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1 Introduction

High energy particle accelerators, like the Large Hadron Collider (LHC), opened up a new
kinematic regime for particle interactions. Exploration of this regime is not only important
for the phenomenological description of the scattering processes which occur at these colliders,
but also for advancing our understanding of the theory of strong interactions: Quantum
Chromodynamics (QCD). The high energy limit — also called Regge limit — in QCD
is defined when the center-of-mass energy squared s of the collision is much larger than
other scales in the process, s ≫ −t > Λ2

QCD, where t is the momentum transfer. In the
perturbative regime of small coupling αs ≪ 1, the description of high energy processes has
been developed over the decades, which is based on the high energy factorization (or kT

factorization) [1–3] framework. The cross sections in this limit can be written in a factorized
form with process-dependent impact factors and the universal gluon Green’s function (GGF)
responsible for the exchanges in the t-channel. It is the energy dependence of the latter that
controls the high-energy behavior of the resulting cross section.

The GGF is given by the solution to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [4–6]
evolution equation, which resums the powers of (αs ln s/s0), where s0 is some reference energy
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scale. In the high energy limit, the logarithms of energy can be very large, and the terms
(αs ln s/s0)n ∼ 1 even in the perturbative regime of small coupling. Therefore such terms
need to be resummed, and this leads to the power growth of the gluon Green’s function with
the energy, that in turn translates to the power-like rise of the cross sections with energy.
Due to the latter feature, this solution is traditionally referred to as the BFKL Pomeron. The
BFKL evolution equation is known at the leading logarithmic (LL) [4, 5] and next-to-leading
logarithmic (NLL) accuracy in QCD [7, 8].

As it turned out, the NLL corrections to the BFKL equation are large and negative, and
may lead to instabilities, like oscillating cross section. Thus, in order to stabilize the BFKL
expansion, resummation methods were developed some time ago [9–23], and more recently
applied to phenomenology [24–26]. In the approach developed in [18–21], a renormalization
group improved (RGI) small-x evolution equation was constructed, which takes into account
LL and NLL BFKL as well as the DGLAP splitting function at lowest order. The consistency
of this formalism is based on the fact that the kernel of the evolution equation has the correct
collinear limits, i.e., the limits of the strong ordering of the transverse momenta along the
ladder of gluon emissions in the t-channel. To be precise, the requirement is that the collinear
singularities are single logarithmic in transverse momenta, which in the Mellin space of the
variable γ, the variable conjugated to the gluon transverse momentum, manifests itself as the
occurrence of single poles for each power of αs. The BFKL kernel in Mellin space has only
single poles of type ∼ 1/γ, 1/(1− γ) at leading logarithmic order, but at NLL order quadratic
and cubic poles appear. The quadratic poles have been recognized as originating from the
non-singular parts of the LO DGLAP splitting function which appears in the NLL BFKL
kernel, as well as due to the running coupling. The cubic poles originate from the energy scales
which become relevant at this order. It was demonstrated that the terms with the quadratic
and cubic poles are the ones that are responsible for the major part of the NLL correction.

In the following, by “resummation” we mean the “collinear resummation” of DGLAP
terms, which coincides with the “renormalization group improvement” mentioned before. In
the Ciafaloni-Colferai-Salam-Stasto (CCSS) resummation scheme, the cubic poles at the NLL
level (and the poles of order 2n + 1 at NnLL level) are resummed — hence eliminated —
by shifting the single poles in γ in the LL kernel eigenvalue. The shift is proportional to
the Mellin variable ω conjugated to the energy s. This shift originates from the kinematical
constraint [27] imposed onto the integrals over the transverse momenta. The quadratic poles
originate from the non-singular part of the DGLAP splitting function, and again, can be
resummed — hence eliminated — by taking them into account in the leading order kernel
with an ω-dependent redefinition of the coefficients of the single poles.

For a physical process that occurs at high energy, the gluon Green’s function needs to
be supplemented by the process-dependent impact factors, which also need to be evaluated
at the appropriate order of perturbation theory. The NLO corrections have been calculated
for the photon-gluon impact factor [28, 29], Mueller-Navelet jet vertices [30], Mueller-Tang
jets [31–33], and light vector mesons [34]. Numerous NLO calculations of impact factors
have also been performed in the context of effective theory for high energy and density, the
Color Glass Condensate, which includes parton saturation. Examples of the next-to-leading
calculations in this framework include inclusive structure functions [35, 36], also for massive
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quarks [37], contributions to inclusive diffraction [38], exclusive vector meson production [39–
42] and for inclusive dijet [43] and photon+jet [44]. The collinear resummation in the context
of small x evolution with saturation has been also explored, e.g. [45].

An excellent process for studying the BFKL Pomeron is γ∗γ∗ scattering, see e.g. [46–
53]. The idea is to select the events in which the virtualities Q2

i of the two photons are
comparable and large and the “rapidity interval” Y ≡ log(s/Q1Q2) between them is very
large: s ≫ Q2

1 ∼ Q2
2 ≫ Λ2

QCD. In such kinematics, the DGLAP logarithms are suppressed
and the process should be dominated by the BFKL evolution. This measurement was
performed at LEP e+e− collider [54, 55], through measurements of events with double tagged
leptons. Calculations were performed to describe this process within the BFKL formalism.
In particular, it was shown that including the partial resummation in the gluon Green’s
function leads to an excellent description of the LEP data [53]. Later on, once the NLO
photon-gluon impact factor became available, the full NLL calculation of the photon-photon
scattering was performed [56, 57]. The numerical difference between the LL and NLL case
was found very large. In fact, the NLL calculation is not able to describe the LEP data,
particularly at the highest rapidity [57].

Given that the gluon Green’s function required the collinear resummation, it is important
to perform consistently the resummation of the impact factors. As in the case of the gluon
Green’s function it is important to take into account exact kinematics in the impact factors
and analyze the structure of the poles due to these effects. The exact kinematics was included
in the kT factorization formula for the DIS structure functions [58–60]. Based on this result,
the photon-gluon impact factor with exact kinematics was computed in Mellin space [61].
Interestingly, these improved impact factors contained a shift of the poles in the γ variable,
analogously to what was observed in the Green’s function with the kinematical constraint.
This shift is proportional to ω, the Mellin variable conjugated to energy.

In this paper, we analyze the photon-photon scattering process at high energy and
perform the resummation of the impact factors in addition to the resummation of the gluon
Green’s function. We construct the renormalization group improved high-energy factorization
formula, where both impact factors and gluon Green’s function are resummed, hence ω-
dependent. A first consistency condition is imposed to ensure the equivalence of the RGI
impact factors and gluon Green’s function upon expansion in ω with fixed order BFKL results
up to NLL. The second consistency condition is imposed by analyzing the cross section
in the collinear limit, i.e., assuming strong ordering of the virtualities of the photons, and
consequently in the ladder of exchanged partons. In that way the coefficients of the highest
and next-to-highest γ-poles can be fixed both in the gluon Green’s function and in the impact
factors. Since the two consistency conditions do not uniquely specify all the subleading poles
when ω ̸= 0, we consider several resummation schemes, which parametrize the ambiguity
due to the unknown lower order poles.

As previously observed (see eg. [53, 57]), we need to add to the BFKL cross section
other contributions, in particular the one stemming from the quark box diagram — both
photons coupled to the same quark line —, which is dominant for the lowest rapidities. The
results of our calculations are compared with the experimental data from LEP [54, 55] and an
overall agreement is obtained within the theoretical and experimental uncertainties, with the
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Figure 1. Diagramatic representation of the BFKL factorization formula for the process of high-energy
scattering of two virtual photons.

resummed BFKL contribution representing the bulk of the cross section at high rapidities.
The paper is organized as follows. In section 2 we recall the renormalization group

improved method for the gluon Green’s function, and in particular we discuss the ω shifts.
In section 3 the RGI factorization formula is introduced and consistency with high-energy
factorization is discussed. We perform the collinear analysis of the transverse-transverse
photon cross section in section 4 and construct the resummed impact factor for transversely
polarized photons. In section 5 the analogous construction is carried out for the RGI impact
factor in case of longitudinally polarized photons. Numerical analysis is performed in section 6,
where we apply the resummed impact factors to cross sections and compare the results with
the experimental data from LEP and with other theoretical descriptions. Finally, in section 7
we state our conclusions. An appendix contains some formulae on the lowest order cross
sections and structure functions.

2 Renormalization group improved gluon Green’s function

The collinear resummation for the evolution of gluon density at small-x was developed in
series of works using slightly different approaches [11–15], [16–21], [22], [23]. In this section
we shall recap the essential ingredients of the resummation developed in [16–21] for the
gluon Green’s function. As a result, the renormalization group improved (RGI) small-x
evolution was constructed which contains both DGLAP and BFKL kernels and satisfies
momentum sum rule.

We start from the cross section σ(jk) for virtual photon scattering at high-energy which
can be written in a factorized form as the product of process-dependent impact factors ϕ(j)

and the universal (energy-dependent) gluon Green’s function G, as depicted in figure 1. In
momentum space, the BFKL factorization formula reads

σ(jk)(s,Q1, Q2) =
∫

d2k d2k′ ϕ(j)(Q1,k)G(s,k,k′)ϕ(k)(Q2,k
′) , (2.1)

where j, k ∈ {L, T} denote the polarizations of the two photons, q1, q2 their momenta and
Q2

i ≡ −q2
i > 0 : i = 1, 2 their virtualities.

The gluon Green’s function G(s,k,k0), which depends on the transverse gluon momenta
k and k0 and energy squared s ≡ (q1 + q2)2, satisfies the evolution equation that can be
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written in the following form

∂

∂ log sG(s,k,k0) =
∫

d2k′ K(k,k′)G(s,k′,k0) , (2.2)

where the function K is the BFKL kernel which has the following perturbative expansion

K = ᾱsK0 + ᾱ2
sK1 + . . . . (2.3)

In the above equation, we introduced the rescaled strong coupling ᾱs = αsNc
π where Nc is

the number of colors. In QCD the kernel is known at leading [4, 5] and next-to-leading
order [7, 8], in N = 4 super Yang-Mills theory up to next-to-next-to leading accuracy [62–64].
It is customary to use the Mellin transform to obtain the kernel eigenvalue

ᾱsχ(γ) =
∫

dk′2
(

k′2

k2

)γ

K(k,k′) , (2.4)

with the corresponding perturbative expansion corresponding to eq. (2.3)

χ(γ) = χ0(γ) + ᾱsχ1(γ) + . . . . (2.5)

The leading order kernel’s eigenvalue reads

χ0(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ) , (2.6)

where ψ(z) = Γ′(z)/Γ(z) is the polygamma function, and ψ(1) = −γE . The next-to-leading
order eigenvalue is1

χ1(γ)=− b2χ
2
0(γ)−

1
4χ

′′
0(γ)−

1
4

(
π

sinπγ

)2 cosπγ
3(1−2γ)

[
11+4TRNf

N3
c

+(1+2TRNf/N
3
c )γ(1−γ)

(1+2γ)(3−2γ)

]

+
(
67
36−

π2

12−
5TRNf

9Nc

)
χ0(γ)+

3
2ξ(3)+

π2

4sinπγ−Φ(γ) , (2.7)

where
b = 11Nc − 4TRNf

12π ≡ CA

π
b̄ , (2.8)

is the first beta-function coefficient, Nf the number of active quark flavours, TR = 1/2 and

Φ(γ) =
∞∑

n=0
(−1)n

[
ψ(n+ 1 + γ)− ψ(1)

(n+ γ)2 + ψ(n+ 2− γ)− ψ(1)
(n+ 1 + γ)2

]
. (2.9)

The LO and NLO BFKL eigenvalues contain collinear and anticollinear poles, i.e. poles
when γ ∼ 0 and γ ∼ 1. These correspond to the strong ordering of the transverse momenta
in the t channel, either k2 ≫ k′2 or k2 ≪ k′2 respectively.

The LO and NLO eigenvalues have specific pole structures in γ variable. The LO
eigenvalue has only single poles, i.e.

χ0(γ) ∼ 1
γ
,

1
1− γ

. (2.10)

1This expression for χ1 holds for the scale-invariant part of the NLO kernel with symmetric energy scale
(see eq. (3.1)) and symmetric running coupling αs(|k| |k′|) in eq. (2.3).
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The NLO eigenvalue has a more complicated structure, since in addition to the single poles it
also has double and triple collinear poles. It is these higher order poles that are responsible
for the fact that the NLO term is numerically large, and these terms need to be properly
resummed. The double poles stem from two sources. The first one is the running coupling term

− b2
[
χ2

0(γ)
]
∼ − b

2 γ2 + (γ → 1− γ) , (2.11)

which contributes to the poles at γ = 0 and 1. The second is the term

− 1
4

(
π

sin πγ

)2 cosπγ
3(1− 2γ)

[
11 + 4TRNf

N3
c

+ (1 + 2TRNf/N
3
c )γ(1− γ)

(1 + 2γ)(3− 2γ)

]

∼ −11 + 4TRNf/N
3
c

12 γ2 + (γ → 1− γ) ,
(2.12)

which originates from the DGLAP anomalous dimension. To be precise, the coefficient of
the double poles is just the non-singular part A1(0) = −11+4TRNf /N3

c

12 of the eigenvalue γ+(ω)
of the LO DGLAP anomalous dimension matrix:

γ+(ω) = Pgg(ω) +
CF

CA
Pqg(ω) + O(ω) = 2CA

ω
[1 + ωA1(ω)] , (2.13)

where ω is the Mellin variable conjugated to the energy, CA = Nc = 3 and CF = (N2
c −

1)/(2Nc) and

A1(ω) = − 1
ω + 1 + 1

ω + 2 − 1
ω + 3 − [ψ(2 + ω)− ψ(1)] + 11

12 − TRNf

3N3
c

, (2.14)

represents the non-singular (for ω → 0) part of γ+.
Finally, the triple collinear poles stem from the term

−1
4χ

′′
0(γ) ∼ −1

2
1
γ3 , −1

2
1

(1− γ)3 . (2.15)

The form of the term above depends on the scale choice for the kernel. Let us briefly recap
the problem of energy scales [9] in the BFKL equation.

Going back to the momentum representation of the BFKL equation (2.2), we can use
the double Mellin transform to write the azimuthally averaged gluon Green’s function as

G(s,k,k0) =
1

2πk2

∫ dω
2πi

(
s

kk0

)ω ∫ dγ
2πi

(
k2

k2
0

)γ

G(ω, γ) , (2.16)

and the BFKL equation becomes

ωG(ω, γ) = 1 + ᾱs χ(γ)G(ω, γ) . (2.17)

In eq. (2.16) we are adopting the symmetric energy scale s0 = kk0. However, the scale choice
can also be asymmetric, like in the case of the Deep Inelastic Scattering, where the scales on
the virtual photon and the proton side are in principle very different. In this case, the cross
section is dominated by configurations with k ≫ k0 so that the proper evolution variable is
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k2/s, corresponding to the asymmetric energy scale s0 = k2. The crucial observation is that
such a change of energy scale in eq. (2.16) is equivalent to a shift of γ by ω/2:(

s

kk0

)ω(k2

k2
0

)γ

=
(
s

k2

)ω( k

k0

)ω(k2

k2
0

)γ

=
(
s

k2

)ω(k2

k2
0

)γ+ω/2
. (2.18)

The opposite shift is obtained if s0 = k2
0. Due to that fact, the gluon Green’s function and

thus the kernel in Mellin space gets ω dependence; the latter can be written in the form [65]

χ0(ω, γ) = 2ψ(1)− ψ

(
γ + ω

2

)
− ψ

(
1− γ + ω

2

)
, (2.19)

for the symmetric scale choice.
Expanding this kernel in ω and using the solution at lowest order ω = ᾱsχ0(γ), one

obtains for the NLO contribution

−1
2ω ψ

′(γ)− 1
2ω ψ

′(1− γ) ≃ −1
2
ᾱs

γ3 − 1
2

ᾱs

(1− γ)3 . (2.20)

These terms exactly correspond to the triple collinear poles present in the NLO kernel, see
eq. (2.15). In other words, the cubic poles in the NLO kernel can be discarded, since their
contribution is taken into account by the ω-shift in the LO kernel, as in eq. (2.19).

Next, the collinear term with the non-singular DGLAP splitting function was included
in the form [19]

χω
c (γ) = ωA1(ω)

(
1

γ + ω
2
+ 1

1− γ + ω
2

)
, (2.21)

which, when expanded in ω and retaining the first power in ᾱs, gives

ωA1(ω)
(1
γ
+ 1

1− γ

)
≃ ᾱsA1(0)

( 1
γ2 + 1

(1− γ)2

)
, (2.22)

thus reproducing eq. (2.12). These terms are then subtracted from the NLO kernel again.
Actually, the ω-shift predicted by the collinear analysis with upper and lower energy-scale,

leading to eq. (2.19), allows us to predict the spurious poles2 of the higher order BFKL kernels:

χn(γ) ∼
1

γ1+2n
, (2.23)

which are more and more singular as the order increases, while only poles of order 1 + n are
expected from the collinear QCD dynamics. This can be roughly understood because the
ω-shift transforms a LO pole into a series of spurious poles to all orders, e.g.,

1
γ + ω/2 ∼ 1

γ + ᾱsχ0/2
∼ 1
γ(1 + ᾱs/2γ2) ∼

∞∑
n=0

(−ᾱs)n

2n γ1+2n
. (2.24)

The occurrence of “spurious” high-order poles in the BFKL approach is responsible for
the bad convergence of the BFKL expansion and the instabilities of its phenomenological

2It has been verified [66] that the ω-shift correctly reproduces the highest order poles ∼ 1/γ5 at the NNLO
BFKL in the supersymmetric theory [62–64].

– 7 –



J
H
E
P
0
1
(
2
0
2
4
)
1
0
6

predictions. Therefore, it is compelling to resum such spurious poles by means of the RGI
formulation.

In conclusion, the resummed kernel in the CCSS formalism was constructed by taking at
LO the sum of the ω-shifted kernels in eqs. (2.19) and (2.21) and subtracting the triple and
double γ-poles (eqs. (2.20) and (2.22)) from the NLO kernel. In this way the NLO resummed
kernel has only simple poles, hence it is much less singular in the collinear limits γ → 0, 1
and provides more stable and reliable phenomenological results.

3 High energy factorisation

In this section we recall and compare the factorization formulae in the pure BFKL formalism
and in the RGI approach, with the aim of deriving the compatibility conditions among the
respective impact factors and Green functions, thus setting the stage for the computation
of the RGI impact factors.

3.1 BFKL vs RGI factorization formula

The high-energy factorization formula (2.1) for γ∗γ∗ scattering can be rewritten in a more
convenient form as a double Mellin representation with respect to transverse momenta (or
virtualities) [cfr. eq. (2.4)] and to energy [cfr. eqs. (2.16) and (2.17)]:

σ(jk)(s,Q1,Q2)=
1

2πQ1Q2

∫ dω
2πi

(
s

s0(p)

)ω∫ dγ
2πi

(
Q2

1
Q2

2

)γ− 1
2

ϕ(j)(γ;p)G(ω,γ;p)ϕ(k)(1−γ;−p),

(3.1a)

G(ω,γ;p)= 1
ω−ᾱsχ(γ;p)

. (3.1b)

Here we introduced the notation s0(p) = Q1+p
1 Q1−p

2 for the energy-scale. By varying the
parameter p we can switch from symmetric scale s0 = Q1Q2 (p = 0), to “upper” scale s0 = Q2

1
(p = 1) or to “lower” scale s0 = Q2

2 (p = −1).
In eq. (3.1) both impact factors ϕ and eigenvalue function χ are perturbative objects

that admit a series expansion in αs, as in eq. (2.5); from next-to-leading order on, they
depend on the choice of the energy scale:

ϕ(j)(γ; p) = ϕ
(j)
0 (γ) + ᾱsϕ

(j)
1 (γ; p) + O(ᾱ2

s) , (3.2)
χ(γ; p) = χ0(γ) + ᾱsχ1(γ; p) + O(ᾱ2

s) . (3.3)

On the other hand, the renormalization-group improved (RGI) high-energy factorization
for scattering reads

σ(jk)(s,Q1, Q2) =
1

2πQ1Q2

∫ dω
2πi

(
s

s0(p)

)ω ∫ dγ
2πi

(
Q2

1
Q2

2

)γ− 1
2

Φ(j)(ω, γ; p)G(ω, γ; p) Φ(k)(ω, 1− γ;−p)
(3.4a)

G(ω, γ; p) = 1
ω − ᾱsX(ω, γ; p) . (3.4b)
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Here, we introduce the new notation X(ω, γ) for the kernel in Mellin space appearing in
RGI factorization (3.4b) to clearly distinguish it from the BFKL kernel χ(γ) present in the
standard high-energy factorization, eq. (3.1b). At variance with the usual BFKL expansion,
both impact factors Φ and eigenvalue function X are ω-dependent, for a twofold purpose:
(i) to fully agree with the known collinear behaviour at least in the leading-logarithmic
log(Q1/Q2) approximation; (ii) to resum into a smoother behaviour subleading contributions
which are singular in some region of the complex γ-plane. Actually, the two issues are strictly
related, as explained in [19] and in section 2.

Following the argument leading to eq. (2.18), a change of the energy scale s0, i.e. a
change in p, leaves the cross section (3.4a) invariant provided

Φ(j)(ω, γ; p) = Φ(j)
(
ω, γ − ω

2 p; 0
)
, X(ω, γ; p) = X

(
ω, γ − ω

2 p; 0
)
. (3.5)

The corresponding scale change entails more complicated changes in the BFKL impact factors
ϕ and eigenvalue function χ of eq. (3.1).

Given some choice for the energy scale, the equivalence between the two factorization
formulas (3.1a) and (3.4a) is obtained by evaluating the ω-integrals and requiring the re-
maining γ-integrand to be the same function (up to terms yielding contributions suppressed
by powers of s). In eq. (3.1a) the ω integration is trivial: being s0 < s one can close the
ω-integration path to the left and pick up the simple pole at ω = ᾱsχ(γ), obtaining

σ(jk)(s,Q1, Q2) =
1

2πQ1Q2

∫ dγ
2πi

(
s

s0

)ᾱsχ(γ)
(
Q2

1
Q2

2

)γ− 1
2

ϕ(j)(γ)ϕ(k)(1− γ) . (3.6)

In eq. (3.4a) there can be many ω-poles. The position of the rightmost pole — which
provides the leading high-energy behaviour of the cross section — is determined by the
implicit equation

ω = ᾱsX(ω, γ) ≡ ωeff(γ, ᾱs) ≡ ᾱsχ
eff(γ, ᾱs) , (3.7)

where the last expressions ωeff = ᾱsχ
eff represent such solution as function of γ and ᾱs. Then

the ω-integral singles out the residue at such pole

Resω=ωeff [ω − ᾱsX(ω, γ)]−1 = [1− ᾱs∂ωX(ωeff , γ)]−1 , (3.8)

yielding

σjk(s,Q1,Q2)=
1

2πQ1Q2

∫ dγ
2πi

(
s

s0

)ᾱsX(ωeff ,γ)
(
Q2

1
Q2

2

)γ− 1
2 Φ(j)(ωeff ,γ)Φ(k)(ωeff ,1−γ)

1−ᾱs∂ωX(ωeff ,γ) +· · · ,

(3.9)

where the dots indicate terms suppressed by powers of s. Therefore, for any choice of
energy scale,

χ(γ) = X(ωeff , γ) (3.10a)

ϕ(j)(γ)ϕ(k)(1− γ) = Φ(j)(ωeff , γ)Φ(k)(ωeff , 1− γ)
1− ᾱs∂ωX(ωeff , γ) . (3.10b)
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By expanding eq. (3.10) in ᾱs as in eqs. (3.2) and (3.3), we obtain the following equations
relating the RGI eigenvalue and impact factors (and their derivatives) at ω = 0 with the
BFKL ones:

ωeff = ᾱsχ0(γ)+O(ᾱ2
s) (3.11)

χ0(γ)=X0(0,γ) (3.12)
χ1(γ)=X1(0,γ)+χ0(γ)∂ωX0(0,γ) (3.13)

ϕ
(j)
0 (γ)ϕ(k)

0 (1−γ)=Φ(j)
0 (0,γ)Φ(k)

0 (0,1−γ) (3.14)

ϕ
(j)
0 (γ)ϕ(k)

1 (1−γ)+ϕ(j)
1 (γ)ϕ(k)

0 (1−γ)=Φ(j)
0 (0,γ)

[
Φ(k)

1 (0,1−γ)+χ0(1−γ)∂ωΦ(k)
0 (0,1−γ)

]
+
[
Φ(j)

1 (0,γ)+χ0(γ)∂ωΦ(j)
0 (0,γ)

]
Φ(k)

0 (0,1−γ)

+Φ(j)
0 (0,γ)Φ(k)

0 (0,1−γ)∂ωX0(0,γ) . (3.15)

These equations form the first consistency condition of the RGI framework with the BFKL
framework. Equations (3.11) to (3.13) are well known from the first studies on RGI BFKL [19].
Equation (3.14) implies that ϕ(j)

0 (γ) = Φ(j)
0 (0, γ) for any polarization j. In particular,

eqs. (3.1a) and (3.4a) imply the following normalization for the LO impact factors, compared
to those of refs. [3, 57, 61]:

ϕ
(j)
0 (γ) = 2π

√
2(N2

c − 1)α
Nf

(∑
q

e2
q

)
γ hj(γ)

(
hT = h2

γ
− hL

)
ref [3] Catani et al.

(3.16)

= TR

√
2(N2

c − 1)
2 Fj(ν)

(
γ = 1

2 + iν
)

ref [57] Ivanov et al.

(3.17)

= TR

√
2(N2

c − 1)
π

(∑
q

e2
q

)
Sj(N = 0, γ) (N = ω) ref [61] Białas et al. ,

(3.18)

where ∑q denotes the sum over quark flavours and eq is the electric charge of quark q in
units of the positron charge. In those papers, the expressions are often given for Nc = 3 and
TR = 1/2, but it is better to keep track of such colour structure for the comparison with the
subsequent collinear analysis. Explicitly, the LO impact factors read

ϕ
(T )
0 (γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) π2
(1 + γ)(2− γ)Γ2(γ)Γ2(1− γ)
(3− 2γ)Γ(3/2 + γ)Γ(3/2− γ) , (3.19a)

ϕ
(L)
0 (γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1)π Γ(1 + γ)Γ(2− γ)Γ(γ)Γ(1− γ)
(3− 2γ)Γ(3/2 + γ)Γ(3/2− γ) , (3.19b)

where α is the electromagnetic coupling. It is apparent from the Γ functions in the numerators
that both LO impact factors have poles at γ = 0 and γ = 1, similarly to the eigenvalue
functions χ0 and χ1 in eqs. (2.10) and (2.15). This is due to QCD dynamics which, in the
collinear limit Q1 ≫ Q2 (Q1 ≪ Q2), generates logarithmic term ∼ logn(Q2

1/Q
2
2) : n ≥ 0,

corresponding to poles of order n + 1 at γ = 0 (γ = 1) in Mellin space. More precisely,
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the RGI impact factors and eigenvalue function have poles whose order increases as the
perturbative order:

Φ(T )
n (ω, γ; 1) ∼ 1

γ2+n
, Φ(L)

n (ω, γ; 1) ∼ 1
γ1+n

, Xn(ω, γ; 1) ∼
1

γ1+n
, (3.20)

as will be evident from the collinear analysis in the next section. On the other hand, the
corresponding BFKL quantities at symmetric scale s0 = Q1Q2 have poles that increase
twice as much:

ϕ(T )
n (γ; 0) ∼ 1

γ2+2n
, ϕ(L)

n (γ; 0) ∼ 1
γ1+2n

, χn(γ; 0) ∼
1

γ1+2n
. (3.21)

This has been already observed at leading and next-to-leading order for the eigenvalue
functions χ0 and χ1 in section 2 and in particular in eq. (2.15). The collinear poles of the
NLO impact factors can be derived from the expressions computed in [57]:

ϕ
(T )
1 (γ; 0)
ϕ

(T )
0 (γ)

= χ0(γ)
2 ln s0

Q2 + b̄ ln µ
2
R

Q2

+ 3CF

4NC
− 5

9
TRNf

NC
+ π2

4 + 85
36 − π2

sin2(πγ) −
1

γ (γ − 1) +
3χ0(γ)

2 (γ + 1) (2− γ)

+ 1
4(1− γ) −

1
4γ − 7

36(1 + γ) +
5

3(1 + γ)2 − 25
36(γ − 2)

+ 1
2χ0(γ) [ψ (1− γ) + 2ψ (2− γ)− 2ψ (4− 2γ)− ψ (2 + γ)] , (3.22)

ϕ
(L)
1 (γ; 0)
ϕ

(L)
0 (γ)

= χ0(γ)
2 ln s0

Q2 + b̄ ln µ
2
R

Q2

+ 3CF

4NC
− 5

9
TRNf

NC
+ π2

4 + 85
36 − π2

sin2(πγ) −
1− 4γ

2γ2(γ2 − 1) +
1

1− γ2χ0(γ)

+ 1
2χ0(γ) [ψ (1− γ) + 2ψ (2− γ)− 2ψ (4− 2γ)− ψ (2 + γ)] , (3.23)

where b̄ is defined in eq. (2.8) and µR is the renormalization scale. The origin of the higher
order poles in impact factors is the same as that of poles in the BFKL kernel, as explained
in section 2. Such spurious poles can be resummed using the ω-shift of poles suggested
by the RGI procedure.

Equation (3.15) will be used to determine the RGI impact factors at NLO. For this
purpose, we need to know the ω-dependence of the LO eigenvalue and impact factors. All
that will be the subject of the next section.

4 RGI impact factor for transverse photons

4.1 Lowest order T T cross section in the collinear limits

Further information for the γ∗γ∗ cross section, somehow complementary to the multi-Regge
kinematics, can be inferred by analyzing the collinear limit, i.e., by considering two photons
with very different virtualities, say Q1 ≫ Q2. This situation is well described by effective
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Q1 Q2l1 l2k

Figure 2. Diagramatics of collinear limit at lowest order in the BFKL factorization formula.

ladder diagrams, like the one depicted in figure 2, where the intermediate propagators are
strongly ordered in virtuality (decreasing from left to right). At each QCD vertex, the strong
coupling is evaluated at a scale given by the largest virtuality of the connected propagators,
while a splitting function Pba(zb/za) describes the fragmentation of the parent parton a (to
the right) into a child parton b (to the left) and an emitted on-shell parton (vertical line).
The integrals over the ordered longitudinal momentum fractions are convolutions, which can
be diagonalized by a Mellin transform in the Bjorken variable 1/xBj = s/Q2

1 = s/s0(p = 1):

σ(jk)(s,Q1, Q2) =
1

2πQ1Q2

∫ dω
2πi

(
s

Q1+p
1 Q1−p

2

)ω

σ̃(jk)(ω,Q1, Q2; p) . (4.1)

which is exactly the structure of eqs. (3.1a) and (3.4a).
The collinear integrand σ̃(T T ) for two transverse photons at O(α2α2

s ) — corresponding
to the four-rungs LO BFKL diagram — is given by (cfr. appendix A)

σ̃(T T )(ω,Q1,Q2;1)=(2π)3α
(
2
∑
q∈A

e2
q

)

×
∫ Q2

1

Q2
2

dl21
l21

αs(l21)
2π Pqg(ω)

∫ l21

Q2
2

dk2

k2
αs(k2)
2π Pgq(ω)

∫ k2

Q2
2

dl22
l22

α

2π
(
2
∑
q∈B

e2
q

)
Pqγ(ω).

(4.2)

where l1, k and l2 are the momenta of the t-channel quark, gluon and quark respectively, as
depicted from left to right in figure 2, A and B denote the sets of active quarks of momenta
l1 and l2 respectively, while Pab(ω) denote Mellin moments of the one-loop splitting functions.
The running coupling at scale |k| is defined in terms of the renormalized coupling αs at
the renormalization scale µR:

αs(k2) := αs(µ2
R)

1 + αs(µ2
R)b ln k2

µ2
R

≃ αs(µ2
R)
(
1− αs(µ2

R)b ln
k2

µ2
R

+ · · ·
)
, (4.3)

where b is defined in eq. (2.8). Substituting the above expansion for αs(l21) and αs(k2) in
eq. (4.2) and switching to logarithmic variables Li := ln Q2

i

µ2
R

, λi := ln l2i
µ2

R
, λk := ln k2

µ2
R

, we obtain

σ̃(T T ) = (2π)3α
2

2π

(
αs(µ2

R)
2π

)2 (
2
∑
q∈A

e2
q

)(
2
∑
q∈B

e2
q

)
Pqg(ω)Pgq(ω)Pqγ(ω)

×
∫ L1

L2
dλ1

∫ λ1

L2
dλk

∫ λk

L2
dλ2

[
1− αs(µ2

R)b(λ1 + λk) + O(α2
s )
]
. (4.4)
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The nested integral in the second line of eq. (4.4) yields∫∫∫
= (L1 − L2)3

3!
[
1− αs(µ2

R)b(L1 + L2)
]
− αs(µ2

R)b
(L1 − L2)4

4! + O(α2
s ) .

By including the overall factor α2
s (µ2

R) written in the first line of eq. (4.4) and noting that

α2
s (µ2

R)
[
1− αs(µ2

R)b(L1 + L2)
]
= α2

s (Q1Q2) + O(α4
s ) ,

we get

α2
s (µ2

R)
∫∫∫

≃ α2
s (Q1Q2)

[
(L1 − L2)3

3! − αsb
(L1 − L2)4

4! + O(α4
s )
]
, (4.5)

≃ α2
s (Q1Q2)

[
1
3! log

3 Q
2
1

Q2
2
− αsb

1
4! log

4 Q
2
1

Q2
2
+ O(α4

s )
]
. (4.6)

By Mellin transforming in Q2
1/Q

2
2 the terms in square brackets3 (while keeping the strong

couplings as factors outside the Mellin transform), we obtain the corresponding expression
in γ-space:

α2
s (Q1Q2)

1
γ4

[
1− αsb

1
γ

]
. (4.7)

The first term O(α2
s/γ

4) could have been obtained by using a fixed coupling constant in
eq. (4.2). The introduction of the running coupling is responsible for the second (b-dependent)
term O(α3

s/γ
5), which will be important in the analysis of the NLO impact factors.4

Finally, by restoring all the factors of eq. (4.4), we obtain the Mellin transform of σ̃(T T )

of eq. (4.2) (with respect to the variable Q2
1/Q

2
2), expanded at order α2

s , which is nothing but
the integrand of the RGI factorization formula (3.4a) in the collinear limit γ → 0:

˜̃σ(T T )
0 (ω, γ; 1)

∣∣coll = Φ(T )
0 G0 Φ(T )

0
∣∣coll
p=1

= (2π)3α
(
2
∑
q∈A

e2
q

)1
γ

· αs
2π

Pqg(ω)
γ

· αs
2π

Pgq(ω)
γ

· α

2π
(
2
∑
q∈B

e2
q

)Pqγ(ω)
γ

.

(4.8)

Some remarks are in order:

(i) Since the collinear analysis of the cross section based on the DGLAP chain singles
out the leading logarithmic behaviour in the ratio Q1/Q2, eq. (4.8) provides just the
leading γ-pole structure of the RGI integrand in the neighborhood of γ = 0.

(ii) Such pole structure correspond to p = 1, i.e., energy scale s0 = Q2
1. Adopting the

symmetric energy scale s0 = Q1Q2 (p = 0), according to eq. (3.5) the pole at γ = 0 is
shifted at γ = −ω/2, while keeping the same coefficient.

3Recall that (L1 − L2)n = lnn Q2
1

Q2
2

becomes n!
γn+1 under Mellin transform.

4If one chooses a different scale for the running coupling, the coefficient of the b-dependent term in eq. (4.7)
would change accordingly.
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(iii) In the opposite (anti)collinear limit Q1 ≪ Q2, one obtains the same result of eq. (4.8),
provided one replaces γ → 1− γ and p→ −1, i.e., s0 = Q2

2. At symmetric energy scale
s0 = Q1Q2, the pole at γ = 1 is shifted at γ = 1 + ω/2. If p = 1, i.e., s0 = Q2

1, the pole
at γ = 1 is shifted at γ = 1 + ω.

(iv) The two sums with electric charges are over quark flavours (q ∈ {u, d, . . . }) and a factor
of 2 in front of each sum takes into account quark+antiquark contributions.

Therefore, with energy scale s0 = Q2
1 (p = 1) and including both collinear and anticollinear

contributions, the pole structure at LO of the RGI improved cross section reads

˜̃σ(T T )
0 (ω, γ; 1)

∣∣2×coll = (2π)3α
(
2
∑

q

e2
q

)1
γ
· αs
2π

Pqg(ω)
γ

· αs
2π

Pgq(ω)
γ

· α2π
(
2
∑

q

e2
q

)Pqγ(ω)
γ

+
(
γ → 1 + ω − γ

)
. (4.9)

In order to classify terms according to the small-x expansion, and also to compare
with the known expressions (eqs. (3.16) to (3.18) ) of impact factors at leading order, it is
convenient to expand the Mellin transforms of the splitting functions as powers series in ω:

Pqq(ω) = CF

(
5
4 − π2

3

)
ω + O(ω2) (4.10)

Pgq(ω) =
2CF

ω
[1 + ωAgq(ω)] Agq(0) = −3

4 (4.11)

Pqg(ω) =
2
3TR [1 + ωAqg(ω)] Aqg(0) = −13

12 (4.12)

Pgg(ω) =
2CA

ω
[1 + ωAgg(ω)] Agg(0) = −11

6 + b̄ , b̄ = 11
12 − TRNf

3Nc
(4.13)

Pqγ(ω) =
Nc

TR
Pqg(ω) . (4.14)

Note that Pqg refers to the process where a gluon produces a single quark emitting an
antiquark, or viceversa. Therefore, a gluon splitting into a quark or antiquark of a given
flavour requires a factor of two. If the (anti-) quark at some point splits into a gluon, the
sum over flavours yields an additional factor Nf . On the contrary, if the (anti-)quark couples
to a photon, the sum over flavours yields a factor ∑q e

2
q . Equation (4.14) stems from the

fact that, if a gluon of colour c splits into a quark-antiquark pair with colours a, b, then the
squared matrix element contains ∑ab t

c
abt

d∗
ab = tr(tctd) = TRδcd, while if a photon splits into a

quark-antiquark pair, the sum over colours is ∑ab δabδab = ∑
a δaa = Nc.

By taking into account eqs. (4.11) to (4.14) and noting that CFNc = (N2
c − 1)TR, we

can rewrite eq. (4.9) as

˜̃σ(T T )
0 (ω, γ; 1) =

[
ααs

(∑
q

e2
q

)
2Pqg(ω)

√
2(N2

c − 1)
( 1
γ2 + 1

(1 + ω − γ)2

)]2

× 1
ω

(
1 + ωAgq(ω)

)
+ O(γ−3) + O((1 + ω − γ)−3) , (4.15)

where only the quartic poles in γ are of our concern.
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The term in square brackets is exactly the collinear limit of the ω-dependent LO impact
factor derived from eq. (3.18); in other words, it represents the double poles of Białas,
Navelet and Peschanski (BNP) impact factor [61] for a transverse photon with their full
ω-dependent coefficient:

Φ(T )
BNP(ω,γ)=ααs

(∑
q

e2
q

)
TR

√
2(N2

c −1) πΓ(γ+δ)Γ(γ)Γ(ω)
1

(δ2−1)(δ2−4)

{
ψ(γ+δ)−ψ(γ)

δ

×ω2 [3(ω+1)2+9
]
−2ω

(
δ2−1

)
+
(
δ2−1

)(
δ2−9

)
4ω − 3(ω+1)2+3+

(
δ2−1

)
2

}
(4.16)

=C0

[1+ωAqg

γ2 +D(ω)
γ

+O(γ0)
]
+(γ→ 1+ω−γ) (4.17)

C0 =ααs
(∑

q

e2
q

)4
3TR

√
2(N2

c −1) , D(ω)= 7
6+O(ω) , δ≡ω+1−2γ . (4.18)

The factor 1/ω — stemming from Pgq(ω) — in the second line of eq. (4.15) yields the
GGF (3.4b) at lowest order (αs → 0), while the finite part ∝ Agq provides a NLL correction,
to be reconsidered later.5 In conclusion,

˜̃σ(T T )
0 (ω, γ; 1) = C2

0
1
ω

[
(1 + ωAqg)2 (1 + ωAgq)

γ4 + O(γ−3)
]
+ (γ → 1 + ω − γ) . (4.19)

4.2 LO RGI transverse impact factor

Our first task now is to determine (a possible form of) the LO RGI transverse impact factor.
If we ignore for a moment the factor Pgq(ω)/Pgq(0) = (1 + ωAgq), eq. (4.15) tells us that the
LL TT cross section in the collinear limit is given by the collinear limit of the LO transverse
impact factors of BNP [61], times the LL GGF. One could then claim that the full LL RGI
TT cross section is given by the product of the complete BNP transverse impact factors with
the LL GGF, and conclude that the LO RGI transverse impact factor is just the one provided
in ref. [61], i.e., eq. (4.16). More properly, such an impact factor is a perfect candidate, since
it reproduces the LO BFKL cross section in the high-energy limit (ω → 0) and also the LO
DGLAP cross section in the collinear limits γ → 0 and γ → 1 + ω.

However, the collinear limit (4.15) of the cross section has the additional ω-dependent
factor Pgq(ω)/Pgq(0). In order to take it into account, we must modify either the BNP impact
factors or the GGF. Since this factor stems from the quark-gluon interaction, while the LL
GGF is determined by pure gluon dynamics, it is natural to associate such a factor to the
impact factors. The modification of impact factors is ambiguous, since the collinear analysis
just provides constraints for the leading twist poles, i.e., for γ ≃ 0 and γ ≃ 1 + ω, of their
products. Let’s parametrize the leading-twist poles of Φ(T )

0 as follows:6

Φ(T )
0 (ω, γ; 1) = C0

[
1 + ωB(ω)

γ2 + D(ω)
γ

+ 1 + ωB̄(ω)
(1 + ω − γ)2 + D̄(ω)

1 + ω − γ

]
+ r(ω, γ) , (4.20)

5In the ω → 0 limit, eq. (4.15) reduces to the product of the LL GGF 1/ω with the LO impact factors
ϕ

(T )
0 (γ)ϕ(T )

0 (1 − γ) of Catani et al. as in eq. (3.16) — restricting ϕ
(T )
0 to the double poles in γ.

6We use the convention of parametrizing coefficients of the collinear and anti-collinear poles with the same
letter, but with a bar over the coefficients of the anti-collinear poles.
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where r(ω, γ) has no leading-twist poles. We then have, for γ ≃ 0,

˜̃σ(T T )
0 (ω, γ; 1) = Φ(T )

0 (ω, γ; 1) 1
ω

Φ(T )
0 (ω, 1 + ω − γ; 1)

= C2
0
1
ω

[
(1 + ωB)(1 + ωB̄)

γ4 + O(γ−3)
]
+ (γ → 1 + ω − γ) . (4.21)

Comparing the above expression with eq. (4.19) we get

(1 + ωB)(1 + ωB̄) = (1 + ωAqg)2(1 + ωAgq) (4.22a)
=⇒ B + B̄ = 2Aqg +Agq + O(ω) . (4.22b)

In the following, we often neglect the subleading terms O(ω) in eq. (4.22b).
On the contrary, the coefficients D(ω) and D̄(ω) of the simple poles are out of reach of

the present LO collinear analysis, but their value at ω = 0 can be determined from the explicit
expression of eq. (3.19a) in ref. [3]: D(0) = D̄(0) = 7/6 [cfr. eq. (4.18)]. The simplest and
more natural choice for us is to adopt D(ω) = D̄(ω) as in the impact factor Φ(T )

BNP of eq. (4.16).
According to the constraints previously derived, we present some possible choices of the

transverse LO RGI impact factor, whose differences have to be considered a resummation-
scheme ambiguity:7

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ)
[
1 + ω

2Agq(ω)
]

(scheme I) (4.23a)

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ) + C0
ω

2Agq(ω)
[ 1
γ2 + 1

(1 + ω − γ)2

]
(scheme II) (4.23b)

Φ(T )
0 (ω, γ; 1) = Φ(T )

BNP(ω, γ) + C0 ωAgq(ω)
1 + ωAqg

(1 + ω − γ)2 (scheme III) . (4.23c)

Scheme I is an overall renormalization of the impact factor. Scheme II just modifies the
coefficient of the (leading-twist) double poles. Scheme III is motivated by the fact that the
Pgq vertex is attached to the impact factor to the right, thus providing a 1/γ pole only to
Φ0(ω, 1 − γ). Note that schemes I and II preserve the γ ↔ 1 − γ symmetry of the impact
factor, while scheme III does not. In particular B = B̄ = Aqg +Agq/2 in schemes I and II,
while B = Aqg, B̄ = Aqg +Agq + ωAqgAgq in scheme III (which fulfills exactly eq. (4.22a)).

4.3 NLO T T cross section in the collinear limit

Our next task is to determine the transverse impact factors at NLO. Specifically, we want
to determine a function Φ(T )

1 (ω, γ) such that

• the RGI cross section (3.4a) agrees with the NLL BFKL one (3.1a);

• the same RGI cross section agrees with the DGLAP cross section in the collinear limits
Q1 ≫ Q2 and Q1 ≪ Q2 — in this case at order α3

s .

The first condition has already been considered, and leads to the constraint provided by
eq. (3.15) at ω = 0.

7Other schemes can be considered, see section 4.3.
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(a)

Q1 Q2

(b)

Q1 Q2

Figure 3. Ladder diagrams relevant in the collinear limit at next-to-leading order in the BFKL
factorization formula. A third diagram, the left-right symmetric of (b) with the gluon emitted from
the quark line on the right, is understood.

The second condition determines the structure of the collinear poles (γ ≃ 0 and γ ≃ 1+ω)
of the impact factors. We begin by generalizing eq. (4.9) at O(α3

s ). This amounts to consider
ladder diagrams with five splittings between the photons. The vertices at the photon legs are
necessarily QED couplings as before. The other three vertices are of QCD type, and lead to
the diagrams of figure 3 (a third diagram is understood, left-right symmetric with respect to
(b) with the vertical gluon emitted from the quark on the right). Such diagrams, together
with the running-coupling term of eq. (4.7), provide the integrand of the RGI factorization
formula at O(α3

s ) in the collinear limit

αs ˜̃σ(T T )
1 (ω, γ; 1) = ˜̃σ(T T )

0 (ω, γ; 1)
[
αs
2π

Pgg

γ
+ 2αs

2π
Pqq

γ
− αsb

γ
+ O(γ0)

]
, (4.24)

where ˜̃σ(T T )
0 is the LO (collinear) integrand defined in eq. (4.8).

The first term of eq. (4.24) stems from the diagram of figure 3a which involves a Pgg

splitting function. According to the analysis of CCSS [19], this contribution can be entirely
associated to the GGF. Actually, at fixed αs, the iteration of the Pgg splitting function along
the gluon ladder provides a geometric series that is easily summed, yielding

ω G(ω, γ; 1)coll =
∞∑

n=0

(
αs
2π

Pgg(ω)
γ

)n

=
[
1− ᾱs

ω

1 + ωAgg

γ

]−1
. (4.25)

Since ωG = [1 − ᾱs
ω X]−1 [cfr. eq. (3.4b)], we find Xcoll

0 (ω, γ; 1) = [1 + ωAgg]/γ.
The second term in eq. (4.24) stems from the diagram of figure 3b and its symmetric

counterpart — with the gluon emitted from the quark line on the right — which involve
Pqq splitting functions. It is naturally associated to the impact factors. Actually, since Pqq

vanishes at ω = 0 (cfr. eq. (4.10)), these contributions are suppressed by two powers of ω
w.r.t. the diagram with Pgg, and thus are next-to-next-to-leading in the BFKL hierarchy.
However, we keep them, in the spirit of being accurate in the leading DGLAP evolution.

The third term in eq. (4.24) is the running coupling (b-dependent) contribution derived
in eq. (4.7), and can be incorporated into either the impact factors or the GGF, or both. In
the following section, we face this situation more systematically, and propose some possible
choices of transverse NLO RGI impact factor.

4.4 NLO RGI transverse impact factor

We now determine the NLO RGI impact factor from the NLO cross section derived in the
previous section. Let’s parametrize the collinear structure of RGI impact factors and kernel
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as follows (from now on in this section we suppress the superscript (T ) on the impact factors):

Φ(ω, γ; 1) = Φ0(ω, γ; 1)
[
1 + ᾱs

(
M(ω)
γ

+ M̄(ω)
1 + ω − γ

+ r1(ω, γ)
)
+ O(ᾱ2

s)
]

(4.26)

X(ω, γ; 1) = 1 + ωU(ω)
γ

+ O(γ0) + ᾱs

(
V (ω)
γ2 + O(γ−1)

)
+ O(ᾱ2

s) , (4.27)

where r1 is regular at γ = 0, 1 + ω and we have taken into account that additional powers
of ᾱs involve additional powers of 1/γ and 1/(1 + ω − γ).8 We find

αs ˜̃σ1(ω, γ; 1) = (Φ0 G1 Φ0 +Φ1 G0 Φ0 +Φ0 G0 Φ1)− Φ0 G0 Φ0

= ˜̃σ0(ω, γ; 1) ᾱs

[ 1
ω +M + M̄ + U

γ
+ O(γ0)

]
. (4.28)

By comparing eq. (4.28) with eq. (4.24) yields

M + M̄ + U = Agg + 2P̄qq − b̄ , (4.29)

having defined b̄ in eq. (2.8), P̄ab ≡ Pab/(2CA) and used P̄gg = 1/ω + Agg [cfr. eq. (4.13)].
In order to check the compatibility of the collinear analysis with the known BFKL results,

and also to further constrain the RGI impact factors, let us write down the collinear structure
of the NLO BFKL transverse impact factor [eqs. (3.19a) and (3.22)] and kernel [eqs. (2.6)
and (2.7)].9 At symmetric scales s0 = µ2

R = Q1Q2, i.e., p = 0:

ϕ0(γ) = ϕ0(1− γ) = C0

(
1
γ2 + D(0)

γ
+ 1

(1− γ)2 + D̄(0)
1− γ

+ · · ·
)

(4.30)

ϕ1(γ) = ϕ0(γ)
(−1
γ2 + η

γ
+ −3/2

(1− γ)2 + η̄

1− γ
+ · · ·

)
(4.31)

χ(γ) = 1
γ
+ ᾱs

(
−1/2
γ3 + A1(0)− b̄/2

γ2 + H1
γ

+ · · ·
)

(4.32)

η = −11
6 , η̄ = −7

4 , H1 = −TRNf

Nc

(5
9 + 13

18N2
c

)
, (4.33)

where C0, D(0) and D̄(0) were already determined in eq. (4.18) and A1 was defined in
eq. (2.14). Then, from eq. (3.13) we find

A1 − b/2 = U + V . (4.34)

By noting that ϕ0(γ) = ϕ0(1− γ) = Φ0(0, γ; p) for any p, eq. (3.15) can be simplified into

ϕ1(γ) + ϕ1(1− γ) = Φ1(0, γ) + Φ1(0, 1− γ)
+ χ0(γ)[∂ωΦ0(0, γ) + ∂ωΦ0(0, 1− γ)] + ϕ0(γ)∂ωX0(0, γ) , (4.35)

8We recall that Φ(T )
0 has collinear poles of second order. Therefore, we expect an improved NL impact

factor with cubic poles. This has to be contrasted with the collinear behaviour of the BFKL impact factor
ϕ

(T )
1 featuring cubic and even quartic poles at γ = 0, 1, as it is apparent from eq. (4.31).

9With running-coupling scale µ2
R = Q2

1, the double poles of χ1(γ) are A1/γ2 and (A1 − b̄)/(1 − γ)2. With
symmetric scale µ2

R = Q1Q2, the coefficients of both poles are equal to A1 − b̄/2.
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scheme name U V B + B̄ M + M̄

collA Agg − b̄ ∆A+ b̄/2 2Aqg +Agq 2P̄qq

collB Agg ∆A− b̄/2 2Aqg +Agq 2P̄qq − b̄

zVnB A1 − b̄/2 0 2Aqg +Agq 2P̄qq −∆A− b̄/2
zVnM A1 − b̄/2 0 2Aqg +Agq −∆A− b̄/2 2P̄qq

zVzM A1 − b̄/2 0 2P̄qq + 2Aqg +Agq −∆A− b̄/2 0

Table 1. Favourite scheme choices for defining the NLO RGI transverse impact factor.

where Φ’s and X must be considered here at p = 0, i.e., by replacing γ → γ + ω/2 in
eqs. (4.26) and (4.27). From eq. (4.31) we can expand the l.h.s. of eq. (4.35) around the
collinear pole γ = 0:

ϕ1(γ) + ϕ1(1− γ) = ϕ0(γ) ᾱs

[−5/2
γ2 + η + η̄

γ
+ O(γ0)

]
. (4.36)

By expanding the r.h.s. of eq. (4.35) using eqs. (4.26) and (4.27) — with the replacement
γ → γ+ω/2 — , the coefficient −5/2 of the quadratic pole within square brackets in eq. (4.36)
is correctly reproduced, while the coefficients of the simple poles are equal if

η + η̄ = B + B̄ + 1
2D + 1

2D̄ +M + M̄ + U
∣∣
ω=0 . (4.37)

This is indeed the case. In fact, by exploiting eq. (4.22) and eq. (4.29), we find

B + B̄ + 1
2D + 1

2D̄ +M + M̄ + U
∣∣
ω=0 = 2P̄qq + 2Aqg +Agq +Agg +

1
2D + 1

2D̄ − b̄
∣∣
ω=0

(4.38a)

= −43
12 = η + η̄ , (4.38b)

thus proving the consistency of next-to-leading BFKL and leading-order DGLAP.
Of course, the constraints (4.34) and (4.38a) derived from eqs. (3.13) and (3.15) respec-

tively, can be fulfilled in many ways. In table 1 we present some choices that we prefer
on physical grounds.

Schemes “collA” and “collB” are motivated by the collinear analysis that suggests the
value of B + B̄ from eq. (4.22) and the values of M + M̄ and U from eqs. (4.25) and (4.29).
In the former we assign the running-coupling term −b̄ to the kernel, in the latter to the
impact factors. For convenience, we have introduced

∆A = A1(ω)−Agg(ω) =
CF

CA
2Nf P̄qg(0) =

(
1− 1

N2
c

)
TRNf

3Nc
. (4.39)

In the other three schemes “zV. . . ” we set to zero the coefficient V of the double pole
of X1, following the spirit of the RG improvement to transfer the most singular γ-poles of
NL objects into regular ω-corrections of leading-order terms. In this way, we assign all the
dependence of the kernel on the gluon anomalous dimension and running coupling A1 − b̄/2
to the O(ω)-term of the leading eigenvalue X0. Scheme “zVnB” adopts the natural (i.e.,
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collinearly motivated) choice for the B’s coefficients; scheme “zVnM” adopts the natural
choice for the M ’s coefficients; scheme “zVzM” sets to zero the coefficients M of the cubic
poles of the NLO impact factors, thus assigning all the residual dependence on the anomalous
dimensions to the O(ω)-term of the leading impact factor Φ0.

Actually, each of the schemes in table 1 can be implemented in many ways, depending
on how B, B̄, M and M̄ are individually defined, and also because the regular part of
impact factors is fully constrained only at ω = 0. Concerning the leading impact factor
Φ(T )

0 , we propose the three sub-schemes of eq. (4.23), where B = B̄ in the sub-schemes I
and II, while B̄ = B + Agq in sub-scheme III.

As for the leading eigenvalue function, we adopt the recipe proposed in ref. [19]:

X0(ω, γ; 0) = 2ψ(1)−ψ(γ+ ω

2 )−ψ(1− γ+
ω

2 )+ωU(ω)
( 1
γ + ω/2 + 1

1− γ + ω/2

)
, (4.40)

where U(ω), according to table 1, depends on the scheme choice. Then, according to eq. (3.13),
the next-to-leading improved eigenvalue at ω = 0 reads

X1(0, γ) = χ1(γ) +
1
2χ0(γ)

π2

sin2 πγ
−U(0)

(1
γ
+ 1

1− γ

)
χ0(γ) . (4.41)

The above expression is free of cubic poles, but still contains simple poles and possibly double
poles, depending on the scheme choice:

X1(0, γ) =
(
A1 −

b̄

2 −U(0)
)

1
γ2 +

(
H1 +

π2

6 −U(0)
)

1
γ
+ · · · . (4.42)

According to the RGI method, we require the RGI eigenvalue function X1(ω, γ) to have poles
at the expected ω-shifted positions. The final expression that we adopt is

X1(ω, γ) =X1(0, γ) +
A1(ω)− b̄

2 −U(ω)
(γ + ω

2 )2 −
A1(0)− b̄

2 −U(0)
γ2 + (γ ↔ 1− γ)+

+
(
H1 +

π2

6 −U(0)
)
[X0(ω, γ)− χ0(γ)] . (4.43)

We can now exploit eq. (4.35) to constrain the NLO improved transverse impact factor
at ω = 0 and arbitrary γ. If we further require such impact factor to be symmetric in
γ → 1 − γ, we obtain10

Φ1(0, γ) =
1
2 [Φ1(0, γ) + Φ1(0, 1− γ)]

= 1
2
[
ϕ1(γ) + ϕ1(1− γ)− ϕ0(γ)∂ωX0(0, γ)− χ0(γ)

(
∂ωΦ0(0, γ) + ∂ωΦ0(0, 1− γ)

)]
.

(4.44)

Its Laurent expansion around γ = 0 reads

Φ1(0, γ) = C0

[
M(0)
γ3 + M2

γ2 + M1
γ

+ O(γ0)
]
, (4.45)

10We note that, while ϕ0(γ) is symmetric in γ → 1 − γ, the NLO impact factor ϕ1(γ) is not. Actually, since
the latter has been derived [57] from a cross section [67] which depends on the product ϕ(T )(γ)ϕ(T )(1 − γ), it
is not clear to us how ϕ1 has been unambiguously derived, without imposing further requirements.
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Q1 Q2l2k

Figure 4. Diagramatics of collinear limit at leading order for the longitudinal impact factor. The
blob represents the gluonic contribution to the longitudinal coefficient function at lowest order in αs.

where M2 and M1 depend on the scheme choice that defines the ω-dependence of Φ0(ω, γ)
and X0(ω, γ) in eqs. (4.23) and (4.40).

We extend Φ1 at ω ̸= 0 by requiring the collinear poles to be located at γ = −ω/2 and
γ = 1+ω/2 and with ω-dependent leading coefficients M(ω) and M̄(ω) as in eq. (4.26). This
can be obtained in various ways, and we adopt the following choice:

Φ1(ω, γ; 0) = Φ1(0, γ)

+ C0

{[
M(ω)

(γ + ω
2 )3 + M2

(γ + ω
2 )2 + M1

γ + ω
2

]
−
[
M(0)
γ3 + M2

γ2 + M1
γ

]
+
(
γ ↔ 1− γ

M → M̄

)}
.

(4.46)

Having required Φ1 to be symmetric causes M(ω) = M̄(ω) equal to half the expression
in the last column of table 1.

5 RGI impact factor for longitudinal photons

5.1 Cross section and impact factor at leading order

In order to determine the longitudinal RGI impact factor at leading order, we first consider the
cross section σ(LT )(Q1, Q2) where the photon Q1 (on the left) has longitudinal polarization,
while the other one Q2 (on the right) is transverse. We are interested in the collinear limit
Q2

1 ≫ Q2
2, therefore we need the vertices that describe how the longitudinal photon Q1

couples to quarks and gluons k in the collinear limit Q2
1 ≫ k2. They can be derived from

the longitudinal coefficient functions, as explained in appendix A.
The lowest order ladder diagram of this kind involving a high-energy gluon exchange

is depicted in figure 4. The shaded circle at the left represents the gluon contribution to
the longitudinal coefficient function Cg

L, while the two vertices on the right side represent
two splitting functions, as in the TT -case.

We can then repeat the collinear analysis of section 4.1 by replacing in eq. (4.8) the
“transverse” factor eq. (A.6) with the “longitudinal” factor eq. (A.8) (see appendix), thus
obtaining the leading γ-pole structure of ˜̃σ(LT ):

˜̃σ(LT )
0 (ω,γ;1)coll =

ααs
(∑

q e
2
q

)
8TR

√
2(N2

c −1)
γ (2+ω)(3+ω)

1+ωAgq(ω)
ω

ααs
(∑

q e
2
q

)
2Pqg(ω)

√
2(N2

c −1)
γ2

+O
(
γ−2

)
=Φ(L)

BNP(ω,γ)
1+ωAgq(ω)

ω
Φ(T )

BNP(ω,1+ω−γ)+O
(
γ−2

)
, (5.1)
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namely the product of the corresponding BNP impact factors with exact kinematics [61],
the LO GGF 1/ω and the same O(ω) correction ∝ Agq(ω). The second line of eq. (5.1)
follows from the collinear structure of the BNP impact factors, reported in eq. (4.17) for the
transverse polarization and in the following equation for the longitudinal polarization:

Φ(L)
BNP(ω, γ) = ααs

(∑
q

e2
q

)
TR

√
2(N2

c − 1) 4πΓ(γ + δ + 1)Γ(γ + 1)
Γ(ω)

1
(δ2 − 1) (δ2 − 4)

×
[
ψ(γ + δ)− ψ(γ)

δ
· 3ω

2 −
(
δ2 − 1

)
2ω − 3

]
(5.2)

= C0

[1 + ωΛ(ω)
γ

+DL(ω) + O(γ) + (γ ↔ 1 + ω − γ)
]

(5.3)

1 + ωΛ(ω) = 6
(2 + ω)(3 + ω) , Λ(0) = −5

6 , DL(0) = −1
3 , δ ≡ 1 + ω − 2γ , (5.4)

where C0 is the same normalization coefficient of the transverse impact factor, as given in
eq. (4.18). Therefore, eq. (5.1) can be rewritten as

˜̃σ(LT )
0 (ω, γ; 1) = C2

0
1
ω

[(1 + ωΛ)(1 + ωAgq)(1 + ωAqg)
γ3 + O(γ−2)

]
. (5.5)

Taking inspiration from eqs. (4.20) and (5.3), we parametrize the collinear structure
of the longitudinal LO RGI impact factor as

Φ(L)
0 (ω, γ; 1) = C0

[
1 + ωBL(ω)

γ
+DL(ω) +

1 + ωB̄L(ω)
1 + ω − γ

+ D̄L(ω)
]
+ rL(ω, γ) , (5.6)

where rL(ω, γ) vanishes at γ = 0 and γ = 1 + ω. By combining the above expression with
the analogue one in eq. (4.20), we find

˜̃σ(LT )
0 (ω, γ; 1) = Φ(L)

0 (ω, γ; 1) 1
ω

Φ(T )
0 (ω, 1 + ω − γ; 1)

= C2
0
1
ω

[
(1 + ωBL)(1 + ωB̄)

γ3 + O(γ−2)
]
+ (γ → 1 + ω − γ) . (5.7)

If we compare eq. (5.7) with eq. (5.5), we obtain a relation among BL, B̄ and the known
quantities Λ, Aqg, Agq. However, remembering that B and B̄ are constrained by eq. (4.22),
we can actually relate BL and B:

1 + ωBL

1 + ωB
= 1 + ωΛ

1 + ωAqg
(5.8)

=⇒ BL = Λ+B −Aqg + O(ω) . (5.9)

The coefficient B̄L of the simple anti-collinear pole can be determined in an analogous
way by considering the cross section for two longitudinal photons, i.e., by comparing the
two expansions for

˜̃σ(LL)
0 (ω, γ; 1) = Φ(L)

0 (ω, γ; 1) 1
ω

Φ(L)
0 (ω, 1 + ω − γ; 1)

= Φ(L)
BNP(ω, γ)

1 + ωAgq(ω)
ω

Φ(L)
BNP(ω, 1 + ω − γ) + O

(
γ−1

)
, (5.10)
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(a)

Q1 Q2

(b)

Q1 Q2

(c)

Q1 Q2

Figure 5. Diagramatics of collinear limit at next-to-leading order for the longitudinal impact factor.
(a) Photon-gluon coefficient function and gluon emission from gluon line; (b) Photon-gluon coefficient
function and gluon emission from quark line; (c) Photon-quark coefficient function and quark emission
from parent gluon.

yielding

(1 + ωBL)(1 + ωB̄L) = (1 + ωΛ)2(1 + ωAgq) (5.11a)
=⇒ BL + B̄L = 2Λ +Agq + O(ω) . (5.11b)

Note that the role played by Aqg for B and B̄ in eq. (4.22) is now played by Λ for BL

and B̄L in eq. (5.11).
Just like in the transverse case, we can define the LO RGI longitudinal impact factor by

sharing the Agq correction term between the leading collinear and anticollinear poles:

Φ(L)
0 (ω, γ; 1) = Φ(L)

BNP(ω, γ)
[
1 + ω

2Agq(ω)
]

(scheme I) (5.12a)

Φ(L)
0 (ω, γ; 1) = Φ(L)

BNP(ω, γ) + C0
ω

2Agq(ω)
[1
γ
+ 1

1 + ω − γ

]
(scheme II) (5.12b)

Φ(L)
0 (ω, γ; 1) = Φ(L)

BNP(ω, γ) + C0 ωAgq(ω)
1 + ωAqg

1 + ω − γ
(scheme III) . (5.12c)

Schemes I and II implement the choice BL = B̄L = Λ + Agq/2, giving rise to symmetric
impact factors, while scheme III has BL = Λ and B̄L = Λ+Agq + ωΛAgq, giving rise to an
asymmetric impact factor, but fulfilling exactly eq. (5.11a).

5.2 Cross section and impact factor at next-to-leading order

The collinear analysis at NLO for the longitudinal-transverse photon cross section involves
the three diagrams depicted in figure 5 and can be presented in the following form:

αs ˜̃σ(LT )
1 (ω, γ; 1) = ˜̃σ(LT )

0 (ω, γ; 1)
[
αs
2π

Pgg

γ
+ αs

2π
Pqq

γ
+ CF

TR

3 + ω

2 · αs
2π

Pqg

γ
− αsb

γ
+ O(γ0)

]
,

(5.13)
where ˜̃σ(LT )

0 is the LO integrand defined in eq. (5.5).
The first term in the r.h.s. of eq. (5.13) stems from the diagram of figure 5(a) involving a

Pgg splitting function, and can be entirely associated to the GGF.
The second term stems from the diagram of figure 5(b), with a gluon emitted from the

quark line on the right, and it is naturally associated to the impact factor of the transverse
photon Q2.

The third term stems from the diagram of figure 5(c), which is genuinely different from
other diagrams, because it involves a coefficient function where the longitudinal photon Q1
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couples to a quark. As explained in appendix A.2, the photon-quark coefficient function differs
from the photon-gluon one by the multiplicative factor CF (3+ω)/(2TR) [cfr. eq. (A.13)]; just
to the right of the blob, we find the vertex with the Pqg splitting function. This contribution
is naturally associated to the impact factor of the longitudinal photon Q1.

The fourth and last term in eq. (5.13) is the running coupling (b-dependent) contribution
derived in eq. (4.7), and can be incorporated into either the impact factors or the GGF, or both.

In order to determine the NLO RGI longitudinal impact factor from the NLO cross
section, we parametrize the collinear structure of the longitudinal impact factor exactly
as in eq. (4.26), by appending the subscript L to the various (unbarred) coefficients, e.g.,
M → ML. A straightforward calculation yields

αs ˜̃σ(LT )
1 (ω, γ; 1) = ˜̃σ(LT )

0 (ω, γ; 1) ᾱs

[ 1
ω +ML + M̄ + U

γ
+ O(γ0)

]
. (5.14)

which is nothing but the result of eq. (4.28) with T → L in the first impact factor. We then
derive [cfr. eq. (4.29) and the subsequent definitions]

ML + M̄ + U = PL + P̄qq +Agg − b̄ , PL(ω) ≡
CF

TR
P̄qg

3 + ω

2 (5.15)

=⇒ ML −M = PL − P̄qq = CF

2CA
+ O(ω) . (5.16)

In order to check the compatibility of the collinear analysis with the known BFKL
results, let us write down the collinear structure of the NLO BFKL longitudinal impact
factors [eqs. (3.19b) and (3.23)]:

ϕ
(L)
0 (γ) = ϕ

(L)
0 (1− γ) = C0

(1
γ
+DL(0) + O(γ)

)
(5.17)

ϕ
(L)
1 (γ) = ϕ

(L)
0 (γ)

(−1/2
γ2 + ηL

γ
+ −1

(1− γ)2 + η̄L

1− γ
+ · · ·

)
, ηL = −7

3 , η̄L = −9
4 .

(5.18)

At this point we expand eq. (3.15) around γ = 0 by using eqs. (4.30) to (4.33) , (5.17)
and (5.18) for the l.h.s. and eqs. (4.26) and (4.27) for the r.h.s. . As a result, the (spurious)
leading γ poles match, while the subleading ones are equal if

ηL + η̄ = BL + B̄ + 1
2(DL + D̄) +ML + M̄ + U

∣∣
ω=0 . (5.19)

Subtracting 4.38a from the above equation, we obtain a relation among collinear coefficients:

ηL − η = BL −B + 1
2(DL −D) +ML −M . (5.20)

While the l.h.s. evaluates to −1/2, the r.h.s. is equal to −1/2 + CF /(2CA). Therefore, we
find agreement with the result of ref. [57], were it not for the presence of a term proportional
to CF Casimir in the collinear pole. It looks like their impact factor misses the contribution
from the diagram of figure 5c.
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scheme name U V BL + B̄L ML + M̄L

collA Agg − b̄ ∆A+ b̄/2 2Λ +Agq 2PL

collB Agg ∆A− b̄/2 2Λ +Agq 2PL − b̄

zVnB A1 − b̄/2 0 2Λ +Agq 2PL −∆A− b̄/2
zVnM A1 − b̄/2 0 2Λ +Agq −∆A− b̄/2 2PL

zVzM A1 − b̄/2 0 2PL + 2Λ +Agq −∆A− b̄/2 0

Table 2. Favourite scheme choices for defining the NLO RGI longitudinal impact factor. The values
of U and V are the same as in table 1.

Finally, by considering the cross section for two longitudinally polarized cross section,
we obtain the result of eq. (5.19) with the barred (transverse) coefficients replaced by their
corresponding longitudinal counterparts:

ηL + η̄L = BL + B̄L + 1
2(DL + D̄L) +ML + M̄L + U

∣∣
ω=0 , (5.21)

which is satisfied only if ML + M̄L = O(ω). If we take M̄L =ML, as it is natural to assume
in the transverse case, then we disagree with the result of ref. [57] by a CF term in the
1/γ pole of the ratio ϕ

(L)
1 /ϕ

(L)
0 .

We collect our results for the longitudinal RGI impact factor in table 2.
Once a scheme has been chosen, the LO impact factor Φ(L)

0 can be specified according
to one of the sub-schemes in eq. (5.12), with BL = B̄L in sub-schemes I and II, while
B̄L = BL + Agq in sub-scheme III.

The NLO impact factor Φ(L)
1 is constructed to be symmetric, as in the transverse case:

at ω = 0 eq. (4.44) holds unaltered, provided we add to ϕ1 the contribution

∆ϕ(L)
1 (γ) = PL(0)

(1
γ
+ 1

1− γ

)
ϕ

(L)
0 (γ) . (5.22)

The Laurent expansion around γ = 0 shows a double pole

Φ(L)
1 (0, γ) = C0

[
ML(0)
γ2 + ML,1

γ
+ O(γ0)

]
, (5.23)

where ML,1 depends on the scheme choice. We extend Φ1 at ω ̸= 0 by requiring the collinear
poles to be located at γ = −ω/2 and γ = 1 + ω/2 and with ω-dependent leading coefficients
ML(ω) and M̄L(ω) as we did for the transverse impact factor:

Φ(L)
1 (ω, γ; 0) = Φ(L)

1 (0, γ)

+ C0

{[
ML(ω)
(γ + ω

2 )2 + ML,1
γ + ω

2

]
−
[
ML(0)
γ2 + ML,1

γ

]
+
(
γ ↔ 1− γ

M → M̄

)}
. (5.24)

Having required Φ(L)
1 to be symmetric causes ML(ω) = M̄L(ω) equal to half the expression

in the last column of table 2.
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6 Numerical analysis

In this section, we apply the factorization formula with renormalization-group improved
impact factors and Green’s function to compute the γ∗γ∗ cross section in phenomenologically
relevant situations. The presented results contain the sum over all combinations of photon
polarizations: σ = σ(T T ) + σ(LT ) + σ(T L) + σ(LL). For the NLL RGI calculation, the σ(T T )

is about 56% of the total cross section on average at Q2 = 17GeV2, while both σ(T L) and
σ(LT ) about 19%, σ(LL) about 6%. These percentages vary by about 2% for σ(T T ), and about
1% for other polarization combinations upon changes of the scheme and varying rapidity
between 2 and 7 units.

The numerical calculation is based on the following formulae: the cross section is
calculated using eq. (3.9); the leading eigenvalue X0 is given in eq. (4.40); the NL one X1
in eqs. (4.41) and (4.43) with χ1 in eq. (2.7); ωeff in eq. (3.7); the leading impact factors in
eqs. (4.23) and (5.12); the NL ones in eq. (4.44) at ω = 0 and eqs. (4.46) and (5.24) at ω ̸= 0.

We shall compare our results with the experimental measurements of L3 [54] at Q2 =
16 GeV2 and of OPAL [55] at Q2 = 17.9 GeV2, and also with previous calculations of the
same cross section. Since the values of Q2 in L3 and OPAL are very close, it is reasonable to
compare the data from both experiments with theoretical predictions at Q2 = 17 GeV2.

We adopt the strong coupling value to be αs

(
Q2 = 17 GeV2

)
≈ 0.229 as derived from

the Particle Data Group [68].
In figure 6 we show the results for the NLL RGI cross sections using scheme I for the

LO impact factors eqs. (4.23) and (5.12) and the five different schemes from tables 1 and 2
at NLO, and compare them with the pure LL and NLL cross sections.

All five NLL RGI cross sections are significantly reduced with respect to the LL calculation,
however they are also significantly above the pure NLL calculation. We observe that, the
different schemes give very similar results. In order to present the results more intuitively,
we incorporate a band to represent the scheme ambiguity as in figure 7. The band size is
defined as the standard deviation calculated from the five schemes at each rapidity Y . In the
following, if the improved NLL cross section is presented as a single curve, then the curve
is just the average for the five NLL RGI schemes. Adopting schemes II and III for the LO
impact factors does not change significantly our estimates.

In figure 7, we also test the stability of the improved NLL cross section calculation with
respect to the variation of the µR scale. The upper and lower µR band is computed from
average values of the five resummed schemes with half or double µ2

R respectively. It turns
out that the µR band size is slightly smaller than the scheme ambiguity band size. It is
worth noting that besides the dependence on µR of the NLO impact factor and the running
coupling argument, the NLO BFKL eigenfunction would also rely on µR when µ2

R ̸= Q1Q2,

X̃1(ω, γ) = X1(ω, γ) + b̄ X0(ω, γ) ln
µ2

R

Q1Q2
. (6.1)

and the resummed effective ω after the NLO subtraction with µR dependency is then the
solution of

ω = ᾱs(µ2
R)X0(ω, γ) + ᾱ2

s(µ2
R)
[
X1(ω, γ) + b̄ X0(ω, γ) ln

µ2
R

Q1Q2

]
. (6.2)
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Figure 6. The value of the γ∗γ∗ cross sec-
tion contribution from the BFKL exchange for
Q2 = 17 GeV2 as a function of rapidity Y . All
five schemes (see tables 1 and 2) for the NLL
RGI calculation are shown together with the pure
LL calculation (black solid and rescaled with a
factor 0.5) and pure NLL calculation (green dot-
dashed).

Figure 7. The value of the γ∗γ∗ cross sec-
tion contribution from the BFKL exchange for
Q2 = 17 GeV2 as a function of rapidity Y . The
scheme average band (blue-solid) represents the
average value and standard deviation of the five
resummed schemes. The µR band (yellow-dashed)
is computed from average values of the five re-
summed schemes with half or double µ2

R respec-
tively.

In figure 8, we compare the pure LL and NLL results (the latter computed using
expressions from refs. [56]), with the improved LL and NLL cross sections. Note the
logarithmic vertical scale, which makes the characteristic exponential dependence of the cross
section on the rapidity clearly visible. The NLL improved curve is given as the average of
different schemes as explained above.

The improved LL and NLL calculations both tame the quick growth of the pure LL cross
section with rapidity. It is worth noting that the improvement at LL alone — consisting in
the ω shifted LO eigenfunction and LO impact factors — brings the curve down significantly.
We also observe that, the improved NLL is higher than the improved LL calculation, mostly
because the improved NLO corrections bring a positive O(α2

s) term to the impact factors.
Finally we observe that improved calculations (both at LL and NLL) are above the pure
NLL cross section.

In figure 9, we compare NLL RGI cross sections for Q2 = 5, 17, 100 GeV2. The cross
section is strongly dependent on Q2. The growth with rapidity is slowed down with increasing
Q2 due to the smaller value of the coupling constant, which affects the value of the leading
exponent in the gluon Greens’s function.

So far we have shown the contribution to the γ∗γ∗ cross section stemming only from
the gluon exchanges, resummed by the BFKL evolution, which should be the dominant
contribution at high energies. However, at lower energies, another contribution is important,
namely the one from the ‘quark box’ diagram. This contribution decreases with the rapidity,
however it becomes dominant at low rapidities and is important when comparing with the
experimental data. In the following, we evaluate the quark box in the lowest order [69, 70].
The total γ∗γ∗ cross section presented in the following includes both the quark box and
the BFKL contributions.
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Figure 8. The value of the γ∗γ∗ cross sec-
tion contribution from the BFKL exchange for
Q2 = 17 GeV2 as a function of rapidity in the
logarithmic vertical scale. Pure LL is shown in
black-solid, NLL in green dashed-dotted, LL im-
proved in red-dotted and NLL improved in blue-
dashed. The NLL improved curve is the average
of our five resummed NLL schemes (see text).

Figure 9. The value of the γ∗γ∗ cross section
contribution from the BFKL exchange from NLL
RGI calculation for Q2 = 5 (blue-dashed), 17
(yellow-solid), 100 GeV2 (green-dotted) as a func-
tion of rapidity Y in logarithmic vertical scale.

Figure 10. Cross sections for Q2 = 17 GeV2, compared with L3 (Q2 = 16 GeV2) [54] and OPAL
(Q2 = 17.9 GeV2) [55] data. The NLL improved curve is the sum of our averaged NLL BFKL
resummed scheme and LO quark box contribution. The band size represents a combination of the
scheme uncertainty and the µR band, i.e. δtotal =

√
δ2

scheme + δ2
µR

. The calculation is done for Nf = 4
massless flavours. The Ivanov-Murdaca-Papa’s (IMP’s) PMS optimized curve (solid-cyan) is from [57].
Separately shown is the quark box contribution (dashed red).
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In figure 10 we compare the results from NLL improved calculation with the experimental
measurements of L3 [54] at Q2 = 16 GeV2 and of OPAL [55] at Q2 = 17.9 GeV2, and also
with previous calculations of the same cross section from [57]. As mentioned before, since
the values of Q2 in L3 and OPAL are very close, and the errors on the data points are
such that Q2 dependence is not visible, it is reasonable to compare the data from both
experiments with theoretical predictions at Q2 = 17 GeV2. We also show the LO quark
box contribution in this figure. We observe from figure 10 that the RGI NLL improved
calculation has a stronger increase over rapidities than the pure NLL one. We also see
that our result is significantly higher than the calculation from [57], particularly at high
rapidities. The RGI calculation is consistent with the experimental data from LEP within
the theoretical and experimental uncertainties.

In the calculations we assumed Nf = 4 and treated charm as massless. This is of course
an approximation as the mass of the charm is expected to have some impact and to reduce
the theoretical calculations. This effect was for example studied in detail in [49] and it
was shown to decrease the cross section somewhat. However, this study was performed for
the BFKL exchange at the leading order only. The full calculation would require small-x
resummation including the mass effects. This is an interesting problem in itself but it is
beyond the scope of the current work.

7 Conclusions

In this paper, we have applied the collinear resummation, based on the renormalization
group improvement (RGI) for high-energy processes, to the γ∗γ∗ cross section. The RGI
formulation is based on a factorization formula whose structure is similar to the one in
the BFKL approach, but whose impact factors explicitly depend on the Mellin variable ω,
conjugated to the center of mass energy squared s. Firstly, we have computed RGI impact
factors for transverse photons at LO and NLO, which are consistent with the BFKL one in
the high-energy limit and with LO DGLAP in the collinear limit. We then extended this
procedure for the determination of the RGI impact factor for longitudinal photons.

At LO, the RGI impact factors are consistent with the impact factors with exact
kinematics computed in [61]. This is a non-trivial check, since we reproduce the shifted
position of the collinear poles in γ — the Mellin variable conjugated to the photon virtualities

— and also the coefficients of the leading γ-poles (apart from a subleading term which is out
of control in the approximations adopted in [61]).

At NLO we predict, and thus resum, the spurious energy-scale dependent quartic (cubic)
γ-poles of the transverse (longitudinal) BFKL impact factors. For the transverse impact
factors we can predict the cubic γ-poles, which have both physical and spurious components.
Having identified the physical component of such poles, stemming from partonic anomalous
dimensions and running of the coupling, we obtain an impact factor which, in the collinear
limit, is less singular than its BFKL counterpart and contains the full LO DGLAP information.

In the case of the longitudinal photon impact factor the collinear analysis at NLO predicts
a term proportional to the Casimir CF which is enhanced in the collinear region but is absent
in the BFKL impact factors originally computed in [29] and presented in [56, 57]. This term
stems from the O(αs) coefficient function CL,q that couples the longitudinal photon to quarks
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at first order in QCD. We find full compatibility with the other colour structures, which
quantitatively make up the bulk of the longitudinal impact factor.

Finally, we compute the γ∗γ∗ cross section using the NL RGI impact factors and Green’s
function, and compare it with previous calculations and also with experimental data. Note
that the RGI resummation suffers from some ambiguities, due to the lack of information in
the kinematical region of low-energies (not controlled by BFKL) and comparable virtualities
(not controlled by DGLAP) of the exchanged partons. Therefore, we propose a handful of
physically motivated resummation schemes, and consider the average of the ensuing cross
sections as our best estimate (with the corresponding standard deviation as resummation-
scheme-uncertainty).

According to the expectations, the resummed cross section increases as a function of
Y = log(s/Q1Q2). It is found between the pure LL BFKL prediction and the pure NLL
BFKL one. Note that switching from LL to NLL reduces the cross section by more than
one order of magnitude. The resummation-scheme uncertainty is about 20%, slightly larger
than the renormalization-scheme uncertainty.

In order to provide a phenomenologically meaningful observable, the BFKL cross section,
which is expected to dominate at large Y , must be supplemented with the so-called quark-box
contribution, which dominates at small Y and rapidly decreases with increasing Y . In this way,
we are consistent with the experimental data of OPAL and L3, without the need of particular
choices of running coupling scale fixing. This is a strong indication that the RGI procedure
is the proper context for a correct description of virtual-photon scattering at large energies.

In the present calculation, we treat all four flavours, including charm, as massless. A
more detailed analysis would need to include the charm mass in the full scheme of small x
resummation, which would require the knowledge of the massive impact factors at NLL. The
mass effects at NLO in DIS structure functions were in fact computed in the dipole picture of
high energy [37, 71, 72], however this result would require extensive calculation (linearization
to two gluon exchange as well as transforming it to momentum space) in order to extract the
impact factors. A more detailed investigation on this issue is left for the future.
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A Lowest-order cross sections and structure functions

In this appendix, we sketch the determination of the photon-parton cross sections at the
lowest order in perturbation theory, which is the basis of the analysis of the photon-photon
cross section in the collinear regime Q2

1 ≪ Q2
2. Such cross sections are proportional to

the corresponding partonic structure functions, which in turn can be derived by the DIS
coefficient functions.
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A.1 Transverse photon

The cross section of a virtual photon with polarization λ scattering on a particle of momentum
P (e.g., a hadron) is given by (cfr. [61])

σ(λ)(P, q) = 4π2α

Q2 F (λ)(x,Q2) , x := Q2

2P · q
. (A.1)

where F (λ)(x,Q2) : λ = L, T, 2 are the standard structure functions with F (2) = F (L) + F (T ).
The integrand ˜̃σ(ω, γ; p) of the double Mellin representation (3.4a) can then be written as

˜̃σ(ω, γ; 1) =
∫ ∞

Q2
1

ds
s

(
Q2

1
s

)ω ∫ dQ2
1

Q2
1

(
Q2

2
Q2

1

)γ− 1
2

2πQ1Q2 σ(s,Q2
1, Q

2
2)

=
∫ 1

0

dx
x
xω
∫ dQ2

1
Q2

1

(
Q2

2
Q2

1

)γ

(2π)3αF (x,Q2
1) . (A.2)

In the case of an incoming quark of flavour a and small offshellness Q2
2 ≪ Q2

1 ≡ Q2, the
partonic structure functions at lowest order are nothing but the corresponding coefficient
functions:

F
(T,a)
0 (x,Q2) = F

(2,a)
0 (x,Q2) = x e2

a C
(2,q)
0 (x) = e2

aδ(1− x) , F
(L,a)
0 (x,Q2) = 0 . (A.3)

Therefore, at the lowest order only the transverse polarization is effective and we have

˜̃σ(T,a)
0 (ω, γ; 1) =

∫ 1

0

dx
x
xω
∫ dQ2

1
Q2

1

(
Q2

2
Q2

1

)γ

(2π)3αF
(T,a)
0 (x,Q2

1) = (2π)3α e2
a

1
γ

(A.4)

which is the first factor of the collinear chain (4.8), before summing over quark and antiquark
flavours. By taking the inverse Mellin transform with respect to γ, we have

˜̃σ(T,a)
0 (ω,Q2

1, Q
2
2; 1) = (2π)3α e2

a , (A.5)

representing the first factor in eq. (4.2) — again, before summing over quark and antiquark
flavours.

The first non-vanishing contribution of the photon-gluon structure functions starts at
O(αs). In the collinear limit, i.e., considering the strong ordering of partons’ momenta,
each rung provides a factor

∫ k2
i

k2
i−1

dk2

k2
αs(k2)

2π Pab(ω). With fixed running coupling such a factor

reduces to αs
2π log k2

i

k2
i−1
Pab(ω), which becomes αs

2πPab(ω)/γ in γ-space. Therefore, at O(αs),
for a transverse photon we have

˜̃σ(T,g)
1 (ω, γ; 1) =

∑
a

(2π)3α e2
a

1
γ
· αs
2π

P(q=a)g(ω)
γ

. (A.6)

in agreement with the first factors of eq. (4.8) since ∑a e
2
a = 2∑q e

2
q . The other factors

follow from the remaining two vertices.
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A.2 Longitudinal photon

The longitudinal structure function starts at O(ααs) in perturbation theory, and receive
contributions from gluons and quarks. We start by considering the gluon-initiated structure
function, which is well known in the literature, and can be read, e.g., from eq. (B.5) of ref. [73]

F
(L,g)
1 (x,Q2) = x

∑
a e

2
a

2Nf
C

(L,g)
1 (x,Q2/µ2

F ) =
αs
2π
(∑

a

e2
a

)
TR 4x2(1− x) . (A.7)

The corresponding longitudinal photon-gluon cross section in Mellin space can then be
determined from eq. (A.2) and reads

˜̃σ(L,g)
1 (ω, γ; 1) =

16π2ααs
(∑

a e
2
a

)
TR

γ (2 + ω)(3 + ω) . (A.8)

It is straightforward to check that the r.h.s. of eq. (A.8) is proportional to the simple pole at
γ = 0 of the BNP longitudinal impact factor with exact kinematics with its full ω-dependence,
just like the r.h.s. of eq. (A.6) is proportional to the double pole of the BNP transverse
impact factor:

˜̃σ(T,g)
1 (ω, γ; 1) = 2π

(∑
a

e2
a

)
TR ST (ω, γ) + O(γ−1) (A.9)

˜̃σ(L,g)
1 (ω, γ; 1) = 2π

(∑
a

e2
a

)
TR SL(ω, γ) + O(γ0) . (A.10)

The quark-initiated structure function, is also well known in the literature, and can
be read, e.g., from eq. (B.1) of ref. [73]:

F
(L,a)
1 (x,Q2) = x e2

a C
(L,q)
1 (x,Q2/µ2

F ) =
αs
2πe

2
aCF 2x2 (a = quark or antiquark) .

(A.11)

The corresponding longitudinal photon-quark cross section in Mellin space can then be
determined from eq. (A.2) and reads

˜̃σ(L,a)
1 (ω, γ; 1) = 8π2ααs e

2
aCF

γ (2 + ω) (a = quark or antiquark) . (A.12)

Summing over all quarks and antiquarks we get

∑
a

˜̃σ(L,a)
1 (ω, γ; 1) = CF

TR

3 + ω

2
˜̃σ(L,g)

1 (ω, γ; 1) . (A.13)

In practice, the blob connecting a longitudinal photon to all quarks and antiquarks displayed in
figure 5(c) is equal to the blob connecting the longitudinal photon to a gluon in figure 5(a), (b)
up to the additional multiplicative factor CF (3 + ω)/(2TR).
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