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Abstract
In this presentation I review basic properties of the simplest Higgs phase of grav-
ity called ghost condensation, and discuss possible applications and observational
bounds.

1 Introduction

Acceleration of the cosmic expansion today is one of the greatest mysteries in both cosmology and
fundamental physics. Assuming that Einstein’s general relativity is the genuine description of gravity
all the way up to cosmological distance and time scales, the so called concordance cosmological model
requires that about 70% of our universe should be some sort of energy with negative pressure, called dark
energy. However, since the nature of gravity at cosmological scales has never been probed directly, we
do not know whether the general relativity is really correct at such infrared (IR) scales. Therefore, it
seems natural to consider modification of general relativity in IR as an alternative to dark energy. Dark
energy, IR modification of gravity and their combination should be tested and distinguished by future
observations and experiments.

From the theoretical point of view, however, IR modification of general relativity is not an easy
subject. Most of the previous proposals are one way or another scalar-tensor theories of gravity, and are
strongly constrained by e.g. solar system experiments [1] and the theoretical requirement that ghosts be
absent [2, 3, 4]. The massive gravity theory [5] and the Dvali-Gabadadze-Porrati (DGP) brane model [6]
are much more interesting IR modification of gravity, but they are known to have macroscopic UV
scales [7, 8]. A UV scale of a theory is the scale at which the theory breaks down and loses its predictability.
For example, the UV scale of the 4D general relativity is the Planck scale, at which quantum gravity
effects are believed to become important. Since the Planck scale is microscopic, the general relativity
maintains its predictability at essentially all scales we can directly probe. On the other hand, in the
massive gravity theory and the DGP brane model, the UV scale is macroscopic. For example, if the scale
of IR modification is the Hubble scale today or longer then the UV scale would be ∼ 1, 000km or longer.
At the UV scale an extra degree of freedom, which is coupled to matter, becomes strongly coupled and its
quantum effects cannot be ignored. This itself does not immediately exclude those theories, but means
that we need UV completion in order to predict what we think we know about gravity within ∼ 1, 000km.
Since this issue is originated from the IR modification and the extra degree of freedom cannot be decoupled
from matter, it is not clear whether the physics in IR is insensitive to unknown properties of the UV
completion. In particular, there is no guarantee that properties of the IR modification of gravity will
persist even qualitatively when the theories are UV completed in a way that they give correct predictions
about gravity at scales between ∼ 1, 000km and ∼ 0.1mm.

Ghost condensation is an analogue of the Higgs mechanism in general relativity and modifies gravity
in IR in a way that avoids the macroscopic UV scale [9] 2. In ghost condensation the theory is ex-
panded around a background without ghost and the low energy effective theory has a universal structure
determined solely by the symmetry breaking pattern. While the Higgs mechanism in a gauge theory
spontaneously breaks gauge symmetry, the ghost condensation spontaneously breaks a part of Lorentz
symmetry since this is the symmetry relevant to gravity. In a gauge theory the Higgs mechanism makes
it possible to give a mass term to the gauge boson and to modify the force law in a theoretically con-
trollable way. Similarly, the ghost condensation gives a “mass term” to the scalar sector of gravity and

1E-mail: mukoyama@phys.s.u-tokyo.ac.jp
2See e.g.[10, 11, 12, 13, 14, 15, 16] for other related proposals.
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modifies gravitational force in the linearized level even in Minkowski and de Sitter spacetimes. The
Higgs phase of gravity provided by the ghost condensation is simplest in the sense that the number of
Nambu-Goldstone bosons associated with spontaneous Lorentz breaking is just one and that only the
scalar sector is essentially modified.

2 Ghost Condensation

The ghost condensation can be pedagogically explained by comparison with the usual Higgs mechanism
as in the table shown below. First, the order parameter for ghost condensation is the vacuum expectation
value (vev) of the derivative ∂µϕ of a scalar field ϕ, while the order parameter for Higgs mechanism is the
vev of a scalar field Φ itself. Second, both have instabilities in their symmetric phases: a tachyonic insta-
bility around Φ = 0 for Higgs mechanism and a ghost instability around ∂µϕ = 0 for ghost condensation.
In both cases, because of the instabilities, the system should deviate from the symmetric phase and the
order parameter should obtain a non-vanishing vev. Third, there are stable point where small fluctuations
do not contain tachyons nor ghosts. For Higgs mechanism, such a point is characterized by the vev of the
order parameter satisfying V ′ = 0 and V ′′ > 0. On the other hand, for ghost condensation a stable point
is characterized by P ′ = 0 and P ′′ > 0. Fourth, while the usual Higgs mechanism breaks usual gauge
symmetry and changes gauge force law, the ghost condensation spontaneously breaks a part of Lorentz
symmetry (the time translation symmetry) and changes linearized gravity force law even in Minkowski
background. Finally, generated corrections to the standard Gauss-law potential is Yukawa-type for Higgs
mechanism but oscillating for ghost condensation.

Higgs mechanism Ghost condensate

Order

Parameter

Instability Tachyon Ghost

Condensate V’=0, V’’>0 P’=0, P’’>0

Spontaneous 

breaking
Gauge symmetry symmetry

Modifying Gauge force Gravity

New

potential

Yukawa-type Oscillating

F
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At this point one might wonder if the system really reach a configuration where P ′ = 0 and P ′′ > 0.
Actually, it is easy to show that this is the case. For simplicity let us consider a Lagrangian Lϕ =
P (−(∂ϕ)2) in the expanding FRW background with P of the form shown in the upper right part of the
table. We assume the shift symmetry, the symmetry under the constant shift ϕ → ϕ + c of the scalar
field. This symmetry prevents potential terms of ϕ from being generated. The equation of motion for ϕ
is simply ∂t[a3P ′ϕ̇] = 0, where a is the scale factor of the universe. This means that a3P ′ϕ̇ is constant
and that

P ′ϕ̇ ∝ a−3 → 0 (a → ∞) (1)
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as the universe expands. We have two choices: P ′ = 0 or ϕ̇ = 0, namely one of the two bottoms of the
function P or the top of the hill between them. Obviously, we cannot take the latter choice since it is a
ghosty background and anyway unstable. Thus, we are automatically driven to P ′ = 0 by the expansion
of the universe. In this sense the background with P ′ = 0 is an attractor.

Having shown that the ghost condensate is an attractor, let us construct a low energy effective
field theory around this background. For this purpose let us consider a small fluctuation around the
background with P ′ = 0. For ϕ = M2t + π, the quadratic action for π coming from the Lagrangian P is∫

d4x[(P ′(M4)+M4P ′′(M4))π̇2−P ′(M4)(∇π)2]. By setting P ′(M4) = 0 we obtain the time kinetic term
M4P ′′(M4)π̇2 with the correct sign. Unless the function P is fine-tuned, P ′′ is non-zero at P ′ = 0. This
means that the coefficient of the time kinetic term is non-vanishing and, thus, we do not have the strong
coupling issue which the massive gravity and the DGP brane model are facing with. On the other hand,
the coefficient of (∇π)2 vanishes at P ′ = 0 and the simple Lagrangian P does not give us a spatial kinetic
term for π. However, this does not mean that there is no spatial kinetic term in the low energy EFT for
π. This just says that the leading spatial kinetic term is not contained in P and that we should look for
the leading term in different parts. Indeed, other terms like P̃ ((∂ϕ)2)Q(¤ϕ) do contain spatial kinetic
terms for π but the spatial-derivative expansion starts with the fourth derivative: (∇2π)2+ · · · . If there is
a non-vanishing second-order spatial kinetic term (∇π)2 then it can be included in P by redefinition and
the redefined P ′ goes to zero by the expansion of the universe as shown above. Namely, the expansion
of the universe ensures that the spatial-derivative expansion starts from (∇2π)2 + · · · . Combining this
spatial kinetic term with the previously obtained time kinetic term and properly normalizing π, we obtain
the low energy effective action of the form

M4

∫
d4x

[
1
2
π̇2 − α

M2
(∇2π)2 + · · ·

]
, (2)

where α is a dimensionless parameter of order unity 3. One might worry that other (nonlinear) terms in
effective theory such as π̇(∇π)2 might mess up the effective action. In fact, it turns out that all such terms
are irrelevant at low energy [9]. An important fact to show this is that the scaling dimension of π is not
the same as its mass dimension 1 but is 1/4, reflecting the situation that the Lorentz symmetry is broken
spontaneously. Moreover, it is also straightforward to show that all spurious modes associates with higher
time derivative terms such as (ϕ̈)2 have frequency above the cutoff M and, thus, should be ignored. In
this sense, we are assuming the existence of a UV completion but not assuming any properties of it.
Finally, it must be noted that the effective action of the form (2) is stable against radiative corrections.
Indeed, the only would-be more relevant term in the effective theory is the usual spatial kinetic term
(∇π)2, but its coefficient P ′ is driven to an extremely small value by the expansion of the universe even
if it is radiatively generated.

The effective action (2) would imply the low energy dispersion relation for π is ω2 ≃ αk4/M2. However,
since the background spontaneously breaks Lorentz invariance, π couples to gravity in the linearized level
even in Minkowski or de Sitter background. Hence, mixing with gravity introduces an order M2/M2

pl

correction to the dispersion relation. As a result the dispersion relation in the presence of gravity is
ω2 ≃ αk4/M2 −αM2k2/2M2

pl. This dispersion relation leads to IR modification of gravity due to Jean’s
instability. Note that there is no ghost around the stable background P ′ = 0 and the Jeans’s instability
is nothing to do with a ghost.

In the above we have expanded a general Lagrangian consistent with the shift symmetry around the
stable background in order to construct the low energy EFT. This is the most straightforward approach.
An alternative, more powerful way is to use the symmetry breaking pattern. In this approach, we actually
do not need to specify a concrete way of the spontaneous symmetry breaking. In this sense, the ghost
around ϕ̇ = 0 has nothing to do with the construction of the EFT around P ′ = 0. Indeed, it is suffice
to assume the symmetry breaking pattern, namely from the full 4-dimensional Lorentz symmetry to the
3-dimensional spatial diffeomorphism [9].

Here, let us briefly review this approach based on the symmetry breaking pattern. This leads to the
exactly same conclusion as above, but is more universal and can be applied to any situations as far as
the symmetry breaking pattern is the same. We assume that (i) the 4-dimensional Lorentz symmetry

3With this normalization, π has the dimension of length.
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is spontaneously broken down to a 3-dimensional spatial diffeomorphism and that (ii) the background
spacetime metric is maximally symmetric, either Minkowski or de Sitter. With the assumption (i), we
are left with the 3-dimensional spatial diffeomorphism x⃗ → x⃗′(t, x⃗). Our strategy here is to write down
the most general action invariant under this residual symmetry. After that, the action for the Nambu-
Goldstone (NG) boson π is obtained by undoing the unitary gauge.

For simplicity let us consider the Minkowski background plus perturbation: gµν = ηµν + hµν . The
infinitesimal gauge transformation is δhµν = ∂µξν + ∂νξµ, where ξµ is a 4-vector representing the gauge
freedom. Under the residual gauge transformation ξi (i = 1, 2, 3), the metric perturbation transforms as

δh00 = 0, δh0i = ∂0ξi, δhij = ∂iξj + ∂jξi. (3)

Now let us seek terms invariant under the residual gauge transformation. Those terms must begin at
quadratic order since we assumed that the flat spacetime is a solution to the equation of motion. The
leading term (without derivatives acted on the metric perturbations) is

∫
dx4M4h2

00. This is indeed
invariant under the residual gauge transformation (3). From this term, we can obtain the corresponding
term in the effective action for the NG boson π. Since h00 → h00 + 2∂0ξ0, by promoting the broken
symmetry ξ0 to a physical degree of freedom π, we obtain the term

∫
dx4M4(h00 − 2π̇)2. This includes a

time kinetic term for π as well as a mixing term. At this point we wonder if we can get the usual space
kinetic term (∇⃗π)2 or not. The only possibility would be from (h0i)2 since h0i → h0i − ∂iπ under the
broken symmetry transformation ξ0 = π. However, this term is not invariant under the residual spatial
diffeomorphism ξi and, thus, cannot enter the effective action. Actually, there are combinations invariant
under the spatial diffeomorphism. They are made of the geometrical quantity called extrinsic curvature.
The extrinsic curvature Kij in the linear order is Kij = ∂jh0j + ∂ih0j − ∂0hij and transforms as a tensor
under the spatial diffeomorphism. Thus,

∫
dx4M̃2(Ki

i )
2 and

∫
dx4M̄2KijKij are invariant under spatial

diffeomorphism and can be used in the action. Since Kij → Kij − ∂i∂jπ under the broken symmetry
ξ0 = π, we obtain

∫
dx4(M̃2 + M̄2)(∇⃗2π)2. Combining these terms with the above time kinetic term and

properly normalizing the definition of π and M , we obtain

Leff = M4

{
1
2

(
π̇ − 1

2
h00

)2

− α

M2
(∇⃗2π)2 + · · ·

}
, (4)

where α is a dimensionless constant of order unity. By setting h00 = 0, this completely agrees with (2),
which was obtained by expanding the scalar field action explicitly around the stable background. Here,
in deriving the effective action all we needed was the symmetry breaking pattern. Thus, the low energy
EFT of the ghost condensation is universal and should hold as far as the symmetry breaking pattern is
the same.

In ghost condensation the linearized gravitational potential is modified at the length scale rc in the
time scale tc, where rc and tc are related to the scale of spontaneous Lorentz breaking M as

rc ≃ MPl

M2
, tc ≃ M2

Pl

M3
. (5)

Note that rc and tc are much longer than 1/M . The way gravity is modified is peculiar. At the time
when a gravitational source is turned on, the potential is exactly the same as that in general relativity.
After that, however, the standard form of the potential is modulated with oscillation in space and with
exponential growth in time. This is an analogue of Jeans instability, but unlike the usual Jeans instability,
it persists in the linearized level even in Minkowski background. The length scale rc and the time scale tc
above are for the oscillation and the exponential growth, respectively. At the time ∼ tc, the modification
part of the linear potential will have an appreciable peak only at the distance ∼ rc. At larger distances,
it will take more time for excitations of the Nambu-Goldstone boson to propagate from the source and
to modify the gravitational potential. At shorter distances, the modification is smaller than at the peak
position because of the spatial oscillation with the boundary condition at the origin. The behavior
explained here applies to Minkowski background, but in ref. [9] the modification of gravity in de Sitter
spacetime was also analyzed. It was shown that the growing mode of the linear gravitational potential
disappears when the Hubble expansion rate exceeds a critical value Hc ∼ 1/tc. Thus, the onset of the IR
modification starts at the time when the Hubble expansion rate becomes as low as Hc.
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If we take the M/MPl → 0 limit then the Higgs sector is completely decoupled from the gravity
and the matter sectors and, thus, the general relativity is safely recovered. Therefore, cosmological and
astrophysical considerations in general do not set a lower bound on the scale M of spontaneous Lorentz
breaking, but provide upper bounds on M . If we trusted the linear approximation for all gravitational
sources for all times then the requirement Hc <∼ H0 would give the bound M <∼ (M2

PlH0)1/3 ≃ 10MeV ,
where H0 is the Hubble parameter today [9]. However, for virtually all interesting gravitational sources
the nonlinear dynamics dominates in time scales shorter than the age of the universe. As a result the
nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M <∼ 100GeV [17].

Note that the ghost condensate provides the second most symmetric class of backgrounds for the
system of field theory plus gravity. The most symmetric class is of course maximally symmetric solutions:
Minkowski, de Sitter and anti-de Sitter. The ghost condensate minimally breaks the maximal symmetry
and introduces only one Nambu-Goldstone boson.

Because of the universality of the low energy EFT, it is worthwhile investigating properties of the
Higgs phase of gravity, whether or not it leads to interesting physical phenomena. Actually, it turns
out that the physics in the Higgs phase of gravity is extremely rich and intriguing. They include IR
modification of gravity [9], a new spin-dependent force [18], a qualitatively different picture of inflationary
de Sitter phase [19, 20], effects of moving sources [21, 22], nonlinear dynamics [23, 17], properties of black
holes [24, 25, 26], implications to galaxy rotation curves [27, 28, 29], dark energy models [30, 31, 32, 33, 34],
other classical dynamics [35, 36], attempts towards UV completion [37, 38, 39], and so on.

3 Possible Applications

Dark energy: In the usual Higgs mechanism, the cosmological constant (cc) would be negative in the
broken phase if it is zero in the symmetric phase. Therefore, it seems difficult to imagine how the Higgs
mechanism provides a source of dark energy. On the other hand, the situation is opposite with the ghost
condensation: the cc would be positive in the broken phase if it is zero in the symmetric phase. Hence,
while this by itself does not solve the cc problem, this can be a source of dark energy.

Dark matter: If we consider a small, positive deviation of P ′ from zero then the homogeneous
part of the energy density is proportional to a−3 and behaves like dark matter. Inhomogeneous linear
perturbations around the homogeneous deviation also behaves like dark matter. However, at this moment
it is not clear whether we can replace dark matter with ghost condensate. We need to see if it clumps
properly. Ref. [17] can be thought to be a step towards this direction.

Inflation: We can also consider inflation within the regime of the validity of the EFT with ghost
condensation. In the very early universe where H is higher than the cutoff M , we do not have a good
EFT describing the sector of ghost condensation. However, the contribution of this sector to the total
energy density ρtot is naturally expected to be negligible: ρghost ∼ M4 ≪ M2

p H2 ≃ ρtot. As the Hubble
expansion rate decreases, the sector of ghost condensation enters the regime of validity of the EFT and
the Hubble friction drives P ′ to zero. If we take into account quantum fluctuations then P ′ is not quite
zero but is ∼ (H/M)5/2 ∼ (δρ/ρ)2 ∼ 10−10 in the end of ghost inflation. In this way, we have a consistent
story, starting from the outside the regime of validity of the EFT and dynamically entering the regime of
validity. All predictions of the ghost inflation are derived within the validity of the EFT, including the
relatively low-H de Sitter phase, the scale invariant spectrum and the large non-Gaussianity [19].

Black hole: In ref. [25] we consider the question “what happens near a black hole?” A ghost
condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent
vector uµ = −gµν∂νϕ. It is argued that the ghost condensate in this picture approximately corresponds
to a congruence of geodesics and the accretion rate of the ghost condensate into a black hole should be
negligible for a sufficiently large black hole. This argument is confirmed by a detailed calculation based on
the perturbative expansion w.r.t. the higher spatial kinetic term. The essential reason for the smallness
of the accretion rate is the same as that for the smallness of the tidal force acted on an extended object
freely falling into a large black hole.
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4 Bounds

In this section we consider the bounds on the symmetry breaking scale M . We argue that the nonlinear
dynamics cuts off the Jeans instability of the linear theory, and allows M <∼ 100 MeV [17].

4.1 Jeans Instability

For M >∼ 10 MeV, the Jeans instability time is shorter than the lifetime of the universe, and we must
consider the effects of this instability. We have seen that the nonlinear effects dominate near interesting
gravitational sources, but the linear dynamics still controls the behavior of the system for sufficiently
weak ghostone amplitudes. In the linear regime, fluctuations with wavelength λ >∼ LJ grow on a time
scale

τ ∼ TJ
λ

LJ
, (6)

where

LJ ∼ MPl

M2
, TJ ∼ M2

Pl

M3
(7)

are the Jeans length and time scales. Wavelengths of order LJ become unstable first, and longer wave-
lengths take longer to grow. Since fluctuations on wavelength shorter than LJ are stable, we expect the
minimum size of a positive or negative energy region to be LJ. On the other hand, the maximum size is
determined by requiring that the time scale τ above be shorter than the Hubble time. Hence, a positive
or negative region can grow within the age of the universe if its size L is in the range

LJ <∼ L <∼ Lmax, (8)

where

Lmax ∼ M

MPlH0
∼ R⊙

(
M

100 GeV

)
. (9)

The unstable modes grow at least until nonlinear effects become important. This happens for π >∼ πc,
where

πc ∼
λ2

τ
. (10)

or equivalently Σ >∼ Σc with

Σc ∼
πc

τ
∼ λ2

τ2
∼ M2

M2
Pl

. (11)

It is reasonable to assume that the nonlinear effects cut off the Jeans instability at this critical amplitude.
This mechanism will fill the universe with regions of positive and negative ghostone field with amplitude
of order ±Σc and the size in the range (8). Since Σ is a conserved charge, there will be equal amounts of
positive and negative Σ.

The sun’s Newtonian potential triggers the Jeans instability of the ghost condensate and, thus, it is
expected that there be a positive or negative region around the sun. This is justified if the ‘aether’ is
efficiently dragged by the sun and we now argue that this is indeed the case. To do this, it is useful to
work in the rest frame of the sun. Far from the sun, the aether is moving with constant velocity v ∼ 10−3,
but near the sun the velocity field will be distorted by the presence of the sun. By using the fluid picture
of the ghostone field, we estimate the effect on a fluid particle with speed v and impact parameter r. The
fluid particle will be a distance of order r away for a time ∆t ∼ r/v, so the change in the particle velocity
in the impulse approximation is

∆v ∼ RS

r2
· r

v
∼ RS

vr
, (12)

where RS is the Schwarzschild radius of the source. Thus, the change in the velocity of a fluid particle
becomes comparable to or greater than the initial velocity if r < rdrag, where

rdrag ∼ RS

v2
, (13)
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For our sun, rdrag ∼ 10R⊙, so the dragged region extends outside the solar radius.4

We require that the absolute value of the mass of the lump with the critical density ρc and the size
Lmax be at worst less than the solar mass:

ρcL
3
max

<∼ M⊙. (14)

This requirement gives the bound
M <∼ 103 GeV. (15)

Since the high power of M (the l.h.s. ∝ M9) is involved in (14), a more stringent requirement on the
mass of the lump will not substantially improve the bound.

4.2 Twinkling from Lensing

We have argued that if M >∼ 10 MeV, then the Jeans instability fills the universe with regions of positive
and negative energy of size L >∼ LJ ∼ MPl/M

2 with energy density ρc ∼ M6/M2
Pl. This will happen

everywhere, in particular in the voids between galaxies. Any light that travels to us from far away will
therefore be lensed by these positive and negative regions. These positive and negative energy regions
move, because the local rest frame of the lensing regions is different from that of our galaxy, so the result
is that the observed luminosity of any point source will change with time. This is similar to the twinkling
of the stars in the night sky caused by time dependent temperature differences in the atmosphere. In
this subsection, we work out the bounds on the ghost condensate from this effect.

Suppose that the universe is filled with regions of positive and negative energy with size L and density
ρc. A light ray traveling through such a region will lens by an angle

∆θ ∼ Φ ∼ ρcL
2

M2
Pl

∼ M6L2

M4
Pl

. (16)

If a light ray travels a distance d ≫ L, then it will undergo N ∼ d/L uncorrelated lensing events, so the
total angular deviation will be enhanced by a N1/2 random walk factor:

∆θtot ∼
(

d

L

)1/2
M6L2

M4
Pl

. (17)

We see that the largest angular deviation comes from the largest L and largest d.
The size of L is limited by the time for the Jeans instability to form as in (8). If the source is the

cosmic microwave background, then d ∼ H−1
0 and we obtain

∆θCMB ∼ M15/2

M
11/2
Pl H2

0

∼
(

M

100 GeV

)15/2

, (18)

for the largest regions with the size L ∼ Lmax. The high power of M makes the precise experimental
limit on ∆θCMB irrelevant, and we obtain the bound

M <∼ 100 GeV. (19)

For M ∼ 100 GeV, the size of the largest critical region is L ∼ 1012 cm, approximately the radius of
the sun. The local velocity of these regions relative to our galaxy is of order 10−3, so the time scale for
one of these regions to cross the line of sight is of order a day, which is therefore the time scale of the
variation.

If there is a distant astrophysical source that is observed to shine with very little time variation, it
may give a competitive bound. But given the high power of M involved, it seems difficult to improve on
this bound significantly.

4This radius is still much less than the orbital radius of Mercury.
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4.3 Supernova time-delay

Gravitational lensing considered in the previous subsection induces a time-delay for light-rays coming
from far distances. With this time-delay effect, observed supernovae should be older than they appear.
Thus, this effect would change the estimate of dark energy by observation of Type Ia supernovae. Since
the determination of the dark energy by supernovae observation is known to be consistent with the
WMAP data, we require that the time-delay is sufficiently shorter than the total time:

∆t

t
∼ (∆θ)2 ∼ M6L2

max

M4
Pl

≤ 1. (20)

Note that the precise experimental limit on the ∆t/t is irrelevant because of the higher power of M
involved in the l.h.s. From this we obtain the bound

M <∼ 103 GeV. (21)

5 Summary

The usual Higgs mechanism gives a mass to a gauge boson in a theoretically controllable way by spon-
taneously breaking the gauge symmetry. Similarly, the ghost condensation gives a “mass” to the scalar-
sector of gravity by spontaneously breaking a part of Lorentz symmetry, the invariance under time
re-parameterization. It has been shown that the structure of low energy effective field theory of ghost
condensation is determined by the symmetry breaking pattern and does not depend at all on the way the
symmetry is broken. In this sense the low energy effective field theory of ghost condensation has nothing
to do with ghost.

The theory of ghost condensation opens up a number of new avenues for attacking cosmological
problems, including inflation, dark matter, dark energy and black holes. Finally, it has been argued that
the theory is compatible with all current experimental observations if the scale of spontaneous Lorentz
breaking is lower than ∼ 100 MeV. Our current understanding of the dynamics of gravity in Higgs phase
is very immature. Most of its properties still remain unexplored.
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