
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
European Laboratory for Particle Physics

Internal Note/OFF
ALICE reference number

ALICE-INT-2001-27 V 1.0
Institute reference number

Date of last change

2001-08-20

EnginFrame: the computing portal to "the GRID"
to be used in the event production for the

ALICE Physics Performance Report

Authors:

G. Andronico1, A. Badalà1, R. Barbera1,2, P. Belluomo1, P. Buncic3,
 E. Cangiano1, F. Carminati2, P. Cerello7, D. Di Bari4,5, A. Falzone6,

 A. Forte7, L. Gaido7, A. Guarise7, E. Lopez Torres7, G. Lo Re1, 2, S. Lusso7,
M. L. Luvisetto8, A. Masoni9, D. Mura9, A. Palmeri1, G. S. Pappalardo1,

B. Platania1, A. Pulvirenti1, 2, F. Riggi1, 2, C. Rocca1, A. Rodolico6,
G. Sava1, Y. Schutz10, M. Sitta7, R. Turrisi11, G. Ugolotti6

on behalf of the ALICE GRID Project.

1INFN, Sezione di Catania - Italy
2Dipartimento di Fisica e Astronomia dell'Università di Catania - Italy

3CERN - Geneva - Switzerland
4INFN, Sezione di Bari - Italy

5Dipartimento di Fisica dell'Università di Bari - Italy
6NICE s.r.l. - Camerano Casasco (AT) - Italy

7INFN, Sezione di Torino - Italy
8INFN, Sezione di Bologna - Italy
9INFN, Sezione di Cagliari - Italy
10SUBATECH, Nantes - France

11INFN, Sezione di Padova - Italy

Abstract:

The computing portal EnginFrame, embedding the currently available "GRID" services, is
presented. Its adoption in ALICE in view of the huge event production foreseen for the
realization of the Physics Performances Report is also proposed and discussed with real
examples.

1 Introduction

The ALICE [1] O�-line Project [2] has a strong commitment to use the results of

the just started DataGRID Project [3] which aims at setting up, in Europe, a ge-

ographically distributed computing fabric following the principles of the so-called

"GRID" [4]. One of the ALICE use cases within the DataGRID Project is repre-

sented by the realization of the MonteCarlo simulations needed for the completion

of the ALICE Physics Performance Report being prepared this year. In order to

carry out the production of these simulated events on a distributed environment,

the ALICE O�-line community has recently taken the decision to exploit some of

the currently available "GRID" services included in the Globus Toolkit [5] such as

the GRID Security Infrastructure (GSI), the Globus Resource Allocation Manager

(GRAM), the GRID Index Information Service (GIIS), and the GRID Resource

Information Service (GRIS).

In this framework, and pro�ting from the invaluable experience acquired on

Globus in the last few months within the GRID Project [6] of the italian Istituto

Nazionale di Fisica Nucleare (INFN), we have interfaced EnginFrame [7], a last gen-

eration web computing portal, with all the above "GRID" services in their present

status. In doing that, we have implemented a collection of "services" de�ned on top

of the corresponding Globus commands/services [9].

In this note we describe EnginFrame, its services and their functionalities, and its

application to the above ALICE use case. The paper is organized as follows. Section

2 is dedicated to a technical overview of the computing portal and will describe its

main principles. General "GRID" services are described in Section 3, while ALICE

speci�c "services" are described in Section 4. Summary and conclusions are drawn

in Section 5.

2 Technical overview

EnginFrame was designed to address and solve some typical problems of the Techni-

cal and Scienti�c Computing (T&S). T&S Computing users have too often to cope

with problems that are not part of their core job. Since they have to use advanced

IT resources, they need to learn and use a lot of IT low level tools (telnet, ftp,

shell scripts and aliases, ...) in order to reach and use the computing resources they

need. They often have also to solve very diÆcult security problems (access, autho-

rization, privileges) that usually happen when the resources are not directly/locally

managed. Moreover, once they get to the resources, most of the time they do not

"speak" user's own language, but they still speak an Unix dialect or proprietary

code languages full of command line switches, pathnames, etc. This de�nitely slows

down the user'w own job, and might as well be not accepted, especially when tech-

nology changes very fast as it is the case in this �eld and new dialects need to be

learned on an almost day-by-day basis. Di�erent Operating Systems (e.g. Unix

avors and Windows
avors) raise integration issues in key areas like �le-system

2

management, security, remote systems control, etc. thus increasing total ownership

cost. EnginFrame was designed as a tool to give a Internet-ready interface to ac-

tivities typically command-line oriented. Overtime it has evolved its features and

capabilities, and can now be considered as a comprehensive solution to quickly and

e�ectively building Computing Portals, i.e. intuitive web-based interfaces to com-

puting resources. Its native language is XML, the standard that is gaining heavy

backing from big names in the IT market. EnginFrame then "translates" XML into

a more appropriate language depending on the client device (typically HTML, but

also WML, PDF and enriched XML). This provides very high
exibility in contents pre-

sentation and users' experience, without the need of proprietary standards. The

introduction of the Computing Portal concept adds one level of abstraction that

allows to address both users' and system administrators' problems. Users actually

enjoy an experience similar to the usual Internet sur�ng, browsing a Portal that

actually speaks their own language and simply provides results upon requests. Help

about using the services, if needed, is delivered by the portal itself in the form of

HTML pages. On the other side, administrators have now more �ne grained control

over what users can and can not do, how allowed things are performed, and which

resources are used for every service. Behind the scene any sort of technology might

be used, and actually nobody will care as long as the service is up and running

with the expected performance, as it commonly happens to Internet services like

search engines and web-mail providers. EnginFrame was built to enable an easy and

painless migration to the Computing Portal paradigm from a command-line based

world, trying to re-use most of the existing methodologies with a tailored Web-like

look&feel: it hides the complexity of technical computing environments behind the

scenes. As new software or methodologies are implemented, the Portal can be ex-

tended in minutes to include them without the users even noticing the di�erence,

or maybe a part of the Portal can be used as a test-bed by some users, without

interfering with established methodologies. In the same way, new policies can be

introduced by just changing how services are provided and/or presented, and users

will use them exactly as they are supposed to do, thanks to a very high
exibility of

its native language such as the XML dialect. EnginFrame addresses also the Unix/NT

integration by making extensive use of the available Internet standards (HTML, HTTP,

JAVA, XML, etc.), and takes care that di�erent browsers will be properly supported.

EnginFrame makes use of the most recent mainstream standards and technolo-

gies, and integrates them in order to provide an eÆcient Portal Technology for the

exploitation of T&S computing resources. EnginFrame foundation technologies as

well as its principal features will be discussed in the following subsections.

2.1 From LAN Integration to the Computing Portal

First releases of EnginFrame were built as JAVA [10] stand-alone applications in order

to provide a platform independent interface to simplify computing resource utiliza-

tion in complex environments (especially well suited for mixed Unix/NT clusters).

3

Overtime the experience gained in the �eld has led to the paradigm of a Computing

Portal as shown in �g. 1.

Figure 1: The Computing Portal with EnginFrame.

2.2 The EnginFrame tier model

The architecture of EnginFrame is logically divided into three tiers (see �g. 2):

� Client Tier, which basically consists of any browser and its extensions, and

provide a comfortable framework for the users to interact with;

� Server Tier, in which one or more servlet-enabled web servers actually provide

contents and services to the clients, and control resource activities in the back-

end;

� Resource Tier, where a number of "Agents" control the actual computing

resources (clusters, stand-alone hosts, etc.) and provide properly formatted

results to the servers.

Sometimes, two tiers may actually be overlapping on the same machine (e.g., Web

server or client being part of a Resource cluster). Nevertheless, the logical and

practical split into three tiers gives the highest freedom. The base building block of

4

Figure 2: The EnginFrame three tier model.

the portal is the service, which is an XML representation of any computing related

facility.

2.3 The Computing Portal

The typical EnginFrame work-
ow is sketched in �g. 3. It can be compared to

that relative to sending an e-mail using a Web mail service. Similarly to the web

mail service, the user enters his/her own area providing credentials. If the Server

Tier accepts these credentials, it presents to the user a complete web site with the

available services (e.g. solvers, compilers, etc.). When a job is requested by the

user, the Server selects an agent capable of providing such a service, and forwards

the request to run a particular command with the data provided by the user. As a

result, the Agent sends back a XML page describing the result, that is to be presented

to the user. Inside the result there might be the actual result of the job (for very small

jobs), or the acknowledgment that the job is being cared by the cluster manager,

or simply by the OS of the host. This is similar to the acknowledgment that "the

e-mail has been successfully sent". Hence after, the user will check his "job-box"

to see if jobs have �nished, or he/she be noti�ed by e-mail for their completion,

depending on site policies. Results will then be delivered as described further on.

Depending on how "fat" the client is, and which features the browser supports,

both the kind of service and the format of output that can be delivered to the user

5

Figure 3: The EnginFrame work-
ow.

may widely vary. Features like Remote File Browsing or graphical output of remote

Windows applications need more capable browsers/clients than simpler services. As

most people in the T&S computing have experienced, an HTML browser might not

provide by itself enough capabilities to handle the user's real needs. For this reason,

one of the key strengths of EnginFrame is integration. As a matter of fact, services

are often provided complementing the Web with third party technologies in a way

that is transparent to the user. The Resource Tier as well uses a plug-in mecha-

nism to provide best integration with underlying computing resources. Currently an

LSF [8] plug-in is in its �nal stage, and the Globus one is in its way to be developed.

Fire-walls often restrict the possibilities of users. For this reason, EnginFrame pro-

vides several options that address Firewall-aware communication issues only when

and if needed [7].

2.4 EnginFrame services

The design goals of EnginFrame are:

� simplicity, no need to be too verbose when you don't need to;

� easy prototyping, so that building a new service is a matter of minutes;

6

� e�ectiveness, to properly address the critical issues in computing resources;

� adherence to standards, in particular, to the Apache Group implementations;

Through this language, that can be edited with any XML editor of your choice, or

automatically built by step-by-step wizards, it is possible to describe services pro-

vided by the Agents. The service description includes the name of the service, the

options we have to specify, the command that has to be executed, and, optionally,

other information for the inexperienced user. Everything else is generated dynam-

ically, without the need of further coding. Unless you need to change the overall

look&feel of the Portal, which is anyway possible with very little e�ort, the services

can actually be published in minutes without even knowing a single HTML tag.

2.5 Requirements for Server

In conclusion, for the sake of completeness, the following is the list of packages

needed/used by EnginFrame [11]:

� Apache Web Server 1.3.12-2 or higher;

� Apache JServ 1.1.2-1: the original JAVA Servlet module for Apache;

� Xerces-j 1.1.2-1: Xerces-j is an DOM 2 and SAX 2 compliant XML parser.

It is used by Xalan, FOP, and Cocoon;

� Xalan-j 1.1.D01-1: Xalan-j implements the current W3C recommendations

for XSLT and the XML XPath language. It requires Xerces-j;

� FOP 0.13.0-1: FOP (Formatting Objects Processor) implements the W3C rec-

ommendations for XSL:FO, generating a PDF document;

� Cocoon 1.7.4-1 or higher: Cocoon is a framework that allows an XML doc-

ument to undergo a series of transformations. The most obvious application

allows a web server to transform XML content into HTML output;

� JDK 1.2.2 or higher: the JAVA Development Kit by SUN Microsystems.

More extensive information about EnginFrame can always be found at the URL:

http://www.enginframe.com

3 Current implementation

The current implementation of the computing portal EnginFrame, including the

ALICE speci�c services discussed in the following, is accessible from the URL:

http://gridct1.ct.infn.it/globus.

Figure 4 shows the home page of the web interface. In the rest of this note

7

Figure 4: The main screen of EnginFrame.

we will only describe the "Globus Services". Clicking with the mouse on "Globus

Services", one gets the list of the currently available services as it is shown in �g. 5.

All the services are described in detail in the following subsections.

Figure 5: The list of available Globus services.

8

3.1 Proxy services

"Proxy services" allow the user to set/check/cancel his/her authentication to the

"GRID" using his/her own digital certi�cate. As described in �g. 6 there are

Figure 6: The list of available Proxy services.

three "Proxy services" available: i) GRID-proxy-init, ii) GRID-proxy-info, and

iii) GRID-proxy-destroy. They are completely equivalent to the corresponding

command line Globus commands.

Mouse clicking on the �rst one, the user is prompted to introduce both his/her

name and PEM phrase (password) of his/her certi�cate as shown in �g. 7. The

password is then passed to the GSI service of Globus for veri�cation. If it is correct,

then the user gets a permit to run on the "GRID" machines the world over where

his/her certi�cate is mapped onto a valid/existing local user for a �nite time of 12

hours (this is the default time of the corresponding Globus command). The infor-

mation about the public certi�cate, its type, strength and the time left is returned

on the screen. However, for security reasons, if he/she closes his/her browser (even

before the 12 hours time limit) the authentication token is destroyed and he/she

must login again when a new browser is opened.

After a successful login the user can check the time left before the expiration of

his/her token clicking on GRID-proxy-info. The output returned by this service

is shown in �g. 8. The third service, GRID-proxy-destroy eliminates the authen-

tication token still keeping the browser open. For security reasons, the use of this

service is recommended if the user accesses the "GRID" from a machine shared with

other people. As explained before, the same e�ect can be reached, however, killing

the browser.

For obvious reasons, GRID-proxy-init should be the �rst EnginFrame service

used by the user. However, there are checks throughout the portal that prevent the

9

Figure 7: The GRID-proxy-init service with the authentication window.

Figure 8: The GRID-proxy-info service with its output.

use of any service if the user did not get the authorization token.

3.2 Job services

"Job services" allow the user to launch/check jobs on the "GRID" machines the

world over where his/her certi�cate is mapped onto a valid/existing local user. As

shown in �g. 9, there are four "Job services" currently implemented: i) globusrun,

ii) globus-job-run, iii) globus-job-submit and iv) "Job Status".

10

Figure 9: The list of available Job services.

The globusrun service is the most general way to submit interactive jobs (inter-

active means here that EnginFrame gets blocked until the job is completed), even

if it not the easiest one. Its use is based on the Globus Resource Speci�cation

Language (RSL) [9]. The job submission form of globusrun is shown in �g. 10.

The user has to provide EnginFrame with the name of the remote "GRID" machine

he/she wants to run on and the RSL �le containing the job description. The output

of the job, if any, is returned on the browser page after its completion.

The globus-job-run service is another way to launch interactice jobs on the

"GRID". The job submission form of globus-job-run is shown in �g. 11. The user

has to provide EnginFrame with the name of the remote "GRID" machine he/she

wants to run on and the OS commands or shell script to be executed on the remote

machine. The output of the command/script, if any, is returned on the browser

page after job completion.

The globus-job-submit service is the way to launch batch jobs on the "GRID"

(batch means here that EnginFrame spawns the job keeping trace of the job ID

returned by Globus). The job submission form of globus-job-submit is shown in

�g. 12. The user has to provide EnginFrame with the following information:

� a job description;

� the name of the "GRID" machine he/she wants to run on;

� the job-manager to run the job with on the remote machine;

� the path/name of �le containing the standard output log which will reside on

the disk of the submitting machine;

11

Figure 10: The globusrun service with the job submission form.

� the path/name of �le containing the standard error log which will reside on

the disk of the submitting machine;

� the OS command or shell script to be executed on the remote machine.

After submission, EnginFrame will pass and keep trace of the job ID returned by

Globus which is necessary to monitor the job status.

"Job status services" will be described in Section 4, in correspondence with the

"ALICE services".

3.3 LDAP services

"LDAP services" are intended to interface EnginFrame with the information system

of the "GRID" based on the LDAP protocol through the GIS service of Globus. As

shown in �g. 13 two "LDAP services" have been implemented so far: i) "People"

and ii) "Resources". They are described in detail in the next two subsections.

3.3.1 People

The "People" service allows the user to connect to and browse/edit a LDAP server.

In order to do that EnginFrame has been interfaced with LDAP Browser/ Editor [12].

This is a program written in JAVA which can be run both in a stand-alone mode

12

Figure 11: The globus-job-run service with the job submission form.

and inside a web browser (this is the way it works with EnginFrame). Up to now,

the link has been set only with the INFN LDAP server [13] but other servers can

be added very easily as they will become available.

When he/she starts the "People" service by clicking on it, the user is prompted

for the name of the server and some connection options, as shown in �g. 14 At

this moment it is possible to choose between the default read-only connection (just

to browse the server) and a read-write connection (which is the case shown in the

�gure) where the user can add/modify/delete the �elds of the database remotely.

It is worth noting here that LDAP Browser/Editor supports secure connections via

the SSL protocol.

Once the connection has been established, the user can browse/edit the database

as shown in �gs. 15-16. In the INFN LDAP server record are sorted both by site

(useful when one wants to have geographic map of your test-bed) and experiment

(useful when one wants to have access to people belonging to a given experiment).

Figure 15 shows an example of the �rst case while �g. 16 shows an example of

the second. In this latter case, it is possible to see from the �gure how people

can be subdivided among experiment's sub-parts and/or tasks if one wants to map

di�erent "GRID" users to di�erent accounts on the local farms having di�erent

running priorities. In fact, a completely automatic tool called certretrieve [14],

included in the INFN GRID Distribution Toolkit [15], can access the LDAP server,

download the certi�cates and populate the local GRID-mapfile's[9].

13

Figure 12: The globus-job-submit service with the job submission form.

3.3.2 Resources

The "Resources" service allows the user to connect to a LDAP server to get infor-

mation about the computing resources available. Up to now, EnginFrame has been

interfaced only with the INFN Metacomputing Directory Service (MDS) server [16]

but other servers can be added very easily as they will become available.

When he/she starts the "Resources" service by clicking on it, the user gets

the list of available results sorted by site, as shown in �g. 17. It is possible to

browse the database to get information on a single "GRID" node (see �g 18), on

its hardware con�guration (see �g 19), and even on its batch system queues and

Globus installation (see �g 20).

4 The ALICE services

All EnginFrame services described so far are "general purpose" and can be used

by any authorized "GRID" user. In order, from one side, to test the computing

14

Figure 13: The list of available LDAP services.

Figure 14: The parameters of the INFN LDAP server as de�ned in the "connection

window" of LDAP Browser/Editor.

portal with a "real life" use case in the HEP community and, on the other side, to

establish something usable for the MonteCarlo production foreseen in ALICE in 2001

for the completion of the Physics Performances Report (PPR), we have customized

special services of EnginFrame for the ALICE needs. This would not have been

15

Figure 15: A "site-sorted" browsing of the INFN LDAP server.

possible without the precious experience gained within the ALICE Collaboration in

the last few months and the results of the tests of remote distribution and distributed

production with the available "GRID" services made between Cagliari, Catania,

CCIN2P3 at Lyon, Ohio Supercomputing Center, and Torino. The results of these

tests will be widely reported in another forthcoming ALICE Internal Note.

Two "ALICE services" have been implemented so far: i) "Submit Job" and ii)

"Monitoring". They are described in detail in the next two subsections.

4.1 Submit Job

The "Submit job" service allows an ALICE user to start a run of AliRoot [18] on

a remote machine connected to the "GRID" and collect both the standard output

and error log �les on the disk of the submitting machine. The �le containing the

simulated event is, instead, stored on the disk of the remote machine. The job

submission form of "Submit job" is shown in �g. 21. The user has to provide

EnginFrame with the following information:

� a description of the AliRoot job;

� the name of the "GRID" machine he/she wants to run on;

� the job-manager to run the job with on the remote machine;

� the name of the Root �le where the simulated event will be stored on the disk

of the remote machine;

16

Figure 16: An "experiment-sorted" browsing of the INFN LDAP server.

� the path/name of �le containing the standard output log which will reside on

the disk of the submitting machine;

� the path/name of �le containing the standard error log which will reside on

the disk of the submitting machine;

Unlike the case of the globus-job-submit service discussed above, here it is not

necessary to insert the name of the script needed to run AliRoot on the remote

machine. This is because EnginFrame is already compatible with the environment

settings included in the distribution kit of AliRoot distributed to the ALICE test-

bed sites involved in the PPR production.

After submission, EnginFrame takes care and keeps trace of the job ID returned

by Globus which is necessary to monitor the job status. The list of the currently

available "Job status services" is shown in �g. 22. They are: i) "List My Jobs", ii)

"View Last Job Status", and iii) "View One Job Status". The �rst service shows

all jobs submitted by the user, as shown in �g. 23. The second service shows the

status of the last submitted job, only, while the last service shows the status of a

particular job. In this case, the user has to provide EnginFrame with the job ID

returned by Globus for that particular job. Although they have been shown within

17

Figure 17: The INFN MDS server home page.

the context of the "ALICE services", the "Job status" services are general and can

be used for all kinds of jobs submitted to the "GRID".

4.2 Monitoring

Once a job has been submitted, or before submitting a job, also, it is extremely

useful to have a tool to monitor the remote farm/machine where the job is actually

running.

In the �rst case, one can continuously check:

� if the job is running;

� since how much time;

18

Figure 18: An INFN MDS server page with the general information about a "GRID"

node.

� the CPU load of the remote machine during this amount of time;

� the disk space on the remote machine where the output �le is being stored;

� the connectivity and the level of network traÆc, if any, between the remote

machine and the submitting machine.

In principle, this is against the "GRID" principles claiming that the users do not

have to know where on the "GRID" their jobs are running, but it is an invaluable

bene�t when one has to run/coordinate an event production.

19

Figure 19: An INFN MDS server page with the hardware and job-manager infor-

mation.

In the second case, the knowledge of the status of a remote farm/machine (CPU

load and disk space) and its accessibility (network speed), can help a lot in deciding

how to share the production among the computing resources available.

The "Monitoring" service interfaces EnginFrame with the monitoring systems of

20

Figure 20: An INFN MDS server page with the Globus installation information.

the farms which are becoming available within the ALICE test-bed built on purpose

for the PPR. The monitoring system adopted so far within the ALICE test-bed is

based on MRTG [17] and all details will be discussed in a dedicated forthcoming note.

It is worth emphasizing here, however, that this monitoring system provides a web

output and seamlessly integrates with EnginFrame The layout of the "Monitoring"

21

Figure 21: The Submit Job page of EnginFrame for the ALICE services.

Figure 22: The list of available Job Status services.

22

Figure 23: The output of the service "List My Jobs".

service is shown in �g. 24. For all the sites currently available, both the farm and

the network are monitored. As examples, �gs. 25-27 show the 'daily' and 'weekly'

graphs provided by the monitoring systems of the Catania and Cagliari ALICE

farms for the CPU load, the disk space occupancy, and the network latency.

5 Summary and conclusions

Although very complete and general-purpose, EnginFrame is far from being a "frozen"

product. Future developments foreseen in the next few days/weeks will include,

among the others:

� the possibility to kill a job;

� the possibility to show "on-
ight" (i.e., before the end of the job) both the

standard output and the standard error log �les from within the web browser;

� the possibility to move the output �le from the remote machine back to the

submitting machine (using the Globus Access to Secondary Storage (GASS)

service) in order to test the new "GRID
avored" FTP's;

23

Figure 24: The Monitoring page of EnginFrame for the ALICE services.

� the possibility to submit m AliRoot jobs on n "GRID" machines at the same

time keeping track of all job ID's, log �les, and output �les;

� a better integration, via speci�c and automatically generated links, between

the "Job status services" from one side and the "LDAP services" and the

"Monitoring services" from the other side.

However, even at this stage, it already provides the user with a robust web

interface to the currently available "GRID" services and contains all the technology

to seamlessly incorporate all the new ones that will be created inside the DataGRID

Project in the next months/years. Due to its modularity, experiment's speci�c

services can also be rapidly de�ned and added, so there is hope in the authors that

other experiments/projects besides ALICE could test it in "real-life" applications

and provide invaluable feed-backs.

Acknowledgments

The GLOBUS evaluation team inside the INFN GRID Project and the Catania IT

service are also greatly acknowledged for their help in installing e con�guring Globus.

24

Figure 25: The CPU load monitoring of a node of the ALICE test-bed.

References

[1] See http://www.cern.ch/ALICE.

[2] All information concerning the ALICE O�-line Project can be found at the

URL: http://alisoft.cern.ch/offline.

[3] All information about the DataGRID project can be found at the Data-

GRID Project home page: http://www.datagrid.cnr.it/.

[4] An invaluable starting point to get information on computational "GRIDs"

is the book "The GRID: blueprint for a new computing infrastructure",

edited by I. Foster and C. Kesselman. Other information can also be found

at the URL: http://www.egrid.org.

25

Figure 26: The disk space monitoring of a node of the ALICE test-bed.

[5] All information about Globus can be found at the Globus Project home

page: http://www.globus.org. Information about the Globus evaluation

inside the INFN can be found at the URL: http://www.infn.it/globus/.

[6] All information about the INFN GRID project can be found at the INFN

GRID project home page: http://www.infn.it/grid/.

[7] Information about EnginFrame (the help pages are continuously improved)

can be found at the URL:

http://www.enginframe.com/sentinel/schema.xml.

[8] All information about LSF can be found at the Platform home page:

http://www.platform.com.

26

Figure 27: The network latency monitoring between two nodes of the ALICE test-

bed.

[9] All information concerning the Globus commands and services described

in this note and, in particular, the Globus Resource Speci�cation Language

can be found in the Globus Quick Start Guide at the URL:

http://www.globus.org/toolkit/documentation/QuickStart.pdf.

[10] All information about JAVA can be found at the page:

http://java.sun.com.

[11] Documentation about the requirements can be found at the XML Apache

Project at the URL: http://xml.apache.org. This page also contains the

links to the required packages' home pages while the JAVA Development

27

Kit can be downloaded from the URL:

http:// http://java.sun.com/products/jdk/1.2/ for the .

[12] All information concerning the current version of LDAP Browser/Editor

can be found at the URL:

http://www-unix.mcs.anl.gov/�gawor/ldap/.

[13] The INFN LDAP server can be accessed at the URL:

http://bond.cnaf.infn.it:389.

[14] See http://www.mi.infn.it/�lobiondo/gridmap/.

[15] All information about the INFN GRID Distribution Toolkit can be found

at the URL: http://www.pi.infn.it/GRID/dist/.

[16] The INFN MDS server can be accessed at the URL:

http://bond.cnaf.infn.it/cgi-bin/mdsbrowse1.pl.

[17] All information about MRTG can be found at the MRTG home page:

http://ee-staff.ethz.ch/�oetiker/webtools/mrtg/.

[18] All information about AliRoot can be found at the ALICE O�-line Project

home page at the URL: http://alisoft.cern.ch/offline/.

28

