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recaierdem@iyte.edu.tr

Abstract: The effect of gravitational particle production of scalar particles on the total effective

cosmic energy density (in the era after photon decoupling till the present) is considered. The effect is

significant for heavy particles. It is found that gravitational particle production results in an effective

increase in the directly measured value of the Hubble constant H0, while it does not affect the value

of the Hubble constant in the calculation of the number density of baryons at the present time that is

used to calculate recombination redshift. This may explain why the Hubble constants determined

by local measurements and non-local measurements (such as CMB) are different. This suggests that

gravitational particle production may have a non-negligible impact on H0 tension.

Keywords: Hubble tension; gravitational particle production

1. Introduction

Gravitational particle production is a generic property of quantum fields in time-
dependent backgrounds such as the Friedman–Lemaître–Robertson–Walker (FLRW) space-
times [1,2]. For example, the solution of the effective equation of motion of a free scalar field
(namely, the mode function) at two different times, in general, is different since the equation
of motion contains a time-dependent effective mass. Hence, there exist different vacua at
different times (that are described by different creation and annihilation operators and dif-
ferent mode functions). The mode function (and the corresponding creation/annihilation
operators) at a given time may be expressed in terms of the mode function (and the corre-
sponding creation/annihilation operators) at another time by a Bogolyubov transformation.
Thus, a mode function at an initial time (that describes an “in” state) evolves into another
value at a later time that may be expanded in terms of the mode function at that time
(namely, the mode function of the “out” state). This is the well-known gravitational particle
production. Therefore, gravitational particle production is a generic process for quantum
fields in FLRW spacetimes. Hence, gravitational particle production necessarily takes place
in cosmology. The aim of this study is to see the degree of the impact of this process on
the standard cosmology through the example of a scalar field in the era after the photon
decoupling till the present.

Hubble tension is the huge discrepancy between the direct local measurements of
Hubble constant by type SN Ia supernovas calibrated by Cepheids [3] and the measure-
ments of Planck [4] and other non-local measurements such as baryon acoustic oscillations
(BAO) [5,6] imprinted on galaxy autocorrelation functions (that also involve effects of much
earlier times and assume ΛCDM). The values of Hubble constant obtained from local mea-
surements are almost certainly higher than the ones that also include the effect of higher
redshifts. For example, [3] finds the Hubble constant as (73.04 ± 1.04) km s−1 Mpc−1,
while [4] finds it as (67.4 ± 0.5) s−1 Mpc−1. SN Ia supernova and Planck measurements
differ by at least 5σ [3,4,7–9]. This is called Hubble tension. There are many different ap-
proaches and models proposed as solutions of the Hubble tension problem [7,8,10–21]. The
standard approach of the theoretical models that attempt to solve this problem is to assume
the value of the Hubble constant obtained by local measurements to be the correct one,
and to seek a model that makes the results of Planck (and other non-local measurements)
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compatible with local measurements. In this vein, they try to modify ΛCDM at late times
(close to the present time) or early times (just before the time of recombination) or at both
epochs so that the equations given below have the same result as the local measurements.
In this study, a different approach is adopted. The effect of gravitational particle production
of scalar particles on the Hubble constant is considered. It is shown that, depending on the
value of the total mass of the scalars in the model, inclusion of the effect of gravitational
particle production in the context of ΛCDM may ameliorate or relieve the Hubble tension.

In the following, first, in Section 2, the basic concepts and techniques necessary for a
better understanding of the present study are briefly reviewed. In Section 3, it is shown
that adiabatic approximation that is used in the present study is applicable to the era after
photon decoupling in ΛCDM for a wide range of scalar particle masses. In Section 4,
the contribution of gravitational particle production to energy density is discussed. In
Section 5, the implications of gravitational particle production for Hubble tension are
discussed. Finally, Section 6 summarizes the main conclusions.

2. Preliminiaries

Spacetime at cosmological scales may be described by the spatially flat Robertson–
Walker metric

ds2 = −dt2 + a2(t)
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

. (1)

We consider the following action for a scalar field φ in this space

S =
∫

√

−g d4x
1

2

[

−gµν∂µφ∂νφ − m2
φφ2
]

=
∫

d3x dη
1

2

[

φ̃′ 2 − (∇⃗φ̃)2 − m̃2
φφ̃2
]

,(2)

where mφ is the mass of φ, prime denotes derivative with respect to conformal time η [1]
(while an over-dot denotes the derivative with respect to t) and

dη =
dt

a(t)
, φ̃ = a(η) φ , m̃2

φ = m2
φa2 − a′′

a
. (3)

The field φ̃ may be expressed as

φ̃(x⃗, η) =
1√
2

∫

d3k

(2π)
3
2

[

ei⃗k.⃗x v∗k (η) â−
k⃗

+ e−i⃗k.⃗x vk(η) â+
k⃗

]

(4)

The mode function vk(η) satisfies the equation of motion for φ̃

v′′k + ω2
k vk = 0 (5)

where

ωk =
√

k⃗2 + m̃2
φ (6)

Vacuum state is the ground state with minimum energy. In curved space, in general,
the ground state at an instant of time is not the ground state at another time. Hence, the
annihilation operators corresponding to the corresponding vacuum state at a given time
do not destroy the vacuum state at another time. Therefore, the annihilation and creation
operators and the mode functions at different times are different in general in curved
spaces [1]. The field φ̃ in another vacuum (other than the one specified in Equation (4))
with annihilation and creation operators b̂−

k⃗
and b̂+

k⃗
may be expanded as

φ̃(x⃗, η) =
1√
2

∫

d3k

(2π)
3
2

[

ei⃗k.⃗x u∗
k (η) b̂−

k⃗
+ e−i⃗k.⃗x uk(η) b̂+

k⃗

]

(7)

where uk satisfies the same equation as Equation (5) and is related to vk and v∗k by

uk(η) = αk vk(η) + βk v∗k (η) (8)
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where αk, βk are called Bogolyubov coefficients. In a similar fashion, b̂−
k⃗

is related to â−
k⃗

and

â+
k⃗

by

b̂−
k⃗

= αk â−
k⃗

− βk â+
k⃗

(9)

Mode functions may be expressed in a WKB-approximation-like form

vk(η) =
1

√

Wk(η)
exp

[

i
∫ η

η0

Wk(η) dη

]

(10)

where Equation (5) implies that Wk(η) should satisfy

W2
k = ω2

k − 1

2

[

W ′′
k

Wk
− 1

2

(

W ′
k

Wk

)2
]

+
i

2
W ′

k (11)

The following Wk that approximately satisfies Equation (11) may be adopted as an
approximate solution

Wk ≃ ωk if
ω′

k

ω2
k

≪ 1 and
ω′′

k

ω3
k

≪ 1. (12)

Equation (12) may be identified as adiabatic conditions [2,22].

3. Applicibality of the Adiabatic Conditions to the ΛCDM Universe after
the Decoupling

In this section, we show that the adiabatic conditions (12) are satisfied in ΛCDM after
the time of decoupling for a wide range of mφ. Moreover, we find that (unlike their standard

form) the adiabatic conditions in this case are satisfied independent of the value of |⃗k| (in

the above-mentioned intervals). To this end, first we show that

∣

∣

∣

∣

m̃′
φ

m̃2
φ

∣

∣

∣

∣

≪ 1 and

∣

∣

∣

∣

m̃′′
φ

m̃3
φ

∣

∣

∣

∣

≪ 1

are satisfied in ΛCDM for a wide range of mφ, and then we obtain the corresponding
adiabatic conditions.

m̃2
φ in Equation (2) may be expressed as

m̃2
φ = m2

φa2 − a′′

a
= m2

φa2 − a
(

H′ + 2a H2
)

= m2
φa2 − a2H

(

a
dH

da
+ 2 H

)

, (13)

where H = ȧ
a = a′

a2 is a Hubble parameter and H′ = a2H dH
da is employed. Then, we obtain

(

m̃2
φ

)′
= 2 m2

φ a3 H − 7a4 H2

(

dH

da

)

− 4a3H3 − a5H

(

dH

da

)2

− a5H2

(

d2H

da2

)

, (14)

(

m̃2
φ

)′′
= a2H







d
(

m̃2
φ

)′

da






= a4H

[

6m2H − 12H3 +
(

2m2a − 40 aH2
)

(

dH

da

)

− 19a2H

(

dH

da

)2

−12a2H2

(

d2H

da2

)

−a3

(

dH

da

)3

− 4a3H

(

dH

da

)(

d2H

da2

)

− a3H2

(

d3H

da3

)

]

. (15)

The Hubble parameter for ΛCDM (that describes the background evolution) is

H = H0

√

ΩΛ + ΩM a−3 + ΩR a−4 (16)

where ΩΛ, ΩM and ΩR are the density parameters for cosmological constant, dust and ra-
diation, respectively. (In fact, Equation (16) is expected to approximately hold in extensions
of ΛCDM as well since ΛCDM seems to be in agreement with observations at cosmological
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scales except for a few potential problems including H0 tension). Use of Equation (16) in
Equation (13) results in

m̃2
φ = m2

φa2

{

1 − 2

(

H0

mφ

)2

ΩΛ

[

1 +
1

4

(

ΩM

ΩΛ

)

a−3

]

}

. (17)

We observe that the term that is proportional to H2
0 in Equation (17) is larger at smaller

scale factors. Therefore, for a(η) > 10−3, this term has the largest value at the beginning
of decoupling a(η) ∼ 10−3 > 10−4. Thus, for a(η) > 10−4 we have

1 +
1

4

(

H0

mφ

)2

ΩM a−3
<

1

4

(

H0

mφ

)2

ΩM 1012. (18)

Hence, the term proportional to H2
0 in Equation (17) is negligible for scale factors

greater than a(η) ∼ 10−4 if

1

2

(

H0

mφ

)2

ΩM 1012 ≪ 1. (19)

This, in turn, means that

(

H0h̄

mφ c2

)2

ΩM 1012 ≪ 1 ⇒
(

mφ c2

eV

)

≫ 10−27 (20)

where c and h̄ are written explicitly in Equation (19) to obtain the left-hand side of Equation (20)
and it is multiplied and divided by (eV)2 and then rearranged and H0h̄ ≃ 1.5× 10−33 eV is
used to obtain the right-hand side of Equation (20). Equations (20) and (17) imply that

m̃2
φ ≃ m2

φa2 provided that mφ c2 ≫ 10−27 eV. (21)

In a similar way, we find

(

m̃2
φ

)′
≃ 2 m2

φ a3 H provided that mφ c2 ≫ 10−27 eV. (22)

(

m̃2
φ

)′′
≃ 2m2

φ a5H
dH

da
provided that mφ c2 ≫ 10−27 eV. (23)

Thus, we find that

m̃′
φ

m̃2
φ

≪ 1 and
m̃′′

φ

m̃3
φ

≪ 1 provided that mφ c2 ≫ 10−27 eV. (24)

On the other hand, by Equation (6), we have

∣

∣

∣

∣

∣

ω′
k

ω2
k

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m̃φm̃′
φ

ω3
k

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

m̃′
φ

ω2
k

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

m̃′
φ

m̃2
φ

∣

∣

∣

∣

∣

, (25)

∣

∣

∣

∣

∣

ω′′
k

ω3
k

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

ω4
k

[

m̃′ 2
φ

(

1 −
m̃2

φ

ω2
k

)

+ m̃φm̃′′
φ

]∣

∣

∣

∣

∣

<

(

m̃′
φ

m̃2
φ

)2

+

∣

∣

∣

∣

∣

m̃′′
φ

m̃3
φ

∣

∣

∣

∣

∣

. (26)

Therefore,

∣

∣

∣

∣

∣

ω′
k

ω2
k

∣

∣

∣

∣

∣

≪ 1 provided that

∣

∣

∣

∣

∣

m̃′
φ

m̃2
φ

∣

∣

∣

∣

∣

≪ 1, (27)

∣

∣

∣

∣

∣

ω′′
k

ω3
k

∣

∣

∣

∣

∣

≪ 1 provided that

∣

∣

∣

∣

∣

m̃′
φ

m̃2
φ

∣

∣

∣

∣

∣

≪ 1 and

∣

∣

∣

∣

∣

m̃′′
φ

m̃3
φ

∣

∣

∣

∣

∣

≪ 1. (28)
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Thus, Equations (24), (27) and (28) result in,

∣

∣

∣

∣

∣

ω′
k

ω2
k

∣

∣

∣

∣

∣

≪ 1 and

∣

∣

∣

∣

∣

ω′′
k

ω3
k

∣

∣

∣

∣

∣

≪ 1 provided that mφ c2 ≫ 10−27 eV, (29)

which are satisfied in the ΛCDM model for a > 10−4. Note that the upper limit on the

mass of φ in this equation, namely,
mφ c2

eV ≫ 10−27 is satisfied by all standard dark matter
candidates including ultra-light dark matter [23].

It should be noted that the adiabatic conditions in Equation (29) are satisfied inde-

pendent of the value of |⃗k| in ΛCDM (for a > 10−4 and
mφ c2

eV ≫ 10−27) [24,25]. This is

different from the standard form of adibatic conditions that simply impose

∣

∣

∣

∣

ω′′
k

ω3
k

∣

∣

∣

∣

≪ 1 and
∣

∣

∣

∣

ω′
k

ω2
k

∣

∣

∣

∣

≪ 1 [2,22] which depend on the value of |⃗k|. Equation (12) in general is guaranteed

only for |⃗k| → ∞, while otherwise its validity depends on the values of |⃗k|, m̃′
φ, m̃φ. On the

other hand, Equation (12) is satisfied for all values of |⃗k| when
m̃′

φ

m̃2
φ
≪ 1 and

(

m̃′′
φ

m̃3
φ

)

≪ 1

are satisfied, which is the form of the adiabatic conditions in Equation (29).

4. Gravitational Particle Production after Decoupling

4.1. Mode Function in Adiabatic Approximation

In view of Equation (12), we may take Wk ≃ ωk in Equation (10). Therefore, after
decoupling (i.e., after the redshifts of order of 104) we may let [26]

vk(η) =
1

√

ωk(η)
exp

[

i
∫ η

η0

ωk(η) dη

]

(30)

where

ωk ≃ 1

h̄

√

h̄2⃗k2c2 + m2
φc4a2 = c

√

k⃗2 +
(mφ c

h̄

)2
a2. (31)

In this section, we will also discuss the phenomenological implications of this analysis.
To this end, in the following we express the formulas in the forms where h̄ and c are
explicitly written, i.e., h̄ and c are not set equal to 1.

4.2. In and Out States

One may take ωk approximately constant in a time interval ∆η if

∣

∣

∣

∣

∆ωk

ωk

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∆η
(

dωk
dη

)

ωk

∣

∣

∣

∣

∣

∣

≪ 1. (32)

If Equation (32) is satisfied, then Equation (4) may be expressed in its Minkowski form
in the interval ∆η, so the field may expanded as [24,25]

φ̃(i)(x⃗, η) ≃
∫

d3 p̃

(2π)
3
2

√

2ωp,(i)

[

a−
p,(i)

ei(⃗̃p.⃗r−ωp,(i)(η−ηi)) + a+
p,(i)

ei(−⃗̃p.⃗r+ωp,(i)(η−ηi))
]

(33)

ηi < η < ηi+1 ,

where (i) refers to the ith time interval between the times ηi and ηi+1 with ∆η = ηi+1 − ηi.
It has been shown in [25] that Equation (32) may be easily imposed for ΛCDM. Note that
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Equation (32) may be guaranteed by taking ∆η sufficiently small once Equation (29) is
imposed, i.e.,

ω′
k

ω2
k

= δ =
∆η ω′

k

∆η ω2
k

=

∣

∣

∣

∣

∆ωk

ωk

∣

∣

∣

∣

1

∆η ωk
≪ 1 ⇒

∣

∣

∣

∣

∆ωk

ωk

∣

∣

∣

∣

= δ ∆η ωk ≪ 1 (34)

provided that ∆η is sufficiently small. (However, Equation (29) is not guaranteed by
Equation (32)).

In other words, Equation (32) is always satisfied provided that ∆η is sufficiently small.
For such a ∆η, the spacetime essentially may be considered as a Minkowski spacetime.
However, ∆η cannot be arbitrarily small. The de Broglie wavelength of the relevant modes
must be significantly smaller than the size of c ∆η so that the detectors at the in and out
regions can detect them (as free modes in Minkowski spacetime) [25]. This puts a lower

bound on the values of |⃗k| (for which this method is applicable) for a given c ∆η (and vice
versa) through

|⃗k| > |⃗k|∆ =
2π

c ∆η
. (35)

∆η s that satisfy Equation (32) can also be taken considerably wide in ΛCDM as shown
below. Equation (32) implies that

∆η ≪ ωk

ω′
k

=
h̄2⃗k2 + m2

φc2a2(η)

a3(η)m2
φc2H(η)

. (36)

The right-hand side of Equation (36) is minimum at |⃗k| = 0, and H ∼ a−
3
2 H0 at

the time of decoupling adec ∼ 10−3. These imply that ∆η ≪ 10
3
2

H0
after decoupling and

∆η ≪ 1
H0

at present. This, in turn, implies that ∆η values can be taken long enough to iden-
tify the in and out vacuum states of S-matrix formulation in the form of Equation (33) [25].

Note that ∆η ∼ 10
3
2

H0
at the time of decoupling and ∆η ∼ 1

H0
at present are upper bounds

on ∆η for which the spacetime can approximately be taken to be a Minkowski spacetime.
As ∆η becomes smaller, the approximation becomes a better one. However, the price to be

paid for a smaller ∆η is that more modes with shorter wavelengths (i.e., with higher |⃗k|)
become excluded from the domain of the applicability of the approximation used in this
study. This point will be discussed in the next subsection in more detail.

A mode function corresponding to a ground state with minimum energy at time η0

has the form vk(η0) = 1√
ωk(η0))

eiσk(η0) where σk is an arbitrary function of |⃗k| and η0 [1].

In light of this and the above observations, the mode functions of out states, for example,
may be expressed as mode functions of Minkowski space in each interval ∆η that satisfies
Equation (32), i.e.,

v
(out)
k (η) =

1
√

ωk

(

η f

)

)

ei[ωk(η f ) η] (37)

where

ωk

(

η f

)

≃ c

√

k⃗2 +
(mφ c

h̄

)2
a2

f . (38)

is the value of ωk at a final time η f , and η f − ∆η < η < η f with ∆η being sufficiently
small so that Equation (32) holds while not being extremely small. The mode functions of
the in states may be expressed in the same form as Equation (37) where η f is replaced by
initial time ηi, and the in states evolve at later times as in Equation (30). (To be precise we
identify ηi and η f as ai = a(ηi) ≃ 10−4 − 10−3, a f = a(η f ) ≃ 1).
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4.3. Gravitational Particle Production

Now we use the matching conditions for the mode functions and their derivatives at
boundaries at the time η with η f − ∆η < η < η f , namely,

v
(in)
k (η) = αk v

(out)
k (η) + βk v

(out)∗
k (η) (39)

v
(in)′
k (η) = αk v

(out)′
k (η) + βk v

(out)∗′
k (η) (40)

to determine βk (since |βk|2 is the number density of the gravitationally produced particles

with momentum k⃗). Note that v
(in)
k (η) in Equations (39) and (40) is its value in the out

region. In this region, the form of v
(in)
k (η) is given by Equation (30), while that of v

(out)
k (η)

is given by Equation (37).
By Equation (37),

αk v
(out)
k (η) + βk v

(out)∗
k (η) =

1
√

ωk

(

η f

)

)

[

αk ei[ωk(η f ) η] + βk e−i[ωk(η f ) η]
]

(41)

αk v
(out)′
k (η) + βk v

(out)∗′
k (η) = i

√

ωk

(

η f

) [

αk ei[ωk(η f ) η] − βk e−i[ωk(η f ) η]
]

(42)

In the following, we will let η f = η since we consider generic η f , i.e., we may replace
η f in Equations (41) and (42) by η provided that η is in a sufficiently small interval ∆η.

Hence, after using Equation (30) for v
(in)
k (η) and making use of Equations (39)–(42),

we find

|βk|2 =

(

mφ c

h̄

)4
a2 a′ 2

16c2

[

k⃗2 +
(

mφ c

h̄

)2
a2

]3
(43)

Thus,

n̄ =
1

(2π)3
ß
∫

d3k |βk|2 =
1

512 π

(mφ c

h̄

)

a3

(

H

c

)2

(44)

where n̄ is the number density of gravitationally produced particles in the comoving

coordinates. Note that k⃗ is the wave number vector in comoving coordinates (rather than

the physical wave number vector 1
a k⃗). Hence, the physical number density is

n =
n̄

a3
=

1

512 π

(mφ c

h̄

)

(

H

c

)2

(45)

4.4. Energy Density of Gravitationally Produced Particles

The energy density corresponding to Equation (43) is

ρ(PP) =
1

(2π)3 a3

∫

d3k Ek |βk|2 =
h̄

96 π c

(mφ c

h̄

)2
H2 (46)

where Ek =

√

h̄2
(

k⃗
a

)2
c2 + m2

φc4 is the physical energy of a φ particle with physical

momentum 1
a h̄⃗k (while h̄⃗k is the comoving coordinate momentum of the particle).
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The total effective energy density ρe f f (that is the sum of the energy density of back-
ground ρ(bg) and the energy density of gravitationally produced particles ρ(PP)) relates to
Hubble parameter H as

3 c2

8π G
H2 = ρe f f = ρ(PP) + ρ(bg) =

h̄

96 π c ∑
i

(mi c

h̄

)2
H2 + ρ(bg)

≃ ρ(bg) + 1.8 × 10−58 × ∑
i

(

mi c2

eV

)2
3 c2

8π G
H2 (47)

i.e., 3 H2 =
8π

c2







G

1 − 1.8 × 10−58 × ∑i

(

mi c2

eV

)2






ρ(bg) (48)

where ρ(bg) is identified as the total energy density, and mi denotes the mass of the ith
scalar particle (that contributes to ρ(PP)). Equation (48) implies that gravitational particle

production has a significant contribution to the effective Hubble parameter if ∑i

(

mi c2

eV

)2

is not extremely smaller than 1058. For example, if there are ten (scalar) particles with
masses of the order of the the the Planck mass MPlanck ≃ 1.22 × 1028 eV/c2 (that were,
for example, present at the beginning of the universe and later may had decayed wholly
into standard model particles), then G would be multiplied by an overall factor ∼1.37 in
Equation (48). Note that ultra-heavy particles are extensively studied in references [27–29].

A comment is in order here. The present study is applicable for the times after the
time of decoupling till the present. We have checked the applicability of Equation (29)
in this interval (which is in the order of 1

H0
). In a similar way, we found in in Section 4.2

that identification of the in state in an unambiguous way requires ∆η to be smaller than√
103

H0
, and identification of the out state in an unambiguous way requires ∆η to be smaller

than 1
H0

. Therefore, the present analysis is valid for wavelengths smaller than 1
H0

. This

corresponds to a lower bound on the relevant modes, namely, h̄ |⃗k| c ∼ 10−33 eV. For

modes with lower |⃗k|, the validity of the approximation cannot be guaranteed. However,
the contribution of such low momentum modes in Equation (46) is small (unless there is a

drastic change in the form of |βk|2 in Equation (43) at such low values of |⃗k|). Therefore,
Equations (45) and (48) may be taken as decent approximate expressions. In fact, the same
formulas Equations (45) and (46) are obtained in references [30–32].

It is evident from Equation (48) that gravitational production of φ particles results in
an effective overall increase in the value of the Hubble parameter, hence in the value of the
Hubble constant. This increase, at first sight, may be attributed either to an effective increase
in Newton’s gravitational constant G or to an effective increase in the total energy density.
However, such an effective increase in the total energy density cannot be considered to
be due to a physical increase in the energy density of background particles (e.g., baryons).
Increasing the mass of φ results in an overall increase in the total energy density irrespective
of the masses and the ratio of the particles in the background. Gravitational particle
production is not specific to scalars. It is possible for all particles [31,33,34], but their
contribution to total energy density is proportional to their masses in all cases. Hence, if the
total mass of the scalar particles are taken to be very large, e.g., at order Planck mass while
all other particle masses are taken to be much smaller, then the increase in total energy
density will be determined by the total mass of the scalars. In such a case, the effective total
energy density increases significantly, while the energy density of the background particles
such as baryons virtually remain the same. This point will be important in the discussion in
the paragraph after Equation (55) (i.e., in the argument that the number density of baryons
essentially remains the same in such a case while the effective Hubble constant in direct
measurements increases considerably). Moreover, the effective increase in the value of the
Hubble parameter cannot be also attributed to a true physical production of φ particles



Universe 2024, 10, 338 9 of 14

since a true physical production of scalar particles would induce an energy density for
a scalar field in Equation (48) that scales as that of a scalar field. (Note that, in principle,
the energy density of a scalar field may mimic the energy density of any fluid, e.g., of
ΛCDM while it cannot be exactly the same as that of that fluid for a finite time). In contrast,
there is no energy density that scales as that of a scalar field in Equation (48) if ρ(bg) is
taken as the energy density of ΛCDM. This point, i.e., ρ(PP) above should be identified
as the effective energy density due to quasi-particles [31] rather than true particles, can
also be seen in the following way. Identification of ρ(PP) as (effective) energy density of
true physical particles would lead to an inconsistency. If ρ(PP) were a true energy density
it would increase the total energy density, hence increase H; this, in turn, would induce
additional gravitational production of particles; this, in turn, would increase the total energy
density further, and eventually the total energy density would be infinite. In other words
such an argument would eventually result in ρ(PP) ∝ limN→∞ (1 − γ)−N → ∞ where

γ = 1.8 × 10−58 ×
(

mφ c2

eV

)2

. In light of the above consideration, it is more conceivable and

reliable to identify the effective increase in the Hubble parameter and the Hubble constant
to be due to an effective increase in G as described in Equation (48). This effect may be
significant, for example, for scalar particles that were present at extremely early times
(e.g., at the time of inflation and then decayed wholly into other particles) with masses
at the order of Planck masses. Another comment is that gravitational particle production
does not modify the evolution of energy density, as is evident in Equation (48) (since the
effect of gravitational particle production is to multiply the background energy density
by an overall constant, as is evident in Equation (48). On the other hand, a true physical
production of scalar particles would induce an energy density that scales as that of a scalar
field. Therefore, as mentioned above, the effective energy density induced by gravitational
particle production of φ particles in the present context should be identified as the energy
density of quasi-particles rather than that of physical particles. In fact, it is possible to
consider the case where there is also a contribution to the energy density by physical φ
particles. In that case, there would also be a contribution to the Hubble parameter that scales
as that of a scalar field. All these factors imply that it is more appropriate to identify the
overall effective increase in the Hubble parameter (due to gravitational particle production)
to be an effective increase in G as in Equation (48) rather than an increase in the energy
density. The gravitational particle production in this paper involves φ particles that are not
physically produced and the effective value of the gravitational constant is increased by
gravitational particle production. This mechanism is analogous to vacuum polarization
in quantum electrodynamics (QED). Vacuum polarization in QED (after renormalization)
causes an effective re-scaling in the electromagnetic coupling constant due to pairs of
electrically charged virtual pairs rather than physically produced particles. Therefore,
the results obtained in the present study may be considered to be due to some sort of
gravitational vacuum polarization [2,30].

5. Impact of Gravitational Particle Production on the Hubble Tension

The effective increase of G in Equation (48) causes an increase in the overall value of
the Hubble parameter, and thus an increase in the Hubble constant, namely,

H2
0 =







1

1 − 1.8 × 10−58 × ∑i

(

mi c2

eV

)2






H̄2

0 . (49)

where the subscript 0 stands for the present time, and H̄0 =
√

8π G
3 ρ0 is the value of the

Hubble constant without the effect of gravitational particle production included, while
H0 is the value of the Hubble constant after inclusion of the effect of gravitational particle
production. Note that, by Equation (48), H0 is the value of the Hubble constant determined
in direct measurements.
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The Hubble constant may also be determined from the imprints of baryon acoustic os-
cillations on CMB or large-scale structure anisotropies by measuring the angle θ subtended
by sound horizon

θ =
rs

DA
(50)

where rs is the comoving size of the sound horizon, DA is the comoving angular diameter
distance to the observed position. Here [6,8]

rs =
∫ ∞

za

vs(z) dz

H0 E(z)
, DA = c

∫ zb

0

dz

H0 E(z)
(51)

where z denotes redshift; c is the speed of light; vs(z) is the speed of the sound waves in
baryon-photon fluid; a = * or d stand for recombination or drag epoch (for the imprint of the
acoustic oscillations on CMB radiation or on galaxy autocorrelation function, repectively);
b = * or obs denote the redshifts of recombination or of the observed galaxies; E(z) =
√

ΩΛ + ΩM (1 + z)3 + ΩR (1 + z)4 in ΛCDM with ΩΛ, ΩM and ΩR being the density
parameters for cosmological constant, dust and radiation, respectively.

Let us assume (unlike the early or late time solutions of the Hubble tension) that
the evolution of the universe before and after the recombination are described by the
(unmodified) standard model (i.e., ΛCDM). (In fact, we have expressed Equation (51) in a
form that is more suitable for this case.) One observes that θ in Equation (50) is unaffected
by the values of H0 in the arguments of rs and DA. However, the value of the Hubble
constant affects rs and DA by its effect on za by affecting recombination, as we will see
below. The effects of a change in za on rs and DA are not the same since the value of
rs is dominated by the value of E(z) at values of z close to za, while the value of DA is
dominated by the value of E(z) at values of z close to z = 0. Hence, a variation in the
Hubble constant varies θ by its effect on za. Thus, the observational value of the Hubble
constant may be determined after finding the best fit values for the Hubble constant and
the density parameters corresponding to the observed θ. Below, we will see that the Hubble
constant determined in this way is its value without the contribution of gravitational
particle production, i.e., H̄0 (while the value of the Hubble constant that is determined in
direct measurements is H0). First, we will present the argument in the context of the Saha
equation to see the situation in an easier way at a conceptual level. Then, we will reconsider
the situation at the level of the corresponding Boltzmann equation to obtain essentially the
same result in more concrete terms in a more rigorous way.

The general aspects of recombination may be studied with the Saha equation [35]

X (1 + S X) = 1 (52)

where X =
np

np+n1s
= ne

np+n1s
is the fraction of protons or electrons to the total number of

baryons (i.e., protons plus neutral hydrogen atoms), and

S = 0.76 nb

(

mekB T

2πh̄2

)− 3
2

exp
B1

kBT
. (53)

Here nb, me, kB and B1 are the number density of baryons (at temperature T), electron
mass, Boltzmann constant and the binding energy of hydrogen atom in its ground state,
respectively. The decoupling of photons from baryons took place at a sufficiently small
value of X, say at X∗ ≪ 1. It is evident from Equation (52) that the value of X is determined
by the value of S which is related to nb by Equation (53). nb is related to the number density

at the present time nb0 by nb = nb0

(

T
Tγ0

)3
where Tγ0 ≃ 2.73 K is the present day

temperature of CMB. nb0 is calculated by using

nb0 =
3Ωb H2

0

8π G(e f f ective) mN

=
3Ωb H̄2

0

8π G mN
= 1.121 × 10−5 Ωb h̄2 nucleons/cm3 (54)
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where Ωb is the density parameter for baryons. Here, essentially Equation (48) is used
where G in [35] is replaced by its effective value G(e f f ective), and H0 is identified as the
effective value of the Hubble constant in the Friedmann equation (i.e., in Equation (48))
that includes the contribution due to gravitational particle production. H̄0 is the value of
the Hubble constant before inclusion of the effect of gravitational particle production, and

h̄ = H̄0

100 km s−1 Mpc−1 . It is evident from Equation (54) that the parameter that determines

the evolution of the photon–baryon plasma before decoupling is h̄ rather than h.
Althought the Saha equation is enough to give the basic elements of the evolution

the photon–baryon plasma, it has some important shortcomings. The first shortcoming
is that it does not specify the exact value of z∗. The second is that the Saha equation is
derived by assuming the chemical equilibrium in the scattering e− + p ↔ H + γ (where H
denotes hydrogen atom), while the chemical equilibrium is not applicable at the time of
decoupling. Finally, the Saha equation describes the evolution of the background, while
CMB anisotropies and BAO calculations are at the level of cosmological perturbations.
These shortcomings may be removed by using the Boltzmann equation corresponding to
this case. The photon–baryon system at the time of recombination has kinetic equilibrium
(while not necessarily chemical equilibrium) and the electrons are non-relativistic. The
corresponding Boltzmann equation is [36]

dX

dt
=

[

< σ v >

(

mekB T

2πh̄2

)
3
2

(1 − X) exp {−
(

me + mp − mH

)

c2/(kBT)}− < σ v > nb X2

]

(55)

where ne < σ v > is thermally averaged rate for the decrease of electrons in e− + p ↔ H + γ.
Note that nb in Equation (55) is related to nb0 in Equation (54) (that depends on h̄ rather than
h). Equation (55) may be integrated numerically to have a detailed evolution of X, and z∗ (for
given values of h̄ and the density parameters). z∗ may be determined by finding the value of
z where there is a sharp decrease in X, i.e., by finding X∗ ≪ 1 where X drops sharply. Hence,
the best fit values of h̄ and the density parameters may be determined by using Boltzmann
codes such as CAMB [4]. In fact, this is how the Hubble constant is determined in CMB and
BAO calculations. One may obtain further insight into the problem by analytic formulas that
express z∗ and zd in terms of h̄2ΩM and h̄2Ωb [37]

z∗ = 1048

[

1 + 0.00124
(

Ωb h̄2
)−0.738

]

[

1 + g1

(

ΩM h̄2
)g2
]

(56)

zd = 1315

(

ΩM h̄2
)0.251

1 + 0.659
(

ΩM h̄2
)0.828

[

1 + b1

(

Ωb h̄2
)b2
]

(57)

where h in [37] is replaced by h̄ (since the dependence of Equation (55) on the Hubble
constant is through nb which is unaffected by gravitational production of φ s). Here, g1, g2

are some functions of Ωb h̄2 and g1, g2 are some functions of ΩM h̄2 whose explicit forms
may be found in [37]. The effect of nb on z∗ and zd (through its dependence on Ωb) is
evident in Equations (56) and (57). Note that Equations (56) and (57) are functions of ΩM h̄2

and Ωb h̄2 rather than being functions of ΩM, Ωb, h̄. DA in Equation (51) may be expressed
in terms of ΩM h̄2 and ΩΛ h̄2 (where the contribution of radiation may be neglected since
the value of DA is dominated by low redshift contributions) and rs in Equation (51) may be
expressed in terms of ΩM h̄2 and Ωr h̄2 (where the contribution of the cosmological constant
may be neglected since the value of rs is dominated by the redshifts close to z∗). As we
remarked in the discussion after Equation (51), although the Hubble constants in H(z) of
DA and rs cancel in Equation (50), z∗ remains dependent on ΩM h̄2. Therefore, we may
express DA and rs in terms of the density parameters times h̄2. This implies that what we
obtain through data fit for θ are ΩM h̄2, Ωb h̄2. Therefore, by observing θ one cannot obtain
the value of h̄ separately. However, one may use a phenomenological rule observed by [38],
namely, in a spatially flat universe ΩM h̄p (where p = 3.4 in the original paper, while p is
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found to be 3 by Planck) may be determined from the positions of the acoustic peaks (while
ΩM h̄2 may be directly determined from data analysis for best fits). This information may
be used to determine ΩM, h̄ (and Ωb) separately [4,38].

To summarize, H̄0 is the value obtained by Planck [4] (for the Planck dataset) and
does not contain a contribution from gravitational particle production (GPP), while H0 is
the directly measured value of the Hubble constant that has contributions from GPP. The

difference between H0 and H̄0 may be wholly attributed to GPP if the value of ∑i

(

mi c2

eV

)

is

taken accordingly. In any case, GPP ameliorates the Hubble tension. It should be remarked
that no new physics is employed in the present study. The standard ΛCDM model (without
any extension) is employed here. The only difference between this study and the other
studies in the past that employed the ΛCDM model is the inclusion of GPP that is neglected
in the other studies. What has been done here is not the of introduction of a new model.
What has been done here is to give an explanation for observing two different values of
the Hubble constant in direct and indirect measurements. It has been shown here that
GPP modifies the directly measured value of the Hubble constant H0, while it leaves the
value of the Hubble constant in CMB measurements H̄0 intact. H̄0 is obtained from the
number density of baryons nb that is unaffected by gravitational production (as seen in
Equation (54)), while H0 is obtained from Equation (48) which includes the effect of GPP.
No new model is introduced in this paper. The model employed here is just the standard
ΛCDM model (where the effect of GPP is included). The effect of the GPP, as is evident
from Equation (48), is to multiply the Hubble parameter of the background by an overall
constant. Therefore, no new data analysis (in addition to that of ΛCDM) is needed for CMB
and BAO datasets (unlike the extensions of the ΛCDM model [39]). The values obtained
from these datasets (with ΛCDM adopted) remain applicable here. The point here is that
the values of the Hubble constant obtained by the use of the CMB and BAO anisotropy
data versus the corresponding formula Equations (50) and (51) are employed for the best fit
value of z∗ or zd which in turn are determined by nb, and so by H̄0. Hence, H̄0 corresponds
to the values of the Hubble constant obtained in CMB and BAO observations.

In the second paragraph after Equation (48), the effective increase in the Hubble
constant is identified as an effective increase in Newton’s gravitational constant G, rather
than an effective increase in the total energy density. It should be remarked that the approach
to Hubble tension in the present study is quite different from the models with a jump in the
value of G at very small redshifts [11,13]. Those types of models need a rigorous theoretical
motivation and do not solve the Hubble tension wholly (while they ameliorate it) [12], and
data seem not to support the prediction of those models that H0 should vary when obtained
in different redshift bins [40]. The gravitational constant G in those studies varies with
redshift, while the gravitational constant in the present study does not vary with redshift.
Moreover, the model we employ is the standard model of cosmology ΛCDM and no new
physics is used. Only the effect of gravitational particle production (that is an element of
the standard established physics which is overlooked in the previous studies) is taken into
account. The inclusion of this effect explains why the values of the Hubble constant in the
direct measurements and in the CMB and BAO calculations are different. No additional
numerical simulations are needed. What is done is just the usual ΛCDM data analysis that
was carried out by CMB and BAO collaborations. In other words, what is done in this paper
is to give an explanation for having two different values of the Hubble constant obtained
from direct measurements and CMB and BAO collaborations rather than proposing a new
model. The model employed in this paper is just ΛCDM (both at the background and at
the level of perturbations) since it just amounts to multiplying the Newton constant by an
overall constant, as is evident from Equation (48). This is also different from the case in
some models (such as dark energy dark matter coupling models) where the evolution of
the background is the same [41] or almost the same as the one in ΛCDM [14], while their
predictions differ at the level of the evolution of cosmological perturbations [15]. Instead,
the evolution of the Hubble parameter before and after inclusion of the effect of gravitational
particle production is the same as that of ΛCDM.
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6. Conclusions

Gravitational particle production (GPP) of scalar particles and its contribution to
Hubble parameters are studied in the era after decoupling till the present, and their phe-
nomenological implications in the context of the Hubble tension are discussed. No new
physics is employed in the present study. The model used here is just the standard ΛCDM.
The only new element is the inclusion of the effect of GPP that was neglected in previous
studies. It is observed that the effect of GPP is to raise the value of the Hubble constant in
direct measurements. This effect may be significant if production of extremely heavy scalar
particles is allowed phenomenologically at sufficiently high energies (even when they do
not exist at present). The raised value of the Hubble constant (due to GPP) is the value
of the Hubble constant that is measured in direct local measurements such as the Type Ia
supernovae measurements. On the other hand, the value of the Hubble constant relevant
to recombination calculations is the one without the effect of GPP. The Hubble parameter
after inclusion of GPP is an overall constant times the Hubble parameter before inclusion
of GPP. Therefore, the evolution of the Hubble parameter after inclusion of the effect of
GPP is the same as its form before inclusion of the effect of GPP. In other words, no new
physics is introduced here; only an explanation for the presence of two different classes of
measurements of the Hubble constant (from direct and indirect measurements) is given.
This may be a clue towards the solution of the Hubble tension. In future, further studies on
this topic may be helpful to see all implications and details of the scheme introduced here.
In particular, study of possible limitations of the use of gravitational particle production in
cosmology (in the view that gravity is studied in a classical setting while matter particles
and forces are studied and are quantized) may be useful.
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