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Abstract. The Landau–Lifshitz equation is widely considered as the equation, which correctly includes the
effects of radiation reaction in the classical motion of an electric charge. Here, we provide an approximated
analytical solution of the Landau–Lifshitz equation in the presence of a virtually arbitrary electromagnetic
field by making the assumptions that the electron’s initial energy is the largest dynamical energy in the
problem. We show that in a regime where radiation–reaction effects are a small correction of the Lorentz
dynamics, the four-momentum of the electron can be determined perturbatively in the ultrarelativistic
limit. We explicitly compute the electron four-momentum up to the first order and in the experimentally
relevant case of an ultrashort, tightly focused laser beam as an external field.

1 Introduction

An accelerated electric charge emits electromagnetic
radiation. In the case of the charge (an electron, for
definiteness) being accelerated by a background elec-
tromagnetic field, the system is described by the com-
bined Lorentz equation of the electron and Maxwell’s
equations of the electromagnetic field (the background
electromagnetic field plus the electromagnetic field pro-
duced by the charge) [1]. By expressing the electromag-
netic field in terms of the electron’s trajectory (Liénard–
Wiechert field) and by replacing it into the Lorentz
equation, one faces a divergence in the case of a point-
like charge related to the Coulomb structure of the
field close to its source. However, by first considering
a charge of finite size, it can be shown that the diver-
gence appears only in a term proportional to the four-
acceleration of the charge, such that it can be absorbed
in the renormalization of the mass of the charge.
The resulting equation is known as Lorentz–Abraham–
Dirac (LAD) equation [2–4], it contains, apart from the
Lorentz force, an additional “radiation–reaction” force,
and it has the unique characteristics that the radiation–
reaction force features the time derivative of the accel-
eration of the electron. This causes serious and well-
known difficulties related to the appearance of so-called
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runaway solutions as well as to violation of causality [5–
10].

Landau and Lifshitz have shown in Ref. [1] that
within classical electrodynamics, i.e., under the assump-
tion that quantum effects are negligible, the radiation–
reaction force in the instantaneous rest frame of the
electron is much smaller than the Lorentz force, such
that a perturbative “reduction of order” can be per-
formed on the LAD equation. This amounts in replac-
ing the acceleration appearing in the radiation–reaction
force with the Lorentz force divided by the electron
mass. The resulting equation, known as the Landau–
Lifshitz (LL) equation, does not contain the time
derivative of the electron acceleration by construction
and it is therefore not plagued by the existence of run-
away solutions. Now, in the present context quantum
effects can be negligible if in the instantaneous rest
frame of the electron 1) the amplitude of the back-
ground field is much smaller than the critical electro-
magnetic field of QED Ecr = Bcr = m2/|e| (m and
e < 0 are the mass and the charge of the electron,
respectively and units with ε0 = � = c = 1 are used
throughout, such that α = e2/(4π) ≈ 1/137 is the
fine-structure constant) and 2) its typical frequency is
much smaller than the electron rest energy (or equiv-
alently, its typical reduced wavelength is much larger
than the Compton wavelength λC = 1/m). The crucial
observation in Ref. [1] is that the reduction of order is
valid for background field strengths much smaller than
the critical fields of classical electrodynamics, which are
1/α larger than Ecr and Bcr, and for background wave-
lengths much larger than the classical electron radius,
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which is α times smaller than the Compton wavelength.
Thus, in the realm of classical electrodynamics, the
reduction of order is always self-consistently permitted.

In Ref. [11] a rigorous derivation of the LL equation
is presented within classical electrodynamics by consid-
ering a particle whose size, mass and charge tend to
zero in such a way that the charge/mass ratio tends
to a finite limit. In Ref. [12] terms of order e3 in the
LL equation have been explicitly derived from QED
in the case of an arbitrary background field, while the
authors state that the terms of the order e4 can be
derived analogously (assuming that quantum effects are
small according to the above discussion). Apparently,
the approach of Ref. [12] is only valid in the perturba-
tive regime, where the radiation–reaction force is much
smaller than the Lorentz force in the laboratory frame.
However, as pointed out by the authors, the results are
derived in the average rest frame of the electron wave
packet where indeed the radiation–reaction force can
be assumed to be much smaller than the Lorentz force
in the classical limit. Then, covariance considerations,
analogous to those presented in Ref. [1], allow to con-
clude that the derivation is valid in general. Finally, the
LL equation has been solved analytically in the case of
an arbitrary plane wave [13] and in Ref. [14] the classi-
cal solution has been derived from QED.

Classical as well as quantum radiation reaction is an
ongoing and active field of research. The specific case of
radiation reaction of ultrarelativistic electrons in high-
intensity lasers has been reviewed in Refs. [10,15]. Addi-
tional theoretical studies of radiation reaction using the
LL equation have been carried out in Refs. [16–20].
Alternative descriptions of classical radiation reaction
are also being investigated, see, e.g., Refs. [21,22] for
recent works (see also the reviews [10,23,24] for a com-
prehensive list of related references).

Intense laser beams represent a unique experimental
tool to investigate classical and quantum electrodynam-
ics in the presence of strong fields. Laser intensities of
the order of 1023 W/cm2 have already been achieved
experimentally [25] and several multipetawatt facilities
are under construction or planned [26–30], which can
overcome the present record by one–two orders of mag-
nitude. In addition, ultrarelativistic electron beams can
nowadays be produced not only in conventional accel-
erators but also via laser wakefield acceleration [31].
In the presence of such intense electromagnetic fields,
the dynamics of an ultrarelativistic electron is strongly
influenced by its own radiation and testing the valid-
ity of the LL equation experimentally will soon become
possible. Indeed, experiments about radiation reaction
at the edge between the classical and the quantum
regime have been already carried out by employing laser
accelerated electron beams [32,33]. In Ref. [34] the LL
equation has been tested experimentally using aligned
crystals, under the consideration of quantum effects. It
would also be valuable to design experiments where one
can “cleanly” test the LL equation without the inter-
ference of quantum effects.

Since realistic ultrastrong laser beams are obtained
by tightly focusing the laser energy both in space and

time, it is important to investigate the solutions of
the LL equation beyond the plane-wave approxima-
tion. Here, we present an approximated solution of the
LL equation valid in principle for an arbitrarily tightly
focused laser beam under the approximation that the
energy of the electron is the largest dynamical energy
of the problem. This regime has been already investi-
gated in Ref. [35], where a perturbative next-to-leading-
order solution of the Lorentz equation has been pre-
sented. That solution has been employed in a series of
papers to construct quasiclassical electron states in the
presence of tightly focused laser beams [36–38]. Here,
we apply the same technique to obtain an approxi-
mated, analytical solution of the LL equation, where
corrections due to radiation reaction are incorporated
to leading order. Unlike in the case of the Lorentz equa-
tion, the fact to neglect quantum effects from the onset
will introduce constraints, which have to be taken into
account in the analysis. We also impose certain con-
ditions on the external field, which we consider to be
achievable in a real experiment. To be more specific,
we have in mind the case where the background elec-
tromagnetic field represents an intense, few-cycle, and
tightly focused laser beam. These conditions and their
implications will be specified below. From the deriva-
tion in Sect. 3, it is clear that our assumptions are in
line with the regime where radiation–reaction effects are
small corrections as compared to the Lorentz dynamics,
which ultimately validates the perturbative approach to
radiation reaction.

Throughout the paper, the Minkowski metric tensor
ημν = diag(+1,−1,−1,−1) is assumed and the four-
dimensional product of two generic four-vectors aμ and
bμ is indicated as (ab), i.e., (ab) ≡ aμbμ (in particular,
it is a2 ≡ (aa)).

2 The LAD and the LL equation

The relativistic covariant form of the LAD equation for
an electron in a general electromagnetic field Fμν(x)
reads [1]

m
duμ

ds
= eFμν(x)uν

+
2
3

e2

4π

(
d2uμ

ds2
+

duν

ds

duν

ds
uμ

)
. (1)

In this equation, xμ and uμ ≡ dxμ/ds are the space–
time coordinates and the four-velocity of the electron,
respectively, and s is its proper time. The terms pro-
portional to e2/(4π) in Eq. (1) represent the radiation–
reaction force. As we have mentioned in the introduc-
tion, the reduction of order employed in Ref. [1] con-
sists in replacing the first derivatives of the four-velocity
in the radiation–reaction force with their zero-order
expression eFμν(x)uν/m. The resulting LL equation is
[1]
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m
duμ

ds
= eF μνuν +

2

3

e2

4π

[
e

m
(∂αF μν) uαuν − e2

m2
F μνFανuα

+
e2

m2
(F ανuν)

(
Fαλuλ

)
uμ

]
. (2)

In the following, we are going to derive an approx-
imated, analytical expression of the classical four-
momentum of the electron according to the LL equation
by assuming that the initial energy of the electron is the
largest dynamical energy of the problem.

3 Results

We consider a background electromagnetic field, described
by the four-vector potential Aμ(x) in the Lorenz gauge
∂μAμ = 0. We work in the laboratory frame with space–
time coordinates xμ = (t,x) where the electron initial
four-momentum is pμ

0 = (ε0,p0) =
(√

m2 + p2
0,p0

)
,

and we have in mind the case where Aμ(x) represents
an intense, few-cycle, and tightly focused laser beam.
Thus, the field tensor Fμν(x) = ∂μAν(x)− ∂νAμ(x),
which can be expressed in terms of the electric field
E(x) and of the magnetic field B(x), is localized in
space and time. The fact that the initial electron’s
energy is the largest dynamical energy in the problem
means that, if the background field has a maximum
amplitude F0 and if it is characterized by a typical
angular frequency ω0, such that the classical nonlinear-
ity parameter is ξ0 = |e|F0/mω0, the strong inequalities
m � mξ0 � ε0 are satisfied. In this work we employ
a similar technique as in Ref. [35]. The approach in
Ref. [35] is also valid for ξ0 ∼ 1 but here, where the
aim is to investigate radiation–reaction effects, we con-
sider the strong-field regime where ξ0 � 1. The above
assumptions well fit present and near-future experi-
mental conditions envisaged to test the LL equation
with intense lasers. In fact, even for a laser beam of
peak intensity I0 ≈ 1021 W/cm2, as that considered in
Ref. [33], it is ξ0 ≈ 15 (assuming a Ti:Sa laser with
central wavelength λ0 = 0.8 μm), and mξ0 ≈ 8 MeV,
which is much smaller than the energy of already oper-
ating accelerators. Moreover, electron beams with ener-
gies of about 8 GeV have been already demonstrated
experimentally also with laser wakefield accelerators
[31] (below, we discuss also the limits on the electron
energy in such a way that quantum effects are negligi-
ble).

We have in mind the experimentally relevant situa-
tion where the electron is initially almost counterprop-
agating with respect to the laser field. Since, under
the above conditions m � mξ0 � ε0, the electron is
expected to be only slightly deflected from its initial
direction by the background field [35], we also assume
that the incoming transverse momentum of the electron
is at most of the order of mξ0. In order to clearly define
the meaning of “longitudinal” and “transverse”, it is
convenient to introduce light-cone coordinates, defined

by

T =
t + n · x

2
, x⊥ = x − (n · x)n, φ = t − n · x,

(3)

where n is a unit vector. We also define the quanti-
ties nμ = (1,n), ñμ = (1/2)(1,−n), and aμ

j = (0,aj),
with j = 1, 2. The quantities a1 and a2 introduced
above are two unit vectors perpendicular to n and
to each other, and such that a1 × a2 = n. An arbi-
trary four-vector vμ =

(
v0,v

)
can be expressed as:

vμ = v+nμ + v−ñμ + v1a
μ
1 + v2a

μ
2 , where v+ = (ñv) =(

v0 + n · v)
/2, v− = (nv) = v0 − n · v, and vj =

− (ajv) = aj · v (note that a2
j = −a2

j = −1). While the
unit vector n is arbitrary in principle, it is of course
convenient to choose it to approximately coincide with
the electron’s initial momentum, such that the condi-
tions pz > 0, |p⊥| � mξ0, and pz ∼ ε are satisfied,
where pμ = (ε,p) =

(√
m2 + p2,p

)
is the electron’s

four-momentum at a generic time.
In the above light-cone coordinates, the variable T

plays the role of the time and the LL equation can be
written as

dpμ

dT
=

e

p+
Fμνpν +

2
3

e3

4πm2

[
1

p+
(∂αFμν) pαpν

− e

p+
FμνFανpα +

e

m2p+
(Fανpν)

(
Fαλpλ

)
pμ

]
.

(4)

The light-cone components of the field tensor can
be expressed in terms of the electromagnetic field as
Fñ,n = ñμFμνnν = n · E = En, Fñ,j = ñμFμνaj,ν =
aj ·Fm/2, Fn,j = nμFμνaj,ν = aj ·F p, and F1,2 =
a1,μFμνa2,ν = −n ·B = −Bn, with F p/m = E⊥ ±n×
B⊥. The LL equation in light-cone coordinates can be
written as

dp+

dT
= eEn +

e

2

F m · p⊥
p+

+
2

3

e3

4πm2

[
p+∂T En

+
m2 + p2

⊥
2p+

∂φEn + p⊥ · ∇⊥En

+
1

2
(p⊥ · ∂TF m) +

m2 + p2
⊥

4p2
+

(p⊥ · ∂φF m)

+
1

2p+
(((p⊥ · ∇⊥)F m) · p⊥)

+ eE2
n +

eEn

2p+
F m · p⊥ +

e

8

m2 + p2
⊥

p2
+

F 2
m

+
e

2
F m · F p − eBn

2p+
n · (p⊥ × F m)

+

(
2eEnp+

m2
+ e

F m · p⊥
m2

) (−En

2

m2 + p2
⊥

p+
+ F p · p⊥

)

− e

m2

(
m2 + p2

⊥
4p+

F m + p+F p − Bn(n × p⊥)

)2
]
,

(5)
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dp⊥
dT

= eF p − eBn
n × p⊥

p+
+

e

4

m2 + p2
⊥

p2
+

F m

+
2

3

e3

4πm2

[
m2 + p2

⊥
4p+

∂TF m +
(m2 + p2

⊥)2

8p3
+

∂φF m

+
m2 + p2

⊥
4p2

+
(p⊥ · ∇⊥)F m

+ p+∂TF p +
m2 + p2

⊥
2p+

∂φF p

+ (p⊥ · ∇⊥)F p −
(

∂T Bn +
m2 + p2

⊥
2p2

+
∂φBn

+
p⊥ · ∇⊥Bn

p+

)
(n × p⊥)

+

(
e

2

F p · p⊥
p+

− eEn
m2 + p2

⊥
4p2

+

)
F m

+

(
eEn +

e

2

F m · p⊥
p+

)
F p

− eBn

4

m2 + p2
⊥

p2
+

(n × F m)− eBn(n × F p)

− eB2
n

p+
p⊥ +

(
2eEn

m2
+ e

F m · p⊥
m2p+

) (−En

2

m2 + p2
⊥

p+

+F p · p⊥)p⊥

− e

m2p+

(
m2 + p2

⊥
4p+

F m + p+F p − Bn(n × p⊥)

)2

p⊥

]
,

(6)

whereas the on-shell condition p2(T ) = m2 implies that
the remaining minus light-cone component of the four-
momentum of the electron at a generic time T is given
by

p−(T ) =
m2 + p2

⊥(T )
2p+(T )

. (7)

3.1 Approximations and scale analysis

In our physical situation of interest, we require that

m � mξ0 � p0,+ and |p0,⊥| � mξ0. (8)

Under these conditions it is p0,+ ≈ ε0 and, as we have
already mentioned, this is what “the electron energy
is the largest dynamical energy scale in the problem”
means. As we will also see, under the conditions in
Eq. (8), the energy of the electron is almost constant
such that these conditions are verified during the whole
dynamics (in a few-cycle laser pulse).

Now, since the LL equation is a classical equation of
motion, we require quantum effects to be small. As we
have mentioned in the introduction, this implies that
the typical strength of the electromagnetic field mea-
sured in the instantaneous rest system of the electron is
much smaller than the critical field scale Fcr = Ecr =
Bcr. This condition can be formalized by introducing
the quantum nonlinearity parameter χ0 which is defined

as [9,10,24]

χ0 :=
2p0,+

m

F0

Fcr
=

2p0,+|e|F0

m3
(9)

and by requiring χ0 � 1. We notice that in the presence
of a generic electromagnetic field Fμν the more gen-
eral time-dependent definition

√|Fμνpν |2/mFcr along
the electron trajectory should be used, but under the
conditions in Eq. (8), the two definitions are approxi-
mately equivalent. As it results from the derivation of
the LL equation in Ref. [1], another condition, which is
essential for the LL equation to hold, is that the char-
acteristic angular frequency ω0 of the external electro-
magnetic field measured in the instantaneous rest sys-
tem of the electron is much smaller than the electron
mass m. This condition can be formalized by introduc-
ing another parameter η0 defined as

η0 :=
2p0,+

m

ω0

m
, (10)

for which we also require that η0 � 1. With the above
definitions, we have ξ0 = χ0/η0.

By recalling the numerical example mentioned above
of a Ti:Sa laser with ξ0 ≈ 16, we see that electron
energies up to about 0.5 GeV can be considered, which
would correspond to χ0 ≈ 0.1 and then η0 ≈ 6 × 10−3.

3.1.1 Scale analysis

In order to evaluate the importance of each term in
Eqs. (5) and (6), we have in mind an experimental setup
where a Gaussian beam of central angular frequency ω0

is focused to a spot radius σ, such that the field reaches
the maximal field strength F0 within an area of the
order of πσ2. We assume that σ is of the same order
of λ0 = 2π/ω0. The longitudinal extension of such a
tightly focused laser pulse is described by the Rayleigh
length lR = πσ2/λ0 ∼ πλ0. Here, one should observe
that along the longitudinal direction the field decreases
only linearly, unlike on the transverse plane where it
features an exponential decay. Although presently laser
pulses of 40–50 fs are employed for strong-field experi-
ments, the experimental aim is to produce shorter and
shorter pulses such that, at a given energy, the power is
higher and higher. Indeed lasers with pulse lengths of
down to 10 fs are already being tested [39]. Assuming
a Ti:Sa laser with central wavelength λ0 = 0.8 μm this
would correspond to about 3.7 cycles. Thus, we first
make the assumption that the field contains only one
or a few cycles and then we briefly comment on the case
of longer pulses.

The mentioned conditions on p0,+/m, χ0, and η0 can
now be used to perform a scale analysis of the terms in
the LL equation. For this analysis all field components
are estimated to be of the same order as F0 and the
derivatives ∂T , ∂φ, and ∇⊥ are considered to be of the
same order of 1/λ0. For example, for the first two terms
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in Eq. (5), resulting from the Lorentz equation, we have

eEn ∼ eF0 ∼ η0

(
mξ0
p0,+

)
m2, (11)

e

2
Fm · p⊥

p+
∼ e

F0|p⊥|
p+

∼ η0

(
mξ0
p0,+

)2

m2. (12)

Therefore, the ratio of the two terms is of first order in
mξ0/p0,+ � 1, which means that the second term (12)
is much smaller than the first one. Since we seek for a
first-order solution, we can neglect all terms which are
in this sense much smaller than the term in Eq. (12)
either by having higher orders of ξ0m/p0,+ or also of
χ0 and η0. In this way, by using orders-of-magnitude
estimations such as the following ones:

eF p ∼ eEn ∼ η0

(
mξ0
p0,+

)
m2, (13)

e

2
Fm · p⊥

p+
∼ eBn

n × p⊥
p+

∼ η0

(
mξ0
p0,+

)2

m2, (14)

2
3

e3

4πm2

2e

m2
Enp+ (F p · p⊥)

∼ 2
3

e3

4πm2

2e

m2
p+Bn (n · (p⊥ × F p))

∼ 2
3

e4

4πm4
p+F

2
pp⊥ ∼ χ2

0α

(
mξ0
p0,+

)
m2, (15)

2
3

e3

4πm2

e

m2
p2+F

2
p ∼ χ2

0αm2, (16)

2
3

e3

4πm2
p+∂T En ∼ 2

3
e3

m2
p+∂TF p

∼ η2
0α

(
mξ0
p0,+

)
m2, (17)

the LL equations can be simplified as:

(
dp+
dT

)(1)

= eEn +
e

2
Fm · p⊥

p+
− 2

3
e4

4πm4
p2+F

2
p, (18)

(
dp⊥
dT

)(1)

= eF p − eBn
n × p⊥

p+
− 2

3
e4

4πm4
p+F

2
pp⊥.

(19)

The upper index (1) in the derivatives of the four-
momentum components has to be interpreted as we
keep up to the next-to-leading order terms in the
Lorentz force and the leading-order term in the radiation–
reaction force. The relative importance of the remain-
ing terms depends on the precise values of the param-
eters. In the case of a plane wave, it would be En = 0
and Fm = 0 such that the component p+ of the four-
momentum would significantly change in the so-called
“classical radiation-dominated” regime where αχ0ξ0 ∼
1 [13]. This, however, would occur for ξ0 � 1/αχ0 �
103, which, together with the condition p0,+ � mξ0
would imply that quantum effects are dominating the

dynamics. In this respect, the present approach allows
to investigate regimes where radiation–reaction effects
are corrections of the Lorentz dynamics. However, it is
interesting to notice that the radiation–reaction term
in Eq. (18) can be of the same order of the leading-
order term corresponding to the Lorentz force under
the condition that αχ0p0,+/m ∼ 1, which is feasible, as
discussed in the numerical example at the end of the
previous paragraph.

3.2 Calculation of the momentum to first order

In the following we will present an iterative method to
solve Eqs. (18) and (19) by exploiting the appearance
of different powers of the small quantities according to
the conditions (8)–(10).

First, by using the identity pμ = p+dxμ/dT , we
obtain an approximated expression of the “spatial”
coordinates r(T ) = (φ(T ),x⊥(T )), which we are going
to replace in the fields. We have that

dφ

dT
=

m2 + p2
⊥

2p2+
, (20)

d2x⊥
dT 2

=
1

p+

dp⊥
dT

− dp+
dT

p⊥
p2+

. (21)

By inserting Eqs. (18) and (19) here, we have

(
d2x⊥
dT 2

)(1)

=
eF p

p+
− eBn

n × p⊥
p2+

− eEn

p2+
p⊥

+
2
3

e3

4πm2
∂TF p. (22)

It has to be noticed that the leading-order terms in the
radiation–reaction force cancel out exactly in Eq. (21).
Thus, consistently with the meaning of the upper index
(1), we had to keep the next-to-leading order contribu-
tion to the radiation–reaction force in Eq. (22).

Now, on the one hand, since the expression (20) is
of second order in mξ0/p0,+ we assume that the coor-
dinate φ(T ) = φ0 is constant for all times. On the
other hand, in order to employ the transverse coordi-
nates inside the fields and replace them in terms of the
initial coordinates, it is sufficient to only consider the
leading-order term, i.e.,

(
d2x⊥
dT 2

)(1)

≈ e

p+
F p. (23)

Note, in fact, that the radiation–reaction term is much
smaller than the leading-order term by a factor of the
order of αη0.

Thus, to first order the spatial light-cone coordinates
of the electron are given by the same expression without
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radiation reaction, i.e.,

r(1)(T ) =

(
φ0,x0,⊥ +

e

p0,+

∫ T

T0

dT ′Gp (T ′, r0)

+
p0,⊥
p0,+

(T − T0)
)

, (24)

where Gp (T, r0) =
∫ T

T0
dT ′F p (T ′, r0), with r0 =

(φ0,x0,⊥). Equation (24) justifies the insertion of
p⊥(T ) = p0,⊥ + eGp(T, r0) into Eqs. (18) and (19). In
order to perform the integration of Eqs. (18) and (19),
we need to expand the field components in their trans-
verse spatial dependence such that there remains no
explicit dependence on r(T ). Such an expansion is
based on the argument that due to the electron’s high
energy we expect that its transverse position x⊥ only
changes by a small amount. Indeed, by considering
Eq. (24) we see that for an ultrashort laser pulse
(x⊥ −x0,⊥)/λ0 ∼ mξ0/p0,+ � 1. For example, we may
perform the following expansion

En (T ′, r (T ′)) = En (T ′, r0) + ∇⊥En (T ′, r0)
· (x⊥(T ′) − x0,⊥) . (25)

By using (x⊥(T ′) − x0,⊥) ≈ 1
p0,+

∫ T ′

T0
(p0,⊥ +

eGp(T ′′, r0))dT ′′, we obtain

En (T ′, r (T ′)) ≈ En (T ′, r0) +
1

p0,+∫ T ′

T0

(p0,⊥ + eGp(T ′′, r0))dT ′′ · ∇⊥En (T ′, r0) .

(26)

By writing ∇⊥En = d
dT ∇⊥

∫
dTEn and by employing

partial integration, we can write

∫ T

T0

dT ′En(T ′, r (T ′)) ≈
∫ T

T0

dT ′
[
En (T ′, r0)

+
1

p0,+

(
p0,⊥ + eGp (T ′, r0)

)

·∇⊥
∫ T

T ′
En (T ′′, r0) dT ′′

]
. (27)

This expansion can be carried out for any other expres-
sions of field components. The result for p+(T ) to first
order is then obtained by integrating Eq. (18) and is
given by

p
(1)
+ (T ) = p0,+ +

∫ T

T0

dT ′
[
eEn (T ′, r0)

−2
3

e4

4πm4
p20,+F

2
p (T ′, r0)

]
. (28)

The transverse components are obtained in a similar
way by integrating Eq. (19) and are given by

p
(1)
⊥ (T ) = p0,⊥ +

∫ T

T0

dT ′
[
eF p

(
T ′, r0

)

+
e

p0,+

[(
p0,⊥ + eGp

(
T ′, r0

)) · ∇⊥
]

∫ T

T ′
F p

(
T ′′, r0

)
dT ′′ − e

p0,+
Bn

(
T ′, r0

)
[
n × (

p0,⊥ + eGp

(
T ′, r0

))]

− 2

3

e4

4πm4
p0,+F

2
p(T ′, r0)

(
p0,⊥ + eGp

(
T ′, r0

))]
.

(29)

In order to keep the electron exactly on shell, the
remaining light-cone component p−(T ) can be com-
puted from the identity p−(T ) =

[
m2 + p2

⊥(T )
]
/2p+(T ).

Finally, the corresponding dependence of the spatial
coordinates on T can be obtained by using the identity
dxμ/dT = pμ/p+, which would provide a more accurate
solution of the original one in Eq. (24) in line with the
iterative approach.

3.2.1 Qualitative considerations on the effects of the
laser pulse duration

So far we have assumed small integration time scales,
which means that the integration interval T − T0 can
be estimated to be effectively of the order of λ0. This
corresponds to the physical situation where the electron
is exposed to a single-cycle or few-cycle laser pulse. If
one wants to account for longer pulse durations, i.e.,
for pulses with N � 1 cycles, one has to include a fac-
tor N for each integration of functions which accumu-
late while the electron propagates inside the laser field.
Such terms which increase with time, thus limiting the
time interval over which the perturbative approach is
valid, are commonly referred to as secular terms. On
the contrary, when oscillating functions are integrated,
the factor N will be absent. Indeed, we expect that any
single field component does not accumulate when being
integrated. As an example, we conclude that the term
Gp (T, r0) is of the order of λ0F0.

For pulses with multiple laser cycles, i.e., large N ,
the accumulation effects when performing the integra-
tions may invalidate the perturbative approach which
we have followed. It could happen, for example, that
further terms in Eq. (22) contribute after the integra-
tion, because the leading-order term does not accu-
mulate whereas the other terms may do. More pre-
cisely the second and the third term in Eq. (22) are
next-to-leading order but can in principle accumulate
because they include products of fields with p⊥(T ),
which also depends on the fields. If we require these
terms to stay negligible after integrating twice, we need
to require that N2mξ0 � p0,+. Otherwise, the approx-
imated expression (24) may not be sufficient anymore.
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We conclude that including long pulse durations
would additionally complicate the scale analysis and,
as a first investigation of this problem, we limit here to
the simpler case of a single-cycle or of a few-cycle laser
pulse.

3.3 The case of a plane-wave background field

As a sanity check of the calculations above, we can
specialize to the plane-wave case and to compare the
results with those obtained from the exact analytical
solution given in Ref. [13]. In the case of a plane wave,
the field can be expressed as a function of the coordinate
T = (ñx) = (t+n·x)/2 only. A general four-potential in
Lorenz gauge, with the additional condition A0(T ) = 0,
for such a field can be written as

Aμ(T ) = aμ
1ψ1(T ) + aμ

2ψ2(T ), (30)

where ψ1(T ) and ψ2(T ) are arbitrary functions and the
four-vectors aμ

j are defined as in Sect. 3. The field tensor
Fμν = ∂μAν − ∂νAμ is then given by

Fμν(T ) = f̃μν
1 ψ′

1(T ) + f̃μν
2 ψ′

2(T ), (31)

where f̃μν
j ≡ ñμaν

j − ñνaμ
j and the prime denotes a

derivative with respect to T . From this expression it
follows that

En = Bn = 0, (32)
Fm = 0, (33)

and

F p(T ) = −ψ′
1(T )a1 − ψ′

2(T )a2. (34)

Therefore, for plane waves the expressions (28) and (29)
simplify to

p
(1)
+ (T ) = p0,+ − 2

3
e4

4πm4
p20,+

∫ T

T0

dT ′F 2
p (T ′) , (35)

p
(1)
⊥ (T ) = p0,⊥ + eGp(T ) − 2

3
e4

4πm4
p0,+∫ T

T0

dT ′ (p0,⊥ + eGp (T ′)
)
F 2

p(T
′). (36)

Now, it can be easily shown by expanding the solu-
tion in Ref. [13] according to the analysis above, that
indeed the two expressions of the four-momenta coin-
cide. One sees from Eq. (35) that, as we have already
mentioned, in our approach radiation–reaction effects
are ultimately treated perturbatively.

4 Conclusion

In conclusion, we have found an approximated expres-
sion of the classical four-momentum of an ultrarela-
tivistic electron according to the Landau–Lifshitz (LL)
equation. The main expansion parameter is inversely
proportional to the initial energy of the electron, which
is assumed to be the largest dynamical energy in the
problem. Although we have not made specific assump-
tions about the space–time structure of the background
field, we had in mind the case of an ultrashort, tightly
focused laser beam. The results are applicable under
the general assumptions made in the derivation of the
LL equation and under the assumption that quantum
effects are negligible. These conditions can be real-
ized in experiments using an intense, short, and tightly
focused laser beam as a background field. Therefore,
our results can also be used for testing the validity of
the LL equation experimentally. As a limitation of our
approach, we point out that, since in order to treat a
complicated background electromagnetic field we need
the condition ε � mξ0, we are not able within our
approach to describe the classical radiation-dominated
regime but only the regime where radiation–reaction
effects are small corrections as compared to the Lorentz
dynamics.
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