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Abstract

The study encapsulates the investigation into the spherical distributional characteristics of parameters relevant to
Gamma-Ray Bursts (GRBs), mainly focusing on their Galactic coordinates. The study utilized a mixture of von
Mises Fisher spherical distributions to model the spatial distribution of GRBs in both BATSE and FERMI catalogs.
Optimal numbers of mixture components were determined for different subsets of GRBs, including Long and Short
GRBs. For the BATSE catalog, it turns out that a mixture of two spherical distributions provides a good fit for the
whole data set and long and short GRBs. On the other hand, for the FERMI catalog, it turns out that a mixture of
three spherical distributions provides a good fit for the whole data set, and a mixture of four distributions is
adequate for both long and short GRBs. Additionally, an assessment was made to determine if the location
parameter of GRBs follows any spherical distribution. Our flexible directional statistical modeling framework
reveals that GRBs exhibit a non-uniform distribution on the celestial sphere, as evidenced by rejecting the null
hypothesis of uniform distribution on a sphere using the Watson test. Our analysis statistically inquires the long-
held assumption of their isotropic spread, especially in 2D projected spatial distributions of GRBs, suggesting that
these cosmic events might not be uniformly scattered across the celestial sphere. The observed clumping of GRBs
hints at the underlying cosmic scaffolding—the large-scale distribution of matter and star formation. Our results
statistically asserts the explanation that the intrinsic GRB formation rate is typically tied to cosmic star formation
rates with a delay time distribution, leading to a non-uniform rate as a function of redshift, demanding more
nuanced calculations. However, this finding needs to consider potential biases introduced by the Milky Way’s

obscuration and our heliocentric perspective.

Unified Astronomy Thesaurus concepts: Gamma-ray bursters (1878); Astronomy data analysis (1858);

Astrostatistics (1882); Astrostatistics distributions (1884)

1. Introduction

Gamma-ray bursts (GRBs), the most luminous explosions in
the universe, have captivated scientists for decades due to their
immense energy release, brief duration, and enigmatic origins
(Hakkila et al. 2000a; Gehrels et al. 2005). GRBs, these celestial
powerhouses marked by their brief yet luminous gamma-ray
flashes, originate from the cataclysmic mergers of neutron stars
or a neutron star—black hole dance (Fishman & Meegan 1995),
culminating in the birth of a stellar mass black hole. However, a
crucial aspect, the spatial distribution of these bursts, remains
largely unexplored. The prevailing assumption has been that
GRBs exhibit isotropy, meaning they are randomly and
uniformly scattered across the celestial sphere (Piran 1992, 2005).
This assumption has underpinned numerous analyses and
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theoretical frameworks. However, recent advancements in
observational techniques and statistical methods have opened
doors to revisiting this long-held belief.

Directional statistical methodologies (Mardia 1972;
Jammalamadaka & SenGupta 2001) for GRB properties analysis
can potentially revolutionize our understanding of GRBs
(Mardia 1972). Unveiling directional anisotropies could hold
profound implications for the cosmological environment sur-
rounding GRB progenitors and the distribution of matter in the
universe. Additionally, directional classifications could provide
crucial insights into the physical mechanisms responsible for
these enigmatic explosions (Chatterjee & Ghosh 2023, 2024).

Thorough examinations of afterglow emissions, providing
crucial insights into GRBs’ dynamic characteristics and
environments, have been conducted (see Piran 2005 for a
comprehensive review). Supernova light curves detected in the
afterglows of long-duration GRBs nearby have suggested that
some GRBs occur during the collapse of massive stars (see
Woosley & Bloom 2006 for a comprehensive review). This
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Figure 1. Bar Chart of the duration parameter t50 with respect to observed GRBs of BATSE Catalog.

classification is essential for identifying spectral or temporal
correlations unique to GRB classes (Piran 1992; Gehrels et al.
2005; Bloom et al. 2006). In a general classification, GRBs
have been categorized into two groups based on duration: long
(>2s) and short (<2s) bursts This distinction arises from
visually examining the burst duration distribution, revealing
two distinct peaks Svinkin et al. (2019). Theoretically, long
bursts may be associated with collapsing stars, where the event
duration correlates with the dynamical collapse timescale.
Conversely, the merger of two neutron stars will result in short-
duration bursts (Ghosh & Chakraborty 2022). In this context,
long-duration bursts should consistently be linked with super-
nova explosions in starburst regions. On the other hand, short
bursts should exhibit no connection to starburst regions and
lack associated supernovae (King et al. 2007).
Observationally, there are indications of more than two
classes of GRBs, with some recorded instances displaying low
intrinsic luminosity and deviating from standard spectral
relationships (Sazonov et al. 2004; Soderberg et al. 2004).
The absence of a supernova light curve in certain long-duration
bursts, such as GRB 060614 and 060505, challenges the
assumption that all such bursts arise from massive stellar
collapse (Fynbo et al. 2006; Gehrels et al. 2006), although
disputes exist, as in the case of GRB 060614 by Schaefer &
Xiao (2006), who argue against its proximity. While awaiting
confirmation of these findings, they underscore the possibility
of more than two types of GRBs (Chattopadhyay et al. 2007).
As mentioned above, we have shown the basic classification of
GRBs with respect to their duration parameter in the figures
below, where the red color is defined as a long GRB, and the
blue color is defined as a short GRB. The Figures 1 and 2 are
done for the BATSE Catalog, and the Figures 3 and 4 is done
for the FERMI catalog. Recent observations, such as
GRB 211211A (Rastinejad et al. 2022) and GRB 230307A
(Levan et al. 2024), have identified kilonovae associated with

long-duration GRBs, indicating that some long GRBs may
originate from neutron star mergers rather than collapsing
massive stars. These findings suggest that the duration-based
classification may not perfectly correspond to distinct progeni-
tor classes.

1.1. BATSE Catalog of Gamma-Ray Bursts

The Burst and Transient Source Experiment (BATSE;
Preece et al. 2000) on the Compton Gamma-Ray Observatory
(CGRO; Gehrels et al. 1993) has contributed spectral and
temporal information for over 1900 GRBs. Despite the
availability of several spectral parameters in the BATSE
catalog, the bimodal distribution of GRBs is primarily based on
univariate analysis, considering only duration as a parameter
(e.g., Dezalay et al. 1992; Kouveliotou et al. 1993). Some argue
that even this univariate analysis supports the existence of three
classes (Horvath 1998). McLean et al. (2012) undertook initial
multivariate analyses, followed by various classification
approaches, such as neural network techniques (Baum-
gart 1994), factor analysis (Bagoly et al. 1998), nonparametric
hierarchical clustering (Mukherjee et al. 1998; Balastegui et al.
2001), and unsupervised pattern recognition algorithms
(Hakkila et al. 2003).

Figure 5 (Hammer-Aitoff projection) visualizes the distribu-
tion of BATSE GRBs across the sky. It is an overall BATSE
GRB Aitoff plot all over the skymap using ALADIN software
(Boch et al. 2011).

Critically, these analyses are subject to observational biases
inherent in the observed properties of GRBs (Hakkila et al.
2000b). Hakkila et al. (2000a) argue that classification
techniques are significantly hindered by these biases, possibly
contributing to the identification of two classes (see Horvath
et al. 2006 for a counterargument).

Spatial analysis based on the Galactic coordinates of GRBs
in the BATSE catalog is relatively limited, with most studies
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Figure 2. Bar Chart of the duration parameter t90 with respect to observed GRBs of BATSE Catalog.
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Figure 3. Bar Chart of the duration parameter t50 with respect to observed GRBs of FERMI Catalog.
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Figure 4. Bar Chart of the duration parameter t90 with respect to observed GRBs of FERMI Catalog.
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Figure 5. This Aitoff plot (Hammer-Aitoff projection) visualizes the
distribution of BATSE Gamma-Ray Bursts (GRBs) across the sky. The data
was processed using the ALADIN software.

focusing on linear analyses. However, literature is scarce
exploring the spatial mixture model distributional fit in detail
(Meegan et al. 1992; Hakkila et al. 1994). Existing research
primarily delves into linear methods, leaving a gap in
understanding the complex spatial distribution of GRBs within
the Galactic coordinate system using Spherical or Circular
Statistics (Anchordoqui et al. 2020; Goldstein et al. 2020).
Therefore, further exploration and analysis using spatial
mixture models could offer valuable insights into the spatial
distribution patterns of GRBs in the BATSE catalog.

1.2. Fermi Catalog of Gamma-Ray Bursts

The Fermi-GBM science team regularly publishes catalogs
summarizing the critical characteristics of triggered bursts,
consolidating data from several completed mission years
(Koshut et al. 1996; von Kienlin et al. 2014; Bhat et al.
2016). Accompanying the first two catalogs were spectral
catalogs (Gruber et al. 2014; Connaughton et al. 2015) offering
detailed spectral information on nearly all GRBs, including
time-integrated fluence and peak flux spectra. Time-resolved
spectral analysis for the brightest 81 GRBs from the first four
mission years is available in the initial time-resolved spectral
catalog (Yu et al. 2016), with ongoing work for a forthcoming
catalog (Ajello et al. 2021, in preparation).

Various studies utilizing previous GBM catalogs have been
documented elsewhere (e.g., Kovacevic et al. 2014; Calderone
et al. 2015; Charisi et al. 2015; Kaneko et al. 2015; Tarnopolski
2015; Bhat et al. 2016; Abbott et al. 2017b; Andrade et al. 2019).
Additionally, we underscore the significance of GBM data in
multi-messenger astrophysics, particularly after the landmark
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Figure 6. This Aitoff plot visualizes the distribution of FERMI Gamma-Ray
Bursts (GRBs) across the sky. The data was processed using the ALADIN
software.

detection of simultancous gravitational waves (GWs) and
electromagnetic (EM) radiation from the binary neutron star
merger event on 2017 August 17 (Goldstein et al. 2012; Abbott
et al. 2017a). Subsequently, an investigation of GBM data for
GRBs resembling GRB 170817A was conducted over the entire
duration of the current catalog (von Kienlin et al. 2012). Thirteen
candidates were identified during ten mission years, suggesting
that Fermi-GBM may trigger onboard approximately one burst
akin to GRB 170817A per year.

In the Figure 6, an overall GRB plot concerning Aitoff plot
and plotted all over the skymap using ALADIN software Boch
et al. (2011).

The spatial analysis of the FERMI GRB catalog, particularly
concerning Galactic coordinates, has been relatively limited
compared to other aspects of GRB research. Existing studies
often focus on linear analyses (Aasi et al. 2014; Goldstein et al.
2020), and there is a similar scarcity of literature addressing
spatial mixture model distributional fits for circular distribution
as BATSE catalog. This gap in research presents an opportunity
to delve deeper into the spatial characteristics of FERMI GRBs
using advanced statistical techniques such as mixture models. By
exploring the spatial distribution of FERMI GRBs, researchers
can uncover valuable insights into their spatial clustering,
dispersion patterns, and underlying spatial processes, enhancing
our understanding of these astrophysical phenomena (Akerlof &
Swan 2007; Fleischer 2012).

1.3. Objectives and Novelty of this Paper

1. Considering the directional nature of Galactic coordi-
nates, the study employs statistical methodologies suited
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for directional data, explicitly investigating the circular
distributions of the Galactic coordinatess of observed
GRBs. Earlier, Duque & Marinucci (2023) discussed
Geometric methods for cosmological data and high-
lighted recent advancements in spherical data analysis,
mainly for cosmology, covering cosmological motiva-
tions, spectral representations, needlet/wavelet frames,
map reconstruction, and tests for Gaussianity and
isotropy.

2. Specifically, our study examines the directional probabil-
istic distributions of the Galactic coordinatess of observed
GRBs and fits a spherical distribution of a von Mises—
Fisher (VMF) mixture. Proposing a future predictive
classification technique by giving a Spherical mixture
distribution, where if we lack the observation of physical
parameters of the Observed GRB data, we can use that for
predictive classification of GRBs.

3. The analysis is performed on an imputed data set sourced
from the BATSE and FERMI Catalogs, which comple-
ments each other regarding temporal coverage and
detection capabilities, thereby enhancing the robustness
and reliability of the findings.

4. This study innovatively applies a mixture of von Mises
Fisher spherical distributions to model the spatial
distribution of GRBs in the BATSE and FERMI catalogs,
revealing non-uniform distributions. For the BATSE
catalog, a mixture of two spherical distributions fits well,
while the FERMI catalog requires a mixture of three or
four distributions for different subsets of GRBs. Under
certain limitations and assumptions discussed in
Section 8.3, the analysis challenges the long-held
assumption of isotropic GRB distribution, suggesting
these cosmic events are not uniformly scattered across the
celestial sphere. This clumping hints at an underlying
cosmic structure, necessitating more nuanced astrophysi-
cal models and calculations.

5. Through this investigation, the paper contributes to a
deeper understanding of GRB types and their character-
istics, providing valuable insights into the statistical
methods employed for their classification.

2. Data Set

The categorization of GRBs is based on two key parameters:
Tso and Toy (Hakkila et al. 2000a). The BATSE aboard the
CGRO supplied spectral and temporal details for over 1900
GRBs (Paciesas et al. 1999; Chattopadhyay et al. 2007). There
are several parameters to classify the Classes of GRB (e.g.,
Mukherjee et al. 1998; Hakkila et al. 2000a). The sample
comprises 1962 GRBs with nonzero detection of these
parameters without introducing completeness criteria. We
mainly used Galactic Longitude (GLON) and Galactic Latitude
(GLAT) for a directional overview of the BATSE catalog and
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also used the FERMI GRB 4th catalog (Von Kienlin et al.
2020).

3. Methods

In analyzing GRBs, we employed directional statistical tools
to investigate the spatial characteristics. Specifically, we used
the Watson test to examine whether GRBs’ observed GLON
and GLAT follow a circular distribution. We introduced a von
Mises Fishers mixture model to model the spatial components
on a unit sphere.

3.1. Directional Statistical Distributions

We start with essential definitions and properties of some
directional statistical distributions and directional statistical tests.
For details, we refer to Jammalamadaka & SenGupta (2001),
Kim & SenGupta (2018). Directional statistics, also known as
circular statistics in 2D and spherical statistics in 3D, is the
branch of statistics that deals with directions (angles), rotations,
and orientations. These methods are particularly useful for
analyzing data that is naturally constrained to lie on the surface
of a sphere, such as geographical coordinates, wind directions,
and orientations of molecules. Thus, the spatial distribution of
GRBs observed over the celestial sphere could be analyzed using
distributions supported on the surface of the sphere.

The vMF distribution (also known as the Fisher distribution)
is used as a default choice in three dimensions. The vMF can be
obtained as a restriction of any isotropic multivariate normal
density to the unit hypersphere and thus this distribution plays a
central role in directional statistics similar to a (multivariate)
Gaussian distribution on the Euclidean space. It is defined on
the unit sphere $* = {x € R: ||x|| = 1} and is given by:

fomr &g, &) = exp (kp'x), 1)

47 sinh(k)

where x 1S a unit vector in R3, JTRS $? is the mean direction
vector, and x > 0 is the concentration parameter. Notice that
% = 0 leads to a uniform distribution on the S°. So, we are to
assume that GRBs are distributed following a vMF distribution,
then we would be testing the null hypothesis Hy: kK = 0 to test
for uniformity of the GRBs.

3.2. Directional Mixture Model

A Spherical mixture model is used to see the spherical
distributional pattern of how the observed GRBs are scattered
around as per their Galactic coordinates if plotted over a Sky
Map. The mixture model was previously proposed in Ghosh
et al. (2024a), which is used here. We used the von Mises
Fishers mixture distributional model as per the given
Equation (2). This approach helps capture the multimodal
nature of the data (Ghosh & Chatterjee 2023).
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We define the density for a circular parametric mixture
distributional model, which is denoted as p(x|6), as follows

K
p(16) = 3 6, fie (K1), ¥
j=1

where v; = (u;, ;) as defined in Equation (1) and mixing
weights ¢; > 0, V j satisfying the restriction Ef:l ¢; = 1. The
details of the parameter used in the above model are provided in
our previous article Ghosh et al. (2024a). To empirically
determine the optimal number of mixture components, we used
Bayesian Information Criteria (BIC) instead of AIC, based on
recommendations given in the article Zhang et al. (2023), which
provides a comprehensive analysis to justify the use of BIC for
mixture models used in our application. As per the article Zhang
et al. (2023) BIC formula is given in the Equation (3):

BIC,, = — 23" log p(xif,) + dylog n, 3)
i=1

where p(x;|0) is as defined in Equation (2) and d,, denotes the
dimension of the mixture model. In addition to BIC used in the
article Ghosh et al. (2024a), we used another criterion called
Bridge Criteria (BC) to determine the optimal number of
mixture components. We used the formula to calculate the
Bridge Factor given in the articles Zhang et al. (2023) and Ding
et al. (2017). Below, we provide further details of the BC (4).

n d,
BC, 2 — 25" logp(xd,) + n*/3Y " % )
i=1 k=1

In the mixture model case, if each component distribution has
three parameters (e.g., two locations and a scale) and there are k
components with weights adding to 1, then d,, = 3k + k —
1 = 4k — 1. The “two locations” represent two central tendency
measures or positions in the data. The ““scale” parameter describes
the spread or dispersion of the data within each component. Each
component distribution in the mixture is parameterized by a mean
direction vector p; € S* (described by two angular coordinates on
the unit sphere) and a concentration parameter &;, which dictates
the spread around the mean direction.

As per the above Equations (4) and (3) we can find the BC as
per Equation (5)

BC = BIC + pyy )

dm
where, py = n®/3 > % — dy, log(n)

k=1
We also cross-check with the AIC values as per the
Equation (6)

AIC,, £ — 23" logp;, (x) + 2d. 6)
i=1
Garcia-Portugués (2013) details how the optimized version
of the mixture is calculated and plotted in the density plots,
which we applied here (see Figure 8).
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3.3. Identifiability and Estimation of Mixture Models

The paper Ho & Nguyen (2016) tackles key challenges in
finite mixture models, specifically focusing on identifiability
and estimation issues. The exchangeability of mixture
components can cause different parameterizations of the same
model to produce equivalent likelihoods, resulting in identifia-
bility problems. This makes it difficult to uniquely identify the
parameters of the mixture model. Additionally, selecting the
appropriate number of mixture components (model selection) is
often challenging, particularly when dealing with complex or
noisy data. Optimization algorithms may converge to local
rather than global maxima of the likelihood function, affecting
parameter estimates’ accuracy. Understanding the rate at which
estimation algorithms converge to true parameter values is
crucial for evaluating their efficiency and reliability. Ho &
Nguyen (2016) explores the convergence rates of parameter
estimation algorithms for finite mixture models, shedding light
on how quickly these algorithms reach the true parameter
values as the sample size grows. This understanding is essential
for assessing estimation methods’ computational complexity
and effectiveness. In our application, we establish the strong
identifiability using the Theorem 3.3 (d) of Ho & Nguyen
(2016) for the univariate case. For the multivariate case, Chen
(1995), has shown that the optimal convergence rate is nl/4
for a finite mixture model where the number of components is
known within a certain upper limit. Specifically, Section 3 of
Chen (1995) provides evidence that this convergence rate of
n~1/* s attainable.

4. Results for the BATSE Catalog

In this study, we employed a vMF mixture model to provide
a comprehensive overview of the spatial distribution of GRBs
cataloged by the BATSE. Our analysis focused on under-
standing how these GRBs are distributed across the celestial
sphere in terms of GLON and GLAT.

In Figure 7, we present a skymap depicting the distribution
of long and short GRBs. Red dots denote long bursts, while
blue dots represent short bursts, classified based on duration.

In this study, we analyzed the BATSE catalog data set by
dividing it into three sections: the entire BATSE catalog
(Section 4.1), short gamma bursts (Section 4.3), and long
GRBs (Section 4.2).

4.1. Results for Directional and Spherical Statistical
Analysis for Overall Gamma-Ray Bursts (BATSE
Catalog)

Watson test results are given in the Table A1, where we used
both 0.01 significance levels. We tested if the directional
parameters (GLON, GLAT) GRB observed data points and
checked whether they follow any circular distributions.
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Figure 7. All-sky distribution of Long and Short Gamma-Ray Bursts (GRBs) from the BATSE catalog plotted on a celestial sky map. GRBs are classified as long
(duration > 2 s)(Red dots) or short (duration < 2 s) (Blue). This plot visually represents the spatial distribution of these energetic events across the sky.

According to the results above, all the location parameters of
GRB follow von Mises distribution and circular distributions.
We applied the vMF mixture model to gain insights into the
spatial distribution of observed GRBs within the galactic
sphere. Table 1 presents the BIC scores corresponding to
different values of k. Combining the vMF distribution for the
location parameters (GLON and GLAT), we assessed the
model’s performance across ten partitions, ranging from 1 to
10. Our analysis revealed that this data set’s optimal number of
partitions is 2. Similarly, we used AIC values, which gives us
that the optimal number of partitions or Mixture is 6 (Given in
the Table A7), and used BC, which gives us the optimal
number of mixtures, which is 3 (Given in the Table 2).

The density plot of the BATSE GRB data set, generated
using the Von Mises Fisher algorithm, is depicted in Figure 8§,
Figure 9. Within this visualization, observed GRB data points
are denoted by black dots, while the contours representing the
Von Mises Fisher distribution are illustrated in blue. Further-
more, the density plot of the data set itself is described in green.
This comprehensive depiction provides a visual understanding
of the spatial distribution of GRBs within the galactic sphere,
as inferred through the application of the vMF algorithm.

Figure 8: Density plot of the BATSE GRB data set using the
Von Mises Fisher algorithm. Black dots represent observed
GRB data points, blue indicates the Von Mises Fisher contours,
and green signifies the density plot of the data set.

4.2. Long Gamma-Ray Bursts Result

The Table A2 presents the outcomes of the Watson test,
conducted with a significance level of 0.01. We aimed to assess
whether the directional parameters (GLON, GLAT) associated
with observed Long GRBs conform to any circular distribu-
tions. As per the findings, all location parameters of Long

Table 1
Bayesian Information Criteria (BIC) Values for the Number of Mixture
Components £ = 1, 2, .... From that, 2 Partitions can Combine Fisher Von
Mises Distribution for the Location Parameter (GLON and GLAT)

Partition Number BIC Values Partition Number BIC values
1 —5365.844 6 —5872.662
2 —5901.839 7 —5852.070
3 —5896.046 8 —5829.388
4 —5885.700 9 —5798.479
5 —5871.479 10 —5783.355

Note. We checked ten values of k from 1 to 10, where the optimal number of
partitions is 2.

Table 2
Bridge Criteria Values for Number of Mixture Components k = 1, 2, .... From
that, 3 Partitions can Combine Fisher Von Mises Distribution for the Location
Parameter (GLON and GLAT)

Partition Number BC Values Partition Number BC values
1 —2406.17 6 —11169.48
2 —11331.49 7 —10740.05
3 —14364.76 8 —12733.48
4 —11181.91 9 —10779.30
5 —8712.61 10 —10668.20

Note. We checked ten values of k from 1 to 10, where the optimal number of
partitions is 3.

GRBs adhere to the von Mises distribution and exhibit circular
behavior.

Table 3 presents the BIC scores corresponding to each value
of k. Utilizing this information, we determined that 2 partitions
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Figure 8. Density plot of the GRB data set where we used von Mises Fishers distribution. The black dots are observed GRB data points, the Green color indicates the

density plot of the data set.

[
g » Soee 3
oL e . ¥ -
c"" - ..2‘.0. ‘o
2 .V.o O .:
AT
Qf\

Figure 9. Density plot of the GRB data set where we used Von Mises Fishers distribution. The black dots are observed GRB data points, the Blue color indicates the

Von Mises Fishers Contour of the data set.

can effectively integrate the Fisher von Mises Distribution for
Long GRBs’ location parameters (GLON and GLAT). Our
analysis spanned ten values of k, ranging from 1 to 10,
revealing that the optimal number of partitions for this data set
is 2. Similarly, we used AIC values, which indicate that the
optimal number of partitions or mixtures is 6 (as shown in
Table A8). We also used the Bridge Criterion, which suggests
that the optimal number of mixtures is 3 (as shown in Table 4).
There is a total of 1345 samples under long GRBs.

The density plot in the Figure 10, Figure 11 depicts the
distribution of the Long BATSE GRB data set, employing the
Von Mises Fisher algorithm. The black dots represent the
observed Long BATSE GRB data points, while the blue
contours signify the representation of the VMF model.
Additionally, the green shading illustrates the density plot
derived from the data set, providing further insights into the
spatial distribution of the observed Long BATSE GRBs.

Table Containing the Bayesian Inf’f)‘?r?liizn Criteria Score for Each K Value
Partition Number BIC Values Partition Number BIC Values
1 —4084.249 6 —4389.232
2 —4443.7609 7 —4367.182
3 —4435.524 8 —4347.116
4 —4421.244 9 —4325.418
5 —4406.229 10 —4319.634

Note. From that, two partitions can combine Fisher Von Mises Distribution for
Long Gamma-Ray Bursts’ location parameters (GLON and GLAT). We checked
ten values of k from 1 to 10, where the optimal number of partitions is 2.

4.3. Short Gamma-Ray Bursts Result

From the Table A3, the results of the Watson test are
provided herein, employing significance levels of 0.01. We
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Table 4
Table Containing the Bridge Criteria for Each K Value
Partition Number BC Values Partition Number BC Values
1 —2413.21 6 —11573.88
2 —10794.88 7 —10866.98
3 —9182.9 8 —9187.85
4 —11584.73 9 —11563.57
5 —11124.03 10 —8707.86

Note. From that, 4 partitions can combine Fisher von Mises Distribution for
Long Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 4.

aimed to assess whether the directional parameters (GLON,
GLAT) of observed data points for Short GRBs conform to any
circular distributions. As per the findings, all location
parameters associated with Short GRBs adhere to the von
Mises distribution and exhibit circular characteristics.

The Table 5 displays the BIC scores for each value of k.
Based on this analysis, we determined that the Fisher Von
Mises Distribution for Long GRBs’ location parameters
(GLON and GLAT) can be effectively combined into 2
partitions. We explored ten different values of &, ranging from
1 to 10, and identified that the optimal number of partitions for
this data set is 2. We also employed AIC values, which suggest
that the optimal number of partitions or mixtures is 2 (refer to
Table A9). In addition, we utilized the Bridge Criterion, which
indicates that the optimal number of mixtures is 4 (refer to
Table 6). There is a total of 694 samples under short GRBs.

The density plot in Figure 12, Figure 13 illustrates the Short
BATSE GRB data set distribution using the Von Mises Fisher
algorithm. The black dots represent the observed Short BATSE
GRB data points, while the blue contour depicts the Von Mises
Fisher distribution. Additionally, the green color indicates the
density plot of the data set, offering a comprehensive
visualization of the spatial distribution of the observed GRBs.

5. Results for the FERMI-GRB Catalog

Similarly, we utilized a vMF mixture model to comprehen-
sively depict the spatial arrangement of GRBs documented by
FERMI. Our investigation aimed to discern the distribution
patterns of these GRBs across the celestial sphere, specifically
concerning GLON and GLAT.

Figure 14 illustrates a skymap portraying the dispersion of
both long and short GRBs. Red dots indicate long bursts, while
short bursts are depicted by blue dots, categorized according to
their duration.

We analyzed the BATSE catalog data set, partitioning it into
three distinct sections: the complete BATSE catalog (refer to
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Section 5.1), short gamma bursts (refer to Section 5.3), and
long GRBs (refer to Section 5.2).

5.1. Results for Directional and Spherical Statistical
Analysis for Overall Gamma-ray Bursts (FERMI
Catalog)

In the Table A4, here are the results of the Watson test,
conducted with significance levels of 0.01. We aimed to
ascertain whether observed Fermi GRBs’ directional para-
meters (GLON, GLAT) adhere to circular distributions. Based
on the outcomes, it is evident that all location parameters of
Fermi GRBs conform to the von Mises distribution and circular
distributions.

We generated a density plot for the Fermi GRB data set in
the Figure 15, Figure 16 employing the vMF distribution.
Within the plot, observed GRB data points are represented by
black dots. The contours delineated in blue represent the Von
Mises Fishers distribution, while the density plot of the data set
is depicted in green.

The Table 7 presents the BIC scores corresponding to each
value of K. These scores indicate the goodness of fit for
different partitioning schemes. Our analysis suggests that three
partitions can be combined using the Fisher von Mises
distribution to model the spatial distribution of Fermi GRBs,
considering the location parameters GLON and GLAT. We
explored ten values of K ranging from 1 to 10, ultimately
determining that the optimal number of partitions for this data
set is 3. We also used AIC values, which indicate that the
optimal number of partitions or mixtures is 5 (see Table A10).
Additionally, we applied the Bridge Criterion, which suggests
that the optimal number of mixtures is 5 (see Table 8).

5.2. Long FERMI Gamma-Ray Burst Result

As per the data set we have 1964 data points under the Long
Fermi GRB which are captured. The Table AS provides the
following Watson test outcomes, employing significance levels
of 0.01. Our objective was to examine the directional
parameters (GLON, GLAT) concerning the observed data
points of Long Fermi GRBs, aiming to ascertain their
adherence to any circular distributions. Based on the findings
indicated above, it is evident that all location parameters
associated with Long Fermi GRBs conform to the von Mises
distribution and circular distributions.

The density plot in the Figures 17 and 18 illustrates the Long
Fermi GRB data set analyzed using the Von Mises Fishers
Distribution. Each black dot represents an observed data point
from the Long Fermi GRB data set. The blue contour delineates
the Von Mises Fishers distribution, while the green overlay
depicts the density plot of the data set.

The Table 9 showcases the BIC scores corresponding to
various values of k. These scores serve as a metric for
evaluating the goodness of fit for the Fisher von Mises
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Figure 10. Density plot of the Long Batse GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Long BATSE GRB data points,

the Green color indicates the density plot of the data set.

300 200
GLON

Figure 11. Density plot of the Long Batse GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Long BATSE GRB data points;

the Blue color indicates the von Mises Fishers density plot of the data set.

Table 5 Table 6

This Table Contains the Bayesian Information Criteria Score for Each K Value This Table Contains the Bridge Criteria for Each K Value

Partition Number BIC Values Partition Number BIC Values Partition Number BC Values Partition Number BC Values
1 —1272.111 6 —1390.289 1 —2393.50 6 —17983.17
2 —1433.087 7 —1371.877 2 —12444.73 7 —19577.71
3 —1427.712 8 —1354.066 3 —10341.60 8 —17674.75
4 —1408.395 9 —1335.499 4 —22747.66 9 —18148.35
5 —1402.708 10 —1320.035 5 —21246.60 10 —20341.25

Note. From that, 2 partitions can combine Fisher Von Mises Distribution for
Long Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 2.

Note. From that, 4 partitions can combine Fisher Von Mises Distribution for
Long Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 4.
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Figure 12. Density plot of the Short Batse GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Short BATSE GRB data points;
the Green color indicates the density plot of the data set.
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Figure 13. Density plot of the Short Batse GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Short BATSE GRB data points;
the Blue color indicates the Von Mises Fishers Contour of the data set.

Sky Map of GRBs
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Figure 14. All-sky distribution of Long and Short Gamma-Ray Bursts (GRBs) from the FERMI catalog plotted on a celestial sky map. GRBs are classified as long
(duration > 2 s)(Red dots) or short (duration < 2 s)(Blue). This plot provides a visual representation of the spatial distribution of these energetic events across the sky.
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DEJ2000

Figure 15. Density plot of the Fermi GRB data set where we used Von Mises—Fisher distribution. The black dots are observed GRB data points, the Green color
indicates the density plot of the data set. This plot is done with respect to general density.
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Figure 16. Density plot of the Fermi GRB data set where we used Von Mises—Fisher distribution. The black dots are observed GRB data points, the Blue color
indicates the Von Mises Fishers Contour of the data set. This plot is done with respect to von Mises Fishers contour.

Table 7 Table 8

Table Containing the Bayesian Information Criteria Score for Each K Value Table Containing the Bridge Criteria for Each K Value

Partition Number BIC Values Partition Number BIC Values Partition Number BC Values Partition Number BC Values
1 —5870.361 6 —6444.040 1 —2064.34 6 —9825.81
2 —6469.389 7 —6430.734 2 —10532.28 7 —11553.01
3 —6494.556 8 —6414.509 3 —7858.22 8 —-9112.97
4 —6485.317 9 —6382.862 4 —10777.97 9 —8525.6

5 —6465.160 10 —6366.028 5 —11804.06 10 —11381.78

Note. From that, 3 partitions can combine Fisher Von Mises Distribution for
the location parameter(GLON and GLAT) of Fermi Gamma-ray Bursts. We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 3.

Note. From that, Five partitions can combine Fisher Von Mises Distribution for
the location parameter (GLON and GLAT) of Fermi Gamma-Ray Bursts. We

checked ten values of k from 1 to 10, where the optimal number of partitions
is 5.
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Figure 17. Density plot of the Long Fermi GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Long Fermi GRB data points;
the Green color indicates the density plot of the data set. This is done with respect to the Density.
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Figure 18. Density plot of the Long Fermi GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Long Fermi GRB data points;
the Blue color indicates the Von Mises Fishers Contour, of the data set. This is done with respect to the von Mises Fishers contour plot.

distribution across Long Fermi GRBs’ longitudinal (GLON)
and latitudinal (GLAT) parameters. In our analysis, we
explored ten different values of k, ranging from 1 to 10. Our
findings suggest that this data set’s most optimal partitioning
strategy involves 4 distinct partitions. We also utilized the AIC
values, which suggest that the optimal number of partitions or
mixtures is 4 (refer to Table A11). Furthermore, we applied the
Bridge Criterion, which indicates that the optimal number of
mixtures is 5 (refer to Table 10).

5.3. Short FERMI Gamma-Ray Bursts

Results of the Watson test, mentioned in the Table A6 which
is shown in the Appendix below, which is conducted at a
significance level of 0.01. We aimed to ascertain whether the
directional parameters (GLON and GLAT) associated with the
observed data points of Short Fermi GRBs conform to any
circular distributions. As per the findings, all Short Fermi

Table Containing the Bayesian Ian?IE;iizn Criteria Score for Each K Value
Partition Number BIC Values Partition Number BIC Values
1 —4916.413 6 —5393.385
2 —5406.043 7 —5352.440
3 —5417.058 8 —5334.110
4 —5400.920 9 —5327.530
5 —5386.187 10 —5303.575

Note. From that, 4 partitions can combine Fisher Von Mises Distribution for
Long Fermi Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 4.

GRBs’ location parameters adhere to the von Mises distribution

and circular distributions. The number of data points is 395.
The density plot in the Figure 19, Figure 20 depicts the Short

Fermi GRB data set analyzed using the vMF distribution. In the



Publications of the Astronomical Society of the Pacific, 137:024503 (21pp), 2025 February

Table 10
Table Containing the Bridge Criteria Score for Each K Value
Partition Number BC Values Partition Number BC Values
1 —2343.80 6 —11147.97
2 —11777.83 7 —10357.14
3 —9117.90 8 —6317.40
4 —9666.85 9 —7610.20
5 —12745.18 10 —5919.18

Note. From that, 5 partitions can combine Fisher Von Mises Distribution for
Long Fermi Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 5.

plot, the observed Short Fermi GRB data points are represented
by black dots. The blue color denotes the presence of the Von
Mises Fishers Contour, while the green color illustrates the
density plot of the data set.

The Table 11 provides the BIC scores corresponding to each
value of k. Utilizing this data, we identified that the Fisher Von
Mises Distribution for Short Fermi GRBs’ location parameters
(GLON and GLAT) can be effectively amalgamated into 4
partitions. By exploring ten different values of k ranging from 1
to 10, we determined that the optimal number of partitions for
this analysis is 4. In addition, we employed the AIC values,
which suggest that the optimal number of partitions or mixtures
is 4 (see Table A12). Moreover, the application of the Bridge
Criterion indicates that the optimal number of mixtures is 5 (see
Table 12).

6. Discussion
6.1. Beyond Isotropy or Not?

Significance of Our Finding of Apparent Non-Isotropic
Distribution of GRBs. Our directional statistical analysis
provides compelling evidence that GRBs exhibit a non-
isotropic distribution across the celestial sphere. This finding
decisively contradicts a scenario where GRBs are uniformly
distributed across the sky.

The critical result supporting this conclusion lies in rejecting
the null hypothesis by the Watson test for both the BATSE and
Fermi catalogs. Additionally, the optimal number of clusters
identified by the BIC favoring a two-component vMF mixture
model further strengthens the case for a non-uniform
distribution.

This observed non-isotropy holds significant implications for
our understanding of GRBs and the large-scale structure of the
Universe:

1. Tracer of Large-Scale Structure. The non-uniform
distribution of GRBs suggests that their progenitors,
likely massive star cores or mergers of compact objects,
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are not randomly scattered throughout the cosmos.
Instead, their clustering might reflect the underlying
large-scale structure of the Universe, with higher
concentrations in regions of enhanced star formation or
specific galaxy types.

2. Implications for GRB Rate Estimates. A uniform
distribution is often assumed for calculating the GRB
rate within a given volume of space. Our findings indicate
that this assumption might not be valid. By incorporating
a more realistic, non-isotropic distribution model, astron-
omers can potentially refine estimates of the actual GRB
rate and gain a more accurate picture of their occurrence
across cosmic time.

3. Progenitor Environments. The identified sub-clusters
within the GRB population using the two-component
mixture model might point towards distinct progenitor
environments. Future investigations can explore potential
correlations between these clusters and other properties of
GRBs, such as their redshift or host galaxies. This could
provide valuable clues about the specific stellar or binary
system configurations that lead to GRB formation.

6.2. Considering Observational Biases

Our directional statistical analysis suggests a non-isotropic
distribution of GRBs in the celestial sphere. This finding
challenges a uniform distribution, but it is crucial to acknowl-
edge potential limitations in our observations.

While the Watson test rejection and the two-component vVMF
mixture model favor non-uniformity, we must consider the
influence of:

1. Milky Way Obscuration. Our Galaxy, the Milky Way,
contains significant dust and gas that can obscure GRBs,
particularly at lower Galactic latitudes (GLAT). This
obscuration bias could potentially affect the observed
distribution, leading to an underrepresentation of GRBs
in certain sky regions.

2. Heliocentric Selection. We observe the Universe from
our position within the Milky Way. This heliocentric
perspective might introduce a bias towards GRBs closer
to the plane of our Galaxy. This could lead to an artificial
clustering of GRBs along the Galactic plane, potentially
mimicking a non-uniform distribution.

Mitigating these biases is essential for a definitive conclusion
on the true isotropy of GRBs.

However, the observed non-isotropy, even considering these
limitations, holds potential significance:

1. Partial Evidence for Large-Scale Structure. Despite
potential observational biases, the non-uniform distribu-
tion might still offer a glimpse of the underlying large-
scale structure of the Universe. Even if not the complete
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Figure 19. Density plot of the Short Fermi GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Short Fermi GRB data points,
the Green color indicates the density plot of the data set. Density plot for the Fermi short gamma-ray burst.
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Figure 20. Density plot of the Short Fermi GRB data set where we used Von Mises—Fisher distribution. The black dots are observed in Short Fermi GRB data points,
the Blue color indicates the Von Mises Fishers Contour of the data set. von Mises Fishers contour plot for the Fermi short gamma-ray burst.

picture, the clustering could reflect a real, albeit
incomplete, distribution of GRB progenitors.

2. Refined Rate Estimates and Future Missions. Accounting
for the non-isotropy and future efforts to correct
obscuration and heliocentric biases can lead to more
refined estimates of the actual GRB rate. Additionally, 1

missions designed to observe GRBs at higher energies or

GRB properties, revealing insights into the stellar or
binary system configurations that lead to GRB formation.

7. Further Discussion

. The analysis delves into pertinent parameters’ probabil-
istic circular distributional properties. Given the direc-

from vantage points outside the ecliptic plane could
provide crucial data for a complete understanding of their
accurate spatial distribution.

. Progenitor Clues Despite Biases. The identified sub-
clusters within the GRB population using the mixture
model might still hold valuable clues about progenitor
environments. By carefully considering and potentially
correcting for observational biases, future investigations
can explore correlations between these clusters and other

tional nature of specific parameters, particularly
concerning the Galactic coordinates of observed GRBs,
circular statistical methodologies were employed. Nota-
bly, circular distributions were scrutinized, and a von
Mises Fisher mixture spherical distribution with an
optimal number of 2 mixtures was fitted for the Whole
BATSE catalog. Similarly, two mixtures of von Mises
Fishers were identified for Long and Short GRBs (see
Tables 1, 3, and 5).
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Table 11
Table Containing the Bayesian Information Criteria Score for Each K Value
Partition Number BIC Values Partition Number BIC Values
1 —943.9735 6 —1002.5893
2 —1039.3358 7 —989.8878
3 —1031.3133 8 —971.9138
4 —1041.3955 9 —954.0112
5 —1016.1941 10 —936.1367

Note. From that, 4 partitions can combine Fisher Von Mises Distribution for
Short Fermi Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 4.

Table 12
Table Showing the BC Values Divided by 595
Partition Number BC values Partition Number BC values
1 —1268.85 6 —123955.49
2 —6708.19 7 —51428.21
3 —4624.12 8 —36605.81
4 —11578.99 9 —51829.63
5 —132521.47 10 —52391.59

Note. The optimal number of partitions is 5.

2. Additionally, an investigation was conducted to ascertain
whether the location parameter of BATSE GRBs follows
any spherical distribution (refer to Table Al).

3. Likewise, a similar approach was employed for FERMI
GRBs, particularly concerning the Galactic coordinates of
observed GRBs. Circular distributions were analyzed,
and a von Mises Fisher mixture spherical distribution
with an optimal number of 3 mixtures was fitted for the
Whole FERMI catalog. Similarly, four mixtures of von
Mises Fishers were identified for Long and Short GRBs
(refer to Table A4).

4. Analogously, an assessment was conducted to determine
if the location parameter of FERMI GRBs conforms to
any spherical distribution (see Table A4).

5. The classification into short-hard and long-soft GRBs is
primarily based on the bimodal distribution of burst
durations (750, 790) and is further supported by the
hardness ratio, which distinguishes bursts with harder
spectra (short GRBs) from those with softer spectra
(long GRBs).

6. Our position within the Milky Way could introduce a
heliocentric bias, favoring the detection of GRBs in
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certain sky regions over others. Although BATSE and
Fermi-GBM have overlapping sky coverage, the obser-
ver’s location may still influence the observed distribu-
tion. Future studies should consider modeling the
observer’s position relative to the Galactic plane to
mitigate this bias.

In conclusion, our findings suggest a non-isotropic distribution
for GRBs, even with limitations from the Milky Way and our
observing position. Further efforts to mitigate these biases and
data from future missions are crucial to solidify this conclusion.
Nevertheless, if confirmed, the observed non-isotropy offers
exciting possibilities for understanding the Universe’s large-
scale structure, refining GRB rate estimates, and uncovering
clues about the environments that give rise to these powerful
explosions.

8. Conclusion

Our investigation into the spatial distribution of GRBs using
directional statistical methodologies has revealed compelling
evidence for a non-isotropic distribution of these extraordinary
cosmic events. Through rigorous statistical analyses of both the
BATSE and Fermi GRB catalogs, we have demonstrated that
the assumption of isotropy, which has underpinned numerous
theoretical models, may not fully capture the true nature of
GRB distribution.

8.1. Key Findings

The Watson test results, coupled with the optimal partition-
ing identified by the BIC and BC, strongly suggest that GRBs
are not uniformly distributed across the sky. Our analysis
indicates that BATSE and Fermi GRBs exhibit significant
clustering patterns deviating from isotropy.

By employing vMF mixture models, we have characterized
the spatial distribution of GRBs in terms of GLON and GLAT.
The optimal number of mixture components varied between
data sets but consistently pointed towards multiple compo-
nents, reinforcing the presence of underlying structure in GRB
spatial distribution. Applying directional statistical techniques
has allowed us to identify distinct sub-clusters within the GRB
population. These clusters potentially correlate with different
progenitor environments or mechanisms, providing a new
dimension to the study of GRB origins. The detailed tables
about the watson test and AIC are given in the tables below
from Table A1-A12.

8.2. Implications

Even under certain limitations and assumptions, the
discovery of a non-isotropic distribution of GRBs could have
profound implications for our understanding of their origins
and the universe’s large-scale structure. The observed cluster-
ing may reflect regions of enhanced star formation or specific
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types of galaxies, suggesting that GRBs can serve as tracers of
the large-scale structure of the cosmos. Revising the assump-
tion of isotropy in GRB distribution can lead to more accurate
estimates of their occurrence rate, providing deeper insights
into the frequency and conditions of these powerful events.
Additionally, the distinct clusters identified through our
analysis offer new avenues for exploring the environmental
and physical conditions that lead to different types of GRBs,
enhancing our understanding of the progenitor systems and the
processes driving these cosmic explosions.

8.3. Criticism

The von Mises and Von Mises Fisher Fisher distribution
comes from a maximizing Shannon entropy under first and
second-moment restriction; see Jammalamadaka & SenGupta
(2001), Ghosh et al. (2024a). Although ideally, we regard this
maximum entropic assumption as a strong point of this paper,
the door for potential criticism is open. The observed
anisotropy in the spatial distribution of GRBs raises intriguing
questions about the underlying causes of this non-uniformity.
One potential factor could be the inherent limitations of using
2D image data sets, which project the celestial sphere onto a
flat surface, potentially introducing distortions and biases. This
projection can obscure the true 3D spatial relationships
between GRBs, leading to artificial clustering patterns that
may only partially reflect their distribution in three-dimensional
space. Additionally, the assumption of isotropy may hold more
validity in a truly 3D context, where the full extent of the
universe’s structure and the distribution of matter can be more
accurately represented. 2D data might fail to capture complex
spatial relationships, such as those influenced by the universe’s
large-scale structure, gravitational lensing, or other cosmolo-
gical phenomena. Therefore, while our findings suggest
anisotropy, they must be interpreted cautiously, acknowledging
the potential artifacts introduced by the 2D nature of the data
sets. Future studies employing 3D data and advanced modeling
techniques will be crucial to validate these findings and provide
a more comprehensive understanding of GRB distribution in
the cosmos.

One significant limitation of our analysis stems from the
potential bias introduced by Milky Way obscuration. Regions
near the Galactic plane are underrepresented in the data set due
to the effects of dust and gas, which obscure observations and
potentially impact the accuracy of our directional analysis.
While this issue has been addressed in the revised Discussion
and Criticism sections, it remains a critical limitation of the
current work.

To mitigate this bias in future analyses, detailed modeling of
the dust and gas distributions within the Milky Way will be
necessary. Such modeling would enable more accurate
corrections for obscured regions, ensuring a more balanced
representation of the entire sky. By incorporating these
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corrections, future studies could provide a clearer and more
comprehensive understanding of the phenomena being
investigated.

Nonetheless, our study statistically inquires about the long-
held assumption of isotropy in GRB distribution and paves the
way for a deeper understanding of these enigmatic explosions.
By leveraging advanced statistical techniques and future
observational data, we can unlock new insights into the
cosmos’s most luminous events and their role in the universe’s
grand tapestry.

9. Future Work

In our exploration of the spatial distribution of GRBs using
directional statistical methods, several promising avenues for
future work emerge:

1. Refine classification based on Latent variable models:
Future investigations could delve into more sophisticated
models, including, but not limited to, latent variable
models, and could potentially provide even more nuanced
classifications of GRBs based on their directional
properties.

2. Investigate physical correlations: The proposed future
classification based on spherical mixture distributions has
the potential to serve as a powerful tool for further
exploration. Researchers may uncover crucial insights
into the physical processes governing these enigmatic
explosions by correlating the identified classes with
physical parameters of GRBs, such as redshift, energy
fluence, or associated host galaxies. For example, a
specific cluster might be related to GRBs originating in a
particular environment or having a distinct progeni-
tor star.

3. Multi-messenger analysis: The field of multi-messenger
astronomy is rapidly evolving, and future studies could
integrate data from other astronomical messengers, such
as gravitational waves or neutrino detections, alongside
the established GRB catalogs. This broader approach
could offer a more holistic perspective on GRBs’ spatial
distribution and physical properties within the grand
tapestry of the Universe. By combining information from
different wavelengths and messengers, scientists may be
able to elucidate the complete picture of GRB formation
and their role in the Universe’s evolution.

4. Mitigating Possible Heliocentric Bias and Correcting for
Possible Milky Way Obscuration. Future efforts must
address Milky Way obscuration through dust maps and
multi-wavelength observations while mitigating helio-
centric bias with next-generation all-sky surveys and
advanced statistical modeling. Refining the mixture
model to account for these biases and correlating sub-
clusters with host galaxy properties will further solidify
our understanding of GRB distribution. This will lead to
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more accurate large-scale structure maps, improved rate
estimates, and a clearer picture of GRB progenitor
environments. Both BATSE and Fermi-GBM data are
known to have significant localization uncertainties,
which inherently influence the precision of our directional
analysis. To address these uncertainties, we employed
von Mises-type variability factors, which are well-suited
for spherical geometries. These factors were incorporated
into the model to treat GRB positions as random
variables, with location points modeled to account for
von Mises-type variability. However, handling “notorious
outliers” remains a critical aspect that our current model
does not explicitly address. While the model is flexible in
managing overall uncertainties, it does not include
specific mechanisms to detect and handle outliers that
might disproportionately influence parameter estimates or
misrepresent underlying patterns. Future work will focus
on developing and incorporating robust outlier detection
and mitigation techniques to ensure the reliability of
results in the presence of such data anomalies. This
enhancement would not only strengthen the robustness of
our analysis but also broaden the applicability of the
model to data sets with complex variability and potential
outliers.

5. In Chapter 3 and Chapter 2 of Wang et al. (2022), they
discussed the topic of isotropic (Euclidean and Spherical
domain), where they were able to create a suitable basis
using Bernstein polynomials. They provide sufficient
conditions for equivalence and orthogonality of Gaussian
measures on spheres with isotropic covariance functions
depending on the great circle distance and illustrate the
asymptotic property of parameter estimation for a list of
parametric covariance families. Which can be used in the
future for the spatial analysis of GRB locations.

6. Future analyses could improve the accuracy of short GRB
isotropy assessments by excluding known soft gamma
repeaters (SGRs), which are typically very short-duration
bursts (0.1 s) and may originate from Galactic sources,
thereby potentially biasing the isotropy results.

7. While Swift-BAT provides more precise localizations
compared to BATSE and Fermi-GBM, the focus of this
study was to analyze the older BATSE and Fermi
catalogs to assess potential anisotropies across different
observational eras. Incorporating Swift-BAT data could
be a valuable extension of this work to evaluate whether
improved localization affects the observed distribution
patterns.

8. Future efforts requires to address Milky Way obscuration
through dust maps and multi-wavelength observations
while mitigating heliocentric bias with next-generation
all-sky surveys and advanced statistical modeling.
Refining the mixture model to account for these biases
and correlating sub-clusters with host galaxy properties

Ghosh, Ghosh, & Chatterjee

will further solidify our understanding of GRB distribu-
tion. This will lead to more accurate large-scale structure
maps, improved rate estimates, and a clearer picture of
GRB progenitor environments.
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Appendix
Directional Statistics Preliminaries and Additional
Results

A.1. Von Mises Distribution

The Von Mises distribution is a probability distribution
commonly used to model circular data, such as directions
around a circle (e.g., compass angles, wind directions)
(Jammalamadaka & SenGupta 2001). Under moment con-
straints, the Von Mises distribution maximizes entropy
compared to other probability distributions capable of repre-
senting circular data (Mardia et al. 2000; Jammalamadaka &
SenGupta 2001). Given the specified constraints, it reflects the
state of maximum disorder. It allows for characterizing the
distribution of observations with a preferred direction and a
certain level of dispersion around that direction (Ghosh et al.
2024a, 2024b).

A circular random variable 6 follows the Von Mises
distribution (also known as the Circular Normal Distribution
and a close approximation to the wrapped normal distribution)
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Table Al Table AS
Watson Test Results are Given Here, Where We used Both 0.01 Significance Watson Test Results are Given Here, Where We used Both 0.01 Significance
Levels Levels
Parameter Test Statistics Critical Value Distribution Parameter Test Statistics Critical Value Distribution
GLON 0.0329 0.081 von Mises GLON 0.0332 0.081 von Mises
GLAT 0.0842 0.081 Not von Mises GLAT 0.0222 0.081 von Mises

Note. We tested if the directional parameters (GLON, GLAT) GRB observed
data points and checked whether they follow any circular distributions.
According to the results above, all the location parameters of GRB follow the
von Mises distribution. and circular distributions.

Note. We tested whether the directional parameters(GLON, GLAT) for Long
Fermi GRB observed data points and checked whether they follow circular
distributions. According to the results above, all the location parameters of
Long Fermi GRB follow the von Mises distribution. and circular distributions.

Table A2 Table A6
Watson Test Results are Given Here, Where we used Both 0.01 Significance Watson Test Results are Given Here, Where We used Both 0.01 Significance
Levels Levels
Parameter Test Statistics Critical Value Distribution Parameter Test Statistics Critical Value Distribution
GLON 0.0329 0.081 von Mises GLON 0.0579 0.081 von Mises
GLAT 0.0901 0.081 Not von Mises GLAT 0.0137 0.081 von Mises

Note. We tested if the directional parameters (GLON, GLAT) for Long GRB
observed data points and checked whether they follow circular distributions.
According to the results above, all the location parameters of GRB follow the
von Mises distribution. and circular distributions.

Table A3
Watson Test Results are Given Here, Where We used Both 0.01 Significance
Levels
Parameter Test Statistics Critical Value Distribution
GLON 0.0221 0.081 von Mises
GLAT 0.027 0.081 von Mises

Note. We tested if the directional parameters (GLON, GLAT) for Short GRB
observed data points and checked whether they follow circular distributions.
According to the results above, all the location parameters of Short GRB follow
the von Mises distribution. and circular distributions.

Table A4
Watson Test Results are Given Here, Where We used Both 0.01 Significance
Levels
Parameter Test Statistics Critical Value Distribution
GLON 0.0585 0.081 von Mises
GLAT 0.0234 0.081 von Mises

Note. We tested whether the directional parameters (GLON, GLAT) for Fermi
GRB observed data points and checked whether they follow circular
distributions. According to the results above, all the location parameters of
Fermi GRB follow the von Mises distribution. and circular distributions.

and is characterized by the probability density function (pdf):

ek cos(0— )

f0: . k) (AL)

- 2wly(k)
where 0 lies in the range [0, 27), u is constrained to [0, 27), and
k > 0. The normalizing constant Iy(k) is the modified Bessel
function of the first kind and order zero.

Note. We tested whether the directional parameters (GLON, GLAT) for Short
Fermi GRB observed data points and checked whether they follow circular
distributions. According to the results above, all the location parameters of
Short Fermi GRB follow the von Mises distribution. and circular distributions.

Table A7
AIC Values for Number of Mixture Components £ = 1, 2, .... From that, 6
Partitions can Combine Fisher Von Mises Distribution for the Location
Parameter (GLON and GLAT)

Partition Number AIC Values Partition Number AIC Values
1 —5377.084 6 —5968.205
2 —5929.94 7 —5964.475
3 —5941.008 8 —5958.653
4 —5947.523 9 —5944.605
5 —5950.162 10 —5946.341

Note. We checked ten values of k from 1 to 10, where the optimal number of
partitions is 6.

Table A8
Table Containing the AIC for Each K Value
Partition Number AIC Values Partition Number AIC Values
1 —3562.885 6 —3925.29
2 —3903.533 7 —3909.163
3 —3910.43 8 —3920.66
4 —3910.581 9 —3900.531
5 —3910.182 10 —3913.492

Note. From that, 6 partitions can combine Fisher von Mises Distribution for
Long Gamma-Ray Bursts’ location parameters (GLON and GLAT). We checked
ten values of k from 1 to 10, where the optimal number of partitions is 6.
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Table A9 Table A11
This Table Contains the AIC for Each K Value Table Containing the AIC Score for Each K Value
Partition Number AIC Values Partition Number AIC Values Partition Number AIC Values Partition Number AIC Values
1 —1810.712 6 —2020.543 1 —4927.579 6 —5459.467
2 —2019.927 7 —2014.905 2 —5433.957 7 —5432.773
3 —2019.444 8 —2009.226 3 —5461.554 8 —5457.136
4 —2019.891 9 —2003.559 4 —5461.783 9 —5458.516
5 —2019.828 10 —1997.461 5 —5474.766 10 —5460.938

Note. From that, 2 partitions can combine Fisher Von Mises Distribution for
Long Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 2.

Table A10
Table Containing the AIC for Each K Value
Partition Number AIC Values Partition Number AIC Values
1 —5878.347 6 —6536.534
2 —6493.639 7 —6535.145
3 —6536.187 8 —6536.654
4 —6542.456 9 —6534.008
5 —6543.828 10 —6533.199

Note. From that, 5 partitions can combine Fisher Von Mises Distribution for
the location parameter (GLON and GLAT) of Fermi Gamma-Ray Bursts. We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 5.

To determine the cumulative distribution function (cdf) of
the Von Mises distribution, we integrate the pdf, resulting in:

1 > L,(k)sinp(0 — )
= —— |k +25° 2 ,
2oy | M)+ 22 p

p=1

F () (A2)

where 6 is confined to the interval [0, 27).

A.2. Watson Test

In this study, Watson (1982), we primarily employ Watson-
type tests to examine whether the positional data adhere to
either a Von Mises Distribution or a Circular Uniform
Distribution (Ghosh et al. 2024b):

™ ™ 2
Wg:K [(E,—F)—fo2 (Fn—F)dF] dF,  (A3)

where W, represents Watson’s statistic, F,(«) denotes the
empirical distribution function, and F(«) represents the actual
distribution function. Critical values for Watson’s U? test at

20

Note. From that, 4 partitions can combine Fisher Von Mises Distribution for
Long Fermi Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of £ from 1 to 10, where the optimal number of partitions
is 4.

Table A12
Table Containing the AIC for Each K Value

Partition Number AIC Values Partition Number AIC Values
1 —951.9313 6 —1066.704
2 —1059.23 7 —1069.36
3 —1073.228 8 —1058.28
4 —1075.128 9 —1057.449
5 —1071.109 10 —1051.437

Note. From that, 4 partitions can combine Fisher Von Mises Distribution for
Short Fermi Gamma-Ray Bursts’ location parameters (GLON and GLAT). We
checked ten values of k from 1 to 10, where the optimal number of partitions
is 4.

a = 0.01 were obtained from standard statistical tables (see
Mardia et al. 2000; Jammalamadaka & SenGupta 2001) and
implemented using the “circstats” package in R. This ensures
that the test maintains the desired significance level when
evaluating the null hypothesis of uniformity on the celestial
sphere.

All the detailed analysis of the above mentioned tests and all
are given in the Tables A1-A12.

ORCID iDs

Prithwish Ghosh @ https: //orcid.org/0000-0001-7747-5045
Sujit Ghosh © https: //orcid.org /0000-0001-8351-408X
Debashis Chatterjee ® https: //orcid.org/0000-0002-0991-7574

References

Aasi, J., Abbott, B., Abbott, R., et al. 2014, PhRvD, 89, 122004
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, ApJ, 841, 89
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, ApJL, 848, L13
Ajello, M., Baldini, L., Ballet, J., et al. 2021, ApJ, 921, 144

Akerlof, C. W., & Swan, H. F. 2007, ApJ, 671, 1868


https://orcid.org/0000-0001-7747-5045
https://orcid.org/0000-0001-7747-5045
https://orcid.org/0000-0001-7747-5045
https://orcid.org/0000-0001-7747-5045
https://orcid.org/0000-0001-8351-408X
https://orcid.org/0000-0001-8351-408X
https://orcid.org/0000-0001-8351-408X
https://orcid.org/0000-0001-8351-408X
https://orcid.org/0000-0002-0991-7574
https://orcid.org/0000-0002-0991-7574
https://orcid.org/0000-0002-0991-7574
https://orcid.org/0000-0002-0991-7574
https://doi.org/10.1103/PhysRevD.89.122004
https://ui.adsabs.harvard.edu/abs/2014PhRvD..89l2004A/abstract
https://doi.org/10.3847/1538-4357/aa6c47
https://ui.adsabs.harvard.edu/abs/2017ApJ...841...89A/abstract
https://doi.org/10.3847/2041-8213/aa920c
https://ui.adsabs.harvard.edu/abs/2017ApJ...848L..13A/abstract
https://doi.org/10.3847/1538-4357/ac1bb2
https://ui.adsabs.harvard.edu/abs/2021ApJ...921..144A/abstract
https://doi.org/10.1086/523081
https://ui.adsabs.harvard.edu/abs/2007ApJ...671.1868A/abstract

Publications of the Astronomical Society of the Pacific, 137:024503 (21pp), 2025 February

Anchordoqui, L. A., Mechmann, C., & Soriano, J. F. 2020, JHEAp, 25, 23

Andrade, U., Bengaly, C. A. P., Alcaniz, J. S., & Capozziello, S. 2019,
MNRAS, 490, 4481

Bagoly, Z., Mészaros, A., Horvith, 1., Baldzs, L. G., & Mészdros, P. 1998,
AplJ, 498, 342

Balastegui, A., Ruiz-Lapuente, P., & Canal, R. 2001, MNRAS, 328, 283

Baumgart, C. W. 1994, Proc. SPIE, 2243, 552

Bhat, P. N., Meegan, C. A., von Kienlin, A., et al. 2016, ApJS, 223, 28

Bloom, J. S., Prochaska, J., Pooley, D., et al. 2006, ApJ, 638, 354

Boch, T., Oberto, A., Fernique, P., & Bonnarel, F. 2011, in ASP Conf. Ser.
442, Astronomical Data Analysis Software and Systems XX, ed.
L. N. Evans et al. (San Francisco, CA: ASP), 683

Calderone, G., Ghirlanda, G., Ghisellini, G., et al. 2015, MNRAS, 448, 403

Charisi, M., Marka, S., Bartos, I., et al. 2015, MNRAS, 448, 2624

Chatterjee, D., & Ghosh, P. 2023, Available at SSRN 4822664

Chatterjee, D., & Ghosh, P. 2024, PASP, 136, 114509

Chattopadhyay, T., Misra, R., Chattopadhyay, A. K., & Naskar, M. 2007, ApJ,
667, 1017

Chen, J. 1995, Optimal Rate of Convergence for Finite Mixture Models,
AnStat, 23, 221

Connaughton, V., Briggs, M. S., Goldstein, A., et al. 2015, ApJS, 216, 32

Dezalay, J. P., Barat, C., Talon, R., et al. 1992, Short Cosmic Events: A Subset
of Classical GRBs?, American Institute of Physics Conference Series in AIP
Conlf. Ser. 265 (Melville, NY, Jan 1992) ed. W. S. Paciesas & G. J. Fishman
(Melville, NY: AIP), 304

Ding, J., Tarokh, V., & Yang, Y. 2017, ITIT, 64, 4024

Duque, J. C., & Marinucci, D. 2023, AnRSA, 11

Fishman, G. J., & Meegan, C. A. 1995, ARA&A, 33, 415

Fleischer, C. 2012, Can Sequentially Linked Gamma-Ray Bursts Nullify
Randomness?, arXiv:1205.0518

Fynbo, J. P., Watson, D., Thone, C. C., et al. 2006, Natur, 444, 1047

Garcia-Portugués, E. 2013, EJSta

Gehrels, N., Fichtel, C. E., Fishman, G. J., Kurfess, J. D., & Schonfelder, V.
1993, SciAm, 269, 68

Gehrels, N., Norris, J., Barthelmy, S., et al. 2006, Natur, 444, 1044

Gehrels, N., Sarazin, C., O’brien, P., et al. 2005, Natur, 437, 851

Ghosh, P., & Chakraborty, S. 2022, in Proc. 16th Int. Conf. MSAST, 21,
Online

Ghosh, P., & Chatterjee, D. 2023, A Novel Spherical Statistics-based Spatio-
Temporal Analysis to Unveil Distributional Properties of Meteor Strike on
Earth, (unpublished doctoral dissertation, Visva Bharati

Ghosh, P., Chatterjee, D., & Banerjee, A. 2024a, MNRAS, 531, 1294

Ghosh, P., Chatterjee, D., Banerjee, A., & Das, S. S. 2024b, PLoSO, 19,
e0304279

Goldstein, A., Burgess, J. M., Preece, R. D., et al. 2012, ApJS, 199, 19

Goldstein, A., Fletcher, C., Veres, P., et al. 2020, ApJ, 895, 40

Gruber, D., Goldstein, A., von Ahlefeld, V. W., et al. 2014, ApJS, 211, 12

Hakkila, J., Giblin, T. W., Roiger, R. J., et al. 2003, ApJ, 582, 320

21

Ghosh, Ghosh, & Chatterjee

Hakkila, J., Haglin, D. J., Pendleton, G. N., et al. 2000a, ApJ, 538, 165

Hakkila, J., Haglin, D. J., Roiger, R. J., et al. 2000b, in AIP Conf. Proc. 526
(Melville, NY: AIP), 33

Hakkila, J., Meegan, C. A., Pendleton, G. N., et al. 1994, AJ, 422, 659

Ho, N., & Nguyen, X. 2016, EJSta, 10, 271

Horvith, 1. 1998, AplJ, 508, 757

Horvith, 1., Balazs, L. G., Bagoly, Z., Ryde, F., & Mészéros, A. 2006, A&A,
447, 23

Jammalamadaka, S. R., & SenGupta, A. 2001, Topics in Circular Statistics,
Vol. 5 (Singapore: World Scientific)

Kaneko, Y., Bostanci, Z. F., Gogiis, E., & Lin, L. 2015, MNRAS, 452, 824

Kim, S., & SenGupta, A. 2018, in Statistics and its Applications: Platinum
Jubilee Conf., Kolkata, India, December 2016, (Berlin: Springer), 25

King, A., Olsson, E., & Davies, M. B. 2007, MNRAS: Letters, 374, L34

Koshut, T. M., Paciesas, W. S., Kouveliotou, C., et al. 1996, ApJ, 463, 570

Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJL, 413, L101

Kovacevic, M, Izzo, L., Wang, Y., et al. 2014, A&A, 569, A108

Levan, A. J., Gompertz, B. P., Salafia, O. S., et al. 2024, Natur, 626, 737

Mardia, K. V. 1972, Statistics of Directional Data Academic) (New York:

Mardia, K. V., Jupp, P. E., & Mardia, K. 2000, Directional Statistics, Vol. 2
(Wiley Online Library)

McLean, B. J., Golombek, D. A., Hayes, J. J., & Payne, H. E. 2012, in New
Horizons from Multi-Wavelength Sky Surveys: Proc. 179th Symp. Int.
Astronomical Union, Held in Baltimore, August 26-30, 1996, Vol. 179
(USA: Springer Science & Business Media)

Meegan, C., Fishman, G., Wilson, R., et al. 1992, Natur, 355, 143

Mukherjee, S., Feigelson, E. D., Babu, G. J., et al. 1998, ApJ, 508, 314

Paciesas, W. S., Meegan, C. A., Pendleton, G. N., et al. 1999, ApJS, 122, 465

Piran, T. 1992, ApJL, 389, L45

Piran, T. 2005, RvMP, 76, 1143

Preece, R. D., Briggs, M. S., Mallozzi, R. S., et al. 2000, ApJS, 126, 19

Rastinejad, J. C., Gompertz, B. P., Levan, A. J., et al. 2022, Natur, 612, 223

Sazonov, S. Y., Lutovinov, A., & Sunyaev, R. 2004, Natur, 430, 646

Schaefer, B. E., & Xiao, L. 2006, arXiv:astro-ph/0608441

Soderberg, A., Kulkarni, S., Berger, E., et al. 2004, Natur, 430, 648

Svinkin, D., Aptekar, R., Golenetskii, S., et al. 2019, J. Phys.: Conf. Ser., 1400,
022010

Tarnopolski, M. 2015, A&A, 581, A29

von Kienlin, A., Gruber, D., Kouveliotou, C., et al. 2012, ApJ, 755, 150

von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2014, ApJS, 211, 13

Von Kienlin, A., Meegan, C., Paciesas, W., et al. 2020, ApJ, 893, 46

Wang, Y., et al. 2022, Covariance Function Estimation and Causal Inference
Methods, North Carolina State University

Watson, G. S. 1982, Journal of Applied Probability, 19, 265

Woosley, S., & Bloom, J. 2006, ARA&A, 44, 507

Yu, H.-F., Preece, R. D., Greiner, J., et al. 2016, A&A, 588, A135

Zhang, J., Yang, Y., & Ding, J. 2023, Wiley Interdisciplinary Reviews:
Computational Statistics, 15, e1607


https://doi.org/10.1016/j.jheap.2020.01.001
https://ui.adsabs.harvard.edu/abs/2020JHEAp..25...23A/abstract
https://doi.org/10.1093/mnras/stz2754
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4481A/abstract
https://doi.org/10.1086/305530
https://ui.adsabs.harvard.edu/abs/1998ApJ...498..342B/abstract
https://doi.org/10.1046/j.1365-8711.2001.04888.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.328..283B/abstract
https://ui.adsabs.harvard.edu/abs/1994SPIE.2243..552B/abstract
https://doi.org/10.3847/0067-0049/223/2/28
https://ui.adsabs.harvard.edu/abs/2016ApJS..223...28B/abstract
https://doi.org/10.1086/498107
https://ui.adsabs.harvard.edu/abs/2006ApJ...638..354B/abstract
https://ui.adsabs.harvard.edu/abs/2011ASPC..442..683B/abstract
https://doi.org/10.1093/mnras/stu2664
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448..403C/abstract
https://doi.org/10.1093/mnras/stu2667
https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.2624C/abstract
https://doi.org/10.1088/1538-3873/ad851b
https://ui.adsabs.harvard.edu/abs/2024PASP..136k4509C/abstract
https://doi.org/10.1086/520317
https://ui.adsabs.harvard.edu/abs/2007ApJ...667.1017C/abstract
https://ui.adsabs.harvard.edu/abs/2007ApJ...667.1017C/abstract
https://doi.org/10.1088/0067-0049/216/2/32
https://ui.adsabs.harvard.edu/abs/2015ApJS..216...32C/abstract
https://ui.adsabs.harvard.edu/abs/1992AIPC..265..304D/abstract
https://doi.org/10.1109/TIT.2017.2717599
https://doi.org/10.1146/annurev.aa.33.090195.002215
https://ui.adsabs.harvard.edu/abs/1995ARA&A..33..415F/abstract
http://arXiv.org/abs/1205.0518
https://doi.org/10.1038/nature05375
https://ui.adsabs.harvard.edu/abs/2006Natur.444.1047F/abstract
https://doi.org/10.1038/scientificamerican1293-68
https://ui.adsabs.harvard.edu/abs/1993SciAm.269f..68G/abstract
https://doi.org/10.1038/nature05376
https://ui.adsabs.harvard.edu/abs/2006Natur.444.1044G/abstract
https://doi.org/10.1038/nature04142
https://ui.adsabs.harvard.edu/abs/2005Natur.437..851G/abstract
https://doi.org/10.1093/mnras/stae1066
https://ui.adsabs.harvard.edu/abs/2024MNRAS.531.1294G/abstract
https://doi.org/10.1371/journal.pone.0304279
https://doi.org/10.1088/0067-0049/199/1/19
https://ui.adsabs.harvard.edu/abs/2012ApJS..199...19G/abstract
https://doi.org/10.3847/1538-4357/ab8bdb
https://ui.adsabs.harvard.edu/abs/2020ApJ...895...40G/abstract
https://doi.org/10.1088/0067-0049/211/1/12
https://ui.adsabs.harvard.edu/abs/2014ApJS..211...12G/abstract
https://doi.org/10.1086/344568
https://ui.adsabs.harvard.edu/abs/2003ApJ...582..320H/abstract
https://doi.org/10.1086/309107
https://ui.adsabs.harvard.edu/abs/2000ApJ...538..165H/abstract
https://ui.adsabs.harvard.edu/abs/2000AIPC..526...33H/abstract
https://doi.org/10.1086/173759
https://ui.adsabs.harvard.edu/abs/1994ApJ...422..659H/abstract
https://doi.org/10.1086/306416
https://ui.adsabs.harvard.edu/abs/1998ApJ...508..757H/abstract
https://doi.org/10.1051/0004-6361:20041129
https://ui.adsabs.harvard.edu/abs/2006A&A...447...23H/abstract
https://ui.adsabs.harvard.edu/abs/2006A&A...447...23H/abstract
https://doi.org/10.1093/mnras/stv1286
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452..824K/abstract
https://doi.org/10.1111/j.1745-3933.2006.00259.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.374L..34K/abstract
https://doi.org/10.1086/177272
https://ui.adsabs.harvard.edu/abs/1996ApJ...463..570K/abstract
https://doi.org/10.1086/186969
https://ui.adsabs.harvard.edu/abs/1993ApJ...413L.101K/abstract
https://doi.org/10.1051/0004-6361/201424700
https://ui.adsabs.harvard.edu/abs/2014A&A...569A.108K/abstract
https://doi.org/10.1038/s41586-023-06759-1
https://ui.adsabs.harvard.edu/abs/2024Natur.626..737L/abstract
https://doi.org/10.1038/355143a0
https://ui.adsabs.harvard.edu/abs/1992Natur.355..143M/abstract
https://doi.org/10.1086/306386
https://ui.adsabs.harvard.edu/abs/1998ApJ...508..314M/abstract
https://doi.org/10.1086/313224
https://ui.adsabs.harvard.edu/abs/1999ApJS..122..465P/abstract
https://doi.org/10.1086/186345
https://ui.adsabs.harvard.edu/abs/1992ApJ...389L..45P/abstract
https://doi.org/10.1103/RevModPhys.76.1143
https://ui.adsabs.harvard.edu/abs/2005RvMP...76.1143P/abstract
https://doi.org/10.1086/313289
https://ui.adsabs.harvard.edu/abs/2000ApJS..126...19P/abstract
https://doi.org/10.1038/s41586-022-05390-w
https://ui.adsabs.harvard.edu/abs/2022Natur.612..223R/abstract
https://doi.org/10.1038/nature02748
https://ui.adsabs.harvard.edu/abs/2004Natur.430..646S/abstract
http://arXiv.org/abs/astro-ph/0608441
https://doi.org/10.1038/nature02757
https://ui.adsabs.harvard.edu/abs/2004Natur.430..648S/abstract
https://doi.org/10.1088/1742-6596/1400/2/022010
https://doi.org/10.1051/0004-6361/201526415
https://ui.adsabs.harvard.edu/abs/2015A&A...581A..29T/abstract
https://doi.org/10.1088/0004-637X/755/2/150
https://ui.adsabs.harvard.edu/abs/2012ApJ...755..150V/abstract
https://doi.org/10.1088/0067-0049/211/1/13
https://ui.adsabs.harvard.edu/abs/2014ApJS..211...13V/abstract
https://doi.org/10.3847/1538-4357/ab7a18
https://ui.adsabs.harvard.edu/abs/2020ApJ...893...46V/abstract
https://doi.org/10.2307/3213566
https://doi.org/10.1146/annurev.astro.43.072103.150558
https://ui.adsabs.harvard.edu/abs/2006ARA&A..44..507W/abstract
https://doi.org/10.1051/0004-6361/201527509
https://ui.adsabs.harvard.edu/abs/2016A&A...588A.135Y/abstract
https://doi.org/10.1002/wics.1607
https://doi.org/10.1002/wics.1607

	1. Introduction
	1.1. BATSE Catalog of Gamma-Ray Bursts
	1.2. Fermi Catalog of Gamma-Ray Bursts
	1.3. Objectives and Novelty of this Paper

	2. Data Set
	3. Methods
	3.1. Directional Statistical Distributions
	3.2. Directional Mixture Model
	3.3. Identifiability and Estimation of Mixture Models

	4. Results for the BATSE Catalog
	4.1. Results for Directional and Spherical Statistical Analysis for Overall Gamma-Ray Bursts (BATSE Catalog)
	4.2. Long Gamma-Ray Bursts Result
	4.3. Short Gamma-Ray Bursts Result

	5. Results for the FERMI-GRB Catalog
	5.1. Results for Directional and Spherical Statistical Analysis for Overall Gamma-ray Bursts (FERMI Catalog)
	5.2. Long FERMI Gamma-Ray Burst Result
	5.3. Short FERMI Gamma-Ray Bursts

	6. Discussion
	6.1. Beyond Isotropy or Not?
	6.2. Considering Observational Biases

	7. Further Discussion
	8. Conclusion
	8.1. Key Findings
	8.2. Implications
	8.3. Criticism

	9. Future Work
	Code Availability
	Competing Interests
	Data Availability
	Funding Statement
	AppendixDirectional Statistics Preliminaries and Additional Results
	A.1. Von Mises Distribution
	A.2. Watson Test

	References



