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Resumo

A conjectura de Maldacena ou (AdS/CFT) desde a sua formulação é um dos

tópicos em f́ısica de altas energias mais estudados. Uma das versões da conjectura

é a dualidade entre a teoria de supercordas do tipo IIB em um background AdS5 ×
S5 suportado por um fluxo Ramond-Ramond e a teoria de N = 4 super-Yang-

Mills em quatro dimensões. Embora a ação para supercordas neste background seja

conhecida tanto no formalismo de Green-Schwarz como no formalismo de espinores

puros, a construção expĺıcita dos operadores de vértice da teoria em termos de

supercampos é um problema em aberto. Nesta tese, os operadores de vértice do

formalismo de espinores puros correspondentes aos estados de supergravidade são

constrúıdos próximos a fronteira de AdS. A conjectura prevê que todo estado na

camada de massa da supercorda é dual a um operador invariante de gauge de N = 4

d = 4 super-Yang-Mills, em particular, os estados de supergravidade são duais a

operadores Half-BPS. Os operadores Half-BPS e seus duais podem ser descritos

como supercampos em um superespaço harmônico. Os resultados obtidos para os

operadores de vértice são descritos em função desses supercampos duais de acordo

com o previsto pela conjectura.

Palavras Chaves: Supercordas; Conjectura (AdS/CFT); N=4 super-Yang-Mills;

Supersimetria; Superespaço harmônico.

Áreas do conhecimento: Ciências Exatas e da Terra; F́ısica de Part́ıculas e

Campos; F́ısica Matemática.
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Abstract

The Maldacena’s conjecture or (AdS/CFT) has been one of the most studied

topics in high energy physics since its formulation. One of the versions of the con-

jecture is the duality between the theory of type IIB superstrings in the background

AdS5 × S5 supported by a Ramond-Ramond flux and the theory of N = 4 super-

Yang-Mills in four dimensions. Although the action for the superstrings in this

background is known both in the Green-Schwarz and in the pure spinor formalisms,

an explicit superfield construction of the vertex operators of the theory is an open

problem. In this thesis, using the pure spinor formalism, we explicitly construct the

vertex operators corresponding to supergravity states close to the boundary of AdS.

The conjecture predicts that every on-shell superstring state is dual to a gauge-

invariant operator of N = 4 d = 4 super-Yang-Mills, in particular, the supergravity

states are dual to Half-BPS operators. It is possible to describe all the Half-BPS

operators and their duals as superfields in harmonic superspace. The results for the

vertex operators are described in terms of these dual superfields in agreement with

the prediction of the conjecture.
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Chapter 1

Introduction

The Maldacena’s conjecture or (AdS/CFT) [1, 2, 3] has been one of the most stud-

ied topics in high energy physics since its formulation. One of the versions of the

conjecture, and the one relevant for this thesis, is the impressive duality between

the theory of type IIB superstrings in the background AdS5 × S5 supported by a

Ramond-Ramond flux and the theory ofN = 4 super-Yang-Mills in four dimensions,

two reviews are [4, 5]. The predicted duality is of the “weak-strong” type, or in other

words, the strong-coupling regime of one of the theories is mapped into the weak-

coupling regime of the dual theory, which makes the conjecture very attractive but

hard to prove. The conjecture is the only known tool to perform several computa-

tions, for example, one can compute the correlation function of two gauge-invariant

operators of N = 4 d = 4 super-Yang-Mills in the strong-coupling limit from the

study of a classical solution of the superstrings equations of motion [6]. Moreover,

the conjecture has several applications such as in condensed matter physics and

plasma physics, see [7, 8], for example.

In this specific version of the conjecture, the dual theories are related as follows.

The beta function of the N = 4 d = 4 super-Yang-Mills vanishes in all orders in

perturbation theory [9, 10], which implies that the theory is superconformal with

the global symmetry group PSU(2, 2|4), and this is precisely the isometry group of

the background AdS5×S5. The super-Yang-Mills admits a ’t Hooft expansion and,

if its gauge group is SU(N) and gYM its coupling constant, the effective coupling

constant of the theory is the ’t Hooft parameter λ = g2
YMN , an introductory book

about the N expansion is [11]. In addition, the theory can have a non-zero θ angle.

Considering its dual theory, the θ angle is proportional to the VEV of the Ramond-

Ramond scalar, the gs string coupling is gs = λ/N and α′2 ∼ R4/λ where 1/α′2

is proportional to the string tension and R is the radius of both AdS5 and S5.

Furthermore, the conjecture predicts that every on-shell superstring state is dual

to a gauge-invariant single-trace operator of N = 4 d = 4 super-Yang-Mills, its
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energy corresponding to the dimension of the operator [12]. In the particular case

of supergravity states, the dual operators are the Half-BPS operators.

In order to study superstrings in AdS5×S5, it is possible to use both the Green-

Schwarz and the pure spinor formalisms. The RNS formalism cannot be used,

because it is a Ramond-Ramond background. The superstring action in the Green-

Schwarz formalism was constructed by Metsaev and Tseytlin in [13], an excellent

review is [14]. The action is κ-invariant and as in the flat space case the theory has

first- and second-class constraints. The usual procedure for quantizing the theory

is to go to the light-cone gauge, however, in a curved background the procedure of

gauge-fixing is more involved than in flat space case, and the resulting Hamiltonian

is non-polynomial in the worldsheet variables, which differs from the flat space

case where the Hamiltonian is free and straightforward to quantize. In addition,

after the procedure of gauge-fixing not all the original symmetries of the theory

are kept manifest. The action for the superstrings in the pure spinor formalism was

constructed by Berkovits in [15], a recent review is [16]. Unlike in the Green-Schwarz

formalism, there are no constraints on the canonical momenta. The action is BRST

invariant and the quantization is done preserving all the symmetries of the theory

manifest imposing that the physical states are states in the cohomology at +2 ghost

number of the BRST operator.

Although the action for superstrings in AdS5 × S5 is known both in the Green-

Schwarz and pure spinor formalisms, an explicit superfield construction of the vertex

operators of the theory is an open problem. The first article about vertex operators

in this curved background in the pure spinor formalism was the article by Berkovits

and Chandia [17]. In this work, the authors proved the existence of a massless

vertex operator by requiring that it preserves all the isometries of the background

and reduces to the known flat space result [18] in the flat space limit. Moreover,

they proved that the vertex operator is described in terms of an N = 2 bispinor

superfield Aᾱˆ̄α(x, θ, θ̂) in ten dimensions as

V = λᾱλ̂
ˆ̄αAᾱˆ̄α(x, θ, θ̂) , (1.1)

where [x, θ, θ̂] are the N = 2 d = 10 superspace coordinates, λᾱ and λˆ̄α are the left-

and right-moving bosonic pure spinor ghosts of the formalism and ᾱ, ˆ̄α = 1, . . . , 16.

The expansion of the superfield Aᾱˆ̄α(x, θ, θ̂) in its component fields was not computed

by Berkovits and Chandia, and the connection between this vertex operator and the

duals of the Half-BPS operators was not found.

In this thesis, based on the article [19] by the author and Berkovits, a new

method for constructing the vertex operators is presented. This method is used

for computing the states in the zero mode cohomology at +2 ghost number of the
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BRST operator close to the boundary of AdS, which corresponds to the physical

supergravity states. Furthermore, the expansion of the superfield Aᾱˆ̄α(x, θ, θ̂) is

found and the connection of this superfield with the duals of the Half-BPS operators

is made clear. Note that another method for constructing the unintegrated massless

vertex operator based on symmetry arguments and not emphasizing its boundary

behavior exists and was developed by Mikhailov in [20, 21], for the integrated vertex

operator see [22].

The first step of the method for constructing the vertex operators used in this

thesis consists in expanding the BRST operator as

Q = Q− 1
2

+Q 1
2

+ . . . ,

where Qn is proportional to zn and z the distance from the AdS boundary. The

Qn also depends on the other worldsheet variables and their canonical momenta

when restricted to its zero mode terms. As will be explained in the chapter 3, an

expansion of the vertex operator in powers of z is also possible close to the boundary

of AdS and it has a term with a minimal power of z. After performing both the

z expansions, one can use standard methods for computing the cohomology of the

BRST operator, one first computes the cohomology of Q− 1
2
, then computes the

cohomology of Q 1
2

restricted to states in the cohomology of Q− 1
2
, then computes the

cohomology of Q 3
2

restricted to states in the cohomology of Q− 1
2

+ Q 1
2
, and so on.

In fact, it will be argued, making some assumptions, that the cohomology of the

complete BRST operator Q is determined by the first two terms Q− 1
2

+ Q 1
2

only.

The result for the vertex operator constructed using this method is only valid inside

the region of validity of the z expansion, or in other words, close to the boundary

of AdS. An important result used in the computation is the zero mode cohomology

of the operator Q− 1
2

obtained by Mikhailov and Xu in [23], see also [24].

The resulting supergravity vertex operator computed with this method is de-

scribed in harmonic superspace. The study of supersymmetric theories using har-

monic superspaces was initiated by Galperin, Ivanov, Kalitsyn, Ogievetsky and

Sokatchev in [25], where an off-shell formulation of all N = 2 supersymmetric theo-

ries was given, an excellent introductory book is [26]. Despite the fact that it is not

known how to construct an off-shell superfield formulation of N = 4 d = 4 super-

Yang-Mills, it is possible to solve the constraints obeyed by theN = 4 on-shell vector

superfield, or Sohnius superfield [27], keeping the SU(4) R-symmetry manifest us-

ing harmonic variables [28, 29]. Moreover, all Half-BPS operators of N = 4 d = 4

super-Yang-Mills can also be described elegantly as superfields defined in harmonic

superspace. The duals to these operators, defined up to a gauge transformation, can

also be written as superfields depending on the harmonic variables.
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As expected by holography, these dual superfields were related to chiral super-

fields describing the type IIB supergravity close to the boundary of AdS by Howe

and Heslop in [30], an excellent introduction to their work is [31]. These chiral super-

fields describing the type IIB supergravity were constructed originally by Howe and

West in [32] and previous works about holography in superspace are [33, 34, 35, 36].

In this thesis, the dual superfields will be related to the type IIB gauge superfield

Aᾱˆ̄α(x, θ, θ̂) of (1.1) that appears in the massless vertex operator. As stated above,

the duals are defined up to a gauge transformation and we have checked that our

results for the vertex operators change by a BRST-trivial quantity under a gauge

transformation of the duals, implying that the results are consistent.

This thesis is organized as follows: in the first part of the chapter 2, we briefly

review both the minimal and the non-minimal pure spinor formalisms in flat space.

Then, the pure spinor formalism in a curved background is explained and the action

for superstrings in the AdS5 × S5 background with the matter being represented

by the unusual supercoset PSU(2,2|4)
SO(1,4)×SO(6)

together with S5 variables is constructed.

The chapter 3 is devoted to the analysis of the BRST operator of the theory, its

expansion in powers of z is performed and the argument that its cohomology is

determined only by the first two terms of the expansion is explained. In the chapter

4, we present our results for the supergravity vertex operators close to the boundary

of AdS and explain several concepts needed for understanding the results, such

as harmonic superspace. Finally, the chapter 5 is devoted to the conclusion and

perspectives.

1.1 Notation

In this section, we fix the notation for almost all the indices that are going to

appear in this thesis. In addition, the Appendix A has our conventions for the Pauli

matrices of SO(1, 3) and SO(6) together with several useful properties satisfied by

these matrices. The indices are

• µ, ν, ρ, τ = 0, 1, 2, 3 SO(1, 3) vector indices

• α, β, γ, δ, ε = 1, 2 SO(1, 3) chiral spinor indices

• α̇, β̇, γ̇, δ̇, ε̇ = 1, 2 SO(1, 3) chiral spinor indices

• I, J = 1, . . . , 6 SO(6) vector indices

• i, j, k, l,m, n, p, t = 1, 2, 3, 4 SU(4) indices

• M,N,P, T, S,R = 0, . . . , 9 SO(1, 9) vector indices
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• ᾱ, β̄, γ̄, δ̄, ε̄ = 1, . . . , 16 SO(1, 9) spinor indices

• ˆ̄α, ˆ̄β, ˆ̄γ, ˆ̄δ, ˆ̄ε = 1, . . . , 16 SO(1, 9) spinor indices

• ȧ, ḃ, ċ, ḋ, ė, ḟ = 1, . . . , 5 SU(5) indices

• a, b, c, d, e, f = 0, 1, . . . , 4 SO(1, 4) vector indices

• A,B,C = (α, α̇) SO(1, 4) spinor indices

• a′, b′, c′, d′, e′, f ′ = 5, . . . , 9 SO(5) vector indices

• İ , J̇ , K̇ = 1, 2 SU(2) harmonic coset indices

• I ′, J ′, K ′ = 1, 2 SU(2) harmonic coset indices

In a section of this thesis, we will Wick rotate SO(1, 9) to SO(10) and the indices

of SO(10) will be the same of the corresponding ones of SO(1, 9). The last comment

on notation is that when we need to distinguish between curved and flat indices,

the curved indices will be similar to the flat ones except that they will appear with

a breve symbol .̆

5



Chapter 2

The Pure Spinor formalism

The pure spinor formalism first appeared in the article [15] by Berkovits. One of

its advantages is that it allows the quantization of the superstrings keeping all the

symmetries manifest, differently to what happens in other formalisms. In the case

of superstrings in flat space background, one can use in addition to the pure spinor

formalism, both the RNS or Ramond-Neveu-Schwarz and the Green-Schwarz for-

malisms. The action in the RNS formalism is worldsheet supersymmetric, however,

its spectrum is only supersymmetric after the GSO projection, an excellent intro-

ductory book is [37]. The Green-Schwarz formalism has spacetime supersymmetry,

but it has first- and second-class constraints that do not allow its covariant quantiza-

tion, the usual procedure is to go to the light-cone gauge and after gauge-fixing the

Lorentz symmetry is not manifest, see [38], for example. The pure spinor formalism

has the same spectrum of the Green-Schwarz formalism, as proven by Berkovits and

Marchioro in [39]. It was also proven that the results of the scattering amplitudes of

superstrings up to two loops are equivalent using either the pure spinor formalism

or the RNS formalism [40], nevertheless performing the calculation with the pure

spinor formalism is more efficient because all the symmetries are kept manifest in

all the steps of the calculation, an excellent introduction is the thesis by Mafra [41],

and recent articles are [42, 43, 44]. The pure spinor formalism can also be used to

study superstrings in a background supported by a Ramond-Ramond flux such as

AdS5 × S5.

This chapter is organized as follows: the first section contains a short review

of the minimal pure spinor formalism in flat space background which is followed

by an introduction to the non-minimal pure spinor formalism. The non-minimal

pure spinor variables will be important in the chapter 4, where the main results

of this thesis will be presented. The next section has a briefly introduction to the

pure spinor formalism in a generic curved background of which AdS5 × S5 is an

example. The usual AdS5 × S5 action with the matter variables represented by
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the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

is explained in the sequence. Finally, the action with

the matter variables represented by the AdS supercoset PSU(2,2|4)
SO(1,4)×SO(6)

together with

S5 variables is constructed. This action and its BRST charge will be used in the

following chapters.

2.1 The Pure Spinor formalism in flat space background

The first step in reviewing the pure spinor formalism or Berkovits formalism is to

define what a pure spinor is. The 32 by 32 Gamma matrices ΓM of SO(1, 9) are

represented in the Weyl basis as

ΓM =

 016 (γM)ᾱβ̄

(γM)ᾱβ̄ 016

 , (2.1)

where 016 is the 16 by 16 zero matrix and both (γM)ᾱβ̄ and (γM)ᾱβ̄ are 16 by 16

symmetric matrices. The Gamma matrices satisfy the Clifford algebra

{ΓM , ΓN } = 2ηMN , (2.2)

which is equivalent to

γMᾱβ̄γ
Nβ̄γ̄ + γNᾱβ̄γ

Mβ̄γ̄ = 2ηMNδγ̄ᾱ , (2.3)

and in our conventions the metric is mostly plus, ηMN = diag(−1, 1, . . . , 1). A chiral

spinor λᾱ is called a pure spinor if it satisfies the constraints

λᾱγMᾱβ̄λ
β̄ = 0 , (2.4)

for all values of M . As will be explained in the chapter 4, it is possible to solve these

constraints using U(5) notation and show that a pure spinor has 11 independent

components, see [45], for example.

Having defined what a pure spinor is, we can write down the worldsheet action

of the formalism, which is

S =
1

2π

∫
d2z (

1

2
∂XM ∂̄XM + pᾱ∂̄θ

ᾱ + wᾱ∂̄λ
ᾱ) , (2.5)

where we have written only its holomorphic part, in the case of closed strings it is

necessary to add a similar antiholomorphic part. We have also set the dimensional

parameter α′ inversely proportional to the string tension to one and this will be

done everywhere in this thesis. In the action, the [XM , θᾱ] are superspace coordi-

nates, pᾱ and wᾱ are the conjugate momenta of θᾱ and λᾱ, respectively. Because

7



λᾱ is a constrained variable, its conjugate momentum is defined up to the gauge

transformation

δwᾱ = ΛM(λγM)ᾱ , (2.6)

for any ΛM . It is not difficult to see that the action is invariant under this gauge

transformation of w. In addition, due to this gauge transformation, w can only

appear in gauge-invariant combinations such as

NMN =
1

4
(wγMNλ) , J = wλ , (2.7)

where NMN are the SO(1, 9) ghost Lorentz currents and J is the ghost number

current. The action is conformally invariant because the variables have the following

conformal weights: (1, 0) for [∂XM , pᾱ, wᾱ] and (0, 1) for [∂̄XM , ∂̄θᾱ, ∂̄λᾱ]. Moreover,

it is possible to derive the energy-momentum tensor and prove that the theory does

not have a conformal anomaly, or in other words, its central charge is zero. We refer

the reader to [46] for further details.

A direct calculation shows that the action is invariant under the global super-

symmetry transformations

δXM =
1

2
(εγMθ) , δθᾱ = εᾱ , δλᾱ = 0 , δwᾱ = 0 ,

δpᾱ = −1

2
εβ̄γMβ̄ᾱ∂XM +

1

8
εβ̄θγ̄∂θδ̄γMᾱδ̄γMγ̄β̄ ,

where ε is a constant spinor and θᾱ transforms in the usual way as a translation in

superspace. The proof of the invariance of the action follows from the important

Fierz identity

γMᾱ(β̄γ|M |γ̄δ̄) = 0 ,

where the parentheses in the indices above mean symmetrization not including the

index M inside the | |. Using the action, one can compute the OPEs involving X

and θ using standard methods, for example, as described in [47]. The OPEs are

XM(z)XN(y) → −ηMN ln |z − y|2 , pᾱ(z)θβ̄(y) → δβ̄ᾱ
(z − y)

, (2.8)

and defining

ΠM = ∂XM +
1

2
θγM∂θ , dᾱ = pᾱ −

1

2
(∂XM +

1

4
θγM∂θ)(γMθ)ᾱ , (2.9)

one can show using the OPEs above that

dᾱ(z) dβ̄(y) → − 1

(z − y)
γMᾱβ̄ ΠM , (2.10)

8



and these definitions will be important in a moment. The last ingredient of the pure

spinor formalism is its BRST charge, which is defined as

Q =
∫
dz λᾱdᾱ , (2.11)

and using the pure spinor constraints and the last OPE above, it is straightforward

to show that this charge is nilpotent

Q2 ∝ λγMλΠM = 0 . (2.12)

Given the nilpotent operator Q, it is possible to define its cohomology. We call

a state A a closed state if A is annihilated by Q, which means Q · A = 0. An

exact state B is a state that can be written in the form B = Q · C for some C.

The cohomology of Q is defined to be the set of closed states that are not exact.

Defining the pure spinor variable λᾱ to have ghost number +1 and its conjugate

momentum wᾱ to have ghost number -1, in the pure spinor formalism for open

strings the physical states are the states in the cohomology of the BRST operator

at +1 ghost number. Similary, in the case of closed strings the physical states are

the states in the cohomology of the BRST operator at +2 ghost number.

Note that using the OPEs, one can derive how the BRST operator acts on a

generic function f(X, θ),

Q · f(X, θ) = −λᾱDᾱ f(X, θ) , (2.13)

where Dᾱ is the ten-dimensional supersymmetric derivative given by

Dᾱ = − ∂

∂θᾱ
− 1

2
(γM)ᾱβ̄θ

β̄ ∂

∂XM
. (2.14)

The zero mode cohomology of this BRST operator is well-known, see for example

[48], and the physical states are the gluon and the gluino fields of the N = 1 d = 10

super-Yang-Mills as expected. This finishes our short review of the pure spinor

formalism in flat space background, and all details omitted in this section can be

found in the thesis by Mafra [46].

2.1.1 The non-minimal pure spinor formalism

The non-minimal pure spinor formalism was developed by Berkovits and first ap-

peared in [49], see [41, 50] for reviews. One of the motivations for introducing the

non-minimal variables was that they allow the construction of a covariant b ghost

which is necessary for computing multiloop superstrings scattering amplitudes. The

motivation for us, as will be explained in the chapter 4, is that several of the results

of this thesis will depend on these additional non-minimal variables.
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The non-minimal formalism has, in addition to the pure spinor variables de-

scribed previously, a bosonic spinor λ̃ᾱ and a fermionic spinor rᾱ together with their

conjugate momenta w̃ᾱ and sᾱ. All these variables are left-moving, and a similar

set of right-moving variables has to be introduced in the case of closed strings. The

non-minimal variables satisfy the constraints

λ̃ᾱγ
Mᾱβ̄λ̃β̄ = 0 , λ̃ᾱγ

Mᾱβ̄rβ̄ = 0 , (2.15)

and the conjugate momenta are defined up to the gauge transformations

δw̃ᾱ = Λ̄M(γM λ̃)ᾱ − φM(γMr)
ᾱ , δsᾱ = φM(γM λ̃)ᾱ , (2.16)

for any Λ̄M and φM . This implies that the variables w̃ and s can only appear in

gauge-invariant combinations, such as

N̄MN =
1

4
(w̃γMN λ̃− sγMNr) , J̄λ̃ = w̃λ̃− sr , Tλ̃ = w̃∂λ̃− s∂r ,

etc. The left-moving part of the action is modified to

Snonmin =
∫
d2z (

1

2
∂XM ∂̄XM + pᾱ∂̄θ

ᾱ − wᾱ∂̄λᾱ − w̃ᾱ∂̄λ̃ᾱ + sᾱ∂̄rᾱ) , (2.17)

and it is conformally invariant because the additional fields have the following con-

formal weights: (0, 1) for [∂̄λ̃ᾱ, ∂̄rᾱ] and (1, 0) for [w̃ᾱ, sᾱ]. It is possible to compute

the energy-momentum tensor using standard techniques and show that the non-

minimal variables do not give any contribution to the conformal anomaly, which

means that the total central charge remains zero.

A very important point for the remaining of this thesis is that the BRST charge

is also modified to

Qnonmin =
∫
dz (λᾱdᾱ + w̃ᾱrᾱ) , (2.18)

and it is straightforward to see that the additional term is invariant under the gauge

transformations of (2.16). As will be explained in the chapter 4, using U(5) notation

one can show that both the variables λ̃ and r have 11 unconstrained components.

Then, one can use the standard quartet mechanism argument of [51, 52] to show that

the cohomology of the non-minimal BRST operator is independent of the quartet

of variables (λ̃, w̃) and (r, s), which means that it has the same cohomology of the

BRST operator constructed only with the minimal variables.

The last comment about the non-minimal pure spinor formalism is that the

formalism can be intepreted as a ĉ = 3 N = 2 critical topological string. We refer

the interested reader to [49] for further details.
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2.2 The pure spinor formalism in a curved background

Despite the fact that the pure spinor formalism action for superstrings in AdS5×S5

was already constructed in the first article about the formalism by Berkovits in [15],

the pure spinor formalism action in a generic supergravity background appeared

in a later article by Berkovits and Howe [53], see also [54]. We will briefly review

this general action focusing on the case of type IIB superstrings, which has the

background AdS5 × S5 as a particular case.

The starting point for constructing the Berkovits-Howe action is to write the most

general classically conformally invariant action with ghost number zero depending

on the variables with the following conformal weights: (1, 0) for [∂ZM̆ , dᾱ, wᾱ], (0, 1)

for [∂̄ZM̆ , d̂ˆ̄α, ŵˆ̄α] and (0, 0) for [λᾱ, λ̂ˆ̄α], where [λᾱ, λ̂ˆ̄α, wᾱ, ŵˆ̄α] are the usual bosonic

pure spinor variables introduced in the previous section corresponding to the ghost

variables of the theory, [dᾱ, d̂ˆ̄α] are the variables that appear in the BRST operator

as in the flat space case of (2.11), and considered as independent variables here and,

finally, ZM̆ = [XM̆ , θᾰ, θ̄ ˘̄α] are curved variables parametrizing the N = 2 superspace

in ten dimensions. The most general action is

S =
1

2π

∫
d2z

1

2
(GM̆N̆(Z) +BM̆N̆(Z))∂ZM̆ ∂̄ZN̆ + wᾱ∂̄λ

ᾱ − ŵˆ̄α∂λ̂
ˆ̄α (2.19)

+ eᾱ
M̆

(Z)dᾱ∂̄Z
M̆ + e

ˆ̄α
M̆

(Z)d̂ˆ̄α∂Z
M̆ + Ω β̄

M̆ᾱ
(Z)λᾱwβ̄∂̄Z

M̆ + Ω̂
ˆ̄β

M̆ ˆ̄α
(Z)λ̂

ˆ̄αŵˆ̄β
∂ZM̆

+P ᾱˆ̄β(Z)dᾱd̂ˆ̄β
+ C β̄ ˆ̄γ

ᾱ (Z)λᾱwβ̄d̂ˆ̄γ + Ĉ
ˆ̄βγ̄
ˆ̄α

(Z)λ̂
ˆ̄αŵˆ̄β

dγ̄ + Sβ̄
ˆ̄δ

ᾱˆ̄γ
(Z)λᾱwβ̄λ̂

ˆ̄γŵˆ̄δ
,

where all the superfields that appear in the action above are the background su-

perfields which have geometrical interpretations as will be explained soon. One

comment about the action is that in fact it has an additional term, the Fradkin-

Tseytlin term, however, this term will not be relevant in the following and it will

be omitted, see [53, 54] for details. The superfield e is the supervielbein, the su-

perfield Ω is the spin-connection, GM̆N̆ is the metric related to the flat metric by

GM̆N̆ = eM
M̆
eN
N̆
ηMN , BM̆N̆ is the two-form potential, the superfields Ĉ

ˆ̄βγ̄
ˆ̄α

and C β̄ ˆ̄γ
ᾱ are

related to the two gravitini and dilatini field-strengths, the P ᾱˆ̄β is a superfield whose

lowest component is related to the Ramond-Ramond field-strengths and, finally, the

superfield Sβ̄
ˆ̄δ

ᾱˆ̄γ
is related to the curvature.

In the article by Berkovits and Howe [53], it was proven that imposing that the

action is both BRST invariant and invariant under the gauge transformations of w

and ŵ defined in (2.6), all the expected constraints satisfied by the superfields of the

type IIB supergravity that appear in the action are reproduced. Mainly, consider

the total BRST charge QT of the theory, which is

QT = Q+ Q̂ ,
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where

Q =
∫
dz λᾱdᾱ , Q̂ =

∫
dz̄ λ̂

ˆ̄βdˆ̄β
.

The total BRST operator must be nilpotent by consistency of the theory, and

{QT , QT } = 0 ,

implies

{Q , Q } = {Q , Q̂ } = { Q̂ , Q̂ } = 0 , (2.20)

which follows from collecting equal powers of λ and λ̂. In addition, the charges Q

and Q̂ are well defined if the following holomorphy conditions are satisfied

∂(λ̂
ˆ̄βdˆ̄β

) = 0 , ∂̄(λᾱdᾱ) = 0 , (2.21)

and the consistency conditions (2.20) and (2.21) are only satisfied if the superfields

satisfy the expected supergravity constraints.

The action in the pure spinor formalism for superstrings in AdS5 × S5 is a

particular case of the general action given in (2.19) and it is obtained by replacing

the correct expansion of the superfields in this background. This action will be

presented using a convenient notation and in great detail in the next section, here

we only outline the derivation of the action. The AdS background is described by

the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

and for a given coset representative g the supervielbeins

and the connections are defined by

g−1∂g = (eMTM + ΩNHN) , (2.22)

where HN are the generators of the isotropy group SO(1, 4) × SO(5) and TM the

remaining generators of PSU(2, 2|4). Moreover, the superfields Ĉ
ˆ̄βγ̄
ˆ̄α

and C β̄ ˆ̄γ
ᾱ re-

lated to the gravitini and dilatini are zero in this background. The background is

supported by a Ramond-Ramond flux, which implies

P ᾱˆ̄β ∝ F a′b′c′d′e′(γa′b′c′d′e′)
ᾱˆ̄β ,

where F a′b′c′d′e′ is the only non-zero constant field-strength of this background. In

addition,

Sβ̄
ˆ̄δ

ᾱˆ̄γ
∝ (γab) β̄

ᾱ (γcd)
ˆ̄δ

ˆ̄γ R[ab][cd] ,

where R[ab][cd] is the constant Riemann tensor describing the curvature of the back-

ground. Finally, the only non-vanishing components of B are [55]

B
ᾱˆ̄β

= Bˆ̄βᾱ
∝ (γ01234)

ᾱˆ̄β
.
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2.3 Superstrings in AdS5 × S5

In this section, the usual action for superstrings in the background AdS5×S5 in the

pure spinor formalism will be presented in great detail. This action first appeared in

the article [15] by Berkovits and a recent review is [16]. The background is described

by the supercoset

PSU(2, 2|4)

SO(1, 4)× SO(5)
. (2.23)

Note that the bosonic subgroup of PSU(2, 2|4) is SU(2, 2) × SU(4) which is

locally isomorphic to SO(2, 4)× SO(6) and from the bosonic part we have

AdS5 =
SO(2, 4)

SO(1, 4)
, S5 =

SO(6)

SO(5)
. (2.24)

In the next subsection, the algebra of PSU(2, 2|4) in ten-dimensional notation

will be described and several comments will be made, this is important to understand

the superstring action which will be reviewed in the sequence.

2.3.1 The PSU(2, 2|4) algebra in ten-dimensional notation

The Lie superalgebra of PSU(2, 2|4) contains 30 bosonic generators and 32 fermionic

generators, a good review of Lie superalgebras for physicists is Kac [56] and an

excellent introductory book is [57]. The Lie superalgebra of PSU(2, 2|4) has a Z4-

automorphism and this implies that it is possible to organize the generators in a

way that the algebra is Z4-graded, which means that denoting the set of generators

with grading i = 0, 1, 2, 3 as gi the algebra has the structure

[ gi , gj ]+− = gi+j , mod 4 , (2.25)

where the subscript +− means commutator or anticommutator. A very good review

of this point is [14], see also [55].

In order to write the action for superstrings in the pure spinor formalism in the

background AdS5 × S5 described by the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

, it is convenient to

organize the generators of the Lie superalgebra as [g0, g1, g2, g3] = [T[ab], Tᾱ, Ta, Tˆ̄α]

and the non-zero structure constants are

f
a

ᾱβ̄
=

1

2
γ
a

ᾱβ̄
, f

a

ˆ̄αˆ̄β
=

1

2
γ
a

ˆ̄αˆ̄β
, (2.26)

f
ˆ̄α
β̄a = −1

2
γaβ̄γ̄ κ

γ̄ ˆ̄α , f ᾱ ˆ̄βa
=

1

2
γ
aˆ̄β ˆ̄γ

κᾱ
ˆ̄γ ,

f
[ab]

ᾱˆ̄β
=

1

4
(γab) γ̄

ᾱ κ
γ̄ ˆ̄β
, f

[a′b′]

ᾱˆ̄β
= −1

4
(γa

′b′) γ̄
ᾱ κ

γ̄ ˆ̄β
,

f β̄ [ab]ᾱ = −1

2
(γab)

β̄
ᾱ , f

ˆ̄β
[ab]ˆ̄α

= −1

2
(γab)

ˆ̄β
ˆ̄α
,
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f
a

[bc]d = ηd [cδ
a
b] , f

[ab]
c d =

1

2
δ a[cδ

b
d] , f

[a′b′]
c′ d′ = −1

2
δ a
′

[c′δ
b′

d′] ,

f
[ab]

[cd][ef ] =
1

2
ηe[dδ

[a
c] δ

b]
f +

1

2
ηf [cδ

[a
d]δ

b]
e ,

where a = 0, 1, . . . , 4, a′ = 5, . . . , 9, and a denotes both a and a′. The [ ] that appears

on the right-hand side of the structure constants means antisymmetrization of the

indices with no additional factor of half. Furthermore, (γ
a

ᾱβ̄
, γa ᾱβ̄) and (γ

a

ˆ̄αˆ̄β
, γa ˆ̄αˆ̄β)

are two sets of chiral gamma matrices which are related with each other as will be

shown soon, and

(γab)
β̄

ᾱ =
1

2
(γa ᾱγ̄γ

γ̄β̄
b − γb ᾱγ̄γγ̄β̄a ) ,

with a similar definition for the matrices with hatted indices. Moreover,

Str (TaTb) ≡ ηab , Str (TᾱTˆ̄β
) ≡ κ

ᾱˆ̄β
, κ

ᾱˆ̄β
= −κˆ̄βᾱ

, (2.27)

Str (T[ab]T[cd]) ≡ η[ab][cd] ,

where Str denotes the supertrace over the generators. Explicitly ηab and η[ab][cd] are

ηab = {ηab , ηa′b′} = {(−1, 1, 1, 1, 1) , (1, 1, 1, 1, 1)} , (2.28)

η[ab][cd] = {η[ab][cd] , η[a′b′][c′d′]} = {ηa[dηc]b , −ηa′[d′ηc′]b′} .

In order to complete the definitions, we have to define the inverse symbols that

appear in the expressions for the structure constants. They are defined implicitly

by the relations

κᾱ
ˆ̄βκˆ̄βγ̄

= δᾱγ̄ , κˆ̄γᾱκ
ᾱˆ̄β = δ

ˆ̄β
ˆ̄γ
, ηabηbc = δac , (2.29)

η[ab][ef ]η[ef ][cd] = δ
ab
cd , δ

ab
cd = {δabcd , δa

′b′

c′d′} = {1

2
δ[a
c δ

b]
d ,

1

2
δ

[a′

c′ δ
b′]
d′} .

We will make several comments about the superalgebra and its structure con-

stants, not all of them essential for the rest of the thesis but they may be useful to

the reader. The first comment is that in order to prove that the structure constants

of the algebra given above satisfy all the generalized Jacobi identities

(−1)degAdegC [TA , [TB , TC ]+− ]+− + (−1)degAdegB[TB , [TC , TA ]+− ]+−

+(−1)degC degB[TC , [TA , TB ]+− ]+− = 0 ,

where the value of deg is 1 if the generator is in [g1 , g3], i.e, a fermionic generator or

0 if the generator is in [g0 , g2], i.e, a bosonic generator, the following chiral gamma

matrices identities are necessary

γ
a

ᾱ(β̄
γ|a|γ̄δ̄) = γaᾱ(β̄γ|a|γ̄δ̄) + γa

′

ᾱ(β̄γ|a′|γ̄δ̄) = 0 ,
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and

(γa)ᾱβ̄ = −κᾱˆ̄γκβ̄
ˆ̄δ(γa)ˆ̄γˆ̄δ

, (γa)ᾱβ̄ = −κᾱˆ̄γκβ̄ˆ̄δ
(γa)

ˆ̄γˆ̄δ , (2.30)

(γa
′
)ᾱβ̄ = κᾱ

ˆ̄γκβ̄
ˆ̄δ(γa

′
)ˆ̄γˆ̄δ

, (γa
′
)ᾱβ̄ = κᾱˆ̄γκβ̄ˆ̄δ

(γa
′
)

ˆ̄γˆ̄δ ,

note that the difference in sign above for a and a′ is necessary, for example, the

Jacobi identities given below are only satisfied if we have this sign difference:

[Ta , [Tb , Tᾱ ] ] + [Tb , [Tᾱ , Ta ] ] + [Tᾱ , [Ta , Tb ] ] = 0 .

Another way to see that there is this sign difference is by studying the second

Casimir of the algebra. It is well-known that the dual Coxeter number of PSU(2, 2|4)

is zero, which implies that its second Casimir vanishes in the adjoint representation.

Following Mikhailov and Schafer-Nameki [58], the second Casimir is defined by

C = κ
ˆ̄αβ̄(Tˆ̄α ⊗ Tβ̄ − Tβ̄ ⊗ Tˆ̄α) + ηab(Ta ⊗ Tb) + η[ab][cd](Tab ⊗ Tcd) ,

and it acts on a generator as

C · TC = (κη)AB[TA , [TB , TC ]+− ]+− = 0 , (2.31)

where [A,B,C] here can be any of the indices of the generators and (κη) is κ or η

depending on the value of the indices. Noting that

κᾱ
ˆ̄β{Tᾱ , Tˆ̄β

} = 0 , (2.32)

which can be verified by direct computation using (γab) ᾱ
ᾱ = 0 or by a group theoretic

argument given in [58]. The argument is that if it is not zero it will be an element

of the center of g0, however, the center of g0 is trivial. The statement “being in the

center of g0” should be understood as that for any Tab we must have

[Tab , κ
ᾱˆ̄β{Tᾱ , Tˆ̄β

} ] = 0 , (2.33)

and one way to prove the result above is by using the generalized Jacobi identities

and κᾱ
ˆ̄β(γab)

ˆ̄γ
ˆ̄β

= −κδ̄ˆ̄γ(γab)
ᾱ
δ̄ . The vanishing of the second Casimir and (2.32)

impose many relations among the structure constants, for example,

κᾱ
ˆ̄β[Tˆ̄β

, {Tᾱ , Tγ̄} ] = 0 , ηab[Ta , [Tb , Tγ̄] ] = 0 ,

κ
ˆ̄αβ̄{Tˆ̄α , [Tβ̄ , Ta] } = κᾱ

ˆ̄β{Tᾱ , [Tˆ̄β
, Ta] } = −ηbc[Tb , [Tc , Ta ] ] ,

and the third relation is only satisfied with the correct assignment of signs of (2.30).

The last comment about the structure constants is that it is possible to relate
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many of them using supertrace identities, for example, we know that the supertrace

satisfies

Str ([TA , TB ]+− TC ) = Str(TA [TB , TC ]+− ) ,

in particular,

Str ( {Tᾱ , Tβ̄ } , Ta) = Str (Tᾱ , [Tβ̄ , Ta ] ) ,

which implies

f
b

ᾱβ̄
ηba = f

ˆ̄γ
β̄a
κᾱˆ̄γ .

2.3.2 The action

After introducing the PSU(2, 2|4) superalgebra in a useful form for understanding

the superstrings action in the pure spinor formalism, the action will be presented.

We will follow mainly the notation and conventions of [59].

The first step in constructing the action is to define the left-invariant currents.

In this direction, we first need a parametrization of the supercoset (2.23). We will

choose, for example, the coset representative

g = exp(X ᾱ
1 Tᾱ +X

a
2Ta +X

ˆ̄α
3 Tˆ̄α) , (2.34)

where as defined in the previous subsection TA are generators of the Lie superalgebra

of PSU(2, 2|4) and XA
i are variables parameterizing the coset. In what follows the

precise form of the coset representative will not be necessary, everything will be still

valid for any g. The left-invariant currents are defined as

g−1∂g = Jab Tab + J ᾱTᾱ + +JaTa + J
ˆ̄αTˆ̄α (2.35)

= J0 + J1 + J2 + J3 ,

and the currents J̄ are defined similarly, with the replacement of ∂ by ∂̄ on the

left-hand side of the expression above. In our conventions, a global PSU(2, 2|4)

transformation gP acts on the coset representative by left multiplication, or in other

words,

gP g(X) = g(X ′)h′ (2.36)

where X ′ are the transformed variables and h′ an element of the isotropy group.

In its infinitesimal version we can approximate gP ∼ 1 + Σ and the formula above

reduces to

δg = Σ g . (2.37)
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We are now in position to understand why the currents J defined in (2.35) are

called left-invariant. Under a global PSU(2, 2|4) transformation, we have

g−1∂g → g′−1∂g′ = g−1g−1
P ∂ (gPg) = g−1∂g ,

which means that the currents are invariant under these transformations. In addi-

tion, local gauge transformations of SO(1, 4) × SO(5) represented by hP acts on g

by right multiplication

g(X)hP = g(X ′) , (2.38)

or in its infinitesimal form with hP ∼ 1 + Ω,

δg = gΩ . (2.39)

The currents J transform under gauge transformations, in order to deduce their

transformation, note

g−1∂g → g′−1∂g′ = h−1
P g−1∂ (g hP ) = h−1

P JATA hP + h−1
P ∂hP ,

and since hP is an element of the isotropy group with all its generators with 0

grading, projecting the result above onto the subspaces with definite grading under

the Z4, gives

J i → h−1
P J i hP , i = 1, 2, 3 , J0 → h−1

P J0 hP + h−1
P ∂hP , (2.40)

which means, in particular, that J0 transforms as a connection.

In addition to the currents just defined, the action for the closed superstrings

has a pair of bosonic pure spinors, one left-moving λᾱ and one right-moving λ̂ˆ̄α,

satisfying the constraints

λγaλ = 0 , λ̂γaλ̂ = 0 , (2.41)

which implies that each of them has 11 independent components. This result will

be explained in great detail in the chapter 4, where the constraints will be explic-

itly solved using U(5) notation. The conjugate momenta of these variables will be

denoted wᾱ and ŵˆ̄α and they are defined up to the gauge transformation

δw = (γaλ)Λa , δŵ = (γaλ̂)Λ̂a , (2.42)

for any Λa and Λ̂a. This implies that they can only appear in the gauge-invariant

combinations of either the Lorentz currents

Nab =
1

4
(wγabλ) , N̂ab =

1

4
(ŵγabλ̂) , (2.43)
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or the ghost currents J = (wλ) and Ĵ = (ŵλ̂). The final definitions needed to write

down the action are

λ = λᾱTᾱ , w = wᾱTˆ̄ακ
ᾱˆ̄α , N = −{w, λ} , (2.44)

λ̂ = λ̂
ˆ̄αTˆ̄α , ŵ = ŵˆ̄αTᾱκ

ᾱˆ̄α , N̂ = −{ŵ λ̂} .

Finally, the worldsheet action is

S =
∫
d2z Str (

1

2
J2J̄2 +

3

4
J3J̄1 +

1

4
J1J̄3 + w∇̄λ+ ŵ∇λ̂−NN̂) , (2.45)

where

∇̄λ = ∂̄λ+ [ J̄0 , λ ] , ∇λ̂ = ∂λ̂+ [ J0 , λ̂ ] . (2.46)

Several comments about this action are in order. Firstly, the action is clearly

invariant under global PSU(2, 2|4) transformations, this follows immediately as a

consequence of the invariance of the currents. The action is also gauge-invariant,

the currents [J1, J2, J3] transform covariantly under the gauge transformations and

the Str ensures the gauge invariance of the terms involving these currents. The pure

spinor variables transform as

δΩλ = [λ , Ω ] , δΩλ̂ = [ λ̂ , Ω ] , δΩw = [w , Ω ] , δΩŵ = [ ŵ , Ω ] , (2.47)

and note that

δ∇̄λ = ∂̄δλ+ [ δJ̄0 , λ ] + [ J̄0 , δλ ]

= [ ∂̄λ , Ω ] + [λ , ∂̄Ω ] + [ [ J̄0 , Ω ] , λ ] + [ ∂̄Ω , λ ] + [ J̄0 , [λ , Ω ] ]

= [ ∇̄λ , Ω ] ,

where we have used the Jacobi identity. This implies that the remaining terms of

the action are also gauge-invariant. One very important comment is that the action

is BRST invariant with the BRST transformation generated by the charge

εQ = −ε
∫
dσ Str (λJ3 + λ̂J̄1 ) , (2.48)

and ε a fermionic infinitesimal parameter. Under a BRST transformation the coset

representative transforms as

εQ · g = g (ελ+ ελ̂) , (2.49)

which enables us to find the transformations of the current by varying both sides of

the definition (2.35), which implies

δg−1∂g + g−1∂δg = δJ0 + δJ1 + δJ2 + δJ3 , (2.50)

18



and collecting the terms with the same grading, one concludes

δJ0 = [ J3 , ελ ] + [ J1 , ελ̂ ] ,

δJ1 = ε∂λ+ [ J0 , ελ ] + [ J2 , ελ̂ ] ,

δJ2 = [ J1 , ελ ] + [ J3 , ελ̂ ] ,

δJ3 = ε∂λ̂+ [ J0 , ελ̂ ] + [ J2 , ελ ] .

In addition, as w and ŵ are conjugate to λ and λ̂, the BRST transformation of

these variables are easily deduced from the form of the BRST charge, and they are

εQ · w = −J3ε , εQ · ŵ = −J̄1ε , (2.51)

and because w and ŵ are defined up to a gauge transformation, the variations

above are equally defined up to gauge transformations. To complete the BRST

transformations of all fields, the transformations of the pure spinor variables λ and

λ̂ are

εQ · λ = εQ · λ̂ = 0 , (2.52)

however, there is a subtle detail here. When one performs a BRST transformation of

a particular coset representative such as g given in (2.34), it is possible that the final

result can only be written as (2.49) after a compensating gauge transformation of

SO(1, 4)×SO(5). Since the pure spinor variables transform under local SO(1, 4)×
SO(5), these variables will transform under this compensating gauge transformation.

We will now prove that the action is BRST invariant. This is accomplished

both by replacing the variations given above and by using the Maurer-Cartan iden-

tity that will be defined below. From the definitions of the currents (2.35), it is

straightforward to see that they satisfy

dĴ + Ĵ ∧ Ĵ = 0 , (2.53)

which is the Maurer-Cartan identity. In this formula, Ĵ is a one-form and ∧ is the

usual wedge product of forms, in components

Ĵ = J dz + J̄ dz̄ , d = dz
∂

∂z
+ dz̄

∂

∂z̄
,

and two useful relations among the currents obtained from this identity after col-

lecting the terms with the same grading are

∇J̄1 − ∇̄J1 + [ J2 , J̄3 ] + [ J3 , J̄2 ] = 0 , (2.54)

∇J̄3 − ∇̄J3 + [ J2 , J̄1 ] + [ J1 , J̄2 ] = 0 .
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Using these Maurer-Cartan identities and the BRST variation of the currents

already given, a straightforward calculation gives the BRST transformation of the

matter part of the action

δSmatter =
∫
d2z δ Str (

1

2
J2J̄2 +

3

4
J3J̄1 +

1

4
J1J̄3) (2.55)

=
∫
d2z Str (−∇̄J3ελ−∇J̄1ελ̂) .

The next step in showing that the action is BRST invariant is to compute the

BRST variation of the ghost part. Using Jacobi identities and the pure spinor

conditions, it is possible to perform a few manipulations such as

[ {w , λ } , λ] = [w , {λ , λ} ] + [λ , {λ , w } ] → [ {w , λ } , λ] = 0 ,

where we have used that the first term on the right-hand side vanishes, and show

that

δSghost =
∫
d2z δ Str (w∇̄λ+ ŵ∇λ̂−NN̂) =

∫
d2z Str (∇̄J3ελ+∇J̄1ελ̂) , (2.56)

which precisely cancels the variation of the matter part of (2.55) implying that the

action is BRST invariant.

The last comment about the action concerns its equations of motion. Although,

we will not need the equations of motion in the remaining of the thesis, the method

for computing them will be explained for completeness. Under an infinitesimal

variation of the coset representative δg = gY with Y = Y ᾱTᾱ + Y aTa + Y ˆ̄αTˆ̄α, the

transformation of the currents can be deduced from (2.50) and they are

δJ = ∂Y + [ J , Y ] ,

which implies, for example,

δJ1 = ∂Y 1 + [ J0 , Y 1 ] + [ J2 , Y 3 ] + [ J3 , Y 2 ] .

Replacing these variations in the action and imposing that the variation of the

action vanishes for any Y , one concludes, for example, that

−3

4
∇J̄1 − 1

4
∇̄J1 +

1

4
[ J3 , J̄2 ]− 1

4
[ J̄3 , J2 ]− [ J̄1 , N ]− [ J1 , N̂ ] = 0 ,

and using the Maurer-Cartan identity, this result can be rewritten as

∇̄J1 = [ J3 , J̄2 ] + [ J2 , J̄3 ] + [N , J̄1 ] + [ N̂ , J1 ]

∇J̄1 = [N , J̄1 ] + [ N̂ , J1 ] .
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The equations of motion for the ghosts can be easily derived using the properties

of the supertrace. Varying w, one gets

∇̄λ = [ N̂ , λ ] ,

and all the remaining equations of motion can be derived in a similar way, see [16],

for example.

The action written with a supertrace as in (2.45) is very convenient to prove

the BRST invariance and compute its equations of motion in compact notation.

However, in the next section, the useful form of the action will be the one with the

supertraces evaluated. We will perform these evaluations in the remaining of this

section and fix our conventions. The matter part of the action becomes

Smatter =
∫
d2z Str (

1

2
J2J̄2 +

3

4
J3J̄1 +

1

4
J1J̄3) (2.57)

=
∫
d2z

1

2
nabJ

aJ b − 1

2
κ
ᾱˆ̄β

(J ᾱJ̄
ˆ̄β + J̄ ᾱJ

ˆ̄β) +
1

4
κ
ᾱˆ̄β

(J ᾱJ̄
ˆ̄β − J̄ ᾱJ

ˆ̄β) ,

where in our conventions, for example,

Str (J3J̄1) = Str (J
ˆ̄αTˆ̄αJ̄

β̄Tβ̄) = −Str (J
ˆ̄αJ̄ β̄Tˆ̄αTβ̄) = −J ˆ̄αJ̄ β̄Str (Tˆ̄αTβ̄) ,

because both the currents and the generators are fermionic. In order to compute

the ghost part, note that using the algebra of PSU(2, 2|4), we have

N = −{w , λ} = −NabTab +Na′b′Ta′b′ ,

N̂ = −{ ŵ , λ̂ } = N̂abTab − N̂a′b′Ta′b′ ,

and

Sghost =
∫
dz2Str (w∇̄λ+ ŵ∇λ̂−NN̂) (2.58)

= wᾱ∇̄λᾱ − ŵˆ̄α∇λ̂
ˆ̄α + η[ab][cd]N

abN̂ cd ,

where ∇̄ involves the SO(1, 4)× SO(5) connections,

∇̄λᾱ = ∂̄λᾱ + J̄ab
1

2
(γab)

ᾱ
β̄λ

β̄ , (2.59)

and similarly for ∇λ̂ˆ̄α.

Finally the BRST charge is

εQ = −ε
∫
dσ Str (λJ3 + λ̂J̄1 ) = ε

∫
dσ κ

ᾱˆ̄β
λᾱJ

ˆ̄β − ε
∫
dσ κ

ᾱˆ̄β
λ̂

ˆ̄βJ̄ ᾱ , (2.60)

or, in terms of the usual complex coordinates z and z̄,

εQ = ε
∫
dz κ

ᾱˆ̄β
λᾱJ

ˆ̄β − ε
∫
dz̄ κ

ᾱˆ̄β
λ̂

ˆ̄βJ̄ ᾱ , (2.61)

where in our conventions
∫
dz is a short notation for

∫ dz
2πi

and
∫
dz̄ is a short notation

for
∫ dz̄
−2πi

.
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2.4 Superstrings in AdS5 × S5 with a new supercoset

The pure spinor formalism in the background AdS5 × S5 with the matter variables

represented by the AdS5 supercoset PSU(2,2|4)
SO(1,4)×SO(6)

together with SO(6)
SO(5)

variables for

S5, instead of being represented by the usual supercoset PSU(2,2|4)
SO(1,4)×SO(5)

as already

reviewed, will be explained in this section. The pure spinor formalism with this new

supercoset is the relevant formalism for the rest of the thesis.

Despite the fact that the supercoset PSU(2,2|4)
SO(1,4)×SO(6)

× SO(6)
SO(5)

is related with the

previous one by a field redefinition, one of the advantages of working with this

supercoset is that the harmonic variables that will be introduced in the chapter 4

transform under N = 4 d = 4 supersymmetry as the SO(6)
SO(5)

variables. The method

for constructing the worldsheet action and the BRST charge for the pure spinor

formalism using this new coset is by comparing with the results of the formalism

with the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

after a convenient gauge-fixing.

We will need the four-dimensional version of the superalgebra of PSU(2, 2|4)

which contains the following generators: the translation generator Pµ, the special

conformal generator Kµ, the dilatation generator D, the Lorentz generators Mµν ,

the SU(4) R-symmetry generators U i
j , the supersymmetry generators [qαi, q̄

i
α̇], and

the generators of superconformal transformations [siα, s̄α̇i]. All the non-zero commu-

tators and anticommutators of this superalgebra are given in the Appendix B.

The AdS supercoset PSU(2,2|4)
SO(1,4)×SO(6)

will be parametrized by 5 bosonic variables

denoted [xµ, z] and 32 fermionic variables denoted [θαj, θ̄α̇j , ψ
α
j , ψ̄

α̇j]. The coset rep-

resentative being

g = exp(xµPµ + iθαjqαj + iθ̄α̇j q̄
α̇j ) exp( iψαj s

j
α + iψ̄jα̇s̄

α̇
j ) zD , (2.62)

and with this chosen representative the boundary of AdS5 is located at z = 0. The

way of seeing this is by considering only the bosonic part of the coset representative

given above, or in other worlds, excluding the terms with [θ, θ̄, ψ, ψ̄], and computing

the vielbeins e using the definition

g−1
no θ,ψ dgno θ,ψ = eµPµ + ezPz ,

and a straightforward calculation gives

eµ =
1

z
dxµ̆δµµ̆ , ez =

1

z
dz ,

from where one deduces the metric

ds2 = ηab e
a eb =

1

z2
(d~x2 + dz2) , (2.63)
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which is the usual AdS5 metric in the Poincaré patch with the boundary located at

z = 0. Two comments about our chosen parametrization, and that will be explained

in great detail in the Appendix C, are that it is not consistent to set ψ = ψ̄ = 0 as

a boundary condition and when z → 0 the variables [x, θ, θ̄] transform in the usual

N = 4 d=4 superconformal manner under global PSU(2, 2|4) transformations.

The S5 space SO(6)
SO(5)

will be parametrized using a unit vector yJ satisfying the

constraint yJyJ = 1, where the indices of the vector can be raised and lowered

using the usual six-dimensional Euclidean metric. Using the SO(6) Pauli matrices

of Appendix A, it is possible to define yjk = yJσ
J
jk, y

jk = yJσjkJ and the properties

of the Pauli matrices together with the constraint imply that these variables satisfy

1

8
εjklmyjkylm = −1 , yjk =

1

2
εjklmylm , yjky

kl = δlj . (2.64)

In order to complete the set of necessary variables, we need both the left-moving

[λαj, λ̄α̇j ] and the right-moving [λ̂αj, ˆ̄λ
α̇

j ] bosonic pure spinor variables together with

their respective conjugate momenta [wαj, w̄
j
α̇] and [ŵαj, ˆ̄w

j
α̇]. These variables were

written in four-dimensional notation and they satisfy the constraints that are the

dimensional reduction of the ten-dimensional pure spinor constraints of (2.41), which

are

λαjλ̄α̇j = 0 , λαjλkα −
1

2
εjklmλ̄α̇lλ̄

α̇
m = 0 , (2.65)

λ̂αj ˆ̄λ
α̇

j = 0 , λ̂αjλ̂kα −
1

2
εjklm ˆ̄λα̇l

ˆ̄λ
α̇

m = 0 .

This implies, as in the ten-dimensional case, that these variables have 11 independent

components and the conjugate momenta have 11 gauge-invariant components.

At several places, we will perform the dimensional reduction of expressions writ-

ten in ten-dimensional notation, the first example of such a reduction being (2.65).

The procedure for performing a reduction is as follows. Consider a vector V M of

SO(1, 9), it decomposes as [V µ, V I+3] under its SO(1, 3) × SO(6) subgroup. In

addition, we will use the ansatz for the chiral gamma matrices given below

(γµ)ᾱβ̄ =

 08 δij ⊗ iεαβ(σµ)βα̇

δij ⊗ iεα̇β̇(σ̄µ)β̇α 08

 , (2.66)

(γµ)ᾱβ̄ =

 08 δij ⊗ i(σµ)αα̇ε
α̇β̇

δij ⊗ i(σ̄µ)α̇βεβα 08

 ,

(γI+3)ᾱβ̄ =

 (σI)ij ⊗ εαβ 08

08 (σI)ij ⊗−εα̇β̇

 ,

(γI+3)ᾱβ̄ =

 (σI)ij ⊗ εαβ 08

08 (σI)ij ⊗−εα̇β̇

 ,
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where ⊗ means the usual tensor product of matrices. All the γM are 16 by 16

matrices, 08 are 8 by 8 zero matrices, [σµ, σ̄µ] are 2 by 2 SO(1, 3) Pauli matrices

and [σIij, σ
Iij] are 4 by 4 SO(6) Pauli matrices. The Pauli matrices are defined in

the Appendix A and using their properties that are also given in the Appendix, one

can easily show that the ansatz for the chiral gamma matrices given above satisfies

the dimensional reduction of

(γM)ᾱβ̄(γN)β̄γ̄ + (γN)ᾱβ̄(γM)β̄γ̄ = 2ηMNδγ̄ᾱ .

Moreover, any two chiral spinors Aᾱ and Aᾱ reduce as

Aᾱ =

 Aαi

Āα̇i

 , Aᾱ =

 Aαi

Āα̇i

 .

As an example, we will perform the dimensional reduction of the pure spinor

constraints and see that it is in fact given by (2.65). Note first that λγMλ = 0

implies λγµλ = 0 and λγI+3λ = 0, and using the ansatz for the chiral gamma

matrices, one has

λᾱγµ
ᾱβ̄
λβ̄ = λαiiσµαα̇λ̄

α̇
i + λ̄α̇iiσ̄

µα̇αλiα

= λαiiσµαα̇λ̄
α̇
i + λ̄α̇ii(ε

α̇β̇εαβσµ
ββ̇

)λiα

= 2λαiiσµαα̇λ̄
α̇
i = 0 ,

and one concludes that λαiλ̄α̇i = 0. Similarly,

λᾱγI+3
ᾱβ̄

λβ̄ = λαiσIijλ
j
α − λ̄α̇iσIijλ̄α̇j

= λαiσIijλ
j
α −

1

2
σIijε

ijklλ̄α̇kλ̄
α̇
l

→ λαiλjα −
1

2
εijklλ̄α̇kλ̄

α̇
l = 0 ,

and in this way we have deduced the pure spinor constraints of (2.65).

After introducing all the necessary variables, the next step is to construct the ac-

tion. The pure spinor formalism with the matter variables represented by the super-

coset PSU(2,2|4)
SO(1,4)×SO(6)

together with the S5 variables yI has an additional gauge symme-

try when compared with the pure spinor formalism with the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

.

Note that fixing this additional gauge symmetry the two theories are the same. So

the action and the BRST charge of the two theories have to be the same after

fixing this additional gauge. This will be our strategy for constructing the action

and BRST charge for the formalism with the supercoset PSU(2,2|4
SO(1,4)×SO(6)

× SO(6)
SO(5)

, we

will check that the results are the correct ones by fixing the gauge yij = σ6
ij and
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showing that all the results obtained for the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

are correctly

reproduced. The first step to compare the two theories in the gauge yij = σ6
ij is

relating the PSU(2, 2|4) superalgebra written in ten-dimensional notation given in

(2.26) with the same algebra in four-dimensional notation as in the Appendix B.

This will be the subject of the next subsection.

2.4.1 The PSU(2, 2|4) algebra in two different notations

In this subsection, we will relate the superalgebra of PSU(2, 2|4) given in ten-

dimensional notation in (2.26) with the same algebra written in four-dimensional

notation in terms of the generators [Pµ, Kµ,Mµν , D, qαi, q̄
i
α̇, s

i
α, s̄α̇i] which is described

in the Appendix B. We will first relate the bosonic generators as

Ta =


1
2
(Pµ +Kµ) if a = 0, 1, 2, 3 ,

D if a = 4 ,
(2.67)

Tab =


Mµν if a, b = 0, 1, 2, 3 ,

1
2
(Pµ −Kµ) if a = 4 , b = 0, 1, 2, 3 ,

−1
2
(Pµ −Kµ) if a = 0, 1, 2, 3 , b = 4 ,

and

Ta′ =
1

2
(σ(a′−4)6) k

l U
l
k , Ta′b′ =

1

2
(σ(b′−4)(a′−4))

k
l U

l
k . (2.68)

It is possible to show that all the commutators involving two bosonic generators

of (2.26) are reproduced when we organize the generators as above. We will show

the details of the calculation for a few examples. Note that using the last structure

constant of (2.26), we have

[T4µ , T4ν ] = η4[µT4]ν + ην[4Tµ]4 = −Tµν ,

and this is precisely reproduced by

[
1

2
(Pµ −Kµ) ,

1

2
(Pν −Kν) ] = −1

4
(2ηµνD + 2Mµν) +

1

4
(2ηνµD + 2Mνµ)

= −Mµν ,

where we have used the commutators of the Appendix B. Similarly, note that

[D ,
1

2
(Pµ +Kµ) ] =

1

2
(Pµ −Kµ) =

1

2
δ

[a
4 δ

b]
µ Tab , (2.69)
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with the correct result of (2.26). The final example is

[Ta′ , Tb′ ] = [
1

2
(σ(a′−4)6) k

l U
l
k ,

1

2
(σ(b′−4)6) j

i U
i
j ]

=
1

4
(σ(a′−4)6) k

l (σ(b′−4)6) j
i (δljU

i
k − δikU l

j)

=
1

4
(σ(a′−4))im(σ(b′−4))

mkU i
k −

1

4
(σ(b′−4))lm(σ(a′−4))

mjU l
j

= −1

2
(σ(b′−4)(a′−4))

j
l U

l
j

= −1

2
δ

[c′

a′δ
d′]
b′ Tc′d′ ,

with the expected result. Let us now relate the fermionic generators performing the

dimensional reduction of Tᾱ and of Tˆ̄α, the results are

T 1
αi =

√
2

4
qαi −

√
2

4
(σ6)ijs

j
α, T 1i

α̇ = −
√

2

4
q̄iα̇ −

√
2

4
(σ6)ij s̄α̇j , (2.70)

T 3
αi = −

√
2

4
qαi −

√
2

4
(σ6)ijs

j
α, T 3i

α̇ = −
√

2

4
q̄iα̇ +

√
2

4
(σ6)ij s̄α̇j ,

where superscript 1 refers to Tᾱ and 3 refers to Tˆ̄α.

One way to prove that this is the correct relation is to show that using the

algebra of the Appendix B, one gets the same results of performing the dimensional

reduction of the algebra (2.26). We will show these for one specific example, and all

other cases being similar. Consider the anticommutator

{Tᾱ , Tβ̄ } =
1

2
γ
a

ᾱβ̄
Ta , (2.71)

and multiply both sides by the fermionic spinors εᾱ and ρβ̄, the dimensional reduction

of the left-hand side is

− [ εᾱTᾱ , ρ
β̄Tβ̄ ] =

−1

8
[ εαiqαi − εαi(σ6)ijs

j
α − ε̄α̇iq̄α̇i − ε̄α̇i(σ6)ij s̄α̇j ,

ρβmqβm − ρβm(σ6)mps
p
β − ρ̄β̇mq̄

β̇m − ρ̄β̇m(σ6)mps̄β̇p ] ,

and using the algebra of the Appendix B and the properties of the Pauli matri-

ces of the Appendix A, the terms proportional to Pµ and Kµ after computing the

commutators are
1

2
(εαi iσµαα̇ρ̄

α̇
i )

1

2
(Pµ +Kµ) +

1

2
(ε̄α̇i iσ̄

µα̇αρiα)
1

2
(Pµ +Kµ) , (2.72)

and noting that the terms proportional to Mµν cancel among them, the remaining

terms proportional to D and U i
j are

1

2
εαi(σ6)imρ

m
αD +

1

2
εαiρmα (σ6)mpU

p
i −

1

2
εαi(σ6)ijρ

m
α U

j
m (2.73)

−1

2
ε̄α̇i(σ

6)imρ̄α̇mD +
1

2
ε̄α̇iρ̄

α̇
m(σ6)mpU i

p −
1

2
ε̄β̇i(σ

6)ij ρ̄β̇mU
m
j .
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The next step is to compute the right-hand side of (2.71) and compare with the

results of the previous calculations. We have

1

2
εᾱγ

a

ᾱβ̄
ρβ̄ Ta =

1

2
εᾱγµ

ᾱβ̄
ρβ̄

1

2
(Pµ +Kµ) +

1

2
εᾱγ9

ᾱβ̄ρ
β̄D +

1

2
εᾱγ

(a′−1)

ᾱβ̄
ρβ̄

1

2
(σ(a′−4)6) k

l U
l
k ,

and using the ansatz for the chiral gamma matrices of (2.66), one easily sees that the

terms proportional to Pµ and Kµ of (2.72) and the terms proportional to D of (2.73)

are reproduced. The terms with U i
j require a few manipulations before comparison,

1

2
(εαiσ

(a′−4)
ij ρjα − ε̄α̇iσ(a′−4)ij ρ̄α̇j )

1

2
(σ(a′−4)6) k

l U
l
k =

1

4
εαiρjα(−2(δki δ

p
j − δ

p
i δ
k
j )σ6

lp + σ6
ijσ

6pkσ6lp)U
l
k

−1

4
ε̄α̇iρ̄

α̇
j [2(δjl δ

i
m − δilδjm)σ6mk − σ6ijσ6lmσ

6mk)U l
k =

1

2
εαiρmα (σ6)mpU

p
i −

1

2
εαi(σ6)ijρ

m
α U

j
m +

1

2
ε̄α̇iρ̄

α̇
m(σ6)mpU i

p −
1

2
ε̄β̇i(σ

6)ij ρ̄β̇mU
m
j ,

where we have used that U i
i = 0. The final result is equal to the terms proportional

to U i
j of (2.73). The last comment of this subsection is that in order to perform the

dimensional reduction of some of the structure constants it is necessary to know the

matrix form of κ
ᾱˆ̄β

. In our conventions, it is equal to κ
ᾱˆ̄β

= i(γ01239)
ᾱˆ̄β

and using

the ansatz for the chiral gamma matrices of (2.66),

κ
ᾱˆ̄β

=

 (σ6)ij ⊗ εαβ 08

08 (σ6)ij ⊗ εα̇β̇

 . (2.74)

2.4.2 The action

After relating the two forms of the PSU(2, 2|4) superalgebra in the previous subsec-

tion, we will construct the action and the BRST charge of the pure spinor formalism

with the matter variables represented by the supercoset PSU(2,2|4)
SO(1,4)×SO(6)

together with

S5 variables. It is important to know how the variables transform under a gauge

transformation in order to construct a gauge-invariant action. In our conventions,

under an infinitesimal local SO(1, 4) × SO(6) gauge transformation the coset rep-

resentative (2.62) transforms by right multiplication as δg = gΩ. The pure spinor

variables and the S5 variables yij must also transform. Under the SO(1, 3)×SO(6)

subgroup of SO(1, 4)× SO(6), these variables transform in the obvious way as

δyjk = cljylk + clkyjl , (2.75)

and

δλjα = cβαλ
j
β − c

j
kλ

k
α , δλ̄α̇j = cα̇

β̇
λ̄β̇j + ckj λ̄

α̇
k , (2.76)
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δwαj = −cαβw
β
j + ckjw

α
k , δw̄jα̇ = −cβ̇α̇w̄

j

β̇
− cjkw̄kα̇ ,

δλ̂jα = cβαλ̂
j
β − c

j
kλ̂

k
α , δ ˆ̄λ

α̇

j = cα̇
β̇
ˆ̄λ
β̇

j + ckj
ˆ̄λ
α̇

k ,

δŵαj = −cαβŵ
β
j + ckj ŵ

α
k , δ ˆ̄w

j
α̇ = −cβ̇α̇ ˆ̄w

j

β̇ − c
j
k

ˆ̄w
k
α̇ ,

where Ω = cjkU
k
j − 1

4
(cαβ(σµν) β

α + cα̇
β̇
(σ̄µν)β̇ α̇)Mµν . Under a local transformation gen-

erated by the four generators of SO(1, 4) not contained in SO(1, 3), these variables

transform as

δyjk = 0 (2.77)

and

δλjα = −cα̇αyjkλ̄α̇k , δλ̄α̇j = cαα̇yjkλ
k
α , (2.78)

δλ̂jα = −cα̇αyjk ˆ̄λ
α̇

k , δ ˆ̄λ
α̇

j = cαα̇yjkλ̂
k
α ,

δwαj = cαα̇yjkw̄
k
α̇ , δw̄jα̇ = −cα̇αyjkwαk ,

δŵαj = cαα̇yjk ˆ̄w
k
α̇ , δ ˆ̄w

j
α̇ = −cα̇αyjkŵαk ,

where Ω = cαα̇iσµαα̇T4µ.

One comment on how to understand these transformations, specially the last

ones, is in order. Note that in the pure spinor formalism with the supercoset
PSU(2,2|4)

SO(1,4)×SO(5)
under a gauge transformation of SO(1, 4) × SO(5) the pure spinor

variables transform as (2.47). It is possible to show that in the gauge yij = σ6
ij

the transformations given above when restricted to SO(1, 4) × SO(5) transforma-

tions are the dimensional reduction of (2.47) using the relation among the fermionic

generators of (2.70).

Moreover, these transformations imply that

λAj = [λjα, y
jkλ̄α̇k ] , wAj = [wαj ,−yjkw̄kα̇] , (2.79)

λ̂Aj = [λ̂jα, y
jk ˆ̄λ

α̇

k ] , ŵAj = [ŵαj ,−yjk ˆ̄w
k
α̇] ,

transform covariantly as SO(1, 4)× SO(6) spinors where A = (α, α̇) is an SO(1, 4)

spinor index. In particular, when yij = σ6
ij they transform covariantly as SO(1, 4)×

SO(5) spinors where SO(5) is the subgroup of SO(6) that leaves the vectorial index

6 of the Pauli matrix invariant.

The left-invariant currents of the theory are defined by

g−1∂g = Jµ
1

2
(Pµ +Kµ) + J4D + JABMAB + Jkj U

j
k (2.80)

+Jαjqαj + Jα̇j q̄
α̇j + Jαj s

j
α + J jα̇s̄

α̇
j ,
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where g is the coset representative given in (2.62) and MAB = MBA are the set of

SO(1, 4) generators with A,B = (α, α̇) SO(1, 4) spinor indices. Note that in the

gauge yij = σ6
ij this expression must be equal to (2.35), in particular, this implies

that the fermionic currents must satisfy

J ᾱTᾱ + J
ˆ̄αTˆ̄α = Jαjqαj + Jα̇j q̄

α̇j + Jαj s
j
α + J jα̇s̄

α̇
j , (2.81)

and performing the dimensional reduction of the left-hand side of the expression

above using the relations among the fermionic generators of (2.70), one concludes

that

Jαj1 =
√

2 Jαj +
√

2 (σ6)jiJαi , J α̇1j = −
√

2 J α̇j +
√

2 (σ6)jiJ
iα̇ , (2.82)

Jαj3 = −
√

2Jαj +
√

2(σ6)jiJαi , J α̇3j = −
√

2J α̇j −
√

2(σ6)jiJ
α̇i ,

where the subscript 1 and 3 refer to the currents J ᾱ and J ˆ̄α, respectively. Similarly,

in this gauge, the bosonic currents must satisfy

Jµ
1

2
(Pµ +Kµ) + J4D + JABMAB + Jkj U

j
k = JabTab + JaTa . (2.83)

Using the relation among the bosonic generators of (2.68), one concludes that

J ij = Ja
′ 1

2
(σ(a′−4)6) i

j + Ja
′b′ 1

2
(σ(b′−4)(a′−4))

i
j , (2.84)

and from this relation, using the properties of the SO(6) Pauli matrices and the first

relation of (2.67), one has Ja = [Jµ, J4, Ja
′
] with Ja

′
= 1

2
(σ6(a′−4)) j

k J
k
j . It is left to

compare the currents of SO(1, 4), note that

JABMAB = JαβMαβ + J α̇β̇M̄α̇β̇ + 2Jαβ̇Mαβ̇ ,

and

JabTab = JµνTµν + 2J4µT4µ .

Equating the right-hand side of the two equations above and replacing Tµν = Mµν

and Mαβ̇ by

Mµν =
1

2
(σµν)

β
γ εγαMαβ +

1

2
(σ̄µν)

α̇
γ̇ε
γ̇β̇M̄α̇β̇ , Mαβ̇ =

1

2
iσµ
αβ̇
T4µ ,

it is easy to see that

Jαβ = Jµνεαγ
1

2
(σµν)

β
γ , J α̇β̇ = Jµνεα̇γ̇

1

2
(σ̄µν)

β̇
γ̇ , Jαα̇ = J4µiσ̄α̇αµ . (2.85)
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We have now all the elements to write down the worldsheet action in the pure

spinor formalism with the AdS supercoset PSU(2,2|4)
SO(1,4)×SO(6)

. The matter part of the

action, or in other words, the ghost-independent part is

Smatter =
∫
d2z [

1

2
ηµνJ

µJ̄ν +
1

2
J4J̄4 − 1

8
(∇y)jk(∇̄y)jk (2.86)

−2Jαj J̄
j
α − 2JαjJ̄αj − 2J jα̇J̄

α̇
j − 2Jα̇jJ̄

α̇j

−yjkJαjJ̄kα − yjkJαj J̄αk + yjkJα̇jJ̄
α̇
k + yjkJ

j
α̇J̄

α̇k] ,

where (∇y)jk = ∂yjk−J ljylk−J lkyjl. In order to check that this is the correct action

we will prove that it reproduces the usual pure spinor action of (2.57) in the gauge

yjk = σ6
jk.

It is not difficult to see that in this gauge the term −1
8
(∇y)jk(∇̄y)jk can be

rewriten as 1
2

∑
a′ J

a′ J̄a
′

where Ja
′

= 1
2
(σ6(a′−4)) j

k J
k
j . The easiest way to prove this

is to compare the two results after a few manipulations using the properties of the

Pauli matrices of the Appendix A. Further, note that the third line of the action

reduces to

−σ6
jkJ

αjJ̄kα − σ6jkJαj J̄αk + σ6jkJα̇jJ̄
α̇
k + σ6

jkJ
j
α̇J̄

α̇k . (2.87)

It is straightforward now to show the equivalence with the action written in terms

of the PSU(2,2|4)
SO(1,4)×SO(5)

supercoset of (2.57) which, after performing the dimensional

reduction using the matrix form of κ
ᾱˆ̄β

given in (2.74), is

Smatter =
∫
d2z[

1

2
ηabJ

a
2 J̄

b
2 −

1

2
εAB(σ6)JK(JAJ1 J̄BK3 + J̄AJ1 JBK3 ) (2.88)

+
1

4
εAB(σ6)JK(JAJ1 J̄BK3 − J̄AJ1 JBK3 )] ,

where we have used the notation

εAB(σ6)JKJ
AJ
1 J̄BK3 = (σ6)ijεαβJ

αi
1 J̄

βj
3 + (σ6)ijεα̇β̇J1α̇iJ̄3β̇j ,

and similarly for the other terms. Substituting J
a
2 = [Jµ, J4, Ja

′
] and the relation

among the fermionic currents of (2.82), the two matter actions are equal.

In order to complete the action we need its ghost-dependent contribution, which

is

Sghost =
∫
d2z [wAj(∇̄λ)Aj − ŵAj(∇λ̂)Aj (2.89)

+
1

2
yjl(∇̄y)lkwAjλ

Ak − 1

2
yjl(∇̄y)lkŵAjλ̂

Ak

−2NµνN̂
µν − 4(yJNJµ)(yKN̂

Kµ) + 2NJKN̂
JK − 4(yLNLJ)(yMN̂

MJ) ] ,
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where in the first and the second line of the action above, λAj, wAj, λ̂
Aj and ŵAj

are the SO(1, 4)× SO(6) spinors defined in (2.79) and

wAj(∇̄λ)Aj = wαj ∂̄λ
j
α + w̄kα̇yki∂̄(yijλα̇j )− wαj J̄βαλ

j
β − w̄kα̇J̄ α̇β̇ λ̄

β̇
k (2.90)

+2wαj J̄αα̇y
jkλ̄α̇k − 2w̄kα̇yklJ̄

α̇αλlα + wαj J̄
j
kλ

k
α + w̄kα̇ykiJ̄

i
my

mpλ̄α̇p ,

and similarly for ŵAj(∇λ̂)Aj. Note that the covariant derivative above contains

the SO(1, 4) × SO(6) connections. In the third line of the action, the SO(1, 9)

Lorentz currents have been decomposed into their SO(1, 3)×SO(6) components as

[Nµν , NµJ , NJK ] and are constructed out of the SO(1, 3)× SO(6) spinors (λαj, λ̄α̇j )

and (wαj, w̄
j
α̇) and similarly for the hatted currents.

This ghost action can be verified by choosing the gauge yjk = σ6
jk and comparing

with the ghost action for the PSU(2,2|4)
SO(1,4)×SO(5)

supercoset given in (2.58) and reproduced

below with a convenient notation

Sghost =
∫
d2z[w5

Aj
˜̄∇λAj5 − ŵ5

Aj∇̃λ̂
Aj
5 + η[ab][cd] Ñ

ab
5
̂̃
N
cd

5 ] , (2.91)

where η[ab][cd] was defined in (2.27). The meaning of the superscript and subscript 5

in λAj5 , λ̂Aj5 , w5
Aj and ŵ5

Aj is that these are SO(1, 4)× SO(5) spinors obtained from

the definition of the SO(1, 4)×SO(6) spinors of (2.79) by setting yij = σ6
ij. Similarly,

Ñ
ab
5 is constructed out of these SO(1, 4)×SO(5) spinors. The tilde over the covariant

derivative means that ∇̃ only involves the SO(1, 4)× SO(5) connections.

Let us compare these two actions. In the gauge yij = σ6
ij the first term of the

second line of (2.89) reduces to

−1

2
wαj J̄

j
kλ

k
α −

1

2
wαj σ

6jlJ̄ml σ
6
mkλ

k
α −

1

2
w̄lα̇J̄

m
l λ̄

α̇
m −

1

2
w̄lα̇σ

6
lmJ̄

m
k σ

6kiλ̄α̇i . (2.92)

Consider now the last two terms of (2.90), we have after fixing the gauge

wαj J̄
j
kλ

k
α + w̄kα̇ykiJ̄

i
my

mpλ̄α̇p → wαj J̄
j
kλ

k
α + w̄kα̇(σ6)kiJ̄

i
m(σ6)mpλ̄α̇p (2.93)

= wαj J̄
a′b′ 1

2
(σ(a′−4)(b′−4))

j
kλ

k
α + w̄kα̇

1

2
J̄a
′b′(σ(a′−4)(b′−4))

p
k λ̄

α̇
p

+
1

2
wαj J̄

j
kλ

k
α +

1

2
wαj σ

6jlJ̄ml σ
6
mkλ

k
α +

1

2
w̄lα̇J̄

m
l λ̄

α̇
m +

1

2
w̄lα̇σ

6
lmJ̄

m
k σ

6kiλ̄α̇i ,

where we have used the relation among the currents of (2.84). Note that the terms

of the second line of the expression above contain the SO(5) connections of the

covariant derivative ˜̄∇ of (2.91) and the third line cancels precisely with (2.92).

Using the same reasoning of this example, it is not difficult to see that all the terms

in the first and second line of (2.89) reproduce in the gauge yij = σ6
ij the first and

the second term on the right-hand side of (2.91).

31



The next step is to understand the term with the ghost Lorentz currents. Using

the definition of η[ab][cd] of (2.27), we see that

η[ab][cd] Ñ
ab
5
̂̃
N
cd

5 = −2Ñµν
5
̂̃
N5µν − 4Ñ4µ

5 (
̂̃
N5)4µ + 2Ña′b′

5

̂̃
N5a′b′ ,

and using the ansatz for the chiral gamma matrices of (2.66), one can show that the

third line of (2.89) reduces to these terms after gauge-fixing. This shows that the

two actions are equal in the gauge yij = σ6
ij.

The BRST charge of the theory can be determined in a similar way. In terms of

the PSU(2,2|4)
SO(1,4)×SO(5)

supercoset the BRST operator is given by (2.61) and dimensionally

reducing this operator using the matrix form of κ
ᾱˆ̄β

of (2.74) one has

Q =
∫
dzλAJεAB(σ6)JKJ

BK
3 −

∫
dz̄λ̂AJεAB(σ6)JK J̄

BK
1 , (2.94)

where we have used the same notation as the one described under (2.88). The

BRST operator in terms of the PSU(2,2|4)
SO(1,4)×SO(6)

supercoset must be equal to the one

above when yij = σ6
ij and using the relation among the fermionic currents in this

gauge of (2.82), it is easy to see that

Q =
∫
dz[λαj(

√
2Jαj −

√
2yjkJ

k
α)− λ̄α̇j(

√
2J α̇j +

√
2yjkJ α̇k )] (2.95)

−
∫
dz̄ [λ̂αj(

√
2J̄αj +

√
2yjkJ̄

k
α) + ˆ̄λα̇j(

√
2J̄ α̇j −

√
2yjkJ̄ α̇k )].

The BRST variation of a representative of the supercoset PSU(2,2|4)
SO(1,4)×SO(6)

is given

by

δg = g

√
2

4
[ iλ+αjqαj − iλ−αjyjkskα + iλ̄+

α̇j q̄
α̇j + iλ̄−α̇jy

jks̄α̇k ] , (2.96)

where we have used the definitions

λ−αj ≡ −i(λαj + λ̂αj), λ+αj ≡ −i(λαj − λ̂αj) (2.97)

λ̄−α̇j ≡ i(λ̄α̇j − ˆ̄λα̇j), λ̄+
α̇j ≡ i(λ̄α̇j + ˆ̄λα̇j) .

Note that in the gauge yij = σ6
ij the BRST variation given above reproduces

the BRST variation of a representative of the supercoset PSU(2,2|4)
SO(1,4)×SO(5)

of (2.49) after

dimensional reduction and using the relation among the fermionic generators of

(2.70).

The BRST variation of wαj, w̄
j
α̇, ŵαj and ˆ̄w

j
α̇ can be directly deduced from the

BRST operator (2.95) because these variables are conjugate to λαj, λ̄α̇i, λ̂αj and
ˆ̄λα̇i, respectively. Equivalently, one can compute this variation by noting that in the
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gauge yij = σ6
ij the result must be equal to the dimensional reduction of (2.51). The

variations are

δwαj =
√

2Jαj −
√

2yjkJ
k
α , δw̄α̇j = −

√
2J α̇j −

√
2yjkJ α̇k ,

δŵαj =
√

2J̄αj +
√

2yjkJ̄
k
α , δ ˆ̄w

α̇j
=
√

2J̄ α̇j −
√

2yjkJ̄ α̇k ,

where again these variations are defined up to gauge transformations of w and

ŵ. Finally, the BRST transformations of λjα, λ̂jα, λ̄α̇i,
ˆ̄λα̇i and yjk are zero up

to a possible gauge-compensating transformation of SO(1, 4) × SO(6) as already

explained in the previous section.
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Chapter 3

The BRST operator

In this chapter, the BRST operator of the pure spinor formalism in AdS5 × S5

with the worldsheet matter variables represented by the supercoset PSU(2.2|4)
SO(1,4)×SO(6)

together with S5 variables will be expanded in powers of z. The main motivation

for performing this expansion is to compute the cohomology of this operator close

to the boundary of AdS where z ∼ 0.

The worldsheet is parametrized by two coordinates that we will call τ and σ. We

will associate τ with its time direction and σ with its space direction. The result

of the expansion of the BRST operator will be expressed in terms of the worldsheet

variables [x, θ, ψ, z, y, λ, λ̂], their canonical momenta [Px, Pθ, Pψ, Pz, Py, Pλ, Pλ̂] and

their σ derivatives. In other words, the dependence of this operator on the time

derivatives, or τ derivatives, of the worldsheet variables will be expressed in terms of

its canonical momenta defined as PX = ∂L
∂(∂τX)

, where X is a shorthand notation for

all the variables. This substitution is made for convenience because it will facilitate

the computation of the cohomology of the BRST operator. One important remark is

that there are no constraints on the canonical momenta in the pure spinor formalism,

unlike in the Green-Schwarz formalism which has first- and second-class constraints.

After performing the expansion, the BRST operator Q can be organized in the

form

Q = Q− 1
2

+Q 1
2

+Q 3
2

+ . . . ,

where Qn is proportional to zn. As will be explained in this chapter, the vertex

operators can also be expanded in powers of z close to the boundary of AdS and

they have a term with a minimal power of z. Using both expansions, we will show

that the computation of the zero mode cohomology at +2 ghost number of the

BRST operator corresponding to the physical supergravity states is equivalent to

computing the cohomology of the operator Q− 1
2
, then computing the cohomology

of the operator Q 1
2

restricted to states in the cohomology of Q− 1
2
, and so on. The
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cohomology of the operator Q− 1
2

was computed in the article [23] by Mikhailov and

Xu and their results will be reviewed in the section 3.3. In the last section of this

chapter, we will argue that the cohomology of the BRST operator is completely

determined by the cohomology of the first two terms of the expansion Q− 1
2

+Q 1
2
.

3.1 The expansion of the BRST operator

The first step to performing the expansion of the BRST operator is to compute

the canonical momenta of the worldsheet variables. The Lagrangian density can be

deduced from the action given in (2.86) and (2.89), in particular, it depends on the

left-invariant currents J defined in (2.80). Given our chosen coset representative of

(2.62), we can compute these currents using the Hadamard lemma

e−XY eX = Y − [X, Y ] +
1

2
[X, [X, Y ]]− 1

6
[X, [X, [X, Y ]]] + . . . , (3.1)

and the identity

e−X(t) d

dt
eX(t) = Ẋ − 1

2
[X, Ẋ] +

1

6
[X, [X, Ẋ]] + . . . ,

together with the four-dimensional version of the PSU(2, 2|4) superalgebra pre-

sented in the Appendix B.

One comment is that when one has to compute a commutator of the type

[θαiqαi, θ̄α̇j q̄
α̇j] where both the generators and the variables are fermionic, there is a

minus sign, or in other words, [θαiqαi, θ̄α̇j q̄
α̇j] = −θαiθ̄α̇j{qαi, q̄α̇j}. Defining

eµ = ∂xµ + iθβi(σµ)ββ̇∂θ̄
β̇
i − i∂θαi(σµ)αγ̇ θ̄

γ̇
i , (3.2)

the currents are

JµP =
1

z
eµ , J4 =

∂z

z
+ 2∂θαiψαi + 2∂θ̄α̇iψ̄

α̇i , (3.3)

Jα̇j =
1√
z
i∂θ̄α̇j +

1√
z
eµψαj (σµ)αα̇ , Jαj =

1√
z
i∂θαj +

1√
z
eµψ̄jα̇(σ̄µ)α̇α ,

Jαj =
√
zi∂ψαj + 4

√
ziψβj ∂θ

i
βψ

α
i − 2

√
ziψαk ψ̄

k
α̇∂θ̄

α̇
j − 2

√
zeµψβj (σµ)βα̇ψ̄

α̇iψαi ,

J jα̇ =
√
zi∂ψ̄jα̇ − 2

√
ziψ̄iα̇∂θ

αjψαi + 4
√
ziψ̄j

β̇
∂θ̄β̇i ψ̄

i
α̇ + 2

√
zeµψαi (σµ)αβ̇ψ̄

β̇jψ̄iα̇ ,

J ji = −4∂θαjψαi + 4∂θ̄α̇iψ̄
α̇j − 4ieµψαi (σµ)αα̇ψ̄

α̇j

+δji ∂θ
αkψαk − δji ∂θ̄α̇kψ̄α̇k + iδji e

µψαk (σµ)αα̇ψ̄
α̇k ,
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Jµν = −∂θαi(σµν) γ
α ψγi − ∂θ̄α̇i(σ̄µν)α̇γ̇ψ̄γ̇i

+
1

2
eρiψ̄iα̇(σ̄ρ)

α̇α(σµν) γ
α ψγi +

1

2
ieρψαi (σρ)αα̇(σ̄µν)α̇γ̇ψ̄

γ̇i ,

JµK = ziψβi (σµ)ββ̇∂ψ̄
β̇i − iz∂ψαi (σµ)αγ̇ψ̄

γ̇i − 4ziψαj ∂θ
i
αψ

γ
i (σµ)γβ̇ψ̄

β̇j

+4ziψ̄kα̇∂θ̄
α̇
i ψ

γ
k(σµ)γβ̇ψ̄

β̇i + 2zeνψαj (σν)αα̇ψ̄
α̇iψγi (σµ)γγ̇ψ̄

γ̇j .

It is left to organize the currents in the form that they appear in (2.80). Firstly,

note that

JµP Pµ + JµK Kµ = (JµP + JµK)
1

2
(Pµ +Kµ) + 2

(JµP − J
µ
K)

2

1

2
(Pµ −Kµ) ,

and from this we conclude

Jµ = (JµP + JµK) , J4µ =
(JµP − J

µ
K)

2
, (3.4)

moreover, recall that in our conventions

Jαβ =
1

2
Jµν(σµν)

α
β , J α̇

β̇
=

1

2
Jµν(σ̄µν)

α̇
β̇
,

Jαα̇ = J4µi(σ̄µ)α̇α .

Having computed the left-invariant currents, we can proceed to compute the

canonical momenta. We are going to give a few examples on how to perform these

computations and the remaining momenta can be obtained in a similar way. In ours

conventions, the z and z̄ derivatives, ∂ and ∂̄, are expressed in terms of the σ and

the τ derivatives as

∂ =
1

2
(∂σ − ∂τ ) , ∂̄ =

1

2
(∂σ + ∂τ ) . (3.5)

Replacing these relations in the action given in (2.86) and (2.89) and using the

expressions for the currents of (3.3), we can collect, for example, all the terms in the

Lagrangian density that have derivatives of the type ∂τz, which are

L∂τ z = −1

8

( ∂τz
z

+ 2∂τθ
αiψαi + 2∂τ θ̄α̇iψ̄

α̇i
)2
,

and from this we conclude

Pz =
∂L

∂(∂τz)
= − 1

4z

( ∂τz
z

+ 2∂τθ
αiψαi + 2∂τ θ̄α̇iψ̄

α̇i
)
.

In addition, from the terms

L∂τλ =
1

2
wαj ∂τλ

j
α +

1

2
ŵαj ∂τ λ̂

j
α +

1

2
w̄kα̇∂τ λ̄

α̇
k +

1

2
ˆ̄w
k
α̇∂τ

ˆ̄λ
α̇

k ,
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we easily compute

Pλjα =
1

2
wαj , Pλ̂jα =

1

2
ŵαj , Pλ̄α̇

k
=

1

2
w̄kα̇ , Pˆ̄λ

α̇

k

=
1

2
ˆ̄w
k
α̇ . (3.6)

The last example is the computation of Pyij . The relevant part of the Lagrangian

density is

L∂τyij =
1

32
∂τyjk∂τy

jk +
1

8
∂τyij∂τJ

i
l y
lj +

1

4
wαj y

jk∂τykmλ
m
α

+
1

4
ŵαj y

jk∂τykmλ̂
m
α +

1

4
ˆ̄w
k
α̇ykl∂τy

lm ˆ̄λ
α̇

m +
1

4
w̄kα̇ykl∂τy

lmλ̄α̇m ,

where we have used the compact notation ∂τJ
i
l which should be understood as

replacing the ∂ derivatives that appear on the right-hand side of the result of the

currents given in (3.3) by ∂τ . Using

∂

∂yij
ykm = (δki δ

m
j − δkj δmi ) ,

∂

∂yij
ykm = εijkm ,

a straightforward calculation gives the answer

Pyij =
1

8
∂τyij −

1

8
ykj∂τJ

k
i +

1

8
yki∂τJ

k
j

− 1

4
wαi yjkλ

k
α +

1

4
wαj yikλ

k
α −

1

4
ŵαi yjkλ̂

k
α +

1

4
ŵαj yikλ̂

k
α

+
1

4
ˆ̄w
k
α̇
ˆ̄λ
α̇

j yki −
1

4
ˆ̄w
k
α̇
ˆ̄λ
α̇

i ykj +
1

4
w̄kα̇ykiλ̄

α̇
j −

1

4
w̄kα̇ykjλ̄

α̇
i .

Once we have computed all the canonical momenta by the procedure described

above, the next step to performing the expansion of the BRST operator is to rewrite

the currents that appear in this operator as a function of the worldsheet variables,

their canonical momenta and their σ derivatives. We copy below, for convenience,

the BRST operator Q of (2.95),

Q =
∫
dz[λαj(

√
2Jαj −

√
2yjkJ

k
α)− λ̄α̇j(

√
2J α̇j +

√
2yjkJ α̇k )]

−
∫
dz̄[λ̂αj(

√
2J̄αj +

√
2yjkJ̄

k
α) + ˆ̄λα̇j(

√
2J̄ α̇j −

√
2yjkJ̄ α̇k )] .

Replacing all ∂ and ∂̄ derivatives using (3.5) and noting that in our conventions∫
dz ≡ 1

2πi

∫
dz →

∫
dσ ,

∫
dz̄ ≡ − 1

2πi

∫
dz̄ →

∫
dσ , (3.7)

the BRST operator becomes

Q =

√
2

2

∫
dσ[(λαj − λ̂αj)yjk∂τJkα − (λαj + λ̂αj)∂τJαj (3.8)
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+(λ̄α̇j − ˆ̄λα̇j)∂τJ
α̇j + (λ̄α̇j + ˆ̄λα̇j)y

jk∂τJ
α̇
k + (λαj − λ̂αj)∂σJαj

−(λαj + λ̂αj)yjk∂σJ
k
α − (λ̄α̇j + ˆ̄λα̇j)∂σJ

α̇j − (λ̄α̇j − ˆ̄λα̇j)y
jk∂σJ

α̇
k ] .

where we have used the same notation as before, for example, ∂τJαj and ∂σJαj mean

that we replace the ∂ derivatives on the right-hand side of the expressions of the

currents (3.3) by ∂τ and ∂σ, respectively. It is left to express the currents as a

function of the canonical momenta and substitute in the expression above. From

the computation of the canonical momenta, we have expressions such as the one

given below

1√
zi
Pψγi =

1

4
ηµν
√
z(σµ)γγ̇ψ̄

γ̇i∂τJ
ν + ∂τJ

i
γ −

1

2
yji∂σJγj +

√
z

2i
wαj εαγψ̄

i
α̇y

jkλα̇k (3.9)

+

√
z

2i
ŵαj εαγψ̄

i
α̇y

jkλ̂α̇k −
√
z

2i
w̄kα̇yklψ̄

α̇iλlγ −
√
z

2i
ˆ̄w
k
α̇yklψ̄

α̇iλ̂lγ ,

and

Pxµ = − 1

4z
∂τJµ + i

1

4z
(σµ)αα̇w

α
j y

jkλα̇k + i
1

4z
(σµ)αα̇ŵ

α
j y

jk ˆ̄λ
α̇

k (3.10)

−i 1

4z
w̄kα̇yklλ

l
α(σ̄µ)α̇α − i 1

4z
ˆ̄w
k
α̇yklλ̂

l
α(σ̄µ)α̇α + . . . ,

where . . . means terms that depend on higher powers of z. Using (3.6), (3.9) and

(3.10), it is easy to see that

∂τJ
i
γ =

1√
zi
Pψγi + z

3
2 ψ̄γ̇i(σµ)γγ̇Pxµ +

1

2
yji∂σJγj + 2i

√
zεαγψ̄

i
α̇y

jkλα̇kPλjα (3.11)

+2i
√
zεαγψ̄

i
α̇y

jkλ̂α̇kPλ̂jα − 2i
√
zψ̄α̇iyklλ

l
γPλ̄α̇k − 2i

√
zψ̄α̇iyklλ̂

l
γPˆ̄λ

α̇

k

.

Similarly, following the same steps, one can compute

∂τJαi =

√
z

i
(Pθαi + i(σµ)αα̇θ

α̇
i Pxµ)− 2

√
z

i
ψαizPz − 4

√
z

i
ψαmPyijy

jm (3.12)

+

√
z

i
ψαiPymjy

jm + 2

√
z

i
ψ̄mα̇ ψαmε

α̇γ̇Pψ̄γ̇i +
1

2
yji∂σJ

j
α − 4

√
z

i
ψαjψ

β
i Pψβj

+4

√
z

i
ψαjλ

j
βPλiβ −

√
z

i
λmβ ψαiPλmβ + 4

√
z

i
ψαjλ̂

j
βPλ̂i

β
−
√
z

i
λ̂mβ ψαiPλ̂m

β

−4

√
z

i
ψαjλ̄

α̇
i Pλ̄α̇j +

√
z

i
λ̄α̇j ψαiPλ̄α̇j − 4

√
z

i
ψα̇j

ˆ̄λ
α̇

i Pˆ̄λ
α̇

j

+

√
z

i
ˆ̄λ
α̇

j ψαiPˆ̄λ
α̇

j

+2

√
z

i
λjβ(εδαψ

β
j + δβαψδj)Pλiδ + 2

√
z

i
λ̂jβ(εδαψ

β
j + δβαψδj)Pλ̂i

δ
,

and similar expressions such as (3.11) and (3.12) can be obtained for the remaining

∂τJα̇j and ∂τJ
j
α̇ that appear in the BRST operator of (3.8).
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We have everything needed to performing the expansion of the BRST operator

and expressing the result in terms of the worldsheet variables, their canonical mo-

menta and their σ derivatives. Replacing the results obtained for ∂τJ
i
γ, ∂τJαi, ∂τJα̇j

and ∂τJ
j
α̇ in (3.8), we first note that the BRST operator splits as

Q = Q− 1
2

+Q 1
2

+Q 3
2

+ ... (3.13)

where Qn is proportional to zn, and using the definitions of (2.97), we have

Q− 1
2

= (

√
2

2
)z−

1
2 (λ+γmymiPψγi − λ̄

+α̇
j yjiPψ̄iα̇) (3.14)

−i
√

2

4
z−1/2(λ−αjyjk(i∂σθ

k
α − ∂σeµ(σµ)αα̇ψ̄

α̇k)− λ̄−α̇jyjk(i∂σθ̄α̇k − ∂σeµ(σµ)α̇αψαk)) ,

Q 1
2

= (

√
2

2
)z

1
2λ−αi[−Pθαi − i(σµ)αα̇θ̄

α̇
i Pxµ + 2ψαizPz + 4ψαkPyijy

jk − ψαiPyjkykj

−4ψαkλ
k
βPλiβ + ψαiλ

k
βPλkβ − 4ψαkλ̂

k
βPλ̂i

β
+ ψαiλ̂

k
βPλ̂k

β
− 2ψβi λ

j
βPλαj − 2ψβiλ

j
αPλj

β

−2ψβi λ̂
j
βPλ̂αj − 2ψβiλ̂

j
αPλ̂j

β
+ 4ψαkλ̄

α̇
i Pλ̄α̇k − ψαiλ̄

α̇
kPλ̄α̇k + 4ψαk

ˆ̄λ
α̇

i Pˆ̄λ
α̇

k

− ψαi ˆ̄λ
α̇

kPˆ̄λ
α̇

k

+4ψαjψ
β
i Pψβj

− 2ψαjψ̄
j
α̇Pψ̄iα̇ ] + (

√
2

2
)z

1
2 λ̄−α̇i [−Pθ̄α̇i − iθ

βi(σµ)βα̇Pxµ − 2ψ̄iα̇zPz

−4ψ̄lα̇Pyijyjl + ψ̄iα̇Pykjyjk − 4ψ̄jα̇λ
i
αPλjα + ψ̄iα̇λ

k
αPλkα − 4ψ̄jα̇λ̂

i
αPλ̂jα + ψ̄iα̇λ̂

k
αPλ̂kα

+4ψ̄lα̇λ̄
β̇
l Pλ̄β̇i

− ψ̄iα̇λ̄
β̇
kPλ̄β̇

k

+ 4ψ̄lα̇
ˆ̄λ
β̇

l Pˆ̄λ
β̇

i

− ψ̄iα̇ ˆ̄λ
β̇

kPˆ̄λ
β̇

k

− 2ψ̄i
β̇
λ̄β̇kPλ̄α̇k + 2ψ̄β̇iλ̄α̇kPλ̄β̇

k

−2ψ̄i
β̇
ˆ̄λ
β̇

kPˆ̄λ
α̇

k

+ 2ψ̄β̇i ˆ̄λα̇kPˆ̄λ
β̇

k

− 4ψ̄mα̇ ψ̄
iβ̇Pψ̄mβ̇ − 2ψαkψ̄

k
α̇Pψαi ]

+(

√
2

2
)2z

1
2λ+γmymi(ψ̄

i
α̇λ̄

α̇
ky

kjPλγj + ψ̄iα̇yklλ
l
γPλ̄α̇k + ψ̄iα̇

ˆ̄λ
α̇

ky
kjPλ̂jγ + ψ̄iα̇yklλ̂

l
γPˆ̄λ

α̇

k

)

−(

√
2

2
)2z

1
2 λ̄+α̇

m ymi(ψαiλ̄kα̇y
jkPλjα + ψβi λ

l
βyklPλ̄α̇k + ψαi

ˆ̄λα̇ky
jkPλ̂jα + ψαi λ̂

l
αyklPˆ̄λ

α̇

k

)

+i(

√
2

4
)z1/2(λ+αj)[i∂σψαj + 4iψβj ∂σθ

i
βψαi − 2iψαkψ̄

k
α̇∂σθ̄

α̇
j − 2∂σe

µψβj (σµ)ββ̇ψ̄
β̇iψαi]

+i(

√
2

4
)z1/2(λ̄+

α̇j)[i∂σψ̄
α̇j − 2iψ̄α̇i∂σθ

αjψαi + 4iψ̄j
β̇
∂σθ̄

β̇
i ψ̄

iα̇ + 2∂σe
µψαi (σµ)αβ̇ψ̄

jβ̇ψ̄iα̇] ,

Q 3
2

= i(

√
2

2
)z

3
2λ+γmymi(σ

µ)γα̇ψ̄
iα̇Pxµ − i(

√
2

2
)z

3
2 λ̄+α̇

m ymiψβi (σµ)βα̇Pxµ + ... ,
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and ... are terms which are at least quadratic in ψ. We have suppressed the
∫
dσ

in all the expressions above and we have defined ∂σe
µ to be equal to the right-

hand side of (3.2) but with the ∂ replaced by ∂σ. Since the conjugate momentum

of a variable does not commute with the variable, the BRST operator is only well

defined after normal-ordering, however, we will work to lowest order in α′ so possible

normal-ordering contributions to the operator can be safely ignored.

In this thesis, we are going to compute the zero-mode cohomology of the BRST

operator close to the boundary of AdS, which means that all the σ derivatives of

the worldsheet variables that appear in the expansion above will be zero. This

corresponds to taking the supergravity limit. Moreover, in order to compute the

cohomology of the BRST operator using the expansion above, we have to under-

stand how the physical states behave close to the boundary of AdS and this will be

explained in the next section.

3.2 Method for computing the BRST cohomology

In order to understand how the physical states behave close to the boundary of AdS,

let us study a scalar field φ in the background AdS5 × S5 in the supergravity limit,

this is reviewed, for example, in [4, 5, 60]. The S5 is a compact space and we can

apply the Kaluza-Klein reduction procedure, or in other words, we can expand the

scalar field as

φ(x, z, y) =
∑
l

φl(x, z)Yl(y) (3.15)

where (x, z) are the AdS5 coordinates, y are the S5 coordinates and Yl is the complete

set of spherical harmonics of S5. The spherical harmonics are eigenfunctions of the

Laplacian operator with eigenvalue m2 = l(l+4)/R2 with R the radius of both AdS5

and S5. After performing this expansion, the action for a scalar in AdS is

S =
∫
d4x dz

√
−g (gab∂aφ ∂bφ+m2R2φ2) ,

where we have only written the quadratic part of the action because we are interested

in the linearized equations of motion. The AdS5 metric was given in (2.63), and it

is

ds2 =
1

z2
(d~x2 + dz2) ,

and after substituting this metric in the action, it becomes

S =
∫
d4xdz

1

z5
(z2(∂φ)2 +m2R2φ2) ,
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from where one easily deduces the equations of motion

z5∂z(
1

z3
∂zφ)− z2(∂xφ)2 −m2R2φ = 0 . (3.16)

This equation can be solved analytically and the result expressed in terms of

Bessel functions. Being a second order differential equation it needs two boundary

conditions to determine the solution completely. One of the boundary conditions

follows from imposing that the solution is regular in the bulk of AdS which implies

that it must vanish when z →∞. Moreover, close to the boundary of AdS at z ∼ 0

the solution can be approximated as φ ∼ zα, and replacing it in (3.16), one has

α(α− 4)−m2R2 = 0 , (3.17)

with the solutions

α± = 2±
√

4 +m2R2 . (3.18)

Note that close to the boundary the dominant solution is φ ∼ zα− , and this

justifies our second boundary condition, which is

φ(x, z)|z=ε = εα−φ0(x) , (3.19)

for a given function φ0(x).

The important conclusion of this analysis is that near the AdS boundary the

vertex operators V describing physical states can be expanded as V =
∑
d≥d0

Vd

where Vd is proportional to zd and Vd0 is the leading behavior near z = 0. In this

thesis, we will define degree to be the power of z of an expression and with this

definition V has a minimum degree d0. Since the BRST operator splits as a series

of terms Qn with fixed degree, the condition that V is closed under Q,

Q · V = 0 , (3.20)

reduces, after collecting the terms with equal powers of z, to

Q− 1
2
· Vd0 = 0 , (3.21)

Q 1
2
· Vd0 +Q− 1

2
· Vd0+1 = 0 ,

Q 3
2
· Vd0 +Q 1

2
· Vd0+1 +Q− 1

2
· Vd0+2 = 0 ,

. . . .

The above conditions mean that the procedure for computing the cohomology

of the BRST operator close to the boundary of AdS, or inside the region of validity
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of the z expansion, is to first compute the cohomology of Q− 1
2
, then compute the

cohomology of Q 1
2

restricted to states in the cohomology of Q− 1
2
, then compute the

cohomology of Q 3
2

restricted to states in the cohomology of Q− 1
2

and Q 1
2
, and so on.

The procedure just described for computing the cohomology of the BRST op-

erator is well defined. The complete BRST operator Q given in (2.95) is nilpotent

by construction and this condition implies several relations among the operators Qn

after performing the expansion in z. Starting with

{Q,Q} = 0 ,

and expanding the operator, we have

{Q− 1
2

+Q 1
2

+Q 3
2

+ . . . , Q− 1
2

+Q 1
2

+Q 3
2

+ . . .} = 0 . (3.22)

All the operators Qn have a fixed degree, or in other words, are proportional to

zn. Therefore, collecting the terms with equal power of z from the expression above,

we conclude that

{Q− 1
2
, Q− 1

2
} = 0 , {Q 1

2
, Q− 1

2
} = 0 , (3.23)

{Q 1
2
, Q 1

2
}+ 2{Q− 1

2
, Q 3

2
} = 0 , . . . .

According to the method for computing the BRST cohomology, the operator Q 1
2

only acts on the states in the cohomology of Q− 1
2
. Consider a state V that belongs

to the cohomology of Q− 1
2

and act on it with the third identity of (3.23), to get

{Q 1
2
, Q 1

2
} · V + 2Q− 1

2
·Q 3

2
· V + 2Q 3

2
·Q− 1

2
· V = 0 , (3.24)

which implies noting that by assumption Q− 1
2
· V = 0 and the second term above is

Q− 1
2

exact, that

{Q 1
2
, Q 1

2
} · V = 0 , mod Q− 1

2
exact terms , (3.25)

or in other words, the operator Q 1
2

is nilpotent when acting on states in the coho-

mology of Q− 1
2

and it makes sense to compute the cohomology of Q 1
2

restricted to

states in the cohomology of Q− 1
2
. A similar argument of nilpotency applies to Q 3

2
,

Q 5
2
, . . ..

In the next section the cohomology of the operator Q− 1
2

will be presented. As

already explained, this is the first step in computing the cohomology of the complete

BRST operator.
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3.3 The zero mode cohomology of Q− 1
2

As explained before, the first necessary result in order to compute the cohomology of

the complete BRST operator close to the boundary of AdS is the cohomology of the

operator Q− 1
2

of (3.14). The zero mode cohomology of this operator was computed

by Mikhailov and Xu in [23], see also [24], by defining a spectral sequence of a

bicomplex that converges to the cohomology of this operator, they also used some

results from the theory of group representation. One important ingredient in their

computation was the result of the cohomology of the operator Q′ = λᾱPθᾱ , with λᾱ

a pure spinor, previously obtained by Berkovits in [48]. Before stating their result of

the cohomology, we will prove some identities necessary for its understanding. We

reproduce below for convenience the zero mode operator Q− 1
2

of (3.14),

Q− 1
2

= z−
1
2 (λ+γmymiPψγi − λ̄

+α̇
j yjiPψ̄iα̇) ,

where we have redefined λ in order to adsorb the overall factor of
√

2
2

. Note that the

spinors λ+ᾱ and λ−ᾱ defined in (2.97) satisfy

λ−γMλ+ = 0 , λ−γMλ− + λ+γMλ+ = 0 , (3.26)

which follows from the pure spinor conditions for λᾱ and λ̂ᾱ of (2.41). However,

we will show it explicitly below. Using the ansatz for the chiral gamma matrices of

(2.66), we derive

(λ−γµλ+) = (λ−αjiσµαα̇λ̄
+α̇
j ) + (λ̄−α̇jiσ̄

µα̇αλ+j
α ) , (3.27)

and manipulating the second term on the right-hand side of the expression above,

recalling that λ is a bosonic spinor and using the proprieties of the SO(1, 3) Pauli

matrices given in the Appendix A, we have

(λ̄−α̇j iσ̄
µα̇α λ+j

α ) = λ̄−α̇j iε
α̇β̇εαβσµ

ββ̇
λ+j
α = λ+βjiσµ

ββ̇
λ̄−β̇j , (3.28)

and substituting (3.28) in (3.27), using the definitions of (2.97) and the pure spinor

conditions of (2.65), we conclude

iσµαα̇(λ−αjλ̄+α̇
j + λ+αjλ̄α̇−j ) = iσµαα̇(λαj ˆ̄λ

α̇

j + λ̂αjλ̄α̇j − λαj ˆ̄λ
α̇

j − λ̂αjλ̄α̇j ) = 0 ,

which proves the first identity of (3.26) when M = µ. Let us now consider the case

when M = I + 3, we have

λ−γI+3λ+ = λ−αiσIijλ
+j
α − λ̄−α̇iσIijλ̄+α̇

j , (3.29)
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and after making the substitution of the definitions, we conclude

λ−γI+3λ+ = −(λαi + λ̂αi)σIij(λ
j
α − λ̂jα) + (λ̄α̇i − ˆ̄λα̇i)σ

Iij(λ̄α̇j + ˆ̄λ
α̇

j ) = 0 ,

finishing the proof of the first identity of (3.26) for all M . The proof of the second

one is similar and it will be omitted. After proving these important identities, and

their importance will become clear in what follows, let us return to the computation

of the zero mode cohomology of Q− 1
2
. This operator annihilates the terms (λ−γM ψ̂)

for all M where ψ̂ᾱ ≡ yJ(γ(J+3)ᾱβ̄ψβ̄). The proof uses again the ansatz for the chiral

gamma matrices of (2.66) to obtain when M = µ,

(λ−γµψ̂) = −λ−αiiσµαα̇yijψ̄α̇j + λ̄−α̇iiσ̄
µα̇αyijψαj ,

consequently,

Q− 1
2
· (λ−γµψ̂) ∝ λ−αiiσµαα̇yijy

mjλ̄+α̇
m + λ̄−α̇iiσ̄

µα̇αyijεαγλ
+γmymj = 0 ,

which follows from straightforward manipulations after making the substitution of

(2.97) and using yijy
jk = δki . The case when M = I + 3 is

(λ−γI+3ψ̂) = λ−αiσIijy
jkψαk + λ̄−α̇iσ

Iijyjkψ̄
α̇k ,

and from this, we deduce

Q− 1
2
· (λ−γI+3ψ̂) ∝ λ−αiσIijy

jkεαγλ
+γmymk − λ̄−α̇iσIijyjkλ̄+α̇

m ymk

∝ (λαi + λ̂αi)σIij(λ
j
α − λ̂jα)− (λ̄α̇i − ˆ̄λα̇i)σ

Iij(λ̄α̇j + ˆ̄λ
α̇

j ) = 0 ,

finishing the proof that (λ−γM ψ̂) is annihilated by Q− 1
2

for all M . A shorter way

to prove this result is by noting that Q− 1
2
· (λ−γM ψ̂) ∝ (λ−γMλ+) = 0 and this

vanishes because of the first identity of (3.26). After proving these identities, we list

below the states in the cohomology of Q− 1
2

at +2 ghost number found by Mikhailov

and Xu with the notation adapted:

1. any function f of λ−,

2. (λ−γM ψ̂)g(λ−) for any function g,

3. (λ−γM ψ̂)(λ+γM ψ̂),

4. (ψ̂γMNP ψ̂)(λγTSMNP λ̂)− 18(ψ̂γTSM ψ̂)(λγM λ̂),
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where (γMNP )ᾱβ̄ and (γTSMNP )ᾱβ̄ are defined as

(γMNR)ᾱβ̄ =
1

3!

∑
P ′

(−1)sgnP ′(γσP ′ (M)γσP ′ (N)γσP ′ (R))ᾱβ̄ , (3.30)

(γTSMNP )ᾱβ̄ =
1

5!

∑
P ′

(−1)sgnP ′(γσP ′ (T )γσP ′ (S)γσP ′ (M)γσP ′ (N)γσP ′ (P ))ᾱβ̄ ,

where P ′ means sum over all the possible permutations of the indices and sgn P ′ is

the sign of the permutation.

The item 4 of the list above can be rewritten in a more convenient form after a

few manipulations as will be described below. From the definitions of λ+ and λ− of

(2.97), it is not difficult to see that

(ψ̂γMNP ψ̂)(λγTSMNP λ̂) =
1

4
(ψ̂γMNP ψ̂)(λ+γTSMNPλ+ − λ−γTSMNPλ−) ,

and

(λγM λ̂) =
1

2
(λ+γMλ

+) ,

further, using the definition of (γTSMNP )ᾱβ̄ of (3.30) one can show that for λ− and

λ+,

(ψ̂γMNP ψ̂)(λ±γTSMNPλ±) = −(ψ̂γMNP ψ̂)(λ±γTMNPSλ±) (3.31)

= −(ψ̂γMNP ψ̂)(λ±γTγMNPγSλ±) + 6(ψ̂γSTM ψ̂)(λ±γMλ
±) ,

where the notation λ± means that the identity above is valid for both λ− and λ+.

Additional manipulations follow from the use of the identity

(γMNP )ᾱβ̄(ψ̂γMNP ψ̂) = 96 ψ̂ᾱψ̂β̄ , (3.32)

where the value of the constant of proportionality can be checked by multiplying

both sides of the expression above by (γRST )ᾱβ̄ and using the properties of the chiral

gamma matrices. This identity follows from a more general one. Given any two

chiral spinors Aᾱ and Bβ̄, we have

AᾱBβ̄ = A1(AγMB)γᾱβ̄M + A2(AγMNSB)γᾱβ̄MNS + A3(AγMNSPTB)γᾱβ̄MNSPT ,

with A1, A2 and A3 constants. Replacing A and B by ψ̂ we derive (3.32) after fixing

the correct value of A2, because both (ψ̂γM ψ̂) = 0 and (ψ̂γMNSPT ψ̂) = 0 which

follows from the fact that ψ̂ is a fermionic spinor and both (γM)ᾱβ̄ and (γMNSPT )ᾱβ̄
are symmetric matrices. Replacing (3.32) on the second line of (3.31), we conclude

that

(ψ̂γMNP ψ̂)(λ±γTSMNPλ±) =

6(ψ̂γSTM ψ̂)(λ±γMλ
±)− 96(λ±γT ψ̂)(λ±γSψ̂) .
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After performing all these manipulations the item 4 of the list of states in the

cohomology of Q− 1
2

can be rewritten as

−12(ψ̂γTSM ψ̂)(λ+γMλ
+)− 24(λ+γT ψ̂)(λ+γSψ̂) + 24(λ−γTψ)(λ−γSψ) . (3.33)

We can proceed further by noting that

6Q− 1
2
· [z

1
2 (ψ̂γTSM ψ̂)(λ+γM ψ̂)] =

−12(λ+γTSM ψ̂)(λ+γM ψ̂)− 6(ψ̂γTSM ψ̂)(λ+γMλ
+) =

−12(ψ̂γTSM ψ̂)(λ+γMλ
+)− 24(λ+γT ψ̂)(λ+γSψ̂) ,

where we have used the Fierz identity,

γMᾱ(β̄γ|M |γ̄δ̄) = 0 ,

and

(γTSM)ᾱβ̄ = (γTγSγM)ᾱβ̄ + (γS)ᾱβ̄ η
TM − (γT )ᾱβ̄ η

SM − (γM)ᾱβ̄ η
TS .

The final form of the item 4 is then

6Q− 1
2
· [z

1
2 (ψ̂γTSM ψ̂)(λ+γM ψ̂)] + 24(λ−γT ψ̂)(λ−γSψ̂) , (3.34)

which enables us to conclude that it is a function of λ−γM ψ̂ up to a BRST trivial

quantity. After this analysis of the item 4 of the states in the cohomology, we can

restate the result of the cohomology at +2 ghost number as

1. any function of λ− and of ψ̂ appearing only in the combination (λ−γM ψ̂),

2. (λ−γM ψ̂)(λ+γM ψ̂).

Note that the only state in the cohomology that depends on λ+ is the item 2 of the

list above. We will show below that allowing dependence on the non-minimal pure

spinor variables the cohomology of Q− 1
2

is independent of λ+ and as a consequence

λ− can be considered as a pure spinor due to the second identity of (3.26). The

operator Q− 1
2

has one more term once we have the non-minimal variables, the new

operator Q̂− 1
2

is

Q̂− 1
2

= Q− 1
2

+ w̃ᾱrᾱ ,
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and recall from the chapter 2 that w̃ᾱ is the conjugate momentum of λ̃ᾱ which acts

on functions of λ̃ᾱ as ∂
∂λ̃ᾱ

. Consider the action of this new operator on the term

given below

Q̂− 1
2
·
[ z

1
2

(λ̃λ−)
(λ−γM ψ̂)(λ−γN ψ̂)(λ̃γMN ψ̂)

]
= − 1

(λ̃λ−)
(λ−γM ψ̂)(λ−γN ψ̂)(λ̃γMNλ

+)

− z
1
2

(λ̃λ−)2
(λ−r)(λ−γM ψ̂)(λ−γN ψ̂)(λ̃γMN ψ̂) +

z
1
2

(λ̃λ−)
(λ−γM ψ̂)(λ−γN ψ̂)(rγMN ψ̂) ,

and using Fierz identity and the properties of the chiral gamma matrices, it is

possible to rewrite in a more convenient way all the terms on the right-hand side of

the expression above. Consider the first term

− 1

(λ̃λ−)
(λ−γM ψ̂)(λ−γN ψ̂)(λ̃γMNλ

+) =
1

(λ̃λ−)
(λ−γM ψ̂)(λ+γN ψ̂)(λ̃γMγNλ

−)

= 2(λ−γM ψ̂)(λ+γM ψ̂)− 1

(λ̃λ−)
(λ−γM ψ̂)(λ+γN ψ̂)(λ̃γNγMλ

−) , (3.35)

and the second and third

− z
1
2

(λ̃λ−)2
(λ−r)(λ−γM ψ̂)(λ−γN ψ̂)(λ̃γMN ψ̂) +

z
1
2

(λ̃λ−)
(λ−γM ψ̂)(λ−γN ψ̂)(rγMN ψ̂) =

−1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ−γN ψ̂)(λ−γP ψ̂)(rγMNP λ̃)

+
1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ−γPγ

N λ̃)(λ−γP ψ̂)(rγMγN ψ̂)

+
1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ̃γPγ

N ψ̂)(λ−γP ψ̂)(rγNγMλ
−) , (3.36)

from (3.35) and (3.36), we finally have

Q̂− 1
2
·
[ 1

(λ̃λ−)
(λ−γM ψ̂)(λ−γN ψ̂)(λ̃γMN ψ̂)

]
= 2(λ−γM ψ̂)(λ+γM ψ̂)

−1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ−γN ψ̂)(λ−γP ψ̂)(rγMNP λ̃)

− 1

(λ̃λ−)
(λ−γM ψ̂)(λ+γN ψ̂)(λ̃γNγMλ

−)

+
1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ−γPγ

N λ̃)(λ−γP ψ̂)(rγMγN ψ̂)

+
1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ̃γPγ

N ψ̂)(λ−γP ψ̂)(rγNγMλ
−)

= 2(λ−γM ψ̂)(λ+γM ψ̂)− 1

2

z
1
2

(λ̃λ−)2
(λ−γM ψ̂)(λ−γN ψ̂)(λ−γP ψ̂)(rγMNP λ̃)

+ Terms that are zero when λ− is a pure spinor .
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The result above shows that the state in the cohomology of Q− 1
2

which de-

pends on λ+, precisely the scalar (λ−γM ψ̂)(λ+γM ψ̂), can be represented by the

state z
1
2 (λ̃λ−)−2(λ−γM ψ̂)(λ−γN ψ̂)(λ−γP ψ̂)(rγMNP λ̃) up to a Q̂− 1

2
exact term.

In conclusion, allowing dependence on the non-minimal pure spinor variables the

cohomology of Q− 1
2

is independent of λ+. The second identity of (3.26) then implies

that λ−γMλ− = 0, or in other words, that λ− is a pure spinor, consequently it has

11 independent components and (λ−γM ψ̂) has only 5 independent components as

will be explained in the next chapter when we will rewrite some of the expressions

using U(5) notation. Therefore, states in the cohomology of Q− 1
2

depend on the

non-minimal variables, the 21 bosonic variables [x, z, y, λ−] and the 21 fermionic

variables [θ, λ−γM ψ̂].

3.4 The zero mode cohomology of Q 1
2

+Q 3
2

+ . . .

The next step in the calculation of the cohomology of the BRST operator is to

compute the cohomology of Q 1
2

restricted to states in the cohomology of Q− 1
2
, then

compute the cohomology of Q 3
2

restricted to states in the cohomology of Q− 1
2

and

Q 1
2
, etc. A vertex operator V is a state in the cohomology of the BRST operator if

it satisfies, see (3.21),

Q− 1
2
· Vd0 = 0 ,

Q 1
2
· Vd0 +Q− 1

2
· Vd0+1 = 0 ,

Q 3
2
· Vd0 +Q 1

2
· Vd0+1 +Q− 1

2
· Vd0+2 = 0 ,

. . . ,

where d0 is its minimum degree. Let us suppose that the cohomology is non-trivial

and there is at least one non-zero state V ′. In the next chapter, we will compute the

zero mode cohomology at +2 ghost number of the BRST operator and turns out

that it is in fact non-trivial. This state V ′ is a solution of all the equations given

above by assumption. The first equation says that V ′d0
is a state in the cohomology

of Q− 1
2

and being so is independent of λ+ which implies that λ− is a pure spinor up

to a BRST trivial quantity and only depend on ψ in the combination (λ−γM ψ̂). The

operator Q 1
2

has terms proportional to λ+, however, we are expected to compute

the cohomology of this operator restricted to states in the cohomology of Q− 1
2
, that

does not depend on λ+, therefore these terms must act as zero. In other words,

given that V ′ is a non-trivial solution of the second equation above, there exists a

Vd0+1 that removes all terms proportional to λ+ after the application of Q 1
2

on Vd0 .
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Similar arguments can be used to the terms proportional to λ+ in Q 3
2

+ . . ., all of

them act as zero.

Let us now analyze the terms proportional to λ− of Q 3
2

+ . . .. These operators

are linear in λ− and at least cubic in ψ, which implies that the terms involving λ−

of these operators cannot be expressed in terms of the five λ−γM ψ̂. Further, note

that the third equation of (3.23) can be rewritten as

Q 1
2
·Q 1

2
+ {Q− 1

2
, Q 3

2
} = 0 ,

and applying Q 1
2

to the second equation of (3.21), one has

Q 1
2
·Q 1

2
· V ′d0

+Q 1
2
·Q− 1

2
· V ′d0+1 = −Q− 1

2
· (Q 3

2
· V ′d0

+Q 1
2
· V ′d0+1) = 0 ,

where we have also used the second identity of (3.23).

The equation above enables us to conclude that for every V ′d0
and V ′d0+1 satisfying

the second equation of (3.21), the combination Q 3
2
·V ′d0

+Q 1
2
·V ′d0+1 is annihilated by

Q− 1
2
. However, recalling that the only term involving ψ and λ− that is annihilated

by Q− 1
2

is λ−γM ψ̂, the combination Q 3
2
·V ′d0

+Q 1
2
·V ′d0+1 must be a function of λ−γM ψ̂.

The operator Q 3
2

cannot be expressed as a function of ψ in this combination, which

means that all terms of Q 3
2
·V ′d0

proportional to λ− cancel with the terms proportional

to λ− of Q 1
2
· V ′d0+1.

Recall that the third equation of (3.21) is

Q 3
2
· V ′d0

+Q 1
2
· V ′d0+1 +Q− 1

2
· V ′d0+2 = 0 , (3.37)

and we have argued that if the second equation of (3.21) is satisfied, this equation

is automatically satisfied. In summary, all terms in Q 3
2

acts as zero when restricted

to states in the cohomology of Q 1
2

and Q− 1
2
. The same argument shows that all the

operators Q 5
2

+ . . . act also as zero.

The conclusion of all this analysis is that the computation of the cohomology

of the BRST operator inside the region of validity of the z expansion reduces to

computing the cohomology of Q 1
2

restricted to states in the cohomology of Q− 1
2
.

This computation will be performed in the next chapter.
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Chapter 4

Vertex Operators

As explained in the previous chapter, the computation of the cohomology of the

BRST operator close to the boundary of AdS is equivalent, up to a BRST-trivial

quantity, to computing the term Vd0 , or in other words, the term of lowest degree

of a physical vertex operator V . The term Vd0 is a state in the cohomology of

the Q 1
2

operator restricted to states in the cohomology of Q− 1
2
. As predicted by

the (AdS/CFT) conjecture, every on-shell superstring state in AdS5 × S5 is dual

to a gauge-invariant operator of N = 4 d = 4 super-Yang-Mills, in particular, the

supergravity states are dual to Half-BPS operators. In this chapter, we will compute

the zero mode cohomology of Q 1
2

at +2 ghost number and show explicitly that every

state Vd0 is dual to a Half-BPS operator of super-Yang-Mills. The results will be

described in terms of superfields defined in harmonic superspace.

The organization of this chapter is as follows: in the first section we will rewrite

the operator Q 1
2

of the previous chapter in a convenient form and a few examples of

states in the cohomology of Q 1
2

will be given. Then, we will review the representation

theory of the N = 4 d = 4 superconformal algebra and introduce the concept of

harmonic superspace. The main result of this thesis will be presented in the section

4.4, where a general expression for the vertex operators will be given. After proving

that the vertex operators are states in the cohomology of Q 1
2
, we will evaluate the

general expression for the specific example of the dilaton vertex operator. Finally,

we will exemplify with a simple term the meaning of the statement “acts as zero”

used several times in the previous chapter.

4.1 The Q 1
2

operator and examples

In the previous chapter, we have argued that states in the BRST cohomology near

the boundary of AdS are described by states in the cohomology of Q 1
2

restricted

to states in the cohomology of Q− 1
2

which depend on the non-minimal pure spinor
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variables and [x, z, y, θ, λ−, λ−γM ψ̂] with λ− a pure spinor λ−γMλ− = 0. In what

follows, we are going to suppress most of the times the minus superscript in λ−. It is

possible to write the zero mode terms of the operator Q 1
2

of (3.14) using a compact

ten-dimensional notation as

Q 1
2

= z
1
2 [λᾱDᾱ + 4(λγjkψ̂)

∂

∂yjk
(4.1)

+yij(λγ
ijψ̂)(2z

∂

∂z
+ ykm

∂

∂ykm
− λᾱ ∂

∂λᾱ
)] + w̃ᾱrᾱ ,

where we have included the usual non-minimal pure spinor term w̃ᾱrᾱ that was not

present in (3.14). The inclusion of this additional term is necessary because, as

will become clear below, the general expression for the vertex operators can only be

written as a function of (λγM ψ̂) after introducing the non-minimal variables.

In order to rewrite Q 1
2

as (4.1), we have performed several manipulations. The

first observation is that the overall factor of
√

2
2

was adsorbed by a redefinition of λ.

Secondly, the canonical momenta were replaced by derivatives because the canonical

momentum of a variable and the variable satisfy a canonical commutation relation.

Moreover, in our conventions

yij(λγ
ijψ̂) = λαiψαi + λ̄α̇iψ̄

α̇i ,

and it is easy to organize the relevant terms of (3.14) in the form

z
1
2yij(λγ

ijψ̂)(2z
∂

∂z
+ ykm

∂

∂ykm
) ,

upon noticing that ykm ∂
∂ykm

· f(y) = ykm
∂

∂ykm
· f(y), where f(y) means any function

of y. The term

z
1
2 4(λγjkψ̂)

∂

∂yjk
= z

1
2 4λαiψαk

∂

∂yij
yjk − z

1
2 4λ̄α̇i ψ̄

l
α̇

∂

∂yij
yjl , (4.2)

follows also from collecting the relevant terms.

There are many terms in the Q 1
2

of (3.14) that depend on λ derivatives. However,

all the terms proportional to λ+ act as zero and terms proportional to the pure spinor

constraints such as

z
1
2λ−αi(4ψαkλ̄

α̇
i

∂

∂λ̄α̇k
+ 4ψαk

ˆ̄λ
α̇

i

∂

∂ ˆ̄λ
α̇

k

) · f(λ−) = 0 ,

do not contribute. The remaining terms can be easily organized using the Schouten

identities (A.5) as

−z
1
2yij(λγ

ijψ̂)(λᾱ
∂

∂λᾱ
) .
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In addition, in the term z
1
2λᾱDᾱ, Dᾱ is the d = 4 dimensional reduction of the

d = 10 supersymmetric covariant derivative of (2.14) which is

Dαi = − ∂

∂θαi
− i(σµ)αβ̇ θ̄

β̇
i

∂

∂xµ
, D̄i

α̇ =
∂

∂θ̄α̇i
+ iθβi(σµ)βα̇

∂

∂xµ
. (4.3)

The final comment is that the term z
1
2 4(λγjkψ̂) ∂

∂yjk
of (4.1) is understood to not

act on (λγM ψ̂) even though (λγM ψ̂) depends on yij through the ψ̂. This is the case

because we have not included in (4.1) the terms

z
1
2 [−2λαiψαjψ̄

j
α̇

∂

∂ψ̄iα̇
− 2λ̄α̇i ψαkψ̄

k
α̇

∂

∂ψαi
+ 4λαiψαjψ

β
i

∂

∂ψβj
− 4λ̄α̇i ψ̄

m
α̇ ψ̄

iβ̇ ∂

∂ψ̄mβ̇
] ,

and it is possible to show that

(
4(λγjkψ̂)

∂

∂yjk
− 2λαiψαjψ̄

j
α̇

∂

∂ψ̄iα̇
− 2λ̄α̇i ψαkψ̄

k
α̇

∂

∂ψαi
(4.4)

+4λαiψαjψ
β
i

∂

∂ψβj
− 4λ̄α̇i ψ̄

m
α̇ ψ̄

iβ̇ ∂

∂ψ̄mβ̇

)
(λγM ψ̂) = 0 ,

using the pure spinor conditions for λ. There are at least two different ways to prove

the result above. The first one is by direct computation and the second one follows

from the nilpotency property of the Q 1
2

operator. Note that using the ansatz for the

chiral gamma matrices given in (2.66), we have in four-dimensional notation

(λγµψ̂)→ −λαii(σµ)αα̇yijψ̄
α̇j + λ̄α̇ii(σ̄

µ)α̇αyijψαj ,

(λγI+3ψ̂)→ λαi(σI)ijy
jkψαk + λ̄α̇i(σ

I)ijyjkψ̄
α̇k ,

and with these terms written in this form, one can easily evaluate the left-hand side

of (4.4). Collecting the terms with two ψ when M = µ, we have

4λαiψαky
jkλ̄β̇m(σ̄µ)β̇γψγn(δmi δ

n
j − δni δmj ) + 4λαiψαjψγiλ̄β̇m(σ̄µ)β̇γymj = 0 ,

where we have used the pure spinor condition λαiλ̄α̇i = 0. Similar arguments can be

given to show that the terms proportional to two ψ̄ vanish. The terms with one ψ

and one ψ̄ when M = µ are

−4λαiψαky
jkλγm(σµ)γγ̇εmnijψ̄

γ̇n − 4λ̄α̇i ψ̄
l
α̇yjlλ̄γ̇m(σ̄µ)γ̇γεmnijψγn

+ 2λαiψαjψ̄
α̇jλγm(σµ)γα̇ymi − 2λ̄α̇i ψαkψ̄

k
α̇λ̄γ̇m(σ̄µ)γ̇αymi

= λαiψγj ψ̄
α̇jλkα(σµ)γα̇yki − λ̄α̇i ψαkψ̄kγ̇ λ̄α̇j(σµ)γ̇αyji

−2λαiψγky
jkλmα (σµ)γγ̇εmnijψ̄

γ̇n − 2λ̄α̇i ψ̄
l
γ̇yjlλ̄α̇m(σ̄µ)γ̇γεmnijψγn ,
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where we have used the Schouten identities to organize the terms. This combination

of terms is equal to zero, because of the pure spinor condition

λαiλjα −
1

2
εijklλ̄α̇kλ̄

α̇
l = 0 ,

and of the identity

yijykl + yikylj + yilyjk = εjkli ,

which can be proved by contracting with yI and yJ both sides of the relation

(σI)i[j(σ
J)kl] = 1

3
εjklm(σIσJ)mi , and using yijy

jk = δki . This finishes the proof of

(4.4) when M = µ. Let us now consider the case M = I + 3. The terms with two

ψ are

4λαiψαky
jkλγp(σI)pn(δni δ

m
j − δmi δnj )ψγm + 4λαiψαjψβiλ

βk(σI)kny
nj = 0 ,

and this follows because λαi(σI)ijλ
βj ∝ εαβλγi(σI)ijλ

j
γ and ψαk y

kmψαm = 0. Similiar

arguments can be given to prove that the terms with two ψ̄ are zero. The terms

with one ψ and one ψ̄ when M = I + 3 are

4λαiψαky
jkλ̄γ̇l(σ

I)lnεijnmψ̄
γ̇m − 4λ̄α̇i ψ̄

l
α̇yjlλ

γk(σI)knε
ijnmψγm

−2λαiψαjψ̄
γ̇jλ̄γ̇m(σI)mnyni − 2λ̄α̇i ψγkψ̄

k
α̇λ

γj(σI)jmy
mi ,

and after using the pure spinor condition λαiλ̄α̇i = 0,

yij(σ
I)jk + (σI)ijy

jk = 2δki y
I , (σI)ij =

1

2
εijkl(σI)kl ,

εjkliyim = −δjmykl − δkmylj − δlmyjk ,

the terms sum to zero. This finishes the proof of (4.4) by direct computation. A

different way to prove this identity is by using the nilpotency property of the Q 1
2

operator when this operator acts on the states in the cohomology of the operator

Q− 1
2
. Note first that

Q 1
2
· yij = z

1
2

(
4(λγklψ̂)

∂

∂ykl
+ ymn(λγmnψ̂)ykl

∂

∂ykl

)
· yij

= z
1
2 4λαmyklψαlεijmk + z

1
2 4λ̄α̇myklψ̄

α̇l(δmi δ
k
j − δki δmj ) + 2z

1
2ykl(λγ

klψ̂)yij ,

and multiplying both sides of this expression by (σI)ij and using that (σI)ijyij =

−4yI , we conclude

Q 1
2
· yI = 2z

1
2yij(λγ

ijψ̂) yI − 2z
1
2 (λγI+3ψ̂) . (4.5)

53



In particular, as an application of this result, note that the Q 1
2

operator preserves

the constraint yIyI = 1,

0 = Q 1
2
· 1 = Q 1

2
· (yIyI) = 4z

1
2yij(λγ

ijψ̂) yIyI − 4z
1
2yI(λγI+3ψ̂) = 0 .

Moreover, we have

Q 1
2
· zn = z

1
2yij(λγ

ijψ̂) 2z
∂

∂z
· zn = yij(λγ

ijψ̂) 2n zn+ 1
2 , (4.6)

and from this result and (4.5), we conclude that

Q 1
2
· (z−1yI) = −2z−

1
2 (λγI+3ψ̂) . (4.7)

Applying Q 1
2

to this equation and using that this operator is nilpotent when

acting on the states in the cohomology of Q− 1
2
, we get

0 = Q 1
2
·Q 1

2
· (z−1yI) = Q 1

2
· (−2z−

1
2 (λγI+3ψ̂)) , (4.8)

and

Q 1
2
· (−2z−

1
2 (λγI+3ψ̂)) = 2yij(λγ

ijψ̂)(λγI+3ψ̂)− 2z−
1
2 Q 1

2
· (λγI+3ψ̂) . (4.9)

It is possible to compute the second term on the right-hand side of the expression

above, for this we define

Q1
1
2

= [4(λγjkψ̂)
∂

∂yjk
+ 4λαiψαjψ

β
i

∂

∂ψβj
− 4λ̄α̇i ψ̄

m
α̇ ψ̄

β̇i ∂

∂ψ̄β̇m

−2λαiψαjψ̄
j
α̇

∂

∂ψ̄iα̇
− 2λ̄α̇i ψαkψ̄

k
α̇

∂

∂ψαi
] ,

and, we have

−2z−
1
2Q 1

2
· (λγI+3ψ̂) = −2yij(λγ

ijψ̂)(ymt
∂

∂ymt
− λᾱ ∂

∂λᾱ
) · (λγI+3ψ̂) (4.10)

−2Q1
1
2
· (λγI+3ψ̂)

= −2yij(λγ
ijψ̂)(λγI+3ψ̂)− 2Q1

1
2
· (λγI+3ψ̂) .

Substituting (4.9) and (4.10) in (4.8), we finally conclude

Q1
1
2
· (λγI+3ψ̂) = 0 ,

and this is precisely the identity (4.4) when M = I + 3. This procedure using the

nilpotency property of the Q 1
2

operator proves the identity (4.4) when M = I + 3.

However, the term λγM ψ̂ has only 5 independent components because λ is a pure

spinor, and given that I = 1, . . . , 6, the proof is valid for six of them and so is valid

for all M .
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4.1.1 Examples of states in the Q 1
2

cohomology

We will give in this subsection two examples of states in the zero mode cohomology

of Q 1
2

restricted to states in the cohomology of Q− 1
2
. The general expression for

all the states will be presented in a future section. Recall that in the pure spinor

formalism for closed strings the states in the cohomology at +2 ghost number of the

BRST operator corresponds to the physical states of the theory. Our first example

is a vertex operator that is independent of y and of the non-minimal variables. The

non-zero terms of Q 1
2

acting on such a vertex operator are

Qnonzero
1
2

= z
1
2 [λᾱDᾱ + yij(λγ

ijψ̂)(2z
∂

∂z
− λᾱ ∂

∂λᾱ
)] .

The cohomology at +2 ghost number of the operator λᾱDᾱ is known and it was

computed by Berkovits in [48], for example. It corresponds to the antifields of super-

Yang-Mills and it is described by the superfield λᾱλβ̄A∗ᾱβ̄, which at zero momentum

can be gauged to

λᾱλβ̄A∗ᾱβ̄ = (λγMθ)(λγNθ)(θγMN)ᾱψ∗ᾱ +

(λγMθ)(λγNθ)(θγMNµθ)a
∗µ + (λγMθ)(λγNθ)(θγ jk

MN θ)φ∗jk ,

where a∗µ, φ∗jk and ψ∗α are the antifields to the gluon aµ, scalars φjk, and gluino ψᾱ,

respectively, which is the field content of N = 4 d = 4 super-Yang-Mills. So, the

corresponding vertex operator annihilated by Q 1
2

is

V = zλᾱλβ̄A∗ᾱβ̄ , (4.11)

where the factor of z was included in order for it to be annihilated by the second

term of Qnonzero
1
2

given above. One of the conclusions is that these operators with

no dependence on y are the duals to the so-called super-Yang-Mills “singleton”

operators, or in other words, the duals to the abelian super-Yang-Mills fields.

The next example is a vertex operator linear in y and independent of [x, z, θ, ψ].

It is

V = iλαiλkαyik , (4.12)

and note that it is real because of λαiλkαyik = −λ̄α̇i λ̄α̇jyij, which follows from the

pure spinor conditions for λ. Let us prove that this vertex operator is annihilated

by Q 1
2
, the terms of this operator that act non-trivially are

Qnonzero
1
2

= z
1
2 [4(λγjkψ̂)

∂

∂yjk
+ yij(λγ

ijψ̂)(ykl
∂

∂ykl
− λᾱ ∂

∂λᾱ
)] ,

55



and it is easy to see that the second term on the right-hand side of the expres-

sion above annihilates the vertex operator. In order to see that the first one also

annihilates it, let us compute it explicitly

(λγjkψ̂)
∂

∂yjk
· λβmλnβymn =

[λαjyklψαl
∂

∂yjk
+ λ̄α̇jyklψ̄

α̇l ∂

∂yjk
] · λβmλnβymn =

λαjyklψαlλ
βmλnβεjkmn + λ̄α̇jyklψ̄

α̇lλβmλnβ(δjmδ
k
n − δkmδjn) = 0 ,

where we have used the pure spinor conditions. Being a scalar under the action

of the PSU(2, 2|4) group, this vertex operator corresponds to the zero-momentum

dilaton that is dual to the linearized super-Yang-Mills action. In a future section,

a general formula for the vertex operators that includes these two examples will be

presented, however, we will first review some topics relevant for its understanding.

4.2 Representations of the superconformal algebra

The theory of N = 4 d = 4 super-Yang-Mills contains the following fields: the gauge

boson Aµ, six real scalars φI , four chiral fermions and four anti-chiral fermions. In

particular, this theory is finite, or in other words, its beta function vanishes to all

orders in perturbation theory. This result was proved up to three loops in [61]

and to all loops in [9, 10]. A nice argument for its finiteness is that the action of

super-Yang-Mills belongs to a Half-BPS multiplet and consequently does not receive

quantum corrections, a review is the article [62] by Minahan. Being finite means

that the theory of N = 4 d = 4 super-Yang-Mills is superconformal to all orders in

perturbation theory.

A conformal field theory does not possess an S-matrix because of the impossibility

of defining asymptotic states, however, the theory has well defined operators. In this

section, we will briefly review the representations of the d = 4 conformal group and

of the N = 4 d = 4 superconformal group and during the presentation we will

define important classes of operators: primary operators, chiral primary operators

and Half-BPS operators.

Let us consider first the four-dimensional conformal group. The generators of

this group are [Pµ, Kµ,Mµν , D] and its algebra is given by the first six commutators

of (B.1) with the ones not listed being zero. Local operators in a conformal field

theory are eigenstates of the dilatation operator D and, considering O to be one of

such operators, this means

[D,O] = ∆O , (4.13)
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where ∆ is its dimension. Let us compute the dimension of the operators [Pµ,O]

and [Kµ,O]:

[D, [Pµ,O]] = −[Pµ, [O, D]]− [O, [D,Pµ]]

= (∆ + 1) [Pµ,O] ,

and

[D, [Kµ,O]] = −[Kµ, [O, D]]− [O, [D,Kµ]]

= (∆− 1)[Kµ,O] ,

where in both calculations we have used the conformal algebra and the Jacobi iden-

tity.

The results above mean that acting with Pµ on an operator increases its dimen-

sion by one and acting with Kµ decreases it by one. Requiring the theory to be

unitary implies that there is a lower bound on the dimension of the operators [63].

Since acting with Kµ lowers the dimension of an operator, acting sufficiently many

times with Kµ will give zero. By definition, a primary operator is an operator that

is annihilated by Kµ and its descendants are the operators obtained acting on it

with Pµ.

The N = 4 d = 4 superconformal algebra in addition to the generators of the

conformal algebra has the generators [U j
i , qαi, q̄

j
α̇, s

i
α, s̄α̇j]. Its non-zero commutators

and anticommutators are given in (B.1). Using the algebra and a given bosonic

operator O with dimension ∆, one can show, using the same manipulations as the

ones before, that [q,O] has dimension ∆ + 1
2

and [s,O] has dimension ∆ − 1
2
. A

chiral primary operator is, by definition, an operator that is annihilated by all siα
and s̄α̇j. Note that a chiral primary operator is also a primary operator, because

0 = {siα, [s̄α̇j,O]}+ {s̄α̇j, [siα̇,O]} = [{siα, s̄α̇j},O] = 2iδijσ
µ
αα̇[Kµ,O] ,

and the descendants of a chiral primary operator are obtained by acting on it with

[Pµ, qαi, q̄
j
α̇].

A BPS operator is a chiral primary operator that in addition of being annihilated

by all the (siα, s̄
j
α̇) is also annihilated by some of the sixteen operators (qαi, q̄

j
α̇). A

subset of the BPS operators called Half-BPS is composed of the operators that are

annihilated by exactly eight of the supercharges. All the gauge-invariants Half-

BPS operators of N = 4 d = 4 super-Yang-Mills have been classified and before

stating the result we will motivate it by studying the implications of the PSU(2, 2|4)

superalgebra, our arguments will follow closely [62]. Consider a scalar chiral primary

operator O′ and act on it with

[{qαi, sβj},O′] = [δji (σ
µν) β

α Mµν − 2δβαδ
j
iD + 4δβαU

j
i ,O′] ,
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and note that the commutator [Mµν ,O′] = 0 because, by assumption, O′ is a Lorentz

scalar. Suppose that for a specific value of i and α the operator O′ is also annihilated

by qαi, then the left-hand side of the expression above is zero and we have

2δβα[U j
i ,O′] = δβαδ

j
i∆
′O′ . (4.14)

The generators U j
i are the generators of the SU(4) algebra which is isomorphic to

the SO(6) algebra. The relation among the generators is given by U j
i = i

2
(σIJ)j iRIJ

where (σIJ)j i is defined in (A.10) and RIJ are the generators of SO(6). The SO(6)

algebra has rank 3, which means that its Cartan subalgebra has three generators

and we will consider these three generators to be R14, R25 and R36. All the highest

weight representations of SO(6) are classified according to their charges under these

three generators. As an example, suppose that the operator O′ is highest weight

carrying R14 and R25 charge zero and carrying R36 charge J . In this case (4.14)

becomes

2δβα[U j
i ,O′] = iδβα(σ36)j iJO′ = δβαδ

j
i∆
′O′ , (4.15)

and using the representation of the σIij matrices given in the Appendix A, one has

i(σ36)j i =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

Considering ∆′ = J , the equation (4.15) is satisfied if i = j = 1, 2, which implies

that the operator O′ is annihilated by (qα1, qα2). Analogously, one can show using

the anticommutator {q̄α̇i, s̄βj} that this operator is also annihilated by (q̄α̇3, q̄α̇4)

because one arrives at an equation similar to (4.14) but with the left-hand side

multiplied by minus one. The conclusion is that the operator O′ is annihilated by

eight of the supercharges (qαi, q̄
j
α̇) which means that it is a Half-BPS operator.

In general, all gauge-invariant Half-BPS operators of N = 4 d = 4 super-Yang-

Mills are of the form [5, 62]

O′ = ξI1,...,InTr (φI1 . . . φIn) , (4.16)

where ξI1,...,In is completely symmetric and traceless in all its indices, φI are the six

scalar fields of N = 4 super-Yang-Mills and Tr means trace over the gauge group.

All the descendants of these operators are obtained by acting on it with [Pµ, qαi, q̄
i
α̇].

In the next section, we will show that using harmonic variables all these operators

can be elegantly described.
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4.3 Harmonic Superspace

The utilization of harmonic superspace techniques for studying theories of extended

(N > 1) supersymmetry was first done by Galperin, Ivanov, Kalitsyn, Ogievet-

sky and Sokatchev in [25], an excellent introductory book is [26]. The basic idea

is instead of considering superfields that depend only on the usual Minkowski su-

perspace variables [x, θ, θ̄], considering superfields that depend on these variables

plus harmonic variables. Using harmonic superspaces an off-shell description of all

N = 2 supersymmetric theories was constructed in [25]. Moreover, an off-shell

formulation of N = 3 super-Yang-Mills, that on-shell is equivalent to the N = 4

super-Yang-Mills, is possible using an appropriate harmonic superspace [64].

In the case of the theory of N = 4 super-Yang-Mills, an off-shell formulation is

not known. However, it is possible to solve all the on-shell constraints of the unique

superfield of this theory with spin not higher than one, the so-called Sohnius super-

field [27], using harmonic variables and keeping the SU(4) R-symmetry manifest,

as will be explained in detail below. Furthermore, all the Half-BPS operators of

N = 4 super-Yang-Mills together with their duals can also be elegantly described

in harmonic superspace [28, 29]. The plan of this section is to first introduce the

Sohnius superfield along with its constraints, then present the relevant harmonic

superspace for solving them.

Consider the usual N = 4 d = 4 superspace spanned by the variables [xµ, θiα, θ̄α̇i].

In order to construct a supersymmetric gauge theory using superfields defined in this

superspace, it is well-known that the usual derivatives must be replaced by the gauge

covariant derivatives

Dµ = ∂µ +Aµ , Dαi = Dαi +Aαi , D̄iα̇ = D̄i
α̇ + Āiα̇ , (4.17)

where Aµ, Aαi and Āiα̇ are gauge connections superfields taking values in the Lie

algebra of the gauge group and (Dαj, D̄
i
α̇) were defined in (4.3). From the gauge

covariant derivatives we can define the field-strengths F as

[DA , DB]+− = FAB , (4.18)

where A and B denote any of the gauge covariant derivatives indices and the sub-

script +− means commutator or anticommutator depending on the value of A and

B. The field-strengths are also superfields taking values in the Lie algebra of the

gauge group and under a gauge transformation they transform as

FAB → eiΛFAB e−iΛ , (4.19)
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where Λ(x, θ, θ̄) =
∑
M ′ TM ′λ

M ′(x, θ, θ̄), TM ′ are the Lie algebra generators of the

gauge group and λM
′
is a set of superfields. One comment about this transformation

is that when the gauge group is the abelian U(1), we have

FAB → eiΛU(1) FAB e−iΛU(1) = FAB eiΛU(1) e−iΛU(1) = FAB , (4.20)

or in other words, all the field-strengths are gauge-invariant in this case.

The gauge covariant derivatives satisfy the generalized Jacobi identities given

below

(−1)(degAdegC)[DA , [DB , DC ]+− ]+− + (−1)(degB degA)[DB , [DC , DA ]+− ]+− (4.21)

+(−1)(degC degB)[DC , [DA , DB ]+− ]+− = 0 ,

where, for example, degA is equal to 0 if A is a bosonic index and 1 if it is fermionic

index. Substituting the definitions of the field-strengths (4.18) in the Jacobi iden-

tities above, one arrives at the Bianchi-identities that have to be satisfied by these

fields.

Imposing suitable constraints on the field-strengths and using the equations of

motion, Sohnius showed in [27] that all the Bianchi-identities can be solved in terms

of a superfield Wij(x, θ, θ̄) related to two of the field-strengths as

Fαiβj = εαβWij , F ij
α̇β̇

= εα̇β̇W
ij ,

and with the properties

Wij = −Wji , (Wij)
† = W ij =

1

2
εijklWkl , (4.22)

where † means Hermitian conjugation. In addition, this superfield satisfies the con-

straints

DαiWjk = Dα[iWjk], D̄iα̇Wjk = −2

3
δi[jD̄l|α̇|Wk]l , (4.23)

and our notation here is that the indices inside [ ] are antisymmetrized with an

additional factor of half and the indices inside | |, as on the last constraint, not

being antisymmetrized. The expansion of Wij in components is schematically of the

form

Wjk = φjk + θ̄α̇[j ξ̄
α̇
k] + θαlξmα εjklm + θ̄jα̇θ̄kβ̇F̄

α̇β̇ + εjklmθ
αlθβmFαβ + ... (4.24)

where φjk are scalars related to the six scalars φI of N = 4 super-Yang-Mills as

φjk = (σI)jk φ
I , (4.25)
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and (σI)jk the Pauli matrices of SO(6) defined in the Appendix A. Moreover, ξkα
and ξ̄α̇k are the chiral and anti-chiral gluinos, and Fαβ and F̄ α̇β̇ are the self-dual and

anti-self-dual field-strengths.

The constraints (4.23) of the superfield Wij can be solved using an appropriate

harmonic superspace that will be defined below. Instead of defining the superfields

to depend only on the variables [x, θ, θ̄] of the N = 4 d = 4 Minkowski super-

spaceM4|16, we will study superfields onM4|16× SU(4)
S(U(2)×U(2))

, which means that the

superfields can now depend also on the harmonic variables u parameterizing this

additional coset. Note that locally the isotropy group of this new coset is

S(U(2)× U(2)) ∼ SU(2)× SU(2)× U(1) ,

and the coset is parametrized by 15 − 3 − 3 − 1 = 8 independent variables. An

explicit parametrization is

A = (uj
J̇
, i ūjJ ′) ∈ SU(4) , (4.26)

where [u, ū] are the harmonic variables and J̇ = 1, 2 , J ′ = 1′, 2′. In our conventions,

under the operation of complex conjugation ∗ these variables transform as

(uj
J̇
)∗ = ūJ̇j , (ūjJ ′)

∗ = uJ
′

j , (4.27)

where the variables [ūJ̇j , u
J ′
j ] parametrize the inverse coset. For the matrix (4.26) to

be a matrix of SU(4), it is necessary that the harmonic variables and their complex

conjugates satisfy the conditions of unitarity

A A† = 1 → uj
J̇
ūK̇j = δK̇

J̇
, ūjJ ′u

K′

j = δK
′

J ′ , uj
J̇
uK
′

j = 0, ūjJ ′ū
K̇
j = 0, (4.28)

A†A = 1 → uj
J̇
ūJ̇i + ūjJ ′u

J ′

i = δji ,

and we must also have detA = 1. Recalling that the determinant of a four-

dimensional matrix can be written in a compact notation as

detA = εijklA
i
1A

j
2A

k
3A

l
4 ,

we conclude

detA = 1 → (i)2 εijkl u
i
1 u

j
2 ū

k
1′ ū

l
2′ = −1

4
εijkl uu

ij uukl = 1 ,

where we have used two of the important definitions

uuij = εJ̇K̇ ui
J̇
uj
K̇
, uuij = εJ

′K′ ūiJ ′ ū
j
K′ , (4.29)

uuij = εJ̇K̇ u
J̇
i u

K̇
j , uuij = εJ ′K′ u

J ′

i u
K′

j ,
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with the antisymmetric tensors [εJ̇K̇ , εJ̇K̇ , ε
J ′K′ , εJ ′K′ ] having the same non-zero com-

ponents of the usual εαβ and εαβ defined in (A.1). Note that the condition of unit

determinant is equivalent to

uuij =
1

2
εijkl uu

kl , uuij =
1

2
εijkl uu

kl , (4.30)

because (uu)ij uu
ij = εJ ′K′ u

J ′
i u

K′
j εT

′M ′ ūiT ′ ū
j
M ′ = −2.

The SU(4) transformations act on the indices i and it is possible to construct

a set of SU(4) invariant derivatives acting on the harmonic variables. Two of such

derivatives are going to be useful for us, they are

DJ ′

J̇
= ui

J̇

∂

∂ūiJ ′
, D0 =

1

2
(ui

J̇

∂

∂ui
J̇

− ūiJ ′
∂

∂ūiJ ′
) . (4.31)

Using D0, we define the charge of the harmonics variables and their inverses

under the subgroup U(1) of the isotropy group as the eigenvalue under the action

of this operator

D0 · u =
1

2
u , D0 · ū = −1

2
ū , (4.32)

which means that u has charge 1
2

and ū has charge −1
2
. The first derivative given

in (4.31) acts on the harmonic variables and their inverse as

DJ ′

J̇
· ūjK′ = δJ

′

K′u
j

J̇
, DJ ′

J̇
· ūK̇j = −δK̇

J̇
uJ
′

j , DJ ′

J̇
· u = 0 . (4.33)

After introducing the relevant harmonic superspace and fixing the properties

satisfied by the bosonic harmonic variables and their inverses, we will solve the

constraints of (4.23) and show that all the Half-BPS operators can be elegantly

described using the harmonic variables. Consider first that the gauge group is the

abelian U(1). In this case, we already know that the superfield (WU(1))ij is gauge-

invariant due to the fact that it transforms in the adjoint representation of the gauge

group. The connection part of the gauge covariant derivatives that appears in the

constraints (4.23) does not give any contribution when acting on a gauge-invariant

object, then the constraints become

Dαi (WU(1))jk = Dα[i(WU(1))jk], D̄i
α̇ (WU(1))jk = −2

3
δi[jD̄

l
|α̇|(WU(1))k]l , (4.34)

and using the definitions

DαJ ′ = ūjJ ′ Dαj , DαJ̇ = uj
J̇
Dαj , D̄J̇

α̇ = ūJ̇j D̄
j
α̇ , D̄J ′

α̇ = uJ
′

j D̄
j
α̇ , (4.35)

and (WU(1))
(1) = (uu)ij (WU(1))ij, where the superscript (1) indicates that this su-

perfield has charge 1. One can show that the constraints (4.34) are equivalent to

DαJ̇ (WU(1))
(1) = D̄J ′

α̇ (WU(1))
(1) = 0 . (4.36)
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It is easy to derive these relations from the constraints obeyed by the superfield

W . Note that

DαJ̇ (WU(1))
(1) = uj

J̇
Dαj(uu)ik(WU(1))ik = uj

J̇
εṖ Ṡ ui

Ṗ
uk
Ṡ
Dα[j(WU(1))ik] = 0 ,

which follows because the harmonic variables are bosonic and the indices [J̇ , Ṗ , Ṡ]

take only the values 1 or 2. Moreover,

D̄J ′

α̇ (WU(1))
(1) = uJ

′

j D̄
j
α̇ (uu)ik (WU(1))ik = −2

3
uJ
′

j (uu)ikδj[iD̄
l
|α̇|(WU(1))k]l = 0 ,

as a consequence of uJ
′
j (uu)jm = 0.

This example of the abelian U(1) gauge group shows why it is useful to introduce

the harmonic variables. They allow the projection of the SU(4) indices on the

isotropy group S(U(2) × U(2)) indices without breaking the SU(4), or in other

words, using harmonic variables the SU(4) is kept manifest and the constraints

(4.34) can be elegantly solved. Let us now not restrict the gauge group to be U(1)

and define the gauge-invariant quantity

W (N)(u, x, θ, θ̄) = (uu)i1j1 . . . (uu)iN jN Tr [Wi1j1(x, θ) . . .WiN jN (x, θ) ] , (4.37)

where the superscript (N) indicates that this superfield carries +N charge. Using

similar arguments to the ones above, it is easy to show that

DαJ̇W
(N) = D̄J ′

α̇ W
(N) = 0 , (4.38)

and in what follows a superfield that satisfies these constraints will be called G-

analytic. Furthermore, WN is independent of ū, which implies that

(
uj
J̇

∂

∂ūjJ ′

)
W (N) = 0 , (4.39)

and a superfield that satisfies these constraints will be called H-analytic. A superfield

that is both G-analytic and H-analytic will be called an analytic superfield for short.

The superfield W (N) describes a gauge-invariant Half-BPS operator involving N

super-Yang-Mills fields. In order to see this, consider the expansion of Wij given in

(4.24) with θ = θ̄ = 0, it implies

W (N)|θ=θ̄=0 = (uu)i1j1 . . . (uu)iN jN Tr [φi1j1 . . . φiN jN ] (4.40)

= (uu)i1j1(σI1)i1j1 . . . (uu)iN jN (σIN )iN jN Tr [φI1 . . . φIN ] ,

and noting that for any Im and In

(uu)imjm(σIm)imjm(uu)injn(σIn)injnδ
ImIn = −2εimjminjn(uu)imjm(uu)injn = 0 , (4.41)
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which means that (uu)ij(σI)ij is a null vector and the tensor

ξ′I1...IN = (uu)i1j1(σI1)i1j1 . . . (uu)iN jN (σIN )iN jN ,

is completely symmetric and traceless in all its indices. Recalling that all the Half-

BPS operators are of the form (4.16) and that the tensor ξ that appears in (4.16) has

the same properties of the tensor ξ′ defined above, we conclude that W (N) describes

a Half-BPS operator. So, Half-BPS operators constructed from N super-Yang-Mills

fields are described by analytic superfields of +N U(1) charge.

To construct the duals T (4−N)(u, ū, x, θ, θ̄) to these analytic superfields consider

the superspace integral∫
d4x

∫
du
∫
d8(uθ)W (N)(u, x, θ, θ̄)T (4−N)(u, ū, x, θ, θ̄) , (4.42)

where
∫
d8(uθ) = D′4D̄4 with

D′4 = DαJ ′DK′

α Dβ
J ′DβK′ , D̄4 = D̄J̇

α̇D̄
α̇K̇D̄β̇J̇D̄

β̇

K̇
, (4.43)

and the derivatives above were defined in (4.35). One comment is that both the

SU(2) indices [J̇ , J ′] can be raised and lowered with the ε symbols, two examples

are ūjJ̇ = εJ̇K̇ ū
K̇
j and ūJ

′j = εJ
′K′ūjK′ and this was used in the expression above.

The
∫
du denotes an integral over the compact space SU(4)

S(U(2)×U(2))
. Explicit ex-

amples and a more complete explanation on how to compute this integral will be

given in the beginning of the section 4.6. The important information for us here is

that du is the invariant Haar measure over the group SU(4), which means that the

result of the integration is necessary a SU(4) scalar.

For the integral to be non-vanishing, T (4−N) must be a superfield of U(1) charge

(4−N) and this is the meaning of the superscript. This follows because the integrand

must have total charge equal to zero given that the result of the integral over the

compact space is a SU(4) scalar. We know that W (N) carries charge +N and it is

easy to see from the definition of
∫
d8(uθ) that it carries charge -4 which implies that

T (4−N) must carry charge (4−N). In addition, for the integral to be supersymmetric

T (4−N) must be a G-analytic superfield but not necessarily H-analytic. One more

comment about the superspace integral is that for a given W (N) and T (4−N) it gives

a number, and this is one of the motivations for calling T the dual of W .

Note that T is defined up to a gauge transformation because the integral is

invariant under the variation

δT = (ui
J̇

∂

∂ūiJ ′
) ΛJ̇

J ′ = DJ ′

J̇
ΛJ̇
J ′ , (4.44)
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for any G-analytic superfield ΛJ̇
J ′ . Let us prove that the integral is in fact invariant,

we will follow [31],∫
d4x

∫
du
∫
d8(uθ)W (N)δT (4−N) =

∫
d4x

∫
du
∫
d8(uθ)W (N)DJ ′

J̇
[ ΛJ̇

J ′ ]

=
∫
d4x

∫
du
∫
d8(uθ)DJ ′

J̇
[W (N)ΛJ̇

J ′ ]

=
∫
d4x

∫
duDJ ′

J̇
[
∫
d8(uθ)W (N) ΛJ̇

J ′ ] = 0 , ,

where on the second line we have used that W (N) is H-analytic and on the third

line we have used that when DJ ′

J̇
acts on

∫
d8(uθ) it gives either terms proportional

to DαJ̇ and D̄J ′
α̇ which annihilate the G-analytic superfields W and Λ, or total x

derivatives. Finally, we have used that performing the du integration of a total

derivative DJ ′

J̇
is zero.

4.4 The vertex operators

After introducing the concept of harmonic superspace in the previous section, in

this section, we will present and prove the main result of this thesis, which is the

computation of the cohomology at +2 ghost number of the operator Q 1
2

restricted to

states in the cohomology of the operator Q− 1
2
. As argued before, this is equivalent

to computing the cohomology of the complete BRST operator of the pure spinor

formalism near the boundary of AdS.

The general BRST-closed supergravity vertex operator dual to a Half-BPS op-

erator constructed from N super-Yang-Mills fields is

VN = z2−N
∫
du [ (yuu)N−1 Ω(0)T + 8(N − 1)(yuu)N−2 Ω(1)T (4.45)

+ 82(N − 1)(N − 2)(yuu)N−3 Ω(2)T + 83(N − 1)(N − 2)(N − 3)(yuu)N−4 Ω(3)T

+ 84(N − 1)(N − 2)(N − 3)(N − 4)(yuu)N−5 Ω(4)T ] ,

where T is the dual superfield of (4.42) with the superscript (4−N) omitted, (yuu) =

(yijuuij), and

Ω(0) =
1

16
(λλ̃)−2(λγMD̃)(λγND̃)(λγP D̃)(λγSD̃)(λ̃γMNPST λ̃)vT (4.46)

+
1

2
z−

1
2 (λλ̃)−2(λγMD̃)(λγND̃)(λγP D̃)(rγPNM λ̃) ,

Ω(1) =
1

4
(λλ̃)−2(λγM ψ̂)(λγND̃)(λγP D̃)(λγSD̃)(λ̃γMNPST λ̃)vT (4.47)
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+
3

2
z−

1
2 (λλ̃)−2(λγM ψ̂)(λγND̃)(λγP D̃)(rγPNM λ̃) ,

Ω(2) =
3

8
(λλ̃)−2(λγM ψ̂)(λγN ψ̂)(λγP D̃)(λγSD̃)(λ̃γMNPST λ̃)vT (4.48)

+
3

2
z−

1
2 (λλ̃)−2(λγM ψ̂)(λγN ψ̂)(λγP D̃)(rγPNM λ̃) ,

Ω(3) =
1

4
(λλ̃)−2(λγM ψ̂)(λγN ψ̂)(λγP ψ̂)(λγSD̃)(λ̃γMNPST λ̃)vT (4.49)

+
1

2
z−

1
2 (λλ̃)−2(λγM ψ̂)(λγN ψ̂)(λγP ψ̂)(rγPNM λ̃) ,

Ω(4) =
1

16
(λλ̃)−2(λγM ψ̂)(λγN ψ̂)(λγP ψ̂)(λγSψ̂)(λ̃γMNPST λ̃)vT . (4.50)

In the above formulas, the vectors vT and v̄T are null vectors with non-zero com-

ponents defined by vJ+3 = −1
4
σjkJ (uu)jk and v̄J+3 = −1

4
σjkJ (uu)jk where σjkJ are the

SO(6) Pauli matrices defined in the Appendix A, and D̃ = v̄T (γTD).

We will now prove that the vertex operator VN is BRST-closed and during the

proof several features of the result will be explained. Firstly, note that the terms of

Q 1
2

of (4.1) reproduced below,

z
1
2 [yij(λγ

ijψ̂)(2z
∂

∂z
+ ykl

∂

∂ykl
− λᾱ ∂

∂λᾱ
)] ,

annihilate VN because when they act on the terms of VN independent of r, they give

(2z
∂

∂z
) · (VN)no r = 2(2−N)(VN)no r , ykl

∂

∂ykl
· (VN)no r = 2(N − 1)(VN)no r ,

−λᾱ ∂

∂λᾱ
· (VN)no r = −2(VN)no r ,

and the sum of all these contributions is zero. Similarly, when they act on the terms

of VN that depend on r, they give

(2z
∂

∂z
) · (VN)r = 2(2−N − 1

2
)(VN)r , ykl

∂

∂ykl
· (VN)r = 2(N − 1)(VN)r ,

−λᾱ ∂

∂λᾱ
· (VN)r = −(VN)r ,
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and again one gets zero. In order to VN to be also annihilated by the remaining

terms of Q 1
2

given in (4.1), the following equations must be satisfied

(z
1
2λᾱDᾱ + w̃ᾱrᾱ)Ω(0)T = 0 , (4.51)

PN(1) [z
1
2 (λγM ψ̂)vMΩ(0)T + (z

1
2λᾱDᾱ + w̃ᾱrᾱ)Ω(1)T ] = 0 ,

PN(2) [z
1
2 (λγM ψ̂)vMΩ(1)T + (z

1
2λᾱDᾱ + w̃ᾱrᾱ)Ω(2)T ] = 0 ,

PN(3) [z
1
2 (λγM ψ̂)vMΩ(2)T + (z

1
2λᾱDᾱ + w̃ᾱrᾱ)Ω(3)T ] = 0 ,

PN(4) [z
1
2 (λγM ψ̂)vMΩ(3)T + (z

1
2λᾱDᾱ + w̃ᾱrᾱ)Ω(4)T ] = 0 ,

PN(5) z
1
2 (λγM ψ̂)vMΩ(4)T = 0 ,

where the factors of (λγM ψ̂)vM above come from the BRST variation of (yuu) and

PN(n) is defined as

PN(n) =
n∏

m=1

(N −m) .

Let us understand this set of equations and make some comments about how

the expression for the vertex operator (4.45) should be understood. When N = 1,

for example, only the first equation of (4.51) has to be satisfied and the vertex

operator only has the term proportional to Ω(0), when N = 2 only the first and the

second equations of (4.51) have to be satisfied and the vertex operator only has the

terms proportional to Ω(0) and Ω(1), etc. When N < 4 the vertex operator does not

depend on Ω(3) and Ω(4) and there is a gauge such that VN<4 is independent of the

non-minimal pure spinor variables λ̃ and r. In this gauge, Ω(0), Ω(1) and Ω(2) are

replaced with

Ω
(0)
min = −1

4
(λγMD̃)(λγND̃)(D̃γMNP D̃)vP , (4.52)

Ω
(1)
min = −(λγM ψ̂)(λγND̃)(D̃γMNP D̃)vP + 24(λγM ψ̂)v̄M(λγµD̃)

∂

∂xµ
,

Ω
(2)
min = −3

2
(λγM ψ̂)(λγN ψ̂)(D̃γMNP D̃)vP + 48(λγM ψ̂)v̄M(λγµψ̂)

∂

∂xµ
,

however, such a gauge seems not to be possible for N > 3 because for the fourth

equation of (4.51) to be satisfied it would require

Ω
(3)
min = −(λγM ψ̂)(λγN ψ̂)(ψ̂γMγNγP D̃)vP + terms with

∂

∂xµ
,

and this expression is not a function of λγM ψ̂, which means that it is not a state in

the cohomology of Q− 1
2
, so Ω(3) and Ω(4) require non-minimal variables. The final

comment about this point is that we know that there always exist a gauge in which

the vertex operator is independent of the non-minimal variables, see (1.1), and the
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fact that Ω(3) and Ω(4) require non-minimal variables seems to be a consequence that

we need these variables in order to express the result using harmonic variables.

We will proceed to prove that all the equations of (4.51) are satisfied for a generic

N . Firstly, note that

λᾱDᾱ = v̄MvN(λγMγND) + vM v̄N(λγMγND) (4.53)

≡ λD1 + λD2 ,

where we have used (4.28). This implies that we can rewrite the first equation of

(4.51) as

(z
1
2 λD2 + w̃ᾱrᾱ) Ω(0)T + z

1
2 [λD1 , Ω(0) ]T = 0 , (4.54)

where [ , ] means commutator and (λD1) · T = 0 since T is G-analytic. It is easy to

see that [λD1 , Ω(0) ] = 0, because

{λD1 , (λγND̃) } = −2(λγNγµγSλ)v̄S
∂

∂xµ
= 0 , (4.55)

and this vanishes given that

(γNγµγS)ᾱβ̄ = (γNµS)ᾱβ̄ + terms with η γ ,

and λ is a pure spinor. This kind of calculation involving commutators will appear

several times in the next section in the study of the gauge invariance of the vertex

operators, thus we will illustrate with (4.55) how these calculations are performed.

Using the definitions of (4.3), it is straightforward to see that

{Dαi , D̄
j
α̇} = −2iδji (σ

µ)αα̇
∂

∂xµ
,

and using the ansatz for the chiral gamma matrices of (2.66), we have in four-

dimensional notation

λD1 = λαiuuijuu
jkDαk + λ̄α̇iuu

ijuujkD̄
kα̇ ,

(λγµD̃) = −λαiiσµαα̇uuijD̄α̇j + λ̄α̇iiσ̄
µα̇αuuijDαj ,

(λγI+3D̃) = λαiσIijuu
jkDαk + λ̄α̇iσ

IijuujkD̄
kα̇ ,

and from the expressions above, one can compute the anticommutators

{λD1 , (λγνD̃) } =

−2iλαiuuiliσ
ν
ββ̇
εβ̇α̇σµαα̇λ

βl ∂

∂xµ
+ 2iλ̄α̇iuu

imiσ̄νβ̇βεβασ̄
µα̇αλ̄β̇m

∂

∂xµ
,

{λD1 , (λγI+3D̃) } =

2iλαiuuinλ̄β̇mσ
Imnεβ̇γ̇σµαγ̇

∂

∂xµ
+ 2iλ̄β̇iuu

ijλαlσIljε
β̇γ̇σµαγ̇

∂

∂xµ
,

68



and rewriting the results above in ten-dimensional notation, one gets the right-hand

side of (4.55). After showing that the commutator term of (4.54) is zero, it is left

to show that

(z
1
2λD2 + w̃ᾱrᾱ)Ω(0)T = 0 . (4.56)

The proof that this equation is satisfied uses several times the Fierz identity,

(γM)ᾱ(β̄(γM)γ̄δ̄) = 0 , (4.57)

where ( ) means symmetrization of the indices. In fact, every time the words “Fierz

identity” appear in the rest of the thesis we mean manipulations using the identity

above. It is explicitly

(γM)ᾱβ̄(γM)γ̄δ̄ + (γM)ᾱγ̄(γM)δ̄β̄ + (γM)ᾱδ̄(γM)β̄γ̄ = 0 ,

and an important property of pure spinors follows by multiplying this expression by

λᾱ and λβ̄, with the conclusion

(λγM)γ̄(λγM)δ̄ = 0 . (4.58)

Another important result for the proof is

w̃ᾱrᾱ · (λλ̃)−2(λγMX)(λγNY )(λγPZ)(rγPNM λ̃) = 0 , (4.59)

where X, Y and Z are any fermionic spinors. This follows because

w̃ᾱrᾱ · (λλ̃)−2(λγMX)(λγNY )(λγPZ)(rγPNM λ̃)

= −2(λλ̃)−3(λr)(λγMX)(λγNY )(λγPZ)(rγPγNγM λ̃)

+ (λλ̃)−2(λγMX)(λγNY )(λγPZ)(rγPγNγMr)

= 4(λλ̃)−2(λr)(λγMX)(λγPZ)(rγPγMY )

−4(λλ̃)−2(λr)(λγMX)(λγPZ)(rγPγMY ) = 0 ,

where we have used the Fierz identity and that (λr) (λr) = 0, since r is a fermionic

spinor. We are now in a position to show that

w̃ᾱrᾱ · Ω(0) = −1

2
(λλ̃)−2(λD2)(λγMD̃)(λγND̃)(λγP D̃)(rγPNM λ̃) , (4.60)

for the Ω(0) given in (4.46). This result is a particular case of the general formula

w̃ᾱrᾱ · (λλ̃)−2(λγMX)(λγNY )(λγPZ)(λγSW )(λ̃γMNPST λ̃)vT (4.61)

= 2(λλ̃)−2(λγMX)(λγNY )(λγPZ)(λγSW )vS (rγPNM λ̃)
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− 2(λλ̃)−2(λγMX)(λγNY )(λγPZ)vP (λγSW )(rγSNM λ̃)

+ 2(λλ̃)−2(λγMX)(λγNY )vN (λγPZ)(λγSW )(rγSPM λ̃)

− 2(λλ̃)−2(λγMX)vM(λγNY )(λγPZ)(λγSW ) (rγSPN λ̃) ,

which is valid for any fermionic spinors X, Y, Z and W and can be easily proved by

manipulating the result of the application of w̃ᾱrᾱ using Fierz identity.

Note that acting on the r dependent term of Ω(0) of (4.46) with z
1
2λD2 we get the

result (4.60) multiplied by minus one, in other words, both terms cancel precisely in

(4.56). For the remaining part of the proof, note that the part of Ω(0) independent

of r can be rewritten due to the Fierz identity as

Ω(0)
no r = −1

4
(λγMD̃)(λγND̃)(D̃γMNP D̃)vP (4.62)

−(λλ̃)−1(λD2)(λγSD̃)(λγP D̃)(λ̃γPSD̃) ,

and one can show that (λD2) · Ω(0)
no r = 0. It is easy to see that the second term on

the right-hand side is annihilated because (λD2) · (λD2) = 0, and that the first term

is also annihilated will be shown in great detail in the next section. This completes

the proof of (4.54).

We will proceed to prove that the second equation of (4.51) is satisfied. This

equation can be rewritten in the form

z
1
2 (λγM ψ̂)vMΩ(0)T + (z

1
2λD2 + w̃ᾱrᾱ)Ω(1)T + z

1
2 [λD1 , Ω(1) ]T = 0 , (4.63)

and it is straightforward to see that [λD1 , Ω(1) ] = 0 because of (4.55), which means

that this term does not give any contribution to the equation above. Consider the

term of Ω(1) given in (4.47) that is independent of r, using the Fierz identity this

term is equal to

Ω(1)
no r = −(λγM ψ̂)(λγSD̃)(D̃γMSP D̃)vP

−(λλ̃)−1(λγM ψ̂)vM(λγSD̃)(λγP D̃)(λ̃γPSD̃)

−3(λλ̃)−1(λD2)(λγM ψ̂)(λγSD̃)(λ̃γSMD̃) ,

and for the equation (4.63) to be satisfied, we must have

(λγM ψ̂)vM Ω(0)
no r + (λD2) Ω(1)

no r = 0 .

Substituting the expression for both Ω(1)
no r given above and Ω(0)

no r of (4.62), many

terms trivially cancel and it is left to show that

−1

4
(λγT ψ̂)vT (λγMD̃)(λγND̃)(D̃γMNP D̃)vP

−(λD2)(λγM ψ̂)(λγSD̃)(D̃γMSP D̃)vP = 0 .
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This equation is in fact satisfied and we will postpone the proof to the next section.

Moreover, one can show that

w̃ᾱrᾱ · Ω(1) = −1

2
(λλ̃)−2(λγM ψ̂)vM(λγND̃)(λγP D̃)(λγSD̃)(rγSPN λ̃) (4.64)

−3

2
(λλ̃)−2(λD2)(λγM ψ̂)(λγND̃)(λγP D̃)(rγPNM λ̃) ,

where we have used (4.59) and (4.61). Note that this variation cancels with the

action of λD2 on the r dependent term of Ω(1) given in (4.47) and with the action

of (λγM ψ̂)vM on the r dependent term of Ω(0) given in (4.46). This completes the

proof that the second equation of (4.51) is satisfied. Following the same steps, it

is possible to show that all the equations of (4.51) are satisfied, which means that

the vertex operators VN are BRST-closed. The last comment of this section is that

although it may seem surprising that Ω(4) given in (4.50) does not depend on r, this

is a consequence of

w̃ᾱrᾱ · Ω(4) = −1

2
(λλ̃)−2(λγSψ̂)vS(λγM ψ̂)(λγN ψ̂)(λγP ψ̂)(rγPNM λ̃) , (4.65)

and this variation cancels precisely with the action of (λγM ψ̂)vM on the r dependent

term of Ω(3), implying that the fifth equation of (4.51) is satisfied.

4.4.1 Gauge invariance

As explained in the section 4.3, the dual superfields T (4−N) are defined up to the

gauge transformation

δT = (u
∂

∂ū
)J
′

J̇
ΛJ̇
J ′ = DJ ′

J̇
ΛJ̇
J ′ ,

where ΛJ̇
J ′ is any G-analytic superfield of U(1) charge (3 − N). The BRST-closed

vertex operator VN of (4.45) depend on T and for the result of VN to be consistent

it must change by a BRST-trivial quantity under a gauge transformation of T . This

means that δVN = Q 1
2
·ΣN for some ΣN when T changes by a gauge transformation.

It is possible to show that in fact this is the case. For a generic value of N , we have

ΣN = z2− 1
2
−N

∫
du[(yuu)N−1(A(0))J

′

J̇
ΛJ̇
J ′ + 8(N − 1)(yuu)N−2(A(1))J

′

J̇
ΛJ̇
J ′ (4.66)

+82(N − 1)(N − 2)(yuu)N−3(A(2))J
′

J̇
ΛJ̇
J ′ ,

where

(A(0))J
′

J̇
= 3 (λλ̃)−1 (λγMD̃)(λγSD̃)(λ̃γSMD̃

J ′

J̇
) (4.67)

+ 3 (λλ̃)−1 { (λγMD̃J ′

J̇
) , (λγND̃) }(λ̃γNMD̃) ,
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(A(1))J
′

J̇
= 6 (λλ̃)−1 (λγM ψ̂)(λγSD̃)(λ̃γSMD̃

J ′

J̇
) (4.68)

+24 (λλ̃)−1 (λγN ψ̂) v̄M (λ γJ
′

J̇
γµγMγN λ̃)

∂

∂xµ
,

(A(2))J
′

J̇
= 3 (λλ̃)−1 (λγM ψ̂)(λγSψ̂)(λ̃γSMD̃

J ′

J̇
) , (4.69)

and (D̃J ′

J̇
)ᾱ = DJ ′

J̇
· (D̃ᾱ), γJ

′

J̇
= DJ ′

J̇
· (v̄M γM) and { , } means anticommutator.

As previously explained, when N < 4 there is a gauge where the vertex operators

VN<4 do not depend on the non-minimal pure spinor variables. In this gauge, ΣN<4

also do not depend on these variables and they have the same form of (4.66) but

with (A(0))J
′

J̇
, (A(1))J

′

J̇
and (A(2))J

′

J̇
replaced with

(A
(0)
min)J

′

J̇
= 4(λγND̃)(D̃γND̃

J ′

J̇
) ,

(A
(1)
min)J

′

J̇
= 6(λγN ψ̂)(D̃γND̃

J ′

J̇
) ,

(A
(2)
min)J

′

J̇
= 0 .

In what follows we will consider a generic N and prove that ΣN has the form

(4.66). The first step of the proof is the substitution of δT in the expression for the

vertex operator VN of (4.45) to get δVN . After an integration by parts, one has

δVN = z2−N
∫
du [ (yuu)N−1 (−DJ ′

J̇
Ω(0)) ΛJ̇

J ′ + 8(N − 1)(yuu)N−2 (−DJ ′

J̇
Ω(1)) ΛJ̇

J ′

+82(N − 1)(N − 2)(yuu)N−3 (−DJ ′

J̇
Ω(2)) ΛJ̇

J ′

+83(N − 1)(N − 2)(N − 3)(yuu)N−4 (−DJ ′

J̇
Ω(3)) ΛJ̇

J ′ ] ,

without an Ω(4) term because (−DJ ′

J̇
Ω(4)) = 0. From this expression, we conclude

that in order to construct ΣN satisfying δVN = Q 1
2
· ΣN , we have to solve the

following equations

(λᾱDᾱ + z−
1
2 w̃ᾱrᾱ) (A(0))J

′

J̇
ΛJ̇
J ′ = (−DJ ′

J̇
Ω(0)) ΛJ̇

J ′ , (4.70)

(λγM ψ̂) vM (A(0))J
′

J̇
ΛJ̇
J ′ + (λᾱDᾱ + z−

1
2 w̃ᾱrᾱ) (A(1))J

′

J̇
ΛJ̇
J ′ = (−DJ ′

J̇
Ω(1)) ΛJ̇

J ′ ,

(λγM ψ̂) vM (A(1))J
′

J̇
ΛJ̇
J ′ + (λᾱDᾱ + z−

1
2 w̃ᾱrᾱ) (A(2))J

′

J̇
ΛJ̇
J ′ = (−DJ ′

J̇
Ω(2)) ΛJ̇

J ′ ,

(λγM ψ̂) vM (A(2))J
′

J̇
ΛJ̇
J ′ = (−DJ ′

J̇
Ω(3)) ΛJ̇

J ′ ,

where again the factors of (λγM ψ̂) vM above come from the BRST variation of (yuu).

These equations are the correct ones imposing the additional requirement that

yij(λγ
ijψ̂)(2z

∂

∂z
+ ykl

∂

∂ykl
− λᾱ ∂

∂λᾱ
) · ΣN = 0 ,
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which is satisfied for the ΣN given in (4.66). The verification of this result is straight-

forward and the details will be omitted. The proof that (A(0))J
′

J̇
given in (4.67)

satisfies the first equation of (4.70) will be splited in two steps, we will first consider

the zero-momentum case (i.e. setting all the anticommutators to zero) and after the

general case will be considered. At zero-momentum and using the Ω(0) of (4.46), it

is easy to see that

(−DJ ′

J̇
Ω(0)) ΛJ̇

J ′ = −1

4
(λλ̃)−2(λγMD̃)(λγND̃)(λγP D̃)(λγSD̃J ′

J̇
)(λ̃γMNPST λ̃)vT ΛJ̇

J ′

−3

2
z−

1
2 (λλ̃)−2(λγMD̃)(λγND̃)(λγP D̃J ′

J̇
)(rγPNM λ̃) ΛJ̇

J ′ ,

and using the Fierz identity and the fact that ΛJ̇
J ′ is G-analytic, this expression

becomes

(−DJ ′

J̇
Ω(0)) ΛJ̇

J ′ = 3 (λλ̃)−1(λD2) (λγMD̃)(λγSD̃)(λ̃γSMD̃
J ′

J̇
) ΛJ̇

J ′ (4.71)

−3 z−
1
2 (λλ̃)−2 (λr) (λγND̃)(λγP D̃)(λ̃γPND̃

J ′

J̇
) ΛJ̇

J ′

+3 z−
1
2 (λλ̃)−1 (λγMD̃)(λγP D̃)(rγPMD̃

J ′

J̇
) ΛJ̇

J ′ .

Note that using the (A(0))J
′

J̇
of (4.67) at zero-momentum, we have

(λᾱDᾱ + z−
1
2 w̃ᾱrᾱ) (A(0))J

′

J̇
ΛJ̇
J ′ (4.72)

= (λD2 + z−
1
2 w̃ᾱrᾱ) 3 (λλ̃)−1 (λγMD̃)(λγSD̃)(λ̃γSMD̃

J ′

J̇
) ΛJ̇

J ′

= (−DJ ′

J̇
Ω(0)) ΛJ̇

J ′ ,

where to go from the second to the third line we have used (4.71). This is precisely

the first equation of (4.70), thus at least at zero-momentum this equation is satisfied.

Relaxing the condition of zero-momentum, we have that the contribution from the

anticommutators is

(−DJ ′

J̇
Ω(0))ac ΛJ̇

J ′ = −3

2
z−

1
2 (λλ̃)−2(λγMD̃){(λγND̃J ′

J̇
), (λγP D̃)}(rγPNM λ̃) ΛJ̇

J ′

−3

8
(λλ̃)−2(λγMD̃)(λγND̃){(λγP D̃J ′

J̇
), (λγSD̃)}(λ̃γMNPST λ̃)vT ΛJ̇

J ′ ,

where the subscript ac means the contribution from the anticommutators. Using

the Fierz identity, one gets

(−DJ ′

J̇
Ω(0))ac ΛJ̇

J ′ = 3 (λλ̃)−1 (λD2) {(λγMD̃J ′

J̇
) , (λγND̃)}(λ̃γNMD̃) ΛJ̇

J ′ (4.73)

+3 z−
1
2 (λλ̃)−1 {(λγMD̃J ′

J̇
) , (λγND̃)}(rγNMD̃) ΛJ̇

J ′

−3 z−
1
2 (λλ̃)−2 (λr) {(λγMD̃J ′

J̇
) , (λγND̃)}(λ̃γNMD̃) ΛJ̇

J ′

−3

2
(λλ̃)−1 {(λγMD̃J ′

J̇
) , (λγND̃)}vN(λγSD̃)(λ̃γSMD̃) ΛJ̇

J ′

+
3

2
(λλ̃)−1 vM{(λγMD̃J ′

J̇
) , (λγND̃)}(λγSD̃)(λ̃γSND̃) ΛJ̇

J ′

+
3

2
{(λγMD̃J ′

J̇
) , (λγND̃)}(D̃γMNT D̃)vT ΛJ̇

J ′ ,
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and one of the advantages of having the result written in this form is that the first

three terms can be organized as

3 (λλ̃)−1 (λD2) {(λγMD̃J ′

J̇
) , (λγND̃)}(λ̃γNMD̃) ΛJ̇

J ′ (4.74)

+3 z−
1
2 (λλ̃)−1 {(λγMD̃J ′

J̇
) , (λγND̃)}(rγNMD̃) ΛJ̇

J ′

−3 z−
1
2 (λλ̃)−2 (λr) {(λγMD̃J ′

J̇
) , (λγND̃)}(λ̃γNMD̃) ΛJ̇

J ′

= (λD2 + z−
1
2 w̄ᾱrᾱ) 3 (λλ̃)−1 {(λγMD̃J ′

J̇
) , (λγND̃)}(λ̃γNMD̃) ΛJ̇

J ′

= (λᾱDᾱ + z−
1
2 w̄ᾱrᾱ) 3 (λλ̃)−1 {(λγMD̃J ′

J̇
) , (λγND̃)}(λ̃γNMD̃) ΛJ̇

J ′ ,

where we have used that (λD1) · ΛJ̇
J ′ = 0, and

{(λD1), {(λγMD̃J ′

J̇
), (λγND̃)}(λ̃γNMD̃)} = 0 , (4.75)

which can be proved by noting that the anticommutator is

∝ {(λγMD̃J ′

J̇
), (λγND̃)}(λ̃γNMγTλ)v̄T ,

and this vanishes because λ is a pure spinor. The last three terms of (4.73) can also

be rewritten in a convenient form after a few manipulations. Note first that

{(λγSD̃J ′

J̇
) , (λγP D̃)} = 2 v̄T (λγSγJ

′

J̇
γµγTγPλ)

∂

∂xµ
, (4.76)

and the proof of the result above is similar to the one given for (4.55). This enables

us to conclude that

{(λγMD̃J ′

J ) , (λD2)} = −{(λγND̃J ′

J ) , (λγMD̃)} vN , (4.77)

because we can freely anticommute the chiral gamma matrices on the right-hand side

of (4.76), since when one commutes two of the gamma matrices the term proportional

to η has three chiral gamma matrices and vanishes using the pure spinor condition

for λ. In addition, we have

{(λγND̃) , (λD)} = 0 , (4.78)

which follows from (4.55) and the trivial fact that {(λγND̃) , (λD2)} = 0. Deriving

both sides of the equation above, the result is

{(λγND̃J ′

J ) , (λD)} = 0 , (4.79)

thus

{(λγSD̃J ′

J ) , (λD2)} = −{(λγSD̃J ′

J ) , (λD1)}. (4.80)
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The final intermediate result that we need is

3 (λλ̃)−1 (λγMD̃J ′

J̇
)(λγSD̃){(λD1) , (λ̃γSMD̃)} (4.81)

+6{(λD1) , (λγSD̃)(D̃γSD̃
J ′

J̇
)}

=
3

2
{(λγMD̃J ′

J̇
) , (λγND̃)}(D̃γMNT D̃)vT ,

which can be proved by computing all the anticommutators of the both sides of the

equation and comparing the results. Finally, using (4.77), (4.80) and (4.81) the last

three terms of (4.73) are equal to

−3

2
(λλ̃)−1 {(λγMD̃J ′

J̇
) , (λγND̃)}vN(λγSD̃)(λ̃γSMD̃) ΛJ̇

J ′ (4.82)

+
3

2
(λλ̃)−1 vM{(λγMD̃J ′

J̇
) , (λγND̃)}(λγSD̃)(λ̃γSND̃) ΛJ̇

J ′

+
3

2
{(λγMD̃J ′

J̇
) , (λγND̃)}(D̃γMNT D̃)vT ΛJ̇

J ′

= {(λD1) , (A(0))J
′

J̇
},

where, in addition, we have used that the part of (A(0))J
′

J̇
given in (4.67) that is

independent of the anticommutator can be written in the form

3 (λλ̃)−1 (λγMD̃J ′

J̇
)(λγSD̃)(λ̃γSMD̃) + 6(λγMD̃)(D̃γMD̃

J ′

J̇
) , (4.83)

using the Fierz identity. From (4.72), (4.74) and (4.82) we conclude that

(λᾱDᾱ + z−
1
2 w̃ᾱrᾱ) (A(0))J

′

J̇
ΛJ̇
J ′ = (−DJ ′

J̇
Ω(0)) ΛJ̇

J ′ ,

or in other words, that the first equation of (4.70) is satisfied for the (A(0))J
′

J̇
given

in (4.67).

Using similar arguments and following exactly the same steps, one can show that

all the equations given in (4.70) are satisfied for (A(0))J
′

J̇
, (A(1))J

′

J̇
and (A(2))J

′

J̇
given

in (4.67), (4.68) and (4.69), respectively.

4.5 Proving useful identities

In order to prove that the vertex operator VN given in the previous section is BRST-

closed we had to use several identities. One way to verify these identities is to Wick

rotate SO(1, 9) to SO(10) and write all the expressions in U(5) notation, an excellent

reference on how to perform this change of notation is [45], see also [41]. Another

way is by brute force calculation using four-dimensional notation. The identities in

question are

(λD2) (λγMD̃)(λγND̃)(D̃γMNSD̃)vS = 0 , (4.84)
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(λψ̂)v
1

4
(λγMD̃)(λγND̃)(D̃γMNSD̃)vS + (λD2) (λγMD̃)(λγND̃)(D̃γMNSD̃)vS = 0 ,

(λψ̂)v (λγM ψ̂)(λγND̃)(D̃γMNSD̃)vS + (λD2)
3

2
(λγM ψ̂)(λγN ψ̂)(D̃γMNSD̃)vS = 0 ,

(λψ̂)v
3

2
(λγM ψ̂)(λγN ψ̂)(D̃γMNSD̃)vS + (λD2) (λγM ψ̂)(λγN ψ̂)(ψ̂γMγNγSD̃)vS = 0 ,

(λψ̂)v (λγM ψ̂)(λγN ψ̂)(ψ̂γMγNγSD̃)vS + (λD2)
1

4
(λγM ψ̂)(λγN ψ̂)(ψ̂γMNSψ̂)vS = 0 ,

(λψ̂)v (λγM ψ̂)(λγN ψ̂)(ψ̂γMNSψ̂)vS = 0 ,

where (λψ̂)v = (λγM ψ̂)vM and (λD2) was defined in (4.53).

4.5.1 The analytic method: U(5) notation

The first step of the proof of the identities (4.84) using this method is to Wick

rotate SO(1, 9) to SO(10). After performing this rotation, note that a vector V M

of SO(10) splits as (V ′ȧ, V ′ȧ) in SU(5) × U(1) notation, where ȧ = 1, . . . , 5 and in

our conventions V ′ȧ carries charge +1 and V ′ȧ carries charge −1 under the U(1),

moreover

V ′ȧ =
1

2
(V 2ȧ−1 + iV 2ȧ) , V ′ȧ =

1

2
(V 2ȧ−1 − iV 2ȧ) .

The null vector vM that appears in the identities (4.84) was defined in the pre-

vious section, it has the non-zero components vJ+3 = −1
4
σijJ (uu)ij. In U(5) notation

the null condition reduces to

0 = vMv
M = 2 vȧv

ȧ . (4.85)

In addition, we can organize the Gamma matrices ΓM of SO(10) as

bȧ =
1

2
(Γ2ȧ−1 + iΓ2ȧ) , bȧ =

1

2
(Γ2ȧ−1 − iΓ2ȧ) , (4.86)

and from the Clifford algebra {ΓM ,ΓN} = 2ηMN one can easily deduce the algebra

satisfied by the bȧ and bȧ defined above

{bȧ, bḃ} = δȧ
ḃ
, {bȧ, bḃ} = 0 , {bȧ, bḃ} = 0 ,

which is isomorphic to the algebra of five fermionic creation and annihilation opera-

tors. In our conventions, bȧ = b†ȧ where † means the adjoint operator. We will define

the vacuum state |0〉 as the state being annihilated by all bȧ,

bȧ|0〉 = 0 , (4.87)
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and defining 〈0| to be |0〉†, we also have

〈0|bȧ = 0 . (4.88)

Note that acting with the creation operators on the vacuum, we generate 25 = 32

states that we will call generically as |A〉, and the same number of states is generated

by acting with the annihilation operators on 〈0|, these states we will be called 〈B|.
One can show that 〈B|bȧ|A〉 = (Γȧ)BA and 〈B|bȧ|A〉 = (Γȧ)

B
A forms a representation

of the Gamma matrices satisfying the Clifford algebra.

The chirality matrix, Γ11 = (−i)Γ1 . . .Γ10, satisfying (Γ11)2 = 1 and (Γ11)† = Γ11,

is written in terms of the operators bȧ and bȧ as

Γ11 = (2b1b
1 − 1) . . . (2b5b

5 − 1) , (4.89)

and it is easy to see that Γ11|0〉 = |0〉.
The spinors that appear in the identities (4.84) are the bosonic λᾱ and the

fermionics D̃ᾱ and ψ̂ᾱ, all of them Weyl spinors of positive chirality. These spinors,

by definition, are eigenstates of the chirality matrix Γ11 with eigenvalue 1 and they

can be described in SU(5)× U(1) notation as

|λ〉 = λ++|0〉+
1

2
λȧḃb

ḃbȧ|0〉+
1

24
λȧεȧḃċḋėb

ėbḋbċbḃ|0〉 , (4.90)

|D̃〉 = D̃++|0〉+
1

2
D̃ȧḃb

ḃbȧ|0〉+
1

24
D̃ȧεȧḃċḋėb

ėbḋbċbḃ|0〉 ,

|ψ̂〉 = ψ̂++|0〉+
1

2
ψ̂ȧḃb

ḃbȧ|0〉+
1

24
ψ̂ȧεȧḃċḋėb

ėbḋbċbḃ|0〉 ,

where εȧḃċḋė is completely antisymmetric in all its indices and ε12345 = 1. From the

expressions above, it is not difficult to see that Γ11|λ〉 = |λ〉 and similarly for the

others. In our conventions, the vacuum state |0〉 does not carry U(1) charge and the

operator bȧ carries charge +1, this implies that if we normalize the scalar component

of the decomposition of a chiral spinor to have charge +5
2
, for example λ++ in the

expression above, λȧḃ carries U(1) charge 1
2

and λȧ carries U(1) charge −3
2
. In

conclusion, a generic chiral spinor with positive chirality Sᾱ splits as (S++, Sȧḃ, S
ȧ)

carrying U(1) charge (5
2
, 1

2
,−3

2
).

Before starting any computation, we need the charge conjugation matrix C in

U(5) notation. This matrix has the property CΓM = −(ΓM)TC where T means

matrix transposition and in a particular basis it is expressed in terms of the Gamma

matrices as C = iΓ2Γ4Γ6Γ8Γ10, which is equivalent to

C = Π5
ȧ=1(bȧ − bȧ) .
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Two very important properties of the matrix C that can be verified by explicit

computations using the expression above are

bȧC = −Cbȧ , bȧC = −Cbȧ . (4.91)

In addition, note that the only non-vanishing vacuum matrix element involving one

matrix C and creation operators is

〈0|Cbȧbḃbċbḋbė|0〉 = εȧḃċḋė , (4.92)

where εȧḃċḋė is completely antisymmetric in all its indices, ε12345 = 1 and 〈0|0〉 = 1.

The coefficient of proportionality in the expression above can be verified by explicitly

performing the computation for ȧ = 1, ḃ = 2, ċ = 3, ḋ = 4 and ė = 5 and noting that

the left-hand side is completely antisymmetric in ȧ, ḃ, ċ, ḋ, ė.

The pure spinor conditions in SO(10) notation are λᾱγMᾱβ̄λ
β̄ = 0. As a first

example we are going to write these conditions in U(5) notation. Note that these

conditions can be written as λCΓMλ = 0 and this implies

〈λ|Cbȧ|λ〉 = 0 , 〈λ|Cbȧ|λ〉 = 0 ,

now substituting the expansion of |λ〉 of (4.90) and using the properties of the matrix

C given in (4.91), we have

〈λ|Cbȧ|λ〉 =
1

24
λ++λḟεḟ ḃċḋė〈0|Cb

ȧbėbḋbċbḃ|0〉

+
1

4
λḃċλėḋ〈0|bḃbċCb

ȧbḋbė|0〉

+
1

24
λ++λḟεḟ ḃċḋė〈0|bḃbċbḋbėCb

ȧ|0〉

=
1

12
λ++λḟεḟ ḃċḋėε

ȧėḋċḃ − 1

4
λḃċλḋėε

ȧḃċḋė

= 2λ++λȧ − 1

4
εȧḃċḋėλḃċλḋė

= 0 . (4.93)

Similarly, one can show using the properties of the bȧ and bȧ operators that

〈λ|Cbȧ|λ〉 ∝ λḃλḃȧ = 0. The solution of these two equations is well-known and in

fact a solution of the first one is automatically a solution of the second. The solution

can be parametrized as

λ++ = es , λȧḃ = uȧḃ , λȧ =
1

8
e−sεȧḃċḋėuḃċuḋė , (4.94)

where s and uȧḃ are the 11 independent components of a pure spinor.
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We now proceed to prove the identities given in (4.84). In what follows, we are

going to work in a Lorentz frame where the only non-zero component of the pure

spinor λ is λ++. Consider first the term

(λγMX) → (λCbȧX) , (λCbȧX) , (4.95)

where X is any chiral spinor and in this Lorentz frame

(λCbȧX) = λ++〈0|Cbȧ|X〉 = 0 , (4.96)

(λCbȧX) = λ++ 1

24
εḟ ḃċḋėX

ḟ〈0|Cbȧbėbḋbċbḃ|0〉

= λ++ 1

24
εḟ ḃċḋėε

ȧėḋċḃX ḟ = λ++X ȧ ,

and from this, we conclude, for example, that (λγM ψ̂) → λ++ψ̂ȧ, which explains,

in particular, the fact that the term (λγM ψ̂) has only 5 independent components.

In order to prove the identities (4.84), we need to write the following expression in

U(5) notation

(λγMX)(λγNY )(ZγMγNγPK)vP , (4.97)

for any fermionic chiral spinors X, Y, Z and K and λ a pure spinor. This expression

is proportional to

(λ++)2X ȧY ḃ〈Z|Cbȧbḃbċ|K〉v
ċ + (λ++)2X ȧY ḃ〈Z|Cbȧbḃb

ċ|K〉vċ , (4.98)

where we have used (4.96). It is left to evaluate the matrix element involving 〈Z|
and |K〉. In this direction, we note that

bȧ|K〉 = bȧK
++|0〉+ bȧ

1

2
Kḃċb

ċbḃ|0〉+ bȧ
1

24
K ḃεḃċḋėḟb

ḟbėbḋbċ|0〉 ,

= Kḃȧb
ḃ|0〉+

1

6
K ḃεḃċḋėȧb

ėbḋbċ|0〉 ,

bḃbȧ|K〉 = Kḃȧ|0 > +
1

2
K ċεċḋėḃȧb

ėbḋ|0〉 ,

bċbḃbȧ|K〉 = K ḋεḋėċḃȧb
ė|0〉 .

Using the results above, one can easily deduce

〈Z|bȧbḃbċ|K〉v
ċ = Z ḋK ėvċεėḋȧḃċ ,

and

〈Z|Cbȧbḃb
ċ|K〉vċ = −〈Z|Cbȧbċbḃ|K〉vċ + 〈Z|Cbȧ|K〉vḃ

= 〈Z|Cbċbȧbḃ|K〉vċ + 〈Z|Cbȧ|K〉vḃ − 〈Z|Cbḃ|K〉vȧ
= Z ċKȧḃvċ − ZȧḃK

ċvċ + Z ċKċȧvḃ − Z
ċKċḃvȧ .
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Collecting all the terms, one has

vS(λγSW )(λγMX)(λγNY )(ZγMγNγPK)vP ∝ (4.99)

(λ++)3W ḋvḋX
ȧY ḃZ ėK ḟvċεḟ ėȧḃċ

+ (λ++)3W ḋvḋX
ȧY ḃ(Z ċKȧḃvċ − ZȧḃK

ċvċ + Z ċKċȧvḃ − Z
ċKċḃvȧ) ,

where W is any chiral spinor. Setting, for example, W = X = Y = Z = K = D̃ in

the expression above,

vS(λγSD̃)(λγMD̃)(λγND̃)(D̃γMγNγP D̃)vP ∝ (λ++)3D̃ḋvḋD̃
ȧD̃ḃD̃ėD̃ḟvċεḟ ėȧḃċ

+ (λ++)3D̃ḋvḋD̃
ȧD̃ḃ(D̃ċD̃ȧḃvċ − D̃ȧḃD̃

ċvċ + D̃ċD̃ċȧvḃ − D̃
ċD̃ċḃvȧ) = 0 ,

where we have used that

D̃ȧD̃ḃD̃ċD̃ḋD̃ė = εȧḃċḋėD̃1D̃2D̃3D̃4D̃5 ,

vȧv
ȧ = 0 and (D̃ȧvȧ)(D̃

ḃvḃ) = 0 due to the fermionic nature of the covariant deriva-

tive. This proves analytically the first identity of (4.84) and replacing D̃ by ψ̂ the

last one as well.

The proof of the remaining identities also follows from the general formula (4.99).

In this direction, we will choose vȧ = (0, 0, 0, 0, a1) where a1 is a number. The null

condition vȧvȧ = 0 implies that vȧ = (a2, a3, a4, a5, 0). In what follows, we will

consider a2 = a3 = a4 = 0 in order to simplify the exposition, but the case where

these numbers are different from zero is similar. One can also consider the most

general case where vȧ = (a, b, c, d, e) and vȧ = (a′, b′, c′, d′, e′) with the condition

aa′+ bb′+ cc′+dd′+ ee′ = 0, however, the expressions become very long in this case

and it is convenient to use the computer program Mathematica.

Using the general formula of (4.99), the expression below

X1 (λψ̂)v (λγMD̃)(λγND̃)(D̃γMNP D̃)vP +X2 (λD2) (λγM ψ̂)(λγND̃)(D̃γMNP D̃)vP ,

with X1 and X2 constants, can be rewritten in U(5) notation as

(λ++)3 (X1a5a1) ψ̂4D̃ȧD̃ḃD̃ėD̃ḟεḟ ėȧḃ5 + (λ++)3 (X2a1a5) D̃4ψ̂ȧD̃ḃD̃ėD̃ḟεḟ ėȧḃ5

+ (λ++)3 (4X1a
2
5) ψ̂4D̃4D̃ȧD̃ḃD̃ȧḃ + (λ++)3 (X2a

2
5) D̃4ψ̂4D̃ȧD̃ḃD̃ȧḃ

= −(λ++)3 (X1a5a1) 4! ψ̂4D̃1D̃2D̃3D̃4 + (λ++)3 (X1a5a1) 3! D̃4ψ̂4D̃1D̃2D̃3

+ (λ++)3 (4X1a
2
5) ψ̂4D̃4D̃ȧD̃ḃD̃ȧḃ + (λ++)3 (X2a

2
5) D̃4ψ̂4D̃ȧD̃ḃD̃ȧḃ .
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It is not difficult to see that the final expression above is equal to zero if 4X1 = X2

and this proves the second identity of (4.84). We will give one more example,

consider now the combination of terms

X3 (λψ̂)v (λγM ψ̂)(λγND̃)(D̃γMNP D̃)vP +X4 (λD2) (λγM ψ̂)(λγN ψ̂)(D̃γMNP D̃)vP .

Using the general formula of (4.99) and performing the appropriate substitutions,

these terms are rewritten in U(5) notation as

(λ++)3X3 ψ̂
ḋvḋ ψ̂

ȧD̃ḃD̃ėD̃ḟvċεḟ ėȧḃċ + (λ++)3X4 D̃
ḋvḋ ψ̂

ȧψ̂ḃD̃ėD̃ḟvċεḟ ėȧḃċ

+ (λ++)3X3 ψ̂
ḋvḋ ψ̂

ȧD̃ḃ (D̃ċD̃ȧḃvċ − D̃ȧḃD̃
ċvċ + D̃ċD̃ċȧvḃ − D̃

ċD̃ċḃvȧ)

+ (λ++)3X4 D̃
ḋvḋ ψ̂

ȧψ̂ḃ (D̃ċD̃ȧḃvċ − D̃ȧḃD̃
ċvċ + D̃ċD̃ċȧvḃ − D̃

ċD̃ċḃvȧ) .

Dropping the terms that are equal to zero, substituting the values for vȧ and vȧ and

omitting the overall factor of (λ++)3, we have

−(X3a5a1) 3 ψ̂4D̃4ψ̂ȧD̃ėD̃ḟεḟ ėȧ45 − (X4a5a1) 2 D̃4ψ̂4ψ̂ȧD̃ėD̃ḟεḟ ėȧ45

+ (X3a
2
5) 3 ψ̂4D̃4ψ̂ȧD̃ḃD̃ȧḃ + (X4a

2
5) 2 D̃4ψ̂4ψ̂ȧD̃ḃD̃ȧḃ ,

and it is not difficult to see that the expression above vanishes for the particular

choices X3 = 1 and X4 = 3
2
. This proves the third identity of (4.84) and using

similar arguments one can prove analytically all the remaining identities of (4.84).

4.5.2 The brute force procedure

An alternative procedure to show that all the identities of (4.84) are satisfied is

using brute force. We will illustrate the method with the first identity and in fact

the author of the thesis had developed a Mathematica program that applies it to

all the identities. The first step of the method is to write down all possible terms

that are scalars with +2 ghost number carrying the correct harmonic U(1) charge

and with the correct number of ψ̂ and of derivatives D̃, not considering additional

terms that can be obtained from the basic ones by the pure spinor conditions. The

possible terms with four derivatives are

(λ2D4) = (λαiuuijλ
j
α)(Dβ

kuu
klDγ

l Dγmuu
mnDβn) , (4.100)

(λ̄2D̄4) = (λ̄α̇iuu
ijλ̄α̇j )(D̄k

β̇
uuklD̄

l
γ̇D̄

mγ̇uumnD̄
β̇n) ,

(λλ̄D̄D3) = (λαiuuijD̄
j
α̇λ̄

α̇
kuu

klDβ
l Dβmuu

mnDαn) ,

81



(λλ̄D̄3D) = (λ̄α̇iuu
ijDα

j λ
k
αuuklD̄

l
β̇
D̄β̇muumnD̄

α̇n) ,

(λ̄2D̄2D2) = (Dα
i uu

ijλ̄α̇jD̄
α̇kuuklD̄

l
β̇
λ̄β̇muu

mnDαn) ,

(λ2D2D̄2) = (D̄i
α̇uuijλ

αjDαkuu
klDβ

l λ
m
β uumnD̄

α̇n) ,

and the most general linear combination of these terms with numerical coefficients

Ai will be denoted by Ω′,

Ω′ = A1(λ2D4) + A2(λλ̄D̄D3) + A3(λ̄2D̄2D2) (4.101)

+A4(λ2D2D̄2) + A5(λλ̄D̄3D) + A6(λ̄2D̄4) .

The coefficients above will be fixed by requiring that Ω′ is annihilated by (λD2).

Introducing the notation

(λD2) = λαiuJ
′

i ū
j
J ′Dαj + λ̄α̇iu

i
J̇
ūJ̇jD

α̇j ≡ (λD)2D + (λ̄D̄)2D̄ , (4.102)

we have to solve the following equations to ensure that Ω′ is annihilated

(λD)2D A1 (λ2D4) = 0 , (4.103)

(λD)2D A2 (λλ̄D̄D3) + (λ̄D̄)2D̄ A1 (λ2D4) = 0 ,

(λD)2D [A3(λ̄2D̄2D2) + A4(λ2D2D̄2) ] + (λ̄D̄)2D̄ A2 (λλ̄D̄D3) = 0 ,

(λD)2D A5 (λλ̄D̄3D) + (λ̄D̄)2D̄ [A3(λ̄2D̄2D2) + A4(λ2D2D̄2) ] = 0 ,

(λD)2D A6 (λ̄2D̄4) + (λ̄D̄)2D̄ A5 (λλ̄D̄3D) = 0 ,

(λ̄D̄)2D̄ A6 (λ̄2D̄4) = 0 .

The first and the last equation of the set of equations above are trivially satisfied

for any A1 and A6, because there are only four different derivatives of the type

ūiJ ′Dαi and four of the type ūJ̇i D̄
i
α̇ and the derivatives are fermionic. The second

equation is explicitly

A1 (λ̄α̇iu
i
J̇
ūJ̇j D̄

α̇j)(λαkuuklλ
l
α)(ūD)4 (4.104)

+A2 (λγpuJ
′

p ū
t
J ′Dγt)(λ

αiuuijD̄
j
α̇λ̄

α̇
kuu

klDβ
l Dβmuu

mnDαn) = 0 ,

where we have used the definition

(Dβ
kuu

klDγ
l Dγmuu

mnDβn) = (ūD)4 .

It is possible to perform a few manipulations on the second term on the left-hand

side of the equation (4.104) in order to rewrite it as the first term. Mainly, one uses

the identities

ūjJ ′Dγj ū
l
K′D

β
l Dβmuu

mnDαn = −1

4
εJ ′K′εγα(ūD)4 , (4.105)
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which follows because there is only one non-zero possible combination of four deriva-

tives of the type ūiJ ′Dαi, and

0 = λαiλ̄α̇i = λαiδji λ̄
α̇
j = λαiuJ

′

i ū
j
J ′λ̄

α̇
j + λαiūJ̇i u

j

J̇
λ̄α̇j , (4.106)

which implies that

λαiuJ
′

i ū
j
J ′λ̄

α̇
j = −λαiūJ̇i u

j

J̇
λ̄α̇j . (4.107)

Using these identities, we have

(λγpuJ
′

p ū
t
J ′Dγt)(λ

αiuuijD̄
j
α̇λ̄

α̇
kuu

klDβ
l Dβmuu

mnDαn) = (4.108)

(λγpuJ
′

p ū
t
J ′Dγt)(λ

αiuuijD̄
j
α̇λ̄

α̇
k ū

k
I′ū

l
K′ε

I′K′Dβ
l Dβmuu

mnDαn) =

1

4
λγpuJ

′

p λ
αiuuijD̄

j
α̇λ̄

α̇
k ū

k
I′ ε

I′K′εJ ′K′εγα (ūD)4 =

−1

4
(λγpuI

′

p λ
i
γ ū

J̇
i ū

K̇
j εJ̇K̇ D̄

j
α̇λ̄

α̇
k ū

k
I′)(ūD)4 =

1

4
(λγpūİpλ

i
γ ū

J̇
i ū

K̇
j εJ̇K̇ D̄

j
α̇λ̄

α̇
ku

k
İ
)(ūD)4 =

1

8
(λ̄α̇ku

k
İ
ūİjD̄

α̇j)(λγpuupiλ
i
γ)(ūD)4 ,

where in the last line, we have used

λγiūİi ū
J̇
j λ

j
γ =

1

2
εJ̇ İ(λγiuuijλ

j
γ) , (4.109)

and substituting the final result of (4.108) in (4.104), we conclude that

(A1 +
1

8
A2) (λ̄D̄)2D̄ (λ4D4) = 0 , (4.110)

which fixes A2 as a function of A1. Performing similar manipulations it is possible

to fix the value of A5 as a function of the value of A6 for the fifth equation of (4.103)

to be satisfied. In order to show that the third and the fourth equation are also

satisfied for a correct choice of the numerical coefficients, we use the identities

Dα
i ū

i
İ
Dβ
jDβkū

j

J̇
ūk
K̇

= (4.111)

−1

3
(εİJ̇D

α
i uu

ijDβ
jDβkū

k
K̇

+ εİK̇D
α
i uu

ikDβ
kDβjū

j

J̇
) ,

D̄α̇iūJ̇i D̄
β̇juujkD̄

γ̇k =

1

3
(εα̇β̇ūJ̇i D̄

i
δ̇
D̄δ̇juujkD̄

γ̇k + εα̇γ̇ūJ̇i D̄
i
δ̇
D̄δ̇juujkD̄

β̇k) ,
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the pure spinor conditions, the Schouten identities and

ūiI′u
j

İ
εjikl = εJ̇ İ(ū

J̇
l u

J ′

k εI′J ′ + ūJ̇ku
J ′

l εJ ′I′) ,

which can be derived by multiplying both sides of uuij = 1
2
εijkluukl by uI

′
j then by

εimnp and finally by εI′J ′ . Using all these identities and the previous results, one has

(λD)2D (λ2D4) = 0 , (λ̄D̄)2D̄ (λ̄2D̄4) = 0 , (4.112)

(λD)2D (λλ̄D̄D3) =
1

8
(λ̄D̄)2D̄ (λ2D4) , (λ̄D̄)2D̄ (λλ̄D̄3D) =

1

8
(λD)2D (λ̄2D̄4) ,

(λD)2D (λ̄2D̄2D2) = −2

3
(λ̄D̄)2D̄ (λλ̄D̄D3) +

2

3
(λλ̄2D̄2D3) ,

(λ̄D̄)2D̄ (λ̄2D̄2D2) =
2

3
(λD)2D (λλ̄D̄3D)− 2

3
(λ2λ̄D̄3D2) ,

(λ̄D̄)2D̄ (λ2D2D̄2) = −2

3
(λD)2D (λλ̄D̄3D)− 2

3
(λ2λ̄D̄3D2) ,

(λD)2D (λ2D2D̄2) =
2

3
(λ̄D̄)2D̄ (λλ̄D̄D3) +

2

3
(λλ̄2D̄2D3) ,

where we have introduced the notation

(λλ̄2D̄2D3) = λαiuuij D̄
j
α̇ λ̄

α̇
k u

k
İ
ūİl D̄

l
β̇
λ̄β̇m uu

mnDαp uu
ptDγ

tDγn ,

(λ2λ̄D̄3D2) = λαiuI
′

i ū
j
I′D

β
j λ

k
β uuklDαm uu

mnλ̄α̇nD̄
α̇p uuptD̄

l
β̇
D̄β̇t .

Using the set of equations of (4.112), it is not difficult to see that Ω′ given in

(4.101) is annihilated by (λD2) if the Ai are replaced with

Ω′ = (λ2D4)− (λ̄2D̄4)− 8(λλ̄D̄D3) + 8(λλ̄D̄3D) (4.113)

−6(λ̄2D̄2D2) + 6(λ2D2D̄2),

and one can show using the ansatz for the chiral gamma matrices of (2.66) that

this result is the four-dimensional reduction of the expression below written in ten-

dimensional notation

1

4
(λγMD̃)(λγND̃)(D̃γMNP D̃)vP ,

which proves the first identity of (4.84) as we wanted. All the remaining identities

can be also proved following the same steps.

Another important property of Ω′ that can be derived by brute force using four-

dimensional notation is

[ (λD1) , Ω′ ] = 0 , (4.114)
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where (λD1) was defined in (4.53). Note that the only non-zero anticommutator

involving the covariant derivatives is

{Dαi, D̄
j
α̇} = −2iδji (σ

µ
αα̇)

∂

∂xµ
,

and in principle the commutator (4.114) can be non-zero as a consequence of

{ui
J̇
Dαi, ū

K̇
j D̄

j
α̇} = −2iδK̇

J̇
(σµαα̇)

∂

∂xµ
, {ūiJ ′Dαi, u

K′

j D̄
j
α̇} = −2iδK

′

J ′ (σµαα̇)
∂

∂xµ
,

however, we will give three examples that illustrate how one can show that this

commutator vanishes. Note that in four-dimensional notation

(λD1) = λαiuuijuu
jkDαk + λ̄α̇iuu

ijuujkD̄
α̇k , (4.115)

and the first two examples are

[λαiuuijuu
jkDαk , (λ2D4) ] = 0 , [ λ̄α̇iuu

ijuujkD̄
α̇k , (λ̄2D̄4) ] = 0 ,

where (λ2D4) and (λ̄2D̄4) were defined in (4.100). A less trivial example is

[λαiuuijuu
jkDαk , (λ̄2D̄4) ] = −8i(λ̄α̇iuu

ijλ̄α̇j )(λαkuuklD̄
l
β̇
D̄β̇muumnD̄

γ̇nσµαγ̇
∂

∂xµ
) ,

[ λ̄α̇iuu
ijuujkD̄

α̇k , (λλ̄D̄3D) ] = −i(λ̄α̇iuuijλ̄α̇j )(λαkuuklD̄
l
β̇
D̄β̇muumnD̄

γ̇nσµαγ̇
∂

∂xµ
) ,

where we have used the pure spinor conditions for λ. From the expressions above it

is easy to see that with the correct value of the coefficients that we can read from

(4.113), one has

[λαiuuijuu
jkDαk , −(λ̄2D̄4) ] + [ λ̄α̇iuu

ijuujkD̄
α̇k , 8(λλ̄D̄3D) ] = 0 .

As illustrated by these examples, the way to prove that the commutator (4.114)

vanishes using four-dimensional notation is by computing the commutators, then

collecting the terms with equal number of D and D̄ and after a judicious use of

the pure spinor conditions showing that they vanish. The calculation is tedious but

straightforward and further details will be omitted.

4.6 An example: the dilaton vertex operator

In this section, we are going to give an example on how the general formula for the

vertex operators VN given in (4.45) can be evaluated. We will show that when a

particular dual superfield T , that will be defined below, is replaced in the general

formula, the vertex operator for the zero-momentum dilation of (4.12) is recovered.
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In order to do this we will need to evaluate the integrals
∫
du over the group SU(4)

and these integrals can be evaluated indirectly using group theoretic arguments as

we will explain. Firstly, we need to fix our normalization condition which is∫
du = 1 . (4.116)

The measure du is the Haar measure over the compact group SU(4) [65] and

it is invariant under the transformations of this group. From the group theory, we

know that the only three invariant tensors under this group are δij, εijkl and εijkl,

which means that the result of the integration must be a combination of terms that

depend on these tensors. We will illustrate this idea with three examples. The first

one is the integral ∫
du (uj

J̇
ūJ̇k ) ∝ δjk , (4.117)

where the symbol ∝ is because the only invariant tensor that can be formed with

the SU(4) indices appearing on the left-hand side is the δ tensor. In order to fix the

constant of proportionality we contract both sides of the expression with δkj and the

final result is ∫
du (uj

J̇
ūJ̇k ) =

1

2
δjk . (4.118)

Similarly, we have

∫
du uuij uukl ∝ εijkl , (4.119)

and contracting both sides of this expression with εijkl we find that the constant of

proportionality is −1
6
. The last example is∫
du ūiI′u

I′

j ū
k
J ′u

J ′

l = Aδij δ
k
l +B δkj δ

i
l , (4.120)

and we can get two conditions for A and B by contracting both sides of this expres-

sion with δji and with δjk. The two conditions are

× δji → δkl = 4Aδkl +Bδkl , × δjk →
1

2
δil = Aδil + 4Bδil , (4.121)

and the solution of the system of equations above is A = 7
30

and B = 1
15

.

After this short explanation about harmonic integration, let us return to the main

purpose of this subsection which is the derivation of the dilaton vertex operator of

(4.12) from a particular choice of T (2)(u, ū, x, θ, θ̄). The superfield T in question is

T (2)(u, ū, x, θ, θ̄) = i
∏

J ′=1,2

∏
α=1,2

(uJ
′

j θ
j
α) =

i

12
(θαi uuij θ

βjθkβ uukl θ
l
α) . (4.122)
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As a consistent check, we know that the dilaton vertex operator is dual to the

linearized super-Yang-Mills action. This implies that when we replace this T in

(4.42) we must get the action. In fact using

(Dα
i uu

ij Dβ
jDβk uu

klDαl) · (θγm uumn θδnθpγ uupt θtγ) = 122 , (4.123)

one has∫
d4x

∫
du
∫
d8(uθ)W (2)(u, x, θ, θ̄)T (2)(u, ū, x, θ, θ̄) ∝

∫
d4x

∫
du D̄4 Tr (W 2) ,

which is the linearized super-Yang-Mills action.

The general formula for the vertex operators VN given in (4.45) reduces in the

case of N = 2 to

V =
∫
du [(yijuu

ij) Ω
(0)
min T

(2) + 8 Ω
(1)
min T

(2)] , (4.124)

where Ω
(0)
min and Ω

(1)
min were defined in (4.52). Replacing the expression of T (2) of

(4.122) on the formula above, we note that the only non-zero contribution is from

the terms in Ω
(0)
min and Ω

(1)
min with derivatives of the type ūiJ ′Dαi described in four-

dimensional notation. We will compute these terms in great detail for Ω
(0)
min and give

the result for Ω
(1)
min since the procedure to obtain these terms on both cases is the

same. We first note that

Ω
(0)
min = −1

4
(λγMD̃)(λγND̃)(D̃γMNP D̃) vP = (4.125)

−1

4
(λγµD̃)(λγνD̃)(D̃γµνI+3D̃) vI+3 − 1

2
(λγI+3D̃)(λγµD̃)(D̃γI+3γµγJ+3D̃)vJ+3

−1

4
(λγI+3D̃)(λγJ+3D̃)(D̃γ(I+3)(J+3)(K+3)D̃) vK+3 ,

and using the ansatz for the chiral gamma matrices of (2.66) and keeping only the

terms with ūiJ ′Dαi derivatives, we have

(λγµD̃) → (λ̄α̇i iσ
µα̇α uuij Dαj) ,

(λγI+3D̃) → (λαi σIij uu
jkDαk) ,

(D̃γµγνγI+3D̃) vI+3 → −(Dα
i uu

iji(σµ)αα̇i(σ̄ν)
α̇βuujkuu

klDβl) ,

(D̃γI+3γJ+3γK+3D̃) vK+3 → −(Dα
i uu

ij(σI)jk(σJ)kluulmuu
mnDαn) ,

(D̃γI+3γµγJ+3D̃)vJ+3 → 0 ,

where the last term is equal to zero because it necessarily has a ūJi D̄
i
α̇ derivative.

Using the properties of the Pauli matrices given in the Appendix A and the pure
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spinor conditions for λ, one can contract all the terms and after a few manipulations

the final result is

Ω
(0)
minD4 = −(λαi uuijλ

j
α)(Dβ

k uu
klDγ

l Dγm uu
mnDβn) , (4.126)

where the subscript D4 means that we have kept only the terms with four derivatives

of the type ūiJ ′Dαi. Using (4.122), (4.123) and the result above, one concludes

Ω
(0)
minT

(2) = −12i(λαi uuijλ
j
α) . (4.127)

Following the same steps, one can show that

Ω
(1)
minD3 =

−4λαiψ̄α̇i λ̄α̇juu
jkDβ

kDαluu
lmDβm − 4λ̄α̇i ψ

i
αλ̄α̇juu

jkDβ
kD

α
l uu

lmDβm

− 4εijklλ
αiψjαλ

βmuulnDβnD
γ
puu

pkuI
′

mū
t
I′Dtγ

+ 4εijklλ
αiψjαλ

βluumnDβnD
γ
puu

pkuI
′

mū
t
I′Dγt

+4λ̄α̇iψ̄
α̇
j λ

αkuuilDαlD
β
muu

mjuuknuu
npDβp − 4λ̄α̇iψ̄

α̇
j λ

αkuujlDαlD
β
muu

miuuknuu
npDβp

− 4λ̄α̇iψ̄
α̇
j λ

αjuuklDαlD
β
muu

miuuknuu
npDβp ,

where the subscript D3 means that we have kept only the terms with three deriva-

tives of the type ūiJ ′Dαi. We can proceed by computing the action of this operator

on the T (2) given in (4.122), mainly one uses

Dγ
k D

β
j D

α
i · (θδluulmθεmθnε uunpθ

p
δ) = (4.128)

4εαδεβγuuijuuklθ
l
δ − 4εαγεβδuuijθ

l
δuulk

+ 4εαδεβγuuikuujlθ
l
δ − 4εαγεβδuuilθ

l
δuujk

+ 4εαβεδγuuikuujlθ
l
δ − 4εαβεγδuuiluujkθ

l
δ ,

and after a tedious calculation, the final result is

Ω
(1)
minT

(2) = (4.129)

−12i λ̄α̇i ψ
i
αλ̄α̇juu

jkuuklθ
αl − 12i ψiαuuijλ

βjλαkuuklθ
l
β

−12i λαiuuijλ
βjψkβuuklθ

l
α − 32i λαiψ̄α̇i λ̄α̇juu

jkuuklθ
l
α

+8i λ̄α̇i uu
ij ψ̄α̇j λ

αkuuklθ
l
α + 4i λ̄α̇iuu

ijuujkψ̄
α̇
l uu

lmuumnλ
αnθkα

−4iλ̄α̇iuu
ijuujkψ̄

α̇
l uu

lmuumnθ
n
αλ

αk .

The final step of the computation is to replace (4.127) and (4.129) on (4.124)

and perform the harmonic integrals. Noting that

(λγI+3ψ̂)(λαiσIijθ
j
α) = −2εijklλ

αiyjmψαmλ
βkθlβ + 2λ̄α̇iyjkψ̄

α̇kλαjθiα , (4.130)
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one can organize the final result in the form

V = 4iλαiyijλ
j
α − 40i(λγI+3ψ̂)(λαiσIijθ

j
α) . (4.131)

The vertex operator is defined up to a BRST-trivial quantity. The two terms on

the right-hand side of the expression above are equal up to a BRST-trivial quantity

as one can show that

Q 1
2
· (z−

1
2yIλαiσIijθ

j
α) = −2(λγI+3ψ̂)(λαiσIijθ

j
α)− (λαiyijλ

j
α) ,

where we have used (4.5) and (4.6). So, up to a BRST-trivial quantity, the vertex

operator is

V = −24i(λαiyijλ
j
α) , (4.132)

and this is, apart from a numerical factor, the dilaton vertex operator of (4.12) as

we wanted to show.

4.7 Making the statement “acts as zero” precise

This section is devoted to making the statement that the terms proportional to λ+ of

Q 1
2

acts as zero when we restrict this operator to act on the states in the cohomology

of Q− 1
2

. The idea is to study one example and show how it works. The example

consists of acting with Q 1
2

on z−
1
2 (λ−γM ψ̂), however, it is easy to generalize it to any

function f(λ−γM ψ̂). The operator Q 1
2

after several manipulations was presented in

its final form in (4.1), note that the terms proportional to the pure spinor conditions

for λ− and the terms proportional to λ+ were excluded because we have argued that

they act as zero. These terms are

Qzero
1
2

= z
1
2 [4λ−αiψαjλ̄

−α̇
i Pλ̄−α̇j

− 4λ̄−α̇i ψ̄jα̇λ
−i
α Pλ−jα − 2λ+γiyijψ̄

jα̇yklλ
+l
γ Pλ̄−α̇

k
(4.133)

+ 2λ̄+α̇
i yijψαj λ

+l
α yklPλ̄−α̇

k
− 2λ+αiyijψ̄

j
α̇λ̄

+α̇
k ykjPλ−αj + 2λ̄+α̇

i yijψαjλ̄
+
kα̇y

jkPλ−jα ] ,

where the superscript zero means the terms of Q 1
2

that act as zero.

Let us act with the operator Q 1
2

on z−
1
2 (λ−γM ψ̂). Considering λ− a pure spinor

and excluding the terms that act as zero, we already know that z−
1
2 (λ−γM ψ̂) is

annihilated because of (4.4). Instead, let us act on z−
1
2 (λ−γM ψ̂) with the complete

Q 1
2
, i.e. Q 1

2
of (4.1) plus Qzero

1
2

, and without considering λ− a pure spinor. Firstly,

the case when M = µ will be considered,

Q 1
2
· z−

1
2 (λ−γµψ̂) = {Qzero

1
2

+ z
1
2 [4λ−αiψαkPyijy

jk (4.134)
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−4λ̄−α̇i ψ̄lα̇Pyijyjl + 4λ−αiψαjψ
β
i Pψβj

− 4λ̄−α̇i ψ̄mα̇ ψ̄
β̇iPψ̄β̇m − 2λ−αiψαjψ̄

j
α̇Pψ̄iα̇

−2λ−α̇i ψαkψ̄
k
α̇Pψαi ]} · z−

1
2 (λ−γµψ̂) =

−2λ+αiyijψ̄
j
α̇λ

+k
α σµα̇βψβk − 2λ̄+

α̇iy
ijψαj λ

+k
α σµα̇βψβk + (λ+αiyijλ

+j
α )ψ̄kα̇σ

µα̇βψβk

+2λ̄+
α̇iλ̄

+α̇
j ψ̄i

β̇
σµβ̇αψαky

jk + 2λ+i
α yijψ̄

j
α̇λ̄

+α̇
k σµα̇αψ̄kα̇ + (λ̄+

α̇iy
ijλ̄+α̇

j )ψ̄k
β̇
σµβ̇αψαk .

Note that the result above depends on λ+. The statement “acts as zero” in fact

means that these terms are Q− 1
2

exact. It is not difficult to see that the first three

terms of the final result of (4.134) are equal to

−2Q− 1
2
· (z

1
2ψαi ψ̄

i
α̇λ

+j
α σµα̇βψβj) ,

similarly, the last three terms are

2Q− 1
2
· (z

1
2ψαiψ̄

i
α̇λ̄

+α̇
j σµβ̇αψ̄j

β̇
) ,

and this proves that all the terms are Q− 1
2

exact.

We can repeat the same steps of the calculation above for the case whenM = I+3

with the same conclusion, and for completeness we will present the details,

Q 1
2
· z−

1
2 (λ−γI+3ψ̂) = (4.135)

2λ+αiλ̄+
α̇iψαjy

jkσIklψ̄
α̇l − 2λ+αiyijψ̄

j
α̇λ

+k
α σIklψ̄

α̇l − 2λ+αiyijψ̄
j
α̇λ̄

+α̇
k yklσIlmy

mnψαn

−2λ̄+
α̇iy

ijψαj λ
+k
α yklσ

Ilmymnψ̄
α̇n + 2λ̄+α̇

i yijψαj λ̄
+
α̇kσ

Iklψαl − 2λ+αiλ̄+
α̇iψαjσ

Ijkyklψ̄
α̇l ,

and the first three lines are equal to

2Q− 1
2
· (z

1
2λ+αiyijψ̄

j
α̇ψαky

klσIlmψ̄
α̇m) ,

moreover, the last three lines can be written as

2Q− 1
2
· (z

1
2 λ̄+

α̇iy
ijψαj ψαkσ

Iklylmψ̄
α̇m) ,

finally, one concludes that when M = I + 3, all the terms are Q− 1
2

exact.

In this section, we showed that all the terms proportional to λ+ resulting from

the action of Q 1
2

on the term z−
1
2 (λ−γM ψ̂) are Q− 1

2
exact. It is straightforward to

generalize this result for a function f(λ−γM ψ̂) due to the fact that the operator Q 1
2

acts as a derivative operator. The aim of presenting this example was to illustrate

how the statement “acts as zero” used at several points in the chapter 3 should be

understood. The case of Q 1
2

was considered here, nevertheless similar arguments

can be used for all Q 3
2

+ . . ..
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Chapter 5

Conclusion

In this thesis, we computed the zero mode cohomology at +2 ghost number of the

BRST operator of the pure spinor formalism in the background AdS5 × S5 close

to the boundary of AdS. The states in this cohomology correspond to on-shell

supergravity states. The first step of the method used for the computation consists

in expanding both the BRST operator and the physical vertex operators V in powers

of z, where z is the distance from the AdS boundary. Since the expansion of V has

a term of minimum degree, where degree is defined to be the power of z, and all the

terms in the BRST operator expansion have a fixed degree, it was possible to use

standard methods to compute the cohomology of the BRST operator. Note that

our results are valid inside the region of the validity of the z expansion.

The conjecture (AdS/CFT) predicts that every on-shell physical superstring

state is dual to a single-trace gauge-invariant operator of N = 4 d = 4 super-

Yang-Mills, in particular, supergravity states are dual to Half-BPS operators. All

the Half-BPS operators of N = 4 d = 4 super-Yang-Mills and their duals can

be elegantly described as superfields defined in a specific harmonic superspace, as

explained in the chapter 4. The vertex operators in the BRST cohomology corre-

sponding to the on-shell physical supergravity states constructed in this thesis were

described in terms of these dual superfields as expected by holography. The results

were proved to be consistent, because under a gauge transformation of the dual

superfields, the vertex operators change by a BRST-trivial quantity.

In principle, the method for constructing the supergravity vertex operators used

in this thesis can be generalized to construct the massive vertex operators of the

theory. In the supergravity limit, the worldsheet variables only depend on the

worldsheet coordinate τ and all their σ derivatives are zero. To construct the massive

vertex operators, it is necessary to consider that the worldsheet variables depend on

both τ and σ. So, the first step in generalizing the method would be the computation

of the cohomology of the complete operator Q− 1
2

defined in (3.14), i.e, not dropping
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the terms that contain σ derivatives of the variables. As explained in the chapter

3, the zero mode cohomology of this operator was already computed by Mikhailov

and Xu in [23], and their results used in this thesis. The only known massive vertex

operator in the pure spinor formalism is the one proposed by Mazzucato and Vallilo

in [66] for the Konishi state and it would be interesting to compare their result with

the one resulting from the generalization of the method used in this thesis. It would

be also interesting to compare with the RNS vertex operators in a specific limit

proposed by Minahan in [67].

Generalizing the method for computing the massive vertex operators will also

allow the computation of the spectrum. It is not known how to compute the spec-

trum of the superstrings in AdS5 × S5 from first principles. Recent progresses in

this direction are the articles by Benichou [68, 69, 70] and a previous article by

Mikhailov and Schafer-Nameki [58]. Benichou computed the fusion of a class of line

operators in the lowest order in perturbation theory using the pure spinor formalism

and derived a Hirota equation which allows the computation of the spectrum using

integrability techniques. The proof that the theory of superstrings in AdS5 × S5 is

integrable, at least at the classical level, was given by Bena, Roiban and Polchinski

in [71] using the Green-Schwarz formalism and by Vallilo in [72] in the case of the

pure spinor formalism. The energy of an on-shell excitation of a superstring is equal

by holography to the dimension of the dual gauge-invariant operator of N = 4 d = 4

super-Yang-Mills. Using integrability techniques and making some assumptions, the

value of the dimension of all single-trace gauge-invariant operators of N = 4 d = 4

super-Yang-Mills was computed for any value of the coupling constant, a recent

review is [12]. The resulting spectrum of the superstrings could be compared with

these results.

The prescription for computing scattering amplitudes of superstrings in the

pure spinor formalism in the background AdS5 × S5 exists and it was proposed

by Berkovits, see [73], for example. However, a superstring scattering amplitude has

never been computed because of the lack of a vertex operator. In this thesis, the

supergravity vertex operators were constructed, but the results are only valid close

to the boundary of AdS. In principle, the computation of a scattering amplitude

requires the knowledge of the vertex operator for any value of z and not only its

leading term close to the boundary. It is possible to compute more terms in the z

expansion of the vertex operator, as illustrated with a simple example in the section

4.7, where an additional term was explicitly computed. Nevertheless, the opera-

tors Q 3
2

+ . . . that appear in the expansion of the BRST operator are of increasing

complexity and it is not trivial to compute many more terms in the expansion of

V . Knowing the boundary behavior, however, should be enough to compute disc
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amplitudes for one operator in the bulk and N vertex operators corresponding to

open strings located on D-branes close to the boundary of AdS. These open strings

vertex operators can be found, for example, in [41]. The resulting amplitudes are

expected to contain the term given in (4.42) and reproduced below∫
d4x

∫
du
∫
d8(uθ)W (N)(u, x, θ, θ̄)T (4−N)(u, ū, x, θ, θ̄) .
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Appendix A

Pauli Matrices and Spinors

In this thesis, spinors and the Pauli matrices of SO(1, 3) and SO(6) appear fre-

quently. This Appendix is devoted to fixing our conventions and enumerating several

useful properties.

A.1 SO(1, 3)

Our conventions follow closely the conventions of the book by Wess and Bagger [74].

The metric is mostly plus ηµν = diag(−1, 1, 1, 1) and the 4 by 4 Gamma matrices

satisfying the Clifford algebra {Γµ,Γν} = 2ηµν are

Γµ =

 02 iσµαα̇
iσ̄µα̇α 02

 ,

where 0n is a zero n by n matrix, σµαα̇ are

σ0
αα̇ =

 −1 0

0 −1

 , σ1
αα̇ =

 0 1

1 0

 ,

σ2
αα̇ =

 0 −i
i 0

 , σ3
αα̇ =

 1 0

0 −1

 ,

and as matrices

σ̄0 = σ0 , σ̄i = −σi , i = 1, 2, 3 .

The completely antisymmetric tensors εαβ, εα̇β̇, εαβ and εα̇β̇ have the non-zero

components

ε21 = ε12 = 1 , ε12 = ε21 = −1 , ε2̇1̇ = ε1̇2̇ = 1 , ε1̇2̇ = ε2̇1̇ = −1 . (A.1)
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Useful identities involving σ matrices and ε tensors are

(σ̄µ)α̇α = εα̇β̇εαβ(σµ)ββ̇ , (σµ)αα̇(σ̄µ)β̇β = −2δβαδ
β̇
α̇ , (A.2)

(σµ)αα̇(σµ)ββ̇ = −2εαβεα̇β̇ , Tr σµσ̄ν = −2ηµν ,

(σµσ̄ν + σν σ̄µ) β
α = −2ηµνδβα , (σ̄µσν + σ̄νσµ)α̇

β̇
= −2ηµνδα̇

β̇
.

Defining

(σµν) β
α =

1

2
(σµαα̇σ̄

να̇β − σναα̇σ̄µα̇β) , (σ̄µν)β̇ α̇ =
1

2
(σ̄µβ̇ασναα̇ − σ̄νβ̇ασ

µ
αα̇) , (A.3)

it is not difficult to see using (A.2) that

(σµν) β
α εβγ = (σµν) β

γ εβα , (σ̄µν)β̇ α̇ ε
α̇γ̇ = (σ̄µν)γ̇ α̇ ε

α̇β̇ , (A.4)

(σµν) α
α = 0 , (σ̄µν)α̇ α̇ = 0 ,

and

(σµν) β
α (σµν)

γ
δ = −4(εαδε

βγ + δγαδ
β
δ ) , (σ̄µν)α̇

β̇
(σ̄µν)

γ̇

δ̇
= −4(εα̇γ̇εβ̇δ̇ + δα̇

δ̇
δγ̇
β̇
) ,

(σµν) β
α (σ̄µν)

γ̇

δ̇
= 0 .

Important identities involving the ε tensors are the Schouten identities,

εαβ εγδ + εαγ εδβ + εαδ εβγ = 0 , (A.5)

εα̇β̇ εγ̇δ̇ + εα̇γ̇ εδ̇β̇ + εα̇δ̇ εβ̇γ̇ = 0 ,

which can be easily derived from the relation

εαβ εγδ = −(δαγ δ
β
δ − δβγ δαδ ) ,

and similarly for the dotted indices. The spinorial indices can be raised and lowered

using the ε tensors, for any two chiral spinors Aα and Āα̇ our convention is

Aβ = εβαA
α , Āβ̇ = εβ̇α̇Ā

α̇ ,

and note that there is an important detail, the spinorial indices of the derivatives

are raised and lowered with an additional minus sign

∂

∂Aβ
= −εβα ∂

∂Aα
,

∂

∂Āβ̇
= −εβ̇α̇ ∂

∂Āα̇
.

A very good review about two-component spinors techniques and the use of the

dot and undot notation is [75].
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A.2 SO(6)

Our conventions follow closely the conventions of the book by Green, Schwarz and

Witten [76]. The 8 by 8 Gamma matrices in the Weyl basis satisfying the Clifford

algebra {ΓI ,ΓJ} = 2δIJ , where δIJ = 1 if I = J and zero otherwise, are

ΓI =

 04 σIij
σIij 04

 ,

where, adapting the results of [77],

σ1
ij =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 , σ2
ij =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , (A.6)

σ3
ij =


0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0

 , σ4
ij =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 ,

σ5
ij =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 , σ6
ij =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 ,

and

(σI)ij =
1

2
εijkl(σI)kl , (σI)ij =

1

2
εijkl(σ

I)kl , (A.7)

where εijkl and εijkl are completely antisymmetric in all their indices with ε1234 = 1

and ε1234 = 1. Note from (A.6) that σIij = −σIji and similarily for σIij. Note also

that

(σI)ij(σJ)jk + (σJ)ij(σI)jk = 2δikδ
IJ ,

which ensures that the Gamma matrices ΓI satisfy the Clifford algebra. Additional

useful identities are

(σI)ij(σI)
kl = 2(δliδ

k
j − δki δlj) , (A.8)

(σI)ij(σI)kl = −2εijkl , (σI)ij(σI)
kl = −2εijkl ,

(σI)i[j(σ
J)kl] =

1

3
εjklm(σIσJ) m

i , (σI)[ij(σ
J)kl] = −1

3
εijklδ

IJ ,
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where [ ] means antisymmetrization of the indices, and

(σI)†ij = (σI)ij , (σI)ij† = (σI)ij , (A.9)

with † meaning Hermitian conjugation. Finally, we define

(σIJ) j
i =

1

2
(σIikσ

Jkj − σJikσIkj) , (σIJ)i j =
1

2
(σIikσJkj − σJikσIkj) . (A.10)
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Appendix B

The PSU(2, 2|4) algebra in four-dimensional

notation

In this Appendix, we present the PSU(2, 2|4) superalgebra in four-dimensional no-

tation and fix our conventions. The generators of this superalgebra are: the trans-

lation generator Pµ, the special conformal generator Kµ, the dilatation generator

D, the Lorentz generators Mµν , the SU(4) R-symmetry generators U i
j , the super-

symmetry generators [qαi, q̄
i
α̇] and the generators of superconformal transformations

[siα, s̄α̇i]. Using the conventions of the Pauli matrices of Appendix A, the non-zero

commutators and anticommutators of the superalgebra are

[Mµν ,Mρτ ] = ηρ[νMµ]τ + ητ [µMν]ρ , (B.1)

[Mµν , Pρ] = ηρ[νPµ] , [Mµν , Kρ] = ηρ[νKµ] ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ ,

[Pµ, Kν ] = 2ηµνD + 2Mµν ,

[D, qαi] =
1

2
qαi , [D, q̄iα̇] =

1

2
q̄iα̇ , [D, siα] = −1

2
siα , [D, s̄α̇i] = −1

2
s̄α̇i ,

{qαi, q̄jα̇} = 2iδji (σ
µ)αα̇Pµ , {siα, s̄α̇j} = 2iδij(σ

µ)αα̇Kµ ,

[Mµν , qαi] =
1

2
(σµν)

β
α qβi , [Mµν , s

i
α] =

1

2
(σµν)

β
α siβ ,

[Mµν , q̄
β̇i] =

1

2
(σ̄µν)

β̇
α̇q̄

α̇i , [Mµν , s̄
β̇
i ] =

1

2
(σ̄µν)

β̇
α̇s̄

α̇
i ,

[qαi, Kµ] = i (σµ)αα̇s̄
α̇
i , [siα, Pµ] = i (σµ)αα̇q̄

α̇i ,

[q̄β̇i, Kµ] = i(σ̄µ)β̇βsiβ , [s̄β̇i , Pµ] = i(σ̄µ)β̇βqβi ,

[U i
j , U

k
l ] = δilU

k
j − δkjU i

l ,

[U i
j , qαk] = δikqαj −

1

4
δijqαk , [U i

j , s
αk] = −(δkj s

αi − 1

4
δijs

αk) ,

{qαi, sβj} = δji (σ
µν) β

α Mµν − 2δβαδ
j
iD + 4δβαU

j
i ,

{q̄α̇i, s̄β̇j} = δij(σ̄
µν)α̇

β̇
Mµν − 2δα̇

β̇
δijD − 4δα̇

β̇
U i
j ,
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and, for example, [ν µ] = νµ− µν means antisymmetrization of the indices with no

additional factor of half. Under Hermitian conjugation † the generators transform

as

(Pµ)† = −Pµ , (Kµ)† = −Kµ , (D)† = −D , (Mµν)
† = −Mµν , (B.2)

(U i
j)
† = U j

i , (qαi)
† = q̄iα̇ , (siα)† = s̄α̇i .
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Appendix C

Boundary transformations of the variables

In this Appendix, we will show that with our chosen coset representative given in

(2.62) the variables xµ, θαj and θ̄α̇j transform in the usual N = 4 d = 4 supercon-

formal manner when z → 0. Part of this Appendix is based on the article [30] by

Heslop and Howe.

Recall that the N = 4 superspace is described by the supercoset

M4|16 =
{Pµ, Kµ, D,Mµν , qαi, q̄

i
α̇, U

i
j , s

i
α, s̄α̇i}

{Mµν , D, U i
j , Kµ, siα, s̄α̇i}

,

a possible coset representative being

g(x, θ, θ̄) = exp (xµPµ + i θαjqαj + i θ̄α̇j q̄
α̇j) . (C.1)

Recall, also, that the AdS5 space is described by the coset

AdS5 =
SO(2, 4)

SO(1, 4)
=
{1

2
(Pµ +Kµ), D, 1

2
(Pµ −Kµ),Mµν}

{1
2
(Pµ −Kµ),Mµν}

, (C.2)

and the supercoset PSU(2,2|4)
SO(1,4)×SO(6)

is

PSU(2, 2|4)

SO(1, 4)× SO(6)
=
{1

2
(Pµ +Kµ), D, 1

2
(Pµ −Kµ),Mµν , qαi, q̄

i
α̇, U

i
j , s

i
α, s̄α̇i}

{1
2
(Pµ −Kµ),Mµν , U i

j}
.

In this thesis, our chosen coset representative for this last supercoset was given

in (2.62) and is reproduced below

g = g(x, θ, θ̄) exp (i ψαj s
j
α + i ψ̄jα̇s̄

α̇
j ) zD . (C.3)

In general, a coset is of the form G/H where G is a group and H one of its

subgroups called the isotropy group in this context. The generators of the Lie

algebra of G will be denoted here as {YA, XB}. We have organized the generators

in two sets YA and XB where XB is the set of generators of the subgroup H and YA
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the remaining generators of G. Using this notation, for a given coset representative

g the vielbeins eA and the connections wB are defined by

g−1dg = (eAYA + wBXB) .

As an example, we will compute the vielbeins and connections in the case of the

N = 4 superspace using the coset representative g(x, θ, θ̄) of (C.1),

g(x, θ, θ̄)−1dg(x, θ, θ̄) = eµPµ + eαj qαj + eα̇j q̄
α̇j , (C.4)

where all connections are zero in this example and using the PSU(2, 2|4) algebra of

the Appendix B the non-zero components of the one-form vielbeins are

eµµ̆ = δµµ̆ , eµ
ᾰĭ

= −i(σµ)ᾰ˘̇γ
¯̆
θ

˘̇γ

ĭ , eµ,
˘̇
βĭ = −i(σ̄µ)

˘̇
ββ̆θĭ

β̆
, (C.5)

e
˘̇αj̆
α̇k = iδj̆kδ

˘̇α
α̇ , eβk

ᾰĭ
= iδβᾰδ

k
ĭ
.

In this Appendix, we will sometimes distinguish curved indices from flat indices,

one example being the results above. We remind the reader that in our conventions

curved indices are similar to the flat indices except that they appear with a breve

symbol. Under a global transformation of PSU(2, 2|4) with an element gP of this

group, the coset representative g(x, θ, θ̄) transforms as

gP g(x, θ, θ̄) = g(x′, θ′, θ̄′)h , (C.6)

where h is an element of the isotropy group and the variables with prime are the

transformed variables.

In the case of an infinitesimal transformation parametrized by ζA, we can write

X ′M̆ = XM̆ + δXM̆ where XM̆ is a shorthand notation for all the variables, and

(C.6) becomes

(1 + ζATA) g(X) = (g(X) + δXM̆ ∂g(X)

∂XM̆
) (1 + δh) , (C.7)

where TA means all the generators of the group. Multiplying from the left both sides

of this equation with g(X)−1, we conclude

g(X)−1 (ζATA) g(X) = δXM̆ eA
M̆
YA + isotropy . (C.8)

The above equation is the main formula that we will use in order to understand

how the variables transform close to the boundary of AdS. We will illustrate its

use with simple examples. Consider that the only non-zero ζA is ζ ij with ζ ii = 0 and

replacing g(X) by g(x, θ, θ̄), the left-hand side of (C.8) becomes

g−1(x, θ, θ̄) (ζ ijU
j
i ) g(x, θ, θ̄) = (C.9)

ζ ijU
j
i + iθγkζ ikqγi − iθ̄γ̇iζ ij q̄γ̇j − 2iζ ikθ

γk(σµ)γγ̇ θ̄
γ̇
i Pµ =

iθγkζ ikqγi − iθ̄γ̇iζ ij q̄γ̇j − 2iζ ikθ
γk(σµ)γγ̇ θ̄

γ̇
i Pµ + isotropy
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where we have used the Hadamard lemma of (3.1) for performing the computation.

Equating this result with the right-hand side of (C.8) we have

iθγkζ ikqγi − iθ̄γ̇iζ ij q̄γ̇j − 2iζ ikθ
γk(σµ)γγ̇ θ̄

γ̇
i Pµ =

(δxµeνµ + δθαjeναj + δθ̄γ̇ie
ν,γ̇i)Pν + (δθαjeakαj)qak + (δθ̄α̇je

α̇j
γ̇k)q̄

γ̇k ,

and solving for δxµ, δθαj and δθ̄α̇j, taking into account the expressions for the

vielbeins given in (C.5), one easily concludes

δxµ = 0 , δθαj = ζjkθ
αk , δθ̄α̇j = −ζ ij θ̄α̇i . (C.10)

In the next example, let us consider that the only non-zero ζA is ζµ, then

g−1(x, θ, θ̄) (ζµPµ) g(x, θ, θ̄) = ζµPµ , (C.11)

and following the same steps of the first example, it is easy to see that

δxµ = ζµ , δθαj = 0 , δθ̄α̇j = 0 .

We will give two more examples where the only non-zero ζA are ζ and [ζαj, ζ̄α̇j].

The first case is

g−1(x, θ, θ̄) (ζD) g(x, θ, θ̄) = ζD + ζxνPν +
i

2
ζθγkqγk +

i

2
ζθ̄γ̇j q̄

γ̇j

= ζxνPν +
i

2
ζθγkqγk +

i

2
ζθ̄γ̇j q̄

γ̇j + isotropy ,

and

δxµ = ζxµ , δθαj =
1

2
ζθαj , δθ̄α̇j =

1

2
ζθ̄α̇j ,

finally,

g−1(x, θ, θ̄) (iζαjqαj + iζ̄α̇j q̄
α̇j) g(x, θ, θ̄) =

iζαjqαj + iζ̄α̇j q̄
α̇j + 2iθγk(σµ)γγ̇ ζ̄

γ̇
kPµ − 2iζαj(σµ)αδ̇θ̄

δ̇
jPµ ,

which implies

δxµ = −iζαj(σµ)αγ̇ θ̄
γ̇
j − iζ̄α̇j(σ̄µ)α̇αθjα , δθαj = ζαj , δθ̄α̇j = ζ̄α̇j.

Using a similar reasoning, it is not difficult to compute the remaining N = 4

d = 4 superconformal transformations of the variables not computed above. We

will proceed to study the global PSU(2, 2|4) transformations of the variables that

parametrize the AdS supercoset PSU(2,2|4)
SO(1,4)×SO(6)

with the coset representative being g
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of (C.3). Firstly, let us consider the case ψ = ψ̄ = 0 and compute the vielbeins and

connections for this case, the results are

g−1dg|ψ=ψ̄=0 =
1

z
eµPµ +

1√
z
eαjqαj +

1√
z
eα̇j q̄

α̇j +
dz

z
D +

√
zidψαj s

j
α +
√
zidψ̄jα̇s̄

α̇
j ,

where eµ, eαj, eα̇j were defined in (C.5). Analyzing these results, we conclude that

eµ(AdS0) =
1

z
eµ(N=4) , eαj(AdS0) =

1√
z
eαj(N=4) , eα̇j(AdS0) =

1√
z
eα̇j(N=4) , (C.12)

ez =
1

z
, eαk̆jᾰ = i

√
zδαᾰδ

k̆
j , ej

˘̇α

α̇k̆
= i
√
zδj

k̆
δ

˘̇α
α̇ ,

and the subscript (AdS0) means that the vielbeins were computed with the AdS

supercoset representative of (C.3) with ψ = ψ̄ = 0 and the subscript (N = 4)

means computation performed with the N = 4 coset representative of (C.1). Using

these results, one can compute the inverse vielbeins that are defined by the relations

eM̆N e
N
P̆

= δM̆
P̆

and eM
N̆
eN̆P = δMN . After a straightforward calculation, one has

eµ(AdS0) = zeµ(N=4) , eαj(AdS0) =
√
zeαj(N=4) , eα̇j(AdS0) =

√
zeα̇j(N=4) , (C.13)

ez = z , ejᾰ
αk̆

= −i 1√
z
δᾰαδ

j

k̆
, eα̇k̆

j ˘̇α
= −i 1√

z
δk̆j δ

α̇
˘̇α
.

In order to use the formula (C.8), we first compute its left-hand side

g−1 (ζATA) g = (C.14)
1

z
ζµ(N=4)Pµ +

1√
z
ζαj(N=4)qαj +

1√
z
ζα̇j(N=4)q̄

α̇j + ζ̂D +
√
ziζ̂αj s

j
α +
√
ziζ̂jα̇s̄

α̇
j

+ . . . ,

and after comparing with the right-hand side of (C.8), we conclude, for example,

that δxµ̆ = ζ µ̆ with ζ µ̆ = z−1ζν(N=4)e
µ̆
ν + z−

1
2 ζαj(N=4)e

µ̆
αj + z−

1
2 ζα̇j(N=4)e

µ̆,α̇j where eµ̆A
are the inverse vielbeins. Using the expressions of (C.13) and the result of (C.14),

it is not difficult to see that

δadsx|ψ=ψ̄=0 = δscx+O(z2) , δadsθ
αi|ψ=ψ̄=0 = δscθ

αi , (C.15)

δadsψ
i
α|ψ=ψ̄=0 = ζ̂ iα , δadsz|ψ=ψ̄=0 = zζ̂ ,

with similar results for θ̄ and ψ̄. The subscript sc above means the usual N = 4

d = 4 superconformal transformations. The presence of the factor O(z2) on the

x transformation will be explained in more detail in what follows, but one briefly

explanation is that the correct basis of the Lie algebra generators for describing the

AdS space is 1
2
(Pµ + Kµ) and 1

2
(Pµ − Kµ) as in (C.2) instead of the basis Pµ and

Kµ, and the factor in question comes from a basis rotation.
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The transformations (C.15) show that, at least in the case ψ = ψ̄ = 0, the

variables x and θ transform in the usual N = 4 d = 4 superconformal manner

close to the boundary of AdS at z ∼ 0 . Note that we cannot set ψ = ψ̄ = 0 as

a boundary condition at z ∼ 0 because making a PSU(2, 2|4) transformation the

values of these variables change. It is interesting to note that if instead of using the

coset representative g of (C.3), one uses the coset representative g′ given below

g′ = g(x, θ, θ̄) zD exp(i ψαj s
j
α + i ψ̄jα̇s̄

α̇
j ) ,

the transformations of ψ and ψ̄ are changed to

δadsψ
i
α|ψ=ψ̄=0 =

√
zζ̂ iα , δadsψ̄α̇i|ψ=ψ̄=0 =

√
zζ̂α̇i , (C.16)

and it is now consistent to set ψ = ψ̄ = 0 as a boundary condition because these

variables do not transform when z ∼ 0.

All the analysis of the transformations of the variables of the AdS supercoset

were performed with the simplying assumption ψ = ψ̄ = 0. Let us now consider

the general case where these variables have arbitrary value, we expect that (C.15)

changes to

δadsx = δscx+O(z2) + f(z, ψ,X) , δadsθ = δscθ + g(z, ψ,X) ,

δadsψ = ζw̃ + w(z, ψ,X) , δadsz = zζ + j(z, ψ,X) ,

where f, g, w and j are functions that vanish when ψ = ψ̄ = 0.

We are going to focus on the transformations of the variables [x, θ, θ̄], because

similar arguments can be used for understanding the transformations of [z, ψ, ψ̄].

We start by considering the left-hand side of (C.8),

g−1 (ζATA) g = z−D e−(ψ·s) g(x, θ, θ̄)−1 (ζATA) g(x, θ, θ̄) e(ψ·s) zD = (C.17)

z−D e−(ψ·s) (ζµ(N=4)Pµ + ζαj(N=4)qαj + ζα̇j(N=4)q̄
α̇j + . . .) e(ψ·s) zD

where again the subscript (N = 4) means the result of a computation performed

with the coset representative (C.1) describing the N = 4 d = 4 superspace. The

next step is to compute the veilbeins,

g−1dg = z−D e−(ψ·s) g(x, θ, θ̄)−1(dg(x, θ, θ̄)) e(ψ·s) zD + z−D e−(ψ·s)d(e(ψ·s) zD) (C.18)

= z−D e−(ψ·s) (eµ(N=4)Pµ + eαj(N=4)qαj + ēα̇j(N=4)q̄
α̇j) e(ψ·s) zD + . . .

where . . . above only contains terms proportional to dψ and dz. The formula (C.8)

implies that we have to equate (C.17) and (C.18) after contracting the second one
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which is a one-form with the vector δ ~X. The result after multiplying from the left

by e(ψ·s) zD and from the right by z−D e−(ψ·s) is

(ζµ(N=4)Pµ + ζαj(N=4)qαj + ζα̇j(N=4)q̄
α̇j + . . .) = (C.19)

(δXM̆eµ
M̆(N=4)

Pµ + δXM̆eαj
M̆(N=4)

qαj + δXM̆ ēM̆α̇j(N=4)q̄
α̇j) + . . .

where the . . . on the right-hand side of the expression above only contains terms

proportional to [δψ, δψ̄, δz]. Apart from . . . this is the same equation obtained for

the case of the N = 4 supercoset and it seems to imply that the transformations

of [x, θ, θ̄] would be the superconformal N = 4 d = 4 for any value of [z, ψ, ψ̄].

However, there is a subtlety that may alter the transformations, recall that we have

to reorganize both sides of the result above in the correct basis of the Lie algebra

for describing AdS, consider for example,

δXM̆eµ
M̆
Pµ + δXM̆eµ

M̆(K)
Kµ = (C.20)

δXM̆(eµ
M̆

+ eµ
M̆(K)

)
1

2
(Pµ +Kµ) + δXM̆(eµ

M̆
− eµ

M̆(K)
)
1

2
(Pµ −Kµ) ,

and from (C.18), it is not difficult to see that eµ
M̆
∼ z−1 and eµ

M̆(K)
∼ z, which

implies that changing the basis may give corrections of order z2 to the result. We

finally have

δadsx = δscx+O(z2)f(ψ,X) , δadsθ = δscθ +O(z2)g(ψ,X)

δadsψ = ζw̃ + w(z, ψ) , δadsz = zζ + j(z, ψ) .

The conclusion which follows from the results above is that when z ∼ 0 at the

AdS boundary the variables [x, θ, θ̄] transform in the usual N = 4 d = 4 supercon-

formal manner.
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