCg) como protótipo de quartessence e determinam-se constrangimen-

tos de ordem zero e linear. Conclui-se que o gCg se tem de comportar de uma forma

muito semelhante a ΛCDM, um resultado que tem sido interpretado como o fim

da energia escura unificada (EEU). Argumenta-se que esta conclusão é, em grande

parte, prematura. Ao analisar-se o ińıcio do regime não-linear, põe-se em causa a

validade dos métodos tradicionais perturbativos usados no âmbito da quartessence.

Mostra-se, com efeito, que o colapso não linear de pequena escala, pode afectar o

comportamento de larga escala do Universo de uma forma que estes métodos não

levam em conta. Conclui-se que somente resolvendo as equações de Einstein por

completo, se pode obter um veredicto final sobre a EEU. Algumas ideias simples

sobre como contornar esta dificuldade são sugeridas.

Palavras-chave: Energia escura, Matéria escura, Quartessence, Gás de Chaply-

gin, Cosmologia, Relatividade Geral, Perturbações não-lineares
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Résumé

La possibilité d’unifier la matière noire et l’énergie noire en un seul fluide isen-

tropique (‘quatressence’ canonique) dans le contexte de la Relativité Générale est

étudié du point de vue phénoménologique. En particulier, on étudie le gaz de Chap-

lygin généralisé (gCg) comme un prototype de la quatressence et on détermine les

constraintes d’ordre zéro et linéaire. On peut conclure que le comportement du

gCg est très semblable à ΛCDM, un résultat qui a été interpreté souvent comme

la fin de l’énergie noire unifiée (ENU). On argument que cette conclusion est as-

sez prémature. En analisant le commencement du régime non-linéaire, la validité

des métodes perturbatives traditionelles utilisées au contexte de la quatressence, est

mise en doute. On montre que l’agglomération non-linéaire, même à petite échelle,

affecte le comportement à large échelle de l’Universe d’une façon que les métodes

traditionelles ne sont pas capables de tenir en compte. On peut conclure que pour

obtenir un veredict final sur l’ENU, on doit résoudre complètement (ça veut dire

sans aucune approximation) les équations d’Einstein. Quelques simples idées pour

traiter ce problème sons suggérées.

Mots-clés: Énergie Noire, Matière Noire, Quatressence, Gaz de Chaplygin, Cos-

mologie, Relativitée Genérale, Perturbations Non-Lineaires

v



vi



Abstract

We study, from a phenomenological perspective, the possibility of unifying dark

matter and dark energy into a single isentropic fluid (canonic quartessence), in the

framework of General Relativity. In particular, we study the generalized Chaplygin

gas (gCg) as a prototype for quartessence and determine background and linear

constrains. We find that the gCg has to behave in a manner very similar to ΛCDM,

a result widely seen as the end of unified dark energy (UDE). We argue that this is

mostly a premature conclusion. By analyzing the onset of the non-linear regime, we

bring into serious question the validity of traditional perturbative methods in the

context of UDE. We show that non-linear clustering, even on small scales, affects the

average pressure of the Universe in a manner that traditional methods fail to take

into account. We conclude that only by solving the full Einstein field equations, can

a definite answer be obtained regarding the validity of the UDE hypothesis. Some

simple ideas on how to improve this situation are subsequently offered.

Key-words: Dark energy, Dark Matter, Quartessence, Chaplygin gas, Cosmology,

General Relativity, Non-Linear Perturbations
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Notations and Units

Throughout this thesis, we employ a (− + ++) signature for the spacetime metric

gµν . Greek indices run over spacetime coordinates, Latin indices run over space

coordinates. M represents the inhomogeneous Universe, 〈M〉, the average large

scale background. If the global and local dynamics in M are the same, the symbol

M is used for the background instead of 〈M〉. We follow the convention that

quantities inM are denoted with a bar on top, like so Q̄, and no bar for quantities

in M. However, if Q is obviously a background quantity like the scale factor a or

the Hubble parameter H (or H, if conformal time is used), no bar is employed. The

same symbol xµ for coordinates in M and M is used; there is no need to carefully

distinguish x̄µ from xµ because it is always possible to drag the coordinates from

one manifold to the other by means of any diffeomorphism linking the two. Unless

otherwise stated, natural units are used throughout.
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Preface

Today, the macroscopic aspects of the Universe seem well understood. Multiple

observations strongly suggest that we live in a (nearly) flat Universe, presently un-

dergoing an accelerating phase [1, 2, 3, 4, 5, 6]. In the context of General Relativity,

this acceleration can only be explained by the presence of an ‘exotic’ dark energy

component violating the strong energy condition. Exactly what constitutes this

energy, no one knows; it stands as one of the biggest mysteries in contemporary

Cosmology. Theoretically, the simplest way to achieve this acceleration is through

a cosmological constant [7]; unfortunately, at the present, we have no clear un-

derstanding of how this ‘vacuum energy’ arises. There are many other possible

constructs, though, that can achieve this same large scale dynamics; however, they

are mostly canonic (e.g. quintessence [8, 9]) and non-canonic (e.g. k-essence [10],

phantom energy [11, 12], tachyons [13, 14], vacuum metamorphosis [15, 16], etc.)

generalizations of the cosmological constant that also lack any solid foundations.

This makes it hard to meaningfully compare them. This is not to say, of course,

that some do not have better ‘traits’ than others; quintessence, after all, is often

described as an enhanced cosmological constant. Nevertheless, these improvements

are hardly rooted in any current fundamental understanding we have. Thus, barring

any significant progress at the ‘fundamental physics’ front, we really have no way

of discerning which alternatives are indeed better. Even worse is the fact that no

‘direct’ detection of dark energy has ever been made; we’re not even sure if it really

exists. As it happens, most theoretical physicists these days don’t actually believe

that General Relativity is the final word on gravity. Thus, it is quite possible that

dark energy doesn’t actually exist, in other words, gravity itself may be causing the
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observed acceleration [17]. Indeed, by modifying General Relativity directly, it is

possible to reproduce the current acceleration of the Universe without involving any

dark energy. (There are many ways to achieve this but normally they all involve

extra-dimensions. Branes [18], for instance, are a famous example.) At the moment,

however, most modifications are still far too ‘ad hoc’ to be particularly pleasing, and

are hardily fundamental well motivated, anyway. By tinkering with the large scale

behavior of gravity, though, we haven’t really closed any Pandora’s Box regarding

dark energy, we only pried it open even more. For our part, in this thesis, we will

always work within the confines of General Relativity, by treating dark energy as a

real entity.

There are also multiple observations that strongly suggest that most ‘matter’

in the Universe, an essential ingredient for structure formation, is in a dark non-

baryonic form [3, 19, 4, 6, 20]. Also here, the exact nature of this non-baryonic dark

matter is not known and possibilities abound; these commonly include all sorts of

non-standard particles, from axions to the neutralino, and so forth. Other more

exotic possibilities, involve direct modifications to General Relativity; these go from

the latest revised relativist versions of MOND [21], to a non-symmetric modified

gravity by Moffat [22, 23, 24]. In all of these, dark matter is traded for a much more

complicated TeVeS (tensor, vector, scalar) gravity source. Again, we won’t consider

this route by always staying within General Relativity.

It is perhaps the greatest achievement of 20th-century Cosmology, that we are

now in possession of a fairly accurate and complete inventory of the energy content

of the Universe. Roughly speaking, we know today that only about 4% of the

Universe is made of ordinary baryonic matter (of which roughly a quarter is actually

visible), 26% non-baryonic dark matter and the remaining 70%, dark energy (and

an insignificant amount of radiation). It is quite astonishing to realize that the vast

majority of the Universe has yet to be ‘seen’; then again, we could take this as

a sign that something is wrong with General Relativity. 21st-century Cosmology

is thus hard-pressed to explain what these unseen components are; this turns out

to be a very difficult thing to do. At the most basic level (assuming they exist),
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for instance, we’re not even sure if dark energy and dark matter are fundamentally

different from one another (a widespread belief, nonetheless). In reality, we only

know that macroscopically they play different roles but, a priori, this doesn’t actually

force them to be different. It is certainly conceivable, at least theoretically so,

that both could share a common origin. Given the current state of affairs, with

no direct detection foreseeable in the near future, and no shortage of candidates

also, the possibility that dark energy and dark matter are, somehow, just different

manifestations of a single entity, should not be discarded lightly. In fact, it only

stands to reason that such a possibility should be throughly investigated. A negative

outcome would, at least, signal the fundamental difference between dark energy and

dark matter. Either way, something of value could be gained.

Unified Dark Energy (UDE for short) models (sometimes also called unified dark

matter models) are thus built upon the simplifying hypothesis that a single com-

ponent (dubbed ‘quartessence’) simultaneously accounts for both dark energy and

dark matter. Historically, the idea of UDE has sprung from the unusual proprieties

of the Chaplygin gas [25, 26], an exotic fluid with an equation of state p = −A/ε,
where A is a positive constant: it turns out that this fluid behaves as (pressureless)

matter very early in the history of the Universe, and as a cosmological constant

much later (smoothly transitioning between the two), a dual behaviour highly sug-

gestive of a unified description of dark energy/dark matter. This gas is also special

in that it can be ‘motivated’ in the context of string theory by considering a d-brane

in a spacetime of d + 2 dimensions. Then, the Nambu-Goto action can be seen as

describing a ‘Newtonian’ fluid with the above equation of state [27, 28], the negative

pressure interpreted as the brane tension. This interpretation has made the Chap-

lygin gas the currently preferred prototype for quartessence; on the other hand, it is

hardly a fundamental interpretation, so we shouldn’t give it too much importance.

[29] generalizes this fluid to a broader class parameterized by p = −A/εα where α is

a constant. Unfortunately, the pressure of this so-called generalized Chaplygin gas

(gCg) is no longer easily interpretable as a d-brane tension; consequently, some of

the initial appeal is lost. Nevertheless, this does not make it any less useful to us,

especially in the context of a phenomenological analysis. This is because the gCg

xiii



covers, in a continuous fashion, a wide gamut of quartessence models, from ΛCDM

(a limiting case of UDE corresponding to α = 0, as we will later show in detail) to

the original Chaplygin gas. The real question then becomes whether or not the gCg

(and, hence, quartessence in general) constitutes a viable alternative to an already

macroscopically successful (non-unified) ΛCDM model of the Universe.

This work is an attempt to answer this question phenomenologically. Several

tests are discussed, mainly of zero and linear order, and how they constrain the pa-

rameter space of the gCg. It turns out that an α close to zero is significantly favored

by current observations, a result widely seen as indicating the failure of UDE. That

this is mostly a premature conclusion, is perhaps one of the most relevant contri-

butions we make to this subject. Our reasoning is grounded in the realization that

non-linear effects are of critical importance for all UDE models. In broad terms, this

is related to the fact that the average pressure 〈p〉 ≡ 〈−A/εα〉 of an inhomogeneous

gCg manifoldM is not −A/〈ε〉α (where 〈 〉 represents a suitable spatial average) un-

less, of course, the perturbations are very small. This simple observation highlights

the fact that an average gCg universe, i.e., 〈M〉 doesn’t behave, in general, as a spa-

tially homogeneous gCg. This poses a serious problem for traditional perturbative

methods for the simple reason that we need to know upfront how the background

evolves in order to build perturbations on top of it. Unfortunately, in the case of

the inhomogeneous gCg we simply don’t know this; to find out, we would have to

solve the full Einstein field equations and subsequently smooth any solutions we

could muster. It goes without saying that this is a notoriously difficult task by any

standard; if we could do it in general, perturbative methods would hardly have any

‘raison d’être’. It is, of course, always possible to start out with a homogeneous gCg

background and perturb it, like most of us have; the real problem is that we may be

perturbing the wrong background. By building perturbations on top a homogenous

gCg background, we are effectively ignoring the potential effect that non-linear small

scale clustering may have on the actual background as a whole. (This is strongly

suggested by the fact that the average equation of state of the inhomogeneous gCg

differs from the homogenous one.) It is true that in ‘most’ cosmological models,

non-linear small scale clustering can be ‘swept under the rug’; there is a ‘natural’
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expectation that this should not significantly affect the very large Universe. Nev-

ertheless, the Chaplygin gas does seems to be special in this way (and UDE, by

extension), in that its small scale structure does affect the equation of state of the

average universe. Unfortunately, this all adds up to the fact that background and

linear tests are simply not enough to validate or disprove the UDE hypothesis, mak-

ing the complete analysis of these models unexpectedly complicated. Considerable

work has yet to be done in order to establish their ultimate fate.

The layout of this work is as follows: In Chapter 1, we summarize the theoret-

ical framework of the Standard Model of Cosmology and briefly discuss the ‘usual

suspects’ for dark energy and dark matter. The concept of quartessence is then intro-

duced as a compelling alternative. In Chapter 2, we investigate the homogeneous

background proprieties of UDE and constrain the gCg parameters (A, α) using su-

pernovae Type Ia luminosity distances. We also discuss implementing quartessence

as an isentropic scalar field obeying a particular Lagrangian. This, in turn, will

lead us to the conclusion that the gCg is totally equivalent (to any order) to an

ordinary ΛCDM model (as far as gravity is concerned) when α → 0, a fact that

plays an important role. The question of what is meant by a single (‘atomic’) fluid

is also carefully addressed. In Chapter 3, we set up all the necessary machinery

to describe linear perturbations in order to study large scale structure formation in

the context of UDE models. A formal demonstration of the equivalence to 1st order

between ΛCDM and the α = 0 generalized Chaplygin gas is given as an illustration

of this framework. The crucial role baryons play in the formation of structure is

then carefully highlighted. Using this machinery, a gCg model (plus baryons) is

constrained against the mass power spectrum obtained from the 2dF 100k Galaxy

Redshift survey. Linear instabilities are also briefly touched upon. In Chapter 4,

we discuss the so-called averaging problem in the context of UDE and how even the

large scale universe may be affected by the non-linear small scale clustering that oc-

curs in the quartessence component. The argument is made, both qualitatively and

quantitatively, that non-linear effects cannot be safely ignored (except when α = 0).

Thus, the majority of background and linear results obtained without taking into

consideration the effect of non-linearities are put into serious question. The need

xv



for a full order treatment is highlighted. A few simple ideas on how to improve this

situation are subsequently offered. Finally, we end this thesis by summarizing, in

bullet form, the main results obtained in the course of this work.
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Chapter 1

Introduction

“. . . entities should not be multiplied beyond necessity.”
William of Ockham, 14th Century

Observations have been steadily piling over the years that can only be ‘explained’, in

the context of General Relativity, by the presence of so-called dark forms of energy;

ordinary baryonic matter and radiation are simply not enough. In broad terms,

a dark energy component (violating the strong energy condition) is required to

explain the recent acceleration of the Universe, and a (cold) dark matter component

to account for the amount of structure observed in various scales (plus a few other

things). Unfortunately, these components have never been observed directly in any

way (hence their ‘dark’ moniker). It is also very unlikely that a direct detection

will occur in the near future. In fact, they may not exist at all; this, however, only

seems possible if General Relativity is somehow flawed, in other words, if gravity

is a much more complex interaction than Einstein previously thought (on large

scales). It is certainly possible to engineer dark energy and dark matter ‘out of the

picture’, by modifying General Relativity directly; often this process involves extra-

dimensions with strange topologies and/or fiddling with TeVeS gravity sources. At

the moment, however, most modifications are far too ‘ad hoc’ to be particularly

pleasing, and nobody seems in any real hurry to give up on General Relativity just
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yet (at least for large scales). In this thesis, we will always work within the confines

of General Relativity, in other words, we’ll be assuming that dark energy/dark

matter are real entities. On the other hand, if they do exist, it is particularly vexing

to find out that roughly 96% of the Universe should be in this dark form! That

such a large chunk of the Universe has yet to be ‘seen’, is truly mind boggling.

(We can certainly spin this around and take it as a sign that General Relativity is

somehow flawed.) Thus, contemporary Cosmology is hard-pressed to explain what

these components are. In the absence of a ‘smoking gun’, however, this is a very

hard thing to do; there are simply to many ways to wrap phenomenological theories

around circumstantial evidence. Also, our understanding of fundamental physics is

not sufficiently advanced to safely guide us through this uncharted territory, let alone

suggest an optimum route. In the meantime, we are reduced to somewhat ‘arbitrary’

discussions of what a canonic (i.e. best possible) model for dark energy/dark matter

should be.

Certainly, in this regard, the realization that dark energy/dark matter do not

have to be, a priori, independent entities, should play a significant role. Indeed, there

is no compelling observational reason to suppose that they are. It is only because

dark matter and dark energy play distinct roles in the background, that we frequently

perceive them as being different. However, this doesn’t actually force them to be

different, it only suggests that. The Chaplygin gas, for instance, became famous

precisely for being able to mimic both dark energy and dark matter (depending on

the local density), and still be just one form of energy—a weird one, granted, but

so can be said of quintessence, k-essence, etc. Thus, we should keep an open mind

to the possibility that dark energy and dark matter are just different manifestations

of a single underlying field and not different entities per se. Models built around

this simplifying hypothesis are the main subject of this thesis. Obviously, if this

is true or not, can only be definitely settled by some sort of ‘direct’ observation,

an unlikely event by all accounts. Still, on the theoretical front, the idea of a

unified description of dark energy/dark matter has incredible heuristic potential

and should be thoroughly investigated. All things being equal, having to explain in

a fundamental way just one exotic form of energy, is obviously much better than
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having to explain two. In case of failure, we would at least come back justified in

treating dark energy/dark matter as an independent pair. Either way, something of

value could be gained.

In this chapter, we briefly cover the foundations of the Standard Model of Cos-

mology as well as review some of the ‘usual suspects’ for dark energy and dark

matter. The (generalized) Chaplygin gas is also introduced (as a compelling alter-

native) and, in turn, the broader concept of quartessence. These ideas, however,

are mostly presented from a phenomenological point of view; nowhere do we try to

establish them from ‘first principles’, a task that is better left to our fellow theo-

retical physicists. Presently, there is no such thing as a ‘fundamental motivation’

behind quartessence; we can only hope that one may be found in the future. At best,

there is an ‘ad hoc’ string theory interpretation of the Chaplygin gas as a d-brane

tension, but this is hardly fundamental, anyway; it also does not seem to apply to

more general forms of quartessence. It is much too early to say, with any degree of

certainty, if unified models will ultimately stand on their own. In this work, we are

merely interested in gauging how viable these models are from a phenomenological

perspective, as opposed to implementing them in a fundamental way.

1.1 The Cosmological Principle

The idea that the Universe is pretty much ‘the same everywhere’, a stance known as

the Cosmological Principle, is of central importance for contemporary Cosmology.

However, ‘looking the same everywhere’ is an informal concept only made precise

through the notion of a maximally symmetric manifold. A maximally symmetric

manifold is a manifold with homogeneous and isotropic geometric properties. Here,

homogeneity and isotropy mean that the metric is invariant under (suitable) transla-

tions and rotations, respectively. Note that isotropy and homogeneity are indepen-

dent concepts; one does not imply the other. For instance, a homogeneous manifold

can easily be anisotropic if the anisotropy is the same in every point. Nevertheless,

isotropy about every point does imply homogeneity.
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1.1.1 Maximal Symmetry

On a more technical level, a maximally symmetric space is characterized by having

the maximum possible number of Killing vectors, i.e. 1
2
n(n + 1) where n is the

dimension of the manifold. The integral curves of each Killing field K describe a

one-parameter family of diffeomorphisms (1-1 smooth maps) ϕλ : M → M that

Lie drag the metric tensor gµν . This is just a very abstract way of saying that

gµν is essentially ‘the same’ object from point to point along the integral curves

(in the sense that the pushforward ϕ∗ gµν = gµν). In other words, they describe

symmetries of the metric tensor or isometries of the geometry. In fact, if we adapt

a coordinate system to the integral curves of K (meaning that λ is the only non-

constant coordinate along them), we will find that gµν(λ) = gµν(λ + k) where k

is a constant. But this is how we usually spot symmetries in the first place, by

searching for coordinates where the components of the object field remain invariant

under some coordinate translation λ→ λ+ k. Thus, Killing vectors are just a way

of describing metric symmetries in a coordinate independent way.

Now, consider that if by ‘everywhere’ above we really meant the entire spacetime,

we would be basically describing a static Universe simply because, by construction,

the time slices would have to look the same—this is sometimes called the ‘Perfect’

Cosmological Principle. However, a static configuration is incompatible with the

Hubble flow of faraway galaxies and thus, ‘everywhere’ really means just the ‘space

part’ of spacetime. Let M be such a manifold obeying this ‘scaled down’ principle;

we’ll refer to it as the background manifold or the background universe. This mani-

fold is naturally foliated into a (trivial) fiber-bundle R× Σ where R represents the

threading and Σ, the maximally symmetric 3-slice, with metric

ds̄2 = −dt2 +R2(t)dσ̄2 . (1.1)

Here t is the cosmic time, R(t) is the scale factor and dσ̄2 is the 3-metric in the Σ

slice, expressed as

dσ̄2 = σ̄ij(u) duiduj , (1.2)
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where u ≡ uk are whatever comoving coordinates you like. Σ is sometimes called the

comoving slice. Note the absence of cross terms dt dui implying that the threading

is orthogonal to the slices. Also note that the t-threads are geodesics making any

local comoving observer (those with constant uk) an inertial one. Only a comoving

observer will think that the background looks isotropic. In fact, the Earth is not

a comoving observer, which is why we observe a dipole anisotropy in the cosmic

background radiation in the first place as a result of a conventional Doppler effect.

It is also interesting to note that these locally inertial comoving observers are able to

carry synchronized clocks that keep synchronized forever in Σ. This is a defining trait

impossible to attain on many other curved manifolds. It is, of course, always possible

to synchronize clocks in a small enough region of a generalM through cumbersome

signal sending techniques; essentially this just amounts to choosing local observers

with zero relative velocities and a common time origin (that is, ‘comoving’ observers

in a small region). Fortunately, inM things are much easier (in homogeneous spaces,

really). For one, we don’t have to rely on signal sending to synchronize clocks. In

fact, any comoving observer can set his own proper clock in tune to some cosmic

field ϕ̄; given that ϕ̄ will evolve exactly the same way everywhere in Σ, every proper

clock can be made to tick at a common rate. They may still have a different time

origin, though. However, comoving observers can all agree to start their clocks at

a common cosmic event like the Big Bang or some other thing like ϕ̄ reaching a

certain value.

1.1.2 Constant Curvature

If a manifold is maximally symmetric then the curvature must be same in every point

and in every direction. This requirement greatly reduces the number of possible

maximally symmetric spaces by constraining the Riemann tensor. Let us show this

by setting a local inertial base at a given point p. This base is not unique, of

course. There are plenty others related to it by inertial transformations at p (that

is, ordinary rotations or ‘Lorentz rotations’ according to whether the signature is

Euclidian or Lorentzian, respectively). Maximal symmetry requires that whatever
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the inertial base used, the Riemann tensor components should be the same; if they

changed, the space wouldn’t be isotropic. There are only a few inertially invariant

tensors that can be used to build this Riemann tensor, like the metric tensor or the

Kronecker delta. In fact,

R̄ρ̂σ̂ µ̂ν̂ ∝ ḡρ̂µ̂ ḡσ̂ν̂ − ḡρ̂ν̂ ḡσ̂µ̂, (1.3)

turns out to be the only inertially invariant construction that displays the same

set of index symmetries as the Riemann tensor does [30] (here the hat refers to an

inertial base at a given point p). But because this is a tensor relation, it is also valid

at p in any other coordinate system. Moreover, in a maximally symmetric space ‘all

points are created equal’, as Sean Carroll so succinctly puts it, and thus it is valid

everywhere else. Contracting both sides yields the constant of proportionality and

we get

R̄ρσ µν =
R̄

n(n− 1)
(ḡρµ ḡσν − ḡρν ḡσµ) , (1.4)

where R̄ is the constant curvature Ricci scalar (not to be confused with the scale

factor in (1.1)). This expression, of course, relates only to intrinsic curvature and

so doesn’t limit the global structure of the manifold; we won’t bother with such

fine details by always assuming a trivial global topology. The actual value of R̄ is

not very important; it just represents an overall scaling of the underlying space. Its

sign, however, is and gives rise to the classification of positive, zero and negative

curvature spaces. In the case of interest to us, Σ (an Euclidean 3-space) reduces,

respectively, to a 3-sphere, flat ordinary R3 or a 3-hyperboloid and the Ricci tensor

to

(3)R̄ij = 2k σ̄ij (1.5)

where k = (3)R̄/6. Hence, by construction, Σ is automatically spherically symmetric

meaning that it can be foliated by 2-spheres. We take advantage of this and write

the metric of the comoving slice in the form

dσ̄2 = σ̄ij duiduj = e2β(r̃) dr̃2 + r̃2dΩ2 , (1.6)
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where r̃ is some radial coordinate and dΩ2 = dθ2 + sin2 θ dφ2 is the usual metric on

the 2-sphere. (By the way, this is just the space part of the vacuum Schwarzschild

solution.) The non-zero components of the Ricci tensor for such a metric turn out

to be

(3)R̄11 =
2

r̃
∂1β

(3)R̄22 = e−2β(r̃∂1β − 1) + 1

(3)R̄33 = R̄22 sin2 θ , (1.7)

which we set equal to (1.5) and solve for β. We get

β(r̃) = −1

2
ln(1− kr̃2) , (1.8)

which, in turn, lets us to write (1.1) as

ds̄2 = −dt2 +R2(t)

[
dr̃2

1− kr̃2
+ r̃2dΩ2

]
, (1.9)

called the Friedmann-Robertson-Walker (FRW) metric form. Note how k here sets

the curvature and thus the ‘size’ of the spacial slices. Note also how the following

substitutions r̃ → λr̃, k → λ−2k, R(t)→ λ−1R(t) where λ is a constant, leave (1.9)

invariant. The choice λ =
√
|k| is quite popular since it normalizes the value of the

curvature k to {−1, 0,+1}, but otherwise forces us to work with a dimensionless

radial coordinate r̃ and a scale factor with dimensions of length. The benefits of

working with a normalized k, however, are not that significant and we prefer instead

to make λ = R0 (where the index refers to the present time) and trade dimensions:

the scale factor a = R/R0 is now dimensionless and r = R0 r̃ acquires the dimensions

of [L]:

ds̄2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
. (1.10)

Naturally, the curvature κ = k/R2
0 is no longer normalized. This is the form we’ll

be using. The Christoffel symbols [31, 32] for this metric are simple, albeit tedious,
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to obtain. For later convenience we set them here:

Γ̄0
11 =

aȧ

1− κr2
Γ̄1

11 =
κr

1− κr2

Γ̄0
22 = aȧr2 Γ̄0

33 = aȧr2 sin2 θ

Γ̄1
22 = −r(1− κr2) Γ̄1

33 = −r(1− κr2) sin2 θ

Γ̄2
12 = Γ3

13 =
1

r
Γ̄1

01 = Γ̄2
02 = Γ̄3

03 =
ȧ

a

Γ̄2
33 = − sin θ cos θ Γ̄3

23 = cot θ , (1.11)

where ȧ ≡ da/dt (all others are either zero or related to these by symmetry). It

follows that the non-zero components of the Ricci tensor are

R̄00 = −3
ä

a

R̄11 =
aä+ 2ȧ2 + 2κ

1− κr2

R̄22 = r2(aä+ 2ȧ2 + 2κ)

R̄33 = R̄22 sin2 θ , (1.12)

and the Ricci scalar is

R̄ = 6

[
ä

a
+

(
ȧ

a

)2

+
κ

a2

]
. (1.13)

1.1.3 Background Kinematics

There are many kinematic effects that follow directly from the FRW metric (1.10).

To see a few these, let us consider two comoving test particles (faraway galaxies if

you like), one at the origin, the other at (r, θ, φ). Then, the ‘instantaneous’ distance

between them is given by

d = a(t)

∫ r

0

dr′√
1− κr′ 2

= a(t)fκ(r) , (1.14)
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which increases in proportion to the scale factor. Here, depending on the 3-curvature

of the slices we have that

√
|κ| fκ =


sin−1(

√
|κ|r) κ > 0 ,√

|κ|r κ = 0 ,

sinh−1(
√
|κ|r) κ < 0 .

(1.15)

(1.14) is often called the ‘proper’ distance between test particles, although strictly

speaking it is not the result of a proper measurement. A measurement is called

proper when it is made in a local rest-frame, using proper clocks and rulers. No

single comoving observer is capable of measuring d directly. Instead, d is measured

using an infinite array of proper rulers lined up in a slice of constant proper time

(which is why the word proper gets stuck sometimes). This notion of distance leads

to a ‘recessional’ velocity

v ≡ ḋ = Hd , (1.16)

called the Hubble law, where H = ȧ/a is the Hubble parameter. Note that v here is

not a properly measured quantity either, so having a faster than light speed v > c

when d > dH = c/H (called the Hubble distance, Hubble length or Hubble scale)

is no cause for alarm. v only has proper physical meaning as a relative velocity for

objects that are ‘infinitesimally’ close, i.e., inside the same local flat patch. (Recall

that in a curved manifold, there is no invariant way to compare tensors at different

points; we can only compare them locally at a given point and its immediate flat

vicinity. Hence, the concept of a relative velocity between distant points has no

proper physical meaning, which is why a superluminal v is no big deal; while c is

a local invariant, v has no local meaning. Incidentally, the ‘size’ of the inertial flat

patches is determined by the 4-curvature radius of the manifold, which happens to

be of the order of the Hubble length [33]. Thus, for d � dH , we can pretend that

galaxies are receding from each other with a relative velocity proportional to their

distance, which is what Hubble originally discovered. Nevertheless, this is just a

convenient way of seeing things; galaxies aren’t really receding from each other, but

rather it’s the metric that is changing.) It follows that comoving test particles will

‘accelerate’ relative to each other by

d̈ = (Ḣ +H2)d = −qH2d , (1.17)
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where q = −aä/ȧ2 is called the ‘deceleration’ parameter. Again, this is not a proper

quantity. Obviously, H and q are key cosmological quantities that need to be mea-

sured somehow. Unfortunately, there is no direct way of measuring instantaneous

distances of this sort. In fact, distant objects like galaxies are mainly observable

through the light they emit, which naturally takes a fine amount of time to reach us.

We cannot, therefore, perform measurements along hypersurfaces of constant time,

but only along null paths traveling from the past toward us, i.e, the past light cone.

Below, we’ll discuss some alternative notions of distance that can, in principle, be

measured directly and how they relate to H and q.

Let us now inquire about the geodesic (inertial) motion of free particles in M.

We’ll start by introducing the following Killing tensor [34]

k̄µν = a2(ḡµν + ŪµŪν) , (1.18)

where Ūµ = (1, 0, 0, 0) is the 4-velocity of comoving observers. We remind the reader

that a Killing tensor is simply a symmetric covariant tensor obeying∇(µkν1ν2...νl) = 0,

where the parenthesis denote symmetrization. You may recognize this as a general-

ized Killing vector ∇(µkν) = 0. The point is that the quantity kν1ν2...νl p
ν1pν2 · · · pνl ,

where pµ ≡ dxµ/dλ is the 4-momentum of the particle and λ the affine parameter,

remains constant along geodesics, in other words

pµ∇µ(kν1ν2...νl p
ν1pν2 · · · pνl) = 0 . (1.19)

This is not too difficult to prove if one remembers that pµ∇µ p
ν = 0 for geodesics

and that pν1pν2 · · · pνl is a symmetric tensor. It’s also not very difficult to confirm

that (1.18) is indeed a Killing tensor. It follows that k̄µν p̄
µp̄ ν = a2 [ p̄µ p̄

µ+(p̄µ Ūµ)2]

will be a constant along geodesics. Since for massive particles we have that p̄µ p̄
µ =

−m2 or (p̄ 0)2 = m2 + |p̄|2 where |p̄|2 = ḡij p̄
ip̄ j is the ordinary 3-momentum and

p̄µ Ūµ = −p̄ 0 we conclude that

|p̄| ∝ 1

a
, (1.20)

in other words, massive free particles slow down with respect to the comoving grid

as the Universe expands (their peculiar velocities tend to zero). A similar thing
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happens to photons; they don’t slow down, of course, but they do lose some of their

energy with the expansion. This is simple to obtain; since now p̄µ p̄
µ = 0, it follows

that −p̄µ Ūµ = p̄0 ∝ a−1, which is just the photon’s energy (or frequency ω if ~ = 1)

as measured by a comoving observer. This energy loss is related to the fact that

in M there is no timelike Killing vector, thus no notion of a conserved energy [34].

Consequently, a photon emitted at an earlier time with frequency ω will be observed

with a lower frequency ω0 = (a/a0)ω at a later time; equivalently, the fractional

change z ≡ ∆λ/λ in the proper wavelength, called the redshift, will be 1 + z = a0/a.

From an observational point of view, the redshift of an object is extremely useful

because it tells us when photons were emitted and how faraway their source was at

the time. It thus acts as a measure of time and distance. Of course, z is only an

observable quantity for events that take place after recombination (when photons

decouple and become free), but in principle we can still use it to tag earlier events;

we just won’t be able to measure it directly, just as we can’t measure the proper

distance to faraway objects.

We’re now in a better position to discuss a few alternative notions of distance that

can, in principle, be measured directly. First, we introduce the so-called luminosity

distance

d 2
L =

L
4πF

(1.21)

where L is the absolute luminosity of the source and F is the flux measured by the

observer (i.e., the energy per unit time per unit area). In Euclidean space, (1.21)

is just the familiar inverse square law: the luminosity spreads itself equally across

every spherical surface that is concentric with the source. In a FRW universe, this

is still true, but now we have to take into account that photons do not only redshift

by a factor of 1 + z but also hit each sphere less frequently (due to the expansion)

by another 1 + z factor. Thus, we conclude that in M

dL = (1 + z)a0r = (1 + z)a0 f
−1
κ

(
a−1

0

∫ z

0

dz′

H(z′)

)
,

= H−1
0

[
z +

1

2
(1− q0)z2 + · · ·

]
, (1.22)
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where we have used the fact that the area of the surface touching the detector is

4πa2
0r

2, and also that for null paths fκ(r) =
∫
dt/a. The third equality comes from

Taylor expanding the scale factor about the present day [35] and is valid for redshifts

z . 0.3.

Next, we define the angular distance

dA =
D

θ
, (1.23)

where D is the proper diameter of the object and θ its angular size. Just as with the

luminosity distance above, the idea is to construct a notion of distance that displays

the same familiar geometric properties of Euclidean space, at least in a ‘small’ flat

vicinity around the observer, in this case, the usual variation of the angular size

with distance. From the FRW metric (1.10), we immediately conclude that

dA = ar = dL(1 + z)−2 ,

= H−1
0

[
z − 1

2
(3 + q0)z2 + · · ·

]
. (1.24)

Now, using (1.22) and (1.24) to infer H0 and q0 hinges on the existence of so-

called standard candles and rulers (in other words, objects with known luminosities

and sizes) and our ability to use them. Regarding standard rulers, the lack of

reliable objects with known proper sizes is notorious. In recent years, however, a

champion ruler has emerged from the cosmic microwave background (CMB). The

temperature autocorrelation function [36] measures how the CMB temperature in

two different directions of the sky fluctuates; naturally, this variation depends on

the angular separation and the power spectrum of this autocorrelation is observed to

have a series of ‘acoustic’ peaks. It turns out, that the first acoustic peak is roughly

determined by the sound horizon at recombination, i.e., the maximum distance a

sound wave in the baryon-radiation fluid could have travel until recombination. This

sound horizon is given by ls ' dH(zr ' 1100) and serves as a standard ruler. The

remarkable thing about this ruler is that its angular size almost only depends on

the curvature of the Σ spatial slices. Hence, measuring the angular size of the first
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acoustic peak has emerged as the leading and most direct method of determining

the spatial curvature of the Universe. Recent data coming from the WMAP satellite

experiment have shown that these slices are virtually flat [5]. On the note of standard

candles now, Cepheid variables have been used for nearly a century. However, they

are far too faint to be of any use for z & 0.1. In the last decade or so, Type Ia

supernovae have taken their place as a result of their extreme brightness; indeed,

they have been observed up to a record z = 1.7 [37]. They appear to be good candles

in so far as their luminosity profiles look relatively the same for all supernovae of

this type (the cause for this uniformity, however, is not completely understood).

They also seem to occur randomly in all types of galaxies. Measurements using this

type of candle have produced one of the most spectacular results in the history of

Cosmology [1, 4]: the Universe seems to be accelerating (q0 < 0). This discovery

took almost everyone by surprise. What is causing this acceleration is one of the

biggest mysteries we have today. Considering that in a matter-dominated Universe,

the gravitational self-attraction of matter naturally slows down the expansion, such

a recent acceleration implies that a substantial amount of dark energy must have

begun dominating over matter close to today. If this is a coincidence or not, is still

an open question and a hotly debated one at that.

Despite all of this, however, ‘distances’ to faraway galaxies are still not known

with the precision necessary for an accurate measurement of H0; currently, the

Hubble constant is believed to be between 65 to 80 km s−1Mpc−1. This uncertainty

is usually parameterized by writing

H0 = 100h km s−1Mpc−1 ' h

3000
Mpc−1 , (1.25)

where the second equality uses units where c = 1; the most recent calculations using

data from WMAP yielded h ' 0.71; for a review see Jackson’s [38]. Hence, the

Hubble length today is

dH(t0) = 2998h−1 Mpc , (1.26)

which roughly determines the ‘size’ of our local flat patch. Incidentally, the Hubble

length is also frequently called the Hubble ‘horizon’ or the Hubble radius. This poor
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terminology stems from the fact that the ‘particle horizon’ is normally of comparable

size to dH . However, they are intrinsically different things; while the Hubble length

is a dynamical scale characterizing the rate of expansion, the former is determined

by kinematic considerations alone. Recall that the particle horizon is defined as

the maximum distance free photons can travel in a given amount of time, normally

starting at the Big Bang and ending today (you can nitpick and replace Big Bang

by recombination, if you wish); it therefore determines the size of the observable

Universe. It also represents the typical size of causally connected regions. Thus, a

priori, there is no reason why the particle horizon should be of comparable size to

that of a local flat patch. In fact, if we drop the strong energy condition, the particle

horizon can grow much bigger than dH [33]; the observable Universe doesn’t have

to neatly fit inside the Hubble scale all the time.

1.1.4 Cosmography vs. Cosmology

This is as far as the Cosmological Principle will take us. It determines the ‘kinemat-

ics’ of the background manifoldM (a cosmography), not its dynamics (a cosmology).

To go further we need a ‘theory of manifold dynamics’. General Relativity (based

on the Equivalence Principle) is such a theory and throughout this thesis we work

consistently within this framework. In the following sections, we’ll explore the con-

sequences of plugging the Cosmological Principle into General Relativity. We stress,

however, that the Cosmological Principle is in itself a distinct hypothesis from any

dynamical theory and it is to our advantage to keep this present.

We end this section with two cautionary observations: First is the usual observa-

tion that the Cosmological Principle is meant to apply on large enough scales (over

100 Mpc) where obvious local inhomogeneities are averaged out much akin to how

a gas is approximated by a fluid. The principle is firmly anchored in a variety of

observations, the most important being the incredible isotropy of the CMB radia-

tion. However, it is not set in stone. For instance, we cannot guarantee if it applies

everywhere outside the observable Universe; actually, in the context of inflation, we

14



don’t expect it to. Second, it is common to say that M is curved or flat according

to whether the spacial slices are curved or flat. Obviously, this is a language abuse

given that a flat Σ will generally have a non-zero 4-curvature (by being embedded

in a higher dimensional curved space). A famous ‘reverse’ example is the Milne

Universe (an empty space with k = −1) where the 4-curvature is actually zero, but

the spacial slices are hyperbolic and therefore curved.

1.2 The Field Equations

‘Nature loves variational principles’. The actual solutions of any physical system (at

least, at the microscopic, non-dissipative, level) always seems to extremize a given

action functional. For example, most classical field theory solutions are critical

‘points’ of the action

S =

∫
d4xL(Φi,∇µΦi) , (1.27)

where L is the Lagrangian characteristic of the theory, {Φi} is the set of dynamical

variables (here i labels fields, not components, and Φi can be any tensor field inM,

not just a scalar) and d4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 is the volume element. Note

carefully that although d4x looks like a 4-form, it actually transforms as a density

(of weight 1), not as a scalar [39]. This implies that L is a scalar density, not a

scalar field. Even so, we typically write

L =
√
−gL̂ , (1.28)

where L̂ is now an ‘honest’ scalar field given that
√
−g d4x transforms as one. As

usual, if Φi is an extremum of S, then under a small variation of the type

Φi → Φi + δΦi ,

∇µΦi → ∇µΦi + δ(∇µΦi) = ∇µΦi +∇µ(δΦi) , (1.29)
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the action doesn’t vary to first order, i.e., δS = 0. This fact translates into an

Euler-Lagrange equation of motion constraining the extrema fields

∂L̂
∂Φi
−∇µ

∂L̂
∂(∇µΦi)

= 0 , (1.30)

that ultimately get picked by Nature.

1.2.1 The Canonical Lagrangian

As a simple example of this formalism, consider the case of a classical scalar field φ

governed by the so-called canonical Lagrangian

L̂ = −1

2
gµν∇µφ∇νφ− V (φ) , (1.31)

where V is some scalar potential. (Note that since ∇µφ = ∂µφ, we could have

used partial derivatives instead; however, this is generally regarded as a ‘bad prac-

tice’.) (1.31), of course, doesn’t describe every imaginable scalar field, but it is,

nonetheless, a good starting point. In a cosmological context, φ is commonly called

a ‘Quintessence’ field or just ‘Quintessence’. Applying (1.30) to this scalar, we find

that it obeys

�φ− dV

dφ
= 0 , (1.32)

where � = ∇µ∇µ = gµν∇µ∇ν is the covariant d’Alembertian. For later convenience,

we introduce here the quantity

X = −1

2
gµν∇µφ∇νφ = −1

2
∇µφ∇µφ , (1.33)

which is commonly refered to as the kinetic energy of φ (regardless of φ being

a canonic field or not). Note that in a locally inertial frame, (1.33) reduces to
1
2
φ̇2 − 1

2
(∇φ)2; one can therefore interpret this as a plausible generalization of a

point particle kinetic energy, thus justifying the name given to X. Note also that

X at a point p ∈ M is a function of ∇µφ (and gµν , of course), but not φ. You

might find this perplexing at first, but given that ∇µφ is a vector, it is defined at p

independently of the actual value φ(p). This is very similar to how in Hamiltonian

mechanics, p and x are treated as independent variables.
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1.2.2 Gravity

General Relativity is another example of a classical field theory, albeit a much more

complex one. In this case, the dynamical variable is the metric tensor gµν and the

Lagrangian is given by

L̂ =
1

16πG
L̂H + L̂M (1.34)

where L̂H = R is due to Hilbert. The second term is loosely called the ‘matter’ term

and we’ll discuss it shortly. (Note that due to requirement of metric compatibility

∇σgµν = 0 [32], this Lagrangian cannot be written in terms of covariant derivatives

of gµν .) The field equations can be obtained straightforwardly by varying the action

directly. It turns out that the inverse metric gµν is better suited for this purpose,

not gµν . Thus, making use of R = gµνRµν and treating δ as a ‘derivative operator’,

we get

δSH =

∫
d4x

(
Rδ
√
−g +

√
−gRµνδg

µν +
√
−ggµνδRµν

)
, (1.35)

from which we ultimately aim to factor out δgµν . The middle steps to achieve this

are not very interesting and we spare the reader some lengthy details by just quoting

the results (see, for instance, [34]): The third term in the integrand ends up not

contributing at all, while the first term expands nicely to

δ
√
−g = −1

2

√
−ggµνδgµν , (1.36)

yielding

δSH =

∫
d4x
√
−g
[
Rµν −

1

2
Rgµν

]
δgµν . (1.37)

The tensor inside the square brackets is called the Einstein tensor and is usually

denoted by Gµν ; it is a purely geometric entity related to the curvature of the

manifold M. Einstein was delighted by the fact that ∇µG
µν = 0, regardless of the

actual manifold, an identity called Bianchi’s identity. This identity ends up playing

a crucial role in energy ‘conservation’. It follows that the critical points of General

Relativity are given by

1√
−g

δS

δgµν
=

1

16πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0 , (1.38)
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where

Tµν = −2
1√
−g

δSM
δgµν

, (1.39)

is called the energy-momentum tensor of the ‘matter field’. Collecting everything,

the field equations can thus be neatly arranged as

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (1.40)

1.2.3 Energy-Momentum Tensor

We stress that the ‘energy-momentum’ name for (1.39) is warranted; by defini-

tion, it is automatically a symmetric, gauge invariant, conserved tensor (courtesy

of Bianchi’s identity) with the dimensions of an energy density. Let’s apply it to

the case of the canonical scalar field (1.31). Now, however, we vary the action in

relation to the inverse metric, not φ. We end up with

δSφ =

∫
d4x

[√
−g
(
−1

2
δgµν∇µφ∇νφ

)
+ δ
√
−g (X − V (φ))

]
,

=

∫
d4x
√
−gδgµν

[
−1

2
∇µφ∇νφ−

1

2
gµν (X − V (φ))

]
(1.41)

and, therefore

Tµν(φ) = ∇µφ∇νφ+ (X − V (φ))gµν . (1.42)

Recall that in any locally inertial frame, T 00 represents the energy density, T 0i the

energy flux density (which equals the momentum density T i0) and T ij the spatial

stress (see, for instance, the ‘bible’ [40]). Thus, the momentum density associated

with φ reduces to

T 0i = −φ̇ ∂iφ . (1.43)

Also recall that rest-frames are an important class of inertial frames characterized

by the fact that they measure zero momentum density (it goes without saying that
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these are almost always ‘local’ frames in the sense that measurements made in these

frames can only be attached proper physical meaning in small enough regions).

The absence of momentum can be interpreted straightforwardly as saying that the

rest-frame comoves, at least momentarily, with the ‘center-of-mass’ of a local region

of the field. (These frames almost always exist in practice, although there are

a few situations where they don’t. A plane electromagnetic wave, for instance,

cannot have a comoving rest-frame, otherwise momentum-less photons would exist.

This is not a problem for background radiation, though. In M, we’ll be comoving

with the background slice, not the photons themselves, in such a way that their

momentum density is null—this just means that they are equally moving in all

directions ‘canceling’ each others momenta.) Because we are interested in a time

evolving field, the rest-frame for quintessence is thus characterized by

∂iφ = 0 . (1.44)

We emphasize that this is a local equation and therefore does not imply a homoge-

neous field; this assertion is only true in the background universe where the FRW

rest-frame extends globally with proper meaning. It follows that the rest-energy

density T 00 and pressure Tii for quintessence are given by

ρφ =
1

2
φ̇2 + V (φ) , Pφ =

1

2
φ̇2 − V (φ) , (1.45)

and zero stress Tij. Note carefully, however, that these quantities are not true scalars;

even though the potential V (φ) is a scalar, the term 1
2
φ̇2 is not. Nevertheless, we

can still define ‘proper’ quantities

εφ = X + V (φ) , pφ = X − V (φ) , (1.46)

that reduce to ρφ and Pφ in the rest-frame and are manifestly scalars. Because these

are properly defined invariant quantities, they are know rather unimaginatively as

the ‘proper’ energy density and pressure of the scalar field. Finally, we would like to

draw the reader’s attention to the curious fact that the canonical Lagrangian (1.31)

equals the proper pressure of the quintessence field. Later, we’ll generalize this to a

broader class of interest.
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1.2.4 Quintessence as a (Perfect) Fluid

In the rest-frame, quintessence appears as a stressless isotropic form of energy; this

sounds very familiar to a perfect fluid. In fact, they are very much the same. We

can show this explicitly by making the following identifications

uµ =
∇µφ√

2X
, ε = εφ , p = pφ . (1.47)

and subsequently plugging them into (1.42). We obtain

T µν = (ε+ p)uµuν + pgµν , (1.48)

i.e., the energy-momentum tensor of φ written in the form of a perfect fluid. Recall

that in (1.48), uµ is the 4-velocity field describing the motion of the fluid and that

ε and p, are its proper energy density and pressure, respectively. Given that, in

general, the fluid elements all move in relation to each other, a myriad of locally

inertial observers, each comoving with a fluid element, are necessary to measure p

and ε globally. Note also that the word ‘perfect’ here is used as a synonym for

isotropy in the inertial rest-frame; nothing else is implied by it, namely a particular

relation between pressure and density.

1.2.5 The Energy Conditions

We stress, however, that this hydrodynamical analogy between quintessence and

a perfect fluid is only possible if (1.47) really is a 4-velocity by which we mean a

normalized timelike vector uµuµ = −1. This implies that ∇µφ has to be timelike,

forcing the kinetic term X > 0; one can interpret this as a way of guaranteeing

that fluid elements do not flow outside the light-cone. In practice, this is ensured by

means of an energy condition. Table (1.1) summarizes the energy conditions that are

commonly used to define ‘reasonable’ fields. They are stated under the assumption

that the stress-energy tensor of the field can be diagonalized, i.e., written in the

form [41]

T µν = ε êµ(0) ⊗ ê
ν
(0) +

∑
i

pi ê
µ
(i) ⊗ ê

ν
(i) (1.49)
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Table 1.1: Energy Conditions.

Name Statement Conditions

Weak Tµν t
µtν > 0 ε > 0, ε+ pi > 0

Null Tµν k
µkν > 0 ε+ pi > 0

Strong
(
Tµν − 1

2
Tgµν

)
tµtν > 0 ε+

∑
i pi > 0, ε+ pi > 0

Dominant −T νµ tµ future directed ε > |pi|

where ε and pi are the energy density and pressure eigenvalues and ê(µ), the eigen-

vector tetrad (here parenthesis distinguish base indices from component indices).

One might think that because T µν is a real symmetric matrix, such eigentetrads

would always exist. Unfortunately, this isn’t true; given that the metric gµν is not

positive definite, the linear map T µν : V → V need not be diagonal (see [42] for

a detailed explanation). An example is the null fluid (the above mentioned plane

wave) which only has 3 independent eigenvectors (one null and two spacelike), not 4.

Nevertheless, it is generally believed that ‘reasonable’ fields do have 4-dimensional

eigenbases.

We remind the reader that in Table (1.1), Tµν t
µtν and −T µν tν are, respectively,

the energy and momentum density a local observer with 4-velocity tµ will measure

(if you forget why, just write them in an inertial frame comoving with the observer).

Also there, kµ is a null vector. Again, see [41, 42] for a more detailed explanation.

Here, we merely gloss over the physical meaning of the energy conditions. For

instance, one can interpret the dominant energy condition as the statement that the

speed of energy flow is always less than the speed of light. In the case of quintessence,

this forces X > 0 and V > 0, as one can easily check, making (1.47) timelike and,

by extension, the hydrodynamical analogy possible. In fact, any field obeying the

dominant condition can be ‘treated as a fluid’ (though not necessarily a perfect one).

Fluids are generally easier to work with than fields, so we will sometimes say that

fluids are a ‘high-level’ description of ‘matter’, while fields are ‘low-level’. The weak

energy condition, on the other hand, only states that the proper energy of the field
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should be positive. Note therefore, that because it implies a positive proper energy,

the weak energy condition is automatically included by the dominant one. However,

the former, by itself, only implies X > 0 and V > −X for quintessence. Also, it

turns out that it is the strong energy condition that is responsible for making gravity

‘attractive’ by focusing congruences.

Although ordinary forms of matter do obey some of these energy conditions,

they are hardly set in stone. It turns out that quantum fields can generally violate

any one of them. For instance, the famous ‘Casimir effect’ violates the weak energy

condition by making the energy density in the region between two closely held

conducting plates negative. Also, during inflation the strong energy condition is

broken. Incidentally, ‘dark energy’ must equally break the strong energy condition,

if it is to accelerate the expansion of the Universe today. Still, in a cosmological

context, it is standard to at least assume the dominant condition. This is expressed

by requiring

|ω| 6 1 , (1.50)

where p = ωε, but even this is a conservative starting point. Phantom energy

[11, 12], for example, is a speculative form of energy where ω < −1. Additionally,

note that the strong energy condition is broken when ω < −1/3.

1.2.6 Isentropic Fluids

‘Matter’ in the background universe is routinely described as a ‘high-level’ fluid.

This fluid has to be perfect so as to share the same isotropic proprieties of M. It

also has to comove with the background slice; this means that in the FRW frame,

its 4-velocity is ūµ = (1, 0, 0, 0) everywhere, which greatly simplifies (1.42). It must

also obey energy-momentum conservation ∇̄µT̄
µν = 0; thus, grabbing the necessary

symbols from (1.11), the time part leads to

∇̄µT̄
µ0 = ∂µT̄

µ0 + Γ̄µµσ T̄
σ0 + Γ̄0

µσ T̄
µσ

= ˙̄ε+ 3
ȧ

a
(ε̄+ p̄) = 0 , (1.51)
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usually rewritten as

˙̄ε

ε̄
= −3(1 + ω̄)H , (1.52)

while the space part leads to ∂ip̄ = 0, a null pressure gradient, as it should given

the homogeneous and isotropic nature of M. To go any further than this, we need

to know exactly what the equation of state parameter ω̄ is, in other words, its

functional dependence. There are many possibilities for this: one useful class is

defined by ω̄ ≡ ω̄(ε) strictly as a function of the proper energy density. Mukhanov

calls these fluids isentropic [33]; the simplest examples are actually constant-ω̄ fluids

for which (1.52) reduces to

ε̄ = ε̄0

(a0

a

)3(1+ω̄)

. (1.53)

This covers vacuum energy, dust (pressureless non-relativistic matter) and radiation

when ω̄ = −1, 0, 1/3 respectively. We still lack the evolution of a though, so we

don’t know everything yet.

1.3 The Friedmann equations

Let us now apply Einstein’s equation to the background universe M. We begin by

rewriting (1.40) in a slightly more convenient form

Rµν = 8πG
(
Tµν −

1

2
gµν T

)
, (1.54)

where T = T µµ is the trace of the energy-momentum tensor. In the FRW frame,

the background source behaves as a perfect fluid so we have that T̄ µν = (−ε̄, p̄, p̄, p̄)
implying T̄ = −ε̄+ 3p̄. Harkening back for the Ricci components in §(1.1.2), we get

from the µν = 00 part of (1.54) that

ä

a
= −4πG

3
(ε̄+ 3p̄) , (1.55)

and from µν = ii part

ä

a
+ 2
( ȧ
a

)2

+ 2
κ

a2
= 4πG(ε̄− p̄) . (1.56)
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All other µν lead to 0 = 0 identities. (1.55) and (1.56) are called the Friedmann

equations and they govern the evolution of the scale factor and, by extension, the

dynamics of the background. Alas, they do not form a closed system; hence, we

cannot solve them completely unless we bring some additional information. The

assumption that the background source is isentropic normally takes care of this;

the state equation p̄ = p̄(ε̄) then closes the system. If, one the other hand, the

fluid is not isentropic, the equation governing the field has to be included, and also

its relation between p̄ and ε̄. Suffice it to say that the isentropic case is generally

much simpler and we will assume for now. We can use (1.55) to remove the second

derivative in (1.56) and do a bit of cleanup to obtain

H2 =
8πG

3
ε̄− κ

a2
. (1.57)

This is what most people call the Friedmann equation, by the way. It follows that

if the Σ spatial slices are flat, then ε̄ = ε̄c ≡ 3H2/8πG which is called the critical

density. It is usually simplest to measure energy densities as a fraction of this

quantity, in other words, Ω = ε̄/ε̄c, or the density parameter. Thus, we rewrite

(1.57) in the form

Ω− 1 =
κ

a2H2
. (1.58)

From this we immediately see that the curvature sign is determined by having the

(total) energy density above (κ > 0) or below (κ < 0) the critical density. Recent

data from the WMAP experiment place us extraordinarily close to the flat case with

an Ω = 1.02 ± 0.02 [5]. That we are so close to being flat actually poses a curious

problem called the flatness problem, discuss shortly in the following section.

Before we do so, however, it should be made clear that the energy density ε̄ and

pressure p̄ above are really the sum of several components, not just one, as it might

hastily seem. To make this explicit, we recast once again the Friedmann equation

in the form

H2 = H2
0

[∑
i

Ωi0
ε̄i
ε̄i0

+ (1− Ω0)
(a0

a

)2
]
, (1.59)

where now Ω =
∑

i Ωi and the subscript ‘0’ denotes the present time. (Incidentally,

we see from this that we can very well pretend that the curvature term Ωκ = 1−Ω0
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represents a fictitious component having ω̄ = −1/3.) In doing this, we are implicitly

assuming that the several components only interact gravitationally (i.e. they are

minimally coupled).

Now, let us consider a class of models where all the components are constant-ω̄

isentropic fluids p̄i = ω̄iε̄i. (If you find it too narrow, consider the fact that our

chances of distinguishing between several time-varying scalar fields are rather bleak

at the moment [43, 44]. Hence, we might as well take the pragmatic stance of looking

at these isentropic components as the effective versions of the underlying dynamic

fields, if any.) The dynamics of this class can be roughly understood if we interpret

the Friedmann equation as an energy integral of motion of a one-dimensional ficti-

tious particle moving with an a coordinate. Consider (1.59) rewritten in the form

ȧ2 −
∑
i

Ωia
−(1+3ωi) = Ωκ , (1.60)

where we’ve used (1.53) and momentarily switched units so that H0 = a0 = 1.

Comparing this to the standard energy equation of the fictitious particle, E = K+V ,

we see that the curvature term plays the role of the mechanical energy, ȧ2, the kinetic

energy and the remaining term, the potential felt by the particle. We can even push

forward this Newtonian analogy by calculating the force −dV/da felt by the particle

and see the Raychaudhuri equation emerge. Each fluid then contributes with a

partial force of

−dVi/da = −(1 + 3ω̄i)Ωia
−(2+3ωi) , (1.61)

so that fluids with −1/3 < ω̄ < 1 (which cover all ordinary forms of energy like

matter and radiation) decelerate the expansion, while fluids with ω̄ < −1/3 (that

violate the strong energy condition) accelerate it. Thus, there is ample room for all

sorts of complicated dynamics. However, looking back at (1.53), we can see that

different isentropic components will dominate over each other at different times.

During these periods (called eras), we can greatly simplify things by pretending that

only one fluid exists. Solving the Friedmann equation in these conditions becomes a

trivial matter and one finds that a ∝ t2/3(1+ω̄) where ω̄ corresponds to the dominate
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fluid at the particular time. It follows, for example, that in the radiation era a ∝ t1/2,

while in the matter era a ∝ t2/3.

1.3.1 The Flatness Problem

Let us now look at (1.58) a bit more closely. If the Universe only contains ordinary

forms of energy, then the scale factor can never accelerate ä < 0 and therefore

ȧ = aH decreases monotonically with time. This means that Ω is repelled from

unity, unless Ω is exactly one, in which case the universe is always flat. In other

words, if |Ω − 1| is close to zero today, it must have been even closer in the past.

How much closer, say at the time of nucleosynthesis when the Universe was about a

second old? We can get a rough idea by assuming a radiation dominated background

(|Ω − 1| ∝ t) and an age for the Universe of about 1017 s. Since we know that

Ω today doesn’t differ from unity, say by more than an order of magnitude, i.e.

|Ω0 − 1| < 10−1, it follows that

|Ω(tnuc)− 1| . 10−16 , (1.62)

which constitutes an extraordinary constraint! An Ω outside this interval, at such an

early age, will either lead to a closed universe that recollapses almost immediately

or to an open universe that quickly enters the curvature phase and cools down

below 3 K within the first few seconds of existence. The flatness condition Ω = 1 is

therefore an unstable critical point for all ordinary ‘strong energy abiding’ models.

Thus, it is rather puzzling that the Universe has managed to survive for so long, if

it only contains ordinary forms of energy like matter and radiation.

1.3.2 The Horizon Problem

The flatness problem is not the only problem affecting ordinary models. Another

is the following: After removing the dipole anisotropy of the cosmic microwave

background (caused by the Earth’s peculiar motion in the FRW frame), we are
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left with a residual anisotropy that is less than one part in 10−4. It can be shown

that the comoving horizon scale at the time of last scattering (i.e., the maximum

theoretical distance photons could have travel up until decoupling), is given by

180Ω
−1/2
0 h−1 Mpc [45], which typically subtends about one degree in the sky. This

means that regions separated by more than one degree in the sky were never in

causal contact prior to last scattering. So how come is the CMB so uniform all

over? This strong uniformity has to be forced upon ordinary models, at a very early

stage.

A similar situation exists with nucleosynthesis [46, 47]. Because the nuclear reac-

tions responsible for the formation of light elements like H, He, etc. are highly non-

linear processes, the primordial abundances of such elements would be inevitably

affected by the presence of any anisotropies in the energy distribution at that time.

Consequently, we would not be able to reproduce the observed abundances of such

primordial elements (undoubtedly one of the great successes of Cosmology), unless

at the time of nucleosynthesis the Universe was already an extremely homogeneous

and isotropic place to begin with. Once again this has to be imposed on ordinary

models.

1.4 Dark Energy in the Past

There are other problems we will discuss, but for now let us focus on the ones

already listed. In essence they come down to the following: ordinary models of the

universe have to be extremely fine-tuned into a flat homogeneous and isotropic state,

at a very early stage, in order to match current observations. In general, that the

parameters of a given model have to be somewhat tuned in order to reproduce a given

data set, is nothing out of the ordinary; it’s just the nature of the game (unless,

of course, our model possessed some sort of fundamental mechanism ‘built in’ to

provide those very same parameters; then it would just be a question of checking

if observations were matched or not, without any tuning involved). Fine-tuning,

however, is another game. That such fine-tunning is necessary for ordinary models
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has lead to the introduction of inflation [48, 49]. In the abstract, inflation simply

refers to any period where the scale factor is accelerating ä > 0. An equivalent

description is the following

d

dt

(
H−1

a

)
< 0 , (1.63)

which many people seem to prefer as it gives a slightly more physical interpretation

of inflation as the shrinking of the comoving Hubble length. During this period, Ω

is ‘naturally’ driven towards unity rather that away, as one can easily check from

(1.58). This solves the flatness problem if inflation occurs sufficiently early in the

history of the Universe (before nucleosynthesis, that is) and for a sufficient amount

of time. It also ‘solves’ the horizon problem, as inflation has the ‘side-effect’ of

smoothing things out, allowing our patch of the Universe to have originated from

a tiny homogeneous region that was well inside the Hubble scale before inflation

started (see [35, 45] for a more detailed account). As a bonus, it also helps getting

rid of unwanted relics (like the infamous monopoles, etc. and other exotic remnants

from eventual phase transitions in the early Universe), if these form well before

inflation kicks in.

Implementing inflation requires the use of exotic fields that violate the strong

energy condition; such fields are normally dubbed dark energy and are dynamic in

nature. The easiest way to implement inflation is by means of a canonic scalar field

subject to a simple potential like a power law or an exponential. (Fields such as these

are everywhere in modern particle physics, describing all sorts of weird particles, like

the illusive Higgs particle, etc.) Nowadays, however, models involving the interplay

of two scalars (called hybrid models) are considerably more popular than the single-

scalar approach; it is even possible to implement inflation with higher order fields,

but these are mostly ‘proof-of-concept’ theories rather than being very useful (see

[50] for a review). Regardless of how inflation is implemented, dark energy plays a

crucial role in the very early Universe.
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1.5 Dark Energy in the Present

Dark energy also plays a crucial role today. We know this mainly from measuring the

luminosity distances to faraway supernovae. Just as with inflation in the past, there

are many ways to achieve this present state of acceleration using different exotic

fields. The simplest one is a constant field Λ obeying the following Lagrangian

[7, 34]

L̂Λ = − Λ

8πG
, (1.64)

which is non-other than the famous cosmological constant. Obtaining the energy-

momentum tensor associated with this field is a trivial matter; in the rest-frame, it

describes a perfect fluid with

pΛ = −εΛ = − Λ

8πG
, (1.65)

frequently interpreted as the energy of vacuum or the energy associated with space

itself. Current CMB data is consistent with this field having ΩΛ0 ≈ 0.7 or ε̄Λ0 ≈
10−8 erg/cm3. On dimensional grounds, however, one would expect this vacuum en-

ergy to be of the order of m4
P (where mP is the Planck mass) or about 10112 erg/cm3,

which is 120 orders of magnitude greater that what is observationally required! Alas,

there is no known mechanism to enforce such a minute vacuum energy, making it

the worst case of fine-tunning in the whole of Physics. This conundrum is known as

the ‘cosmological constant problem’ and we are nowhere near to solving it. Another

related problem is the ‘why now?’ problem: Why does the cosmological constant

start dominating over matter so close to the present day? It may well turn out to

be that this is just a coincidence, with no profound meaning, but if one doesn’t

like coincidences (or anthropic justifications, for that matter), then an explanation

must be found, instead of just imposing it. Incidentally, one can also ask why infla-

tion starts when it starts; nobody really knows. These fine-tunning problems don’t

sit well with cosmologists (and physicists alike) and thus alternatives are actively

searched for.

Noteworthy among the many proposed alternatives are canonic scalar fields, of-

ten dubbed quintessence [8, 9]. These models typically involve a single scalar field
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but in some cases more than one (again, just as with inflation). So-called ‘tracking’

models [45] exist where one can obtain an energy density evolution that is reason-

ably independent of the initial conditions (essencially due to attractor dynamics).

However, one still has to tweak some parameters in the scalar potential to obtain

this behavior; hence, it can’t really be claimed as a satisfactory solution. On the

other hand, given that one has yet to see a scalar field in action, it is clear that all

such models are not much better justified than the cosmological constant itself (de-

spite frequent claims to the contrary). This is further compounded by the fact that,

given some time dependence for the scale factor and an energy density, one is always

able to construct a potential for a quintessence-type model that is able to reproduce

them (see, for instance, [14]). One is therefore reminded of Ockham’s razor and

can legitimately ask if observational data provides any strong justification for them,

as compared to the conceptually simpler cosmological constant. There are many

more alternatives, of course, for example, k-essence [10], phantom energy [11, 12],

tachyons [13, 14], vacuum metamorphosis [15, 16], etc. but these are mostly non-

canonic generalizations of the cosmological constant, in other words, toy-models

thrown around to see if they stick. Given our present knowledge of fundamental

physics we can’t really claim any of these alternatives as being much better justified

than the other.

1.6 Dark Matter Today

The radiation fraction today is measured to be Ωr0h
2 = 4.17 × 10−5 (this includes

the CMB photons plus three massless neutrinos consistent with the standard model

of particle physics). Thus, the remaining 30% of the critical energy density must

come from matter alone. Yet, our current best estimate for the baryon fraction is

only of about Ωb0 ≈ 0.04, which is the combined effort of variety of methods, from

nucleosynthesis to ‘direct counting’. It follows, that most matter in the Universe

must be in a non-baryonic form. About this non-baryonic matter only a few things

are known. For one, it must interact very weakly with ordinary matter so as to
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have escaped detection thus far. It must also be comprised of particles that have

been non-relativistic (‘cold’) for a long time. If it was ‘hot’, dark matter would have

free-streamed out of over dense regions a long time ago, suppressing the formation

of structure to a degree inconsistent with what is observed today. In the meantime,

virtually every known particle in the standard model has been ruled out as a candi-

date for dark matter. However, beyond the standard model, the story is completely

different; oodles of candidates exists (see, for instance, [51]), from massive neutrinos

to axions and even stranger particles. Suffice it to say that we are still far away

from a definite picture.

The simplest observation suggesting the existence of dark matter actually comes

from the rotation curves of spiral galaxies. Stars in these galaxies move approxi-

mately in a circular fashion around the center; their velocities are thus simply related

to the amount of matter inside their orbits. What is observed, however, is that the

amount of visible matter (inferred from the luminosity distribution) is not nearly

enough to justify the rotation curves of virtually every spiral. Typically the visible

mass decays with the distance to the center of the galaxy, but the velocities do not;

they stabilize into a constant value that extends well into the rim. Assuming that

gravity is Newtonian at these scales, the difference between the rotation-inferred and

the luminosity-inferred matter distribution must then be attributed to the presence

of some sort of dark matter. At the moment, the major problem with this picture

is the following: Numerical simulations of certain types of galaxies involving CDM,

typically predict cuspy dark matter distributions (i.e. distributions that spikes at

the center) that have not been observed [52]. This is not a death sentence, however,

as these simulations often make assumptions that may turn out to be incorrect. For

instance, the relation between baryonic high density regions and CDM is not very

well known. In particular, it is possible that such areas may involve additional forces

besides gravity, which in turn could affect the cuspy dark matter profiles.

On the other hand, we should keep an open mind to the possibility that dark

matter doesn’t exist and that it is gravity that behaves differently from expected in

these scales. Historically, the first modified gravity theory getting rid of dark matter
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was MOND [53], and although it was a highly phenomenological hack of Newtonian

gravity, it nonetheless confounded its detractors by hypnotically reproducing almost

every spiral curve with a given set of parameters. The only thing preventing its

widespread adoption was the fact that it wasn’t a relativistic theory. However, this

has since changed with the introduction of TeVeS gravity [21]. The latest successor

of MOND in this modified gravity framework is due to Moffat [22, 24] and it is able

to reproduce the old MOND results [23].

In the past year, however, observations from the Bullet Cluster [54, 55] have cast

considerable doubt on the ability of any modified gravity theory to replace dark

matter completely. Let us see why: In a nutshell, the Bullet cluster is the result

of two colliding clusters of galaxies. Now, the vast majority of ordinary matter

in galaxy clusters is not contained, as one might initially think, in the galaxies

themselves but is rather typically dispersed in the intergalactic medium, in the form

of hot X-ray emitting gas. As the two clusters crossed each other, the hot gas

from each collided with the other; as a result, both were stripped of most of their

ordinary mass, which was left behind. This has been observed by the Chandra X-ray

telescope. On the other hand, most galaxies passed right through as if nothing had

happened. Lensing of background galaxies was then used to infer the gravitational

field of the Bullet cluster. What was found was nothing short of extraordinary (see

the references above): the majority of the gravitational field trailed along with the

colliding clusters, it didn’t stay behind with the gas of ordinary matter. Of course,

modified gravity theories can, in principle, give rise to all sorts of crazy gravity

‘forces’, but one thing we expect is for gravity to at least point in the direction of

the source. Now, in the case of the Bullet cluster, if we assume there is no dark

matter present, it means that the gravity source must have been left behind with

the hot gas. Nevertheless, the majority of the gravitational potential (as inferred

by lensing) trailed along with the clusters, and therefore does not point back to the

supposed source! The modified gravity necessary to explain this configuration would

have to be very strange indeed. This is not to say it’s impossible; in fact, Brownstein

& Moffat were able to do it quite recently [56]; their gravity, however, is ‘unnaturally’

skewed and the details come out as over complicated. On the contrary, dark matter
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seems a much simpler and considerably more direct explanation for the observed

cluster dynamics, not to say background dynamics that MOND (and successors)

always had difficulty in reproducing [57, 58]. It is perhaps a bit early to say with

absolute certainty that dark matter really exists, but the case for it now seems

stronger than ever.

1.7 Quartessence

As we have just seen, the Standard Model of Cosmology (usually denoted by ΛCDM)

only captures the ‘high-level’ details of the Universe. The ‘low-level’ innards, on the

other hand, are quite sketchy, to say the least. There are many ways to implement

the observed background dynamics, however, they all lack any proper foundations.

Our understanding of fundamental physics is hardly at a stage were we can clearly

single out a preferred implementation over any other. Even worse is the fact that

what we know today about dark energy and dark matter is pieced together in a very

circumstantial manner. For instance, we don’t even know for a fact if dark energy

and dark matter are fundamentally different from each other (which is, nonetheless,

a widespread belief). Macroscopically, they certainly look and behave as if they were

different but, a priori, this doesn’t preclude them from sharing a common origin.

Quartessence models make the bold assumption that they do; in other words,

dark matter and dark energy are interpreted as being different manifestations of

a common field. For obvious reasons, they are also frequently called unified dark

energy (UDE) models. Clearly, they constitute a phenomenologically interesting

class. One only has to take a brief look at the history of Science to realize that

unifying efforts are generally at the inception of all significant progress. People

were first alerted to this possibility by the appearance of the Chaplygin gas [25, 26],

discussed at length in the following chapters. This exotic fluid has the peculiar

ability to behave as matter and as a cosmological constant depending on its local

density value. In fact, the homogeneous Chaplygin gas ‘interpolates’ these two

states in a continuous fashion. It first appeared in the context of string theory
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as the tension of a d-brane in a spacetime of d + 2 dimensions; the Nambu-Goto

action can be seen to describe a ‘Newtonian’ fluid with an isentropic equation of

state given by p = −A/ε [27, 28]. At a toy-model level, one can trivially generalize

this to a different dependence on the energy density, as described in [29], to p =

−A/εα. In doing so, however, we lose the ability to straightforwardly interpret the

pressure of this generalized fluid as the tension of a d-brane. Such interpretation,

however, was hardly of a fundamental nature to begin with, so we gladly trade it for

a wider phenomenological cover. Anyway, as will be shown in the next chapter, this

generalized Chaplygin gas can be implemented as a non-canonic isentropic scalar

field obeying a particular Lagrangian. Another key property of this generalized gas

is that in the limit of α → 0, it becomes totally equivalent (to any order) to a

standard ΛCDM two-component model; gravity alone does not distinguish the two.

We are thus interested in determining how viable UDE models are as an alternative

to the standard model. Their failure would, in principle, constitute strong evidence

for the different natures of dark energy and dark matter.

1.8 Cardassian Expansion

We end this chapter by mentioning a very simple alternative to dark energy called

cardassian expansion [59, 60] by Freese et al. In this model there is only matter

and the current background acceleration is caused not by a ‘weird’ dark energy

component but rather by gravity itself (a modified version, that is). To see how a

matter-only expansion can come about, let us start by consider a flat Friedmann

model containing only matter. In this case, we have that

H2 =
8πG

3
ε̄m , (1.66)

and since ε̄m ∝ a−3 it follows that ȧ2 ∝ a−1, i.e. a decreasing function of the scale

factor. Now, if the scale factor is ever to accelerate, we must counter this a−1 term

with an increasing one. Arguably, the simplest way to do this is by adding a power
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am with m > 0; in fact, let us make m = 2− 3n. We end up with

ȧ2 =
8πG

3
a−1 +Ba2−3n , (1.67)

which is the same as having

H2 =
8πG

3
ε̄m +B′ ε̄nm, (1.68)

where B′ = B/ε̄nm0 is a constant. But this is precisely the cardassian model; it

consists of a very simple ad hoc modification to the Friedmann equation. These

power-law corrections appear frequently in many modified gravity theories that in-

volve extra-dimensions.

However, since ε̄m/ε̄m0 = a−3, we can trivially rewrite (1.68) in the form

H2 = Ωm0a
−3 + Ωφ0a

−3n , (1.69)

where B′ = Ωφ/ε̄
n
m0, n = 1 +ω and also Ωm + Ωφ = 1. It follows that we can readily

interpret the cardassian expansion as if being caused by a constant-ω̄ quintessence

field with ω̄ = n − 1. (Note that since m > 0 then n < 2/3, implying ω̄ < −1/3.)

Therefore, for most practical purposes, the cardassian model is indistinguishable

from a two-component model of dust and quintessence. We say ‘for most practical

purposes’ since the cardassian model does not specify the behavior of cosmological

density fluctuations on scales larger than the horizon (although it is assumed that

Newtonian gravity holds on small scales). Cardassian models are thus incomplete,

effective toy-models describing the average universe, which is what one really needs

for most practical purposes. On the other hand, if we wanted to calculate the

CMB anisotropy on large angular scales, we would need to go beyond this simplified

procedure. It is also worth emphasizing that one can’t meaningfully claim that one

interpretation is much better justified than the other, at least for now, since both

are nothing more than toy-models.
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Chapter 2

Background UDE Cosmology

In this chapter, we will explore in detail the homogeneous properties of UDE mod-

els, mainly through a generalized Chaplygin gas [29] (henceforth abbreviated gCg).

Everywhere in M, this exotic fluid bears the following equation of state

p = −A/εα , (2.1)

where A > 0 and |α| 6 1 are constants (the condition on α insures that the gCg

obeys the dominant condition |ω̄| 6 1). For reasons that will become apparent in the

following chapter, we will be mostly concerned with cases where α > 0, essentially to

avoid instabilities associated with imaginary sound speeds. This isentropic fluid has

many remarkable properties that make it cosmologically interesting. Let us start

our exploration by inquiring how the energy density of a homogeneous gCg evolves

with ‘time’ (the scale factor, really). To find out, we must solve (1.52) which is not

too difficult to do; the trick is to multiply everything by (ε̄a3)1+α and rewrite the

resulting expression as

d[a3(1+α)(ε̄1+α − A)] = 0 . (2.2)

It follows that

ε̄ = ε̄0

[
A+ (1−A)

(a0

a

)3(1+α)
]1/1+α

, (2.3)
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Figure 2.1: The gCg ‘state parameter’ |ω̄| = |p̄/ε̄| (solid line) and its square sound

speed c̄ 2
s (dashed line; see Chapter 3, for a discussion), as a function of the scale

factor. Notice the ‘phase’ transition from dust to a cosmological constant. Also note

how late in the matter era this transitions occurs.

where A = A/ε̄1+α
0 is a constant. (This expression is only strictly valid for α > −1,

though.) Some unusual things are immediately noticeable, namely the fact that

when a is small ε̄ ∝ a−3 and p̄ ≈ 0 (or ω̄ ≈ 0) and that when a is big, p̄ ≈ ε̄ ≈ const

(or ω̄ ≈ −1). This suggests that the homogeneous gCg smoothly transitions from

a ‘matter state’ to a ‘vacuum energy state’ as the Universe expands (see Fig. 2.1).

This suggestion is at the heart of quartessence and the idea of unified dark energy.

Another interesting property is obtained by making α = 0 in (2.3); the gCg then

reduces to a ΛCDM model with an equivalent ΩΛ = 1−A. (Of course, this argument

only establishes a background equivalence, valid in the absence of perturbations; it
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turns out, however that this equivalence actually extends to any order, as we will

demonstrate in the following sections.) Incidentally, when A = 1, the gCg reduces

to a Λ cosmological constant. To wrap up the basic characteristics of this gas, we

highlight the following counter-intuitive properties: no matter how much we expand

the gCg, its density never drops below a certain value ε̄ > ε̄0A1/1+α (this minimum

density corresponds to the ‘vacuum energy’ the gCg tends to). Also, the lower its

density, the higher its pressure (in modulus, that is, if α > 0). Finally, we can infer

from the Raychaudhuri equation (1.55) that a gCg background will start accelerating

when

a > a? = [1−A)/2A]1/3(1+α) . (2.4)

Thus, if A > 1/3, this acceleration will occur prior to the present day. On the

other hand, if |A − 1| & 10−9 for any α, the acceleration will occur after recombi-

nation. This means that for most (A, α) values, the background transition of the

homogeneous gCg from CDM to Λ, will occur in the matter era.

2.1 The gCg as a Scalar Field

Let us now address the question of implementing (in a low-level way) the gCg as a

scalar field. This is a fundamental step to further our knowledge of UDE. Recall that

not all perfect fluids are isentropic, of course; quintessence is a prominent example.

If we go back to (1.46), we can easily see that the pressure p = 2X − ε depends not

only on the proper energy but also on the kinetic term. If we plug these expressions

into (1.51), we obtain

φ̈+ 3
ȧ

a
φ̇+

dV

dφ
= 0 (2.5)

the same had we used (1.32) directly. This differential equation closely resembles a

damped oscillator. Thus, in general, the field will ‘roll down the potential’ and the

‘friction term’ will dampen the motion. Consequently, a canonical scalar field in a

sufficiently shallow potential will roll very slowly, leading to a kinetic term X � V
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and to ω ≈ −1. This means that some scalar fields can act as vacuum energy

(and those that do are properly called quintessence) but unlike their cosmological

constant counterpart, their proper energy density is allowed to vary. Note that in

this framework, Λ is merely a quintessence field ‘frozen’ everywhere in the same

stable potential minimum.

Now, can we describe the isentropic gCg using a single (real) scalar field? Yes,

albeit not with quintessence; a new kind of scalar is required. To show this, let

us first generalize the canonical Lagrangian from L̂ = X − V = p to an arbitrary

function p(X,φ) of the kinetic term and the field [33]. This defines a new class

of scalars broad enough for our purposes. (Note that we are still calling the new

Lagrangian p; the reason for this is that it still plays the role of pressure as before,

as we will shortly see.) It follows, by varying the action of this scalar that

δSφ =

∫
d4x

(
δp
√
−g + p δ

√
−g
)

=

∫
d4x

(
∂p

∂X
δX
√
−g + p δ

√
−g
)

=

∫
d4x
√
−gδgµν

[
−1

2
∇µφ∇νφ p,X −

1

2
gµνp

]
, (2.6)

where p,X ≡ ∂p/∂X, and so

Tµν = pgµν + p,X∇µφ∇νφ . (2.7)

Thus, if p = X − V , (2.7) reduces to (1.42), as it should; and also just as with

quintessence, we can still explicitly rewrite this energy-momentum tensor in a perfect

fluid form, by making the following identifications

uµ =
∇µφ√

2X
, ε = 2Xp,X − p . (2.8)

From this we conclude that if p = p(X), then ε = ε(X). Unfortunately, it’s not

always possible to invert ε(X), and obtain X(ε) but when it is, the fluid has an

explicit isentropic equation of state p = p(ε). A useful example is p ∝ Xn which, as

one can easily check, describes a constant ω = 1/(2n− 1) fluid; in particular, when

n = 0 the scalar corresponds to a Λ cosmological constant, n = 1, to a massless

scalar field, n = 2, to background radiation, and so on. In the limit of large n, the

scalar can be interpreted as dust (pressureless non-relativistic matter).
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How about the gCg? We can try retro-engineer (2.8) to ascertain the necessary

Lagrangian by solving

ε = 2Xα
A

εα
ε,X
ε

+
A

εα
, (2.9)

a non-linear differential equation. Before you pull some hairs trying to solve this one

(we certainly did), we’ll tell you the trick to do it. It’s actually quite simple: divide

everything by ε and rewrite the expression in terms of a new function ξ = A/ε1+α.

We end up with a much nicer linear version

1 = − α

1 + α
2Xξ,X + ξ , (2.10)

that is simple to solve. The solution is ξ = 1 − (2X)
1+α
2α and thus the necessary

Lagrangian for reproducing the gCg becomes

p(X) = −A
εα

= − (Aξ(X)α)
1

1+α . (2.11)

Note that to insure that p(X) is a non-null real value we must have 0 < 2X < 1: The

lower limit comes from the dominant condition while the upper limit corresponds

to the null pressure case.

2.2 The gCg α→ 0 Limit

Implementing the gCg as a scalar field obeying a particular Lagrangian is useful on

a number of levels. For one, it allows us to prove our earlier assertion that in the

limit α → 0, the gCg is totally equivalent to an ordinary ΛCDM model. This fact

plays an important role when comparing UDE models with observations. While

obviously true in the absence of perturbations, the need to explicitly demonstrate

this beyond a background equivalence only became apparent after [61] appeared. In

it, Fabris, Gonçalves & Ribeiro made the surprising claim that the linear evolution of

perturbations actually differed in each case. Shortly after, we showed in [62] that this

was not true; their equivalence to first order was established (in Chapter 3, we give

a formal demonstration of this) and it was equally argued that the correspondence
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went well beyond linear order. Here, we give a much simpler demonstration of this:

Expand (2.11) in a power series and take the limiting case α→ 0

p(X) = lim
α→0
−A1/1+α

[
1− α

1 + α
(2X)

1+α
2α − 1

2

α

1 + α

1

1 + α
(2X)

1+α
α + · · ·

]
,

= −A+ 0 · (2X)∞ = −A . (2.12)

We see that everywhere inM, the Lagrangian density decomposes nicely into a cos-

mological constant plus ‘matter’, thus demonstrating the equivalence to any order

between ΛCDM and the α = 0 limit of the gCg; gravity alone does not distin-

guish the two. Moreover, since both are to a certain extent simply toy-models with

somewhat nebulous fundamental motivations, this is probably as far as they can be

meaningfully compared.

2.3 A Truly ‘Atomic’ Fluid?

We have just established the equivalence between the gCg and ΛCDM in the limit

α → 0. An obvious follow-up question is wether this equivalence between a uni-

fied model and some family of minimally coupled components is valid in general.

Recently, Kunz has argued in [63] that it is always possible to split a single uni-

fied dark energy fluid into several minimally coupled components or, conversely, to

combine several fluids into a single fluid that behaves in exactly the same way as

the original mixture (from a cosmological point of view, that is). Although this is

a rather obvious statement in the absence of perturbations, Kunz also argued that

this degeneracy went beyond the background level.

Before trying to answer this question, we need to clarify what we mean by a

‘single fluid’. It is fairly obvious that by allowing the complexities of the fluid to

be arbitrarily large (for example, by considering very high-order tensor fields), we

may get disproportionately non-trivial fluid dynamics. In such cases, are we in the

presence of a single fluid or several interacting fluids? In general, even something

as trivial as a complex scalar field is prone to a multi-fluid interpretation. These
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considerations highlight the fact that we must be very careful about what we call

a ‘single’ fluid. In this thesis, we will refer to a single indivisible (‘atomic’) fluid as

one whose Lagrangian has the form L̂(X,φ), where φ is a real scalar. This definition

covers, for instance, quintessence and isentropic fluids, which are hard to imagine

as anything but single fluids. Treating UDE as a single fluid (in the sense just

described) is arguably the best possible way of implementing quartessence; we will

call this implementation, canonic quartessence, thus distinguishing it from other

more elaborate and complex possibilities that lack the simplicity suggested by the

isentropic gCg.

It goes without saying, of course, that we can always split the energy-momentum

tensor of any fluid into several components. There are infinite ways to go about

doing this. In the case of quartessence, the critical question is how to interpret any

such decomposition: Are the resulting components real physical fluids? Do they

exist independently from each other? We have already seen that the answer is no if

the gCg does originate from a single scalar field governed by (2.11). Each piece is

then a virtual component without independent existence (except in the special case

α = 0). In fact, the evolution of the individual virtual components is not, in general,

constrained by causality. (From this point of view, the perturbative treatment of

the gCg in [64], by Bento, Bertolami & Sen, is inconsistent.)

Conversely, if we are in the presence of various fluids, we can also add their

energy-momentum tensors. However, the dynamics of the resulting fluid is poten-

tially very complex and, in general, will not be describable by a real scalar field

subject to a Lagrangian of the form L̂(X,φ). From a cosmological point of view, all

the relevant information is contained in the energy-momentum tensor acting as the

source of the gravitational field. Pending laboratory evidence (which, in principle,

can detect not only the fields themselves but even the couplings between them),

we are only sensitive to the total (effective) energy-momentum tensor Tµν . Conse-

quently, Kunz argues that cosmology alone does not provide useful information on

wether a single unified dark energy fluid or a family of minimally coupled interacting

fluids is responsible for the observations.
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This isn’t exactly true, however. Let us consider the evolution of very large

wavelength perturbations in M. These perturbations essentially amount to homo-

geneous and isotropic patches of the Universe. Now, for the sake of argument, let

us pick one of these patches and decompose its total energy density ε (and pressure

p) in two different ways:

I. ω1 = −1 = −ω3 and ω2 = 0 with εi/ε = 1/3 for i = 1, 2, 3

II. ω1 = −
√

6/3 = −ω2 with εi/ε = 1/2 for i = 1, 2

where the components are minimally coupled. It is easy to check that both have

the same ε̇ and ṗ but clearly their evolutions will differ. This means that even if we

have the same initial conditions for the effective fluid ε, ε̇, p, ṗ (and H) in the patch,

the subsequent evolution depends on the details of the composition. (Moreover,

we are even allowed to set up adiabatic or iso-curvature fluctuations or indeed a

combination of them.) This degeneracy (we have given two explicit examples, but

there are infinite more), on the other hand, is not present in single fluid models: for

a given equation of state p = p(ε), the evolution is univocally determined by the

initial density and pressure conditions on the patch. To a certain extent, this can be

thought as saying that a single fluid only carries one degree of freedom. This ‘lack

of freedom’, therefore, significantly constrains what single fluids can do.

2.4 UDE Background Tests

We will now embark on the task of testing UDE background dynamics in the simplest

possible manner, using the homogeneous gCg as a prototype for quartessence. This

effort is mostly based on our previous work [65]; there, a sample of 92 supernovae

was used to constrain a homogeneous flat model involving matter and a generalized

Chaplygin gas. Since that time, the number and quality of supernovae observations

have increased somewhat and here we use the latest dataset to update our previous

work. The differences won’t be dramatic but are nonetheless important. Before we
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start, however, we would like to stress the fact that our model includes a separate

matter component; it is not a single gCg model, as it is commonly done [66, 67, 68,

69, 70, 71, 72, 73, 74, 75]. Radiation will be ignored and we concentrate on a flat

geometry, as this is currently the preferred geometry.

2.4.1 Background Model

The Friedmann equation for our model is given by

H2/H2
0 = Ω0

m

(a0

a

)3

+ Ω0
gCg

[
A+ (1−A)

(a0

a

)3(1+α)
]1/(1+α)

, (2.13)

where Ω0
m + Ω0

gCg = 1 insures flatness and 0 6 α 6 1 avoids possibly ‘nasty’

instabilities (see Chapter 3, for a discussion). The luminosity distance, on the other

hand, is simply

dL = dH(1 + z)

∫ z

0

dz′

H(z′)
, (2.14)

where dH is the Hubble scale today and the distance modulus is given by µ ≡
m−M = 5 log dL + 25. Now, it is a well know fact that the luminosity distance is

not a very sensitive quatity to time variations of the background state parameter

ω̄(z) [44, 43]. Essentially, this happens because the integral in (2.14) smoothes

these variations out, in other words, the luminosity distance is mostly sensitive to

an effective ω̄. In the case of interest to us, the time variation in ω̄ comes from

the gCg component, which is controlled by the parameters A and α. Of these, A
has the strongest influence on the evolution of the background, as can be easily

inferred. This means that α will be poorly constrained by supernovae luminosity

distances in comparison to A. Indeed, the currently available data do not place

any significant constraint on α (see Fig. 2.4). Several supernovae observations at

much higher redshifts are still necessary to improve our knowledge of this parameter.

This, however, can already be achieved by using other (higher-order) methods to be

discussed in the following chapter.
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Figure 2.2: Modulus distance vs. redshift for the old (red) and new (black) super-

novae samples; error bars not shown. The solid line represent a ΛCDM fit with 30%

cold dark matter.

2.4.2 Old vs. New Samples

The supernovae sample used in our original work [65] was assembled from the initial

release of the Supernova Cosmology Project (SCP) [1] and from the High-z Super-

nova Search Team (HzST)[2]: It included 60 Type Ia supernovae from the first and

50 from the second, 18 of which where common, for a grand total of 92 supernovae.

The data from the different groups was ‘sewn’ together following a procedure first

described in Wang’s [76] (we refer the reader to our previous work for details). Here,

we will use a new dataset described in [77]: It includes 60 Type Ia supernovae from
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the ESSENCE (Equation of State SupErNovae trace Cosmic Expansion) survey [78],

57 from the SNLS (SuperNovae Legacy Survey) [79], 45 nearby supernovae and 30

more at 0.216 6 z 6 1.755 observed by the Hubble Space Telescope and classified

as ‘gold’ by Riess et al [80]. (Again, we defer the reader to the original paper by

Davis et al for the details on how this dataset was assembled.) Both samples can

be seen depicted in Fig. 2.2 along with a standard ΛCDM fit. As is immediately

apparent, both samples have more or less the same scatter but the new one includes

considerably more observations at higher redshifts. These high-z supernovae are the

main reason behind the improvements we’ll get.

2.4.3 Supernovae Statistics

In this section, we briefly discuss the statistics involved in constraining our model

using supernovae distance modulus (see, for instance, [81, 82] for a more detailed

introduction). We start by denoting our background model M(p), where p are the

parameters like A, α, etc. Given several {µi} observations, we want to obtain the

probability of M(p), in other words, p(M(p) |µ1 . . . µn). Here, it is safe to assume

that the several supernovae observations are independent from each other; hence, it

follows that

p(M(p) |µ1 . . . µn) = p(M(p) |µ1) . . . p(M(p) |µn) . (2.15)

Now, let us focus on the probability of M(p) given a single observation. From Bayes

theorem, we know that

p(M(p) |µi) =
p(M(p))

p(µi)
p(µi |M(p)) . (2.16)

Here, p(µi) can be seen as a constant independent of the model. On the other hand,

p(M(p)), called the model’s prior, is not known a priori; the common bayesian lore

is to assume a uniform prior and we will do so in this analysis. As to p(µi |M(p)),

we will assume that supernovae observations are normally distributed around the

models prediction µi(p) with a σi dispersion.
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Thus, we conclude that

p(M(p) |µ1 . . . µn) ∝ exp

(
−1

2

∑
i

(µi − µi(p))2

σ2
i

)
. (2.17)

The summation terms in (2.17) are usually called χ2
i and each σi can be approxi-

mated by the measuring error associated with the i-th observation. The normalized

probability distribution is then obtained by dividing the above expression by the

sum over ‘all’ possible values of the parameters. From this, it is a simple matter to

obtain the confidence regions for the parameters: for every grid point p, we accu-

mulate the probabilities larger than the probability at that point. The 68%, 95%

and 99% contour curves of this accumulated distribution determine the usual 1σ,

2σ and 3σ confidence regions. We should point out, however, that there are a few

potential caveats to this χ2 analysis that result from assuming Gaussian errors in the

supernovae measurements: see, for example, [83] where a modified median statistics

was used instead.

2.5 Results and Comments

In Fig. 2.3, we have plotted the confidence regions for the (ΩgCg,A) parameters

that resulted from χ2 fitting our model to the luminosity distances of the old and

new supernovae samples. The uncertainty in the Hubble constant was eliminated

by summing over several h. α was also summed over. While browsing these figures,

keep in mind that the closer A is to unity, the closer the gCg will be to a Λ cosmo-

logical constant. We see that the new sample has led to tighter constraints: The A
parameter is restricted with a 95% confidence level to be in the region 0.94 < A < 1

if Ω0
m ∼ 0.3 while if Ω0

m ' 0.04, 0.7 < A < 0.92. In other words, if the matter

component in our model represents non-barionic CDM, then the gCg is forced to

behave as a cosmological constant (which is hardly surprising). We should point

out, however, that since one of the strongest claims of the Chaplygin gas is that of

a unified explanation for dark matter and dark energy, one might expect that the

only components of the universe would be a Chaplygin gas and a tiny amount of

48



Figure 2.3: Confidence regions for the parameters (Ω0
gCg,A) resulting from χ2 fitting

the old (left) and new (right) supernovae samples. The parameters h and α have

been summed over. Note that the gCg is not alone here; it coexists with a minimally

coupled matter component such that Ω0
gCg + Ω0

m = 1.

baryonic matter. In this case, we see that the supernovae data strongly exclude a

Λ-like behavior.

In Fig. 2.4, we depict the case where only baryons (with a present day density of

of Ω0
b = 0.044 [84]) coexist with the generalized Chaplygin gas. We clearly see that

the parameter α is not constrained by the available supernovae samples, while A is

around 0.8. To investigate this case a little further, we lift the flatness restriction but

fix, for simplicity, α = 1. The results are depicted in Fig. 2.5. A large degeneracy

is clearly evident. However, we can say with a 95% confidence level that A > 0.75.

Note that for lower values of the Chaplygin gas density, we’re forced to approach

the cosmological constant limit. Also note that for the case of a plane geometry the

acceptable values for A already exclude a Λ scenario.

In summary, if we assume that the present day matter density is around 30%,

the gCg is forced to behave very closely to a cosmological constant. (Of course,
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Figure 2.4: Confidence regions for the gCg parameters (α,A) resulting from χ2

fitting the old (left) and new (right) supernovae samples. Here, only baryons with

a present day density of of Ωb = 0.044 coexist with the gCg. The Hubble constant

was summed over.

this result is also known to apply for standard quintessence models [85].) Indeed,

if by an independent method we were able to determine the total matter content

of the Universe (including dark matter) to be around ∼ 0.3, then in the context of

this model we would, in fact, require a cosmological constant so as to account for

the current observational results. Conversely, the case where the matter content is

entirely baryonic (arguably the best-motivated one), is the case where the differences

with respect to the standard model should be maximal. In this case, the Λ-like limit

is already strongly disfavored by observations.

Finally, we would like to stress the fact that these results are only strictly valid

in the absence of perturbations. As we will later discuss in Chapter 4, non-linear

small scale clustering in the quartessence component may critically affect the large

scale behavior of the Universe and render these results invalid.
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Figure 2.5: Confidence regions for the parameters (Ω0
gCg,A) resulting from χ2 fitting

the old (left) and new (right) supernovae samples. Here, baryons with a present day

density of of Ωb = 0.044 coexist with a pure Chaplygin gas (α = 1), but the flatness

restriction as been lifted. The Hubble constant was also summed over.
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Chapter 3

UDE — Linear Evolution

In the previous chapter, we discussed background constrains to the UDE hypoth-

esis. The main message that emerges is that such constraints critically depend on

whether one treats the gCg as true quartessence (replacing both dark matter and

dark energy) or if one allows it to coexist with a ‘normal’ dark matter component

(which could be called the ‘Chaplygin quintessence’ scenario). Going beyond this

zero-order analysis and studying linear perturbation theory, seemingly dealt the first

blow to the UDE hypothesis. In a provocatively titled paper, ‘The End of Uni-

fied Dark Matter?’ [86], Sandvik, Tegmark, Zaldarriaga & Waga constrained

the mass power spectrum (the linear part) of a single gCg model using 2dF [84]

data and obtained a spectacular result: |α| < 10−5. In other words, they found that

the gCg was forced to behave very close to a ΛCDM model in order to reproduce

the observed large scale structure (LSS) of the Universe. This was subsequently

presented as a clear sign for the failure of UDE. (Strictly speaking, however, this

is not a fundamental failure; dark matter and dark energy are still allowed to have

a common origin. After all, the α → 0 limit of the gCg is totally equivalent to

ΛCDM.) This dramatic result, however, is partially due to the fact that baryons

have been neglected in the analysis carried out by Sandvik and his collaborators.

(This concern was also voiced, but not exploited, by Colistete, Fabris & Gonçalves

in [70]). The reason for this is simple to understand: as the quartessence background
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transitions from ‘CDM’ to a cosmological constant, perturbations become heavily

damped. This happens (as we will shortly show) because during this period the gCg

attains very large sound speeds (unless α ≈ 0, in which case, the sound speed is

very small). Thus, by adding an independent component with a low sound speed (as

is the case of baryons), the normal growth of perturbations can still continue, even

when the gCg starts behaving differently from CDM. By overlooking baryons, the

authors of [86] have artificially constrained the possible spectra that UDE scenarios

can cover. Although baryons are not that important for background studies, they

are, nonetheless, quite important in the context of large scale structure. We men-

tion, in passing, that [87, 71] also accurately studied perturbation growth in these

models (including CMB). Although of a broader scope than ours (they considered

a baryon + CDM + Chaplygin model), we do not quite agree on their interpreta-

tion of UDE. While we agree that this ‘Chaplygin quintessence’ scenario is all but

ruled out (or at least strongly disfavored relative to ΛCDM), it seems to miss the

point that these scenarios came into existence as an attempt to unify dark energy

and dark matter, and that in this context their behavior can be potentially quite

different from ΛCDM. Yet, this quartessence scenario is all but ignored in their dis-

cussion. Therefore, we re-derived the analysis of [86] (in order to accommodate for

baryons) and part of the analysis of [71] to explore more fully the viability of the

‘quartessence’ scenario.

3.1 Quartessence Sound Speed

Before we discuss some of the nitty-gritty details of (linear) perturbation theory,

recall that for any isentropic fluids, the ‘sound speed’ is a well defined concept given

by c2
s ≡ δp/δε ' c̄ 2

s = dp̄/dε̄ [33, 34, 36]. This quantity roughly corresponds to the

speed with which perturbations ‘spread’ across the manifold M. In the case of the

gCg, this means that the sound speed is αA/ε̄1+α. It’s a simple matter to show that

this velocity is bounded by α and that today the sound speed equals αA. Since

local speeds cannot exceed the speed of light, it follows that αA 6 α 6 1, implying
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A 6 1 and α 6 1. There is nothing stopping α from being negative, though (in

which case, the sound speed is an imaginary quantity). However, the dominant

condition (|ω̄| 6 1) does at least impose α > −1. (At a toy-model level, we could

still consider models having α < −1 but these are all dark energy dominated at

early times and we are not interested in this.) Also recall that the sound speed for

any scalar field (canonic or not) is a well defined quantity given in linear theory

by c 2
s ≡ p,X/ε,X [33]; contrast this to the isentropic result δp/δε. It follows that

quintessence has a constant sound speed of one; another reason why quintessence

cannot reproduce the gCg. On the other hand, if we apply this formula to the scalar

field governed by (2.11), the sound speed does come out the same as the isentropic

one and all is well.

Thus, quartessence in general (unless α = 0) has a non-null sound speed (see

Fig. 2.1). In fact, it is a simple matter to show, starting with the Friedmann equa-

tions (1.55) and (1.56) that for any homogeneous UDE fluid

dε̄

dt
=

3

4πG
H
dH

dt
, (3.1)

dp̄

dt
= − 1

4πG

d

dt

[(
ä

a
+

1

2
H2

)]
, (3.2)

which together imply

c̄ 2
s ≡

dp̄

dε̄
=

1

3H

d

dH

[
H2

(
q − 1

2

)]
, (3.3)

where q ≡ −ä/(aH2) is the ‘deceleration’ parameter. From this we conclude that

the sign of the square sound speed c̄ 2
s is determined by how q is evolving: If it is

evolving sufficiently fast (towards negative values), then c̄ 2
s > 0, otherwise c̄ 2

s < 0.

On the other hand, the evolution of q is linked to how fast the transition from dark

matter to dark energy occurs in the background: If it is steep enough (faster than

ΛCDM, that is), c̄ 2
s will be positive (negative otherwise). Therefore, the sign of the

sound speed square is directly linked to the dynamics of the background and thus

carries important information.

You may not recall exactly what an imaginary sound speed entails, so we briefly
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discuss it here. Well inside the ‘horizon’, linear theory describes the evolution of a

perturbation as a wave [33, 36, 45]

δ̈ − c̄ 2
s ∇2δ ' 0 , (3.4)

where δ = δε/ε̄ is the so-called density contrast. The general solution is thus a

superposition of plane waves exp i(wt − k · r) where w2 = c̄ 2
s k

2. This makes the

interpretation of the square sound speed c̄ 2
s sign very straightforward: If c̄ 2

s > 0, the

contrast δ will oscillate as an acoustical wave, acting against the formation of voids

and dense regions (pressure support). On the other hand, if c̄ 2
s < 0, the opposite

will happen: collapsing regions and voids get amplified by pressure. (For a more

careful discussion see Wu’s [88].) These simple considerations, coupled with the fact

that the gCg sound speed grows very large during the background transition, are

enough to qualitatively understand the results obtained by Sandvik et al in [86] (see

Fig. 3.1): the matter power spectrum emerging from equality will be exponentially

blown up for models with α < 0, while for α > 0, LSS will be significantly ‘erased’.

Thus, only models with a small α stand a chance of reproducing the observed power

spectrum; what Sandvik et al found was that α had to be very small indeed. (CMB

constraints on α have also been obtained, but since CMB formation takes place at

a time where the gCg sound speed is still relatively small, the constrains on α are

much less spectacular; α < 0.2 is the latest result [77].)

3.2 Cosmological Perturbations

In this section, we briefly summarize the theory behind first order linear perturba-

tions (for a more detailed account see [89, 90, 91, 92, 45, 93, 33]). We begin by

clearly separating the real Universe M from its smooth idealized background M.

Also, we will adhere to the convention of denoting quantities from M with a bar

on top like so Q̄ (unless they obviously belong to the background like a and H,

for example) and no bar for quantities in M. The only exception to this are the

background coordinates that will still be denoted by the usual symbol xµ, not x̄µ.

Our goal is to treat M as a perturbed M; in simple terms this means we want to
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Figure 3.1: Power spectra obtained by Sandick et al [86] in the context of a single gCg

model having (top to bottom) α = −10−4, −10−5, 0, 10−5 and 10−4, respectively.

The red points represent the 2dF power spectrum.

decompose any quantity Q into Q̄+ δQ and treat δQ as a small perturbation. With

this in mind, let us set in the background the metric

ds̄2 = ḡµν dx
µdxν ,

= a2(η)
[
−dη2 + σ̄ij(x

k) dxidxj
]
, (3.5)

where η is the conformal time and σ̄ij is the 3-metric of the constant curvature slice

Σ. Since we are only interested in a flat Σ, we’ll simplify things from the start by

setting a cartesian metric σ̄ij = δij (a general treatment would be overkill for our

purposes). In these slices the ‘background fluid’ is homogeneous and does not move.
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Once set, we can ‘export’ these coordinates to M by simply dragging them over

using any diffeomorphism ϕ :M→M (1-1 smooth map) linking the two. We’ll say

the coordinates are the ‘same’ in both manifolds (and this is why we use the same

symbol for the coordinates) but obviously they will have different metrics.

In M, we’ll write the metric as a perturbed ḡµν like so

ds2 = gµν dx
µdxν = (ḡµν + δgµν)dx

µdxν ,

= a2(η){−(1 + 2ψ)dη2 + 2ωidτdx
i + [(1− 2φ)δij + 2hij]dx

idxj} , (3.6)

and assume δgµν � 1 (since we are only interested in the linear regime). Given that

it is always possible to incorporate the trace of hij into φ, we will assume it traceless.

Now, the fluid in the η-slices (denoted by Σ) is in a perturbed state, no longer still

and homogeneous. However, before we proceed, we would like to stress the fact that

there is a notational sleight of hand at work in (3.6). This is related to how we

operationally define δgµν ; if you find this strange consider the fact that gµν and ḡµν

are tensor objects that belong to different manifolds, so how do we even begin to

compare them, let alone subtract them? The answer is that there are, in fact, two

equivalent ways of doing this, and the above notation is designed to mask out these

details. Unfortunately, this is also invariably the cause of great confusion. One way

is to use pushforwards and pullbacks [31, 32, 34] to bring the objects in question

to a common manifold, usually M; then we simply subtract them and define δgµν .

This is the cleanest way to define perturbations but it is also the most technically

demanding. A much less fancier way consists of literally ‘dragging’ the components

ḡµν(x) from M to M along with the coordinates. (Note that this is not the same

as pulling or pushing a tensor object; we are dragging a function from one place to

another.) Then, we simply subtract the dragged components from gµν(x) and define

δgµν(x). Both ways are physically equivalent but since dragging functions is much

easier than dragging tensors, the second method is the most frequently used. Hence,

we see that ‘ḡµν ’ in (3.6) doesn’t literally mean the background metric but instead

stands for a dragged tensor/component from M to M. (As a matter of taste, we

could have dragged the metric from M to M instead, and effectively imagine that

58



perturbations live as fields in unperturbed space as in [45].)

3.2.1 Gauge Ambiguities

This construction also clearly illustrates how δgµν is operationally tied to ϕ and the

induced gauge (normally the word ‘gauge’ refers to the threading and slicing of a

manifold but here we’ll call ϕ a gauge too). Change the gauge (either by using a

different diffeomorphism or by making a coordinate transformation inM) and δgµν

will change. This highlights the somewhat ‘ambiguous’ nature of perturbations in

that they are only well defined up to a gauge transformation.

Unfortunately, while General Relativity doesn’t care about gauges (they all

work), linear theory is very fussy about them. This is because even a simple co-

ordinate transformation will generally modify the order of δgµν (by making them

big, for instance) thus ruining the linear approximation. Linear theory doesn’t in-

herit the full blown gauge-freedom of General Relativity; instead it is restricted to

infinitesimal coordinate transformations as these are the only transformations that

preserve the order of δgµν . If we write the infinitesimal coordinate transformation

as xµ → xµ + ξµ, it turns out that the new perturbations

δ̃Q = δQ− Lξ̄ Q δ̃Q ≡ δQ , (3.7)

where Lξ is the Lie derivative along the congruence ξ, are physically equivalent to

δQ, as far as linear theory is concerned. (Recall that gauge transformations induce

in a given manifold the notion of physical equivalence between different fields and

this is why the symbol ≡ is used as opposed to the equal sign.) By the way, this

type of transformation is nowadays called an external gauge transformation. It

is called external in the sense that it acts on M, as opposed to a transformation

that would act internally on a tangent space to M. Most ‘gauge theories’ [94, 95]

are in fact of the internal kind; electromagnetism is a well known example (the

gauge transformation modifies the Aµ field without ever touching the Minkowski

coordinates) and so are the weak and strong forces. General Relativity, on the
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other hand, is a more complicated gauge theory because the interval ds2 has to be

preserved in the external spacetime.

3.2.2 Gauge Freedom

This gauge freedom also demonstrates that the 10 degrees of freedom in the metric

perturbations are not all independent from each other; only 6 of them correspond to

actual ‘physical’ observables. The other 4 are called ‘gauge degrees of freedom’ and

they represent fictitious perturbations in the sense that they don’t correspond to

any real perturbation in the curvature of the manifold; in other words, the Riemann

tensor is not affected by them. They are simply coordinate artifacts that do not warp

or bend spacetime. Thus, we must somehow eliminate this gauge-freedom before we

can meaningfully talk about perturbations. There are two ways to achieve this: The

first and most obvious is to simply define a coordinate system (a gauge) and stick

to it all the time. The other route is to define gauge-invariant quantities and always

work with them. (Gauge-invariant quantities are real physical quantities that can

be measured experimentally with tools like measuring rods, clocks, counting devices

etc., like the E and B fields of electromagnetism; contrast this to the A and φ fields

which cannot be measured uniquely.) Then the gauge won’t matter. While such

gauge-invariant formalisms do exist [90, 96], for our purposes, working in a specific

gauge is more than sufficient, and we chose to work in the popular synchronous

gauge (a particular one, that is).

3.2.3 (Initially Unperturbed) Synchronous Gauge

First introduced by Lifshitz in 1946, the synchronous gauge is defined by the con-

ditions ψ = ωi = 0. This gauge is physically simple to understand: ψ = 0 makes

η coincide with the proper time along the threads and ωi = 0 makes the threading

orthogonal to the slices. Furthermore, the threads are geodesics as one can easily

verify by checking that uµ∇µu
ν = 0 along them. This means that ‘fundamental’
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observers (i.e., free falling inertial observers) move along η-threads and thus do not

change their spacial coordinates.

Pausing for a moment, this is actually quite strange; in most cases, if an observer

is ‘parked’ at a particular position, it is because some external force is keeping it

there. It follows that such an observer should not be an inertial observer to begin

with (this is what happens to us at the surface of the Earth, by the way). Neverthe-

less, the local observers that define this gauge are inertial despite having constant

xi coordinates. Having said this, it’s actually quite useful to imagine M as being

densely populated by these fundamental local observers, each carrying a conformal

clock and a fixed spatial coordinate label xi. Thus, the spatial coordinates in the

synchronous gauge act as Lagrangian coordinates by comoving with the natural flow

of the fluid (the resulting fluid, that is, as opposed to comoving with a particular

component). Because of this, unlike what happens in M, the comoving coordi-

nate lines become highly deformed as the fluid evolves. Given enough time and the

threads will intersect with each other and form inevitable coordinate singularities,

a process known as caustic formation. However, this flaw of the synchronous gauge

is only noticeable when perturbations grow large enough. Hence, the synchronous

gauge is perfectly adequate for linear theory where perturbations are always weak

enough and caustics never form.

Unfortunately, the synchronous gauge conditions do not fix the gauge entirely.

There is still some residual freedom that can obscure the physical interpretation

of perturbations, especially on scales larger than the Hubble scale. (On the other

hand, well inside the ‘horizon’, all gauges are virtually the same [45] given that

things are mostly flat.) This is simple to understand if you realize that we’re still

free to adjust the initial settings of the comoving clocks and the xi labels carried

by the fundamental observers. We can show this explicitly by modifying the initial

gauge in the following way [91]

η̃ = η +
α

a
, x̃i = xi + ∂iβ

∫
dη

a
+ εi , (3.8)

where the scalars α and β and the vector εi all depend solely on space coordinates (in

other words, 3-fields in Σ) and ∇ · ε = 0; the new gauge will still be a synchronous
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gauge (i.e. ψ̃ = ω̃i = 0) but now with different perturbations. This means that

solutions to the linearized Einstein equations are still contaminated by physically

irrelevant gauge modes, an annoying fact that substantially complicates the process

of setting initial conditions. Not only this, but numerically we must also ensure

that the gauge modes do not swamp the physical ones, thereby causing significant

roundoff error in the solutions we care. The remedy is to place additional conditions

on the gauge so as to fix it completely, a process Lyth & Stewart call ‘dropping

the gauge modes’ [97]. One simple way to achieve this is to force the synchronous

gauge to ‘coincide’ with the background FRW gauge far outside the Hubble horizon.

Conceivably, this can be done very early in the history of the Universe whenM and

M are virtually the same manifold given the ‘absence’ of perturbations. For this

reason, Veeraraghavan & Stebbins call the resulting gauge the ‘initially unperturbed

synchronous gauge’ [89].

3.2.4 Perturbation Types

It is useful to classify perturbations algebraically according to their invariance pro-

prieties in the η-slices of M. Note that if we make a spatial only coordinate trans-

formation then, in order to preserve ds2, ψ(η,x) and φ(η,x) have to transform as

3-scalars, ωi(η,x) as a 3-vector and hij(η,x) as a 3-tensor in Σ. Also note that be-

cause they are still 4-tensors in M, the perturbation components have to be raised

or lowered using the conformal spacial part of the 4-metric, i.e. (1 − 2φ)δij + 2hij;

however, given that we are only interested in the linear regime (meaning that the per-

turbations are small and that quadratic and higher order terms are to be neglected),

the effective metric in the Σ slice reduces to the background metric σ̄ij = δij in Σ.

Nevertheless, we must still use the full metric to raise and lower time indices.

It is equally useful to look at perturbations as 3-fields in Σ and decompose them

into fundamental scalar, vector and tensor ‘building block’ modes. Recall that a

vector field like ωi can always be decomposed into longitudinal and transverse parts
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(the so-called Helmholtz’s Theorem [98])

ωi = ωi‖ + ωi⊥ , (3.9)

where the longitudinal vector is curl-free (∇ × ω‖ = 0) and the transverse vector

is divergence-free (∇ · ω⊥ = 0). Note that in a flat geometry such as ours, we’ll

have that ∇ · v = ∂iv
i, ∇× v = εijk∂jvk ei where εijk is the Levi-Cevita tensor and

∇2ζ = ∂i∂
i ζ. Given that the curl of a gradient is always zero, we can write the

longitudinal vector as the gradient of a scalar ωi‖ = ∂iλ which for obvious reasons is

called the scalar part of ωi. The transverse part, on the other hand, can be written

as the curl of some other vector ωi⊥ = εijk ∂jξk (given that the divergence of a curl is

always zero) and is called the vector part of ωi. Clearly, the scalar λ represents one

degree of freedom contained in ωi meaning that ξi can only carry the remaining two

(not three, as one might first think). Note that ξi is actually only well defined up

to a gradient, i.e., we can always add the gradient of a scalar to ξi and the curl of

the new vector field still gives ωi⊥. This gradient can be interpreted as a physically

irrelevant gauge degree of freedom and this is why ξi only carries two. If we really

care, we can ‘fix’ the gauge by imposing an additional condition like ∂iξ
i = 0 which

makes it transverse, for example. Incidentally, λ as a field is also only well defined

up to a constant but constants obviously do not carry degrees of freedom so this is

not a problem.

Similarly, we can also decompose the traceless symmetric tensor perturbation hij

into scalar, vector and tensor modes (i.e., the one that cannot be assembled from

scalars and vectors) also called, respectively, longitudinal, solenoidal and transverse

parts

hij = hij‖ + hij	 + hij⊥ , (3.10)

where the transverse part is divergence-free ∂ih
ij
⊥ = 0, while the divergence of the

solenoidal part is a transverse vector (and therefore divergence-free) ∂i∂jh
ij
	 = 0 and

the divergence of the longitudinal part is a longitudinal vector (and therefore curl-

free) εjkl ∂k∂ih‖
i
j = 0. (By the way, not everybody uses the labels solenoidal and

transverse in the same manner as we did here; we are following the same nomen-

clature Carroll does [34], but Bertschinger [91], for example, uses them in a slightly
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different manner.) This means that we can write the longitudinal and transverse

parts at the expense of a scalar field θ and a transverse vector ζ i⊥ like so

h‖ ij =

[
∂i∂j −

1

3
δij∇2

]
θ , (3.11)

h	 ij = ∂(iζ⊥ j) , (3.12)

where the parenthesis denote symmetrization. Thus, the longitudinal part carries

one degree of freedom while the solenoidal part carries two and the tensor part the

remaining two, adding up to the five in hij. Note that the tensor part cannot be

decomposed further and is actually gauge-invariant [33].

Why is this field decomposition in Σ useful at all? First and foremost, scalar,

vector and tensor modes represent distinct physical phenomena: Scalar perturba-

tions, characterized by (ψ, φ, λ, θ), describe spatial density fluctuations and because

they exhibit gravitational instability, they may lead to the formation of structure.

On the other hand, vector perturbations, represented by (ξ⊥, ζ⊥), are related to

rotational motions of the fluid. However, in the absence of source terms, they have

the tendency to decay rather quickly and therefore are not normally very interesting

for Cosmology. As for tensor modes (hij⊥), they represent gravitational waves (which

can be interpreted as the physical gauge-invariant degrees of freedom of the gravi-

tational field itself). For our part, we’ll only be interested in scalar perturbations.

Second, this spatial decomposition is hardly confined to perturbations alone; we

can easily extend it to the Einstein and energy-momentum tensors, for example. It

turns out that in the linear regime, the scalar, vector and tensor modes all decouple

from each other and therefore have separate evolutions. Finally, this classification is

particularly useful for identifying and dealing with the four unphysical gauge modes

(in the form of two scalars and one transverse vector) that can plague the field equa-

tions. For example, we can see why the synchronous gauge conditions ψ = ωi = 0

don’t fix the gauge entirely; the condition ωi = 0 does not completely specify λ or

ξk which, in turn, are related to the β and εi in the coordinate transformation (3.8).
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3.2.5 Perturbed Stress-Energy Tensor

We are going to assume that the perturbed fluid in M can be treated as a perfect

fluid also. Obviously, there are periods in the evolution of the Universe where

this approximation is not valid and viscosity, thermal conductivity and other such

physical processes have to be included (like at the time of CMB formation), but

they are unnecessary for our goals. Thus, we will take the energy-momentum tensor

in M to be

T µν = (ε+ p)uµuν + pδij (3.13)

(no anisotropic stresses) where uµ = dxµ/dτ is the 4-velocity, τ is the proper time

and gµνu
µuµ = −1. Let us first consider a local frame comoving with the real fluid;

this frame is simply defined by the condition ui = 0. Then, the normalization of the

4-velocity implies that u0 = a−1(1− ψ) to first order in ψ and from uµ = gµνu
ν we

obtain, also to first order, that u0 = −a(1 + ψ) and ui = aωi. In the synchronous

gauge, this comoving frame is actually orthogonal and inertial. Also carefully note

that by construction, it is only the resulting fluid (as a whole) that does not move

in these frames; the individual components (if any) do. This is because the local

synchronous gauge observers follow the local ‘center-of-mass’ of the fluid, not the

individual components. Thus, in general, we’ll need to include the motion of each

fluid component, even in the (comoving) synchronous gauge.

It is actually easier to work out the general case for a single fluid first, and then

adapt to our case. Hence, in an arbitrary gauge, the fluid velocity field can be written

as uµ = u0(1, υi) where υi = dxi/dη is the coordinate (not proper) 3-velocity of the

fluid in the conformal Σ and u0 = dη/dτ . Again, from the normalization condition

we obtain that

u0 =
1

a
√

1− υ2

[
1− ψ − ωiυi + φυ2 − hijυiυj

1− υ2

]
, (3.14)

where υ2 = δijυ
iυj. If we assume that quadratic terms in υ can be neglected (this

basically means that the fluid elements are non-relativistic), a distinct hypothesis

from the weak field approximation, then we find that u0 = a−1(1− ψ), ui = a−1υi,
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and again from uµ = gµνu
ν that u0 = −a(1 + ψ) and ui = a(υi + ωi). If we now

write uµ = ūµ + δuµ and remember that in the background ūµ = (a−1, 0, 0, 0), then

the velocity perturbations will be δu0 = −ψ, δui = ui, δu0 = −aψ and δui = ui.

If we now expand the stress-energy tensor (3.13) into a background part plus weak

perturbations

T µν = T̄ µν + δT µν ,

= T̄ µν + (ε̄+ p̄)
(
ūµδuν + ūνδu

µ
)

+ (δε+ δp) ūµūν + δP δµν (3.15)

we find that

T 0
0 = −(ε̄+ δε) , T i0 = −(ε̄+ p̄)υi ,

T 0
i = (ε̄+ p̄)(υi + ωi) , T ij = (p̄+ δp)δij . (3.16)

These expressions apply individually to each fluid component if they are only min-

imally coupled. This is precisely our case; in our model, the baryonic component

and the gCg are assumed to exchange energy and momentum solely through gravity.

Note that because we’re only interested in scalar perturbations, vi for us will be a

scalar vector and ωi = 0 because of the gauge we chose. For later convenience, we

introduce here the following notations: δ = δε/ε̄ will denote the density contrast,

ω̄ = p̄/ε̄, the zero-order equation of state in M and c 2
s = δp/δε, the sound speed in

Σ. Note that in the linear regime c 2
s in M is approximately the same as c̄ 2

s = ˙̄p/ ˙̄ε,

the zero-order sound speed in M.

Let us now discuss energy-momentum conservation∇µT
µ
ν = 0 in terms of metric

perturbations and fluid variables. Calculating the covariant derivatives is a straight-

forward process, albeit a tedious one and we simply present the result. Using the

weak field approximation and assuming a non-relativistic fluid, one finds in an ar-

bitrary gauge that [91]

ε̇+ 3(H− φ̇)(ε+ p) + ∇ · [(ε+ p)v] = 0 , (3.17)
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and

∂

∂η
[(ε+ p)(v + ω)] + 4H(ε+ p)(v + ω) + ∇p+ (ε+ p)∇ψ = 0 (3.18)

which can be interpreted as the relativistic analogues of the continuity and Navies-

Stokes equations of Newtonian fluids. Once again, these expressions apply individ-

ually if the various components are only minimally coupled; also, in our case ωi = 0

and vi is a longitudinal vector. We can easily separate (3.17) and (3.18) into unper-

turbed and perturbed parts. The unperturbed parts, of course, ‘live’ in M and are

sometimes called Arnowitt, Deser & Misner (ADM) energy-momentum constrains

[40]; we calculated them in Chapter 1. Then, in the synchronous gauge, the scalar

modes turn out to be

δ̇ + 3H(c̄ 2
s − ω̄)δ + (1 + ω̄)(θ − 3φ̇) = 0 , (3.19)

and

θ̇ +H(1− 3c̄ 2
s )θ +

c̄ 2
s

1 + ω̄
∇2δ = 0 , (3.20)

where θ = ∇ · v; these are the same expressions as in Veeraraghavan & Stebbins

[89], save for the fact that their hij is not trace-free as ours is and so to compare we

need to use h = −6φ. Alas, we have three unknowns (δ, θ, φ) but only two equations

for each fluid (obviously, the background quantities do not count as unknowns as

they have to be specified from the outset).

3.2.6 Perturbed Field Equations

To close (3.19) and (3.20), we must bring the scalar modes from the Einstein field

equations in M, i.e., Gµ
µ = 8πGT µµ, which is even a more tedious job than before

so again we merely write down the result. As always, using the background ADM

constraints in the unperturbed parts, one finds that

φ̈+Hφ̇− 1

2
H2
∑

i
(1 + 3c̄ 2

s,i)Ωi δi = 0 , (3.21)

where the sum goes over all fluid components in the model. Again, to compare with

[89] just use h = −6φ. With the above equation, we are finally in a position, to
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study the evolution of scalar perturbations in a model of baryons plus a gCg. But

before we do so, we briefly revisit the problem of the equivalence between ΛCDM

and the α = 0 generalized Chaplygin gas.

3.2.7 ΛCDM linear equivalence to the α = 0 gCg

In §2.2, we already succeeded in showing that in the limit α→ 0, the gCg is totally

equivalent (as far as gravity is concerned) to ΛCDM. In the past, this assertion was

mostly taken for granted without any formal demonstration. Such need only arose

after [61] appeared. In it, Fabris, Gonçalves & de Sá Ribeiro made the surprising

claim that the linear evolution of density perturbations was actually different in

each case. This section is a simple rehash of [62] where we proved that the gCg is

indeed equivalent to ΛCDM. Let us start by calling the solo gCg with α = 0, model

I, and ΛCDM, model II. Model I has a zero background sound speed as a result of

its constant pressure, and so (3.20) reduces to θ = 0 all the times. This was to be

expected since the synchronous gauge is a comoving gauge and this model only has

one fluid. Then, from (3.19) we obtain

3φ̇ =
δ̇I − 3 ω̄IH δI

1 + ω̄I

, (3.22)

which combined with the fact that ˙̄ωI/ω̄I = 3H(1 + ω̄I) can be recast as 3φ̇ = δ̇?

where δ? = δI/(1 + ω̄I). It is now straightforward to show from (3.21) that the

density perturbations are given by

δ̈? +Hδ̇? −
3

2
H2(1 + ω̄I)δ∗ = 0 . (3.23)

On the other hand, model II has two components and both have zero background

sound speeds. Hence, (3.20) also implies θ = 0 for each. This means that the

synchronous gauge is comoving at the same time with Λ and CDM. How can this

be? This is actually quite simple to understand when one realize that because Λ

is always constant, it also looks stationary in the inertial gauge comoving with the

CDM component. Let us now turn to the evolution of perturbations in the dark

matter component (by definition Λ cannot be perturbed): Using (3.21) plus the fact
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that 3φ̇ = δ̇CDM and also the relation ΩCDM = ε̄CDM/(ε̄CDM + ε̄Λ) = 1 + ω̄II it is easy

to find that

δ̈CDM +H δ̇CDM −
3

2
H2(1 + ω̄II)δCDM = 0. (3.24)

It follows that δI and

δII ≡
δεII

ε̄II

=
δCDM

1 + ε̄Λ/ε̄CDM

= (1 + ω̄II)δCDM , (3.25)

will have the same evolution if we identify ω̄II with ω̄I. Fabris, Gonçalves & de Sá

Ribeiro based their claim on the different evolutions of δCDM and δI but as we’ve just

seen, they are not the correct variables to compare. As a matter of fact, if we wrote

the evolution of perturbations in Fourier space for models I and II, we would find

them to be independent of the wave number k, meaning that all scales evolve the

same way. Considering that a density perturbation with infinite wavelength (that is,

a uniform perturbation) evolves as a uniformM does, then it is not at all surprising

that ΛCDM and the gCg with α = 0 are linearly equivalent given that both have

the same zero-order background and all scales evolve the same way.

3.3 Baryons + gCg — The Model

The model we want to study includes baryons on top of a gCg. The hope is that

the baryonic component may carry the structure that gets wiped (or exponentially

enhanced) in the single gCg model when |α| > 10−5 [86]. Here, we’ll treat baryons

as if ordinary CDM, in other words, as a pressureless non-relativistic fluid with

null background sound speed; this has the immediate consequence that θb = 0

at all times, meaning that the synchronous gauge will comove with them. Also,

from (3.19), we find that 3φ̇ = δ̇b. It follows that the linear evolution of scalar

perturbations for our flat model is given by

δ̈b +Hδ̇b −
3

2
H2 [Ωbδb + (1− 3α ω̄)ΩgCg δ ] = 0 ,

δ̇ − 3H(1 + α)ω̄ δ + (1 + ω̄)(θ − δ̇b) = 0 ,

θ̇ +H(1 + 3α ω̄)θ − α ω̄

1 + ω̄
∇2δ = 0 . (3.26)
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where any perturbation variable without an index refers to the gCg. We still need

to add the background Friedmann equation, of course. However, we only need

to integrate it along with the others, if we insist on determining the evolution of

perturbations as a function of the conformal time η. Hence, we can substantially

decrease the numerical complexity of the problem if we only require the evolution of

perturbations as a function of the scale factor a; actually x = ln a is better. Thus,

we rewrite (3.26) in terms of x

δ′′b + (1 + ξ)δ′b −
3

2
[Ωbδb + (1− 3α ω̄)ΩgCg δ ] = 0 ,

δ′ − 3(1 + α)ω̄δ + (1 + ω̄)(θ/H− δ′b) = 0 ,

θ′ + (1 + 3α ω̄)θ − αω̄

(1 + ω̄)H
∇2δ = 0 , (3.27)

where ξ = H′/H and the prime stands for ′ ≡ d/dx. Confront this to result obtained

by Sandvik et al [86] (in the same gauge as ours)

δ′′ + [2 + ξ − 3(2ω̄ − c̄ 2
s )]δ′ +

3

2
[1− 6c̄ 2

s + 8ω̄ − 3ω̄ 2]δ =
c̄ 2
s

H2
∇2δ , (3.28)

for a single gCg model. There are a few differences worth emphasizing: First, (3.28)

is only valid for subhorizon scales (|k| � H) while ours is valid for any scale. Second,

the derivation leading up to (3.28) assumes from the start an isentropic fluid [99],

ours doesn’t.

It is quite useful to separate each perturbation variable into a time part and a

space part, e.g. δb = δb(η,k)f(k,x) where k is a called a separation constant. (This

procedure is sometimes justified on the basis that, to first-order, perturbations see

Σ as a homogeneous and isotropic Σ. However, this separation is always possible,

even in the non-linear regime, which is not to say that it is always useful.) As

a linear system, the general solution will be a superposition of these modes. For

f , it is customary to use the harmonic solutions of the scalar Helmholtz equation

∇2f − k2f = 0, since they form a complete spatial basis [98]; in the case of a flat

cartesian Σ, they are simply ordinary plane waves exp(ik ·x). Thus, in (3.27), every

perturbation variable reduces to a Fourier amplitude (the spacial parts cancels out)

and ∇2 ≡ −k2. We end up with three equations for three unknowns: δbk, δk and
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Figure 3.2: The evolution of perturbations in a model of baryons (strong lines) plus

a gCg (lighter lines) for two scales: k = 0.01hMpc−1 (black) and k = 0.1hMpc−1

(gray). The baryons and the gCg grow in unison for a while but ‘decouple’ as soon

as the gCg background starts transitioning to a cosmological constant.

θk. Given ω̄ and H (and ξ, ΩgCg) as functions of x, we can easily transform this

system into four first order differential equations and integrate it using any standard

Runge-Kutta method. In particular, we have used the GNU Scientific Library (GSL

1.10) for this purpose (see the Appendix for the code). Fig. 3.3 illustrates typical

solutions. (We have checked numerically that the solutions of (3.28) coincide with

ours for the gCg component inside the Hubble scale.) As with any other differential
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system, however, we still need to specify the initial conditions to evolve but before

we engage this discussion, we briefly review the statistics of structure formation

necessary to bridge theory with observations (for a more comprehensive account see

Joyce’s et al [100], for example).

3.3.1 Statistics of Scalar Perturbations

Let us consider a cubic box of size L � ls, where ls represents the maximum scale

where significant structure still exists. This volume can be thought as a fair sample

of the Universe. It is customary to decompose the energy distribution (the contrast,

really) inside this box in a Fourier series

δ(x) =
∑
k

δk exp(ik · x) =
∑
k

δ∗k exp(−ik · x) , (3.29)

for each component, where k = 2πn/L is a discrete wavenumber and n ∈ Z3.

(Decomposing the energy distribution this way, however, automatically implies that

δ(x + Ln) = δ(x) for any n, i.e. it imposes an artificial periodicity outside the box;

this periodicity, on the other hand, can be safely ignored if the relevant scales are

already encompassed by the box.) It is straightforward to show that the Fourier

amplitudes of this expansion are given by

δk =
1

V

∫
V

δ(x) exp(−ik · x) dx (3.30)

where V = L3. It follows that δ∗k = δ−k since δ(x) is a real function and also δ0 = 0.

(Note, however, that in general we never actually measure the energy distribution

with infinite resolution; thus, in practice, the sum in (3.29) is really a finite sum for

scales above the sampling scale. This finite resolution inevitably introduces some

aliasing, but most of the time we can get away with it, if we only care about scales

much bigger that the resolution scale.) It is many times useful to take the limit of

a large box(
2π

L

)3∑
k

→
∫
dk , (3.31)
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and convert the Fourier series into a Fourier integral

δ(x) =
V

(2π)3

∫
δk exp(ik · x) dk . (3.32)

Note that by a ‘large box’, people usually mean ‘in the limit L→∞’. Nevertheless,

an infinite sized box is not really necessary to justify (3.31); we can jump to the

continuum with any finite sized box, as long as its size is much bigger than the

sampling scale L � ∆. (Be warned that the numerical prefactors in the Fourier

pair (3.30) and (3.32) vary substantially in the literature as many authors rescale

the amplitudes as they see fit. This can be quite annoying but is physically irrelevant.

A popular rescaling is δk → (2π)3/2δk/V , which makes the Fourier basis orthonormal

instead of just orthogonal.)

We can, of course, decompose any number of boxes ‘scattered’ all over the Uni-

verse this way. Obviously, each will yield a different set of amplitudes {δk}. In

fact, it is very useful to interpret a collection of these boxes as an ensemble of sta-

tistical realizations; this means treating the amplitudes (or δ(x), for that matter)

as random variables subject to a certain distribution. For example, if the {δk} are

all completely random, then the perturbation field will have Gaussian statistics.

This is easy to understand: From (3.29), we see that δ(x) can be interpreted as

the sum of several random variables; if these are mostly uncorrelated with each

other, the central limit theorem guaranties that δ(x) will be Gaussian distributed.

It turns out that Gaussian statistics are strongly motivated by inflation (although

some deviations are expected).

To characterize the actual field statistics, we need to determine the several mo-

ments (or cumulants) of the distribution. The simplest way to do this is to consider

a very large box. Assuming this über-box encompasses several statistically homoge-

neous realizations, we may invoke the ergodic hypothesis (this step involves many

subtleties we won’t go into here) and use spatial averages 〈X〉 as a substitute for
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stochastic averages E[X]. It follows from this that 〈δ(x)〉 = 0 and

σ2 ≡ 〈δ2(x)〉 =
1

V

∫
δ2(x) dx = V

∫
dx

∫
dk

(2π)3

dq

(2π)3
δkδ
∗
q exp[i(k− q) · x]

=
V

(2π)3

∫
dk |δk|2 =

V

2π2

∫ ∞
0

|δ2
k| k2dk , (3.33)

where in the last equality, we have assumed statistical isotropy (which seems to be a

good approximation of the Universe, although we should keep an open mind). Higher

moments 〈δn(x)〉 are calculated in a similar fashion. Here, the quantity P (k) ≡ |δk|2

is usually called the power spectrum of the field; it measure the contribution of each

scale to the overall dispersion. (For fields other than matter fields, however, a power

spectrum per unit logarithm in k is normally preferred.) Most inflationary models

predict a primordial power law |δk|2 ∝ kn, with current observations favoring n ' 1

(if n is exactly one, the spectrum is called Harrison-Zel’dovich).

Note, however, that the moments of a distribution may not converge, unless the

power spectrum vanishes rapidly enough at the limit of either large or small scales.

At large scales, we expect the spectrum to rapidly vanish (due to the Cosmological

Principle), but not for small scales. For small scales, we have a lot of structure and

so (3.33), for example, may not converge. To fix this, it is necessary to low-pass

filter the density field: In Fourier space this is accomplished straightforwardly by

introducing a new set of amplitudes

δR(k) =W(k,R)δk , (3.34)

such that δR(k) ' δk for k−1 > R and δR(k) ' 0 for k−1 < R, where R is some

smoothing scale. This effectively wipes out most structures smaller than the smooth-

ing scale while, at the same time, preserving larger ones. The variance of this filtered

field

δR(x) =

∫
W (x′, R)δ(x− x′)dx , (3.35)

is now given by

σ2
R ≡ 〈δ2

R(x)〉 =
V

2π2

∫ ∞
0

P (k)W2(k,R)k2dk < σ2 , (3.36)

74



and can be made to converge. In (3.35), we have used the convolution theorem

F(f ∗ g) = F(f)F(g) where W = F−1(W) is called a window function. The actual

filter doesn’t matter very much; an ordinary step function (top hat) will do just

fine. It also follows from the autocorrelation theorem F(f ? f) = |F(f)|2 (also

called Wiener-Khinchin theorem), that the power spectrum |δk|2 is the the Fourier

transform of the so-called two-point correlation function ξ(r) = 〈δ(x)δ(x+r)〉. This

function measures how fluctuations in the density field are correlated (co-vary) with

each other; thus, the typical size of overdense regions is determined by the first zero

of this function. It can also be interpreted as the excess probability (over random)

of finding two objects of the same class (say, galaxies) separated by r. (Using galaxy

surveys to estimate ξ(r), however, is a complicated affair as galaxies are believed to

form more frequently in high density regions than others; as a result, they may not

constitute an unbiased sample of the matter distribution.)

Now, the shape of the primordial power spectrum doesn’t survive unaltered to

the present day because of the different way perturbations grow inside and outside

the ‘horizon’. The exact processing depends on the cosmological parameters (Ω, h)

and the type (hot or cold) of non-baryonic dark matter. For HDM, fluctuations

on scales smaller than the free streaming scale (typically the size of a cluster of

galaxies) are wiped out and the final spectrum gets a well defined cutoff for small

scales. This is not observed. On the other hand, for CDM, the primordial spectrum

gets ‘bent’ at around λeq = 14(Ω0h
2)−1 Mpc, the size of the horizon at the time of

matter-radiation equality. This happens because scales λ < λeq (which enter the

‘horizon’ prior to equality) suffer a stagnation period due to the Meszaros effect [36]

(basically, the background is expanding too rapidly for matter perturbations to grow

inside the Hubble scale) when they enter. Scales outside, however, do not experience

this stagnation period as they enter the horizon in the matter era. As a result, the

spectrum preserves its form for large scales but losses power on smaller scales (but

not nearly as much as in the HDM case). Writing δk(tf ) = Tδk(ti), where T is called

the transfer function, it follows that

T '

{
1 k < keq ,

(keq/k)2 k > keq .
(3.37)
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Many accurate transfer function (obtained numerically) have been tabulated in the

literature. A very popular parameterization is the BBKS transfer function due to

Bardeen et al [101]

T =
ln(1 + ε0ζ)

ε0ζ

(∑
i

(εiζ)i

)−1/4

(3.38)

where ε = [2.34, 3.89, 16.1, 5.46, 6.71]. Here, [k] = hMpc−1 and ζ = k/Γ, where

Γ = Ω0
CDM h is called the shape parameter (this parameter controls where the bend

occurs, hence the name). Recent work by [84] using data from the 2dF 100k galaxy

survey has constrained Γ to be of the order of ∼ 0.2, in agreement with preliminary

SDSS results [102]. Writing the shape parameter as we did, however, ignores the

fact that baryons are strongly coupled to photons (even in the matter era) for a long

time (until recombination), which effectively prevents the growth of perturbations

in the baryonic component on scales smaller than the sound horizon. To take their

effect into account, we must apply Sugiyama’s [103] empirical correction to the shape

parameter

Γb = Γ exp
(
−Ω0

b −
√

2hΩ0
b/Ω

0
CDM

)
. (3.39)

Nowadays, cmbfast [104] and, more recently, cmbeasy [105] are frequently used

to obtain even more accurate transfer functions. Nonetheless, (3.38) coupled with

Sugiyama’s shape correction is already good enough for our purposes. In our model,

however, we don’t really have CDM; instead, we have a gCg component firmly

behaving as CDM at equality (and also for a long time after). It is simple to show,

as we did initially in [65], that the presence of this gCg only changes the shape

parameter to Γ̃ = Ω0 ∗
CDM h where

Ω0 ∗
CDM = Ω0

CDM + Ω0
gCg(1−A)1/1+α . (3.40)

3.3.2 Results

We have taken a primordial scale-invariant Harrison-Zel’dovich spectrum and pro-

cessed it using a BBKS transfer function (adapted for the gCg and corrected for
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baryons). After equality and for a long time (essentially while the gCg behaves as

matter) the shape of this power spectrum is preserved (for linear scales, that is).

However, as the gCg transitions to a cosmological constant, linear perturbations

are progressively erased by the ever increasing expansion rate of the background

(in a way that is very similar to the Meszaros effect back in the radiation era).

Nevertheless, linear perturbations in the baryonic component can still grow for a

while (but not forever, of course). Hence, the question is, can baryons carry enough

large scale structure to account for what is observe today? To find out, we evolved

normalized initial conditions [δb, δ
′
b, δcg, θcg]0 = [1, 1, 1, 0] (recall that in the matter

era δ ∝ a either for baryons and the gCg, implying δ′ ∝ a) from z = 100 to the

present day (as in [86]) and obtained corresponding transfer functions to further

process the spectrum that emerges from equality. But quite unlike [86], our transfer

functions now come from the baryonic component, not the gCg, thus avoiding the

violent oscillations (or exponential blowup) that are so sensitive to α.

We have used the matter power spectrum obtained by Tegmark et al [106] from

the 2dF 100k redshift survey [84] to constrain the (α,A) parameter space assuming

only reasonable priors coming from from WMAP [43], namely Ω0
b = 0.044 and an

Hubble constant h = 0.71. (Note that at the time of recombination, the Chaplygin

gas would still firmly behave as CDM. Therefore, standard small scale CMB results

are to be expected when one identifies Ω0
CDM with Ω0 ∗

CDM. The results could con-

ceivably differ on very large scales, though here they would be competing against

cosmic variance.) Also, as in Sandvik’s work, we have discarded any 2dF data over

k > 0.3hMpc−1 so as to stay firmly grounded in the linear regime, where our anal-

ysis holds. Specifically, we have evaluated a 500 × 100 × 100 data grid for A (the

primordial spectrum amplitude), A and α, with 0 < α < 1 and 0 < A < 1. Cor-

responding probabilities were found and posteriorly summed over A. The resulting

confidence regions are shown in Fig. 3.3, where two disjoint regions can be seen: one

prominent, the other small (around α ∼ 0 and A ' 0.8). We have also displayed the

region of the parameter space corresponding to a value of the shape parameter of

Γb = 0.2± 0.03, as per [102]. The small area in the figure correspond to the ΛCDM

limit of the gCg. On the other hand, there is also an entirely disjoint region at a
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Figure 3.3: 68%, 95% and 99% likelihood contours in the (α,A) parameter space for

a model of baryons plus a (generalized) Chaplygin gas, coming from the 2dF mass

power spectrum. Note the minute ΛCDM region near α ∼ 0. The zone inside the

solid lines corresponds to Γb = 0.2± 0.03 [102].

very high confidence level. So, in fact, we have provided explicit evidence of a (gen-

eralized) Chaplygin gas not having to behave as ΛCDM in order to reproduce 2dF

large-scale structure. This is an important result, no doubt, and provides some relief

against Sandvik’s constraint. Our result, however, still has to be jointly analyzed

with other results. Fig. 3.4 shows the probability contours when we add the old

92 supernovae constraints from Chapter 2, while Fig. 3.5 shows the updated version
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Figure 3.4: 68%, 95% and 99% likelihood contours resulting from a joint analysis

of large-scale structure and type Ia supernovae (old sample) for a model of baryons

plus a (generalized) Chaplygin gas.

using the new sample. With the updated version, we see a clear separation between

the two areas that wasn’t present in the old result. On the other hand, CMB con-

straints on the gCg have been obtained in a variety of papers [87, 71, 107, 108] and

more recently [77]. Here, we only quote their main result: At 3σ, α < 0.2. If fol-

lows, from Fig. 3.5, that adding baryons no longer significantly alleviates Sandvik’s

constraint on α (which was our strong conviction at the time we wrote [109]) and

the gCg is indeed forced to behave very closely to a ΛCDM model.
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Figure 3.5: 68%, 95% and 99% likelihood contours resulting from a joint analysis of

large-scale structure and type Ia supernovae (new sample) for a model of baryons

plus a (generalized) Chaplygin gas. Note the separation between the two disjoint

regions that wasn’t present with the old sample. If we now take into consideration

that CMB constraints require an α < 0.2, we conclude that adding baryons is no

longer able to alleviate Sandvik’s constraint.

3.4 Conclusions

We have shown that baryons play an important role in the context of unified dark

energy models. In a single gCg model, perturbations vanish completely as the gCg
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transition to a cosmological constant, unless α is extraordinarily close to zero, in

other words, to a ΛCDM model. Baryons, on the other hand, if present can carry

the structure that gCg cannot; if we include them, α is no longer forced to be

virtually zero; in fact, the entire spectrum 0 < α < 1 becomes possible. This, in

itself, is a significant result; however, when analyzed together with other results

from supernovae and CMB tests, we conclude that α, unfortunately, still has to be

very close to zero. At the time [109] was published, a non-zero (albeit small) α

value was still consistent with observations. With the new supernovae data, this is

no longer possible and the gCg is indeed forced to behave very closely to ΛCDM.

This result has been frequently advertised as the end of UDE. To be fair, however,

this isn’t quite true for the simple fact that, as we have already seen, ΛCDM is

virtually indistinguishable (as far as gravity is concerned) from a unified gCg with

α = 0. Finally, we wish to emphasize the fact that the constraints obtained here

(and those of most other researchers, in fact) have been obtained assuming that

linear theory is a valid approximation for large scales. As we will discuss in detail in

the next chapter, it turns out that we must be very careful about this assumption

in the context of all unified dark energy models. There are, in fact, many non-

trivial subtleties involved that make these models substantially more complicated

to analyze than what first meets the eye.
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Chapter 4

UDE — Non-Linear Regime

UDE models based on the gCg have been extensively tested against a wide variety

of observations including high-z supernovae [65, 66, 67, 68, 109, 69, 70, 71, 72, 73,

74, 75], lensing [110, 69, 111, 112], high precision CMB [87, 71, 107, 108] and LSS

[113, 114, 65, 86, 109, 115, 71]. The latest all-encompassing effort can be found in

[77]. These tests, however, for better or worse, all bear a common factor: they orig-

inate from the same perturbative treatment of the gCg. In a nutshell, a zero-order

homogeneous gCg backgroundM is assumed and subsequently (weakly) perturbed.

However, there is a potential caveat to this whole way of treating quartessence that

is the subject of this chapter.

4.1 All Quiet on the Western Front?

To see why problems may be lurking around the corner, let us start by recalling that

the real Universe (denoted throughout by manifold M) displays hierarchical struc-

tures like stars, galaxies, clusters of galaxies, and so on; it is far from being smooth.

The dynamics in M is assumed to be entirely described by General Relativity (or

some modified version of), as gravity is the only relevant force at work on cosmo-

logical scales. In practice, however, due to the highly non-linear nature of the field
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equations, it is virtually impossible to solve the dynamics completely (even numeri-

cally), unless in a handful of high symmetry situations (see, for instance, [116]). On

the other hand, several observations indicate that the Universe looks increasingly

smooth, as larger and larger scales are considered (typically over 100 Mpc). This

average background (representing the global behavior ofM) is routinely idealized as

a completely featureless manifold, hereafter denoted by manifold 〈M〉. As already

discussed in the first chapter, the kinematics in 〈M〉 is essentially contained in the

cosmological principle, but what about its dynamics?

This is actually a tricky question. Normally, it is assumed that General Relativity

applies just as well in 〈M〉 as it does inM. Yet, when we averageM to obtain the

background, we’re also averaging complex non-linear interactions. Averaging linear

terms in the field equations is no big deal, but averaging non-linear terms is ; this is

because they introduce back-reaction terms and hence new dynamics. The common

expectation, however, is that back-reactions are negligible on cosmological scales,

so that 〈M〉 and M have effectively the same dynamics. In what follows, M will

denote the background when these back-reactions are ignored, to distinguish it from

the real 〈M〉 that includes them. Note that the Standard Model is built on top ofM.

Proving if back-reactions are negligible, of course, is nearly impossible; even checking

it numerically is extremely difficult. As a matter of fact, ‘averaging’, in General

Relativity, remains largely an unresolved and complicated problem [117, 118]. Thus,

it is quite possible that the true background may evolve differently fromM. In other

words, 〈M〉 should really be seen as a ‘corrected’M somehow. Recently, it has been

speculated that such corrections might naturally give rise to the current acceleration

of the Universe (as opposed to some weird dark energy component); see [119] and

references therein. Appealing as this may sound, however, these corrections turn

out to be extremely hard to quantify; currently, there is no convincing argument

showing that they would be large enough for the job. The few times that such an

analysis has been attempted (by studying high symmetry configurations such as

closely spaced sheets of matter separated by voids, arguably not even a very good

approximation of the Universe), have shown them to be small and hence incapable

of producing the observed acceleration [120, 121]. Our personal opinion, is that
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‘averaging’ alone will not explain the mystery behind dark energy.

Second, although in general we cannot determine the full evolution of M, we

can still solve the dynamics of ‘small’ perturbations. Indeed, when perturbations

are small enough, the field equations can be fully linearized and, thus, numerically

solved. Note, however, that treating M as a ‘perturbed’ M implies knowing how

the background evolves first. Here, we are aided by the fact that M, as a fea-

tureless manifold, is forced to behave as a perfect fluid (though not necessarily an

isentropic one). Because of this symmetry, the field equations can be solved almost

completely. Unfortunately, we still need to throw in the equation of state p̄ = ω̄ε̄ of

the background source. The question is, do we know ω̄? We do, of course, know the

local equation p = ωε at every point in M (this is what defines our model in the

first place). The background equation, however, is a large scale average of the local

one; consequently, a priori, ω̄ ≡ 〈ω〉 and ω should (functionally) differ from each

other. It follows that we can’t really know the background equation (and thus the

background dynamics), unless by first solving M. Needless to say, this is virtually

impossible. Still, it is customary to assume that ω̄ = ω (in the sense of being the

same function). In fact, this is always true if the local pressure p is a linear function

of the local density ε (as is the case of ordinary matter, radiation and some forms of

quintessence, like the cosmological constant). But on every other case, it will only

be true in certain regions of M, where the anisotropies in the source distribution

are ‘small’ enough. Once they grow ‘big’, though, the background equation and the

local equation are no longer the same (ω̄ 6= ω) and linear theory is rendered invalid.

The gCg is a good example of this: while the point to point local behavior in M is

p = −Aε−α, the average one is not (unless α = 0):

〈p〉 = −A〈ε−α〉 6= −A〈ε〉−α , (4.1)

except, of course, if the perturbations are small (δ = δε/〈p〉 � 1), in which case

〈p〉 = −A〈ε−α〉 ' −A〈ε〉−α〈1− αδ〉 (4.2)

' −A〈ε〉−α .
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Now, let us add to this the fact that perturbations have been evolving for a

long time, since inflation to the present day, roughly speaking. In most non-UDE

models, the dark matter component becomes highly clustered during this period

(more specifically in the matter era), but because CDM always acts as pressureless

mater, the average background pressure is not affected by the inhomogeneities in

this component. On the other hand, the dark energy component normally evolves

homogeneously enough in space, so as to look almost as if a cosmological constant.

Thus, the average equation of state is also, typically, not very much affected by the

inhomogeneities present in the dark energy distribution. Consequently, for most

models and throughout this period, linear theory can be safely used.

However, in the case of UDE models, because dark energy and dark matter arise

from the same underlying fluid, the local equation of state is forced to bridge Λ

behavior and CDM behavior. This means that anisotropies in the quartessence dis-

tribution will most likely affect the average background equation of the Universe.

Hence, if significant clustering (even if only at small scales) occurs early in the his-

tory of the Universe, then ω̄ 6= ω (in the sense of being different functions) and linear

theory is rendered useless (even on large scales); we can still use it, of course, but

we’ll be perturbing the wrong background. In principle, a second order treatment

might bring perturbations closer to today than linear theory can, but probably not

much closer. The point is that the small scale clustering in the quartessence com-

ponent necessary to reproduce an equivalent CDM clustering, inevitably affects the

equation of state of the average universe. The majority of the studies conducted so

far on UDE, do not take this into consideration. Note that the potential breakdown

of linear theory at late times is crucial for LSS tests but is of a lesser importance for

CMB tests given its earlier occurrence in the history of the Universe. It also affects

supernovae and other background results. (Identical worries have also been voiced

in [15], but in the context of condensation and vacuum metamorphosis.) There-

fore, it seems premature to judge the success of UDE models (as viable alternatives

to ΛCDM) solely on traditional background and linear tests. These considerations

highlight the fact that the whole concept of UDE is much harder to deal with (even

phenomenologically) than originally anticipated.

86



4.2 Qualitative Approach

In this section, we aim to illustrate in the simplest possible manner how even small

scale collapsed regions in a quartessence fluid can affect the evolution of the very

large universe. For this purpose, we shall concentrate on two particular cases of

unified dark energy fluids.

4.2.1 Case I: the gGg with c̄ 2
s > 0

Here, one should bear in mind the fact that the gCg has a minimum density ε̄? it

cannot go below. Let us now considering a spherical region in M of radius R with

an average density 〈ε〉. If ε was uniformly distributed inside this region, then the

average pressure would clearly be 〈p〉 = −A〈ε〉−α. In general, however, it will be

something else. To make this more concrete, take the case of a prototypical collapsed

region, where the envelope R1 < r < R has a smaller density than the core r < R1.

In fact, let us assume that ε(r < R1) = N〈ε〉, where N is some constant higher

than one and ε(R1 < r < R) = ε? so that p(R1 < r < R) = p? = −ε?. (We

might consider smoothing the transition between the two areas, but for the type of

qualitative argument we’re making, this would be overkill.) Because the sum of the

energy inside the two regions divided by the entire volume still has to be 〈ε〉, this

implies that N is equal to

N =

(
R

R1

)3

+

[
1−

(
R

R1

)3
]
ε?
〈ε〉

, (4.3)

which links the size of the collapsed core to N . It is now straightforward to show

that the average pressure is given by

〈p〉 =

(
R1

R

)3

(N〈ε〉)−α −

[
1−

(
R1

R

)3
]
ε? ,

' −ε? , (4.4)
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where the approximation is valid for large N (small core). Thus, if N � 1, the

average pressure 〈p〉, will be considerably larger (in modulus) than the pressure of

the Chaplygin gas in the absence of perturbations. If we now recall that for the gCg

(with α > 0), the lower the density, the bigger the pressure, this is why the envelope

dominates the entire region R. Hence, the non-linear collapse will work to make

〈p〉 = p? = −ε? early on, thus anticipating and slowing down the transition from

dark matter to dark energy behavior.

It should be said, of course, that this is an oversimplified picture: we haven’t

taken into account the dynamical effects of pressure gradients. In high density

regions the pressure will be significantly smaller (in modulus) than average. Still,

we need to take into account that the gravitational collapse will only be effective on

a given scale λ if λ & csH
−1. However, once the perturbations become non-linear,

the background pressure does not significantly influence any subsequent dynamics.

4.2.2 Case II: UDE with c̄ 2
s < 0

Let us now consider a UDE fluid whose background mimics a two-component model

of quintessence (with an effective p̄Q = ω̄Q ε̄Q where ω̄Q is a constant) plus pres-

sureless CDM, in other words, a quartessence fluid with p̄ = p̄Q and ε̄ = ε̄Q + ε̄CDM.

It is simple to check that this fluid does not have an explicit isentropic equation of

state. Nevertheless, we can still calculate its sound speed indirectly by means of the

following trick:

c̄ 2
s ≡

dp̄

dε̄
=
dp̄Q
dε̄Q

dε̄Q
dε̄

=
ω̄Q(1 + ω̄Q)ε̄Q

(1 + ω̄Q)ε̄Q + ε̄CDM

. (4.5)

Thus, if −1 6 ω̄Q < 0, linear instabilities are expected to occur in the quartessence

fluid. In this case, pressure does not hold the collapse of high-density regions (which

tend to behave as pressureless matter), in fact, it contributes to it. On the other

hand ‘voids’ will get increasingly emptier. There is, however, a major difference to

the previous case: Now, there is no minimum density underdense regions cannot go

below (except, of course, if ω̄Q = −1), in other words, ε can arbitrarily approach zero.
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This has the interesting consequence that the average pressure in the background

may actually be very close to zero at all times, so that the large scale universe may

never start to accelerate (despite the linear prediction), something which is clearly

inconsistent with current observational evidence.

Again, we stress that this is a very simplified example that may not withstand

closer inspection; in particular, note that the square sound speed in collapsed re-

gions (albeit negative in the present case) is necessarily small, as these regions tend

to behave as matter (this is a general feature of quartessence, after all). Thus, over-

dense regions may not get that enhanced by pressure, and consequently, the average

pressure in M may not reach arbitrarily small values.

4.3 Quantitative Approach

In this section, we wish to study the onset of the non-linear regime in a more

quantitative way. To this effect, we will study how a pure Chaplygin gas (α = 1)

plus baryons model processes the power spectrum that emerges from radiation-

matter equality. Throughout the analysis we adopt priors in agreement with the

WMAP first-year data release [5]. The parameters are an equivalent matter density

Ω?
m = 1 − A + Ωb = 0.29, a baryon density Ωb = 0.047, an equivalent cosmological

constant density Ω?
Λ = 1−Ω?

m = 0.71, a Hubble parameter h = 0.71, a normalization

σ8 = 0.9 (using a top hat filter) and a primordial Harrison-Zel’dovich spectrum. We

start by determining how linear density perturbations of the Chaplygin gas and

baryon components evolve with time using the machinery of the previous chapter.

Note that the use of linear theory so early in the matter era is actually a good

approximation on large enough scales. This is because the effects of the breakdown

of linear theory will only be important (on large cosmological scales) much latter,

when a smooth transition from dark matter to dark energy domination would be

naively expected.

89



10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

R [h−1 Mpc]

σ(
R

)

a = 0.01 

a = 0.03 a = 0.05 

a = 0.1 a = 0.08 

Figure 4.1: The linear evolution of the σ mass dispersion in the baryon (solid line)

and Chaplygin gas (dashed lines) components as a function of R and a assuming

α = 1. Note that at early times the baryon and Chaplygin gas fluctuations evolve

in tandem. Later on, pressure effects prevent the Chaplygin gas from collapsing

further. However, baryon fluctuations can still keep growing (albeit at a slower

pace).

4.3.1 Mass Dispersion

Therefore, we use linear theory in order to compute the value of the dispersion of

the density fluctuations in the baryon and Chaplygin gas components σ(R, a), as

a function of R and a. This is plotted in Fig. 4.1 for the particular case of the

original Chaplygin gas with α = 1. We see that since the Chaplygin gas behaves

as matter at early times, perturbations will grow proportionally to the scale factor,

in tune with those in the baryonic component. Therefore, both fluids evolve in

the same way early on and have approximately the same value of σ on all relevant

scales. During this stage we have that σ ∝ a = (1 + z)−1. Later on, the pressure of

the Chaplygin gas will have increased dramatically preventing its further collapse.
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Figure 4.2: The ratio between the average value of p and and its zeroth or-

der background value, 〈p〉/p̄, as a function of the mass dispersion σ of the lin-

ear density fluctuations in the Chaplygin gas component for various values of

α = [0, 0.2, 0.4, 0.6, 0.8, 1] (bottom up). For α > 0 we clearly see that 〈p〉/p̄ rapidly

diverges from unity if σ is large enough.

However, the baryon fluctuations can still keep growing (at a slower pace). We also

see in Fig. 4.1 that the Chaplygin gas component becomes non-linear on small scales

very early in the matter era. It is clear that when this happens a significant fraction

of the Chaplygin gas will have collapsed and decoupled from the background so that

a transition from a dark matter-like to a dark energy-like stage (which necessarily

requires lower densities) never happens in those regions.

4.3.2 〈p〉 in the Non-Linear Regime

Using the Press-Schechter framework [122], we can show that for σ = 1 the fraction

of the equivalent mass that is incorporated in collapsed objects is close to 0.1. In the
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non-linear regime, an initial gaussian density field is better described by a lognormal

one-point probability distribution function, P(δ), given by (see, for example, [123]

and references therein)

P(δ) =
(1 + δ)−1√

2π ln(1 + σ2
nl)

exp

− ln2
(

(1 + δ)
√

1 + σ2
nl

)
2 ln(1 + σ2

nl)

 , (4.6)

where σ2
nl = exp(σ2)−1 and σ is computed using linear theory. We use (4.6) in order

to estimate the ratio between the average pressure 〈p〉 and its zero-order background

value p̄ = −A/ε̄α,

〈p〉/p̄ =

∫ ∞
−1

(1 + δ)−αP(δ)dδ , (4.7)

as a function of the dispersion of the density fluctuations in the generalized Chap-

lygin gas component, σ. (An objection may be raised here: Since the Chaplygin

gas has a minimum non-null density, the lower limit in (4.7) cannot be exactly −1.

However, if this minimum density is much smaller than the average density, using

this lower limit doesn’t create any major problem.) The results of this analysis

are displayed in Fig. 4.2 for various values of α. We see that in all but one case

(for α = 0) the average value of the pressure strongly diverges from its zero-order

background value as soon as σ becomes large enough. This inevitably causes the

breakdown of linear theory. The magnitude of this effect becomes more pronounced

at late times when the negative pressure starts to become dynamically important

on all scales.

We thus conclude that weakly perturbing a homogenous Chaplygin gas does not

take into account the effect that non-linearities have on the behavior of the very

large universe. This caveat has crucial implications for the predicted observational

consequences of the model given that linear theory breaks down at late times even

on large cosmological scales (except in the α = 0 case).
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4.4 Conclusions and Future Prospects

Weakly perturbing a canonic UDE background fluid in the traditional way, where

we simply assume that the background equation has the same functional form as the

local one, effectively neglects the potential effect that collapsed regions an voids may

have on the behavior of the average universe. We have argued in this chapter, both

qualitatively and quantitatively, that outside the ΛCDM limit, non-linearities in

UDE models cannot be safely ignored. This means that any dramatic conclusion on

the fate of UDE solely based on background and linear tests, are premature at best.

The average background and clustering properties of quartessence (treated as a single

fluid) can only be definitely settled by solving the full non-linear Einstein equations.

Obviously, this can only be accomplished in a handful of high symmetry situations;

in the future, we intend to explore such configurations (like closely spaced sheets of

‘matter’ separated by voids) to see if some light can be shed on the background and

clustering properties of quartessence. Preliminary work on this front has already

begun.

4.5 A Possible Way Out?

Now, let us take a step back and consider the following: In the so-called concordance

model of Cosmology, a range of observational data is used to postulate the existence

of two dark fluids (dark matter and dark energy) for which so far there is no direct

experimental evidence. The most common attitude towards dark energy and dark

matter (in the context of General Relativity) is to model them as if two distinct

minimally coupled fluids. The direct opposite to this, is to treat them as different

manifestations of a single fluid (which has been the main focus of this thesis). An

intermediate approach, on the other hand, is to treat them as two coupled fluids. In

this case, however, if the coupling is very strong, we naturally expect the distinction

of dark energy and dark matter as two different fluids to become somewhat blurred.

In other words, if the coupling between them is very strong, then, to a certain extent,
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we expect dark energy and dark matter to behave as if a single (quartessence) fluid.

As far as we are aware today, this bridge between strongly coupled models and UDE

has not been significantly explored by the community. To make this more concrete,

let us take the case where dark energy and dark matter are coupled in the following

way

L̂ = X − V (φ) + h(φ) L̂DM , (4.8)

where L̂DM ∝ Y n and

Y = −1

2
∇µϕ∇µϕ . (4.9)

(In this type of model, φ is normally called a ‘Chameleon’ field [124, 125, 126, 127].)

Recall that a Lagrangian proportional to a power of the kinetic term of a given field

ϕ describes a constant-ω isentropic fluid with ω = 1/(2n− 1) as discussed in § 2.1.

Thus, in the limit of large n, our L̂DM above describes pressureless (non-relativistic)

dark matter. It follows that we can rewrite (4.8) in the form

L̂ = X − V (φ) + g(φ) εDM , (4.10)

where g(φ) = ωDMh(φ) is a rescaled coupling constant. It is easy to see (by varying

the action in relation to ϕ) that the dark matter component evolves independently

from the chameleon dark energy field φ. On the other hand, the evolution of φ is

given by

�φ =
∂Veff

∂φ
, (4.11)

where

Veff = V (φ)− g(φ) εDM , (4.12)

and therefore is affected by how dark matter is evolving. (Note here that although

Veff is almost V , its derivative can be very different from ∂V/∂φ). As for the energy-

momentum tensor associated with (4.8), it is a simple matter to show (varying the

action in relation to gµν) that

Tµν(φ, ϕ) = ∇µφ∇νφ + (X − V (φ))gµν +

+ h(φ)
[
gµνY

n + nY n−1∇µϕ∇νϕ
]
. (4.13)
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Obviously, this energy-momentum tensor does not, in general, describe a perfect

fluid. However, in the so-called adiabatic regime (described, in detail, in [128, 129]),

it is assumed that the gradients of φ are negligible both in Tµν and in the equation

of motion (4.11). Thus, in this regime, (4.13) reduces to

Tµν ' (hY n − V )gµν + nhY n−1∇µϕ∇νϕ , (4.14)

which can be immediately rewritten in a perfect fluid form, if we make the following

identifications

εeff = (2n− 1)hY n + V ,

= h εDM + V ,

peff = hY n − V ,

= g εDM − V ' −V , (4.15)

and uµ = ∇µϕ/
√

2Y . Is it an isentropic fluid, though? Yes. Since the adiabatic

regime is also characterized by the condition ∂Veff/∂φ = 0, it follows from (4.12)

that the value of φ is univocally related to εDM. Hence, peff only depends on the

value of εeff and therefore the fluid is isentropic (although, in general, we won’t have

an explicit isentropic peff = peff(εeff) equation of state).

Now, the value of

m2
eff ≡

∂2Veff

∂φ2
, (4.16)

called the effective square mass of the chameleon field, determines the length scales

for which the adiabatic approximation is valid. Specifically, this is the case for

large scale perturbations with L � m−1
eff , while for scales much smaller than this,

the approximation is no longer valid. We thus conclude that above a certain scale,

sufficiently coupled models behave as a single isentropic fluid but not below. Why

is this relevant? It is relevant because such differentiated behavior above or below

a certain scale may help solve the averaging problem that affects UDE models.

Recall that in (canonic) UDE models, an isentropic fluid description is valid at all
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scales and this is why quartessence is so susceptible to non-linearities. For the sake

of argument, suppose the majority of the non-linear clustering occurs for scales

smaller than m−1
eff ; since now they are confined to a non-isentropic part of the fluid,

it is possible that they may not affect the average background equation of state as

before. If, on the other hand, significant non-linear clustering does extend beyond

this scale, then non-linearities will still be a major problem in strongly coupled

scenarios. A more detailed analysis is in order to determine if this turns out to be a

successful solution to the averaging problem or not. (Note, however, that such large

couplings are strongly constrained by several equivalence principle type experiments,

so the cosmological relevance of these models remains unclear.)

As a final note, we would like to show how easy it is to obtain some key results

regarding linear instabilities in strongly coupled models if we treat them as a single

fluid. Say we start with ordinary quintessence plus a dark matter component. If

they are minimally coupled, φ will roll down the potential V as usual. On the other

hand, if we view φ as strongly coupled to dark matter, φ will roll down an effective

Veff that is very close to the original potential. Above a certain scale, this effective

fluid behaves as an isentropic fluid. Additionally, in the absence of perturbations,

it satisfies the usual

ε̇eff

εeff

= −3H(1 + ωeff) , (4.17)

with ωeff > −1. Since εeff > 0, it follows trivially that ε̇eff < 0. On the other hand,

we know that ṗeff = −V̇eff > 0. Thus,

c2
s =

ṗeff

ε̇eff

< 0 , (4.18)

and instabilities are expected to occur. Linear instabilities such as these have been

studied by a variety of authors [130, 131, 129, 128, 132], but here we have obtained

them in a much simpler and straightforward manner.

96



Appendix A

Thesis X-Ray

Here, we summarize in bullet form the main results that have been obtained in the

course of this work.

i. Canonic Implementation of UDE: In Chapter 2, a careful discussion

was made relating to the nature of a single fluid. A single (‘atomic’) fluid

is then defined as a fluid that can be described by a Lagrangian of the form

L̂(X,φ), where φ is a real scalar field. This field φ is formally equivalent to

having a perfect fluid (though, not necessarily an isentropic one). It is argued

that treating quartessence as a single fluid is the simplest possible way of

implementing UDE, hence ‘canonic’ quartessence.

ii. Low-Level Implementation of the gCg as a scalar field obeying the

Lagrangian (2.11) using a novel approach.

iii. Complete ΛCDM equivalence to the gCg when α → 0. Gravity

alone does not distinguish the two. This result was established in a very

straightforward manner, expanding the Lagrangian of the gCg and taking the

limit α→ 0. As far as we know, this demonstration has never been presented

before in such a simple and direct way.

iv. Background Constraints on the gCg, in the absence of perturbations,
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were obtained using the distance modulus of 192 Type Ia Supernovae. The

parameter α is not significantly constrained by this analysis. On the other

hand, the constrains on A depend on whether one lets the gCg coexist with

a CDM component (in which case A > 0.95) or a baryonic component (0.7 <

A < 0.92). In the former case, the gCg is forced to behave very close to a Λ

cosmological constant (which is hardly surprising) while in the latter case, the

Λ limit is strongly disfavored.

v. Sound Speed Link to how Fast the Quartessence Transition Oc-

curs: if c 2
s > 0 the background transition from DM to DE occurs faster

than in ΛCDM (slower, if c 2
s < 0). Linear instabilities are briefly discussed in

Chapters 3 and 4.

vi. The Crucial Role of Baryons in the Formation of LSS: The gCg

alone (unless |α| < 10−5) is not able to reproduce the 2dF mass power spectrum

for large scales. In a nutshell, this is caused by the fact that the gCg attains

very large sound speeds during the background transition. Thus, perturbations

on large scales become heavily damped (or blow up exponentially) by the

effect of pressure; the only way to avoid this is by having a very small α.

If, on the other hand, baryons are added to the mixture, perturbations can

still keep growing in the baryonic component (since baryons always have a

very small sound speed), even when the gCg starts behaving differently from

CDM. Although baryons are not that important for background studies, they

are nonetheless crucial for LSS formation.

vii. Linear Constraints on α: if baryons are included, α is no longer forced

to be very small. In fact, the entire interval 0 6 α 6 1 is consistent with

the 2dF power spectrum (with A ' 0.8). On the other hand, if we make a

SN+LSS joint analysis (using the latest 192 supernovae sample), we find that

only α ' 0 and 0.2 < α 6 1 are now possible. If to this we add the latest CMB

constraint on α, i.e. α < 0.2, we conclude that even with baryons present, the

gCg is forced to behave very close to ΛCDM in order for it to simultaneously

reproduce SN, CMB and LSS observations.
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viii. The Averaging Problem in UDE: In Chapter 4, we argue both quali-

tatively and quantitatively that in the context of canonic quartessence, non-

linear small scale clustering cannot be safely ignored, as these may have a

significant impact on the background equation of state at late times. Since

the local quartessence equation has to bridge dark matter and dark energy be-

havior, the average equation of state is inevitably affected by the anisotropies

in this fluid. The problem is that once these become significant, we no longer

know what background to perturb. To find out, we would have to solve the

full Einstein field equations. The consequence of this is that the majority of

background and linear tests have very shaky foundations. Thus, it is rather

premature to make any dramatic conclusion on the fate of UDE, solely based on

traditional tests, without first taking into account the effects of non-linearities.

UDE models are therefore much more complicated to test than initially antic-

ipated. One way that perhaps may shed some light on the matter is to study

high symmetry configurations involving a gCg. These high symmetry config-

urations can be solved numerically many times without any approximations.

Some preliminary work on this front has already begun.

ix. Strongly Coupled Models: The averaging problem in UDE models is

rooted in the fact that quartessence is described by an isentropic fluid at every

scale. On the other hand, strongly coupled models, as discussed at the end of

Chapter 4, above a certain scale can be interpreted as an isentropic fluid but

not below. Now, if small scale clustering occurs mainly at scales where the

isentropic approximation is not valid, then it may be possible that the very

large universe is not affected by them. On the other hand, if the clustering

extends well beyond the critical scale into isentropic territory, then the average

equation of state will still be, most likely, affected and strongly coupled models

share the same problems as quartessence. Some significant work has yet to be

done on this front which, a priori, seems promising.

99



100



Appendix B

Numerical Code

chaplygin.h: Glues all files together

1 #include <math . h>

2 #include <s t d i o . h>

3 #include <s t d l i b . h>

4 #include <g s l / g s l e r r n o . h>

5 #include <g s l / g s l o d e i v . h>

6

7 /∗ From model . c ∗/
8 double H(double x , double omega b0 , double Abar , double alpha ) ;

9 double w(double x , double Abar , double alpha ) ;

10 double qui (double x , double omega b0 , double Abar , double alpha ) ;

11 double omega b (double x , double omega b0 , double Abar , double alpha ) ;

12 double i p s (double k , double g , double A) ;

13

14 /∗ From t r an s f e r . c ∗/
15 int dydx (double x , const double y [ ] , double dy [ ] , void ∗params ) ;

16 double t r a n s f e r (double k , double omega b0 , double h , double Abar ,

double alpha ) ;

model.c: Model stuff

1 #include ” chaplyg in . h”

2
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3 /∗ Hubble parameter ∗/
4 double H(double x , double omega b0 , double Abar , double alpha ) {
5

6 double a1 = exp(−3∗x ) ;

7 return s q r t ( omega b0∗a1+(1−omega b0 ) ∗pow(Abar+(1−Abar ) ∗pow( a1 ,

1+alpha ) , 1/(1+alpha ) ) ) ;

8 }
9

10 /∗ w fo r the gCg component , x=ln (a ) ∗/
11 double w(double x , double Abar , double alpha ) {
12

13 return −1/(1+(1−Abar ) ∗exp(−3∗(1+alpha ) ∗x ) /Abar ) ;

14 }
15

16 /∗ qu i=H’/H where ’=d/dx ∗/
17 double qui (double x , double omega b0 , double Abar , double alpha ) {
18

19 double a1 = exp(−3∗x ) ,

20 a2 = pow( a1 , (1+alpha ) ) ,

21 a3 = Abar+(1−Abar ) ∗a2 ,

22 num,

23 den ;

24

25 num = a1∗omega b0+(1−Abar )∗(1−omega b0 ) ∗a2∗pow( a3 ,

−alpha/(1+alpha ) ) ;

26 den = a1∗omega b0+(1−omega b0 ) ∗pow( a3 , 1/(1+alpha ) ) ;

27 return −1.5∗num/den ;

28 }
29

30 /∗ Baryon f r a c t i o n ∗/
31 double omega b (double x , double omega b0 , double Abar , double alpha ) {
32

33 double a1 = exp(−3∗x ) ,

34 a2 = omega b0∗a1 ;

35

36 return a2 /( a2+(1−omega b0 ) ∗pow(Abar+(1−Abar ) ∗pow( a1 , 1+alpha ) ,

1/(1+alpha ) ) ) ;

37 }
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38

39 /∗ Power spectrum ∗/
40 double i p s (double k , double shape , double A) {
41

42 double q = k/shape ,

43 t1 , t2 , t3 , t4 ,

44 tk ;

45

46 t1 = 3.89∗q ;

47 t2 = pow(16 .1∗q , 2) ;

48 t3 = pow(5 .46∗q , 3) ;

49 t4 = pow(6 .71∗q , 4) ;

50

51 tk = pow((1 + t1 + t2 + t3 + t4 ) , −0.25) ;

52

53 tk = tk∗ l og (1+2.34∗q ) /(2 .34∗ q ) ;

54

55 /∗ CDM processed Harrison−Ze ldov i ch A∗k spectrum ∗/
56 return A∗k∗pow( tk , 2) ;

57 }

transfer.c: Perturbation Machinery

1 #include ” chaplyg in . h”

2

3 int dydx (double x , const double y [ ] , double dy [ ] , void ∗params ) {
4

5 const double ∗ const par=params ;

6

7 double omega b0 = par [ 0 ] ,

8 Abar = par [ 1 ] ,

9 alpha = par [ 2 ] ,

10 k = par [ 3 ] ,

11 a1 = w(x , Abar , alpha ) ,

12 a2 = 1+a1 , a3=exp (x ) ∗H(x , omega b0 , Abar , alpha ) ,

13 a4 = omega b (x , omega b0 , Abar , alpha ) ;

14

15 dy [ 0 ] = y [ 1 ] ;
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16 dy [ 1 ] = 1 .5∗ a4∗y[0]−(2+ qui (x , omega b0 , Abar ,

alpha ) ) ∗y [1]+1.5∗(1− a4 ) ∗(1−3∗ alpha ∗a1 ) ∗y [ 2 ] ;

17 dy [ 2 ] = a2 ∗( y [1]−y [ 3 ] / a3 )+3∗(1+alpha ) ∗a1∗y [ 2 ] ;

18 dy [ 3 ] = −(alpha ∗a1∗y [ 2 ] ∗ k∗k ) /( a3∗a2 )−(1+3∗alpha ∗a1 ) ∗y [ 3 ] ;

19

20 return GSL SUCCESS ;

21 }
22

23 double t r a n s f e r (double k , double omega b0 , double h , double Abar ,

double alpha ) {
24

25 const g s l o d e i v s t e p t y p e ∗T = gs l od e i v s t e p r k 8pd ;

26 g s l o d e i v s t e p ∗ s = g s l o d e i v s t e p a l l o c (T, 4) ;

27 g s l o d e i v c o n t r o l ∗c = g s l od e i v c on t r o l y n ew (1 e−8, 0) ;

28 g s l o d e i v e v o l v e ∗e = g s l o d e i v e v o l v e a l l o c (4 ) ;

29

30 double par [ 4 ] = {omega b0 , Abar , alpha , 2998∗k } ;
31

32 g s l od e i v sy s t em sys = {dydx , NULL, 4 , par } ;
33

34 double x = log ( 0 . 0 1 ) ,

35 x1 = 0 ,

36 h i s t e p = 1e−6,

37 y [ 4 ] = {1 , 1 , 1 , 0} ;
38

39 while ( x < x1 ) {
40

41 int s t a tu s = g s l o d e i v e v o l v e app l y ( e , c , s , &sys , &x ,

x1 , &h i s t ep , y ) ;

42

43 i f ( s t a tu s != GSL SUCCESS)

44 break ;

45 }
46

47 g s l o d e i v e v o l v e f r e e ( e ) ;

48 g s l o d e i v c o n t r o l f r e e ( c ) ;

49 g s l o d e i v s t e p f r e e ( s ) ;

50
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51 return y [ 0 ] ;

52 }

go transfer.c: Transfer Functions Driver

1 #include ” chaplyg in . h”

2

3 /∗ Globa l Var iab l e Dec la ra t i ons ∗/
4 const double k 2df [ 4 9 ] , k 2df windows [ 2 0 ] [ 4 9 ] , k 2df power [ 2 0 ] [ 5 ] ;

5

6 int main (void ) {
7

8 FILE ∗ fp ;

9 int i , j , k ;

10

11 double Abar [ 1 0 0 ] ,

12 alpha [ 1 0 0 ] ,

13 omega b0=.044 ,

14 h=.71 ,

15 t [ 1 0 0 ] [ 1 0 0 ] [ 4 9 ] ;

16

17 extern const double k 2df [ 4 9 ] ,

18 k 2df windows [ 2 0 ] [ 4 9 ] ,

19 k 2df power [ 2 0 ] [ 5 ] ;

20

21 /∗ Load k ’ s f o r the window func t i on s ∗/
22 fp=fopen ( ”2 d f k . dat” , ” r ” ) ;

23 for ( i =0; i < 49 ; ++i )

24 f s c a n f ( fp , ”%e” , &k 2df [ i ] ) ;

25

26 /∗ Load window func t i on s ∗/
27 fp=fopen ( ”2df windows . dat” , ” r ” ) ;

28 for ( i =0; i < 20 ; ++i )

29 for ( j =0; j < 49 ; ++j )

30 f s c a n f ( fp , ”%e” , &k 2df windows [ i ] [ j ] ) ;

31

32 /∗ Load 2 d f data ∗/
33 fp=fopen ( ”2 df power . dat” , ” r ” ) ;
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34 for ( i =0; i < 20 ; ++i )

35 for ( j =0; j < 5 ; ++j )

36 f s c a n f ( fp , ”%e” , &k 2df power [ i ] [ j ] ) ;

37

38 f c l o s e ( fp ) ;

39

40 /∗ Generate a 100∗100 g r i d o f [ alpha , Abar ] ∗/
41 for ( i =0; i < 100 ; ++i )

42 alpha [ i ]=.0 +i ∗1 . 0/99 ; /∗ a lpha =[0 , . . . , 1 ] ∗/
43

44 for ( j =0; j < 100 ; ++j )

45 Abar [ j ]=.0 + j ∗ . 9999/99 ; /∗ Abar=[0 , . . . , . 9999 ] ∗/
46

47 /∗ Ca l cu l a t e on ly once the t r an s f e r matrix t [ i ] [ j ] [ k ] (100 x100x49 ) f o r

a g r i d o f models a lpha [ i ] , Abar [ j ] a t k 2d f [ k ] ∗/
48

49 for ( i =0; i < 100 ; ++i ) {
50 for ( j =0; j < 100 ; ++j ) {
51 for ( k=0; k < 49 ; ++k) {
52

53 t [ i ] [ j ] [ k]= t r a n s f e r ( k 2d f [ k ] , omega b0 , h , Abar [ j ] ,

a lpha [ i ] ) ;

54 p r i n t f ( ”%i \ t%i \ t%i \ t%e\n” , i , j , k , t [ i ] [ j ] [ k ] ) ;

55 }
56 }
57 }
58 return 0 ;

59 }

go chi.c: 2dF χ2 fitting

1 #include ” chaplyg in . h”

2

3 const double t rans [ 4 9 0 0 0 0 ] [ 4 ] ,

4 k 2d f [ 4 9 ] ,

5 k 2df windows [ 2 0 ] [ 4 9 ] ,

6 k 2df power [ 2 0 ] [ 5 ] ;

7
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8

9 int main (void ) {
10

11 FILE ∗ fp ;

12 int i , j , k , m, n ;

13

14 double Abar [ 1 0 0 ] ,

15 alpha [ 1 0 0 ] ,

16 A[ 5 0 0 ] ,

17 shape ,

18 omega ,

19 omega b0=.044 ,

20 h=.71 ,

21 term ,

22 t [ 1 0 0 ] [ 1 0 0 ] [ 4 9 ] ;

23

24 extern const double k 2df [ 4 9 ] ,

25 k 2df windows [ 2 0 ] [ 4 9 ] ,

26 k 2df power [ 2 0 ] [ 5 ] ,

27 t rans [ 4 9 0 0 0 0 ] [ 4 ] ;

28

29 double p [ 4 9 ] ,

30 Wp[ 2 0 ] ,

31 prob matr ix [ 5 0 0 ] [ 1 0 0 ] [ 1 0 0 ] ,

32 sum [ 2 0 ] ,

33 s ,

34 norm=0,

35 prob sum A [ 1 0 0 ] [ 1 0 0 ] ;

36

37

38 /∗ Load t r an s f e r matrix ∗/
39 fp=fopen ( ” t r an s f e r ma t r i x . dat” , ” r ” ) ;

40

41 for ( i =0; i < 490000; ++i )

42 f s c a n f ( fp , ”%f %f %f %f ” , &trans [ i ] [ 0 ] , &t rans [ i ] [ 1 ] ,

&t rans [ i ] [ 2 ] , &t rans [ i ] [ 3 ] ) ;

43

44

107



45 /∗ Reconstruct 3D t r an s f e r matrix t ( alpha , Abar , k 2d f ) (100 x100x49 ) ∗/
46 for ( i =0; i < 490000; ++i )

47 t [ ( int ) t rans [ i ] [ 0 ] ] [ ( int ) t rans [ i ] [ 1 ] ] [ ( int )

t rans [ i ] [ 2 ] ] = trans [ i ] [ 3 ] ;

48

49

50 /∗ Load k ’ s f o r the window func t i on s ∗/
51 fp=fopen ( ”2 d f k . dat” , ” r ” ) ;

52 for ( i =0; i <= 48 ; ++i )

53 f s c a n f ( fp , ”%e” , &k 2df [ i ] ) ;

54

55 /∗ Load window func t i on s ∗/
56 fp=fopen ( ”2df windows . dat” , ” r ” ) ;

57 for ( i =0; i <= 19 ; ++i )

58 for ( j =0; j <= 48 ; ++j )

59 f s c a n f ( fp , ”%e” , &k 2df windows [ i ] [ j ] ) ;

60

61 /∗ Load 2 d f data ∗/
62 fp=fopen ( ”2 df power . dat” , ” r ” ) ;

63 for ( i =0; i <= 19 ; ++i )

64 for ( j =0; j <= 4 ; ++j )

65 f s c a n f ( fp , ”%e” , &k 2df power [ i ] [ j ] ) ;

66

67 f c l o s e ( fp ) ;

68

69 /∗ Generate a 500 x100 ∗100 g r i d o f [A, alpha , Abar ] ∗/
70

71 for ( i =0; i < 500 ; ++i )

72 A[ i ]=0 + i ∗3000 ./499 ; /∗ A[ i ]=[0 , . . . , 3000] ∗/
73

74 for ( j =0; j < 100 ; ++j )

75 alpha [ j ]=.0 +j ∗1 . / 99 ; /∗ a lpha =[0 , . . . , 1 ] ∗/
76

77 for ( k=0; k < 100 ; ++k)

78 Abar [ k ]=.0 + k ∗ . 9999/99 ; /∗ Abar=[0 , . . . , . 9999 ] ∗/
79

80

81 term = sqr t (h / . 5 ) ;
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82

83 /∗ Pro b a b i l i t y Matrix ( f o l l ow i n g Tegmark ’ s notes ) ∗/
84

85 for ( i =0; i < 500 ; ++i ) {
86 for ( j =0; j < 100 ; ++j ) {
87 for ( k=0; k < 100 ; ++k) {
88

89 omega=omega b0+(1−omega b0 ) ∗pow(1−Abar [ k ] ,

1/(1+alpha [ j ] ) ) ;

90 shape=omega∗h∗exp(−omega b0∗(1+term/omega ) ) ;

91 for (m=0; m < 49 ; ++m) {
92 p [m]= ip s ( k 2d f [m] , shape , A[ i ] ) ∗ t [ j ] [ k ] [m]∗ t [ j ] [ k ] [m] ;

93 }
94

95 for (m=0; m < 20 ; ++m) {
96 Wp[m]=0;

97 for (n=0; n < 49 ; ++n)

98 Wp[m] += k 2df windows [m] [ n ]∗p [ n ] ;

99

100 sum [m] =

pow( ( k 2df power [m] [3 ] −Wp[m] ) / k 2df power [m] [ 4 ] ,

2) ;

101 }
102

103 s=0;

104 for (m=0; m < 20 ; ++m) {
105 s += sum [m] ;

106

107 }
108

109 prob matr ix [ i ] [ j ] [ k]=exp(−s /2) ;

110 norm += prob matr ix [ i ] [ j ] [ k ] ;

111

112 }
113 }
114 }
115

116 /∗ Normalized p r o b a b i l i t y matrix ∗/
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117 for ( i =0; i < 500 ; ++i ) {
118 for ( j =0; j < 100 ; ++j ) {
119 for ( k=0; k < 100 ; ++k) {
120

121 prob matr ix [ i ] [ j ] [ k]=prob matr ix [ i ] [ j ] [ k ] / norm ;

122

123 }
124 }
125 }
126

127 /∗ Pro b a b i l i t y Matrix summed over A ∗/
128

129 for ( j =0; j < 100 ; ++j ) {
130 for ( k=0; k < 100 ; ++k) {
131 prob sum A [ j ] [ k ]=0;

132

133 for ( i =0; i < 500 ; ++i )

134 prob sum A [ j ] [ k ] += prob matr ix [ i ] [ j ] [ k ] ;

135

136 i f ( k % 100 == 0) p r i n t f ( ”\n” ) ;

137 p r i n t f ( ”%e\ t ” , prob sum A [ j ] [ k ] ) ;

138

139 }
140 }
141

142 return 0 ;

143 }

contour.c: Confidence Contours

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3

4 int cmp( const void ∗vp , const void ∗vq ) ;

5

6 /∗ To use wi th q s o r t : the compare func t i on ∗/
7 int cmp( const void ∗vp , const void ∗vq ) {
8
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9 const f loat ∗p = vp , ∗q = vq ;

10 f loat d i f = ∗p − ∗q ;

11

12 return ( ( d i f >= 0 . 0 ) ? ( ( d i f > 0 . 0 ) ? +1 : 0) : −1) ;

13 }
14

15 int main (void ) {
16

17 FILE ∗ fp ;

18

19 int i , j , k ;

20 f loat l i s t [ 1 00∗100 ] , contour [ 1 0 0 ] [ 1 0 0 ] , sum ;

21

22 /∗ Load normal ized p r o b a b i l i t y matrix ( prob sum A . dat ) in t o

contour [ ] [ ] ∗/
23 fp = fopen ( ”prob sum A . dat” , ” r ” ) ;

24

25 for ( i =0; i < 100 ; ++i )

26 for ( j =0; j < 100 ; ++j )

27 f s c a n f ( fp , ”%e” , &contour [ i ] [ j ] ) ;

28

29

30 /∗ Make a s i n g l e row contaning a l l contour rows ∗/
31 for ( i =0; i < 100 ; ++i )

32 for ( j =0; j < 100 ; ++j )

33 l i s t [ i ∗100 + j ] = contour [ i ] [ j ] ;

34

35 /∗ Order l i s t us ing q s o r t ∗/
36 qso r t ( l i s t , 10000 , s izeof ( f loat ) , cmp) ;

37

38 /∗ Accumulated p r o b a b i l i t y ( we l l , 1− i t ) ∗/
39 for ( i =0; i < 100 ; ++i ) {
40 for ( j =0; j < 100 ; ++j ) {
41 sum = 0 ;

42

43 for ( k=0; l i s t [ k ] < contour [ i ] [ j ] ; ++k)

44 sum += l i s t [ k ] ;

45
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46 contour [ i ] [ j ] = 1 − sum ;

47

48 i f ( j % 100 == 0) p r i n t f ( ”\n” ) ;

49 p r i n t f ( ”%e\ t ” , contour [ i ] [ j ] ) ;

50 }
51 }
52 }
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