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Resumo

A conjectura de Maldacena ou (AdS/CFT) desde a sua formulacao é um dos
topicos em fisica de altas energias mais estudados. Uma das versoes da conjectura
¢ a dualidade entre a teoria de supercordas do tipo IIB em um background AdS® x
S5 suportado por um fluxo Ramond-Ramond e a teoria de AN/ = 4 super-Yang-
Mills em quatro dimensoes. Embora a agao para supercordas neste background seja
conhecida tanto no formalismo de Green-Schwarz como no formalismo de espinores
puros, a construgao explicita dos operadores de vértice da teoria em termos de
supercampos ¢ um problema em aberto. Nesta tese, os operadores de vértice do
formalismo de espinores puros correspondentes aos estados de supergravidade sao
construidos proximos a fronteira de AdS. A conjectura prevé que todo estado na
camada de massa da supercorda é dual a um operador invariante de gauge de N' = 4
d = 4 super-Yang-Mills, em particular, os estados de supergravidade sao duais a
operadores Half-BPS. Os operadores Half-BPS e seus duais podem ser descritos
como supercampos em um superespaco harmonico. Os resultados obtidos para os
operadores de vértice sao descritos em funcao desses supercampos duais de acordo

com o previsto pela conjectura.

Palavras Chaves: Supercordas; Conjectura (AdS/CFT); N'=4 super-Yang-Mills;

Supersimetria; Superespaco harmonico.

Areas do conhecimento: Ciéncias Exatas e da Terra; Fisica de Particulas e

Campos; Fisica Matemaética.
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Abstract

The Maldacena’s conjecture or (AdS/CFT) has been one of the most studied
topics in high energy physics since its formulation. One of the versions of the con-
jecture is the duality between the theory of type IIB superstrings in the background
AdS® x S® supported by a Ramond-Ramond flux and the theory of N' = 4 super-
Yang-Mills in four dimensions. Although the action for the superstrings in this
background is known both in the Green-Schwarz and in the pure spinor formalisms,
an explicit superfield construction of the vertex operators of the theory is an open
problem. In this thesis, using the pure spinor formalism, we explicitly construct the
vertex operators corresponding to supergravity states close to the boundary of AdS.
The conjecture predicts that every on-shell superstring state is dual to a gauge-
invariant operator of N'= 4 d = 4 super-Yang-Mills, in particular, the supergravity
states are dual to Half-BPS operators. It is possible to describe all the Half-BPS
operators and their duals as superfields in harmonic superspace. The results for the
vertex operators are described in terms of these dual superfields in agreement with

the prediction of the conjecture.
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Chapter 1

Introduction

The Maldacena’s conjecture or (AdS/CFT) [1, 2, 3] has been one of the most stud-
ied topics in high energy physics since its formulation. One of the versions of the
conjecture, and the one relevant for this thesis, is the impressive duality between
the theory of type IIB superstrings in the background AdS® x S°® supported by a
Ramond-Ramond flux and the theory of N' = 4 super-Yang-Mills in four dimensions,
two reviews are [4, 5]. The predicted duality is of the “weak-strong” type, or in other
words, the strong-coupling regime of one of the theories is mapped into the weak-
coupling regime of the dual theory, which makes the conjecture very attractive but
hard to prove. The conjecture is the only known tool to perform several computa-
tions, for example, one can compute the correlation function of two gauge-invariant
operators of N' = 4 d = 4 super-Yang-Mills in the strong-coupling limit from the
study of a classical solution of the superstrings equations of motion [6]. Moreover,
the conjecture has several applications such as in condensed matter physics and
plasma physics, see [7, 8], for example.

In this specific version of the conjecture, the dual theories are related as follows.
The beta function of the N' = 4 d = 4 super-Yang-Mills vanishes in all orders in
perturbation theory [9, 10], which implies that the theory is superconformal with
the global symmetry group PSU(2,2|4), and this is precisely the isometry group of
the background AdS® x S°. The super-Yang-Mills admits a 't Hooft expansion and,
if its gauge group is SU(N) and gy, its coupling constant, the effective coupling
constant of the theory is the 't Hooft parameter A = g3,,N, an introductory book
about the N expansion is [11]. In addition, the theory can have a non-zero 6 angle.
Considering its dual theory, the 8 angle is proportional to the VEV of the Ramond-
Ramond scalar, the g, string coupling is g, = A/N and o> ~ R*/\ where 1/a/
is proportional to the string tension and R is the radius of both AdS® and S°.
Furthermore, the conjecture predicts that every on-shell superstring state is dual

to a gauge-invariant single-trace operator of N' = 4 d = 4 super-Yang-Mills, its



energy corresponding to the dimension of the operator [12]. In the particular case
of supergravity states, the dual operators are the Half-BPS operators.

In order to study superstrings in AdS® x S?, it is possible to use both the Green-
Schwarz and the pure spinor formalisms. The RNS formalism cannot be used,
because it is a Ramond-Ramond background. The superstring action in the Green-
Schwarz formalism was constructed by Metsaev and Tseytlin in [13], an excellent
review is [14]. The action is k-invariant and as in the flat space case the theory has
first- and second-class constraints. The usual procedure for quantizing the theory
is to go to the light-cone gauge, however, in a curved background the procedure of
gauge-fixing is more involved than in flat space case, and the resulting Hamiltonian
is non-polynomial in the worldsheet variables, which differs from the flat space
case where the Hamiltonian is free and straightforward to quantize. In addition,
after the procedure of gauge-fixing not all the original symmetries of the theory
are kept manifest. The action for the superstrings in the pure spinor formalism was
constructed by Berkovits in [15], a recent review is [16]. Unlike in the Green-Schwarz
formalism, there are no constraints on the canonical momenta. The action is BRST
invariant and the quantization is done preserving all the symmetries of the theory
manifest imposing that the physical states are states in the cohomology at +2 ghost
number of the BRST operator.

Although the action for superstrings in AdS® x S° is known both in the Green-
Schwarz and pure spinor formalisms, an explicit superfield construction of the vertex
operators of the theory is an open problem. The first article about vertex operators
in this curved background in the pure spinor formalism was the article by Berkovits
and Chandia [17]. In this work, the authors proved the existence of a massless
vertex operator by requiring that it preserves all the isometries of the background
and reduces to the known flat space result [18] in the flat space limit. Moreover,
they proved that the vertex operator is described in terms of an A/ = 2 bispinor

superfield A,4(x,0,0) in ten dimensions as
V = AAYA 4 (x,0,0), (1.1)

where [z, 0, é] are the N/ = 2 d = 10 superspace coordinates, \* and A% are the left-
and right-moving bosonic pure spinor ghosts of the formalism and &, & = 1,. .., 16.
The expansion of the superfield A (x, 0, é) in its component fields was not computed
by Berkovits and Chandia, and the connection between this vertex operator and the
duals of the Half-BPS operators was not found.

In this thesis, based on the article [19] by the author and Berkovits, a new
method for constructing the vertex operators is presented. This method is used

for computing the states in the zero mode cohomology at +2 ghost number of the



BRST operator close to the boundary of AdS, which corresponds to the physical
supergravity states. Furthermore, the expansion of the superfield A@a(a:,e,é) is
found and the connection of this superfield with the duals of the Half-BPS operators
is made clear. Note that another method for constructing the unintegrated massless
vertex operator based on symmetry arguments and not emphasizing its boundary
behavior exists and was developed by Mikhailov in [20, 21], for the integrated vertex
operator see [22].

The first step of the method for constructing the vertex operators used in this

thesis consists in expanding the BRST operator as

QZQ,%—I—Q%—F...,

where (),, is proportional to 2" and z the distance from the AdS boundary. The
(), also depends on the other worldsheet variables and their canonical momenta
when restricted to its zero mode terms. As will be explained in the chapter 3, an
expansion of the vertex operator in powers of z is also possible close to the boundary
of AdS and it has a term with a minimal power of z. After performing both the
z expansions, one can use standard methods for computing the cohomology of the
BRST operator, one first computes the cohomology of Qf%> then computes the
cohomology of Q% restricted to states in the cohomology of Qfé, then computes the
cohomology of @) 3 restricted to states in the cohomology of @) _ 1+ Q 1 and so on.
In fact, it will be argued, making some assumptions, that the cohomology of the
complete BRST operator () is determined by the first two terms Q_% +Q 1 only.
The result for the vertex operator constructed using this method is only valid inside
the region of validity of the z expansion, or in other words, close to the boundary
of AdS. An important result used in the computation is the zero mode cohomology
of the operator Q_1 obtained by Mikhailov and Xu in 23], see also [24].

The resulting supergravity vertex operator computed with this method is de-
scribed in harmonic superspace. The study of supersymmetric theories using har-
monic superspaces was initiated by Galperin, Ivanov, Kalitsyn, Ogievetsky and
Sokatchev in [25], where an off-shell formulation of all N' = 2 supersymmetric theo-
ries was given, an excellent introductory book is [26]. Despite the fact that it is not
known how to construct an off-shell superfield formulation of N' = 4 d = 4 super-
Yang-Mills, it is possible to solve the constraints obeyed by the N' = 4 on-shell vector
superfield, or Sohnius superfield [27], keeping the SU(4) R-symmetry manifest us-
ing harmonic variables [28, 29]. Moreover, all Half-BPS operators of N =4 d = 4
super-Yang-Mills can also be described elegantly as superfields defined in harmonic
superspace. The duals to these operators, defined up to a gauge transformation, can

also be written as superfields depending on the harmonic variables.



As expected by holography, these dual superfields were related to chiral super-
fields describing the type IIB supergravity close to the boundary of AdS by Howe
and Heslop in [30], an excellent introduction to their work is [31]. These chiral super-
fields describing the type I1B supergravity were constructed originally by Howe and
West in [32] and previous works about holography in superspace are [33, 34, 35, 36].
In this thesis, the dual superfields will be related to the type 1IB gauge superfield
Aza(x, 0, é) of (1.1) that appears in the massless vertex operator. As stated above,
the duals are defined up to a gauge transformation and we have checked that our
results for the vertex operators change by a BRST-trivial quantity under a gauge
transformation of the duals, implying that the results are consistent.

This thesis is organized as follows: in the first part of the chapter 2, we briefly
review both the minimal and the non-minimal pure spinor formalisms in flat space.
Then, the pure spinor formalism in a curved background is explained and the action

for superstrings in the AdS® x S° background with the matter being represented
PSU(2,2/4)

SO(1,4)xS0O(6)

The chapter 3 is devoted to the analysis of the BRST operator of the theory, its

expansion in powers of z is performed and the argument that its cohomology is

by the unusual supercoset together with S% variables is constructed.

determined only by the first two terms of the expansion is explained. In the chapter
4, we present our results for the supergravity vertex operators close to the boundary
of AdS and explain several concepts needed for understanding the results, such
as harmonic superspace. Finally, the chapter 5 is devoted to the conclusion and

perspectives.

1.1 Notation

In this section, we fix the notation for almost all the indices that are going to
appear in this thesis. In addition, the Appendix A has our conventions for the Pauli
matrices of SO(1,3) and SO(6) together with several useful properties satisfied by

these matrices. The indices are

e u,v,p,7=0,1,2,3 SO(1, 3) vector indices

e o, (3,7,0e=1,2 SO(1,3) chiral spinor indices
o &, 3,74,0,6=1,2 SO(1,3) chiral spinor indices
e [, J=1,...,6 SO(6) vector indices

i iajakal7manap7t:1,2,3,4 SU(4) indices

e M,N,P,T,SSR=0,...,9 SO(1,9) vector indices



o, [,7,0,e=1,...,16 SO(1,9) spinor indices
o &,B,fy,g,?: 1,...,16 SO(1,9) spinor indices
e a,bédeé f=1,....5 SU(5) indices

e a,bc,de, f=0,1,...,4 SO(1,4) vector indices
e A B .C=(a,aq) SO(1,4) spinor indices

o b, d,d, e, f'=5...,9 SO(5) vector indices
o[ J, K=12 SU(2) harmonic coset indices
o I''J K =1,2 SU(2) harmonic coset indices

In a section of this thesis, we will Wick rotate SO(1,9) to SO(10) and the indices
of SO(10) will be the same of the corresponding ones of SO(1,9). The last comment
on notation is that when we need to distinguish between curved and flat indices,
the curved indices will be similar to the flat ones except that they will appear with

a breve symbol "



Chapter 2

The Pure Spinor formalism

The pure spinor formalism first appeared in the article [15] by Berkovits. One of
its advantages is that it allows the quantization of the superstrings keeping all the
symmetries manifest, differently to what happens in other formalisms. In the case
of superstrings in flat space background, one can use in addition to the pure spinor
formalism, both the RNS or Ramond-Neveu-Schwarz and the Green-Schwarz for-
malisms. The action in the RNS formalism is worldsheet supersymmetric, however,
its spectrum is only supersymmetric after the GSO projection, an excellent intro-
ductory book is [37]. The Green-Schwarz formalism has spacetime supersymmetry,
but it has first- and second-class constraints that do not allow its covariant quantiza-
tion, the usual procedure is to go to the light-cone gauge and after gauge-fixing the
Lorentz symmetry is not manifest, see [38], for example. The pure spinor formalism
has the same spectrum of the Green-Schwarz formalism, as proven by Berkovits and
Marchioro in [39]. It was also proven that the results of the scattering amplitudes of
superstrings up to two loops are equivalent using either the pure spinor formalism
or the RNS formalism [40], nevertheless performing the calculation with the pure
spinor formalism is more efficient because all the symmetries are kept manifest in
all the steps of the calculation, an excellent introduction is the thesis by Mafra [41],
and recent articles are [42, 43, 44]. The pure spinor formalism can also be used to
study superstrings in a background supported by a Ramond-Ramond flux such as
AdS® x S°.

This chapter is organized as follows: the first section contains a short review
of the minimal pure spinor formalism in flat space background which is followed
by an introduction to the non-minimal pure spinor formalism. The non-minimal
pure spinor variables will be important in the chapter 4, where the main results
of this thesis will be presented. The next section has a briefly introduction to the
pure spinor formalism in a generic curved background of which AdS® x S® is an

example. The usual AdS® x S° action with the matter variables represented by



PSU(2,2/4)
SO0(1,4)%x50(5)

the matter variables represented by the AdS supercoset

the supercoset is explained in the sequence. Finally, the action with

PSU(2,2/4)
SO(1,4)xS0(6)

S5 variables is constructed. This action and its BRST charge will be used in the

together with

following chapters.

2.1 The Pure Spinor formalism in flat space background

The first step in reviewing the pure spinor formalism or Berkovits formalism is to
define what a pure spinor is. The 32 by 32 Gamma matrices I'™ of SO(1,9) are
represented in the Weyl basis as

FM _ ( 016 (’yM)dB ) 7 (21)
(v)az O

where 06 is the 16 by 16 zero matrix and both (v*)% and (yM)s5 are 16 by 16

symmetric matrices. The Gamma matrices satisfy the Clifford algebra

{TY, TV} = 2™, (2.2)

which is equivalent to
YAANPY ANy MPY = oM 5] (2.3)
and in our conventions the metric is mostly plus, n”™" = diag(—1,1,...,1). A chiral

spinor A% is called a pure spinor if it satisfies the constraints

AN =0, (2.4)

for all values of M. As will be explained in the chapter 4, it is possible to solve these
constraints using U(5) notation and show that a pure spinor has 11 independent
components, see [45], for example.

Having defined what a pure spinor is, we can write down the worldsheet action

of the formalism, which is
1 1 - - _
=5 / 0z (50XM DXy + padb” +wsdA) (2.5)
s

where we have written only its holomorphic part, in the case of closed strings it is
necessary to add a similar antiholomorphic part. We have also set the dimensional
parameter o inversely proportional to the string tension to one and this will be
done everywhere in this thesis. In the action, the [X* #9] are superspace coordi-

nates, ps and wg are the conjugate momenta of 6% and A%, respectively. Because



A% is a constrained variable, its conjugate momentum is defined up to the gauge

transformation

for any AM. It is not difficult to see that the action is invariant under this gauge
transformation of w. In addition, due to this gauge transformation, w can only

appear in gauge-invariant combinations such as
1
NMN = Z(w*yMN)\) s J = w)\, (27)

where Npn are the SO(1,9) ghost Lorentz currents and J is the ghost number
current. The action is conformally invariant because the variables have the following
conformal weights: (1,0) for [0X™M, ps, wa] and (0, 1) for [0X M, 96%, OA*]. Moreover,
it is possible to derive the energy-momentum tensor and prove that the theory does
not have a conformal anomaly, or in other words, its central charge is zero. We refer
the reader to [46] for further details.

A direct calculation shows that the action is invariant under the global super-

symmetry transformations

1

5XM:§(67M9)7 00 =e%, A" =0, dwa=0,
13 1 547505
0pa = 5 150X ar + G006 v

where ¢ is a constant spinor and #® transforms in the usual way as a translation in
superspace. The proof of the invariance of the action follows from the important

Fierz identity
M .
Ya(@Vmps) =0,

where the parentheses in the indices above mean symmetrization not including the
index M inside the ||. Using the action, one can compute the OPEs involving X

and @ using standard methods, for example, as described in [47]. The OPEs are

_ 5P
XMHXN(y) = =MV In|z — y|?, pa(2)0°(y) — m , (2.8)
and defining
1 1 1
oM = ox™ + 597M89, ds = pa — 5((3XM + EGVM(?G)(VM@)@, (2.9)
one can show using the OPEs above that
1
ds(z)dzly) — — %Jtl,n , 2.10



and these definitions will be important in a moment. The last ingredient of the pure

spinor formalism is its BRST charge, which is defined as

Q= /dz Ada (2.11)

and using the pure spinor constraints and the last OPE above, it is straightforward

to show that this charge is nilpotent
Q% o« MyMATI =0. (2.12)

Given the nilpotent operator @), it is possible to define its cohomology. We call
a state A a closed state if A is annihilated by @, which means @) - A = 0. An
exact state B is a state that can be written in the form B = @ - C for some C.
The cohomology of () is defined to be the set of closed states that are not exact.
Defining the pure spinor variable A\* to have ghost number +1 and its conjugate
momentum wg to have ghost number -1, in the pure spinor formalism for open
strings the physical states are the states in the cohomology of the BRST operator
at +1 ghost number. Similary, in the case of closed strings the physical states are
the states in the cohomology of the BRST operator at +2 ghost number.

Note that using the OPEs, one can derive how the BRST operator acts on a
generic function f(X,0),

Q- f(X,0) = —\Ds f(X,0), (2.13)

where Dj is the ten-dimensional supersymmetric derivative given by
0 1, 7 O
—_— == T —
g~ 2\ e g
The zero mode cohomology of this BRST operator is well-known, see for example
(48], and the physical states are the gluon and the gluino fields of the N'=1d =10

super-Yang-Mills as expected. This finishes our short review of the pure spinor

Dy = (2.14)

formalism in flat space background, and all details omitted in this section can be
found in the thesis by Mafra [46].

2.1.1 The non-minimal pure spinor formalism

The non-minimal pure spinor formalism was developed by Berkovits and first ap-
peared in [49], see [41, 50] for reviews. One of the motivations for introducing the
non-minimal variables was that they allow the construction of a covariant b ghost
which is necessary for computing multiloop superstrings scattering amplitudes. The
motivation for us, as will be explained in the chapter 4, is that several of the results

of this thesis will depend on these additional non-minimal variables.



The non-minimal formalism has, in addition to the pure spinor variables de-
scribed previously, a bosonic spinor \s and a fermionic spinor 5 together with their
conjugate momenta w® and s® All these variables are left-moving, and a similar
set of right-moving variables has to be introduced in the case of closed strings. The

non-minimal variables satisfy the constraints

P
=
QI
@I
>
™I
I
(@)
P!

a7 ayMPr; =0, (2.15)

and the conjugate momenta are defined up to the gauge transformations

o = AM (M) = oM (), 5™ = M (N, (2.16)
for any AM and ¢™. This implies that the variables @ and s can only appear in

gauge-invariant combinations, such as
Nuyn = Z(”J)'yMNS\ — syunT), J5 = W\ — s, T5 = WON — sOr
etc. The left-moving part of the action is modified to
Sonmin = / d*z (;aXMéXM + pa00% — wadA* — 00N + s°0rs),  (2.17)

and it is conformally invariant because the additional fields have the following con-
formal weights: (0,1) for [OAs, Ora] and (1,0) for [@®, s%]. It is possible to compute
the energy-momentum tensor using standard techniques and show that the non-
minimal variables do not give any contribution to the conformal anomaly, which
means that the total central charge remains zero.

A very important point for the remaining of this thesis is that the BRST charge

is also modified to
Qnonmin = /dZ ()\ado? + wara) s (218)

and it is straightforward to see that the additional term is invariant under the gauge
transformations of (2.16). As will be explained in the chapter 4, using U (5) notation
one can show that both the variables A and r have 11 unconstrained components.
Then, one can use the standard quartet mechanism argument of [51, 52] to show that
the cohomology of the non-minimal BRST operator is independent of the quartet
of variables (X, @) and (r,s), which means that it has the same cohomology of the
BRST operator constructed only with the minimal variables.

The last comment about the non-minimal pure spinor formalism is that the
formalism can be intepreted as a ¢ = 3 N’ = 2 critical topological string. We refer
the interested reader to [49] for further details.

10



2.2 The pure spinor formalism in a curved background

Despite the fact that the pure spinor formalism action for superstrings in AdS® x S°
was already constructed in the first article about the formalism by Berkovits in [15],
the pure spinor formalism action in a generic supergravity background appeared
in a later article by Berkovits and Howe [53], see also [54]. We will briefly review
this general action focusing on the case of type IIB superstrings, which has the
background AdS® x S® as a particular case.

The starting point for constructing the Berkovits-Howe action is to write the most
general classically conformally invariant action with ghost number zero depending
on the variables with the following conformal weights: (1,0) for [0Z M ., wasl, (0,1)
for [0ZM dg, 0] and (0,0) for [A*, A\¥], where [\, A% wq, ;] are the usual bosonic
pure spinor variables introduced in the previous section corresponding to the ghost
variables of the theory, [da, d@] are the variables that appear in the BRST operator
as in the flat space case of (2.11), and considered as independent variables here and,
finally, Z M — (X M .62, 55‘] are curved variables parametrizing the N' = 2 superspace

in ten dimensions. The most general action is

1 1 o 3
§=5 / 2~ (Gyyn(Z) + By (2)02M 027 + wad)™ —wz0X* (2.19)
e
+e%(2)da0ZM + €5,(2)d;02M + O, P(2)A wz02M + QMéB(Z)X%EaZM
+ P(Z)dads + CT(Z)Nwads + CF(2)M s + S5 (2)XwsA i,

where all the superfields that appear in the action above are the background su-
perfields which have geometrical interpretations as will be explained soon. One
comment about the action is that in fact it has an additional term, the Fradkin-
Tseytlin term, however, this term will not be relevant in the following and it will
be omitted, see [53, 54] for details. The superfield e is the supervielbein, the su-
perfield €2 is the spin-connection, G ;5 is the metric related to theAﬂat metric by
Gupn = e%e%nMN, By is the two-form potential, the superﬁelds CA*OE;’ and CgAA’ are
related to the two gravitini and dilatini field-strengths, the P®? is a superfield whose
lowest component is related to the Ramond-Ramond field-strengths and, finally, the
superfield Sgg is related to the curvature.

In the article by Berkovits and Howe [53], it was proven that imposing that the
action is both BRST invariant and invariant under the gauge transformations of w
and w defined in (2.6), all the expected constraints satisfied by the superfields of the
type 1IB supergravity that appear in the action are reproduced. Mainly, consider
the total BRST charge Q)1 of the theory, which is

Qr=Q+Q,
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where
Q= [d:nds, Q= [azNa.
The total BRST operator must be nilpotent by consistency of the theory, and
{Qr, Qr} =0,
implies
{Q.Q}={Q.Q}={Q. Q}=0, (2:20)

which follows from collecting equal powers of A and A. In addition, the charges Q

and Q are well defined if the following holomorphy conditions are satisfied

O(Nd:-) =0, 0(\%ds) =0, (2.21)
and the consistency conditions (2.20) and (2.21) are only satisfied if the superfields
satisfy the expected supergravity constraints.

The action in the pure spinor formalism for superstrings in AdS® x S° is a
particular case of the general action given in (2.19) and it is obtained by replacing
the correct expansion of the superfields in this background. This action will be
presented using a convenient notation and in great detail in the next section, here

we only outline the derivation of the action. The AdS background is described by
PSU(2,2/4)

SO(1,4)x50(5)

and the connections are defined by

the supercoset and for a given coset representative g the supervielbeins

g '0g = (" Ty + QN Hy), (2.22)

where Hy are the generators of the isotropy group SO(1,4) x SO(5) and Ty the
remaining generators of PSU(2,2|4). Moreover, the superfields C’? and C27 re-
lated to the gravitini and dilatini are zero in this background. The background is

supported by a Ramond-Ramond flux, which implies

~a el dle!
Paﬂ X Fa cae (Wa’b’c’d’e’)aﬁ;

where F@Y¢d¢ ig the only non-zero constant field-strength of this background. In
addition,

4 a B/ c 5
S22 o (v0)a” (*4)5” Riatifed)

where Rjgycq is the constant Riemann tensor describing the curvature of the back-

ground. Finally, the only non-vanishing components of B are [55]

Baé — Bé& x (701234)6[& ]
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2.3 Superstrings in AdS® x S°

In this section, the usual action for superstrings in the background AdS® x S® in the
pure spinor formalism will be presented in great detail. This action first appeared in
the article [15] by Berkovits and a recent review is [16]. The background is described
by the supercoset
PSU(2,2/4)
SO(1,4) x SO(5)
Note that the bosonic subgroup of PSU(2,2[4) is SU(2,2) x SU(4) which is

locally isomorphic to SO(2,4) x SO(6) and from the bosonic part we have
SO(2,4) SO(6)
AdS® = "~ b= 2.24
S SO(1,4)’ 5 SO(5) (224)

In the next subsection, the algebra of PSU(2,2|4) in ten-dimensional notation

(2.23)

will be described and several comments will be made, this is important to understand

the superstring action which will be reviewed in the sequence.

2.3.1 The PSU(2,2/4) algebra in ten-dimensional notation

The Lie superalgebra of PSU(2,2|4) contains 30 bosonic generators and 32 fermionic
generators, a good review of Lie superalgebras for physicists is Kac [56] and an
excellent introductory book is [57]. The Lie superalgebra of PSU(2,2/4) has a Z4-
automorphism and this implies that it is possible to organize the generators in a
way that the algebra is Z4-graded, which means that denoting the set of generators
with grading + = 0,1, 2, 3 as g; the algebra has the structure

[gl y 95 ]+— = Gi+j, m0d4a (225)

where the subscript +— means commutator or anticommutator. A very good review
of this point is [14], see also [55].

In order to write the action for superstrings in the pure spinor formalism in the
background AdS® x S° described by the supercoset %,
organize the generators of the Lie superalgebra as [go, 91, 92, 93] = [T{at), 15, T, T3

1t is convenient to

and the non-zero structure constants are

I a3= 3% 1 45= 375 (2.26)
P = =g = g
9 = 10 R = =0T
7 g = 500 s = 5wy



o o osa e _ lsg o) 1
f [@]d — 774[25@] 5 f cd — 75[655] 5 f cd — _56 5d/] 3

ab
e fedef] = 5leld¢] 5J + ”fL(S ior

wherea =0,1,...,4,d’ =5,...,9, and a denotes both a and a’. The [] that appears
on the right-hand side of the structure constants means antisymmetrization of the
indices with no additional factor of half. Furthermore, (75, ~238) and ('y;é, fyﬁaé)
are two sets of chiral gamma matrices which are related with each other as will be

shown soon, and

;7 1
)’ = 5

with a similar definition for the matrices with hatted indices. Moreover,

(Yab Yass 1" = wa372") |

Str (T,Ty) = Nap,  Str (TaTs ) Kajr Kag = Fias (2.27)

Str (Tt Tfed)) = Miablfed) »

where Str denotes the supertrace over the generators. Explicitly ng and njay)cq) are

Nap = {T]aba na’b’} - {(_171717171)7 (171717171)}7 (228)
Nablicd) = \Mabljed) s Marv][ed]} = {Nafdeb » —Na’[a ey } -
In order to complete the definitions, we have to define the inverse symbols that

appear in the expressions for the structure constants. They are defined implicitly

by the relations

a _ sa ai o é ab __ sa
K ’8/4357 =05, HKigh f= (52 77*771)(; =0z, (2.29)

ab a ’ Y
ey e = 05, 0% = {055, 6 /é’/}—{ 55 5 w8y

We will make several comments about the superalgebra and its structure con-
stants, not all of them essential for the rest of the thesis but they may be useful to
the reader. The first comment is that in order to prove that the structure constants

of the algebra given above satisfy all the generalized Jacobi identities

(—1)derAdeCI Ty [T, To ool + (—1)8AEB [ T [T, Talio )4
+(_1>deg0degB[TCa [TA7 TB]-‘r— ]+— = Oa

where the value of deg is 1 if the generator is in [g; , g3], i.e, a fermionic generator or
0 if the generator is in [gg, go], i.€, a bosonic generator, the following chiral gamma

matrices identities are necessary

Vo Vaii®) = Va@Naid) T Va@Vass) = 0,

14



and

(V) = kTP ()5, (V)ag = —Raskig (1), (2.30)

note that the difference in sign above for a and a’ is necessary, for example, the

Jacobi identities given below are only satisfied if we have this sign difference:
[TQ’ [TQ’ T&H + [TQ7 [T&v TQH + [T&7 [Tg’ TQH =0.

Another way to see that there is this sign difference is by studying the second
Casimir of the algebra. It is well-known that the dual Coxeter number of PSU(2,2|4)
is zero, which implies that its second Casimir vanishes in the adjoint representation.
Following Mikhailov and Schafer-Nameki [58], the second Casimir is defined by

¢ = ’%éB(T& ® TB - TB ® T&) + nib<Tg & TQ) + n[afb][gl] (T(Lb & Tg) ,
and it acts on a generator as
C-To = (kn)*P[Ta, [Ts, To]1-14- =0, (2.31)

where [A, B, C] here can be any of the indices of the generators and (kn) is k or 7

depending on the value of the indices. Noting that

KT, Tyy =0, (2.32)

which can be verified by direct computation using (y22).% = 0 or by a group theoretic
argument given in [58]. The argument is that if it is not zero it will be an element
of the center of gy, however, the center of g is trivial. The statement “being in the

b}

center of gy” should be understood as that for any 7, we must have

[Tu, 5°{Ts, T3}] =0, (2.33)

and one way to prove the result above is by using the generalized Jacobi identities

and £ (v )y = =K ()5
impose many relations among the structure constants, for example,

@, The vanishing of the second Casimir and (2.32)
KTy, {Ta, Ty} =0, [ T,, [T, ;)] =0,
aﬁ{ ) [T57 ,] } = H&E{TO_H [Tév Ta] } = _nj[Tbv [TQ’ TQH )

and the third relation is only satisfied with the correct assignment of signs of (2.30).

The last comment about the structure constants is that it is possible to relate

15



many of them using supertrace identities, for example, we know that the supertrace

satisfies
Str([Ta, Tple—Te) =Ste(Ta[Ts, To]i— ),
in particular,
Str({Ta, T5 }, Ta) = Str (T, [T, Ta]),
which implies
anB Tba = fﬁlgg Ray -
2.3.2 The action

After introducing the PSU(2,2|4) superalgebra in a useful form for understanding
the superstrings action in the pure spinor formalism, the action will be presented.
We will follow mainly the notation and conventions of [59].

The first step in constructing the action is to define the left-invariant currents.
In this direction, we first need a parametrization of the supercoset (2.23). We will

choose, for example, the coset representative
g =exp(X{Ts + X5T, + X§T5), (2.34)

where as defined in the previous subsection T4 are generators of the Lie superalgebra
of PSU(2,2/4) and X! are variables parameterizing the coset. In what follows the
precise form of the coset representative will not be necessary, everything will be still

valid for any g. The left-invariant currents are defined as
g '0g = JUTy + JOTs + +J%T, + JOT, (2.35)
= J'+J' + P+ T,
and the currents J are defined similarly, with the replacement of @ by 9 on the
left-hand side of the expression above. In our conventions, a global PSU(2,2/4)

transformation gp acts on the coset representative by left multiplication, or in other

words,
gp 9(X) = g(X")H (2.36)

where X' are the transformed variables and A’ an element of the isotropy group.
In its infinitesimal version we can approximate gp ~ 1 + X and the formula above

reduces to

dg=Xg. (2.37)
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We are now in position to understand why the currents J defined in (2.35) are

called left-invariant. Under a global PSU(2,2|4) transformation, we have

g 09 = ¢7'0g =g 'gp'0(9p9) = g 09,

which means that the currents are invariant under these transformations. In addi-
tion, local gauge transformations of SO(1,4) x SO(5) represented by hp acts on g
by right multiplication

9(X) hp = g(X'), (2.38)
or in its infinitesimal form with hp ~ 1 + €,
0g=gQ. (2.39)

The currents J transform under gauge transformations, in order to deduce their

transformation, note
g 09 — ¢7'0g = hplg 'O (ghp) = hp' JATu hp + hp Ohp

and since hp is an element of the isotropy group with all its generators with 0
grading, projecting the result above onto the subspaces with definite grading under

the Z4, gives
Jo—= hpt T hp, i=1,2,3, J° = hp' J°hp +hp' Ohp, (2.40)

which means, in particular, that J° transforms as a connection.
In addition to the currents just defined, the action for the closed superstrings
has a pair of bosonic pure spinors, one left-moving A% and one right-moving 5\5‘,

satisfying the constraints
MEIA=0,  MeA=0, (2.41)

which implies that each of them has 11 independent components. This result will
be explained in great detail in the chapter 4, where the constraints will be explic-
itly solved using U(5) notation. The conjugate momenta of these variables will be

denoted ws and wg and they are defined up to the gauge transformation

Sw = (YA)Ag, 3 = (1504, (2.42)

for any A, and AQ. This implies that they can only appear in the gauge-invariant

combinations of either the Lorentz currents

a 1 a \/@ 1 A~ aby
N = Z(w’ﬁb}\)» Nt = 1(“17*6)\)’ (2.43)
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or the ghost currents J = (wA) and .J = (@A). The final definitions needed to write
down the action are
A=MTs, w=wsTsr, N=—{w A}, (2.44)
A=NTs . = wsTsr, N=—{wA}.

Finally, the worldsheet action is

S = /szStr (;ﬂj? + iﬁjl + ijlj?’ +wVA+HVA—NN), (2.45)
where
VA=0A+[JO, ], VA=0A+[J°, \]. (2.46)

Several comments about this action are in order. Firstly, the action is clearly
invariant under global PSU(2,2|4) transformations, this follows immediately as a
consequence of the invariance of the currents. The action is also gauge-invariant,
the currents [J1, J?, J3] transform covariantly under the gauge transformations and
the Str ensures the gauge invariance of the terms involving these currents. The pure

spinor variables transform as
Sod =[N, Q], dar=[\,Q], dqw=[w,Q], doo=][w,Q], (247
and note that

SVA = 0N+ [0J°, A +[JY, 0)]
= [ON, Q]+ [N, 0] +[[J°, Q], A\l +[0Q, A\l +[J°, [\, Q]]
= [v)UQ]a

where we have used the Jacobi identity. This implies that the remaining terms of
the action are also gauge-invariant. One very important comment is that the action
is BRST invariant with the BRST transformation generated by the charge

€Q = —e/daStr()\J3+5\j1), (2.48)

and € a fermionic infinitesimal parameter. Under a BRST transformation the coset

representative transforms as
€Q-g=g(eA+eN), (2.49)

which enables us to find the transformations of the current by varying both sides of
the definition (2.35), which implies

89 10g + g 1089 =8I + 6T+ 6J% + 6.3, (2.50)
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and collecting the terms with the same grading, one concludes

5J° = [JP, eA]+[Jh, €A],
§J' = DN+ [J0, eA]+[J?, )],
§J2 = [JU e+ ]S, )],

0T = €N+ [J0, eA]+[J?, er].

In addition, as w and w are conjugate to A and 5\, the BRST transformation of

these variables are easily deduced from the form of the BRST charge, and they are
Q- -w=—J%, Q- -w=—J, (2.51)

and because w and w are defined up to a gauge transformation, the variations
above are equally defined up to gauge transformations. To complete the BRST
transformations of all fields, the transformations of the pure spinor variables A and

;\are
Q- A=eQ-\=0, (2.52)

however, there is a subtle detail here. When one performs a BRST transformation of
a particular coset representative such as g given in (2.34), it is possible that the final
result can only be written as (2.49) after a compensating gauge transformation of
SO(1,4) x SO(5). Since the pure spinor variables transform under local SO(1,4) x
SO(5), these variables will transform under this compensating gauge transformation.

We will now prove that the action is BRST invariant. This is accomplished
both by replacing the variations given above and by using the Maurer-Cartan iden-
tity that will be defined below. From the definitions of the currents (2.35), it is
straightforward to see that they satisfy

dJ+JANJ =0, (2.53)
which is the Maurer-Cartan identity. In this formula, .J is a one-form and A is the

usual wedge product of forms, in components

J=Jdz+ Jdz, dzdzﬁ—i—déi,
0z 0z

and two useful relations among the currents obtained from this identity after col-

lecting the terms with the same grading are

VJ'-VJ TR B[P, TP =0, (2.54)
V-V [, T+ [T, T2 =0.
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Using these Maurer-Cartan identities and the BRST variation of the currents
already given, a straightforward calculation gives the BRST transformation of the

matter part of the action
2 Loosm 3sa 1
5 Smatter = /d 268tr (G2 + T+ LI T) (2.55)
= /sz Str (=V.J%eX — V.J'eN) .
The next step in showing that the action is BRST invariant is to compute the

BRST variation of the ghost part. Using Jacobi identities and the pure spinor

conditions, it is possible to perform a few manipulations such as
[{wv )‘}7 )‘]: [wa {)‘7 )‘}]+[>‘7 {Auw}] - [{w7 )‘}7 )‘] =0,

where we have used that the first term on the right-hand side vanishes, and show
that

0Sghost = /d225 Str (wWVA 4+ @VA — NN) = /d22 Str (VJ3ed 4 VJte)), (2.56)

which precisely cancels the variation of the matter part of (2.55) implying that the
action is BRST invariant.

The last comment about the action concerns its equations of motion. Although,
we will not need the equations of motion in the remaining of the thesis, the method
for computing them will be explained for completeness. Under an infinitesimal
variation of the coset representative 0g = gY with Y = YT, + YT, + YT, the

transformation of the currents can be deduced from (2.50) and they are
6 =0Y +[J,Y],
which implies, for example,
SJ =0 +[J, Y+ [P, YR+ [P, Y.

Replacing these variations in the action and imposing that the variation of the

action vanishes for any Y, one concludes, for example, that

3o len s 2 L oo 71 1y

and using the Maurer-Cartan identity, this result can be rewritten as
VIU = [P P[PPI [N, T[N T
VJ' = [N, J']|+[N, J].
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The equations of motion for the ghosts can be easily derived using the properties

of the supertrace. Varying w, one gets
VA=[N, ],

and all the remaining equations of motion can be derived in a similar way, see [16],
for example.

The action written with a supertrace as in (2.45) is very convenient to prove
the BRST invariance and compute its equations of motion in compact notation.
However, in the next section, the useful form of the action will be the one with the
supertraces evaluated. We will perform these evaluations in the remaining of this

section and fix our conventions. The matter part of the action becomes
1 9= 3 4o 1 -
Simatter = /dQZStr (GIT+ ST+ VT (2.57)
1 1 o5 o= oa 1 S o5 = 7
— 2, - agbh _ Z,. (7078 a 78 T L (JaTB _ JagB
- /szTL(LbJ JE = SHap (T + JOI) g (ST = ),
where in our conventions, for example,
Str (J2JY) = Str (JOT5J°T5) = —Str (JETPT5T5) = —J4 T Str (T5T5),

because both the currents and the generators are fermionic. In order to compute
the ghost part, note that using the algebra of PSU(2,2[4), we have

N = —{w,\} = —N®T,, + N T, ,
N = —{w, 5\} = NabTab - Nalb,Ta'b' )
and
Synost = / d2*Str (WY + VA — NN) (2.58)

= wa VA — ’LZJ&VS\& + n[@][@N@N@ 5

where V involves the SO(1,4) x SO(5) connections,

_ _ _ .1 _ =
V)\a = (9)\0‘ —+ J@§(7@) B)\ﬁ s (259)

and similarly for VY
Finally the BRST charge is

€Q = —E/da Str(AJ? + AJY) = e/da fidg)\&JE — e/da IidES\Ej&, (2.60)

or, in terms of the usual complex coordinates z and Zz,
Q) = e/dz /{aEAdJE — e/dZ /iaéjxéj@, (2.61)
where in our conventions | dz is a short notation for [ % and [ dZz is a short notation

dz

—2me”

for
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2.4 Superstrings in AdS® x S° with a new supercoset

The pure spinor formalism in the background AdS® x S° with the matter variables

represented by the AdS® supercoset % together with ggggg variables for
PSU(2,2/4)

5%, instead of being represented by the usual supercoset as already

50(1,4)xSO(5)
reviewed, will be explained in this section. The pure spinor formalism with this new
supercoset is the relevant formalism for the rest of the thesis.
PSU(2,2/4) 50(6) - .
So(L.1)x5006 X S0() 1S related with the

previous one by a field redefinition, one of the advantages of working with this

Despite the fact that the supercoset X

supercoset is that the harmonic variables that will be introduced in the chapter 4

transform under N’ = 4 d = 4 supersymmetry as the ggggg variables. The method

for constructing the worldsheet action and the BRST charge for the pure spinor
formalism using this new coset is by comparing with the results of the formalism
% after a convenient gauge-fixing.

We will need the four-dimensional version of the superalgebra of PSU(2,2|4)

with the supercoset

which contains the following generators: the translation generator P,, the special
conformal generator K, the dilatation generator D, the Lorentz generators M,
the SU(4) R-symmetry generators U. ;, the supersymmetry generators [qai, 74], and
the generators of superconformal transformations [s?,, 54;]. All the non-zero commu-
tators and anticommutators of this superalgebra are given in the Appendix B.

The AdS supercoset % will be parametrized by 5 bosonic variables
denoted [z*, z] and 32 fermionic variables denoted [6*/, ¢, 4, 1*/]. The coset rep-

resentative being
g = exp(a" P, + 0% qo; + i04,G* ) exp(it sl, + id55 ) 27, (2.62)

and with this chosen representative the boundary of AdS® is located at z = 0. The
way of seeing this is by considering only the bosonic part of the coset representative
given above, or in other worlds, excluding the terms with [0, 6,, )], and computing

the vielbeins e using the definition
ggole,w dgnoo,y = € Py + € P, ,
and a straightforward calculation gives
| 1
et = —dal'sl, e =-dz,
z z
from where one deduces the metric

1
(dz? + dz?%), (2.63)

2 a b _
ds® =nmpe’e =3
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which is the usual AdS® metric in the Poincaré patch with the boundary located at
2z = 0. Two comments about our chosen parametrization, and that will be explained
in great detail in the Appendix C, are that it is not consistent to set 1) =1 = 0 as

a boundary condition and when z — 0 the variables [z, 8, 0] transform in the usual

N = 4 d=4 superconformal manner under global PSU(2,2[4) transformations.

The S° space ggg will be parametrized using a unit vector y”’ satisfying the

constraint y’y’ = 1, where the indices of the vector can be raised and lowered
using the usual six-dimensional Euclidean metric. Using the SO(6) Pauli matrices
of Appendix A, it is possible to define y; = y;0%,, v'* =y’ 0¥ and the properties
of the Pauli matrices together with the constraint imply that these variables satisfy
1. : 1 .
! o Lty =, 204

In order to complete the set of necessary variables, we need both the left-moving

YikYim = —1, ¥y

(A%, X%] and the right-moving (A, j\j] bosonic pure spinor variables together with
their respective conjugate momenta [we;, @%] and [y, ﬁ_)fl] These variables were
written in four-dimensional notation and they satisfy the constraints that are the
dimensional reduction of the ten-dimensional pure spinor constraints of (2.41), which

are
. ) 1 .., - —.
AN =0, AYAE - §ejklm)\dl)\$‘n =0, (2.65)
PP RS 1 . EN N
AN =0, AN - 561“”1@% =0.

This implies, as in the ten-dimensional case, that these variables have 11 independent
components and the conjugate momenta have 11 gauge-invariant components.

At several places, we will perform the dimensional reduction of expressions writ-
ten in ten-dimensional notation, the first example of such a reduction being (2.65).
The procedure for performing a reduction is as follows. Consider a vector VM of
SO(1,9), it decomposes as [V#, VI3] under its SO(1,3) x SO(6) subgroup. In

addition, we will use the ansatz for the chiral gamma matrices given below

ap Os 0t ® ie*? (1) ga
e A S (2.66)
b ® ZEdB<J ) 08
('V“) 5 = Us 5;‘ ® i(au)adEdB
ap (S; ® i(&“)dﬁe/ga Og ’
(71+3)a6 B (1) @ e# Os
08 (01)1’]' (9 —GdB ’
(71—1-3)7 o (Ul)ij ® €ap Os ]
af 0g (Ul)ij @ —eiB |7
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where ® means the usual tensor product of matrices. All the v are 16 by 16
matrices, Og are 8 by 8 zero matrices, [o#,5"] are 2 by 2 SO(1,3) Pauli matrices
and [0/, 0'] are 4 by 4 SO(6) Pauli matrices. The Pauli matrices are defined in
the Appendix A and using their properties that are also given in the Appendix, one
can easily show that the ansatz for the chiral gamma matrices given above satisfies
the dimensional reduction of

)

(™)az (M + (M)ap (M = 2mMN5Y.

Moreover, any two chiral spinors A* and Ag reduce as

AO_C — — , Aa = 40[1 .
Agi A

As an example, we will perform the dimensional reduction of the pure spinor
constraints and see that it is in fact given by (2.65). Note first that Ay™X = 0
implies My*A = 0 and A\y/*3)\ = 0, and using the ansatz for the chiral gamma

matrices, one has

AN = Nt NS N gadd N

afB ad”’M
- )\O‘iiafjd;\f‘ + ;\dii(ed‘ﬂeo‘ﬁagﬁ))\g
= 2X\%igh N\ =0,

and one concludes that A*\¢ = 0. Similarly,

AN = Aol N — Mo TS

ij N

) ) 1 o
_ ai I \j = I ijkly a

o 1 ...~ =
= AN = A =0,

and in this way we have deduced the pure spinor constraints of (2.65).
After introducing all the necessary variables, the next step is to construct the ac-

tion. The pure spinor formalism with the matter variables represented by the super-
PSU(2,2/4)
50(1,4)x50(6)

try when compared with the pure spinor formalism with the supercoset

together with the S° variables y! has an additional gauge symme-

PSU(2,2/4)
SO(1,4)xS0(5) *

Note that fixing this additional gauge symmetry the two theories are the same. So
the action and the BRST charge of the two theories have to be the same after

fixing this additional gauge. This will be our strategy for constructing the action
PSU(2,2/4 50(6)
50(1,4)x80(6) ~ SO(5)°

will check that the results are the correct ones by fixing the gauge y;; = afj

coset

and BRST charge for the formalism with the supercoset X we

and
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PSU(2,2/4)
SO(1,4)%x50(5)

reproduced. The first step to compare the two theories in the gauge y;; = Ufj is

relating the PSU(2,2|4) superalgebra written in ten-dimensional notation given in

showing that all the results obtained for the supercoset are correctly

(2.26) with the same algebra in four-dimensional notation as in the Appendix B.

This will be the subject of the next subsection.

2.4.1 The PSU(2,2|4) algebra in two different notations

In this subsection, we will relate the superalgebra of PSU(2,2|4) given in ten-
dimensional notation in (2.26) with the same algebra written in four-dimensional
notation in terms of the generators [P,, K, My, D, Gui, @4 S4» Sai] which is described

in the Appendix B. We will first relate the bosonic generators as

LP,+K,) if a=0,1,2
Ta: 2( M+ u) 1 a 07 ) 737 (267)
D if a=4,
MW if a,b=0,1,2,3,
Tw = %(PM—KM) if a=4,6b=0,1,2,3,
—3(P,—K,) if a=0,1,2,3,b=1,
and
1 eyl 1 kr7l
Ta/ = 5(0—(&/74)6)[ U]{:? Ta/b/ f— 5(0’((/74)((1/74))[ U]{: (268)

It is possible to show that all the commutators involving two bosonic generators
of (2.26) are reproduced when we organize the generators as above. We will show
the details of the calculation for a few examples. Note that using the last structure

constant of (2.26), we have
[T4u ’ T4y] = 774[MT4}V + 77V[4Tu]4 = _Tuu )

and this is precisely reproduced by

1 1 1
(Pu - KM) ) §(P,, -K,)] = _Z(QWVD + QM/W) + E(QUVMD + QMVH)
= -M

28]

N | =

[

where we have used the commutators of the Appendix B. Similarly, note that

1 1 1 ([
[D, §(Pu+Ku)]:i(PM_KM):g(S[‘l(SﬂTab’ (2.69)

25



with the correct result of (2.26). The final example is
1

1 o
[T Tv] = [5(0@-s )’“Ukr( ow—a6); " Uj ]
1 k J(slyri irrl
= Z(U(a’—4)6)z (U(b’—4)6)i (‘5jUk_5kUj)
= 7(0@—a)im(ow-)"" Ui = (0@ -a)m(0 @)™ Uj
1 .
= —50w-s@-1)"U;
- _*5[8 61)/ T/d/

with the expected result. Let us now relate the fermionic generators performing the

dimensional reduction of Tj; and of T}, the results are

2 2 . .
vz \/_06 ysh, Tit=— \Z_qa \i_( )54 . (2.70)

ai = TQCM - T< )
D) . A
Toi == i = 4 (s T2 = \/—ﬂ &t \/—( °)545

where superscript 1 refers to T; and 3 refers to T&.

One way to prove that this is the correct relation is to show that using the
algebra of the Appendix B, one gets the same results of performing the dimensional
reduction of the algebra (2.26). We will show these for one specific example, and all

other cases being similar. Consider the anticommutator
1

{15, T} = ;BT (2.71)
and multiply both sides by the fermionic spinors €* and pB , the dimensional reduction
of the left-hand side is

— [E&Td y pBTB] =
1 i ai j — iJ ¢
—3l€au — e (0°)ijs), — €aiq™ — €i(0°)75]
pﬂmQBm _ Pﬁm(UG)mpS]g . ﬁﬂmq—ﬁm . :5,6’m<06)mp§§] ’
and using the algebra of the Appendix B and the properties of the Pauli matri-
ces of the Appendix A, the terms proportional to P, and K, after computing the
commutators are

i —& 1 1 ao 4 1
€ Zagapi)*<Pu+Ku) 2<€az2‘7“ pa)2(Pu+K#), (2.72)

2 2
and noting that the terms proportional to M, cancel among them, the remaining
terms proportional to D and Uj’f are

1 . 1 1

SOl D L )gUP — (05U, 2.73)
17 im =& 17 pe’ 6\mp7y7i 17 ij =B 7Tm
_§6dl( ) me + iedipm(o— ) pUp - 5661< ) ]p U
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The next step is to compute the right-hand side of (2.71) and compare with the

results of the previous calculations. We have

1. 3 1. 31 1. 3 1. 71
a. e B _ a m B a9 f (a'-1) 3 krrl
2¢ Tapl Ty = 2€ TapP §(Pu+Ku)+§€ Yagl D + 26 Yap P §(U(a’—4)6)z U

and using the ansatz for the chiral gamma matrices of (2.66), one easily sees that the
terms proportional to P, and K, of (2.72) and the terms proportional to D of (2.73)

are reproduced. The terms with U j’ require a few manipulations before comparison,

1
2

ai (a —4 a 1j = 1
(ol pl — Egio™ 4)]PJ)2((’—4)6)11€U£=

f%%emﬁﬁ—xwwm+&fm%ww
1

PR, — 81)0 ™ — U =
1 i m 1 ai m ]'— —& m, ) 1— ij = m
SO U — S )T + S0 UG — S0 AU

2 2

where we have used that U/ = 0. The final result is equal to the terms proportional
to U? of (2.73). The last comment of this subsection is that in order to perform the

dimensional reduction of some of the structure constants it is necessary to know the

matrix form of k_=. In our conventions, it is equal to x_s = i(y°1239)

ap’ ap
the ansatz for the chiral gamma matrices of (2.66),

(0°)ij ® €ap O
L I 9.74
K'ocﬁ ( 08 (0.6)1] R Eaﬁ ( )

&b and using

2.4.2 The action

After relating the two forms of the PSU (2, 2|4) superalgebra in the previous subsec-

tion, we will construct the action and the BRST charge of the pure spinor formalism
PSU(2,2|4)

SO(1,4)xS0(6)

S5 variables. It is important to know how the variables transform under a gauge

with the matter variables represented by the supercoset together with

transformation in order to construct a gauge-invariant action. In our conventions,
under an infinitesimal local SO(1,4) x SO(6) gauge transformation the coset rep-
resentative (2.62) transforms by right multiplication as dg = ¢2. The pure spinor
variables and the S° variables y;; must also transform. Under the SO(1,3) x SO(6)
subgroup of SO(1,4) x SO(6), these variables transform in the obvious way as

Syje = iy + i, (2.75)
and

ON, = X, — N, SN = e g (2.76)
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ows = —ng]@ + c?w,i‘ , &Dg = —cﬁw; - C,iwg ,
i G Nk Ad_ .QB kad
SN, = coXs — AL, 0N =N + Ny,
~ ~ ~ ~ g 3~ i~k
owg = —cgwf + c?w?, Swl, = —cgwjﬂ- — clwy,

where Q = LU F—2(cg(0™), + cg(ﬁ’“’)ﬁ &)M,,. Under a local transformation gen-
erated by the four generators of SO(1,4) not contained in SO(1, 3), these variables
transform as

and
N = —aa N, B = g, 278)
5Agx = —caayjk/_\k , 55\] == CadyjkAfia
uf = gk, o = —canuf
5@]& = Cadyjkﬁjz s (5’&_]2 - _Cdayjkwlga

where Q = ¢*%io!,, Ty,

One comment on how to understand these transformations, specially the last
ones, is in order. Note that in the pure spinor formalism with the supercoset
% under a gauge transformation of SO(1,4) x SO(5) the pure spinor
variables transform as (2.47). It is possible to show that in the gauge y;; = afj
the transformations given above when restricted to SO(1,4) x SO(5) transforma-
tions are the dimensional reduction of (2.47) using the relation among the fermionic
generators of (2.70).

Moreover, these transformations imply that

A = [)‘gu yjkj‘%] ) Wa; = [w;'x7 _yjku_)(]z] ) (279>
~ . ~ . . s N ~a A_k‘
M = [)‘gu yjk/\k] ) Wa; = [wj ) _yjk‘wd] )

transform covariantly as SO(1,4) x SO(6) spinors where A = (o, &) is an SO(1,4)
spinor index. In particular, when y;; = afj they transform covariantly as SO(1,4) x
SO(5) spinors where SO(5) is the subgroup of SO(6) that leaves the vectorial index
6 of the Pauli matrix invariant.

The left-invariant currents of the theory are defined by

1 ,
g 'og = TS (Pt Ky) + J'D + JYP Mg + JEU] (2.80)

—l—Jo‘jqaj + de(jdj + sti + Jjgd

aj
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where ¢ is the coset representative given in (2.62) and Map = Mpa are the set of
SO(1,4) generators with A, B = (a,&) SO(1,4) spinor indices. Note that in the
gauge v;; = afj this expression must be equal to (2.35), in particular, this implies

that the fermionic currents must satisfy

JOT 5+ JOT 5 = J¥qa; + Jay@™ + J&s) + JI58 (2.81)

70

and performing the dimensional reduction of the left-hand side of the expression
above using the relations among the fermionic generators of (2.70), one concludes
that

T = V20 4 V2 (00T T = V2 IR V2(0°) 0, (2.82)
I3l = —N2J% + V2T, TS = —V2IF — V2(0%) %

where the subscript 1 and 3 refer to the currents J* and J%, respectively. Similarly,

in this gauge, the bosonic currents must satisfy
,u]' 4 AB krrJ ab a
J §(PH+KH)+J D+ J" Map + J;U = J®Tw + T, . (2.83)

Using the relation among the bosonic generators of (2.68), one concludes that

,L' a/ ]. ,L a/ / 1 ,L
Ji=1J §(U(a'—4)6)j + J §(U(b'—4>(a’—4))j , (2.84)

and from this relation, using the properties of the SO(6) Pauli matrices and the first
relation of (2.67), one has J& = [J#, J*, J¥] with J* = 1(c%@=9) 7 Jk 1t is left to
compare the currents of SO(1,4), note that

TP Map = J Mg + JO M+ 2J°M, 5,
and
JOT = T, + 2J%Ty, .

Equating the right-hand side of the two equations above and replacing 7}, = M,
and M, s by
1

1 o L _ & 48 ;
My = 5 ()€ Mas 5 (03) 5 My, Moy = 507 5Ty

it is easy to see that

ac _ 74 =
gy JO=JMhep . (2.85)

(o} V_« 1 &f v d'l — .
J = Jme 7§<Juu)vﬁ> J = Jme vi(guvw
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We have now all the elements to write down the worldsheet action in the pure

PSU(2,2|4)
SO X50() " The matter part of the

action, or in other words, the ghost-independent part is

spinor formalism with the AdS supercoset

1 I | o

Smatter = / a2 [ I T+ 5T = (V) (Vy)* (2.86)
=203 T, = 20 Ty = 203T5 — 2065

—y Ty — yjkqujak + y P s I+ yijéjdk] )

where (Vy)x = Oyjx — J;ylk — J}y;i. In order to check that this is the correct action
we will prove that it reproduces the usual pure spinor action of (2.57) in the gauge
Yik = a?k.

It is not difficult to see that in this gauge the term —z(Vy);(Vy)?* can be
rewriten as 1 3, J%J¢ where J¥ = 1(c%@ =) 7 Jk The easiest way to prove this
is to compare the two results after a few manipulations using the properties of the
Pauli matrices of the Appendix A. Further, note that the third line of the action

reduces to
—00 T JE — % T T + 0% Ty T + 08, JLTE (2.87)

It is straightforward now to show the equivalence with the action written in terms

PSU(2,2/4)
of the 50(1,4)x50(5)

reduction using the matrix form of Kap given in (2.74), is

supercoset of (2.57) which, after performing the dimensional

1 L 1 _ .
S / d2z[§n@J5J§ — 5ealo®)x (S TEE + T TP (2.88)
1 _ _
+-eap(0®) s (JM IPE — TIP3,

4

where we have used the notation

€AB(O'6)JKJiAstBK = (0'6)1']'6043J1aij§j + (06)ij€dﬁjldij35j s

and similarly for the other terms. Substituting Jy = [J#, J* J*] and the relation
among the fermionic currents of (2.82), the two matter actions are equal.
In order to complete the action we need its ghost-dependent contribution, which
is
Srost = [ B2 [wai(VAVY = g (VA (2.89)

1 1.
+§yﬂ(Vy)lkwAj>\Ak - §yﬂ(Vy)lkwAj)\Ak

_ZNWN\W - 4(yJNJu)(yK]/V\K”) + 2N e N7 — 4y Ny y) (y NM7) ]
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where in the first and the second line of the action above, A, w Ajs Miand @ Aj

are the SO(1,4) x SO(6) spinors defined in (2.79) and

wag(VAY = wfdN, + wlund(X) — wf N, — ok TEN (290)
20w Taay? Y — 208y JOON, + wE TINE + whyp JLy PG

and similarly for wAj(V;\)Aj . Note that the covariant derivative above contains
the SO(1,4) x SO(6) connections. In the third line of the action, the SO(1,9)
Lorentz currents have been decomposed into their SO(1,3) x SO(6) components as
[N# N#T N'E] and are constructed out of the SO(1,3) x SO(6) spinors (A%, A%)
and (w,;, w%) and similarly for the hatted currents.

This ghost action can be verified by choosing the gauge y;; = a?k and comparing
PSU(2,2/4)
SO(1,4)xSO(5)

below with a convenient notation

with the ghost action for the supercoset given in (2.58) and reproduced

—cd

Sghost = / A2 2w VN — 0%, VA + gy ) NEN5 ], (2.91)

where 7ja)cq Was defined in (2.27). The meaning of the superscript and subscript 5
in A7 w?,; and w5, is that these are SO(1,4) x SO(5) spinors obtained from
the definition of the SO(1,4) x SO(6) spinors of (2.79) by setting y;; = of;. Similarly,
N is constructed out of these SO(1,4) x SO(5) spinors. The tilde over the covariant
derivative means that V only involves the SO(1,4) x SO(5) connections.

Let us compare these two actions. In the gauge y;; = O’% the first term of the

second line of (2.89) reduces to

1. 1 - 1 - 1 o
—§w§JgA§ — §wyUGJlJﬁa§nkA‘; — 5@3%%;; - iwgafmJ;”UGk’A?. (2.92)

Consider now the last two terms of (2.90), we have after fixing the gauge

w;?‘j,z/\]; + wgykij;ymp/_\;‘ — w;“j,g/\]; + w2(06)kijf£(a6)mp5\g (2.93)
a—alll : _ 1—a// Y6
= w2 (Ow-gw-0) Xa + g I (Cw-e-0)i"A;
1 a 7] 1 a 65l Tm 1 —l Tmya 1 — ™™ 1y &
+§wj JINE 4 5V ot Jmab NE 4 iwfiJl Ay iwéalﬁka oFNG
where we have used the relation among the currents of (2.84). Note that the terms
of the second line of the expression above contain the SO(5) connections of the
covariant derivative V of (2.91) and the third line cancels precisely with (2.92).
Using the same reasoning of this example, it is not difficult to see that all the terms
in the first and second line of (2.89) reproduce in the gauge y;; = of; the first and
the second term on the right-hand side of (2.91).
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The next step is to understand the term with the ghost Lorentz currents. Using
the definition of 7giq of (2.27), we see that

—cd

"ab][cd] NBQNE) = _QNE/;VN@V - 4N§M<ﬁ5)4u + 2Nglblﬁ5a’b/ )

and using the ansatz for the chiral gamma matrices of (2.66), one can show that the
third line of (2.89) reduces to these terms after gauge-fixing. This shows that the
two actions are equal in the gauge y;; = J?j.

The BRST charge of the theory can be determined in a similar way. In terms of

the —PSU2.2/4)
€ S0(1,4)x50(5)
reducing this operator using the matrix form of x_; of (2.74) one has

supercoset the BRST operator is given by (2.61) and dimensionally

Q = /dZ)\AJZEAB(O'G)JKJ?)BK — /df;\AJEAB(O'G)JKJ_IBK, (294)

where we have used the same notation as the one described under (2.88). The

% supercoset must be equal to the one

above when y;; = a?j and using the relation among the fermionic currents in this

BRST operator in terms of the

gauge of (2.82), it is easy to see that
Q= [ =X (V2 = V2yp ) = iy (V2T + V3T (2.95)
—/di [S\aj(\/ﬁjaj + \/éyjkj2> + i\aj(\/ijdj - \/éyjkjlgﬂ-

PSU(2,2/4)

The BRST variation of a representative of the supercoset O30 is given
by
2 , . _ . _ L
b = 92 [N — N gpst + N + gy *5i], (2.96)

where we have used the definitions

)\—ozj = _Z(Aaj + j\aj>’ )\+C¥j = _Z(AO‘J — j\a]) (297)
j\f- = i(j\dj — j‘dj)? 5\0‘2 = Z‘(S\dj + j\dj) .

Note that in the gauge y;; = a?j the BRST variation given above reproduces

the BRST variation of a representative of the supercoset % of (2.49) after

dimensional reduction and using the relation among the fermionic generators of
(2.70).

The BRST variation of w,;, u_)é, We; and @£ can be directly deduced from the

— ~

BRST operator (2.95) because these variables are conjugate to Anj, Aai, Aoj and

Aai, Tespectively. Equivalently, one can compute this variation by noting that in the
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gauge y;; = J?j the result must be equal to the dimensional reduction of (2.51). The

variations are

Waj = V2Juj — V2 ¥, 0% = —/2J% — /2R JE

Siba; = 20y + V2", 60" = V2TV — 2R T
where again these variations are defined up to gauge transformations of w and
w. Finally, the BRST transformations of \/, ija, Aai, Aai and y7* are zero up

to a possible gauge-compensating transformation of SO(1,4) x SO(6) as already

explained in the previous section.
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Chapter 3

The BRST operator

In this chapter, the BRST operator of the pure spinor formalism in AdS® x S°
PSU(2.2|4)
50(1,4)x50(6)
together with S% variables will be expanded in powers of z. The main motivation

with the worldsheet matter variables represented by the supercoset

for performing this expansion is to compute the cohomology of this operator close
to the boundary of AdS where z ~ 0.

The worldsheet is parametrized by two coordinates that we will call 7 and o. We
will associate 7 with its time direction and o with its space direction. The result
of the expansion of the BRST operator will be expressed in terms of the worldsheet
variables [z, 0,1, z,y, A, ;\], their canonical momenta [Py, Py, Py, P., P,, P\, Py} and
their o derivatives. In other words, the dependence of this operator on the time
derivatives, or 7 derivatives, of the worldsheet variables will be expressed in terms of
its canonical momenta defined as Py = %, where X is a shorthand notation for
all the variables. This substitution is made for convenience because it will facilitate
the computation of the cohomology of the BRST operator. One important remark is
that there are no constraints on the canonical momenta in the pure spinor formalism,
unlike in the Green-Schwarz formalism which has first- and second-class constraints.

After performing the expansion, the BRST operator () can be organized in the

form

QZQ,%—I—Q%-I-Q%—F...,

where (),, is proportional to z”. As will be explained in this chapter, the vertex
operators can also be expanded in powers of z close to the boundary of AdS and
they have a term with a minimal power of z. Using both expansions, we will show
that the computation of the zero mode cohomology at +2 ghost number of the
BRST operator corresponding to the physical supergravity states is equivalent to
computing the cohomology of the operator @) _ 1 then computing the cohomology

of the operator @) 1 restricted to states in the cohomology of ()_ 1 and so on. The
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cohomology of the operator Q_1 was computed in the article [23] by Mikhailov and
Xu and their results will be reviewed in the section 3.3. In the last section of this
chapter, we will argue that the cohomology of the BRST operator is completely
determined by the cohomology of the first two terms of the expansion Qfé + Q%.

3.1 The expansion of the BRST operator

The first step to performing the expansion of the BRST operator is to compute
the canonical momenta of the worldsheet variables. The Lagrangian density can be
deduced from the action given in (2.86) and (2.89), in particular, it depends on the
left-invariant currents .J defined in (2.80). Given our chosen coset representative of

(2.62), we can compute these currents using the Hadamard lemma
X X 1 1
€ Ye :Y_[X7Y]+§[X7[X>YH_6[X’ [Xa [X,Y]]]—l— ) (31)

and the identity

d o1 ; 1 :
—XO__ X = X — (X, X+ Z[X,[X, X]] + ...
€ dte 2[ ? ] + 6[ Y [ Y ]] + )
together with the four-dimensional version of the PSU(2,2[4) superalgebra pre-
sented in the Appendix B.
One comment is that when one has to compute a commutator of the type
[0%Gai, 04;G%7] where both the generators and the variables are fermionic, there is a

minus sign, or in other words, [0%qu;, 04;7%] = —0%04;{qui, 7 }. Defining
e = Dt +i0% (o) 13000 — 1007 (") o0 | (3.2)

the currents are

1

st
z

z

+ 2060%)0; + 20040 (3.3)

1 ~ 1 ) . _. .
= 00, + O (O, T = ——iDO (5,5
003 + "5 (o) 001 + U4 (o)

NE N NE NE
T = 2O + d/Zi] 0050 — 2zt 005 — 2/ze" Y] (0,) path s

1 1

de
T3, = ZOS, = 200 i + ANFLO0, B + 20z 0 (0,) 0T

J = —400%70; + 400,20 — die" Y (0,)acth™

+6700%pay, — 610060 + 6] e (0,)ac 0™
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JH = =00 (a") s — 35@‘(5”1’)&#&%
1 - , 1 o
+§€piw&(5—p)aa(0uu)o?¢’yi + §i€p¢?(0p)ad(5—l“/)oé’.yq/]’yz ’
The = 200 (0)53007 = (2007 (0" )y — 4205700, (") 5
+4Z“/3§5’9?‘¢Z(0“)75W + 226”@@?(Uy)aa@/jdwg(d“)w@/ﬁj .

It is left to organize the currents in the form that they appear in (2.80). Firstly,
note that

H H H H 1 (JII; — JIH() 1
Jp Pu + Jk Ku - (JP + JK)i(Pu + Ku) + 2#5“’1 B Ku) )
and from this we conclude
Ji— Jk

Jh=(Jh+ Jk), J¥= Ue = Ji) 5 i) : (3.4)
moreover, recall that in our conventions

« 1 Qv « & 1 e &

J,B - 51] (O—F"V)ﬁ y JB - 51] (0_;“/) B,

J = JWi(F,)% .

Having computed the left-invariant currents, we can proceed to compute the
canonical momenta. We are going to give a few examples on how to perform these
computations and the remaining momenta can be obtained in a similar way. In ours
conventions, the z and Z derivatives, O and 0, are expressed in terms of the o and

the 7 derivatives as

0= 30, ~0,). D=0 +0,), (3.5)

Replacing these relations in the action given in (2.86) and (2.89) and using the
expressions for the currents of (3.3), we can collect, for example, all the terms in the
Lagrangian density that have derivatives of the type 0,z, which are
0,z

z

2
)

Lope = —5 (525 +20,0% 1 + 20,80

and from this we conclude

oL 1 ,0.z
P.= 559 - "l

+ 287—‘9aiwai + Qaq—édﬂzdi) .

z

In addition, from the terms

~ — . 1 N Al
WEON, 4+ SwWEONE + iw’;aTAk ,

DO | —

1o 1
ﬁaT)\ = §wj (97-)\31 + 5
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we easily compute

1 1 1
Py =sw§, Py =if, Py=wh, Pa=

N T Wi e T QWi o W (3.6)

The last example is the computation of P:;. The relevant part of the Lagrangian

density is

1 1
3287y]k8 y + aryua llyl] + 4w yjkafrylwn)\Z1

L.
—i_1U}JC'Myjka‘ryk:m)‘gI +

Loy =

1 1 .y
*wdykl@ylmAm + 00y A,

4 4

where we have used the compact notation ,.J; which should be understood as
replacing the 0 derivatives that appear on the right-hand side of the result of the

currents given in (3.3) by 9,. Using

a km k cm kcm 8
a straightforward calculation gives the answer
1 1 1
Pyij = gaTyij - gykjaT‘]ik + gyklaTJJk

1 1 1. 1 .

- lwzqyjkAZ + 4103 yzk/\k 1 wy yjk)‘k + 4wj kaAZ
]_ ~k a0 1 ks A 1 _ N & 1 _ N &

+ de/\j Yri = 4 W )\ Ykj + Ewéyki& - iwﬁymi :

Once we have computed all the canonical momenta by the procedure described
above, the next step to performing the expansion of the BRST operator is to rewrite
the currents that appear in this operator as a function of the worldsheet variables,
their canonical momenta and their ¢ derivatives. We copy below, for convenience,

the BRST operator @ of (2.95),
Q= /dz[Aaf'(\/iJaj — V2yJE) — N (V2J9 + 2y I
— /dz[&‘”(ﬁjaj + \/Eyjkjj) + j\aj(\/ijdj - ﬂyjkj;:)] .

Replacing all 9 and O derivatives using (3.5) and noting that in our conventions

/dzz;m,/dz—)/da, /dz——— dz—>/d<7 (3.7)

the BRST operator becomes

Q= ? [ Aol = X9)yr T = (07 4 X9)0, T (38)
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A

+aj = Aa)0r T+ (Aaj + Aag)y™ 0I5 + (X9 — 399, T,

A

(A 4 2y 05 T — (Nag + M) 0o J% — Aoy — Aayj)y¥0,J5] .

where we have used the same notation as before, for example, 0;J,; and 9, .J,; mean
that we replace the 0 derivatives on the right-hand side of the expressions of the
currents (3.3) by 0, and 0,, respectively. It is left to express the currents as a
function of the canonical momenta and substitute in the expression above. From
the computation of the canonical momenta, we have expressions such as the one

given below

1

1 A v 1oy 2 o Ti. jkya&
Pw;y = 177“”\/;<O"u>74/w7 aTJ -+ 87J7 — iyj 8O-J»Yj + \2/_'11]] ea'y’lpo}yjk)\k (39)

? a 70 k& 2k T0
+£'wj RTADVES \/— wl \/_ WYkt /\fya

Qi /\l
97 Wiy

and

1 . 1 o ik . 1 o d N
Ppu = —gﬁﬂ]# + Z@(Uu)adwj Y FAL 4 Z@(Uu)adwj YN, (3.10)
1 — — \&o 1 ~k {1 /= \aa
—zgwgykl)\fl(au) - z@wdykl)\fl(a#) +...,

where ... means terms that depend on higher powers of z. Using (3.6), (3.9) and
(3.10), it is easy to see that

i 1 2 T4 1 i . Ti ) gk
&r(]; = pr’i + 2277/17 (O'M)W,nyu + *y] &,Jw + ZZﬁeavwdy]k)\kP)\i (3.11)

+2iy/Zeay by AR P v — 20z Y\, Pys — Zi\/Ede"ykzXQPiZ :
Similarly, following the same steps, one can compute

8T<]ai = \/_(PG‘“ + Z(gu)aaeaPCU“) - 2\/_77ZJO‘I \/_

+\/—¢az m]y]m + 2\/_
\/_

+4{¢O¢J>‘,JBP)\% - AmwazP/\m +4-—

z — . — . IS AN
—4{%]&1&@ + {A;*Mm - 4{%& P+ {Aj Vi Psa
J J j j

V=
1

~—~amP uy (3.12)

1
¢m¢o¢me Pzp“ﬂ + yjza JJ - 4\/_

vz \/_ m
7)‘5 waipj\;in

Vo] Py

@bom)‘ﬂ /\@ o

. 2~
Nilesots] + 8205) Py + 27 N et + 0505,) Py |

and similar expressions such as (3.11) and (3.12) can be obtained for the remaining
0,Js; and 0,.J. that appear in the BRST operator of (3.8).
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We have everything needed to performing the expansion of the BRST operator
and expressing the result in terms of the worldsheet variables, their canonical mo-
menta and their o derivatives. Replacing the results obtained for 8TJ§, O0rJais OrJaj
and 9, in (3.8), we first note that the BRST operator splits as

Q=Q 1+Q:1+0Qs+.. (3.13)

where @, is proportional to 2", and using the definitions of (2.97), we have

= (Y5) 2 BNy Py — APy P (3.14)
Y2\ (10,85 By () B™) — Ny (a0 — 0o (3, )
4 Y100, o€ \Ou)ad djy 105U, € \Opu ak)) s

2, 1 . . , ,
= (i)zf)\*‘“[—Pgm — i(o“)adefpmu + me-zpz + 4wakpyijyjk — waipyjkykj

? 2

2
~ 4o APy + VaiX P — 40arA§Pss + YaidiPsy — 207 Xy Pros — 205N P,
— 20 N, Pso; — zwmxgép% + 4k Pre — Yaidi Prg + 40ar; Pea = %Akpi,;“

. 2 - o _
+4¢ajwfpwf — 2oV Py | + (\g_) A= P — 07 (0") o Par — 20, 2P
— 4Pk Py, it + UL Py yik — AWINLPy + GNPy — 4PLNL Py + YLAE Py

AP _ i 053fp g3t i 38 T

HP N Py — YaMPrp + dbady Pro — daA Pro — 205 A Prg + 207 Aai Py
T i k
_. QB SN —_
— 205N Pye + 27 Aar P - AP P 5 — 20akh Py,

1 —_. — . . — .. —_ ad . N A~
()22 Xy (DAY Pros + " yu N, Pa + O Ay Py + 9"y AL P 5)
(L2222 NSy (i My P Py + 9] Aﬁyklp)\a + ikt " Py + YA, yklP— )
+i(—2) 22N 10,10 + 4] 0,01 0; — 2i0arh0,0% — 20,695 (07,) 550" V]

+i(L2) OG0 — 200%0,0% s + AibL 0,009 + 20,08 (0,) 07 ")

SRS IUS IS

: .. 2 — . .
)2E ATy (07) 560" P — i(\g)zg)\;aymlwf(a“)ﬂdpw +
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and ... are terms which are at least quadratic in @. We have suppressed the [ do
in all the expressions above and we have defined 0,e* to be equal to the right-
hand side of (3.2) but with the 0 replaced by 0,. Since the conjugate momentum
of a variable does not commute with the variable, the BRST operator is only well
defined after normal-ordering, however, we will work to lowest order in o’ so possible
normal-ordering contributions to the operator can be safely ignored.

In this thesis, we are going to compute the zero-mode cohomology of the BRST
operator close to the boundary of AdS, which means that all the o derivatives of
the worldsheet variables that appear in the expansion above will be zero. This
corresponds to taking the supergravity limit. Moreover, in order to compute the
cohomology of the BRST operator using the expansion above, we have to under-
stand how the physical states behave close to the boundary of AdS and this will be

explained in the next section.

3.2 Method for computing the BRST cohomology

In order to understand how the physical states behave close to the boundary of AdS,
let us study a scalar field ¢ in the background AdS® x S% in the supergravity limit,
this is reviewed, for example, in [4, 5, 60]. The S° is a compact space and we can
apply the Kaluza-Klein reduction procedure, or in other words, we can expand the

scalar field as

<b(x,z,y) = Z¢l($7z)}ﬁ(y> (315)

l

where (z, z) are the AdS® coordinates, y are the S® coordinates and Y] is the complete
set of spherical harmonics of S°. The spherical harmonics are eigenfunctions of the
Laplacian operator with eigenvalue m? = [(I+4)/R?* with R the radius of both AdS®

and S°. After performing this expansion, the action for a scalar in AdS is

S = [ d'wdz /=g (9" 0u0 040 + m*R26*)

where we have only written the quadratic part of the action because we are interested
in the linearized equations of motion. The AdS® metric was given in (2.63), and it

1s
d 2 1 d—'2 d 2
s° = E( T+ dz7),
and after substituting this metric in the action, it becomes

S = / d%dz— 2(0¢)2 + m2R2¢?) ,
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from where one easily deduces the equations of motion
1
2562(;@@5) — 2%(0,0)* —m*R*¢ =0. (3.16)

This equation can be solved analytically and the result expressed in terms of
Bessel functions. Being a second order differential equation it needs two boundary
conditions to determine the solution completely. One of the boundary conditions
follows from imposing that the solution is regular in the bulk of AdS which implies
that it must vanish when z — co. Moreover, close to the boundary of AdS at z ~ 0

the solution can be approximated as ¢ ~ z%, and replacing it in (3.16), one has
ala—4) —m*R* =0, (3.17)
with the solutions
ar =2+ V4+m2R2. (3.18)

Note that close to the boundary the dominant solution is ¢ ~ 2% and this

justifies our second boundary condition, which is

O(,2)|=e = € o(x), (3.19)

for a given function ¢g(z).

The important conclusion of this analysis is that near the AdS boundary the
vertex operators V' describing physical states can be expanded as V = > ;54 Vo
where V; is proportional to 2¢ and Vj, is the leading behavior near z = 0. In this
thesis, we will define degree to be the power of z of an expression and with this
definition V' has a minimum degree dy. Since the BRST operator splits as a series
of terms @),, with fixed degree, the condition that V is closed under @,

Q-V=0, (3.20)

reduces, after collecting the terms with equal powers of z, to

Q,% Vg =0, (3.21)
Q% ‘/do_‘_Qfé 'Vd0+1 :()7
Qs Vap + Q1 Vagy1 + Q1 - Vg2 =0,

The above conditions mean that the procedure for computing the cohomology
of the BRST operator close to the boundary of AdS, or inside the region of validity
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of the z expansion, is to first compute the cohomology of () _ 1 then compute the
cohomology of () 1 restricted to states in the cohomology of Q_% , then compute the
cohomology of () 3 restricted to states in the cohomology of Qf% and Q%, and so on.

The procedure just described for computing the cohomology of the BRST op-
erator is well defined. The complete BRST operator @) given in (2.95) is nilpotent
by construction and this condition implies several relations among the operators @),

after performing the expansion in z. Starting with

{Q.Q;=0,

and expanding the operator, we have

{Q,%—i—Q%—i—Q%—i—...,Q,%—i-Q%—i-Q%—i—...}:O. (3.22)

All the operators @,, have a fixed degree, or in other words, are proportional to
z". Therefore, collecting the terms with equal power of z from the expression above,

we conclude that

{Q1,Q_1} =0, {Q1,Q_1}=0, (3.23)
{Q1,Q1} +2{Q_1,Q3} =0, ...

According to the method for computing the BRST cohomology, the operator 1
only acts on the states in the cohomology of Qfé . Consider a state V' that belongs
to the cohomology of Qfé and act on it with the third identity of (3.23), to get

{Q1,Q:1} V+20Q_1-Qs - V+2Qs-Q_1- V=0, (3.24)

which implies noting that by assumption Qfé -V =0 and the second term above is
Q_% exact, that

{Q%, Q%} V=0, mod Q_% exact terms, (3.25)

or in other words, the operator Q% is nilpotent when acting on states in the coho-
mology of @)_ 1 and it makes sense to compute the cohomology of @) 1 restricted to

states in the cohomology of () _ 1. A similar argument of nilpotency applies to @ 3

Q

P

[NI[S]

In the next section the cohomology of the operator Qfé will be presented. As
already explained, this is the first step in computing the cohomology of the complete
BRST operator.
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3.3 The zero mode cohomology of () 1

As explained before, the first necessary result in order to compute the cohomology of
the complete BRST operator close to the boundary of AdS is the cohomology of the
operator Q—% of (3.14). The zero mode cohomology of this operator was computed
by Mikhailov and Xu in [23], see also [24], by defining a spectral sequence of a
bicomplex that converges to the cohomology of this operator, they also used some
results from the theory of group representation. One important ingredient in their
computation was the result of the cohomology of the operator Q' = \*Pya, with @
a pure spinor, previously obtained by Berkovits in [48]. Before stating their result of
the cohomology, we will prove some identities necessary for its understanding. We
reproduce below for convenience the zero mode operator () _ 1 of (3.14),

-1 m Y+, ji
Q_ =z 2()\—"_,7 ymzpw: — )\j_ y‘] P&id),

ol

where we have redefined ) in order to adsorb the overall factor of g Note that the
spinors AT® and A~ defined in (2.97) satisfy

A AYMAT =0, A AMAT FATAMAT =0, (3.26)

which follows from the pure spinor conditions for A* and A% of (2.41). However,
we will show it explicitly below. Using the ansatz for the chiral gamma matrices of
(2.66), we derive

(A\AAY) = (A~ igh AFS) 4 (AFigHaoNH) | (3.27)

aa’ g ]

and manipulating the second term on the right-hand side of the expression above,
recalling that A is a bosonic spinor and using the proprieties of the SO(1,3) Pauli

matrices given in the Appendix A, we have

(5\'—' ia_,uda >\;tj) _ S‘;j i€d5€a60§3 A;Fj = /\JrBJZUZﬂ;\;B 7 (328)

aj

and substituting (3.28) in (3.27), using the definitions of (2.97) and the pure spinor

conditions of (2.65), we conclude
il (ATINSS 4+ NPINET) = gl (X 4 ARG — A2

which proves the first identity of (3.26) when M = p. Let us now consider the case
when M = I 4 3, we have

AT = A igl At X;ia”jj\jd , (3.29)

7\
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and after making the substitution of the definitions, we conclude
— A3+ ai | Noiy T (yj i )\ SN Re 5%
ATy AT = — (A + A o (X, = X) + (Mai — Aai)o P (AF +A;) =0,

finishing the proof of the first identity of (3.26) for all M. The proof of the second
one is similar and it will be omitted. After proving these important identities, and
their importance will become clear in what follows, let us return to the computation
of the zero mode cohomology of Qfé' This operator annihilates the terms (A=~ zﬁ)
for all M where ¢® = y, (7 +3)5‘5¢3). The proof uses again the ansatz for the chiral

gamma matrices of (2.66) to obtain when M = p,

~

(AT9)) = =A™ %iohayi 0™ + Agiia" Yy Iy
consequently,
Q1 - (A7) oc Aoy ™ Nk + Agiio YT eay Ny = 0,

which follows from straightforward manipulations after making the substitution of
(2.97) and using y;;3°* = 6F. The case when M = I + 3 is

A ) = N0y ek + Ao Ty,
and from this, we deduce
Q,% . ()\77[4’3,[72) x )\faio_iljyjkEa’y)\Jr'ymymk _ X;ialijyjkj\:rndymk

o (A% 4 390 (M = M) = (hag — Aaa)o (A + A7) =0,

finishing the proof that (A\=y" 1@) is annihilated by @ _ 1 for all M. A shorter way
to prove this result is by noting that Q_% . ()\_fyM"gZAJ) x (A"YMAT) = 0 and this
vanishes because of the first identity of (3.26). After proving these identities, we list
below the states in the cohomology of () _ 1 at +2 ghost number found by Mikhailov
and Xu with the notation adapted:

1. any function f of A7,
2. (A" yM¢))g(A") for any function g,
3. (AMP) A yd),

4. (¢7MNP?@)()\7TSMNP;\) - 18(1@’YTSM@/;)(/\7M5\>7
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TSMNP)

where (Yanp)sp and (7 aj are defined as

1

(’YMNR)aB = 31 (—1)Sgnp (’YaP,(M)%P,(N)%P,(R))aé7 (3.30)
iy
1 sgn P’ (o pr o pr opr opr opr
(7TSMNP)&B = = (—1)% P (yoP (T)7 P (S)7 P (M)7 P (N)7 P (P))aB7
e

where P’ means sum over all the possible permutations of the indices and sgn P’ is
the sign of the permutation.

The item 4 of the list above can be rewritten in a more convenient form after a
few manipulations as will be described below. From the definitions of AT and A\~ of
(2.97), it is not difficult to see that

7 2 a 1 - R
(rmnp) (M MPX) = Z(¢7MNP¢)()\+’}/TSMNP)\+ — A TSMNP -y
and
1
(nr) = 5 (X eX").

further, using the definition of (yrsymnp)as of (3.30) one can show that for A~ and
AT,

(Uyanp) VEYTSMNPAE) = — (D pth) (AEATMNPS \E) (3.31)
= — (v ) WY MNERINE) 4 6(4y ST D) (VEar k)

where the notation A* means that the identity above is valid for both A\~ and A*.

Additional manipulations follow from the use of the identity
(YMNP) () = 96077, (3.32)

where the value of the constant of proportionality can be checked by multiplying
both sides of the expression above by (Vrsr)az and using the properties of the chiral
gamma matrices. This identity follows from a more general one. Given any two

chiral spinors A% and B?, we have
A*B = Ay BY3, + As(Ay N BYyvs + As(AyN T B)yivser

with Ay, A, and A constants. Replacing A and B by ¢ we derive (3.32) after fixing

the correct value of A, because both (M) = 0 and (pyMNSPTy)) = 0 which
MNSPT)

ap

follows from the fact that 1 is a fermionic spinor and both (™) ap and (7y
are symmetric matrices. Replacing (3.32) on the second line of (3.31), we conclude
that

(@Z'VMNP@Z) ()\:I:,VTSMNPA:N:) _
6(y M) (AEaAE) = 96(AEY ) (AEY ).
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After performing all these manipulations the item 4 of the list of states in the

cohomology of Q_% can be rewritten as

—12(7 "I (N AT) — 24N AT (A TYT)) + 24N A ) (AT ) . (3.33)

We can proceed further by noting that

~

6Q_1 - [7 (97" M) (AT ad)] =
— 12\ MG (W) — 60y (A A T) =
—12(7 M) (VA t) = 24T ()
where we have used the Fierz identity,

M o
Ya@Emps) =0,

and
(V" Mas = (VY az + (0 )az ™ = (0 apn®™ = (vazn™®
The final form of the item 4 is then
6Q_1 - [ (7" M) (N )] + 24N D) (AY), (3.34)

which enables us to conclude that it is a function of A=yM 2[1 up to a BRST trivial
quantity. After this analysis of the item 4 of the states in the cohomology, we can

restate the result of the cohomology at +2 ghost number as

1. any function of A= and of z/A) appearing only in the combination (A\=y™ @/AJ),
2. (AyMY) A yad).

Note that the only state in the cohomology that depends on AT is the item 2 of the
list above. We will show below that allowing dependence on the non-minimal pure
spinor variables the cohomology of Qf% is independent of A* and as a consequence
A~ can be considered as a pure spinor due to the second identity of (3.26). The
operator ()_ 1 has one more term once we have the non-minimal variables, the new
is

operator ()_1
2



and recall from the chapter 2 that w® is the conjugate momentum of Aa which acts

)

55— Consider the action of this new operator on the term

on functions of A5 as

given below

1

)1 [ MDY A A D) Oy )] = — = (AAMD) A AN D) Gy AT
Q_1 [( A_)( YO AN Oynend) | (AA_)( TP ATY ) (\y )
o) AT )Y A A AAN D) Aymned) + oS A A A AN (rymnd)

and using Fierz identity and the properties of the chiral gamma matrices, it is
possible to rewrite in a more convenient way all the terms on the right-hand side of

the expression above. Consider the first term

M)A s AT) = o (A M)A ) Gy A)
1

(AX) (AX)
AP (NN Ay A7) (3.35)

=200y (W) —

(W)
and the second and third
T ;\%)2 AP A AN (Myarwed) + : ;j) A M)A AND) (rymntd) =
30 Xf_)Q MDAV DAY (rawe D)
+; (;\;'_)2 A AMD) ATy N AAEY) (ryarynd)
+§ df)? WMD) My M) A ) (ryw e d ) (3.36)

from (3.35) and (3.36), we finally have

Q1 - [dA)(AWM?@)(AWNQ@)(MMN@] =200 M) (A )

N

(NI

z

2(A)?

AN DAY D) A D) (ryaene )

- G ) AP AN Ayvya A7)
S T (T N O ) )

1
22 ~ _

A M) By B A (ryaarA)

NI

= 2<)‘77M¢>(>‘+7M¢) — ;(;\)Q(AWM?/;)()\’VNQ/;)()\’VP@(WMNPS\)

+ Terms that are zero when A~ is a pure spinor .
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The result above shows that the state in the cohomology of @)_ 1 which de-
pends on A1, precisely the scalar (A‘VM@E)()WVMJ), can be represented by the
state 22 (ANT) 2N MDY AN (A YE D) (ryanpA) up to a @7% exact term.

In conclusion, allowing dependence on the non-minimal pure spinor variables the
cohomology of ) _ 1 is independent of A™. The second identity of (3.26) then implies
that A=yM X\~ = 0, or in other words, that A\~ is a pure spinor, consequently it has
11 independent components and (A~ 1&) has only 5 independent components as
will be explained in the next chapter when we will rewrite some of the expressions
using U(5) notation. Therefore, states in the cohomology of @) _ 1 depend on the
non-minimal variables, the 21 bosonic variables [z,z,y, A”| and the 21 fermionic
variables [0, \™yM4)].

3.4 The zero mode cohomology of Q% + Q% + ...

The next step in the calculation of the cohomology of the BRST operator is to
compute the cohomology of () 1 restricted to states in the cohomology of Q_% , then
compute the cohomology of () 3 restricted to states in the cohomology of Qfé and
Q%, etc. A vertex operator V is a state in the cohomology of the BRST operator if
it satisfies, see (3.21),

Q_% Vi, =0,
Q1-Vay +Q 1 Va1 =0,
Q% %0+Q% "/dOJrl_FQf% 'Vdo+2:o>

°

where dj is its minimum degree. Let us suppose that the cohomology is non-trivial
and there is at least one non-zero state V. In the next chapter, we will compute the
zero mode cohomology at +2 ghost number of the BRST operator and turns out
that it is in fact non-trivial. This state V' is a solution of all the equations given
above by assumption. The first equation says that V; is a state in the cohomology
of Qfé and being so is independent of A* which implies that A~ is a pure spinor up
to a BRST trivial quantity and only depend on ¢ in the combination (A~ zﬂ) The
operator () 1 has terms proportional to AT, however, we are expected to compute
the cohomology of this operator restricted to states in the cohomology of @)_ 1 that
does not depend on AT, therefore these terms must act as zero. In other words,
given that V' is a non-trivial solution of the second equation above, there exists a

V.41 that removes all terms proportional to A™ after the application of @ 1on Vo -
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Similar arguments can be used to the terms proportional to A™ in s+ all of
them act as zero.

Let us now analyze the terms proportional to A~ of Q% + .... These operators
are linear in A\~ and at least cubic in ¢, which implies that the terms involving A\~
of these operators cannot be expressed in terms of the five A=y 1@ Further, note
that the third equation of (3.23) can be rewritten as

Q1 Q1 +{Q_1,Q:} =0,

and applying @) 1 to the second equation of (3.21), one has

Qu-Qu -V +Q1-Q s Vg =-Q_1-(Qz- Vi + Q1 Vyyy) =0,

where we have also used the second identity of (3.23).

The equation above enables us to conclude that for every V; and V., satisfying
the second equation of (3.21), the combination @ s - Vi, + Q1 -V, 4y is annihilated by
Q_ 1. However, recalling that the only term involving v and A~ that is annihilated
by Q_% is )\_'yMz/AJ, the combination Q% -VC{O+Q% “Vj,+1 must be a function of )\_’yM@.
The operator () 3 cannot be expressed as a function of ¢ in this combination, which
means that all terms of Q% -V, proportional to A~ cancel with the terms proportional
to A7 of Q1 Vst

Recall that the third equation of (3.21) is

Qs - Vio + Qs Vipr1 Qs Vigra =0, (3.37)

and we have argued that if the second equation of (3.21) is satisfied, this equation
is automatically satisfied. In summary, all terms in ) 3 acts as zero when restricted
to states in the cohomology of Q% and Q_%. The same argument shows that all the
operators () s+ act also as zero.

The conclusion of all this analysis is that the computation of the cohomology
of the BRST operator inside the region of validity of the z expansion reduces to
computing the cohomology of Q% restricted to states in the cohomology of Q—%-

This computation will be performed in the next chapter.
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Chapter 4

Vertex Operators

As explained in the previous chapter, the computation of the cohomology of the
BRST operator close to the boundary of AdS is equivalent, up to a BRST-trivial
quantity, to computing the term Vj,, or in other words, the term of lowest degree
of a physical vertex operator V. The term V;, is a state in the cohomology of
the Q% operator restricted to states in the cohomology of Qfé- As predicted by
the (AdS/CFT) conjecture, every on-shell superstring state in AdS® x S° is dual
to a gauge-invariant operator of N' = 4 d = 4 super-Yang-Mills, in particular, the
supergravity states are dual to Half-BPS operators. In this chapter, we will compute
the zero mode cohomology of ) 1 at +2 ghost number and show explicitly that every
state Vg, is dual to a Half-BPS operator of super-Yang-Mills. The results will be
described in terms of superfields defined in harmonic superspace.

The organization of this chapter is as follows: in the first section we will rewrite
the operator Q% of the previous chapter in a convenient form and a few examples of
states in the cohomology of () 1 will be given. Then, we will review the representation
theory of the N' = 4 d = 4 superconformal algebra and introduce the concept of
harmonic superspace. The main result of this thesis will be presented in the section
4.4, where a general expression for the vertex operators will be given. After proving
that the vertex operators are states in the cohomology of @) 1, we will evaluate the
general expression for the specific example of the dilaton vertex operator. Finally,
we will exemplify with a simple term the meaning of the statement “acts as zero”

used several times in the previous chapter.

4.1 The @ 1 operator and examples

In the previous chapter, we have argued that states in the BRST cohomology near
the boundary of AdS are described by states in the cohomology of @ 1 restricted

to states in the cohomology of @)_ 1 which depend on the non-minimal pure spinor
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variables and [z, z,y,0,\™, )Fqu/A)] with A\~ a pure spinor A=y X\~ = 0. In what
follows, we are going to suppress most of the times the minus superscript in A™. It is
possible to write the zero mode terms of the operator Q% of (3.14) using a compact

ten-dimensional notation as

Q4 = #*\"Da+4007) 5 (4.1)
ij,7 d m d & d ~&

where we have included the usual non-minimal pure spinor term w5 that was not
present in (3.14). The inclusion of this additional term is necessary because, as
will become clear below, the general expression for the vertex operators can only be
written as a function of (A\yM ’QZAJ) after introducing the non-minimal variables.

In order to rewrite ) 1 as (4.1), we have performed several manipulations. The
first observation is that the overall factor of ? was adsorbed by a redefinition of .
Secondly, the canonical momenta were replaced by derivatives because the canonical
momentum of a variable and the variable satisfy a canonical commutation relation.

Moreover, in our conventions
Yis A7) = AN 0i + Aaith™
and it is easy to organize the relevant terms of (3.14) in the form

1 0 0
30.. 2 km
22y (A1) ( R W )

upon noticing that y*™ 8y(zm fly) = ykmﬁzm - f(y), where f(y) means any function

of y. The term

. - 8 0
= k . 2 [e%) ik 2 o1
224(\y? lp)@yﬂf 224\ z/Ja Yk — 234N waa yﬂ, (4.2)

follows also from collecting the relevant terms.
There are many terms in the Q1 of (3.14) that depend on A derivatives. However,

all the terms proportional to A™ act as zero and terms proportional to the pure spinor

constraints such as

O a2 p) =0,

22N (A op N o
B)Y: o

do not contribute. The remaining terms can be easily organized using the Schouten
identities (A.5) as
1 oA _
—229,; (M) (N =——=) .
Ay (%)
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In addition, in the term z%)\dD@, Dy is the d = 4 dimensional reduction of the

d = 10 supersymmetric covariant derivative of (2.14) which is

0 _ _ .
R — Y A Y L= 4 0% (o) g ——
Da; O Z(O- )a,é’ P Da BYE + 10 (U )ﬂaaxu' (43)

The final comment is that the term z24()\73k’1b) % of (4.1) is understood to not
act on ()\/)/M@/J) even though (A7M¢) depends on y;; through the . This is the case

because we have not included in (4.1) the terms

% i - & ai B8 Y 9 &, 7m, 748 0
[ —2A ¢aﬂ%8¢l 2)\ wakwaawm +4)‘ waﬂﬂ wj 4)‘ ¢ w 81/1’”5]

and it is possible to show that

( (>\7ka/}) )\O‘Z@DOU@ZJ Aad’alﬂ#

oy Jk ¢ 81#1 @ &bm

o ) ﬁi_ a m, 783 M
X~ N 0 ) 0i) =0,

using the pure spinor conditions for A\. There are at least two different ways to prove
the result above. The first one is by direct computation and the second one follows
from the nilpotency property of the Q) 1 operator. Note that using the ansatz for the

chiral gamma matrices given in (2.66), we have in four-dimensional notation
(M) = =Ai(0")aatis0™ + Naid (6") %Y 1o ,
(A3 = X (o) iy ok + Aaalo!) Ty,

and with these terms written in this form, one can easily evaluate the left-hand side
of (4.4). Collecting the terms with two ¢ when M = pu, we have

AN N3, () Vb (570 — G78T") + AN jiinidg, (61) Y™ = 0,

where we have used the pure spinor condition A* % = 0. Similar arguments can be
given to show that the terms proportional to two 1 vanish. The terms with one 9

and one ¢ when M = y are
— ANy XN (0 )y €mni O = AXTUGY 1N (51)TEM 1,
-+ 2)\aiwo¢j&dj)\’ym(o—u)'ydymi - QS‘?wak&]gé;“ym(ﬁﬂ)’yaymi
= XPIPINE (0" )ya i — Aokt Aag (o) 10y
=2\l AT (07 mni O = 2N Yt Aam (7)€
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where we have used the Schouten identities to organize the terms. This combination

of terms is equal to zero, because of the pure spinor condition
)\ai)\j 1 ijkl;\. 5\(54 _
a 56 akAN —
and of the identity
YijYki + YikYiy + Yaljk = €jkti

which can be proved by contracting with y; and y; both sides of the relation

(6D)itj (07 ey = 5€jmm (0’ o”?)", and using y;;47% = 6F. This finishes the proof of

(4.4) when M = p. Let us now consider the case M = I + 3. The terms with two
1 are

ANk N (0 ) (0767 = 0707 1o + AN PN (0 iny™ = 0,

and this follows because A\*(c”);; A% oc e*? A (a!);;M and 1/1,§‘ykm¢am = 0. Similiar
arguments can be given to prove that the terms with two 1 are zero. The terms
with one 1) and one ¢ when M = I + 3 are

AN Yoty X1 () €m0 — ANFPE YN (0 ) €T
_2)‘ai¢aj1;ﬁ'/j5\’ym<oj)mnym - 2>‘?¢7k¢2/\7j (O-I>jmymi )

and after using the pure spinor condition A*\¢ = 0,

) ) . 1 ..
yij(oj)]k + (O'I)z‘jy]k — 26k I7 (O,I)’L] — §€”kl(0'1)kl,

jkli j k) lj l k
MY = =009 — op Y — 6,y

the terms sum to zero. This finishes the proof of (4.4) by direct computation. A
different way to prove this identity is by using the nilpotency property of the Q%
operator when this operator acts on the states in the cohomology of the operator
Q_ 1. Note first that

mn a
Q1 -y =22 (4 (W’wa =+ Yo (N1 8 ) v
= 2%4/\amyklwal€ijmk + Z%4S\dmykl¢al(5;n5;c — 55@5;71) + 2Z%ykl(/\’}/kl7j))yw s

and multiplying both sides of this expression by (¢/)¥ and using that (o/)¥y,; =

—4y!, we conclude

Qi1 -y’ = 227y,;(M70) y! — 223 (M H34) . (4.5)

1
2
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In particular, as an application of this result, note that the ) 1 operator preserves

the constraint y'y! =1,
0=0Q1-1=Q1-(y'y") = 422y, (M) y'y' — 423y’ ('™ = 0.
Moreover, we have
Q1 2" = z%yij(z\yijiﬁ) 2252 2t = yij(/\y%ﬂ) 2n "3 | (4.6)
and from this result and (4.5), we conclude that
Q1+ (z7'y) = =222 (M%), (4.7)

Applying Q% to this equation and using that this operator is nilpotent when

acting on the states in the cohomology of ¢)_ 1, we get

0=Q1-Q1- (27" = Q1 (=22 (W %)), (4.8)
and
Q1 - (=272 (M) = 20, M) (M) — 2273 Q- (WRE) . (4.9)

It is possible to compute the second term on the right-hand side of the expression

above, for this we define

oA 0 : 0
Q;=[4w%>ﬁ+4wwaj¢f 5o7 NI o

J

— 208t

awﬁm

_2>\m¢aﬂ/} ]

QW “azﬁm

and, we have

1 i ) )
~2:4Qy - (1) =~ P 5 - X)) (00)

o
~201 - (')
— o OO — 2Q) - ().
Substituting (4.9) and (4.10) in (4.8), we finally conclude
Q) - () =0,

and this is precisely the identity (4.4) when M = I 4+ 3. This procedure using the

NI}

nilpotency property of the @) 1 operator proves the identity (4.4) when M = I + 3.
However, the term ™ zﬂ has only 5 independent components because A is a pure

spinor, and given that [ = 1,...,6, the proof is valid for six of them and so is valid
for all M.
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4.1.1 Examples of states in the Q% cohomology

We will give in this subsection two examples of states in the zero mode cohomology
of Q% restricted to states in the cohomology of Q_%. The general expression for
all the states will be presented in a future section. Recall that in the pure spinor
formalism for closed strings the states in the cohomology at +2 ghost number of the
BRST operator corresponds to the physical states of the theory. Our first example
is a vertex operator that is independent of y and of the non-minimal variables. The
non-zero terms of ) 1 acting on such a vertex operator are
0 0

nonzero leva ij 0 &
Q% = 22[A Da+yij(>\73¢)(QZ&—A 8)\5)]'

The cohomology at +2 ghost number of the operator A* Dy is known and it was
computed by Berkovits in [48], for example. It corresponds to the antifields of super-
Yang-Mills and it is described by the superfield A*\? Ar 5> which at zero momentum
can be gauged to

AN AL = (™M0) (0™ 0) (0rarw ) +
MM (MY O) (O7arn,0)a™ + (MM O) (AN 0) (07157 0) 3,

7, and 97, are the antifields to the gluon a,, scalars % and gluino ¥%,

respectively, which is the field content of N' = 4 d = 4 super-Yang-Mills. So, the

corresponding vertex operator annihilated by @ 1 is

where a**,

V= 2XONAL (4.11)

where the factor of z was included in order for it to be annihilated by the second
term of Q1" given above. One of the conclusions is that these operators with
no depend2ence on y are the duals to the so-called super-Yang-Mills “singleton”
operators, or in other words, the duals to the abelian super-Yang-Mills fields.

The next example is a vertex operator linear in y and independent of [z, z, 6, 1].
It is

V=i Ny (4.12)

and note that it is real because of A% Xy, = —A%\4;4%, which follows from the
pure spinor conditions for A. Let us prove that this vertex operator is annihilated
by Q%, the terms of this operator that act non-trivially are

w O ~ 0

+ Z/z’j()ﬁij?/})(y Iz )\aa/\@)] ;

Qrélonzero = z2 [4(}\7]’61/;) ay]k
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and it is easy to see that the second term on the right-hand side of the expres-
sion above annihilates the vertex operator. In order to see that the first one also

annihilates it, let us compute it explicitly

4 9 - .0
aj, kl s o ol \Bmyn .
[A*y %llayjk + Aajymt Tyjk] NN =

AajyklwalAﬂmAgejm + deykﬂﬁdlAﬂmAg(%csﬁ —oksi)y =0,

where we have used the pure spinor conditions. Being a scalar under the action
of the PSU(2,2|4) group, this vertex operator corresponds to the zero-momentum
dilaton that is dual to the linearized super-Yang-Mills action. In a future section,
a general formula for the vertex operators that includes these two examples will be

presented, however, we will first review some topics relevant for its understanding.

4.2 Representations of the superconformal algebra

The theory of N' = 4 d = 4 super-Yang-Mills contains the following fields: the gauge
boson A, six real scalars ¢!, four chiral fermions and four anti-chiral fermions. In
particular, this theory is finite, or in other words, its beta function vanishes to all
orders in perturbation theory. This result was proved up to three loops in [61]
and to all loops in [9, 10]. A nice argument for its finiteness is that the action of
super-Yang-Mills belongs to a Half-BPS multiplet and consequently does not receive
quantum corrections, a review is the article [62] by Minahan. Being finite means
that the theory of N'= 4 d = 4 super-Yang-Mills is superconformal to all orders in
perturbation theory.

A conformal field theory does not possess an S-matrix because of the impossibility
of defining asymptotic states, however, the theory has well defined operators. In this
section, we will briefly review the representations of the d = 4 conformal group and
of the NN = 4 d = 4 superconformal group and during the presentation we will
define important classes of operators: primary operators, chiral primary operators
and Half-BPS operators.

Let us consider first the four-dimensional conformal group. The generators of
this group are [P,, K, M,,, D] and its algebra is given by the first six commutators
of (B.1) with the ones not listed being zero. Local operators in a conformal field
theory are eigenstates of the dilatation operator D and, considering O to be one of

such operators, this means

[D,0] = AO, (4.13)
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where A is its dimension. Let us compute the dimension of the operators [P,, O]
and [K,, O]

D, [P, 0]] = —[P,[0,D]]-0,[D, P
= (A+1)[F,,0],
and
[D,[K,,0]] = —[K, [0, D]]-[0,[D, K,]]
= (A-1[K,, 0],

where in both calculations we have used the conformal algebra and the Jacobi iden-
tity.

The results above mean that acting with P, on an operator increases its dimen-
sion by one and acting with K, decreases it by one. Requiring the theory to be
unitary implies that there is a lower bound on the dimension of the operators [63].
Since acting with K, lowers the dimension of an operator, acting sufficiently many
times with K, will give zero. By definition, a primary operator is an operator that
is annihilated by K, and its descendants are the operators obtained acting on it
with P,.

The N = 4 d = 4 superconformal algebra in addition to the generators of the
conformal algebra has the generators [UZJ s Qs q‘é, sk, S4]. Its non-zero commutators
and anticommutators are given in (B.1). Using the algebra and a given bosonic
operator O with dimension A, one can show, using the same manipulations as the
ones before, that [¢, O] has dimension A + £ and [s, O] has dimension A — 1. A
chiral primary operator is, by definition, an operator that is annihilated by all s,

and 54;. Note that a chiral primary operator is also a primary operator, because

0 = {54, [Sas, O} + {34, [s6, O} = ({54, 5as}, O] = 216500, (K, O],

0 ad
and the descendants of a chiral primary operator are obtained by acting on it with
[le Qo Qi]

A BPS operator is a chiral primary operator that in addition of being annihilated
by all the (s%,5%) is also annihilated by some of the sixteen operators (¢as, 7). A
subset of the BPS operators called Half-BPS is composed of the operators that are
annihilated by exactly eight of the supercharges. All the gauge-invariants Half-
BPS operators of N' = 4 d = 4 super-Yang-Mills have been classified and before
stating the result we will motivate it by studying the implications of the PSU(2,2|4)
superalgebra, our arguments will follow closely [62]. Consider a scalar chiral primary

operator O’ and act on it with

[{qaia 86]}7 O/] = [5g(o-ﬂy)aﬂMlU’ - 255(52]D + 455[]1]7 Ol] )
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and note that the commutator [M,,,, O'] = 0 because, by assumption, O’ is a Lorentz
scalar. Suppose that for a specific value of 7 and a the operator O’ is also annihilated

by q.i, then the left-hand side of the expression above is zero and we have
208[U7, 0] = 6561 N O . (4.14)

The generators Uij are the generators of the SU(4) algebra which is isomorphic to
the SO(6) algebra. The relation among the generators is given by U/ = (o'}’ Ry,
where (¢77)7, is defined in (A.10) and R;; are the generators of SO(6). The SO(6)
algebra has rank 3, which means that its Cartan subalgebra has three generators
and we will consider these three generators to be Ry4, Ro5 and Rsg. All the highest
weight representations of SO(6) are classified according to their charges under these
three generators. As an example, suppose that the operator O is highest weight
carrying Ryy and Rgs charge zero and carrying Rsg charge J. In this case (4.14)

becomes
208[U7, 0] = i6%(5°%) ,JO' = 851N O, (4.15)

and using the representation of the Uin matrices given in the Appendix A, one has

10 0 0
oy | 01 00
“loo -1 0

00 0 -1

Considering A" = J, the equation (4.15) is satisfied if 7« = j = 1,2, which implies
that the operator O is annihilated by (¢a1,¢a2). Analogously, one can show using
the anticommutator {g*, 55;} that this operator is also annihilated by (g%, ¢**)
because one arrives at an equation similar to (4.14) but with the left-hand side
multiplied by minus one. The conclusion is that the operator O is annihilated by
eight of the supercharges (qq;, qi) which means that it is a Half-BPS operator.

In general, all gauge-invariant Half-BPS operators of N' = 4 d = 4 super-Yang-

Mills are of the form [5, 62]

O =&, Tr (" .. o™), (4.16)

where &7, 7, is completely symmetric and traceless in all its indices, ¢! are the six

scalar fields of N/ = 4 super-Yang-Mills and Tr means trace over the gauge group.
All the descendants of these operators are obtained by acting on it with [P, ¢ui, @4]-
In the next section, we will show that using harmonic variables all these operators

can be elegantly described.
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4.3 Harmonic Superspace

The utilization of harmonic superspace techniques for studying theories of extended
(N > 1) supersymmetry was first done by Galperin, Ivanov, Kalitsyn, Ogievet-
sky and Sokatchev in [25], an excellent introductory book is [26]. The basic idea
is instead of considering superfields that depend only on the usual Minkowski su-
perspace variables [z,0,0], considering superfields that depend on these variables
plus harmonic variables. Using harmonic superspaces an off-shell description of all
N = 2 supersymmetric theories was constructed in [25]. Moreover, an off-shell
formulation of N' = 3 super-Yang-Mills, that on-shell is equivalent to the N' = 4
super-Yang-Mills, is possible using an appropriate harmonic superspace [64].

In the case of the theory of N' = 4 super-Yang-Mills, an off-shell formulation is
not known. However, it is possible to solve all the on-shell constraints of the unique
superfield of this theory with spin not higher than one, the so-called Sohnius super-
field [27], using harmonic variables and keeping the SU(4) R-symmetry manifest,
as will be explained in detail below. Furthermore, all the Half-BPS operators of
N = 4 super-Yang-Mills together with their duals can also be elegantly described
in harmonic superspace [28, 29]. The plan of this section is to first introduce the
Sohnius superfield along with its constraints, then present the relevant harmonic
superspace for solving them.

Consider the usual N’ = 4 d = 4 superspace spanned by the variables [z, 07, 0].
In order to construct a supersymmetric gauge theory using superfields defined in this
superspace, it is well-known that the usual derivatives must be replaced by the gauge

covariant derivatives
Du:8u+/4u7 Dai:Dai+Aaia ’Z_)Z'X:D(ZX_|_.,Z[Z” (417)

where A,, A,; and A, are gauge connections superfields taking values in the Lie
algebra of the gauge group and (D,;, D%) were defined in (4.3). From the gauge

covariant derivatives we can define the field-strengths F as
[Da, Dpls- = Fap, (4.18)

where A and B denote any of the gauge covariant derivatives indices and the sub-
script +— means commutator or anticommutator depending on the value of A and
B. The field-strengths are also superfields taking values in the Lie algebra of the

gauge group and under a gauge transformation they transform as

Fap — €™ Fape ™, (4.19)
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where A(x,0,0) = Yo Tar MM (2,60, 0), Tap are the Lie algebra generators of the
gauge group and AM’ is a set of superfields. One comment about this transformation

is that when the gauge group is the abelian U(1), we have
Fap — eAu) Fap e~ v — Fap eMu) pmihu) — FaB, (420)

or in other words, all the field-strengths are gauge-invariant in this case.
The gauge covariant derivatives satisfy the generalized Jacobi identities given

below

(1) eI D, [Dp, Doy |-+ (=1)4P 9V [Dy Do, Dy |- (4.21)
+(_1)(deg0deg3) [DC’ [DAv Dp ]-i-— ]—l—— =0,
where, for example, degA is equal to 0 if A is a bosonic index and 1 if it is fermionic
index. Substituting the definitions of the field-strengths (4.18) in the Jacobi iden-
tities above, one arrives at the Bianchi-identities that have to be satisfied by these
fields.
Imposing suitable constraints on the field-strengths and using the equations of

motion, Sohnius showed in [27] that all the Bianchi-identities can be solved in terms
of a superfield W;(x, 6, 0) related to two of the field-strengths as

Foigi = €ag Wij,  Fly=e3 WY,
and with the properties
- 1 ..
Wiy = =W, (W)t =W = §€ijka1, (4.22)

where T means Hermitian conjugation. In addition, this superfield satisfies the con-

straints
_. 2 . _
Doﬂ' ij - Da[iwjk]7 ’D; ij - _gd[szfo}\wk]l 5 (423)

and our notation here is that the indices inside [ | are antisymmetrized with an
additional factor of half and the indices inside | |, as on the last constraint, not
being antisymmetrized. The expansion of W;; in components is schematically of the

form
ij = (bjk -+ éd[jE% + ealggnejklm + Q_jdékBFdB + ijlmealeﬁmFag + ... (424)
where ¢;;, are scalars related to the six scalars ¢ of N' = 4 super-Yang-Mills as

G = (01)jn @', (4.25)
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and (o7);, the Pauli matrices of SO(6) defined in the Appendix A. Moreover, &*
and & are the chiral and anti-chiral gluinos, and F,5 and F 8 are the self-dual and
anti-self-dual field-strengths.

The constraints (4.23) of the superfield W;; can be solved using an appropriate
harmonic superspace that will be defined below. Instead of defining the superfields

to depend only on the variables [x,6,0] of the N' = 4 d = 4 Minkowski super-
SU(4)
SUEXUQ2)’

superfields can now depend also on the harmonic variables u parameterizing this

space M6 we will study superfields on M*16 x which means that the

additional coset. Note that locally the isotropy group of this new coset is
S(U2) xU(2)) ~SU(2) x SU((2) x U(1),

and the coset is parametrized by 15 — 3 — 3 — 1 = 8 independent variables. An

explicit parametrization is
A= (u J,zuj,) e SU4), (4.26)

where [u, u] are the harmonic variables and J=1,2,J =1,2. In our conventions,

under the operation of complex conjugation * these variables transform as

/

(W) =al, (@) =ul', (4.27)

where the variables [u;’ ,u) '] parametrize the inverse coset. For the matrix (4.26) to

be a matrix of SU(4), it is necessary that the harmonic variables and their complex

conjugates satisfy the conditions of unitarity

AAT=1 — Jul K=ok @l =o' whul =0, aju; =0, (4.28)
ATA=1 — u?jﬂf—l—uJ,U =7
and we must also have detA = 1. Recalling that the determinant of a four-

dimensional matrix can be written in a compact notation as
we conclude
1 1j okl 1

_ 2 i gk ol
detA =1 — (9)° € vl up Uy, Uy = — 7 Ciskt uu” T

where we have used two of the important definitions

i _ i J —ij _ J'K i
uu” = e uljug, = K @, e (4.29)
J K _ J K’
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. . . T T 1874 .
with the antisymmetric tensors [eJ K € JK e/ B ey k] having the same non-zero com-

ponents of the usual ¢*” and €,5 defined in (A.1). Note that the condition of unit

determinant is equivalent to

_ 1 kl —_— 1 —kl 4.30
Uls; = 5 Eijkl UU Uls; = 5 Eijkl UYU ( . )

because (uu)y; W7 = € uf uk’ M ul, Wy = —2.
The SU(4) transformations act on the indices ¢ and it is possible to construct
a set of SU(4) invariant derivatives acting on the harmonic variables. Two of such

derivatives are going to be useful for us, they are

;. 1.0 9
DY =t Do = —(us—— — @iy ——).
T 0 =5 Ou; uJ aaf,/)

(4.31)

Using Dy, we define the charge of the harmonics variables and their inverses
under the subgroup U(1) of the isotropy group as the eigenvalue under the action
of this operator

1 1
DO'U:§U, Dgﬂ:—iﬂ, (432)

% and « has charge —%. The first derivative given

in (4.31) acts on the harmonic variables and their inverse as

which means that v has charge

DY =, DY W= sful, DY w=0. (48

After introducing the relevant harmonic superspace and fixing the properties
satisfied by the bosonic harmonic variables and their inverses, we will solve the
constraints of (4.23) and show that all the Half-BPS operators can be elegantly
described using the harmonic variables. Consider first that the gauge group is the
abelian U(1). In this case, we already know that the superfield (Wy));; is gauge-
invariant due to the fact that it transforms in the adjoint representation of the gauge
group. The connection part of the gauge covariant derivatives that appears in the
constraints (4.23) does not give any contribution when acting on a gauge-invariant
object, then the constraints become

— 2 ;=

Deoi Wua))jk = DaiWu ) s Dy, Wuay)jk = —§5UD|ld|(WU(1))k]z7 (4.34)

and using the definitions

Doy =ty Doy, D,j=uDoj, DJi=uD, Dj =uDj, (4.35)
and (Wy ) = (uu)? (Wy 1)), where the superscript (1) indicates that this su-
perfield has charge 1. One can show that the constraints (4.34) are equivalent to

D, (WU(l))(l) = Di/(WU(l))(l) =0. (4.36)
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It is easy to derive these relations from the constraints obeyed by the superfield
W. Note that

D,.j (Wu@)™ = w; Do (uw)* (W) = vy € wly u§ Dagy(Woa))u =0,

which follows because the harmonic variables are bosonic and the indices [J , P, S]

take only the values 1 or 2. Moreover,

— 7/ ! = i . 2 / . P
DF (W)W = uj D} (uwu)™ (W )a = ~3 wi (uu)™* 8%, Digy Wy = 0,

||

as a consequence of u’ (uu)’™ = 0.

This example of the abelian U(1) gauge group shows why it is useful to introduce
the harmonic variables. They allow the projection of the SU(4) indices on the
isotropy group S(U(2) x U(2)) indices without breaking the SU(4), or in other
words, using harmonic variables the SU(4) is kept manifest and the constraints
(4.34) can be elegantly solved. Let us now not restrict the gauge group to be U(1)

and define the gauge-invariant quantity
W (u,2,0,0) = (uu)™* ... (ww) ™ Tr [Wi, (2,0) ... Wiy (2,0)],  (4.37)

where the superscript (V) indicates that this superfield carries +N charge. Using

similar arguments to the ones above, it is easy to show that
DWW =DIwW = ¢ (4.38)

and in what follows a superfield that satisfies these constraints will be called G-

analytic. Furthermore, W is independent of @, which implies that

-0
J/

and a superfield that satisfies these constraints will be called H-analytic. A superfield
that is both G-analytic and H-analytic will be called an analytic superfield for short.
The superfield W®) describes a gauge-invariant Half-BPS operator involving N

super-Yang-Mills fields. In order to see this, consider the expansion of W;; given in
(4.24) with 6 = 6 = 0, it implies

W(N)|9:9_:0 = (UU)iljl Ce (UU)iNjN Tr [¢i1j1 Ce ¢iNjN ] (440)

= (ww)™ " (op,)irjy - - (W)™ (o7 Vivin Tr[@" .. ¢! ],
and noting that for any I, and I,

(u) ™ (01, i (W)™ (07, )i g0 07 = =264 51 (00) ™™ ()™ = 0, (4.41)
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which means that (uw)”(oy);; is a null vector and the tensor

5./71...11\1 = (uu)iljl (Ufl)iljl s (uu)iNjN (UIN)iNjN )

is completely symmetric and traceless in all its indices. Recalling that all the Half-
BPS operators are of the form (4.16) and that the tensor £ that appears in (4.16) has
the same properties of the tensor ¢ defined above, we conclude that W®™) describes
a Half-BPS operator. So, Half-BPS operators constructed from N super-Yang-Mills
fields are described by analytic superfields of +N U(1) charge.

To construct the duals TWN) (u, u, 2,0, 0) to these analytic superfields consider

the superspace integral
/d4x/du/dB(UQ)W(N)(u,x,@,é)T(4_N)(u,ﬂ,a:,0,§), (4.42)
where [ d®(uf) = D" D* with
D" = D*' DX D5, Dy, D* = DID*Dy; DY, (4.43)

and the derivatives above were defined in (4.35). One comment is that both the
SU(2) indices [J,J'] can be raised and lowered with the e symbols, two examples
Jj K

K _ _j . : .
are U, j = €z u; and @ Uy and this was used in the expression above.

The [du denotes an integral over the compact space Explicit ex-

SU(4)
SUR)xU2)"
amples and a more complete explanation on how to compute this integral will be
given in the beginning of the section 4.6. The important information for us here is
that du is the invariant Haar measure over the group SU(4), which means that the
result of the integration is necessary a SU(4) scalar.

For the integral to be non-vanishing, 7*=") must be a superfield of U(1) charge
(4—N) and this is the meaning of the superscript. This follows because the integrand
must have total charge equal to zero given that the result of the integral over the
compact space is a SU(4) scalar. We know that W) carries charge +N and it is
easy to see from the definition of [ d®(uf) that it carries charge -4 which implies that
T“=N) must carry charge (4—N). In addition, for the integral to be supersymmetric
TU=N) must be a G-analytic superfield but not necessarily H-analytic. One more
comment about the superspace integral is that for a given W) and T*=N) it gives
a number, and this is one of the motivations for calling 7" the dual of W.

Note that T is defined up to a gauge transformation because the integral is

invariant under the variation

6T = (u 0

U ——
JaU?]/

)AS = DY A, (4.44)
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for any G-analytic superfield Af,. Let us prove that the integral is in fact invariant,

we will follow [31],
/ d'z / du / A3 (uf)W M s =N = / d'z / du / d*(uf) W DY A, ]
- / d'z / du / d*(ub) DY WAL,
_ / d'z / duD? | / dwh) W AL =0, ,
where on the second line we have used that W) is H-analytic and on the third
line we have used that when D:;’ acts on [ d®(uf) it gives either terms proportional
to D_; and DC{/ which annihilate the G-analytic superfields W and A, or total x

derivatives. Finally, we have used that performing the du integration of a total

. . .
derivative Dj is zero.

4.4 The vertex operators

After introducing the concept of harmonic superspace in the previous section, in
this section, we will present and prove the main result of this thesis, which is the
computation of the cohomology at +2 ghost number of the operator () 1 restricted to
states in the cohomology of the operator Q_%. As argued before, this is equivalent
to computing the cohomology of the complete BRST operator of the pure spinor
formalism near the boundary of AdS.

The general BRST-closed supergravity vertex operator dual to a Half-BPS op-

erator constructed from N super-Yang-Mills fields is
Vy =227 / du [ (yuuw)N 1 QOT 4 §(N — 1) (yuu)V 2 QWT (4.45)
+8%(N — 1)(N = 2)(yuw) 2 QBT + 83(N — 1)(N — 2)(N — 3)(yuu)N 4 QT
+ 84 (N — 1)(N = 2)(N = 3)(N — 4)(yuu)N > QWT]

where T is the dual superfield of (4.42) with the superscript (4—N) omitted, (yuu) =

(y"uu,j), and

Q) = = (A) 200 D)V DY DY D) Genapsr Al (4.46)

2N 2 D) MV D) (M D) (ryen)

N | —

+
o = i(AX)‘z(MM&)(MND)(MPD)(MS D)(MyarnpsrA)v” (4.47)
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_l_

[\CRGV]

2N M) D)D) (s

0% = 200) 20090 D) "D D) Craepsr Ao (4.48)
+ 32 00200 D) 00 D D)),

Q9 = 20000800V 0 DA D) oaapse AT (449)
22BN 200 M) O D D) ().

0 = = (A1) 200 M) O D) ™D () G e - (4.50)

In the above formulas, the vectors vy and v are null vectors with non-zero com-
ponents defined by v;,3 = —iaﬂk(uu) ik and Uypg = —ialjﬁ(m)jk where ¢7" are the
SO(6) Pauli matrices defined in the Appendix A, and D = op(7" D).

We will now prove that the vertex operator Vi is BRST-closed and during the
proof several features of the result will be explained. Firstly, note that the terms of

Q1 of (4.1) reproduced below,

1 A 0 0 _ 0
3 {ay.. 1] i kl_ Y  ya Y

annihilate Vi because when they act on the terms of Vy independent of r, they give

o 0
(225) - (Vrdnor = 2(2 = N)(Vir)aor y’“fayk, (Vi )nor = 2(N = 1)(V )nor »
0
_)\aﬁ . (VN)nor - —2<VN)1107”’

and the sum of all these contributions is zero. Similarly, when they act on the terms

of Vi that depend on r, they give

@20 () =20 - N = D0 0 - ) =200 - 100,
—)\&i : (VN)T = _(VN>T>

o\
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and again one gets zero. In order to Vi to be also annihilated by the remaining

terms of @) 1 given in (4.1), the following equations must be satisfied

(22D + @%r5)QOT =0, (4.51)
Py (1) [22 (MM oy QOT + (22 07Dy + @%ra)QVT] = 0,
Py (2) [22 (AyMP) oy QT + (22 07Dy + @%ra)QDT] = 0,
Py(3) [22 (MM ) oy QAT + (220D + @%r2)Q3T] = 0,
Py (4) [z%(/\VMQ@)vMQ(?’)T + (z%)\_D@ + @0%5)QWT] =0,

P (5) 22 (AWM ) oy QT =0,

where the factors of (Ay™4))vy above come from the BRST variation of (yuu) and
Py (n) is defined as

- (N —m).
m=1

Let us understand this set of equations and make some comments about how
the expression for the vertex operator (4.45) should be understood. When N = 1,
for example, only the first equation of (4.51) has to be satisfied and the vertex
operator only has the term proportional to Q) when N = 2 only the first and the
second equations of (4.51) have to be satisfied and the vertex operator only has the
terms proportional to Q@ and QW) etc. When N < 4 the vertex operator does not
depend on Q®) and Q® and there is a gauge such that V.4 is independent of the
non-minimal pure spinor variables A and r. In this gauge, 2@, Q@ and Q® are

replaced with

min

A, =~ 0™ D) D) Drwe D)o (1.52)
QD = —~(015) (0™ D) (Draane D)o + 2600 ) as (D) o,

3 0
Qo = =5 PO O D) Drarwp D" + 480N )ons (M) 5

however, such a gauge seems not to be possible for N > 3 because for the fourth
equation of (4.51) to be satisfied it would require

~ ~ ~ - ) 8
0 = — (MM AN (yarynyp D)o’ + terms with R

and this expression is not a function of AyM 1/3, which means that it is not a state in
the cohomology of Qfé, so QG and Q@ require non-minimal variables. The final
comment about this point is that we know that there always exist a gauge in which

the vertex operator is independent of the non-minimal variables, see (1.1), and the
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fact that Q©) and Q® require non-minimal variables seems to be a consequence that
we need these variables in order to express the result using harmonic variables.

We will proceed to prove that all the equations of (4.51) are satisfied for a generic
N. Firstly, note that

NDsy = yon(MMYYD) + vyoy(AMAN D) (4.53)
= )\Dl + )\DQ s

where we have used (4.28). This implies that we can rewrite the first equation of
(4.51) as

(22 ADy + @%ra) QOT + 22[AD;, Q0T =0, (4.54)

where [,] means commutator and (AD;) - T = 0 since T is G-analytic. It is easy to
see that [AD;, Q] = 0, because

{AD1, (MMD) } = —2(\M7#45)) =0, (4.55)

T} -
5 oz
and this vanishes given that

N,uS)

(VNV#VS)C-YB =(v ap + terms withn vy,

and A is a pure spinor. This kind of calculation involving commutators will appear
several times in the next section in the study of the gauge invariance of the vertex

operators, thus we will illustrate with (4.55) how these calculations are performed.
Using the definitions of (4.3), it is straightforward to see that

0

ad@a

and using the ansatz for the chiral gamma matrices of (2.66), we have in four-

{Dai» D} = —2i6] (0")

dimensional notation
/\D1 = )\azmijuujkDak + /\diWZJUUjkaa R
(MHD) = =X\Yioh a;; DY + A\giic"“un” D,

143 7 i T —ijk N Tij——  ykd
(M D) = X0, ut’” Do + Aaio Wi D™
and from the expressions above, one can compute the anticommutators

{)\Dla ()\,VVD)} =
4 y 0 S imauf oy O
_QiAazmﬂiagﬁ.Eﬂaaﬁid}\ﬁl@ + 2i)\dimlmi5'yﬁﬁeﬁa6#aa)\6m@ ’
{AD1, (WD) } =
, B . ) _ g ;. 0
) Ot . Imn By p _~ Y sergyal I By Y
2N N 0 70“7895” + 2iAguu’ Aoy € Maﬁaxu ;
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and rewriting the results above in ten-dimensional notation, one gets the right-hand
side of (4.55). After showing that the commutator term of (4.54) is zero, it is left
to show that

(22ADs + @%r5) Q0T = 0. (4.56)
The proof that this equation is satisfied uses several times the Fierz identity,

(’YM)Q(B('VM)-T/S) =0, (4.57)

where () means symmetrization of the indices. In fact, every time the words “Fierz
identity” appear in the rest of the thesis we mean manipulations using the identity

above. It is explicitly

(”YM)aB(’YM)aS + (’YM)M(’YM)SB + (”YM)QS(”YM)[% =0,

and an important property of pure spinors follows by multiplying this expression by

A and AP, with the conclusion
(M ™M)s(Mar)s = 0. (4.58)
Another important result for the proof is
rg - AN 2OM X)) Z) (rypv)) = 0, (4.59)
where X, Y and Z are any fermionic spinors. This follows because

07 - (AN 2O X) MY )M Z) (rypnad)
= —200) ) MM X) MY Z) (e )
+ (AN 2N X)) MY MNP Z) (rreyw )
— 4002 (M X) P 2) (rearY)
—4(N) (MM X) (M Z) (rypymY) = 0,

where we have used the Fierz identity and that (Ar) (A\r) = 0, since r is a fermionic

spinor. We are now in a position to show that

g - QO = _;(AS‘)_z(ADQ)()"YM[))()"YN[))O"YPD)(T’YPNM/N\) . (4.60)

for the Q) given in (4.46). This result is a particular case of the general formula
@rg - (AN 2 X) MY (7 Z) (A W) (e psr Ao (4.61)

= 200) M) Y)Y (M Z2) (MW s (reva )
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=200 2 M X) MY (T Z) v (W) (rysward)

+2000) M X) (MY Yo (M Z)(ASW) (rysparh)
—2M) 2 (MM X) o (MY (M Z) A W) (ryspah)

which is valid for any fermionic spinors X, Y, Z and W and can be easily proved by
manipulating the result of the application of w®*rs using Fierz identity.

Note that acting on the r dependent term of Q(® of (4.46) with 23\D, we get the
result (4.60) multiplied by minus one, in other words, both terms cancel precisely in
(4.56). For the remaining part of the proof, note that the part of Q) independent

of r can be rewritten due to the Fierz identity as

1 N L N
Q) = _Z(AVMD)O\WND)(DVMNPD)UP (4.62)

nor

~(AN) T AD) (M D) (X" D) (Myps D).

and one can show that (AD,) - Q%) = 0. It is easy to see that the second term on

the right-hand side is annihilated because (ADs) - (ADy) = 0, and that the first term
is also annihilated will be shown in great detail in the next section. This completes
the proof of (4.54).

We will proceed to prove that the second equation of (4.51) is satisfied. This

equation can be rewritten in the form
22 (AMP) oy QOT + (22ADy + @%r) QDT + 22[ADy, QU T =0,  (4.63)

and it is straightforward to see that [AD; , Q)] = 0 because of (4.55), which means
that this term does not give any contribution to the equation above. Consider the
term of Q) given in (4.47) that is independent of r, using the Fierz identity this

term is equal to

ng)r = _()"YM?E) (A’YSD) ([)’YMSPD)UP

— (AN )™ (MD)W D) (MypsD)
3N AD2) (MM ) (M D) (Mysu D)

and for the equation (4.63) to be satisfied, we must have

MMy QO+ (ADy) QN = 0.

nor nor

Substituting the expression for both Q) given above and Q) of (4.62), many

nor nor

terms trivially cancel and it is left to show that

0 TD)er (M D) D) Dyarwe D)o
—(AD2)(AVM@()\VSD)(DWMSPD)UP =0.
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This equation is in fact satisfied and we will postpone the proof to the next section.

Moreover, one can show that

£
<

Ql
e
=
|

2 O™ Y DY DY D) (rsewd)  (4.64)
SR 2D (M) (N D) D) (i),

where we have used (4.59) and (4.61). Note that this variation cancels with the
action of ADy on the  dependent term of Q) given in (4.47) and with the action
of (AyM ﬁ)vM on the r dependent term of Q) given in (4.46). This completes the
proof that the second equation of (4.51) is satisfied. Following the same steps, it
is possible to show that all the equations of (4.51) are satisfied, which means that
the vertex operators Viy are BRST-closed. The last comment of this section is that
although it may seem surprising that Q@ given in (4.50) does not depend on r, this

is a consequence of

Wors - QW = —;()\5\)_2()\751@)213()@]\412))(/\szﬂ)()\fyplﬂ)(rvaMj\) , (4.65)

and this variation cancels precisely with the action of (A Qﬂ)v m on the r dependent
term of Q) implying that the fifth equation of (4.51) is satisfied.

4.4.1 Gauge invariance
As explained in the section 4.3, the dual superfields T*~™) are defined up to the
gauge transformation

ANaY, JAd

where A7, is any G-analytic superfield of U(1) charge (3 — N). The BRST-closed
vertex operator Vi of (4.45) depend on 7" and for the result of Viy to be consistent
it must change by a BRST-trivial quantity under a gauge transformation of 7'. This
means that 0Vy = Q% - for some ¥y when T' changes by a gauge transformation.

It is possible to show that in fact this is the case. For a generic value of N, we have

Sy =222 N / dul(yuu)VHADYT AT 4 8(N — 1) (yuu)V2(AD)T AT, (4.66)
+82(N — 1)(N — 2)(yuu) V2 (AP) A,

where

(AT =3 (WMD) (MP D) (Aysu DY) (4.67)
+3N)TH{MMDT), (MYD) Y Awm D),
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(A7 =6 () WMD) (WD) (Msu DY) (4.68)

~ A , -0
+24 (AN) T (M) Oar (A MY N

(AP = 30N M) () (Msu D). (4.69)

and (D )a = DY - (Da), v} = DY - (v 7™) and {,} means anticommutator.

As previously explained, when N < 4 there is a gauge where the vertex operators
Vn<4 do not depend on the non-minimal pure spinor variables. In this gauge, >y.4
also do not depend on these variables and they have the same form of (4.66) but
with (AD)7 (AM)7 and (A®)7 replaced with

(AQNT = 40N D) (Dyn DY),

(AW )T = 6(N) (Dyn DY),

(A(2)

min

)i =0.

In what follows we will consider a generic N and prove that Xy has the form
(4.66). The first step of the proof is the substitution of §7" in the expression for the
vertex operator Vy of (4.45) to get 0Vy. After an integration by parts, one has

Vv = 22N [ dul (yuu)™ ! (~DJ Q) A, + 8(N — 1) (yun) Y2 (~DJ V) A

+8(N — 1)(N — 2)(yuuw)V =% (=D7Q®) A7,
+83 (N — 1)(N = 2)(N = 3)(yuu)™~* (-DJ Q@) A]],

without an Q) term because (—D%' Q@) = 0. From this expression, we conclude
that in order to construct Xy satisfying 6Vy = @ L Yy, we have to solve the

following equations

(\*Dy + 2 20%5) (A A, = (=DYQO) A7, (4.70)
M) var (AT AT + (A Dg + 27 20%,) (AD)] AJ, = (=D QW) AY,
MM var (A AL + (XD + 27 30%5) (AP)) A7), = (~=DT Q@) A7,
(M) var (AP)] AJ, = (-DJ Q) A7,

where again the factors of (A} ) va above come from the BRST variation of (yuw).

These equations are the correct ones imposing the additional requirement that

A 0 0 -0
B ij e kKl _~ ha . —
yz] ()\7 w)(QZ az + y 8ykl )\ aAa) E]\/v 0 )
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which is satisfied for the X given in (4.66). The verification of this result is straight-
forward and the details will be omitted. The proof that (A(O))jl given in (4.67)
satisfies the first equation of (4.70) will be splited in two steps, we will first consider
the zero-momentum case (i.e. setting all the anticommutators to zero) and after the
general case will be considered. At zero-momentum and using the Q© of (4.46), it

is easy to see that

. ; 1~ 8 . _ o 5 .
(=D7 Q) A, = =20 2 M D) (MM D) (M D)W DY) A psr AT Aj,
272 () 2 D) MDY DT ) (ryenard) A

w

2
and using the Fierz identity and the fact that A, s G-analytic, this expression
becomes
(—=DF Q) A, = 3(A)THAD) (MY D)(MD)(Msa DY) AL (4.71)
3272 (AN 2 (\r) (AvND)()\VPD)()\VPNDJ)Aﬁf
+3277 (AN (MM D) (M D)(rypu DY) AJ..

Note that using the (A©)7" of (4.67) at zero-momentum, we have
(\*Dy + 27 20%5) (AD)1 A7, (4.72)
= (ADy + 2 20%r5) 3(AN) ™ (MM D) (M D) (Mysu DY ) A7,
= (=Dj Q) As,
where to go from the second to the third line we have used (4.71). This is precisely
the first equation of (4.70), thus at least at zero-momentum this equation is satisfied.

Relaxing the condition of zero-momentum, we have that the contribution from the

anticommutators is

/ 3 1, ~ ~ - - . .
(=DF Q) A = =52 2N 2D D), (D) rypwmd) A
3, ~ - . L - .
—3 AN ZOMD) DM DT), MDY AmanpsT Aot Ag,
where the subscript ac means the contribution from the anticommutators. Using
the Fierz identity, one gets

(—DJ Q20), Az} =3\ (AD2) {MMDF), MM D)}Awu D) A, (4.73)
#3275 (AN H{WMDY), WY D)D) AY
=322 (W) 2 () {0 DY), (WD)} Ay D) A,
(AN~ {(mMDj’) , <MND>}UN<MSD><MSMD> Al
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and one of the advantages of having the result written in this form is that the first

three terms can be organized as
3(A) " (AD2) {( MM DT, (N D)} Aywu D) A, (4.74)
+3272 (W) {(MM DY), (MN )} (rywar D) A
=327 2002 () {(0MDY). (A >}<MNMD>A§,
= (ADz + 27 30ra) 30N {0 DY), (W D)} (M D) A,
= (\"Da + 2775%7) 3 (M) " H{(WM DY), (MY D)} (Ayww D) AT,
where we have used that (AD;) - A4, = 0, and
{(AD),A(MMDT), MY D)} Aywu D)} =0, (4.75)
which can be proved by noting that the anticommutator is

o {(MMDF), (AN D)} AywaryrAeT

and this vanishes because A is a pure spinor. The last three terms of (4.73) can also

be rewritten in a convenient form after a few manipulations. Note first that

0
)

and the proof of the result above is similar to the one given for (4.55). This enables

{(M°DT), (MED)} = 200 MSy] 49Ty P (4.76)

us to conclude that

{WMD7), (AD2)} = ~{(MWND7), WMD)}, (4.77)

because we can freely anticommute the chiral gamma matrices on the right-hand side
of (4.76), since when one commutes two of the gamma matrices the term proportional
to n has three chiral gamma matrices and vanishes using the pure spinor condition

for A. In addition, we have
{(MVD), (AD)} =0, (4.78)

which follows from (4.55) and the trivial fact that {(\y" D), (AD3)} = 0. Deriving

both sides of the equation above, the result is
{YDF), (D)} =0, (4.79)
thus

{(M°D7), (AD2)} = —{(M*°DJ), (AD1)}. (4.80)
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The final intermediate result that we need is

3 (M) (N D) (A D){(ADy), (AysmD)} (4.81)
+6{(AD1), (\°D)(DysD7)}

S LOMDY) . (YD)} Dyar D,

T2
which can be proved by computing all the anticommutators of the both sides of the
equation and comparing the results. Finally, using (4.77), (4.80) and (4.81) the last
three terms of (4.73) are equal to

—= (N WMD), 9V D)yon (AT D) (Avsa D) A (4.82)

W W

5 O e { MDY, AN D)} D) (s D) A,
F2AOMDY), (0 D)Y(Drane D)"Y
= {(ADy), (A7},

where, in addition, we have used that the part of (A®)7" given in (4.67) that is
independent of the anticommutator can be written in the form

3N (M DT M D)(Mysu D) + 6(AM D) (Dyw DY) (4.83)
using the Fierz identity. From (4.72), (4.74) and (4.82) we conclude that

(\*Dg + 2~ 7@ 5) (AL AL, = (=DTQO) AY, |

or in other words, that the first equation of (4.70) is satisfied for the (A(O)):;/ given
in (4.67).

Using similar arguments and following exactly the same steps, one can show that
all the equations given in (4.70) are satisfied for (A©)7, (AM)7" and (A®)7 given
in (4.67), (4.68) and (4.69), respectively.

4.5 Proving useful identities

In order to prove that the vertex operator Vy given in the previous section is BRST-
closed we had to use several identities. One way to verify these identities is to Wick
rotate SO(1,9) to SO(10) and write all the expressions in U (5) notation, an excellent
reference on how to perform this change of notation is [45], see also [41]. Another
way is by brute force calculation using four-dimensional notation. The identities in

question are

(AD2) (MM D) (M D)(Dymns D)o =0, (4.84)
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(M), i(AvMDxMND)(DWNSD)vS + (AD2) (MMD)( MY D) (DyansD)v® =0,
(M) M MD) (AN D) (DyarnsD)v® + (ADy) §<A7Mz/?><mw><bwmb>vs =0,
(M), ;’wM@(M%)(DWﬁ)vS + (AD2) (MM MV D) (pyarynys D)v® =0,

(M) MDY AN D) (v rnys D)o + (AD3) ~ (MM ) (M) (Dyanst)v® =0,

A,

Ay MYMD)Y M ND) (pyarnsid)v® =0,

where (M), = (AMyMi))vy and (AD,) was defined in (4.53).

4.5.1 The analytic method: U(5) notation

The first step of the proof of the identities (4.84) using this method is to Wick
rotate SO(1,9) to SO(10). After performing this rotation, note that a vector VM
of SO(10) splits as (V% V/) in SU(5) x U(1) notation, where @ = 1,...,5 and in
our conventions V' carries charge +1 and V. carries charge —1 under the U(1),

moreover
a1 e e I /20
V _—*2( + V=), La—*zu — V™).

The null vector vy, that appears in the identities (4.84) was defined in the pre-
vious section, it has the non-zero components v;,3 = —10% (uu);;. In U(5) notation

the null condition reduces to

M

0 = vpo™M = 2v50% . (4.85)

In addition, we can organize the Gamma matrices T™ of SO(10) as

. 1 .. . 1, o ;
- §(F2a—1 + ir2a) 7 b('z — §(F2a—1 . ir2a) 7 (486)

and from the Clifford algebra {T™ TV} = 2n™¥" one can easily deduce the algebra
satisfied by the b% and b, defined above

(b by =68, (b0 =0, {ba by} =0,

which is isomorphic to the algebra of five fermionic creation and annihilation opera-
tors. In our conventions, b = b:-; where T means the adjoint operator. We will define

the vacuum state |0) as the state being annihilated by all b,

bal0) =0, (4.87)
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and defining (0| to be |0)T, we also have
(0p* = 0. (4.88)

Note that acting with the creation operators on the vacuum, we generate 2° = 32
states that we will call generically as |A), and the same number of states is generated
by acting with the annihilation operators on (0|, these states we will be called (B].
One can show that (B|b?|A) = (I'*)?, and (B|bs|A) = (T'y)®, forms a representation
of the Gamma matrices satisfying the Clifford algebra.

The chirality matrix, [''! = (—i)['*... "% satisfying (I''!)? = 1 and (I''1)T = '

is written in terms of the operators b, and b% as
I = (260" — 1) ... (205" — 1), (4.89)

and it is easy to see that I'''|0) = |0).

The spinors that appear in the identities (4.84) are the bosonic A* and the
fermionics D® and ¢%, all of them Weyl spinors of positive chirality. These spinors,
by definition, are eigenstates of the chirality matrix I''! with eigenvalue 1 and they
can be described in SU(5) x U(1) notation as

Lo i 1 L dser
IA) = ATF|0) + iAM;b”bﬂO) - ﬂvedbédéb%db%b\m : (4.90)

- - 1~ ;. 1 ~. L
|D) = DTF|0) + §Dabbbb‘110> + ﬂDaedbédébebdbebm) :

~ ~ 1A . 1 ~. Lo
i) = F)0) + iwabbbbam) + ﬁwaeabédebebdbcqu ;

where €., is completely antisymmetric in all its indices and €;9345 = 1. From the
expressions above, it is not difficult to see that T*'|\) = |\) and similarly for the
others. In our conventions, the vacuum state |0) does not carry U(1) charge and the
operator b® carries charge +1, this implies that if we normalize the scalar component

of the decomposition of a chiral spinor to have charge —i—%, for example AT in the

expression above, \;; carries U(1) charge 3 and A\* carries U(1) charge —3. In
conclusion, a generic chiral spinor with positive chirality S® splits as (ST, S,;, 5%)
carrying U(1) charge (3,3, —3).

Before starting any computation, we need the charge conjugation matrix C' in
U(5) notation. This matrix has the property CT'™ = —(I'M)TC where 7 means

matrix transposition and in a particular basis it is expressed in terms of the Gamma
matrices as C' = ¢ 2IMTST8MY which is equivalent to

C - ngl(b(l - ba) .
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Two very important properties of the matrix C' that can be verified by explicit

computations using the expression above are
b,C = —Cb*, b'C = —Ch,. (4.91)

In addition, note that the only non-vanishing vacuum matrix element involving one

matrix C' and creation operators is
(0|CH*BPbebIbe|0) = edbédé (4.92)

where €@ ig completely antisymmetric in all its indices, €235 = 1 and (0[0) = 1.
The coefficient of proportionality in the expression above can be verified by explicitly
performing the computation for a = 1,b=2,¢=3d=4and é¢ =5 and noting that
the left-hand side is completely antisymmetric in a, b, ¢, d, é.

The pure spinor conditions in SO(10) notation are )\5‘7%/\5 = 0. As a first
example we are going to write these conditions in U(5) notation. Note that these

conditions can be written as A CT™\ = 0 and this implies
AICHHA) =0, (NCba|) =0,

now substituting the expansion of |[A) of (4.90) and using the properties of the matrix

C given in (4.91), we have
(ACHEN) = ﬂA++Afef~i,(.xl-é(()|Cb%€bdbeb|o>
1 ey
+1/\56/\éd<0|bbbé0babdbe|O>
1 f Q@
+ﬂA++Afefbc.d-é(oybbbébd-béCb 0)
1
4
. 1 .;...
— 2)\++)\a o ZeadeE)‘l}é)\dé

— 0. (4.93)

= E)\++ /\fefbéd'éeaedCb /\l}é/\déeadee

Similarly, one can show using the properties of the b; and b operators that
(A|Cba]\) o A’A;, = 0. The solution of these two equations is well-known and in
fact a solution of the first one is automatically a solution of the second. The solution

can be parametrized as
)\++ __ s P . )\d _ 1 —s_abéde . . 4.94
=€ Aah = Ugps g ¢ Uhelde (4.94)

where s and u,; are the 11 independent components of a pure spinor.
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We now proceed to prove the identities given in (4.84). In what follows, we are
going to work in a Lorentz frame where the only non-zero component of the pure

spinor A is At*. Consider first the term
(MMX) = (ACHX), (\Ch X) | (4.95)

where X is any chiral spinor and in this Lorentz frame

(ACb X) = ATH0|Chy|X) = 0, (4.96)
(ACH'X) = /\++ﬂef-,-]édéXf<0|Cb“bebdbcbb|0)
— 2\t 1 ,Gaéd'd}Xf' _ /\Jr+Xa7

ﬂ€ fbede

and from this, we conclude, for example, that (Ay™ 1&) — )\++1ﬁd, which explains,
in particular, the fact that the term (Ay™ 1/3) has only 5 independent components.
In order to prove the identities (4.84), we need to write the following expression in
U(5) notation

A X)OAY ) (Zyuynyp K )o" (4.97)

for any fermionic chiral spinors X,Y, Z and K and A a pure spinor. This expression

is proportional to
(ATEVEXOY (7| Cabybe| K + (ATH)2XAY P (Z|Cabybf | K v (4.98)

where we have used (4.96). It is left to evaluate the matrix element involving (7]
and |K). In this direction, we note that

balK) = bk HH|0) + bd;Kbébébﬂo) - ba;leebédéfbfbébdbﬂ()) ,
- Kbabbm) + éKbebedéabébdbém) ;
bybal ) = K&m>+éK%@%ﬁwm%
bebybal K) = Kdedéébabé|0> -
Using the results above, one can easily deduce
(Zlbabgbel K = 27K 0% i
and

(Z|Cbabyb" | K)ve = —(Z|Cbabby| K)ve + (Z|Cha| K vy
= (Z|Cbbuby| K)vs + (Z|Cbs| K )v; — (Z|Chy| K)v,
= Z°Kyve — ZyKve + Z°Keovy — Z°K 04 -
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Collecting all the terms, one has

vs (MY W) MM X) MY ) (Zymynyp K)o” o (4.99)
AP W, XY ZE K 0% 4
+ AP Wh XY ZOK v: — Zoy Kve + Z°Keavy — Z°K 505)

where W is any chiral spinor. Setting, for example, W =X =Y =Z =K = D in

the expression above,

vs(AY° DY OM D) (My™ D) (Dyarynyp D)ol oc (A2 D DYDY DE DI e,
+ (A++>3DdUd'DdDb<DéDdbUé - DdbDéUé + DéDéa’Ub - Débébva) = 0,

where we have used that
DEDPDEDADE — ¢abede P12 PH3 PHa )5 ’

vav? = 0 and ([?%d)([?i’vb) = 0 due to the fermionic nature of the covariant deriva-
tive. This proves analytically the first identity of (4.84) and replacing D by 1& the
last one as well.

The proof of the remaining identities also follows from the general formula (4.99).
In this direction, we will choose v® = (0,0,0,0, a;) where a; is a number. The null
condition v%v, = 0 implies that v, = (as,as,a4,as,0). In what follows, we will
consider as = a3 = a4 = 0 in order to simplify the exposition, but the case where
these numbers are different from zero is similar. One can also consider the most
general case where v® = (a,b,c,d,e) and vy = (a’,V,c,d’,e’) with the condition
aa’ +bb' + cc +dd' + ee’ = 0, however, the expressions become very long in this case
and it is convenient to use the computer program Mathematica.

Using the general formula of (4.99), the expression below
Xy W)y (MM DYV D) (Dypanp D)o’ + X (AD2) (™M) (M D) (Dyanp D)
with X and X, constants, can be rewritten in U(5) notation as
(M) (Xyasa1) ' DD DD €y + (N)? (Xoaras) DWW DY DD €
+ (AP (4X1a2) ' D' D D' Dy + (ATH)* (Xoa?) DY D' DD,
= —(AT)? (Xyasay) 10 D' D2 D?D* + (A*)? (Xyasaq) 3! DY D' D*D?

+ (/\++)3 (4X1a§) ¢4D4Dabbf)ai) + ()\++)3 (X2a§) D4¢;4Daf)bD

ab -
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It is not difficult to see that the final expression above is equal to zero if 4X; = X,
and this proves the second identity of (4.84). We will give one more example,

consider now the combination of terms
X5 (A)y MM AN D) (Dyarnp D)o" + Xy (AD2) (My™h) My ) (Dyasnp D)v” .

Using the general formula of (4.99) and performing the appropriate substitutions,

these terms are rewritten in U(5) notation as
(ATT)? X5 &dvd Q/Aj‘if?b[?é[)fvéefédbé + (AT X, [?dvd &dzﬂb[?ébf.véefédbé
+ (/\++)3 X3 &dvd ’lﬁdbb (Débdb?]c' — Dai)bévé + DéDc‘avb — [)éDd')’Ud)
+ (/\++)3 X4 DdUd 1&[177;1) (DéDdb’Ué — Ddi)f)évé + Débédvb — Débéb’l}d) .
Dropping the terms that are equal to zero, substituting the values for v% and v, and

omitting the overall factor of (AT)3, we have

—(X36L5(11) 3 7])4D41Z}aDéDf.€féa45 - (X4a5a1) 2 D47Z)47j)dbé[)f.€féa45
+(X3a2) 30* D" DD,y + (X4a2) 2 D***DD,;

and it is not difficult to see that the expression above vanishes for the particular
choices X3 = 1 and Xy = % This proves the third identity of (4.84) and using

similar arguments one can prove analytically all the remaining identities of (4.84).

4.5.2 The brute force procedure

An alternative procedure to show that all the identities of (4.84) are satisfied is
using brute force. We will illustrate the method with the first identity and in fact
the author of the thesis had developed a Mathematica program that applies it to
all the identities. The first step of the method is to write down all possible terms
that are scalars with +2 ghost number carrying the correct harmonic U(1) charge
and with the correct number of 1@ and of derivatives D, not considering additional
terms that can be obtained from the basic ones by the pure spinor conditions. The

possible terms with four derivatives are

(A2D*) = (\qu;; N, ) (Dpwa™ D) Dpu™ Dgy,) (4.100)
(A2D*) = (Aauwu”’ A2 )( Dlyw D, D™Vt D),

(AMDD?) = (At DA™ D) D @™ D)
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(AAD?D) = ()\muu”Da)\kuulel DPm Wil D)
(;\2D2D2) = (D?mijj\dedkmlelﬁ-j\immnDcm) ,
(A2D?D?) = (DiutipA*™ Doy D) Ny @it D™

and the most general linear combination of these terms with numerical coefficients

A; will be denoted by €,
Q' = A(\?DY) 4+ Ay(AMDD?) + As(\2D?D?) (4.101)
+ Ay (N2D?D?) + As(AAD?D) + Ag(\2D*).

The coefficients above will be fixed by requiring that €’ is annihilated by (ADy).

Introducing the notation

(ADy) = X @), Doy + Agitisa) DY = (AD)ap + (AD)sp (4.102)

J

we have to solve the following equations to ensure that €2 is annihilated

(AD )=0, (4.103)
(AD)ap Ay (ADD?) + (AD )
(AD)ap [ As(A2D*D?) + Ay(A2D*D?) | + (AD)sp A2 ()\5\ DD?) =
(AD)2p As (MD?D) + (AD)ap [Aa(VDQD ) + ]
(AD)ap Ag (N2D*) 4 (AD)yp As (AMD?D)
)

The first and the last equation of the set of equations above are trivially satisfied
for any A; and Ag, because there are only four different derivatives of the type
1%, Dy and four of the type @/ DY and the derivatives are fermionic. The second

equation is explicitly

Ar (e uJDO‘”)()\akuukl)\l )(uD)* (4.104)
+ A, (A”puglﬂf,/D,yt)()\muuijDi)\kuulel D™ D) = 0,

where we have used the definition
(DYua® D) D.ua™ Dy, ) = (@D)* .

It is possible to perform a few manipulations on the second term on the left-hand
side of the equation (4.104) in order to rewrite it as the first term. Mainly, one uses
the identities

1
uJ,DW uK,D Dgpua™ Dy = —ZEJ/K/EW(QD)4, (4.105)
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which follows because there is only one non-zero possible combination of four deriva-
tives of the type 4% Dq;, and

0 = XS = NGNS = A @AY + A (4.106)
which implies that
A uJ,)\O‘ = )\mﬂ;]u?jj\? (4.107)
Using these identities, we have
(NPu alh, Do) (Nt DI DY D gy @™ Do) = (4.108)

(NP @, Doy ) (Nt DI @it D) Doy @™ Dy, ) =

1 ’ . — - 37
Jyoi— Jya -k I'K — 4
~NPus N g DI U € epgreyg (WD) =

4
Losap, i i - D)4
_Z()\ ul N ul DINégh)(aD)* =
1
4(x*pqu ! a i DIXub) (aD)t =

L5 —I Pyag S YAYT
é()\dku’;uJI»D ])()\wuupi)\v)(uD)‘l,

where in the last line, we have used

1 ] )
Nialal N = ieﬂ(wmj&)? (4.109)

lJ'Y

and substituting the final result of (4.108) in (4.104), we conclude that
1 L
(A + gAg) (AD)yp (A\*D*) =0, (4.110)

which fixes Ay as a function of A;. Performing similar manipulations it is possible
to fix the value of Aj as a function of the value of Ag for the fifth equation of (4.103)
to be satisfied. In order to show that the third and the fourth equation are also

satisfied for a correct choice of the numerical coefficients, we use the identities

D¢ D Dy, = (4.111)
1 Q1] — Qi —J
_g(EfJDi uu JDngkul}( + €5 Diwu kD,ngjuf]-) ,
D) D, DY =

1 .5 - —:. _ . s g iy
g(eaﬁa{ DDy DV + e¥u) Di D DPF)

83



the pure spinor conditions, the Schouten identities and

. _ _J, J _J, J
upuien = € (Uj up €y + Upuj €yr)

J — 1 zykl

which can be derived by multiplying both sides of wa' uuy; by u " then by

€imnp and finally by €y . Using all these identities and the prev10us results, one has

(AD)ap (N2D*) =0, (AD)yp (N2D*) =0, (4.112)
(AD)ap (ADD?) = £ (AD)ap (\*D"), (AD)ap (MAD*D) = £ (D)o (VD).
(AD)ap (A2D2D?) — §(XD)2D (AADD?) + 3, (AR2D2D%
(AD)yp (A2D2D?) = § (AD)an (AAD?D) — § (\ZADPD?),

_ _ 9 _ 9 _
(AD)ap (N D*D?) = =2 (AD)ap (MD*D) = = (N*AD*D?),

_ 9 __ _ 2
(AD)2p (N*D?*D?) = 3 (AD)2p (AMADD?) + 3 (AN2D?D?),

where we have introduced the notation
(AN2D?D?) = \mm; DL NG ub uIDl X @™ D, wi DY D,
(WAD*D?) = X!}, DNy wtiyy Doy W™ Ay, D 1010, Dy D™

Using the set of equations of (4.112), it is not difficult to see that 2 given in
(4.101) is annihilated by (ADy) if the A; are replaced with
Q' = (A\?D*) — (\*D*) — 8(AADD?) + 8(AAD?*D) (4.113)
—6(A2D?D?) + 6(\*D?D?),
and one can show using the ansatz for the chiral gamma matrices of (2.66) that

this result is the four-dimensional reduction of the expression below written in ten-

dimensional notation
1 N - -
Z()\”YMD)(A’YND)(D”YMNPD)UP )

which proves the first identity of (4.84) as we wanted. All the remaining identities
can be also proved following the same steps.
Another important property of )’ that can be derived by brute force using four-

dimensional notation is

[(ADy), Q] =0, (4.114)
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where (AD;) was defined in (4.53). Note that the only non-zero anticommutator

involving the covariant derivatives is

0

ozt
and in principle the commutator (4.114) can be non-zero as a consequence of

0 0

Dk dar”’

however, we will give three examples that illustrate how one can show that this

{Daia Dé} = —22'5{ (Uga)

{uzDaiv aJKDé} = _2215([]:((‘75@) ) {ﬂf]/Daiq UJK/Di} = —2i5§(//(05d)

commutator vanishes. Note that in four-dimensional notation
(ADy) = )\aimijuujkDak + /_\dimijuujk[)é‘k , (4.115)
and the first two examples are
[Nt uu Doy, (N2D] =0, [ Aasuu?uu, DY, (Z\>D*)] =0,
where (A2D*) and (\2D*) were defined in (4.100). A less trivial example is
[ X uu’* Doy, , (A2DY)] = —8¢(xdiwiﬂ‘x;ﬁv>(Aakwklpgpﬁmwmnmnag8;) ,

L . _ . . . B
[/\diWZ]UUjkDak, ()\)\D?)D)] = —z()\o-ﬂ-m”)\?)(Aakmle%Dﬁmmmanagﬁ@) )

where we have used the pure spinor conditions for A. From the expressions above it

is easy to see that with the correct value of the coefficients that we can read from
(4.113), one has

[ A jur’* Doy, , —(ND*)] + [Assitt?uug, D™, 8(AAD*D)] = 0.

As illustrated by these examples, the way to prove that the commutator (4.114)
vanishes using four-dimensional notation is by computing the commutators, then
collecting the terms with equal number of D and D and after a judicious use of
the pure spinor conditions showing that they vanish. The calculation is tedious but

straightforward and further details will be omitted.

4.6 An example: the dilaton vertex operator

In this section, we are going to give an example on how the general formula for the
vertex operators Vi given in (4.45) can be evaluated. We will show that when a
particular dual superfield 7', that will be defined below, is replaced in the general

formula, the vertex operator for the zero-momentum dilation of (4.12) is recovered.
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In order to do this we will need to evaluate the integrals [ du over the group SU(4)
and these integrals can be evaluated indirectly using group theoretic arguments as

we will explain. Firstly, we need to fix our normalization condition which is
/du ~1. (4.116)

The measure du is the Haar measure over the compact group SU(4) [65] and
it is invariant under the transformations of this group. From the group theory, we
know that the only three invariant tensors under this group are 5;, €ijr and €9k
which means that the result of the integration must be a combination of terms that
depend on these tensors. We will illustrate this idea with three examples. The first

one is the integral
/du (u?]ﬂi) x 0, (4.117)

where the symbol o is because the only invariant tensor that can be formed with
the SU(4) indices appearing on the left-hand side is the § tensor. In order to fix the
constant of proportionality we contract both sides of the expression with 5]"? and the

final result is
/du (v, uk 45] (4.118)

Similarly, we have

/dumij UUgr X €5kl , (4119)

and contracting both sides of this expression with €% we find that the constant of

proportionality is —g. The last example is
/du uI,u "k = A0 5+ B (5"3 o), (4.120)

and we can get two conditions for A and B by contracting both sides of this expres-

sion with ¢7 and with 6. The two conditions are
, A 1., , A
x 0! — OF = 4ASF + Boy, x 6] — 50 = A0} +4B3;, (4.121)

and the solution of the system of equations above is A = -~ and B==

After this short explanation about harmonic 1ntegrat10n, let us return to the main
purpose of this subsection which is the derivation of the dilaton vertex operator of
(4.12) from a particular choice of T (u, @, z,6,0). The superfield T in question is

) = 12—2(00“ UL Qﬂjgg wu 0) . (4.122)
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As a consistent check, we know that the dilaton vertex operator is dual to the
linearized super-Yang-Mills action. This implies that when we replace this T in

(4.42) we must get the action. In fact using
(D¢ @' DY Dy @ Do) - (07 Wit 07708 wy 01) = 127, (4.123)
one has
/d%/du/dg(UG)W(z)(u,x,@,é)T@)(u,a,x,G,é) x /d4x/du D*Tr (W?),

which is the linearized super-Yang-Mills action.
The general formula for the vertex operators Vi given in (4.45) reduces in the
case of N =2 to

V= /du [(ysuu™) Q0 1 L8l 77, (4.124)

where Q) and Q) were defined in (4.52). Replacing the expression of T of

(4.122) on the formula above, we note that the only non-zero contribution is from
the terms in Q% and Q)

min min

with derivatives of the type 4%, Dq; described in four-
(0)

dimensional notation. We will compute these terms in great detail for €2,,;, and give

the result for lezn since the procedure to obtain these terms on both cases is the

same. We first note that

1

Qi = =7 (MDY D) (Dyawp D) 0" = (4.125)

1 ~ -~ ~ 1 ~ - ~
—Z()\’Y“D)()\’YVD)(D%MHD) v — 5()\’YI+3D)()\”Y”D)(D’YI+3’WYJ+3D)UJ+3
1 N o N
_1(/\71+3D)(/\’YJ+3D>(D7(I+3)(J+3)(K+3)D> i

and using the ansatz for the chiral gamma matrices of (2.66) and keeping only the

terms with @, D,; derivatives, we have

(MPD) = (Aagio™uu? D),
()\71+3f)) — (A ijmjk Dk,
(DyuriesD) 0™ = —(DfwuYi(0,)aai(5,) P uumm™ D)
(Dr4sVs3vr+3D) 0" = —(Dfwa” (o) ji(07) ™ ur W™ Do)
(D437 743 D)0 — 0,

where the last term is equal to zero because it necessarily has a @/ D% derivative.

Using the properties of the Pauli matrices given in the Appendix A and the pure
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spinor conditions for A\, one can contract all the terms and after a few manipulations

the final result is

0 — (X @ M) (DE wia® Dy Doy wa™ Dy, (4.126)

minD4* T

where the subscript D* means that we have kept only the terms with four derivatives
of the type @’ D,;. Using (4.122), (4.123) and the result above, one concludes

0O TG — _12i( A N) . (4.127)

min
Following the same steps, one can show that

Q'Erlean’ =
— AN PN T Dy Doy @tt™ Dy, — ANSYEN 370" Dy DFTE™ Doy
— deg AP N Dg, DYt ul at, Dy,
+ e\ YN ™ D, DY watul at, D,y
FAN VSN Doy D "™ w0 D gy — AN 305 AN 00 Doy DU ut™ iy wt™ D
— 4Xdi1z§”)\aj WlealDiniuuknW"p Dg, ,
where the subscript D? means that we have kept only the terms with three deriva-

tives of the type 4%, D,;. We can proceed by computing the action of this operator

on the T given in (4.122), mainly one uses

D] D} D¢ - (0" w007 w,p0%) = (4.128)
4eaéeﬁ'yuuijuukl9§ — 460‘7655uuij9(l;uulk
+ 4ea56’67uuikuuﬂ@g — 460‘”’655uui19§uujk

+ 4¢P e‘s'yuuikuujleé — 4% ewuuiluujk@é ,
and after a tedious calculation, the final result is

Q) 7@ — (4.129)
—12i Af P2 AT g 0 — 120w A A w6
—12¢ )\aimij)\ﬁjw’guukl% — 32 )\aizﬁf‘ﬂdjmjkuuklﬁé

+81 Ny T &?‘Aakuukl% + 44 Ny uut uujk&fmlmuumn)\am

- S X
— 4\ WU W ) T U O AT

k

67

The final step of the computation is to replace (4.127) and (4.129) on (4.124)

and perform the harmonic integrals. Noting that

(M) (A" 0713;60]) = =260 A Y " Pam A0 + 2060 AV, (4.130)
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one can organize the final result in the form
V = 400y N, — 40i( My 30) (A6 (4.131)

The vertex operator is defined up to a BRST-trivial quantity. The two terms on
the right-hand side of the expression above are equal up to a BRST-trivial quantity

as one can show that
Q1 - (z72y Noy500) = =200 T3 (N0 pi;09) — (Xyi M)

where we have used (4.5) and (4.6). So, up to a BRST-trivial quantity, the vertex

operator is
V = —24i( Ay, M), (4.132)

and this is, apart from a numerical factor, the dilaton vertex operator of (4.12) as

we wanted to show.

4.7 Making the statement “acts as zero” precise

This section is devoted to making the statement that the terms proportional to A™ of
Q 1 acts as zero when we restrict this operator to act on the states in the cohomology
of Qf% . The idea is to study one example and show how it works. The example
consists of acting with Q% on 273 (/\*szﬁ), however, it is easy to generalize it to any
function f(A\~yM 1/;) The operator Q% after several manipulations was presented in
its final form in (4.1), note that the terms proportional to the pure spinor conditions
for A\~ and the terms proportional to A* were excluded because we have argued that
they act as zero. These terms are

Qi = z%[u—%aggdggd — AN CPIN Py — 2)\+7iyij1/_)jdykl)\jlp;\;a (4.133)

o

2N YIPEN Y Py — 20y DI Y Pycas + 20 Sy T Ny Py ]

where the superscript zero means the terms of () 1 that act as zero.

Let us act with the operator Q% on z_%()\_yMz/}). Considering A~ a pure spinor
and excluding the terms that act as zero, we already know that z’%()\_”yM )) is
annihilated because of (4.4). Instead, let us act on 272 (A"y4)) with the complete
Q 1 ie. Q 1 of (4.1) plus ng”’, and without considering A~ a pure spinor. Firstly,

the case when M = p will be considered,

Q1+ 2 (AN TP) = {QI7° + 22 AN i Py (4.134)
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AN Py i+ AN U Py — ANV Py — 2N P

—2\ “Par P Py ]} 22 (A =
—2A*“yiﬂﬂéki’“0“wwﬁk - QS\fiyijw?)\IkUmﬂ?ﬁﬁk + (V“iyz-j)\;j)@ﬁa“d%gk

«

PN D s 2N BN 0+ (L A0

Note that the result above depends on A*. The statement “acts as zero” in fact
means that these terms are Qf% exact. It is not difficult to see that the first three

terms of the final result of (4.134) are equal to

—2Q_1 - (22UPPENT ;)
similarly, the last three terms are

2Q_1 - (23alB AT MO

and this proves that all the terms are Q_% exact.
We can repeat the same steps of the calculation above for the case when M = I+3

with the same conclusion, and for completeness we will present the details,

Qy = H(A ) = (4.135)
AN oy P ol b = 22Xy BN ot — 2Ny Ny ey

[0

=225 TSN Y0 Y A 20y TN 0 poy — 20N a0
and the first three lines are equal to

2Q_y - (22N 'y Phdary o, 04
moreover, the last three lines can be written as

20_ - (AN 0 ar o M)

finally, one concludes that when M = I + 3, all the terms are @)_ 1 exact.

In this section, we showed that all the terms proportional to A™ resulting from
the action of Q% on the term z’%()\_'yMQﬂ) are Q_% exact. It is straightforward to
generalize this result for a function f(A~v™4)) due to the fact that the operator Q%
acts as a derivative operator. The aim of presenting this example was to illustrate
how the statement “acts as zero” used at several points in the chapter 3 should be
understood. The case of Q% was considered here, nevertheless similar arguments
can be used for all Q% + ...
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Chapter 5

Conclusion

In this thesis, we computed the zero mode cohomology at +2 ghost number of the
BRST operator of the pure spinor formalism in the background AdS® x S° close
to the boundary of AdS. The states in this cohomology correspond to on-shell
supergravity states. The first step of the method used for the computation consists
in expanding both the BRST operator and the physical vertex operators V' in powers
of z, where z is the distance from the AdS boundary. Since the expansion of V' has
a term of minimum degree, where degree is defined to be the power of z, and all the
terms in the BRST operator expansion have a fixed degree, it was possible to use
standard methods to compute the cohomology of the BRST operator. Note that
our results are valid inside the region of the validity of the z expansion.

The conjecture (AdS/CFT) predicts that every on-shell physical superstring
state is dual to a single-trace gauge-invariant operator of N' = 4 d = 4 super-
Yang-Mills, in particular, supergravity states are dual to Half-BPS operators. All
the Half-BPS operators of N' = 4 d = 4 super-Yang-Mills and their duals can
be elegantly described as superfields defined in a specific harmonic superspace, as
explained in the chapter 4. The vertex operators in the BRST cohomology corre-
sponding to the on-shell physical supergravity states constructed in this thesis were
described in terms of these dual superfields as expected by holography. The results
were proved to be consistent, because under a gauge transformation of the dual
superfields, the vertex operators change by a BRST-trivial quantity.

In principle, the method for constructing the supergravity vertex operators used
in this thesis can be generalized to construct the massive vertex operators of the
theory. In the supergravity limit, the worldsheet variables only depend on the
worldsheet coordinate 7 and all their o derivatives are zero. To construct the massive
vertex operators, it is necessary to consider that the worldsheet variables depend on
both 7 and o. So, the first step in generalizing the method would be the computation

of the cohomology of the complete operator () 1 defined in (3.14), i.e, not dropping
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the terms that contain o derivatives of the variables. As explained in the chapter
3, the zero mode cohomology of this operator was already computed by Mikhailov
and Xu in [23], and their results used in this thesis. The only known massive vertex
operator in the pure spinor formalism is the one proposed by Mazzucato and Vallilo
in [66] for the Konishi state and it would be interesting to compare their result with
the one resulting from the generalization of the method used in this thesis. It would
be also interesting to compare with the RNS vertex operators in a specific limit
proposed by Minahan in [67].

Generalizing the method for computing the massive vertex operators will also
allow the computation of the spectrum. It is not known how to compute the spec-
trum of the superstrings in AdS® x S° from first principles. Recent progresses in
this direction are the articles by Benichou [68, 69, 70] and a previous article by
Mikhailov and Schafer-Nameki [58]. Benichou computed the fusion of a class of line
operators in the lowest order in perturbation theory using the pure spinor formalism
and derived a Hirota equation which allows the computation of the spectrum using
integrability techniques. The proof that the theory of superstrings in AdS® x S° is
integrable, at least at the classical level, was given by Bena, Roiban and Polchinski
in [71] using the Green-Schwarz formalism and by Vallilo in [72] in the case of the
pure spinor formalism. The energy of an on-shell excitation of a superstring is equal
by holography to the dimension of the dual gauge-invariant operator of N' =4 d = 4
super-Yang-Mills. Using integrability techniques and making some assumptions, the
value of the dimension of all single-trace gauge-invariant operators of N' =4 d = 4
super-Yang-Mills was computed for any value of the coupling constant, a recent
review is [12]. The resulting spectrum of the superstrings could be compared with
these results.

The prescription for computing scattering amplitudes of superstrings in the
pure spinor formalism in the background AdS® x S° exists and it was proposed
by Berkovits, see [73], for example. However, a superstring scattering amplitude has
never been computed because of the lack of a vertex operator. In this thesis, the
supergravity vertex operators were constructed, but the results are only valid close
to the boundary of AdS. In principle, the computation of a scattering amplitude
requires the knowledge of the vertex operator for any value of z and not only its
leading term close to the boundary. It is possible to compute more terms in the z
expansion of the vertex operator, as illustrated with a simple example in the section
4.7, where an additional term was explicitly computed. Nevertheless, the opera-
tors @) s+ that appear in the expansion of the BRST operator are of increasing
complexity and it is not trivial to compute many more terms in the expansion of

V. Knowing the boundary behavior, however, should be enough to compute disc
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amplitudes for one operator in the bulk and N vertex operators corresponding to
open strings located on D-branes close to the boundary of AdS. These open strings
vertex operators can be found, for example, in [41]. The resulting amplitudes are

expected to contain the term given in (4.42) and reproduced below

/d4x/du/dg(uﬁ)W(N)(u,x,ﬁ,é)T(‘l’N)(u,a,x,e,e_).
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Appendix A

Pauli Matrices and Spinors

In this thesis, spinors and the Pauli matrices of SO(1,3) and SO(6) appear fre-
quently. This Appendix is devoted to fixing our conventions and enumerating several

useful properties.

A1 SO(1,3)

Our conventions follow closely the conventions of the book by Wess and Bagger [74].
The metric is mostly plus 7" = diag(—1,1,1,1) and the 4 by 4 Gamma matrices
satisfying the Clifford algebra {I'*, IV} = 2n*" are

i 0y ’

i

where 0, is a zero n by n matrix, o, are

and as matrices
7’ =", 7= —o', i=1,2,3.

The completely antisymmetric tensors €, edB , €ap and €5 have the non-zero

components

1 =€e?=1, ep=e'=-1, e =e€?=1, e;=¢'=-1. (A.1)
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Useful identities involving o matrices and e tensors are

(6% = e B (o) 1 (0M)aa(,)P = 20067, (A.2)

(0")ac(0u) g5 = —2€apesy,  Trote” = —2n",

(ot + U”&“)aﬁ = —277””(55 , (cto” + 5”0“)d5 = —277‘“’(52‘ )

Defining
wy B _ Lo uap v —pafB — B L _yba v ~vBa _p
(U )a - 5(0-(1020- — 000 ) ) (J ) & — 5(0- Oaa — 0 Uad)? (A3)
it is not difficult to see using (A.2) that
(0") gy = (™). P g, (3™)7 4 € = (a")7 €7, (A.4)

(0"),* =0, (@)% =0,

a p—
and
()0 ()T = —Alease® +100), (0")° 5(0) " = —AeTegs + 576
(Uuy)aﬂ(ﬁﬁw)yg =0.
Important identities involving the e tensors are the Schouten identities,

€aB €vs T €ar €58 + €as €3y = 0, (A.5)

€apy €56 T €ay i T a5 €55 = 0,
which can be easily derived from the relation
P es = —(020) — 056%)

and similarly for the dotted indices. The spinorial indices can be raised and lowered

using the € tensors, for any two chiral spinors A% and A% our convention is
Ap = €pa A%, Az =€, A%,

and note that there is an important detail, the spinorial indices of the derivatives

are raised and lowered with an additional minus sign

i__ﬂaa 0 Baa
E)A,g_

DA*" 94, C 9A%

A very good review about two-component spinors techniques and the use of the
dot and undot notation is [75].
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A2 SO(®6)

Our conventions follow closely the conventions of the book by Green, Schwarz and
Witten [76]. The 8 by 8 Gamma matrices in the Weyl basis satisfying the Clifford
algebra {T'1 TV} = 261/ where §/7 = 1 if I = J and zero otherwise, are

P o)
O.Izg 04

where, adapting the results of [77],

0O 0 0 ¢ 0 0 —i 0
0 0 ¢ 0 0 0 0 =1
U,ilj = ) ’ , afj = ! , (A.6)
0 —2 0 0 1 0 0 0
—i 0 0 0 0 — 0 0
0 7« 0 0 0 0 0 -1
3 — 0 0 0 4 0O 0 1 0
Ul] = . , Jlj et ,
0 0 0 1 0O -1 0 0
0 0 — 0 1 0 0 O
00 -1 0 0O 1.0 O
5 00 0 -1 6 -1 00 O
O-ij = , Uij == )
10 0 0 00 —1
0 1 0 01 0
and
i L gk 1 I 1 Ikl
(o) = 56 (0 )kt (o )ij = §€ijkl(a ) (A7)
where €7 and €;;1; are completely antisymmetric in all their indices with €'?3* =1
and €234 = 1. Note from (A.6) that U{j = —0']1»1- and similarily for o/¥. Note also
that

(1) (o) 1 + (07) (0!) 1 = 263877 ,

which ensures that the Gamma matrices I'! satisfy the Clifford algebra. Additional

useful identities are

(@Dulon = 2005 —dt)), (A3
(O-I)ij(gl)kl = _26ijkla (O'I)ij(()'[)kl — _2€l'jkl7
1 1
(a0 = 6mmlo’0T)™ (a0 = —gemd™
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where [] means antisymmetrization of the indices, and

(o=@, (@) = (o), (A.9)

]
with T meaning Hermitian conjugation. Finally, we define

. 1 ) ) ) 1 ) )
(UIJ)i] — §<Uz'IkUJk] _ Uialk]), (O’IJ)Z]- — i(ojlkakjj . UJzko_lﬁj)_ (Al())
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Appendix B

The PSU(2,2|4) algebra in four-dimensional

notation

In this Appendix, we present the PSU(2,2|4) superalgebra in four-dimensional no-
tation and fix our conventions. The generators of this superalgebra are: the trans-
lation generator P,, the special conformal generator K, the dilatation generator
D, the Lorentz generators M,,, the SU(4) R-symmetry generators U, the super-
symmetry generators [¢a.;, 4] and the generators of superconformal transformations
s°,54:]. Using the conventions of the Pauli matrices of Appendix A, the non-zero

commutators and anticommutators of the superalgebra are

(M, Mypr] = 0o Mgz + 1Moy (B.1)
[M;wa Pp] = Mol Ly » [M/wa Kp] = Moy
[Dapu]:P/u [D,K#]:—K#,
[P, K, = 20,D+2M,,
D) = Jaur [D.G)= 585, (Dsi)=—5sh, [D5al = 55,
{Gais @&} = 2067 (0") ac By {80 8aj} = 2i0;(0")ac Ky
Mo ] = 50w, M 8] = 500055,
Mo @1 = L0060, Mo 58] = L (000" a5
[Gari Ku] =1 (Uu)adg? ) [Séﬂ Pu] =1 (Uu)adqdi )
" K =i(@) s, (5 P = i(0,) g
U, Uf] = U} = obU;,
[U;, Qok) = 01Gaj — i5§qak, [U;, 5K = —(5;“3‘” — le(S;sak) ,
{Goi» 87} = 6](0"), "M, — 20061 D + 46507,
(g%, 55, = 05(0")* ;M — 2050;D — 453U5
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and, for example, [V | = v — pr means antisymmetrization of the indices with no
additional factor of half. Under Hermitian conjugation T the generators transform

as

oo

(B)' = =Py, (K)' =-K,, (D)'=-D, (Mu)'=-M
(UJZ)T = Uzjv (Qai)T = 6.73,
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Appendix C

Boundary transformations of the variables

In this Appendix, we will show that with our chosen coset representative given in
(2.62) the variables z#, %/ and @?‘ transform in the usual N =4 d = 4 supercon-
formal manner when z — 0. Part of this Appendix is based on the article [30] by
Heslop and Howe.

Recall that the N' = 4 superspace is described by the supercoset

{P;u K;u D, Muw Gais qu UZ Si §o’¢i}

M4|16 _ . ' ]_a o’ 7
{M,uw D> Ujla KM? Slaa Sdi}
a possible coset representative being
9(2,0,0) = exp (2" P, + 1 0% qu; + i 04;4%) . (C.1)

Recall, also, that the AdS® space is described by the coset

50(274) _ {%<PM + K,LL>7D7 %(P/l B K,u)aM/u/}

AdSs = = : (C.2)
SO(1,4) {5(Pu = Kp.), My}
and the supercoset %ﬁé?@) is
PSU(27 2|4) _ {%(PH + K,Lt)v D7 %(PM - Kﬂ)? M,Llll? Qo s @ij” U;; Siom gdi}
SO(1,4) x SO(6) {3(P.— K,), M,,, U}

In this thesis, our chosen coset representative for this last supercoset was given

in (2.62) and is reproduced below
9= 9(x,0,0) exp (i ¢'s], +iPls]) 27 (C.3)

In general, a coset is of the form G/H where G is a group and H one of its
subgroups called the isotropy group in this context. The generators of the Lie
algebra of G will be denoted here as {Ya, Xp}. We have organized the generators

in two sets Y, and X where Xp is the set of generators of the subgroup H and Y,
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the remaining generators of G. Using this notation, for a given coset representative

B

¢ the vielbeins e and the connections w? are defined by

g ldg = (e’Yi+wPXp).
As an example, we will compute the vielbeins and connections in the case of the
N = 4 superspace using the coset representative g(z, 6, 6) of (C.1),
9(r,0,0) dg(x,0,0) = " P, + e qoj + €s;q (C.4)

where all connections are zero in this example and using the PSU(2, 2|4) algebra of
the Appendix B the non-zero components of the one-form vielbeins are
= (0"l e = —i(a*)P0], (C.5)

&j _ ;5056 Bk _ B sk

B sp
e, =104, €

In this Appendix, we will sometimes distinguish curved indices from flat indices,
one example being the results above. We remind the reader that in our conventions
curved indices are similar to the flat indices except that they appear with a breve
symbol. Under a global transformation of PSU(2,2[4) with an element gp of this

group, the coset representative g(z,6,0) transforms as
gpg(x,0,0) = g(z',0 0)h, (C.6)

where h is an element of the isotropy group and the variables with prime are the
transformed variables.

In the case of an infinitesimal transformation parametrized by ¢4, we can write
XM = xM 4 §XM where XM is a shorthand notation for all the variables, and
(C.6) becomes
09(X)
oXM
where T4 means all the generators of the group. Multiplying from the left both sides

1+ Tw) g(X) = (9(X) +oxM ) (1+ 6h), (C.7)

of this equation with g(X)™!, we conclude
g(X) 71 (¢ATa) g(X) = 6XM e Yy + isotropy . (C.8)
The above equation is the main formula that we will use in order to understand

how the variables transform close to the boundary of AdS. We will illustrate its

use with simple examples. Consider that the only non-zero (4 is C; with ¢! = 0 and
replacing g(X) by g(z,0,0), the left-hand side of (C.8) becomes

97 (x,0,0) (GU]) g(x,0,0) = (C.9)
JUL + 07 Gy — i05:GGa™ = 20167 (0)130] Py =
0 Gl — 105,Cq7 — 2iCL07%(0")150] P, + isotropy
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where we have used the Hadamard lemma of (3.1) for performing the computation.
Equating this result with the right-hand side of (C.8) we have

0% iy — i05:C1G"7 — 2iCL07 ("), Py =
(535#@; + 60&j€ + 567161/ ’W)P + (59a]€a])Qak + (5904]6:%) 7" )

and solving for dz#, 0% and 604;, taking into account the expressions for the

vielbeins given in (C.5), one easily concludes
st =0, 60° = (o™, 604 = (0. (C.10)
In the next example, let us consider that the only non-zero ¢4 is ¢*, then
“(2,6,0) (C"P,) 9(x,0,8) = C" P, (C.11)
and following the same steps of the first example, it is easy to see that
St = (", 80% =0, 604 =0

We will give two more examples where the only non-zero ¢* are ¢ and [(%, (4]

The first case is
U(2,0,0) (CD) g(x,0,0) = (D +(a"P,+ 350%% O
= (2P, + kaqvk + Cﬁwq +isotropy,

and
) 1 ) _ 1 -
oxt = Cat, 60Y = 5{9‘” , 004 = 5490‘0,
finally,

—l(x’ 0, é) (igajqaj + ic_dj _dj) g(x.0, é) =
10 o + 1oy 0 + 2007 ()15 Gl Py — 216 (0%) 1507 P

which implies
St = —iC (0")as ] — iCag(6")0L . 36T = (T, 8B = .

Using a similar reasoning, it is not difficult to compute the remaining N = 4
d = 4 superconformal transformations of the variables not computed above. We

will proceed to study the global PSU(2,2|4) transformations of the variables that
PSU(2,2/4)

SO(DX50() with the coset representative being g

parametrize the AdS supercoset
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of (C.3). Firstly, let us consider the case ¢ = ¢ = 0 and compute the vielbeins and

connections for this case, the results are

1 1 - . dz
g’ldglwzd;:o = —e'P, + —=eYq,; + 7+ —D + \/Eidwa + /zidy 15
z z j

1
v Ve

where e, e%, e4; were defined in (C.5). Analyzing these results, we conclude that

1 wi 1 1
e?Adso) = ;66\/24) , e(fxdso) = ﬁe(/vﬂ;) » Cay(AdSo) = ﬁeaa‘wﬂn , (C12)
1 y .
==, X 7,\/‘53(5;‘“, ef;’g = z‘\/%éégj,

and the subscript (AdSy) means that the vielbeins were computed with the AdS

supercoset representative of (C.3) with ¢ = ¢ = 0 and the subscript (N = 4)

means computation performed with the N/ = 4 coset representative of (C.1). Using

these results, one can compute the inverse vielbeins that are defined by the relations
M

epey = 6;‘;4 and e} el = 6M. After a straightforward calculation, one has

€u(AdSe) = ZEu(N=4) 5 eaj(Adso = Vzeajin=1) AdS) = Ve €N y,  (C13)
o g eak — b skse

J
ak \/_ak” Jjo \/_]a

In order to use the formula (C.8), we first compute its left-hand side

e, =2, €

g7 (¢ ) g = (C.14)
1 1 o . s
;C(ljv:@Pu + \/—C(/\/ 0 T \/—Cay % + (D + \/EZCJ‘ 8%, + V7 Z'YS]
+o

and after comparing with the right-hand side of (C.8), we conclude, for example,
that dz# = (% with ¢# = 27" (fyr_ el + z*%§&24)e’;j - z*%g“djw:zl)ef"é‘j where e/}
are the inverse vielbeins. Using the expressions of (C.13) and the result of (C.14),
it is not difficult to see that

Bustl i = uctt + O(22),  Gaasl™ |y = 6,00 (C.15)
5ads¢2|¢=1/7=0 = g& ) 6adsz|1p:1[;:0 = ZC»

with similar results for  and ¢. The subscript sc above means the usual ' = 4
d = 4 superconformal transformations. The presence of the factor O(z?) on the
x transformation will be explained in more detail in what follows, but one briefly
explanation is that the correct basis of the Lie algebra generators for describing the
AdS space is 5(P, + K,,) and (P, — K,,) as in (C.2) instead of the basis P, and

2
K, and the factor in question comes from a basis rotation.
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The transformations (C.15) show that, at least in the case ¢ = b = 0, the
variables x and @ transform in the usual ' = 4 d = 4 superconformal manner
close to the boundary of AdS at z ~ 0 . Note that we cannot set ¥ = ¢ = 0 as
a boundary condition at z ~ 0 because making a PSU(2,2|4) transformation the
values of these variables change. It is interesting to note that if instead of using the

coset representative g of (C.3), one uses the coset representative ¢’ given below
g = g(x,0,0) 2" exp(i 1/1;15%[ +1 _gj;l) ,
the transformations of ¢ and v are changed to
5adsw(ix’1/1=1/_)=0 = \/ZCZ» 6ads'&di|w=1/_1=0 = \/zfm ) (0-16)

and it is now consistent to set ¢¥» = 1) = 0 as a boundary condition because these
variables do not transform when z ~ 0.

All the analysis of the transformations of the variables of the AdS supercoset
were performed with the simplying assumption 1 = 1) = 0. Let us now consider
the general case where these variables have arbitrary value, we expect that (C.15)

changes to

6ads$ = 5scx + 0(22) + f(zu ¢7X) ) 5ad30 == 5500 + Q(Z7¢>X) )
5ads¢:Cw+w(Z,¢7X)a 5ad5Z:zC+j<zv¢aX)>

where f,g,w and j are functions that vanish when 1 = ¢ = 0.

We are going to focus on the transformations of the variables [z,6, 6], because
similar arguments can be used for understanding the transformations of [z,1,)].
We start by considering the left-hand side of (C.8),

g (M) g = 2P e g(w,0,0) 7 (M) g(2,0,0) ) 2P = (CAT)
27D e 9) (Clar=ay P + C?X/ﬂl)qaj + Cajv=n @ +...) W) 2P
where again the subscript (N = 4) means the result of a computation performed

with the coset representative (C.1) describing the N' = 4 d = 4 superspace. The

next step is to compute the veilbeins,

g tdg = 2P e W) g(x,0,0) (dg(x,0,0)) eV 2P 4 27D = W)q(e) ;D) (C.18)

= 27 (el Pu + €{iimnylog + Eajov=07") eV 27+

where ... above only contains terms proportional to di) and dz. The formula (C.8)

implies that we have to equate (C.17) and (C.18) after contracting the second one
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which is a one-form with the vector §X. The result after multiplying from the left
by %) 2P and from the right by 2= e~ is

(OX M ey P+ XM oy + OX M ey jinmny@™) + -

where the ... on the right-hand side of the expression above only contains terms
proportional to [§1), 51, 8z]. Apart from ... this is the same equation obtained for
the case of the N' = 4 supercoset and it seems to imply that the transformations
of [x,0,0] would be the superconformal N' = 4 d = 4 for any value of [z,1,)].
However, there is a subtlety that may alter the transformations, recall that we have
to reorganize both sides of the result above in the correct basis of the Lie algebra

for describing AdS, consider for example,

OXMely P+ oXMely | K, = (C.20)
y 1 v 1
SXM (et + e“M(K))i(PN + Kp) + 0 XM (et — e“M(K))§(PM - K,),
. . . ILL _1 u .
and from (C.18), it is not difficult to see that e, ~ 27 and ) ~ % which

implies that changing the basis may give corrections of order 22 to the result. We

finally have

(Sadsgj = 5scx + O(ZQ)f(V% X) ) 5ad50 = 5500 + 0(22)9(% X)
5adsw - Cu? + w(z,¢) ) 5adsz = ZC —|—](Z, ¢) :

The conclusion which follows from the results above is that when z ~ 0 at the

AdS boundary the variables [x,6,] transform in the usual N' =4 d = 4 supercon-

formal manner.
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