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Abstract: In order to meet the position and attitude requirements of spacecrafts and test masses for
gravitational-wave detection missions, the attitude-orbit coordination control of multiple spacecrafts
and test masses is studied. A distributed coordination control law for spacecraft formation based on
dual quaternion is proposed. By describing the relationship between spacecrafts and test masses in
the desired states, the coordination control problem is converted into a consistent-tracking control
problem in which each spacecraft or test mass tracks its desired states. An accurate attitude-orbit
relative dynamics model of the spacecraft and the test masses is proposed based on dual quaternions.
A cooperative feedback control law based on a consistency algorithm is designed to achieve the
consistent attitude tracking of multiple rigid bodies (spacecraft and test mass) and maintain the
specific formation configuration. Moreover, the communication delays of the system are taken into
account. The distributed coordination control law ensures almost global asymptotic convergence
of the relative position and attitude error in the presence of communication delays. The simulation
results demonstrate the effectiveness of the proposed control method, which meets the formation-
configuration requirements for gravitational-wave detection missions.

Keywords: attitude-orbit coupled control; spacecraft formation; distributed coordination controller;
dual quaternion

1. Introduction

In recent years, space gravitational-wave detection has become an important research
focus to confirm general relativity and open a window to gravitational-wave astronomy.
Currently, the most popular space gravitational-wave detection missions include the LISA
program [1,2] in cooperation with Europe and the United States, the DECIGO program [3]
in Japan, and the Tianqin [4] and Taiji programs [5] in China.

In general, these missions consist of three spacecrafts. They form the shape of an
equilateral triangle, with two test masses inside each spacecraft as the endpoints of the
Michelson interferometer. In order to detect gravitational waves, the distance change
between test masses within different spacecrafts is required to be as small as possible.
However, there are some situations where spacecraft motion surpasses scientific-mission
requirements. For example, when the spacecraft has an entry error and the test mass has a
release error, or the spacecraft deviates from the desired states due to external disturbance
force. Consequently, the position and attitude of the spacecraft and the test masses need
to be controlled to meet the requirements of scientific measurements before starting a
scientific mission. High-precision satellite orbit determination is one of the necessary
conditions to achieve high-precision control. Some space missions, such as GRACE [6]
and BepiColombo [7], use accelerometers to perform a pseudo-drag-free spacecraft orbit
determination, which provides an important reference value for high-precision control of
gravitational-wave detection. The spacecrafts and test masses are considered rigid bodies,
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and their control actuators are microthrusters and electrostatic actuators, respectively. It is
known that coupling exists between the rotation and translation [8]. In order to achieve
high control accuracy in the system, the translation and the rotation of the spacecraft and
test masses should be, simultaneously, taken into account. Moreover, the long distance
between the spacecrafts makes it necessary to consider communication delays between
them. Therefore, the attitude-orbit coordination control of multiple rigid bodies with
communication delays is investigated in this paper.

As a distributed cooperative control strategy, consensus algorithms have recently
been studied extensively in the cooperative control of multi-spacecraft systems. The
basic idea for information consensus is that members in the system obtain information
from other neighbors and generate control strategies based on their status, to ensure the
consistency of specified status in the entire system. In Ref. [9], a distributed attitude
coordination controller based on a second-order consistency algorithm was designed under
the directed communication topology. Based on an extended state observer, Yang et al. [10]
developed a nonlinear attitude tracking control approach to achieve attitude consensus
control. Min et al. [11] studied adaptive attitude synchronization of spacecraft formation
with communication delays. However, attitude control is only considered in the literature
mentioned above. To improve control accuracy in formation systems, it is necessary to
consider the coupled effects between attitude and orbit motions.

It is well-known that coupled attitude-orbit modeling is one of the core technologies for
distributed coordination control. Numerous research results have been published regarding
the modeling of spacecraft formation [12-16]. In the previous literature, the modeling of
orbit and attitude are considered separately. However, it is important to consider the strong
coupling characteristics between the orbit control and the attitude control. In recent years,
the special Euclidean group SE(3) [17-19] and dual quaternions [20-22] have been the most
popular methods to describe the coupling motion of rigid bodies. A 4 x 4 homogeneous
transformation matrix is utilized when modeling rigid bodies on SE(3), while the model
is described more compactly by dual quaternions, which have only 8 parameters, and
the dual-quaternions multiplications have a lower computational cost than homogeneous
transformation matrix multiplications [23]. Wang et al. [24] proposed a quaternion so-
lution for attitude and position control of rigid-bodies” networks, which was the first
attempt to apply the dual-quaternion representation to the study of formation-control
problems. In Ref. [25], the leaderless-consistency and static-leader-consistency problems
were investigated using dual quaternions for networked fully actuated rigid bodies. On
this basis, a distributed control law was proposed with a time-varying leader [26]. In the
field of robotics, Savino et al. [27] proposed a solution to the pose-consistency problem of
multi-rigid-body systems based on dual quaternions.

Nevertheless, to the best of our knowledge, the work mentioned above rarely con-
sidered the communication-delays problem under the attitude-orbit coupled control of
multiple-spacecraft formation. In the gravitational-wave detection mission, the distance
between spacecrafts is more than one hundred thousand kilometers, and the communi-
cation delay will seriously reduce the real-time performance of the controller, thereby
reducing control accuracy. The coupling effect between orbital motion and attitude motion
is also an essential factor affecting control accuracy. Therefore, it is necessary to design
a coordination controller for the spacecrafts and the test masses, considering both the
attitude-orbit coupling effect and the communication delays between the spacecrafts. In
this paper, the dual quaternion is used as the primary mathematical tool to establish the
attitude and orbit coupling dynamic model of the spacecrafts and the test masses. Then,
the full-state feedback control strategy is used to track the desired position and attitude
of the spacecrafts and the test masses, and the consensus algorithm is used to achieve the
coordinated control between them. The communication delays between spacecrafts are
considered in the cooperative control process. The main contribution of this paper is the
proposal of a distributed coordinated control law by combining the full-state feedback
control strategy with the consensus algorithm while considering the communication delays.
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The remainder of this paper is organized as follows. Section 2 gives material back-
ground, as well as the dynamics of the attitude-orbit coupled relative motion of the space-
crafts and test masses based on dual quaternions. The coordination controller is designed
and the controller’s stability is demonstrated using the Lyapunov function in Section 3.
Finally, numerical simulation results are presented in Section 4, followed by conclusions in
Section 5.

2. Material Background and Relative Coupled Dynamics
2.1. Quaternions and Dual Quaternions

As an extension of complex numbers, quaternions can be defined as
q = qo + 911 + 92 + g3k, where qq, 41, 92, 3 € R, and i, j, k satisfy the following properties:
2= =k=-1i=jk=—kj;j=ki=—ik. Let H = {q : ¢ = (&, 4)} denote the set of
quaternions, where & = qo and § = [q1,42,43] € R3 are the scalar and vector part of the
quaternions, respectively. The set of vector quaternions and scalar quaternions are defined
asH, = {geH:¢=0},and H; = {q € H: § = 0}, respectively. Hence, the quaternion
(xi +yj + zk) € H, represents the point (x,y,z) € R>.

A dual number is defined as @ = a, + eay, where a,,a; € R are the real part and the
dual part, respectively. ¢ represents a dual unit satisfying ¢ = 0 but € # 0.

The set of dual quaternions, dual vectors, and dual scalar quaternions are defined
asDQ = {q: 4 = q,+¢q,,9,,9; € H}, DQ, = {§ : § = q, +¢q,,9,,9; € Ho}, and
DQs=1{4:9=4q,+¢eq,9, 9, € Hs}, respectively. The set of dual scalar quaternions with
zero dual part is denoted by DQ, = {§: § = g +¢0,q € H;}.

Given are two quaternions, g, = (&1, 4,) and g, = (2, §,), in H, two dual quaternions
4, = q1, + eq,, and g, = q,, + £q,,; in DQ with q,,, 4,4, 4,,, and g,,; in H. The addition,
multiplication, conjugation, dot product, and cross product are defined, respectively, by

91t 92 (G1+G2q+4,) €H Y
71+ta, = (q1,+4) +e(q15+ q59) €DQ ()
7,99, = (8162 — 4y G, 610, + 21 + 1 X §p) € H 3)
7104, = (0, ®qy) +e(q1, ® gy + 414 @ q5,) € DQ 4
7 = (G -q) €l )

q° = 4q," +eq, €DQ ©)
4,9, = (G182+4;-3,,0) € Hs (7)
q 4 = G, 92 (G145 T + 01, - 92a) € DQs 8
g x4y = (0,61, + 8oy + 1 X ) € Hy )
§ ¥4 = gy, X Gy (g1 X Gy + 41, X Gpq) € DQy (10)

The swap product of a dual quaternion is 4° = g, + &g, € DQ. The ® product of
a dual quaternion is ¢ ® § = (¢; +ecy) ® (q, +¢eq,) = ¢q, +ecqq, 4§ € DQ. The circle
product of two dual quaternions is §;, © §, = 41, * 4o, + 414 - 924 41, 4, € DQy.

The following properties can be shown, with the above definitions [28]:

aobwe)=bo(@®we) =0 @a’) R, abeécDQ (11)
ao(bxe)=b"o(exa’)=&o(a’xb), abeecDhQ, (12)
aob’=aob, abeDbQ (13)

l|a|> =aca, acDQ, (14)
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A dual quaternion can be written as
. 1
q=q+e5q01 (15)

where g € H is a unit quaternion representing rotation, and ' € Hl, is a vector quaternion
representing translation. Then, the unit dual quaternion can represent transformation
including both rotation and translation.

2.2. Graph Theory

Representing rigid bodies as nodes in a network topology graph, the information
topology among them can be described by a graph. Let a undirected graph be defined
by G(V,E), where V is a set of n € N vertices (nodes) labeled as vy,1p, -+ ,v,, and
E € (v;,v) :v;,v; € V a finite set of edges. The adjacency matrix A = [a;] € R"*" is
defined such that a;; = 1 if (1/,-,1/]-) € Eand g;; = 0 otherwise.

2.3. Equations of Attitude-Orbit Coupled Relative Motion Based on Dual Quaternions

Let F] represent the Earth-centered inertial frame. The body-fixed coordinate system
Fiis solidly associated with the ith rigid body. Let F; represent the desired frame of ith
rigid body.

The kinematics equation of the i-th rigid body based on dual quaternions can be
described as [29]

A 1 A .1
4 = 54i ® w; (16)

where g; and d;i are the dual quaternion and the dual velocity of F; with respect to 7,
respectively. They are defined as

1 .
i = ‘li+€§‘1i®"§ (17)

<
\

@ = wite(i+wxr) (18)

where 1/, # and w! € H, represent translation, linear velocity and angular velocity expressed
in the F;, respectively.
The dynamics of the i-th rigid body based on dual quaternions can be described as

Mot = B — & < M@ (19)

where F i is the dual force acting on the i-th rigid body, M; is the dual inertia matrix, which
is defined as [30]

A

d
M; = m;—Is +eJ;

d
mig +€fin ;]ﬂz €fi3 (20)
= €fin1 miz; + €l d€]i23
€fiz1 €liz2 mig; +€fiz3

where m; and J; are the mass and inertia matrix of the ith rigid body, respectively. The
inverse of M, is defined as Mi_l = I;lﬁ + 8%13 [31].

m
In this paper, for the case of the space gravitational-wave detection system in Earth

orbit, total dual forces acting on the spacecraft will be decomposed as follows
A~ ~d ~d ~d ~d .
Fi=foit+ Fasit Fppit+Fur i=123 (21)

where flgi, ]A‘;Sl- and fl]zl- represent the effect due to gravitational force, solar-pressure per-
turbation and J,-perturbation force, respectively. Solar-irradiance fluctuations can be a
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significant disturbance for accurate orbit determination problems [32]. In the gravitational-
wave detection project, the disturbance caused by solar-pressure perturbation cannot be

ignored. f;i = f;l + erili represents the dual control force.

When the gravitational-wave mission is performed, the test mass will follow nearly
free-fall trajectories. Here, we also do not consider the effect of non-conservative forces
on the test mass. Hence, total dual forces acting on the test mass will be decomposed
as follows

~d ~d ~d ~d .
F;:fgi+f]2i+fui/ i=4,5--,9 (22)

The dual forces flgi, f;si and f}zl» can be written as

~i . .
f 5 = miué,i + srlvgl- (23)
f;si = ml-afisi + €0 (24)
Fri = mialy +e0 (25)

where a;i, Tiv g “321’ and a', ; are the gravitational acceleration, the gravity-gradient torque,

the perturbing acceleration due to Earth’s oblateness, and the acceleration caused by solar
radiation pressure, respectively, given by

» pet Nt T
a,,= ——L—u LT
& [I7:l° m<|T§-T§n|3 (743
P i (26)
ri—r, 7l
—u L
S(nr;—r;w |rg|3)
; _ rﬁx]irﬁ
Tygi = SWW (27)
1
3 pe2R2 7\
I HeJ2Re ' i
AT (D‘5<Jz> ’3>’i @)
1 1
i A re
i, = —Po—2AU(1+e) (29)
mli"@

where 1, = 398,600.44190 km?3 /s? is Farth’s gravitational parameter, i, = 4902.800076 km3 /s?
is the Moon’s gravitational parameter, s = 132,712,440,040.94400 km?3/s? is the sun’s grav-
itational parameter; 7, and 7. denote the position vector of the Moon and sun, respectively.
R, = 6378.137 km is the Earth’s mean equatorial radius, J, = 0.0010826267, D = diag{1,1,3};
rl =, riy ,?]T represents the coordinates of r; expressed in the inertial coordinate system.
Po = 4.56 x 107% N - m? is the solar radiation pressure at 1 AU (astronomical unit), A is
the frontal area of the spacecraft, r the position vector from the sun to the spacecraft, and
€ the reflectivity of the surface.

By virtue of the dual quaternion algebra, the motion between the body-fixed frame

and its desired frame can be expressed in the F; as the relative dual quaternion described by

N N N 1 ;
Joi = A3 @ ; = g + €58 @ Tei (30)

where g, is the dual quaternion of F; with respect to 7, and 7}, is the conjugate of §,;.
r'. is the error position between the i-th rigid body and its desired position, given in F;.
q,; is the error quaternion of F; with respect to F;;. The relative kinematic and dynamic
equations are given by

A 1 A ~1
Qoi = 596 @ Wy (31)
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Cr Al NG| Cr i ¢ N i
M;w,; =F; — @; x M;&; + M, (wéi X wdi>

1

(32)
— M; (‘7;’ ® oY %‘)

where @', is the dual velocity error between F; and JFy;, expressed in F;. &', is the dual
velocity of F;; expressed in F;, that is @}, = 4, ® d)ﬁi ® G ;-

2.4. Problem Statement

The space gravitational-wave detection project aims to verify general relativity. Tian-
Qin is a space-borne gravitational-wave detector in the millihertz frequencies, scheduled
for launch in 2035 [4]. The project consists of three spacecrafts and six test masses, with
an orbital radius of about 105 km. The distance between the spacecrafts will be monitored
using laser interferometry. The formation configuration of the spacecrafts is required to
be stable for the scientific mission [33]. Before a gravitational-wave detection mission can
begin, the spacecraft needs to precisely enter a trajectory designed to meet the requirements
of gravitational-wave detection. In this paper, the state that meets the requirements of the
formation configuration is called the desired state, as shown in Figure 1. The test mass
in the desired state is located at the center of the cavity. The science mission can only
begin when both the spacecraft and the test mass are in the desired state. When there is a
deviation between the actual state and the desired state, the coordinated control method is
used to control the spacecraft and the test masses.

2

@ Spacecraft
I:] Test Mass

Figure 1. Desired formation configuration for the gravitational-wave detection system.

In the desired states, the relationships between the spacecrafts can be described
as follows ‘
Qi1 = 4ai @ s 1= 1,2

. e (33)
Qai—2 =44i @4y, 1=3

where §,. = q,. + €34, ® rsc denotes the dual quaternion of F; relative to Fy;, 1. rsc
and g, are the relative position vector and the quaternion of F;; with respect to F;11,
respectively. The relationships between the test masses and the spacecraft can be described
by the following

Q4iv3 =4 @4y, 1=12,3

. o . (34)
Qaive =4i DGy, 1=1,23

- - 1

where §,,1 = 4,1 T s%qtml Qi1 and §u0 = Guo T €590 @ T denote the dual
quaternion of the spacecraft relative to the two test masses inside it, respectively. 7y,
and gq,,,; are the relative position vector and the quaternion of F; with respect to F; 3,
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respectively. r4,» and g,,,, are the relative position vector and the quaternion of F; with
respect to F; ¢, respectively.

The kinematics and dynamic models of the desired i-th rigid body in F; is similar
to the i-th rigid body corresponding to Equations (16)-(19), where the notations §;, &;ﬁ, q;
rf, wf, and Ff are replaced by 44, d;gf, q4ir r%, wgg, and Fgﬁ, respectively. The total dual
force applied to the desired i-th rigid body is independent of the dual control force, i.e.,
Fg; = f?di + f?zldi'

Consider the system given by Equations (31) and (32), use (§,(t), @i(t)) to denote
the desired state of the i-th rigid body, and use (4,;(t), @’;(t)) to denote the relative motion
error and velocity error, respectively. The objective of this paper is to design a distributed

coordination control law flm based on dual quaternions such that the states of the rigid
bodies (4;(t), @\(t)) can track their desired states (4, (t), @4(t)). In other words, the errors
state (§,;(t), @’;(t)) of the closed-loop system are bounded and converge to an arbitrar-
ily small neighborhood of the origin in the presence of communication delays. That is,
when t — oo,

g,,(H) > +1, i=12,..,9

@ (t) =0, i=1,2,.,9

el

(35)

where1=1+¢0€DQ,0=0+¢0€DQ,1=(1,0) € Hand 0 = (0,0) € H, respectively.

3. Control Law Design

In this section, a gravitational-wave detection system with three rigid spacecrafts
and six test masses tracking their desired reference state is considered. Our purpose is to
design control schemes based on dual quaternion so that the spacecraft and test masses can
converge to the desired state. Before moving on, the following assumptions and a lemma
are provided.

Assumption 1. The spacecraft and test masses are regarded as rigid bodies, i = 1 ~ 3 represents
the spacecraft, and i = 4 ~ 9 represents the test mass.

Assumption 2. Each spacecraft and test mass can provide body-fixed control forces and control
torques along three axes of its body frame.

Assumption 3. The communication topology graph G is undirected and connected, and it does not
change with time.

Assumption 4. Full states of the rigid bodies are available.
Lemma 1 ([34]). The multi-agent system composed of n agents with system dynamics is given by
=3¢y, i=1---,n (36)

and a consensus algorithm is proposed as
n
w=—) a;(G — ) (37)
j=1

where a;j are the elements of the adjacency matrix A. Consensus is said to be reached among the n
agents if & — &, Vi # J.

We extend the consistency algorithm of Lemma 1 to the rigid-body attitude-orbit
coupled dynamic system. It is worth pointing out that the algorithm in Lemma 1 cannot be
directly applied to rigid-body attitude-orbit coupling dynamic system due to the inherent
nonlinear factors of attitude-orbit coupling dynamics. It is not obvious to extend the
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results of Lemma 1 to rigid-body attitude-orbit coupled dynamical systems. In addition,
we consider that there is a constant communication delay between the spacecrafts. The
coordinated control law is a feedback-feedforward strategy described by

S S
fui=—hkio (f’éi) — ki © (‘%i) +@; x Mi@; — T
— M; <®Zez X ‘bfii) +M; <‘7:i ® Wi ® ‘7(31’) (38)
. n . . s
_ k3i ® Z ajj (d)lei — C:J]e](t — T1])>
=1
where ki; = kygi + ekiyi, koi = kogi + €kopi, kai = kaai + ekari with kygi, kuyi, koais kosis kaai,

kzir > 0. Tj; is the communication delay from the j-th to i-th rigid body. py, is defined as

1

N 1
Poi = Poi + 551’21‘ (39)

where p,;is the vector part of the quaternion g,,,.
I'; denotes total dual force other than dual control force. For i = 1 ~ 3, T; represents
the dual force acting on the spacecraft,

~d ~d ~d
Ui =foi+ fasi+ i (40)
otherwise, for i = 4 ~ 9, I'; represents the dual force acting on the test mass,
T; Zf;i + fljzi (41)

Assumption 5. It is assumed that there is a constant communication delay T > 0 between
neighbor spacecrafts, and there is no communication delay between a spacecraft and test mass.
Therefore, T;=T withi,j =1~ 3,i # j. Otherwise, T;; = 0.

Note that negative feedback of —ki; ® (p',)° — ky; @ (@',)* is the absolute position and
attitude tracking item and is used to track the overall desired position and attitude of the

n n . ; s
multi rigid-body system . —k3; © }_ a;; (d)él - @ j(t - Ti-)> is the relative position and
j=1

attitude keeping to ensure that the relative position and attitude of the multi rigid-body
remain consistent. The remaining terms involved in Equation (38) are used to compensate
for the dual force induced by Earth’s gravitational force and torque, J>-perturbation force,
Moon’s gravitational force, Sun’s gravitational force and solar pressure perturbation. The
stability of the resultant closed-loop system is stated in the following theorem.

Theorem 1. Consider a closed-loop system described by Equations (31), (32) and (38). If As-
sumptions 1-5 are valid, the states q,; and @, are uniformly bounded and consensus tracking is
asymptotically achieved, that is, §,; — £1 and &', — 0as t — oo.

Proof of Theorem 1. Consider a Lyapunov function candidate as follows

"o . . . . 17 .:\° N
Vi = ) ko (’hi - 1) o (qei —1> 3 ). (wlez) ° <Miwlei>
i=1 i=1
1y 5 L ' ’
+§ Z Z lli]‘kg,i ® (/t d)]e](T) o d)]ej(T)dT> (42)

T,']‘

which satisfies V; > 0and V; = 0if and only if (g,;, @) (¢) = (1,0).
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Differentiating V; with respect to time, we can obtain

n n
W = Z 1i®<‘7ei°(‘731‘—1>+<qei—1)0%>+2< > w
i=1 i=1

1 NN N
123 Va0 (wjej 0 o), — @)t~ Ty) o @ (¢ - Tij)>

i=1j=1
n n s
= 2 Z]Aflz O] <q€, — i) °q, + Z <(2261> o M;w,;
z;l . ) i=1
+§ ; ;al]k3l © ((2]{3] °© w]q we](t Tl]) ow ](t Tq))
n o s
BT O N I
1:11 n n n .
3 g};azjk&@ (w]]ow]] d)]gj(t—Tl]) ow]](t TZ-]-)> (43)

n ) S R . S
= Z (czﬂei) oky ® (if’ei> (44)

The second item in Equation (43) yields

n . S . n . S R . S R . S
3 (ah) emal = ¥ (ah) o (ko () ~tuo (ak)
i=1 i=1

n . . s
k3 © ) ay (Gfgi — Gt — Tij)) ) (45)

i=1 j=1
120N . ) ) )
t5 Z% Z%ai]‘k& O] (‘2’]@] o &’]ej — c?)]ej(t Tjj) o w]](t — Tij)> (46)
1=1j=

n n
Note that the undirected topology is balanced, meaning that }_ a;; = ) a;; for
j=1 =1
i=1,...,n; then, it follows that

Z ): ;@ Z D ajidg = )33 ‘lijd’]{;j (47)
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Applying Equation (13), Equation (46) yields
) n N\ /. N\ S 1M . . ,
i = =) (@i) ° (kzi © (dﬂlgi) ) 5 Y ) aiksi © (‘i’lei © ‘:’161)
i=1 i=1j=1
1 n N
51 Y ayha o (@ - 1) 0@l Ty )
i=1j=1
non R ) .
+ Z Z al-]-k3i ®© (d]éi o d)]gj(i’ — Tij))
i=1j=1
n n . .
_ 1 YN ks © (wl — @& (t— T~)> o (wl —&(t— T»»))
2 . . ij"3i ei ej 1] el ej if
i=1j=1
n . .
- 2 ko ® ((2721 o (,iila) <0 (48)
i=1

Therefore, tl im Vy(t) exists and is finite. The states §,; and a)i,l- are uniformly bounded.
— 00

In addition, the boundedness of §,; and d;éi means that (2)21 and g,; are bounded. Hence, by
Barbalat’s lemma, §,; — +1 and @!; — 0 as t — 0. We complete the proof. [

Remark 1. According to Ref. [28], both of the equilibrium points §,; = 1 and g,; = —1 represent
the same relative position and attitude between frames, and they are acceptable. However, this can
lead to an unwinding phenomenon where large angles are performed before coming to 1 under the
proposed algorithm. The solutions to this problem are given by Refs. [35,361, and we omit discussion
of methods to deal with the problem.

4. Numerical Simulations

In this section, the proposed controller is applied to the Earth-centered orbital space
gravitational-wave detection system, which involves three spacecrafts and six test masses
and tracking their respective desired attitudes and positions. The initial conditions are
assumed to be as follows [37]: the three spacecrafts are isomorphic, the masses are all
650 kg, and the inertia matrix is J; (i = 1 ~ 3); The six test masses are isomorphic, the
masses are all 2.45 kg, and the inertia matrixis J; (i = 4 ~ 9).

(1625 3 2
Ji=| 3 1625 25|kg-m? i=1~3
2 25 325 9
[0.001 0 0 )
Ji=| 0 0001 0 |kg-m? i=4~9
0 0  0.001

The information topology G in the spacecraft formation system is shown in Figure 2.
Serial numbers 1, 2, and 3 represent spacecrafts SC1 ~ 3, and the remaining serial numbers
represent test masses TM1 ~ 6. The desired orbit of the spacecrafts is shown in Table 1.
The initial position errors, velocity errors, angular velocity errors, and quaternion errors
are presented in Table 2. g, = [cos(30°),0,0,sin(30°)], r,« = [0,1.73118,0]" x 10® m,
Gy = [cos(75°),0,0,sin(75°)], q;,,, = [cos(105°),0,0,sin(105°)]. The relative attitude
and position are measurable and assumed to be normally distributed. The attitude and
position standard errors of the spacecraft are 1 prad and 1 m, respectively. The attitude
and position standard errors of test mass are 200 nrad and 1.7 nm, respectively [38]. The
communication delay T = 0.67 s. In this paper, simulations are validated using thrusts of
100 uN and 100 mN, respectively. Here, 100 uN corresponds to the case of formation station-
keeping, where a micro propulsion system is used to compensate for the non-conservative
forces in the system during the space gravitational-wave detection mission. Here, 100 mN
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corresponds to the case of formation reconfiguration. A greater thrust is needed to ensure
that the spacecrafts enter the scientific-mission stage.

Figure 2. Information topology of the spacecraft formation system.

Table 1. Desired orbital parameters.

Parameter Value Unit
Perigee altitude 9.999 x 107 m
Eccentricity 0.00043 -
Inclination 74.5362 °
Argument of perigee 346.5528 °
RAAN 211.6003 °
True anomaly (SC1) 61.3296 °
True anomaly (SC2) 181.3296 °
True anomaly (SC3) 301.3296 °

Table 2. Initial conditions.

Initial Angular
Initial Position Error (m) Initial Velocity Error (m - s~ 1) Velocity Error Initial Quaternion Error (—)
(Rad -s™ 1)

1(SC1) [-100 80 B3 —2 11"x10°3 [08 —2 11Tx107° [0.9972 0.0416 0.0454 0.0416]
2(SC2) [160 100 [-1 —2 1]Tx1073 [07 —2 2]1Tx1075 [0.9976 0.0515 0.0445 0.0151]
3(5C3) [-80 120 100]T [4 0 -11Tx103 [09 —1 11Tx107° [0.9977 0.0447 —0.0424 0.0280]
4TM1) [-3 2 —2]"x10°° B -2 —-1Tx10°8 [08 —2 1]Tx107? [0.9972 0.0416 0.0454 0.0416]
5TM2) [5 —2 1] x10°° [2 -1 -1]"x10°8 1 -3 21" x10°° [0.9976 0.0515 0.0445 0.0151]
6(TM3) [2 7 5]Tx10°5 3 1 —5]"x10°8 3 -1 5]"x10°° [0.9977 0.0447 —0.0424 0.0280]
7(TM4) [-5 6 —2]Tx10°° [-5 6 0] x10°8 [08 —3 4]Tx10° [0.5000 0 0 0.8660]
8(ITM5) [-2 -3 —1]Tx10°° [-2 -3 —-1]Tx10°8 [2 -5 3]"x10°? [0.8660 0 0 0.5000]
9(TM6) [-2 2 1]Tx 107> [-2 2 11" x 108 [07 —6 8]Tx107? [0.9848 0 0.1736 0]

4.1. The Maximum Available Control Force Is 100 uN

In this subsection, the maximum available control force and torque of spacecraft are
assumed to be fsc max = 100 pN and Tsc nax = 100 uN - m, the maximum available control
force and torque of test masses are assumed to be fty_max = 0.7 uN and Tey_max = 0.7 uN - m,
respectiyely. Thus, [|f,l| < fsc_max and |7l < Tsemax(i =1 ~ 3), [ fuill < fem_max
and [|7,|| < Tim_max(i = 4 ~ 9). Using a trial-and-error procedure, the gains for the
controller (38) are selected as ky5; = 1076, k1,; = 7 x 1072, kpgi =5 x 1072, kp,; = 6 x 1072,
ksgi = 61076, k3,; = 1077, i =1 ~ 3. kygi = 1073, ky,y = 7 x 1072, kpg; = 5 x 1072,
ko =6 x 1073, kagi = 6 x 107, k3, =107, i = 4 ~ 9.

Figures 3—-6 show the relative position errors, relative velocity errors, relative angular
velocity errors, and relative attitude errors of the three spacecrafts, respectively. It can be
seen that the spacecrafts can asymptotically track their desired positions and attitudes,
and the tracking errors can converge to the region |7,,| < 5m, |fein] < 5% 1072 m/s,
|Weio] < 2 x 1070 rad/s, (w = x,y,z), and |g.i| < 2 x 1073, (k = 1,2,3). The control
accuracy of position and attitude is of the same order of magnitude as the measurement
error. The transient phase and final accuracy of position tracking and attitude tracking are
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acceptable. It can be seen from Figures 3—6 that the relative attitude error and the relative
angular velocity error converge faster than the relative position error, and the convergence
time for translation and rotation is about 3 days and 1 day, respectively.

100F N

Teix (m)
/

100 - - - -
0

0o 1 2 3 4
Time (day)

5
B ~
~— 0 ./
B ‘~.)
z\w IOV A" RIPLAN R /°
L aad o~ ‘Vo,o
5 .
5 6 7

Time (day)

Time (day)

Figure 3. Relative position errors of spacecraft SC1 ~ 3, the max control force of spacecraft is 100 puN.
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Figure 4. Relative linear velocity errors of spacecraft SC1 ~ 3, the max control force of spacecraft

is 100 uN.
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Figure 5. Relative angular velocity errors of spacecraft SC1 ~ 3, the max control torque of spacecraft
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Figure 6. Relative attitude errors of spacecraft SC1 ~ 3, the max control torque of spacecraft

is 100 uN- m.
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Figure 7 shows the variation curves of control forces and control torques of spacecrafts
SC1 ~ 3. It can be seen that the maximum control forces of the spacecrafts are 10~* N, and
the maximum control torques are 5 x 10~® N - m without saturation. As seen in Figure 7,
the steady-state error of 7, is significantly larger than 7,,;,, and Tuiy- This is because 33 is
larger than J;; and ]2 in the inertia matrix J; (i = 1 ~ 3).

x107°

—~ |
g Ofprtrrsmnus et rce A e e
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0 1 3 4 5 6 7 0 1 2 3 4 5 6 7
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Figure 7. Control forces and control torques about SC1 ~ 3, the max control force of spacecraft
is 100 uN.

Figures 8-11 show the relative position errors, relative velocity errors, relative angular
velocity errors and relative attitude errors of the six test masses, respectively. It can be
seen that the test masses can asymptotically track their desired positions and attitudes, and
the tracking errors can converge to the region |7,;;,| < 5 % 1076 m, |f4i| <2 x 1079 m/s,
|Weiw| < 3 x 1077 rad/s, (w = x,Y,2), |geix| <2 x 1074, (k = 1,2,3). The maximum range
of test-mass position tracking errors are 250 , 250 and 250 pum, respectively. In order to
prevent collisions of the test masses when tracking the spacecrafts, the minimum size of the
cavity in which the test mass is located should be [500 + L, 500 + L, 500 + L] um (L is the side
length of the test mass). It can be seen from Figures 8 and 9 that in the steady-state stage,
the position errors and velocity errors of the two test masses in the same spacecraft tend to
be the same. This indicates that the test masses achieve the tracking of the spacecraft.

Figure 12 shows the variation curves of control forces and control torques of test
masses TM1 ~ 6. It can be seen that the maximum control forces of the test masses
are 5 x 1077 N and the maximum control torques are 2 x 10~/ N - m without saturation.
Figure 12 indicates that the effect of solar pressure needs to be compensated when test
masses are tracking spacecrafts. Note that this paper only focuses on the control of the
spacecraft and the test masses before the start of the detection mission. After starting the
detection mission, the test masses are in a drag-free state.
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Figure 8. Relative position errors of TM1 ~ 6, the max control force of test mass is 0.2 uN.
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Figure 9. Relative linear velocity errors of spacecrafts TM1 ~ 6, the max control force of spacecraft

is 100 puNN.
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Figure 10. Relative angular velocity errors of spacecrafts TM1 ~ 6, the max control torque of spacecraft
is 100 uN- m.
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Figure 11. Relative attitude errors of spacecrafts TM1 ~ 6, the max control torque of spacecraft
is 100 uN- m.
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Figure 12. Control forces and control torques of TM1 ~ 6, the max control force of spacecraft
is 100 uN.

This method achieves consistent tracking control of spacecrafts and test masses when
the maximum actuator output of the spacecraft is 100 uN. The settling time for the space-
craft and the test masses in translational motion is about 4 days. However, for rotational
motion, tge spacecraft’s settling time is about 1 day and the test masses’ settling time is
about 3 days. This is because the actuators of the test masses are electrostatic actuators,
making it take longer to track the spacecraft’s attitude.

4.2. The Maximum Awvailable Control Force Is 100 mN

In order to complete the formation reconfiguration as soon as possible, we assume
that the spacecraft can provide a larger control force and control torque. In this sub-
section, the maximum available control forces and torques of spacecraft are assumed
to be foc_max =100 mN and Tsc_max = 100 mN - m, respectively. Thus, ||f};|| < foc_max
and ||7/,|| < Tec_max(i = 1 ~ 3). Using a trial-and-error procedure, the gains for the
controller (38) are selected as kiy5; = 0.03, k1,; = 0.035, kpy; = 5, koyi = 6, k3g; = 0.01,
ks;; = 0.006, and i = 1 ~ 3. In order to prevent the test mass from colliding with the
cavity, the Cage and Vent Mechanism [39] was used to fix the test mass. Hence, only three
spacecraft simulations are presented in this subsection.

Figures 13-16 show the time histories of the position errors, velocity errors, angular
velocity errors and relative attitude errors of each spacecraft with communication delays,
respectively. It can be seen that the spacecraft can asymptotically track their desired posi-
tions and desired attitudes, and the tracking errors can converge to the region |r,,| < 6 m,
|Foiw] < 3 X 1073 m/s,|wyin| <2 x 1070 rad/s, (w = x,y,2), |qeix| <5 x 107>, (k =1,2,3).
The control forces and control torques of the spacecrafts can be seen in Figure 17, which
indicates that the control forces and control torques can stay within the limitation of 100 mN
and 1 mN - m, respectively.
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Figure 17. Control forces and control torques about SC1 ~ 3, the max control force of spacecraft
is 100 mN.

As shown in Figures 13-16, it can be seen that the convergence times are about 3 h
and 1 h for the translation and rotation, respectively. It saves at least 20 times the time
compared to using the microthruster system. However, the control accuracy of position and
attitude errors is lower than that of the microthruster system. When using actuators with a
larger thrust, the test masses need to be fixed. However, frequently fixing and releasing
test masses will affect their accuracy.

5. Conclusions

A distributed coordination control law based on a dual-quaternion description model
is proposed for a gravitational-wave detection formation system in this paper. The novelty
of this paper lies in the combination of the full-state feedback controller and the consis-
tency algorithm to design a unified form of attitude orbit coupling coordination controller.
Furthermore, the asymptotic stability of the closed-loop system is guaranteed, and the
coordinated control of the desired position and attitude of the spacecrafts and the test
masses is achieved considering communication delays.

The following conclusions can be drawn from the simulation results:

(1) The spacecraft can control the position and attitude of the spacecraft and the test
masses simultaneously using the microthruster during the maneuver, but it takes at
least 3 days under the initial error of about 100 m;

(2) Increasing the thrust shortens the control time, but the test masses need to be fixed to
prevent the test masses from colliding with the cavity during the orbit transfer.

The above conclusions can provide a blueprint for the development of a control
strategy for the spacecrafts in gravitational-wave detection missions: As an important part
of the inertial sensor, the test masses are frequently locked, which will reduce their accuracy.
Therefore, when the spacecraft has an orbit entry error, a larger thrust can be used for
precise orbit and attitude corrections to achieve a certain accuracy before releasing the test
masses and then using the electrostatic force provided by the capacitive sensors to control
the test masses. Once the test masses are released, the microthruster system can be used to
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correct the attitude and orbit of the spacecraft to the desired state. Future developments
will consider the model uncertainties of the spacecraft and the time-vary communication
delays between the spacecrafts.
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Nomenclature
A adjacency matrix (with entries [a;;])
”lgi gravitational acceleration expressed in the body-fixed frame
“1121‘ perturbing acceleration due to Earth’s oblateness expressed in the body-fixed frame
afisz' the acceleration caused by solar radiation pressure expressed in the body-fixed

frame
DQ,DQ,  setof dual quaternions and dual vector quaternions, respectively
DQ;, DQ,  set of dual scalar quaternions and dual scalar quaternions with zero dual part,

respectively

E set of edges

Fi the Earth-centered inertial frame

Fi, Fai the body-fixed frame and the desired body-fixed frame of the ith rigid body, respec-
tively

F ;f’ ﬁ§§ total dual force expressed in the frames F; and F;, respectively

f;l- dual control force expressed in the body-fixed frame

f;i, f;;i dual gravitational force expressed in the frame F; and F;;, respectively

f;si dual solar pressure perturbation expressed in the body-fixed frame

f;z:v ﬁéd:‘ dual Jp-perturbation force expressed in the frame F; and F;, respectively

H, H,, Hs set of quaternions, set of vector quaternions, set of scalar quaternions
I3 the 3-by-3 identity matrix

I, m; inertia matrix and mass of i-th rigid body

kqi, koi ks;  control gains

M; dual inertia matrix

q4ir 9 quaternion of the frames F;; and J; with respect to the frame F;

q; dual quaternion of the frame F; with respect to the frame F

q7, 47 the conjugate of ¢; and §;

4,; dual quaternion of the frame F; with respect to the frame F;

Tij the communication delay between the j-th rigid body and the i-th rigid body

w! angular velocity of F; frame with respect to the F frame expressed in the F; frame
w! dual velocity of the frame JF; with respect to the ] frame expressed in the F; frame
W, dual velocity of the frame JF; with respect to the frame F;; frame expressed in the

F; frame
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He Earth’s gravitational parameter
Um Moon’s gravitational parameter
Us sun’s gravitational parameter
% set of vertices
€ dual unit
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