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Resumo

Estuda-se a possibilidade, do ponto de vista fenomonoldgico, de unificar a matéria
escura e a energia escura numa s6 componente isentrépica (‘quartessence’ candnica),
no contexto da Relatividade Geral. Em particular, estuda-se o gas de Chaplygin
generalizado (gCg) como protétipo de quartessence e determinam-se constrangimen-
tos de ordem zero e linear. Conclui-se que o gCg se tem de comportar de uma forma
muito semelhante a ACDM, um resultado que tem sido interpretado como o fim
da energia escura unificada (EEU). Argumenta-se que esta conclusio é, em grande
parte, prematura. Ao analisar-se o inicio do regime nao-linear, poe-se em causa a
validade dos métodos tradicionais perturbativos usados no ambito da quartessence.
Mostra-se, com efeito, que o colapso nao linear de pequena escala, pode afectar o
comportamento de larga escala do Universo de uma forma que estes métodos nao
levam em conta. Conclui-se que somente resolvendo as equagoes de Einstein por
completo, se pode obter um veredicto final sobre a EEU. Algumas ideias simples

sobre como contornar esta dificuldade sao sugeridas.

Palavras-chave: Energia escura, Matéria escura, Quartessence, Gés de Chaply-

gin, Cosmologia, Relatividade Geral, Perturbacoes nao-lineares
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Résumé

La possibilité d’unifier la matiere noire et 1’énergie noire en un seul fluide isen-
tropique (‘quatressence’ canonique) dans le contexte de la Relativité Générale est
étudié du point de vue phénoménologique. En particulier, on étudie le gaz de Chap-
lygin généralisé (gCg) comme un prototype de la quatressence et on détermine les
constraintes d’ordre zéro et linéaire. On peut conclure que le comportement du
gCg est tres semblable a ACDM, un résultat qui a été interpreté souvent comme
la fin de énergie noire unifiée (ENU). On argument que cette conclusion est as-
sez prémature. En analisant le commencement du régime non-linéaire, la validité
des métodes perturbatives traditionelles utilisées au contexte de la quatressence, est
mise en doute. On montre que l'agglomération non-linéaire, méme a petite échelle,
affecte le comportement a large échelle de 1'Universe d'une fagcon que les métodes
traditionelles ne sont pas capables de tenir en compte. On peut conclure que pour
obtenir un veredict final sur 'ENU, on doit résoudre compléetement (ga veut dire
sans aucune approximation) les équations d'Einstein. Quelques simples idées pour

traiter ce probleme sons suggérées.

Mots-clés: Energie Noire, Matiere Noire, Quatressence, Gaz de Chaplygin, Cos-

mologie, Relativitée Genérale, Perturbations Non-Lineaires
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Abstract

We study, from a phenomenological perspective, the possibility of unifying dark
matter and dark energy into a single isentropic fluid (canonic quartessence), in the
framework of General Relativity. In particular, we study the generalized Chaplygin
gas (gCg) as a prototype for quartessence and determine background and linear
constrains. We find that the gCg has to behave in a manner very similar to ACDM,
a result widely seen as the end of unified dark energy (UDE). We argue that this is
mostly a premature conclusion. By analyzing the onset of the non-linear regime, we
bring into serious question the validity of traditional perturbative methods in the
context of UDE. We show that non-linear clustering, even on small scales, affects the
average pressure of the Universe in a manner that traditional methods fail to take
into account. We conclude that only by solving the full Einstein field equations, can
a definite answer be obtained regarding the validity of the UDE hypothesis. Some

simple ideas on how to improve this situation are subsequently offered.

Key-words: Dark energy, Dark Matter, Quartessence, Chaplygin gas, Cosmology,

General Relativity, Non-Linear Perturbations
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Notations and Units

Throughout this thesis, we employ a (— + ++) signature for the spacetime metric
guv- Greek indices run over spacetime coordinates, Latin indices run over space
coordinates. M represents the inhomogeneous Universe, (M), the average large
scale background. If the global and local dynamics in M are the same, the symbol
M is used for the background instead of (M). We follow the convention that
quantities in M are denoted with a bar on top, like so @, and no bar for quantities
in M. However, if () is obviously a background quantity like the scale factor a or
the Hubble parameter H (or H, if conformal time is used), no bar is employed. The
same symbol z* for coordinates in M and M is used; there is no need to carefully
distinguish z* from z* because it is always possible to drag the coordinates from
one manifold to the other by means of any diffeomorphism linking the two. Unless

otherwise stated, natural units are used throughout.
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Preface

Today, the macroscopic aspects of the Universe seem well understood. Multiple
observations strongly suggest that we live in a (nearly) flat Universe, presently un-
dergoing an accelerating phase [1}, 2, B, 4], [5. [6]. In the context of General Relativity,
this acceleration can only be explained by the presence of an ‘exotic’ dark energy
component violating the strong energy condition. Exactly what constitutes this
energy, no one knows; it stands as one of the biggest mysteries in contemporary
Cosmology. Theoretically, the simplest way to achieve this acceleration is through
a cosmological constant [7]; unfortunately, at the present, we have no clear un-
derstanding of how this ‘vacuum energy’ arises. There are many other possible
constructs, though, that can achieve this same large scale dynamics; however, they
are mostly canonic (e.g. quintessence [8, 9]) and non-canonic (e.g. k-essence [10],
phantom energy [11, 12], tachyons [13, [14], vacuum metamorphosis [I5], 16], etc.)
generalizations of the cosmological constant that also lack any solid foundations.
This makes it hard to meaningfully compare them. This is not to say, of course,
that some do not have better ‘traits’ than others; quintessence, after all, is often
described as an enhanced cosmological constant. Nevertheless, these improvements
are hardly rooted in any current fundamental understanding we have. Thus, barring
any significant progress at the ‘fundamental physics’ front, we really have no way
of discerning which alternatives are indeed better. Even worse is the fact that no
‘direct’ detection of dark energy has ever been made; we’re not even sure if it really
exists. As it happens, most theoretical physicists these days don’t actually believe
that General Relativity is the final word on gravity. Thus, it is quite possible that

dark energy doesn’t actually exist, in other words, gravity itself may be causing the
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observed acceleration [I7]. Indeed, by modifying General Relativity directly, it is
possible to reproduce the current acceleration of the Universe without involving any
dark energy. (There are many ways to achieve this but normally they all involve
extra-dimensions. Branes [18], for instance, are a famous example.) At the moment,
however, most modifications are still far too ‘ad hoc’ to be particularly pleasing, and
are hardily fundamental well motivated, anyway. By tinkering with the large scale
behavior of gravity, though, we haven’t really closed any Pandora’s Box regarding
dark energy, we only pried it open even more. For our part, in this thesis, we will
always work within the confines of General Relativity, by treating dark energy as a

real entity.

There are also multiple observations that strongly suggest that most ‘matter’
in the Universe, an essential ingredient for structure formation, is in a dark non-
baryonic form [3], 19, 4} [6, 20]. Also here, the exact nature of this non-baryonic dark
matter is not known and possibilities abound; these commonly include all sorts of
non-standard particles, from axions to the neutralino, and so forth. Other more
exotic possibilities, involve direct modifications to General Relativity; these go from
the latest revised relativist versions of MOND [21], to a non-symmetric modified
gravity by Moffat [22, 23, 24]. In all of these, dark matter is traded for a much more
complicated TeVeS (tensor, vector, scalar) gravity source. Again, we won't consider

this route by always staying within General Relativity.

It is perhaps the greatest achievement of 20th-century Cosmology, that we are
now in possession of a fairly accurate and complete inventory of the energy content
of the Universe. Roughly speaking, we know today that only about 4% of the
Universe is made of ordinary baryonic matter (of which roughly a quarter is actually
visible), 26% non-baryonic dark matter and the remaining 70%, dark energy (and
an insignificant amount of radiation). It is quite astonishing to realize that the vast
majority of the Universe has yet to be ‘seen’; then again, we could take this as
a sign that something is wrong with General Relativity. 21st-century Cosmology
is thus hard-pressed to explain what these unseen components are; this turns out

to be a very difficult thing to do. At the most basic level (assuming they exist),
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for instance, we’re not even sure if dark energy and dark matter are fundamentally
different from one another (a widespread belief, nonetheless). In reality, we only
know that macroscopically they play different roles but, a priori, this doesn’t actually
force them to be different. It is certainly conceivable, at least theoretically so,
that both could share a common origin. Given the current state of affairs, with
no direct detection foreseeable in the near future, and no shortage of candidates
also, the possibility that dark energy and dark matter are, somehow, just different
manifestations of a single entity, should not be discarded lightly. In fact, it only
stands to reason that such a possibility should be throughly investigated. A negative
outcome would, at least, signal the fundamental difference between dark energy and

dark matter. Either way, something of value could be gained.

Unified Dark Energy (UDE for short) models (sometimes also called unified dark
matter models) are thus built upon the simplifying hypothesis that a single com-
ponent (dubbed ‘quartessence’) simultaneously accounts for both dark energy and
dark matter. Historically, the idea of UDE has sprung from the unusual proprieties
of the Chaplygin gas [25], 26], an exotic fluid with an equation of state p = —A/e,
where A is a positive constant: it turns out that this fluid behaves as (pressureless)
matter very early in the history of the Universe, and as a cosmological constant
much later (smoothly transitioning between the two), a dual behaviour highly sug-
gestive of a unified description of dark energy/dark matter. This gas is also special
in that it can be ‘motivated’ in the context of string theory by considering a d-brane
in a spacetime of d 4+ 2 dimensions. Then, the Nambu-Goto action can be seen as
describing a ‘Newtonian’ fluid with the above equation of state [27, 28], the negative
pressure interpreted as the brane tension. This interpretation has made the Chap-
lygin gas the currently preferred prototype for quartessence; on the other hand, it is
hardly a fundamental interpretation, so we shouldn’t give it too much importance.
[29] generalizes this fluid to a broader class parameterized by p = —A/e* where « is
a constant. Unfortunately, the pressure of this so-called generalized Chaplygin gas
(gCg) is no longer easily interpretable as a d-brane tension; consequently, some of
the initial appeal is lost. Nevertheless, this does not make it any less useful to us,

especially in the context of a phenomenological analysis. This is because the gCg

xiil



covers, in a continuous fashion, a wide gamut of quartessence models, from ACDM
(a limiting case of UDE corresponding to o = 0, as we will later show in detail) to
the original Chaplygin gas. The real question then becomes whether or not the gCg
(and, hence, quartessence in general) constitutes a viable alternative to an already

macroscopically successful (non-unified) ACDM model of the Universe.

This work is an attempt to answer this question phenomenologically. Several
tests are discussed, mainly of zero and linear order, and how they constrain the pa-
rameter space of the gCg. It turns out that an « close to zero is significantly favored
by current observations, a result widely seen as indicating the failure of UDE. That
this is mostly a premature conclusion, is perhaps one of the most relevant contri-
butions we make to this subject. Our reasoning is grounded in the realization that
non-linear effects are of critical importance for all UDE models. In broad terms, this
is related to the fact that the average pressure (p) = (—A/e®) of an inhomogeneous
gCg manifold M is not —A/(e)* (where () represents a suitable spatial average) un-
less, of course, the perturbations are very small. This simple observation highlights
the fact that an average gCg universe, i.e., (M) doesn’t behave, in general, as a spa-
tially homogeneous gCg. This poses a serious problem for traditional perturbative
methods for the simple reason that we need to know upfront how the background
evolves in order to build perturbations on top of it. Unfortunately, in the case of
the inhomogeneous gCg we simply don’t know this; to find out, we would have to
solve the full Einstein field equations and subsequently smooth any solutions we
could muster. It goes without saying that this is a notoriously difficult task by any
standard; if we could do it in general, perturbative methods would hardly have any
‘raison d’étre’. It is, of course, always possible to start out with a homogeneous gCg
background and perturb it, like most of us have; the real problem is that we may be
perturbing the wrong background. By building perturbations on top a homogenous
gCg background, we are effectively ignoring the potential effect that non-linear small
scale clustering may have on the actual background as a whole. (This is strongly
suggested by the fact that the average equation of state of the inhomogeneous gCg
differs from the homogenous one.) It is true that in ‘most’ cosmological models,

non-linear small scale clustering can be ‘swept under the rug’; there is a ‘natural’
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expectation that this should not significantly affect the very large Universe. Nev-
ertheless, the Chaplygin gas does seems to be special in this way (and UDE, by
extension), in that its small scale structure does affect the equation of state of the
average universe. Unfortunately, this all adds up to the fact that background and
linear tests are simply not enough to validate or disprove the UDE hypothesis, mak-
ing the complete analysis of these models unexpectedly complicated. Considerable

work has yet to be done in order to establish their ultimate fate.

The layout of this work is as follows: In CHAPTER 1, we summarize the theoret-
ical framework of the Standard Model of Cosmology and briefly discuss the ‘usual
suspects’ for dark energy and dark matter. The concept of quartessence is then intro-
duced as a compelling alternative. In CHAPTER 2, we investigate the homogeneous
background proprieties of UDE and constrain the gCg parameters (A, o) using su-
pernovae Type Ia luminosity distances. We also discuss implementing quartessence
as an isentropic scalar field obeying a particular Lagrangian. This, in turn, will
lead us to the conclusion that the gCg is totally equivalent (to any order) to an
ordinary ACDM model (as far as gravity is concerned) when a — 0, a fact that
plays an important role. The question of what is meant by a single (‘atomic’) fluid
is also carefully addressed. In CHAPTER 3, we set up all the necessary machinery
to describe linear perturbations in order to study large scale structure formation in
the context of UDE models. A formal demonstration of the equivalence to 1st order
between ACDM and the oo = 0 generalized Chaplygin gas is given as an illustration
of this framework. The crucial role baryons play in the formation of structure is
then carefully highlighted. Using this machinery, a gCg model (plus baryons) is
constrained against the mass power spectrum obtained from the 2dF 100k Galaxy
Redshift survey. Linear instabilities are also briefly touched upon. In CHAPTER 4,
we discuss the so-called averaging problem in the context of UDE and how even the
large scale universe may be affected by the non-linear small scale clustering that oc-
curs in the quartessence component. The argument is made, both qualitatively and
quantitatively, that non-linear effects cannot be safely ignored (except when a = 0).
Thus, the majority of background and linear results obtained without taking into

consideration the effect of non-linearities are put into serious question. The need
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for a full order treatment is highlighted. A few simple ideas on how to improve this
situation are subsequently offered. Finally, we end this thesis by summarizing, in

bullet form, the main results obtained in the course of this work.
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Chapter 1

Introduction

“...entities should not be multiplied beyond necessity.”
WILLIAM OF OCKHAM, 14TH CENTURY

Observations have been steadily piling over the years that can only be ‘explained’, in
the context of General Relativity, by the presence of so-called dark forms of energy;
ordinary baryonic matter and radiation are simply not enough. In broad terms,
a dark energy component (violating the strong energy condition) is required to
explain the recent acceleration of the Universe, and a (cold) dark matter component
to account for the amount of structure observed in various scales (plus a few other
things). Unfortunately, these components have never been observed directly in any
way (hence their ‘dark’ moniker). It is also very unlikely that a direct detection
will occur in the near future. In fact, they may not exist at all; this, however, only
seems possible if General Relativity is somehow flawed, in other words, if gravity
is a much more complex interaction than Einstein previously thought (on large
scales). It is certainly possible to engineer dark energy and dark matter ‘out of the
picture’, by modifying General Relativity directly; often this process involves extra-
dimensions with strange topologies and/or fiddling with TeVeS gravity sources. At
the moment, however, most modifications are far too ‘ad hoc’ to be particularly

pleasing, and nobody seems in any real hurry to give up on General Relativity just



yet (at least for large scales). In this thesis, we will always work within the confines
of General Relativity, in other words, we’ll be assuming that dark energy/dark
matter are real entities. On the other hand, if they do exist, it is particularly vexing
to find out that roughly 96% of the Universe should be in this dark form! That
such a large chunk of the Universe has yet to be ‘seen’; is truly mind boggling.
(We can certainly spin this around and take it as a sign that General Relativity is
somehow flawed.) Thus, contemporary Cosmology is hard-pressed to explain what
these components are. In the absence of a ‘smoking gun’, however, this is a very
hard thing to do; there are simply to many ways to wrap phenomenological theories
around circumstantial evidence. Also, our understanding of fundamental physics is
not sufficiently advanced to safely guide us through this uncharted territory, let alone
suggest an optimum route. In the meantime, we are reduced to somewhat ‘arbitrary’
discussions of what a canonic (i.e. best possible) model for dark energy/dark matter
should be.

Certainly, in this regard, the realization that dark energy/dark matter do not
have to be, a priori, independent entities, should play a significant role. Indeed, there
is no compelling observational reason to suppose that they are. It is only because
dark matter and dark energy play distinct roles in the background, that we frequently
perceive them as being different. However, this doesn’t actually force them to be
different, it only suggests that. The Chaplygin gas, for instance, became famous
precisely for being able to mimic both dark energy and dark matter (depending on
the local density), and still be just one form of energy—a weird one, granted, but
so can be said of quintessence, k-essence, etc. Thus, we should keep an open mind
to the possibility that dark energy and dark matter are just different manifestations
of a single underlying field and not different entities per se. Models built around
this simplifying hypothesis are the main subject of this thesis. Obviously, if this
is true or not, can only be definitely settled by some sort of ‘direct’ observation,
an unlikely event by all accounts. Still, on the theoretical front, the idea of a
unified description of dark energy/dark matter has incredible heuristic potential
and should be thoroughly investigated. All things being equal, having to explain in

a fundamental way just one exotic form of energy, is obviously much better than



having to explain two. In case of failure, we would at least come back justified in
treating dark energy/dark matter as an independent pair. Either way, something of

value could be gained.

In this chapter, we briefly cover the foundations of the Standard Model of Cos-
mology as well as review some of the ‘usual suspects’ for dark energy and dark
matter. The (generalized) Chaplygin gas is also introduced (as a compelling alter-
native) and, in turn, the broader concept of quartessence. These ideas, however,
are mostly presented from a phenomenological point of view; nowhere do we try to
establish them from ‘first principles’, a task that is better left to our fellow theo-
retical physicists. Presently, there is no such thing as a ‘fundamental motivation’
behind quartessence; we can only hope that one may be found in the future. At best,
there is an ‘ad hoc’ string theory interpretation of the Chaplygin gas as a d-brane
tension, but this is hardly fundamental, anyway; it also does not seem to apply to
more general forms of quartessence. It is much too early to say, with any degree of
certainty, if unified models will ultimately stand on their own. In this work, we are
merely interested in gauging how viable these models are from a phenomenological

perspective, as opposed to implementing them in a fundamental way.

1.1 The Cosmological Principle

The idea that the Universe is pretty much ‘the same everywhere’; a stance known as
the Cosmological Principle, is of central importance for contemporary Cosmology.
However, ‘looking the same everywhere’ is an informal concept only made precise
through the notion of a mazimally symmetric manifold. A maximally symmetric
manifold is a manifold with homogeneous and isotropic geometric properties. Here,
homogeneity and isotropy mean that the metric is invariant under (suitable) transla-
tions and rotations, respectively. Note that isotropy and homogeneity are indepen-
dent concepts; one does not imply the other. For instance, a homogeneous manifold
can easily be anisotropic if the anisotropy is the same in every point. Nevertheless,

isotropy about every point does imply homogeneity.



1.1.1 Maximal Symmetry

On a more technical level, a maximally symmetric space is characterized by having
the maximum possible number of Killing vectors, i.e. %n(n + 1) where n is the
dimension of the manifold. The integral curves of each Killing field K describe a
one-parameter family of diffeomorphisms (1-1 smooth maps) ¢, : M — M that
Lie drag the metric tensor g,,. This is just a very abstract way of saying that
g is essentially ‘the same’ object from point to point along the integral curves
(in the sense that the pushforward ¢, g, = g ). In other words, they describe
symmetries of the metric tensor or isometries of the geometry. In fact, if we adapt
a coordinate system to the integral curves of I (meaning that A is the only non-
constant coordinate along them), we will find that g,,(\) = g, (XA + k) where k
is a constant. But this is how we usually spot symmetries in the first place, by
searching for coordinates where the components of the object field remain invariant

under some coordinate translation A — X\ + k. Thus, Killing vectors are just a way

of describing metric symmetries in a coordinate independent way.

Now, consider that if by ‘everywhere’ above we really meant the entire spacetime,
we would be basically describing a static Universe simply because, by construction,
the time slices would have to look the same—this is sometimes called the ‘Perfect’
Cosmological Principle. However, a static configuration is incompatible with the
Hubble flow of faraway galaxies and thus, ‘everywhere’ really means just the ‘space
part’ of spacetime. Let M be such a manifold obeying this ‘scaled down’ principle;
we’ll refer to it as the background manifold or the background universe. This mani-
fold is naturally foliated into a (trivial) fiber-bundle R x ¥ where R represents the

threading and ¥, the maximally symmetric 3-slice, with metric
ds® = —dt* + R*(t)do* . (1.1)

Here t is the cosmic time, R(t) is the scale factor and do? is the 3-metric in the 3

slice, expressed as

do® = 6;5(u) du'du’ (1.2)



k are whatever comoving coordinates you like. 3 is sometimes called the

where u = u
comoving slice. Note the absence of cross terms dt du’ implying that the threading
is orthogonal to the slices. Also note that the t-threads are geodesics making any
local comoving observer (those with constant «*) an inertial one. Only a comoving
observer will think that the background looks isotropic. In fact, the Earth is not
a comoving observer, which is why we observe a dipole anisotropy in the cosmic
background radiation in the first place as a result of a conventional Doppler effect.
It is also interesting to note that these locally inertial comoving observers are able to
carry synchronized clocks that keep synchronized forever in . This is a defining trait
impossible to attain on many other curved manifolds. It is, of course, always possible
to synchronize clocks in a small enough region of a general M through cumbersome
signal sending techniques; essentially this just amounts to choosing local observers
with zero relative velocities and a common time origin (that is, ‘comoving’ observers
in a small region). Fortunately, in M things are much easier (in homogeneous spaces,
really). For one, we don’t have to rely on signal sending to synchronize clocks. In
fact, any comoving observer can set his own proper clock in tune to some cosmic
field @; given that ¢ will evolve exactly the same way everywhere in ¥, every proper
clock can be made to tick at a common rate. They may still have a different time
origin, though. However, comoving observers can all agree to start their clocks at
a common cosmic event like the Big Bang or some other thing like ¢ reaching a

certain value.

1.1.2 Constant Curvature

If a manifold is maximally symmetric then the curvature must be same in every point
and in every direction. This requirement greatly reduces the number of possible
maximally symmetric spaces by constraining the Riemann tensor. Let us show this
by setting a local inertial base at a given point p. This base is not unique, of
course. There are plenty others related to it by inertial transformations at p (that
is, ordinary rotations or ‘Lorentz rotations’ according to whether the signature is

Euclidian or Lorentzian, respectively). Maximal symmetry requires that whatever



the inertial base used, the Riemann tensor components should be the same; if they
changed, the space wouldn’t be isotropic. There are only a few inertially invariant
tensors that can be used to build this Riemann tensor, like the metric tensor or the

Kronecker delta. In fact,

R jio < Gpp Goir — Gpi Joias (1.3)
turns out to be the only inertially invariant construction that displays the same
set of index symmetries as the Riemann tensor does [30] (here the hat refers to an
inertial base at a given point p). But because this is a tensor relation, it is also valid
at p in any other coordinate system. Moreover, in a maximally symmetric space ‘all
points are created equal’, as Sean Carroll so succinctly puts it, and thus it is valid
everywhere else. Contracting both sides yields the constant of proportionality and
we get

Ry o = G G = G G (1.4)

n(n—1)
where R is the constant curvature Ricci scalar (not to be confused with the scale
factor in ([L.1])). This expression, of course, relates only to intrinsic curvature and
so doesn’t limit the global structure of the manifold; we won’t bother with such
fine details by always assuming a trivial global topology. The actual value of R is
not very important; it just represents an overall scaling of the underlying space. Its
sign, however, is and gives rise to the classification of positive, zero and negative
curvature spaces. In the case of interest to us, ¥ (an Euclidean 3-space) reduces,

respectively, to a 3-sphere, flat ordinary R? or a 3-hyperboloid and the Ricci tensor
to

OR, = %0, (L5)

where k = ®)R/6. Hence, by construction, ¥ is automatically spherically symmetric
meaning that it can be foliated by 2-spheres. We take advantage of this and write

the metric of the comoving slice in the form
do? = Gy du'du? = P A% 4 72d0? (1.6)
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where 7 is some radial coordinate and d2?> = d6? 4 sin® f d¢? is the usual metric on
the 2-sphere. (By the way, this is just the space part of the vacuum Schwarzschild
solution.) The non-zero components of the Ricci tensor for such a metric turn out

to be

2 _
(3)R11 = ; 815 (3)R22 = 6_2ﬁ(7:(915 - 1) +1
(3) R33 = RQQ SiIl2 0 5 (17)
which we set equal to (1.5 and solve for 5. We get
- 1 -
B(r) = —Eln(l—/{:'r’ ), (1.8)

which, in turn, lets us to write (1.1 as

47
1 — ki?

ds® = —dt* + R*(t) { + f2d92] : (1.9)
called the Friedmann-Robertson-Walker (FRW) metric form. Note how k here sets
the curvature and thus the ‘size’ of the spacial slices. Note also how the following
substitutions 7 — A7, k — A2k, R(t) — A"'R(t) where ) is a constant, leave
invariant. The choice A = \/W is quite popular since it normalizes the value of the
curvature k to {—1,0,41}, but otherwise forces us to work with a dimensionless
radial coordinate 7 and a scale factor with dimensions of length. The benefits of
working with a normalized k, however, are not that significant and we prefer instead
to make A = Ry (where the index refers to the present time) and trade dimensions:

the scale factor a = R/ Ry is now dimensionless and r = Ry 7 acquires the dimensions

of [L]:

dr?

2 2 2
ds* = —dt* + a*(t) L —

+ erQQ} : (1.10)

Naturally, the curvature k = k/R2 is no longer normalized. This is the form we’ll

be using. The Christoffel symbols [31], 32] for this metric are simple, albeit tedious,
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to obtain. For later convenience we set them here:

o aa —y kT
Fllil—m’? Fllil—m’2
Y, = aar? [ = aar?sin® 6
I, = —r(1 —xr?) [y = —r(1 — kr?)sin® 0
_ 1 _ - _ a
2, =13 == L2 3 ¢
12 13~ 01 02 03 =
I3, = —sinfcosf I3, = cotd, (1.11)

where @ = da/dt (all others are either zero or related to these by symmetry). It

follows that the non-zero components of the Ricci tensor are

Ry = —3°
a
_ ad + 2a% + 2k
Ry = — 5
- 1—kr
Roy = 7?*(ad + 2a* + 2k)
R33 = RQQ SiIl2 0 3 (112)

and the Ricci scalar is

R=6 (1.13)

1.1.3 Background Kinematics

There are many kinematic effects that follow directly from the FRW metric ((1.10).
To see a few these, let us consider two comoving test particles (faraway galaxies if
you like), one at the origin, the other at (7,6, ¢). Then, the ‘instantaneous’ distance

between them is given by

d=a(t) / ﬂd? — a(t)fu(r). (1.14)



which increases in proportion to the scale factor. Here, depending on the 3-curvature
of the slices we have that
sin™!(y/]x[r) k>0,
VIl fe =1 /Ixlr k=0, (1.15)
sinh ' (y/|s|r) k<O,
(1.14)) is often called the ‘proper’ distance between test particles, although strictly
speaking it is not the result of a proper measurement. A measurement is called
proper when it is made in a local rest-frame, using proper clocks and rulers. No
single comoving observer is capable of measuring d directly. Instead, d is measured
using an infinite array of proper rulers lined up in a slice of constant proper time
(which is why the word proper gets stuck sometimes). This notion of distance leads

to a ‘recessional’ velocity
v=d=Hd, (1.16)

called the Hubble law, where H = a/a is the Hubble parameter. Note that v here is
not a properly measured quantity either, so having a faster than light speed v > ¢
when d > dyg = ¢/H (called the Hubble distance, Hubble length or Hubble scale)
is no cause for alarm. v only has proper physical meaning as a relative velocity for
objects that are ‘infinitesimally’ close, i.e., inside the same local flat patch. (Recall
that in a curved manifold, there is no invariant way to compare tensors at different
points; we can only compare them locally at a given point and its immediate flat
vicinity. Hence, the concept of a relative velocity between distant points has no
proper physical meaning, which is why a superluminal v is no big deal; while ¢ is
a local invariant, v has no local meaning. Incidentally, the ‘size’ of the inertial flat
patches is determined by the 4-curvature radius of the manifold, which happens to
be of the order of the Hubble length [33]. Thus, for d < dy, we can pretend that
galaxies are receding from each other with a relative velocity proportional to their
distance, which is what Hubble originally discovered. Nevertheless, this is just a
convenient way of seeing things; galaxies aren’t really receding from each other, but
rather it’s the metric that is changing.) It follows that comoving test particles will

‘accelerate’ relative to each other by

d=(H+ H*)d = —qH%d, (1.17)



where ¢ = —ad/a? is called the ‘deceleration’ parameter. Again, this is not a proper
quantity. Obviously, H and ¢ are key cosmological quantities that need to be mea-
sured somehow. Unfortunately, there is no direct way of measuring instantaneous
distances of this sort. In fact, distant objects like galaxies are mainly observable
through the light they emit, which naturally takes a fine amount of time to reach us.
We cannot, therefore, perform measurements along hypersurfaces of constant time,
but only along null paths traveling from the past toward us, i.e, the past light cone.
Below, we’ll discuss some alternative notions of distance that can, in principle, be

measured directly and how they relate to H and gq.

Let us now inquire about the geodesic (inertial) motion of free particles in M.

We'll start by introducing the following Killing tensor [34]
kyu, = a*(gu + ULU,), (1.18)

where U* = (1,0,0,0) is the 4-velocity of comoving observers. We remind the reader
that a Killing tensor is simply a symmetric covariant tensor obeying V(,k,,,,...,) = 0,
where the parenthesis denote symmetrization. You may recognize this as a general-
ized Killing vector V(,k,) = 0. The point is that the quantity k,,,,.,, p"*p"* - --p",
where p# = dx*/d\ is the 4-momentum of the particle and A the affine parameter,

remains constant along geodesics, in other words

P'Vu(koyvgay 097 - p") = 0. (1.19)

This is not too difficult to prove if one remembers that p*V, p” = 0 for geodesics
and that p”1p”2 - p" is a symmetric tensor. It’s also not very difficult to confirm
that is indeed a Killing tensor. It follows that k,, p*p” = a? [p, p*+ (p* U,)?]
will be a constant along geodesics. Since for massive particles we have that p, p* =

2

—m? or (5)?

= m? + |p|* where |p|* = g;; p'p’ is the ordinary 3-momentum and

p* U, = —p° we conclude that

1
p — 1.2
Bl o (1.20

in other words, massive free particles slow down with respect to the comoving grid

as the Universe expands (their peculiar velocities tend to zero). A similar thing
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happens to photons; they don’t slow down, of course, but they do lose some of their
energy with the expansion. This is simple to obtain; since now p, p* = 0, it follows
that —p*# Uu = p® oc @~ !, which is just the photon’s energy (or frequency w if h = 1)
as measured by a comoving observer. This energy loss is related to the fact that
in M there is no timelike Killing vector, thus no notion of a conserved energy [34].
Consequently, a photon emitted at an earlier time with frequency w will be observed
with a lower frequency wy = (a/ap)w at a later time; equivalently, the fractional
change z = A)X/\ in the proper wavelength, called the redshift, will be 1+ 2z = aq/a.
From an observational point of view, the redshift of an object is extremely useful
because it tells us when photons were emitted and how faraway their source was at
the time. It thus acts as a measure of time and distance. Of course, z is only an
observable quantity for events that take place after recombination (when photons
decouple and become free), but in principle we can still use it to tag earlier events;
we just won’t be able to measure it directly, just as we can’t measure the proper

distance to faraway objects.

We’re now in a better position to discuss a few alternative notions of distance that
can, in principle, be measured directly. First, we introduce the so-called luminosity

distance

L

d? = ——
L™ gnF

(1.21)
where L is the absolute luminosity of the source and F is the flux measured by the
observer (i.e., the energy per unit time per unit area). In Euclidean space,
is just the familiar inverse square law: the luminosity spreads itself equally across
every spherical surface that is concentric with the source. In a FRW universe, this
is still true, but now we have to take into account that photons do not only redshift
by a factor of 1 + z but also hit each sphere less frequently (due to the expansion)
by another 1+ z factor. Thus, we conclude that in M

B B (4 [FdY
dp = (14 2)agr = (14 2)ao f, (ao /0 —H(z’)> :
= H[)_l[z+%(1—QO)Z2+"'], (1.22)
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where we have used the fact that the area of the surface touching the detector is
4radr?, and also that for null paths f.(r) = [ dt/a. The third equality comes from
Taylor expanding the scale factor about the present day [35] and is valid for redshifts
z < 0.3.

Next, we define the angular distance

D

- = 1.2
da = (1.23)

where D is the proper diameter of the object and 6 its angular size. Just as with the
luminosity distance above, the idea is to construct a notion of distance that displays
the same familiar geometric properties of Euclidean space, at least in a ‘small’ flat
vicinity around the observer, in this case, the usual variation of the angular size
with distance. From the FRW metric , we immediately conclude that

dy = ar=dp(1+2)72,
1
- Hgl[z—§(3+qo)z2+---] (1.24)

Now, using and to infer Hy and gq hinges on the existence of so-
called standard candles and rulers (in other words, objects with known luminosities
and sizes) and our ability to use them. Regarding standard rulers, the lack of
reliable objects with known proper sizes is notorious. In recent years, however, a
champion ruler has emerged from the cosmic microwave background (CMB). The
temperature autocorrelation function [36] measures how the CMB temperature in
two different directions of the sky fluctuates; naturally, this variation depends on
the angular separation and the power spectrum of this autocorrelation is observed to
have a series of ‘acoustic’ peaks. It turns out, that the first acoustic peak is roughly
determined by the sound horizon at recombination, i.e., the maximum distance a
sound wave in the baryon-radiation fluid could have travel until recombination. This
sound horizon is given by [ ~ dy(z, ~ 1100) and serves as a standard ruler. The
remarkable thing about this ruler is that its angular size almost only depends on

the curvature of the ¥ spatial slices. Hence, measuring the angular size of the first
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acoustic peak has emerged as the leading and most direct method of determining
the spatial curvature of the Universe. Recent data coming from the WMAP satellite
experiment have shown that these slices are virtually flat [5]. On the note of standard
candles now, Cepheid variables have been used for nearly a century. However, they
are far too faint to be of any use for z = 0.1. In the last decade or so, Type la
supernovae have taken their place as a result of their extreme brightness; indeed,
they have been observed up to a record z = 1.7 [37]. They appear to be good candles
in so far as their luminosity profiles look relatively the same for all supernovae of
this type (the cause for this uniformity, however, is not completely understood).
They also seem to occur randomly in all types of galaxies. Measurements using this
type of candle have produced one of the most spectacular results in the history of
Cosmology [Il, [4]: the Universe seems to be accelerating (¢o < 0). This discovery
took almost everyone by surprise. What is causing this acceleration is one of the
biggest mysteries we have today. Considering that in a matter-dominated Universe,
the gravitational self-attraction of matter naturally slows down the expansion, such
a recent acceleration implies that a substantial amount of dark energy must have
begun dominating over matter close to today. If this is a coincidence or not, is still

an open question and a hotly debated one at that.

Despite all of this, however, ‘distances’ to faraway galaxies are still not known
with the precision necessary for an accurate measurement of Hy; currently, the
Hubble constant is believed to be between 65 to 80 km s~'Mpc~'. This uncertainty
is usually parameterized by writing

h
Hy = 100h km s~ 'Mpc™* ~ 3000 Mpc ™, (1.25)

where the second equality uses units where ¢ = 1; the most recent calculations using
data from WMAP yielded h ~ 0.71; for a review see Jackson’s [38]. Hence, the
Hubble length today is

dp(ty) = 2998h~* Mpc, (1.26)

which roughly determines the ‘size’ of our local flat patch. Incidentally, the Hubble
length is also frequently called the Hubble ‘horizon’” or the Hubble radius. This poor
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terminology stems from the fact that the ‘particle horizon’ is normally of comparable
size to dy. However, they are intrinsically different things; while the Hubble length
is a dynamical scale characterizing the rate of expansion, the former is determined
by kinematic considerations alone. Recall that the particle horizon is defined as
the maximum distance free photons can travel in a given amount of time, normally
starting at the Big Bang and ending today (you can nitpick and replace Big Bang
by recombination, if you wish); it therefore determines the size of the observable
Universe. It also represents the typical size of causally connected regions. Thus, a
priori, there is no reason why the particle horizon should be of comparable size to
that of a local flat patch. In fact, if we drop the strong energy condition, the particle
horizon can grow much bigger than dy [33]; the observable Universe doesn’t have

to neatly fit inside the Hubble scale all the time.

1.1.4 Cosmography vs. Cosmology

This is as far as the Cosmological Principle will take us. It determines the ‘kinemat-
ics’ of the background manifold M (a cosmography), not its dynamics (a cosmology).
To go further we need a ‘theory of manifold dynamics’. General Relativity (based
on the Equivalence Principle) is such a theory and throughout this thesis we work
consistently within this framework. In the following sections, we’ll explore the con-
sequences of plugging the Cosmological Principle into General Relativity. We stress,
however, that the Cosmological Principle is in itself a distinct hypothesis from any

dynamical theory and it is to our advantage to keep this present.

We end this section with two cautionary observations: First is the usual observa-
tion that the Cosmological Principle is meant to apply on large enough scales (over
100 Mpc) where obvious local inhomogeneities are averaged out much akin to how
a gas is approximated by a fluid. The principle is firmly anchored in a variety of
observations, the most important being the incredible isotropy of the CMB radia-
tion. However, it is not set in stone. For instance, we cannot guarantee if it applies

everywhere outside the observable Universe; actually, in the context of inflation, we
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don’t expect it to. Second, it is common to say that M is curved or flat according
to whether the spacial slices are curved or flat. Obviously, this is a language abuse
given that a flat 3 will generally have a non-zero 4-curvature (by being embedded
in a higher dimensional curved space). A famous ‘reverse’ example is the Milne
Universe (an empty space with k& = —1) where the 4-curvature is actually zero, but

the spacial slices are hyperbolic and therefore curved.

1.2 The Field Equations

‘Nature loves variational principles’. The actual solutions of any physical system (at
least, at the microscopic, non-dissipative, level) always seems to extremize a given
action functional. For example, most classical field theory solutions are critical

‘points’ of the action
S = /d4x L(D',V,P"), (1.27)

where L is the Lagrangian characteristic of the theory, {®'} is the set of dynamical
variables (here 4 labels fields, not components, and ®° can be any tensor field in M,
not just a scalar) and d'r = dz® A da' A dz? A dz? is the volume element. Note
carefully that although d*z looks like a 4-form, it actually transforms as a density
(of weight 1), not as a scalar [39]. This implies that £ is a scalar density, not a

scalar field. Even so, we typically write

L£=+/—gL, (1.28)

where £ is now an ‘honest’ scalar field given that /—g d*z transforms as one. As

usual, if ®? is an extremum of S, then under a small variation of the type

Pt — D4 5P,
V@ = V04 6(V,9) = V,00 4V, (597, (1.29)
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the action doesn’t vary to first order, i.e., 65 = 0. This fact translates into an
Euler-Lagrange equation of motion constraining the extrema fields
oL o _oC
N " o(V,01)
that ultimately get picked by Nature.

=0, (1.30)

1.2.1 The Canonical Lagrangian

As a simple example of this formalism, consider the case of a classical scalar field ¢

governed by the so-called canonical Lagrangian
~ 1 5
£=—3¢"V,u6¥u6— V(9), (1.31)

where V' is some scalar potential. (Note that since V,¢ = 0,¢, we could have
used partial derivatives instead; however, this is generally regarded as a ‘bad prac-
tice’.) , of course, doesn’t describe every imaginable scalar field, but it is,
nonetheless, a good starting point. In a cosmological context, ¢ is commonly called
a ‘Quintessence’ field or just ‘Quintessence’. Applying to this scalar, we find
that it obeys
av

o — s =0, (1.32)

where 0 = V¥V, = ¢""V,V, is the covariant d’Alembertian. For later convenience,

we introduce here the quantity
1 1
X = _§gwjvu¢vu¢ = _§VH¢VN¢’ (133>

which is commonly refered to as the kinetic energy of ¢ (regardless of ¢ being
a canonic field or not). Note that in a locally inertial frame, reduces to
%qﬁZ — %(V¢)2; one can therefore interpret this as a plausible generalization of a
point particle kinetic energy, thus justifying the name given to X. Note also that
X at a point p € M is a function of V#¢ (and g,,, of course), but not ¢. You
might find this perplexing at first, but given that V#¢ is a vector, it is defined at p
independently of the actual value ¢(p). This is very similar to how in Hamiltonian

mechanics, p and x are treated as independent variables.
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1.2.2 Gravity

General Relativity is another example of a classical field theory, albeit a much more
complex one. In this case, the dynamical variable is the metric tensor g,, and the
Lagrangian is given by
~ 1
[ —
167G

Ly + Ly (1.34)

where £ u = R is due to Hilbert. The second term is loosely called the ‘matter’ term
and we’ll discuss it shortly. (Note that due to requirement of metric compatibility
Voguw = 0 [32], this Lagrangian cannot be written in terms of covariant derivatives
of guv.) The field equations can be obtained straightforwardly by varying the action
directly. It turns out that the inverse metric g is better suited for this purpose,
not g,,. Thus, making use of R = ¢g"”R,,, and treating ¢ as a ‘derivative operator’,

we get

08y = / d'w (ROV/=g +V=gRudg" +V=g9" 0 Ry,) , (1.35)

from which we ultimately aim to factor out d¢g"”. The middle steps to achieve this
are not very interesting and we spare the reader some lengthy details by just quoting
the results (see, for instance, [34]): The third term in the integrand ends up not

contributing at all, while the first term expands nicely to

1
V=g = —5vV=99,09"" (1.36)

yielding
1
58y — / o {RW _ §ng] g (1.37)

The tensor inside the square brackets is called the Einstein tensor and is usually
denoted by G;
manifold M. Einstein was delighted by the fact that V,G*"" = 0, regardless of the

it is a purely geometric entity related to the curvature of the

actual manifold, an identity called Bianchi’s identity. This identity ends up playing
a crucial role in energy ‘conservation’. It follows that the critical points of General

Relativity are given by

1 48 1 1 1 0Sy
\/—_gég“’/ = 16720 (RMV — §ng,) + —\/__g (Sg‘“j = 0, (138)
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where
1 4S
T/w — _2__M ,
V=g 09"

is called the energy-momentum tensor of the ‘matter field’. Collecting everything,

(1.39)

the field equations can thus be neatly arranged as

1
G =R, — §R9W =81GT), . (1.40)

1.2.3 Energy-Momentum Tensor

We stress that the ‘energy-momentum’ name for is warranted; by defini-
tion, it is automatically a symmetric, gauge invariant, conserved tensor (courtesy
of Bianchi’s identity) with the dimensions of an energy density. Let’s apply it to
the case of the canonical scalar field . Now, however, we vary the action in

relation to the inverse metric, not ¢. We end up with

5, = [ V=5 (~3009,0%.0) + 0V (X V()]

— [t v | -19.090 - 1o (X - V(6] (1.41)

and, therefore

TMV(¢) = Vu¢vu¢ + (X - V(¢))gﬂu . (142>

Recall that in any locally inertial frame, 7% represents the energy density, 7% the
energy flux density (which equals the momentum density 7%°) and 7% the spatial
stress (see, for instance, the ‘bible’ [40]). Thus, the momentum density associated

with ¢ reduces to
T% = —$ ;0. (1.43)

Also recall that rest-frames are an important class of inertial frames characterized

by the fact that they measure zero momentum density (it goes without saying that
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these are almost always ‘local” frames in the sense that measurements made in these
frames can only be attached proper physical meaning in small enough regions).
The absence of momentum can be interpreted straightforwardly as saying that the
rest-frame comoves, at least momentarily, with the ‘center-of-mass’ of a local region
of the field. (These frames almost always exist in practice, although there are
a few situations where they don’t. A plane electromagnetic wave, for instance,
cannot have a comoving rest-frame, otherwise momentum-less photons would exist.
This is not a problem for background radiation, though. In M, we’ll be comoving
with the background slice, not the photons themselves, in such a way that their
momentum density is null—this just means that they are equally moving in all
directions ‘canceling’ each others momenta.) Because we are interested in a time

evolving field, the rest-frame for quintessence is thus characterized by
0ip=0. (1.44)

We emphasize that this is a local equation and therefore does not imply a homoge-
neous field; this assertion is only true in the background universe where the FRW
rest-frame extends globally with proper meaning. It follows that the rest-energy

density 7% and pressure Tj; for quintessence are given by

. 1.
po= 3B HV(O),  Po= 3 -V(9), (1.4

and zero stress T;;. Note carefully, however, that these quantities are not true scalars;
even though the potential V' (¢) is a scalar, the term %gbz is not. Nevertheless, we

can still define ‘proper’ quantities
eg=X+V(d), ps=X-V(), (1.46)

that reduce to p, and Py in the rest-frame and are manifestly scalars. Because these
are properly defined invariant quantities, they are know rather unimaginatively as
the ‘proper’ energy density and pressure of the scalar field. Finally, we would like to
draw the reader’s attention to the curious fact that the canonical Lagrangian (|1.31])
equals the proper pressure of the quintessence field. Later, we’ll generalize this to a

broader class of interest.
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1.2.4 Quintessence as a (Perfect) Fluid

In the rest-frame, quintessence appears as a stressless isotropic form of energy; this
sounds very familiar to a perfect fluid. In fact, they are very much the same. We

can show this explicitly by making the following identifications

V.o

u —= s E=£& s = . ].47
iz V2xX ¢ D= D¢ ( )

and subsequently plugging them into (1.42)). We obtain
™ = (e + p)u'u” + pg"” (1.48)

i.e., the energy-momentum tensor of ¢ written in the form of a perfect fluid. Recall
that in (1.48)), u* is the 4-velocity field describing the motion of the fluid and that
€ and p, are its proper energy density and pressure, respectively. Given that, in
general, the fluid elements all move in relation to each other, a myriad of locally
inertial observers, each comoving with a fluid element, are necessary to measure p
and ¢ globally. Note also that the word ‘perfect’ here is used as a synonym for
isotropy in the inertial rest-frame; nothing else is implied by it, namely a particular

relation between pressure and density.

1.2.5 The Energy Conditions

We stress, however, that this hydrodynamical analogy between quintessence and
a perfect fluid is only possible if really is a 4-velocity by which we mean a
normalized timelike vector u#u, = —1. This implies that V,¢ has to be timelike,
forcing the kinetic term X > 0; one can interpret this as a way of guaranteeing
that fluid elements do not flow outside the light-cone. In practice, this is ensured by
means of an energy condition. Table summarizes the energy conditions that are
commonly used to define ‘reasonable’ fields. They are stated under the assumption
that the stress-energy tensor of the field can be diagonalized, i.e., written in the

form [41]

T = ey ® &g + ) _piély © & (1.49)
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Table 1.1: Energy Conditions.

Name Statement Conditions

Weak T, t't" =20 e=20, e+p;>0
Null T kK >0 etpi >0

Strong (T — 3Tg) tHt” > 0 e+>.pi=0, e+p; =0
Dominant =Ty t* future directed e = |pi

where € and p; are the energy density and pressure eigenvalues and €(,), the eigen-
vector tetrad (here parenthesis distinguish base indices from component indices).
One might think that because T is a real symmetric matrix, such eigentetrads
would always exist. Unfortunately, this isn’t true; given that the metric g, is not
positive definite, the linear map T# : V' — V need not be diagonal (see [42] for
a detailed explanation). An example is the null fluid (the above mentioned plane
wave) which only has 3 independent eigenvectors (one null and two spacelike), not 4.
Nevertheless, it is generally believed that ‘reasonable’ fields do have 4-dimensional

eigenbases.

We remind the reader that in Table , T,, t't” and —T%, t" are, respectively,
the energy and momentum density a local observer with 4-velocity t#* will measure
(if you forget why, just write them in an inertial frame comoving with the observer).
Also there, k* is a null vector. Again, see [41) 42] for a more detailed explanation.
Here, we merely gloss over the physical meaning of the energy conditions. For
instance, one can interpret the dominant energy condition as the statement that the
speed of energy flow is always less than the speed of light. In the case of quintessence,
this forces X > 0 and V' > 0, as one can easily check, making timelike and,
by extension, the hydrodynamical analogy possible. In fact, any field obeying the
dominant condition can be ‘treated as a fluid’ (though not necessarily a perfect one).
Fluids are generally easier to work with than fields, so we will sometimes say that
fluids are a ‘high-level’ description of ‘matter’, while fields are ‘low-level’. The weak

energy condition, on the other hand, only states that the proper energy of the field
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should be positive. Note therefore, that because it implies a positive proper energy,
the weak energy condition is automatically included by the dominant one. However,
the former, by itself, only implies X > 0 and V > —X for quintessence. Also, it
turns out that it is the strong energy condition that is responsible for making gravity

‘attractive’ by focusing congruences.

Although ordinary forms of matter do obey some of these energy conditions,
they are hardly set in stone. It turns out that quantum fields can generally violate
any one of them. For instance, the famous ‘Casimir effect” violates the weak energy
condition by making the energy density in the region between two closely held
conducting plates negative. Also, during inflation the strong energy condition is
broken. Incidentally, ‘dark energy’ must equally break the strong energy condition,
if it is to accelerate the expansion of the Universe today. Still, in a cosmological
context, it is standard to at least assume the dominant condition. This is expressed

by requiring
Wl <1, (1.50)
where p = we, but even this is a conservative starting point. Phantom energy

[11l, [12], for example, is a speculative form of energy where w < —1. Additionally,

note that the strong energy condition is broken when w < —1/3.

1.2.6 Isentropic Fluids

‘Matter’ in the background universe is routinely described as a ‘high-level’ fluid.
This fluid has to be perfect so as to share the same isotropic proprieties of M. It
also has to comove with the background slice; this means that in the FRW frame,
its 4-velocity is @ = (1,0,0,0) everywhere, which greatly simplifies (1.42). It must
also obey energy-momentum conservation ?MT‘“’ = 0; thus, grabbing the necessary

symbols from ([I.11]), the time part leads to

v, = 9,1 +Th, T + T, T

= é+3g(é+]§) =0, (1.51)

22



usually rewritten as

= -3(1+0)H, (1.52)

(LIRNOIR

while the space part leads to 0;p = 0, a null pressure gradient, as it should given
the homogeneous and isotropic nature of M. To go any further than this, we need
to know exactly what the equation of state parameter w is, in other words, its
functional dependence. There are many possibilities for this: one useful class is
defined by w = w(e) strictly as a function of the proper energy density. Mukhanov

calls these fluids isentropic [33]; the simplest examples are actually constant-w fluids

for which ([1.52)) reduces to

3(14@)
F— 5—0(@> . (1.53)
a

This covers vacuum energy, dust (pressureless non-relativistic matter) and radiation
when @ = —1,0,1/3 respectively. We still lack the evolution of a though, so we
don’t know everything yet.

1.3 The Friedmann equations

Let us now apply Einstein’s equation to the background universe M. We begin by
rewriting (|1.40) in a slightly more convenient form

1
Ry = 87G (T - 59w T), (1.54)

where T" = T¥, is the trace of the energy-momentum tensor. In the FRW frame,
the background source behaves as a perfect fluid so we have that T# = (=&, p, p, p)
implying T' = —& + 3p. Harkening back for the Ricci components in §, we get
from the pr = 00 part of that

A

gz ——5(E+3p), (1.55)

and from puv = i part

a a\? K o
5—1—2(5) —1—25 = 47G(¢ — D). (1.56)
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All other pv lead to 0 = 0 identities. and are called the Friedmann
equations and they govern the evolution of the scale factor and, by extension, the
dynamics of the background. Alas, they do not form a closed system; hence, we
cannot solve them completely unless we bring some additional information. The
assumption that the background source is isentropic normally takes care of this;
the state equation p = p(£) then closes the system. If, one the other hand, the
fluid is not isentropic, the equation governing the field has to be included, and also
its relation between p and &. Suffice it to say that the isentropic case is generally

much simpler and we will assume for now. We can use ({1.55|) to remove the second

derivative in ((1.56) and do a bit of cleanup to obtain
8rG K
H>=—¢——. 1.57
This is what most people call the Friedmann equation, by the way. It follows that
if the ¥ spatial slices are flat, then & = &, = 3H? /8w G which is called the critical
density. It is usually simplest to measure energy densities as a fraction of this

quantity, in other words, {2 = &/&., or the density parameter. Thus, we rewrite

(1.57) in the form

K
alH?2 ’

From this we immediately see that the curvature sign is determined by having the

0-1=

(1.58)

(total) energy density above (k > 0) or below (k < 0) the critical density. Recent
data from the WMAP experiment place us extraordinarily close to the flat case with
an 2 = 1.02 £ 0.02 [5]. That we are so close to being flat actually poses a curious

problem called the flatness problem, discuss shortly in the following section.

Before we do so, however, it should be made clear that the energy density ¢ and
pressure p above are really the sum of several components, not just one, as it might
hastily seem. To make this explicit, we recast once again the Friedmann equation

in the form

H2§:QU—HF1—Q@(G>1, (1.59)

where now Q = )., and the subscript ‘0’ denotes the present time. (Incidentally,

we see from this that we can very well pretend that the curvature term 2, = 1 — €
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represents a fictitious component having w = —1/3.) In doing this, we are implicitly
assuming that the several components only interact gravitationally (i.e. they are

minimally coupled).

Now, let us consider a class of models where all the components are constant-w
isentropic fluids p; = @;&;. (If you find it too narrow, consider the fact that our
chances of distinguishing between several time-varying scalar fields are rather bleak
at the moment [43],44]. Hence, we might as well take the pragmatic stance of looking
at these isentropic components as the effective versions of the underlying dynamic
fields, if any.) The dynamics of this class can be roughly understood if we interpret
the Friedmann equation as an energy integral of motion of a one-dimensional ficti-

tious particle moving with an a coordinate. Consider (|1.59) rewritten in the form

Q=) Qa ) = (1.60)

where we’ve used and momentarily switched units so that Hy = ag = 1.
Comparing this to the standard energy equation of the fictitious particle, £ = K4V,
we see that the curvature term plays the role of the mechanical energy, a2, the kinetic
energy and the remaining term, the potential felt by the particle. We can even push
forward this Newtonian analogy by calculating the force —dV/da felt by the particle
and see the Raychaudhuri equation emerge. Each fluid then contributes with a

partial force of
—dV;/da = —(1 + 3w;)Qsa~ 3 (1.61)

so that fluids with —1/3 < @ < 1 (which cover all ordinary forms of energy like
matter and radiation) decelerate the expansion, while fluids with @ < —1/3 (that
violate the strong energy condition) accelerate it. Thus, there is ample room for all
sorts of complicated dynamics. However, looking back at , we can see that
different isentropic components will dominate over each other at different times.
During these periods (called eras), we can greatly simplify things by pretending that
only one fluid exists. Solving the Friedmann equation in these conditions becomes a

trivial matter and one finds that a o t2/3(4%) where @ corresponds to the dominate
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fluid at the particular time. It follows, for example, that in the radiation era a o t'/2,

while in the matter era a o< ¢2/3.

1.3.1 The Flatness Problem

Let us now look at a bit more closely. If the Universe only contains ordinary
forms of energy, then the scale factor can never accelerate @ < 0 and therefore
a = aH decreases monotonically with time. This means that €2 is repelled from
unity, unless €) is exactly one, in which case the universe is always flat. In other
words, if [ — 1] is close to zero today, it must have been even closer in the past.
How much closer, say at the time of nucleosynthesis when the Universe was about a
second old? We can get a rough idea by assuming a radiation dominated background
(] — 1] o t) and an age for the Universe of about 10'7s. Since we know that
) today doesn’t differ from unity, say by more than an order of magnitude, i.e.

| — 1| < 1071, it follows that
1Q(tpue) — 1] < 10716 (1.62)

which constitutes an extraordinary constraint! An €2 outside this interval, at such an
early age, will either lead to a closed universe that recollapses almost immediately
or to an open universe that quickly enters the curvature phase and cools down
below 3 K within the first few seconds of existence. The flatness condition 2 =1 is
therefore an unstable critical point for all ordinary ‘strong energy abiding’ models.
Thus, it is rather puzzling that the Universe has managed to survive for so long, if

it only contains ordinary forms of energy like matter and radiation.

1.3.2 The Horizon Problem

The flatness problem is not the only problem affecting ordinary models. Another
is the following: After removing the dipole anisotropy of the cosmic microwave

background (caused by the Earth’s peculiar motion in the FRW frame), we are
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left with a residual anisotropy that is less than one part in 107%. It can be shown
that the comoving horizon scale at the time of last scattering (i.e., the maximum
theoretical distance photons could have travel up until decoupling), is given by
1802, Y2p-1 Mpec [45], which typically subtends about one degree in the sky. This
means that regions separated by more than one degree in the sky were never in
causal contact prior to last scattering. So how come is the CMB so uniform all
over? This strong uniformity has to be forced upon ordinary models, at a very early

stage.

A similar situation exists with nucleosynthesis [46], [47]. Because the nuclear reac-
tions responsible for the formation of light elements like H, He, etc. are highly non-
linear processes, the primordial abundances of such elements would be inevitably
affected by the presence of any anisotropies in the energy distribution at that time.
Consequently, we would not be able to reproduce the observed abundances of such
primordial elements (undoubtedly one of the great successes of Cosmology), unless
at the time of nucleosynthesis the Universe was already an extremely homogeneous
and isotropic place to begin with. Once again this has to be imposed on ordinary

models.

1.4 Dark Energy in the Past

There are other problems we will discuss, but for now let us focus on the ones
already listed. In essence they come down to the following: ordinary models of the
universe have to be extremely fine-tuned into a flat homogeneous and isotropic state,
at a very early stage, in order to match current observations. In general, that the
parameters of a given model have to be somewhat tuned in order to reproduce a given
data set, is nothing out of the ordinary; it’s just the nature of the game (unless,
of course, our model possessed some sort of fundamental mechanism ‘built in’ to
provide those very same parameters; then it would just be a question of checking
if observations were matched or not, without any tuning involved). Fine-tuning,

however, is another game. That such fine-tunning is necessary for ordinary models
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has lead to the introduction of inflation [48], [49]. In the abstract, inflation simply
refers to any period where the scale factor is accelerating @ > 0. An equivalent

description is the following

4 (H_l) <0, (1.63)

which many people seem to prefer as it gives a slightly more physical interpretation
of inflation as the shrinking of the comoving Hubble length. During this period, €2
is ‘naturally’ driven towards unity rather that away, as one can easily check from
(1.58]). This solves the flatness problem if inflation occurs sufficiently early in the
history of the Universe (before nucleosynthesis, that is) and for a sufficient amount
of time. It also ‘solves’ the horizon problem, as inflation has the ‘side-effect’ of
smoothing things out, allowing our patch of the Universe to have originated from
a tiny homogeneous region that was well inside the Hubble scale before inflation
started (see [35] 45] for a more detailed account). As a bonus, it also helps getting
rid of unwanted relics (like the infamous monopoles, etc. and other exotic remnants
from eventual phase transitions in the early Universe), if these form well before

inflation kicks in.

Implementing inflation requires the use of exotic fields that violate the strong
energy condition; such fields are normally dubbed dark energy and are dynamic in
nature. The easiest way to implement inflation is by means of a canonic scalar field
subject to a simple potential like a power law or an exponential. (Fields such as these
are everywhere in modern particle physics, describing all sorts of weird particles, like
the illusive Higgs particle, etc.) Nowadays, however, models involving the interplay
of two scalars (called hybrid models) are considerably more popular than the single-
scalar approach; it is even possible to implement inflation with higher order fields,
but these are mostly ‘proof-of-concept’ theories rather than being very useful (see
[50] for a review). Regardless of how inflation is implemented, dark energy plays a

crucial role in the very early Universe.
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1.5 Dark Energy in the Present

Dark energy also plays a crucial role today. We know this mainly from measuring the
luminosity distances to faraway supernovae. Just as with inflation in the past, there
are many ways to achieve this present state of acceleration using different exotic
fields. The simplest one is a constant field A obeying the following Lagrangian

[7, 134]

A
55
which is non-other than the famous cosmological constant. Obtaining the energy-

Ly = (1.64)

momentum tensor associated with this field is a trivial matter; in the rest-frame, it

describes a perfect fluid with

_ A (1.65)
A = A — 87TG’ .

frequently interpreted as the energy of vacuum or the energy associated with space
itself. Current CMB data is consistent with this field having Q9 =~ 0.7 or £x¢ &~
1078 erg/cm?. On dimensional grounds, however, one would expect this vacuum en-
ergy to be of the order of m% (where mp is the Planck mass) or about 102 erg/cm3,
which is 120 orders of magnitude greater that what is observationally required! Alas,
there is no known mechanism to enforce such a minute vacuum energy, making it
the worst case of fine-tunning in the whole of Physics. This conundrum is known as
the ‘cosmological constant problem’ and we are nowhere near to solving it. Another
related problem is the ‘why now?’ problem: Why does the cosmological constant
start dominating over matter so close to the present day? It may well turn out to
be that this is just a coincidence, with no profound meaning, but if one doesn’t
like coincidences (or anthropic justifications, for that matter), then an explanation
must be found, instead of just imposing it. Incidentally, one can also ask why infla-
tion starts when it starts; nobody really knows. These fine-tunning problems don’t
sit well with cosmologists (and physicists alike) and thus alternatives are actively

searched for.

Noteworthy among the many proposed alternatives are canonic scalar fields, of-

ten dubbed quintessence |8, 9]. These models typically involve a single scalar field
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but in some cases more than one (again, just as with inflation). So-called ‘tracking’
models [45] exist where one can obtain an energy density evolution that is reason-
ably independent of the initial conditions (essencially due to attractor dynamics).
However, one still has to tweak some parameters in the scalar potential to obtain
this behavior; hence, it can’t really be claimed as a satisfactory solution. On the
other hand, given that one has yet to see a scalar field in action, it is clear that all
such models are not much better justified than the cosmological constant itself (de-
spite frequent claims to the contrary). This is further compounded by the fact that,
given some time dependence for the scale factor and an energy density, one is always
able to construct a potential for a quintessence-type model that is able to reproduce
them (see, for instance, [14]). One is therefore reminded of Ockham’s razor and
can legitimately ask if observational data provides any strong justification for them,
as compared to the conceptually simpler cosmological constant. There are many
more alternatives, of course, for example, k-essence [10], phantom energy [11], 12],
tachyons [13, [14], vacuum metamorphosis [I5, [16], etc. but these are mostly non-
canonic generalizations of the cosmological constant, in other words, toy-models
thrown around to see if they stick. Given our present knowledge of fundamental
physics we can’t really claim any of these alternatives as being much better justified

than the other.

1.6 Dark Matter Today

The radiation fraction today is measured to be Q,0h? = 4.17 x 107> (this includes
the CMB photons plus three massless neutrinos consistent with the standard model
of particle physics). Thus, the remaining 30% of the critical energy density must
come from matter alone. Yet, our current best estimate for the baryon fraction is
only of about 2,y =~ 0.04, which is the combined effort of variety of methods, from
nucleosynthesis to ‘direct counting’. It follows, that most matter in the Universe
must be in a non-baryonic form. About this non-baryonic matter only a few things

are known. For one, it must interact very weakly with ordinary matter so as to
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have escaped detection thus far. It must also be comprised of particles that have
been non-relativistic (‘cold’) for a long time. If it was ‘hot’, dark matter would have
free-streamed out of over dense regions a long time ago, suppressing the formation
of structure to a degree inconsistent with what is observed today. In the meantime,
virtually every known particle in the standard model has been ruled out as a candi-
date for dark matter. However, beyond the standard model, the story is completely
different; oodles of candidates exists (see, for instance, [51]), from massive neutrinos
to axions and even stranger particles. Suffice it to say that we are still far away

from a definite picture.

The simplest observation suggesting the existence of dark matter actually comes
from the rotation curves of spiral galaxies. Stars in these galaxies move approxi-
mately in a circular fashion around the center; their velocities are thus simply related
to the amount of matter inside their orbits. What is observed, however, is that the
amount of visible matter (inferred from the luminosity distribution) is not nearly
enough to justify the rotation curves of virtually every spiral. Typically the visible
mass decays with the distance to the center of the galaxy, but the velocities do not;
they stabilize into a constant value that extends well into the rim. Assuming that
gravity is Newtonian at these scales, the difference between the rotation-inferred and
the luminosity-inferred matter distribution must then be attributed to the presence
of some sort of dark matter. At the moment, the major problem with this picture
is the following: Numerical simulations of certain types of galaxies involving CDM,
typically predict cuspy dark matter distributions (i.e. distributions that spikes at
the center) that have not been observed [52]. This is not a death sentence, however,
as these simulations often make assumptions that may turn out to be incorrect. For
instance, the relation between baryonic high density regions and CDM is not very
well known. In particular, it is possible that such areas may involve additional forces

besides gravity, which in turn could affect the cuspy dark matter profiles.

On the other hand, we should keep an open mind to the possibility that dark
matter doesn’t exist and that it is gravity that behaves differently from expected in

these scales. Historically, the first modified gravity theory getting rid of dark matter
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was MOND [53], and although it was a highly phenomenological hack of Newtonian
gravity, it nonetheless confounded its detractors by hypnotically reproducing almost
every spiral curve with a given set of parameters. The only thing preventing its
widespread adoption was the fact that it wasn’t a relativistic theory. However, this
has since changed with the introduction of TeVeS gravity [21]. The latest successor
of MOND in this modified gravity framework is due to Moffat [22] 24] and it is able
to reproduce the old MOND results [23].

In the past year, however, observations from the Bullet Cluster [54], [55] have cast
considerable doubt on the ability of any modified gravity theory to replace dark
matter completely. Let us see why: In a nutshell, the Bullet cluster is the result
of two colliding clusters of galaxies. Now, the vast majority of ordinary matter
in galaxy clusters is not contained, as one might initially think, in the galaxies
themselves but is rather typically dispersed in the intergalactic medium, in the form
of hot X-ray emitting gas. As the two clusters crossed each other, the hot gas
from each collided with the other; as a result, both were stripped of most of their
ordinary mass, which was left behind. This has been observed by the Chandra X-ray
telescope. On the other hand, most galaxies passed right through as if nothing had
happened. Lensing of background galaxies was then used to infer the gravitational
field of the Bullet cluster. What was found was nothing short of extraordinary (see
the references above): the majority of the gravitational field trailed along with the
colliding clusters, it didn’t stay behind with the gas of ordinary matter. Of course,
modified gravity theories can, in principle, give rise to all sorts of crazy gravity
‘forces’, but one thing we expect is for gravity to at least point in the direction of
the source. Now, in the case of the Bullet cluster, if we assume there is no dark
matter present, it means that the gravity source must have been left behind with
the hot gas. Nevertheless, the majority of the gravitational potential (as inferred
by lensing) trailed along with the clusters, and therefore does not point back to the
supposed source! The modified gravity necessary to explain this configuration would
have to be very strange indeed. This is not to say it’s impossible; in fact, Brownstein
& Moffat were able to do it quite recently [56]; their gravity, however, is ‘unnaturally’

skewed and the details come out as over complicated. On the contrary, dark matter
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seems a much simpler and considerably more direct explanation for the observed
cluster dynamics, not to say background dynamics that MOND (and successors)
always had difficulty in reproducing [57, [58]. It is perhaps a bit early to say with
absolute certainty that dark matter really exists, but the case for it now seems

stronger than ever.

1.7 Quartessence

As we have just seen, the Standard Model of Cosmology (usually denoted by ACDM)
only captures the ‘high-level” details of the Universe. The ‘low-level” innards, on the
other hand, are quite sketchy, to say the least. There are many ways to implement
the observed background dynamics, however, they all lack any proper foundations.
Our understanding of fundamental physics is hardly at a stage were we can clearly
single out a preferred implementation over any other. Even worse is the fact that
what we know today about dark energy and dark matter is pieced together in a very
circumstantial manner. For instance, we don’t even know for a fact if dark energy
and dark matter are fundamentally different from each other (which is, nonetheless,
a widespread belief). Macroscopically, they certainly look and behave as if they were

different but, a priori, this doesn’t preclude them from sharing a common origin.

Quartessence models make the bold assumption that they do; in other words,
dark matter and dark energy are interpreted as being different manifestations of
a common field. For obvious reasons, they are also frequently called unified dark
energy (UDE) models. Clearly, they constitute a phenomenologically interesting
class. One only has to take a brief look at the history of Science to realize that
unifying efforts are generally at the inception of all significant progress. People
were first alerted to this possibility by the appearance of the Chaplygin gas [25, 26],
discussed at length in the following chapters. This exotic fluid has the peculiar
ability to behave as matter and as a cosmological constant depending on its local
density value. In fact, the homogeneous Chaplygin gas ‘interpolates’ these two

states in a continuous fashion. It first appeared in the context of string theory
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as the tension of a d-brane in a spacetime of d + 2 dimensions; the Nambu-Goto
action can be seen to describe a ‘Newtonian’ fluid with an isentropic equation of
state given by p = —A/e [27, 2§]. At a toy-model level, one can trivially generalize
this to a different dependence on the energy density, as described in [29], to p =
—A/e“. In doing so, however, we lose the ability to straightforwardly interpret the
pressure of this generalized fluid as the tension of a d-brane. Such interpretation,
however, was hardly of a fundamental nature to begin with, so we gladly trade it for
a wider phenomenological cover. Anyway, as will be shown in the next chapter, this
generalized Chaplygin gas can be implemented as a non-canonic isentropic scalar
field obeying a particular Lagrangian. Another key property of this generalized gas
is that in the limit of & — 0, it becomes totally equivalent (to any order) to a
standard ACDM two-component model; gravity alone does not distinguish the two.
We are thus interested in determining how viable UDE models are as an alternative
to the standard model. Their failure would, in principle, constitute strong evidence

for the different natures of dark energy and dark matter.

1.8 Cardassian Expansion

We end this chapter by mentioning a very simple alternative to dark energy called
cardassian expansion [59, [60] by Freese et al. In this model there is only matter
and the current background acceleration is caused not by a ‘weird’ dark energy
component but rather by gravity itself (a modified version, that is). To see how a
matter-only expansion can come about, let us start by consider a flat Friedmann

model containing only matter. In this case, we have that

H? = 5 Em (1.66)

! i.e. a decreasing function of the scale

and since &, oc a2 it follows that @ oc a~
factor. Now, if the scale factor is ever to accelerate, we must counter this a=! term

with an increasing one. Arguably, the simplest way to do this is by adding a power
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a™ with m > 0; in fact, let us make m =2 — 3n. We end up with

,2:87TG

a 3 a ' + Ba* ", (1.67)

which is the same as having

8rG
H? = ”Tg-m +B'en, (1.68)
where B’ = B/&), is a constant. But this is precisely the cardassian model; it

consists of a very simple ad hoc modification to the Friedmann equation. These
power-law corrections appear frequently in many modified gravity theories that in-

volve extra-dimensions.
However, since &,,/&,0 = a™>, we can trivially rewrite (1.68)) in the form
H? = Q00 4+ Qgoa ™", (1.69)

where B’ = Q4 /&, n = 1+w and also €2, + 2, = 1. It follows that we can readily
interpret the cardassian expansion as if being caused by a constant-w quintessence
field with @ = n — 1. (Note that since m > 0 then n < 2/3, implying @ < —1/3.)
Therefore, for most practical purposes, the cardassian model is indistinguishable
from a two-component model of dust and quintessence. We say ‘for most practical
purposes’ since the cardassian model does not specify the behavior of cosmological
density fluctuations on scales larger than the horizon (although it is assumed that
Newtonian gravity holds on small scales). Cardassian models are thus incomplete,
effective toy-models describing the average universe, which is what one really needs
for most practical purposes. On the other hand, if we wanted to calculate the
CMB anisotropy on large angular scales, we would need to go beyond this simplified
procedure. It is also worth emphasizing that one can’t meaningfully claim that one
interpretation is much better justified than the other, at least for now, since both

are nothing more than toy-models.
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Chapter 2
Background UDE Cosmology

In this chapter, we will explore in detail the homogeneous properties of UDE mod-
els, mainly through a generalized Chaplygin gas [29] (henceforth abbreviated gCg).

Everywhere in M, this exotic fluid bears the following equation of state
p=—A/e%, (2.1)

where A > 0 and |a| < 1 are constants (the condition on « insures that the gCg
obeys the dominant condition |w| < 1). For reasons that will become apparent in the
following chapter, we will be mostly concerned with cases where o > 0, essentially to
avoid instabilities associated with imaginary sound speeds. This isentropic fluid has
many remarkable properties that make it cosmologically interesting. Let us start
our exploration by inquiring how the energy density of a homogeneous gCg evolves
with ‘time’ (the scale factor, really). To find out, we must solve which is not
too difficult to do; the trick is to multiply everything by (£a®)'*® and rewrite the

resulting expression as
dla®3F) (& — A)] = 0. (2.2)

It follows that

1/14a

5= & {A (11— A) (%)Wa)} , (2.3)
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Figure 2.1: The gCg ‘state parameter’ |w| = [p/&| (solid line) and its square sound
speed ¢2 (dashed line; see Chapter 3, for a discussion), as a function of the scale
factor. Notice the ‘phase’ transition from dust to a cosmological constant. Also note

how late in the matter era this transitions occurs.

where A = A/z,7 is a constant. (This expression is only strictly valid for a@ > —1,
though.) Some unusual things are immediately noticeable, namely the fact that
when a is small £ oc a2 and p = 0 (or @ =~ 0) and that when a is big, p ~ & ~ const
(or @ ~ —1). This suggests that the homogeneous gCg smoothly transitions from
a ‘matter state’ to a ‘vacuum energy state’ as the Universe expands (see Fig. .
This suggestion is at the heart of quartessence and the idea of unified dark energy.
Another interesting property is obtained by making o« = 0 in ; the gCg then
reduces to a ACDM model with an equivalent Q25 = 1—A. (Of course, this argument

only establishes a background equivalence, valid in the absence of perturbations; it
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turns out, however that this equivalence actually extends to any order, as we will
demonstrate in the following sections.) Incidentally, when A = 1, the gCg reduces
to a A cosmological constant. To wrap up the basic characteristics of this gas, we
highlight the following counter-intuitive properties: no matter how much we expand
the gCg, its density never drops below a certain value & > g, A"+ (this minimum
density corresponds to the ‘vacuum energy’ the gCg tends to). Also, the lower its
density, the higher its pressure (in modulus, that is, if & > 0). Finally, we can infer
from the Raychaudhuri equation that a gCg background will start accelerating

when
a>a, =[1 —A)/2A]/30F) (2.4)

Thus, if A > 1/3, this acceleration will occur prior to the present day. On the
other hand, if A — 1| = 107 for any «, the acceleration will occur after recombi-
nation. This means that for most (A, ) values, the background transition of the

homogeneous gCg from CDM to A, will occur in the matter era.

2.1 The gCg as a Scalar Field

Let us now address the question of implementing (in a low-level way) the gCg as a
scalar field. This is a fundamental step to further our knowledge of UDE. Recall that
not all perfect fluids are isentropic, of course; quintessence is a prominent example.
If we go back to (|1.46|), we can easily see that the pressure p = 2X — ¢ depends not

only on the proper energy but also on the kinetic term. If we plug these expressions

into (1.51)), we obtain
- a. dv
3— — =0 2.5
P+30+ (2:5)
the same had we used (1.32)) directly. This differential equation closely resembles a
damped oscillator. Thus, in general, the field will ‘roll down the potential’ and the
‘friction term’ will dampen the motion. Consequently, a canonical scalar field in a

sufficiently shallow potential will roll very slowly, leading to a kinetic term X <V
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and to w ~ —1. This means that some scalar fields can act as vacuum energy
(and those that do are properly called quintessence) but unlike their cosmological
constant counterpart, their proper energy density is allowed to vary. Note that in
this framework, A is merely a quintessence field ‘frozen’ everywhere in the same

stable potential minimum.

Now, can we describe the isentropic gCg using a single (real) scalar field? Yes,
albeit not with quintessence; a new kind of scalar is required. To show this, let
us first generalize the canonical Lagrangian from L=X-V= p to an arbitrary
function p(X,¢) of the kinetic term and the field [33]. This defines a new class
of scalars broad enough for our purposes. (Note that we are still calling the new
Lagrangian p; the reason for this is that it still plays the role of pressure as before,

as we will shortly see.) It follows, by varying the action of this scalar that

5. = [ o i = [ (2ox 75000

1 1
= /d4$ \/—gég"” {—§VM¢ V,,Cb]lX - Eg;wp:| ) (26)

where p x = Jp/0X, and so

T/ux = PGuv + p,Xvu¢vu¢ . (27)

Thus, if p = X — V, (2.7) reduces to (1.42)), as it should; and also just as with
quintessence, we can still explicitly rewrite this energy-momentum tensor in a perfect

fluid form, by making the following identifications

uH:jT”_jz_, e=2Xpx —p. (2.8)
From this we conclude that if p = p(X), then ¢ = ¢(X). Unfortunately, it’s not
always possible to invert £(X), and obtain X (¢) but when it is, the fluid has an
explicit isentropic equation of state p = p(¢). A useful example is p oc X" which, as
one can easily check, describes a constant w = 1/(2n — 1) fluid; in particular, when
n = 0 the scalar corresponds to a A cosmological constant, n = 1, to a massless

scalar field, n = 2, to background radiation, and so on. In the limit of large n, the

scalar can be interpreted as dust (pressureless non-relativistic matter).
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How about the gCg? We can try retro-engineer to ascertain the necessary
Lagrangian by solving

6:2X04§5’?X+§, (2.9)

a non-linear differential equation. Before you pull some hairs trying to solve this one

(we certainly did), we'll tell you the trick to do it. It’s actually quite simple: divide

everything by € and rewrite the expression in terms of a new function £ = A/e'.

We end up with a much nicer linear version

1= % oXey+e, (2.10)

14+« ’

14+«

that is simple to solve. The solution is £ = 1 — (2X) 2 and thus the necessary

Lagrangian for reproducing the gCg becomes

A oL
p(X) = =5 = — (Agx) (211)
Note that to insure that p(X) is a non-null real value we must have 0 < 2X < 1: The
lower limit comes from the dominant condition while the upper limit corresponds

to the null pressure case.

2.2 The gCg a — 0 Limit

Implementing the gCg as a scalar field obeying a particular Lagrangian is useful on
a number of levels. For one, it allows us to prove our earlier assertion that in the
limit @ — 0, the gCg is totally equivalent to an ordinary ACDM model. This fact
plays an important role when comparing UDE models with observations. While
obviously true in the absence of perturbations, the need to explicitly demonstrate
this beyond a background equivalence only became apparent after [61] appeared. In
it, Fabris, Gongalves & Ribeiro made the surprising claim that the linear evolution of
perturbations actually differed in each case. Shortly after, we showed in [62] that this
was not true; their equivalence to first order was established (in Chapter 3, we give

a formal demonstration of this) and it was equally argued that the correspondence
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went well beyond linear order. Here, we give a much simpler demonstration of this:
Expand (2.11)) in a power series and take the limiting case a — 0

14+« 1 o 1 14+«
X) = lim—AYVi+e |1 - % ox)dE - e
= —A40-(2X)®°=—A. (2.12)

We see that everywhere in M, the Lagrangian density decomposes nicely into a cos-
mological constant plus ‘matter’, thus demonstrating the equivalence to any order
between ACDM and the v = 0 limit of the gCg; gravity alone does not distin-
guish the two. Moreover, since both are to a certain extent simply toy-models with
somewhat nebulous fundamental motivations, this is probably as far as they can be

meaningfully compared.

2.3 A Truly ‘Atomic’ Fluid?

We have just established the equivalence between the gCg and ACDM in the limit
a — 0. An obvious follow-up question is wether this equivalence between a uni-
fied model and some family of minimally coupled components is valid in general.
Recently, Kunz has argued in [63] that it is always possible to split a single uni-
fied dark energy fluid into several minimally coupled components or, conversely, to
combine several fluids into a single fluid that behaves in exactly the same way as
the original mixture (from a cosmological point of view, that is). Although this is
a rather obvious statement in the absence of perturbations, Kunz also argued that

this degeneracy went beyond the background level.

Before trying to answer this question, we need to clarify what we mean by a
‘single fluid’. It is fairly obvious that by allowing the complexities of the fluid to
be arbitrarily large (for example, by considering very high-order tensor fields), we
may get disproportionately non-trivial fluid dynamics. In such cases, are we in the
presence of a single fluid or several interacting fluids? In general, even something

as trivial as a complex scalar field is prone to a multi-fluid interpretation. These
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considerations highlight the fact that we must be very careful about what we call
a ‘single’ fluid. In this thesis, we will refer to a single indivisible (‘atomic’) fluid as
one whose Lagrangian has the form E(X , @), where ¢ is a real scalar. This definition
covers, for instance, quintessence and isentropic fluids, which are hard to imagine
as anything but single fluids. Treating UDE as a single fluid (in the sense just
described) is arguably the best possible way of implementing quartessence; we will
call this implementation, canonic quartessence, thus distinguishing it from other
more elaborate and complex possibilities that lack the simplicity suggested by the
isentropic gCg.

It goes without saying, of course, that we can always split the energy-momentum
tensor of any fluid into several components. There are infinite ways to go about
doing this. In the case of quartessence, the critical question is how to interpret any
such decomposition: Are the resulting components real physical fluids? Do they
exist independently from each other? We have already seen that the answer is no if
the gCg does originate from a single scalar field governed by . Each piece is
then a wvirtual component without independent existence (except in the special case
a = 0). In fact, the evolution of the individual virtual components is not, in general,
constrained by causality. (From this point of view, the perturbative treatment of

the gCg in [64], by Bento, Bertolami & Sen, is inconsistent.)

Conversely, if we are in the presence of various fluids, we can also add their
energy-momentum tensors. However, the dynamics of the resulting fluid is poten-
tially very complex and, in general, will not be describable by a real scalar field
subject to a Lagrangian of the form E(X ,®). From a cosmological point of view, all
the relevant information is contained in the energy-momentum tensor acting as the
source of the gravitational field. Pending laboratory evidence (which, in principle,
can detect not only the fields themselves but even the couplings between them),
we are only sensitive to the total (effective) energy-momentum tensor 7),,. Conse-
quently, Kunz argues that cosmology alone does not provide useful information on
wether a single unified dark energy fluid or a family of minimally coupled interacting

fluids is responsible for the observations.
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This isn’t exactly true, however. Let us consider the evolution of very large
wavelength perturbations in M. These perturbations essentially amount to homo-
geneous and isotropic patches of the Universe. Now, for the sake of argument, let
us pick one of these patches and decompose its total energy density e (and pressure

p) in two different ways:

I. wy=—-1=—wsand wy =0 with g;/e =1/3 fori=1,2,3

II. w = —V6/3 = —w, with g;/e = 1/2 for i = 1,2

where the components are minimally coupled. It is easy to check that both have
the same € and p but clearly their evolutions will differ. This means that even if we
have the same initial conditions for the effective fluid ¢, &, p, p (and H) in the patch,
the subsequent evolution depends on the details of the composition. (Moreover,
we are even allowed to set up adiabatic or iso-curvature fluctuations or indeed a
combination of them.) This degeneracy (we have given two explicit examples, but
there are infinite more), on the other hand, is not present in single fluid models: for
a given equation of state p = p(g), the evolution is univocally determined by the
initial density and pressure conditions on the patch. To a certain extent, this can be
thought as saying that a single fluid only carries one degree of freedom. This ‘lack

of freedom’, therefore, significantly constrains what single fluids can do.

2.4 UDE Background Tests

We will now embark on the task of testing UDE background dynamics in the simplest
possible manner, using the homogeneous gCg as a prototype for quartessence. This
effort is mostly based on our previous work [65]; there, a sample of 92 supernovae
was used to constrain a homogeneous flat model involving matter and a generalized
Chaplygin gas. Since that time, the number and quality of supernovae observations
have increased somewhat and here we use the latest dataset to update our previous

work. The differences won’t be dramatic but are nonetheless important. Before we
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start, however, we would like to stress the fact that our model includes a separate
matter component; it is not a single gCg model, as it is commonly done [66], [67, [68],
69, 70, [71), [72, 73], [74], [75]. Radiation will be ignored and we concentrate on a flat

geometry, as this is currently the preferred geometry.

2.4.1 Background Model

The Friedmann equation for our model is given by

H?/H2 = Q° (Z) + 0, {A L (1A (3) , (2.13)
where Q% + Qgcg = 1 insures flatness and 0 < a < 1 avoids possibly ‘nasty’

instabilities (see Chapter 3, for a discussion). The luminosity distance, on the other
hand, is simply
z /

Ay =du(1+2) | %, (2.14)
where dp is the Hubble scale today and the distance modulus is given by p =
m — M = 5logdy 4+ 25. Now, it is a well know fact that the luminosity distance is
not a very sensitive quatity to time variations of the background state parameter
w(z) [44] [43]. FEssentially, this happens because the integral in smoothes
these variations out, in other words, the luminosity distance is mostly sensitive to
an effective w. In the case of interest to us, the time variation in w comes from
the gCg component, which is controlled by the parameters A and «. Of these, A
has the strongest influence on the evolution of the background, as can be easily
inferred. This means that « will be poorly constrained by supernovae luminosity
distances in comparison to A. Indeed, the currently available data do not place
any significant constraint on « (see Fig. . Several supernovae observations at
much higher redshifts are still necessary to improve our knowledge of this parameter.
This, however, can already be achieved by using other (higher-order) methods to be

discussed in the following chapter.
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Figure 2.2: Modulus distance vs. redshift for the old (red) and new (black) super-
novae samples; error bars not shown. The solid line represent a ACDM fit with 30%

cold dark matter.

2.4.2 Old vs. New Samples

The supernovae sample used in our original work [65] was assembled from the initial
release of the Supernova Cosmology Project (SCP) [1] and from the High-z Super-
nova Search Team (HzST)[2]: It included 60 Type Ia supernovae from the first and
50 from the second, 18 of which where common, for a grand total of 92 supernovae.
The data from the different groups was ‘sewn’ together following a procedure first
described in Wang’s [76] (we refer the reader to our previous work for details). Here,

we will use a new dataset described in [77]: It includes 60 Type Ia supernovae from
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the ESSENCE (Equation of State SupErNovae trace Cosmic Expansion) survey [78],
57 from the SNLS (SuperNovae Legacy Survey) [79], 45 nearby supernovae and 30
more at 0.216 < z < 1.755 observed by the Hubble Space Telescope and classified
as ‘gold’ by Riess et al [80]. (Again, we defer the reader to the original paper by
Davis et al for the details on how this dataset was assembled.) Both samples can
be seen depicted in Fig. along with a standard ACDM fit. As is immediately
apparent, both samples have more or less the same scatter but the new one includes
considerably more observations at higher redshifts. These high-z supernovae are the

main reason behind the improvements we’ll get.

2.4.3 Supernovae Statistics

In this section, we briefly discuss the statistics involved in constraining our model
using supernovae distance modulus (see, for instance, [81], 82] for a more detailed
introduction). We start by denoting our background model M (p), where p are the
parameters like A, o, etc. Given several {y;} observations, we want to obtain the
probability of M (p), in other words, p(M(p) | i1 - .. ptn). Here, it is safe to assume
that the several supernovae observations are independent from each other; hence, it

follows that

p(M(P) | p1- - pn) = p(M(P) | 1) - .. p(M(P) | ) - (2.15)

Now, let us focus on the probability of M (p) given a single observation. From Bayes

theorem, we know that

p(M(p)| 1s) = p(ﬁf—;)”m | M(p)). (2.16)

Here, p(p;) can be seen as a constant independent of the model. On the other hand,
p(M(p)), called the model’s prior, is not known a priori; the common bayesian lore
is to assume a uniform prior and we will do so in this analysis. As to p(u; | M(p)),
we will assume that supernovae observations are normally distributed around the

models prediction p;(p) with a o; dispersion.
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Thus, we conclude that

2 o

POI(D) 1) o exp (—1 5 Ve hlp)) ‘2"@”2) . (217)
. i
The summation terms in are usually called x? and each o; can be approxi-
mated by the measuring error associated with the i-th observation. The normalized
probability distribution is then obtained by dividing the above expression by the
sum over ‘all’ possible values of the parameters. From this, it is a simple matter to
obtain the confidence regions for the parameters: for every grid point p, we accu-
mulate the probabilities larger than the probability at that point. The 68%, 95%
and 99% contour curves of this accumulated distribution determine the usual 1o,
20 and 30 confidence regions. We should point out, however, that there are a few
potential caveats to this y? analysis that result from assuming Gaussian errors in the
supernovae measurements: see, for example, [83] where a modified median statistics

was used instead.

2.5 Results and Comments

In Fig. , we have plotted the confidence regions for the (ycg,.A) parameters
that resulted from y? fitting our model to the luminosity distances of the old and
new supernovae samples. The uncertainty in the Hubble constant was eliminated
by summing over several h. « was also summed over. While browsing these figures,
keep in mind that the closer A is to unity, the closer the gCg will be to a A cosmo-
logical constant. We see that the new sample has led to tighter constraints: The A
parameter is restricted with a 95% confidence level to be in the region 0.94 < A < 1
if QY ~ 0.3 while if QY ~ 0.04, 0.7 < A < 0.92. In other words, if the matter
component in our model represents non-barionic CDM, then the gCg is forced to
behave as a cosmological constant (which is hardly surprising). We should point
out, however, that since one of the strongest claims of the Chaplygin gas is that of
a unified explanation for dark matter and dark energy, one might expect that the

only components of the universe would be a Chaplygin gas and a tiny amount of
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Figure 2.3: Confidence regions for the parameters (Qgcg, A) resulting from 2 fitting
the old (left) and new (right) supernovae samples. The parameters h and « have
been summed over. Note that the gCg is not alone here; it coexists with a minimally
coupled matter component such that Qgcg + QY =1.

baryonic matter. In this case, we see that the supernovae data strongly exclude a
A-like behavior.

In Fig. [2.4] we depict the case where only baryons (with a present day density of
of Q) = 0.044 [84]) coexist with the generalized Chaplygin gas. We clearly see that
the parameter « is not constrained by the available supernovae samples, while A is
around 0.8. To investigate this case a little further, we lift the flatness restriction but
fix, for simplicity, @ = 1. The results are depicted in Fig. [2.5] A large degeneracy
is clearly evident. However, we can say with a 95% confidence level that A > 0.75.
Note that for lower values of the Chaplygin gas density, we're forced to approach
the cosmological constant limit. Also note that for the case of a plane geometry the

acceptable values for A already exclude a A scenario.

In summary, if we assume that the present day matter density is around 30%,

the gCg is forced to behave very closely to a cosmological constant. (Of course,
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Figure 2.4: Confidence regions for the gCg parameters (a,.A) resulting from x?2
fitting the old (left) and new (right) supernovae samples. Here, only baryons with
a present day density of of €2, = 0.044 coexist with the gCg. The Hubble constant

was summed over.

this result is also known to apply for standard quintessence models [85].) Indeed,
if by an independent method we were able to determine the total matter content
of the Universe (including dark matter) to be around ~ 0.3, then in the context of
this model we would, in fact, require a cosmological constant so as to account for
the current observational results. Conversely, the case where the matter content is
entirely baryonic (arguably the best-motivated one), is the case where the differences
with respect to the standard model should be maximal. In this case, the A-like limit

is already strongly disfavored by observations.

Finally, we would like to stress the fact that these results are only strictly valid
in the absence of perturbations. As we will later discuss in Chapter 4, non-linear
small scale clustering in the quartessence component may critically affect the large

scale behavior of the Universe and render these results invalid.
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Figure 2.5: Confidence regions for the parameters (Q9¢,, A) resulting from x fitting
the old (left) and new (right) supernovae samples. Here, baryons with a present day
density of of €, = 0.044 coexist with a pure Chaplygin gas (« = 1), but the flatness

restriction as been lifted. The Hubble constant was also summed over.
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Chapter 3

UDE — Linear Evolution

In the previous chapter, we discussed background constrains to the UDE hypoth-
esis. The main message that emerges is that such constraints critically depend on
whether one treats the gCg as true quartessence (replacing both dark matter and
dark energy) or if one allows it to coexist with a ‘normal’ dark matter component
(which could be called the ‘Chaplygin quintessence’ scenario). Going beyond this
zero-order analysis and studying linear perturbation theory, seemingly dealt the first
blow to the UDE hypothesis. In a provocatively titled paper, ‘THE END OF UNI-
FIED DARK MATTER?’ [80], Sandvik, Tegmark, Zaldarriaga & Waga constrained
the mass power spectrum (the linear part) of a single gCg model using 2dF [84]
data and obtained a spectacular result: || < 107°. In other words, they found that
the gCg was forced to behave very close to a ACDM model in order to reproduce
the observed large scale structure (LSS) of the Universe. This was subsequently
presented as a clear sign for the failure of UDE. (Strictly speaking, however, this
is not a fundamental failure; dark matter and dark energy are still allowed to have
a common origin. After all, the a« — 0 limit of the gCg is totally equivalent to
ACDM.) This dramatic result, however, is partially due to the fact that baryons
have been neglected in the analysis carried out by Sandvik and his collaborators.
(This concern was also voiced, but not exploited, by Colistete, Fabris & Gongalves

in [70]). The reason for this is simple to understand: as the quartessence background
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transitions from ‘CDM’ to a cosmological constant, perturbations become heavily
damped. This happens (as we will shortly show) because during this period the gCg
attains very large sound speeds (unless a &~ 0, in which case, the sound speed is
very small). Thus, by adding an independent component with a low sound speed (as
is the case of baryons), the normal growth of perturbations can still continue, even
when the gCg starts behaving differently from CDM. By overlooking baryons, the
authors of [86] have artificially constrained the possible spectra that UDE scenarios
can cover. Although baryons are not that important for background studies, they
are, nonetheless, quite important in the context of large scale structure. We men-
tion, in passing, that [87, [71] also accurately studied perturbation growth in these
models (including CMB). Although of a broader scope than ours (they considered
a baryon + CDM + Chaplygin model), we do not quite agree on their interpreta-
tion of UDE. While we agree that this ‘Chaplygin quintessence’ scenario is all but
ruled out (or at least strongly disfavored relative to ACDM), it seems to miss the
point that these scenarios came into existence as an attempt to unify dark energy
and dark matter, and that in this context their behavior can be potentially quite
different from ACDM. Yet, this quartessence scenario is all but ignored in their dis-
cussion. Therefore, we re-derived the analysis of [86] (in order to accommodate for
baryons) and part of the analysis of [71] to explore more fully the viability of the

‘quartessence’ scenario.

3.1 Quartessence Sound Speed

Before we discuss some of the nitty-gritty details of (linear) perturbation theory,
recall that for any isentropic fluids, the ‘sound speed’ is a well defined concept given
by 2 = dp/de ~ ¢2 = dp/dz [33, 134, [36]. This quantity roughly corresponds to the
speed with which perturbations ‘spread’ across the manifold M. In the case of the
gCg, this means that the sound speed is a4/ 7. Tt’s a simple matter to show that
this velocity is bounded by « and that today the sound speed equals a.A. Since
local speeds cannot exceed the speed of light, it follows that aAd < a < 1, implying
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A < 1 and o < 1. There is nothing stopping « from being negative, though (in
which case, the sound speed is an imaginary quantity). However, the dominant
condition (Jw| < 1) does at least impose o > —1. (At a toy-model level, we could
still consider models having @ < —1 but these are all dark energy dominated at
early times and we are not interested in this.) Also recall that the sound speed for
any scalar field (canonic or not) is a well defined quantity given in linear theory
by ¢2 = px/ex [33]; contrast this to the isentropic result dp/de. It follows that
quintessence has a constant sound speed of one; another reason why quintessence
cannot reproduce the gCg. On the other hand, if we apply this formula to the scalar
field governed by , the sound speed does come out the same as the isentropic

one and all is well.

Thus, quartessence in general (unless a = 0) has a non-null sound speed (see

Fig. . In fact, it is a simple matter to show, starting with the Friedmann equa-
tions ({1.55)) and ((1.56) that for any homogeneous UDE fluid

dg 3 _dH

= - gz 1
dt AdrG T dt (3.1)
dp 1 d[/a 1

B B (e o 2
dt AnG dt {<a+2 )] ’ (32)

which together imply

dp 1 d 1
=2 — %P _ H2 g— = 3.3
“ =4 3H4H { 173)] (3:3)
where ¢ = —a/(aH?) is the ‘deceleration’ parameter. From this we conclude that

the sign of the square sound speed ¢?2 is determined by how ¢ is evolving: If it is
evolving sufficiently fast (towards negative values), then ¢2 > 0, otherwise ¢2 < 0.
On the other hand, the evolution of g is linked to how fast the transition from dark
matter to dark energy occurs in the background: If it is steep enough (faster than
ACDM, that is), ¢2 will be positive (negative otherwise). Therefore, the sign of the
sound speed square is directly linked to the dynamics of the background and thus

carries important information.

You may not recall exactly what an imaginary sound speed entails, so we briefly
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discuss it here. Well inside the ‘horizon’, linear theory describes the evolution of a

perturbation as a wave [33] [36], 45]
0 -2V ~0, (3.4)

where 6 = d¢/¢ is the so-called density contrast. The general solution is thus a
superposition of plane waves exp i(wt — k - r) where w? = ¢2k* This makes the
interpretation of the square sound speed ¢?2 sign very straightforward: If ¢2 > 0, the
contrast 0 will oscillate as an acoustical wave, acting against the formation of voids
and dense regions (pressure support). On the other hand, if ¢2 < 0, the opposite
will happen: collapsing regions and voids get amplified by pressure. (For a more
careful discussion see Wu'’s [88].) These simple considerations, coupled with the fact
that the gCg sound speed grows very large during the background transition, are
enough to qualitatively understand the results obtained by Sandvik et al in [86] (see
Fig. : the matter power spectrum emerging from equality will be exponentially
blown up for models with o < 0, while for o > 0, LSS will be significantly ‘erased’.
Thus, only models with a small a stand a chance of reproducing the observed power
spectrum; what Sandvik et al found was that o had to be very small indeed. (CMB
constraints on a have also been obtained, but since CMB formation takes place at
a time where the gCg sound speed is still relatively small, the constrains on « are

much less spectacular; o < 0.2 is the latest result [77].)

3.2 Cosmological Perturbations

In this section, we briefly summarize the theory behind first order linear perturba-
tions (for a more detailed account see [89, [0, O], 92, 45, [93] 33]). We begin by
clearly separating the real Universe M from its smooth idealized background M.
Also, we will adhere to the convention of denoting quantities from M with a bar
on top like so Q (unless they obviously belong to the background like a and H,
for example) and no bar for quantities in M. The only exception to this are the
background coordinates that will still be denoted by the usual symbol z#, not z*.

Our goal is to treat M as a perturbed M; in simple terms this means we want to
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Figure 3.1: Power spectra obtained by Sandick et al [86] in the context of a single gCg
model having (top to bottom) a = —107%, —1075, 0, 1075 and 107, respectively.
The red points represent the 2dF power spectrum.

decompose any quantity @ into Q +JQ and treat 6Q as a small perturbation. With

this in mind, let us set in the background the metric

ds® = Guw datdz”
= d’(n) [~dn® + 7;;(2") da'da’] | (3.5)

where 7 is the conformal time and 7;; is the 3-metric of the constant curvature slice
Y. Since we are only interested in a flat ¥, we’ll simplify things from the start by
setting a cartesian metric g;; = J;; (a general treatment would be overkill for our

purposes). In these slices the ‘background fluid’ is homogeneous and does not move.
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Once set, we can ‘export’ these coordinates to M by simply dragging them over
using any diffeomorphism ¢ : M — M (1-1 smooth map) linking the two. We'll say
the coordinates are the ‘same’ in both manifolds (and this is why we use the same

symbol for the coordinates) but obviously they will have different metrics.

In M, we’ll write the metric as a perturbed g, like so

ds? = g da"da” = (G + g, )dada”
= a*(M{—(1+ 2¢)dn* + 2widrdz’ + [(1 — 2¢)d;; + 2hij]dz'dz’}, (3.6)

and assume dg,,, < 1 (since we are only interested in the linear regime). Given that
it is always possible to incorporate the trace of h;; into ¢, we will assume it traceless.
Now, the fluid in the n-slices (denoted by ¥) is in a perturbed state, no longer still
and homogeneous. However, before we proceed, we would like to stress the fact that
there is a notational sleight of hand at work in . This is related to how we
operationally define dg,,; if you find this strange consider the fact that g,, and g,,
are tensor objects that belong to different manifolds, so how do we even begin to
compare them, let alone subtract them? The answer is that there are, in fact, two
equivalent ways of doing this, and the above notation is designed to mask out these
details. Unfortunately, this is also invariably the cause of great confusion. One way
is to use pushforwards and pullbacks [31], B2, B4] to bring the objects in question
to a common manifold, usually M; then we simply subtract them and define dg,, .
This is the cleanest way to define perturbations but it is also the most technically
demanding. A much less fancier way consists of literally ‘dragging’ the components
G () from M to M along with the coordinates. (Note that this is not the same
as pulling or pushing a tensor object; we are dragging a function from one place to
another.) Then, we simply subtract the dragged components from g, (z) and define
99, (). Both ways are physically equivalent but since dragging functions is much
easier than dragging tensors, the second method is the most frequently used. Hence,
we see that ‘g,,” in doesn’t literally mean the background metric but instead
stands for a dragged tensor/component from M to M. (As a matter of taste, we

could have dragged the metric from M to M instead, and effectively imagine that
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perturbations live as fields in unperturbed space as in [45].)

3.2.1 Gauge Ambiguities

This construction also clearly illustrates how dg,, is operationally tied to ¢ and the
induced gauge (normally the word ‘gauge’ refers to the threading and slicing of a
manifold but here we’ll call ¢ a gauge too). Change the gauge (either by using a
different diffeomorphism or by making a coordinate transformation in M) and dg,,,
will change. This highlights the somewhat ‘ambiguous’ nature of perturbations in

that they are only well defined up to a gauge transformation.

Unfortunately, while General Relativity doesn’t care about gauges (they all
work), linear theory is very fussy about them. This is because even a simple co-
ordinate transformation will generally modify the order of dg,, (by making them
big, for instance) thus ruining the linear approximation. Linear theory doesn’t in-
herit the full blown gauge-freedom of General Relativity; instead it is restricted to
infinitesimal coordinate transformations as these are the only transformations that
preserve the order of dg,,. If we write the infinitesimal coordinate transformation

as ¥ — ¥ + £, it turns out that the new perturbations
0Q=0Q - LQ  6Q=6Q, (3.7)

where L is the Lie derivative along the congruence &, are physically equivalent to
0@, as far as linear theory is concerned. (Recall that gauge transformations induce
in a given manifold the notion of physical equivalence between different fields and
this is why the symbol = is used as opposed to the equal sign.) By the way, this
type of transformation is nowadays called an external gauge transformation. It
is called external in the sense that it acts on M, as opposed to a transformation
that would act internally on a tangent space to M. Most ‘gauge theories’ [94, 95]
are in fact of the internal kind; electromagnetism is a well known example (the
gauge transformation modifies the A, field without ever touching the Minkowski

coordinates) and so are the weak and strong forces. General Relativity, on the
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other hand, is a more complicated gauge theory because the interval ds? has to be

preserved in the external spacetime.

3.2.2 Gauge Freedom

This gauge freedom also demonstrates that the 10 degrees of freedom in the metric
perturbations are not all independent from each other; only 6 of them correspond to
actual ‘physical’ observables. The other 4 are called ‘gauge degrees of freedom’ and
they represent fictitious perturbations in the sense that they don’t correspond to
any real perturbation in the curvature of the manifold; in other words, the Riemann
tensor is not affected by them. They are simply coordinate artifacts that do not warp
or bend spacetime. Thus, we must somehow eliminate this gauge-freedom before we
can meaningfully talk about perturbations. There are two ways to achieve this: The
first and most obvious is to simply define a coordinate system (a gauge) and stick
to it all the time. The other route is to define gauge-invariant quantities and always
work with them. (Gauge-invariant quantities are real physical quantities that can
be measured experimentally with tools like measuring rods, clocks, counting devices
etc., like the F and B fields of electromagnetism; contrast this to the A and ¢ fields
which cannot be measured uniquely.) Then the gauge won’t matter. While such
gauge-invariant formalisms do exist [90, O6], for our purposes, working in a specific
gauge is more than sufficient, and we chose to work in the popular synchronous

gauge (a particular one, that is).

3.2.3 (Initially Unperturbed) Synchronous Gauge

First introduced by Lifshitz in 1946, the synchronous gauge is defined by the con-
ditions ¥ = w; = 0. This gauge is physically simple to understand: @ = 0 makes
71 coincide with the proper time along the threads and w; = 0 makes the threading
orthogonal to the slices. Furthermore, the threads are geodesics as one can easily

verify by checking that u*V,u” = 0 along them. This means that ‘fundamental’
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observers (i.e., free falling inertial observers) move along 7-threads and thus do not

change their spacial coordinates.

Pausing for a moment, this is actually quite strange; in most cases, if an observer
is ‘parked’ at a particular position, it is because some external force is keeping it
there. It follows that such an observer should not be an inertial observer to begin
with (this is what happens to us at the surface of the Earth, by the way). Neverthe-
less, the local observers that define this gauge are inertial despite having constant
2% coordinates. Having said this, it’s actually quite useful to imagine M as being
densely populated by these fundamental local observers, each carrying a conformal
clock and a fixed spatial coordinate label z°. Thus, the spatial coordinates in the
synchronous gauge act as Lagrangian coordinates by comoving with the natural flow
of the fluid (the resulting fluid, that is, as opposed to comoving with a particular
component). Because of this, unlike what happens in M, the comoving coordi-
nate lines become highly deformed as the fluid evolves. Given enough time and the
threads will intersect with each other and form inevitable coordinate singularities,
a process known as caustic formation. However, this flaw of the synchronous gauge
is only noticeable when perturbations grow large enough. Hence, the synchronous
gauge is perfectly adequate for linear theory where perturbations are always weak

enough and caustics never form.

Unfortunately, the synchronous gauge conditions do not fix the gauge entirely.
There is still some residual freedom that can obscure the physical interpretation
of perturbations, especially on scales larger than the Hubble scale. (On the other
hand, well inside the ‘horizon’, all gauges are virtually the same [45] given that
things are mostly flat.) This is simple to understand if you realize that we're still
free to adjust the initial settings of the comoving clocks and the z¢ labels carried
by the fundamental observers. We can show this explicitly by modifying the initial
gauge in the following way [91]

- o w . ) d )
=t x’:x’+8lﬁ/§+é‘, (3.8)

where the scalars o and 3 and the vector €’ all depend solely on space coordinates (in

other words, 3-fields in ) and V - € = 0; the new gauge will still be a synchronous

61



gauge (i.e. ) =@ = 0) but now with different perturbations. This means that
solutions to the linearized Einstein equations are still contaminated by physically
irrelevant gauge modes, an annoying fact that substantially complicates the process
of setting initial conditions. Not only this, but numerically we must also ensure
that the gauge modes do not swamp the physical ones, thereby causing significant
roundoff error in the solutions we care. The remedy is to place additional conditions
on the gauge so as to fix it completely, a process Lyth & Stewart call ‘dropping
the gauge modes’ [97]. One simple way to achieve this is to force the synchronous
gauge to ‘coincide’ with the background FRW gauge far outside the Hubble horizon.
Conceivably, this can be done very early in the history of the Universe when M and
M are virtually the same manifold given the ‘absence’ of perturbations. For this
reason, Veeraraghavan & Stebbins call the resulting gauge the ‘initially unperturbed

synchronous gauge’ [89).

3.2.4 Perturbation Types

It is useful to classify perturbations algebraically according to their invariance pro-
prieties in the n-slices of M. Note that if we make a spatial only coordinate trans-
formation then, in order to preserve ds?, 1(n,x) and ¢(n,x) have to transform as
3-scalars, w;(n, x) as a 3-vector and h;;(n,x) as a 3-tensor in X. Also note that be-
cause they are still 4-tensors in M, the perturbation components have to be raised
or lowered using the conformal spacial part of the 4-metric, i.e. (1 — 2¢)d;; + 2h;j;
however, given that we are only interested in the linear regime (meaning that the per-
turbations are small and that quadratic and higher order terms are to be neglected),
the effective metric in the ¥ slice reduces to the background metric o;; = d;; in 3.

Nevertheless, we must still use the full metric to raise and lower time indices.

It is equally useful to look at perturbations as 3-fields in ¥ and decompose them
into fundamental scalar, vector and tensor ‘building block’” modes. Recall that a

vector field like w’ can always be decomposed into longitudinal and transverse parts
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(the so-called Helmholtz’s Theorem [98])
W' = wﬁ + W', (3.9)

where the longitudinal vector is curl-free (V x w| = 0) and the transverse vector
is divergence-free (V - w; = 0). Note that in a flat geometry such as ours, we’ll
have that V- v = 9,0, V x v = €9%9;v;, e; where ¢* is the Levi-Cevita tensor and
V2( = 0;0°¢. Given that the curl of a gradient is always zero, we can write the
longitudinal vector as the gradient of a scalar w;; = 9; A which for obvious reasons is
called the scalar part of w;. The transverse part, on the other hand, can be written
as the curl of some other vector w’ = €% 9, (given that the divergence of a curl is
always zero) and is called the vector part of w'. Clearly, the scalar \ represents one
degree of freedom contained in w’ meaning that &; can only carry the remaining two
(not three, as one might first think). Note that ¢; is actually only well defined up
to a gradient, i.e., we can always add the gradient of a scalar to & and the curl of
the new vector field still gives w’ . This gradient can be interpreted as a physically
irrelevant gauge degree of freedom and this is why &° only carries two. If we really
care, we can ‘fix’ the gauge by imposing an additional condition like 9;6* = 0 which
makes it transverse, for example. Incidentally, A as a field is also only well defined
up to a constant but constants obviously do not carry degrees of freedom so this is

not a problem.

Similarly, we can also decompose the traceless symmetric tensor perturbation h;;
into scalar, vector and tensor modes (i.e., the one that cannot be assembled from
scalars and vectors) also called, respectively, longitudinal, solenoidal and transverse

parts

W' =hl +hd +hY, (3.10)
where the transverse part is divergence-free &-hi = 0, while the divergence of the
solenoidal part is a transverse vector (and therefore divergence-free) 9;0;h = 0 and
the divergence of the longitudinal part is a longitudinal vector (and therefore curl-
free) /M OrOihy'; = 0. (By the way, not everybody uses the labels solenoidal and

transverse in the same manner as we did here; we are following the same nomen-

clature Carroll does [34], but Bertschinger [91], for example, uses them in a slightly
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different manner.) This means that we can write the longitudinal and transverse

parts at the expense of a scalar field § and a transverse vector (' like so

1
3
hOij = a(iCJ_j), (312)

where the parenthesis denote symmetrization. Thus, the longitudinal part carries
one degree of freedom while the solenoidal part carries two and the tensor part the
remaining two, adding up to the five in h;;. Note that the tensor part cannot be

decomposed further and is actually gauge-invariant [33].

Why is this field decomposition in > useful at all? First and foremost, scalar,
vector and tensor modes represent distinct physical phenomena: Scalar perturba-
tions, characterized by (¢, ¢, A, #), describe spatial density fluctuations and because
they exhibit gravitational instability, they may lead to the formation of structure.
On the other hand, vector perturbations, represented by (£,,¢ ), are related to
rotational motions of the fluid. However, in the absence of source terms, they have
the tendency to decay rather quickly and therefore are not normally very interesting
for Cosmology. As for tensor modes (A7), they represent gravitational waves (which
can be interpreted as the physical gauge-invariant degrees of freedom of the gravi-
tational field itself). For our part, we'll only be interested in scalar perturbations.
Second, this spatial decomposition is hardly confined to perturbations alone; we
can easily extend it to the Einstein and energy-momentum tensors, for example. It
turns out that in the linear regime, the scalar, vector and tensor modes all decouple
from each other and therefore have separate evolutions. Finally, this classification is
particularly useful for identifying and dealing with the four unphysical gauge modes
(in the form of two scalars and one transverse vector) that can plague the field equa-
tions. For example, we can see why the synchronous gauge conditions ¢ = w; = 0
don’t fix the gauge entirely; the condition w; = 0 does not completely specify A or

€* which, in turn, are related to the 8 and € in the coordinate transformation (3.8)).
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3.2.5 Perturbed Stress-Energy Tensor

We are going to assume that the perturbed fluid in M can be treated as a perfect
fluid also. Obviously, there are periods in the evolution of the Universe where
this approximation is not valid and viscosity, thermal conductivity and other such
physical processes have to be included (like at the time of CMB formation), but
they are unnecessary for our goals. Thus, we will take the energy-momentum tensor

in M to be
T", = (e + p)u'uy, + pd; (3.13)

(no anisotropic stresses) where u* = dx*/dr is the 4-velocity, T is the proper time
and g, u'ut = —1. Let us first consider a local frame comoving with the real fluid;
this frame is simply defined by the condition u* = 0. Then, the normalization of the
4-velocity implies that u” = a= (1 — ) to first order in ¢ and from u, = g,,u” we
obtain, also to first order, that ug = —a(1 + ¢) and u; = aw;. In the synchronous
gauge, this comoving frame is actually orthogonal and inertial. Also carefully note
that by construction, it is only the resulting fluid (as a whole) that does not move
in these frames; the individual components (if any) do. This is because the local
synchronous gauge observers follow the local ‘center-of-mass’ of the fluid, not the
individual components. Thus, in general, we’ll need to include the motion of each

fluid component, even in the (comoving) synchronous gauge.

It is actually easier to work out the general case for a single fluid first, and then
adapt to our case. Hence, in an arbitrary gauge, the fluid velocity field can be written
as u* = u’(1,v%) where v* = dx’/dn is the coordinate (not proper) 3-velocity of the
fluid in the conformal ¥ and u® = dn/dr. Again, from the normalization condition
we obtain that

0 1 Y —w' £ v — v

" :a\/l—zﬂ 1—02 ’

where v? = §;;0"07. If we assume that quadratic terms in v can be neglected (this

(3.14)

basically means that the fluid elements are non-relativistic), a distinct hypothesis

from the weak field approximation, then we find that u® = a7!(1 — ), u’ = a~ 10,
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and again from u, = g, u” that up = —a(l + ) and u; = a(v; +w;). If we now
write u# = u* + du” and remember that in the background @* = (a™*,0,0,0), then
the velocity perturbations will be du’ = —1, du’ = u', dug = —arp and du; = u;.
If we now expand the stress-energy tensor into a background part plus weak

perturbations

T = TH 46T,

= T" + (£ + p)(a"0u, + G, 0u") + (e + 5p) w'a, + 0P 5" (3.15)
we find that
% = —(6+de), T,=-(E+pn',
T = E+p(vitw), T;=p+0p)d. (3.16)

These expressions apply individually to each fluid component if they are only min-
imally coupled. This is precisely our case; in our model, the baryonic component
and the gCg are assumed to exchange energy and momentum solely through gravity.
Note that because we're only interested in scalar perturbations, v; for us will be a
scalar vector and w; = 0 because of the gauge we chose. For later convenience, we
introduce here the following notations: & = de/& will denote the density contrast,
@ = p/&, the zero-order equation of state in M and c¢2 = dp/de, the sound speed in
Y. Note that in the linear regime ¢? in M is approximately the same as ¢ = p/e,

the zero-order sound speed in M.

Let us now discuss energy-momentum conservation V, 7%, = 0 in terms of metric
perturbations and fluid variables. Calculating the covariant derivatives is a straight-
forward process, albeit a tedious one and we simply present the result. Using the
weak field approximation and assuming a non-relativistic fluid, one finds in an ar-

bitrary gauge that [91]

E+3(H—-@)e+p)+V-[(e+pv] =0, (3.17)
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and

a% (e +p)(v+w)]+4H(e +p)(v+w)+ Vp+ (e +p) Vi =0 (3.18)

which can be interpreted as the relativistic analogues of the continuity and Navies-
Stokes equations of Newtonian fluids. Once again, these expressions apply individ-
ually if the various components are only minimally coupled; also, in our case w; = 0
and v" is a longitudinal vector. We can easily separate and into unper-
turbed and perturbed parts. The unperturbed parts, of course, ‘live’ in M and are
sometimes called Arnowitt, Deser & Misner (ADM) energy-momentum constrains
[40]; we calculated them in Chapter 1. Then, in the synchronous gauge, the scalar

modes turn out to be
S+ 3H(E2 —0)o+ (1+@)(0—3¢) =0, (3.19)
and
=2
0 1-3e2)0+ - w25 =0 3.20
+ H( c2) +1+@v : (3.20)

where # = V - v; these are the same expressions as in Veeraraghavan & Stebbins
[89], save for the fact that their h;; is not trace-free as ours is and so to compare we
need to use h = —6¢. Alas, we have three unknowns (4, 6, ¢) but only two equations
for each fluid (obviously, the background quantities do not count as unknowns as

they have to be specified from the outset).

3.2.6 Perturbed Field Equations

To close (3.19)) and (3.20]), we must bring the scalar modes from the Einstein field

equations in M, ie., G* = 8rGT",

.,» which is even a more tedious job than before

so again we merely write down the result. As always, using the background ADM

constraints in the unperturbed parts, one finds that

¢+ Ho — %HZZ (1+43¢2)Q6; =0, (3.21)

i
where the sum goes over all fluid components in the model. Again, to compare with

[89] just use h = —6¢. With the above equation, we are finally in a position, to
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study the evolution of scalar perturbations in a model of baryons plus a gCg. But
before we do so, we briefly revisit the problem of the equivalence between ACDM

and the a = 0 generalized Chaplygin gas.

3.2.7 ACDM linear equivalence to the a =0 gCg

In §2.2] we already succeeded in showing that in the limit o — 0, the gCg is totally
equivalent (as far as gravity is concerned) to ACDM. In the past, this assertion was
mostly taken for granted without any formal demonstration. Such need only arose
after [61] appeared. In it, Fabris, Gongcalves & de Sa Ribeiro made the surprising
claim that the linear evolution of density perturbations was actually different in
each case. This section is a simple rehash of [62] where we proved that the gCg is
indeed equivalent to ACDM. Let us start by calling the solo gCg with a = 0, model
I, and ACDM, model II. Model I has a zero background sound speed as a result of
its constant pressure, and so (3.20]) reduces to # = 0 all the times. This was to be
expected since the synchronous gauge is a comoving gauge and this model only has
one fluid. Then, from (3.19) we obtain
b= 3wrH Gy

3 o (3.22)

which combined with the fact that w;/0; = 3H(1 + @&y) can be recast as 3gﬁ =4,
where 0, = d1/(1 + @r). It is now straightforward to show from (3.21)) that the

density perturbations are given by
. . 3
0p + HO, — 571c2(1 +@1)d, =0. (3.23)

On the other hand, model II has two components and both have zero background
sound speeds. Hence, also implies ¢ = 0 for each. This means that the
synchronous gauge is comoving at the same time with A and CDM. How can this
be? This is actually quite simple to understand when one realize that because A
is always constant, it also looks stationary in the inertial gauge comoving with the
CDM component. Let us now turn to the evolution of perturbations in the dark

matter component (by definition A cannot be perturbed): Using (3.21)) plus the fact
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that 3¢ = dopy and also the relation Qcpy = Ecom/ (Ecpm +Ex) = 1+ wyy it is easy

to find that
.. . 3
5CDM + H 5CDM — 57‘(2(1 + @11)5(;]31\/[ = 0 (324)

It follows that &; and
5 = der  dcpm
n=— = —
En 14 éa/Ecom

will have the same evolution if we identify wy; with ;. Fabris, Gongalves & de S&

= (1 + @11)50131\/[ , (325)

Ribeiro based their claim on the different evolutions of dcpy and d; but as we’ve just
seen, they are not the correct variables to compare. As a matter of fact, if we wrote
the evolution of perturbations in Fourier space for models I and II, we would find
them to be independent of the wave number k, meaning that all scales evolve the
same way. Considering that a density perturbation with infinite wavelength (that is,
a uniform perturbation) evolves as a uniform M does, then it is not at all surprising
that ACDM and the gCg with @ = 0 are linearly equivalent given that both have

the same zero-order background and all scales evolve the same way.

3.3 Baryons 4+ gCg — The Model

The model we want to study includes baryons on top of a gCg. The hope is that
the baryonic component may carry the structure that gets wiped (or exponentially
enhanced) in the single gCg model when |a] > 107" [86]. Here, we'll treat baryons
as if ordinary CDM, in other words, as a pressureless non-relativistic fluid with
null background sound speed; this has the immediate consequence that 6, = 0
at all times, meaning that the synchronous gauge will comove with them. Also,
from (3.19)), we find that 3923 — b,. It follows that the linear evolution of scalar

perturbations for our flat model is given by

. . 3
Op + Hop — 57’(2 [Qb(sb + (1 — 3&@)Qgcg 5] = 0,
d—3H(A+a)@d+ (14+2)B—0) = 0,
0+ H(1+3a2)0 — —2 V2% = 0. (3.26)
+w
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where any perturbation variable without an index refers to the gCg. We still need
to add the background Friedmann equation, of course. However, we only need
to integrate it along with the others, if we insist on determining the evolution of
perturbations as a function of the conformal time 7. Hence, we can substantially
decrease the numerical complexity of the problem if we only require the evolution of

perturbations as a function of the scale factor a; actually x = Ina is better. Thus,

we rewrite (3.26)) in terms of x

3

51/;"‘(1"‘5)51,;_§[Qb5b+(1—30€@)9g0g5] = O,
& —3(1+a)wd+(1+2)(0/H—-26) = 0,
, g aw 2c _
0+ (1+3aw)d —(1+®)HV5 0, (3.27)

where £ = H'/H and the prime stands for ' = d/dz. Confront this to result obtained
by Sandvik et al [86] (in the same gauge as ours)

e
H2
for a single gCg model. There are a few differences worth emphasizing: First,
is only valid for subhorizon scales (|k| > H) while ours is valid for any scale. Second,

the derivation leading up to (3.28]) assumes from the start an isentropic fluid [99],

§" +[2+&—3(20 —e2)]d + ;[1 — 662 + 8w — 3w = =V, (3.28)

ours doesn’t.

It is quite useful to separate each perturbation variable into a time part and a
space part, e.g. &, = d(n, k) f(k, x) where k is a called a separation constant. (This
procedure is sometimes justified on the basis that, to first-order, perturbations see
¥ as a homogeneous and isotropic ¥.. However, this separation is always possible,
even in the non-linear regime, which is not to say that it is always useful.) As
a linear system, the general solution will be a superposition of these modes. For
f, it is customary to use the harmonic solutions of the scalar Helmholtz equation
V2f — k?f = 0, since they form a complete spatial basis [98]; in the case of a flat
cartesian 3, they are simply ordinary plane waves exp(ik - x). Thus, in , every
perturbation variable reduces to a Fourier amplitude (the spacial parts cancels out)

and V2 = —k?. We end up with three equations for three unknowns: §%,d; and
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Figure 3.2: The evolution of perturbations in a model of baryons (strong lines) plus
a gCg (lighter lines) for two scales: k = 0.01 hMpc™* (black) and k = 0.1 h Mpc™*
(gray). The baryons and the gCg grow in unison for a while but ‘decouple’ as soon

as the gCg background starts transitioning to a cosmological constant.

. Given w and H (and &, $yc,) as functions of x, we can easily transform this
system into four first order differential equations and integrate it using any standard
Runge-Kutta method. In particular, we have used the GNU Scientific Library (GSL
1.10) for this purpose (see the Appendix for the code). Fig. illustrates typical
solutions. (We have checked numerically that the solutions of coincide with
ours for the gCg component inside the Hubble scale.) As with any other differential
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system, however, we still need to specify the initial conditions to evolve but before
we engage this discussion, we briefly review the statistics of structure formation
necessary to bridge theory with observations (for a more comprehensive account see

Joyce’s et al [100], for example).

3.3.1 Statistics of Scalar Perturbations

Let us consider a cubic box of size L > [,, where [, represents the maximum scale
where significant structure still exists. This volume can be thought as a fair sample
of the Universe. It is customary to decompose the energy distribution (the contrast,

really) inside this box in a Fourier series
i(x) = Z Ok exp(ik - x) = Z oy exp(—ik - x), (3.29)
k k

for each component, where k = 27n/L is a discrete wavenumber and n € Z>.
(Decomposing the energy distribution this way, however, automatically implies that
d(x + Ln) = §(x) for any n, i.e. it imposes an artificial periodicity outside the box;
this periodicity, on the other hand, can be safely ignored if the relevant scales are
already encompassed by the box.) It is straightforward to show that the Fourier

amplitudes of this expansion are given by
1 .
ok = —/ d(x) exp(—ik - x) dx (3.30)
Vv

where V' = L3. Tt follows that §; = J_y since §(x) is a real function and also §y = 0.
(Note, however, that in general we never actually measure the energy distribution
with infinite resolution; thus, in practice, the sum in (3.29) is really a finite sum for
scales above the sampling scale. This finite resolution inevitably introduces some
aliasing, but most of the time we can get away with it, if we only care about scales
much bigger that the resolution scale.) It is many times useful to take the limit of

a large box

(%”)3; — /dk, (3.31)
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and convert the Fourier series into a Fourier integral

i(x) = /5k exp(ik - x) dk . (3.32)

Note that by a ‘large box’, people usually mean ‘in the limit L — oo’. Nevertheless,
an infinite sized box is not really necessary to justify ; we can jump to the
continuum with any finite sized box, as long as its size is much bigger than the
sampling scale L > A. (Be warned that the numerical prefactors in the Fourier
pair and vary substantially in the literature as many authors rescale
the amplitudes as they see fit. This can be quite annoying but is physically irrelevant.
A popular rescaling is d — (2m)%/28,/V, which makes the Fourier basis orthonormal

instead of just orthogonal.)

We can, of course, decompose any number of boxes ‘scattered’ all over the Uni-
verse this way. Obviously, each will yield a different set of amplitudes {dx}. In
fact, it is very useful to interpret a collection of these boxes as an ensemble of sta-
tistical realizations; this means treating the amplitudes (or §(x), for that matter)
as random variables subject to a certain distribution. For example, if the {Jx} are
all completely random, then the perturbation field will have Gaussian statistics.
This is easy to understand: From (3.29)), we see that d(x) can be interpreted as
the sum of several random variables; if these are mostly uncorrelated with each
other, the central limit theorem guaranties that §(x) will be Gaussian distributed.
It turns out that Gaussian statistics are strongly motivated by inflation (although

some deviations are expected).

To characterize the actual field statistics, we need to determine the several mo-
ments (or cumulants) of the distribution. The simplest way to do this is to consider
a very large box. Assuming this iiber-box encompasses several statistically homoge-
neous realizations, we may invoke the ergodic hypothesis (this step involves many

subtleties we won’t go into here) and use spatial averages (X) as a substitute for
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stochastic averages E[X]. It follows from this that (6(x)) = 0 and

0? = (P(x)) = / Peodx =V [ax [ G by elit—a)

_ vV 2 21 1.2
- G /dk|§k| 22/ |5|k i (3.33)

where in the last equality, we have assumed statistical isotropy (which seems to be a
good approximation of the Universe, although we should keep an open mind). Higher
moments (6" (x)) are calculated in a similar fashion. Here, the quantity P(k) = |0 |?
is usually called the power spectrum of the field; it measure the contribution of each
scale to the overall dispersion. (For fields other than matter fields, however, a power
spectrum per unit logarithm in % is normally preferred.) Most inflationary models
predict a primordial power law |0;|? oc k", with current observations favoring n ~ 1

(if n is exactly one, the spectrum is called Harrison-Zel’dovich).

Note, however, that the moments of a distribution may not converge, unless the
power spectrum vanishes rapidly enough at the limit of either large or small scales.
At large scales, we expect the spectrum to rapidly vanish (due to the Cosmological
Principle), but not for small scales. For small scales, we have a lot of structure and
SO , for example, may not converge. To fix this, it is necessary to low-pass
filter the density field: In Fourier space this is accomplished straightforwardly by

introducing a new set of amplitudes
or(k) = W(k, R)dy, (3.34)

such that dp(k) ~ & for k~! > R and dp(k) ~ 0 for k~! < R, where R is some
smoothing scale. This effectively wipes out most structures smaller than the smooth-

ing scale while, at the same time, preserving larger ones. The variance of this filtered
field

_ / W(x, R)5(x — x)dx. (3.35)
is now given by
o2 = (52 (x)) = 2—V2 / PRYW2(k, R)R2dk < o2, (3.36)
™ Jo
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and can be made to converge. In , we have used the convolution theorem
F(f*g)=F(f)F(g) where W = F~1(W) is called a window function. The actual
filter doesn’t matter very much; an ordinary step function (top hat) will do just
fine. It also follows from the autocorrelation theorem F(f x f) = |F(f)|* (also
called Wiener-Khinchin theorem), that the power spectrum |d;|? is the the Fourier
transform of the so-called two-point correlation function &(r) = (6(x)d(x+r)). This
function measures how fluctuations in the density field are correlated (co-vary) with
each other; thus, the typical size of overdense regions is determined by the first zero
of this function. It can also be interpreted as the excess probability (over random)
of finding two objects of the same class (say, galaxies) separated by r. (Using galaxy
surveys to estimate £(r), however, is a complicated affair as galaxies are believed to

form more frequently in high density regions than others; as a result, they may not

constitute an unbiased sample of the matter distribution.)

Now, the shape of the primordial power spectrum doesn’t survive unaltered to
the present day because of the different way perturbations grow inside and outside
the ‘horizon’. The exact processing depends on the cosmological parameters (2, h)
and the type (hot or cold) of non-baryonic dark matter. For HDM, fluctuations
on scales smaller than the free streaming scale (typically the size of a cluster of
galaxies) are wiped out and the final spectrum gets a well defined cutoff for small
scales. This is not observed. On the other hand, for CDM, the primordial spectrum
gets ‘bent’” at around ., = 14(Qph?) ! Mpc, the size of the horizon at the time of
matter-radiation equality. This happens because scales A < A, (which enter the
‘horizon’ prior to equality) suffer a stagnation period due to the Meszaros effect [36]
(basically, the background is expanding too rapidly for matter perturbations to grow
inside the Hubble scale) when they enter. Scales outside, however, do not experience
this stagnation period as they enter the horizon in the matter era. As a result, the
spectrum preserves its form for large scales but losses power on smaller scales (but
not nearly as much as in the HDM case). Writing d;(t;) = T0x(t;), where T is called

the transfer function, it follows that

T 1 k< keq, (3.37)
| (keg/R)E k> ke ’
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Many accurate transfer function (obtained numerically) have been tabulated in the
literature. A very popular parameterization is the BBKS transfer function due to

Bardeen et al [101]

—1/4
T ln(l;rce()é) <Z<€ioi> (3.38)

where € = [2.34,3.89,16.1,5.46,6.71]. Here, [k] = hMpc™' and ¢ = k/T, where

[' = Q% b is called the shape parameter (this parameter controls where the bend

7

occurs, hence the name). Recent work by [84] using data from the 2dF 100k galaxy
survey has constrained I' to be of the order of ~ 0.2, in agreement with preliminary
SDSS results [102]. Writing the shape parameter as we did, however, ignores the
fact that baryons are strongly coupled to photons (even in the matter era) for a long
time (until recombination), which effectively prevents the growth of perturbations
in the baryonic component on scales smaller than the sound horizon. To take their
effect into account, we must apply Sugiyama’s [103] empirical correction to the shape

parameter
Iy = Cexp (-Qg — V2R QY /Q%DM) . (3.39)

Nowadays, CMBFAST [104] and, more recently, CMBEASY [105] are frequently used
to obtain even more accurate transfer functions. Nonetheless, coupled with
Sugiyama’s shape correction is already good enough for our purposes. In our model,
however, we don’t really have CDM; instead, we have a gCg component firmly
behaving as CDM at equality (and also for a long time after). It is simple to show,
as we did initially in [65], that the presence of this gCg only changes the shape

parameter to I = Q% h where

QOCTDM = Q%DM + Qg(}g(l - A)l/Ha . (3-40)

3.3.2 Results

We have taken a primordial scale-invariant Harrison-Zel’dovich spectrum and pro-

cessed it using a BBKS transfer function (adapted for the gCg and corrected for
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baryons). After equality and for a long time (essentially while the gCg behaves as
matter) the shape of this power spectrum is preserved (for linear scales, that is).
However, as the gCg transitions to a cosmological constant, linear perturbations
are progressively erased by the ever increasing expansion rate of the background
(in a way that is very similar to the Meszaros effect back in the radiation era).
Nevertheless, linear perturbations in the baryonic component can still grow for a
while (but not forever, of course). Hence, the question is, can baryons carry enough
large scale structure to account for what is observe today? To find out, we evolved
normalized initial conditions [0y, 0, 0cg, Ocglo = [1,1,1,0] (recall that in the matter
era 6  a either for baryons and the gCg, implying ¢’ o« a) from z = 100 to the
present day (as in [86]) and obtained corresponding transfer functions to further
process the spectrum that emerges from equality. But quite unlike [86], our transfer
functions now come from the baryonic component, not the gCg, thus avoiding the

violent oscillations (or exponential blowup) that are so sensitive to .

We have used the matter power spectrum obtained by Tegmark et al [106] from
the 2dF 100k redshift survey [84] to constrain the (a,.A) parameter space assuming
only reasonable priors coming from from WMAP [43], namely Q) = 0.044 and an
Hubble constant h = 0.71. (Note that at the time of recombination, the Chaplygin
gas would still firmly behave as CDM. Therefore, standard small scale CMB results
are to be expected when one identifies Qp,; with Q2%5,;. The results could con-
ceivably differ on very large scales, though here they would be competing against
cosmic variance.) Also, as in Sandvik’s work, we have discarded any 2dF data over
k> 0.3hMpc! so as to stay firmly grounded in the linear regime, where our anal-
ysis holds. Specifically, we have evaluated a 500 x 100 x 100 data grid for A (the
primordial spectrum amplitude), A and «a, with 0 < a < 1 and 0 < A < 1. Cor-
responding probabilities were found and posteriorly summed over A. The resulting
confidence regions are shown in Fig. [3.3] where two disjoint regions can be seen: one
prominent, the other small (around o ~ 0 and A ~ 0.8). We have also displayed the
region of the parameter space corresponding to a value of the shape parameter of
I, =0.2+0.03, as per [102]. The small area in the figure correspond to the ACDM

limit of the gCg. On the other hand, there is also an entirely disjoint region at a
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Figure 3.3: 68%, 95% and 99% likelihood contours in the («, .A) parameter space for
a model of baryons plus a (generalized) Chaplygin gas, coming from the 2dF mass

power spectrum. Note the minute ACDM region near o ~ 0. The zone inside the
solid lines corresponds to I', = 0.2 £+ 0.03 [102].

very high confidence level. So, in fact, we have provided explicit evidence of a (gen-
eralized) Chaplygin gas not having to behave as ACDM in order to reproduce 2dF
large-scale structure. This is an important result, no doubt, and provides some relief
against Sandvik’s constraint. Our result, however, still has to be jointly analyzed
with other results. Fig. shows the probability contours when we add the old
92 supernovae constraints from Chapter 2, while Fig. [3.5] shows the updated version
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Figure 3.4: 68%, 95% and 99% likelihood contours resulting from a joint analysis
of large-scale structure and type la supernovae (old sample) for a model of baryons

plus a (generalized) Chaplygin gas.

using the new sample. With the updated version, we see a clear separation between
the two areas that wasn’t present in the old result. On the other hand, CMB con-
straints on the gCg have been obtained in a variety of papers [87, [7T], 107, 108] and
more recently [77]. Here, we only quote their main result: At 30, o < 0.2. If fol-
lows, from Fig. that adding baryons no longer significantly alleviates Sandvik’s
constraint on « (which was our strong conviction at the time we wrote [109]) and

the gCg is indeed forced to behave very closely to a ACDM model.
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Figure 3.5: 68%, 95% and 99% likelihood contours resulting from a joint analysis of
large-scale structure and type la supernovae (new sample) for a model of baryons
plus a (generalized) Chaplygin gas. Note the separation between the two disjoint
regions that wasn’t present with the old sample. If we now take into consideration
that CMB constraints require an a < 0.2, we conclude that adding baryons is no

longer able to alleviate Sandvik’s constraint.

3.4 Conclusions

We have shown that baryons play an important role in the context of unified dark

energy models. In a single gCg model, perturbations vanish completely as the gCg
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transition to a cosmological constant, unless « is extraordinarily close to zero, in
other words, to a ACDM model. Baryons, on the other hand, if present can carry
the structure that gCg cannot; if we include them, a is no longer forced to be
virtually zero; in fact, the entire spectrum 0 < a < 1 becomes possible. This, in
itself, is a significant result; however, when analyzed together with other results
from supernovae and CMB tests, we conclude that a, unfortunately, still has to be
very close to zero. At the time [I09] was published, a non-zero (albeit small) «
value was still consistent with observations. With the new supernovae data, this is
no longer possible and the gCg is indeed forced to behave very closely to ACDM.
This result has been frequently advertised as the end of UDE. To be fair, however,
this isn’t quite true for the simple fact that, as we have already seen, ACDM is
virtually indistinguishable (as far as gravity is concerned) from a unified gCg with
a = 0. Finally, we wish to emphasize the fact that the constraints obtained here
(and those of most other researchers, in fact) have been obtained assuming that
linear theory is a valid approximation for large scales. As we will discuss in detail in
the next chapter, it turns out that we must be very careful about this assumption
in the context of all unified dark energy models. There are, in fact, many non-
trivial subtleties involved that make these models substantially more complicated

to analyze than what first meets the eye.

81



82



Chapter 4

UDE — Non-Linear Regime

UDE models based on the gCg have been extensively tested against a wide variety
of observations including high-z supernovae [65] [66, 67, (68, 109, [69] (70, 71, 72, [73),
74, [75], lensing [110}, 69, 1111, 112], high precision CMB [87, [71], 107, 108] and LSS
[113, 114, 65, 86l 109, 115 [71]. The latest all-encompassing effort can be found in
[77]. These tests, however, for better or worse, all bear a common factor: they orig-
inate from the same perturbative treatment of the gCg. In a nutshell, a zero-order
homogeneous gCg background M is assumed and subsequently (weakly) perturbed.
However, there is a potential caveat to this whole way of treating quartessence that

is the subject of this chapter.

4.1 All Quiet on the Western Front?

To see why problems may be lurking around the corner, let us start by recalling that
the real Universe (denoted throughout by manifold M) displays hierarchical struc-
tures like stars, galaxies, clusters of galaxies, and so on; it is far from being smooth.
The dynamics in M is assumed to be entirely described by General Relativity (or
some modified version of), as gravity is the only relevant force at work on cosmo-

logical scales. In practice, however, due to the highly non-linear nature of the field
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equations, it is virtually impossible to solve the dynamics completely (even numeri-
cally), unless in a handful of high symmetry situations (see, for instance, [I16]). On
the other hand, several observations indicate that the Universe looks increasingly
smooth, as larger and larger scales are considered (typically over 100 Mpc). This
average background (representing the global behavior of M) is routinely idealized as
a completely featureless manifold, hereafter denoted by manifold (M). As already
discussed in the first chapter, the kinematics in (M) is essentially contained in the

cosmological principle, but what about its dynamics?

This is actually a tricky question. Normally, it is assumed that General Relativity
applies just as well in (M) as it does in M. Yet, when we average M to obtain the
background, we're also averaging complex non-linear interactions. Averaging linear
terms in the field equations is no big deal, but averaging non-linear terms is; this is
because they introduce back-reaction terms and hence new dynamics. The common
expectation, however, is that back-reactions are negligible on cosmological scales,
so that (M) and M have effectively the same dynamics. In what follows, M will
denote the background when these back-reactions are ignored, to distinguish it from
the real (M) that includes them. Note that the Standard Model is built on top of M.
Proving if back-reactions are negligible, of course, is nearly impossible; even checking
it numerically is extremely difficult. As a matter of fact, ‘averaging’, in General
Relativity, remains largely an unresolved and complicated problem [I17, [I18]. Thus,
it is quite possible that the true background may evolve differently from M. In other
words, (M) should really be seen as a ‘corrected’ M somehow. Recently, it has been
speculated that such corrections might naturally give rise to the current acceleration
of the Universe (as opposed to some weird dark energy component); see [I19] and
references therein. Appealing as this may sound, however, these corrections turn
out to be extremely hard to quantify; currently, there is no convincing argument
showing that they would be large enough for the job. The few times that such an
analysis has been attempted (by studying high symmetry configurations such as
closely spaced sheets of matter separated by voids, arguably not even a very good
approximation of the Universe), have shown them to be small and hence incapable

of producing the observed acceleration [120, 12I]. Our personal opinion, is that
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‘averaging’ alone will not explain the mystery behind dark energy.

Second, although in general we cannot determine the full evolution of M, we
can still solve the dynamics of ‘small’ perturbations. Indeed, when perturbations
are small enough, the field equations can be fully linearized and, thus, numerically
solved. Note, however, that treating M as a ‘perturbed’ M implies knowing how
the background evolves first. Here, we are aided by the fact that M, as a fea-
tureless manifold, is forced to behave as a perfect fluid (though not necessarily an
isentropic one). Because of this symmetry, the field equations can be solved almost
completely. Unfortunately, we still need to throw in the equation of state p = W& of
the background source. The question is, do we know w? We do, of course, know the
local equation p = we at every point in M (this is what defines our model in the
first place). The background equation, however, is a large scale average of the local
one; consequently, a priori, @ = (w) and w should (functionally) differ from each
other. It follows that we can’t really know the background equation (and thus the
background dynamics), unless by first solving M. Needless to say, this is virtually
impossible. Still, it is customary to assume that @ = w (in the sense of being the
same function). In fact, this is always true if the local pressure p is a linear function
of the local density ¢ (as is the case of ordinary matter, radiation and some forms of
quintessence, like the cosmological constant). But on every other case, it will only
be true in certain regions of M, where the anisotropies in the source distribution
are ‘small’ enough. Once they grow ‘big’, though, the background equation and the
local equation are no longer the same (w # w) and linear theory is rendered invalid.
The gCg is a good example of this: while the point to point local behavior in M is

p = —Ae?, the average one is not (unless o = 0):

(p) = —A(e™) # —A(e)™7, (4.1)

except, of course, if the perturbations are small (§ = de/(p) < 1), in which case

(p) = —Ae) =~ -Ale)*(1 - ) (4.2)
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Now, let us add to this the fact that perturbations have been evolving for a
long time, since inflation to the present day, roughly speaking. In most non-UDE
models, the dark matter component becomes highly clustered during this period
(more specifically in the matter era), but because CDM always acts as pressureless
mater, the average background pressure is not affected by the inhomogeneities in
this component. On the other hand, the dark energy component normally evolves
homogeneously enough in space, so as to look almost as if a cosmological constant.
Thus, the average equation of state is also, typically, not very much affected by the
inhomogeneities present in the dark energy distribution. Consequently, for most

models and throughout this period, linear theory can be safely used.

However, in the case of UDE models, because dark energy and dark matter arise
from the same underlying fluid, the local equation of state is forced to bridge A
behavior and CDM behavior. This means that anisotropies in the quartessence dis-
tribution will most likely affect the average background equation of the Universe.
Hence, if significant clustering (even if only at small scales) occurs early in the his-
tory of the Universe, then @ # w (in the sense of being different functions) and linear
theory is rendered useless (even on large scales); we can still use it, of course, but
we’ll be perturbing the wrong background. In principle, a second order treatment
might bring perturbations closer to today than linear theory can, but probably not
much closer. The point is that the small scale clustering in the quartessence com-
ponent necessary to reproduce an equivalent CDM clustering, inevitably affects the
equation of state of the average universe. The majority of the studies conducted so
far on UDE, do not take this into consideration. Note that the potential breakdown
of linear theory at late times is crucial for LSS tests but is of a lesser importance for
CMB tests given its earlier occurrence in the history of the Universe. It also affects
supernovae and other background results. (Identical worries have also been voiced
n [I5], but in the context of condensation and vacuum metamorphosis.) There-
fore, it seems premature to judge the success of UDE models (as viable alternatives
to ACDM) solely on traditional background and linear tests. These considerations
highlight the fact that the whole concept of UDE is much harder to deal with (even

phenomenologically) than originally anticipated.
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4.2 Qualitative Approach

In this section, we aim to illustrate in the simplest possible manner how even small
scale collapsed regions in a quartessence fluid can affect the evolution of the very
large universe. For this purpose, we shall concentrate on two particular cases of

unified dark energy fluids.

4.2.1 Case I: the gGg with ¢2 > 0

Here, one should bear in mind the fact that the gCg has a minimum density &, it
cannot go below. Let us now considering a spherical region in M of radius R with
an average density (¢). If ¢ was wuniformly distributed inside this region, then the
average pressure would clearly be (p) = —A(e)~®. In general, however, it will be
something else. To make this more concrete, take the case of a prototypical collapsed
region, where the envelope R; < r < R has a smaller density than the core r < R;.
In fact, let us assume that e(r < Ry) = N{(e), where N is some constant higher
than one and ¢(R; < r < R) = &, so that p(Ry <7 < R) = p, = —¢&,. (We
might consider smoothing the transition between the two areas, but for the type of
qualitative argument we’re making, this would be overkill.) Because the sum of the
energy inside the two regions divided by the entire volume still has to be (g), this

implies that N is equal to

()b

which links the size of the collapsed core to N. It is now straightforward to show

Ex

o (4.3)

that the average pressure is given by

= (%) - [1 (Y

~ —g,, (4.4)
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where the approximation is valid for large N (small core). Thus, if N > 1, the
average pressure (p), will be considerably larger (in modulus) than the pressure of
the Chaplygin gas in the absence of perturbations. If we now recall that for the gCg
(with o > 0), the lower the density, the bigger the pressure, this is why the envelope
dominates the entire region R. Hence, the non-linear collapse will work to make
(p) = pp = —&, early on, thus anticipating and slowing down the transition from

dark matter to dark energy behavior.

It should be said, of course, that this is an oversimplified picture: we haven’t
taken into account the dynamical effects of pressure gradients. In high density
regions the pressure will be significantly smaller (in modulus) than average. Still,
we need to take into account that the gravitational collapse will only be effective on
a given scale \ if X > ¢,H~!. However, once the perturbations become non-linear,

the background pressure does not significantly influence any subsequent dynamics.

4.2.2 Case II: UDE with ¢2 <0

Let us now consider a UDE fluid whose background mimics a two-component model
of quintessence (with an effective pg = wg &g where wg is a constant) plus pres-
sureless CDM, in other words, a quartessence fluid with p = pg and & = &g + Ecpm.
It is simple to check that this fluid does not have an explicit isentropic equation of
state. Nevertheless, we can still calculate its sound speed indirectly by means of the
following trick:

_dpg deq - wo(1+@g)eq
dzq de  (1+wg)ég+écom

RN
Il

&l
| |

9]l

(4.5)

Thus, if —1 < &g < 0, linear instabilities are expected to occur in the quartessence
fluid. In this case, pressure does not hold the collapse of high-density regions (which
tend to behave as pressureless matter), in fact, it contributes to it. On the other
hand ‘voids’ will get increasingly emptier. There is, however, a major difference to
the previous case: Now, there is no minimum density underdense regions cannot go

below (except, of course, if wg = —1), in other words, € can arbitrarily approach zero.
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This has the interesting consequence that the average pressure in the background
may actually be very close to zero at all times, so that the large scale universe may
never start to accelerate (despite the linear prediction), something which is clearly

inconsistent with current observational evidence.

Again, we stress that this is a very simplified example that may not withstand
closer inspection; in particular, note that the square sound speed in collapsed re-
gions (albeit negative in the present case) is necessarily small, as these regions tend
to behave as matter (this is a general feature of quartessence, after all). Thus, over-
dense regions may not get that enhanced by pressure, and consequently, the average

pressure in M may not reach arbitrarily small values.

4.3 Quantitative Approach

In this section, we wish to study the onset of the non-linear regime in a more
quantitative way. To this effect, we will study how a pure Chaplygin gas (o = 1)
plus baryons model processes the power spectrum that emerges from radiation-
matter equality. Throughout the analysis we adopt priors in agreement with the
WMAP first-year data release [5]. The parameters are an equivalent matter density
O =1—A+Q, =0.29, a baryon density {2, = 0.047, an equivalent cosmological
constant density 23 = 1—-Q = 0.71, a Hubble parameter A = 0.71, a normalization
og = 0.9 (using a top hat filter) and a primordial Harrison-Zel’dovich spectrum. We
start by determining how linear density perturbations of the Chaplygin gas and
baryon components evolve with time using the machinery of the previous chapter.
Note that the use of linear theory so early in the matter era is actually a good
approximation on large enough scales. This is because the effects of the breakdown
of linear theory will only be important (on large cosmological scales) much latter,
when a smooth transition from dark matter to dark energy domination would be

naively expected.
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Figure 4.1: The linear evolution of the ¢ mass dispersion in the baryon (solid line)
and Chaplygin gas (dashed lines) components as a function of R and a assuming
a = 1. Note that at early times the baryon and Chaplygin gas fluctuations evolve
in tandem. Later on, pressure effects prevent the Chaplygin gas from collapsing
further. However, baryon fluctuations can still keep growing (albeit at a slower

pace).

4.3.1 Mass Dispersion

Therefore, we use linear theory in order to compute the value of the dispersion of
the density fluctuations in the baryon and Chaplygin gas components o(R,a), as
a function of R and a. This is plotted in Fig. for the particular case of the
original Chaplygin gas with @ = 1. We see that since the Chaplygin gas behaves
as matter at early times, perturbations will grow proportionally to the scale factor,
in tune with those in the baryonic component. Therefore, both fluids evolve in
the same way early on and have approximately the same value of ¢ on all relevant
scales. During this stage we have that o oc a = (1 + 2z)~'. Later on, the pressure of

the Chaplygin gas will have increased dramatically preventing its further collapse.
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Figure 4.2: The ratio between the average value of p and and its zeroth or-
der background value, (p)/p, as a function of the mass dispersion ¢ of the lin-
ear density fluctuations in the Chaplygin gas component for various values of
a =1[0,0.2,0.4,0.6,0.8,1] (bottom up). For a > 0 we clearly see that (p)/p rapidly

diverges from unity if o is large enough.

However, the baryon fluctuations can still keep growing (at a slower pace). We also
see in Fig. [4.1]that the Chaplygin gas component becomes non-linear on small scales
very early in the matter era. It is clear that when this happens a significant fraction
of the Chaplygin gas will have collapsed and decoupled from the background so that
a transition from a dark matter-like to a dark energy-like stage (which necessarily

requires lower densities) never happens in those regions.

4.3.2 (p) in the Non-Linear Regime

Using the Press-Schechter framework [122], we can show that for o = 1 the fraction

of the equivalent mass that is incorporated in collapsed objects is close to 0.1. In the
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non-linear regime, an initial gaussian density field is better described by a lognormal
one-point probability distribution function, P(d), given by (see, for example, [123]

and references therein)

(140! In? ((1 + )1+ ‘77211)
PW) = 2rIn(1 + o2)) P 2In(1+ 02)) ’ (4.6)

where 02, = exp(0?)—1 and ¢ is computed using linear theory. We use ([4.6) in order

nl
to estimate the ratio between the average pressure (p) and its zero-order background

value p = —A/e?,

wip= [ a0 PE)b. (@.7)

1

as a function of the dispersion of the density fluctuations in the generalized Chap-
lygin gas component, o. (An objection may be raised here: Since the Chaplygin
gas has a minimum non-null density, the lower limit in (4.7)) cannot be exactly —1.
However, if this minimum density is much smaller than the average density, using
this lower limit doesn’t create any major problem.) The results of this analysis
are displayed in Fig. for various values of a. We see that in all but one case
(for @ = 0) the average value of the pressure strongly diverges from its zero-order
background value as soon as o becomes large enough. This inevitably causes the
breakdown of linear theory. The magnitude of this effect becomes more pronounced
at late times when the negative pressure starts to become dynamically important

on all scales.

We thus conclude that weakly perturbing a homogenous Chaplygin gas does not
take into account the effect that non-linearities have on the behavior of the very
large universe. This caveat has crucial implications for the predicted observational
consequences of the model given that linear theory breaks down at late times even

on large cosmological scales (except in the a = 0 case).
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4.4 Conclusions and Future Prospects

Weakly perturbing a canonic UDE background fluid in the traditional way, where
we simply assume that the background equation has the same functional form as the
local one, effectively neglects the potential effect that collapsed regions an voids may
have on the behavior of the average universe. We have argued in this chapter, both
qualitatively and quantitatively, that outside the ACDM limit, non-linearities in
UDE models cannot be safely ignored. This means that any dramatic conclusion on
the fate of UDE solely based on background and linear tests, are premature at best.
The average background and clustering properties of quartessence (treated as a single
fluid) can only be definitely settled by solving the full non-linear Einstein equations.
Obviously, this can only be accomplished in a handful of high symmetry situations;
in the future, we intend to explore such configurations (like closely spaced sheets of
‘matter’ separated by voids) to see if some light can be shed on the background and
clustering properties of quartessence. Preliminary work on this front has already

begun.

4.5 A Possible Way Out?

Now, let us take a step back and consider the following: In the so-called concordance
model of Cosmology, a range of observational data is used to postulate the existence
of two dark fluids (dark matter and dark energy) for which so far there is no direct
experimental evidence. The most common attitude towards dark energy and dark
matter (in the context of General Relativity) is to model them as if two distinct
minimally coupled fluids. The direct opposite to this, is to treat them as different
manifestations of a single fluid (which has been the main focus of this thesis). An
intermediate approach, on the other hand, is to treat them as two coupled fluids. In
this case, however, if the coupling is very strong, we naturally expect the distinction
of dark energy and dark matter as two different fluids to become somewhat blurred.

In other words, if the coupling between them is very strong, then, to a certain extent,
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we expect dark energy and dark matter to behave as if a single (quartessence) fluid.
As far as we are aware today, this bridge between strongly coupled models and UDE
has not been significantly explored by the community. To make this more concrete,
let us take the case where dark energy and dark matter are coupled in the following

way

L=X-V(¢)+h(¢) Lou, (4.8)
where EDM x Y™ and

Y = —%V“@Vﬂap. (4.9)

(In this type of model, ¢ is normally called a ‘Chameleon’ field [124], [125] 126, [127].)
Recall that a Lagrangian proportional to a power of the kinetic term of a given field
¢ describes a constant-w isentropic fluid with w = 1/(2n — 1) as discussed in § 2.1}
Thus, in the limit of large n, our Lpw above describes pressureless (non-relativistic)

dark matter. It follows that we can rewrite (4.8]) in the form
L=X~V(9)+9(®)enn, (4.10)

where g(¢) = wpmh(¢) is a rescaled coupling constant. It is easy to see (by varying
the action in relation to ¢) that the dark matter component evolves independently

from the chameleon dark energy field ¢. On the other hand, the evolution of ¢ is

given by
_ OVeg
O¢ = (9_g25 , (4.11)
where
Ver = V(¢) — 9(#) epm (4.12)

and therefore is affected by how dark matter is evolving. (Note here that although
Ve is almost V', its derivative can be very different from 0V /0¢). As for the energy-
momentum tensor associated with (4.8), it is a simple matter to show (varying the

action in relation to g"”) that

Tu(9,0) = VupVip + (X = V(9))gu +
+ W) [gu Y™ +nY" IV ,0V,0] . (4.13)
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Obviously, this energy-momentum tensor does not, in general, describe a perfect
fluid. However, in the so-called adiabatic regime (described, in detail, in [128] [129]),
it is assumed that the gradients of ¢ are negligible both in 7},, and in the equation
of motion (4.11f). Thus, in this regime, reduces to

Ty = (RY" = V) g +nhY" 'V ,oV,0, (4.14)

which can be immediately rewritten in a perfect fluid form, if we make the following

identifications

g = (2n—1RY" 4V,
= hepu+V,
P = hY" =V,
= gepy—V > -V, (4.15)

and u, = Vugp/\/ﬁ. Is it an isentropic fluid, though? Yes. Since the adiabatic
regime is also characterized by the condition 0Vig/0¢ = 0, it follows from (4.12)
that the value of ¢ is univocally related to epy. Hence, peg only depends on the
value of €. and therefore the fluid is isentropic (although, in general, we won’t have

an explicit isentropic peg = pes(ccsr) equation of state).

Now, the value of

2 82‘/eff
eff 8(b2 9

m (4.16)

called the effective square mass of the chameleon field, determines the length scales
for which the adiabatic approximation is valid. Specifically, this is the case for
large scale perturbations with L > m_;, while for scales much smaller than this,
the approximation is no longer valid. We thus conclude that above a certain scale,
sufficiently coupled models behave as a single isentropic fluid but not below. Why
is this relevant? It is relevant because such differentiated behavior above or below
a certain scale may help solve the averaging problem that affects UDE models.

Recall that in (canonic) UDE models, an isentropic fluid description is valid at all
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scales and this is why quartessence is so susceptible to non-linearities. For the sake
of argument, suppose the majority of the non-linear clustering occurs for scales
smaller than me_ﬁl; since now they are confined to a non-isentropic part of the fluid,
it is possible that they may not affect the average background equation of state as
before. If, on the other hand, significant non-linear clustering does extend beyond
this scale, then non-linearities will still be a major problem in strongly coupled
scenarios. A more detailed analysis is in order to determine if this turns out to be a
successful solution to the averaging problem or not. (Note, however, that such large
couplings are strongly constrained by several equivalence principle type experiments,

so the cosmological relevance of these models remains unclear.)

As a final note, we would like to show how easy it is to obtain some key results
regarding linear instabilities in strongly coupled models if we treat them as a single
fluid. Say we start with ordinary quintessence plus a dark matter component. If
they are minimally coupled, ¢ will roll down the potential V' as usual. On the other
hand, if we view ¢ as strongly coupled to dark matter, ¢ will roll down an effective
Vog that is very close to the original potential. Above a certain scale, this effective
fluid behaves as an isentropic fluid. Additionally, in the absence of perturbations,

it satisfies the usual

=l _3H(1+ wer), (4.17)
Eeff

with weg > —1. Since eqg > 0, it follows trivially that .4 < 0. On the other hand,
we know that p.g = —V;ﬁr > 0. Thus,

=Lt g, (4.18)

s .

Eeff

and instabilities are expected to occur. Linear instabilities such as these have been
studied by a variety of authors [130, 131, 129] 128 [132], but here we have obtained

them in a much simpler and straightforward manner.
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Appendix A

Thesis X-Ray

Here, we summarize in bullet form the main results that have been obtained in the

course of this work.

i.

11.

111.

1v.

CANONIC IMPLEMENTATION OF UDE: In Chapter 2, a careful discussion
was made relating to the nature of a single fluid. A single (‘atomic’) fluid
is then defined as a fluid that can be described by a Lagrangian of the form
E(X ,®), where ¢ is a real scalar field. This field ¢ is formally equivalent to
having a perfect fluid (though, not necessarily an isentropic one). It is argued
that treating quartessence as a single fluid is the simplest possible way of

implementing UDE, hence ‘canonic’ quartessence.

Low-LEVEL IMPLEMENTATION OF THE GCG as a scalar field obeying the
Lagrangian ([2.11)) using a novel approach.

CoMPLETE ACDM EQUIVALENCE TO THE GCG WHEN a — 0. Gravity
alone does not distinguish the two. This result was established in a very
straightforward manner, expanding the Lagrangian of the gCg and taking the
limit o« — 0. As far as we know, this demonstration has never been presented

before in such a simple and direct way.

BACKGROUND CONSTRAINTS ON THE GCG, in the absence of perturbations,
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V1.

vil.

were obtained using the distance modulus of 192 Type la Supernovae. The
parameter « is not significantly constrained by this analysis. On the other
hand, the constrains on 4 depend on whether one lets the gCg coexist with
a CDM component (in which case A > 0.95) or a baryonic component (0.7 <
A < 0.92). In the former case, the gCg is forced to behave very close to a A
cosmological constant (which is hardly surprising) while in the latter case, the

A limit is strongly disfavored.

SOUND SPEED LINK TO HOW FAST THE QUARTESSENCE TRANSITION OC-
CURS: if ¢2 > 0 the background transition from DM to DE occurs faster

than in ACDM (slower, if ¢Z < 0). Linear instabilities are briefly discussed in
Chapters 3 and 4.

THE CRUCIAL ROLE OF BARYONS IN THE FORMATION OF LSS: The gCg
alone (unless |a| < 107°) is not able to reproduce the 2dF mass power spectrum
for large scales. In a nutshell, this is caused by the fact that the gCg attains
very large sound speeds during the background transition. Thus, perturbations
on large scales become heavily damped (or blow up exponentially) by the
effect of pressure; the only way to avoid this is by having a very small «.
If, on the other hand, baryons are added to the mixture, perturbations can
still keep growing in the baryonic component (since baryons always have a
very small sound speed), even when the gCg starts behaving differently from
CDM. Although baryons are not that important for background studies, they

are nonetheless crucial for LSS formation.

LINEAR CONSTRAINTS ON «: if baryons are included, « is no longer forced
to be very small. In fact, the entire interval 0 < a < 1 is consistent with
the 2dF power spectrum (with A ~ 0.8). On the other hand, if we make a
SN+LSS joint analysis (using the latest 192 supernovae sample), we find that
only a >~ 0 and 0.2 < a < 1 are now possible. If to this we add the latest CMB
constraint on «, i.e. a < 0.2, we conclude that even with baryons present, the

gCg is forced to behave very close to ACDM in order for it to simultaneously
reproduce SN, CMB and LSS observations.
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viil.

1X.

THE AVERAGING PROBLEM IN UDE: In Chapter 4, we argue both quali-
tatively and quantitatively that in the context of canonic quartessence, non-
linear small scale clustering cannot be safely ignored, as these may have a
significant impact on the background equation of state at late times. Since
the local quartessence equation has to bridge dark matter and dark energy be-
havior, the average equation of state is inevitably affected by the anisotropies
in this fluid. The problem is that once these become significant, we no longer
know what background to perturb. To find out, we would have to solve the
full Einstein field equations. The consequence of this is that the majority of
background and linear tests have very shaky foundations. Thus, it is rather
premature to make any dramatic conclusion on the fate of UDE, solely based on
traditional tests, without first taking into account the effects of non-linearities.
UDE models are therefore much more complicated to test than initially antic-
ipated. One way that perhaps may shed some light on the matter is to study
high symmetry configurations involving a gCg. These high symmetry config-
urations can be solved numerically many times without any approximations.

Some preliminary work on this front has already begun.

STRONGLY COUPLED MODELS: The averaging problem in UDE models is
rooted in the fact that quartessence is described by an isentropic fluid at every
scale. On the other hand, strongly coupled models, as discussed at the end of
Chapter 4, above a certain scale can be interpreted as an isentropic fluid but
not below. Now, if small scale clustering occurs mainly at scales where the
isentropic approximation is not valid, then it may be possible that the very
large universe is not affected by them. On the other hand, if the clustering
extends well beyond the critical scale into isentropic territory, then the average
equation of state will still be, most likely, affected and strongly coupled models
share the same problems as quartessence. Some significant work has yet to be

done on this front which, a priori, seems promising.
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Appendix B

Numerical Code

CHAPLYGIN.H: Glues all files together

#include <math.h>
#include <stdio.h>
#include <stdlib .h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_odeiv.h>

/x From model.c x/

double H(double x, double omega_b0, double Abar, double alpha);
double w(double x, double Abar, double alpha);

double qui(double x, double omega b0, double Abar, double alpha);
double omega_b(double x, double omega_ b0, double Abar, double alpha);
double ips(double k, double g, double A);

/+ From transfer.c x/

int dydx (double x, const double y[], double dy[], void xparams);

double transfer (double k, double omega_b0, double h, double Abar,
double alpha);

MODEL.C: Model stuff

#include ”chaplygin.h”
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

37

/x Hubble parameter x/

double H(double x, double omega_b0, double Abar, double alpha) {

double al = exp(—3%x);

return sqrt(omega_bOxal+(1—omega_b0)xpow (Abar+(1—Abar)*pow(al,

I+alpha), 1/(1+alpha)));

/x w for the gCg component, z=ln(a)

double w(double x, double Abar, double alpha) {

return —1/(1+(1—Abar)*exp(—3*(1+alpha)=x)/Abar);

/x qui=H’/H where ’=d/dz x/

double qui(double x, double omega_b0, double Abar, double alpha) {

double al = exp(—3x%x),

*/

a2 = pow(al, (1+alpha)),
a3 = Abar+(1—Abar)*a2,

num,

den;

num = alxomega_b0+(1—Abar)*(1—omega_b0)xa2+pow (a3,

—alpha/(14+alpha));

den = alxomega_b0+(1—omega_b0)=*pow (a3, 1/(14+alpha));

return —1.5%xnum/den;

/x Baryon fraction x/

double omega_b(double x, double omega_b0, double Abar, double alpha) {

double al = exp(—3x%x),

a2 = omega_b0Oxal;

return a2 /(a2+(l—omega_b0)*pow (Abar+(1—Abar)*pow(al, 14alpha),

1/(14+alpha)));
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38
39 /+x Power spectrum x/
40 double ips(double k, double shape, double A) {

41

42 double ¢ = k/shape,

43 t1, t2, t3, t4,

44 tk;

45

46 t1 = 3.89xq;

47 t2 = pow(16.1xq, 2);

48 t3 = pow(5.46xq, 3);

49 t4 = pow(6.71xq, 4);

50

51 tk = pow((1 + t1 + t2 + t3 + t4), —0.25);
52

53 tk = tkxlog(1+2.34%q) /(2.34%q);

54

55 /* CDM processed Harrison—Zeldovich Axk spectrum x/
56 return Axkxpow(tk, 2);

57 }

TRANSFER.C: Perturbation Machinery

1 #include ”chaplygin.h”

2

3 int dydx(double x, const double y[], double dy[], void xparams) {
4

5 const double * const par=params;

6

7 double omega_b0 = par[0],

8 Abar = par|[1],

9 alpha = par[2],

10 k = par[3],

11 al = w(x, Abar, alpha),

12 a2 = 14+al, a3=exp(x)*H(x, omega_b0, Abar, alpha),
13 a4 = omega_b(x, omega_b0, Abar, alpha);

14

15 ay[0] = y[1];
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47
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50

dy[1] = 1.5%ad*y[0]—(24+qui(x, omega_b0, Abar,
alpha) )*y[1]4+1.5%(1 —ad)*(1—3xalphaxal)*y[2];
dy[2] = a2x(y[1]—y[3]/a3)+3*(1+alpha)xalxy[2];
dy [3] = —(alphaxalxy[2]*xkxk)/(a3*xa2)—(1+3xalphaxal)xy[3];

return GSL_SUCCESS;

double transfer (double k, double omega_b0, double h, double Abar,
double alpha) {

const gsl_odeiv_step_type *T = gsl_odeiv_step_rk8pd;
gsl_odeiv_step s = gsl_odeiv_step_alloc (T, 4);
gsl_odeiv_control xc = gsl_odeiv_control_y_new (le—8, 0);

gsl_odeiv_evolve xe = gsl_odeiv_evolve_alloc(4);
double par[4] = {omega_b0, Abar, alpha, 2998xk};
gsl_odeiv_system sys = {dydx, NULL, 4, par};
double x = log(0.01),

xl =0,

h_istep = le—6,
y[4] = {1, 1, 1, 0}

while (x < x1) {

int status = gsl_odeiv_evolve_apply (e, ¢, s, &sys, &x,

xl, &h_istep , y);

if (status != GSL_SUCCESS)
break;

gsl_odeiv_evolve_free (e);
gsl_odeiv_control_free (c¢);

gsl_odeiv_step_free (s);

104



51
52

© 00 g O Ut ke W NN =

W W W W NN NN ND N NN DN = = = === ===
W NN = O O 0O U R W RO © 00NN U WY = O

return y[0];

GO TRANSFER.C: Transfer Functions Driver

#include ”chaplygin.h”

/+x Global Variable Declarations */

const double k_2df[49], k_2df_windows[20][49], k_-2df_power [20][5];

int main(void) {

FILE xfp;
int i, j, k;

double Abar[100],
alpha[100],
omega_b0=.044,
h=.71,
t[100][100][49];

extern const double  k_2df[49],
k_2df_windows [20][49],
k_2df_power [20][5];

/x Load k’s for the window functions */
fp=fopen (”2df_k.dat”, "r”);
for (i=0; i < 49; 4++i)

fscanf (fp, "%e”, &k_2df[i]);

/+ Load window functions %/
fp=fopen (”2df_windows.dat”, 7r”);
for (i=0; i < 20; ++i)

for (j=0; j < 49; ++j)

fscanf (fp, "%e”, &k_2df_windows[i][j]);

/x Load 2df data x/
fp=fopen (”2df_power.dat”, 7r”);
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for (i=0; i < 20; 4++i)
for (j=0; j < 5; ++j)

fscanf (fp, "%e”, &k_2df_power[i][]j]);

fclose (fp);

/% Generate a 100x100 grid of [alpha, Abar] x/
for (i=0; i < 100; 4++i)
alpha[i]=.0 +i%1.0/99; /% alpha=[0, ... , 1] * /

for (j=0; j < 100; ++j)
Abar[j]=.0 + j*.9999/99; /% Abar=[0, ... , .9999] x/

/x Calculate only once the transfer matriz t[i][j][k] (100x100x49) for

a grid of models alpha[i], Abar[j] at k_2df[k] */

for (i=0; i < 100; ++i) {
for (j=0; j < 100; ++j) {

}

return O0;

}

for (k=0; k < 49; ++k) {

t[1][j][k]=transfer (k_2df[k], omega_b0, h, Abar[j],
alpha[i]);

printf (7%i\t%i\t%i\t%e\n”, i, j, k, t[i][j][k]);

}

GO cHI.C: 2dF y? fitting

#include "chaplygin.h”

const double

trans [490000][4],
k_2d£[49],
k_2df_windows [20][49],
k_2df_power [20][5];
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9 int main(void) {

10

11 FILE #fp:

12 int i, j, k, m, n;

13

14 double Abar[100],

15 alpha[100],

16 A[500],

17 shape,

18 omega ,

19 omega_b0=.044,

20 h=.71,

21 term ,

22 t[100][100][49];

23

24 extern const double  k_2df[49],

25 k_2df_windows [20][49],

26 k_2df_power [20][5],

27 trans [490000][4];

28

29 double p[49],

30 Wp[20],

31 prob_matrix [500][100][100],

32 sum[20] ,

33 S,

34 norm=0,

35 prob_sum_A [100][100];

36

37

38 /x Load transfer matriz x/

39 fp=fopen(”transfer_matrix.dat”, "r”);

40

41 for (i=0; i < 490000; 4++i)

42 fscanf (fp, 7%f %f %f %f”, &trans[i][0], &trans[i][1],
&trans[i][2], &trans[i][3]);

43

44
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72
73
74
(0]
76
7
78
79
80
81

/*x Reconstruct 3D transfer matriz t(alpha, Abar, k_2df) (100x100x49) */

for (i=0; i < 490000; ++i)
t[(int) trans[i][0]][(int) trans[i][1]][(int)
trans [i][2]]=trans[i][3];

/+x Load k’s for the window functions x/
fp=fopen (”72df_k.dat”, "r”);
for (i=0; i <= 48; ++1i)

fscanf (fp, "%e”, &k_-2df[i]);

/x Load window functions x/
fp=fopen (”2df_windows.dat”, "r”);
for (i=0; i <= 19; ++i)
for (j=0; j <= 48; ++j)
fscanf (fp, "%e”, &k_2df_windows[i][]j]);

/x Load 2df data x/
fp=fopen (”2df_power.dat”, "1r”);
for (i=0; i <= 19; 4++i)
for (j=0; j <= 4; ++j)
fscanf (fp, "%e”, &k_2df_power[i][]]);
fclose (fp);

/x Generate a 500x100%x100 grid of [A, alpha, Abar] x/

for (i=0; i < 500; ++i)
A[i]=0 + i#3000./499; Je Ali]=[0, ..., 3000] %/

for (j=0; j < 100; 4++j)
alpha[j]=.0 +j%1./99; /x alpha=[0, ..., 1] %/

for (k=0; k < 100; ++k)
Abar [k]=.0 + k%.9999/99; /x Abar=[0, ..., .9999] x/

term = sqrt(h/.5);
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82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

/% Probability Matriz (following Tegmark’s notes) x/

for (i=0; i < 500; ++i) {

for (j=0; j < 100; ++j) {
for (k=0; k < 100; ++k) {
omega=omega_b0+(1—omega_b0)«pow(l—Abar[k],
1/(1+alpha[j]));
shape=omegaxhxexp(—omega_b0*(1+term/omega));
for (m=0; m < 49; ++m) {
p[m|=ips (k-2df[m], shape, A[i])«t[j][k][m]*t[]j][k][m];
}
for (m=0; m < 20; ++m) {
Wp[m]=0;
for (n=0; n < 49; ++n)
Wp[m] += k_2df_windows [m][n]*p[n];
sum [m| =
pow ((k_2df_power [m][3] —-Wp[m]) /k_2df_power [m][4],
2);
}
s=0;
for (m=0; m < 20; ++m) {
S += sum|[m];
}
prob_matrix [i][j][k]=exp(—s/2);
norm += prob_matrix[i][j][k];
}
}
}

116 /x Normalized probability matriz */
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117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

for (i=0; i < 500; ++i) {
for (j=0; j < 100; ++j) {
for (k=0; k < 100; ++k) {

prob_matrix [i][]j][k]=prob_matrix[i][j][k]/norm;

/+x Probability Matriz summed over A x/
for (j=0; j < 100; ++j) {
for (k=0; k < 100; ++k) {

prob_sum_A[j ] [k]=0;

for (i=0; i < 500; ++i)

prob_sum_A[j]|[k] += prob_matrix[i][j][k];
if (k % 100 = 0) printf(”\n”);
printf ("%e\t”, prob_sum_A[j][k]);
}
}
return 0;
}

CONTOUR.C: Confidence Contours

#include <stdio.h>
#include <stdlib .h>

int cmp(const void xvp, const void *vq);

/x To use with qsort: the compare function x/

int cmp(const void xvp, const void *vq) {
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9 const float xp = vp, *q = vq;

10 float dif = *p — xq;

11

12 return ((dif >= 0.0) ? ((dif > 0.0) ? 41 : 0) : —1);

13 }

14

15 int main(void) {

16

17 FILE xfp;

18

19 int i, j, k;

20 float 1ist[100%100], contour[100][100], sum;

21

22 /* Load normalized probability matriz (prob_sum_A.dat) into
contour [][] =/

23 fp = fopen(”prob_sum_A.dat”, "r”);

24

25 for (i=0; i < 100; ++i)

26 for (j=0; j < 100; ++j)

27 fscanf (fp, "%e”, &contour[i][]j]);

28

29

30 /+* Make a single row contaning all contour rows x/

31 for (i=0; i < 100; ++i)

32 for (j=0; j < 100; ++j)

33 list [1%x100 + j] = contour[i][j];

34

35 /% Order list wusing gsort x/

36 gsort (list , 10000, sizeof(float), cmp);

37

38 /+* Accumulated probability (well, 1—it) x/

39 for (i=0; i < 100; ++i) {

40 for (j=0; j < 100; ++j) {

41 sum = 0;

42

43 for (k=0; list [k] < contour[i][j]; ++k)

44 sum += list [k];

45
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46 contour [i][j] = 1 — sum;
47

48 if (j % 100 = 0) printf(”\n”);
49 printf ("%e\t”, contour[i][]j]);
50 }

51 }

52 }
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