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Abstract
In the prospect to discuss the construction of fuzzy gravity theories based on
the gauge-theoretic approach of ordinary gravity, in the present article we
review first the latter in three and four dimensions and then, after recalling
the formulation of gauge theories on noncommutative spaces, we present in
detail the construction of fuzzy gravity theories in three and four dimensions,
as matrix models.
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1. Introduction

One of the main research areas addressing the problem of the lack of knowledge of the
spacetime quantum structure is based on the idea that at extremely small distances (Planck
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length) the coordinates might exhibit a noncommutative structure. Then a natural aim is the
construction of a noncommutative generalization of the General theory of Relativity (GR),
which becomes essentially noncommutative, particularly in regions where the commutative
limit would be singular. In this framework, the description of space-time using a set of com-
muting coordinates would only be valid at length scales larger than some fundamental one.
At smaller scales it would be impossible to localize a point and a new geometry should be
used. Accepting this picture we can think of the ordinary Minkowski coordinates as macro-
scopic order parameters obtained by ‘coarse-graining’ over regions whose size is determined
by a fundamental area scale, which is presumably but not necessarily, of the order of the
Planck area Gℏ. Their usual notion breaks down and should be replaced by elements of a
noncommutative algebra when one considers phenomena at higher scales. On the other hand
at more ordinary (say LHC) distances the Strong, Weak and Electromagnetic interactions are
successfully formulated using gauge theories, while at much smaller distances the Grand Uni-
fied Gauge Theories provide a very attractive unification scheme of the three interactions.
The gravitational interaction is not part of this picture, admitting a geometric formulation,
that of GR. However, there exists a gauge-theoretic approach to gravity besides the geo-
metric one [1–12]. This approach started with the pioneering work of Utiyama [1] and was
refined by other authors [3] as a gauge theory of the de Sitter SO(1,4) group, spontaneously
broken by a scalar field to the Lorentz SO(1,3) group. Similarly using the gauge-theoretic
approach, Weyl gravity has been constructed as a gauge theory of the four-dimensional con-
formal group [7, 8]. Also, three-dimensional gravity is translated in the gauge-theoretic pic-
ture as a Chern–Simons gauge theory of the ISO(1,2) group in an exact way [12], contrary
to the rest of the cases that require further actions (symmetry breaking) to achieve complete
correspondence.

It is worth mentioning that in the process of specifying the associated gauge group in each
case, a part of the set of the gauge fields that are assigned are identified to be the vielbein and
the spin connection. In this way the correspondence among the geometric and gauge-theoretic
approaches is achieved through the first order formulation of gravity which is a geometric
interpretation of GR, however, the dynamical degrees of freedom are described in terms of the
vierbein and spin connection instead of the metric.

Then returning to the noncommutative framework and taking into account the gauge-
theoretic description of gravity, the well-established formulation of gauge theories on non-
commutative spaces leads to the construction of models of noncommutative gravity [13–22].
In these treatments the authors use the constant noncommutativity (Moyal-Weyl), the formu-
lation of the star-product and the Seiberg and Witten map [23].

In addition to the above treatments, noncommutative gravitational models can be construc-
ted using the noncommutative realization of matrix geometries [24–36], while it should also
be noted that there exist alternative approaches [37–39]. Both the latter directions will not be
discussed further here.

The construction of quantum field theories on noncommutative spaces is a difficult task
though and, furthermore, problematic ultraviolet features have appeared [40–46]. However,
noncommutative geometry has been proposed as a framework to construct particle physics
models with noncommutative gauge theories [47–50] (see also [51–61]). It is worth noting
that a very interesting development in the framework of noncommutative geometry is the pro-
gramme in which extra dimensions of higher-dimensional theories are considered to be non-
commutative (fuzzy) [62–73]. This programme overcomes the ultraviolet/infrared problematic
behaviors of theories defined on noncommutative spaces. A very welcome feature of such the-
ories is that they are renormalizable, contrary to all known higher-dimensional theories, which
gives serious hopes for a similar behavior of the four-dimensional theory of gravity that will
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be discussed later here. Also, it is very appealing that this programme results in phenomeno-
logically promising four-dimensional unified theories.

Our orientation is towards the matrix-realized models, although equivalent descriptions
using the star product can be studied. Specifically, we focus on a particular class of noncom-
mutative spaces, called covariant [74–80], which are characterized by the very important prop-
erty for our purposes that they preserve Lorentz covariance [27, 81–83]. In particular, we focus
on a very interesting class of models that can be constructed on the so-called fuzzy spaces,
which is a subclass of noncommutative spaces which preserve the isometries of their commut-
ative analogues. The most typical example of such a space is the fuzzy 2-sphere [76], whose
isometry group is SO(3) and in the commutative limit the ordinary 2-sphere is recovered.

It is worth recalling that a fuzzy two-sphere [76] (see also [84, 85]) is constructed from
finite-dimensional matrices and the size of matrices represents the number of quanta on the
noncommutativemanifold. The fuzzy sphere, S2F, at fuzziness level N-1, is the noncommutative
manifold whose coordinate functions are N × N matrices proportional to the generators of
the N-dimensional representation of SU(2). Introducing a cutoff parameter N-1 for angular
momentum in a two-sphere, the number of independent functions is N2. Then one can replace
the functions defined on this noncommutative manifold by N × N matrices, and therefore
algebras on the sphere become noncommutative.

However, a generalization to a higher-dimensional sphere is not straightforward. In par-
ticular, in the case of a four-dimensional sphere, the same procedure leads to a number of
independent functions which is not a square of an integer. Therefore, one cannot construct a
map from functions to matrices. One can restate this difficulty algebraically. Algebras of a
fuzzy four-sphere have been constructed in [81] and the difference from the fuzzy two-sphere
case is that the commutators of the coordinates do not close. This is the source of the diffi-
culties to analyze field theories on the fuzzy four-sphere (see [81] and references therein; for
more details about fuzzy four-sphere see [86, 87]). In [88] (see also [89, 90]), we started a
programme realizing gravity as noncommutative gauge theory in three dimensions. Specific-
ally, we considered three-dimensional noncommutative spaces based on SU(2) and SU(1,1),
as foliations of fuzzy two-spheres [77, 91–94] and fuzzy two-hyperboloids [95], respectively.
This onion-like construction led to a matrix model, which was analyzed in a straightforward
way.

It should be also stressed that the formulation of noncommutative gravity implies, in gen-
eral, noncommutative deformations which break the Lorentz invariance. However, ‘covari-
ant noncommutative spaces’ have been constructed too, preserving the Lorentz invariance
[75, 78].

Another feature that should be particularly noted is that on these spaces the gauge theories
that are built use as gauge groups their isometry groups, which however are eventually enlarged
due to the inclusion of more operators as generators. The extension of the set of the generators
is due to the necessity of the closure of the anticommutators, which is of high importance in
the noncommutativity framework, where they appear naturally. Besides the enlargement, in
order that the anticommutators of the generators stop producing operators that are not gener-
ators of the algebra, their representation must be specified. One more feature that appears in
developing the noncommutative gauge theory is that covariant coordinate is introduced, that
is the analogue of the covariant derivative in the ordinary ones, and the gauge fields are also
involved. Among the various gauge fields, the vielbein and the spin connection are introduced
and their transformation rules are determined. Consequently, noncommutative deformations
of field theories have been constructed [14, 96–99] (see also [79–83]).

In our next contribution to the subject, we worked on the more realistic, four-dimensional
case [96–98, 100–103]. First, motivated by [78], we got involved with the construction of a
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suitable -for our purposes- four-dimensional covariant noncommutative space, which served as
the background space on which the gauge theory was developed. The space we formulated was
a fuzzy version of the four-dimensional dS space obtaining, among other features, the defining
commutation relation of the coordinates of the space. Being a fuzzy space, its isometry group is
that of the four-dimensional dS space, i.e. the SO(1,4). As noted earlier, due to the involvement
of the anticommutators, the gauge group expands to the SO(2,4)×U(1) and the representation
is fixed, which means that the generators are represented by 4× 4 matrices. The development
of the gauge theory leads to the transformation rules of the gauge fields introduced and to
the expressions of the various tensors. For the field strength tensor to transform covariantly, an
auxiliary antisymmetric 2-form field was introduced in the theory and eventually, we proposed
a gauge-invariant action of the constructed gravity theory.

Since our aimwas to result with a theory respecting the Lorentz symmetry, we imposed first
certain constraints in order to break the initial symmetry. This symmetry breakingwas achieved
in a subsequent work [100] using the usual Higgs mechanism and a Lagrange multiplier. After
the symmetry breaking, the action took its final form and its variation led to the equations of
motion. It should be also noted that, before the symmetry breaking, the results of the above
construction reduce to the ones of the conformal gravity in the commutative limit.

Following the above, the outlook of this article is as follows: First, we remind briefly
the gauge-theoretic analogue of the three- and four-dimensional GR and then, after a brief
reminder of the toolkit for noncommutative gauge theories, we write down the extensions of
the above gauge-theoretic description of gravity on noncommutative spaces, as viewed from
our perspective.

2. Gauge-theoretic approach to gravity theories

In the following section we will make a brief review of the formulation of gravity in three
and four dimensions as gauge theories of their respective isometry groups. This formulation
provides an alternative description of gravity, apart from the geometric one.

2.1. Three-Dimensional case

In three dimensions, it is possible to recover the first order formulation of gravity as a gauge
theory of the Poincaré algebra ISO(1,2)6 [12]. The generators of these algebras are the ones
of the Lorentz transformations Jab together with those of local translations Pa, where a,b=
1,2,3. These generators satisfy the following commutation relations:

[Jab,Jcd] = 4η[a[cJd]b] , [Pa,Jbc] = 2ηa[bPc] , [Pa,Pb] = ΛJab , (1)

where ηab = diag(−1,1,1) is the Minkowski metric and Λ is the cosmological constant. Spe-
cifically in the three-dimensional case, using the definition Ja = 1

2ϵ
abcJbc, one is allowed to

rewrite the above commutation relations in the following convenient way:

[Ja,Jb] = ϵabcJ
c , [Pa,Jb] = ϵabcP

c , [Pa,Pb] = ΛϵabcJ
c. (2)

A gauge field is then introduced for each generator of the algebra. More specifically the
dreibein7 eµa is introduced as the gauge field corresponding to translations and the spin

6 In the case that a cosmological constant is present, the corresponding algebra would be the de Sitter SO(1,3) or the
Anti de Sitter SO(2,2), depending on the sign of the constant.
7 The dreibein is the three-dimensional expression for the vielbein.
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connection ωµ
a = 1

2ϵ
abcωµbc as the one corresponding to the Lorentz transformations. Con-

sequently the gauge connection will be given as

Aµ(x) = eµ
a(x)Pa+ωµ

a(x)Ja. (3)

Its transformation in the adjoint representation will follow the standard rule

δAµ = ∂µε+ [Aµ,ε] , (4)

where

ε(x) = ξa(x)Pa+λa(x)Ja (5)

is an infinitesimal gauge transformation parameter. Therefore, the transformations of the
dreibein and the spin connection are found to be

δeµ
a = ∂µξ

a− ϵabc(ξbωµc+λbeµc) , (6)

δωµ
a = ∂µλ

a− ϵabc(λbωµc+Λξbeµc). (7)

Furthermore, the field strength tensor can be found using the standard formula

Rµν(A) = 2∂[µAν] + [Aµ,Aν ]. (8)

Given the above expressions, together with the decomposition of the field strength tensor on
the generators

Rµν(A) = Tµν
aPa+Rµν

aJa , (9)

the corresponding curvatures of the dreibein (torsion tensor) and the spin connection (curvature
2-form) are found

Tµν
a = 2∂[µeν]

a+ 2ϵabcω[µbeν]c , (10)

Rµν
a = 2∂[µων]

a+ ϵabc(ωµbωνc+Λeµbeνc) . (11)

Concluding, the Einstein–Hilbert action in the three dimensional case

SEH3 =
1

16πG

ˆ
M
ϵµνρ

(
eµ

a(∂νωρa− ∂ρωνa)+ ϵabceµ
aων

bωρ
c+

1
3
Λϵabceµ

aeν
beρ

c

)
(12)

is identical to the action functional of a Chern–Simons gauge theory of the Poincaré algebra,
upon the choice of an appropriate quadratic form in the algebra [12]. The standard choice for
the above is

tr(JaPb) = δab , tr(JaJb) = tr(PaPb) = 0. (13)

At this point, it is noted that, specifically in three dimensions, for a non-zero value of the cos-
mological constant, there is an alternative non-degenerate, invariant quadratic form given by

tr(JaPb) = 0 ,
1
Λ
tr(PaPb) = tr(JaJb) = δab. (14)

The above, alternative consideration yields a different action, that is classically equivalent to
the one in (12) [12].

Given the above, it is shown that gravity in three dimensions is formulated with success as
a Chern–Simons type gauge theory, in equal parts for the transformations of its gauge fields
and its dynamics.
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2.2. Four-dimensional case

Like in the three-dimensional case described in the previous subsection, we have to employ the
vierbein formalism in order to construct four-dimensional gauge theory of gravity. In absence
of cosmological constant, the isometry group of the Minkowski spacetime is ISO(1,3) (the
Poincaré group) and it is the one that will be considered as the gauge group, in accordance
with the three-dimensional case, where isometry groups of the Minkowski, dS and AdS were
considered as the gauge groups. The Poincaré algebra comprises of ten generators, four local
translations, Pa and six Lorentz transformations, Mab, satisfying the following commutation
relations:

[Mab,Mcd] = 4 η[a[cMd]b], [Pa,Mbc] = 2 ηa[bPc], [Pa,Pb] = 0, (15)

where ηab = diag(−1,1,1,1) is the four-dimensional Minkowski metric. Following the stand-
ard procedure, the gauge covariant derivative is defined as:

Dµ = ∂µ + [Aµ, ·] , (16)

where Aµ(X) is the gauge connection. Expansion of the connection on the generators of
ISO(1,3) gives the expression:

Aµ(X) = e aµ(X)Pa+
1
2
ω ab
µ (X)Mab, (17)

where e aµ and ω ab
µ are identified as the component gauge fields for the translations and Lorentz

transformations, respectively. By definition, transformation of Dµ is covariant, therefore, the
transformation law for the gauge connection is given by:

δAµ = Dµε= ∂µε+ [Aµ, ϵ] , (18)

where ε= ε(X) is a gauge transformation parameter, which, as an element of the ISO(1,3)
algebra, it may be written as an expansion on the generators:

ε(X) = ξa(X)Pa+
1
2
λab(X)Mab, (19)

with ξa(X) and λab(X) being infinitesimal parameters. Combination of (17)–(19) leads to the
expression for the transformation of the component gauge fields:

δe aµ = ∂µξ
a+ω ab

µ ξb−λabe
b
µ

δω ab
µ = ∂µλ

ab+λacω
bc
µ −λbcω

ac
µ .

(20)

The corresponding field strength tensors, T a
µν and R ab

µν , of the component fields, e and ω, are
obtained by the definition of the field strength tensor Rµν , of Aµ:

Rµν = [Dµ,Dν ] = ∂µAν − ∂νAµ + [Aµ,Aν ] , (21)

after its expansion on the generators:

Rµν = T a
µνPa+

1
2
R ab
µνMab. (22)

Therefore, combining (17), (21) and (22), the expressions of the component tensors are:

T a
µν = ∂µe

a
ν − ∂νe

a
µ −ω ab

µ eνb+ω ab
ν eµb

R ab
µν = ∂µω

ab
ν − ∂νω

ab
µ −ω ac

µ ω b
νc+ω ac

ν ω b
µc.

(23)

Until this point, the construction of the gauge-theoretic version of four-dimensional gravity has
been unfolding in a straightforward way. Moving on to the dynamical part of the theory, the
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obvious choice would be an action of Yang-Mills type of the Poincaré group. Nevertheless, in
order to claim a successful relation of four-dimensional gravity to a gauge theory, it is necessary
to result with the Einstein–Hilbert action, which is, of course, not of Yang-Mills type.

First, it has to be noted that the desired action has to be invariant under the Lorentz trans-
formations and not under the total Poincaré symmetry. Therefore, in order to reduce the sym-
metry of the action, a spontaneous symmetry breaking mechanism can be employed by the
inclusion of a scalar field [3, 6]. For the present purpose, in order to achieve the incorporation
of the spontaneous symmetry breaking mechanism, the gauge group, i.e. the gauge symmetry
of the action of Yang-Mills type, has to be the de Sitter, SO(1,4), group, instead of the Poin-
caré. The choice of the de Sitter group is strategic, in the sense that it comprises of the same
number of generators as the Poincaré, but carries an extra and useful virtue, that is all generat-
ors can be considered on equal footing, denoting them all with a single gauge field, since it is
a semisimple group. Spontaneous symmetry breaking can be induced by assigning the scalar
field to the fundamental representation of SO(1,4) [3, 5]. Thus, the symmetry is reduced to
the Lorentz with four out of ten generators, the translations, having been broken.

The above described procedure leads to the desired Einstein–Hilbert action and, therefore,
Einstein four-dimensional gravity with cosmological constant is retrieved as a gauge theory of
the de Sitter group.

3. Gauge theories and noncommutativity

In order to proceed to the noncommutative framework of the theory, first we have to recall how
gauge theories are formulated in noncommutative spaces, as described in [104].

Let us consider a scalar field, ϕ(X), where X are the coordinates of the noncommutative
space. The gauge transformation of the scalar field will be non-trivial and infinitesimally it
will be:

δϕ(X) = ε(X)ϕ(X), (24)

where ε(X) is the gauge parameter. Now, because of the trivial gauge transformation of the
coordinates, the quantity Xµϕ(X) transforms as following:

δ(Xµϕ(X)) = Xµϵ(X)ϕ(X). (25)

Due to noncommutativity of the coordinates, it can be easily proven that the above transform-
ation is not covariant. In order to resolve that problem, the covariant coordinate is introduced,
which is defined through its covariant transformation,

δ (Xµϕ(X))≡ ε(X)Xµϕ(X), (26)

and restores the analogy with the ordinary gauge theories. The above covariant transformation
holds if δXµ = [ε(X),Xµ] or, in other words, if the covariant coordinate transforms covariantly,
which is something true by definition. In order to configure the covariant coordinate, a field
Aµ(X) has to be introduced with the following transformation rule:

δAµ(X) =− [Xµ,ε(X)]+ [ε(X),Aµ(X)] . (27)

Thus, the ordinary coordinate is being replaced by the covariant one, which is equal to
Xµ = Xµ +Aµ(X). It is now clear that the Aµ field is interpreted as gauge connection and
thus its corresponding strength tensor has to be defined. The field strength tensor, besides the
commutator of the covariant coordinates, will also include an extra term in order to transform
covariantly.
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Formulating the theory on noncommutative spaces, we have to treat properly the anti-
commutators of the various operators. The commutator of two elements of an arbitrary
gauge algebra, ε(X) = εa(X)Ta and ϕ(X) = ϕa(X)Ta, where Ta are the generators of the
algebra, is:

[ε,ϕ] =
1
2

{
εa,ϕb

}
[Ta,Tb] +

1
2

[
εa,ϕb

]
{Ta,Tb} . (28)

In the commutative case, εa and ϕb are ordinary functions that depend on the coordinates, thus
their commutator vanishes and so does the last term of the above relation. However, since in
the noncommutative setting the coordinates do not commute, in turn, these functions also do
not and therefore the second term is now not vanishing. This naturally means that in the non-
commutative case the gauge theory contains anticommutators of the generators, contrary to
the ordinary gauge theories. Generally, the products of such anticommutators do not belong to
the algebra, so their presence causes the problem that the algebra does not close. One way to
address that problem would be to enlarge the algebra and include as generators all the possible
operators that could come from these anticommutators. This solution would require more and
more extensions of the algebra, as the new anticommutators would also not close, and, even-
tually, one would end up with an infinite-dimensional algebra, which, although useful in other
contexts (e.g. in [17, 18, 51]), it is not optimal for our purposes here. A very meaningful way
out of the above drawback is to consider that the products of these anticommutators also depend
on the representation. This means that in a specific representation, the anticommutators of the
generators will produce a limited number of different operators and, therefore, including them
in the initial algebra eventually extends it only to a larger but finite one.

4. Noncommutative gravity: a matrix model

In this section we present the gauge-theoretic construction of the three and four-dimensional
matrix models of noncommutative gravity. Naturally, in the process of building a noncommut-
ative gauge theory, a noncommutative background space will be needed to accommodate it.
Thus, we begin by specifying the appropriate three and four-dimensional covariant, noncom-
mutative spaces that will act as background spaces for each case respectively. Following that,
wewill present the three and four-dimensional gravity models, constructed as noncommutative
gauge theories on the above spaces.

4.1. Three-dimensional case

4.1.1. The R3
λ space. The most well-known covariant, noncommutative space is the fuzzy

sphere [76, 105]. It is defined in terms of three rescaled angular momentum operators Xi = λJi,
the Lie algebra generators of a unitary, irreducible representation of SU(2), that satisfy the
following relations:

[Xi,Xj] = iλϵijkXk ,
3∑
i=1

XiXi = λ2s(s+ 1) := r2 , (29)

where i, j,k= 1, . . .3, λ ∈ R and 2s ∈ N. The second of the above relations comes from the
quadratic Casimir operator. If one relaxes this condition, allowing the coordinates Xi to live in
unitary, reducible representations of SU(2), and at the same time keeps λ fixed, one is lead to
the three-dimensional noncommutative space known asR3

λ [92], which is expressed as a direct
sum of fuzzy spheres with every possible radius determined by 2s ∈ N [92, 93, 106, 107]
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R3
λ =

∑
2s∈N

S2λ,s. (30)

Consequently, R3
λ can be seen as a discrete foliation of the three-dimensional Euclidean space

by several fuzzy 2-spheres, with each of them being a ‘leaf’ of the foliation [108].

4.1.2. Gauge theory of three-dimensional gravity on R3
λ. In the following, we will review a

description for a noncommutative version of the three-dimensional gravity on the fuzzy space
that was mentioned in the previous paragraph. This description is achieved by following the
same steps that were followed in the commutative case, albeit this time using the tools of non-
commutative gauge theories that were mentioned in section 3. Thus, the covariant coordinate
should now contain information about the noncommutative counterparts of the dreibein and
spin connection8.

The relevant group that describes the symmetry of the fuzzy space R3
λ, which will be used,

is SO(4)9. This will lead to a non-abelian noncommutative gauge theory, which in turn will
introduce the unwelcome feature of the non-closure of the anticommutators of the generators
that was described in section 3. Following the procedure that was explained in that section,
motivated by the approach that was followed in the Moyal-Weyl case in [16], the algebra shall
be extended appropriately, so that the products of the anticommutators are also included in it.

According to the above, the first to be considered as the symmetry group is the spin group.
In this case, it is the Spin(4) group, which is isomorphic to SU(2)× SU(2). Choosing a specific
representation, and given the elements that are yielded from the anticommutators of the algebra
generators in that representation, when the latter are included in the algebra as generators, one
is lead to the extension of the SU(2) × SU(2) symmetry to the U(2) × U(2), which will be
considered as the gauge group of the theory10. Since each U(2) is represented by the Pauli
matrices and the identity, the U(2) × U(2) gauge group will consist of the following 4× 4
matrices

JLa =

(
σa 0
0 0

)
, JL0 =

(
I 0
0 0

)
, JRa =

(
0 0
0 σa

)
, JR0 =

(
0 0
0 I

)
, (31)

where a= 1,2,3. Nevertheless, the identification of the noncommutative dreibein and spin
connection should be treated carefully. In order to interpret the above gauge fields correctly
the following linear combination of the above matrices are considered as generators instead:

Pa =
1
2

(
JLa − JRa

)
=

1
2

(
σa 0
0 −σa

)
, Ma =

1
2

(
JLa + JRa

)
=

1
2

(
σa 0
0 σa

)
, (32)

as well as

I= JL0 + JR0 , γ5 = JL0 − JR0 . (33)

Given the known commutation and anticommutation relations of the Pauli matrices, the above
generators will satisfy the following

[Pa,Pb] = iϵabcMc, [Pa,Mb] = iϵabcPc, [Ma,Mb] = iϵabcMc,

{Pa,Pb}=
1
2
δabI, {Pa,Mb}=

1
2
δabγ5, {Ma,Mb}=

1
2
δabI,

[γ5,Pa] = [γ5,Ma] = 0, {γ5,Pa}= 2 Ma, {γ5,Ma}= 2Pa. (34)

8 Similar approaches can be found in [31, 32, 34].
9 That is in the Euclidean case. In the Lorentzian case, the relevant group would have been the SO(1,3).
10 Similarly, in the Lorentzian case the initial SL(2;C) symmetry would be enlarged to GL(2;C).
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As was mentioned in the previous paragraph, the noncommutative coordinates, Xa, will
be given in terms of the three operators of the fuzzy space that was discussed. Thus, in the
same way as described in section 3, the covariant coordinate will include information about
the deformation of space, through the gauge connection Aµ, since

Xµ = δµ
aXa+Aµ, (35)

whereAµ can be expanded on the generators of the algebra asAµ =AI
µ(Xa)⊗TI, T I being the

generators with I= 1, . . . ,8, and AI
µ the U(2)×U(2)-valued gauge fields. The reason behind

the tensor product in the previous relation is that the gauge fields are no longer functions of
coordinates in a classical manifold, but are now operator valued (since the coordinates got pro-
moted), while the generators are represented by 4× 4 matrices. Having in mind the generators
we chose for the U(2)×U(2) algebra, the explicit expansion of the gauge connection over them
will be

Aµ(X) = eµ
a(X)⊗Pa+ωµ

a(X)⊗Ma+Aµ(X)⊗ iI+ Ãµ(X)⊗ γ5, (36)

consequently forming the covariant coordinate

Xµ = Xµ ⊗ iI+ eµ
a(X)⊗Pa+ωµ

a(X)⊗Ma+Aµ(X)⊗ iI+ Ãµ(X)⊗ γ5 , (37)

where e a
µ ,ω

a
µ ,Aµ, Ãµ are the components of the connection Aµ (gauge fields). In the same

spirit, the gauge parameter ε(X) is also an element of the algebra and will be expanded on its
generators as

ε(X) = ξa(X)⊗Pa+λa(X)⊗Ma+ ε0(X)⊗ iI+ ε̃0(X)⊗ γ5 , (38)

where ξa,λa, ϵ0, ϵ̃0 denote its components. Given the above expansions, by making use of rela-
tions (27) and (28), the transformations of the component gauge fields are calculated, in a sim-
ilar way to the commutative case. The explicit formulae for these transformations are shown
below:

δeµ
a =−i [Xµ +Aµ, ξ

a] +
i
2
{ξb,ωµc}ϵabc+

i
2
{λb,eµc}ϵabc

+ i [ε0,eµ
a] +

[
λa, Ãµ

]
+ [ε̃0,ωµ

a] ,

δωµ
a =−i [Xµ +Aµ,λ

a] +
i
2
{ξb,eµc}ϵabc+

i
2
{λb,ωµc}ϵabc

+ i [ε0,ωµ
a] +

[
ξa, Ãµ

]
+ [ε̃0,eµ

a] ,

δAµ =−i [Xµ +Aµ,ε0]−
i
4
[ξa,eµa]−

i
4
[λa,ωµa]− i

[
ε̃0, Ãµ

]
,

δÃµ =−i [Xµ +Aµ, ε̃0] +
1
4
[ξa,ωµa] +

1
4
[λa,eµa] + i

[
ε0, Ãµ

]
. (39)

Following the determination of the transformation rules of the component gauge fields
above, their behavior in two limits is going to be considered.

First, the Abelian limit is considered, or, in other words, the case in which the gauge group
that was used were an Abelian U(1) group. This would have, of course, led to an Abelian
gauge theory on the three-dimensional, fuzzy space that was used. It effectively means setting
eµa,ωµ

a, Ãµ, as well as their corresponding parameters ξa,λa, ε̃0 equal to zero, leaving Aµ as

10
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the only non-vanishing gauge field and ε0 as the only non-vanishing gauge parameter. Thus,
the only non-trivial transformation out of the above is

δAµ =−i[Xµ,ε0] + i[ε0,Aµ], (40)

which is the anticipated transformation of a noncommutative Maxwell gauge field. Therefore,
this limit emphasizes on the Maxwellian nature of the ‘new’ fields, A, Ã. Also, it is understood
that the Maxwellian sector is present in the theory, independently of whether the dreibein is
trivial or not, with the covariant coordinate being Xµ +Aµ.

On the other hand, the second limit that will be considered is the commutative one (λ→ 0),
at which gravity and the Yang-Mills fields disentangle, consequently making the gauge fields
that were introduced due to the noncommutativity, Aµ and Ãµ, vanish in this limit. That causes
the inner derivation to reduce to the commutative one, that is [Xµ, f]→−i∂µf, therefore leading
to the following transformation rules of the dreibein and spin connection:

δeµ
a =−∂µξ

a− ϵabc(−iξbωµc− iλbeµc) (41)

δωµ
a =−∂µλ

a− ϵabc(−iλbωµc− iξbeµc). (42)

At this point, it is observed that the above transformations closely resemble the corresponding
commutative ones, in relations (6) and (7). More specifically, after performing the following
re-definitions of the generators, gauge fields and parameters:

Pa →− i√
Λ
Pa, Ma → iMa,

as well as

eµ
a → i

√
Λeµ

a, ξa →−i
√
Λeµ

a, ωµ
a →−iωµ

a, λµ
a → iλµ

a,

the aforementioned transformations, exactly coincide with their commutative counterparts (6)
and (7). Thus, it is evident that in the commutative limit, the transformations of the gauge fields
of the three-dimensional gravity, presented in [12], are recovered.

Following the above, the curvature tensors of the theory will be obtained, through the cal-
culation of the commutator of the covariant derivatives. It should be noted that since the right
hand side of the commutator of the coordinates is linear with respect to the coordinates—as
shown in the first equation of (29)—an additional linear term should be included in the defin-
ition of the curvature as indicated below:

Rµν(X) = [Xµ,Xν ]− iλϵµνρX ρ. (43)

The curvature tensorRµν is, too, an element of the U(2)×U(2) and as such, it can be expanded
on the algebra’s generators according to

Rµν(X) = Tµν
a(X)⊗Pa+Rµν

a(X)⊗Ma+Fµν(X)⊗ iI+ F̃µν(X)⊗ γ5. (44)

Following a similar procedure as when calculating the transformation laws of the gauge fields,
using the definition of the curvature (43), together with the expansions of the curvature tensor
and the covariant coordinate (44) and (37) respectively, the component curvature tensors are
calculated:

11



J. Phys. A: Math. Theor. 55 (2022) 493001 G Manolakos et al

Tµν
a = i [Xµ +Aµ,eν

a]−i [Xν +Aν ,eµ
a]+

i
2
{eµb,ωνc}ϵabc+

i
2
{ωµb,eνc}ϵabc

+
[
ωµ

a, Ãν

]
−
[
ων

a, Ãµ

]
− iλϵµνρe

ρa,

Rµν
a = i [Xµ+Aµ,ων

a]−i [Xν+Aν ,ωµ
a]+

i
2
{ωµb,ωνc}ϵabc+

i
2
{eµb,eνc}ϵabc

+
[
eµ

a, Ãν

]
−
[
eν

a, Ãµ

]
− iλϵµνρω

ρa,

Fµν = i [Xµ +Aµ,Xν +Aν ]−
i
4
[eµ

a,eνa]−
i
4
[ωµ

a,ωνa]− i
[
Ãµ, Ãν

]
− iλϵµνρ (X

ρ +Aρ) ,

F̃µν = i
[
Xµ +Aµ, Ãν

]
− i
[
Xν +Aν , Ãµ

]
+

1
4
[eµ

a,ωνa] +
1
4
[ωµ

a,eνa]

+−iλϵµνρÃρ. (45)

Once again, when the commutative limit as well as the re-scalings that were mentioned before
are considered, the tensors of equations (10) and (11) are recovered, exactly as expected.

4.1.3. Action of three-dimensional fuzzy gravity. Concluding with the three-dimensional
case, an action for the aforementioned theory should be found. Considering that the space on
which the theory has been formulated is a three-dimensional space, inspiration is gained by the
gauge-theoretic approach of three-dimensional gravity that was presented back in section 2.1.
Therefore, the obvious choice would be to take an action of Chern–Simons type. For the Euc-
lidean case, which we have discussed so far, the action that was considered is [91, 107]

S0 =
1
g2

Tr

(
i
3
ϵµνρXµXνXρ −m2XµX

µ

)
, (46)

which, following its variation, leads to the field equation

[Xµ,Xν ] + 2im2ϵµνρX
ρ = 0. (47)

The above field equation admits the space R3
λ that we have used as a solution, for 2m2 =−λ.

Next, in order for the gauge fields to be introduced in the aforementioned action, there are
two possible paths one could follow. The first would be to consider fluctuations of the above
equation of motion by replacing the coordinates with their covariant counterparts. The other,
less straightforward path would be to replace the coordinates in the action with the covariant
coordinates and then complete the variation of the action, in order to obtain the field equations.
Furthermore, since, eventually, the action shall be written in terms of the gauge fields, an
additional trace, tr, over the gauge indices should be involved. Consequently, the proposed
action is

S=
1
g2

Trtr

(
i
3
ϵµνρXµXνXρ +

λ

2
XµX µ

)
, (48)

where the first trace is over the matrices X and the second over the gauge indices. The above
action can be rewritten as

S=
1
6g2

Trtr(iϵµνρXµRνρ)+
λ

6g2
Trtr(XµX µ)

= S + Sλ,
(49)

where all the λ-related terms have been isolated in the Sλ term, which vanishes for λ→ 0.
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Now, making use of the non-vanishing traces of the generators of the algebra

tr(PaPb) = δab, tr(MaMb) = δab, (50)

which are obtained starting from the expressions for the anticommutators in (34), following
the calculation of the traces over the gauge indices, the first term S of the above action turns
out equal to

S =
i

6g2
Trϵµνρ(eµaTνρ

a+ωµaRνρ
a− 4(Xµ +Aµ)Fνρ + 4ÃµF̃νρ). (51)

This action is similar to the one presented in [12].; when the commutative limit is considered
and the re-definitions that were mentioned before are applied, the first two terms of the above
action are identical to the one presented in [12]. Nevertheless, in this case, an additional sector
is unavoidably obtained. This sector is evidently associated with the additional gauge fields,
which cannot decouple in the present, noncommutative case.

Finally, variation of the action (49) with respect to the covariant coordinate yields the fol-
lowing field equations:

Tµν
a = 0, Rµν

a = 0, Fµν = 0, F̃µν = 0. (52)

At this point, it is noted that the same equations of motion are obtained, following the variation
of (49) with respect to the gauge fields, after using the algebra trace and replacing the tensors
with their expansions on the generators of the algebra (45).

4.2. Four-dimensional case

4.2.1. A Fuzzy Version of the Four-Sphere. The noncommutative space that we are going to
use is the fuzzy four-sphere, SF 4, that is the four-dimensional analogue of the fuzzy sphere,
SF 2, the discrete (matrix) approximation of the regular sphere11. The group that naturally
should be considered is the SO(5) group, since it amounts to the corresponding isometry group,
and thus one should be able to identify the coordinates with a subset of its generators. However,
the subalgebra is not closing, which leads to the covariance not being preserved [78]. This fact
forces us to use a larger symmetry group, in which we should be able to incorporate all gen-
erators and the noncommutativity in it, with an appropriate identification. We should end up
with a construction in which the coordinates will transform as vectors under the action of the
rotational transformations. The minimal extension of the symmetry leads to the SO(6) group
[96, 100]. The 15 generators of SO(6), JAB, with A,B= 1, . . .,6, obey the following algebra:

[JAB,JCD] = i(δACJBD+ δBDJAC− δBCJAD− δADJBC). (53)

In SO(4) notation, the above generators are decomposed as following:

Jµν =
1
ℏ
Θµν , Jµ5 =

1
λ
X5, Jµ6 =

λ

2ℏ
Pµ, J56 =

1
2
H, (54)

where µ,ν = 1, . . .,4, λ is a dimensionful parameter and h is a radius constraint related oper-
ator. The Xµ,Pµ andΘµν are identified as coordinates, momenta and noncommutativity tensor
respectively. The commutation relations which they obey are the following:

11 Here we are presenting the whole construction in the Euclidean signature, although in the introduction we discussed
in terms of the Lorentzian one. This choice is motivated by the disadvantage of working with representations of non-
compact groups, which, if unitary, are infinite-dimensional (see [96] for the construction in Lorentzian language).
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[Xµ,Xν ] = i
λ2

ℏ
Θµν , [Pµ,Pν ] = 4i

ℏ
λ2

Θµν , (55)

[Xµ,Pν ] = iℏδµνH, [Xµ,H] = i
λ2

ℏ
Pµ, (56)

[Pµ,H] = 4i
ℏ
λ2
Xµ. (57)

The above commutation relations imply that coordinates and momenta separately close into
an SO(4) subalgebra of the SO(6) symmetry. Also, the commutation relations between the
coordinates and momenta, show the quantum structure of the noncommutative space. The
algebra of spacetime transformations is:

[Θµν ,Θρσ] = iℏ(δµρΘνσ + δνσΘµρ − δνρΘµσ − δµσΘνρ), (58)

[Xµ,Θνρ] = iℏ(δµρXν − δµνXρ), (59)

[Pµ,Θνρ] = iℏ(δµρPν − δµνPρ) (60)

[H,Θµν ] = 0. (61)

The first commutation relation defines the SO(4) subalgebra. The second and the third show
the vector-like transformation of the coordinates and the momenta under rotations.

Finally, we should emphasize that the above algebra admits finite-dimensional represent-
ations of its generators, and, for that reason, the noncommutative spacetime constructed is
actually a finite quantum system. On this space we are going to construct the four-dimensional
gravity model as a noncommutative gauge theory.

4.2.2. Gauge group and representation. As mentioned earlier, when working on the non-
commutatve framework, one has to use also the anticommutators of the generators. Employing
these anticommutators of generators without having their representation fixed, one generally
does not end up with closed algebras, but instead the anticommutators keep producing new
operators which do not belong to the algebra. This is also the case when it comes to SO(5).
This problem is resolved by abandoning the idea of the arbitrary representation of the gen-
erators and actually pick one specific representation in which the generators of SO(5) belong
and, afterwards, include the operators that the anticommutators produce into the algebra, by
extending it to a larger one in which the new operators are also generators. In our specific
case, the extension of SO(5) leads to the SO(6)×U(1) gauge group, whose generators are
represented by 4× 4 matrices12 (see [96, 100]):

Mab =− i
4
[Γa,Γb], Ka =

1
2
Γa, Pa =− i

2
ΓaΓ5, D=−1

2
Γ5, I4. (62)

The above Γ matrices are the 4× 4 gamma matrices in the Euclidean signature, which satisfy
the relation {Γa,Γb}= 2δabI4, where a,b= 1, . . .,4 and Γ5 = Γ1 Γ2 Γ3 Γ4.

The algebra and the anticommutation relations the above generators follow is:

12 The choice of the representation is motivated by the idea of minimal extension but larger representations could be
also employed. Such a choice could be possibly made in case matter fields accommodated in a preferred representation
were involved. Moreover, inclusion of matter fields would imply that anomaly cancellation should be checked.
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[Ka,Kb] = iMab, [Pa,Pb] = iMab,

[Pa,D] = iKa, [Ka,Pb] = iδabD, [Ka,D] =−iPa,
[Ka,Mbc] = i(δacKb− δabKc),

[Pa,Mbc] = i(δacPb− δabPc),

[Mab,Mcd] = i(δacMbd+ δbdMac− δbcMad− δadMbc),

[D,Mab] = 0,

{Mab,Mcd}=
1
8
(δacδbd− δbcδad)I4 −

√
2
4

ϵabcdD,

{Mab,Kc}=
√
2ϵabcdPd, {Mab,Pc}=−

√
2
4

ϵabcdKd,

{Ka,Kb}=
1
2
δabI4, {Pa,Pb}=

1
8
δabI4, {Ka,D}= {Pa,D}= 0,

{Pa,Kb}= {Mab,D}=−
√
2
2

ϵabcdMcd . (63)

4.2.3. Action and equations of motion. We will now try to find the action of the SO(6)×
U(1) gauge theory of gravity (for a more detailed presentation see the original works [96,
100]). Starting from the noncommutativity of the background space, we consider the following
topological action:

S = Tr
(
[Xµ,Xν ]−κ2Θµν

)(
[Xρ,Xσ]−κ2Θρσ

)
ϵµνρσ. (64)

Variation of the above action with respect to X andΘ fields, gives the following field equations,
respectively:

ϵµνρσ
[
Xν , [Xρ,Xσ]−κ2Θρσ

]
= 0 , ϵµνρσ

(
[Xρ,Xσ]−κ2Θρσ

)
= 0 . (65)

The second relation, when κ2 = iλ2

ℏ , recovers the noncommutativity of the space and, in that
case, the first relation is trivially satisfied. In the case that we had chosen the fields X and
Θ as coordinate-dependent, we would still end up with the first of the above field equations
following the same procedure.

Next, we continue to the dynamical part of the above action. First, we need to rewrite the
action in terms of the curvature field strength tensor in order to be able to do comparisons to
the commutative analogue at any step of the process. For that reason, we have to include the
gauge fields in the action (64), perceiving them as fluctuations of the X and Θ fields:

S = Trtrϵµνρσ
(
[Xµ +Aµ,Xν +Aν ]−κ2 (Θµν +Bµν)

)
·
(
[Xρ +Aρ,Xσ +Aσ]−κ2 (Θρσ +Bρσ)

)
.

(66)

In the last expression for the action we have included a trace over the gauge algebra, as well13.
At this point, we have to make some new definitions:

a. Xµ = Xµ +Aµ is defined as the covariant coordinate of the noncommutative gauge theory,
where Aµ is the gauge connection,

13 The traces on the various products of generators that emerge are obtained by their anticommutation relations,
equation (63), after tracing both sides.
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b. Θ̂µν =Θµν +Bµν , is defined as the covariant noncommutative tensor, where Bµν is the
2-form field,

c. Rµν = [Xµ,Xν ]−κ2 Θ̂µν is defined as the field strength tensor of the theory.

In addition to the above, we also replace κ2 = iλ2

ℏ and, finally, we get the following expres-
sion for the action:

S = Trtr

(
[Xµ,Xν ]−

iλ2

ℏ
Θ̂µν

)(
[Xρ,Xσ]−

iλ2

ℏ
Θ̂ρσ

)
ϵµνρσ := TrtrRµνRρσϵ

µνρσ . (67)

We can immediately notice that the above expression is none other than a noncommutative
analogue of the four-dimensional Chern–Simons action. Variations of this action with respect
to X and B, lead to the field equations:

ϵµνρσRρσ = 0 , ϵµνρσ [Xν ,Rρσ] = 0 . (68)

The interpretation of the first one is of course trivial, which is the vanishing of the curvature
tensor. As far as the second one is concerned, it can be considered as the noncommutative coun-
terpart of the Bianchi identity. For later convenience, we express the curvature field strength
tensor decomposed in terms of the generators of the gauge algebra:

Rµν(X) = R̃µν
a⊗Pa+Rµν

ab⊗Mab+Rµν
a⊗Ka+ R̃µν ⊗D+Rµν ⊗ I4 , (69)

where the quantities attached to the generators are the component curvature tensor associated
to the corresponding gauge fields, as given from the decomposition of the gauge connection
Aµ:

Aµ = e a
µ ⊗Pa+ω ab

µ ⊗Mab+ b a
µ ⊗Ka+ ãµ ⊗D+ aµ ⊗ I4 . (70)

For completion, we write the explicit expressions of the component tensors:

R̃µν
a = [Xµ + aµ,eν

a]− [Xν + aν ,eµ
a]− i

2
{bµa, ãν}+

i
2
{bνa, ãµ}

−
√
2
2

([
bµ

b,ων
cd
]
−
[
bν

b,ωµ
cd
])
ϵabcd− i

{
ωµ

ab,eνb
}
+ i
{
ων

ab,eµb
}
− iλ2

ℏ
B̃µν

a ,

Rµν
ab=

[
Xµ+aµ,ων

ab
]
−
[
Xν + aν ,ωµ

ab
]
+
i
2

{
bµ

a,bν
b
}
+

√
2
4

([
bµ

c,eν
d
]
−
[
bν

c,eµ
d
])
ϵabcd

−
√
2
4

([
ãµ,ων

cd
]
−
[
ãν ,ωµ

cd
])
ϵabcd+ 2i

{
ωµ

ac,ων
b
}
+
i
2

{
eµ

a,eν
b
}
− iλ2

ℏ
Bµν

ab ,

Rµν
a = [Xµ + aµ,bν

a]− [Xν + aν ,bµ
a] + i

{
bµb,ωµ

ab
}
− i
{
bνb,ωµ

ab
}

− i
2
{ãµ,eνa}+

i
2
{ãν ,eµa}+

√
2
8

ϵabcd
([
eµ

b,ων
cd
]
−
[
eν

b,ωµ
cd
])

− iλ2

ℏ
Bµν

a ,

R̃µν = [Xµ + aµ, ãν ]− [Xν + aν , ãµ] +
i
2
{bµa,eνa}−

i
2
{bνa,eµa}

−
√
2
8

ϵabcd
[
ωµ

ab,mων
cd
]
− iλ2

ℏ
B̃µν ,

Rµν = [Xµ,aν ]− [Xν ,aµ] + [aµ,aν ] +
1
4
[bµ

a,bνa] +
1
4
[ãµ, ãν ] +

1
8

[
ωµ

ab,ωνab
]

+
1
16

[eµa,eν
a]− iλ2

ℏ
Bµν ,

where the last terms of all the above expressions include components of the decomposition of
the 2-form field Bµν on the various generators.
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4.2.4. Spontaneous symmetry breaking of the noncommutative action. In order to proceed
to the spontaneous symmetry breaking of the action (67), we have to introduce a scalar field,
Φ, along with a dimensionful parameter λ, which will set the length scale of the theory. Then,
the action is modified as [96, 100]:

S = TrtrGλΦ(X)RµνRρσϵ
µνρσ + η

(
Φ(X)2 −λ−2IN⊗ I4

)
, (71)

where η is a Lagrange multiplier with dimension [M−2]. Obviously, in the on-shell case the
above action coincides with the previously introduced dynamic one, (67). By the term ‘on-
shell’ it is meant, of course, that the following condition holds:

Φ2(X) = λ−2IN⊗ I4.

Variation of the action (71) with respect to η yields the above constraint equation as a field
equation. If we consider that the scalar field consists only of the symmetric part of the decom-
position on the generators, it can be explicitly written as14:

Φ(X) = ϕ̃a(X)⊗Pa+ϕa(X)⊗Ka+ϕ(X)⊗ I4 + ϕ̃(X)⊗D .

Finally, we have to gauge fix the scalar field, Φ. The gauge fixing that we choose is in the
direction of the generator D. Specifically we choose the value of ϕ̃(x) such that:

Φ(X) = ϕ̃(X)⊗D|ϕ̃=−2 λ−1 =−2 λ−1IN⊗D.

Now, we continue by calculating the traces over the algebra in themodified action, (71), and we
perform the substitution of the gauge-fixed scalar field. The action, finally, takes the following
form:

Sbr = Tr

(√
2
4

ϵabcdRµν
abRρσ

cd− 4 Rµν R̃ρσ

)
ϵµνρσ. (72)

Because of the fact that we kept only the symmetric part of the scalar field’s decomposition
under the SO(6) generators that was not charged under the initialU(1), the remaining symmetry
of the spontaneously broken action is SO(4)×U(1). On the generators’ level, that means that
out of the 16 total generators, only seven remain unbroken while the rest break: (i) the gen-
erators of the translations, Pa, which imply the torsionless condition, R̃µν

a = 0, which in turn
leads to a relation between ω and e, ã, (ii) the Ka generators, which implies Rµν

a = 0 leading
to a proportionality relation between e,b gauge fields and (iii) the D generator which accom-
modates the gauge fixing of ãµ = 0 [99]. In a fewwords, the gauge group after the spontaneous
symmetry breaking is the SO(4)×U(1) and the only independent fields of the theory are the
e and a.

Replacing ãµ = 0 and bµa = i
2eµ

a in the expression for the component tensor Rµν
ab

we get:

Rµν
ab =

[
Xµ + aµ,ων

ab
]
−
[
Xν + aν ,ωµ

ab
]
+ i
{
ωµ

ac,ω b
ν c

}
− i
{
ωµ

bc,ωνc
a
}

+
3i
8

{
eµ

a,eν
b
}
− iλ2

ℏ
Bµν

ab.

The above, is a relation that holds also to the commutative limit of the theory as it will be
shown in the next subsection.

14 Had we taken the antisymmetric part as well the symmetry breaking would lead to the same gauge symmetry
enhanced by a U(1).

17



J. Phys. A: Math. Theor. 55 (2022) 493001 G Manolakos et al

4.2.5. The commutative limit. It is crucial, for the consistency of the theory, that its predic-
tions should coincide with the ones of GR in the below-Planck scale energy regime, in case
we turn off the noncommutativity at once and consider that the effects related to it are com-
pletely ignored. Although this is a simplistic assumption, since we expect that the effects of
noncommutativity will eventually have a quantitative imprint on the low-energy regime, we
insist on it because it will consist a solid argument that noncommutativity will give low-energy
predictions, as small modifications, around the existing and valid theory of GR. Therefore, in
order to examine this and establish GR as the guide of our results, we move on with examin-
ing the theory at the level of the vanishing of all its noncommutative-related features. To begin
with, for signature compatibility, we consider the fuzzy space to have Lorentzian signature in
this limit15, which is fuzzy dS4. Then, we have to take into account the following considera-
tions:

• The 2-form field Bµν and the aµ decouple as, the first one was related to the preservation of
covariance of the fuzzy space and the latter was used to extend the gauge group in order for
the anticommutators of the generators to be closing;

• As functions become commutative, their commutators vanish, [f(x),g(x)]→ 0 and their anti-
commutators become products, {f(x),g(x)}→ 2f(x)g(x);

• The inner derivation reduces to the simple derivative: [Xµ, f]→ ∂µf and the traces reduce to

integrations,
√
2
4 Tr→

´
d4x;

• In the chosen gauge in which the spontaneous symmetry breaking is induced, the expression
for the D-related component tensor R̃µν of the field strength tensor reduces to:

R̃µν =−
√
2
8

ϵabcd
[
ωµ

ab,ων
cd
]
− iλ2

ℏ
B̃µν .

Because of this, the second term of the corresponding action, (72), will vanish in the com-
mutative limit, since the commutator of the spin connection will be zero. Also the B̃µν and
the aµ will decouple, as mentioned above, so the latter will not be included in the first term
of the aforementioned action.

• In order to achieve an exact matching with the results of the commutative case, we also need
to make following reparametrizations:

eµ
a → imeµ

a, Pa →− i
m
Pa, R̃µν

a → imTµν
a

ωµ
ab →− i

2
ωµ

ab, Mab → 2iMab, Rµν
ab →− i

2
Rµν

ab,

where m is an arbitrary, complex constant of dimensions [L]−1, which is introduced in order
for the eµa to remain dimensionless in the commutative limit, so that it can admit the inter-
pretation of the actual vielbein field.

After the inclusion of all of the above, the torsion tensor, R̃µν
a, takes the following form:

Tµν
a = ∂µeν

a− ∂νeµ
a−ωµ

abeνb+ων
abeµb = 0

15 As mentioned in the previous footnote, the choice of the Euclidean signature addresses the problem of the infinite-
dimensional representations in the noncommutative framework but it is obvious that it cannot produce a realistic
commutative limit. Therefore, for the discussion of the commutative limit to bemeaningful, we continue the discussion
in the Lorentzian signature.
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which is exactly the torsionless condition of the first-order formulation of GR. Furthermore,
because of the latter, the relation between ω and e will also be exactly the same as in the
first-order formulation of GR, as shown in [97].

As far as the curvature 2-form, Rµν
ab, is concerned, its expression will become the

following:

Rµν
ab = ∂µων

ab− ∂νωµ
ab+ωµ

acων
b
c−ωµ

bcων
a
c+

3
2
m2eµ

aeν
b = R(0)

µν
ab+

3
2
m2eµ

aeν
b .

It is clear that the curvature 2-form is exactly the same as that of the first order formulation of
GR, plus an extra term that involves only the vielbein fields.

Finally, concerning the action, as it is already mentioned, the second term of (72) will van-
ish, and it will now consist only of the first term. It is of utmost importance to be understood
that, in the commutative limit, the action is only Lorentz-invariant since all the rest of the sym-
metry is broken. The final expression for the action in the commutative limit will take a form
originally proposed by MacDowell–Mansouri, which eventually leads to the so-called Palatini
action, the gauge-theoretic equivalent of the Einstein–Hilbert action.

5. Conclusions—future plans

In the present article first we have reviewed in some detail the gauge theoretic approach to the
three- and four-dimensional gravity. Then after a short reminder of the formulation of gauge
theories on noncommutative spaces we have presented our approach of constructing gauge
fuzzy gravities, as matrix models, in the corresponding dimensions.

In particular for the four-dimensional fuzzy Euclidean case we would like to emphasize
that the constructed matrix gravity model describes finitely many degrees of freedom giving
promises for improved UV properties as compared to ordinary gravity. Amain future project is
to explore further this possibility and examine to which extent the hopefully positive results can
be realized in the spaces with Minkowskian signature too. Obvious extensions of our studies
concern the inclusion of matter fields—fermions and scalars (e.g. the scalar fields used to break
the gauge symmetry will be upgraded to dynamical ones).

After the completion of the theoretical part of our construction our plan is to study system-
atically the cosmological consequences of our gravitational model. Finding the solutions of
the fuzzy gravity that has been developed will allow us to proceed with the construction of
cosmological models and other implications, such as consideration of spherically symmetric
solutions that could result in the description of Black Holes from a noncommutative perspect-
ive. In the cosmological studies, we expect that the presence of the U(1), due to the anticom-
mutators, as well as and maybe more importantly the Chern–Simons form of the action could
provide the characteristic signature of noncommutativity. Of current interest is to examine
the possibility that the Planck scale quantum structure of the spacetime we have constructed
induces a modification of the gravitational wave dispersion relation and compare with the data
received by recent experiments in order to obtain bounds on the scale of noncommutativity.
Last, we plan to examine whether the above four-dimensional fuzzy gravity model could be
unified with internal interactions of particle physics extending the rationale of Chamseddine
and Mukhanov [109].
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